System V Interface Definition,
Fourth Edition
Volume 3

FINAL COPY
June 15, 1995
File

Page: 2

Copyrightd 1983, 1984, 1985, 1986,1987, 1988, 1995 Novell, Inc.
All Rights Reserved. No part of this publication may be reproduced, photocopied, stored
on aretrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.

122 East 1700 South
Provo, UT 84606
U.S.A.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document,
Novell assumes no liability to any party for any loss of damage caused by errors or omissions or
by statements of any kind in the System V Interface Definition, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. Novell further assumes no liability arising out of the application or
use of any product or system described herein; nor any liability for incidental or consequential
damages arising from the use of this document. Novell disclaims all warranties regarding the
information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

Novell makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting or license to make, use or sell equipment constructed in accordance
with this description.

Novell reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

TRADEMARKS

Ann Arbor is a trademark of Ann Arbor Terminals, Inc.

Beehive is a trademark of Beehive International.

Concept is a trademark of Human Designed Systems, Inc.

HP is a trademark of Hewlett—Packard Co.

LSl is a trademark of Lear Siegler, Inc.

Micro—Term, ACT and MIME are trademarks of Micro—Term, Inc.
OSF/Moatif is a trademark of the Open Software Foundation

PostScript is a trademark of Adobe Systems.

Tektronix and Tektronix 4010 are registered trademarks of Tektronix, Inc.
TeleVideo is a registered trademark of TeleVideo Systems, Inc.

Teleray is a trademark of Research, Inc.

Teletype is a registered trademark of AT&T.

The X Window System is a trademark of MIT.

UNIX is a registered trademark in the USA and other countries, licensed
exclusively through X/Open Company, Ltd.

VT100 is a trademark of Digital Equipment Corporation.

X/Open is a trademark of X/Open Company Limited.

FINAL COPY
June 15, 1995
File:

Page: 4

Volume 3 Table of Contents

1 AUDITING INTRODUCTION

2 AUDITING EXTENSION LIBRARY
ROUTINES

3 AUDITING EXTENSION COMMANDS AND
UTILITIES

4 ENHANCED SECURITY INTRODUCTION

5 ENHANCED SECURITY EXTENSION
LIBRARY ROUTINES

6 ENHANCED SECURITY EXTENSION
COMMANDS AND UTILITIES

7 REMOTE SERVICES INTRODUCTION

Table of Contents

FINAL COPY
June 15, 1995
File: MasterToc

svid

Page: 5

REMOTE SERVICES DEFINITIONS

9 REMOTE SERVICES LANGUAGES

10 REMOTE SERVICES ENVIRONMENT

11 REMOTE SERVICES ENVIRONMENT
ROUTINES

12 REMOTE SERVICES LIBRARY ROUTINES

13 REMOTE SERVICES COMMANDS AND
UTILITIES

14 REAL TIME AND MEMORY MANAGEMENT
INTRODUCTION

15 REAL TIME AND MEMORY MANAGEMENT

ROUTINES

Volume 3 Table of Contents

FINAL COPY
June 15, 1995
File: MasterToc
svid

Page: 6

16 PROGRAMMING LANGUAGE
SPECIFICATION

17 SOFTWARE DEVELOPMENT
INTRODUCTION

18 SOFTWARE DEVELOPMENT LIBRARY
ROUTINES

19 SOFTWARE DEVELOPMENT COMMANDS
AND UTILITIES

20 TERMINAL INTERFACE INTRODUCTION

21 TERMINAL INTERFACE ENVIRONMENT

22 TERMINAL INTERFACE ENVIRONMENT
ROUTINES

23 TERMINAL INTERFACE LIBRARY

ROUTINES

Table of Contents iii

FINAL COPY
June 15, 1995
File: MasterToc

svid

Page: 7

24

TERMINAL INTERFACE COMMANDS AND
UTILITIES

25 WINDOW SYSTEM INTRODUCTION

26 REMOTE ADMINISTRATION
INTRODUCTION

27 REMOTE ADMINISTRATION LIBRARY
ROUTINES

28 REMOTE ADMINISTRATION COMMANDS

AND UTILITIES

Volume 3 Table of Contents

FINAL COPY
June 15, 1995
File: MasterToc
svid

Page: 8

Each auditable event, when audited, generates an associated audit record; col-
lected for each event audited are a time stamp, the user identity, object name, level
of the process (subject) causing the event, privileges used, an identification of the
type of event, and an indication of the success or failure of the event. The

audi t r pt command is used to print data from the log file.

Summary of Library Routines

The following routines are supported by the Auditing Extension. All of the rou-
tines in this section have been internationalized and may reference environment
variables for localization information. [See envvar(BA_ENV)].

audi t buf audi tct | audi t dnp audi t evt audi tl og

SUMMARY OF COMMANDS AND UTILITIES

The following commands and utilities are supported by the Auditing Extension.
All of the commands and utilities in this section have been internationalized and
may reference environment variables for localization information. [See
envvar(BA_ENV)].

audi t cnv audi tl og audi t of f audi t r pt audi t set
audi tfltr audi t map audi t on

Organization of Technical Information
The “Auditing Library Routines” chapter provides manual page descriptions of
library routines supported by this extension.

The “Auditing Commands and Utilities”” chapter provides manual page descrip-
tions of commands and utilities supported by this extension.

1-2 AUDITING INTRODUCTION

FINAL COPY

June 15, 1995

File: at_int.txt
svid

Page: 10

Auditing Extension Library Routines

The following section contains the manual pages for AT_LIB routines.

Auditing Extension Library Routines

FINAL COPY

June 15, 1995

File: at_lib.cov
svid

Page: 11

2-1

FINAL COPY
June 15, 1995
File:

Page: 12

auditbuf (AT_LIB) auditbuf (AT_LIB)

NAME
auditbuf — manipulate the audit buffer

SYNOPSIS
#i ncl ude <sys/audit. h>

int auditbuf(int cmd, struct abuf *bufp, int size)

DESCRIPTION

The audi t buf system call is used to get or set the high_water_mark (vhigh) and
size (bsize) of the audit buffer(s). The high_water_mark limits the amount of
memory that can be held within the audit buffer. Use of the audi t buf system call
requires appropriate privileges.

The default hi gh_wat er _nar k is equal to the size of an audit buffer (ADT_BS| ZE).
The valid range of values for vhigh is greater than or equal to zero and less than or
equal to ADT_BSI ZE. The size of the audit buffer (ADT_BSI ZE) is a tunable parame-

ter found in/ et c/ mast er. d/ audi t and can not be modified by the audi t buf sys-
tem call.

Two values for cmd are supported: ABUFGET and ABUFSET. When the specified cmd
is ABUFCET, the value of the hi gh_wat er _nar k is returned in vhigh, and the size of
the audit buffer is returned in bsize.

When the specified cmd is ABUFSET, the value of the hi gh_wat er _nmar k is changed
to vhigh, and the bsize of the audit buffer is ignored.

The bufp argument points to a structure of type abuf which contains the following

elements:
int vhigh; audit buffer high_water_mark
int bsize; audit buffer size

The si ze argument is used to verify the size of the abuf structure being passed in
order to determine the version of auditing.

RETURN VALUE
Upon successful completion, the system call audi t buf returns a value of 0; other-
wise, a value of —1 is returned and er r no is set to indicate an error.

ERRORS
Under the following conditions, audi t buf fails and sets er r no to:

EPERM if the process does not have the appropriate privileges.
El NVAL if the size of abuf is not equal to si ze.

El NVAL if cmd is ABUFSET and the value of vhigh is less than zero or greater than
bsize.

El NVAL if the cmd is invalid.
ENCPKG if the audit package is not installed.

SEE ALSO
auditevt(AT_LIB).

Page 1

FINAL COPY
June 15, 1995
File: at_lib/auditbuf
svid

Page: 13

auditbuf (AT_LIB)

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: at_lib/auditbuf
svid

Page: 14

auditbuf (AT_LIB)

auditctl (AT_LIB) auditctl (AT_LIB)

NAME
auditctl — control or report the status of auditing

SYNOPSIS
#i ncl ude <sys/audit. h>

int auditctl (int cmd, struct actl *actlp, int size)

DESCRIPTION
The audi t ct| system call fills the appropriate audit control structures or reports
the status of auditing, depending on the values of cmd. Three values of cmd are sup-
ported: AUDI TON, AUDI TCFF, and ASTATUS.

When the specified cmd is AUDI TON, the audi t ct| system call performs the follow-

ing actions:
. Copies in the offset in seconds from the Greenwich mean time.
. It initializes the vnode for the primary audit log file.
. It initializes the audit buffer and log control structures.
. It exempts system resident processes and /shin/init from auditing.
. It writes a machine-specific header record.
. It sets the audi t on flag to 1.

When the specified cmd is AUDI TOFF, the audi tct| system call sets the audit on
field to zero; frees all process audit structures; and locks, flushes, and releases the
audit buffers.

When the specified cmd is ASTATUS, the audi tct| system call returns the current
status of auditing. A zero value for audi ton in the act| structure indicates that
auditing is disabled, and a value of one indicates that auditing is enabled.

The actlp argument points to a structure of type act| which contains the following

elements:

int auditon; audit status variable
char version[ADT_VERLEN]; audit version

long gmtsecoff; GMT offset in seconds

The si ze argument is used to verify the size of the act| structure being passed in
order to determine the version of auditing.

Auditing must be installed on the system for this system call to be used. The use of
the audi t ct| system call requires the appropriate privilege.

RETURN VALUE
The audi t ct1 system call returns zero on success. When unsuccessful, audi t ct |
returns a value of —1 and sets er r no to indicate the error.

ERRORS
Under the following conditions, audi t ct | fails and set er r no to:

Page 1

FINAL COPY
June 15, 1995
File: at_lib/auditctl
svid

Page: 15

auditctl (AT_LIB) auditctl (AT_LIB)

El NVAL The size of act | is not equal to si ze.

El NVAL An attempt was made to disable auditing while it was already dis-
abled.

EINVAL An attempt was made to enable auditing while it was already
enabled.

El NVAL The cmd is invalid.

ENCENT Itis not possible to access the primary event log path.

EPERM The invoking subject does not have the required privilege.

ENCPKG The audit package is not installed.

EEXI ST All the possible log files exist when attempting to enable auditing.
ERCFS The primary audit log file resides within a file system that is mounted

read-only.
El O An 1/0 error occurred while performing a write to the audit log file.
SEE ALSO
auditbuf(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB), auditlog(AT_LIB)
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: at_lib/auditctl
svid

Page: 16

auditdmp (AT_LIB) auditdmp (AT_LIB)

NAME
auditdmp — write audit record to audit buffer

SYNOPSIS
#i ncl ude <sys/audit. h>

int auditdnp(struct arec *arecp, int size)

DESCRIPTION
The audi t dnp system call is used to write an audit record to the audit buffer. Use
of audi t dnp system call requires the appropriate privileges. Upon successful com-
pletion, a record is written to the audit buffer. Trusted user-level commands with
the appropriate privilege append user-level event records to the audit buffer.
Privileged applications append only records of type m sc to the audit buffer.

The arecp argument points to a structure of type ar ec which contains the following

elements:

i nt rtype; audit record event type

i nt rstatus; audit record event status
i nt rsize; audit record size of argp
char Cargp; audit record data

The rtype element of the ar ec structure specifies the event type of the audit record.
If the rtype argument is valid (one of the user-level events) and if its corresponding
bit is set in the process emask for the invoking process, the system generates an
audit record. The rstatus element of the ar ec structure is the status of the user-level
event, zero for success, non-zero for failure. The rsize element of the ar ec structure
specifies the size of memory required to record the data to be written. The argp ele-
ment of the ar ec structure is a character pointer to the audit data.

The size argument is used to verify the size of the ar ec structure being passed in
order to determine the version of auditing.

RETURN VALUE
The audi t dnp system call returns zero on success. It will also return zero if the
rtype is not currently being audited and no record is written. When unsuccessful,
audi t dnp returns a value of -1 and sets er r no to indicate the error.

ERRORS
Under the following conditions, audi t dnp fails and sets er r no to:
El NVAL if the system call is invoked while auditing is disabled.
El NVAL if the size of ar ec is not equal to si ze.
El NVAL ifrtype isinvalid.
EPERM if the process does not have the appropriate privileges.
ENCPKG if the audit package is not installed.

SEE ALSO

auditbuf(AT_LIB), auditctl(AT_LIB), auditevt(AT_LIB), auditlog(AT_LIB)

Page 1

FINAL COPY
June 15, 1995
File: at_lib/auditdmp
svid

Page: 17

auditdmp (AT_LIB)

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: at_lib/auditdmp
svid

Page: 18

auditdmp (AT_LIB)

auditevt (AT_LIB) auditevt (AT_LIB)

NAME
audi t evt — get or set auditable events

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/audit. h>

int auditevt(int cmd, struct aevt [hevtp, int size)

DESCRIPTION
The audi t evt system call gets or sets auditable events, depending on the value of
cmd. The following values of cmd are supported: AGETSYS, ASETSYS, AGETUSR
ACGETME, ASETME, TAGETLVL, TACNTLVL, TASETLVL, ASETUSR, AYAUDI T, and ANAUDI T.
The auditable event bit mask (emask) is represented by a hexadecimal number. The
value of uid in the aevt structure is used to identify users to be audited on the sys-

tem.

The aevtp argument points to a structure of type aevt which contains the following
elements:

adt enmask_t emask; event mask to be set or retrieved

uid_t uid; user’s event mask to be set or retrieved

ui nt flags; event mask flags

ui nt nivls; size of the individual object level table

| evel _t Ovl_minp; minimum object level range criteria

l evel _t Ovl_maxp; maximum object level range criteria

level _t Ovl_tblp; individual object level table

When the specified cmd is AGETSYS, the system-wide event mask (adt _sysenask) is
copied to emask in the aevt structure, and the entire structure is returned. All ele-
ments of the aevt structure except emask are ignored.

When the specified cmd is ASETSYS, the value of emask in the aevt structure is
OR’ed with the fixed auditable events and then copied into the system wide event
mask. If auditing is enabled, then every process audit structure is updated to reflect
the change. All elements in the aevt structure except emask are ignored.

When the specified cmd is AGETUSR, the active process list is searched for a process
that belongs to the uid given in the aevt structure. If one is located, the value of the
user’s emask is copied into the enmask field in the aevt structure, and the entire
structure is returned. All elements of the structure except for emask and uid are
ignored.

When the specified cmd is AGETME, the invoking process user’s emask is retrieved
and copied into the emask field in the aevt structure. All elements of the structure
except for emask are ignored.

When the specified cmd is ASETME, the value of emask is copied into the user’s event
mask field of the user’s process audit structure and then combined by a bitwise OR
with the system wide event mask to create a new process event mask for the invok-
ing process only. All elements of the structure except for emask are ignored.

Page 1

FINAL COPY
June 15, 1995
File: at_lib/auditevt
svid

Page: 19

auditevt (AT_LIB) auditevt (AT_LIB)

Page 2

When the specified cmd is ASETUSR, the active process list is searched for every pro-
cess belonging to the given uid. When a valid active process is located, the value of
emask is copied into the user’s event mask field of the process audit structure and
then combined by a bitwise OR with the system wide event mask to create a new
process event mask. This processing continues until it finds and sets every valid
active process belonging to the specified uid. All elements of the structure except
for emask and uid are ignored.

When the specified cmd is ANAUDI T, the current process and any subsequent forked
process is exempt from auditing. All elements of the structure are ignored.

When the specified cmd is AYAUDI T, the current process is made auditable again.
All elements of the structure are ignored.

tWhen the specified cmd is ACNTLVL, the number of individual object levels is
copied into the nl vl s field and the entire aevt structure is returned. All elements
of the structure except for nlvls are ignored. The Mandatory Access Control
Module (MAC) must be installed for this value of cmd to be used.

tWhen the specified cmd is AGETLVL, the object level event mask is retrieved and
copied into the emask field. The object level flags are copied into the f1 ags field,
and the number of individual object levels is copied into the nl vl s field. If the
object level range criteria was set (indicated by a flag setting of ADT_RVASK), then
the Ivl_minp and Ivl_maxp fields are filled. If any individual object level criteria
were set (indicated by a flag setting of ADT_LMASK), then the Ivl_tblp field is filled.
(Note that the amount of storage space for the Ivl_tblp must be allocated by the
invoking process. The amount of space is calculated by multiplying the value of
nl vl s by the size of a level_t. The value of nl vl s is obtained from ACNTLVL.) The
entire aevt structure is returned; only the uid element is ignored. The Mandatory
Access Control Module must be installed for this value of cmd to be used.

tWhen the specified cmd is ASETLVL, the object level audit criteria is set. Object
level auditing may be performed on either a single level or a range of levels, neither
of which can be specified unless an object level event mask has been previously set
or is currently being set. If the object level event mask flag is specified (indicated by
a flag setting of ADT_QVASK), then the object level event mask is modified to reflect
the value of the emask field. The Mandatory Access Control Module must be
installed for this value of cmd to be used.

If auditing is to be performed on single levels, the value of flags is set to ADT_LNMASK,
and the levels specified by Ivl_tblp will be set. To clear the individual levels, the
flags value is set to ADT_LMASK, and list of null levels is specified by IvI_tblp.

If auditing is to be performed on a level range, the value of flags is set to ADT_RVASK,
and the range of levels specified by Ivl_maxp and Ivl_minp will be set. In this case,
Ivl_maxp must dominate Ivl_minp. To clear the level range, the value of flags is set to
ADT_RVASK, and the values of Ivl_maxp and | vl _m np are both null.

The si ze argument is used to verify the size of the aevt structure being passed in
order to determine the version of auditing.

Auditing must be installed on the system for this system call to be used. Use of the
audi t evt system call requires the appropriate privilege.

FINAL COPY
June 15, 1995
File: at_lib/auditevt
svid

Page: 20

auditevt (AT_LIB) auditevt (AT_LIB)

RETURN VALUE

The audi t evt system call returns zero on success. When unsuccessful, audi t evt
returns a value of —1 and sets er r no to indicate the error.

ERRORS

Under the following conditions, audi t evt fails and sets err no to:
El NVAL The size of aevt is not equal to si ze.
El NVAL Either| vl _m np or | vl _maxp points to an invalid level.

TEI NVAL The cmd is ASETLVL, the flags field is ADT_RMASK, and | vl _maxp does not
dominate | vl _m np.

TEl NVAL The cmd is ASETLVL, the flags field is ADT_RVASK, and | vl _maxp and
I vl _m np are not both NULL.

El NVAL The cmd is invalid.

TENCPKG The cmd is ACNTLVL, AGETLVL, or ASETLWL, and the MAC feature is not
installed.

EPERM The invoking subject does not have the required privilege.
ESRCH No process can be found corresponding to that specified by the uid.

SEE ALSO

auditbuf(AT_LIB), auditctl(AT_LIB), auditdmp(AT_LIB), auditlog(AT_LIB).

FUTURE DIRECTIONS

LEVEL

The ACNTLVL cmd value is designated Level 2 as of July 1992. A new command
value will be added that will not require that a structure be passed in order to
return the number of auditing levels.

The concept of Object Level Auditing will not be supported in the future. The
NCSC’s Orange Book makes no specific references to this for a B2 system. In associ-
ation with removing the concept of "Object Level Auditing” from the SVID, the
AGETLVL, and ASETLVL "cmd" values and related descriptions and error condi-
tions are designated Level 2 for removal effective May 1993.

The ACNTLVL, AGETLVL, and ASETLVL cmd values and associated descriptions
will be removed from the SVID when their three year waiting period has been com-
pleted.

Level 1.
ACNTLVL "cmd" value has been designated Level 2, effective July 1992.

AGETLVL, ASETLVL "cmd" values are designated Level 2, effective May 1993.

Page 3

FINAL COPY
June 15, 1995
File: at_lib/auditevt
svid

Page: 21

auditlog (AT_LIB) auditlog (AT_LIB)

NAME
auditlog - get or set audit log file attributes

SYNOPSIS
#include <limts. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/audit. h>

int auditlog(int cmd, struct al og *alogp,

DESCRIPTION
The audi tl og system call is used to get or to set the audit log file attributes,
depending on whether cmd is ALOSGET or ALOGSET. Use of the audi t| og system
call requires the appropriate privilege. The alogp argument points to a structure of
type al og which contains the following elements:

i nt size)

int flags; log file attributes

int onfull; action on log file full

int onerr; action on log file error

int maxsize; maximum log file size

int segnum; log file sequence number 001-999

char mmp[ADT_DATESZ]; current month time stamp

char ddp[ADT_DATESZ]; current day time stamp

char pnodep[ADT_NODESZ]; optional primary log file node name

char anodep[ADT_NODESZ]; optional alternate log file node name

char *ppathp; optional primary log file pathname

char *apathp; optional alternate primary log file pathname
char *progp; optional program to run during log file switch
char *defpathp; default primary log file pathname

char *defnodep; default primary log file node name

char *defpgmp; default program to run during log file switch
i nt defonfull; default action on log file full

The following values for flags in the al og structure are supported and may be
modified or retrieved:

PPATH set primary audit log file pathname (ppathp)

PNCDE set primary audit log file node name (pnodep)
APATH set alternate audit log file pathname (apathp)

ANCDE set alternate audit log file node name (anodep)

PSI ZE set maximum size for primary audit log file

PSPECI AL set primary audit log file to a character special device

Page 1

FINAL COPY
June 15, 1995
File: at_lib/auditlog
svid

Page: 22

auditlog (AT_LIB) auditlog (AT_LIB)

ASPECQ AL set alternate audit log file to a character special device

The following values for onfull in the al og structure are supported and may be
modified or retrieved: ASHUT, AALOG APROG and ADI SA. (APROG is valid only if
AALCG is also specified.) The following values of onerr are supported and may be
modified or retrieved: ASHUT and ADl SA

ASHUT shutdown the system when audit log file is full or an audit log file
error occurs

AALCG switch to alternate audit log file when current log file is full
APRCG run optional binary or shell program when audit log file is full
AD SA disable auditing subsystem when audit log file is full or an audit

log file error occurs

In addition to the ones listed above, the following elements in the al og structure
may also be modified or retrieved: maxsize, pnodep, anodep, ppathp, apathp, and
progp.

The following elements in the al og structure may only be retrieved because they
can only be set internally: seqgnum, mmp, and ddp.

The following elements in the al og structure may only be set because the defaults
are read from the Zetc/default directory: defpathp, defnodep, defpgmp, and defonfull.

The value of maxsize in the al og structure must be greater than or equal to the size
of the audit buffer, ADT_BSI ZE. The absolute pathnames to the primary audit log
file (ppathp) and to the alternate audit log file (apathp) must be valid and be either of
type directory or character special file. The absolute pathname to the optional pro-
gram to be run during log switch (progp) must be less than PATH MAX - 15. A
seven-character node name may be appended to both the primary audit log file
(pnodep) and the alternate audit log file (anodep).

seqgnumis the log sequence number that is to be retrieved. seqnumcan range from
001-999. nmp is the character pointer to the current month time stamp that is to be
retrieved. ddp is the character pointer to the current day time stamp that is to be
retrieved.

When the specified value of cmd is ALOGCET, the return values of the call are all the
elements of the al og structure. Note that the space required for the ppathp, apathp,
and progp must be allocated by the user.

When the value of cmd is ALOGSET, the elements of the al og structure determine
what actions are to be performed.

The size argument is used to verify the size of the al og structure being passed in
order to determine the version of auditing.

RETURN VALUE

Page 2

When invoked successfully, the audi t| og system call returns zero and sets the
appropriate audit log file attributes. When unsuccessful, audi t | og returns a value
of -1 and sets er r no to indicate the error.

FINAL COPY
June 15, 1995
File: at_lib/auditlog
svid

Page: 23

auditlog (AT_LIB) auditlog (AT_LIB)

ERRORS

Under the following conditions, audi t | og fails and sets er r no to:

EACCES The cmd is ALOGSET, and ppathp, apathp, or progp cannot be
accessed.

EAGAI N It is not possible to allocate memory for the alogp.

EAGAI N The cmd is ALOGSET, and it is not possible to allocate memory for
various elements used to fill in the al og structure.

El NVAL The size of al og does not equal si ze.

El NVAL The value of cmd is invalid.

El NVAL The cmd is ALOGSET, and the value of onfull is not either ASHUT,
AALQOG ADI SA, or AALOGCAPROG

El NVAL The cmd is ALOGSET, and the value of onerr is not either ASHUT or
ADI SA

El NVAL The cmd is ALOGSET and the value of maxsize is not equal to zero
and less than the size of the audit buffer (ADT_BSI ZE).

El NVAL The cmd is ALOGSET, and the flags field contains PPATH or NCDE
when auditing is enabled.

ENCENT The cmd is ALOGSET and the pathname to the primary log file,
alternate log file, or program to be run during a log switch does
not exist.

ENAMETOOLONG The cmd is ALOGSET, and the ppathp, apathp, or defpathp fields are
longer than PATH_MAX - 15.

ENAMETOOLONG The cmd is ALOGSET, and progp or defpgmp are longer than

PATH_MAX.

ENOTBLK The cmd is ALOGSET, the flags field contains PS| ZE, and the maxsize

value is not zero.

EPERM The invoking subject does not have the required privilege.

ENCPKG The audit package is not installed.
SEE ALSO

audi t buf (AT_LIB), audi t ct| (AT_LIB), audi t dnp(AT_LIB), audi t evt (AT_LIB)
LEVEL

Level 1.

Page 3

FINAL COPY
June 15, 1995
File: at_lib/auditlog
svid

Page: 24

Auditing Extension Commands And Utilities

The following section contains the manual pages for the AT_CMD routines.

Auditing Extension Commands And Utilities

FINAL COPY
June 15, 1995
File: at_cmd.cov
svid

Page: 25

3-1

FINAL COPY
June 15, 1995
File:

Page: 26

auditcnv (AT_CMD) auditcnv (AT_CMD)

NAME
auditcnv — create audit mask file

SYNOPSIS
audi tcnv

DESCRIPTION
The audi t cnv shell-level command allows an administrator with the appropriate
privileges to create an audit mask file for the user login interface. The
/ et c/ passwd and / et ¢/ def aul t / user add files are used to assign an initial default
audit mask for every user on the system. When the audi t cnv command is invoked
and completes successfully, the following message is displayed:

/etc/security/ia/audit created

FILES
/ et ¢/ passwd
/et c/ def aul t/ user add
/etc/security/ialaudit

USAGE
Administrator.

SEE ALSO
defadm(BU_CMD), useradd(AU_CMD), usermod(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: at_cmd/auditcnv
svid

Page: 27

auditfltr (AT_CMD) auditfltr (AT_CMD)

NAME

auditfltr — convert audit log file for inter-machine portability

SYNOPSIS

auditfltr [[=i N [~0X]] O[-i X —oN]

DESCRIPTION

FILES

USAGE

The audi tf1tr command is used to convert audit log files from native machine for-
mat into XDR (External Data Representation) format and vice versa. These conver-
sions allow you to transport audit log files from one machine to another for pro-
cessing with audi trpt. audi tfl tr does not need to be used in all instances. If the
two machines are of the same architecture and are running the same version of
auditing, the log files can simply be copied from the source machine to the destina-
tion machine. If the two machines are of different architecture, or if they are not
running the same version of auditing, audi t f | t r must be used as part of the copy-
ing procedure.

The audi tf1tr command has the following options:

=i This option specifies the type of the input file, which is always stan-
dard input.

-0 This option specifies the type of the output file, which is always stan-
dard output.

The type of format may be N, for native machine format, or X, for
XDR format. If no options are specified it is assumed the input file is
in native machine format and the output file is in XDR format.

The procedure for transferring an audit log file from one machine to another has
basically three steps. First, the audit log is converted from native machine format to
the portable XDR format, using a command like the following:

cat /var/audit/1125103 | auditfltr —i N —oX >\
[var/tnp/ 1125103. xf er

Second, the file is transferred to another machine. This can be done by transferring
the file to magnetic media on one with t cpi 0 and then restoring it with the same
command on the other. Third, the file is converted back to machine format. To
avoid confusion with the destination machine’s own audit log files, a subdirectory
import under /var/audit is created. The file can then be converted with a command
like the following:

cat /var/tnp/1125103. xfer | auditfltr —i X —oN >\
/var/audit/inport/1125103

The audi t f1 tr command accepts only audit log files as input.
/var [audi t/ MMDD###

Administrator.

Page 1

FINAL COPY
June 15, 1995
File: at_cmd/auditfltr
svid

Page: 28

auditfltr (AT_CMD)

SEE ALSO
auditmap(AT_CMD), auditrpt(AT_CMD)

LEVEL

Page 2

Level 1

FINAL COPY
June 15, 1995
File: at_cmd/auditfltr
svid

Page: 29

auditfltr (AT_CMD)

auditlog (AT_CMD)

-a next_node

-N pgm

FILES

auditlog (AT_CMD)

character special file does not exist, an error message is displayed.

If the argument to - A is a directory, audi t on creates a regular file
relative to next_path, based upon the current month and day, fol-
lowed by a three digit sequence number (for example, 1231002).
The maximum path allowed is (PATH_MAX - 15). If the path
exceeds this value, an error message is printed.

The valid range of sequence numbers is 001 to 999, and the default
event log file is the regular file / var/ audi t/ MMDD###. If the file
exists when the system attempts its initial write, the sequence
number is incremented and another attempt is made.

The - a option provides the ability to append an additional seven
characters to the system-generated alternate event log file name.
For example, the command

auditl og -a abcdefg

will create the file /var/audi t/ MMDD###abcdef g when a log
switch occurs.

If the next_node is larger than seven characters or if it contains a
slash, an error message is displayed.

If the alternate log is a character special device the -a option is
ignored.

The - n option specifies either a shell file or binary executable (pgm)
that will be run when a log switch occurs. The - n option may be
used with at least one of the - a or - A options.

/etc/defaul t/audit
/etc/ master. d/ audi t
[var/ audi t / MMDD###

USAGE

Administrator.

SEE ALSO

auditbuf(AT_LIB), auditctl(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB),
auditlog(AT_LIB), auditoff(AT_CMD), auditon(AT_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: at_cmd/auditlog
svid

Page: 32

auditmap (AT_CMD) auditmap (AT_CMD)

NAME

auditmap — create and write the audit map files

SYNOPSIS

audi t map [- m dirname]

DESCRIPTION

FILES

The audi t map shell-level command creates and writes the audit map data to a set of
files. To execute this command, a user must have the appropriate privileges. This
command is invoked by the audi t on command whenever auditing is started. The
administrator may also invoke this command directly.

The audi trpt command uses the audit map files to translate numeric data in the
log (for example, user ids) into character strings (for example, login names). The
default name of the directory containing the audit map files is
/var/audi t/audit map. The audit map file contains the following information:

« file identification, consisting of audit software version, timezone information,
privilege mechanism information, system name, machine node name, operating
system release and version, and machine type.

e all/etc/passwd login names and their corresponding UIDs
e all/etc/group names and their GIDs
« all event type names and their corresponding event type numbers

» all event classes defined in /etc/security/audit/classes and their
corresponding event types

« all privilege names and their corresponding numbers
« all system call names and their corresponding numbers

If the Enhanced Security Extension is implemented a copy of the Level Translation
Database (LTDB) is created in addition to the auditmap file. The LTDB consists of
the following four separate files: Itf.class, Itf.cat, Itf.alias, and lid.internal.

You can specify a name for the audit map directory with the - m option. The
specified directory must exist to be writable. The audit map files are readable only
by users with appropriate privileges. Access controls should be set appropriately
for the directory that contains the map files.

/etc/security/audit/classes
/var/audi t/audi t map/ audi t map
[var/audit/auditnmap/ltf.class
/var/audit/auditmap/ltf.cat
/var/audit/auditmap/l1tf.alias
/var/audit/audi tnmap/lid.internal
/etcl/security/mac/ltf.class
/etc/security/ mac/ltf.cat
/etc/security/mac/ltf.alias
/etc/security/ mac/lid.internal

Page 1

FINAL COPY
June 15, 1995
File: at_cmd/auditmap
svid

Page: 33

auditm

USAGE

ap (AT_CMD)

Administrator.

SEE ALSO
auditon(AT_CMD), auditrpt(AT_CMD).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: at_cmd/auditmap
svid

Page: 34

auditmap (AT_CMD)

auditoff (AT_CMD) auditoff (AT_CMD)

NAME
auditoff — disable auditing

SYNOPSIS
audi t of f

DESCRIPTION
The audi t of f shell-level command allows an administrator with the appropriate
privileges to disable auditing. When auditing is disabled by audi t of f, auditable
events currently in progress will not have a record logged because they will not
complete while auditing is enabled. While auditing is enabled, execution of this
command causes the audi t dnp system call to write an audit record to the log file.
If auditing is already disabled, and audi t of f is executed, no record is written.
RETURN VALUE
Upon successful completion of audi t of f, the following informational message is
displayed:
Audi ti ng di sabl ed

If auditoff is invoked while auditing is already disabled, an error status is
returned and the following informational message displayed:

Audi ting al ready di sabl ed
USAGE
Administrator.
SEE ALSO
auditctl(AT_LIB), auditdmp(AT_LIB), auditlog(AT_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: at_cmd/auditoff
svid

Page: 35

auditon (AT_CMD) auditon (AT_CMD)

NAME
auditon — enable auditing

SYNOPSIS
audi ton

DESCRIPTION
The audi t on shell-level command allows an administrator with the appropriate
privileges to enable auditing.

When auditon is invoked, it initializes the following with default values from the
/etc/default/audit file:

AUD T_LOGERR log full conditions. May have the values "DISABLE" or
"SHUTDOWN".

AUD T_LOGFULL log error conditions. May have the values "DISABLE",
"SHUTDOWN" or "SWITCH".

AUD T_DEFPATH log file path name.

AUD T_NCDE log file node name.

AUD T_PGM program to be executed during log switch.

The auditlog command can be used to override the values specified in
/etc/default/audit for AUDIT_LOGFULL, AUDIT_DEFPATH, AUDIT_NODE,
and AUDIT_PGM. If access to the / et ¢/ def aul t/ audi t file is denied or if a vari-
able name is either missing or invalid, a warning message is printed. The
AUDIT_NODE and AUDIT_PGM parameters are not evaluated unless the value of
AUDIT_LOGFULL is SWITCH.

When auditing is enabled, the fixed events and any selectable events set by previous
execution of auditset command take effect. When the audi ton command is
invoked successfully, the following message is displayed:

Audi ting enabl ed
If the event log path cannot be accessed audi t on prints an error message.

While auditing is enabled, execution of audi t on results in an audit record being
written to the log file via the auditdmp system call. The audi t map command is also
invoked to write information to the audit map files. Any event being audited that
completes while auditing is enabled will generate an event log record.

The auditing criteria remain in effect until one of the following occurs:

* When the system is shutdown both the event criteria and the log file attributes
are lost.

* When auditing is disabled the system, object-level, and user event criteria are
maintained but the log file attributes return to their default settings.

* When a log switch occurs the system, object-level, and user event criteria are
maintained but the log file attributes return to their default settings.

* When the audi t| og or audi t set command is invoked the appropriate criteria
is changed.

Page 1

FINAL COPY
June 15, 1995
File: at_cmd/auditon
svid

Page: 36

auditon (AT_CMD) auditon (AT_CMD)

FILES

USAGE

Auditing remains enabled until the audi t of f command is executed, or until the log
full condition of DISABLE or SHUTDOWN occurs, or until a log error is encoun-
tered. If the system is shutdown, the auditl og and audit set commands may
need to be executed to reset any specified auditing criteria before invoking the
audi t on command.

/etc/defaul t/audit
[var/ audi t / MMDD###

Administrator.

SEE ALSO

LEVEL

Page 2

auditctl(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB), auditlog(AT_LIB),
auditlog(AT_CMD), auditmap(AT_CMD), auditoff(AT_CMD), auditset(AT_CMD),
defadm(BU_CMD).

Level 1.

FINAL COPY
June 15, 1995
File: at_cmd/auditon
svid

Page: 37

auditrpt (AT_CMD) auditrpt (AT_CMD)

NAME
audi t r pt —display recorded information from audit trail
SYNOPSIS
auditrpt [-0] [-i] [-b | -W
[-e[!]event],. . .]] [-u user[,. . .]] [-f objectid[,. . .]]
[-t object_type[,. . .]] [-I level | -r levelmin-levelmax]
[-s time] [-h time] [-a outcome] [-m map]
[-pall | priv,. . .11 [log [. . .]]
DESCRIPTION

The audi tr pt shell level command allows the administrator with the appropriate
privileges to selectively display the contents of audit log files. Note that if the log
files are presented as standard input that only one log file may be presented at a
time. If more than one log file is presented in this manner, audi t r pt will fail when
it encounters data from the second log file. Specify the file names on the command
line if you wish to process multiple log files. The privileges required are audi t and
set pl evel .

The following options are available:

-0 Display the events that correspond to the union of the specified
auditing criteria.

- Take input audit records from standard input.

-b Display the events in reverse chronological order (backwards).
This option cannot be used with the - woption.

-w Display the events as they are being written to the event log file.
This option cannot be used with the - b option.

-e[!]event[,...] Display the selected event types or event classes. If ! is specified,
all the events except those listed are displayed. Event classes,
which are aliases for groups of events, are defined in the
/etc/security/audit/cl asses file.

-u user[,. . .] Display all the recorded events for the specified real and effective
uids and/or login names.

-f object_id[,...] Display all the recorded events for the specified object_ids. The
object_id must be the full pathname of a regular file, special file,
directory, or a named pipe, or the ID of an IPC object or loadable
module.

-t object_type[,. . .]
Display all the recorded events for the specified object types.
Valid arguments are f (regular file), ¢ (character special file), |
(links), d (directories), p (named pipes or unnamed pipes), S
(semaphores), h (shared memory), and m(messages).

-1 level Display all the recorded events involving objects at the specified
level. Only one level may be specified. Level information is
recorded only if the Mandatory Access Control (MAC) feature
was installed on the system that generated the audit log. This
option cannot be used with the - r option.

Page 1

FINAL COPY
June 15, 1995
File: at_cmd/auditrpt
svid

Page: 38

auditrpt (AT_CMD) auditrpt (AT_CMD)

- r levelmin—levelmax
Display all recorded events involving objects whose security level
falls within the range defined by levelmin and levelmax. Only one
level range may be specified, and the level specified by levelmax
must dominate levelmin. Level information is recorded only if the
MAC feature was installed on the system that generated the audit
log. This option cannot be used with the - | option.

- s time Display all the events occurring at or after the specified time. The
time should be specified in the format used by the date com-
mand. The following are valid values for times: for hours, 00 to
23; for minutes, 00 to 59; for days, 01 to 31; for months, 01 to 12;
and for years, 00 to 99.

When both -s and - h are specified without the - o option, the
start time (- s) must be earlier than the end time (- h).

- h time Display all the events existing at or before the specified time. For-
mat and valid values for time are the same as the - s option.

- a outcome Display all the recorded events for the specified outcome: s (suc-
cess) or f (failure).

- mmap Specify the path (absolute or relative) of the auditmap directory.

-pall Opriv],...] Display the recorded events that use the specified privilege(s). If
the word al | follows the - p option, display all recorded events
that use any privilege.

log[. . .] Name (absolute or relative pathname) of the audit log(s) to use.

OUTPUT

Page 2

The first part of the output of audi trpt consists of the command line entered by
the administrator. For each log file, the output consists of two parts. First,
audi tr pt displays audit log file and system identification information to verify that
the correct log file was specified. This includes the internal identification of the
audit log file, the version of the audit software that produced the log file, and the
identification of the machine that produced the log file. Second, all records that
meet the selection criteria are displayed one record per line. Records are displayed
in the following format:

time,event,pid,outcome,user,group(s),session,subj_Ivl, \
(obj_id:obj_type:obj_Ivl:device:maj:min:inode:fsid)(. . .)[,pgm_prm]

The meanings of the fields are as follows:

time The time is printed as hour:minute:second:day:month:year. For exam-
ple, 10: 30: 00: 15: 04: 91 is 10:30am of April 15, 1991.

event The event type.

pid The process ID number of the process that triggered the event, pre-
ceded by the letter P.

outcome The outcome of the event is either s for success or f (exit value) for
failure.

FINAL COPY

June 15, 1995
File: at_cmd/auditrpt
svid

Page: 39

auditrpt (AT_CMD) auditrpt (AT_CMD)

user Real and effective user names are displayed. User names are
separated by a colon (that is, real_user_name:effective_user_name).
group(s) Real and effective groups are displayed, followed by a list of supple-

mentary groups, if any. Groups are separated by a colon (that is,
real_grp:effective_grp:suppl_grpl:suppl_grp2:...).
session_id The session ID number, preceded by the letter S.

subj_Ivl Subject level information is recorded only if the MAC feature was
installed on the system that generated the audit log file. This field will
be blank otherwise.

(obj_id:obj_type:obj_Ivl:device:maj:min:inode:fsid)
This field contains file identification information, enclosed in
parentheses. If multiple objects are accessed in a single event, the field
is repeated. This field contains the following subfields:

obj_id The the name of a regular file, special file, directory, named
pipe, or the id of an IPC object. If the full pathname of a
file system object cannot be determined, the partial path-
name will be printed with an asterisk (*) as a prefix.

obj_type The object type, using the codes described in the descrip-
tion of the -t option.

obj_Ivl Object level information is recorded only if the MAC
feature was installed on the system that generated the audit
log file. This field will be blank otherwise.

device The object’s device number.

maj The major number component of the object’s device.
min The minor number component of the object’s device.
inode The object’s i node number.

fsid The object’s file system ID number.

pgm_prm This field is specific to each audit event and may be composed of
several subfields. The subfields described for each event will be
displayed in the order shown below and will be separated by com-
mas, unless otherwise specified.

The pgm_prm field can be one of the following:

For the audit _ctl/audit_evt/audit_| og/ audi t _map events when gen-
erated by the audit user level commands audi t on, audi t of f, audi t set,
audi t | og, audi t map, respectively: the entire command line.

For the add_grp/ add_usr/add_usr_grp/ nod_gr p/ nod_usr events: the
entire command line.

For the t f adm n event: the entire command line.

For the chg_ti mes/ dat e events: the new date. For the chg_ti nes event
only, the file name is also given.

Page 3

FINAL COPY
June 15, 1995
File: at_cmd/auditrpt
svid

Page: 40

auditrpt (AT_CMD) auditrpt (AT_CMD)

Page 4

For the f or k event: the child process ID.

For the i ni t event: if generated by the user level command i nit (1M, the
entire command line. If generated by thei nit process (*‘process 1”°):

current state: statel new state: state?
The old init state is represented by statel, and the new init state by state2.

For the kil | event: the signal and a list of pids to which the signal was
posted.

For the set _ui d event; new user.
For the set _gi d event: the new group.

For the set _pgrps event: the name of the system call that generated the
event (set pgr p or set pgi d). In addition, if generated by the set pgi d sys-
tem call, the process ID and process group ID passed to the system call.

For the set _gr ps event: the supplementary group access list.
For the |l i nk event: the pathname of the target file.

For the dac_own_grp event: if the owner was changed, the new user ID
(preceded by user:) or if the group was changed, the new group ID (pre-
ceded by group:). In addition, for the chown system call, the file name.

For the dac_node event: the new mode.

For the nmsg_ctl/nsg_get/ nmsg_op/ semctl/sem get/semop/ shmctl/
shm get / shm op events: the operation code, flag and command value. If a
subfield does not pertain to an event type, a zero will be displayed.

For the | ogi n/ bad_aut h events, the terminal identification (tty), user, and
group, of the user attempting to log on (if valid). In addition, for the
bad_aut h event: the error message (LOd N, PASWD or AUDI T)

For the passwd event: the user whose password is being changed (if valid).

For the pm deni ed event: the requested privilege, system call name, and
maximum set of privileges.

For the cron event: user’s effective uid, user’s effective gid, user’s level
(enclosed in double quotes), and cron job name. User refers to the user that
cron is running on behalf of. Note that the level subfield will be blank if the
Enhanced Security Utilities were not installed and running on the audited
system.

For the open_r d/ open_w events: the file descriptor.

For the fil e_l vl event: new security level (enclosed in double quotes). In
addition, for thefl vl fil e system call, the file name.

For the di sp_attr/set_attr events: the release flag (persi stent, | ast -
cl ose, or syst em, device mode (st ati c or dynam c), low_level (enclosed
in double quotes), high_level (enclosed in double quotes) and device state
(private or public). In addition, for the di sp_attr event: the inuse flag
(i nuse or unused). For the f devst at system call, the file descriptor.

FINAL COPY
June 15, 1995
File: at_cmd/auditrpt
svid

Page: 41

auditrpt (AT_CMD) auditrpt (AT_CMD)

Forthefil e_acl event: all ACL entries and the file name.
For thei pc_acl event: the ipc type, the ipc id and all ACL entries.
For theul i m t event: the new limit.

For the setrlinmt event: the resource (RLIMT_CORE, RLIMT_CPU,
RLI M T_DATA, RLIM T_FSI ZE, RLIM T_NCFI LE, RLI M T_STACK,
RLI M T_WMEM), soft limit and hard limit.

For the sched_| k event: the action (PROCLOCK, TXTLOCK, DATLOCXK) if gen-
erated by the pl ock system call. The page mapping attributes (PR VATE, or
SHARED) and page protection attributes (one or more of the following:
PROI_READ, PROT_WR TE, PROT_EXEC) if generated by the nentt| system
call.

For the sched_fp/sched_ts/sched fc events: If generated by the
priocntl system call with the PC_ADM N command, the function name
(FP_SETDPTBL, FC_SETDPTBL, RT_SETDPTBL or TS_SETDPTBL), global prior-
ity and time quantum. In addition, if TS _SETDPTBL or FC _SETDPTBL, the
time-sharing dispatcher parameters: tgexp, slpret, maxwait and Iwait. If
generated by the priocntl system call with the PC_SETPARVE command,
the function name (RT_NEW (FP_NEW FC NEW TS NEW RT_PARVBET,
FP_PARVBET, FC_PARVBET, TS _PARMBET), process id and user priority. In
addition, if the sched_ts or sched_fc event, user priority limit. If
sched_f p event, the seconds in time quantum.

For the nodadm event: the module type (character device, bl ock
devi ce, streans, fil esyst em m sc, none), the command (r egi st er), and
the module name. Also, module type specific data as follows: if module
type is char act er devi ce or bl ock devi ce, the major number; if module
type is fi | esyst em the file system name; if module type is m sc or none,
no specific data is displayed.

For the nodl oad event: the loadable module id.

For the nodpath event: the absolute pathname added to the loadable
module search path or NULL if the default search path is set.

For the i ocnt| event: the command argument id passed to the system call,
the flags found in the file table entry, if any (separated by colons), (FOPEN,
FREAD, FWR TE, FNDELAY, FAPPEND, FSYNC, FNONBLOC, FNMASK, FCREAT,
FTRUNC, FEXCL, FNCCTTY, FASYNC, FNVFS).

For the fcnt| event: the command argument passed to the system call. If
command is F_SETFD, close-on-exec flag (0 or 1). If command is F_SETFL,
status flags (separated by colons) (O APPEND, O NONBLOCK, O SYNC). If a
struct flock was passed to the system call: the command argument
passed to the system call, (F_ALLCCSP, F_FREESP, F_SETLCK, F_SETLKW
F_RSETLCK, F_RSETLKW and the following structure members: |_type,
I_whence, I_start, I_len.

For the nount event: the flags passed to the system call and one or more of
the following: RDONLY (read-only), FSS (old (4-argument) mount), DATA (6-
argument mount), NOSU D (setuid disallowed), REMOUNT (remount),
NOTRUNC (return ENAMETOQOLONGfor long file names).

Page 5

FINAL COPY
June 15, 1995
File: at_cmd/auditrpt
svid

Page: 42

auditrpt (AT_CMD) auditrpt (AT_CMD)

Page 6

For thefil e_pri v event: all information in the pri v_t masks passed to the
system call, in the following format:

priv_typel: priv_name[: priv_name] , priv_type2: .

priv_type will be the name of the privilege type, if it is recognized by the
privilege mechanism of the audited system. If it is not recognized, it will be
the character representation of the first byte of the pri v_t mask (for exam-
ple,i for inheritable).

For the r ecvf d event: the receiver’s process ID, and the LWP ID.
For the m sc event: the free form string provided by the application.
For the audi t _buf event: the high water mark value.

For the audi t _ct| event when generated by the audi t ct| system call: the
action taken (AUDI TON or AUD TGFF).

For the audi t _| og event when generated by the audi t| og system call: all
information passed in the al og structure to the system call. This will
include: log file attributes (PPATH PNCDE: APATH ANCDE: PS| ZE
: ASPEQ AL: PSPECI AL), the action taken when the log is full
(ASHUT, ADI SA, AALOG AALOG APROG), the action taken when there is an
audit error (ASHUT or AD SA), the maximum log size, the primary node
name, the alternate node name, the primary log pathname, the alternate log
pathname and the program to be run during a log switch.

For the audi t _dnp event when generated by the audi t dnp system call: the
event type and the status (if success: SUCCESS, if failure: FAI LURE(status)).

For the audi t _evt event when generated by the audi t evt system call: all
information passed in the aevt structure to the system call. This will
include: command argument (ASETME, ASETSYS, ASETUSR,
ANAUDI T, AYAUDI T). If the command is ASETME, the new user event mask
for the invoking process. If the command is ASETSYS, the new system event
mask. If the command is ASETUSR, the user whose mask has been modified,
the new user event mask.

For most events generated from file descriptor based system calls, file information
is returned in the file identification information field.

All the commas in the output line, except possibly the last one (if pgm_prm is
empty), will be displayed as place holders. For all the output fields, null will be
displayed if the field is not appropriate for the event type being displayed. For
example, the date event has no objects related to it, so the
obj_id:obj_type:obj_Ivl:device:maj:min:inode:fsid fields will be null (only the comma
separator will be displayed for these fields). Also, in a base system the MAC level
fields will be null.

The audi t r pt command will use the audit map to translate users, groups,security
levels, privileges, events and system calls from IDs(numbers) to names. If the infor-
mation for translating a number to a name is not found in the map, raw data (ASCII
representation of the numeric value) will be displayed for the corresponding field.

FINAL COPY
June 15, 1995
File: at_cmd/auditrpt
svid

Page: 43

auditrpt (AT_CMD) auditrpt (AT_CMD)

All numeric values are displayed in decimal representation unless preceded by 0x,
which indicates hexadecimal representation.

If a field is appropriate for an event but its value is "invalid,” a ? will be displayed.
For example, if a login event fails because the logname used is unknown to the sys-
tem (cannot be translated into a UID in the log record), the user will be flagged as
"invalid" and a ? will be displayed.

Files
[var [audi t / MMDD###
/var/audi t/ audi t map/ audi t map
/var/audit/auditmap/lid.internal
/var/audit/auditmap/ltf.alias
/var/audit/auditmap/ltf.cat
[var/audit/auditnap/ltf.class

SEE ALSO

auditfltr(AT_CMD), audi t | og(AT_CMD), audi t map(AT_CMD),
audi t of f (AT_CMD), audi t on(AT_CMD), audi t set (AT_CMD)

LEVEL
Level 1.

Page 7

FINAL COPY
June 15, 1995
File: at_cmd/auditrpt
svid

Page: 44

auditset (AT_CMD) auditset (AT_CMD)

auditset — select or display auditing criteria

SYNOPSIS

auditset [-d [-u user[,...] O-a] [-n]]

audi t set [—s [operator] event[,...]]
f[[—-u user[,...] O-a] —e [operator] event],...]]
t[—o [operator] event[,...]] [[+ -] level]

t[-r [-] levelmin-levelmax]

DESCRIPTION

The audi t set shell-level command allows an administrator with the appropriate
privileges to set or display the dynamic auditing criteria. The-m -0, -1, and -r
options are valid only if the Mandatory Access Control (MAC) subsystem is
installed. If it is not installed and these options are used, an error message is
printed. While auditing is enabled, execution of this command will result in an
audit record being written to the log file by the audi t dnp system call.

When invoked without options, audi t set displays the current system, user, and
object-level audit criteria. Each category is separated by a blank line, in the follow-
ing format:
System Audit Criteria:
system all Oevents[,...]

Wser Audit Criteria:
user: all [Onone Oevents[, ...]

toj ect Level Audit Criteria: all Onone Oevents[,...]
levelmin — levelmax
level

The - s, - e, - 0 options take an event or a list of events as arguments to the option.
The event input list must be separated by commas and can be the name of an event
class or event type. The event classes are defined in the modifiable system file
/etc/security/audit/classes. One of three operators can precede the event or
list of events. The operators define the action taken with the event list. (Only one
operator may be used for a list of events; the operator affects every event on the
list.) The following are the valid operators:

[no operator] Replace the current auditable event(s), level, or level range with
the specified input.

+ Add the specified auditable event(s) or level to the current audit
criteria.

- Delete the specified auditable event(s), level, or level range from
the current audit criteria.

! All events except those specified replace the current auditable
events.

Additionally the words al | or none may be used as event keywords. They may
not be used in conjunction with any other events or keywords.

Page 1

FINAL COPY
June 15, 1995
File: at_cmd/auditset
svid

Page: 45

auditset (AT_CMD)

Page 2

auditset (AT_CMD)

The audi t set command takes the following options:

-d

-u

user[, .. .]

Display the current audit criteria. If no other options are supplied,
the system audit criteria are displayed. When combined with
either the - a or - u options, - d displays audit criteria for either all
active users or the specified active users, respectively. The login
name is displayed (instead of the UID), and the events are listed in
alphabetical order. When combined with the -m option, -d
displays the audited object events in alphabetical order, followed
by a list of levels and/or level range to which the criteria apply.

When combined with —d, this option causes audi t set to display
the system audit criteria and the object-level audit criteria.

Set (when combined with the - e option) the auditing criteria for
any number of users that are currently logged on or display (when
combined with the -d option), the system audit criteria and the
auditing criteria for any number of users that are currently logged
on. The user can be identified by either login name or UID
number. If more than one user is specified, each login name or
UID in the input list should be separated by commas. This option
cannot be combined with the - a option. If any of the given users
are invalid or not active, a warning message is printed.

Set (when combined with the - e option) the auditing criteria for
any number of users that are currently logged on or display (when
combined with the -d option), the system audit criteria and the
auditing criteria for all users that are currently logged on.

This option cannot be combined with the - u option.

- s [operator]event[, .. .]

Set the system-wide auditing criteria. Any valid event type or
event class will be recorded, regardless of user or object levels
involved.

- e [operator]event[, ...]

This option must be combined with either the -u user or the -a
options to set user audit criteria.

-0 [operator]event[, ...]

[+ [level]

Set object-level auditing criteria. The event types specified (types
or classes) are those to be audited for the levels currently in effect.

Set object-level audit criteria for the specified level. When com-
bined with —o, it sets object-level audit criteria for the specified
level. All events specified by the —o option are audited if they
involve objects at the specified level. Only one level may be
specified; to audit more than one level, repeat the —| option. A
valid level is one which is defined to the system (see
| vl name(ES_OMD)). The maximum number of individual levels
which may be audited is system tunable.

FINAL COPY
June 15, 1995
File: at_cmd/auditset
svid

Page: 46

auditset (AT_CMD) auditset (AT_CMD)

If a minus sign precedes the level, delete the level from the levels
used for object-level auditing. If a plus sign precedes the level, add
the level to the levels used for object-level auditing.

-1 [-]levelmin—levelmax
Set object-level audit criteria for all levels in the level range
enclosed by levelmin and levelmax. The level range is inclusive
therefore levelmin and levelmax are audited. The maximum level
(levelmax) must dominate the minimum level (levelmin). If a minus
sign () precedes the level range, delete audit criteria for the
specified level range.

The audi t set command sets audit criteria for users dynamically. When you set
audit criteria for a user with the - u option, the criteria are in effect only for that
login session. If the user logs out or logs in from another terminal, the criteria are
no longer in effect. If you wish to set audit criteria for all of a user’s login sessions,
use either the user add or user mod commands.

FILES
/etcl/security/audit/classes

USAGE
Administrator.

SEE ALSO
auditctl(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB), auditlog(AT_CMD),
auditoff(AT_CMD), auditon(AT_CMD), defadm(BU_CMD), useradd(AU_CMD),
usermod(AU_CMD).

FUTURE DIRECTIONS
The concept of Object Level Auditing will not be supported in the future. The
NCSC’s Orange Book makes no specific references to this for a B2 system.

Associated with this, the -m, -o, -r, -l options and the Object Level Audit Criteria
have been moved to Level 2. They will be removed from the SVID when the three
year waiting period has been completed.

LEVEL
Level 1. The -m, -o, -r, -l options are Level 2, effective May 1993.

Page 3

FINAL COPY
June 15, 1995
File: at_cmd/auditset
svid

Page: 47

FINAL COPY
June 15, 1995
File:

Page: 48

Enhanced Security Introduction

The Enhanced Security Extension provides advanced interfaces to support a
secure system. This need has been reflected in the recent publication of several
security guidelines designed to specify a secure operating system. The need to
protect files and directories from unauthorized user access, via the Enhanced
Security Extension features, enhances the security of the system by preventing
both unauthorized disclosure and unauthorized change.

Security Criteria

In 1983 the Department of Defense (DoD) published the definitive guideline to
secure operating systems, the Trusted Computer System Evaluation Criteria
(TCSEC). The TCSEC defined the criteria a system must meet to be certified as
meeting multilevel security standards. The TCSEC defines four security divisions,
D, C, B, and A, with multiple levels in all but the D division. From least to most
secure, the levels are D, C1, C2, B1, B2, B3, and Al. Each level’s requirements
build on those of the previous level.

In 1989 the German Federal Office for Security in Information Technology (BSI)
published the ZSIEC, defining the German security criteria. The ZSIEC is based on
the TCSEC with the main difference being the separation of functionality and
assurance. In 1990 France, the Federal Republic of Germany, the Netherlands, and
the United Kingdom combined their criteria into a single set of harmonized cri-
teria, the Information Technology Security Evaluation Criteria (ITSEC). The
ITSEC follows the model of the German ZSIEC in that it also separates functional-
ity from assurance. Both the ZSIEC and ITSEC provide clear mappings to TCSEC,
as follows:

TCSEC Level ITSEC Level ZSIEC Level

C1 F1/E1 F1/Q1
Cc2 F2/E2 F2/Q2
Bl F3/E3 F3/Q3
B2 F4/E4 F4/Q4
B3 F5/E5 F5/Q5
Al F5/E5 F5/Q5
Enhanced Security Introduction 4-1
FINAL COPY

June 15, 1995
File: es_int.txt
svid

Page: 49

If the base SVID (without extensions) were evaluated, it would likely be classified
as C1, not fully meeting the requirements of any higher level, although it would
fulfill selected criteria at the C2 level. (Note, the SVID definition has not been
evaluated and therefore, is considered unrated.)

Security Classes

The Enhanced Security Extension may be configured for various classes of secu-
rity. These classes, as defined in Trusted Computer Systems Evaluation Criteria,
are C2, B1, and B2. The following table lists, for each Enhanced Security feature
area, the associated commands and libraries that must be included to attain a C2,
B1, or B2 class system.

0 0 Class C2 0 Class B1 0 Class B2 g
HEnhanced H:ommands ULibraries ﬁommands BLibraries H:ommands ELibraries O
[pecurity 0 0 0 0 0 0
[Feature [O O O 0 O O
E dit udi tcnv, [@udit buf, Eudi tcnv, [@uditbuf, Buditcnv, [uditbuf, E
0 uditlog, [Euditdnp, Auditlog, [Auditdnp, Auditlog, [&uditdnp, 0
0 Audi tmap, lduditct!, @uditmap, [duditct!, Quditmp, Luditctl, g
O @udi tof f, uditevt, @uditoff, udi tevt, quditoff, udi tevt,
0 @udi t on, uditl og [@uditon, uditl og [@Auditon, uditlog
O @uditrpt, 0 [@uditrpt, 0 [@udi trpt, 0 O
a @uditfltr, [Auditfltr, [uditfltr, O ad
O [duditset [[Auditset [[uditset [g
“Trusted = O cpio O cpio O
w3 0 o5 B8 @
ort O a O

BEdY 0 = 0 5 0 = 0
Orrusted U 0 [def sak 0 [def sak 0 U
Fpath H 0 0 0 H
4-2 ENHANCED SECURITY INTRODUCTION

FINAL COPY

June 15, 1995

File: es_int.txt

svid

Page: 50

0 0 ClassC2 O Class B1 0 Class B2 O
%nhanced Eommands Wibraries B:ommands ULibraries E Commands ULibraries S
Cpecurity 0 E 0 0 0 g 0
[Feature 0 = 0 = 0 0 0
H\/hndat ory H O Hdn'al | oc, I[devalloc, =admall oc, [deval | oc, g
fccess 0 g hl vl , [devdeal - hl vl , [devdeal - 0
Control O evattr, Hoc, evattr, Woc, 0
0 O g devstat, evstat, [gevstat, get- devstat,]
0 0 0 et dev, vidom [@ev, |vlnane, vidom [
O O 0 Mmvl narre, vl equal , vl del ete, vl equal , [J
O O 0 vl del ete, Hvlin, vl prt, vlin, O
g g 0 Mvl prt, hvlipc, Uhdnode, put- fvliipc, U
U U 0 [d dnode, vl valid, Ldev fvivalid, U
Q O O %ut dev vl out , O vl out, u
0 O O [Mvl vfs 0 vl vfs 0
O O O O 0
0 0 g 0 vl proc, 0 vl proc, 0
O 0 E 0 Lkt d, 0 bikmd, g
O O = O i drode i dmode
(biscre- O 0 g 0 Setacl, getacl gcl, g
Ltionary U 0 § 0 O @clipe, U

cess E O B O B [@cl sort E
o, ntrol o E o E g D. . 0
[Mrusted [0 0 0 @dm nrol e, Hl lepriv, O
[(Facility [0 O 0 [@dm nuser, rocpriv, [0
[Manage- [0 0 0 {ilepriv, @rocprivl U
Fhrent H 0 H 0 fjf admi n 0
Background

Prior to the Enhanced Security Extension any attempt to execute a sensitive sys-
tem service (for example, mount a file system) required the use of a "privilege". In
System V there has been traditionally one such privilege, commonly called "root"
or "superuser" which is signified by a process whose effective user id is 0. In the
Enhanced Security Extension this single superuser privilege is subdivided into a
finer grain set of privileges designed to assure that sensitive system services exe-
cute with the minimum amount of privilege required to execute the task. This
feature is currently restricted to use by an administrative (or "trusted") user.

Enhanced Security Introduction

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 51

Enhanced Security Extension

The Enhanced Security Extension consists of the following features:

m Enhanced DISCRETIONARY ACCESS CONTROL (DAC) - The DAC access

mechanism provides a controlling method which enhances the existing file
permission bits mechanism by use of ACCESS CONTROL LISTS (ACLs).
Each ACL consists of a list of named individuals and named groups of indi-
viduals, with their respective access permissions. This enhanced mechan-
ism allows the ability to grant or deny permission access to the granularity
of a single user.

MandATORY ACCESS CONTROL (MAC) - The MAC access mechanism
provides a controlling method by the assignment of sensitivity levels. The
assignment of a security sensitivity level to every process and file/IPC on
the system is the basis of this feature. A level includes both a hierarchical
classification (e.g., "secret") and non-hierarchical categories (e.g., "projxyz").
The levels are the basis for all mandatory access control decisions.

Unlike DAC where sharing (i.e., granting permissions) is at the owner’s dis-
cretion, MAC sharing is mediated by the administrator, and enforced by the
system. The MAC policy can be summarized as "no read up" and "write
equal". This implies that a process at a given level (e.g., secret) can not read
information at a higher level (e.g., top secret) and any process at a given
level can only write information at its own level. The access decision is com-
puted as a dominance/equality relation.

When an access is attempted, both MAC and DAC checks are performed. If
both checks pass, access is granted (see "Access Algorithm Changes" section
below for more details).

IDENTIFICATION and AUTHENTICATION (I&A) - I&A is a mechanism to
identify a user and authenticate their identity in order to gain access to the
system. This facility includes the programs that perform the identification
(login ID) and authentication (password verification) of users and the pro-
grams that manipulate the information used by the I&A programs.

TRUSTED PATH (TP) - TP is a mechanism through which a terminal user
can gain the attention of a trusted system process, requiring support for
identification and authentication. TP provides a trusted communication
path, exclusively initiated by a user, between the system and the user. This
mechanism ensures that the password is being requested by login and not
by a malicious program that masquerades as a system program to gain sen-
sitive information.

ENHANCED SECURITY INTRODUCTION

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 52

The user gains the attention and access to the trusted system via a terminal
using the Secure Attention Key (SAK). The user must enter the SAK, a char-
acter or asynchronous line condition, such as a break or line drop to invoke
the trusted path. The SAK is defined by a system administrator as a site
configurable option.

m TRUSTED FACILITY MANAGEMENT (TFM) - TFM is a mechanism to sup-
port a variety of trusted user classes, including auditors, administrators, and
operators. Separate operator, administrator, and security operator functions
must be defined and implemented to support administrative least privilege.
During normal operations, these roles will replace the current single admin-
istrative role, superuser.

Effects of Enhanced Security

The addition of the Enhanced Security features result in changes that affect previ-
ous UNIX System behavior. When the system is running with Enhanced Security,
every command and data file must have appropriate discretionary and mandatory
access control information. Additionally, those programs that require privilege,
must have process privilege information associated with them.

Access Algorithm Changes

Any access to files/IPC objects will be constrained by the addition of the enhanced
security features. These new features and the effect they will have when an access
request is made are described below.

m ACLs enable DAC to be a finer grained control mechanism. In addition to
specifying permissions for the owner, the owning group, and all others, per-
missions may be specified for particular users and particular groups. Thus,
programs that look at the permission bits to determine access permissions
may not receive all of the relevant access permissions. When access is
attempted through a system call, the kernel will mediate the access based on
the ACL entries.

m With the introduction of MAC into the system, whenever an attempt is
made to access an object, there will be additions to the checks currently
made for the access check.

— If the requested access is for reading or execution, then the MAC
level of the process must dominate (meaning equal to or greater
than) the MAC level of the object, or the process must have
appropriate privilege.

Enhanced Security Introduction 4-5

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 53

— If the requested access is for writing , then the MAC level of the
process must be equal to the MAC level of the object, or the pro-
cess must have appropriate privilege.

Attempts to directly access a device file may no longer succeed. If the
device file is not in the public state, then it must first be allocated before
being used.

How Users Acquire Privileges

All users, including administrators, log in as unprivileged users; i.e. the initial user
process has no privilege associated with it. Some users designated as administra-
tors or operators that do need to execute commands that require one or more pro-
cess privileges, do so through the tfadmin command (See TFADMIN COMMand
section below for more details).

The addition of a least privilege mechanism separates the privileges formally bes-
towed upon the super-user (uid 0). Access formally granted to processes with
process-1D 0 may now be denied access, since a process-1D of 0 will no longer pos-
sess privilege.

Programs that check to determine if they are executing with a uid of zero, assum-
ing that they are privileged will not function properly. These programs should be
changed to use the required set of discrete privileges for them to successfully com-
plete the task.

Several distinct levels of authorization are created through the proper assignment
of process privileges according to the least privilege principle and the separation
of duties that is accomplished through the TFM database. The least privilege prin-
ciple requires that each subject in a system be granted the most restrictive sets of
privileges needed for the performance of authorized tasks. These mechanisms
ensure that privileged processes run only with the privilege(s) required for the
actions they are authorized to perform, and that unprivileged processes cannot
perform privileged actions.

4-6 ENHANCED SECURITY INTRODUCTION

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 54

Least Privilege Mechanism

The Least Privilege concept defines that a process only acquires the minimum
amount of privilege it requires to execute the operation and only holds that
privilege for the duration of the operation. Additionally, the requested privilege
must be associated with both the process and the executable file to be successfully
enabled. The user may acquire privilege in one of two ways; (1) by invoking a
process with fixed privilege(s) associated with it or (2) by acquiring the
privilege(s) via the tfadmin command. The way the privileges are set varies
between the two and is described briefly below.

Privilege Descriptors

In the Enhanced Security Extension, a process has a maximum and working set of
privileges associated with it. The maximum set represents the most privilege the
process could ever attain and the working set represents the minimum set of
privileges required to execute the task. An executable file may have associated
with it an inheritable or fixed set of privileges. An inheritable privilege is a
privilege which is kept (i.e. left "turned on") only if it already existed in the pro-
cess. A fixed privilege is a privilege which is always given to the process indepen-
dent of the previous process privileges. The fixed and inheritable privileges are
disjoint, a privilege cannot be present in both sets at the same time.

Fixed Privileges

The concept of fixed file privileges is similar to the current concept of setuid bits.
When a file has a privilege or privileges set as fixed those privileges are unioned
with the maximum privilege set of the invoking process forming the new
processes maximum privilege set. In essence these privileges are added (or forced)
onto the invoking process. For example if a site determined that all users should
be able to execute the ps command and not be subject to mandatory or discretion-
ary access control checks the administrator would set the access control override
privileges as fixed privileges on the command. Any user invoking ps would then
acquire these privileges for the duration of the execution of the ps command. This
scheme does not lend itself well to administrative operations such as mounting a
file system since there is no restriction on the acquisition of the privilege (aside
from normal access checks).

Enhanced Security Introduction 4-7

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 55

TFADMIN COMMand

The tfadmin command and its associated database allow for fine grain control over
the acquisition of privilege, typically for administrative operations.

The tfadmin database is organized by "roles" subdivided by "tasks". For example
the role of "operator" may have the task of user backup associated with it. In this
scenario the operator would login to the system and then invoke the tfadmin com-
mand in the role of "operator" to execute the "backup" task. The tfadmin command
will add the privilege(s) which are associated with the invoking user for the
requested task to the maximum privilege set, then exec the task. The enabling of
privilege for the task is then determined by the intersection of the process’s max-
imum privilege set (acquired via tfadmin) and the file’s inheritable privilege set.
The result of this operation is then unioned with the file’s fixed privilege set
resulting in the new processes privilege set.

Multilevel Directories

With Mandatory Access Control (MAC) installed unprivileged users may only
create files at the same level as the level of the parent directory (and at their
current login level). This creates problems for utilities which require access to
"public" directories (i.e. /tmp). To provide the functionality of "public” directories
within a Mandatory Access Control environment a new type of directory known
as a multilevel directory has been introduced.

In normal use, a multilevel directory has the appearance of a directory whose con-
tents are all at that user’s level. To another user at a different level, that the same
multilevel directory would appear to contain a different set of files. This is
because each user sees an "effective" directory consisting only of objects at their
own level. Other directories may be created as multilevel directories at adminis-
trative discretion. An unprivileged user cannot create a multilevel directory; that
is a privileged operation.

Changes to Existing Commands

Several commands may behave differently when the Enhanced Security feature is
supported in a system. These include:

4-8 ENHANCED SECURITY INTRODUCTION

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 56

at find Ip nmount user del

bat ch fsck | pst at passwd user mod
cpi o i pcs I's ps vol copy
cron listusers nkdi r user add whodo
crontab | ogi ns nkf s

See pages for details of changes.

NEW COMMandS

New commands have been introduced for the feature areas described above.
Also, a new enhanced (trusted) cpio command, tcpio, and a new command to
check for mail at different levels, mailcheck, have been introduced.

Summary of LIBRARY ROUTINES

The following routines are supported by the Enhanced Security Extension. All of
the routines in this section have been internationalized and may reference
environment variables for localization information. [See envvar(BA_ENV)].

acl devdeal | oc | vl equal [vl out nkni d

acl i pc devst at Ivifile [vl proc m dnode
acl sort filepriv [vlin [vlivalid procpriv
deval | oc | vl dom [vlipc [vlvfs procpri vl

Summary of Commands and Utilities

The following commands and utilities are supported by the Enhanced Security
Extension. All of the commands and utilities in this section have been internation-
alized and may reference environment variables for localization information. [See
envvar(BA_ENV)].

Enhanced Security Introduction 4-9

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 57

adnal | oc def sak get acl [vlprt set acl

adm nrol e devattr get dev mai | check tcpio
adm nuser devst at vl del ete m dnode tfadmn
chl vl filepriv [vl name put dev

ORGANIZATION of TECHNICAL INFORMATION
The “Enhanced Security Library Routines” chapter provides manual page
descriptions of library routines supported by this extension.

The “Enhanced Security Commands and Utilities”” chapter provides manual page
descriptions of commands and utilities supported by this extension.

4-10 ENHANCED SECURITY INTRODUCTION

FINAL COPY

June 15, 1995

File: es_int.txt
svid

Page: 58

Enhanced Security Extension Library Routines

The following section contains the manual pages for the ES_LIB routines.

Enhanced Security Extension Library Routines

FINAL COPY

June 15, 1995

File: es_lib.cov
svid

Page: 59

5-1

FINAL COPY
June 15, 1995
File:

Page: 60

acl (ES_LIB) acl (ES_LIB)

acl — set a file’'s Access Control List (ACL)

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <acl . h>

int acl (char *pathp, int cmd, int nentries, struct acl *aclbufp)

DESCRIPTION

The acl system call is used to manipulate ACLs on file system objects.
pathp points to a pathname naming a file.

nentries specifies how many ACL entries fit into buffer aclbufp.

aclbufp a pointer to the acl struct which contains the following fields:

int a_type; /* entry type */
uid_t alid; /* user or group ID */
ushort a_perm /* entry perm ssions */
The values for a_t ype are:
USER CBJ Permissions for the owner of the object.
USER Permissions for additional users.
GROUP_BJ Permissions for members of the owning group of the
object.
GROP Permissions for members of additional groups.
CLASS (BJ Maximum permissions granted to the file group
class.
OTHER _CBJ Permissions for other users.
DEF_USER CBJ Default permissions for the object owner.
DEF_USER Default permissions for additional users.

DEF_GROUP_(BJ Default permissions for members of the owning
group of the object.

DEF_GROUP Default permissions for members of additional
groups
DEF_CLASS (BJ Default maximum permissions granted to the file
group class.
DEF_OTHER (BJ Default permissions for other users.
cmd The following three values for cmd are available:
ACL_SET nentries ACL entries, specified in buffer aclbufp, are

stored in the file’s ACL. Any existing ACL on the file
is replaced by the new ACL. This value for cmd can
only be executed by a process that has an effective
user 1D equal to the owner of the file, or by a process
with the appropriate privileges. All directories in the
pathname must be searchable. Mandatory write

Page 1

FINAL COPY

June 15, 1995

File: es_lib/acl
svid

Page: 61

acl (ES_LIB) acl (ES_LIB)

access to the file is required.

ACL_CET Buffer aclbufp is filled with the file’s ACL entries.
Discretionary read access to the file is not required,
but all directories in the pathname must be search-
able. Mandatory read access to the file is required.

ACL_ONT The number of entries in the file’s ACL is returned.
Discretionary read access to the file is not required,
but all directories in the pathname must be search-
able. Mandatory read access to the file is required.
nentries and aclbufp are ignored.

For cmd ACL_SET, the acl call will succeed if all of the following are true:

There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_OB],
and OTHER_OBJ.

There is at most one entry each of type DEF_USER_OBJ, DEF_GROUP_OB],
DEF_CLASS_OBJ, and DEF_OTHER_OBA..

Entries of type USER, GROUP, DEF_USER, or DEF_GROUP may not contain
duplicate entries. A duplicate entry is one of the same type containing the
same numeric ID.

If an ACL contains no entries of type USER and no entries of type GROUP,
then the entries of type GROUP-OBJ and CLASS_OBJ must have the same per-
missions.

If an ACL contains no entries of type DEF_USER and no entries of type
DEF_GROUP, and an entry of type DEF_GROUP_OBJ is specified, then an
entry of type DEF_CLASS_OBJ must also be specified and the two entries must
have the same permissions.

RETURN VALUE
Upon successful completion, if cmd is ACL_SET, a value of 0 is returned. If cmd is
ACL_CET or ACL_CNT, the number of ACL entries is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

ERRORS

acl () will fail if one or more of the following is true:

EACCES if the caller does not have access to a component of the pathname.

EACCES if the caller does not have mandatory read access to the file for
ACL_CET and ACL_CNT, or mandatory write access to the file for
ACL_SET.

El NVAL if cmd is not ACL_CGET, ACL_SET, or ACL_CNT.

El NVAL if cmd is ACL_SET and nentries is less than the number of mandatory

ACL entries (4).

El NVAL if cmd is ACL_SET and the ACL specified in aclbufp is not valid [see

Page 2

acl sort (ES_LIB)].

FINAL COPY

June 15, 1995

File: es_lib/acl
svid

Page: 62

acl (ES_LIB)

El O
EPERM

ENGCSPC

ENGCSPC
ENCSPC

ENOTDI R
ENOTD R

ENCSYS

ERCFS

SEE ALSO
aclipc(ES_LIB), aclsort(ES_LIB), getacl(ES_CMD), setacl(ES_CMD).

LEVEL

Level 1.

acl (ES_LIB)

if a disk 170 error has occurred while storing or retrieving the ACL.

if cmd is ACL_SET and the effective user ID of the caller does not match
the owner of the file, and the caller does not have the appropriate
privileges to perform the operation.

if a component of the path does not exist.

if cmd is ACL_CET and nentries is less than the number of entries in the
file’s ACL.

if cmd is ACL_SET and there is insufficient space to store the ACL.

if cmd is ACL_SET and nentries is greater than the tunable parameter
aclmax.

if a component of the path specified by pathp is not a directory.

if cmd is ACL_SET and an attempt is made to set a default ACL on a file
type other than a directory.

if cnd is ACL_SET, the file specified by pathp resides on a file system
that does not support ACLs, and additional entries were specified in
the ACL.

if cmd is ACL_SET and the file specified by pathp resides on a file sys-
tem that is mounted read-only.

Page 3

FINAL COPY

June 15, 1995

File: es_lib/acl
svid

Page: 63

aclipc (ES_LIB) aclipc (ES_LIB)

NAME
aclipc — get or set an IPC object’s ACL, return the number of ACL entries
SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <acl . h>

int aclipc(int type, int id, int cmd, int nentries, struct acl *aclbufp)

DESCRIPTION
acl i pc will get or set an IPC object’s ACL, or return the number of ACL entries.
To get the ACL, the user must have read access to the object. To set an ACL, the
user must be the owner or creator of the object or have appropriate privileges.

nentries specifies how many ACL entries fit into buffer aclbufp.
aclbufp a pointer to the acl struct which contains the following fields:

int a_type; /* entry type */
uid_t ald; /* user or group ID */
ushort a_perm /* entry perm ssions */

The values for a_t ype are:
USER QJB Permissions for the owner of the object.

USER Permissions for additional users.

GROUP_CBJ Permissions for members of the owning group of the
object.

GROP Permissions for members of additional groups.

CLASS (BJ Maximum permissions granted to the file group class.
OTHER _OBJ Permissions for other users.

type must be one of the following:
| PC_SHV id must be a valid shared memory identifier returned by
shnget .
| PC_SEM id must be a valid semaphore identifier returned by
senget .
| PC_MSG id must be a valid message queue identifier returned by
nmsgget .
cmd must be one of the following:

ACL_GET The ACL information for the IPC object specified by type
and id is copied into the user supplied buffer aclbufp. nen-
tries specifies the number of ACL entries which will fit into
aclbufp. The user must have read access to the IPC object.

ACL_SET The ACL for the IPC object specified by type and id is set to
the ACL entries in the user supplied buffer aclbufp. nentries
specifies the number of ACL entries currently in aclbufp.
The entries in aclbufp must be valid and in the proper ACL
order. The user must have the appropriate privileges, or
be the creator or owner of the object, to alter the IPC

Page 1

FINAL COPY
June 15, 1995
File: es_lib/aclipc
svid

Page: 64

aclipc (ES_LIB) aclipc (ES_LIB)

object.

ACL_CNT Returns the number of ACL entries for the IPC object
specified by type and id. nentries and aclbufp are ignored.
The user must have read access to the IPC object.

When the ACL for an IPC object is set, the permission mode (in ipc_perm) may
change. The first three bits of the permission mode are set to the permissions of the
object user entry. The middle three bits of the permission mode are set to the CRed
value of the permissions for the additional users, object group, and additional
group entries. The last three bits of the permission mode are set to the permissions
of the other entry.

For cmd ACL_SET the acl i pc call will succeed if all of the following are true:

e There is exactly one entry each of type USER_CBJ, GROUP_CBJ, CLASS (BJ, and
OTHER _CBJ.

« Entries of type USER or GROUP may not contain duplicate entries. A duplicate
entry is one of the same type containing the same numeric ID.

« If an ACL contains no entries of type USER and no entries of type GROUP, then
the entries of type GROUP_CBJ and CLASS_(BJ must have the same permis-
sions.

RETURN VALUE

Upon successful completion, the return value is the number of ACL entries for cmd
ACL_CONT and ACL_CET, and 0 for cmd ACL_SET. Otherwise, a value of -1 is returned
and er r no is set to indicate the error.

ERRORS

Page 2

acl i pc will fail if one or more of the following are true:

El NVAL if type is not one of | PC_SHM | PC_SEM or | PC_MSG

El NVAL if id is not a valid type identifier.

El NVAL if cmd is not one of ACL_CET, ACL_SET, or ACL_CNT.

El NVAL if cmd is ACL_SET and the ACL entries in aclbufp are not valid or in
proper order.

EPERM if cmd is ACL_SET and the user does not have the appropriate
privileges and is neither the creator nor owner of the IPC object.

El NVAL if cmd is ACL_SET and the security level of the calling process is not
equal to the security level of the IPC object.

El NVAL if cmd is ACL_GET or ACL_CNT and the security level of the calling
process is dominated by the security level of the IPC object.

EACCES if cmd is ACL_CGET or ACL_CNT and the user does not have discre-
tionary read access to the IPC object.

ENCSPC if cmd is ACL_SET and there is not enough space to store the ACL.

ENGCSPC if cmd is ACL_CET and the number of ACL entries for the IPC object

exceeds nentries.

FINAL COPY
June 15, 1995
File: es_lib/aclipc
svid

Page: 65

aclipc (ES_LIB) aclipc (ES_LIB)

ENCSPC if cmd is ACL_SET and nentries is greater than the tunable parame-
ter acl max.
El NVAL if cmd is ACL_SET and the number of ACL entries is less than the
number of mandatory ACL entries (4).
SEE ALSO
acl(ES_LIB), msgget(KE_OS), semget(KE_OS), shmget(KE_OS).
LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: es_lib/aclipc
svid

Page: 66

aclsort (ES_LIB) aclsort (ES_LIB)

NAME
aclsort — sort an Access Control List

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <acl . h>

int aclsort(int nentries, int calclass, struct acl *aclbufp);

DESCRIPTION
The acl sort routine sorts Access Control List (ACL) entries into the correct order
to be accepted by the acl system call.

acl buf p points to a buffer containing ACL entries; cal cl ass, if non-zero, indicates
that the CLASS_OBJ permissions should be recalculated; and nentri es specifies
the number of ACL entries in the buffer.

acl sort sorts the contents of the ACL buffer as follows:

1) Entries will be in order USER_OBJ, USER, GROUP_OBJ, GROUP, CLASS_OBJ,
OTHER_OBJ, DEF_USER_OBJ, DEF_USER, DEF_GROUP_OBJ, DEF_GROUP,
DEF_CLASS OBJ, and DEF_OTHER_OBL.

2) Entries of type USER, GROUP, DEF_USER, and DEF_GROUP wiill be sorted in
increasing order by ID.

The acl sort call will succeed if all of the following are true:

* There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_OB],
and OTHER_OB..

e There is at most one entry each of type DEF_USER_OBJ, DEF_GROUP_OB],
DEF_CLASS_OBJ, and DEF_OTHER_OB..

e Entries of type USER, GROUP, DEF_USER, or DEF_GROUP may not contain
duplicate entries. A duplicate entry is one of the same type containing the
same numeric ID.

e If the cal cl ass argument is zero and there are no entries of type USER and
GROUP, the permissions of the GROUP_OBJ and CLASS_OBJ entries must be
the same.

e If there are no entries of type DEF_USER and DEF_GROUP, and the
DEF_GROUP_OB]J entry is specified, then the DEF_CLASS_OBJ entry must
also be specified, and the permissions of the DEF_GROUP_OBJ and
DEF_CLASS_OBIJ entries must be the same.

RETURN VALUE
Upon successful completion, the return value is 0. If there are duplicate entries, the
return value is the position of the first duplicate entry. If there is more than one
entry of type USER_OBJ, GROUP_OBJ, CLASS OBJ, OTHER_OBJ,
DEF_USER_OBJ, DEF_GROUP_OBJ, DEF_CLASS_OBJ, or DEF_OTHER_OB], they
will be treated as duplicate entries, and the return value is the position of the first
duplicate entry. For all other errors, the return value is —1.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/aclsort
svid

Page: 67

aclsort (ES_LIB)

SEE ALSO

acl(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: es_lib/aclsort
svid

Page: 68

aclsort (ES_LIB)

devalloc (ES_LIB) devalloc (ES_LIB)

NAME

devalloc — get and set the security attributes of a device

SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int deval | oc(const char *device, int c¢cmd, struct dev_alloca *bufp)

DESCRIPTION

The deval | oc() routine allows privileged processes to get or set the security attri-
butes of device, based on the specified cmd. The device can be either a device alias
name defined in the Device Database (DDB) or an absolute pathname to a character
or block special file. bufp is a pointer to a struct dev_alloca, defined in mac. h, which
defines the following security attributes:

state the device state,

mode the device mode,

level the current device level,

hilevel the high level of the device level range,

lolevel the low level of the device level range,

uid the UID (for checking authorization permission), and
relflag the device release flag.

If cmd is DEV_CET, deval | oc() gets the security attributes for device from the
Device Database (DDB) and places them into the structure pointed to by bufp. In
this case, deval | oc() does not return any values for the release flag, UID or level.

If the cmd is DEV_SET, deval | oc() determines whether the device is allocatable by
comparing the security attributes pointed to by bufp to those defined for the device
in the DDB. deval | oc() checks if:

» the device is allocatable with the specified state
» the device is allocatable with the specified mode

» the specified hilevel and lolevel range is enclosed by the range stored in the
Device Database

» the specified level is enclosed by the hilevel and lolevel range specified
» the release flag passed is either set as dev_per si st ent or dev_| ast cl ose

e the UID (when a valid UID is passed) is authorized to allocate the specified
device

« the device is not in use (the release flag setting on all the device special files
mapped to the device is dev_syst em and usecount is 0)

If all these conditions are met, deval | oc() issuesal vl fil e system call to change
the level of the device to that specified in bufp, clears any access control lists (ACLS)
on the device, changes the DAC permissions to give ownership and read/write
access to only the user, and issues a devst at system call to set the security attri-
butes of the device, according to information passed in bufp. The DDB is locked dur-
ing the entire process of allocation.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/devalloc
svid

Page: 69

devalloc (ES_LIB) devalloc (ES_LIB)

If device is an absolute pathname, deval | oc() performs these actions on that path-
name only. If device is a device alias name, deval | oc() performs these actions on
each pathname mapped to that device according to information stored in the Device
Database.

If any of the system calls fails on one of the pathnames, deval | oc() tries to undo
all the work on the other pathnames. deval | oc() will reset the level to the previ-
ous level and previous DAC ownership and reset the flag to dev_system If the
Enhanced Security Extension is not implemented, deval | oc() will fail.

RETURN VALUE

Upon successful completion, the system call deval | oc() returns a value of 0; oth-
erwise, a value of —1 is returned and er r no is set to indicate an error.

ERRORS

Page 2

Under the following conditions, deval | oc() fails and sets errno to the indicated
value. (Refer to the descriptions of the system calls called by this function for other
possible er r no values.)

EACCES if access to the DDB is denied because of MAC or DAC.

EAGAI N if cmd is DEV_SET, and the DDB is in use and cannot be locked.

EBUSY if cmd is DEV_SET, and the specified device is in use (not tranquil).

El NVAL if cmd is DEV_SET, and the specified hilevel, lolevel or level is an invalid
level.

El NVAL if cmd is DEV_SET, and hilevel does not dominate lolevel.

El NVAL if level or the level range specified is not enclosed by the range stored
in DDB for that device.

El NVAL if cmd is DEV_SET, and level is not enclosed by the specified level.

El NVAL if the specified state is not valid for device.

El NVAL if the specified mode is not valid for device.

El NVAL if invalid state specified.

El NVAL if invalid mode specified.

El NVAL if invalid cmd specified.

El NVAL if cmd is DEV_SET, and the release flag specified is invalid.

El NVAL if cmd is DEV_SET, and the user ID specified is invalid.

El NVAL if cmd is DEV_SET, and the security attributes are not defined or are
invalid for the specified device.

ENCDEV if device is not defined in the DDB.

ENCENT if the DDB cannot be found.

EPERM If cmd is DEV_SET and the specified user ID does not have authoriza-

tion permission to have device allocated.

FINAL COPY
June 15, 1995
File: es_lib/devalloc
svid

Page: 70

devalloc (ES_LIB)

SEE ALSO
acl(ES_LIB), devdealloc(ES_LIB), devstat(ES_LIB), Ivifile(ES_LIB), Ividom(ES_LIB),
chown(BA_QOS), chmod(BA_OS).

LEVEL

Level 1.

FINAL COPY
June 15, 1995
File: es_lib/devalloc
svid

Page: 71

devalloc (ES_LIB)

Page 3

devdealloc (ES_LIB) devdealloc (ES_LIB)

NAME
devdealloc - deallocates a device and sets its security attributes to system
configuration

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int devdeal | oc(const char *device)

DESCRIPTION

The devdeal | oc routine sets the security attributes of the specified device back to
"system configuration." The device can be either a device alias name defined in the
Device Database (DDB) or an absolute pathname to a character or block special file.
If the alias is a logical alias, only those device special files mapped to that alias in
the DDB are deallocated. If the alias is a secure device alias, then the routine deallo-
cates all device special files mapped to all the logical aliases that define secdev
equal to the secure device alias.

The system configuration is as follows:
range hi | evel = ol evel =0

state pri vat e (unless the driver was configured with security flag set to
INITPUB, in which case state is set to publ i c)

mode static
release_flag DEV_SYSTEM

devdeal | oc sets the device attributes by invoking the devst at system call with the
release_flag set to DEV_SYSTEM If the devst at system call fails on one of the path-
names, then devdeal | oc will continue to work on the remaining pathnames and
will exit with a negative value. Note that devdeal | oc does not check if the device
isin use.

The Device Database is locked during the entire process of deallocation of all device
special files.

RETURN VALUE
If successful, devdeal | oc returns a O; otherwise, it returns —1 and sets er r no to one
of the following values. (See devstat(ES_LIB), Ivifile(ES_LIB), chown(BA_OS), and
chmod(BA_QOS) for other er r no that may be set if it fails.)

ERRORS
EACCES if access to the DDB is denied because of MAC or DAC.
EACCES if Device Database files are not in a consistent state.
EAGAI N if the DDB is in use and cannot be locked.
ENCDEV if device is not defined in the DDB.
ENCENT if the DDB cannot be found.
EPERM if the invoking process does not have the appropriate privilege to

deallocate a device.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/devdealloc
svid

Page: 72

devdealloc (ES_LIB)

SEE ALSO
devstat(ES_LIB), devalloc(ES_LIB).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: es_lib/devdealloc
svid

Page: 73

devdealloc (ES_LIB)

devstat (ES_LIB) devstat (ES_LIB)

NAME
devstat — get or set device security attributes

SYNOPSIS
#i ncl ude <mac. h>

int devstat(const char *path, int cmd, struct devstat *bufp);

DESCRIPTION
The devst at system call gets or sets the security attributes of a device represented
by path. The value in cmd determines if the system call sets or gets the security
attributes. The devstat system call is a privileged operation and requires
appropriate privileges.

path points to the pathname of a disk-based block or character special file. cmd will
define the operation to be performed. The value of cmd may be one of the follow-

ing:
DEV_CGET to retrieve security attributes of a device.
DEV_SET to set security attributes of a device.

bufp is a pointer to a devst at structure. The security attributes to be set are taken
from the structure or are returned in the structure, depending on the operation.

The contents of the structure pointed to by bufp include the following members:

ushort dev_state; /O device state O
/ 0 DEV_PRI VATE or DEV_PUBLIC OO
ushort dev_node; / O node of the device O
/ 0 DEV_STATIC or DEV_DYNAM C OO
| evel _t dev_hilevel; / O maxi mum | evel range of the device O
| evel _t dev_| ol evel ; /O mnimmlevel range of the device O

ushort dev_usecount; /OO if no open connections, O
/01 otherwise O

ushort dev_relflag; / 0 DEV_PERSI STENT, DEV_LASTCLCSE, or O
/ 0 DEV_SYSTEM O

dev_state is either private or public. When a device is in private state, no
unprivileged access to the device special file is allowed. All new open,read,wite,
i octl, mmap, get nsg, get pnsg, put nsg, and put pnsg calls will fail if the process
does not have the appropriate privileges. A process requires appropriate privileges
and MAC and DAC access to open a device special file in the pri vat e state.

The device state is used to indicate if the device is a single-level or a multi-level
device. If the device state is pri vat e, then the device can be either a single-level or
a multi-level device. If the device state is publ i c, then the device is single-level,
because it can be used by an unprivileged process.

dev_node should always be DEV_STATIC Level change on a static device is
allowed only if the device is in private state or if there are no open connections to
the device special file. Please refer to | vl fil e(ES_LIB). Another possible mode,
DEV_DYNAM C, is provided solely for sites upgrading from another secure system.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/devstat
svid

Page: 74

devstat (ES_LIB) devstat (ES_LIB)

When the dev_node is set to DEV_DYNAM C, the level of the device can change while
it is open, MAC access checks are performed for everyread, wite,ioctl, put nsg,
and get nsg operations.

dev_hil evel and dev_l ol evel specify the allowed level range that will constrain
the I vl fil e system call. The level of the device special file referenced by path must
be dominated by hil evel and must dominate | ol evel. dev_hilevel and
dev_| ol evel limit the level at which the device can be used.

dev_usecount is set to 1 if there are open connections to the device special file or if
there is any mapping active. Itis set to 0 otherwise. This field can only be retrieved
and cannot be set.

dev_rel fl ag indicates how these security attributes can be released. This flag can
take one of three values:

DEV_PERSI STENT Indicates that the security attributes will be set for the device
while the system is running or until the next devst at opera-
tion to set attributes.

DEV_LASTCLCSE Indicates that the security attributes will be released after the
last close on a device and will be set to the one defined by the
system.

DEV_SYSTEM For each device special file, the system defines the following
security attributes: the dev_| ol evel and dev_hil evel are
setto 0,stateissettoprivate,and node issettostatic.

If cmd is DEV_CET, the system call returns the security attributes of the device in the
buffer pointed to by bufp.

If the cmd is DEV_SET, the device named by path has its security attributes set to the
values passed in bufp. When setting the device with the DEV_SYSTEMrelease flag, all
other information passed in bufp is ignored.

The calling process must ensure that no device special file that maps to the same
device as path, as defined by the Device Database, is currently in use. The calling
process must also ensure that the parameters for the device, as defined in the
Device Database, are correctly applied when this system call is used.

RETURN VALUE
The system call returns zero (0) if successful. Otherwise, it returns -1 and sets
er r no to one of the below values.

ERRORS

EPERM The process does not have the appropriate privileges.

El NVAL The arguments to the system call are invalid.

El NVAL If the cmd is DEV_SET, dev_hil evel does not dominate
dev_l ol evel .

El NVAL If the cmd is DEV_SET, the range delimited by dev_hi | evel
and dev_| ol evel does not enclose the level of the device spe-
cial file.

Page 2
FINAL COPY

June 15, 1995
File: es_lib/devstat
svid

Page: 75

devstat (ES_LIB)

ENOTD R
ENCENT

EACCES
ENCDEV

ENAMETOOLONG

SEE ALSO
Ivifile(ES_LIB).

LEVEL
Level 1.

devstat (ES_LIB)

A component of the path prefix is not a directory.

A component of the pathname of the named file does not
exist.

Access to path is denied by DAC, MAC or other access restric-
tions.

path indicates a file that is not a disk-based block or character
special file.

if the length of path exceeds PATH_MAX, or the length of a
path component exceeds NAME_MAX while
POSIX_NO_TRUNC is in effect

Page 3

FINAL COPY
June 15, 1995
File: es_lib/devstat
svid

Page: 76

filepriv (ES_LIB)

NAME

filepriv (ES_LIB)

filepriv — set, get, or count the privileges associated with a file

SYNOPSIS
#i ncl ude

<priv.h>

int filepriv(const char *path, int cmd, priv_t *privp,
i nt nentries)

DESCRIPTION

The fil epriv system call is used to set, retrieve, or count the privileges associated
with a file. privp is defined as a pointer to an array of privilege descriptors each of
which contains a privilege set and the identity of the requested privilege. (See the

Enhanced

Security Extension Introduction for descriptions of terms such as

“privilege set.”)

The path argument specifies an executable file. nentries is the number of entries con-
tained in privp.

The recognized cmds and their functions are described below:

PUTPRV

CETPRV

ONTPRV

RETURN VALUE

the fixed and inheritable privilege sets associated with the file indicated
by path are set based on the privilege descriptor(s) contained in privp.
The fixed and inheritable privilege sets resulting from the privilege
descriptor(s) contained in privp must be disjoint. Privileges contained in
either privilege set that are not in the maximum set of the calling pro-
cess are ignored. The calling process must have the appropriate
privilege in its working set when using PUTPRV. If any argument is
invalid, none of the file privileges are changed. The new file privileges
pointed to by *privp replace the existing file privileges.

the fixed and inheritable privilege sets associated with the file indicated
by path are returned in privp in the form of privilege descriptors. None
of the file privileges are changed.

the return value is set to the number of privileges associated with the
named file. The privp and nentries arguments are ignored. None of the
file privileges are changed.

A value of -1 is returned and er r no is set to indicate the error if fi | epri v is unsuc-
cessful. If successful, fil epriv returns the number of privileges associated with
the named file.

ERRORS

filepriv fails if one or more of the following is true:

ENCENT
ENOTD R
El NVAL
El NVAL

a component of path does not exist.
a component of path is not a directory.
cmd is invalid.

the cmd is GETPRV and privp is not large enough to hold the number of
privileges associated with the named file.

Page 1

FINAL COPY
June 15, 1995
File: es_libffilepriv
svid

Page: 77

filepriv (ES_LIB) filepriv (ES_LIB)

El NVAL the cmd is PUTPRV and 1) the file pointed to by path is not an executable
file, 2) the fixed and inheritable privilege sets are not disjoint, 3) nentries
is less than 0, or 4) privp includes undefined privileges.

EACCES access is prohibited by an access restriction.

EPERM the calling process does not have the appropriate privileges to set file
privileges.
EAGAI N insufficient kernel memory to allocate a privilege table entry when set-
ting file privileges.
SEE ALSO
procpriv(ES_LIB), procprivl(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: es_libffilepriv
svid

Page: 78

Ividom (ES_LIB) Ividom (ES_LIB)

NAME
lvildom - determine domination relationship of two levels

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int Ivldon(level t *levellp, |evel t *level2p);

DESCRIPTION
The | vl don{) routine compares the level pointed to by levellp and level2p and
determines whether or not levellp dominates level2p. levellp and level2p must be
pointers to valid levels, as may be obtained from the | vlin() routine or the
Ivifileorlvlproc system calls.

RETURN VALUE
If the first level dominates the second, a positive integer is returned; if the first level
does not dominate the second, a value of 0 is returned (note that this does not
imply that the second level dominates the first); otherwise, a value of —1 is returned
and er r no is set to indicate an error.

ERRORS

Under the following conditions, | vl don{) fails and sets er r no to:

El NVAL if the level referenced by levellp or level2p is not defined on the sys-

tem.

SEE ALSO

Ivlequal(ES_LIB), Ivlin(ES_LIB), Ivlproc(ES_LIB), Ivifile(ES_LIB), Ivivalid(ES_LIB).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/lvidom
svid

Page: 79

Ivlequal (ES_LIB) Ivlequal (ES_LIB)

NAME
Ivlequal — determine equality of two levels

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int Ivlequal (I evel _t *levellp, |evel _t *level2p);

DESCRIPTION
The | vl equal () routine compares the levels referenced by levellp and level2p and
determines whether or not they are equal. levellp and level2p must be pointers to
valid levels, as may be obtained from the |vlin(ES_LIB) routine or the
Ivlfile(ES_LIB)orl vl proc(ES_LIB) system calls.

RETURN VALUE
If the first level equals the second, a positive integer is returned; if the first level
does not equal the second, a value of O is returned; otherwise, a value of -1 is
returned and er r no is set to indicate an error.

ERRORS
Under the following conditions, | vl equal () fails and sets er r no to:

El NVAL if the level referenced by levellp or level2p is not defined on the sys-
tem.

SEE ALSO

Ividom(ES_LIB), Ivifile(ES_LIB), Ivlin(ES_LIB), Iviproc(ES_LIB), Ivivalid(ES_LIB).
LEVEL

Level 1.

Page 1
FINAL COPY

June 15, 1995
File: es_lib/lvlequa
svid

Page: 80

Ivifile (ES_LIB)

NAME

Ivifile (ES_LIB)

Ivifile — get or set the level of a regular file, directory, named pipe or device special

file
SYNOPSIS

#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int Ivifile(char *path, int cmd, |evel _t *levelp);

DESCRIPTION

The I vlifile system call will get or set the level of the file represented by path,
depending on the value in cmd.

If cmd is MAC_CET, the system call returns the level of the named file to the variable
referenced by levelp. The invoking subject must have MAC read permission on the

file.

If cmd is MAC_SET and the file is a regular file, directory or FIFO, the following con-

ditions apply:
privilege

access

tranquillity
level validity

The invoking subject must be the owner or have appropriate
privileges. The effective user ID of the calling process must also be
the owner of the file, or the calling process must have appropriate
privilege.

The invoking subject must have MAC write access and be the
owner.

The file must be tranquil, i.e., it should not be open or mapped.

The level must be a valid level, as may be obtained from the | vl i n
routine or thel vl fil e orl vl proc system calls.

If all these conditions are met, the system call will set the level of the named file to
the level referenced by levelp.

If cmd is MAC_SET and the file is a character or block special file, the following condi-

tions apply:

privilege

access

tranquillity

device range

The invoking subject must have the P_DEV privilege if the device
state is pri vat e. If the device state is publ i c, then the invoking
subject must either have the P_SETFLEVEL privilege or, if the new
level strictly dominates the existing level, the P_MACUPGRADE
privilege.

The invoking subject must be the owner of the file. If the device
state is publ i ¢, the invoking subject must also have MAC write
access.

If the device special file is in public state and has its security
mode set to st at i ¢, then the device special file must be tranquil.

If the device range has been set by a previous call to devst at , then
the new level must be strictly dominated by the high level of the
device, and must dominate the low level of device.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/Ivifile
svid

Page: 81

Ivifile (ES_LIB) Ivifile (ES_LIB)

level validity The level must be a valid level, as may be obtained from the | vl i n
routine or thel vl fil e orl vl proc system calls.

If all these conditions are met, the system call will set the level of the named charac-
ter or block special file to the level referenced by levelp.

Note that the | vl fil e system call must be used to set the level of a regular file,
directory or FIFO.

RETURN VALUE
Upon successful completion, the system call returns zero (0). Otherwise, -1 is
returned and er r no is set to indicate the error.

ERRORS

EPERM The cmd is MAC_SET, and the invoking subject does not have the
appropriate privileges.

EPERM The cmd is MAC_SET, and the invoking subject is not the owner of
the file referred to by path or fildes.

ENOTD R For | vl fil e, acomponent of the path prefix is not a directory.

ENCENT Forl vl fil e, acomponent of path does not exist.

EACCES For | vl fil e, the invoking subject fails the access checks on a com-
ponent of path.

EACCES The invoking subject does not have MAC access to the file referred
to by path or fildes.

El NVAL The cmd is invalid.

El NVAL The cmd is MAC_SET, and levelp is not defined on the system.

EBUSY The cmd is MAC_SET, and the file is not tranquil (open or mapped).
ERANGE The cmd is MAC_SET, and the file is a character or block device spe-
cial file, and levelp is not within device level range.

ENCSYS The cmd is MAC_SET, and the file system type does not support
labeling.

ERCFS The path or fildes refers to a file that resides on a read-only file sys-
tem.

ENAMETOOLONG if the length of path exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while POSIX_NO_TRUNC is in

effect
SEE ALSO
devstat(ES_LIB), Iviproc(ES_LIB), Ivlin(ES_LIB).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: es_lib/Ivifile
svid

Page: 82

Ivlin (ES_LIB) Ivlin (ES_LIB)

NAME
Ivlin — translate a level from text format to internal format

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int Ivlin(char *bufp, |evel _t *levelp);

DESCRIPTION
The | vlin() routine translates the null terminated character string referenced by
bufp to the corresponding internal format of the level and places it in the level refer-
enced by levelp. The character string can contain either an alias or a fully qualified
level name of the following format:

h_name [:c_name [,c_name]. . .]
where h_name is a hierarchical classification name and c¢c_name a non-hierarchical
category name.

RETURN VALUE
Upon successful completion, the | vl i n() routine returns a value of 0 and the resul-
tant level is placed in the variable referenced by levelp; otherwise, a value of -1 is
returned and er r no is set to indicate an error.

ERRORS
Under the following conditions, | vl i n() fails and sets err no to:
El NVAL if any of the text names given are not defined in the Level Translation
Database (LTDB).
El NVAL if the resultant level is not defined on the system.
EACCES the calling process does not pass the access checks for the LTDB.
SEE ALSO
Ivlout(ES_LIB).
LEVEL
Level 1.

Page 1

FINAL COPY

June 15, 1995

File: es_lib/lvlin
svid

Page: 83

Ivlipc (ES_LIB) Ivlipc (ES_LIB)

NAME

Ivlipc — manipulate an IPC object’s level
SYNOPSIS

#i ncl ude <sys/types. h>

#i ncl ude <nac. h>

#i ncl ude <sys/ipc. h>

int Ivlipc (int type, int id, int cmd, |evel _t *levelp);

DESCRIPTION
Thel vlipc() system call will manipulate an IPC object’s level.

The only cmd currently supported is MAC_CGET. This implies that this system call can
only be used to retrieve an IPC object’s level.

type must be one of the following:

| PC_SHV id must be a valid shared memory identifier returned by shrget .
| PC_SEM id must be a valid semaphore identifier returned by senget .

I PC_MSG id must be a valid message queue identifier returned by nsgget .

The level of the IPC object specified by type and id is copied into the user supplied
buffer levelp. Note that the level returned is in internal format of a level, which may
be converted to text format via the | vl out () routine.

The user must have read access to the IPC object. An unprivileged user has read
access to an IPC object only if the user’s security level dominates the object’s secu-
rity level, and the user has discretionary read access. A user with the appropriate
privilege has access to all objects.

RETURN VALUE
Upon successful completion, the system call | vl i pc() returns a value of O; other-
wise, a value of —1 is returned and er r no is set to indicate an error.

ERRORS
Under the following conditions, | vl i pc() fails and sets err no to:
El NVAL if cmd is MAC_CET and the security level of the calling process is strictly
dominated by the security level of the IPC object, and the calling pro-
cess lacks the appropriate privileges.
El NVAL if type is not | PC_SHV| | PC_SEM or | PC_MBG
El NVAL if id is not a valid (or active) type identifier.
El NVAL if cmd is not MAC CET.
EACCES if the user does not have discretionary read access to the IPC object.
SEE ALSO

Ivliout(ES_LIB), msgget(KE_OS), semget(KE_OS), shmget(KE_OS).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/lvlipc
svid

Page: 84

Ivlout (ES_LIB) Ivlout (ES_LIB)

NAME

Ivlout - translate a level from internal format to text format
SYNOPSIS

#i ncl ude <sys/types. h>

#i ncl ude <nmac. h>

int Ivliout(level t *levelp, char *bufp, int bufsize, int format);
DESCRIPTION

The | vl out () routine translates the level referenced by levelp to the corresponding
alias or fully qualified level (depending on the value in format), and places it in the
character buffer referenced by bufp.

format must be one of the following:

LVL_ALI AS the corresponding alias is placed in bufp. If the alias does not exist,
the character representation of the decimal value of the level
identifier (LID) is returned.

LVL_FULL the corresponding fully qualified level is placed in bufp. If the level
is valid but inactive (deleted), the character representation of the
decimal value of the LID is returned.

If bufsize is 0, the return value is the length that bufp must be to hold the resultant
string.

RETURN VALUE

Upon successful completion, the following occurs:

bufsize == The size requirement for the resultant null terminated character
string is returned.
bufsize I= 0 If the level is in the valid-active state, a value of O is returned. If

the level is in the valid-inactive state, a positive integer is returned.
Otherwise, a value of —1 is returned and er r no is set to indicate the error.

ERRORS
Under the following conditions, | vl out () fails and sets er r no to:
El NVAL if the format is not valid.
El NVAL if the level referenced by levelp does not exist on the system.
ENCSPC if the resultant text string is larger than bufsize.
SEE ALSO
Ivlin(ES_LIB)
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: es_lib/lviout
svid

Page: 85

Iviproc (ES_LIB) Iviproc (ES_LIB)

NAME
Ivlproc — get or set the level of a process

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int Ivliproc(int cmd, |evel _t *levelp)

DESCRIPTION
The | vl proc() system call gets or sets the level of the calling process, depending on
the value in cmd.

If cmd is MAC_CET, | vl proc() returns the level of the calling process to the variable
referenced by levelp.

If cmd is MAC _SET, the calling process must have the appropriate privileges. If it
does, | vl proc() sets the level of the calling process to the level referenced by levelp.
The level referenced by levelp must be a valid level obtained by a previous
I vli n(ES_LIB) routine or | vl fil e(ES_LIB) or | vl proc() system call.

RETURN VALUE
Upon successful completion, the system call | vl proc() returns a value of 0 and the
following action is taken:
MAC CGET The object pointed to by levelp contains the level of the calling process.
MAC SET The level of the calling process is set to the object pointed to by levelp.

Otherwise, a value of —1 is returned and er r no is set to indicate an error.

ERRORS
Under the following conditions, | vl pr oc() fails and sets er r no to:
El NVAL if cmd is invalid.
El NVAL if cmd is MAC_SET and the level referenced by levelp is not defined on
the system.
EPERM if cmd is MAC_SET and the caller lacked the appropriate privileges.
SEE ALSO
Ivifile(ES_LIB), Ivlin(ES_LIB).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/lviproc
svid

Page: 86

Ivlvalid (ES_LIB) Ivivalid (ES_LIB)

NAME
Ivlvalid — check the validity of a level

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int lvlvalid(level t *levelp);

DESCRIPTION
Thel vl val i d() routine checks the validity of the level referenced by levelp.

RETURN VALUE
If the level is valid in the active state, a value of 0 is returned; if the level is valid in
the inactive state, a positive integer is returned; otherwise, a value of -1 is returned
and er r no is set to indicate an error.

ERRORS
Under the following conditions, | vl val i d() fails and sets er r no to:

El NVAL if the level referenced by levelp does not exist on the system.
EACCES If the calling process does not pass the access checks for the Level
Transl ati on Dat abase (LTDB).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/Ivivalid
svid

Page: 87

Ivivfs (ES_LIB) Ivivfs (ES_LIB)

NAME
Ivivfs - get or set the level ceiling of a mounted file system

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>
int Ivlvfs(char *path, int cmd, |evel _t *hilevelp);

DESCRIPTION
Depending on the value of cmd, the | vl vf s system call gets or sets the level ceiling
of a mounted file system in which path resides. | vl vfs requires the appropriate
privileges.

If cmd is MAC_CET, | vl vf s returns the level ceiling of the mounted file system in the
variable pointed to by hilevelp.

If cmd is MAC_SET, | vl vf s sets the level ceiling of the mounted file system to the
value pointed to by hilevelp. The level pointed to by hilevelp must be a valid level,
which may be obtained from the | vl i n routine.

RETURN VALUE
When successful, | vl vf s returns 0. Otherwise, it returns -1 and sets er r no to one
of the following values:

ERRORS
EACCES The invoking subject failed the access checks on a component of path.

El NVAL The cmd is invalid.
El NVAL The cmd is MAC_SET, and hilevelp is not defined on the system.

ERANGE The cmd is MAC_SET, and hilevelp does not dominate the floor level of
the file system.

ENCENT A component of path does not exist.

ENOTD R A component of the path prefix is not a directory.

ENCBYS The cmd is MAC_SET, and the file system does not support labeling.
EPERM The invoking subject does not have the appropriate privileges.

ENAMETOOLONG
if the length of path exceeds PATH_MAX, or the length of a path com-
ponent exceeds NAME_MAX while POSIX_NO_TRUNC is in effect

SEE ALSO
devstat(ES_LIB), Ivlproc(ES_LIB), Ivifile(ES_LIB), Ivlin(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/lvivfs
svid

Page: 88

mkmld (ES_LIB) mkmld (ES_LIB)

NAME
mkmld — make a Multilevel Directory

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <mac. h>

int mkm d(const char [path, node_t mode);

DESCRIPTION
nkn d creates a Multilevel Directory (MLD) named by path. The calling process
must possess the appropriate privileges. The mode of the new directory is initial-
ized from mode [see chnmod(BA_OS) for values of mode]. The protection part of the
mode argument is modified by the process’s file creation mask [see umask(BA_OS)].

The directory’s owner ID is set to the process’s effective user ID. The directory’s
group ID is set to the process’s effective group ID, or if the S_| SG D bit is set in its
parent directory, then the group ID of the directory is inherited from the parent.
The S_| SA Dbit of the new directory is inherited from the parent directory.

If the final component of path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and
its parent directory (. .).

Upon successful completion, nkm d marks for update the st _ati e, st _cti ne and
st _ntime fields of the directory. Also, the st_ctine and st_mii me fields of the
directory that contains the new entry are marked for update.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is
returned, and er r no is set to indicate the error.

ERRORS
nkni d fails and creates no directory if one or more of the following are true:

EACCES Either a component of the path prefix denies search permission or
write permission is denied on the parent directory of the direc-
tory to be created.

EEXI ST The named file already exists.

El O An I/0 error has occurred while accessing the file system.

ELOCP Too many symbolic links were encountered in translating path.

EMLI NK The maximum number of links to the parent directory would be
exceeded.

ENAMETOOLONG The length of the path argument exceeds PATH_MAX, or the length
of a path component exceeds NAME_MAX while _PCSl X_NO TRUNC
is in effect.

ENCENT A component of the path prefix does not exist.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/mkmld
svid

Page: 89

mkmld

SEE AL

LEVEL

Page 2

(ES_LIB)

ENCSPC
ENOTD R
ERCFS
EPERM
ENCBYS

SO

mkmld (ES_LIB)

No free space is available on the device containing the directory.
A component of the path prefix is not a directory.

The path prefix resides on a read-only file system.

The calling process lacks the appropriate privileges.

The file system on which pat h resides does not support Mul-
tilevel Directories.

chmod(BA_OS), mkdir(BA_OS), mknod(BA_OS), umask(BA_OS).

Level 1.

FINAL COPY
June 15, 1995
File: es_lib/mkmld
svid

Page: 90

mldmode (ES_LIB) mldmode (ES_LIB)

NAME
mldmode - Retrieve or set the Multilevel Directory mode of a process

SYNOPSIS
#i ncl ude <sys/types. h>
#i ncl ude <nac. h>

int mdnode(int mode)

DESCRIPTION

The ml dnode() system call retrieves or sets the Multilevel Directory mode of the
calling process based on the value in mode. Acceptable values of mode are
M.D_QUERY, M.D_REAL and M.D M RT. If M.D_QUERY is specified, the return value of
the call will be M.D_REAL or MLD_M RT, indicating the current Multi-Level Directory
mode of the process. Specifying M.D_REAL puts the process in real mode so that
MLDs are treated as regular directories. Specifying M.D M RT puts the process in
virtual mode so that the process deflects through the MLD to the effective directory
at the level of the process.

RETURN VALUE
If MLD_QUERY is specified, successful completion is indicated by the return value of
M.D _REAL or M.D VI RT. If ML.D_REAL or M.D_M RT is specified, successful comple-
tion is indicated by a return value of 0. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
m dnode() fails if the following is true:

El NVAL Arguments to the system call are invalid.

SEE ALSO
mkmlId(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/mldmode
svid

Page: 91

procpriv (ES_LIB) procpriv (ES_LIB)

NAME
procpriv — add, remove, set, retrieve, or count privileges associated with the calling
process

SYNOPSIS
#include <priv.h>

int procpriv(int cmd, priv_t *privp, int nentries)

DESCRIPTION
The procpriv system call is used to add, remove, retrieve, count, or put the
privileges associated with the calling process. privp is a pointer to an array of
privilege descriptors, each of which contains the privilege set and identity of the
requested privilege. nentries is the number of entries contained in privp. (See the
Enhanced Security Extension Introduction for descriptions of terms such as
“privilege set.”)

The recognized cmds and their functions are described below:

SETPRV the working privilege set for the current process is set based on the
privilege descriptor(s) contained in privp. All requested privileges not
contained in the current maximum privilege set are ignored. All
requested working privileges that are in the current maximum set are
added to the working privilege set. A request may include adding one
or more privileges that are already in the current working privilege set
without causing an error. If any argument is invalid, none of the pro-
cess privileges are changed.

CLRPRV the working and maximum privilege sets for the current process are
cleared based on the privilege descriptor(s) contained in privp. All
requested privileges are removed from their respective sets. If a
privilege is removed from the maximum set it’s automatically removed
from the working set. A request may include removing one or more
privileges from the current working (or maximum) privilege set that are
not in the current working (or maximum) privilege set without causing
an error. If any argument is invalid, none of the process privileges are
changed.

PUTPRV the working and maximum privilege sets for the current process are set
based on the privilege descriptor(s) contained in privp. The working
privilege set is adjusted to be a subset of the resulting maximum set.
Privileges contained in either privilege set that are not in the maximum
set of the calling process are ignored. If any argument is invalid, none
of the process privileges are changed.

CGETPRV the working and maximum privilege sets for the current process are
returned in privp in the form of privilege descriptors. None of the pro-
cess privileges are changed.

CNTPRV returns the number of privileges associated with the current process.
The privp and nentries arguments are ignored. None of the process
privileges are changed.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/procpriv
svid

Page: 92

procpriv (ES_LIB) procpriv (ES_LIB)

RETURN VALUE
A value of -1 is returned and er r no is set to indicate the error if procpri v is unsuc-
cessful. If successful, procpriv returns 0 for SETPRV, CLRPRV, PUTPRV or the
number of privileges associated with the current process for GETPRV, and CNTPRV.
ERRORS
procpri v fails if the following is true:

El NVAL cmd or privilege specified is invalid, or nentries is less than 0, or cmd is
CGETPRV and the process privileges exceeds nentries.

EPERM the calling process does not have the appropriate privileges to set file

privileges.
SEE ALSO
filepriv(ES_LIB), procprivI(ES_LIB).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: es_lib/procpriv
svid

Page: 93

procprivl (ES_LIB) procprivl (ES_LIB)

NAME

procprivl — add, remove, set, or count privileges associated with the calling process
SYNOPSIS

#include <priv.h>

int procprivl(int cmd, priv_t privl, ...)
DESCRIPTION

The procpri vl system call is used to add, remove, count, or put the privileges
associated with the calling process. privl is a list of privilege descriptors, each of
which contains the privilege set and identity of the requested privilege. The list is
terminated with a (priv_t)0 value. (See the Enhanced Security Extension Intro-
duction for descriptions of terms such as “privilege set.””)

The recognized cmds and their functions are described below:

SETPRV

CLRPRV

PUTPRV

ONTPRV

RETURN VALUE

the working privilege set for the current process is set based on the
privilege descriptor(s) contained in the list. All requested privileges not
contained in the current maximum privilege set are ignored. All
requested working privileges that are in the current maximum set are
added to the working privilege set. A request may include adding one
or more privileges that are already in the current working privilege set
without causing an error. If any argument is invalid, none of the pro-
cess privileges are changed.

the working and maximum privilege sets for the current process are
cleared based on the privilege descriptor(s) contained in the list. All
requested privileges are removed from their respective sets. If a
privilege is removed from the maximum set it’s automatically removed
from the working set. A request may include removing one or more
privileges from the current working (or maximum) privilege set that are
not in the current working (or maximum) privilege set without causing
an error. If any argument is invalid, none of the process privileges are
changed.

the working and maximum privilege sets for the current process are set
based on the privilege descriptor(s) contained in the list. The working
privilege set is adjusted to be a subset of the resulting maximum set.
Privileges contained in either privilege set that are not in the maximum
set of the calling process are ignored. If any argument is invalid, none
of the process privileges are changed.

returns the number of privileges associated with the current process.
The rest of the arguments, if any, are ignored. None of the process
privileges are changed.

A value of -1 is returned and errno is set to indicate the error if procprivl is
unsuccessful. If successful, procpri v returns 0 for SETPRV, CLRPRV, PUTPRV or the
number of privileges associated with the current process for GETPRV, and CNTPRV.

Page 1

FINAL COPY
June 15, 1995
File: es_lib/procprivi
svid

Page: 94

procprivl (ES_LIB) procprivl (ES_LIB)

ERRORS
procpri vl fails if the following is true:

El NVAL cmd or privilege specified is invalid.
EPERM the calling process does not have the appropriate privileges to set file

privileges.
SEE ALSO
filepriv(ES_LIB), procpriv(ES_LIB).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: es_lib/procprivi
svid

Page: 95

FINAL COPY
June 15, 1995
File:

Page: 96

Enhanced Security Extension Commands And
Utilities

The following section contains the manual pages for the ES_CMD routines

Enhanced Security Extension Commands And Utilities

FINAL COPY
June 15, 1995
File: es_cmd.cov
svid

Page: 97

6-1

FINAL COPY
June 15, 1995
File:

Page: 98

admalloc (ES_CMD) admalloc (ES_CMD)

used to set the working level, level, of the device (device special file).
This option must be used with the —u option.

specifies the user and group to which the device is allocated. The
specified values become the owner and group of the device special files
mapped to the device, and their DAC is set to allow read and write to
only the user. If user, group is not specified, then the invoking user (real
UID and GID) are used.

specifies the MAC level range, hilevel-lolevel, to be used to set the level
range on the device (device special file), when it is allocated. A dash
character (-) is the range delimiter. If [-r] is not specified, then the
range defined in the DDB for that device is used. The specified range,
must be within the level range defined in DDB for that device. Other-
wise the command fails.

Allocation at startup option:

-S

all devices (aliases) in the Device Database, that have the startup attri-
bute set to yes will be allocated, based on information stored for that
device in the DDB. The device is allocated with the values of range, state,
and mode defined in the DDB. The DAC ownership and permissions on
devices allocated are also taken from the DDB. If all the startup attri-
butes (startup_level, startup_owner, startup_group, and startup_other) are
not defined in the DDB, then the command fails.

Deallocation options:

-d

RETURN VALUE

used to deallocate the specified device. Deallocation will be successful if
none of the device special files mapped to a device are open or mapped.
If deallocation is successful and the DDB entry for the specified device
defines startup level and startup owner attributes, then the level and
DAC ownership of the device are reset to those values. However, if the
startup attributes are not defined, then the DAC permissions and MAC
level of the device (dsf) are unchanged. If no device argument is
specified, then admalloc will attempt to deallocate every device defined
in the DDB.

implies “forced release”. When this option is used with [- d], then the
device is deallocated, even if there are open connections or mapping
active to the specified device.

For incorrect syntax the command fails and the exit code equals 1. For any error
message displayed on partial failure of command (where the command successfully
works for some of the devices in argument list), the exit code equals 2. If the
Enhanced Security Extension is not implemented, then the exit code is set to 3. Exit
code equals 4 for all other error messages.

FILES

/et c/ devi ce.tab
/ etc/ security/ ddb/ ddb_dsf map
/ etcl/ security/ddsb/ ddb_sec

Page 2

FINAL COPY
June 15, 1995
File: es_cmd/admalloc
svid

Page: 100

admalloc (ES_CMD)

SEE ALSO

LEVEL

devattr(ES_CMD), devstat(ES_CMD), putdev(ES_CMD).

Level 1.

FINAL COPY
June 15, 1995
File: es_cmd/admalloc
svid

Page: 101

admalloc (ES_CMD)

Page 3

adminrole (ES_CMD) adminrole (ES_CMD)

NAME

adminrole - display, add, change, delete roles in the Trusted Facility Management
(TFM) database.

SYNOPSIS

admnrole [-n] [—a [cmd: path[: priv[:priv...]]1[,

admnrole [—a [cmd: path[: priv[:priv...]][,...]]
[-r emd[:priv[:priv...]][,...]] role...

admnrole [—-d] role...

adnminrol e

...1] role. ..

DESCRIPTION

The adm nr ol e command allows administrators to display, add, change, and delete
roles in the TFM database. A role contains a list of commands. Each command con-
tains a (possibly empty) list of privileges. The tfadm n command will use these
privileges to set up its process before it invokes this command for a member of the
role. The adm nr ol e command has the following options:

-n For every role in the list, create a new role description.

-a Add a command to a role, add the role to the database if it
does not already exist.

-r Remove a command from a role or remove privileges from a
command within a role.

-d Delete a role.

No options List the contents of the specified roles.

No arguments List the contents of all roles in the database.

The adm nrol e command takes as its arguments the list of roles to which the
actions specified by the options applies. The argument to the -a or -r option is a
comma-separated list of command descriptions. For the - a option the command
description includes the name of the command to be added, the full path at which
the command file resides, and the privilege set, represented by a colon separated
list of privilege names, for example:

nmount : / et ¢/ nount : nacr ead: nount

The command description for the - r option is the same as for the - a option except
that the full path and the separating colon are not given (for example,
nount : nacr ead: mount). If users in the specified roles get no privilege when they
invoke the command, the privilege description may be omitted. When the —a and
—r options are both specified on the command line, the —r options are processed
first.

RETURN VALUE

FILES

This command exits with a 0 if all requested operations succeeded, 1 if any opera-
tion failed.

letc/security/tfmirol es/*
/etc/security/tfmrol es/*/cnds/*

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/adminrole
svid

Page: 102

adminrole (ES_CMD)

USAGE

System administrator.

SEE ALSO
adminuser(ES_CMD), tfadmin(ES_CMD).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: es_cmd/adminrole
svid

Page: 103

adminrole (ES_CMD)

adminuser (ES_CMD) adminuser (ES_CMD)

NAME

adminuser — display, add, change, delete users in the TFM database.

SYNOPSIS

adm nuser [-n][-o role[,...]]
[-a cmd: path[: priv [priv. . .]I, . . . 1]
[-D cmd]
user. ..
adm nuser [-o role[,...]]
[-r cmd [: priv[: priv. . .][, - - - 1]
[-a cmd: path[: priv [: priv. . . 1I[, . . . 1]
[-D cmd]
user . . .
adm nuser [-d] user. . .
adm nuser

DESCRIPTION

The adm nuser command allows administrators to display, add, change, and delete
users in the TFM database. A user definition contains a list of commands. Each
command contains a list of privileges. The t f adm n command uses these privileges
to set up its process before invoking this command for the user. In addition to the
command definitions, there is a list of roles available to the user, and a default com-
mand specification.

-n For every user in the list, create a new user description, and,
optionally, create a role list or add a command to that user.

-0 Create the specified role list for every user in the list.

-a Add a list of commands to the definitions of a given list of
users.

-r Remove the list of commands from the list of users. If the

user supplies privileges in the command descriptions, then
leave the command but remove the specified privileges.

-D Set the default command for a given list of users.
-d Delete the given list of users.

No options Print out the capabilities of the given list of users.
No arguments Print the capabilities of every user in the database.

The adm nuser command takes as its arguments the list of users to which the
actions specified by the options applies. The list of users is a list of user login
names.

The argument to the - 0 option is a comma-separated list of role names. This list
will create a new role list for the specified users, replacing any existing role lists.

The argument to the - a or - r option is a comma-separated list of command descrip-
tions. For the - a option the command description includes the name of the com-
mand to be added, the full path at which the command file resides, and the
privilege vector, represented by a colon-separated list of privilege names (for exam-
ple, nount : / et ¢/ nount : nacr ead: nount). The command description for the -r
option is the same as for the - a option except that the full path and the separating

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/adminuser
svid

Page: 104

adminuser (ES_CMD) adminuser (ES_CMD)

colon are not given (for example, nount : nacr ead: nount). If the users get no
privileges when they invoke the command, the privilege description may be omit-
ted. When the —a and —r options are both specified on the command line, the —r
options are processed first.

The argument to the - D option is the name of the command to be run if user exe-
cutes t f adm n without specifying a command name.

RETURN VALUE
This command exits with a 0 if all requested operations succeeded, 1 if any opera-

tion failed.
FILES
/etcl/security/tfmusers/*
/etcl/security/tfmusers/*/default
/etcl/security/tfmusers/*/rol es
/etc/security/tfmusers/*/cnds/*
USAGE
System administrator.
SEE ALSO
adminrole(ES_CMD), tfadmin(ES_CMD).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: es_cmd/adminuser
svid

Page: 105

chlvl (ES_CMD) chlvl (ES_CMD)

NAME

chlvl — change the level of a file
SYNOPSIS

chl vl level filel. . .
DESCRIPTION

chl vl will change the level of the named file(s). The new level must be either a
valid alias level, or a valid fully qualified level name of the following format:

h_name[: ¢_name[, ¢c_name]] ...]

where h_name is a hierarchical classification name, and ¢_name is a non-hierarchical
category name. A fully qualified level is valid if the classification and categories
comprising the level are named, and the level has been assigned a system level
identifier number (LID) using the | vl nane command. An alias name is valid if the
alias has been assigned to a fully qualified level using the | vl name command.
Valid levels can be viewed using the | vl nane command. level must, furthermore,
be within the file system level range.

The named file(s) must be accessible by the user. In addition, except for the root of
a mounted file system and for block or character device special files that are set in
dynam ¢ mode or are in privat e state, none of the specified files may be open
and/or mapped. If a directory is listed, it must not be the mount point of a
currently mounted filesystem. To change the level of a mount point, unmount the
filesystem, call chl vl on the mount point, and then remount. For a block or charac-
ter device special file, the specified level must also be within the device level range.
The security attributes of a device special file can be viewed using the devst at
command. If chl vl encounters an error for a specific file, an error message is
printed and processing resumes with the next file (if any).

ERRORS
One or more of the following error messages may appear on output:

invalid invocation syntax
invalid security level specified
LTDB is inaccessible

file ““filename” is inaccessible

file “filename’ is not "tranquil’ (that is, file is open and/or mapped or root of
mounted file system)

security level specified is not within device range
file system for file ““filename’ does not support per-file labels
file system for “‘filename’” is mounted read-only

permission denied for file ““filename”

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/chivl
svid

Page: 106

chlvl (ES_CMD) chlvl (ES_CMD)

FILES
/etcl/security/ mac/|1tf.cat category names
/etcl/security/mac/ltf.class classification names
letc/security/ mac/1tf.alias alias names
/etc/security/mac/lid.internal fully qualified levels
USAGE
This command is restricted to use by an administrator.
SEE ALSO
devstat(ES_CMD), lviname(ES_CMD), Ividelete(ES_CMD).
LEVEL
Level 1.
Page 2
FINAL COPY

June 15, 1995
File: es_cmd/chivl
svid

Page: 107

defsak (ES_CMD) defsak (ES_CMD)

NAME

defsak — define, remove, change, or display secure attention key
SYNOPSIS

usr/ shi n/ def sak -d sak [-x] path. ..

usr/ shi n/ def sak -d none path. ..

usr/sbin/ defsak -r path...

usr/ shi n/ def sak [path...]
DESCRIPTION

The def sak administrative command is used to define, remove, change, or display
the Secure Attention Key (SAK) for terminals. The SAK is a signal that a user sends
to the host computer to establish a secure communications channel, or trusted path,
for login. Users cannot log in on terminals that do not have a defined SAK.

If invoked without any options or arguments, def sak prints the SAKs for all
defined terminal paths, in the following format:

path: sak [+dr op]

The path is the absolute path name of the terminal device. The sak is the SAK
defined for the terminal. An optional +dr op suffix may be displayed; if present, it
indicates that the line drop signal is also recognized as a SAK.

If invoked without options but with the absolute path name(s) of one or more ter-
minals as an argument, def sak displays information about the SAK(s) for the
specified terminal(s).

def sak has the following options:

-d sak This option defines the SAK for a terminal or terminals. The SAK may
be either a control character or the break or line drop signal. A control
character is specified either as an octal number in the range 000 to 015 or
020 to 037 (for example, 001) or as a character preceded by a caret (for
example, " A). A line drop or break is specified as the SAK by using the
strings br eak or dr op after the -d option. For example, the command
def sak -d drop specifies that the line drop is the SAK.

-d none This option disables the trusted path processing for the terminal
specified by the path argument. A warning message is printed, indicat-
ing that the terminal is no longer secure. This feature is intended to sup-
port communications utilities, such as uucp.

- X This option defines the line drop as a SAK, in addition to the SAK
defined with the - d option. The - x option can be used only with the - d
option.

-r This option removes the SAK for a tty device. If the SAK is removed,

the terminal is disabled and cannot be used for logins. This is not the
same as defining the SAK as none. Defining the SAK as none allows
someone (or some program) to log in without entering the SAK.
Removing the SAK with - r disables the terminal completely.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/defsak
svid

Page: 108

defsak

(ES_CMD) defsak (ES_CMD)

RETURN VALUE

FILES

USAGE

Page 2

Upon successful completion, def sak returns a value of 0. If the SAK is defined as
none, the following warning message is printed:

SAK disabl ed for termnal path,
termnal is no | onger secure

Otherwise, a non-zero value is returned and one of the following error messages is
printed:

path not defined in SAK dat abase
The path argument does not correspond to a known terminal.

invalid SAK specified
The SAK specified to - d is not a control character, line drop, break,
or none.

SAK dat abase is not accessible
The _pnmt ab database file is not accessible.

I'llegal option
Incorrect syntax used

/ et c/ saf / pmtag/ _pmnt ab

Because the system will end a user’s login session whenever it sees the SAK as
input, the SAK should not be a character that users will normally type. It is prefer-
able to use the line drop signal as the SAK, because this signal is not used as normal
user input. Use of the line drop as the SAK is recommended unless tty access to the
system is via a modem or access emulates modem signals. In these cases, use a
break signal.

All terminals at a site should have the same SAK, if possible. This makes it easier
for users to remember the SAK and simplifies system administration.

Using a control character as the SAK is discouraged. A control character should be
used only if it is not possible to use the line drop or break signals as the SAK. Using
a control character as the SAK has the following problems:

« A control character SAK restricts the setting of terminal characteristics, and it
may be difficult to find a character that is not used by application programs and
commands.

e Control character SAKs may not work well in environments, such as terminal-
based windowing packages, where data messages are wrapped by protocol
information. Protocol information may contain the SAK, in which case the user
will be logged out immediately, possibly in the middle of a protocol.

If you choose a character SAK, do not use any character in the set of default settings
for special characters defined in term o(BA_ DEV). Doing so will cause ioctl
failures when the tty device’s t er m o characteristics are being set. Choosing one of
the following as a SAK is strongly discouraged:

FINAL COPY
June 15, 1995
File: es_cmd/defsak
svid

Page: 109

defsak (ES_CMD)

LEVEL

back space
horizontal tab
new line
vertical tab
new page
carriage return
Control-D
Control-S
Control-Q

octal 010
octal 011
octal 012
octal 013
octal 014
octal 015
octal 004
octal 023
octal 021

defsak (ES_CMD)

Redefinition of the SAK is discouraged because doing so does not have any security
benefits and can confuse users.

SEE ALSO

termio(BA_DEV)

Level 1.

FINAL COPY
June 15, 1995
File: es_cmd/defsak
svid

Page: 110

Page 3

devattr (ES_CMD) devattr (ES_CMD)

NAME

devattr — lists device attributes
SYNOPSIS

devattr [-v]device [attribute .. .]
DESCRIPTION

devat t r displays the values for a device’s attributes. The display can be presented
in two formats. When run without the - v option, devat t r shows only the attribute
values. When run with -v, devattr shows the attributes in the format
attribute=value[,value . . .]. When no attributes are given on the command line, all
attributes for the specified device are displayed in alphabetical order by attribute
name. If attributes are given on the command line, only those are shown and they
are displayed in command line order.

The options and arguments for this command are:

-V Specifies verbose format. Attribute values are displayed in an
attribute=value format.
device Defines the device for which attributes should be displayed. It can

be the absolute pathname of the device or the device alias. If it is an
absolute pathname, then devattr gets the device alias name to
which the pathname maps and displays all the attributes defined for
that alias. If the alias is a secure device alias, then security attributes
are also displayed.

attribute Defines which attribute, or attributes, should be shown. The default
is to show all attributes for a device. [See put dev(ES_CMD) for a
complete list of attributes.] If the system supports multilevel secu-
rity, it is possible to query for information on the secure device alias
and security attributes. Otherwise, such queries will fail.

RETURN VALUE
Upon successful completion, devat tr returns a value of 0. Otherwise, it returns a
non-zero value.

FILES
/etc/device.tab
/ etc/ security/ ddb/ ddb_dsf map
/etc/ security/ddb/ ddb_sec referenced only if the Enhanced Security
Extension is implemented

SEE ALSO
getdev(ES_CMD), putdev(ES_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/devattr
svid

Page: 111

devstat (ES_CMD) devstat (ES_CMD)

NAME
devstat — gets the current security attributes of a device

SYNOPSIS
devstat -Z [device...]

devstat -z [device...]

DESCRIPTION
The devst at command allows administrators to get the current security attributes
of a specified device and, thus, to determine which devices are allocated and in use
on the system. The device security attributes are those defined in the kernel, not
those stored in the Device Database [see devat t r (ES_CMD)].

Security information is printed for each of the specified device arguments. If no arg-
ments are passed, devst at displays information on every device (all device special
files) defined in the Device Database.

The device argument can take any one of the following four forms: (1) an absolute
pathname for a device special file defined in the Device Database, (2) an absolute
pathname for a device special file that’s not defined in the Device Database, (3) a
device alias name, or (4) a secure device alias. If device is an absolute pathname
listed in the Device Database, devst at prints the security attributes of that device
special file. If device is an absolute pathname for a device special file not defined in
the Device Database (but the character or block device special file exists in the sys-
tem), devst at displays the information provided by devst at (BA_OS). If device is a
device alias name, devst at prints the security attributes of every device special file
mapped to that alias. If device is a secure device alias, devst at prints the security
attributes of every device special file mapped to all aliases for which the secdev
attribute is equal to that secure device alias.

devst at has the following options:
-Z Printsecurity levels as fully qualified level names.
-z Print security levels as level aliases.

If the level is not defined in the Level Translation Database (LTDB), devst at prints
a text representation of the binary value of the level identifier (LID).

For each specified device, devst at displays a status report in the following form:
devi ce nane: secure_device_alias

pat hnarre: device_special_file
state: state
node: mode
hi gh: level
| ow level
use count: use count
rel ease flag: relflag

When a requested device is a character or block special file that is not defined in the
Device Database, the values reported for the devi ce nane and pat hnane fields are
the same.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/devstat
svid

Page: 112

devstat (ES_CMD) devstat (ES_CMD)

Under pat hnane, the following fields are listed:

state Either pri vat e (only privileged processes can access the device) or
public.

node Either stati ¢ or dynani c.

hi gh, | ow Either fully qualified level names or level aliases for valid level
identifiers.

use count Set to 1 if connections are open or mappings are being made to the

device special file. Otherwise, set to zero (0).

rel ease flag One of three values: per si st ent, | ast cl ose, or system If per -
si stent, the security attributes remain in effect until they are
explicitly reset. If |astcl ose, the device security attributes
remain in effect until the last close and are then reset to the system
security attributes. If syst em the device security attributes are set
to the system security attributes.

RETURN VALUE
Whenever devst at fails to print the status of a specified device, it displays an
appropriate error message and continues processing with the next specified device.
Upon completion, devst at exits with an exit code of O if it was successful, 2 if it
was partially successful, and the appropriate code if it fails.

FILES

/etc/ device.tab

/ etc/ security/ ddb/ ddb_dsf map

[etc/ security/ddb/ ddb_sec
SEE ALSO

admalloc(ES_CMD), devattr(ES_CMD), Iviname(ES_CMD), putdev(ES_CMD).
LEVEL

Level 1.
Page 2

FINAL COPY

June 15, 1995
File: es_cmd/devstat
svid

Page: 113

filepriv (ES_CMD)

SEE ALSO

LEVEL

Page 2

filepriv(BA_OS).

Level 1.

FINAL COPY
June 15, 1995
File: es_cmd/filepriv
svid

Page: 115

filepriv (ES_CMD)

getacl (ES_CMD) getacl (ES_CMD)

NAME

getacl — display discretionary information for a file or files
SYNOPSIS

getacl [-ad] file...
DESCRIPTION

For each argument that is a regular file, special file, or named pipe, get acl displays
the owner, group, and the Access Control List (ACL). For each directory argument,
get acl displays the owner, group, and the ACL and, optionally, the default ACL.
Only directories contain default ACLs.

With the —a option specified, the filename, owner, group, and the ACL of the file
will be displayed. With the —d option specified, the filename, owner, group, and
the default ACL of the file, if it exists, will be displayed. With no option specified
get acl behaves as if both [-a] and [-d] were specified.

This command may be executed on a file system that does not support ACLs. It
will report the ACL consisting of only the owning user, owning group, class and
other entries, based on the permission bits.

When multiple files are specified on the command line, a blank line will separate
the ACL for each file. The format of an ACL is:

file:filename

owner : uid

group: gid

user ::perm

user :uid:perm

gr oup::perm

gr oup:gid:perm

cl ass:perm

ot her :perm

def aul t : user ::perm
def aul t : user :uid:perm
def aul t: group::perm
def aul t : gr oup:gid:perm
def aul t: cl ass:perm
def aul t : ot her :perm

The first three lines show the filename, the file owner, and the file owning group.
Note that when only the —d option is specified, and the file has no default ACL,
only these three lines will be displayed.

The user entry without a user ID indicates the permissions that will be granted to
the owner of the file. One or more additional user entries indicate the permissions
that will be granted to the specified users. The group entry without a group
identifier indicates the permissions that will be granted to the owning group of the
file. One or more additional group entries indicate the permissions that will be
granted to the specified groups. The ot her entry indicates the permissions that will
be granted to others.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/getacl
svid

Page: 116

getacl (ES_CMD) getacl (ES_CMD)

The default entries (default:user, default:group, default:class, and
defaul t: other) may only exist for directories, and indicate the default user,
group, and ot her entries that will be added to a file created within the directory.

A uid is a login name, or a user ID if there is no entry for the uid in the system’s
password file; gid is a group name, or a group ID if there is no entry for the gid in
the system’s group file; and perm is a three character string composed of the letters
representing the separate discretionary access rights: r (read), w (write), X
(execute/search), or the placeholder character —. The perm will be displayed in the
following order: rwx. If a permission is not granted by an ACL entry, the place-
holder character will appear.

The ACL entries will be displayed in the order in which they will be evaluated
when an access check is performed. The default ACL entries which may exist on a
directory have no effect on access checks.

The file owner permission bits represent the access that the owning user ACL entry
has. The file group class permission bits constrain the ACL (represent the most
access that any entry in the ACL may have). If a user executes the chnod command
and changes the file group class permission bits, this may change the permissions
that would be granted based on the ACL alone. This behavior is necessary for the
save/restore model (all permissions are temporarily removed via chrmod 000 file
and then restored) to work correctly. The file other permission bits represent the
access that the other ACL entry has. If a user invokes the chmod command and
changes the file group class permission bits, the access granted by the additional
ACL entries may be restricted.

In order to indicate that the file group class permission bits restrict an ACL entry,
get acl will display, on the same line (after each affected entry) text in the form
#ef f ecti ve: perm, where perm will show only the permissions actually granted.

The output from get acl will be in the correct format for input to the set acl com-
mand. If the output from get acl is redirected to a file, the file may be used as
input to set acl . In this way, a user may easily assign one file’s ACL to another file.

FILES
/ et c/ passwd for user 1Ds
/ etc/ group for group IDs
USAGE
System administrator.
EXAMPLE
Given filefil ea, with an ACL five entries long, the command
$ getacl filea
could print:
file: filea
owner: fletcher
group: us
user: : rwx
user: spy: ---
user: archer:rw
group::r--
Page 2

FINAL COPY
June 15, 1995
File: es_cmd/getacl
svid

Page: 117

getacl (ES_CMD) getacl (ES_CMD)

cl ass: rw
other:---

After the command chnod 700 fi | ea was issued on the same file the command

$ getacl filea

could print:

file: filea

owner: fletcher

group: us

user: :rw

user: spy: - - -

user: archer: rw #effective:---
group: :r-- #effective:---
class: ---

other:---

Given directory fi | eb, with an ACL containing default entries, the command

$ getacl -d fileb

could print:

file: fileb

owner: fletcher

group: us
defaul t: user::rwx
defaul t: user: spy: ---
defaul t:group::r--
defaul t:other:---

Given directory f i | eb, the command

$ getacl fileb

would print:

SEE ALSO
acl(ES_LIB), aclsort(ES_LIB), chmod(BU_CMD), Is(BU_CMD), setacl(ES_CMD).

LEVEL

Level 1.

file: fileb

owner: fletcher
group: us
user: : rwx

user: spy: - - -
user:archer:rw
group::r--
other:---
defaul t: user::rwx
def aul t: user: spy: - --
default:group::r--
default:other:---

Page 3

FINAL COPY
June 15, 1995
File: es_cmd/getacl
svid

Page: 118

getdev (ES_CMD) getdev (ES_CMD)

NAME

getdev - lists devices defined in the Device Database based on criteria
SYNOPSIS

get dev [-ae] [criteria. ..] [device...]
DESCRIPTION

get dev generates a list of devices that match certain criteria. The criteria include a
list of attributes (given in expressions) and a list of devices. If no criteria are given,
all devices are included in the generated list.

Devices must satisfy at least one of the criteria in the list unless the - a option is
used. Then only those devices that match all of the criteria in a list will be included
in the generated list.

Devices named on the command line and that match the criteria are included in the
generated list. However, if the - e flag is used, the list of devices named on the com-
mand line becomes the set of devices to be excluded from the list.

Criteria Expression Types
There are four possible expression forms which the criteria specified in the criteria
argument may follow:

attribute=value Selects all devices whose attribute attribute is defined and is
equal to value.

attribute! =value Selects all devices whose attribute attribute is defined and does
not equal value.

attribute: O Selects all devices which have the attribute attribute defined.
attribute! : O Selects all devices which do not have the attribute attribute
defined.

See put dev(ES_CMD) for a complete listing and description of available attributes.

Options and Arguments
The options and arguments for this command are:

-a Specifies that the list of devices that follows on the command
line must match all criteria to be included in the list generated
by this command. The flag has no effect if no criteria are
defined.

-e Specifies that the list of devices which follows on the command
line should be excluded from the list generated by this com-
mand. The flag has no effect if no devices are defined.

criteria Defines criteria that a device must match to be included in the
generated list. Should be given in expressions.

device Defines devices that should be included or excluded (based on
the command options) in the generated list. Can be the path-
name of the device or the device alias.

RETURN VALUES
Upon successful completion, get dev returns a value of 0. Otherwise, it returns a
non-zero value.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/getdev
svid

Page: 119

getdev (ES_CMD) getdev (ES_CMD)

FILES

/et c/ device.tab

/ etc/ security/ ddb/ ddb_dsf map

/etc/security/ddb/ ddb_sec referenced only if the Enhanced Security

Extension is implemented

SEE ALSO

devattr(ES_CMD), putdev(ES_CMD).
LEVEL

Level 1.
Page 2

FINAL COPY

June 15, 1995
File: es_cmd/getdev
svid

Page: 120

Ividelete (ES_CMD) Ividelete (ES_CMD)

NAME
Ividelete — delete Mandatory Access Control (MAC) levels

SYNOPSIS
I vldel ete [-r]—a alias_name[, alias_name. . .]
Ividelete [-r]—c cat_id[, cat_id. . .]
lvidelete [-r]—f level_name
Ividelete [-r]-h class_id[, class_id. . .]
[videlete [-r]-l lid[, lid...]

DESCRIPTION
The | vl del et e command will delete (unname) a level, hierarchical classification,
non-hierarchical category, or alias name from the system. This command is res-
tricted to use by an administrator.

The following options are recognized:
-a Delete the alias alias_name.

- Delete the category indicated by cat_id. cat_id may be the category number
or the category name.
—f Delete the level whose fully qualified level name is level_name (that is, of the

format h_name[:c_name,c_name. ..], where h_name is a classification name
and c¢_name a category name).

-h Delete the classification indicated by class_id. class_id may be the
classification number or the classification name.

- Delete the level whose numeric level identifier (LID) is lid.

- Override restriction on deletion of reserved identifiers. Reserved identifiers
are described in | vl name(ES_CMD).

Options that allow multiple entries to be deleted at a time should not contain dupli-
cates. Furthermore, entries to be deleted must have been previously named using
the | vl name command. If an entry on the input line is in error, an error message is
produced, the option-argument containing the entry in error is skipped, and pro-
cessing is resumed with the next option-argument (if any).

A level is deleted using the —I or —f option. In addition to unnaming the LID or
fully qualified level tuple, | vl del et e also deletes the alias name assigned to the
removed level. Note, however, that deleting an alias name using the —a option does
not delete the level itself. Once a LID or fully qualified level tuple has been deleted,
the LID cannot be re-assigned. The fully qualified level name, however, can be
assigned a new LID.

Any identifier may be deleted regardless of its current state. The deletion of an
alias, classification, or category is not an atomic operation. The effect of the delete
is realized when the level (for classification/category) or alias is validated against
the system’s level translation database. Furthermore, that deleting a classification
or category does not automatically delete levels containing the deleted classification
or category. It is the administrator’s responsibility to delete identifiers in a quies-
cent state and to delete all dependent identifiers. It is strongly recommended that
this command be used in maintenance mode only.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/lvidelete
svid

Page: 121

Ividelete (ES_CMD) Ividelete (ES_CMD)

A level is undefined on the system if it was never assigned, it has been deleted, or
its classification or any of its categories has been deleted. See | vl nane(ES_CMD)
for details on the various states of a level.

When a level, alias, classification, or category is deleted, an entry will be added to
the history log maintained by | vl nane. The history log entry will contain the
deleted identifier and a time stamp. The history log may be printed using the —p
option of the | vl nanme command.

FILES
/etc/security/mac/lid.internal fully qualified levels
/etc/security/mac/ltf.alias alias names
/etc/security/ mac/|1tf.cat category names
/etc/security/mac/ltf.class classification names
[etc/security/ mac/ hist.* history files
EXAMPLE
In the following example, classification number 2 is deleted, as are categories 1 and
3. Any user attempting to login at a level containing classification 2 or categories 1
or 3 will be denied access to the system.
Ividelete -h 2 -c 1,3
In the next example, the alias name, OBSERVE, is deleted. Any user attempting to
login using the alias will be denied access to the system.
vl del ete -a OBSERVE
SEE ALSO
Iviname(ES_CMD).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: es_cmd/lvidelete
svid

Page: 122

Iviname (ES_CMD) Iviname (ES_CMD)

Page 2

If the —h or —c option is given, the specified classification or category number(s)
must fall within the range of supported numbers for classifications or categories,
respectively. Additionally, the classification or category number must be unnamed.
A classification or category number repeated on the input line can be viewed as a
classification or category that has previously been named. If a classification or
category number is out of range or previously named, an error message is printed,
the option-argument containing the entry in error is skipped, and processing is
resumed with the next option-argument (if any).

The —I option is used to assign a new level; that is, a fully qualified level name is
assigned a LID, which is the system’s sole means of level identification. The
classifications and categories must have been previously named, and level_name
must be unique (that is, it cannot already be assigned to another LID). When
invoked with the —| option and without a specified level_identifier, | vl nane will
automatically assign a LID to the level_name on input. The LID assigned automati-
cally to a level is the LID just after the highest assigned LID on the system so far.
The | vl nane command allows for the system assigned LID to be explicitly overrid-
den on input. This ability allows multiple systems to use the same LIDs for the
same level names. It is recommended that this option be used with discretion, since
"gaps" in the LID sequence may occur. For example, if the next automatically
assigned LID is 1027 and the user overrides the system assigned LID with 2052, the
next automatically assigned LID will be 2053. The numbers 1027 through 2051, are
in essence skipped by the system during automatic LID assignment although they
could be manually assigned.

When level_identifier is specified, the LID must be in the invalid state. A LID is in the
invalid state if the LID has never been assigned to a level. When a LID is assigned to
a level, the LID’s state becomes valid-active. A LID in the valid-active state is valid
for both | ogi n and mandatory access control (MAC) checks. When a LID is
deleted, the LID transitions to the valid-inactive state. A LID in the valid-inactive
state is valid for MAC checks but is no longer valid for | ogi n.

A level is undefined on the system if it has never been assigned, it has been deleted,
or its classification or any of its categories has been deleted.

The —a option is used to assign an alias name to a level. The level_name must have
previously been assigned a LID to have an alias assigned. In addition, level_name
may not already have an alias assigned.

All successful assignments through | vl name add an entry in the history log. When
invoked with the —p option, | vl nare prints the history log in the following format
and order:

Level Identifiers (LIDs):
operation level_identifier: : level_name a_date

Classifications:
operation class_no: h_name a_date

Categories:
operation cat_no: ¢_name a_date

FINAL COPY
June 15, 1995
File: es_cmd/lviname
svid

Page: 124

Iviname (ES_CMD) Iviname (ES_CMD)

Alias Names:
operation alias_name: : level_name a_date

where operation is ADD or DEL (delete) indicating the nature of the history log entry,
and a_date is the date (in setlocale format) the operation took place. Note that the
| vl del et e command is used for the DEL operation.

The LIDs, classifications, and categories are listed in ascending order, with the LID
or classification/category number used as the sort key. Multiple entries are sorted
by ascending date within the number. Alias names are printed in ascending alpha-
betical order.

When | vl nane is invoked without options, all the system’s current level definitions
are printed in the following format and order:

Levels:
level_identifier: : [alias_name: :]Jlevel_name [*]

Classifications:
class_no: h_name

Categories:
cat_no: c_name

Levels are listed in ascending order by LID number; classifications are listed in
ascending order by classification number; and categories are listed in ascending
order by category number. Both valid-active and valid-inactive levels are displayed,;
valid-inactive levels have a * appended to the fully qualified level name. Unnamed
classifications and categories do not appear on output.

FILES
/etcl/security/ mac/ hist.* history log
/etc/security/mac/lid.internal fully qualified levels
/etc/security/mac/ltf.alias alias names
/etcl/security/ mac/|1tf.cat category names
/etc/security/ mac/ltf.class classification names
USAGE
Administrator.
EXAMPLE
Suppose the following state initially:
$1 vl namre
Levels:

100::Analias::Not_so_secret:group_43
101::Top_secret*

Classifications:
1:Not_so_secret
15:Top_secret

Page 3

FINAL COPY
June 15, 1995
File: es_cmd/lviname
svid

Page: 125

Iviname (ES_CMD) Iviname (ES_CMD)

Page 4

Categories:
1:syseng
43:group_43

and the history log is empty. Then, the operations:

$ Iviname —-h 5: A bit_secret -c 3: Nato, 50: Proj ect X
$ Ivlname - 125:: Top_secret: Nat o, Proj ect X
$ I vl name —a NoJoke: : Top_secr et : Nat o, Proj ect X

will produce the following history log:
$1vl nane —p

Level Identifiers (LIDs):
ADD 125::Top_secret:Nato,ProjectX Jan 10 12:01:52 EST 1989

Classifications:
ADD 5:A bit_secret Jan 10 12:01:10 EST 1989

Categories:
ADD 3:Nato Jan 10 12:01:10 EST 1989
ADD 50:ProjectX Jan 10 12:01:10 EST 1989

Alias Names:
ADD Nojoke::Top_secret:Nato,ProjectX Jan 10 12:02:10 EST 1989

and the following state:
$1 vl nane

Levels:
100::Analias::Not_so_secret:group_43
101::Top_secret*
125::Nojoke::Top_secret:Nato,ProjectX

Classifications:
1:Not_so_secret
5:A_bit_secret
15:Top_secret

Categories:
1:syseng
3:Nato
43:group_43
50:ProjectX

FINAL COPY
June 15, 1995
File: es_cmd/lviname
svid

Page: 126

Iviname (ES_CMD)

SEE ALSO

Ividelete(ES_CMD).

LEVEL
Level 1.

FINAL COPY
June 15, 1995
File: es_cmd/lviname
svid

Page: 127

Iviname (ES_CMD)

Page 5

Ivlprt (ES_CMD) Iviprt (ES_CMD)

NAME

Ivlprt — print system’s current level definitions
SYNOPSIS

Ivlprt [-s]
DESCRIPTION

The | vl prt command prints the system’s current level identification, including
fully qualified level names, alias names, classifications, and categories. Only valid-
active levels, named classifications and categories are displayed. The —s option
suppresses the printing of classifications and categories.

The format and order of the output are as follows:

Levels:
[alias_name: :]level_name

Classifications:
class_no: h_name

Categories:
cat_no: ¢c_name

Levels are listed in ascending alphabetical order using level_name as the key. When
defined, alias names are printed before the fully qualified level names.
Classifications are listed in ascending order by classification number, and categories
are listed in ascending order by category number.

USAGE
General.

EXAMPLE
$1vlprt

Levels:
Zalias::Not_so_secret:group_43
Top_secret

Classifications:
1:Not_so_secret
15:Top_secret

Categories:
1:syseng
43:group_43

SEE ALSO
Iviname(ES_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/lviprt
svid

Page: 128

mailcheck (ES_CMD) mailcheck (ES_CMD)

NAME

mailcheck — check for mail at all security levels
SYNOPSIS

mai | check [-Z]
DESCRIPTION

mai | check checks for the existence of mail. Whenever it finds some, it prints a
message on standard output:

You have mail

If the Enhanced Security Extension is implemented, mai | check loops through the
dominated security levels looking for mail. For example, if you were logged in at
TopSecret , you might see the message:

You have mail at level: Top Secret
You have mail at level: Unclassified

Howvever, if you were logged in at Unclassified , you would only see the message:
You have mail at level: Unclassified

If there is no mail, it prints on standard error
No mail

By default, when the Enhanced Security Extension is implemented, nai | check
prints the level alias of the fully qualified levels dominated by the level at which the
user is currently logged in. The —Z option forces nai | check to print the fully
qualified level instead of the alias. The —Z option is valid only when the Enhanced
Security Extension is installed.

mai | check is commonly used in a person’s $HOME . pr of i | e as follows:
mailcheck 2>/dev/null
This prints a message when there is mail, and is otherwise silent.

RETURN VALUE
0 mail exists at some level

1 no mail at any checked level
2 some error occurred

FILES
/var/ mai | mail directory

SEE ALSO
mai | (BU_OVD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/mailcheck
svid

Page: 129

mldmode (ES_CMD) mldmode (ES_CMD)

NAME
mldmode - change MLD mode or execute a command in a given MLD mode

SYNOPSIS
n drode
m drmode —r [string]
m drode —v [string]

DESCRIPTION
With no options, m dnode reports the current Multi-Level Directory (MLD) mode
(virtual or real). That is, it reports the MLD mode of the invoking process.

—r [string] If —r alone is specified, the MLD mode of the interactive shell is
changed to real mode.

If a string specifying a command line follows the —r, that command
line alone is executed in real mode. (The actual directory structure of
any MLDs encountered will not be hidden from the command.)

—v [string] If —v alone is specified, the MLD mode of the interactive shell is
changed to virtual mode.

If a string specifying a command line follows the —v, that command
line alone is executed in virtual mode. (If an MLD is encountered, the
command will see only the corresponding effective directory at the
level of the invoking process.)

RETURN VALUE
Upon successful completion, the m dmode command returns a value of 0; otherwise,
a diagnostic is printed and a non-zero value is returned.

EXAMPLE
To print the actual directory structure of any directory tree containing an MLD:

mdrmode -r find . -print

SEE ALSO
mkdir(BU_CMD), sh(BU_CMD), mkmld(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/midmode
svid

Page: 130

putdev (ES_CMD) putdev (ES_CMD)

NAME
putdev - creates and updates the device database

SYNOPSIS
put dev —a alias [secdev=value] [attribute=value ...]
put dev —m device attribute=value [attribute=value ...]
put dev —d device [attribute ...]
put dev —p device attribute=value[, value ...]
put dev —r device attribute=value[, value ...]

DESCRIPTION
The put dev command is used to add a new device to the Device Database (DDB),
modify an existing device’s attributes, or remove a device entry from the DDB. It
also allows appending new values to attributes that take value-lists (separated by
commas), and removal of specific values from value-lists.

The options for the put dev command are:

-a Adds a device to the DDB using the specified attributes. The device must
be referenced by its alias.
-m Modifies a device entry in the DDB. If a specified attribute does not exist

in the device entry, put dev adds the specified attribute to the entry. It
also modifies attributes that already have a value with the value specified.

-d Removes a device entry from the DDB, when executed without the attri-
butes argument. If the attribute argument is specified, the attribute and its
value are deleted from the device entry.

-p Appends the list of values to the attribute value-list of the device. If the
value item is multiply defined in the input value-list or already defined
in the DDB, the command fails and prints an error message.

-r Removes the list of values from the attribute value-list, of the device.

alias must be unique throughout the DDB. alias is limited to 64 characters
(DDB_NMAXALI AS) and should contain only alphanumeric characters and any of the
following special characters: . (period), _ (underscore), $ (dollar sign), and -
(hyphen).

secdev designates the alias of the secure device that defines all the security attri-
butes. If secdev is not specified during creation (- a option) or is deleted (- d option),
the current alias is used as the default value of secdev. The validation rules for secdev
are the same as those for alias.

device designates the absolute pathname or alias name of the device whose attribute
is to be added, modified, or removed. If device is a pathname, then the attributes of
the alias to which it maps are updated.

attribute designates a device attribute to be added, modified, or deleted. This
prevents an accidental modification or deletion of a device’s alias from the DDB.

value designates the value to be assigned to a device’s attribute. If any of the values
are invalid, then the command fails and prints an error message.

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/putdev
svid

Page: 131

putdev (ES_CMD) putdev (ES_CMD)

Attributes:
The following list shows all of the attributes that can be defined for a device:

alias A unique name by which a device is known. No two devices in
the database may share the same alias name. The name is limited
in length to 64 characters (DDB_MAXALI AS) and should contain
only alphanumeric characters and also the following special char-
acters underscore (), dollar sign ($), hyphen (-), and period (.).

bdevi ce The absolute pathname to the block special device node associ-
ated with the device, if any, with maximum length of PATH_MAX.

bdevl i st It contains a list of additional pathnames of block device special
files mapping to the same logical or secure device. Each item in
the list is separated by a comma, and each must be an absolute
pathname of the device special file, with a maximum length of
PATH_MAX. Since this attribute takes a list of values, options -p
and -r can be used for this attribute.

capacity The capacity of the device or of the typical volume, if removable.

cdevi ce The absolute pathname to the character special device node asso-
ciated with the device, if any, with maximum length of PATH_MAX.

cdevl i st It contains a list of additional pathnames of character device spe-
cial files mapping to the same logical or secure device. Each item
in the list is separated by a comma, and each must be an absolute
pathname of the device special file, with a maximum length of
PATH_MAX. Since, this attribute takes a list of values, options -p
and -r can be used for this attribute.

cyl Used by the command specified in the nkf scnd attribute.

desc A description of any instance of a volume associated with this
device (such as floppy diskette).

dpartli st The list of disk partitions associated with this device. Used only
if type=di sk. The list should contain device aliases, each of
which must have t ype=dpart .

dparttype The type of disk partition represented by this device. Used only
if t ype=dpart. It should be either fs (for filesystem) or dp (for
data partition).

er asecnd The command string that, when executed, erases the device.
frmcend The command string that, when executed, formats the device.
f snane The filesystem name on the file system administered on this parti-

tion, as supplied to the | abelit command. This attribute is
specified only if t ype=dpart and dparttype=fs.

gap Used by the command specified in the nkf scnd attribute.

nkf scrnd The command string that, when executed, places a file system on
a previously formatted device.

Page 2

FINAL COPY
June 15, 1995
File: es_cmd/putdev
svid

Page: 132

putdev (ES_CMD)

mount pt

nbl ocks
ni nodes
nor ewi nd

pat hnane

type

vol nane

vol ure

putdev (ES_CMD)

The default mount point to use for the device. Used only if the
device is mountable. For disk partitions where t ype=dpart and
dpar tt ype=f s, this attribute should specify the location where
the partition is normally mounted.

The number of blocks in the filesystem administered on this parti-
tion. Used only if t ype=dpart and dparttype=fs.

The number of inodes in the filesystem administered on this par-
tition. Used only if t ype=dpart and dparttype=fs.

The name of the character special device node that allows access
to the serial device without rewinding when the device is closed.

Defines the pathname to an i-node describing the device (used for
non-block or character device pathnames, such as directories).

A token that represents inherent qualities of the device. Standard
types include: 9-track, ct ape, di sk, directory,
di skette, dpart, and qtape.

The volume name on the filesystem administered on this parti-
tion, as supplied to the labelit command. Used only if
type=dpart and dparttype=fs.

A text string used to describe any instance of a volume associated
with this device. This attribute should not be defined for devices
which are not removable.

Security Attributes:

The following list of security attributes could be defined for a device alias, if the
Enhanced Security Extension is implemented.

secdev

range

state

the alias name of the physical device or secure device, and is
unique throughout the Device Database(DDB). This alias name is
limited to 64 characters (DDB_MAXALI AS), and should contain only
alphanumeric characters and the special characters " ", "$", "-" or
"". For a secure device alias this attribute’s value is the same as
the device’s alias. For a logical device alias, this attribute’s value
is different from the device alias. By default, secdev is defined to
be equal to the device’s alias.

the sensitivity Mandatory Access Control (MAC) level range of
the device. It should by a hilevel-lolevel pair, where hilevel and
lolevel are both MAC level names or fully qualified levels. The "-"
character is the delimiter between hilevel and lolevel. These levels
are stored in the DDB as LIDs, converted to ASCII characters. The
LIDs are validated against the Label Translation Database, and
hilevel is checked to verify that it dominates lolevel, before they are
saved in the DDB. This attribute must be defined.

determines whether the device is to be used as a private or public
device. It can take any one of pri vat e, publ i c, or pub_pri v. If it
is set to pub_pri v, then the device can either be used as private
or public device. If the startup attribute is enabled, then the

Page 3

FINAL COPY
June 15, 1995
File: es_cmd/putdev
svid

Page: 133

putdev (ES_CMD)

Page 4

node

startup

startup_| evel

st art up_owner

start up_group

startup_ot her

ual _enabl e

users

putdev (ES_CMD)

device is allocated as pri vat e, when the state is set to either
private or pub_pri v. This attribute must be defined.

determines the mode of the device. This attribute can either be
static or dynamic. This attribute must be defined.

is a flag (y[es]/ n[0]) that indicates whether the device is allo-
cated during startup or not. This attribute is optional, and startup
default value is no.

defines the MAC level at which the device should be set at
startup. This can be specified as a level name or fully qualified
level. However, the value is saved in the DDB as an ASCII LID
value. This attribute is optional.

defines the owner of the device. The value of st art up_owner can
be specified as the UID or user name followed by the access per-
missions. The value must be specified in the format uid>rwx. If
any of the read, write, or execute access is denied, that field must
contain a "-". The ">" character serves as delimiter between the
UID or user name and the access permissions. The uid or user
name must be defined on the system (in / et ¢/ passwd), at the
time this attribute is defined. This attribute is optional but must
be defined if attribute st art up is set to yes.

defines the group to which the device belongs. The value of
startup_group can be specified as the GID or group name fol-
lowed by the access permissions. The value must be specified in
the format gid>rwx. If any of the read, write or execute access is
denied, that field must contain a "-". The ">" character serves as
delimiter between the GID or group name and the access permis-
sions. The gid or group name must be defined on the system (in
/ et c/ group), at the time this attribute is defined. This attribute
is optional but must be defined if attribute st ar t up is set to yes.

defines the access permissions for other. The value of
st art up_ot her must be specified in the format >rwx. If any of
the read, write or execute access is denied, then that field must
contain a "-". This attribute is optional but must be defined if attri-
bute st art up is set to yes.

this attribute serves as a flag that enables or disables depending
on its value the user authorization list defined in the users and
ot her attributes. This attribute can either be values: y[es],
n[o] . If yes", then the user authorization list is checked when
authorizing an user to use this device. If no, then no users are
authorized to use this device. This attribute is optional, and value
assumed as no if ual _enabl e is not defined.

is the user authorization list that defines the allocation permis-
sions for users. Each item is a UID-authorization or username-
authorization pair separated by a ">" character. The items in the
list are separated by commas. The attribute’s value must be
specified in the format uidl>n,uid2>n,uid3>y. Each UID or

FINAL COPY
June 15, 1995
File: es_cmd/putdev
svid

Page: 134

putdev (ES_CMD) putdev (ES_CMD)

ot her

username must be unique in a device entry, and all UIDs or user-
names must be defined in / et ¢/ passwd, when this attribute is
defined. Since, this attribute takes a list of values, options - p and
-r can be used. This attribute is optional.

is the other authorization that defines the authorization permis-
sions for ot her . This attribute contains only one item and it can
take either >y[es] or >n[o]. This attribute is optional, and its
value is assumed as no, if ot her is not defined.

The following rules and guidelines should be followed when using the put dev
command.

The al i as names of devices must be valid (see description under Attri -
but es) and unique throughout the DDB; and will fail if nonunique.

The pathnames to device special files in attributes cdevice, bdevice, cdevlist,
and bdevlist must be absolute pathnames. They cannot be repeated within
an entry or occur in multiple entries. The put dev command checks the
uniqueness of pathnames and will fail if nonunique.

Security attributes can be defined for device, or alias only if the system is
configured for multilevel security; otherwise, the command fails.

The MAC level values for the security level range (hilevel-lolevel) must be
valid security level aliases or fully qualified level names defined in the Level
Translation Database (LTDB); otherwise, the command fails. If hilevel does
not dominate lolevel, the command fails.

Special handling of the secdev attribute:

The secdev attribute is used to define the essential security attributes of a
device. This attribute’s name must be valid (see description under Security
Attributes) and unique throughout the DDB; otherwise the command
fails.

By default, when adding a new device alias into the Device Database, if the
secdev attribute is not defined at the command line, the new device entry is
assigned a secdev equal to its alias.

The essential security attributes are range, state, and mode.

The alias that defines security attributes of a device is called a secure device
alias. One can define other non-security attributes for this alias, if needed.
For all secure devices, by default, secdev must have same value as alias.

When adding (using - a) or modifying (using - m) a device entry and specify-
ing a secdev attribute not equal to the alias being added or modified, put dev
performs the following checks in the order specified below:

1. If the essential security attributes are being defined for alias, the com-
mand fails and displays an error message. An entry defining the essential
security attributes must have the secdev attribute be equal to its alias.

2. If the essential security attributes are not being defined for alias, and if
the specified secdev does not exist in the Device Database, a warning mes-
sage is displayed.

Page 5

FINAL COPY
June 15, 1995
File: es_cmd/putdev
svid

Page: 135

putdev (ES_CMD) putdev (ES_CMD)

3. If the essential security attributes are not being defined for alias, and the
specified secdev exists in the Device Database but does not define the essen-
tial security attributes, the command fails and displays an error message.

4. If the essential security attributes are not being defined for alias, and the
specified secdev exists in the Device Database and defines the essential
security attributes, then the command is successful.

. It is recommended that the secure alias be created before any logical
aliases are created that map to the same secure alias. Similarly, it is recom-
mended not to remove a secure device alias if any logical alias are
currently mapped to that secure alias.

. Additional aliases that share the security attributes defined for a secure
device can be created by specifying their secdev to have the same value as
the alias of the secure device. If secdev is not specified, and the essential
security attributes are also not specified, then a logical device entry is
created that does not have security attributes.

Special handling of the essential security attributes:

. The essential security attributes, mode, state, and range must be created
(using - a or - m) and deleted (using - d) together. Otherwise, the command
fails and issues an error message.

. The essential security attributes of a secure alias can be modified (-m
separately after they are defined.
. If the essential security attributes are being deleted from a device entry

whose alias is a secdev attribute for at least another entry in the Device Data-
base, then the command fails and displays an error message.

RETURN VALUE

Upon successful completion, put dev returns O; otherwise, a diagnostic is printed
and a non-zero value is returned.

EXAMPLE

Page 6

The following example shows you how to create one secure device (t apedri vel)
and two device aliases (sl owt ape, f ast t ape) that map to the secure device. (In the
following example, the input is split onto two lines; you should enter the com-
mands as one line.)

putdev -a tapedrivel range=SYS PR VATE- SYS PUBLI C state=public \
node=stati ¢ startup=n ual _enabl e=y users="100>n, 101>n" ot her =">y"

putdev -a sl owt ape secdev=t apedrivel cdevi ce=/dev/tape800

putdev -a fasttape secdev=tapedrivel cdevi ce=/dev/tapel600

The preceding command sequence creates one secure device alias (t apedrivel)
with the specified security attributes for the tape drive, and two logical device
aliases (sl owt ape and f ast t ape) with the specified non-security attributes in the
DDB.

However, one could create one entry per device with all security attributes specified
on the command line:

FINAL COPY
June 15, 1995
File: es_cmd/putdev
svid

Page: 136

putdev (ES_CMD) putdev (ES_CMD)

putdev -a tapel range=SYS PR VATE SYS PUBLI C state=public nmode=static \
startup=n ual _enabl e=y users="100>n, 101>n" ot her=">y" \
cdevl i st =/ dev/t ape800, / dev/t apel600 desc=t ape devi ce
The DDB can be queried for any alias, or attribute value using the devattr and
get dev commands.

FILES

/et c/ device.tab

[etc/ security/ ddb/ ddb_dsf map

/ etc/ security/ddb/ ddb_sec exists only if the Enhanced

Security Extension is implemented

SEE ALSO

admalloc(ES_CMD), devattr(ES_CMD), devstat(ES_CMD), getdev(ES_CMD),

devstat(ES_LIB).
LEVEL

Level 1.

Page 7

FINAL COPY
June 15, 1995
File: es_cmd/putdev
svid

Page: 137

setacl (ES_CMD) setacl (ES_CMD)

In the above lists, the user specifies the following:

perm

operm

uid
gid

is a permissions string composed of the characters r (read), w (write), and x
(execute), each of which may appear at most one time, in any order. The
character — may be specified as a placeholder.

is the octal representation of the above permissions, with 7 representing all
permissions, or r wx, and O representing no permissions.

is a login name or user ID.
is a group name or group ID.

The options have the following meanings:

—I

Page 2

Recalculate the group class entry so as to ensure that permissions granted in
the additional ACL entries will actually be granted. If the —r option is
specified, the value specified in the cl ass entry is ignored.

Set a file’s ACL. All old ACL entries are removed, and replaced with the
newly specified ACL. There must be exactly one user entry specified for
the owner of the file, exactly one group entry specified for the owning
group of the file, exactly one cl ass entry specified for the file group class,
and exactly one ot her entry specified. There may be additional user ACL
entries and additional group ACL entries specified, but there may not be
duplicate additional user ACL entries with the same uid, or duplicate addi-
tional gr oup ACL entries with the same gid. If the file is a directory, default
ACL entries may be specified. There may be at most one default user entry
for the owner of the file, at most one default gr oup entry for the owning
group of the file, at most one default cl ass entry for the file group class,
and at most one default ot her entry for other. There may be additional
default user entries and additional default group entries specified, but
there may not be duplicate additional default user entries with the same
uid, or duplicate additional default gr oup entries with the same gid. An
entry with no permissions will result in the specified uid or gid being denied
access to the file. The entries need not be in order. They will be sorted by
the command before being applied to the file.

Add one or more new ACL entries to the file, and/or change one or more
existing ACL entries on the file. If an entry already exists for a specified uid
or gid the specified permissions will replace the current permissions. If an
entry does not exist for the specified uid or gid, an entry will be created.

Delete one or more existing ACL entries from the file. The entries for the file
owner, the owning group, and others may not be deleted from the ACL.
Note that deleting an entry does not necessarily have the same effect as
removing all permissions from the entry. Specifically, deleting an entry for
a specific user would cause that user’s permissions to be determined by the
ot her entry (or the owning gr oup entry, if the user is in that group).

Set a file’s ACL with the ACL entries contained in the file named acl_file.
The same constraints on specified entries hold as with the —s option. The
entries are not required to be in any specific order in the file specified as
acl _file. The character "#" in acl_file may be used to indicate a comment.
All characters, starting with the "#", until the end of the line, will be ignored.

FINAL COPY
June 15, 1995
File: es_cmd/setacl
svid

Page: 139

setacl (ES_CMD) setacl (ES_CMD)

Note that if the acl_file has been created as the output of the get acl com-
mand, any effective permissions, which will have been written with a
preceding "#", will also be ignored.

When the set acl command is used, it may result in changes to the file permission
bits. When the user ACL entry for the file owner is changed, the file owner permis-
sion bits will be modified. When the ot her ACL entry is changed, the file other
permission bits will be modified. When additional user ACL entries and/or any
group ACL entries are set or modified, the file group class permission bits will be
modified to reflect the maximum permissions allowed by the additional user
entries and all the gr oup entries.

If an ACL does not contain additional user and additional gr oup entries, the per-
missions in the gr oup entry for the object owning group and the cl ass entry must
be the same. Therefore, if the -d option is specified and results in no additional
user entries and no additional group entries, the cl ass entry permissions will be
set equal to the permissions of the owning group entry. (Note, this is equivalent to
using the - r option.)

A directory may contain default ACL entries. If a file is created in a directory which
contains default ACL entries, the entries will be added to the newly created file.
Note that the default permissions specified for the file owner, file owning group,
and others, will be constrained by the umask and the mode specified in the file crea-
tion call.

If an ACL does not contain additional default:user and additional
def aul t: gr oup entries and a def aul t : gr oup entry is specified for the object own-
ing group, a def aul t: cl ass entry must also be specified, and the permissions in
the def aul t : gr oup entry for the object owning group and the permissions for the
def aul t : cl ass entry must be the same.

This command may be executed on a file system that does not support ACLs, to set
the permissions for the three base entries for the file owner, file owning group, and
others. Additional entries and default entries will not be allowed in this case.

FILES

/ et ¢/ passwd for user IDs

[etc/ group for group IDs
EXAMPLE

To add one ACL entry to filefi | ea, giving user ar cher read permission only, type:
setacl —muser:archer:r— filea

If an entry for user ar cher already exists, this command will set the permissions in
that entry tor—.

To replace the entire ACL for file fil ea, adding entries for users archer, and
fl et cher, allowing read/write access, an entry for the file owner allowing all
access, an entry for the file group allowing read access only, and an entry for others
disallowing all access, type:

setacl —r —s user::rwx, user:archer:rw-, user:fletcher:rw,\
group::r—,other:— filea

Page 3

FINAL COPY
June 15, 1995
File: es_cmd/setacl
svid

Page: 140

setacl (ES_CMD) setacl (ES_CMD)

Note that this command would set the file permission bits to —r wxr w——. Even
though the file owning group has only read permission, the maximum permissions
available to all additional user ACL entries and all gr oup ACL entries are read and
write, since the two additional user entries both specify these permissions.

To set the same ACL on file fil ea as in the above example, using the —f option,
type:

setacl —r —f filea.acl filea
with filefi | ea. acl edited to contain:

user::rwx
user: archer:rw-
user: fletcher:rw
group: :r—
ot her: —
Because the —r option was specified, no cl ass entry was needed. If a cl ass entry
had been present it would have been ignored.

SEE ALSO
acl(ES_LIB), aclsort(ES_LIB), chmod(BU_CMD), getacl(ES_CMD), Is(BU_CMD).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: es_cmd/setacl
svid

Page: 141

tcpio (ES_CMD) tcpio (ES_CMD)

NAME

tcpio — trusted cpio for copying file archives in and out

SYNOPSIS

tcpi o —o[aLvV][-C bufsize] —O file [-M message]
tcpi o —i [bdf kKPrsStuvVx] [-C bufsize] [-Efile] —I file [-M message]

[-R ID]][- N level] [-T file][—X low_level,high_level] [-nnum] [pattern ...]

DESCRIPTION
The —i

and —o options select the action to be performed. The following list

describes each of the actions (which are mutually exclusive).
tcpio —o

(copy out) reads the standard input to obtain a list of path names and copies
those files, together with path name and status information, onto the file or
device specified with the - Ooption. Output is padded to a 512-byte boun-
dary by default. The data is preceded by MAC and DAC security-related
information saved to enable validation of the data when it is read back in.

tcpio —i

(copy in) extracts files from the archive file or device specified by the - |
option, which is assumed to be the product of a previous tcpi 0 —o0. Only
files with names that match patterns are selected. patterns are regular
expressions given in the filename-generating notation of sh(BU_CMD). In
patterns, meta-characters ?, [0 and [...] match the slash (/) character, and
backslash (\) is an escape character. A ! meta-character means not. (For
example, the !'abc* pattern would exclude all files that begin with abc.)
Multiple patterns may be specified and if no patterns are specified, the
default for patterns is O (i.e., select all files). When t cpi o is invoked from
the shell, each pattern should be quoted; otherwise the pattern may be
expanded.

Extracted files are conditionally created based upon the options described
below.

Before a file is extracted, the user, group, classification, category and level
identifiers (IDs) it references are validated. If any of the identifiers has been
deleted from the system, or changed in any way (and is not remapped to a
valid identifier), the file will not be extracted.

The permissions of the files will be those of the previous t cpio —o. The
owner and group of the files will be that of the current user unless the user
has appropriate privilege, which causes tcpi o to retain the owner and
group of the files of the previoust cpi 0 —o.

NOTE: If tcpi o —i tries to create a file that already exists and the existing
file is the same age or newer, t cpi o will output a warning message and not
replace the file. (The —u option can be used to unconditionally overwrite the
existing file.)

The meanings of the available options are

Page 1

FINAL COPY
June 15, 1995
File: es_cmd/tcpio
svid

Page: 142

tcpio (ES_CMD) tcpio (ES_CMD)

Page 2

-a
—b

Reset access times of input files after they have been copied.
Reverse the order of the bytes within each word.

—Chufsize

—l file

-L

Input/output is to be blocked bufsize bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 512 bytes when this
option is not used. (-Cis meaningful only with data directed to or from a
character special device, e.g.,/ dev/ rnt/0m)

Directories are to be created as needed.

Specify an input file (file) that contains a list of filenames to be extracted
from the archive (one filename per line).

Copy in all files except those in patterns. (See the paragraphontcpi o —i for
a description of patterns.)

Read the contents of file as input. If file is a character special device, when
the first medium is full replace the medium and type a carriage return to
continue to the next medium.

Attempt to skip corrupted file headers and 1/0 errors that may be encoun-
tered. If you want to copy files from a medium that is corrupted or out of
sequence, this option lets you read only those files with good headers. (For
t cpi o archives that contain other t cpi o archives, if an error is encountered
t cpi 0 may terminate prematurely. tcpi o will find the next good header,
which may be one for a smaller archive, and terminate when the smaller
archive’s trailer is encountered.)

Follow symbolic links. The default is not to follow symbolic links. If the
—f ol | ow option is used with fi nd, the —L option should be used to ensure
that the file pointed to by the symbolic link is archived rather than the sym-
bolic link itself.

—M message

—nnum

Define a message to use when switching media. When you use the —Oor —I
options and specify a character special device, you can use this option to
define the message that is printed when you reach the end of the medium.
One %l can be placed in message to print the sequence number of the next
medium needed to continue.

Disable the validation of one or more identifiers (type or item). The permis-
sible values of num are:

1 - disable the comparison of the original system name to the current
system

2 - disable all checks of UIDs

3 - disable all checks of GIDs

4 - disable all checks of LID existence

5 - disable all checks of LID state (LIDs must be valid, but can be in the
inactive state)

FINAL COPY
June 15, 1995
File: es_cmd/tcpio
svid

Page: 143

tcpio (ES_CMD)

SEE ALSO
ar (BU_CMD), cat (BU_CMD), cpi o(BU_CMD), echo(BU_CMD), fi nd(BU_CMD),

LEVEL

| s(BU_CMD), t ar (AU_CMD), | vl name(ES_CMD).

Level 1.

FINAL COPY
June 15, 1995
File: es_cmd/tcpio
svid

Page: 146

tcpio (ES_CMD)

Page 5

tfadmin (ES_CMD)

SEE ALSO
adminrole(ES_CMD), adminuser(ES_CMD).

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: es_cmd/tfadmin
svid

Page: 148

tfadmin (ES_CMD)

Remote Services Introduction

The Remote Services Extension provides standard interfaces to support network-
ing applications. Support is provided for Remote Procedure Call (RPC), External
Data Representation (XDR), Network Selection, Name to Address Translation, and

Distributed File Systems.

The following are prerequisite for support of the Remote Services Extension:

Base System

Basic Utilities Extension

m Advanced Utilities Extension

Administered Systems Extension

Summary of Library Routines

The following library routines are supported by the Services extension. Items

marked with a dagger (1) are new to this issue of the SVID.

aut h_destroy

aut hdes_get ucred
aut hdes_seccreate
aut hnone _create
aut hsys_create
aut hsys _create _defaul t
clnt_call
clnt_control
clnt_create

cl nt_destroy
clnt_dg create
clnt_freeres
clnt_geterr

cl nt_pcreateerror
clnt_perrno
clnt_perror
clnt_rawcreate

Remote Services Introduction

cl nt_spcreat eerror
clnt_sperrno
clnt_sperror

clnt _tli _create
clnt _tp create
clnt_vc create
cs_connect
cs_perror

endnet config
endnet pat h
freenet confi gent
get _rpc_createerr
get _t_errno
getnetconfig

get net confi gent
get net nane
getnetpath

FINAL COPY

June 15, 1995

File: rs_int.txt
svid

Page: 149

get publ i ckey

get secr et key

host 2net nane
key_decr ypt sessi on
key_encr ypt sessi on
key gendes
key_ set secr et
nc_perror
nc_sperrort

netdir free

net di r _get byaddr
net di r _get bynane
netdir_options
netdir_perrort
netdir_sperrort
net nane2host

net name2user

7-1

rpc_br oadcast
rpc_broadcast _expt
rpc_call

rpc_reg

rpcb_get addr
rpcb_get naps
rpcb_gettine
rpcb_rntcal
rpcb_set
rpcb_unset
setnetconfig
set net pat h
svc_create
svc_dest roy
svc_dg create
svc_fd_create
svc_freeargs
svc_getargs
svc_getreq_conmont
svc_getreqg pol | T
svc_get regset
svc_getrpccal | er
svc_raw create
svc_reg

svc_run
svc_sendreply
svc_tli_create
svc_tp_create

7-2

svc_unreg
svc_vc_create
svcerr_auth
svcerr_decode
svcerr_noproc
svcer r_nopr og
svcerr_progvers
svcerr_systenerr
svcerr_weakaut h

t addr 2uaddr
uaddr 2t addr

user 2net nane
xdr_accepted_reply
xdr _array

xdr _aut hsys_par s
xdr _boo

xdr_bytes

xdr _cal | hdr

xdr _cal | nsg

xdr _char

xdr _dest r oy

xdr _doubl e

xdr _enum
xdr _f 1 oat
xdr_free

xdr _get pos
xdr_inline

xdr _int

xdr _| ong

xdr _opaque

xdr _opaque_aut h
xdr _poi nt er

xdr _r ef erence
xdr_rejected reply
xdr _r epl ynsg

xdr _set pos

xdr _short
xdr_string

xdr _u_char
xdr_u_intt

xdr _u_Il ong
xdr_u_short

xdr _uni on

xdr _vect or

xdr _voi d

xdr _wrapstring
xdrmem creat e
xdrrec_create
xdrrec_endof record¥
xdrrec_eof

xdr r ec_ski precor dt
xdrstdio create
Xprt_register
Xprt_unregister

REMOTE SERVICES INTRODUCTION

FINAL COPY

June 15, 1995

File: rs_int.txt
svid

Page: 150

Summary of Commands and Utilities

The following commands and utilities are supported by the Remote Services
extension.

chkey keyserv rpci nfo
df nount s newkey share
df shar es r pchi nd unshar e
keyl ogi n rpcgen

Organization of Technical Information

The *““Remote Services Library Routines” chapter provides manual page descrip-
tions of library routines supported by this extension.

Remote Services Introduction 7-3

FINAL COPY

June 15, 1995

File: rs_int.txt
svid

Page: 151

FINAL COPY
June 15, 1995
File

Page: 152

Remote Services Definitions

Generic Distributed File Systems Definitions

Client

A host that has mounted resources from another host (a server).

Host

A computer system.

Mount

Make a resource available in the file hierarchy of a host.

Multihop Access

Multihop access refers to the following remote resource scenario: Suppose host A
shares a resource that has mounted within it a resource from host B. If any other
host mounts the resource from host A and uses it to access a file on the resource
from host B, then that access is termed multihop access.

Name Space

The set of names that may be given to the objects in a given class, such as files on a
computer system or computer systems on a network.

Resource

A file system object, such as a regular file, a directory, or an entire file system.

Server

A host that has shared local resources with a remote host (a client).

Share

Make a local resource available to remote hosts (clients).

Remote Services Definitions 8-1

FINAL COPY

June 15, 1995

File: rs_def.txt
svid

Page: 153

RPC Definitions

Program

A program that implements one or more remote procedures. Remote programs
are referenced by program number. See remote procedure.

Procedure

Remote procedures are executed by remote programs on behalf of client processes
that make remote procedure calls. A server may support multiple versions of a
program. Remote procedures are referenced by program number, version
number and procedure number.

Version

All remote programs have a version number, used in conjunction with a program
number and procedure number to uniquely identify the remote procedure. See
remote procedure.

The Network File System Definitions

Export
Share a local resource with remote systems.

Exporting a resource only involves making the resource available to remote sys-
tems. No other host is informed of the availability of the resource. In order to
mount the resource, a client must give both the name of the server and the path-
name of the resource on the server. Only whole file systems or parts of file sys-
tems (regular files or directories) may be exported.

Data Structures

AUTH structure

The AUTH structure is used by many of the library routines. It is defined in the
other header files included by <r pc/ r pc. h> file.

The AUTH structure contains the following members:

8-2 REMOTE SERVICES DEFINITIONS

FINAL COPY

June 15, 1995

File: rs_def.txt
svid

Page: 154

struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
uni on des_bl ock ah_key;

struct auth_ops {

void (*ah_nextverf)();

i nt (*ah_marshal) ();

i nt (*ah_validate)();

i nt (*ah_refresh)();

void (*ah_destroy)();
} *ah_ops;

caddr _t ah_private;

CLIENT structure
The CLI ENT structure is used by many of the library routines. It is defined in the

other header files included by <r pc/ r pc. h> file.

/*
/*
/*

/*
/*
/*
/*
/*

Credentials */
Verifier */
DES key */

nextverf */

serialize */

validate varifier */
refresh credentials */
destroy this structure */

The CLI ENT structure contains the following members:

AUTH

st

*cl _aut h;
ruct clnt_ops {

enumclnt _stat (*cl_call)();
voi d (*cl _abort) ();
voi d (*cl _geterr)()
bool _t (*cl _freeres)(
voi d (*cl _destroy) (
bool _t (*cl _control)(

} *cl _ops;

caddr _t cl _private;

char *cl _netid

char *cl _tp;

SVCXPRT structure

)
)
)

/*

/*
/*
/*
/*
/*
/*

/*
/*
/*

aut henti cator */

call renote procedure */
abort a call */

get specific error code */
frees results */

destroy this structure */
the ioctl () of rpc */

private stuff */
network token */
devi ce nane */

The SVCXPRT structure is used by many of the library routines. It is defined in the

other header files included by <r pc/ r pc. h> file.

The SVCXPRT structure contains the following members:

i nt

xp_fd;

struct xp_ops {

bool _t (*xp_recv)();
enum xprt_stat (*xp_stat)();
bool _t (*xp_getargs)();
bool _t (*xp_reply)();
bool _t (*xp_freeargs)();
voi d (*xp_destroy) ();

} *Xp_ops;

char *Xp_tp;

Remote Services Definitions

FINAL COPY
June 15, 1995
File: rs_def.txt

svid

Page: 155

/*

/*
/*
/*
/*
/*
/*

associated file descriptor */

recei ve incomng requests */
get transport status */

get arguments */

send reply */

free memallocated for args */
destroy this struct */

/* transport provider device name */

char *Xp_neti d; /* network token */

struct net buf xp_| t addr; /* local transport address */
struct net buf Xp_rtaddr; /* renote callers address */
struct opaque_auth xp_verf; /* raw response verifier */

caddr _t Xp_p1l; /* private: for use by svc ops */
caddr _t Xp_p2; /* private: for use by svc ops */
caddr _t Xp_p3; /* private: for use by svc lib */

XDR structure

The XDRstructure is used by many of the library routines. It is defined in the other
header files included by <r pc/ r pc. h> file.

The XDRstructure, which is used in all XDR routines, contains the following
members:

enum xdr_op x_op; /* operation */
struct xdr_ops {
bool _t (*x_getlong)(); /* get a long fromunderlying stream*/
bool _t (*x_putlong)(); /* put a long to underlying stream */
bool _t (*x_getbytes)();/* get some bytes from underlying stream*/
bool t (*x_putbytes)();/* put sone bytes to underlying stream */
u_int (*x_getpostn)();/* returns bytes off from begi nning */
bool _t (*x_setpostn)();/* reposition the stream */
long * (*x_inline)(); /* buf quick ptr to buffered data */

voi d (*x_destroy)(); /* free privates of this xdr_stream*/
} *x_ops;
caddr _t X_public; /* users’ data */
caddr _t X_private; /* pointer to private data */
caddr _t X_base; /* private used for position info */
i nt X_handy; /[* extra private word */

opaque_auth structure

The opaque_auth structure is referenced in the AUTH, CLI ENT, SVCXPRT, and XDR
structures.

The opaque_auth structure contains the following members:

enum t oa_flavor; /* flavor of auth */
caddr _t oa_base; /* address of nore auth stuff */
u_int oa_l engt h; /* not to exceed 400 bytes */
8-4 REMOTE SERVICES DEFINITIONS
FINAL COPY

June 15, 1995
File: rs_def.txt
svid

Page: 156

clnt_stat enumeration

The cInt_stat enumeration is referenced in the AUTH, CLI ENT, SVCXPRT, and XDR

structures.

The cl nt _st at enumeraton contains the following members:

RPC_SUCCESS=0,
/ *

* | ocal

*/
RPC_CANTENCODEARGS=1,
RPC_CANTDECODERES=2,
RPC_CANTSEND=3,
RPC_CANTRECV=4,
RPC_TI MEDOUT=5,
RPC_| NTR=18,
/ *

* renote errors

*/
RPC_VERSM SMATCH=6,
RPC_AUTHERROR=7,
RPC_PROGUNAVAI L=8,
RPC_PROGVERSM SMATCH=9,
RPC_PROCUNAVAI L=10,
RPC_CANTDECODEARGS=11,
RPC_SYSTEMERROR=12,

errors

/ *
* rpc_call
*/
RPC_UNKNOWNHOST=13
RPC_UNKNOWNPROTO=17,
RPC_UNKNOWNADDR=19,
RPC_NOBROADCAST=21,

& CLNT creati

/*
* binding errors
*/
RPC_RPCBFAI LURE=14,
RPC_PROGNOTREGQ STERED=15,
RPC_N2AXLATEFAI LURE=22,
/*
* Msc error
*/
RPC_TLI ERROR=20,
/*
* unspecified error
*/

in the TLI

Remote Services Definitions

/* call succeeded */

/*
/*
/*
/*
| *
| *

cannot encode argunents */
cannot decode results */
failure in sending call */
failure in receiving result
call timed out */

call interrupted */

*/

/*
| *
| *
/*
/*
/*
/*

rpc versions not conpatible */
aut hentication error */
program not avail able */
program versi on m smat ched */
procedure unavail able */
decode argunents error */
generic "other problent */

on errors

/* unknown host nane */

/* unknown protocol */

/* Renote address unknown */

/* Broadcasting not supported */

/*
/*
/*

rpcbind failed inits call */
renote programnot registered */
Name to address translation failed */

library

8-5

FINAL COPY

June 15, 1995

File: rs_def.txt
svid

Page: 157

RPC_FAI LED=16

8-6 REMOTE SERVICES DEFINITIONS

FINAL COPY

June 15, 1995

File: rs_def.txt
svid

Page: 158

Remote Services Languages

EXTERNAL DATA REPRESENTATION (XDR)

XDR is a standard for the description and encoding of data. It is useful for
transferring data between different computer architectures, and has been used to
communicate data between such diverse machines as the AT&T 3B2, Sun Works-
tation, VAX, IBM-PC, and Cray. XDR fits into the ISO presentation layer, and is
roughly analogous in purpose to X.409, ISO Abstract Syntax Notation. The major
difference between these two is that XDR uses implicit typing, while X.409 uses
explicit typing.

XDR uses a language to describe data formats. The language can only be used
only to describe data; it is not a programming language. This language allows one
to describe intricate data formats in a concise manner. The alternative of using
graphical representations (itself an informal language) quickly becomes
incomprehensible when faced with complexity. The XDR language itself is similar
to the C language, just as Courier is similar to Mesa. Network facilities, such as
RPC (Remote Procedure Call) and the NFS (Network File System) use XDR to
describe the format of their data.

The XDR Language Specification

Notational Conventions

This specification uses an extended Backus-Naur Form notation for describing the
XDR language. Here is a brief description of the notation:

1. Thecharacters (,),[,], , and * are special.

2. Terminal symbols are strings of any characters surrounded by double

quotes.
3. Non-terminal symbols are strings of non-special characters.
4. Alternative items are separated by a vertical bar (0.
5. Optional items are enclosed in brackets.
6. Items are grouped together by enclosing them in parentheses.
7. A *following an item means 0 or more occurrences of that item.
Remote Services Languages 9-1

FINAL COPY

June 15, 1995

File: rs_lan.txt
svid

Page: 159

Lexical Notes
1. Comments begin with '/* and terminate with */°.

2. White space serves to separate items and is otherwise ignored.

3. Anidentifier is a letter followed by an optional sequence of letters, digits or
underbar ("_"). The case of identifiers is not ignored.

4. A constant is a sequence of one or more decimal digits, optionally preceded
by a minus-sign (’-").

Syntax Information

declaration:
type-specifier identifier
Otype-specifier identifier "[" value "]"
Otype-specifier identifier "<" [value] ">"
O"opaque" identifier "[" value "]"
O"opaque" identifier "<" [value] ">"
O"string" identifier "<" [value] ">"
Otype-specifier "*" identifier
O"void"

value:
constant
Oidentifier

type-specifier:
["unsigned"]"int"

O["unsigned"] "hyper"
O"float"
O"double"
0"bool"
Oenum-type-spec
Ostruct-type-spec
Ounion-type-spec
Oidentifier

enum-type-spec:
"enum" enum-body

enum-body:
II{II
(identifier "="value)
("," identifier "=" value)*

9-2 REMOTE SERVICES LANGUAGES

FINAL COPY

June 15, 1995

File: rs_lan.txt
svid

Page: 160

e

struct-type-spec:
"struct” struct-body

struct-body:
II{II
(declaration ;")
(declaration ;")*

e

union-type-spec:
"union" union-body

union-body:
"switch" "(" declaration ")" "{"
("case" value ":" declaration ;")
("case" value ":" declaration ";")*
["default" ":" declaration ";"]

p

constant-def:
“const" identifier "=" constant ;"

type-def:
"typedef" declaration ";"
O"enum" identifier enum-body ";"
O"struct" identifier struct-body ";"
"union" identifier union-body ";"

definition:
type-def
Oconstant-def

specification:
definition *

Remote Services Languages

FINAL COPY

June 15, 1995

File: rs_lan.txt
svid

Page: 161

Syntax Notes

1.

The following are keywords and cannot be used as identifiers: "int", "bool",
"char", "case", "const", "default”, "double”, "enum", "float", "hyper", "opaque",
"string"”, "struct”, "switch", "typedef", "union”, "unsigned" and "void".

Only unsigned constants may be used as size specifications for arrays. If an
identifier is used, it must have been declared previously as an unsigned
constant in a "const" definition.

. Constant and type identifiers within the scope of a specification are in the

same name space and must be declared uniquely within this scope.

Similarly, variable names must be unique within the scope of struct and
union declarations. Nested struct and union declarations create new
scopes.

. The discriminant of a union must be of a type that evaluates to an integer.

That is, "int", "unsigned int", "bool", an enumerated type or any typedefed
type that evaluates to one of these is legal. Also, the case values must be
one of the legal values of the discriminant. Finally, a case value may not be
specified more than once within the scope of a union declaration.

An Example of an XDR Data Description

Here is a short XDR data description of an object called a "file", which might be
used to transfer files from one machine to another.

REMOTE SERVICES LANGUAGES

FINAL COPY

June 15, 1995

File: rs_lan.txt
svid

Page: 162

const MAXUSERNAME =32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of afile */
const MAXNAMELEN = 255; /* max length of a file name */

/*
* Types of files:
*/

enum filekind {
TEXT =0, /* ascii data */
DATA =1, /* raw data */
EXEC =2 [* executable */

I3
/*
* File information, per kind of file:
*/
union filetype switch (filekind kind) {
case TEXT:
void; /* no extra information */
case DATA:
string creator<MAXNAMELEN>; /* data creator */
case EXEC:
string interpretor<MAXNAMELEN>; /* program interpretor */
I3
/*
* A complete file:
*/
struct file {
string filename<MAXNAMELEN>; /* name of file */
filetype type; /* info about file */
string owner<MAXUSERNAME>; /* owner of file */
opaque data<MAXFILELEN>; /*filedata */
I3
Remote Services Languages 9-5

FINAL COPY

June 15, 1995

File: rs_lan.txt
svid

Page: 163

REMOTE PROCEDURE CALL (RPC)
The RPC Model

The remote procedure call model is similar to the local procedure call model. In
the local case, the caller places arguments to a procedure in some well-specified
location (such as a result register). It then transfers control to the procedure, and
eventually gains back control. At that point, the results of the procedure are
extracted from the well-specified location, and the caller continues execution.

The remote procedure call is similar, in that one thread of control logically winds
through two processes—one is the caller’s process, the other is a server’s process.
That is, the caller process sends a call message to the server process and waits
(blocks) for a reply message. The call message contains the procedure’s parame-
ters, among other things. The reply message contains the procedure’s results,
among other things. Once the reply message is received, the results of the pro-
cedure are extracted, and caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message.
When one arrives, the server process extracts the procedure’s parameters, com-
putes the results, sends a reply message, and then awaits the next call message.

Note that in this model, only one of the two processes is active at any given time.
However, this model is only given as an example. The RPC protocol makes no
restrictions on the concurrency model implemented, and others are possible. For
example, an implementation may choose to have RPC calls be asynchronous, so
that the client may do useful work while waiting for the reply from the server.
Another possibility is to have the server create a task to process an incoming
request, so that the server can be free to receive other requests.

The RPC Language

Just as there was a need to describe the XDR data-types in a formal language,
there is also need to describe the procedures that operate on these XDR data-types
in a formal language as well. We use the RPC Language for this purpose. Itisan
extension to the XDR language.

The RPC Language Specification

The RPC language is identical to the XDR language, except for the added
definition of a program-def described below.

9-6 REMOTE SERVICES LANGUAGES

FINAL COPY

June 15, 1995

File: rs_lan.txt
svid

Page: 164

program-def:
"program" identifier "{"
version-def
version-def *
"}* "=" constant "

version-def:
"version" identifier "{"
procedure-def
procedure-def *
"}* "=" constant "

procedure-def:
type-specifier identifier "(" type-specifier ")"
"=" constant ";"

Syntax Notes
1. The following keywords are added and cannot be used as identifiers: "pro-

gram" and "version";

. A version name cannot occur more than once within the scope of a program
definition. Nor can a version number occur more than once within the
scope of a program definition.

. A procedure name cannot occur more than once within the scope of a ver-
sion definition. Nor can a procedure number occur more than once within
the scope of version definition.

Program identifiers are in the same name space as constant and type
identifiers.

. Only unsigned constants can be assigned to programs, versions and pro-
cedures.

Remote Services Languages 9-7

FINAL COPY

June 15, 1995

File: rs_lan.txt
svid

Page: 165

FINAL COPY
June 15, 1995
File

Page: 166

Remote Services Environment

Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is a high-level communications paradigm, including
functions, that provide a protocol-independent application interface to network-
ing services. Application developers access the functions that provide services at a
particular level and need not care about the protocol implementation that is pro-
viding those services. These services provide end-to-end data transmission using
the services of an underlying network. Applications written using the top most
layers of the RPC interface are independent of the underlying transport protocols.
By providing media and protocol independence, the interface enables networking
applications to have the flexibility to run in various protocol environments. The
RPC protocol compiler (r pcgen) and the C-like RPC language that it uses to
specify RPC applications and define network data give application developers a
simplified interface to the lower-level RPC mechanism. The RPC system uses
External Data Representation (XDR) (a set of library routines) as its data transfer
syntax mechanism.

External Data Representation (XDR)

External Data Representation (XDR) interfaces allow a user to describe arbitrary
data structures in a machine-independent fashion. Any program running on any
machine can use XDR to create portable data by translating local representations
to XDR standard representations; similarly, any program running on any machine
can read portable data by translating XDR standard representations to local
equivalents. By solving data portability problems, the XDR library interface pro-
vides networking applications with the flexibility to run in various operating
environments. XDR is the backbone of RPC, in the sense that the RPC system uses
XDR as its data transfer syntax mechanism.

Remote Services Environment 10-1

FINAL COPY

June 15, 1995

File: rs_env.txt
svid

Page: 167

Network Selection

Network Selection interfaces provide protocol-independent applications with a
simple, consistent mechanism for dynamically selecting communication service
providers (e.g., transport providers as currently supported by the Transport Level
Interface (TLI)) according to users preferences and availability. Typically, this
capability is employed by the client portion of an application in its initialization
stage. On a machine having only a single network, this makes it possible for the
application to use that network without requiring any application-specific action
by the administrator or user. On machines having multiple networks, this makes
it easy for the application to try each of the alternative networks in turn until it
succeeds in establishing communication, and to try them in the order preferred by
the user or specified as the local default by the administrator. This component is
built around a network configuration database, listing the networks available on
that system, and an optional NETPATH environment variable, set by a user to con-
tain an ordered list of network identifiers (as defined in the network configuration
database). The interface consists of a set of library routines for determining the
identifiers of the networks available for use, and certain information relevant for
each network.

Network Selection is used in the Name-to-Address Translation facility and in the
RPC mechanism.

Name to Address Translation

The Name-to-Address Translation interfaces provide a protocol-independent
means for finding the protocol specific addresses for services on a given machine.
Given the name of the service and the name of the machine, the communications
address(es) can be determined. This facility is typically used by the client portion
of an application when it wishes to establish a communication path with a server.
It is used by the RPC mechanism, but it can also be used directly by an application
in conjunction with TLI. The facility will accommodate the addressing style of any
communication service provider, and will function in environments where there
are multiple communication service providers per machine, and multiple sources
of addresses for each communication service provider. Queries may use the Net-
work Selection facility to determine the communication service provider(s) for
which addresses are to be retrieved.

The interface consists of a set of library routines that return one (or, optionally, all)
of the addresses that can be found for the specified service on the specified
machine. The addresses returned are communication provider’s addresses, in a
form appropriate for use with TLI.

10-2 REMOTE SERVICES ENVIRONMENT

FINAL COPY

June 15, 1995

File: rs_env.txt
svid

Page: 168

Distributed File Systems

The Remote Services Extension provides mechanisms for sharing resources among
interconnected systems and utilities for administering these mechanisms. Such
mechanisms and utilities comprise a distributed file system. The Remote Services
Extension supports the distributed file system: The Network File System (NFS).
Using NFS, programs can access files resident on remote systems as though the
files were on the local system.

The generic utilities support the administration of different distributed file sys-
tems through the use of a flexible command syntax. This syntax includes a —F
option, for specifying a file system type, and a —o option, for passing suboptions
to commands that are specific to a file system type. A new distributed file system
type can be administered with the generic utilities, provided that commands to
support each generic operation are supplied with the new file system type.

The Remote Services Extension provides basic functionality for administering dis-
tributed file systems and expands the functionality of some components of the
Base System, Basic Utilities Extension and the Administered Systems Extension
[see effects(RS_ENV) and errno(RS_ENV)].

Conforming System Characteristics

Systems that support the Remote Services Extension provide an overall Distri-
buted Files Systems environment having the following characteristics:

m network compatibility
m operation across heterogeneous processors
m reliability against a single point of failure

These characteristics ensure portability of source code from single-system environ-
ments to a network of systems sharing resources.

Network Compatibility

There are implementation-specific criteria for the underlying network(s) that
would support distributed file systems. The NFS requires either the User
Datagram Protocol (UDP) or the OSI connectionless transport-level protocol, TP4.

Operation Across Heterogeneous Processors

Some application-level operations may depend on characteristics of the underly-
ing processor. For example, when an application writes a floating-point number
into afile, it is typically stored in a format specific to that processor, which may
differ in size or byte-ordering from the representation of the same number on a
different processor. Similar considerations apply to the representation of more
elaborate structured data items, which may also differ across processors in their

Remote Services Environment 10-3

FINAL COPY

June 15, 1995

File: rs_env.txt
svid

Page: 169

alignment characteristics. Because the identification and interpretation of such
complex data items are solely under the control of the application process and is
not known to the operating system, the operating system cannot automatically
perform the translations required for the proper interpretation of those data items
when they are shared among processors of different types. By agreeing on a stan-
dard external data representation format, applications may manipulate arbitrarily
complex data items as a pure sequence of bytes, and thus share those data items
across dissimilar processors.

For any set of systems that are running NFS, applications on those systems will be
able to share regular files and directories without concern for the underlying pro-
cessor characteristics.

Reliability Against a Single Point of Failure

If one system running NFS ceases operation, then the operation of NFS between
pairs of other systems must not be affected, except that access to a resource on a
client may not be possible if any component of the pathname on that client resides
on the system that ceased operation.

Distributed File Systems

NFS provides a user with access to files from remote systems as though they were
on the system that the user has logged into. Remote files are named using the
same conventions as for local files, and most operations on remote files work the
same as they do on local files. This section presents an overview of the functional-
ity and administrative features of Distributed File Systems.

In a network of systems that support the Remote Services Extension, a system is
able to make selected parts of its file tree available to remote systems, by sharing
them. Correspondingly, each system is able to augment its own file tree by mount-
ing the shared files from other systems. The system that shares a resource is called
the server system, while the system that uses the resource is called a client system.
The following sections describes the concepts share, unshare, and remote mount.

Share

The right to allow remote access to a file belongs to the administrator of the sys-
tem where the file resides. To allow remote access, an administrator shares a
resource using the shar e command.

NFS allows any directory or file to be shared. Once a directory is shared by NFS,
all of the regular files and directories under it are accessible to an authorized sys-
tem, provided they are in the same file system as the directory shared. Named
pipes and special devices on the server are not accessible to the client, however.
Any such object in a shared directory is assumed to be on the client system.

10-4 REMOTE SERVICES ENVIRONMENT

FINAL COPY

June 15, 1995

File: rs_env.txt
svid

Page: 170

where f 00 is the name of the server on which / f s1 resides.

Figure 10-2: Remote Mount

Client Machine

Figure 2 shows the two systems’ file systems after the remote mount. When a user
on the client machine refers to the subtree under / f s2, the file referenced is the
one on the server machine subtree under / f s1. For example, a user on the client
system who uses the file name /fs2/ src/ uts referstothe file/fsl/src/uts
on the server system.

There is no need for the structures of client and server file trees to match in any
way, or for shared resources to be mounted at the same level on the client as they
occupy on the server. If the client had done the remote mount onto its / usr direc-
tory, then its references to files under / usr would be to the server subtree under
/fsl.

A client cannot get to parts of the server file tree that are not under the shared
directory. For example, if a user on a client system uses ‘“‘cd ..”” to move up from
the top directory in a remotely mounted subtree, the user always ends up back in
the client file tree.

An NFS client may even be able to access files that are not accessible on the server,
since a server can mount another file system over a resource after a client has esta-
blished its means of access to the file.

10-6 REMOTE SERVICES ENVIRONMENT

FINAL COPY

June 15, 1995

File: rs_env.txt
svid

Page: 172

The Network File System Administration

The following sections describe the resource naming and security features of NFS.

Resource Naming

Resource names are composed of two parts, the server’s name and the pathname
of the resource on the server. For example, a client would refer to resource
/fusr/sm thfromserver fooasfoo:/usr/smth.

Security Features
Security in NFS is provided by three mechanisms: client authentication, client
authorization, and id mapping.

Client Authentication By default, the client, at each access, provides the server with
the client’s system name and the requesting user’s user id (uid).

To provide greater security, the server machine may share the filesystem as fol-
lows:

share -F nfs -0 secure /usr/private
The client must then mount the file system specifying the secure option as follows:
mount -F nfs -0 secure server:/usr/private /fs2
Client Authorization NFS provides a way for an administrator to share directories
selectively through the shar e command. For example, to share/ usr/ private

so that only systems machl and mach2 could mount that directory, the administra-
tor could issue the command

share -F nfs -o rw=nachl: mach2 /usr/private
Without a list of systems, the shar e command puts no restriction on availability.

An administrator may also choose to share a directory read-only by using the —o
r o suboption. Here, a remote mount will only succeed if the mount command
also includes the —o r o suboption.

ID Mapping Within a group of systems sharing resources via NFS, administration
is simplified when the / et ¢/ passwd and/ et ¢/ gr oup files are identical or can
be made to appear identical across all systems. More elaborate mechanism may
add flexibility in particular installations.

Remote Services Environment 10-7

FINAL COPY

June 15, 1995

File: rs_env.txt
svid

Page: 173

Manual Pages

10-8 REMOTE SERVICES ENVIRONMENT

FINAL COPY

June 15, 1995

File: rs_env.txt
svid

Page: 174

FINAL COPY
June 15, 1995
File

Page: 176

effects (RS_ENV) effects (RS_ENV)

NAME
effects — effects of the Remote Services Extension on other extensions.

DESCRIPTION
Support for the Remote Services extension effects the behavior of some routines
belonging to other extensions. The effects are listed below for each routine.

mount(AS_CMD)

For users and applications processes, the effect of a remote mount is the
same as a local mount: an additional file system has been mounted into the
local file tree. Once a remote resource has been mounted, all operating sys-
tem service routines will operate on the remote files as they do on local files,
with the following exceptions. For The Network File System, only regular
files and directories are accessible as remote resources. For Remote File
Sharing, it is implementation-specific whether the following operating sys-
tem service routines will accept a remote file:

acct(KE_OS) poll(BA_QOS)
getmsg(BA_OS) putmsg(BA_OS)

Errors. If the command
nmount —F FSType —o suboptions options special directory

is given and any of the additional conditions below hold, then an error mes-
sage will be sent to standard error. The additional conditions are the fol-
lowing: (1) The distributed file system FSType is not available on the local
host, (2) the resource is not currently shared, or (3) the client is not author-
ized to access the resource.

For Remote File Sharing, the following additional conditions will also cause
an error message to be sent to standard error: (1) the mount point directory is
itself shared as a resource, (2) the mount point directory is already a mount
point, (3) the —r option or —o ro suboption is not specified and the
resource was shared as read-only, or (4) the resource is already mounted.

umount(AS_CMD)
Errors. With Remote File Sharing, additional error conditions can arise on
servers when they attempt to unmount local resources that are currently
shared or remotely mounted. If (1) the resource has not been unshared or
(2) the resource is still currently mounted on a remote system, then an error
message will be sent to standard error.

fuser(AS_CMD)
For all distributed file systems, remote resources mounted locally can be
specified on the command line by giving the resource name or the mount
point directory as an argument.

sar(AS_CMD)
For Remote File Sharing, the options —S and —D are available with sar. If
neither of these options is specified on the command line, the output of sar
will not change. The complete synopsis is:

sar [-ubdycwaqvnpr ADS] [-o file] t [n]
sar [-ubdycwaqvipr ADS] [—s time] [—e time] [—i sec] [—f file]

Page 1

FINAL COPY
June 15, 1995
File: rs_env/effects
svid

Page: 177

effects (RS_ENV) effects (RS_ENV)

The -D option is used in combination with either the —u or —c option. If
the —Dis used and neither —u nor —c is specified, —u is assumed.

The command sar - u reports time spent in user mode, in system mode,
idle with some process waiting for block 1/0, and otherwise idle. If the —-D
option is also specified, system time is reported for time servicing remote
requests and all other system time. The command sar - c reports activity
data on system calls. If the —D option is also specified, the data are reported
for three categories: system calls resulting in outgoing remote activity, sys-
tem calls resulting from incoming remote activity, and strictly local system
calls.

The —S option is used to obtain reports on server processes and request
gueue status. Every request from a remote host to access your resources is
conveyed by a request message that is handled by a server process. When
there are too many messages for the servers to handle, the messages are
placed on a request queue. Messages leave the queue and are processed
when servers are available. The data reported by the —S option are the fol-
lowing: average number of server processes on the system (serv/ | o- hi),
percent of time request messages are on the request queue (request
%busy), average number of request messages waiting for service when the
request queue is occupied (r equest avg | gt h), percent of time there are
idle servers (server %avai l), and average number of idle servers when
idle ones exist (server avg avail).

sal(AS_CMD)
The new —S and —D options described for sar are also available for sa2;
the interfaces to sal and sadc are unchanged. The complete synopsis for
sa2is:

lusr/libl/salsa2 [—ubdycwaqvnmprADS] [—-s time]
[—e time] [—i sec]

FUTURE DIRECTIONS

LEVEL

Page 2

The four operating system service routines acct(KE_OS), poll(BA_OS),
getmsg(BA_OS) and putmsg(BA_OS) will be extended in the future to operate with
remote files accessed via Remote File Sharing.

Due to changes in Remote File Sharing architecture, sar - Dc will be removed in a
future issue of the SVID. sar will instead report Remote File Sharing operations
with a different option.

Level 1.

The following have moved to Level 2 effective September 30, 1989: sar(AS_CMD)
and sal(AS_CMD).

FINAL COPY
June 15, 1995
File: rs_env/effects
svid

Page: 178

errno (RS_ENV)

errno (RS_ENV)

In addition, some operating system service routines may return the err no value of
El NTR when accessing a remote resource. The following operating system service
routines may return this value of er r no when operating on objects via distributed

unl i nk

An application that checks the value of errno must include the header file

file systems:
access chown dup i nk
chdir cl ose exec nmknod
chnod creat fcntl st at
<errno. h>.
SEE ALSO
errno(BA_ENV), errno(KE_ENV), mount(BA_OS).
LEVEL
Level 1.
Page 2

FINAL COPY
June 15, 1995
File: rs_env/errno
svid

Page: 180

netconfig (RS_ENV) netconfig (RS_ENV)

The network device is the full pathname of the device used to connect to the transport
provider. Typically, this device will be in the / dev directory. This device must be
specified.

The struct netconfig structure includes the following members, which
correspond to the fields in the entries in the netconfig database:

char * nc_netid— Network ID, including ASCII NUL terminator.

unsi gned | ong nc_senanti cs — semantics of protocol (i.e., connectionless
or connection oriented)

char * nc_fl ag— Flags.

unsi gned | ong nc_pr ot o — Protocol name.

char * nc_pr ot of My — Protocol family.

char * nc_devi ce — The network device (full pathname).

unsi gned | ong nc_nl ookups — Number of directory lookup libraries.
char ** nc_| ookups — The directory lookup libraries themselves (full path-
names).

The nc_semanti cs field contains one of the following values, depending upon
whether the transport is connection oriented, connection oriented and supports
orderly release, or connectionless:

NC_TPI _COTS
NC_TPI _COTS_CRD
NC_TPI _CLTS

The nc_f | ag field is a bitfield. The following bits are recognized, corresponding to
the "v" and "-" respectively.

NC_VI S| BLE
NC_NOFLAG

The nc_pr ot of m y field takes on values of the protocol family character strings.
The nc_pr ot o field takes on values of the protocol names. These can be any char-
acter string of at least 1 character.

USAGE
The combination of the layer and the mode (circuit or datagram) determines the
"semantics” of the network. Typically, an application will specify an API (applica-
tion programming interface) by pushing appropriate STREAMS modules (such as
ti mod, and using user-level library functions (such as the TLI library).

SEE ALSO
getnetconfig(RS_LIB), getnetpath(RS_LIB), netdir(RS_LIB).

FILES
[etc/ netconfig.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: rs_env/netconfig
svid

Page: 182

publickey (RS_ENV) publickey (RS_ENV)

NAME
publickey — public key database

SYNOPSIS
publ i ckey

DESCRIPTION
publ i ckey is the public key database used in secure RPC. Each entry in the data-
base consists of a network user name (which may either refer to a user or a host-
name), followed by the user’s public key (in hex notation), a colon, and then the
user’s secret key encrypted with a password (also in hex notation).

This file is altered either by the user through the chkey command [see
chkey(RS_CMD)] or by the system administrator through the newkey command
[see newkey(RS_CMD)].

SEE ALSO
chkey(RS_CMD), newkey(RS_CMD), publickey(RS_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_env/publickey
svid

Page: 183

rpc (RS_ENV) rpc (RS_ENV)

NAME
rpc — rpc program number data base
SYNOPSIS
rpc
DESCRIPTION
The r pc program number database contains user readable names that can be used
in place of RPC program numbers. Each line has the following information:
name of server for the RPC program
RPC program number
aliases
Items are separated by any number of blanks and/or tab characters. A # indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file.
Below is an example of an RPC database:
#
rpc
#
r pcbi nd 100000 portmap sunrpc portmapper
rusersd 100002 rusers
nfs 100003 nf sprog
nmount d 100005 nmount showrount
wal | d 100008 rwal | shut down
sprayd 100012 spray
Il ockmgr 100020
nl ockmgr 100021
status 100024
boot par am 100026
keyserv 100029 keyserver
LEVEL
Level 1.

Page 1

FINAL COPY

June 15, 1995

File: rs_env/rpc
svid

Page: 184

Remote Services Library Routines

The following section contains the manual pages for the RS_LIB routines.

Remote Services Library Routines 12-1

FINAL COPY

June 15, 1995

File: rs_lib.cov
svid

Page: 185

FINAL COPY
June 15, 1995
File

Page: 186

cs_connect (RS_LIB) cs_connect (RS_LIB)

NAME
cs_connect, cs_perror — application interface to the Connection Server

SYNOPSIS
#i ncl ude <cs. h>
#i ncl ude <net config. h>
#i ncl ude <net buf . h>

int cs_connect (char *host, char *service, struct csopts *cs_opt, int
voi d cs_perror(char *string, int error)

DESCRIPTION

The library routines cs_connect (), and cs_perror () provide an interface that
network applications use to establish an authenticated TLI/XTI connection to a net-
work service on host. The Connection Server interface shields the client application
from details of connection establishment and authentication. Since cs_connect ()
performs authentication on behalf of the client process, authentication is effectively
automated. The way in which cs_connect () accesses authentication schemes also
allows the system administrator to use modular schemes that are interchangeable
and can be administered on a per-service basis.

cs_connect () communicates with the Connection Server daemon which estab-
lishes a TLI/XTI connection on behalf of the client application and returns a file
descriptor associated with the connection. The Connection Server uses the Net-
work Selection mechanism to determine the transport provider needed to connect
to the specified service and uses the Name-to-Address Mapping facility to obtain
the address of the network service over that transport.

The arguments are defined as follows:

host The name of the server machine that is supplying the service. This name
can be any string acceptable to the Name-to-Address Mapping facility.

service The name of the service the application wishes to communicate with.

csopts Thecsopts structure is provided to allow the programmer more flexibil-
ity. In most applications the third argument, cs_opt, will be NULL.
csopt s is defined in the header file / usr/i ncl ude/ cs. h as:

struct csopts {
struct netconfig *nc_p;
int nd_opt;
struct netbuf *nb_p;

}

Each element of this structure is described below.

struct netconfig *nc_p
To restrict the networks which may be used in making a connection,
the user should set the element nc_p to point to a net confi g struc-
ture. A network will be selected which matches with all the ele-
ments in the net confi g structure that have been filled in by the
user (see net confi g(RS_ENV)). For example, if the user wants to
use only TCP protocol networks then nc_p->nc_prot o should be
set to t cp and all other elements should be set to zero or NULL. If

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/cs_connect
svid

Page: 187

*error) ;

cs_connect (RS_LIB) cs_connect (RS_LIB)

the user does not want to restrict network selection, nc_p should be
set to

(struct netconfig *)NULL

int nd_opt
To bind to a reserved port, set this element to
ND_SET_RESERVEDPCRT (see net di r (RS_LIB)).

struct netbuf *nb_p
To bind to a reserved port on a specific address, nd_opt should be
set as described above and nb_p should be set to point to a net buf
structure (see net di r (RS_LIB)).

error A pointer to ani nt. When an error occurs, cs_connect () sets the value
of error. cs_perror () can then be called by the application with error as
an argument to print a description of the error.

string The string that is to precede error messages.

cs_connect () establishes communication with the Connection Server daemon via
a named stream and sends the host name and service name as parameters.
cs_connect () also sends the value of the NETPATH environment variable, or a
NULL value if NETPATH is not set, and the contents of the csopt s structure. Note
that it does not send the values of the last two elements of nc_p.

The Connection Server daemon uses the Network Selection and Name-to-Address
Mapping facilities to attempt to establish an authenticated connection to host for ser-
vice over each available transport until a connection is established or connection
establishment fails for every tranport.

The Connection Server consults the /etc/i af/serve. al | ow file for the list of
authentication schemes acceptable to the client machine for service on host.

If an authenticated connection is established, the Connection Server returns a file
descriptor associated with the connection. The application can then perform all
TLI/XTI operations (t _snd, t _r cv, etc.) on the file descriptor.

cs_perror () prints an error message on the standard error. The error message is
derived from indexing a value referenced by error, which was set by cs_connect .
The message is preceded by string and a colon.

RETURN VALUE
On successful completion, cs_connect () returns a file descriptor containing a
positive integer. On failure cs_connect () returns a-—1.

On failure, cs_perror () may report the following errors:

CS_NCERRCR No error
CS_SYSERRCR System Error
CS_MALLCC No Menory

CS_AUTHNOTACCEPTABLE Aut henti cati on schene specified by server is not acceptabl e
CS_CONNECTFAI LED Connection to service failed

CS | NVCKEFAI LED Error in invoking authentication scheme
CS_SCHEMEFAI LED Aut henti cati on schene unsuccessf ul
CS_NOTRANSPCRT Coul d not obtain address of service over any transport
Page 2
FINAL COPY

June 15, 1995
File: rs_lib/cs_connect
svid

Page: 188

cs_connect (RS_LIB) cs_connect (RS_LIB)

USAGE

CS_PI PE Coul d not create CS pipe

CS_FATTACH Gould not nount renote streamto CS pi pe
CS_CONNLD Coul d not push CONNLD

CS_FORK Coul d not fork CS child request

CS DR Coul d not chdir

CS_SETNETPATH Host/ Servi ce not found over avail abl e transport
CS_TCPEN TLI/ XTI failure: t_open failed

CS_TBI ND TLI/ XTI failure: t_bind failed

CS_TOONNECT TLI/ XTI failure: t_connect failed

CS_TALLCC TLI/ XTI failure: t_alloc failed

CS_MACFAI LED MAC check failure or Secure Device access denied
CS_DACFAl LED DAC check failure or Secure Device access denied
CS_TI MEDQUT Connection attenpt tined out

CS_NETPR V Privileges not correct for requested network options
CS_BADCPTI ON Netdir option incorrectly set in csopts struct
CS_Dl ALERRCR D al error

CS_STATERRCR Unabl e to do deval l oc() or stat()

CS_NOTFOUND Service not found in _pntab

Not all values stored in the csopt s structure are sent to the Connection Server. In
particular, the last two elements of nc_p, that is, nc_| ookups and nc_nl ookups,
are not sent. See net confi g(RS_ENV).

The Connection Server daemon will log a message to /var/connserv/| og on
startup.

The Connection Server daemon will print debug information to
[var/ connser v/ debug if it is invoked with the debug option:

/usr/sbin/cs -d

In order for network applications to use cs_connect (), the following network
components must be correctly administered:

— The port monitor administrative files.
— Authentication schemes, where used.
— ID Mapping.

EXAMPLE

A typical call to cs_connect will be of the form:

#i ncl ude <net config. h>
#i ncl ude <net buf . h>
#i ncl ude <cs. h>

int error = 0;

if ((fd = cs_connect ("host", "service", (struct csopts *)NULL, &error)) < 0) {
/* do error handling */

Page 3

FINAL COPY
June 15, 1995
File: rs_lib/cs_connect
svid

Page: 189

cs_connect (RS_LIB) cs_connect (RS_LIB)

cs_perror("application specific string", error);
exit(1);
}

/* continue with normal execution */

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: rs_lib/cs_connect
svid

Page: 190

getnetconfig (RS_LIB) getnetconfig (RS_LIB)

NAME

getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent — net-
work configuration database

SYNOPSIS

#i ncl ude <netconfig. h>

struct netconfig *getnetconfig(void *handlep);

voi d *setnetconfig(void);

i nt endnetconfig(void *handlep) ;

struct netconfig *getnetconfigent(char *netid);

voi d freenetconfigent(struct netconfig *netconfigp) ;
voi d nc_perror (char [hsg);

char [Chc_sperror (void);

DESCRIPTION

These routines are part of the network selection feature. They are a set of manipu-
lation routines for the local system network configuration (netconfig) database [see
netconfig(RS_ENV)].

A call to set net confi g() has the effect of "binding" or "rewinding" (figuratively
speaking) the netconfig database. It must be called before the first call to get -
net confi g() (but not before get net confi gent ()), and may be called any other
time. It returns a "handle" that is passed to get net confi g() when looping. The
handle uniquely identifies each instance of a loop.

get net confi g(), when first called, returns a pointer to the (formatted) first entry
in the netconfig database; formatted as a st ruct net confi g thereafter, it subse-
quently returns a pointer to the successive entries in the database. In this manner,
get net confi g() can be used to traverse the netconfig database. It takes the han-
dle returned by set netconfig() as an argument to uniquely identify each
instance of the loop.

endnet confi g() may be called to "unbind" the netconfig database after it has
been bound by set net confi g(), when processing is complete. It takes the han-
dle returned by set net confi g() as an argument.

getnetconfigent() returns a pointer to the netconfig database entry
corresponding to the network identifier netid.

freenet confi gent () frees the space allocated by get net confi gent ().

nc_perror prints a message to the standard error indicating why any of the above
routines failed. The message is prepended with string msg and a colon. A NEW-
LINE is appended at the end of the message.

nc_sperror issimilar tonc_perror but instead of sending the message to the stan-
dard error indicating why the network selection routines failed, it returns a pointer
to the message.

RETURN VALUE

When the database has been exhausted, getnetconfig() returns NULL. It
returns NULL and sets er r no in case of failure (e.g., if set net confi g() was not
called previously).

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/getnetconfig
svid

Page: 191

getnetconfig (RS_LIB) getnetconfig (RS_LIB)

set net confi g() returns a handle to be used in looping. Each call returns a dif-
ferent handle, so loops can be nested.

endnet confi g() returns O on success, -1 on failure (e.g., if set net config()
was not called previously).

get net confi gent () returns NULL if netid is invalid (does not name an entry in
the netconfig database).

nc_sperror returns NULL if space can not be allocated for the message.

USAGE
These routines do not use static memory areas. All their data areas are dynamically
allocated, and must be freed by the user. endnet confi g() does this automati-
cally; freenetconfigent () frees data allocated by get net conf gent ().

SEE ALSO
getnetpath(RS_LIB), netconfig(RS_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/getnetconfig
svid

Page: 192

getnetpath (RS_LIB) getnetpath (RS_LIB)

NAME
getnetpath, setnetpath, endnetpath — manipulate NETPATH

SYNOPSIS
#i ncl ude <netconfig. h>

struct netconfig *getnetpath(void *handlep);
voi d *setnet pat h(voi d);
i nt endnet pat h(voi d *handlep) ;

DESCRIPTION
These routines are part of the network selection feature. They are a set of manipu-
lation routines for the system network configuration (netconfig) database [see
netconfig(RS_ENV)], as "filtered" by the NETPATH environment variable.

A call to set net pat h() has the effect of "binding" or "rewinding" (figuratively
speaking) NETPATH. It must be called before the first call to get net pat h(), and
may be called any other time. It returns a "handle" used by get net pat h() .

get net pat h(), when first called, returns a pointer to the (formatted) netconfig
database entry corresponding to the first component of NETPATH (unless NETPATH
is unset — see below); thereafter, it subsequently returns a pointer to the successive
entries of NETPATH. In this manner, get net pat h() can be used to search the
whole of NETPATH. It takes as an argument the handle returned by set net -
pat h().

get net pat h() silently ignores invalid components of NETPATH (components
which do not have a corresponding entry in the netconfig database).

endnet pat h() may be called to "unbind" NETPATH when processing is complete.
It takes as an argument the handle returned by set net pat h() .

If the NETPATH variable is not set (or has been unset), then get net pat h(), set -
net path() and endnetpath() behave as though NETPATH were set to the
sequence of "default” (visible) networks in the netconfig database (in the order they
are listed there). The default networks are those with a "v" in the flags field of the
netconfig database.

RETURN VALUE
When NETPATH has been exhausted, get netpath() returns NULL. It returns
NULL if an error occurs (e.g., if setnetpath() was not called previously).
nc_perror (RS_LIB) can be called to report the error.

set net pat h() returns a handle that is to be used by get net pat h() .

endnet pat h() returns 0 on success, -1 on failure (e.g., if set net pat h() was not
called previously).

USAGE
These routines do not use static data memory areas. All their data areas are dynam-
ically allocated, and must be freed by the user. endnetconfig() does this
automatically.

SEE ALSO
getnetconfig(RS_LIB), netconfig(RS_ENV).

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/getnetpath
svid

Page: 193

getnetpath (RS_LIB)

LEVEL

Page 2

Level 1.

FINAL COPY
June 15, 1995
File: rs_lib/getnetpath
svid

Page: 194

getnetpath (RS_LIB)

netdir (RS_LIB) netdir (RS_LIB)

NAME
netdir. netdir_free, netdir_getbyname, netdir_getbyaddr, netdir_options,
taddr2uaddr, uaddr2taddr, netdir_perror, netdir_sperror — generic transport
name-to-address translation

SYNOPSIS
#include <netdir. h>
#i ncl ude <net config. h>

int netdir_getbyname(const struct netconfig *netconf,
const struct nd_hostserv *service, struct nd_addrlist **addrs);

int netdir_getbyaddr(const struct netconfig *netconf,
struct nd_hostservlist **service, const struct netbuf *netaddr);

void netdir_free(void *ptr, int ident);
int netdir_options(const struct netconfig *netconf, int option,

int fd, const char *pointer_to_args);
char * taddr2uaddr(const struct netconfig *netconf, const struct netbuf *addr);
struct netbuf *uaddr2taddr(const struct netconfig *netconf, const char *uaddr);
voi d netdir_perror(char *s);
char * netdir_sperror(void);

DESCRIPTION
These routines provide a generic interface for name-to-address mapping that will
work with all transport protocols. This interface provides a generic way for pro-
grams to convert transport specific addresses into common structures and back
again.

The netdir_get bynanme() routine maps the machine name and service name in
the nd_host ser v structure to a collection of addresses of the type understood by
the transport identified in the netconfig structure netconf. This routine returns all
addresses that are valid for that transport in the nd_addr | i st structure.

The nd_host ser v structure contains the following members:

char *h_host
char *h_serv

The nd_addr | i st structure contains the following members:

i nt n_cnt
struct netbuf *n_addrs

n_cnt contains the number of addresses which net di r _get bynane() found.

net di r _get bynane() accepts some special case host names. These host names
are hints to the underlying mapping routines that define the intent of the request.
This information is required for some transport provider developers to provide the
correct information back to the caller. The host names are defined in
/usr/include/ netdir.h. The currently defined host names are:

Page 1

FINAL COPY

June 15, 1995
File: rs_lib/netdir
svid

Page: 195

netdir (RS_LIB) netdir (RS_LIB)

Page 2

HOST_SELF This host name represents the address to which local programs will
bind their endpoints. This differs from the host name provided by
get host nane() which represents the address to which remote pro-
grams will bind their endpoints.

HOST_ANY This host name represents any host accessible by this transport pro-
vider. This name is provided to allow applications to specify a
required service without specifying a particular host name.

HOST _BROADCAST
This host name represents the address for all hosts accessible by this
transport provider. Network requests to this address will be received
by all machines.

All fields of the nd_host ser v structure must be initialized.

To find all available transports, repeatedly call the net di r _get bynanme() routine
with each net confi g structure returned by the get net pat h() call.

The netdir_getbyaddr () routine maps addresses to service names. This rou-
tine returns a list of host and service pairs that would yield this address. If more
than one tuple of host and service name is returned then the first tuple contains the
preferred host and service names. The nd_host servl i st structure contains the
following members:

int *h _cnt

struct nd_hostserv *h_hostservs

h_cnt contains the number of host service names which net di r _get byaddr ()
found.

The net di r _free structure is used to free the structures allocated by the name to
address translation routines.

The following types of structures may be specified by the ident argument:
ND_ADDR Frees a net buf structure.

ND _ADDRLI ST
Frees the nd_addrlist structure such as that allocated by
net di r _get bynane.

ND_HOSTSERV
Frees and_host serv structure.

ND_HOSTSERVLI ST
Frees the nd_hostservlist structure such as that allocated by
net di r _get byaddr .

The netdi r _options routine is used to pass options in a transport independent
manner to the transport provider specified by netconfig. There are seven values for
option:

ND_SET_BROADCAST
ND_CLEAR BROADCAST
ND_SET REUSEADDR
ND_CLEAR REUSEADDR
ND_SET RESERVEDPCRT
ND_CHECK_RESERVEDPCRT

FINAL COPY
June 15, 1995
File: rs_lib/netdir
svid

Page: 196

netdir (RS_LIB) netdir (RS_LIB)

ND_MERGEADDR

The specific actions of each option follow.

ND_SET_BROADCAST Sets the transport provider up to allow broadcast, if the tran-
sport supports broadcast. fd is a file descriptor into the tran-
sport (that is, the result of a t_open of /dev/udp).
pointer_to_args is not used. If this completes, broadcast
operations may be performed on file descriptor fd.

ND_CLEAR BROADCAST
Turn off permission to send broadcast messages for the tran-
sport endpoint.

ND_SET_REUSEADDR Allow the transport provider to bind additional transport
endpoints to the same local address to which another end-
point has already been bound.

ND_CLEAR REUSEADDR
Do not allow the transport provider to bind a transport end-
point to a local address to which another endpoint has
already been bound.

ND_SET_RESERVEDPCORT
Allows the application to bind to a reserved port, if that con-
cept exists for the transport provider. fd is a file descriptor
into the transport (it must not be bound to an address). If
pointer_to_args is NULL, fd will be bound to a reserved port. If
pointer_to_args is a pointer to a net buf structure, an attempt
will be made to bind to a reserved port on the specified
address.

ND_CHECK_RESERVEDPORT
Used to verify that an address corresponds to a reserved
port, if that concept exists for the transport provider. fd is
not used. pointer_to_args is a pointer to a net buf structure
that contains an address. This option returns 0 only if the
address specified in pointer_to_args is reserved.

ND_MERGEADDR Used to take a “‘local address™” and return a “‘real address”
that client machines can connect to. fd is not used.
pointer_to_args is a pointer to a struct nd_ner gear g, which
has the following members:

char [s_uaddr; /* server’s universal address */
char [k _uaddr; /* client’s universal address */
char Omuaddr; /* merged universal address */

RETURN VALUE
The uaddr 2t addr () and t addr2uaddr () routines support translation between
universal addresses and TLI/XTI type netbufs. They take and return character
string pointers. The taddr2uaddr () routine returns a pointer to a string that
contains the universal address and returns NULL if the conversion is not possible.
This is not a fatal condition as some transports may not suppose a universal address
form.

Page 3

FINAL COPY
June 15, 1995
File: rs_lib/netdir
svid

Page: 197

netdir (RS_LIB) netdir (RS_LIB)

The netdir_perror routine prints an error message on the standard output stating
why one of the name-to-address mapping routines failed. The error message is pre-
ceded by the string given as an argument.

The netdir_sperror routine returns a string containing an error message stating why
one of the name-to-address mapping routines failed.

USAGE
General.

SEE ALSO
getnetconfig(RS_LIB), getnetpath(RS_LIB).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: rs_lib/netdir
svid

Page: 198

publickey (RS_LIB) publickey (RS_LIB)

NAME
publickey: getpublickey, getsecretkey — get public or secret key

SYNOPSIS
#i ncl ude <rpc/rpc. h>
#i ncl ude <rpc/ key_prot. h>

get publ i ckey(const char netname[] MAXNETNAMVELEN] ,
char publickey[HEXKEYBYTES]) ;

get secret key(const char netname[] MAXNETNAMVELEN] ,
char secretkey[HEXKEYBYTES], const char *passwd) ;

DESCRIPTION

get publ i ckey() and get secret key() get public and secret keys for netname
from the publickey database. get secretkey() has an extra argument, passwd,
which is used to decrypt the encrypted secret key stored in the database. Both rou-
tines return 1 if they are successful in finding the key, 0 otherwise. The keys are
returned as NULL-terminated, hexadecimal strings. If the password supplied to
get secret key() fails to decrypt the secret key, the routine will return 1 but the
secretkey argument will be a NULL string.

SEE ALSO
publickey(RS_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/publickey
svid

Page: 199

rpc_cint_auth (RS_LIB) rpc_clnt_auth (RS_LIB)

NAME
rpc_cint_auth: auth_destroy, authnone_create, authsys_create,
authsys_create_default — library routines for client side remote procedure call
authentication

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network, with desired authenti-
cation. First, the client calls a procedure to send a data packet to the server. Upon
receipt of the packet, the server calls a dispatch routine to perform the requested
service, and then sends back a reply.

These routines are normally called after creating the CLIENT handle. The client’s
authentication information is passed to the server when the RPC call is made.

Routines
The following routines require that the header rpc. h. be included [see the Remote
Services Definitions chapter for the definition of the AUTH data structure].

#i ncl ude <rpc/rpc. h>

voi d

aut h_destroy(AUTH *auth);
A function macro that destroys the authentication information associated
with auth. Destruction usually involves deallocation of private data struc-
tures. The use of auth is undefined after calling aut h_destroy().

AUTH *
aut hnone_creat e(voi d);

Create and return an RPC authentication handle that passes nonusable
authentication information with each remote procedure call. This is the
default authentication used by RPC.

AUTH *

aut hsys_create(const char *host, const uid_t uid, const gid_t gid,
const int len, const gid_t *aup_gids);
Create and return an RPC authentication handle that contains authentica-
tion information. The parameter host is the name of the machine on which
the information was created; uid is the user’s user ID; gid is the user’s
current group ID; len and aup_gids refer to a counted array of groups to
which the user belongs.

AUTH *
aut hsys_create_defaul t (voi d);

Call aut hsys_creat e() with the appropriate parameters.

SEE ALSO
rpc_cint_create(RS_LIB), rpc_cint_calls(RS_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/rpc_cint_auth
svid

Page: 200

rpc_cint_calls (RS_LIB) rpc_cint_calls (RS_LIB)

NAME
rpc_cint_calls: cInt_call, cInt_freeres, cInt_geterr, cInt_perrno, clnt_perror,
cInt_sperrno, cint_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call — library rou-
tines for client side calls

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a data
packet to the server. Upon receipt of the packet, the server calls a dispatch routine
to perform the requested service, and then sends back a reply.

The clnt_call (), rpc_call () and rpc_broadcast (),
rpc_broadcast _exp() routines handle the client side of the procedure call. The
remaining routines deal with error handling in the case of errors.

Routines
See the Remote Services Definitions chapter for the definition of the CLI ENT data
structure.

#i ncl ude <rpc/rpc. h>

enum cl nt _stat

clnt_cal |l (CLI ENT *cInt, const u_l ong procnum, const xdrproc_t inproc,
caddr _t in, const xdrproc_t outproc, caddr_t out,
const struct tinmeval tout);

A function macro that calls the remote procedure procnum associated with
the client handle, cInt, which is obtained with an RPC client creation routine
such as cl nt_create() [see rpc_cint_create(RS_LIB)]. The parameter in
is the address of the procedure’s argument(s), and out is the address of
where to place the result(s); inproc is used to encode the procedure’s param-
eters, and outproc is used to decode the procedure’s results; tout is the time
allowed for results to be returned.

If the remote call succeeds, the status is returned in RPC_SUCCESS, other-
wise an appropriate status is returned [see the Remote Services Definitions
chapter for possible error numbers].

bool _t clnt_freeres(CLIENT *cInt, const xdrproc_t outproc, caddr_t out);

A function macro that frees any data allocated by the RPC/XDR system
when it decoded the results of an RPC call. The parameter out is the address
of the results, and outproc is the XDR routine describing the results. This
routine returns 1 if the results were successfully freed, and 0 otherwise.

voi d

clnt_geterr(const CLIENT *cInt, struct rpc_err *errp);

A function macro that copies the error structure out of the client handle to
the structure at address errp.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/rpc_cint_calls
svid

Page: 201

rpc_cint_calls (RS_LIB) rpc_clnt_calls (RS_LIB)

Page 2

voi d

cl nt_perrno(const enum cl nt_stat stat);
Print a message to standard error corresponding to the condition indicated
by stat. A NEWLINE is appended at the end of the message. Normally
used after a procedure call fails, for instance rpc_cal | ().

voi d

clnt_perror(const CLIENT *cInt, const char *s);
Print a message to standard error indicating why an RPC call failed; cInt is
the handle used to do the call. The message is prepended with string s and
a colon. A NEWLINE is appended at the end of the message. Normally
used after a procedure call fails, for instance cl nt _call ().

char *
cl nt_sperrno(const enum clnt_stat stat);

Take the same arguments as cl nt _perrno(), but instead of sending a
message to the standard error indicating why an RPC call failed, return a
pointer to a string which contains the message.

cl nt _sperrno() is normally used instead of cl nt _perrno() when the
program does not have a standard error (as a program running as a server
quite likely does not), or if the programmer does not want the message to be
output with printf() [see printf(BA_LIB)], or if a message format dif-
ferent than that supported by cl nt _perrno() is to be used. Note: unlike
clnt_sperror() and clnt_spcreaterror() [see
rpc_cint_create(RS_LIB)], clnt_sperrno() does not return pointer to
static data so the result will not get overwritten on each call.

char *
cl nt_sperror(const CLIENT *cInt, const char *s);

Like cl nt_perror(), except that (like cl nt_sperrno()) it returns a
string instead of printing to standard error. However, cl nt_sperror ()
does not append a NEWLINE at the end of the message.

Warning: returns pointer to static data that is overwritten on each call.

FINAL COPY
June 15, 1995
File: rs_lib/rpc_cint_calls
svid

Page: 202

rpc_cint_calls (RS_LIB) rpc_cint_calls (RS_LIB)

enum cl nt _stat

rpc_broadcast (const u_l ong prognum, const u_l ong versnum,
const u_l ong procnum, const xdrproc_t inproc, caddr_t in,
const xdrproc_t outproc, caddr_t out, const resultproc_t eachresult,
const char *nettype);

enum cl nt _stat

rpc_broadcast _exp(const u_l ong prognum, const u_l ong versnum,
const u_l ong procnum, const xdrproc_t inproc, caddr_t in,
const xdrproc_t outproc, caddr_t out,
const resultproc_t eachresult, int inittime
i nt waittime, const char *nettype);

These calls are like rpc_cal |, except the call message is broadcast to the
connectionless network specified by nettype. If nettype is NULL, it defaults to
net pat h. rpc_broadcast simply calls rpc_broadcast_exp with particular mil-
lisecond values of inittime and waittinme. Each time rpc_broadcast_exp
receives a response, it calls eachr esul t , whose form is:

bool _t

eachresul t (const caddr_t out, const struct netbuf *addr,
struct netconfig *netconf);

where out is the same as out passed to rpc_broadcast and
r pc_br oadcast _exp except that the remote procedure’s output is decoded
in r pc_br oadcast _exp; addr points to the address of the machine that sent
the results, and netconf is the netconfig structure of the transport on which
the remote server responded. If eachresult returns 0O,
rpc_broadcast _exp and therefore r pc_br oadcast wait for more replies;
otherwise they return with appropriate status.

Warning: broadcast file descriptors are limited in size to the maximum
transfer size of that transport. For Ethernet, this value is 1500 bytes.

enum cl nt _stat

rpc_cal |l (const char *host, const u_l ong prognum,
const u_l ong versnum, const u_l ong procnum,
const xdrproc_t inproc, const char *in,
const xdrproc_t outproc, char *out,
const char *nettype) ;

Call the remote procedure associated with prognum, versnum, and procnum
on the machine, host. The parameter in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure’s parameters, and outproc is used to decode
the procedure’s results. nettype can be any of the values listed in the Remote
Services Definitions chapter. If nettype is NULL, it defaults to net pat h.
This routine returns O if it succeeds, or the value of enum cl nt_stat ()
cast to an integer if it fails. Use the cl nt_perrno() routine to translate
failure statuses into messages.

Page 3

FINAL COPY
June 15, 1995
File: rs_lib/rpc_cint_calls
svid

Page: 203

rpc_cint_calls (RS_LIB) rpc_clnt_calls (RS_LIB)

Warning: rpc_cal | () uses the first available transport belonging to the
class nettype, on which it can create a connection. You do not have control
of timeouts or authentication using this routine. There is also no way to
destroy the client handle.
SEE ALSO
printf(BA_LIB), rpc_cint_auth(RS_LIB), rpc_clInt_create(RS_LIB).
LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: rs_lib/rpc_cint_calls
svid

Page: 204

rpc_cint_create (RS_LIB) rpc_cint_create (RS_LIB)

NAME

rpc_clnt_create: cint_control, cint_create, cInt_destroy, cint_dg_create,
cInt_pcreateerror, cInt_raw_create, cInt_spcreateerror, cint_tli_create,
cInt_tp_create, cint_vc_create — library routines for dealing with creation and mani-
pulation of CLIENT handles

DESCRIPTION

RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client
calls a procedure to send a data packet to the server. Upon receipt of the packet,
the server calls a dispatch routine to perform the requested service, and then sends
back a reply.

Routines

See the Remote Services Definitions chapter for the definition of the CLI ENT data
structure.

#i ncl ude <rpc/rpc. h>

bool _t

cl nt_control (CLI ENT *cInt, const u_int req, char *info);
A function macro used to change or retrieve various information about a
client object. req indicates the type of operation, and info is a pointer to the
information. For both connectionless and connection-oriented transports,
the supported values of req and their argument types and what they do are:

CLSET_TI MEQUT struct timeval set total timeout
CLGET_TI MEQUT struct timeval get total timeout

Note: if you set the timeout using cl nt _control (), the timeout parame-
ter passed to cl nt _cal | () will be ignored in all future calls.

CLGET_FD int get the associated file descriptor
CLGET_SVC_ADDR struct netbuf get servers address
CLSET_FD _CLCSE int close the file descriptor when

destroying the client handle
[see cl nt _dest r oy()]

CLSET_FD_NCLOSE int do not close the file
descriptor when destroying
the client handle

The following operations are valid for connectionless transports only:

CLSET_RETRY_TI MEQUT struct timeval set the retry timeout
CLGET_RETRY_TI MEQUT struct timeval get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

cl nt_control () returns 1 on success and 0 on failure.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/rpc_clnt_creat
svid

Page: 205

rpc_cint_create (RS_LIB) rpc_clnt_create (RS_LIB)

Page 2

CLI ENT *
clnt_create(const char *host, const u_l ong prognum,

voi d

clnt

const u_l ong versnum, const char *nettype);

Generic client creation routine. host identifies the name of the remote host
where the server is located. nettype indicates the class of transport protocol
to use. The transports are tried in left to right order in NETPATH variable or
in top to down order in the netconfig database.

cl nt_create() tries all the transports of the nettype class available from
the NETPATH environment variable and the the netconfig database, and
chooses the first successful one. Default timeouts are set, but can be
modified using cl nt _control ().

dest roy(CLI ENT *cInt);

A function macro that destroys the client’'s RPC handle. Destruction usually
involves deallocation of private data structures, including cint itself. Use of
cInt is undefined after calling cl nt _destroy(). Ifthe RPC library opened
the associated file descriptor, or CLSET_FD CLOSE was set using
cl nt_control (), it will be closed.

CLI ENT *

clnt

voi d

clnt _

dg_create(const int fd, const struct netbuf *svcaddr,
const u_l ong prognum, const u_l ong versnum,
const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver-
sion versnum; the client uses a connectionless transport. The remote pro-
gram is located at address svcaddr. The parameter fd is an open and bound
file descriptor. This routine will resend the call message in intervals of 15
seconds until a response is received or until the call times out. The total
time for the call to time out is specified by clnt_call() [see
clnt_call () in rpc_cint_calls(RS_LIB)]. This routine returns NULL if it
fails. The retry time out and the total time out periods can be changed using
clnt_control (). The user may set the size of the send and receive
buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults.

pcreateerror(const char *s);

Print a message to standard error indicating why a client RPC handle could
not be created. The message is prepended with the string s and a colon, and
appended with a NEWLINE.

FINAL COPY
June 15, 1995
File: rs_lib/rpc_clnt_creat
svid

Page: 206

rpc_cint_create (RS_LIB) rpc_clnt_create (RS_LIB)

CLI ENT *

clnt_vc_create(const int fd, const struct netbuf *svcaddr,
const u_l ong prognum, const u_l ong versnum,
const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver-
sion versnum; the client uses a connection-oriented transport. The remote
program is located at address svcaddr. The parameter fd is an open and
bound file descriptor. The user may specify the size of the send and receive
buffers with the parameters sendsz and recvsz; values of O choose suitable
defaults. This routine returns NULL if it fails.

The address svcaddr should not be NULL and should point to the actual
address of the remote program. cl nt _vc_creat e() will not consult the
remote r pcbi nd service for this information.
SEE ALSO
rpcbind(RS_CMD), rpc_cint_auth(RS_LIB), rpc_cint_calls(RS_LIB).
LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: rs_lib/rpc_clnt_creat
svid

Page: 208

rpc_svc_calls (RS_LIB) rpc_svc_calls (RS_LIB)

NAME
rpc_svc_calls: rpc_reg, svc_reg, svc_unreg, xprt_register, xprt_unregister — library
routines for registering servers

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to regis-
ter themselves with rpcbi nd [see rpcbind(RS_CMD)], and it associates the given
program and version number with the dispatch function.

Routines
See the Remote Services Definitions chapter for the definition of the SVCXPRT data
structure.

#i ncl ude <rpc/rpc. h>

i nt

rpc_reg(const u_l ong prognum, const u_l ong versnum,
const u_l ong procnum, const char *(*procname) (),

const xdrproc_t inproc, const xdrproc_t outproc,
const char *nettype);

Register program prognum, procedure procname, and version versnum with
the RPC service package. If a request arrives for program prognum, version
versnum, and procedure procnum, procname is called with a pointer to its
parameter(s); procname should return a pointer to its static result(s); inproc is
used to decode the parameters while outproc is used to encode the results.
Procedures are registered on all available transports of the class nettype. net-
type defines a class of transports which can be used for a particular applica-
tion. The transports are tried in left to right order in NETPATH variable or
in top to down order in the netconfig database.

If nettype is NULL, it defaults to net pat h. This routine returns O if the
registration succeeded, —1 otherwise.

i nt

svc_reg(const SVCXPRT *xprt, const u_long prognum, const u_l ong versnum,
const void (*dispatch), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure,
dispatch. If netconf is NULL, the service is not registered with the rpcbi nd
service. If netconf is non-zero, then a mapping of the triple [prognum, vers-
num, netconf->nc_netid] to xprt—>xp_| t addr is established with the local
r pcbi nd service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise
voi d
svc_unreg(const u_l ong prognum, const u_l ong versnum);

Remove all mapping of the double [prognum, versnum] to dispatch routines,
and of the triple [prognum, versnum, *] to network address.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_calls
svid

Page: 209

rpc_svc_calls (RS_LIB) rpc_svc_calls (RS_LIB)

voi d

Xprt_regi ster(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the
RPC service package. This routine modifies the global variable svc_fds.
Service implementors usually do not need this routine.

voi d

xprt_unregi ster(const SVCXPRT *xprt);

Before an RPC service transport handle xprt is destroyed, it unregisters itself
with the RPC service package. This routine modifies the global variable
svc_fds. Service implementors usually do not need this routine.
SEE ALSO
rpcbind(RS_CMD), rpcbind(RS_LIB), rpc_svc_err(RS_LIB), rpc_svc_create(RS_LIB),
rpc_svc_reg(RS_LIB).
LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_calls
svid

Page: 210

rpc_svc_create (RS_LIB) rpc_svc_create (RS_LIB)

SVCXPRT *
svc_fd _create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a service on top of any open and bound descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descrip-
tor for a stream protocol. sendsz and recvsz indicate sizes for the send and
receive buffers. If they are 0, a reasonable default is chosen. This routine
returns NULL, if it fails, and an error message is logged.

SVCXPRT *
svc_raw_create(void);

This routine creates a toy RPC service transport, to which it returns a
pointer. The transport is really a buffer within the process’s address space,
so the corresponding RPC client should live in the same address space; [see
clnt_raw_create() inrpc_cint_create()]. This routine allows simulation
of RPC and acquisition of RPC overheads (such as round trip times),
without any kernel interference. This routine returns NULL if it fails, and
an error message is logged.

SVCXPRT *

svc_tli_create(int fd, const struct netconfig *netconf,
const struct t_bind *hindaddr, const u_int sendsz,
const u_int recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fd is
the file descriptor on which the service is listening. If fd is RPC_ANYFD, it
opens a file descriptor on the transport specified by netconf. If the file
descriptor is unbound, it is bound to the address specified by bindaddr, if
bindaddr is non-NULL, otherwise it is bound to a default address chosen by
the transport. In the case where the default address is chosen, the number
of outstanding connect requests is set to 8 for connection-oriented tran-
sports. The user may specify the size of the send and receive buffers with
the parameters sendsz and recvsz; values of 0 choose suitable defaults. This
routine returns NULL if it fails, and an error message is logged.

SVCPRT *

svc_tp_create(const void (*dispatch) (const struct svc_req *,
const SVCXPRT *), const u_l ong prognum, const u_l ong versnum,
const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by
netconf, and registers itself with the rpcbi nd service. dispatch is called
when there is a remote procedure call for the given prognum and versnum;
this requires calling svc_run(). svc_tp_create() returns the service
handle if it succeeds, otherwise a NULL is returned, and an error message is
logged.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_create
svid

Page: 212

rpc_svc_create (RS_LIB) rpc_svc_create (RS_LIB)

SVCXPRT *
svc_vc_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a connection-oriented RPC service and returns a pointer
to it. This routine returns NULL if it fails, and an error message is logged.
The users may specify the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. The file
descriptor fd should be open and bound.

SEE ALSO
rpchind(RS_CMD), rpc_svc_calls(RS_LIB), rpc_svc_err(RS_LIB),
rpc_svc_reg(RS_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_create
svid

Page: 213

rpc_svc_err (RS_LIB) rpc_svc_err (RS_LIB)

NAME
rpc_svc_err: svcerr_auth, svcerr_decode, svcerr_noproc, SvCerr_noprog,
svcerr_progvers, svcerr_systemerr, svcerr_weakauth — library routines for server
side remote procedure call errors

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network. First, the client calls a
procedure to send a data packet to the server. Upon receipt of the packet, the
server calls a dispatch routine to perform the requested service, and then sends
back a reply.

These routines can be called by the server side dispatch function if there is any error
in the transaction with the client.

Routines
See the Remote Services Definitions chapter for the definition of the SVCXPRT data
structure.

#i ncl ude <rpc/rpc. h>
voi d
svcerr_aut h(const SVCXPRT *xprt, const enum auth_stat why);

Called by a service dispatch routine that refuses to perform a remote pro-
cedure call due to an authentication error.

voi d

svcerr_decode(const SVCXPRT *xprt) ;
Called by a service dispatch routine that cannot successfully decode the
remote parameters [see svc_get args() inrpc_svc_reg(RS_LIB)].

voi d

svcerr_noproc(const SVCXPRT *xprt);
Called by a service dispatch routine that does not implement the procedure
number that the caller requests.

voi d

svcerr_noprog(const SVCXPRT *xprt);
Called when the desired program is not registered with the RPC package.
Service implementors usually do not need this routine.

voi d

svcerr_progvers(const SVCXPRT *xprt);
Called when the desired version of a program is not registered with the RPC
package. Service implementors usually do not need this routine.

voi d

svcerr_systemerr(const SVCXPRT *xprt);
Called by a service dispatch routine when it detects a system error not

covered by any particular protocol. For example, if a service can no longer
allocate storage, it may call this routine.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_err
svid

Page: 214

rpc_svc_err (RS_LIB) rpc_svc_err (RS_LIB)

voi d
svcerr _weakaut h(const SVCXPRT *xprt) ;
Called by a service dispatch routine that refuses to perform a remote pro-

cedure call due to insufficient (but correct) authentication parameters. The
routine calls svcerr_aut h(xprt, AUTH TOOAEAK) .

SEE ALSO
rpc_svc_calls(RS_LIB), rpc_svc_create(RS_LIB), rpc_svc_reg(RS_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_err
svid

Page: 215

rpc_svc_reg (RS_LIB) rpc_svc_reg (RS_LIB)

Page 2

struct netbuf *
svc_getrpccal | er(const SVCXPRT *xprt) ;

The approved way of getting the network address of the caller of a pro-
cedure associated with the RPC service transport handle xprt.

voi d

svc_run(void);
This routine never returns. It waits for RPC requests to arrive, and calls the

appropriate service procedure using svc_getreqset () when one arrives.
This procedure is usually waiting for a pol | () library call to return.

bool _t
svc_sendrepl y(const SVCXPRT *xprt, const xdrproc_t outproc,
const caddr_t out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport han-
dle; outproc is the XDR routine which is used to encode the results; and out is
the address of the results. This routine returns 1 if it succeeds, 0 otherwise.

#i ncl ude <sys/poll.h>

voi d

svc_getreq_common(int fd)
This routine processes incoming RPC requests on a file descriptor specified
by fd. All higher level service implementations like svc_run,

svc_getreqgset, and svc_getreg_pol | use this routine to process RPC
requests.

This routine authenticates incoming RPC requests on the file descriptor fd
and calls the appropriate dispatch routine registered with r pcbi nd. If the
transport provider is connection-oriented, the succeeding requests, if any,
are processed repeatedly. This is called batched Remote Procedure Calls.

Note that this routine is thread-safe. However, a different file descriptor
must be specified in each concurrent call to svc_get r eq_common.

#i ncl ude <sys/poll.h>

voi d

svc_getreq_pol |l (struct pollfd *pfdp, int retval);
Like svc_get r eqgset , this routine is only of interest if a service implementor
does not call svc_run, but instead implements custom asynchronous event

processing. The svc_run routine provided in the RPC library is currently
implemented using this routine.

It should be called when pol | has determined that an RPC request has
arrived on some RPC file descriptors; pfdp is the poll data used during poll,
and retval is the number of file descriptors to service, typically the return
value from poll. The routine returns when all file descriptors specified by
pfdp have been serviced.

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_reg
svid

Page: 217

rpc_svc_reg (RS_LIB) rpc_svc_reg (RS_LIB)

Note that this routine is not thread-safe. Hence the service implementor
must use appropriate synchronization to avoid calls to this routine from
multiple threads at the same time.

#i ncl ude <sys/poll.h>
voi d
svc_getreq_pol | _parallel (struct pollfd *pfdp, int retval);

This routine is the thread-safe version of svc_getreq_pol | and provides
exactly the same functionality.

svc_run_paral l el (i nt timeout, int minthreads, int maxthreads) ;

This is the multithreaded version of svc_run. This routine waits for RPC
requests to arrive, and calls the appropriate service procedure via a call to
svc_getreq_poll_parallel. Depending on the rate of incoming RPC requests,
this routine will dynamically create or delete threads from the process. Each
created thread services an RPC request and then waits for more to arrive.

The timeout argument specifies the number of milliseconds to wait for and
RPC request to arrive. After waiting for this time, any thread created by
svc_run_paral | el will exit, provided the total number of threads is above
minthreads. The maximum number of threads created by this routine is
always less than maxthreads.

Note that this routine provides a performance gain for server processes
which service a sustained rate of incoming RPC requests. Also, the service
procedure may be called concurrently from many server threads, so it must
be thread-safe. Currently, it is only supported for connectionless transports.

This routine returns -1 if either of minthreads or maxthreads is less than or
equal to zero. It also returns -1 if maxthreads is is less than or equal to
minthreads.

It returns zero if there are no file server file descriptors to wait on.

SEE ALSO

LEVEL

poll(BA_OS), rpc_svc_calls(RS_LIB), rpc_svc_create(RS_LIB), rpc_svc_err(RS_LIB).

Level 1.

Page 3

FINAL COPY
June 15, 1995
File: rs_lib/rpc_svc_reg
svid

Page: 218

rpc_xdr (RS_LIB) rpc_xdr (RS_LIB)

NAME
rpc_xdr: xdr_accepted_reply, xdr_authsys parms, xdr_callhdr, xdr_callmsg,
xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg — XDR library routines for
remote procedure calls

DESCRIPTION

These routines are used for describing the RPC messages in XDR language. They
should normally be used by those who do not want to use the RPC package.

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#i ncl ude <rpc/rpc. h>

bool _t
xdr _accepted_repl y(XDR *xdrs, const struct accepted_reply *ar);

Used for encoding RPC reply messages. It encodes the status of the RPC
call in the XDR language format, and in the case of success, it encodes the
call results also.

bool _t
xdr _aut hsys_parns(XDR *xdrs, const struct authsys_parns *aupp);

Used for describing operating system credentials. It includes machine-
name, uid, gid list, etc.

voi d

xdr _cal | hdr (XDR *xdrs, const struct rpc_msg *chdr);
Used for describing RPC call header messages. It encodes the static part of
the call message header in the XDR language format. It includes informa-

tion such as transaction 1D, RPC version number, program and version
number.

bool _t
xdr _cal | neg(XDR *xdrs, const struct rpc_nsg *cmsg);

Used for describing RPC call messages. This includes all the RPC call infor-
mation such as transaction ID, RPC version number, program number, ver-
sion number, authentication information, etc. This is normally used by
servers to determine information about the client RPC call.

bool _t
xdr _opaque_aut h(XDR *xdrs, const struct opaque_auth *ap);

Used for describing RPC opaque authentication information messages.

bool _t
xdr_rejected_repl y(XDR *xdrs, const struct rejected_reply *rr);

Used for describing RPC reply messages. It encodes the rejected RPC mes-
sage in the XDR language format. The message could be rejected either
because of version number mis-match or because of authentication errors.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/rpc_xdr
svid

Page: 219

rpc_xdr (RS_LIB) rpc_xdr (RS_LIB)

bool _t
xdr _repl ynsg(XDR *xdrs, const struct rpc_nsg *rmsg);

Used for describing RPC reply messages. It encodes all the RPC reply mes-
sage in the XDR language format This reply could be either an acceptance,
rejection or NULL.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/rpc_xdr
svid

Page: 220

rpcbind (RS_LIB) rpcbind (RS_LIB)

NAME
rpchind: rpcb_getmaps, rpcb_getaddr, rpch_gettime, rpcb_rmtcall, rpcb_set,
rpch_unset - library routines for RPC bind service.

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbhi nd [see rpcbind(RS_CMD)] maintains a list of mappings between
programs and their universal addresses.

Routines
#i ncl ude <rpc/rpc. h>

struct rpchblist *
rpcb_get maps(const struct netconfig *netconf, const char *host);

A user interface to the rpcbi nd service, which returns a list of the current
RPC program-to-address mappings on the host named. It uses the transport
specified through netconf to contact the remote rpchi nd service on host
host. This routine will return NULL, if the remote r pcbi nd could not be
contacted. The command r pci nf o [see rpcinfo(RS_CMD)] uses this rou-
tine.

bool _t

rpcb_getaddr (const u_l ong prognum, const u_l ong versnum,
const struct netconfig *netconf, struct netbuf *svcaddr,
const char *host);

A user interface to the r pcbi nd service, which finds the address of the ser-
vice on host that is registered with program number prognum, version vers-
num, and speaks the transport protocol associated with netconf. The address
found is returned in svcaddr. svcaddr should be preallocated. This routine
returns 1 if it succeeds. A return value of 0 means that the mapping does
not exist or that the RPC system failed to contact the remote r pcbi nd ser-
vice. In the latter case, the global variable rpc_creat eerr contains the
RPC status.

bool _t
rpcb_gettine(const char *host, time_t *timep);

This routine returns the time on host in timep. If host is NULL,
rpcb_gettine() returns the time on its own machine. This routine
returns 1 if it succeeds, 0 if it fails. rpcb_getti ne can be used to syn-
chronize the time between the client and the remote server. This routine is
particularly useful for secure RPC.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/rpcbind
svid

Page: 221

rpchind (RS_LIB) rpcbind (RS_LIB)

enum cl nt _stat
rpcb_rntcall (const struct netconfig *netconf, const char *host,
u_l ong prognum, u_l ong versnum, u_l ong prochum,
xdr proc_t inproc, caddr_t in, xdrproc_t outproc,
caddr _t out, struct tineval tout,
struct netbuf *svcaddr);

A user interface to the rpchi nd service, which instructs r pchi nd on host
to make an RPC call on your behalf to a procedure on that host. The param-
eter *svcaddr will be modified to the server’s address if the procedure
succeeds [seerpc_cal | () andcl nt _cal | () inrpc_cInt_calls(RS_LIB) for
the definitions of other parameters]. This procedure should be used for a
ping and nothing else [see rpc_broadcast () inrpc_cInt_calls(RS_LIB)].
This routine allows programs to do lookup and call, all in one step.

bool _t
rpcb_set (const u_long prognum, const u_l ong versnum,
const struct netconfig *netconf, const struct netbuf *svcaddr);

A user interface to the rpchi nd service, which establishes a mapping
between the triple [prognum, versnum, netconf->nc_netid] and svcaddr on the
machine’s rpcbi nd service. The value of transport must correspond to a
network token that is defined by the netconfig database. This routine
returns 1 if it succeeds, 0 otherwise, and is automatically performed by
svc_reg() [seesvc_reg() inrpc_svc_calls(RS_LIB)].

bool _t
rpcb_unset (const u_l ong prognum, const u_l ong versnum,
const struct netconfig *netconf);

A user interface to the rpcbind service, which destroys all mapping
between the triple [prognum, versnum, netconf->nc_netid] and the address on
the machine’s rpcbi nd service. If netconf is NULL, rpcb_unset () des-
troys all mapping between the triple [prognum, versnum, *] and the addresses
on the machine’s rpchi nd service. rpcb_unset will return 1 if the
registered entry was previously unset or was not found. This routine
returns 1 if it succeeds, O otherwise.

USAGE
General.

SEE ALSO
rpc_cint_calls(RS_LIB), rpc_svc_calls(RS_LIB), rpcbind(RS_CMD),
rpcinfo(RS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/rpcbind
svid

Page: 222

secure_rpc (RS_LIB) secure_rpc (RS_LIB)

NAME
secure_rpc: authdes_seccreate, authdes_getucred, getnetname, host2netname,
key_decryptsession, key_encryptsession, key_gendes, key_setsecret, netname2host,
netname2user, user2netname — library routines for secure remote procedure calls

DESCRIPTION
RPC library routines allow C programs to make procedure calls on other machines
across the network. First, the client calls a procedure to send a data packet to the
server. Upon receipt of the packet, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

RPC allows various authentication flavors [see the Remote Services Introduction
chapter]. The authdes_getucred() and authdes_seccreate() routines
implement the DES authentication flavor. The keyserver daemon keyserv [see
keyserv(RS_CMD)] must be running for the DES authentication system to work.

Routines
#i ncl ude <rpc/rpc. h>
i nt
aut hdes_get ucred(const struct authdes_cred *adc, uid_t *uidp,
gid_t *gidp, short *gidlenp, int *gidlist);

aut hdes_get ucr ed() is the first of the two routines which interface to the
RPC secure authentication system known as DES. The second is
aut hdes_seccreate(), below. authdes_getucred() is used on the
server side for converting a DES credential, which is operating system
independent, into a UNIX credential. This routine returns 1 if it succeeds, 0
if it fails.

*uidp is set to the user’s numerical 1D associated with adc. *gidp is set to the
numerical ID of the group to which the user belongs. gidlist contains the
numerical IDs of the other groups to which the user belongs. *gidlenp is set
to the number of valid group ID entries in gidlist [see net nane2user (),
below].

AUTH *
aut hdes_seccreate(const char *name, const unsigned int window,
struct netbuf *syncaddr, const des_bl ock *ckey);

aut hdes_seccreat e(), the second of two DES authentication routines, is
used on the client side to return an authentication handle that will enable
the use of the secure authentication system. The first parameter name is the
network name, or netname, of the owner of the server process. This field usu-
ally represents a hostname derived from the utility routine
host 2net nane(), but could also represent a user name using
user 2net nane() . The second field is window on the validity of the client
credential, given in seconds. A small window is more secure than a large
one, but choosing too small of a window will increase the frequency of
resynchronizations because of clock drift. The third parameter, syncaddr, the
host’s address, is optional. If it is NULL, then the authentication system will
assume that the local clock is always in sync with the syncaddr clock, and
will not attempt resynchronizations. If an address is supplied, however,
then the system will use the address for consulting the remote time service

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/secure_rpc
svid

Page: 223

secure_rpc (RS_LIB) secure_rpc (RS_LIB)

Page 2

whenever resynchronization is required. This parameter is usually the
address of the RPC server itself. The final parameter ckey is also optional. If
it is NULL, then the authentication system will generate a random DES key
to be used for the encryption of credentials. If ckey is supplied, then it will
be used instead.

i nt

get net nanme(char name[MAXNETNAMVELEN+1]) ;
get net nanme() installs the unique, operating-system independent netname
of the caller in the fixed-length array name. Returns 1 if it succeeds, and O if
it fails.

i nt

host 2net name(char name[MAXNETNAMELEN+1], const char *host,
const char *domain);

Convert from a domain-specific hostname host to an operating-system
independent netname. Return 1 if it succeeds, and O if it fails. Inverse of
net name2host (). If domain is NULL, getnet nane() uses the default
domain name of the machine. If host is NULL, it defaults to that machine
itself.

i nt

key_decrypt sessi on(const char *remotename, des_bl ock *deskey);
key_decrypt sessi on() is an interface to the keyserver daemon, which is
associated with RPC’s secure authentication system (DES authentication).
User programs rarely need to call it, or its associated routines
key_encryptsession(), key_gendes() and key_setsecret ().

key_decrypt sessi on() takes a server netname remotename and a DES
key deskey, and decrypts the key by using the the public key of the the server
and the secret key associated with the effective UID of the calling process. It
is the inverse of key_encryptsessi on().

i nt

key_encrypt sessi on(const char *remotename, des_bl ock *deskey);
key_encrypt sessi on() is a keyserver interface routine. It takes a server
netname remotename and a DES key deskey, and encrypts it using the public
key of the the server and the secret key associated with the effective UID of
the calling process. It is the inverse of key_decrypt session(). This
routine returns O if it succeeds, —1 if it fails.

i nt

key_gendes(des_bl ock *deskey) ;
key_gendes() is a keyserver interface routine. It is used to ask the
keyserver for a secure conversation key. Choosing one at random is usu-
ally not good enough, because the common ways of choosing random
numbers, such as using the current time, are very easy to guess.

FINAL COPY
June 15, 1995
File: rs_lib/secure_rpc
svid

Page: 224

secure_rpc (RS_LIB) secure_rpc (RS_LIB)

i nt

key_setsecret(const char *key);
key_setsecret () is a keyserver interface routine. It is used to set the key
for the effective UID of the calling process. this routine returns O if it
succeeds, —1 if it fails.

i nt

net name2host (const char *name, char *host, const int hostlen);
Convert from an operating-system independent netname name to a domain-
specific hostname host. hostlen is the maximum size of host. Returns 1 if it
succeeds, and O if it fails. Inverse of host 2net nane().

i nt

net name2user (const char *name, uid_t *uidp, gid_t *gidp,

i nt *gidlenp, gid_t gidlistf NGROUPS]) ;

Convert from an operating-system independent netname to a domain-
specific user ID. Returns 1 if it succeeds, and 0 if it fails. Inverse of
user 2net nane() .

*uidp is set to the user’s numerical ID associated with name. *gidp is set to
the numerical ID of the group to which the user belongs. gidlist contains the
numerical IDs of the other groups to which the user belongs. *gidlenp is set
to the number of valid group ID entries in gidlist.

i nt

user 2net nane(char name[MAXNETNAMELEN+1], const uid_t uid,
const char *domain);

Convert from a domain-specific username to an operating-system indepen-
dent netname. Returns 1 if it succeeds, and O if it fails. Inverse of
net name2user ().

SEE ALSO
chkey(RS_CMD), keyserv(RS_CMD), newkey(RS_CMD), rpc_cInt_auth(RS_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: rs_lib/secure_rpc
svid

Page: 225

xdr_admin (RS_LIB) xdr_admin (RS_LIB)

NAME
xdr_admin: xdr_getpos, xdr_inline, xdrrec_endofrecord, xdrrec_eof,
xdrrec_skiprecord, xdr_setpos — library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#i ncl ude <rpc/xdr. h>

u_int
xdr _get pos(const XDR *xdrs) ;

A macro that invokes the get-position routine associated with the XDR
stream, xdrs. The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is that
simple arithmetic works with this number, although the XDR stream
instances need not guarantee this. Therefore, applications written for porta-
bility should not depend on this feature.

| ong *
xdr _inline(XDR *xdrs; const int len);

A macro that invokes the in-line routine associated with the XDR stream,
xdrs. The routine returns a pointer to a contiguous piece of the stream’s
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
| ong *.

Warning: xdr _i nl i ne() may return NULL (0) if it cannot allocate a con-
tiguous piece of a buffer. Therefore the behavior may vary among stream
instances; it exists for the sake of efficiency, and applications written for
portability should not depend on this feature.

bool _t
xdrrec_endof record(XDR *xdrs; int sendnow);

This routine can be invoked only on streams created by
xdrrec_create(). The data in the output buffer is marked as a com-
pleted record, and the output buffer is optionally written out if sendnow is
non-zero. This routine returns 1 if it succeeds, O otherwise.

bool _t
xdrrec_eof (XDR *xdrs) ;

This routine can be invoked only on streams created by
xdrrec_create(). After consuming the rest of the current record in the
stream, this routine returns 1 if the stream has no more input, 0 otherwise.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/xdr_admin
svid

Page: 226

xdr_admin (RS_LIB) xdr_admin (RS_LIB)

bool _t
xdrrec_ski precord(XDR *xdrs) ;

This routine can be invoked only on streams created by
xdrrec_create(). It tells the XDR implementation that the rest of the
current record in the stream’s input buffer should be discarded. This rou-
tine returns 1 if it succeeds, O otherwise.

bool _t
xdr _set pos(XDR *xdrs, const u_int pos);

A macro that invokes the set position routine associated with the XDR
stream xdrs. The parameter pos is a position value obtained from
xdr _get pos(). This routine returns 1 if the XDR stream was repositioned,
and 0 otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this rou-
tine may fail with one type of stream and succeed with another. Therefore,
applications written for portability should not depend on this feature.

SEE ALSO

xdr_complex(RS_LIB), xdr_create(RS_LIB), xdr_simple(RS_LIB).
LEVEL

Level 1.
Page 2

FINAL COPY
June 15, 1995
File: rs_lib/xdr_admin
svid

Page: 227

xdr_complex (RS_LIB) xdr_complex (RS_LIB)

NAME
xdr_complex: xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference,
xdr_string, xdr_union, xdr_vector, xdr_wrapstring — library routines for external
data representation

DESCRIPTION
XDR library routines allow C programmers to describe complex data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#i ncl ude <rpc/ xdr. h>

bool _t
xdr _array(XDR *xdrs, caddr_t *arrp, u_int *sizep,
const u_int maxsize, const u_int elsize, const xdrproc_t elproc);

xdr_array() translates between variable-length arrays and their
corresponding external representations. The parameter arrp is a pointer to
the array, while sizep is the address of the element count of the array; this
element count cannot exceed maxsize. The parameter elsize is the si zeof
each of the array’s elements, and elproc is an XDR routine that translates
between the array elements’ C form and their external representation. This
routine returns 1 if it succeeds, 0 otherwise.

bool _t
xdr _bytes(XDR *xdrs, char **sp, u_int *sizep,
const u_int maxsize);

xdr _byt es() translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep; strings cannot be longer than
maxsize. This routine returns 1 if it succeeds, O otherwise.

bool _t
xdr _opaque(XDR *xdrs, caddr_t cp, const u_int cnt);

xdr _opaque() translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and
cnt is its size in bytes. This routine returns 1 if it succeeds, O otherwise.

bool _t
xdr _poi nter (XDR *xdrs, char **objpp, u_int objsize,
const xdrproc_t xdrobj);
Like xdr_reference() except that it serializes NULL pointers, whereas

xdr _reference() does not. Thus, xdr _poi nter () can represent recur-
sive data structures, such as binary trees or linked lists.

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/xdr_complex
svid

Page: 228

xdr_complex (RS_LIB) xdr_complex (RS_LIB)

bool _t
xdr _reference(XDR *xdrs, caddr _t *pp, u_int size,
const xdrproc_t proc);

xdr _reference() provides pointer chasing within structures. The
parameter pp is the address of the pointer; size is the si zeof the structure
that *pp points to; and proc is an XDR procedure that translates the structure
between its C form and its external representation. This routine returns 1 if
it succeeds, O otherwise.

Warning: this routine does not understand NULL pointers. Use
xdr _poi nter () instead.

bool _t
xdr_string(XDR *xdrs, char **sp, const u_int maxsize);

xdr _string() translates between C strings and their corresponding exter-
nal representations. Strings cannot be longer than maxsize. Note: sp is the
address of the string’s pointer. This routine returns 1 if it succeeds, 0 oth-
erwise.

bool _t
xdr _uni on(XDR *xdrs, enumt *dscmp, char *unp,
const struct xdr_di scri m *choices,
const bool _t (*defaultarm) (const XDR *, const char *, const int));

xdr _uni on() translates between a discriminated C wunion and its
corresponding external representation. It first translates the discriminant of
the union located at dscmp. This discriminant is always an enum_t. Next
the union located at unp is translated. The parameter choices is a pointer to
an array of xdr_discrin() structures. Each structure contains an
ordered pair of [value, proc]. If the union’s discriminant is equal to the asso-
ciated value, then the proc is called to translate the union. The end of the
xdr _di scri m() structure array is denoted by a routine of value NULL. If
the discriminant is not found in the choices array, then the defaultarm pro-
cedure is called (if it is not NULL). Returns 1 if it succeeds, 0 otherwise.

bool _t
xdr_vector (XDR *xdrs, char *arrp, const u_int size,
const u_int elsize, const xdrproc_t elproc);

xdr_vector () translates between fixed-length arrays and their
corresponding external representations. The parameter arrp is a pointer to
the array, while size is is the element count of the array. The parameter elsize
is the si zeof each of the array’s elements, and elproc is an XDR routine
that translates between the array elements’ C form and their external
representation. This routine returns 1 if it succeeds, 0 otherwise.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/xdr_complex
svid

Page: 229

xdr_complex (RS_LIB) xdr_complex (RS_LIB)

bool _t
xdr_wrapstring(XDR *xdrs, char **sp);

A routine that calls xdr _string(xdrs, sp, maxuint); where maxuint is
the maximum value of an unsigned integer.

Many routines, such as xdr_array(), xdr_pointer() and
xdr _vector () take a function pointer of type xdrproc_t, which takes
two arguments. xdr _string(), one of the most frequently used rou-
tines, requires three arguments, while xdr _wrapstri ng() only requires
two. For these routines, xdr_wrapstring() is desirable. This routine
returns 1 if it succeeds, O otherwise.

SEE ALSO

xdr_admin(RS_LIB), xdr_create(RS_LIB), xdr_simple(RS_LIB).
LEVEL

Level 1.

Page 3

FINAL COPY
June 15, 1995
File: rs_lib/xdr_complex
svid

Page: 230

xdr_create (RS_LIB) xdr_create (RS_LIB)

voi d
xdrstdi o_create(XDR *xdrs, FILE *file, const enum xdr_op op);
This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the standard 1/0 stream file. The
parameter op determines the direction of the XDR stream (either
XDR_ENCODE, XDR_DECODE, or XDR_FREE).
Warning: the destroy routine associated with such XDR streams calls
fflush() on the file stream, but never fcl ose() [see fclose(BA_OS)].
SEE ALSO
fclose(BA_OS), read(BA_OS), write(BA_OS), xdr_admin(RS_LIB),
xdr_complex(RS_LIB), xdr_simple(RS_LIB).
LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/xdr_create
svid

Page: 232

xdr_simple (RS_LIB) xdr_simple (RS_LIB)

NAME
xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free,
xdr_int, xdr_long, xdr_short, xdr_u_char, xdr_u_int, xdr_u_long, xdr_u_short,
xdr_void - library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines require the creation of XDR streams [see xdr_create(RS_LIB)].

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#i ncl ude <rpc/xdr. h>

bool _t
xdr _bool (XDR *xdrs, bool _t *bp);

xdr _bool () translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either 1
or 0. This routine returns 1 if it succeeds, 0 otherwise.

bool _t
xdr _char (XDR *xdrs, char *cp);

xdr _char () translates between C characters and their external representa-
tions. This routine returns 1 if it succeeds, O otherwise. Note: encoded
characters are not packed, and occupy 4 bytes each. For arrays of charac-
ters, it is worthwhile to consider xdr_bytes(), xdr_opaque() or
xdr_string() [see xdr _bytes(), xdr _opaque() and
xdr _string() inxdr_complex(RS_LIB)].

bool _t
xdr _doubl e(XDR *xdrs, doubl e *dp);

xdr _doubl e() translates between C doubl e precision numbers and their
external representations. This routine returns 1 if it succeeds, O otherwise.

bool _t
xdr _enum(XDR *xdrs, enumt *ep);

xdr _enun() translates between C enuns (actually integers) and their
external representations. This routine returns 1 if it succeeds, O otherwise.
voi d
xdr _free(xdrproc_t proc, char *objp);
Generic freeing routine. The first argument is the XDR routine for the object
being freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it points to is freed
(recursively).

Page 1

FINAL COPY
June 15, 1995
File: rs_lib/xdr_simple
svid

Page: 233

xdr_simple (RS_LIB) xdr_simple (RS_LIB)

bool _t
xdr _float (XDR *xdrs, float *fp);

xdr _fl oat () translates between C f | oat s and their external representa-
tions. This routine returns 1 if it succeeds, O otherwise.

bool _t

xdr _int (XDR *xdrs, int *ip);
xdr_int () translates between C integers and their external representa-
tions. This routine returns 1 if it succeeds, O otherwise.

bool _t
xdr _| ong(XDR *xdrs, |ong *Ip);

xdr _l ong() translates between C |ong integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool _t
xdr _short (XDR *xdrs, short *sp);

xdr_short () translates between C short integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool _t
xdr _u_char (XDR *xdrs, char *ucp);

xdr _u_char () translates between unsi gned C characters and their exter-
nal representations. This routine returns 1 if it succeeds, 0 otherwise.

bool _t

xdr _u_int (XDR *xdrs, unsigned int *up);
xdr _u_i nt () translates between C unsi gned integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool _t
xdr _u_l ong(XDR *xdrs, unsi gned |ong *ulp);

xdr _u_l ong() translates between C unsi gned | ong integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

bool _t
xdr _u_short (XDR *xdrs, unsi gned short *usp);

xdr _u_short () translates between C unsigned short integers and
their external representations. This routine returns 1 if it succeeds, O other-
wise.

bool _t

xdr _voi d(voi d);
This routine always returns 1. It may be passed to RPC routines that
require a function parameter, where nothing is to be done.

SEE ALSO
xdr_admin(RS_LIB), xdr_complex(RS_LIB), xdr_create(RS_LIB).

Page 2

FINAL COPY
June 15, 1995
File: rs_lib/xdr_simple
svid

Page: 234

xdr_simple (RS_LIB)

LEVEL

Level 1.

FINAL COPY
June 15, 1995
File: rs_lib/xdr_simple
svid

Page: 235

xdr_simple (RS_LIB)

Page 3

FINAL COPY
June 15, 1995
File

Page: 236

Remote Services Commands And Utilities

The following section contains the manual pages for the RS_CMD routines.

Remote Services Commands And Utilities 13-1

FINAL COPY
June 15, 1995
File: rs_cmd.cov
svid

Page: 237

FINAL COPY
June 15, 1995
File:

Page: 238

chkey (RS_CMD) chkey (RS_CMD)

NAME
chkey — change your encryption key
SYNOPSIS
chkey
DESCRIPTION
The chkey command prompts the user for a password, and uses it to encrypt a
new encryption key for the user to be stored in the publickey database [see
publickey(RS_ENV)].
SEE ALSO
keylogin(RS_CMD), keyserv(RS_CMD), newkey(RS_CMD), publickey(RS_ENV).
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: rs_cmd/chkey
svid

Page: 239

dfmounts (RS_CMD) dfmounts (RS_CMD)

NAME

dfmounts - display mounted resource information

SYNOPSIS

df nount s [- F fstype] [- h] [- 0 specific_options] [restriction ...]

DESCRIPTION

The df rount s command shows the resources shared through a distributed file sys-
tem fstype along with a list of clients that have the resource mounted. If no argu-
ments are given, then information is displayed about the clients that have mounted
each local resource via any distributed file system type. If just - F fstype is given,
then only information for that fstype is displayed. If one or more restrictions are
given, df mount s shows the resources that satisfy any of the restrictions. If the - F
flag is omitted, and one or more restrictions are given, the file system in the first line
of /et c/ df s/ fstypes is used as the default. The specific_options, as well as the
availability and semantics of restriction, are specific to particular distributed file sys-
tems.

The output of df nount s consists of an optional header line (suppressed with the
- h flag) followed by a list of lines containing whitespace separated fields. For each
resource, the first four fields are:

resource server pathname clients
where

resource specifies the resource name that was given to the nount
command.

server specifies the system from which the resource was mounted.

pathname specifies the pathname that was given to the share com-
mand.

clients lists the systems, comma-separated, by which the resource
was mounted.

A field may be null. Each null field is indicated by a hyphen (-) unless the
remainder of the fields on the line are also null, in which case it may be omitted.
Any fields containing whitespace are enclosed in quotes.

ERRORS

USAGE

If a restriction name is invalid, an error message will be sent to standard error.

Administrator.

SEE ALSO

LEVEL

fumount(RS_CMD), dfshares(RS_CMD), mount(AS_CMD), share(RS_CMD),
unshare(RS_CMD)

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/dfmounts
svid

Page: 240

dfshares (RS_CMD) dfshares (RS_CMD)

NAME

dfshares — list available resources from remote systems
SYNOPSIS

df shares [- F fstype] [- h] [- o specific_options] [server ...]
DESCRIPTION

The df shar es command provides information about resources available to the
host through a distributed file system of type fstype. If the command is given with
no arguments, information about resources available through each distributed file
system shall be displayed. If the command is given with just - F fstype as the argu-
ment, then only information for that fstype is displayed. If one or more servers are
given, then df shar es shows information about resources shared by those servers.
If the - F flag is omitted, and one or more servers are given, then the file system in
the first line of / et c/ df s/ f st ypes is used as the default. The specific_options as
well as the syntax of server are specific to particular distributed file systems.

The output of df shar es consists of an optional header line (suppressed with the
- h flag) followed by a list of lines containing whitespace separated fields. For each
resource, the first five fields are:

resource server access transport description

where

resource specifies the resource name that must be given to the nount
command [see mount(AS_CMD)].

server specifies the system from which the resource is available.

access specifies the access granted the client systems, either r o or
r w (for read-only or read/write, respectively).

transport specifies the transport provider on which the resource is
shared.

description describes the resource.

A field may be null. Each null field is indicated by a hyphen (=) unless the
remainder of the fields on the line are also null, in which case it may be omitted.
Any fields containing whitespace are enclosed in quotes.

ERRORS
If (1) the domain name server cannot be contacted or (2) the argument is a domain
name unknown to the domain name server, an error message will be sent to stan-

dard error.
USAGE

Administrator, End-User.
SEE ALSO

dfmounts(RS_CMD), mount(AS_CMD), share(RS_CMD), unshare(RS_CMD)
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/dfshares
svid

Page: 241

keylogin (RS_CMD) keylogin (RS_CMD)

NAME
keylogin — decrypt and store secret key
SYNOPSIS
keyl ogi n
DESCRIPTION
The keyl ogi n command prompts the user for a password, and uses it to decrypt
the user’s secret key stored in the publickey database [see publickey(RS_ENV)].
Once decrypted, the user’s key is stored by the local key server process keyserv
[see keyserv(RS_CMD)] to be used by any secure network services, such as NFS.
SEE ALSO
chkey(RS_CMD), keyserv(RS_CMD), newkey(RS_CMD), publickey(RS_ENV).
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: rs_cmd/keylogin
svid

Page: 242

keyserv (RS_CMD) keyserv (RS_CMD)

NAME
keyserv — server for storing public and private keys

SYNOPSIS
keyserv [—-n]

DESCRIPTION
The keyser v command is a daemon that is used for storing the private encryption
keys of each user logged into the system. These encryption keys are used for
accessing secure network services such as secure NFS.
Normally, root’s key is read from the rootkey database when the daemon is started.
This is useful during power-fail reboots when no one is around to type a password,
yet you still want the secure network services to operate normally.
The —n option prompts the user for the password to decrypt root’s key stored in the
publickey database and then store the decrypted key in the rootkey database for
future use. Root’s key is not read from the rootkey database. This option is useful
if the the rootkey database ever gets out of date or corrupted.

SEE ALSO
publickey(RS_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/keyserv
svid

Page: 243

newkey (RS_CMD) newkey (RS_CMD)

NAME
newkey — create a new key in the publickey database

SYNOPSIS
newkey [—u username]

newkey [—h hostname]

DESCRIPTION
The newkey command is normally run by the network administrator on the
machine that contains the publickey database, to establish public keys for users and
privileged users on the network. These keys are needed when using secure RPC or
secure NFS.

newkey will prompt for a password for the given username and then create a new
public/secret key pair for the user in the publickey database, encrypted with the
given password.

The following options are available:

—u username Create a new public/secret key pair for the given username.
Prompts for a password for the given username.

—h hostname Create a new public/secret key pair for the privileged user at the
given hostname. Prompts for a root password for the given host-

name.
SEE ALSO
chkey(RS_CMD), keylogin(RS_CMD), keyserv(RS_CMD), publickey(RS_ENV).
LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/newkey
svid

Page: 244

rpcbind (RS_CMD) rpcbind (RS_CMD)

NAME

rpchind — universal addresses to RPC program number mapper
SYNOPSIS

r pchi nd
DESCRIPTION

r pchi nd is a server that converts RPC program numbers into universal addresses.
It must be running in order to make RPC calls.

When an RPC service is started, it will tell r pcbi nd at what address it is listening
to, and what RPC program numbers it is prepared to serve. When a client wishes to
make an RPC call to a given program number, it will first contact r pcbi nd on the
server machine to determine the address where RPC packets should be sent.

Normally, standard RPC servers are started by port monitors, so r pcbi nd must be
started before port monitors are invoked.

r pcbi nd is restricted to users with appropriate privileges.

USAGE
Administrator.

If rpcbi nd crashes, all RPC servers must be restarted.

SEE ALSO
rpcinfo(RS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/rpchind
svid

Page: 245

rpcgen (RS_CMD) rpcgen (RS_CMD)

NAME

rpcgen — an RPC protocol compiler

SYNOPSIS

rpcgen infile

rpcgen [—Dname[=value]] [-T] infile
rpcgen —c|—h| -l | —-m —t [—o outfile] [infile]
rpcgen —s nettype [—o outfile] [infile]

rpcgen —n netid [—o outfile] [infile]

DESCRIPTION

r pcgen is a tool that generates C code to implement an RPC protocol. The input to
rpcgen is a language similar to C known as RPC Language (Remote Procedure
Call Language) [see the Remote Services Introduction chapter for details on the RPC
Language].

r pcgen is normally used as in the first synopsis where it takes an input file and
generates four output files. If the infile is named pr ot o. x, then r pcgen will gen-
erate a header file in prot 0. h, XDR routines in pr ot o_xdr . c, server-side stubs
in proto_svc. ¢, and client-side stubs in proto_cl nt. c. With the —T option, it
will also generate the RPC dispatch table in proto_tbl .i.

The second synopsis provides special features which allow for the creation of more
sophisticated RPC servers. These features include support for user provided
#def i nes and RPC dispatch tables, The entries in the RPC dispatch table contain:

» pointers to the service routine corresponding to that procedure,

» apointer to the input and output arguments

» the size of these routines
A server can use the dispatch table to check authorization and then to execute the
service routine; a client library may use it to deal with the details of storage
management and XDR data conversion.

The other three synopses shown above are used when one does not want to gen-
erate all the output files, but only a particular one. Some examples of their usage is
described in the EXAMPLE section below. When r pcgen is executed with the —s
option, it creates servers for that particular class of transports. When executed with
the —n option, it creates a server for the transport specified by netid. If infile is not
specified, r pcgen accepts the standard input.

The C preprocessor, cc —E [see cc(SD_CMD)], is run on the input file before it is
actually interpreted by rpcgen. For each type of output file, r pcgen defines a
special preprocessor symbol for use by the r pcgen programmer:

RPC HDR defined when compiling into header files
RPC_XDR defined when compiling into XDR routines
RPC_SVC defined when compiling into server-side stubs
RPC_CLNT defined when compiling into client-side stubs
RPC_TBL defined when compiling into RPC dispatch tables

Any line beginning with ‘98 is passed directly into the output file, uninterpreted by
rpcgen.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/rpcgen
svid

Page: 246

rpcgen (RS_CMD) rpcgen (RS_CMD)

USAGE

Page 2

For every data type referred to in infile, r pcgen assumes that there exists a routine
with the string xdr _ prepended to the name of the data type. If this routine does
not exist in the RPC/XDR library, it must be provided. Providing an undefined
data type allows customization of XDR routines.

The following options are available:
—C Compile into XDR routines.

—Dname[=value]
Define a symbol name. Equivalent to the #defi ne directive in the source.
If no value is given, value is defined as 1. This option may be specified more
than once.

—h Compile into C data-definitions (a header file). —T option can be used in
conjunction to produce a header file which supports RPC dispatch tables.

= Compile into client-side stubs.

-m Compile into server-side stubs, but do not generate a main routine. This
option is useful for doing callback-routines and for users who need to write
their own main routine to do initialization.

—n netid
Compile into server-side stubs for the transport specified by netid. There
should be an entry for netid in the netconfig database. This option may be
specified more than once, so as to compile a server that serves multiple tran-

sports.

—0 outfile
Specify the name of the output file. If none is specified, standard output is
used (—¢c, —=h, -1, —-m —n, —s and —t modes only).

—S nettype

Compile into server-side stubs for all the transports belonging to the class
nettype. The supported classes are netpath, visible, circuit_n,
circuit_v, datagramn, datagramyv, tcp, and udp [see the Remote
Services Definitions chapter for the meanings associated with these classes].
This option may be specified more than once. Note: the transports are
chosen at run time and not at compile time.

—t Compile into RPC dispatch table.
-T Generate the code to support RPC dispatch tables.

The options —c, —-h, =I, —-m —-n, —s and —t are used exclusively to generate a
particular type of file, while the options —D and -T are global and can be used
with the other options.

General.

The RPC Language does not support nesting of structures. As a work-around,
structures can be declared at the top-level, and their name used inside other struc-
tures in order to achieve the same effect.

FINAL COPY
June 15, 1995
File: rs_cmd/rpcgen
svid

Page: 247

rpcgen (RS_CMD) rpcgen (RS_CMD)

Name clashes can occur when using program definitions, since the apparent scop-
ing does not really apply. Most of these can be avoided by giving unique names for
programs, versions, procedures and types.

The server code generated with —n option refers to the transport indicated by netid
and hence is very site specific.

EXAMPLE

The following example:
$ rpcgen -T prot.x

generates all the five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c
and prot _thl.i.

The following example sends the C data-definitions (header file) to the standard
output.

$ rpcgen —h prot.x

To send the test version of the - DTEST, server side stubs for all the transport
belonging to the class dat agr am_n on standard output, use:

$ rpcgen —s datagramn -DTEST prot. x
To create the server side stubs for the transport indicated by netid t cp, use:
$ rpcgen -n tcp —o prot_svc.c prot. X

SEE ALSO

LEVEL

cc(SD_CMD).

Level 1.

Page 3

FINAL COPY
June 15, 1995
File: rs_cmd/rpcgen
svid

Page: 248

rpcinfo (RS_CMD) rpcinfo (RS_CMD)

rpcinfo — report RPC information

SYNOPSIS

rpcinfo [T transport] [host]

rpcinfo [T transport] host program [version]

rpci nfo —a serv_addres —T transport program [version]
rpci nfo —b program version

rpcinfo —d [-T transport] program version

DESCRIPTION

The r pci nf o command makes an RPC call to an RPC server and reports what it
finds. rpci nf o without any arguments lists all the registered RPC services. This
usage, shown by the first synopsis, is the most common. In the second synopsis,
rpci nfo makes an RPC call to 0 on the specified host and reports whether a
response was received. See EXAMPLE for other ways to use r pci nf o.

The following options are available, and all except —T are mutually exclusive.

—T transport Specify the transport on which the service is required. If this
option is not specified, rpci nfo uses the transport specified in
the NETPATH environment variable, or if that is unset, in the
netconfig database. This is a generic option, and can be used in
conjunction with any other option, except the —b option.

—a serv_address Use serv_address as the universal address for the service on tran-
sport, ping procedure 0 of the specified program, and report
whether a response was received. This option requires the —-T
option.

-b Make an RPC broadcast to procedure 0 of the specified program
and version and report all hosts that respond. Send the broadcast
request on all transports that support broadcasts. If broadcasting
is not supported by any transport, an error message is printed.

—d Delete registration for the RPC service of the specified program and
version. This option can be exercised only by the super-user. If
transport is specified, unregister the service on only that transport,
otherwise unregister the services on all the transports on which it
was registered.

The program argument can be either a name or a number.

If a version is specified, r pci nf o attempts to call that version of the specified pro-
gram. Otherwise, rpci nf o attempts to find all the registered version numbers for
the specified program by calling version 0, which is presumed not to exist; if it does
exist, rpci nfo attempts to obtain this information by calling an extremely high
version humber instead, and attempts to call each registered version. Note: the ver-
sion number is required for —b and —d options.

Page 1

rpcinfo (RS_CMD) rpcinfo (RS_CMD)

EXAMPLE
To show all of the RPC services registered on the local machine use:

$ rpcinfo

To show all of the RPC services registered on the machine named kl axon and on
transport t cp use:

$ rpcinfo —-T tcp kil axon
To delete the registration for version 1 of the wal | d for all transports use:
$ rpcinfo —d walld 1

USAGE
General.

SEE ALSO
rpcbind(RS_LIB).

LEVEL
Level 1.

Page 2

share (

RS_CMD) share (RS_CMD)

NAME
share — make local resource available for sharing by remote systems
SYNOPSIS
share [- F fstype] [- o specific_options] [-d description]
[pathname [resourcename]]
DESCRIPTION
The shar e command makes a resource available for sharing through a distributed
file system of type fstype. When invoked without any arguments, shar e displays all
resources on the local system that are shared through any distributed file system.
When invoked with only a file system type, shar e displays all resources shared on
the local system through the given file system. If the - F flag is omitted, and path-
name is given, then the file system in the first line of / et ¢/ df s/ f st ypes is used as
the default. specific_options as well as the syntax of resourcename are specific to par-
ticular distributed file systems.
The - d flag may be used to provide a description of the resource being shared.
ERRORS
If (1) the network is not up and running, (2) pathname is not a full path name or (3)
pathname is not on a file system mounted locally, an error message will be sent to
the standard error output.
FILES
/etc/df s/ df stab
/etc/ df s/ sharetab
/etc/dfs/fstypes
USAGE
Administrator.
SEE ALSO
unshare(RS_CMD).
LEVEL

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/share
svid

Page: 251

unshare (RS_CMD) unshare (RS_CMD)

NAME
unshare — make local resource unavailable for sharing by remote systems

SYNOPSIS
unshar e [- F fstype] [- o specific_options] pathname
unshare [- F fstype] [- o specific_options] resourcename

DESCRIPTION
The unshar e command makes a resource that was shared with shar e unavailable
for sharing through a remote file system of type fstype. If the - F flag is omitted, the
file system in the first line of /etc/dfs/fstypes is used as the default.
specific_options as well as the syntax of resourcename are specific to particular distri-
buted file systems.

ERRORS
If resourcename is not found in the shared information, an error message will be sent
to standard error.

FILES
/etc/dfs/dfstab
/etc/df s/ sharetab
/etc/dfs/fstypes

USAGE
Administrator.

SEE ALSO
share(RS_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rs_cmd/unshare
svid

Page: 252

Real Time And Memory Management
Introduction

Real Time And Memory Management Overview

The Real Time and Memory Management Extension (RT) consists of facilities to
allow application programs to respond in a deterministic and timely manner to
external interrupts. This issue of the SVID includes BSD-based timer functionality
to provide fine granularity alarms and a mencnt | () interface to provide applica-
tion control over memory residence [see memcntl(RT_OS)].

USL is committed to support the standardization of a Real Time interface as
defined by POSIX. The IEEE P1003.4 working group is currently pursuing a draft
standard for a Real Time interface. Full conformance to this standard will be
strongly considered upon formal approval.

The following are prerequisite for support of the Real Time and Memory Manage-
ment Extension:

m Base System

m Kernel Extension

SUMMARY OF OS SERVICE ROUTINES

The following OS service routines are supported by the Real Time and Memory
Management Extension. All of these items are new to this issue of the SVID.
Items marked with a star (*) are Level 2, as defined in the General Introduction to
this volume.

getitiner* nmencntl m ockal | munl ockal | setti neof day
get ti meof day *m ock nmunl ock setitiner swapct |

Real Time And Memory Management Introduction 14-1

FINAL COPY

June 15, 1995

File: rt_int.txt
svid

Page: 253

ORGANIZATION OF TECHNICAL INFORMATION

The Real Time and Memory Management OS Service Routines chapter provides
manual page descriptions of library routines supported by this extension.

14-2 REAL TIME AND MEMORY MANAGEMENT INTRODUCTION

FINAL COPY

June 15, 1995

File: rt_int.txt
svid

Page: 254

Real Time And Memory Management Routines

The following section contains the manual pages for the RT_OS routines.

Real Time And Memory Management Routines 15-1

FINAL COPY

June 15, 1995

File: rt_os.cov
svid

Page: 255

FINAL COPY
June 15, 1995
File

Page: 256

getitimer (RT_OS) getitimer (RT_OS)

NAME
getitinmer,setitiner —get/set value of interval timer

SYNOPSIS
#i ncl ude <sys/tine. h>

int getitimer(int which, struct itinerval [Ovalue);

int setitiner(int which, struct itinmerval [Ovalue, struct itinerval
[bvalue) ;

DESCRIPTION
The system provides each process with three interval timers, defined in
sys/tinme.h. The getitiner call stores the current value of the timer specified by
which into the structure pointed to by value. The setitimer call sets the value of
the timer specified by which to the value specified in the structure pointed to by
value, and if ovalue is not NULL, stores the previous value of the timer in the struc-
ture pointed to by ovalue.

A timer value is defined by the i ti merval structure for the definition of ti neval],
which includes the following members:

struct tineval it_interval; /Otiner interval O
struct tineval it_value; [Ocurrent value O

If it_val ue is non-zero, it indicates the time to the next timer expiration. If
it_interval is non-zero, it specifies a value to be used in reloading it _val ue
when the timer expires. Setting it _val ue to zero disables a timer, regardless of the
value of it _interval . Settingit _interval to zero disables a timer after its next
expiration (assuming i t _val ue is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution.

The three timers are:

I TI MER_REAL Decrements in real time. A S| GALRMsignal is delivered when
this timer expires.

| TI MER M RTUAL Decrements in process virtual time. It runs only when the pro-
cess is executing. A Sl GVTALRM signal is delivered when it
expires.

I TI MER_PRCF Decrements both in process virtual time and when the system
is running on behalf of the process. It is designed to be used by
interpreters in statistically profiling the execution of interpreted
programs. Each time the | TI MER_PRCF timer expires, the SI G
PRCF signal is delivered. Because this signal may interrupt in-
progress system calls, programs using this timer must be
prepared to restart interrupted system calls.

Return Values
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is
returned, and an error code is placed in the global variable er r no.

Page 1

FINAL COPY
June 15, 1995
File: rt_os/getitimer
svid

Page: 257

getitimer (RT_OS) getitimer (RT_OS)

Errors
Under the following conditions, the functions geti ti nmer and setiti mer fail and
set errno to:

El NVAL The specified number of seconds is greater than 100,000,000, the number

of microseconds is greater than or equal to 1,000,000, or the which
parameter is unrecognized.

SEE ALSO
al ar m(BA_OS)

LEVEL
Level 1.

NOTICES
The microseconds field should not be equal to or greater than one second.

setitimer isindependent of the al ar msystem call.

Do not use setitinmer with the sl eep routine. A sl eep following a setiti ner
wipes out knowledge of the user signal handler.

Page 2

FINAL COPY
June 15, 1995
File: rt_os/getitimer
svid

Page: 258

gettimeofday (RT_OS) gettimeofday (RT_OS)

NAME
gettimeofday, settimeofday — get or set the date and time

SYNOPSIS
#i ncl ude <sys/tine. h>

int gettimeofday(struct timeval *tp);
int settinmeofday(struct timeval *tp);

DESCRIPTION
The system’s notion of the current Greenwich time is obtained with the get -
ti meof day() call, and set with the setti neof day() call. The current time is
expressed in elapsed seconds and microseconds since 00:00 UTC, January 1, 1970
(zero hour). The resolution of the system clock is hardware dependent; the time
may be updated continuously, or in ticks .

tp pointstoa ti neval structure, which includes the following members:

| ong tv_sec; /* seconds since Jan. 1, 1970 */
| ong tv_usec; [/* and microseconds */

The flag indicating the type of daylight savings time correction should have one of
the following values (as defined in <sys/ti me. h>):

DST_NONE daylight savings time not observed.
DST_USA United States DST.

DST_AUST Australian DST.

DST_WET Western European DST.

DST_MET Middle European DST.

DST_EET Eastern European DST.

DST_CAN Canadian DST.

DST_GB Great Britain and Eire DST.
DST_RUM Rumanian DST.

DST_TUR Turkish.

DST_AUSTALT Australian-style DST with shift in 1986.

Also note that the offset of the local time zone from UTC may change over time, as
may the rules for daylight saving time correction. The | ocal ti me() routine [see
| ocal time() in ctime(BA_LIB)] obtains this information from a file rather than
from get ti meof day(). Programs should use | ocal ti me() to convert dates and
times.

Only a process with appropriate privileges may set the time of day.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If an error occurs, a value of -1 is
returned and er r no is set to indicate the error.

ERRORS
Under the following condition, the functions gettinmeofday() and
set ti meof day() will fail and set er r no to:

Page 1

FINAL COPY
June 15, 1995
File: rt_os/gettimeofday
svid

Page: 259

gettimeofday (RT_OS) gettimeofday (RT_OS)

EPERM if a process without appropriate privileges attempts to set the time.

In addition, under the following condition, the function set t i neof day() will fail
and set err no to:

El NVAL if the tp parameter is not in canonical form, i.e., the number of
microseconds is greater than zero and less than 1,000,000, and the
number of seconds is non-negative.

FILES
[usr/include/sys/tine.h

USAGE
Administrator.

SEE ALSO
adjtime(BA_OS), ctime(BA_LIB).

FUTURE DIRECTIONS
It is expected that these routines will be replaced by POSIX 1003.4 routines in a
future issue of the SVID.

LEVEL
Level 2: June 30, 1989.

Page 2

FINAL COPY
June 15, 1995
File: rt_os/gettimeofday
svid

Page: 260

memcntl (RT_OS)

Page 2

MC_LOCK

MC_LOCKAS

MC_SYNC

MC_UNLOCK

memcntl (RT_OS)

Lock in memory all pages in the range with attributes attr. A
given page may be locked multiple times through different map-
pings; however, within a given mapping, page locks do not nest.
Multiple lock operations on the same address in the same process
will all be removed with a single unlock operation. A page
locked in one process and mapped in another (or visible through
a different mapping in the locking process) is locked in memory
as long as the locking process does neither an implicit nor explicit
unlock operation. If a locked mapping is removed, or a page is
deleted through file truncation, an unlock operation is implicitly
performed. If a writable MAP_PRI VATE page in the address
range is changed, the lock will be transferred to the private page.

At present arg is unused, but must be 0 to ensure compatibility
with potential future enhancements.

Lock in memory all pages mapped by the address space with
attributes attr. At present addr and len are unused, but must be
NULL and O respectively, to ensure compatibility with potential
future enhancements. arg is a bit pattern built from the flags:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

The value of arg determines whether the pages to be locked are
those currently mapped by the address space, those that will be
mapped in the future, or both. If MCL_FUTURE is specified, then
all mappings subsequently added to the address space will be
locked, provided sufficient memory is available.

Write to their permanent storage locations all modified pages in
the range with attributes attr. Optionally, invalidate cache copies.
arg is a bit pattern built from the flags used to control the
behavior of the operation:

M5_ASYNC perform asynchronous writes
M5_SYNC perform synchronous writes
M5_| NVALI DATE invalidate mappings

MS_ASYNC returns immediately once all write operations are
scheduled; with M5_SYNC the system call will not return until all
write operations are completed.

MS_I NVALI DATE invalidates all cached copies of data in
memory, so that further references to the pages will be obtained
by the system from their permanent storage locations. This
operation should be used by applications that require a memory
object to be in a known state.

Unlock all pages in the range with attributes attr. At present arg
is unused, but must be 0 to ensure compatibility with potential
future enhancements.

FINAL COPY
June 15, 1995
File: rt_os/memcntl
svid

Page: 262

memcntl (RT_OS)

memcntl (RT_OS)

MC_UNLOCKAS Remove address space memory locks, and locks on all pages in

the address space with attributes attr. At present addr, len, and
arg are unused, but must be NULL, 0 and 0O respectively, to ensure
compatibility with potential future enhancements.

Locks established with the lock operations are not inherited by a child process after
fork(). Attempts to lock more memory than a system-specific limit, will fail.

Due to the potential impact on system resources, all operations, with the exception
of MC_SYNC, are restricted to processes with appropriate privileges. The
nmencnt | () function subsumes the operations of pl ock() .

RETURN VALUE

Upon successful completion, the function nentnt| () returns a value of O; other-
wise, it returns a value of —1 and sets er r no to indicate an error.

ERRORS

Under the following conditions, the function nencnt | () fails and sets er r no to:

EAGAI N

EBUSY

El NVAL
El NVAL

El NVAL

El NVAL

ENOVEM

EPERM

SEE ALSO

if some or all of the memory identified by the operation could not be
locked when MC_LOCK or MC_LOCKAS is specified.

if some or all the addresses in the range [addr, addr + len) are locked
and MC_SYNCwith M5_I NVAL| DATE option is specified.

if addr is not a multiple of the page size as returned by sysconf ().

if addr and/or len do not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS is specified.

if arg is not valid for the function specified.
if invalid selection criteria are specified in attr.

if some or all the addresses in the range [addr, addr + len) are invalid
for the address space of the process or pages not mapped are
specified.

if the process does not have appropriate privilege to perform the
requested operation.

sysconf(BA_OS), mlock(RT_OS), mlockall(RT_OS), mmap(KE_OS),
mprotect(KE_OS), msync(KE_OS), plock(KE_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: rt_os/memcntl
svid

Page: 263

mlock (RT_OS) mlock (RT_OS)

NAME
mlock, munlock — lock (or unlock) pages in memory

SYNOPSIS
#i ncl ude <sys/types. h>

int mock(caddr_t addr, size_t len);

i nt munl ock(caddr _t addr, size_t len);

DESCRIPTION
The function M ock() uses the mappings established for the address range [addr,
addr + len) to identify pages to be locked in memory. The effect of m ock(addr,
len) isequivalentto nenctntl (addr, len, MC_LOCK, 0, 0).
munl ock() removes locks established with m ock(). The effect of
munl ock(addr, len) is equivalent to nencntl (addr, len, MC_UNLOCK, O,
0).

Locks established with m ock() are not inherited by a child process after a
fork().
RETURN VALUE
Upon successful completion, the functions m ock() and nunl ock() return a
value of 0; otherwise, they return a value of —1 and set er r no to indicate an error.
ERRORS
See memcntl(RT_OS).
USAGE
Use of m ock() and nunl ock() requires that the user have appropriate privileges.
SEE ALSO
fork(BA_OS), memcntl(RT_OS), mmap(KE_OS), mlockall(RT_OS), plock(KE_QOS),
sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rt_os/mlock
svid

Page: 264

mlockall (RT_OS) mlockall (RT_OS)

NAME
mlockall, munlockall — lock or unlock address space

SYNOPSIS
#i ncl ude <sys/man. h>

int mockall (int flags);

i nt nmunl ockal I (voi d);

DESCRIPTION
The function m ockal | () causes all pages mapped by an address space to be
locked in memory. The effect of m ockal | (flags) is equivalent to:
mencnt!| (0, 0, MC_LOCKAS, 0, flags)
The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both. [See
memcntl(RT_OS) for the values of flags.]

The function munl ockal | () removes address space locks and locks on mappings
in the address space. The effect of nunl ockal | () is equivalent to:
mencntl (0, O, MC_UNLOCKAS, 0, 0)

Locks established with m ockal | () are not inherited by a child process after a
fork().

RETURN VALUE
Upon successful completion, the functions m ockal | () and nunl ockal | ()
return a value of 0; otherwise, they return a value of —1 and set er r no to indicate
an error.

ERRORS
See memcntl(RT_OS).

USAGE
Use of m ockal | () and rmunl ockal | () requires that the process have appropri-
ate privileges.

SEE ALSO
fork(BA_OS), memcntl(RT_OS), mlock(RT_OS), mmap(KE_OS), plock(KE_OS),
sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: rt_os/mlockall
svid

Page: 265

swapctl(RT_OS) swapctl(RT_OS)

NAME
swapctl — manage swap space

SYNOPSIS
#i ncl ude <sys/stat.h>
#i ncl ude <sys/swap. h>

int swapctl (int cmd, void *arg);

DESCRIPTION
The function swapct | () provides a means for a process to add, delete, and iden-
tify resources providing memory for swap space. cmd specifies one of the following
options contained in <sys/ swap. h>:

SC_ADD /* add a resource for swapping */

SC LI ST /* list the resources for swapping */
SC_REMOVE /* renove a resource for swapping */
SC_GETNSWP /* return nunber of swap resources */

When SC_ADDor SC_REMOVE are specified, arg is a pointer to a swapr es struc-
ture containing the following members:

char *sr_name; /* pathnane of resource */
off _t sr_start; /* offset to start of swap area */
off _t sr_length; /* length of swap area */

A successful SC_ADD adds a reference to the associated file, which guarantees that it
will continue to be usable for swap space, even if the file is removed from the direc-
tory by unli nk(BA_0S). This reference will be removed by the corresponding
SC_REMOVE.

When SC_LI ST is specified, arg is a pointer to a swapt abl e structure containing
the following members:

i nt swt_n; /* nunber of swapents follow ng */
struct swapent swt_ent[];/* array of swt_n swapents */

A swapent structure contains the following members:

char *ste_pat h; /* name of the swap file */

off _t ste_start; /* starting block for swapping */
off t ste_length; /* length of swap area */

long ste_pages; /* nunber of pages for swapping */
long ste_ free; /* nunber of ste_pages free */
long ste_flags; /* see bel ow */

SC LI ST causes swapctl () to returns at most swt _n entries. The value of
swapct | () is the number actually returned.

When SC_GETNSWP is specified, swapct| () returns as its value the number of
swap resources in use. arg is ignored for this operation.

The SC_ADD and SC_REMOVE functions will fail if calling process does not have
appropriate privileges.

Page 1

FINAL COPY
June 15, 1995
File: rt_os/swapctl
svid

Page: 266

swapctl(RT_OS) swapctl(RT_OS)

RETURN VALUE
Upon successful completion, the function swapct! () returns a value of 0 for

SC_ADD or SC_REMOVE, the number of st ruct swapent entries actually returned
for SC_LI ST, or the number of swap resources in use for SC_GETNSWP. Upon
failure, the function swapct | () returns a value of —1 and sets er r no to indicate an

error.

Page 2

FINAL COPY
June 15, 1995
File: rt_os/swapctl
svid

Page: 267

swapctl(RT_OS)

ERRORS
Under the following conditions, the function swapct | () fails and sets er r no to:

LEVEL

EEXI ST

El NTR
El NVAL

El SDI R
ELOCP

ENAVETOOLONG

ENCENT

ENOVEM

ENOTDI R

EPERM

Level 1.

swapctl(RT_OS)

if the specified resource is already being used for swapping
(SC_ADD) or else can not be removed (SC_REMOVE).

if interrupted by signal (SC_REMOVE).

if the specified function value is not valid (that is, none of
SC_ADD, SC_LI ST, or SC_REMOVE) .

if the path specified for SC_ADDis a directory.

if too many symbolic links were encountered in translating
the pathname provided to SC_ADDor SC_REMOVE.

if the length of a component of the path specified for
SC_ADD or SC_REMOVE exceeds { NAME_MAX} characters or
the length of the path exceeds { PATH_MAX} characters and
{_PCSI X_NO _TRUNC} is in effect.

Pathname specified for SC_ADD or SC_REMOVE does not
exist.

An insufficient number of struct swapent structures
were provided to SC LI ST, or there were insufficient sys-
tem storage resources available during an SC_ADD or
SC_REMOVE.

Pathname provided to SC_ADD or SC_REMOVE contained a
component in the path prefix that was not a directory.

The process does not have appropriate privileges.

Page 3

FINAL COPY
June 15, 1995
File: rt_os/swapctl
svid

Page: 268

C Language Specification

C Language Specification Overview

The C Language Specification defines the programming language recognized by a
SVID-conforming C compiler [see cc(SD_CMD)]. The SVID-conforming C
language is based on the American National Standard for Information
Systems—Programming Language C (ANSI C Standard), with extensions that pro-
vide additional functionality. This definition does not address C library functions.
It assumes that the reader is familiar with the C language and does not attempt to
duplicate the information in the ANSI C standard, but rather provides a reference
of differences and additions to the language.

UNDEFINED AND IMPLEMENTATION DEFINED
BEHAVIOR

The ANSI C standard specifies that the behavior of a conforming compilation sys-
tem is undefined or implementation defined under certain circumstances. Unless
explicitly defined in the SVID, ANSI C undefined or implementation defined
behaviors are also undefined or implementation defined for SVID-conforming C
language implementations.

Undefined behavior is indicated in the ANSI C standard by the words ‘“‘undefined
behavior”, by the omission of any explicit definition of behavior, or by a violation
of a “shall’” or “‘shall not” requirement outside of a constraint. ANSI C conform-
ing language behavior, in these circumstances, includes ignoring the situation
with unpredictable results, behaving in a documented manner, or terminating
with a diagnostic message. A SVID-conforming C language extends this to
require that the compilation system behavior not be arbitrary, e.g., dump core.
Therefore, some behavior not defined by the ANSI C standard is defined for a
SVID-conforming compilation system.

C Language Specification 16-1

FINAL COPY

June 15, 1995

File: pl_c.txt
svid

Page: 269

OPTIONAL BEHAVIOR

The SVID definition of the C language defines several ANSI C “implementation-
defined” behaviors, extentions, and optional extentions to the standard. The
optional extentions, if provided in a SVID-conforming C language, should con-
form to the definitions provided. They are

m addition of the keyword asm a non-conforming extention,

m addition of the preprocessing directives #assert , #unassert, and
#i dent,

m specification of certain #pr agna directives.

SVID-conforming C language implementations may provide additional behavior
not defined in the SVID. For example, a SVID-conforming C language may pro-
vide old style ““unsigned-preserving’’ integral promotion behavior, in addition to
the ANSI C ““value-preserving” integral promotion behavior.

DIAGNOSTICS

The ANSI C standard requires a conforming implementation to define how a diag-
nostic is identified. Any message written to standard error is taken to be a diag-
nostic. The SVID-conforming C language recommends, but does not require, the
following formats:

"filename", |i ne lineno: msg

and

"filename", |i ne lineno: warni ng: msg
where

m filename is the name of the file containing the error,

m lineno is the number of the line on which the error was found,

m and msg is the diagnostic message.
In the case where an error occurs while processing the command line before open-
ing any files, the filename may not be available for use in the diagnostic message.

Therefore, the described diagnostic format holds only after successfully opening
the input file.

16-2 PROGRAMMING LANGUAGE SPECIFICATION

FINAL COPY

June 15, 1995

File: pl_c.txt
svid

Page: 270

CHARACTER SETS

The default execution character set for a SVID-conforming C language is ASCI|I
and the default direction of printing is left-to-right.

SOURCE FILES AND TOKENIZATION

Identifiers

Identifiers are used to name things like variables, functions, data types and mac-
ros.

Identifiers are made up of letters, digits, or underscore (_) characters. The first
character must be a letter or an underscore.

A SVID-conforming C language will treat upper and lower case letters as distinct
in external identifiers. It will also support internal and external identifiers that are
significant to at least the first 100 characters.

C Language Specification 16-3

FINAL COPY

June 15, 1995

File: pl_c.txt
svid

Page: 271

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

asm default for short uni on
aut o do goto si gned unsi gned
br eak doubl e if si zeof voi d
case el se i nt static vol atil e
char enum | ong struct whi | e
const extern register swtch

continue fl oat return t ypedef

The keyword asmis a non-conforming extension to the ANSI C standard, and is
optional in a SVID-conforming C language. If it is supported, the asmkeyword
may be used to insert assembly-language code directly into the translator output.
The most common implementation allows a statement of the form:

asm (character-string-literal) ;

PREPROCESSING

The SVID defines several optional extensions to the ANSI C standard in the area
of preprocessing.

Preprocessing Directives

Assertions
Assertions are optional in a SVID-conforming C language. If assertions are imple-
mented, a line of the form

#assert predicate (token-sequence)

associates the list of tokens with the predicate in the assertion name space (separate
from the space used for macro definitions). The predicate must be an identifier
token. The assertion lasts until a corresponding #unassert directive, if any. In
the argument preprocessing tokens, parentheses must balance and commas have
no special meaning.

#assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

16-4 PROGRAMMING LANGUAGE SPECIFICATION

FINAL COPY

June 15, 1995

File: pl_c.txt
svid

Page: 272

The compiler provides the following predefined predicate by default:

#assert system (uni x)

A line of the form
#unassert predicate (token-sequence)

deletes the list of tokens asserted on the predicate. A line of the form
#unassert predicate

deletes all assertions on the predicate.

Version Control

The #i dent directive is optional in a SVID-conforming C language and is used to
help administer version control information.

#i dent " version"”

puts an arbitrary string in the . coment section of an executable file. The. com
nment section is not loaded into memory when an executable file is executed.

Pragmas
Preprocessing lines of the form
#pr agna token-sequence

specify implementation-defined actions. These lines must be handled by a con-
forming ANSI C implementation, but need not have any effect.

The following #pr agna’s are optional in a SVID-conforming C language. If these
are implemented, a line of the form

#pragnma i dent "version"
is identical in function to:

#i dent "version"

A SVID-conforming C compiler ignores all unrecognized pragmas.

Macro Replacement

A SVID-conforming C language shall allow empty token list macro arguments.
The resulting token list for such an invocation will contain no tokens for any
parameter which was associated with an empty argument.

C Language Specification 16-5

FINAL COPY

June 15, 1995

File: pl_c.txt
svid

Page: 273

DECLARATIONS AND DEFINITIONS
Types

As an extension to the ANSI C standard, a SVID-conforming C language imple-
mentation may support bit-fields having any integral type. In such an implemen-
tation, bit-fields that are declared with the si gned keyword or with the

unsi gned keyword act like their i nt counterpart with respect to the high-order
bit’s behaving like a sign bit. Whether bit-fields that are declared ““plain’ i nt
sign-extend is implementation-dependent. (Note this means enumbit-fields
behave like “plain” i nt .)

Storage Class Specifiers

As an extention, SVID-conforming C languages allow *“*‘multiply-defined external
definitions’’: there may be more than one external definition for the identifier of an
object, with or without the explicit use of the keyword ext er n. If the definitions
disagree, or if more than one is initialized, the behavior is undefined.

16-6 PROGRAMMING LANGUAGE SPECIFICATION

FINAL COPY

June 15, 1995

File: pl_c.txt
svid

Page: 274

Software Development Introduction

Software Development Overview

The Software Development Extension provides facilities for the compilation and
maintenance of C language software. Principal components are the C compiler cc
and its related utilities, the program development aids yacc and | ex, and the
Source Code Control System (SCCS) utilities.

The following are prerequisite for support of the Software Development Exten-
sion:

m Base System
m Basic Utilities Extension
m Advanced Utilities Extension

m Kernel Extension

SUMMARY OF LIBRARY ROUTINES

The following library routines are supported in a SVID-compliant Software
Development Extension (exception: items marked with a sharp (#) are optional and
need not be supported). Items marked with a star (*) are level 2, as defined in the
General Introduction to this volume. Items marked with a dagger () are new to
this edition of the SVID.

MARK # getut xent nmoni t or # setut xent t
a64l getut xi df nlist sget| *
endut xent getut xli net put pwent * sputl| *
get pass | 64a put ut xl i net ut mpxnanet
Software Development Introduction 17-1

FINAL COPY

June 15, 1995

File: sd_int.txt

svid

Page: 275

SUMMARY OF COMMANDS AND UTILITIES

The following library commands and utilities are supported in a SVID-compliant
Software Development Extension (exception: items marked with a sharp (#) are
optional and need not be supported). Items marked with a star (*) are Level 2, as
defined in the General Introduction to this volume. Items marked with a dagger (1)
are new to this issue of the SVID. Items marked with a doube dagger (1) are inter-
nationalized.

adm ni del tat lint r mdel tsort
as #* di s#* | order sact unget
cct env n4 si ze val
cfl ow* gcore make strip* what
chr oot get t nm* tinme xar gs
cxref * I d pr of #* truss yacc
debugt | ex prs

ORGANIZATION OF TECHNICAL INFORMATION

The Software Development Environment chapter is a new addition to the SVID,
appearing first in SVID 4. This chapter describes the / pr oc subsystem, which
provides support for the new, enhanced debugger, debug, described in the com-
mands section.

The Software Development Library Routines chapter provides manual page descrip-
tions of routine interfaces supported by this extension.

The Software Development Commands and Utilities chapter provides manual page
descriptions of commands and utilities supported by this extension.

Software Development C Library support requirements are defined at the end of
this introduction.

C LIBRARY SUPPORT REQUIREMENTS

The following libraries are required to support the C compiler command cc.

17-2 SOFTWARE DEVELOPMENT INTRODUCTION

FINAL COPY

June 15, 1995

File: sd_int.txt
svid

Page: 276

Standard C Library

The Standard C library is automatically searched by cc to resolve external refer-
ences. This library supports all of the interfaces of the Base System, as defined in
Volume 1, except for the Math Routines.

Standard C Mathematical Library

This library supports the Base System math routines, as defined in Volume 1. The
cc option - | mis used to search this library.

Lex Library

The | ex library is required by lex(SD_CMD). The cc option -1 | is used to search
this library.

Object File Library

The Object File Library is required for use of sget | and sput |, as defined under

sputl(SD_LIB). The cc option - | | d is used to search this library.

YACC Library

The yacc library facilitates use of yacc(SD_CMD). The cc option - | y is used to
search this library.

Software Development Introduction 17-3

FINAL COPY

June 15, 1995

File: sd_int.txt
svid

Page: 277

FINAL COPY
June 15, 1995
File:

Page: 278

Software Development Library Routines

The following section contains the manual pages for the SD_LIB routines.

Software Development Library Routines 18-1

FINAL COPY

June 15, 1995

File: sd_lib.cov
svid

Page: 279

FINAL COPY
June 15, 1995
File:

Page: 280

a64l (SD_LIB) a64l (SD_LIB)

NAME
a64l, 164a — convert between long integer and base-64 ASCII string

SYNOPSIS
#i ncl ude <stdlib. h>

| ong a64l (const char *s);

char *I64a(l ong value);
DESCRIPTION

These routines are used to maintain numbers stored in base-64 ASCII characters.
This is a notation by which long integers can be represented by up to six characters;
each character represents a digit in radix-64 notation.

The characters used to represent ‘digits’ are . for 0, / for 1, 0 through 9 for 2-11,
Athrough Z for 12-37, and a through z for 38-63.

The routine a64l () takes a pointer to a null-terminated base-64 representation and
returns a corresponding | ong value. If the string pointed to by s contains more
than six characters, a64l () will use the first six.

The routine | 64a() takes a | ong argument and returns a pointer to the
corresponding base-64 representation. If value is 0, | 64a() returns a pointer to a
null string.

USAGE
The value returned by | 64a() may be a pointer into a static buffer, the contents of
which would therefore be overwritten by each call.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_lib/a64l

svid

Page: 281

getpass (SD_LIB) getpass (SD_LIB)

NAME

getpass — read a password

SYNOPSIS

#i ncl ude <stdlib. h>

char *get pass(const char *prompt);

DESCRIPTION

FILES

USAGE

The routine get pass() reads up to a newline or an EOF from the file / dev/tty,
after prompting on the standard error output with the null-terminated string prompt
and disabling echoing. A pointer is returned to a null-terminated string of at most
{PASS_MAX} characters. If /dev/tty cannot be opened, a NULL pointer is
returned. An interrupt will terminate input and send an interrupt signal to the cal-
ling program before returning. get pass() restores the terminal state and closes
/ dev/ t t y before returning.

The function get pass marks for update the st _at i ne field of the file/ dev/tty.

/dev/tty

The return value points to static data whose content is overwritten by each call.

SEE ALSO

LEVEL

devtty(BA_DEV)

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_lib/getpass
svid

Page: 282

getutx (SD_LIB) getutx (SD_LIB)

set ut xent resets the input stream to the beginning of the file. This should be done
before each search for a new entry if it is desired that the entire file be examined.

endut xent closes the currently open file.

ut npxnane allows the user to change the name of the file examined, from
/ var/ admi ut npx to any other file. It is most often expected that this other file will
be / var/ adni wt npx. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. ut npxnane does not open the file. It just
closes the old file if it is currently open and saves the new file name. The new file
name must end with the “x’’ character to allow the name of the corresponding ut np
file to be easily obtainable (otherwise an error code of O is returned).

get ut mp copies the information stored in the fields of the ut npx structure to the
corresponding fields of the ut np structure. If the information in any field of ut npx
does not fit in the corresponding ut np field, the data is truncated.

get ut npx copies the information stored in the fields of the ut nmp structure to the
corresponding fields of the ut nmpx structure.

updwt np checks the existence of wfile and its parallel file, whose name is obtained
by appending an “x’’ to wfile. If only one of them exists, the second one is created
and initialized to reflect the state of the existing file. utmp is written to wfile and the
corresponding ut npx structure is written to the parallel file. If neither file exists
nothing will happen.

updwt npx checks the existence of wfilex and its parallel file, whose name is obtained
by truncating the final “x”’ from wfilex. If only one of them exists, the second one is
created and initialized to reflect the state of the existing file. utmpx is written to
wfilex, and the corresponding ut np structure is written to the parallel file. If neither
file exists nothing will happen.

Files

[var/ admi ut np, / var / adm ut npx
[var/ adm wt np, / var / adnmi wt npx

Errors

LEVEL

A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

Level 1.

NOTICES

Page 2

The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. On each call to either get ut xi d or
get ut xl i ne, the routine examines the static structure before performing more 1/0.
If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use get ut xl i ne to search for multiple occurrences it
would be necessary to zero out the static after each success, or get ut xI i ne would
just return the same structure over and over again. There is one exception to the
rule about emptying the structure before further reads are done. The implicit read
done by put ut xI i ne (if it finds that it is not already at the correct place in the file)
will not hurt the contents of the static structure returned by the get ut xent,

FINAL COPY
June 15, 1995
File: sd_lib/getutx
svid

Page: 284

getutx (SD_LIB) getutx (SD_LIB)

get ut xi d, or get ut xI i ne routines, if the user has just modified those contents and
passed the pointer back to put ut xI i ne.

These routines use buffered standard 170 for input, but put ut xI i ne uses an un-

buffered write to avoid race conditions between processes trying to modify the
ut npx and wt npx files.

Page 3

FINAL COPY
June 15, 1995
File: sd_lib/getutx
svid

Page: 285

MARK (SD_LIB) MARK (SD_LIB)

LEVEL
Level 1.

Optional. (When used, MARK() requires the profil () system service routine).

Page 2

FINAL COPY
June 15, 1995
File: sd_lib/mark
svid

Page: 287

monitor (SD_LIB) monitor (SD_LIB)

NAME

monitor — prepare execution profile

SYNOPSIS

#i ncl ude <non. h>

voi d nonitor(int (*lowpc) (), int (*highpc)(),
WORD *buffer, int bufsize, int nfunc);

DESCRIPTION

FILES

The routine noni t or () is an interface to the profi | () system service routine [see
profil(KE_OS)]; lowpc and highpc are the addresses of two functions; buffer is the
address of a (user supplied) array of bufsize WORDs (WORD is defined in the <non. h>
header file). The noni t or () routine arranges to record a histogram of periodically
sampled values of the program counter, and of counts of calls of certain functions,
in the buffer. The lowest address sampled is that of lowpc and the highest is just
below highpc; lowpc may not equal 0 for this use of noni t or (). At most, nfunc call
counts can be kept; only calls of functions compiled with the profiling option —p of
cc are recorded.

An executable program created by using the —p option with cc automatically
includes calls for the roni t or () routine with default parameters; therefore
noni t or () need not be called explicitly except to gain fine control over profiling.

For the results to be significant, especially where there are small, heavily used rou-
tines, it is suggested that the buffer be no more than a few times smaller than the
range of locations sampled.

To profile the entire program, it is sufficient to use
extern int etext();

monitor ((int (*)())2, etext, buf, bufsize, nfunc);
The routine et ext () lies just above all the program text.
To stop execution monitoring and write the results, use
monitor((int (*)())0, (int (*)())0, (WORD *) 0, 0, 0);

The prof () command [see prof(SD_CMD)] can then be used to examine the
results.

The name of the file written by noni t or () is controlled by the environmental vari-
able PROFDI R If PROFDI Ris not set, then the file non. out is created in the current
directory. If PROFDI Ris set to the null string, then no profiling is done and no out-
put file is created. Otherwise, the value of PROFDI R is used as the name of the
directory in which to create the output file. If PROFDI R is dirname, then the output
file is named dirname/ pid. non. out , where pid is the process ID of the program.
(When noni t or () is called automatically by using the —p option of cc, the file
created is dirname/ pid.progname, where progname is the name of the program.)

non. out

Page 1

FINAL COPY
June 15, 1995
File: sd_lib/monitor
svid

Page: 288

monitor (SD_LIB) monitor (SD_LIB)

SEE ALSO
profil(KE_OS), cc(SD_CMD), prof(SD_CMD).

LEVEL
Level 1.

Optional. (When used, noni t or () requires the profil () system service routine.)

Page 2

FINAL COPY
June 15, 1995
File: sd_lib/monitor
svid

Page: 289

nlist (SD_LIB) nlist (SD_LIB)

NAME
nlist — get entries from name list

SYNOPSIS
#i ncl ude <nlist.h>

int nlist(const char *filename, struct nlist *nl);

DESCRIPTION
The routine nl i st () examines the name list in the executable file whose name is
pointed to by filename, and selectively extracts a list of values and puts them into the
array of nlist structures pointed to by nl. Each nlist structure contains at least the
following information:

char *N_name;
long n_value;
unsigned short n_type;

n_name points to the symbol name, n_val ue is the value of the symbol, n_t ype
the type (or derived type).

nl is terminated with a null name; a null string is placed in the name position of the
last nlist structure.

Each symbol name is looked up in the name list of the file. If the name is found, the
type and value of the symbol are inserted in the appropriate fields. The type field
may be set to 0 unless the file was compiled with the —g option of cc. If the file was
compiled with the - g option, the type field may contain information such as
whether the symbol is a function or an object, but, in general, may not contain use-
ful information. If the name is not found, both entries are set to 0.

RETURN VALUE
Returns —1 upon error; otherwise returns 0.

All value entries are set to 0 if the file cannot be read or if it does not contain a valid
name list.

LEVEL
Level 1.

Page 1

FINAL COPY

June 15, 1995

File: sd_lib/nlist
svid

Page: 290

putpwent (SD_LIB) putpwent (SD_LIB)

NAME
putpwent — write password file entry

SYNOPSIS
#i ncl ude <pwd. h>

i nt putpwent (const struct passwd *p, FILE *f);

DESCRIPTION
The routine put pwent () is the inverse of get pwent (). Given a pointer to a
password structure created by get pwent () (or get pwui d() or get pwnan()),
put pwent () writes a line on the file f, which must have the format of
/ et c/ passwd.

RETURN VALUE
Returns a non-zero value if an error was detected during its operation, otherwise
returns 0.

SEE ALSO
getpwent(BA_LIB).

FUTURE DIRECTIONS
The function put pwent () may be replaced in a future issue of the SVID.

LEVEL
Level 2: September 30, 1989

Page 1

FINAL COPY
June 15, 1995
File: sd_lib/putpwent
svid

Page: 291

sputl (SD_LIB) sputl (SD_LIB)

NAME
sput |, sget| —access long integer data in a machine-independent fashion

SYNOPSIS
cc [flag. . .] file. . . -11d [library]

#i ncl ude <l df cn. h>
void sputl (long value, char [buffer);
long sgetl (const char [huffer);

DESCRIPTION
sput | takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the same
across all machines.

sget| retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host machine.

The combination of sput | and sget| provides a machine-independent way of stor-
ing long numeric data in a file in binary form without conversion to characters.

LEVEL
Level 2

Page 1

FINAL COPY

June 15, 1995

File: sd_lib/sputl
svid

Page: 292

Software Development Commands And Utilities

The following section contains the manual pages for SD_CMD routines.

Software Development Commands And Utilities 19-1

FINAL COPY
June 15, 1995
File: sd_cmd.cov
svid

Page: 293

FINAL COPY
June 15, 1995
File:

Page: 294

admin (SD_CMD) admin (SD_CMD)

NAME
adm n - create and administer SCCS files
SYNOPSIS
admn [-i[name]] [-b] [-n] [-rrel] [-t[name]] [-f flag[flag-val]]
[- dflag[flag-val]] [-alogin] [-elogin] [-ni mrlist]] [-y[comment]]
[-h] [-Zz] file .
DESCRIPTION

adni n is used to create new SCCS files and change parameters of existing ones.
Arguments to adni n, which may appear in any order, consist of keyletter argu-
ments (that begin with -) and file names (note that SCCS file names (file) must begin
with the ASCII characters s.).

If file does not exist, it is created and its parameters are initialized according to the
specified keyletter arguments. Parameters not initialized by a keyletter argument
are assigned a default value. If file does exist, parameters corresponding to
specified keyletter arguments are changed, and other parameters are left
unchanged.

If file is a directory, adm n behaves as though each file in the directory were
specified as file, except that non-SCCS files (last component of the path name does
not begin with s.) and unreadable files are silently ignored.

If file is -, the standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed. Again, non-SCCS files and unreadable
files are silently ignored.

adnm n recognizes supplementary code set characters in all files, as well as in file
names and in arguments given to the-i ,-t,-f, and -y options (see below), accord-
ing to the locale specified in the LC_CTYPE environment variable As noted, file
names must begin with the ASCII characters s.

The keyletter arguments are listed below. Each argument is explained as if only one
file were to be processed because the effect of each argument applies independently
to each file.

-i[name] The name of a file from which the contents for a new SCCS file are to be
taken. (If name is a binary file, then you must specify the - b option.)
This contents constitutes the first delta of the file (see -r keyletter for
delta numbering scheme). If the -i keyletter is used, but name is omit-
ted, the contents are obtained by reading the standard input until an
end-of-file is encountered. If this keyletter is omitted, then the SCCS
file is created so that the result of a get (SD_CMD) will be an empty
file. Only one SCCS file may be created by an adm n command on
which the i keyletter is supplied. Using a single adm n to create two
or more SCCS files requires that they be created empty (no -i
keyletter). Note that the -i keyletter implies the - n keyletter. Supple-
mentary code set characters may be used in name and in the file itself.

-b encode the contents of name, specified to the -i option. This keyletter
must be used if name is a binary file; otherwise, a binary file will not be
handled properly by SCCS commands.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/admin
svid

Page: 295

admin (SD_CMD)

-d flag

-a login

admin (SD_CMD)

The character a in list is equivalent to specifying all releases for
file.

n Causes del t a to create a null delta in each of those releases (if
any) being skipped when a delta is made in a new release (for
example, in making delta 5.1 after delta 2.7, releases 3 and 4 are
skipped). These null deltas serve as anchor points so that
branch deltas may later be created from them. The absence of
this flag causes skipped releases to be non-existent in the SCCS
file, preventing branch deltas from being created from them in
the future.

g text User-definable text substituted for all occurrences of the %6
keyword in SCCS file text retrieved by get. Supplementary
code set characters may be used in text.

m mod module name of the SCCS file substituted for all occurrences of
the %&0keyword in SCCS file text retrieved by get . If the mflag
is not specified, the value assigned is the name of the SCCS file
with the leading s. removed. Supplementary code set charac-
ters may be used in the module name mod.

t type type of module in the SCCS file substituted for all occurrences
of W%keyword in SCCS file contents retrieved by get .

v[pgm]

Causes delta to prompt for Modification Request (MR)
numbers as the reason for creating a delta. The optional value
specifies the name of an MR number validity checking program
[see del t a(SD_CMD)]. This program will receive as arguments
the module name, the value of the type flag (seet type above),
and the mrlist. (If this flag is set when creating an SCCS file, the
mkeyletter must also be used even if its value is null).

X Causes get to create files with execute permissions.

Causes removal (deletion) of the specified flag from an SCCS file. The
- d keyletter may be specified only when processing existing SCCS files.
Several - d keyletters may be supplied in a single adm n command. See
the - f keyletter for allowable flag names.

(I list used with - d indicates a list of releases to be unlocked. See the
-f keyletter for a description of the | flag and the syntax of a list.)

A login name, or numerical UNIX System group ID, to be added to the
list of users who may make deltas (changes) to the SCCS file. A group
ID is equivalent to specifying all login names common to that group
ID. Several a keyletters may be used on a single adm n command line.
As many logins or numerical group IDs as desired may be on the list
simultaneously. If the list of users is empty, then anyone may add del-
tas. If login or group ID is preceded by a! they are to be denied per-
mission to make deltas.

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/admin
svid

Page: 297

admin (SD_CMD) admin (SD_CMD)

Page 4

-e login A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the SCCS file. Specifying a
group ID is equivalent to specifying all | ogi n names common to that
group ID. Several - e keyletters may be used on a single adm n com-
mand line.

-mimrlist] The list of Modification Requests (MR) numbers is inserted into the
SCCS file as the reason for creating the initial delta in a manner identi-
cal to del ta. The v flag must be set and the MR numbers are validated
if the v flag has a value (the name of an MR number validation
program). Diagnostics will occur if the v flag is not set or MR valida-
tion fails.

- y[comment]
The comment text is inserted into the SCCS file as a comment for the
initial delta in a manner identical to that of del t a. Omission of the -y
keyletter results in a default comment line being inserted.

The -y keyletter is valid only if the -i and/or -n keyletters are
specified (that is, a new SCCS file is being created). Supplementary
code set characters may be used in comment.

-h Causes adm n to check the structure of the SCCS file and to compare a
newly computed check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum that is stored in
the first line of the SCCS file. Appropriate error diagnostics are pro-
duced. This keyletter inhibits writing to the file, nullifying the effect of
any other keyletters supplied; therefore, it is only meaningful when
processing existing files.

-z The SCCS file check-sum is recomputed and stored in the first line of
the SCCS file (see - h, above). Note that use of this keyletter on a truly
corrupted file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s. file. New SCCS
files are given mode 444 [see chnod(BU_CMD)]. Write permission in the pertinent
directory is, of course, required to create a file. All writing done by adni n is to a
temporary file, called x. file, [see get (SD_CMD)], created with mode 444 if the
adm n command is creating a new SCCS file, or with the same mode as the SCCS
file if it exists. After successful execution of adm n, the SCCS file is removed (if it
exists), and x. file is renamed with the name of the SCCS file. This renaming process
ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files have mode 755 and that
SCCS files themselves have mode 444. The mode of the directories allows only the
owner to modify SCCS files contained in the directories. The mode of the SCCS
files prevents any modification at all except by SCCS commands.

adni n also makes use of a transient lock file (called z. file), which is used to prevent
simultaneous updates to the SCCS file by different users. See get (SD_CMD) for
further information.

FINAL COPY
June 15, 1995
File: sd_cmd/admin
svid

Page: 298

admin (SD_CMD) admin (SD_CMD)

FILES
x. file [see del t a(SD_CMD)]
z. file [seedel ta(SD_CMD)]
bdi ff Program to compute differences between the “‘gotten” file and the g. file
[see get (SD_CMD)].
EXAMPLES
The following example shows how to create an SCCS file, s. pr og. ¢, from the con-
tents of a file containing a C language program, pr og. C.
adnmn -iprog.c s.prog.c
An example for a file containing a shell program is similar, except that you should
use the - f x option , so that get (SD_CMD) will create fi | e. sh to be executable.
adnmn -ifile.sh -fx s.file.sh
You should include some SCCS information at the top of a file. In the above shell
example, to include the file name, the SCCS version number, and the date and time
of the last delta, include the following line at the beginning of fi | e. sh:
#ld: %A% Last Delta: %326 %P
The above line would be translated by a get (SD_CMD) command as:
#ld: @#)file.sh 1.8 Last Delta: 4/25/91 17:05:19
SEE ALSO

del t a(SD_CMD), ed(BU_CMD), get (SD_CMD), pr s(SD_CMD)
LEVEL

Level 1.
DIAGNOSTICS

Use the hel p command for explanations.
NOTICES

If it is necessary to patch an SCCS file for any reason, the mode may be changed to
644 by the owner allowing use of a text editor. You must run adm n -h on the
edited file to check for corruption followed by an adni n -z to generate a proper
check-sum. Another adm n - h is recommended to ensure the SCCS file is valid.

Page 5

FINAL COPY
June 15, 1995
File: sd_cmd/admin
svid

Page: 299

as (SD_CMD) as (SD_CMD)

NAME

as — common assembler

SYNOPSIS

as [- oobjfile] [- m [- V] file

DESCRIPTION

USAGE

The as command assembles the named file. The following options may be
specified in any order:

—0 objfile Put the output of the assembly in objfile. Without this option, the
default behavior is to create the output file name by removing the
suffix, if there is one, from the input file name and appending a suffix.

-m Run the nm4 macro pre-processor on the input to the assembler.

-V Write the version number of the assembler being run on the standard
error output.

General.

The command cc is the recommended interface to the assembler. The as command
may not be present on all implementations of System V.

If the —moption (M4 macro pre-processor invocation) is used, keywords for m4 [see
m4(SD_CMD)] cannot be used as symbols (variables, functions, labels) in the input
file since m4 cannot determine which are assembler symbols and which are real mt
macros.

SEE ALSO

cc(SD_CMD), Id(SD_CMD), m4(SD_CMD).

FUTURE DIRECTIONS

LEVEL

The -Y option is reserved for future use. It will be used to allow the user to specify
the directories where the m4 pre-processor and the file of predefined macros are
located.

Users will also be able to specify, by means of the TMPDI R environmental variable,
the directory in which any temporary files are to be created.

These additions are part of the effort to eliminate hard-coded pathnames from the
compilation system.

All functionality provided by the as command is accessible through the cc com-
mand. Compilation using the cc command may not necessarily invoke as as a
separate process.

Level 2: June 30, 1989
Optional.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/as
svid

Page: 300

cc (SD_CMD) cc (SD_CMD)

NAME

cc — C compiler
SYNOPSIS

cc [options] file . ..
DESCRIPTION

The cc command is the interface to the C compilation system. The system concep-
tually consists of preprocessor, compiler, optimizer, assembler, and link-editor
phases. The cc command processes the supplied options and then executes the
various phases with the appropriate arguments.

The suffix of a filename argument indicates how the file is to be treated. Files
whose names end with . ¢ are taken to be C source programs, and may be prepro-
cessed, compiled, optimized, assembled, and link-edited. The compilation process
may be stopped after the completion of any conceptual phase if the appropriate
options are supplied. If the compilation process is allowed to complete the assem-
bly phase, then an object program is produced; the object program for a source file
called xyz. c is created in a file called xyz. 0. However, the . o file is normally
deleted if a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with . s are taken to be assembly
source programs, and may be assembled and link-edited. Files with names ending
in. i are taken to be preprocessed C source programs and may be compiled, optim-
ized, assembled, and link-edited. Files whose namesdonotendin.c,.s,or.i are
handed to the link-editor phase.

By default, if an executable file is produced (i.e., the link-editor phase is allowed to
complete), the file is called a. out . This default name can be changed with the —o
option (see below).

The following options are interpreted by cc:

—C Suppress the link-editor phase of the compilation, and do not remove any
produced obiject files.

—dc ccan be either y or n. If the system supports it, —dy specifies a file suitable
for dynamic linking. —dn specifies a file suitable for static linking. This
option and its argument are passed to | d.

—f Include floating-point support for systems without an automatically
included floating-point implementation. This option is ignored on systems
that do not need it.

-g Cause the compiler to generate additional information needed for the use of
a debugger.

-l name
Search the library | i bname. a or if shared objects are supported libname.so.
Its placement on the command line is significant as a library is searched at a
point in time relative to the placement of other libraries and object files on
the command line. This option and its argument are passed to | d.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/cc
svid

Page: 301

cc (SD_CMD) cc (SD_CMD)

—0 outfile
Use the name outfile, instead of the default a. out, for the executable file
produced. This is a link-editor option.

-p Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link-editing takes place, a profiled version of
the standard C library is linked, and noni t or () [see monitor(SD_LIB)] is
automatically called. A non. out file will then be produced on normal ter-
mination of the program. An execution profile can then be generated by use
of prof .

—q This option is reserved for specification of implementation specific profiling
directives.

—Bc ccan be either dynam c or stati c. If the system supports dynamic linking,
—B dynani ¢ causes the link editor to look for files named | i bx. so and then
for files named | i bx. a when given the —I x option. —B st ati c causes the
link editor to look only for files named |ibx. a. This option may be
specified multiple times on the command line as a toggle. This option and
its argument are passed to | d.

-E Preprocess the named C programs and send the result to the standard out-
put.

-F This option is reserved for implementation specific optimization directives.

-G Used to direct the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to | d. It cannot be
used with the —dn option.

—K[PIC

-K PIC
Causes position-independent code (PIC) to be generated if PIC is
supported. Other implementation-defined values may be used with
this option.

—L dir Add dir to the list of directories searched for libraries by | d. This option
and its argument are passed to | d.

-0 Do compilation phase optimization. This option will not affect . s files.

-P Preprocess the named C programs and leave the result in corresponding
files suffixed . i .

-S Compile and do not assemble or link-edit the named C files. The assembly
language output is left in corresponding files suffixed . s.

-V Cause each invoked phase to print its version information on the standard
error output.

-C Cause the preprocessing phase to pass along all comments other than those
on preprocessing directive lines.

—D name[=tokens]
Associates name with the specified tokens as if by a #def i ne preprocessor
directive. If no =tokens is specified, the token 1 is supplied.

Page 2

FINAL COPY
June 15, 1995
File: sd_cmd/cc
svid

Page: 302

cc (SD_CMD) cc (SD_CMD)

FILES

—1 dir Alter the search for included files whose names do not begin with / to look
indi r prior to the usual directories. The directories for multiple —I options
are searched in the order specified.

—Uname
Causes any definition of name to be forgotten, as if by a #undef preprocess-
ing directive. If the same name is specified for both —D and —U, name is not
defined, regardless of the order of the options.

—We,argl[,arg2 . ..]
Hand off the argument(s) argi to phase ¢ where ¢ is one of [p02al] indicat-
ing preprocessing, compilation, optimization, assembly, or link-editing
phases, respectively. For example, —W a, - m passes —m to the assembler
phase.

=Y items, dir
Specify a new directory, dir, for the location of items. items is any grouping
of following characters representing directories containing special files:
I directory searched last for include files
P new search path to locate libraries, dir takes the form of $PATH.
S directory containing the start-up object files

or, depending upon the implementation, it may also be one of [p0O2al].

If the location of a phase [p02al] is specified and the phase does not exist as
a separate process, then cc may ignore the - Y option for that phase.

If the location of a phase is being specified, then the new pathname for the
phase will be dir/ phase. If more than one —Y option is applied to any one
item, then the last occurrence holds.

The cc command passes any unrecognized options to the link-editor phase without
any diagnostic [see Id(SD_CMD) for descriptions of | d options].

Other arguments are taken to be C-compatible object programs or libraries of C-
compatible routines and are passed directly to the link-editor phase. These pro-
grams, together with the results of any compilations specified, are linked (in the
order given) to produce an executable program with the name a. out (unless the
—o link-editor option is used).

The standard C library is automatically available to the C program. Other libraries
must be specified explicitly using the -1 option with cc [see Id(SD_CMD) for
details].

file. ¢ input file

file. i preprocessed C source file
file. 0 object file

file. s assembly language file

a. out
link-edited (executable) output

Page 3

FINAL COPY

June 15, 1995

File: sd_cmd/cc
svid

Page: 303

cc (SD_CMD) cc (SD_CMD)

SEE ALSO

USAGE

Id(SD_CMD), prof(SD_CMD), sdb(SD_CMD), exit(BA_OS), monitor(SD_LIB), Pro-
gramming Language Specifications Extension.

General.

Because the cc command usually creates files in the current directory during the
compilation process, it is typically necessary to run the cc command in a directory
in which a file can be created.

The meaning of the terms shared library and dynamic linking are described in the
System V ABI.

FUTURE DIRECTIONS

LEVEL

Page 4

Users will also be able to specify, by means of the TMPDI R environment variable,
the directory in which any temporary files are to be created.

This addition is part of the effort to eliminate hard-coded pathnames from the com-
pilation system.

If the ¢ phase of the —Woption does not exist as a separate process, then cc may
ignore the —Woption for that phase.

Level 2, June 30, 1989

The following options are dependent upon dynamic linking being supported and
therefore are marked as Optional:

-d, -B, -K PIC

The following options are marked Level 2, effective September 30, 1993, and will be
removed when the three year waiting period has expired:

-f, -F

FINAL COPY
June 15, 1995
File: sd_cmd/cc

svid

Page: 304

cflow (SD_CMD) cflow (SD_CMD)

NAME

cf | ow- generate C flowgraph
SYNOPSIS

cflow [-r] [-ix] [-i_] [-dnum] files
DESCRIPTION

The cf | ow command analyzes a collection of C, yacc, | ex, assembler, and object
files and builds a graph charting the external function references. Files suffixed
with .y, .|, and . c are processed by yacc, | ex, and the C compiler as appropriate.
The results of the preprocessed files, and files suffixed with .i, are then run
through the first pass of |'i nt. Files suffixed with . s are assembled. Assembled
files, and files suffixed with . o, have information extracted from their symbol
tables. The results are collected and turned into a graph of external references that
is written on the standard output. cf | owprocesses supplementary code set charac-
ters in literals and constants according to the locale specified in the LC CTYPE
environment variable [see LANGon envvar (BA_ENV)].

Each line of output begins with a reference number, followed by a suitable number
of tabs indicating the level, then the name of the global symbol followed by a colon
and its definition. Normally only function names that do not begin with an under-
score are listed (see the -i options below). For information extracted from C
source, the definition consists of an abstract type declaration (for example, char [,
and, delimited by angle brackets, the name of the source file and the line number
where the definition was found. Definitions extracted from object files indicate the
file name and location counter under which the symbol appeared (for example,
text). If the compilation system adds a leading underscore to external names, it is
removed. Once a definition of a name has been printed, subsequent references to
that name contain only the reference number of the line where the definition may
be found. For undefined references, only <> is printed.

As an example, suppose the following code isinfil e. c:

int i;

mai n()

{
f();
a();
f();

}

f()

{
i =h();

The command
cflow—-ix file.c
produces the output

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/cflow
svid

Page: 305

cflow (SD_CMD) cflow (SD_CMD)

main: int(), <file.c 4>
f: int(), <file.c 11>
h: <>
i: int, <file.c 1>
g <

abhwNPEF

When the nesting level becomes too deep, the output of cf | owcan be piped to the
pr command, using the - e option, to compress the tab expansion to something less
than every eight spaces.

In addition to the - D, - I, and - U options (which are interpreted just as they are by
cc), the following options are interpreted by cf | ow

-r Reverse the “caller:callee” relationship producing an inverted listing show-
ing the callers of each function. The listing is also sorted in lexicographical
order by callee.

-i X Include external and static data symbols. The default is to include only
functions in the flowgraph.

- Include names that begin with an underscore. The default is to exclude
these functions (and data if - i x is used).

-dnum The num decimal integer indicates the depth at which the flowgraph is cut
off. By default this number is very large. Attempts to set the cutoff depth
to a nonpositive integer will be ignored.

Errors
Complains about multiple definitions and only believes the first.

SEE ALSO
as(SD_CMD), cc(SD_CMD), |ex(SD_CMD), lint(SD_CMD), nmSD_CMD),
yacc(SD_CMD)

LEVEL
Level 2.

NOTICES
Files produced by | ex and yacc cause the reordering of line number declarations,
which can confuse cf | ow. To get proper results, feed cf | owthe yacc or | ex input.

Page 2

FINAL COPY
June 15, 1995
File: sd_cmd/cflow
svid

Page: 306

chroot (SD_CMD) chroot (SD_CMD)

NAME

chroot - change root directory for a command
SYNOPSIS

[usr/ sbi n/ chr oot newroot command
DESCRIPTION

The command chr oot executes the given command, relative to root newroot. The
meaning of any initial slashes (/') in path names is changed for command and any of
its children to newroot. Furthermore, the initial working directory is newroot.

This command is restricted to the super-user.
Notice that:
chr oot newroot command >x
will create the file x relative to the original root, not the new one.

The new root path name is always relative to the current root: even if a chr oot is
currently in effect, the newroot argument is relative to the current root of the run-
ning process.

SEE ALSO
chdir(BA_OS)

USAGE
General.

The user should exercise caution when referencing special files in the new root file
system.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/chroot
svid

Page: 307

cxref (SD_CMD) cxref (SD_CMD)

NAME

cxref —generate C program cross-reference
SYNOPSIS

cxref [options] files
DESCRIPTION

The cxref command analyzes a collection of C files and builds a cross-reference
table. cxref uses a special version of cc to include #def i ne’d information in its
symbol table. It generates a list of all symbols (auto, static, and global) in each indi-
vidual file, or, with the - ¢ option, in combination. The table includes four fields:
NAME, FILE, FUNCTION, and LINE. The line nhumbers appearing in the LINE
field also show reference marks as appropriate. The reference marks include:

assignment =
declaration -
definition O

If no reference marks appear, you can assume a general reference.

cxref processes supplementary code set characters according to the locale specified
in the LC_CTYPE environment variable [see LANGon envvar (BA_ENV)].

The - D, -1, and - U options are interpreted as by cc. In addition, cxref interprets
the following options:

-C Combine the source files into a single report. Without the - ¢ option,
cxref generates a separate report for each file on the command line.

-o file Direct output to file.
-s Operates silently; does not print input file names.

-w num Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 51.

-V Prints version information on the standard error.

- Whame, file, function, line
Changes the default width of at least one field. The default widths are:

Field Columns
NAME 15
FILE 13
FUNCTION 15
LINE 20 (4 per table column)
EXAMPLES

a.c

1 mai n()

2

3 int i;

4 extern char c;

5

6 i =65;

7 c=(char)i;

8 }

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/cxref
svid

Page: 308

cxref (SD_CMD)

Resulting cross-reference table:

NAME FILE FUNCTION LINE

c a.c --- 4- =

i a.c nai n 30 = 7

min a.c --- 20

u3b2 predefined --- (o]n|

unix predefined --- o0

Errors

Error messages usually mean you cannot compile the files.
SEE ALSO

cc(SD_CMD).
USAGE

General.
LEVEL

Level 2: June 30, 1989.

Page 2

FINAL COPY
June 15, 1995
File: sd_cmd/cxref
svid

Page: 309

cxref (SD_CMD)

debug (SD_CMD) debug (SD_CMD)

NAME
debug - source-level, interactive, object file debugger

SYNOPSIS
debug [opts] [[-f none| procs|all][-r][-1 start loc] cmd_ling]

debug [opts][-f none| procs|all][-] object file] process_id ...

debug [opts] -c core_file object_file

opts: [-V][-i c|x][-X opt][-d defaults] [-s path] [- Yitem,dir]
DESCRIPTION

debug is a tool that facilitates the finding of errors in user programs by allowing the
user to control the execution of a program and examine its state. The user can
create a new process from an executable program, take over control of an existing
process, or examine the state of a process that terminated abnormally with a core
dump

To take full advantage of the symbolic capabilities of debug, the programs exam-
ined and controlled by debug should be compiled with the - g option to the com-
piler [see cc(SD_CMD)]. If the controlled program has not been compiled with - g,
the capabilities of debug will be limited, but the program can still be controlled and
examined.

Some implementations of debug provide both a command line interface and an X
Windows based graphical user interface. Only the command line interface is
described here.

Invocation

debug can be invoked in one of three ways. In the first, the user may specify a
cmd_line. cmd_line consists of one or more executable files, and their associated
arguments. The individual commands can be linked by shell-style pipes, and the
input and output of the cmd_line can be redirected (characters special to the shell
must be quoted). debug creates a new controlled process for each command
specified in cmd_line, taking care of any necessary redirections of input and output.
The processes are set up to stop at the starting address specified by start_loc. If no
start_loc is supplied, the processes are set up to stop at the symbol nai n, if present,
otherwise at the starting address specified by the object file. debug then exec’s
each command, passing each the specified arguments.

If no cmd_line is specified, debug simply enters interactive mode.

In the second form of invocation, the user specifies one or more existing processes
by giving a list of process_ids. The debugger attempts to control the specified objects
as live processes and, if successful, suspends their execution.

Finally, the user may specify an executable program in one of the object file formats
understood by debug, along with a core_file. debug interprets the core file as a
record of the process state at the time of the death of the process associated with the
object_file and lets the user examine the contents of the process stack, registers and
data segments.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 310

debug (SD_CMD) debug (SD_CMD)

debug associates the name of each object (program name) with all processes derived
from the current invocation of that object. This name may be used in any command
that accepts a process list. If the object name matches the name of an already exist-
ing debugger-controlled program, the debugger will create a new name for the pro-
gram. The default program name may be reset using the renane command (see
below).

Options

The following options are recognized:
-C Associate the cor e image core_file with the specified object_file.

-d Specify a defaults file containing debugger commands. If no defaults is given,
debug will search for a file called . debugr ¢ in the user’s home directory. If
a default command file exists, debug executes the commands it contains
before it processes any other command line options or user requests.

-f Specify whether debug will follow all child processes created by any of the
live_objects or by any of the programs given in the cmd_line, (procs, oral |')
or none of the child processes (none). See “Process Control”.

-1 The interface mode for the debugger. -i c instructs debug to use the com-
mand line interface. -i x instructs debug to use the X Window based inter-
face, if supported. If no-i option is given, debug uses the X Window inter-
face, if the necessary hardware and software is present, otherwise, it uses
the command line interface.

- For the first form of invocation, specify the location at which debug will
stop the process after it is created. For the second form of invocation,
specify an alternate object_file from which to load symbolic information
when debugging a process_id. If no alternate object is specified, debug finds
the object file from which the process image was created. If -1 is used, only
one process_id may be specified. See cr eat e and gr ab under “Commands”.

-r Redirect input and output of the created objects to a pseudo-terminal (this
does not affect subsequent redirection by the shell or the processes them-
selves). See “‘Redirection of Process 1/0”.

-S Specify initial value for the global search path, %gl obal _pat h. The path is a
colon separated list of directory pathnames. See ‘““‘Directory Search Paths”.

-V Print out version information about debug.

-X Specify option to be passed to the X Windows initialization routine. This
option may be specified multiple times.

-Y Specify a new directory dir for the location of item. item can consist of any of

the following:
a file containing definitions of built-in aliases for debug
g graphical user interface for debug

Command Language

Page 2

debug provides a simple, user-extensible command language, with a syntax similar
to sh(BU_CMD) in style, using keywords and dash options. Command options
may appear in any order. Multiple options may be specified together, as in sym
bols -If or separately, as in synbols -1 -f, but multiple occurrences of the
same option letter are invalid.

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 311

debug (SD_CMD) debug (SD_CMD)

Several commands separated by semi-colons (;) may be given on a single line. A
backslash (\) at the end of a line indicates that the command is continued on the fol-
lowing line. The output of a command may be redirected to a file or shell pipeline
using the sh syntax of >, >> and | . (For example, synbols -g | pg). As in the
shell, > and >> may appear anywhere within a command, but | must appear at the
end of a debugger command, since the rest of the line is treated as a shell command
that will receive the output of the debugger command. A sequence of debugger
commands may be enclosed in curly braces ({}), forming a command block. The
output of such a block may be redirected as a whole. A debugger comment is intro-
duced by a pound sign (#). Any characters following a pound sign on a line will be
ignored.

Many debugger commands have built-in aliases. These are one or two character
names that may be used wherever the full command is used. The user can redefine
any of the built-in aliases, or may define his or her own aliases. An alias can consist
of any valid debugger command sequence and may take parameters. See al i as
under “‘Commands” for more details.

Built-In Variables

debug maintains a set of special variables that describe the current debugger state
and allow the user to customize certain debugger features. These variables all begin
with a percent sign (%). The processor registers are also considered to be built-in
variables and use the same naming convention. The current value of a debugger
variable may be seen with the print or synbol s commands. Some built-in vari-
ables are read-only. Those that can be modified may be changed using the set
command.

User-Defined Variables
The user may also define variables in the debugger. The names of these variables
consist of a dollar sign followed by a G-style identifier ($username). A user-defined
variable is defined by assigning it an initial value using the set command, and may
subsequently be modified. All of the user’s environment variables are imported to
debugger variables of the same name when debug is invoked.

User-defined variables are polymorphic, having either string or numeric values,
according to the type of the last value assigned to them. Any variable, string or
numeric, may be used where a string value is required, and any string-valued vari-
able which is convertible to an integer via the strtol (BA_LIB) function may be
used where a numeric value is required.

Process Control
debug provides control over both single and multiprocess applications and over
both single and multithreaded processes. For each active process under its control,
debug detects when the object program and shared library association changes and
maintains current knowledge of the associations. In particular, processes may
attach or detach shared objects into/from their address spaces using the interfaces
dl open(BA_OS), dI cl ose(BA_OS), dl sym(BA_OS).

debug provides control of an arbitrary number of threads within a given process.
These threads may be bound threads or multiplexed threads (see t hr _create).
The only restriction is that in some implementations, the user may not be able to
start (run or st ep) a multiplexed thread that is not currently associated with some
operating system execution entity. Some implementations refer to this execution

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 312

debug

(SD_CMD) debug (SD_CMD)

entity as LWP.

By default, debug detects when a new process is created by one of its controlled
threads or processes and includes the new object in its set of controlled objects. The
user can release such newly created objects from debugger control by using the
rel ease command (see below). The default behavior may be overridden by indivi-
dual create or grab commands, or may be changed by setting the value of the
built-in variable % ol | ow. Legal values are:

none Do not control child processes.
procs Follow all child processes.
all Follow all child processes (same as pr ocs).

debug assigns a unique identifier to each process and thread under its control. Pro-
cess identifiers are in the form pid (p1, p2, p3, ...). Thread identifiers are in the form
pid. id (p1. 1, p1. 2, p2. 5, ...). debug maintains a record of the current process in the
built-in variable %roc. The current thread is maintained in the built-in variable
% hread. For all debugger commands that accept an optional list of threads and
processes, the default action, if no such list is given, is to apply the command to the
current thread (or the current process, if it is single-threaded).

Foreground and Background Execution

When the user enters a command that sets a controlled object in motion, debug, by
default, waits for that object to stop before returning control to the user. If the
debugger built-in variable %wai t is set to 0 or no, or background, the debugger
does not wait for the affected object to stop. The default behavior may be re-
asserted by setting %ai t to 1 or yes, or f or egr ound. This global behavior may be
overridden by each command that sets a process in motion.

Redirection of Process I/O

When the user creates a debugger-controlled object, debug does not, by default,
attempt to intercept the input or output for the generated processes. Subject pro-
cess output is unlabeled, and the subject competes with the debugger for the termi-
nal input. If the debugger variable % edi r is set to 1 or yes, the process or thread
170 is redirected to a pseudo-terminal. All output from that process or thread is
labeled with an indication of which pseudo-terminal has been written. Subsequent
input to the process or thread must be made through the i nput command (see
below). The default behavior may be re-asserted by setting % edi r to 0 or no. This
global behavior may be overridden by an individual cr eat e command.

debug does not attempt to redirect the 1/0 of grabbed processes, or of the child
processes of some created subject, since it cannot tell what those processes may
have already done to redirect their own 1/0. Note, too, that all of the processes and
threads that result from a single creat e command read and write from/to the
same pseudo-terminal.

Process Lists

Page 4

A process list is a way to specify one or more processes and threads as the target of a
command. Many debugger commands take an argument (-p proc_list) that lists
the names of those processes and threads which should be affected by the com-
mand. A program is the set of all processes and threads created as the result of
invoking a single binary executable. It does not include processes created from dif-
ferent executables when a process within a program execs.

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 313

debug (SD_CMD) debug (SD_CMD)

The command language represents process lists as comma-separated lists of process
names. A process name is defined as either:

the keyword al | , denoting all controlled processes, processes and threads,

a user or debugger-generated program name, denoting all processes and
threads created from the current invocation of the same executable,

a debugger-generated thread id, of the form pinteger.integer, denoting a
specific controlled thread,

a debugger-generated process id, of the form pinteger, denoting either all
threads that belong to a specific controlled process, or, if the process is not
multithreaded, the process itself, denoting a specific controlled object,

the debugger built-in variable %or ogr am denoting all active processes and
threads derived from the current program,

the debugger built-in variable % hr ead, the current thread,

the debugger built-in variable %or oc, the current process, or all threads
derived from the current process,

a decimal integer, denoting the process which has the given integer as its
system pid (or all threads derived from that process),

any user-defined variable that has an integer value, interpreted as a system
pid,

any user-defined variable that has a string value, which can be interpreted
as one of the above forms, or as a list of the above forms.

Context Variables
The context for the execution of most debugger commands that describe the state of
controlled objects is determined by a subset of the debugger built-in variables.
%r ogram %oroc and % hread %r ogram and %r oc determine the object(s) to
which a command applies. Setting one affects the others. In addition, there is a set
of context variables specific to each thread or process. For each controlled object,
the following debugger built-in variables are available:

%lb_| ang The source language of the current context.

% ranme The current frame (an integer representing the frame number).
% unc The current function.

%ile The current source file.

%ine The current source line number.

%Wist_file The next file to be displayed by the | i st command.
%ist_line The next line to be displayed by the | i st command.

% oc The current program address.

These variables are reset whenever the thread or process that owns them stops for
any reason. % rane may be explicitly set by the user to any active frame and
changes the value of the other context variables accordingly. % unc may be expli-
citly set to any function with a currently active frame and results in setting % r ane
to the most recent instance of that function. %lb_| ang, %i | e, % i ne, and % oc are

Page 5

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 314

debug (SD_CMD) debug (SD_CMD)

read-only. If no debugging or symbolic information is available for the current
function, %lb_| ang, % unc, %ile, %ist _file, %ine, and %ist_line, may be
null.

Verbosity Levels
When a user process or thread under the debugger’s control stops for any reason,
single step, breakpoint, signal, and so on, the debugger generates output to the ter-
minal. This output can sometimes be more voluminous than the user would desire.
For that reason the amount of user-visible output can be adjusted on a global basis
by setting the %ver bose variable. The legal values are:

qui et No output is generated for debugger events.
source The debugger displays the next source or disassembly line.
events If the process stops for an event (system call, signal or stop

event) the debugger announces the type of event and the
current location. For all stops, it displays the next source line.

reason (default) This is the same as event s, except that the debugger announces
each single step in addition to all of the events.

al | The highest verbosity level. Currently, this is the same as r ea-
son.

Certain commands allow the user to specify the qui et verbosity level, with a -q
option, overriding the global %ver bose setting.

Thread State Changes
A thread may undergo several different kinds of state changes during its lifetime: it
is created and it exits; it can be suspended or continued; and a multiplexed thread
may give up its LWP or be picked up by an LWP. The debugger variable
% hr ead_change governs the behavior of the debugger when any of these state
changes occur. The valid values are:

i gnore The debugger will not print a message announcing the change
or stop the thread involved. A newly created or continued
thread, or a thread picked up by an LWP will be set running, if
possible.

announce The debugger will print a message announcing the state change
but will not stop the thread involved. A newly created or con-
tinued thread, or a thread picked up by an LWP will be set run-
ning, if possible.

st op (default) The debugger will print a message announcing the state change
and stop the thread involved, if possible. A continued thread or
a thread picked up by an LWP will be stopped (or in the Off
LWP state). For thread creation, the thread that created the new
thread will be stopped and the new thread will stop when it
reaches the function specified in the t hr _cr eat e call.

Directory Search Paths
To associate program addresses with source listings, debug must know where to
look for the source of the programs being debugged. The built-in variable
%l obal _path contains a colon-separated list of directory pathnames. debug

Page 6

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 315

debug (SD_CMD) debug (SD_CMD)

combines this information with the names of source files it derives from the debug-
ging information in the object file, to search for source code. In addition to the glo-
bal path, each program may have a program-specific path. This path is stored in the
built-in variable %pat h. Each program has its own version of this variable. When
attempting to find the source for a given program, debug searches first the list of
directories in that program‘s %at h variable, and then the list specified by
%l obal _pat h.

Events
Events in the debugger are triggers in the execution sequence of a process or thread
that cause control to pass from the process or thread to the debugger. These
triggers are activated at the user’s request and consist of changes in the process
address space, signals and entry to or exit from system calls. Events may also con-
sist of user-specified actions taken by the debugger when a controlled entity stops
for any reason.

Event triggers may apply to a given thread or process or to a set of threads and
processes. The event fires if any of the specified objects encounter the trigger.
Commands that create events apply, by default, to the current program, rather than
the current thread. current process.

With each event, the user may specify an optional debugger command block. This
block is executed whenever the event triggers. Events and their associated com-
mands can be deleted, or temporarily deactivated and then reactivated.

For each user-specified event, debug assigns a unique identifier in a common name
space. This identifier may be used in the commands that delete, enable, disable and
list events. The last event identifier assigned is maintained in the special variable
% ast event, which is updated automatically by the debugger. When an event
triggers, debug executes the commands associated with the event, after setting the
special variables %pr ogr am %r oc, % hread, %il e, %i ne, % unc, % r ane, % oc,
%lb_| ang to indicate the process and location at the context in which the event
occurred, and % hi sevent to the event number of the triggered event. These vari-
ables are set only for the execution of the commands associated with the triggering
event. They revert to their previous values (or are updated to reflect the new
debugger state) when those commands complete.

The default action for each event is to announce the occurrence of the event and
display the current source line (or current instruction, if no line number information
or source is available).

When a controlled process dies, debug remembers the events created for that pro-
cess. If a new process is created for the same program, all events that applied to the
entire program (the default) are re-instantiated for the new process. Events that
were created to apply only to a single process within a multiprocess program or to
a single thread, are not recreated. Similarly, when a process creates a new child
process via f or kK(BA_OS), all events that apply to the entire program from which
the parent process is derived are copied in the child process. Events that apply to
the parent process only or to a single thread are not copied.

Page 7

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 316

debug (SD_CMD)

cmd
cmd_line

core_file

count
event_command
event_num

expr
func_name
location

object_file
pattern

process_id
proc_list
reg_exp

signal
stop_expr

XXxOyyy
Commands

I shell-command

debug (SD_CMD)

A simple command or a block.

A shell-style command line (possibly including shell scripts,
environment variables, pipes, and 1/0 redirection) which will be
interpreted by the shell, but the resulting processes will be con-
trolled by the debugger.

The relative or complete pathname of a file which was created by
the kernel upon abnormal termination of some process.

An unsigned decimal integer.
Any of onst op, st op, si gnal orsyscall .

A small integer, assigned by the debugger when any event is
created, that identifies the resulting set of actions.

An expression in the current language. See “Expressions”, above.
The name of a function in the current process.

A designation of an address in a subject process. It includes line
numbers, program symbols, processor registers, and limited
expressions involving these components. The syntax is:

address[constant] # i ncl udes debugger and user vari abl es
[thread id@ [filename@ func_name[+constant]

[thread id@ [filename@ line_number

[process id@ [filename@ func_name[xconstant]

[process id@[filename@ line_number

The relative or complete pathname of an executable object file.

Simple regular expressions used to restrict a list of names.
sh(BU_CMD) syntax is used.

A system process identifier.
See “‘Process Lists”.

A simple internationalized regular expression using the syntax
accepted by ed(BU_CMD).

A signal name or number. A signal name may be specified with or
without the Sl Gprefix, and case is not significant.

An expression denoting conditions under which specified
processes should be stopped. See st op.

Denotes optional repetition of the preceding element.
Denotes that either xxx or yyy, but not both, may appear.

This command passes the entire command line, less the exclamation mark,
to the shell ($SHELL, if set, or else / usr/ bi n/ sh) for execution. Note that
any redirection will be interpreted by the shell, not the debugger.

Page 9

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 318

debug (SD_CMD) debug (SD_CMD)

alias

br eak

cancel

If the shell escape operator is given twice, with no arguments, that is, !'!,
debug re-executes the last shell escape specified.

[-r] [name [tokens]]

The al i as command, with no arguments, lists the current aliases and their
definitions. If the -r option is present, it removes the alias with the given
name from the list of aliases. If no -r option is present, but a name is given,
the al i as command displays the definition, if any, for the alias with the
given name . If any characters, other than spaces, tabs, or comments, follow
the name argument, the command establishes a new alias for the name , con-
sisting of all the characters up to, but not including, the comment or new-
line.

Alias definitions may contain the special identifiers $1, $2, . . . Each such
special identifier $n in an alias definition is replaced by the nth argument in
an alias invocation, where the arguments are numbered beginning at 1.
Each argument must be preceded by whitespace and is terminated by whi-
tespace, a newline, the comment character (#) or the beginning of a block
({). The special identifiers $1, $2, . . . will not be replaced within a quoted
string.

If an alias definition contains the special identifier $#, it will be replaced
during invocation of the alias with the number of arguments actually used
during the current alias invocation. If an alias definition contains the special
identifier $*, it will be replaced during invocation of the alias with a list of
all arguments passed during the current alias invocation, each separated
from the next by a single space.

Aliases may be defined in terms of other aliases, but not recursively. At
least 20 levels of nested alias definitions are supported.

If the name given is the same as any existing built-in command, a warning
will be generated. Aliases take precedence over built-in commands.

The br eak command causes the debugger to exit from the innermost enclos-
ing whi | e loop (see whi |).

[-p proc_list] [signal ...]
cancel takes a list of signals, that are specified as in the ki | | command. If
debug has intercepted any of the listed signals for any of the specified
objects, it will ensure that those objects do not see the specified signals when
they continue execution. If no signals are specified, debug cancels all pend-
ing signals for the specified objects.

cd [pathname]

The cd command changes the debugger’s current working directory to path-
name. If no pathname is given, cd uses the directory specified by the environ-
ment variable HOME.

change event_num [- p proc_list] [- eqvx] [-c count] [stop_expr| call...| signal...]
[block]

Page 10

The change command allows the user to modify various attributes associ-
ated with a previously assigned event. event_num must come before the
optional stop expression, signal or system call specifications and must be the
number of an event that is currently defined (although it may be disabled).

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 319

debug (SD_CMD) debug (SD_CMD)

The list of threads and processes to which the event is applied may be
changed with the - p option.

The - g option specifies that debug will not announce the occurrence of the
event. - v specifies that the event occurrence will be announced.

The -e and -x options work as in the syscal | command, and specify
whether the system call will be trapped on entry, exit or both entry and exit.

The - ¢ option specifies the number of times the event must occur before it
triggers. The - ¢ option is valid only for st op and syscal | events.

Alternate expressions, signals or system calls and/or an alternate command
block, may be specified.

The resulting event will have the same event number as event_num . Note
that the change command does not allow the type of event: onst op, st op,
signal or syscall, to be changed. Further note that the command list
must be in the form of a block (that is, with enclosing braces) to distinguish it
from a stop expression, system call or signal name.

conti nue
The cont i nue command causes the debugger to begin execution of the next
iteration of the innermost enclosing whi | e loop. The debugger continues by
re-evaluating the expr part of the whi | e command (see whi | e).

create [-f none|procs|all] [-dr] [-] start_loc] [cmd_line]
cmd_line consists of one or more executable files, in any of the object file for-
mats understood by the debugger, and their associated arguments. The
individual commands can be linked by shell-style pipes, and the input and
output of the cmd_line can be redirected. Shell meta-characters need not be
quoted. The length of cmd_line is limited only by the length of the argument
list accepted by exec (ARG_MAX). Seelimts(BA_ENV).

debug creates a new controlled process for each command specified in
cmd_line , taking care of any necessary redirections of input and output. The
processes are set up to stop at the location specified by start_loc. If no
start_loc is supplied, the processes are set up to start at the symbol nmai n, if it
exists, otherwise at the starting address specified by the object file. debug
then exec’s each command, passing each the specified arguments.

If no cmd_line is specified to cr eat e, debug re-executes the last cr eat e com-
mand issued, (first killing all processes created as a result of the last creat e
command, if they still exist) in effect, re-running the last process (or
processes) created with the same set of arguments.

If the - r option is specified, debug redirects the 1/0 of the resulting subjects
to a pseudo-terminal, as described above. If the -d option is given no
redirection is attempted. If neither -r nor -d is specified, the default is
determined by the value of the debugger variable % edi r .

debug resets its notion of the current program to the first executable
specified on the cmd_line . The current process is reset to the process gen-
erated from that executable. The current thread is set to the first thread in
that process, if the program uses the threads interfaces.

Page 11

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 320

debug (SD_CMD) debug (SD_CMD)

The -f option may be used to specify whether the debugger should take
control of child processes, and overrides the default behavior of the
debugger. The arguments to the -f option have the same meanings as do
the legal values for the % ol | owbuilt-in variable (see ‘“Process Control™).

debug associates the name of each object (program name) with all processes
derived from the current invocation of that object. This name may be used
in any command that accepts a process list. If the command name matches
the name of an already existing debugger-controlled program, debug creates
a new name for the program. The default program name may be reset with
the r enane command (see below).

del ete event num ...
del ete -a [-p proc_list] [event_command]

dis [-

di sabl
di sabl

Page 12

del et e can be invoked in one of two ways. In the first, the user specifies a
list of previously assigned event identifiers. debug deletes any associated
events, removing the planted breakpoint or canceling the signal or system
call trigger.

In the second form, all debugger events for the current thread or process (or
all events associated with the optional proc_list) are deleted. If an
event_command (onst op, st op, si gnal or syscal |) is given, only events of
the type specified are deleted.

p proc_list] [-c instr_count] [location]

The di s command with no arguments displays the result of disassembling
%wum | i nes instructions. %um | i nes starts out at 10 and may be reset by
the user. If an instr_count is given, di s displays instr_count instructions,
instead.

If a location is given, di s begins disassembling at that address. If no location
has been specified, and the context for the specified process or thread has
not changed since the last di s invocation on that object, di s begins with the
address following the last instruction displayed for that object. Otherwise,
di s begins its display with the current location, as specified by the debugger
variable % oc, which is reset whenever the context for the specified process
or thread changes.

If more than one thread or process is specified by the proc_list argument, the
disassembly request is performed for each thread or process in turn.

e event_num ...

e -a [-p proc_list] [event_command]

di sabl e can be invoked in one of two ways. In the first, the user specifies a
list of previously assigned event identifiers. The debugger marks any asso-
ciated events as inactive, but does not delete them. The event identifiers are
still valid, but the actions specified by the events are not performed.

In the second form, all debugger events for the current thread or process (or
all events associated with the optional proc_list) are disabled. If an
event_command is given, only events of the type specified are disabled.

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 321

debug (SD_CMD) debug (SD_CMD)

dunp [-p proc_list] [-c byte count] location
The dunp command displays %um byt es bytes of memory, 16 bytes per
line, starting at the address specified by the location truncated to a multiple
of 16, in hexadecimal and ASCII. If a byte_count is given, that many bytes of
memory are dumped instead. %\um byt es starts out at 256 and may be set
by the user.

If more than one thread or process is specified by the proc_list argument, the
dump request is performed for each thread or process in turn.

enabl e event_num . ..

enabl e -a [-p proc_list] [event_command]
enabl e can be invoked in one of two ways. In the first, the user specifies a
list of previously assigned event identifiers. For each, if the associated event
is currently disabled, the debugger reactivates it.

In the second form, all disabled debugger events for the current thread or
process (or all events associated with the optional proc_list) are enabled. If
an event_command is given, only events of the type specified are enabled.

events [-p proc_list] [event_num ...]
The event s command without any arguments prints the entire list of user-
specified events for the current program. For each event, the event identifier
and status (active or disabled), event type, list of associated processes, the
event trigger (stop expression, system call or signal) and the beginning of
the associated command list is printed.

If a proc_list is specified, those events associated with the list of threads or
processes are printed. If a list of event numbers is given, a more detailed
record of the specified events is printed, including the full set of associated
commands.

export $username
The export command makes a user-defined variable and its value available
in the debugger’s environment. The variable is thereafter passed to all
processes created by debug. If the value of $username is changed using the
set command, after it has been exported, it must be explicitly re-exported
for the new value to be visible in the environment. $username is exported
without the leading $ sign.

grab [-f none|procs|all] [-I object file] process_id ...

grab -c core_file object_file
The grab command can take one of two forms. In the first, the user
specifies one or more existing processes by giving a list of process_ids. In
either case, debug attempts to control the specified objects as live processes
and, if successful, suspends their execution. debug resets its notion of the
current program to the executable from which the first process specified was
derived. The current process is reset to the first process specified.

debug, by default, loads symbolic information for the process from the
object file from which the process was created. The -1 option specifies an
alternate object_file from which to load symbolic information. If -1 is used,
only one process_id may be specified. This option is useful when debugging
long running applications that have no symbol information.

Page 13

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 322

debug (SD_CMD) debug (SD_CMD)

The -f option may be used to specify whether the debugger should take
control of child processes, and overrides the default behavior of the
debugger. The arguments to the -f option have the same meanings as do
the legal values for the % ol | owbuilt-in variable (see ““Process Control’")

In the second form of gr ab, the user specifies an executable program in one
of the object file formats understood by the debugger. debug interprets the
core_file as a kernel-created record of the process state at the time of the
death of the process associated with the object_file and lets the user examine
the contents of the process stack, registers and data segments.

debug associates the name of each object with all processes derived from the
current invocation of that object. This name may be used in any command
that accepts a process list. If the command name matches the name of an
already existing debugger-controlled program, debug creates a new name
for the program. The default program name may be reset using the r enare
command (see below).

halt [-p proc_list]

debug instructs the specified threads or processes to stop execution and
waits for them to stop.

hel p [topic]

The hel p command, with no arguments, lists all of the available commands
and help topics. If a command name is given, it gives a detailed syntax and
usage message for that command. If a ““help topic’” name is given, it lists the
help available on that topic. Each debugger command has a help message
which describes its syntax, options, and usage, and gives examples of its
use. In addition, there are help topics which are not also command names,
to explain the syntax for process lists, expressions, command output redirec-
tion and “locations,” and to list the available languages for expression
evaluation.

if (expr) cmd [el se cmd]

i nput

Page 14

This is the traditional conditional branch statement, similar to that present
in C, with the exception that semicolons are not necessary, except to
separate multiple commands on a single line.

expr can be any valid expression in the current language (see “‘Expres-
sions”). The expression is evaluated, and if it evaluates to ‘“true” in the
semantics of the current language, the cmd associated with the i f clause is
executed. Otherwise, if there is an el se clause, the cnd associated with it is
executed.

The i f construct is more likely to be used in commands associated with
events, or in scripts, than to be typed interactively as a top-level command.

[-p proc_name| -r pseudo_tty] [-n] string

The i nput command is used to send user input to a process whose 1/0 has
been redirected by the debugger to a pseudo-terminal (see ‘“‘Redirection of
Process 1/0"). The first argument may be either the name of a single pro-
gram or process (as specified in a process list), or the name of a pseudo-
terminal, as used by debug to label process output. If a proc_name is
specified, debug finds the pseudo-terminal (if any) associated with that

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 323

debug (SD_CMD) debug (SD_CMD)

program. If neither a program nor a pseudo-terminal is specified, debug
attempts to find a pseudo-terminal associated with the current program.

debug sends the input string to the specified pseudo-terminal, after append-
ing a new-line. If the - n option is given, no new-line is appended.

It is an error if the specified pr oc_narme has no associated pseudo-terminal.

junp [-p proc_list] location

location may be any debugger expression that resolves to an address in one
of the specified threads or processes. For each thread or process specified, if
the given object is currently stopped, and if the specified location is valid for
that process, debug adjusts the program counter for that object to that loca-
tion. Subsequent r un or st ep commands for that object continue execution
from the specified location . debug does not attempt to adjust the thread or
process stack if the specified location is in a different function.

kill [-p proc_list] [signal]
ki I'l sends a single signal to the current thread or process or to the list of
threads and processes specified by proc_list. Unlike most other debugger
commands, if a process identifier is given in the proc_list, the signal is sent to
the process as a whole, rather than to each thread in the process.

If no signal is specified, the default is SI G<I LL. signal may be either a valid
signal number or a symbolic name, formed from the manifest constant name
listed in si gnal (BA_ENV) with or without the SI Gprefix. Case is ignored.

list [-p proclist] [-c count] [linelfunc_namelteg_exp]
The list command displays source lines for the specified threads or
processes. The default is the current thread or process.

If no count argument is given, the |i st command displays %wum | i nes
source lines. % um | i nes starts out at 10 and may be reset by the user. If a
count is given, | i st displays count lines, instead.

The starting place for the listing may be specified in several ways. If a regu-
lar expression is given, the current file is searched for the next occurrence of
a line which matches the given reg_exp , beginning from the line immedi-
ately following the current line (preceding, if the reg_exp is surrounded by
question marks). If a match is found, and no count is given, only the line
containing the match is listed. If a count is given, the line containing the
match begins the display. ed(BU_CMD) syntax is used for regular expres-
sions.

A function name as an argument causes the | i st command to begin its
display at the first line of the named function. The function may be
specified as in the location syntax: a name, the debugger built-in variable
% unc, or filename@ func_name.

A line number may be specified as in the location syntax: a single decimal
constant, the debugger built-in variables % i ne or %i st _| i ne, or filename@
line.

Page 15

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 324

debug (SD_CMD) debug (SD_CMD)

| ogof f

If no starting location is specified, the | i st command begins the display
with %ist file@bist line. %ist _file is set to the current file
(%ile)and %ist_line is set to the current line (% i ne) whenever the
current context changes. In addition, %i st _|ine is set to the last line
displayed each time |i st is invoked. Thus, if the current context has not
changed and no starting location is specified, | i st begins with the last line
displayed in the previous | i st invocation.

The | ogof f command stops session logging.

| ogon [filename]

mep |-

The | ogon command starts debugger session logging. All debugger input
and output are sent to filename in addition to being echoed at the terminal.
Output lines are printed as comments.

If no filename is given, the last filename used in a | ogon command is
assumed, and new debugger commands and output are appended to that
file.

p proc_list]

The map command prints out a list of all mapped segments for the current
process, or for each thread or process specified in proc_list. The listing
includes the virtual address range and access permissions for all segments,
and the pathname, for all segments associated with the a. out and associ-
ated shared libraries.

Note that since all threads within a process share a common address space,
the virtual memory map will be identical for each thread within a process.

onstop [-p proc_list] [cmd]

print

Page 16

The onst op command, by default, applies to all threads or processes
derived from the current program. The onstop command with no argu-
ments prints out the list of onst op events with their associated commands.

cmd is a debugger command block. The commands are executed whenever
the specified list of processes stops for any reason.

[-p proc_list] [-v] [-f fmt] expr [, expr] .

The print command displays the results of evaluating the (comma-
separated) list of expressions. The expressions are evaluated in the context
of the current thread or process, unless other threads or processes are
specified in the proc_list argument. If more than one thread or process is
specified, the expressions are evaluated and printed in the context of each
specified object, with the %or oc and % hr ead debugger variables set to the
process and thread with the %or oc debugger variable set to the process
identifiers of the object in which the expressions are being evaluated. All
events which would be triggered as a side effect of evaluating an expression
(breakpoints in a function, a call to which appears in the expression, for
example) are ignored, as if they had been disabled.

The -f option allows specification of a list of format expressions to be used
when printing values. The fmt is a string enclosed in quotation marks (")
and may contain a subset of the format expressions accepted by
printf(BA_LIB). A formatexpression may have the following form:

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 325

debug (SD_CMD) debug (SD_CMD)

% flags] [width] [. [precision]] [conversion] specifier

The flags, width, precision, and conversion fields have the same meanings as in
the printf routine, with the exception that positional parameters are not
accepted. The specifier may be one of the following characters:

c unsigned char

d,i signed decimal integer

e, E floating point in style [-] d.ddde+dd

f floating point in style[-] ddd.dddd

g, G floating point in either of above 2 styles
o] unsigned octal integer

p voi d * (generic data pointer; hexadecimal address)
S string

u unsigned decimal integer

X, X unsigned hexadecimal integer

z debugger default style for the expression
% %

Any character in the fmt that is not part of a format expression is printed as
given. The default format for a particular expression is determined by the
expression evaluator for the current language. The expression evaluators
will attempt to present information formatted in a way that is meaningful
for the given language. For example, for C, a pointer to a character would
be printed as a character string, a reference to an array variable would print
all members of that array and dereferencing a pointer to a structure would
print each member of that structure. Each expr may be any valid expression
in the current language (see ““Expressions’).

Each expression in the list is converted to its printable representation, a
newline is added, and the result displayed. This process is repeated for each
object named in the proc_list . If a fmt is given, no terminating newline is
printed unless specified in the fmt . The - v option specifies verbose mode.
The debugger prints the function prototype of any function that was called
as a result of evaluating the given expressions. This is particularly useful in
evaluating C++ expressions to see how overloaded functions or operators
are resolved.

ps [-p proc_list]

pwd

quit

The ps command prints the debugger-generated identifiers, kernel-
generated identifiers, current state, location, if the object is stopped, and
object name for all controlled threads and processes, or for only those
objects specified by the - p option, if present.

The pwd command prints the debugger’s current working directory. The
current working directory may be changed using the cd command.

The quit command causes the debugger to exit, releasing and running any
grabbed processes and Killing any processes created by the debugger.

If a user wishes to leave a grabbed process suspended, perhaps to be
grabbed at a later time from a different invocation of the debugger, he or
she should use the r el ease command with the - s option before quitting.

Page 17

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 326

debug (SD_CMD) debug (SD_CMD)

regs [

-p proc_list]

The regs command displays in hexadecimal the contents of the processor
registers for the current thread or process. If more than one thread or pro-
cess is specified by the proc_list argument, the register display is performed
for each process object in turn.

rel ease [-s] [-p proc_list]

debug removes all planted breakpoints from all threads or processes
specified in proc_list and relinquishes control over them. Releasing all
threads within a given process is equivalent to releasing the entire process.
If the - s option is specified, the processes are released, but halted. Other-
wise, the released objects are allowed to continue execution. The - s option
is ignored for threads. If the current thread or process is released, debug
chooses a new object to become current.

Processes released in the halted state may be grabbed by the debugger in a
different debug session.

rel ease can be used on core images as well as live processes. The
debugger deletes the core image and associated object file from the list of
objects that can be examined.

rename prog_name name

run [-

Page 18

The renane command changes the name by which a related group of
processes are known. All threads and processes derived from a single invo-
cation of the executable from which prog_name was derived, can be referred
to by the new name. name can be used in any command that accepts a
proc_list and will appear in any debugger output that would have used
prog_name.

p proc_list] [-bfr] [-u location]

debug starts the current thread or single-threaded process or each object
specified by proc_list. Execution continues from the program address at
which it was suspended when the given object last stopped, or at the
address specified in a preceding j unp command.

The -f and - b options allow the global behavior set by the %ai t debugger
variable to be overridden. -f specifies foreground execution for the threads
or processes. - b specifies background execution.

The -r option causes debug to continue execution of the given object until
each returns from its current stack frame, that is, until the return address of
the current function is reached (or until some other event causes execution
to halt).

The -u option specifies that debug continues execution of the specified
objects until the address specified by location is reached (or until some other
event causes execution to halt).

A multiplexed thread that is not currently running on an LWP cannot be set
running.

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 327

debug (SD_CMD) debug (SD_CMD)

script [-q] fname

set [
set [

si gnal

The script command reads and executes debugger commands from the
named file. Commands are echoed before execution, unless the - q option is
given.

Scripts may nest; the debugger implementation does not place a limit on the
number of nested scripts (although external limits, such as the number of
open files supported by st di o, may apply).

p proc_list] [-v] expr

p proc_list] debug_or_user_var [=] expr [, expr]

The set command has two forms. In the first, expr may be any valid expres-
sion in the current language (see “‘Expressions”). While any valid language
expression may be given, the typical use of the set command is to evaluate
assignment expressions. The -v option specifies verbose mode. The
debugger prints the function prototype of any function that was called as a
result of evaluating the given expressions. This is particularly useful in
evaluating C++ expressions to see how overloaded functions or operators
are resolved.

In the second form of the command, set is used to change the value of a
debugger built-in variable name or user-defined variable name. Debugger
built-in variables may have special semantics associated with them, such as
%at h, which requires a string value having a particular structure, or
% r ane, which denotes a frame number and must be within the range of
currently active frame numbers. Setting a built-in variable such as % r arre,
may cause the values of other built-in variables to change as well (for exam-
ple, % i ne or % unc). There is also an implied string concatenation opera-
tor. Any pair of string-valued expressions which appear separated by com-
mas will be concatenated into a single string-valued expression before the
assignment is performed.

The debug_or_user_var and expr are both evaluated in the context of the
current thread or single-threaded process, unless one or more other threads
or processes have been specified in the proc_list argument. If more than one
thread or process is specified, the set command is evaluated in the context
of each of the specified objects, in turn.

[-p proc_list] [[-iq] signal ... [cmd]]

The signal command, by default, applies to all threads or processes
derived from the current program. Signals are different from other
debugger events in that the debugger catches all signals by default. That is,
when a signal is posted to a thread or process, the debugger stops that
object and announces that the signal has been posted. The user can then
request that the signal be canceled before the thread or process actually
receives it (see cancel).

debug can be instructed to ignore a given signal for a particular object (or
set of objects) with the -i option to the si gnal command. So signal -i
si gusr1 instructs the debugger to let SI GQUSRL go directly to the current
thread or process, while si gnal sigusr1 re-establishes the default action
for SI GUSRA for the current object.

Page 19

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 328

debug (SD_CMD) debug (SD_CMD)

st ack

The si gnal command can also be used to create events triggered by the
receipt of a signal. If a user associates a command block with a signal or set
of signals, the debugger creates an event number for that signal in the same
name space as the other event commands. These events may be manipu-
lated using event s, del et e, di sabl e or enabl e. Multiple events may be
assigned for the same signal in any given thread or process. The creation of
an event for a signal takes precedence over any instruction to ignore that
signal (using si gnal -i).

The - g option specifies that debug will not announce the occurrence of the
signal and applies only to signal events.

The si gnal command with no signal arguments prints the current signal
disposition for each signal and the current list of user-specified signal
events, including the event identifier and current status (active or disabled),
list of associated processes, signal name and the beginning of any associated
command block.

[-p proc_list] [-c count] [-f frame] [-a address] [-s stack]

The st ack command with no arguments prints the entire call stack for the
current thread or process. Frames are numbered from 0 for the bottom of
the stack (initial stack frame). Displays begin with the top of the stack,
unless the - f option is given, in which case they begin with frame. The count
argument restricts the display to at most count frames from each stack. If
more than one object is specified by the proc_list argument, the stack request
is performed for each object in turn.

The address and stack arguments may be used to specify beginning values for
the program counter and/or stack pointer, respectively. This can be useful
when attempting to print a stack trace for a process that has jumped to an
illegal address or whose stack pointer has been corrupted. Both the address
and stack arguments must be hexadecimal numbers.

step [-p proc_list] [-bfioqg] [-c count]

Page 20

The step command continues execution of the current thread or single-
threaded process or of each object specified by proc_list.. The -i option
specifies stepping at the machine instruction level. The specified objects are
instructed to execute a single machine instruction, or count instructions, if a
count is specified.

The default is stepping at the source statement level. debug continues exe-
cution until the object reaches the next source statement as defined by the
compiler-generated debugging information. If a count is specified, the
debugger repeats the st ep command count times, or until execution is inter-
rupted by some other event. An explicit count of zero is interpreted to mean
‘‘step forever.”

The - 0 option specifies stepping over function calls. When the debugger
encounters a subroutine call while stepping with the - o option, it will set a
temporary breakpoint at the return point of the call and run at ““full speed”
until the temporary breakpoint is reached. Stepping over function calls is
available with both the instruction and source level stepping.

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 329

debug (SD_CMD) debug (SD_CMD)

The -f and - b options allow the global behavior set by the %ai t debugger
variable to be overridden. -f specifies foreground execution for the threads
or processes. - b specifies background execution.

The - q option specifies quiet stepping: the debugger does not announce the
step action nor the new source line.

A multiplexed thread that is not currently running on an LWP cannot be
stepped.

stop [-p proc_listf [[-q] [-c count] stop_expr [cmd]]
The st op command specifies conditions in the address space of one or more
controlled objects that should cause a list of threads or processes to stop. By
default, the st op command applies to all threads or processes derived from
the current program.

A stop_expr consists of one or more stop events , joined by the special
debugger conjunction (&) or disjunction (| |) operators. These operators
are left-associative, and debug does not guarantee the order in which their
operands are evaluated. A stop event can take one of three forms:

location

* |value

(expr)
Each type of stop event has some action that will cause the event to be
noticed by the debugger. When such an action occurs, the entire stop_expr is
evaluated for “truth”. If true, the event triggers in the normal way (debug
informs the user of the event and executes any associated commands).

A location is an address in the process’s text where debug can set a break-
point. When the thread or process reaches the specified location debug
notices the event. For location stop events that refer to function names, the
expression is true as long as that function is active. For location stop events
that apply to a particular address or line number, the expression is true only
when the thread or process is at that address or line.

Ilvalue may be any expression in the current language that would be valid on
the left-hand side of an assignment statement in that language. The
debugger notices this event when the contents of the location change. The
change itself makes this kind of stop event true.

expr can be any valid expression in the current language. The debugger
notices the stop event when any of the identifiers involved in the expression
changes value. The entire expression is then evaluated in the context of the
current language.

stop events are evaluated continuously while the thread or process is execut-
ing. The debugger is free to choose whatever means it has available to
achieve this effect. This may include hardware support or may involve con-
tinuous single stepping of the object.

The optional count specifies the number of times the stop_expr must evaluate
to true before the event triggers. After count times, the event triggers each
time the stop_expr evaluates to true.

Page 21

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 330

debug (SD_CMD) debug (SD_CMD)

The - g option specifies that debug will not announce the occurrence of the
event.

The stop command with no stop_expr arguments prints the list of user-
specified stop expressions including the event identifier and current status
(active or disabled).

synbol s [-p proc_list] [-o0 object] [-n filename] [-dfgltuv] [pattern]

The synbol s command with no arguments displays ‘““local”’ symbols; that
is, names of variables which are defined within the current function
(% r ane) and are visible from the current location. This is also the behavior
of the -1 option.

The - g option displays only the names of global variables which are visible
from the current location. This includes only those symbols defined within
the current object (executable program or shared library). The - o option, in
conjunction with - g, displays the names of global variables in the named
object.

The -f option displays only the names of variables which are local to the
current file (% | e) and are visible from the current location (% oc). If the
- n option is used, the symbols local to filename are displayed instead.

The -d option displays the debugger built-in variables. The -u option
displays the debugger-maintained, user-defined variables.

If a pattern is given, the display is further restricted to symbols which match
the pattern. sh(BU_CMD) syntax is used.

If the - v option is specified, the value of each symbol is displayed, along
with its name. The -t option displays the type of the variable.

If more than one thread or process is specified by the proc_list argument, the
synbol s request is performed in the context of each object in turn.

syscal |l [-p proc_list] [[-eqgx] [-c count] call ... [cmd]]

Page 22

The syscall command, by default, applies to all threads or processes
derived from the current program. The syscal | command with no call
arguments prints the current list of user-specified system call actions,
including the event identifier and current status (active or disabled), list of
associated processes, system call name and the beginning of any associated
command block.

Each call may be given as either a system call entry number, or as the name
used in the C language interface to the call. The - e option specifies system
call entry, and is the default. The - x option specifies system call exit. Both
may be given on a single invocation of the syscal | command. For each call
listed, the debugger arranges for the specified objects to stop on entry to or
exit from that call, or on both entry and exit. The resulting set of actions is
then assigned a unique event identifier.

The optional count specifies the number of times the call must occur before
the event triggers. After count times, the event triggers each time the call
occurs.

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 331

debug (SD_CMD) debug (SD_CMD)

whati s

whi | e

The - g option specifies that debug will not announce the occurrence of the
system call.

[-p proc_list] expr
what i s prints the type of expr as evaluated in the current context. expr can
be any valid expression in the current language.

If no proc_list is given, the type of expr is evaluated in the context of the
current thread or process. Otherwise, it is evaluated for each object
specified by the proc_list, in turn.

(expr) cmd

This is the traditional conditional loop statement, similar to that present in
C, with the exception that semicolons are not necessary, except to separate
multiple commands on a single line.

expr can be any valid expression in the current language (see “‘Expres-
sions”). The expression is evaluated, and if it evaluates to ‘““true” in the
semantics of the current language, the cmd is executed. The expression is
then re-evaluated.

Unlikei f, the whi | e construct is often useful as a top-level command.

Summary of Built-In Variables
%lb_| ang The current language as determined from the object file (read-

only, thread specific).

%ile The current file (read-only, thread specific).

% ol | ow Should debug follow child processes? Valid values are none,
procs, al |l (global).

% rane The current active stack frame. Affects %lb_| ang, % unc,
%ile, %ine, %ist _file, %ist_line, %oc (thread
specific).

% unc The current function. Affects % r ame (thread specific).

%l obal _pat h The list of directory pathnames used to search for source files
for all processes. Searched after the program specific list %pat h
(global).

% ang The current language. Setting % ang overrides the language as
determined from the object file and maintained in %lb_| ang
(global) .

% ast event The id of the last event created (read-only, global).

%ine The current line (read-only, thread specific).

%ist_file The name of the file to be displayed by the |i st command.
Reset when the current context changes (thread specific).

%ist_line The number of the next source line to be displayed by the | i st

command. Reset when the current context changes. Set to the
last line displayed by any invocation of | i st (thread specific).

Page 23

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 332

debug (SD_CMD)

debug (SD_CMD)

% oc The current location (read-only, thread specific).

%wum byt es The default number of bytes printed by the dunp command
(global).

Y%um | i nes The default number of lines printed by the di s and | i st com-
mands (global).

%at h The list of directory pathnames used to search for source files
for a given program. Searched before the global list
%l obal _pat h (program specific).

%r oc The current process (global).

%r ogr am The current program (global).

%r onpt The string used by debug to prompt the user for input; default
is debug> (global).

%edir Should process 1/0 be redirected to a pseudo-terminal for
processes created by debug? Valid values are 0, 1, no, yes (glo-
bal).

% esul t The result status of any debugger command. 0 indicates suc-
cess, non-zero failure (read-only, global).

% hi sevent The id of the event whose associated command list is currently
being executed (read-only, global).

% hr ead The current thread (global).

% hr ead_change

Control debugger behavior when a thread changes state (glo-
bal).

%er bose Level of verbosity for event notification (global). Valid values
are qui et , source, event s, reason, al | .

%\ai t Should threads and processes run in the foreground or back-
ground? Valid values are 0, 1, backgr ound, f or egr ound, no,
yes (global).

Oegister The processor registers.

DIAGNOSTICS

If debug is invoked with invalid arguments, it prints a diagnostic message and exits
with a non-zero exit status. If the command-line processing fails for any other rea-
son, debug continues execution, allowing the user to enter requests interactively.
debug prints diagnostics for any failure in processing user requests. The result
status of each command is recorded in the debugger variable % esul t. A value of
0 indicates successful execution; a non-zero value indicates failure.

If debug cannot create or execute processes for any of the commands specified in
cmd_line, it acts as if the entire ¢cmd_line request had failed. In particular, any
processes that had been created as part of the same cmd_line request are killed.

On the other hand, if debug cannot gain control of one or more of the live_objects
specified in the second form of invocation, it continues to attempt to control the
other objects specified.

Page 24

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 333

debug (SD_CMD) debug (SD_CMD)

If debug is invoked with the -i x option and cannot start the X Window based
interface, it prints a diagnostic message and exits with a non-zero exit status.

FILES
$HOW . debugrc defaults file
LIBDIR/ debug_al i as built-in alias definitions
LIBDIR/ debug. ol . ui graphical interface
LIBDIR usually /usr/ccs/lib
Jusr/lib/local e/ d M5GFI LES/ debug. str
default message file
/usr/lib/local el locale/ LC_MESSAGEY debug. str
language-specific message file
[usr/libl/local e/ @ MBGFI LES debug. ui . str
X interface default message file
/usr/1ib/local el locale/ LC_MESSACES/ debug. ui . str
X interface language-specific message file
[usr/ X/ 1ibl/local e/ d hel p/ debug/ *
help screens
Jusr/libl/local e/ @ MSGHFI LES dbg. hel p. t hr
default help messages
lusr/1ib/local el locale/ LC_MESSACES dbg. hel p. t hr
language-specific help messages
SEE ALSO
cc(SD_CMD), dl cl ose(BA_0OS), dl open(BA_OS), dl symBA_OS), ed(BU_CMD),
exec(BA_0S), fork(BA_0S), printf(BA_LIB), sh(BU_CMD), strtol (BA_LIB),
thr_create(MT_LIB)
LEVEL

Level 1.

Page 25

FINAL COPY
June 15, 1995
File: sd_cmd/debug
svid

Page: 334

delta(1)

(SD_CMD) delta (1)

from the MR number validation program, del t a terminates. (It is
assumed that the MR numbers were not all valid.)

-y[comment] Arbitrary text used to describe the reason for making the delta. A

null string is considered a valid comment. If -y is not specified and
the standard input is a terminal, the prompt comrent s? is issued on
the standard output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unescaped new-line
character terminates the comment text. Supplementary code set
characters may be used in comment.

-p Causes del t a to print (on the standard output) the SCCS file differ-
ences before and after the delta is applied in a di ff (BU_CMD)
di ff (1) format.
Files
g. file Existed before the execution of del ta; removed after completion of
del ta.
p. file Existed before the execution of del t a; may exist after completion of
del ta.
g. file Created during the execution of del t a; removed after completion of
del t a.
x. file Created during the execution of del t a; renamed to SCCS file after com-
pletion of del t a.
z. file Created during the execution of del t a; removed during the execution of
del ta.
d. file Created during the execution of del t a; removed after completion of
del ta.
bdi f f Program to compute differences between the ‘““gotten” file and the g. file.
Errors
Use hel p for explanations.
SEE ALSO
adm n (SD_CMD), get (SD_CMD), prs (SD_CMD), r ndel (SD_CMD),
LEVEL
Level 1.
NOTICES

Page 2

A get of many SCCS files, followed by a del t a of those files, should be avoided
when the get generates a large amount of data. Instead, multiple get /del ta
sequences should be used.

If the standard input (-) is specified on the del t a command line, the - m(if neces-
sary) and - y keyletters must also be present. Omission of these keyletters causes an

error.

Comments are limited to text strings of at most 1024 bytes. Line lengths greater
than 1000 bytes cause undefined results.

FINAL COPY
June 15, 1995
File: sd_cmd/delta
svid

Page: 336

dis (SD_CMD)

NAME

dis (SD_CMD)

di s — object code disassembler

SYNOPSIS

dis [-0] [-M [-L] [-s] [-F function]

[-1

DESCRIPTION

string] file .

The di s command produces an assembly language listing of file, which may be an
object file or an archive of object files. The listing includes assembly statements and
an octal or hexadecimal representation of the binary that produced those state-

ments.

The following options are interpreted by the disassembler and may be specified in

any order.
- F function

-1 string

-0
-S

-V

Errors

Disassemble only the named function in each object file specified on
the command line. The - F option may be specified multiple times on
the command line.

Lookup source labels for subsequent printing. This option works only
if the file was compiled with additional debugging information (for
example, the - g option of cc).

Disassemble the archive file specified by string. For example, you
would issue the command dis -1 x -l z to disassemble i bx. a
and | i bz. a, which are assumed to be in LIBDIR.

Print numbers in octal. The default is hexadecimal.

Perform symbolic disassembly where possible. Symbolic disassembly
output will appear on the line following the instruction. Symbol
names will be printed using C syntax.

Print, on standard error, the version number of the disassembler being
executed.

The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

SEE ALSO

as(SD_CMD), cc(SD_CMD), | d(SD_CMD)

LEVEL

Level 2: June 30, 1989. Optional

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/dis
svid

Page: 337

env (SD_CMD) env (SD_CMD)

NAME

env, pri nt env — set environment for command execution
SYNOPSIS

env [-] [name=value] . . . [command args]
DESCRIPTION

env obtains the current environment, modifies it according to its arguments, then
executes the command with the modified environment. Arguments of the form
name=value are merged into the inherited environment before the command is exe-
cuted. The - flag causes the inherited environment to be ignored completely, so
that the command is executed with exactly the environment specified by the argu-
ments. If no command is specified, the resulting environment is printed, one
name-value pair per line.

env recognizes supplementary code set characters in value, command, and args

according to the locale specified in the LC_CTYPE environment variable [see LANGon

envvar (BA_ENV)]

If the Application Compatibility Package is installed, then pri nt env replaces env.
SEE ALSO

envvar (BA_ENV), exec (BA_OS), sh (BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/env
svid

Page: 338

gcore (SD_CMD) gcore (SD_CMD)

NAME
gcore — get core images of running processes

SYNOPSIS
gcor e [- o filename] process-id ...

DESCRIPTION
gcor e creates a core image of each specified process. The name of the core image
file for the process whose process | Dis process-id will be cor e. process-id.

—o filename
Substitute filename in place of cor e as the first part of the name of the core
image files.
FILES
cor e. process—id core image

SEE ALSO
kill(BU_CMD), ptrace(KE_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/gcore
svid

Page: 339

get (SD_CMD) get (SD_CMD)

NAME
get — get a version of an SCCSs file

SYNOPSIS

get [-ccutoffl [-ilist] [-rSID] [-xlist] [-1[p]]
[-b] [-e] [-9] [-KI [-m [-n] [-p] [-s] [-t] file.

DESCRIPTION
get extracts the contents of each named SCCs file based on the values of the
keyletter arguments. The arguments may be specified in any order, but all keyletter
arguments apply to all named Sccs files. The file name specified must be in the
form s. file or be the name of a directory. If a directory is named, get behaves as
though each file in the directory were specified as a nhamed file, except that non-
sccs files (last component of the path name does not begin with s.) and unread-
able files are silently ignored. If a name of - is given, the standard input is read;
each line of the standard input is taken to be the name of an SCCSs file to be pro-
cessed.

The generated text is normally written into a file called the g. file whose name is
derived from the SCCs file name by simply removing the leading ‘‘s. ”” (see the Files
section below).

Each of the keyletter arguments is explained below as though only one SccCs file is
to be processed, but the effects of any keyletter argument apply independently to
each named file.

-rSID The SCCs identification string (SID) of the version (delta) of an SCCs file to
be retrieved. Table1l below shows, for the most useful cases, what
version of an SCCS file is retrieved (as well as the SID of the version to be
eventually created by del t a(1) if the - e keyletter is also used), as a func-
tion of the SID specified.

- ccutoff Cutoff date-time, in the form:
YY[MM[DD[HH[MM[SS]1111

No changes (deltas) to the SCCS file that were created after the specified
cutoff date-time are included in the generated ASCII text file. Units omit-
ted from the date-time default to their maximum possible values; that is,
-¢7502 is equivalent to - ¢750228235959. Any number of non-numeric
characters may separate the two-digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:

-c"77/2/2 9:22: 25".

- list A list of deltas to be included (forced to be applied) in the creation of the
generated file. The list has the following syntax:
<list> :: = <range> | <list> , <range>
<range> ::= SID | SID — SID

SID, the SCCS Identification of a delta, may be in any form shown in the
“SID Specified”” column of Table 1.

- xlist A list of deltas to be excluded in the creation of the generated file. See the
-i keyletter for the list format.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/get
svid

Page: 340

get (SD_CMD)

Page 2

get (SD_CMD)

Indicates that the get is for the purpose of editing or making a change
(delta) to the sccCs file via a subsequent use of del t a(1). The - e keyletter
used in a get for a particular version (SID) of the SCcCs file prevents
further get s for editing on the same SID until del t a is executed or the j
(joint edit) flag is set in the sccs file [see adm n(SD_CMD)]. [see
adm n(1)]. Concurrent use of get -e for different SIDs is always
allowed.

If the g. file generated by get with an - e keyletter is accidentally ruined
in the process of editing it, it may be regenerated by re-executing the get
command with the - k keyletter in place of the - e keyletter.

SCcs file protection specified via the ceiling, floor, and authorized user
list stored in the sccCs file [see adm n(SD_CMD)] are enforced when the
- e keyletter is used.

Used with the - e keyletter to indicate that the new delta should have an
SID in a new branch as shown in Table 1. This keyletter is ignored if the b
flag is not present in the file or if the retrieved del t a is not a leaf del t a.
(A leaf del ta is one that has no successors on the SCCS file tree.) A
branch del t a may always be created from a non-leaf del t a. Partial SIDs
are interpreted as shown in the ““SID Retrieved” column of Table 1.

Suppresses replacement of identification keywords in the retrieved text
by their value. The - k keyletter is implied by the - e keyletter.

Causes a delta summary to be written into an | . file. 1f -1 p is used, then
an | . file is not created; the delta summary is written on the standard out-
put instead. See the ‘“Identification Keywords” section below for
detailed information on the | . file.

Causes the text retrieved from the SCCS file to be written on the standard
output. No g. file is created. All output that normally goes to the stan-
dard output goes to file descriptor 2 instead, unless the -s keyletter is
used, in which case it disappears.

Suppresses all output normally written on the standard output. How-
ever, fatal error messages (which always go to file descriptor 2) remain
unaffected.

Causes each text line retrieved from the SCCS file to be preceded by the
SID of the delta that inserted the text line in the SCCs file. The format is:
SID, followed by a horizontal tab, followed by the text line.

Causes each generated text line to be preceded with the %%identification
keyword value The format is: %6 value, followed by a horizontal tab,
followed by the text line. When both the - mand - n keyletters are used,
the format is: %ovalue, followed by a horizontal tab, followed by the - m
keyletter generated format.

Suppresses the actual retrieval of text from the SCCs file. It is primarily
used to generate an | . file, or to verify the existence of a particular SID.

FINAL COPY
June 15, 1995
File: sd_cmd/get
svid

Page: 341

get (SD_CMD)

-t

get (SD_CMD)

Used to access the most recently created delta in a given release (for
example, - r 1), or release and level (for example, -r 1. 2).

For each file processed, get responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the SCCs file.

If the - e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one named
file or if a directory or standard input is named, each file name is printed (preceded
by a new-line) before it is processed. If the -i keyletter is used, included deltas are
listed following the notation “I ncl uded;” if the - x keyletter is used, excluded del-

tas are listed following the notation “‘Excl uded.”
TABLE 1. Determination of SCCS Identification String

SID* - b Keyletter Other SID SID of Delta
Specified Usedt Conditions Retrieved to be Created
nonet no R defaultstomR mR.mL mR.(mL+1)
nonet yes R defaultsto MR mR.mL mR.mL.(mB+1).1
R no R>mR mR.mL R.1***

R no R=mR mR.mL mR.(mL+1)
R yes R>mR mR.mL mR.mL.(mB+1).1
R yes R=mR mR.mL mR.mL.(mB+1).1
R - R<mRandR hR.mL** hR.mL.(mB+1).1
does not exist
R - Trunk succ.# R.mL R.mL.(mB+1).1
in release >R
and R exists
R.L no No trunk succ. R.L R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
R.L - Trunk succ. R.L R.L.(mB+1).1
in release = R
R.L.B no No branch succ. R.LB.mS R.L.B.(mS+1)
R.L.B yes No branch succ. RLB.mS R.L.(mB+1).1
R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1
R.LB.S - Branch succ. R.L.B.S R.L.(mB+1).1

* YR UL “B,” and “‘S” are the “release,” “level,” “‘branch,” and ‘““sequence’ components
of the SID, respectively; “m’ means “maximum.” Thus, for example, “R.mL" means ‘“‘the
maximum level number within release R;” “R.L.(mB+1).1” means ‘‘the first sequence
number on the new branch (for example, maximum branch number plus one) of level L

within release R.”

“R.L.B.S”, each of the specified components must exist.

Note that if the SID specified is of the form “R.L”, “R.L.B”, or

** “hR’ is the highest existing release that is lower than the specified, nonexistent, release R.

*** This is used to force creation of the first delta in a new release.

Successor.

FINAL COPY
June 15, 1995
File: sd_cmd/get
svid

Page: 342

Page 3

get (SD_CMD) get (SD_CMD)

T The - b keyletter is effective only if the b flag [see adm n(SD_CMD)] is present in the file.
An entry of - means “irrelevant.”

T This case applies if the d (default SID) flag is not present in the file. If the d flag is present
in the file, then the SID obtained from the d flag is interpreted as if it had been specified on
the command line. Thus, one of the other cases in this table applies.

Identification Keywords

Page 4

Identifying information is inserted into the text retrieved from the sCcCs file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an SCCS file:

Keyword Value

N Module name: either the value of the m flag in the file [see
adm n(SD_CMD)], or if absent, the name of the SCCS file with the lead-
ing's. removed.

% % SCCS identification (SID) (%% %% %8% ¥8%) of the retrieved text.

9% Release.

%% Level.

9%8% Branch.

%% Sequence.

%% Current date (YY/MM/DD).

%o Current date (MM/DD/YY).

%d% Current time (HH:MM:SS).

%% Date newest applied delta was created (YY/MM/DD).

%% Date newest applied delta was created (MM/DD/YY).

%)% Time newest applied delta was created (HH:MM:SS).

%% Module type: value of thet flag in the SCCS file [see adm n(SD_CMD)].
%% sccs file name.

%% Fully qualified SCCs file name.

%Yo The value of the q flag in the file [see adm n(SD_CMD)].

%% Current line number. This keyword is intended for identifying messages

output by the program such as “‘this should not have happened” type
errors. It is not intended to be used on every line to provide sequence

numbers.

%% The four-character string @#) recognizable by the what command.

%W A shorthand notation for constructing what strings for UNIX System
program files. %o = %Z%8M/<tab>% %

%M\% Another shorthand notation for constructing what strings for non-UNIX

System program files: %A% = %Z%8% %P6 % 9BL%

Several auxiliary files may be created by get. These files are known generically as
the g. file, | . file, p. file, and z. file. The letter before the dot is called the tag. An aux-
iliary file name is formed from the SCCs file name: the last component of all SCCS
file names must be of the form s. module-name, the auxiliary files are named by
replacing the leading s with the tag. The g. file is an exception to this scheme: the
g. file is named by removing the s. prefix. For example, s. xyz. c, the auxiliary file
names would be xyz. c, | . xyz. ¢, p. Xyz. ¢, and z. xyz. c, respectively.

FINAL COPY
June 15, 1995
File: sd_cmd/get
svid

Page: 343

get (SD_CMD) get (SD_CMD)

Files
g. file created by the execution of get .
| . file created by -1 option; contains delta summary
p. file [seedelta(SD_CMD)]
g. file [seedel ta(SD_CMD)]
z. file [see del ta(SD_CMD)]
bdi ff Program to compute differences between the “gotten’ file and the g. file.
[usr/libl/local el locale/ LC_MESSACES uxue
language-specific message file [see LANGon envvar (BA_ENV)].

Errors
Use hel p for explanations.

SEE ALSO
adni n (SD_CMD), del t a (SD_CMD), pr's (SD_CMD), what (SD_CMD)

LEVEL
Level 1.

NOTICES
If the effective user has write permission (either explicitly or implicitly) in the direc-
tory containing the SCCS files, but the real user does not, then only one file may be
named when the - e keyletter is used.

Page 6

FINAL COPY
June 15, 1995
File: sd_cmd/get
svid

Page: 345

Id (SD_CMD) Id (SD_CMD)

NAME
Id - link editor for object files

SYNOPSIS
| d [options] file ...

DESCRIPTION
The | d command combines several object files into one, performs relocation and
resolves external symbols. In the simplest case, the names of several object pro-
grams are given, and | d combines them, producing an object module that can
either be executed or, if the —r option is specified, used as input for a subsequent | d
run. The output of | d is left in a. out if no errors occurred during the load. This
file is by default executable. If any input file is not an object file, | d assumes it is a
library.

If any argument is an archive library, it is searched at the point it is encountered in
the argument list. Only those routines defining an unresolved external reference
are loaded. The archive library symbol table is searched to resolve external refer-
ences which can be satisfied by library members. The ordering of archive library
members is unimportant, unless there exist multiple library members defining the
same external symbol.

The following options are recognized by | d:

-a In static mode only, produce an executable object file; give errors for
undefined references. This is the default behavior for static mode. —a may
not be used with the —r option.

—dyn | d uses static linking only when yn is n; otherwise if supported, when yn is
y, | d uses dynamic linking.

—e epsym
Set the default entry point address for the output file to be that of the sym-
bol epsym.

—h name
In dynamic mode only and dynamic linking is supported, when building a
shared object, record name in an implementation defined manner in the
object. name will be recorded in executables that are linked with this object
rather than the object’s UNIX System file name. Accordingly, name will be
used by the dynamic linker as the name of the shared object to search for at
run time.

—I x Search the library | i bname. a or if shared objects are supported libname.so.
Its placement on the command line is significant as a library is searched at a
point in time relative to the placement of other libraries and object files on
the command line.

—0 outfile
Produce an output object file by the name outfile. The name of the default
object file is a. out .

-r Retain relocation entries in the output object file. Relocation entries must be
saved if the output file is to become an input file in a subsequent | d run.
The link editor will not complain about unresolved references, and the out-
put file will not be made executable.

Page 1

FINAL COPY

June 15, 1995

File: sd_cmd/Id
svid

Page: 346

Id (SD_CMD) Id (SD_CMD)

-s Strip all symbolic debugging information from the output object file.

—u symname
Enter symname as an undefined symbol in the symbol table. This is useful
for loading entirely from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first rou-
tine.

-z defs
Force a fatal error if any undefined symbols remain at the end of the link.
This is the default when building an executable. It is also useful if dynamic
linking is supported when building a shared object to assure that the object
is self-contained, that is, that all its symbolic references are resolved inter-
nally.

—z nodef s
Allow undefined symbols. This is the default, if dynamic linking is sup-
ported, when building a shared object. It may be used when building an
executable in dynamic mode and linking with a shared object that has
unresolved references in routines not used by that executable. This option
should be used with caution.

-z text
If in dynamic mode and dynamic linking is supported, only, force a fatal
error if any relocations against non-writable, allocatable sections remain.

—Barg arg can be any one of the following: dynsat, symb

dynstat When dynamic linking is supported, dynstat can be either
dynanic or static. These options govern library inclusion.
dynami c is valid in dynamic mode only. If the system supports
dynamic linking, —B dynam ¢ causes the link editor to look for
files named | i bx. so and then for files named | i bx. a when
given the —| x option. —B st ati ¢ causes the link editor to look
only for files named | i bx. a. These options may be specified any
number of times on the command line as toggles: if -Bst ati c is
given, no shared objects will be accepted until —-Bdynami c is seen.
See also the —| option.

symb When dynamic linking is supported symb may take the form
synbol i c[=symbol, ...]
When building a shared object, if a definition for symbol exists,
bind all references to symbol to that definition. If no list of sym-
bols is provided, bind all references to symbols to definitions that
are available; |'d will issue warnings for undefined symbols
unless —z def s overrides. Normally, references to global sym-
bols within shared objects are not bound until run time, even if
definitions are available, so that definitions of the same symbol in
an executable or other shared objects can override the object’s
own definition.

Page 2

FINAL COPY
June 15, 1995
File: sd_cmd/Id

svid

Page: 347

Id (SD_CMD) Id (SD_CMD)

-G If dynamic linking is supported and in dynamic mode only, produce a
shared object. Undefined symbols are allowed.

—L dir
Change the algorithm of searching for the library x to look in dir before
looking in the default library directories. This option is effective only if it
precedes the —I option on the command line.

-V Output a message giving information about the version of | d being used.

—=YP, dirlist
Change the default directories used for finding libraries. dirlist is a colon-
separated path list.

FILES

a. out
output file

USAGE
General.
When the link editor is called through cc, a startup routine is linked with the user’s
program. This routine calls exi t () after execution of the main program. If the
user calls the link editor directly, then the user must ensure that the program
always calls exi t () rather than falling through the end of the entry routine.
The symbols _et ext, _edat a, and _end are reserved and are defined by the link
editor. It is erroneous for a user program to redefine them.
The meaning of the terms shared library and dynamic linking are described in the
System V ABI.

SEE ALSO
ar(BU_CMD), cc(SD_CMD), strip(SD_CMD).

LEVEL

Level 1.

The following options are dependent upon dynamic linking being supported and
therefore are marked as Optional:

-d, -h, -z, -B dynstat, -B symb, -G

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/Id

svid

Page: 348

lex (SD_CMD) lex (SD_CMD)

NAME
lex — generate programs for simple lexical analysis of text

SYNOPSIS
| ex [- ctvn] [file] ...

DESCRIPTION
The command | ex generates programs to be used in lexical processing of character
input and may be used as an interface to yacc.

The input file(s), which contain | ex source code, contain a table of regular expres-
sions each with a corresponding action in the form of a C program fragment. Mul-
tiple input files are treated as a single file. When | ex processes file(s), this source is
translated into a C program. Normally | ex writes the program it generates to the
file 1 ex.yy.c. Ifthe -t option is used, the resulting program is written instead
to the standard output. When the program generated by | ex is compiled and exe-
cuted, it will read character input from the standard input and partition it into
strings that match the given expressions. When an expression is matched, the input
string that was matched is left in an external character array yytext and the
expression’s corresponding program fragment, or action, is executed. | ex also
provides a count yyl eng of the number of characters matched. During pattern
matching the set of patterns will be searched for a match in the order in which they
appeared in the | ex source and the single longest possible match will be chosen.
Among rules that match the same number of characters, the rule given first will be
matched.

The program generated by | ex, e.g., | ex.yy. c, should be compiled and loaded
with the | ex library (using the - 1 | option with cc).

The option —c indicates C language actions and is the default, —t causes the pro-
gram generated to be written instead to standard output, —v provides a one-line
summary of statistics of the finite state machine generated, —n will not print out
the —v summary (as explained under Definitions, below).

The general format of | ex source is:

{definitions}

%%

{rules}

%%

{user subroutines}
The definitions and the user subroutines may be omitted. The first %%is required
to mark the beginning of the rules (regular expressions and actions); the second %%
is required only if user subroutines follow.

Any line in the source beginning with a blank is assumed to contain only C text and
is copied to | ex.yy. c; if it precedes %it is copied into the external definition
area of the | ex. yy. ¢ file. Anything included between lines containing only %
and % is copied unchanged to | ex. yy. c and the delimiter lines are discarded.
Anything after the third %6delimiter is copied to | ex. yy. c.

Definitions
Definitions must appear before the first 9%®b6delimiter. Any line in this section not
contained between % and % lines and beginning in column 1 is assumed to
define a | ex substitution string. The format of these lines is

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/lex
svid

Page: 349

lex (SD_CMD) lex (SD_CMD)

name substitute
The name must begin with a letter and be followed by at least one blank or tab. The
substitute will replace the string name when it is used in a rule.

Certain table sizes for the resulting finite state machine can be set in the definitions
section:

% n number of positionsisn
%
%
%a
%k
% n size of the output array isn

number of states is n

number of parse tree nodes is n
number of transitions is n

number of packed character classes is n

5 35 S5 oS

The use of one or more of the above automatically implies the —v option, unless the
—n option is used.

Rules
The rules in | ex source files are a table in which the left column contains regular
expressions and the right column contains actions and program fragments to be
executed when the expressions are recognized.

regular-expression <whi t espace> action
regular-expression <whi t espace> action

Because the regular-expression portion of a rule is terminated by the first blank or
tab, any blank or tab used within a regular expression must be quoted (its special
meaning escaped). That is, it must appear within double quotes, square brackets or
must be preceded by a backslash character.

The program fragment that is the action associated with a particular regular-
expression may extend across several lines if it is enclosed in curly braces:

regular-expression whi t espace { program st at ement
program statenent }

Regular Expressions
The | ex command supports the sets of regular expressions recognized by ed and
awk, and some additional expressions. Some characters have special meanings
when used in a regular-expression and are called regular expression operators.
Below is a table of expressions supported by | ex.

Page 2

FINAL COPY
June 15, 1995
File: sd_cmd/lex
svid

Page: 350

lex (SD_CMD) lex (SD_CMD)

Regular Pattern

Expression Matched

c the character ¢ where c is not a special character.

\c the character ¢ where c is any character.

"c" the character ¢ where ¢ is any character except\ .

- the beginning of the line being compared.

$ the end of the line being compared.

. any character in the input but newline

[s] any character in the set s where s is a sequence of charac-
ters and/or a range of characters, c-c.

[79] any character not in the set s, where s is defined as above.

r* zero or more successive occurrences of the regular expres-
sionr.

r+ one or more successive occurrences of the regular expres-
sionr.

r? zero or one occurrence of the regular expression r.

(r the regular expression r. (Grouping)

rx the occurrence of regular expression r followed by the
occurrence of regular expression x. (Concatenation)

r| X the occurrence of regular expression r or the occurrence of
regular expression X.

<s>r the occurrence of regular expression r only when the pro-
gram is in start condition (state) s.

r/ X the occurrence of regular expression r only if it is followed

by the occurrence of regular expression x. (Note: Thisisr
in the context of x and only r is matched.)

{S} the substitution of S from the Definitions section.
r{m, n} m through n successive occurrences of the regular expres-
sionr.

The notation r{m, n} in a rule indicates between m and n instances of regular
expression r. It has higher precedence than 0 but lower than [?, +, and concate-
nation.

The character ~ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

The character / in an expression indicates trailing context; only the part of the
expression up to the slash is returned in yyt ext, but the remainder of the expres-
sion must follow in the input stream. An operator character may be used as an
ordinary symbol if it is within double quotes, "c," preceded by \, \c, or is within
square brackets, [c]. Two operators have special meaning when used within
square brackets. A - denotes a range, [¢- ¢] , unless it is just after the open bracket
or before the closing bracket, [- c] or [c-] in which case it has no special meaning.
When used within brackets, © has the meaning "complement of" if it immediately
follows the open bracket, [" c] , elsewhere between brackets, [¢"], it stands for the
ordinary character ~. The special meaning of the \ operator can be escaped only
by preceding it with another \ .

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/lex
svid

Page: 351

lex (SD_CMD) lex (SD_CMD)

Actions

Page 4

The default action when a string in the input to a | ex.yy. c program is not
matched by any expression is to copy the string to the output. Because the default
behavior of a program generated by | ex is to read the input and copy it to the out-
put, a minimal | ex source program that has just %®%will generate a C program that
simply copies the input to the output unchanged. A null C statement, the statement
‘7, may be specified as an action in a rule. Any string in the | ex. yy. ¢ input that
matches the pattern portion of such a rule will be effectively ignored or skipped.

Three special actions are available, |, REJECT, and ECHO The action | means
that the action for the next rule is the action for this rule. ECHOprints the contents
of yytext on the output. Normally only a single expression is matched by a given
string in the input. REJECT means "continue to the next expression that matches
the current input" and causes whatever rule was second choice after the current rule
to be executed for the same input. Thus, it allows multiple rules to be matched and
executed for one input string or overlapping input strings. For example, given the
expressions xyz and yz and the input xyz, normally only one pattern, xyz would
match and the next attempted match would start after z. If the last action in the xyz
rule is REJECT, both this rule and the yz rule would be executed.

The | ex command provides several routines that can be used in the lex source pro-
gram: yynore(), yyless(n), input (), output(c),and unput(c).

The function yynor e() may be called to indicate that the next input string recog-
nized is to be concatenated onto the end of the current string in yyt ext rather
than overwriting itin yyt ext.

yyl ess(n) returns to the input some of the characters matched by the currently
successful expression. The argument n indicates the number of initial characters in
yyt ext to be retained; the remaining trailing characters in yyt ext are returned to
the input.

i nput () returns the next character from the input. i nput() returns a zero on
end of file.

unput (c¢) pushes the character ¢ back onto the input stream to be read later by
i nput ().
out put (c) writes the character ¢ on the output.

To perform custom processing when the end of input is reached, a user may supply
their own yywrap() function. yywap() is called whenever |ex.yy.c
reaches an end-of-file. If yywrap() returns a one, | ex. yy. c continues with the
normal wrap-up on end of input. The default yywr ap() always returns a one. If
the user wants | ex. yy. c to continue processing with another source of input,
then a yyw ap() must be supplied that arranges for the new input and returns a
zero. These routines may be redefined by the user.

The external names generated by | ex all begin with the prefix yy or YY.

The program generated by | ex is named yyl ex(); if the user does not supply a
main routine, the default mai n() routine calls yyl ex(). If the user supplies a
mai n() routine, it should call yyl ex() .

FINAL COPY
June 15, 1995
File: sd_cmd/lex
svid

Page: 352

lex (SD_CMD) lex (SD_CMD)

FILES
| ex.yy.c.

USAGE
General.

EXAMPLE
%
voi d ski pcommt s(void);
0,
D [0-9]
W
i f printf("lIF statement\n");
[a—z]+ printf("tag, value %\n", yytext);
0{D}+ printf("octal number %\n",yytext);
{D}+ printf("deci mal nunmber %\n",yytext);
" printf("unary op\n");
" printf("binary op\n");
"o ski pcommt s();

W
voi d ski pcommt s(voi d)
{
for(;;) {
while (input() !'="'0);
if (input() '="11"
unput (yytext[yylen - 1]);
el se
return;
}
}
SEE ALSO

cc(SD_CMD), yacc(SD_CMD).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995
File: sd_cmd/lex
svid

Page: 353

lint (SD_CMD) lint (SD_CMD)

Page 2

The following options alter | i nt’s behavior:
—I x Include additional lint library x (e.g., —| mfor the math library).
-n Do not check compatibility against either the standard or the portable lint

library.
-p Attempt to check portability.
—C Cause |int to produce a .| n file for every . c file on the command line.

These .1 n files are the product of |int’s first pass only, and are not
checked for inter-function compatibility.

—olib Cause |int to create a lint library with the name lib. The —c option
nullifies any use of the —o option. The lint library produced is the input
that is given to | i nt’s second pass. The —o option simply causes this file
to be saved in the named lint library. To produce the lint library without
extraneous messages, use of the —x option is suggested. The —v option is
useful if the source file(s) for the lint library are just external interfaces.
These option settings are also available through the use of lint comments
(see below).

The -D, -U, and -I options of cpp [see cpp(SD_CMD)] are recognized as
separate arguments.

The —g and —Ooptions of cc are also recognized as separate arguments. These
options are ignored, but, by recognizing these options, | i nt’s behavior is closer to
that of the cc command. Other options are warned about and ignored. The pre-
processor symbol | i nt is defined to allow certain questionable code to be altered
or removed for |int. Therefore, the symbol I i nt should be thought of as a
reserved word for all code that is planned to be checked by | i nt.

Certain conventional comments in the C source will change the behavior of |i nt:

/ INOTREACHEDL!
at appropriate points stops comments about unreachable code. This com-
ment is typically placed just after calls to functions like exi t .

| OVARARGSN[J
suppresses the usual checking for variable numbers of arguments in the fol-
lowing function declaration. The data types of the first n arguments are
checked; a missing n is taken to be zero.

/ CARGSUSED
turns on the —v option for the next function.

/ CLI NTLI BRARY[
at the beginning of a file shuts off complaints about unused functions and
function arguments in this file. This is equivalent to using the —v and —x
options.

The command | i nt produces its first output on a per-source-file basis. Complaints
regarding included files are collected and printed after all source files have been
processed. Finally, if the —c option is not used, information gathered from all
input files is collected and checked for consistency. At this point, if it is not clear
whether a complaint stems from a given source file or from one of its included files,
the source file name will be printed followed by a question mark.

FINAL COPY
June 15, 1995
File: sd_cmd/lint
svid

Page: 355

lint (SD_CMD) lint (SD_CMD)

USAGE

The behavior of the —c and the —o options allows for incremental use of | i nt on
a set of C source files. Generally, |i nt is invoked once for each source file with
the —c option. Each of these invocations produces a . | n file which corresponds to
the . c file, and prints all messages that are about just that source file. After all the
source files have been separately run through |int, it is invoked once more
(without the —c option), listing all the .| n files with the needed -I x options.
This will print all the inter-file inconsistencies. This scheme works well with make;
it allows nake to be used to | i nt only the source files that have been modified
since the last time the set of source files were checked by i nt.

General.

SEE ALSO

LEVEL

cc(SD_CMD), cpp(SD_CMD), make(SD_CMD).

Level 1.

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/lint
svid

Page: 356

lorder (SD_CMD) lorder (SD_CMD)

NAME
lorder — find ordering relation for an object library

SYNOPSIS
| or der file...

DESCRIPTION
The input is one or more object or library archive files [see ar(BU_CMD)]. The stan-
dard output is a list of pairs of object file names, meaning that the first file of the
pair refers to external identifiers defined in the second. The output may be pro-
cessed by t sort to find an ordering of a library suitable for one-pass access by the
link editor | d. Note that | d is capable of multiple passes over an archive in the
portable archive format and does not require that | or der be used when building
an archive. The usage of the | or der command may, however, allow for a slightly
more efficient access of the archive during the link edit process.

EXAMPLE
The following example builds a new library from existing . o files.

ar —cr library “lorder o Otsort"

SEE ALSO

ar(BU_CMD), Id(SD_CMD), tsort(SD_CMD).
USAGE

General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/lorder
svid

Page: 357

m4 (SD_CMD) m4 (SD_CMD)

NAME
m4 — macro processor

SYNOPSIS
¥ [options] [file ...]

DESCRIPTION
The command m4 is a macro processor intended as a front end for C and other
languages. Each of the argument files is processed in order; if there are no files, or
if a file name is —, the standard input is read. The processed text is written on the
standard output.

The options and their effects are as follows:
-s Enable line sync output for the C preprocessor (i.e., #| i ne directives).

This option must appear before any file names and before the following
options.

—Dname [=val]
Defines name to val or to null if val is absent.

—Uname
undefines name.

Macro calls have the form:
name(argl, arg2, . .., argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no argu-
ments. Potential macro names consist of alphabetic letters, digits, and underscore,
_, where the first character is not a digit.

Leading unquoted blanks, tabs, and newlines are ignored while collecting argu-
ments. Left and right single quotes are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be null. Macro evaluation proceeds
normally during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested call are as effec-
tive as those in the original input text. After argument collection, the value of the
macro is pushed back onto the input stream and rescanned.

The command m4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

defi ne
The second argument is installed as the value of the macro whose name is
the first argument. Each occurrence of $n in the replacement text, where n
is a digit, is replaced by the n-th argument. Argument 0 is the name of the
macro; missing arguments are replaced by the null string; $# is replaced by
the number of arguments; $0is replaced by a list of all the arguments
separated by commas; $@is like $0J but each argument is quoted (with the

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/m4
svid

Page: 358

m4 (SD_CMD) m4 (SD_CMD)

Page 2

current quotes).

undefi ne
removes the definition of the macro named in its argument.

def n returns the quoted definition of its argument(s). It is useful for renaming
macros, especially built-ins.

pushdef
is like defi ne, but saves any previous definition.

popdef
removes the current definition of its argument(s), exposing the previous
one, if any.

i fdef

If the first argument is defined, the value is the second argument, otherwise
the third. If there is no third argument, the value is null.

shift
returns all but its first argument. The other arguments are quoted and
pushed back with commas in between. The quoting nullifies the effect of
the extra scan that will subsequently be performed.

changequot e
changes quote symbols to the first and second arguments. The symbols may
be up to five characters long. the command changequot e without argu-
ments restores the original values (i.e., *).

changecom
changes left and right comment markers from the default # and newline.
With no arguments, the comment mechanism is effectively disabled. With
one argument, the left marker becomes the argument and the right marker
becomes newline. With two arguments, both markers are affected. Com-
ment markers may be up to five characters long.

di vert
The command n¥ maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order; initially
stream 0 is the current stream. The di vert macro changes the current out-
put stream to its (digit-string) argument. Output diverted to a stream other
than 0 through 9 is discarded.

undi vert
causes immediate output of text from diversions named as arguments, or all
diversions if no argument. Text may be undiverted into another diversion.
Undiverting discards the diverted text.

di vhum
returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

ifel se
has three or more arguments. If the first argument is the same string as the
second, then the value is the third argument. If not, and if there are more
than four arguments, the process is repeated with arguments 4, 5, 6 and 7.

FINAL COPY
June 15, 1995
File: sd_cmd/m4
svid

Page: 359

m4 (SD_CMD) m4 (SD_CMD)

Otherwise, the value is either the fourth string or, if it is not present, null.

i ncr returns the value of its argument incremented by 1. The value of the argu-
ment is calculated by interpreting an initial digit-string as a decimal
number.

decr returns the value of its argument decremented by 1.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic.
Operators include +, —, 0O /, % [F, (exponentiation), bitwise & 0O ~,
and ; relationals; parentheses. Octal and hex numbers may be specified as
in C. The second argument specifies the radix for the result; the default is
10. The third argument may be used to specify the minimum number of
digits in the result.

I en returns the number of characters in its argument.

i ndex
returns the position in its first argument where the second argument begins
(zero origin), or -1 if the second argument does not occur.

substr
returns a substring of its first argument. The second argument is a zero ori-
gin number selecting the first character; the third argument indicates the
length of the substring. A missing third argument is taken to be large
enough to extend to the end of the first string.

translit
transliterates the characters in its first argument from the set given by the
second argument to the set given by the third. No abbreviations are permit-

ted.
i ncl ude
returns the contents of the file named in the argument.
si ncl ude
is identical to i ncl ude, except that it says nothing if the file is inaccessible.
syscnd
executes the system command given in the first argument. No value is
returned.
sysval
is the return code from the last call to syscnd.
nmaket enmp
fills in a string of XXXXX in its argument with the current process ID.
ndexi t
causes immediate exit from md. Argument 1, if given, is the exit code; the
default is 0.
mAwr ap

Argument 1 will be pushed back at final EOF, example:
mdwr ap(" cl eanup() ")

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/m4
svid

Page: 360

m4 (SD_CMD) m4 (SD_CMD)

errprint
prints its argument on the diagnostic output file.

dunpdef
prints current names and definitions, for the named items, or for all if no
arguments are given.

traceon
with no arguments, turns on tracing for all macros (including built-ins).
Otherwise, turns on tracing for named macros.

traceof f
turns off trace globally and for any macros specified. Macros specifically
traced by t raceon can be untraced only by specific callsto traceof f.

USAGE
General.

SEE ALSO
cc(SD_CMD), cpp(SD_CMD).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: sd_cmd/m4
svid

Page: 361

make (SD_CMD) make (SD_CMD)

NAME

make —

SYNOPSIS

maintain, update, and regenerate groups of programs

meke [-f makefile] [-p] [-1] [- kK] [-s][-r][-n][-e] [-t][-q] [name ..]

DESCRIPTION

The options are interpreted as follows:
—f makefile

Description file name. The argument makefile is assumed to be the name of a
description file. A file name of — denotes the standard input.

Print out the complete set of macro definitions and target descriptions.

Ignore error codes returned by invoked commands. This mode is entered if
the fake target name . | GNORE appears in the description file.

Abandon work on the current entry if it fails, but continue on other
branches that do not depend on that entry.

Silent mode. Do not print command lines before executing. This mode is
also entered if the fake target name . S| LENT appears in the description
file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them. Even lines
beginning with an @are printed.

Environmental variables override assignments within makefiles.

Touch the target files (causing them to be up-to-date) rather than issue the
usual commands.

Question. The nake command returns a zero or non-zero status code
depending on whether the target file is or is not up-to-date.

The following target names may be defined in the makefile, and are interpreted as
follows:

. DEFAULT

If a file must be made but there are no explicit commands or relevant built-
in rules, the commands associated with the name . DEFAULT are used if it
exists.

. PRECI QUS

Dependents of this target will not be removed when quit or interrupt are hit.

. SI LENT

Same effect as the —s option.

. | GNORE

Same effect as the —i option.

The command rmake executes commands in makefile to update one or more target
names. The argument name is typically a program. If no —f option is present,
makefil e, Makefi | e, and the SCCS filess. makefi | e and s. Vakef i | e are tried
in order. If makefile is —, the standard input is used. More than one —f makefile
argument pair may appear.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/make
svid

Page: 362

make (SD_CMD) make (SD_CMD)

The command nake updates a target only if its dependents are newer than the tar-
get. All prerequisite files of a target are added recursively to the list of targets.
Missing files are deemed to be out-of-date.

The argument makefile contains a sequence of entries that specify dependencies. The
first line of an entry is a blank-separated, non-null list of targets, then a colon, then
a (possibly null) list of prerequisite files or dependencies. Text following a semi-
colon and all following lines that begin with a tab are commands to be executed to
update the target. The first line that does not begin with a tab or # begins a new
dependency or a macro definition. Commands may be continued across lines with
the <backslash><newline> sequence. Everything printed by make (except the initial
tab) is passed directly to the command interpreter as is.

The symbols # and newline surround comments.

The following makefile says that pgmdepends on two files a. o and b. o, and that
they in turn depend on their corresponding source files (a. ¢ and b. ¢) and a com-
mon file i ncl . h:

pgm a.o b.o ; cc a.0 b.o -0 pgm
a.o: incl.h a.c ; cc —c a.c
b.o: incl.h b.c ; cc —c b.c

Command lines are executed one at a time. The first one or two characters in a
command can be the following: -, @- @or @ . If @is present, printing of the com-
mand is suppressed. If - is present, make ignores an error. A line is printed when
it is executed unless the —s option is present, or the entry . SI LENT: is in makefile,
or unless the initial character sequence contains a @ The —n option specifies print-
ing without execution; however, if the command line has the string $(MAKE) in it,
the line is always executed (see discussion of the MAKEFLAGS macro under
Environment, below. The —t (touch) option updates the modified date of a file
without executing any commands.

Commands returning non-zero status normally terminate nmake. If the —i option
is present, or the entry .| GNORE: appears in makefile, or the initial character
sequence of the command contains -, the error is ignored. If the —k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a dependent of
the special name . PRECI QUS.

Environment

Page 2

The environment is read by nake. All variables are assumed to be macro
definitions and processed as such. The environmental variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environmental variables. The —e option causes the environment
to override the macro assignments in a makefile.

The environmental variable MAKEFLAGS is processed by make as containing any
legal input option (except —f and —p) defined for the command line. Further, upon
invocation, make ‘“invents” the variable if it is not in the environment, puts the
current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves very useful for

FINAL COPY
June 15, 1995
File: sd_cmd/make
svid

Page: 363

make (SD_CMD) make (SD_CMD)

“*super-makes” where the makefile contains actions that (recursively) invoke make.
In fact, when the —n option is used, a recursive invocation of make, where the
sequence $(MAKE) appears anywhere in the invocation command line, is executed
anyway; hence, by judicious use of the $(MAKE) string in a makefile, one can per-
form a nake —n recursively on a whole software system to see what would have
been executed. This is because the —n is put in MAKEFLAGS and passed to further
invocations of nmake. This is one way of debugging all of the makefiles for a
software project without actually doing anything.

Macros

Entries of the form stringl = string2 are macro definitions. The macro string2 is
defined as all characters up to a comment character or an unescaped newline. Sub-
sequent appearances of $(stringl[: substl=[subst2]]) are replaced by string2. The
parentheses are optional if a single character macro name is used and there is no
substitute sequence. The optional : substl=subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of substl in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are delim-
ited by blanks, tabs, newline characters, and beginnings of lines. An example of the
use of the substitute sequence is shown under Libraries, below.

Internal Macros
There are five internally maintained macros which are useful for writing rules for
building targets.

$0 The macro $00stands for the file name part of the current dependent with
the suffix deleted. It is evaluated only for inference rules.

$@ The $@macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the . DEFAULT rule. It
is the module which is out-of-date with respect to the target (i.e., the
“manufactured” dependent file name). Thus, in the . c. o rule, the $<
macro would evaluate to the . ¢ file. An example for making optimized . o
files from . c files is:

.C.0
cc —¢c -0 $0c

or:

.C.o0:
cc —c -0 $<
$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with respect to
the target; essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form i b(fil e. 0). In this case, $@evaluates to | i b and
$%evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to “‘directory part’” for
Dand “file part” for F. Thus, $(@) refers to the directory part of the string $@ If
there is no directory part, ./ is generated. The only macro excluded from this

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/make
svid

Page: 364

make (SD_CMD) make (SD_CMD)

alternative form is $?.

Suffixes
Certain names (for instance, those ending with . 0) have inferable prerequisites such
as.c,.s,etc. If noupdate commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled to make the target. In this
case, make has inference rules which allow building files from other files by exa-
mining the suffixes and determining an appropriate inference rule to use. Inference
rules in the makefile override the default rules.

The internal rules for make are compiled into the make program. To print out the
rules compiled into the make program, the following command is used:

make —fp — 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file. Thus, the rule . c”. o would
transform an SCCS C source file into an object file (. 0). Because the s. of the SCCS
files is a prefix, it is incompatible with nake’s suffix point of view. Hence, the tilde
is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (e.g., . ¢:) is the definition of how to build x from x. c.
In effect, the other suffix is null. This is useful for building targets from only one
source file (e.g., command scripts, simple C programs).

Additional suffixes are given as the dependency list for . SUFFI XES. Order is
significant; the first possible name for which both a file and a rule exist is inferred as
a prerequisite.

Here again, the above command for printing the internal rules will display the list
of suffixes implemented on the current machine. Multiple suffix lists accumulate;
. SUFFI XES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm a.o b.o
cc a.0 b.o -0 pgm

a.o0 b.o: incl.h

This is because make has a set of internal rules for building files. The user may add
rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler optionsto cc, | ex,and yacc, respectively. Again,
the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix
. 0 from a file with suffix . c is specified as an entry with . c. o: as the target and
no dependents. Commands associated with the target define the rule for making a
. o file from a . c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library.
Thus lib(file.o) and $(LIB)(file.o) both refer to an archive library which

Page 4

FINAL COPY
June 15, 1995
File: sd_cmd/make
svid

Page: 365

make (SD_CMD) make (SD_CMD)

FILES

USAGE

contains file.o. (This assumes the LI B macro has been previously defined.) The
expression $(LI B) (filel.o file2.0) is notlegal. Rules pertaining to archive
libraries have the form . XX. a where the XX is the suffix from which the archive
member is to be made. The most common use of the archive interface follows.
Here, we assume the source files are all C type source:

lib:
lib(filel.o) lib(file2.0) lib(file3.0)
@cho lib is now up-to-date
c.a:
$(CC) —c $(CFLAGS) $<
ar rv $@%*.0
rm-f $*.0

In fact, the . c. a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

l'ib:
lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) —c $(CFLAGS) $(?:.0=.¢c)
ar rv lib $?
rm $?
@cho lib is now up-to-date
.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined
to be the set of object file names (inside lib) whose C source files are out-of-date.
The substitution mode translates the . o to . c. Note also, the disabling of the
. c. a: rule, which would have created each object file, one by one. This particular
construct speeds up archive library maintenance considerably. This type of con-
struct becomes very cumbersome if the archive library contains a mix of assembly
programs and C programs.

[M akefile and s.[M akefile

General.
The characters = : @ in file names may give trouble.

SEE ALSO

LEVEL

cc(SD_CMD), lex(SD_CMD), sh(BU_CMD), yacc(SD_CMD).

Level 1.

Page 5

FINAL COPY
June 15, 1995
File: sd_cmd/make
svid

Page: 366

nm (SD_CMD)

NAME

nm (SD_CMD)

nm - print name list of common object file

SYNOPSIS

nm[options] file . . .

DESCRIPTION

The nmcommand displays the symbol table of each common object file file. The
argument file may be a relocatable or absolute common object file; or it may be an
archive of relocatable or absolute common object files. For each symbol, at least the
following information is printed:

Name
Value

Size

The name of the symbol.

Its value expressed as an offset or an address, depending on its storage
class.

Its size in bytes, if available.

The output of nmmay be controlled using the following options:

-0
—X
-e
—f

-u
-V

SEE ALSO

Print the value and size of a symbol in octal instead of decimal.
Print the value and size of a symbol in hexadecimal instead of decimal.
Print only external and static symbols.

Produce full output. Print redundant symbols (. t ext, . dat a, and . bss),
normally suppressed.

Print undefined symbols only.

Print the version of the nmcommand executing on the standard error out-
put.

cc(SD_CMD), Id(SD_CMD).

USAGE

General.

FUTURE DIRECTIONS
The options —e and —f will be removed.

LEVEL

Level 2: June 30, 1989.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/nm
svid

Page: 367

prof (SD_CMD) prof (SD_CMD)

FILES

USAGE

- m mdata
Use file mdata instead of non. out as the input profile file.

A program creates a profile file if it has been link edited with the - p option of cc.
This option to the cc command arranges for calls to noni t or at the beginning and
end of execution. It is the call to noni tor at the end of execution that causes the
system to write a profile file. The number of calls to a function is tallied if the - p
option was used when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the environmen-
tal variable PROFDI R If PRCFDI R is not set, non. out is produced in the directory
current when the program terminates. If PRCFDI R=string, string/ pid. progname is
produced, where progname consists of ar gv[0] with any path prefix removed, and
pid is the process ID of the program. If PROFDI Ris set, but null, no profiling output
are produced.

A single function may be split into subfunctions for profiling by means of the NARK
macro

non. out default profile file
a. out default namelist (object) file

General.

The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes.
Even if a program seems to be the only one using the machine, hidden background
or asynchronous processes may blur the data.

In rare cases, the clock ticks initiating recording of the program counter may "beat"
with loops in a program, grossly distorting measurements. Call counts are always
recorded precisely, however.

Only programs that call exit (BA_O5) are guaranteed to produce a profile file,
unless a final call to noni t or (SD_LIB) is explicitly coded.

SEE ALSO

LEVEL

cc(SD_CMD), exi t (BA_OS), profi | (KE_OS), noni t or (SD_LIB), mar k(SD_LIB).

Level 2.

NOTICES

Page 2

The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes.
Even if a program seems to be the only one using the machine, hidden background
or asynchronous processes may blur the data. In rare cases, the clock ticks initiating
recording of the program counter may ‘‘beat’” with loops in a program, grossly dis-
torting measurements. Call counts are always recorded precisely, however.

Only programs that call exit or return from nai n are guaranteed to produce a
profile file, unless a final call to noni t or is explicitly coded.

FINAL COPY
June 15, 1995
File: sd_cmd/prof
svid

Page: 369

prof (SD_CMD) prof (SD_CMD)

The times for static functions are attributed to the preceding external text symbol if
the - g option is not used. However, the call counts for the preceding function are
still correct; that is, the static function call counts are not added to the call counts of
the external function.

If more than one of the options -t, -c, -a, and -n is specified, the last option
specified is used and the user is warned.

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/prof
svid

Page: 370

prs (SD_CMD) prs (SD_CMD)

NAME
prs — print an SCCS file

SYNOPSIS
pr s [options] files

DESCRIPTION

The command pr s prints, on the standard output, parts or all of an SCCS file in a
user supplied format. If a directory is named, prs behaves as though each file in
the directory were specified as a named file, except that non-SCCS files (last com-
ponent of the pathname does not begin with s.), and unreadable files are silently
ignored. If a name of — is given, the standard input is read; each line of the stan-
dard input is taken to be the name of an SCCS file or directory to be processed;
non-SCCS files and unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of options and
filenames.

All the described options apply independently to each named file.

- d[dataspec]
Used to specify the output data specification. The dataspec is a string con-
sisting of SCCS file data keywords (see Data Keywords) interspersed with
optional user supplied text.

-rSID
Used to specify the SCCS identification string of a delta for which informa-
tion is desired. If no SID is specified, the SID of the most recently created
delta is assumed.

-e Requests information for all deltas created earlier than and including the
delta designated via the —r keyletter or the date given by the —c option.

-1 Requests information for all deltas created later than and including the delta
designated via the —r keyletter or the date given by the —c option.

- c[date-time]
The cutoff date-time is in the form:

YY[MM[DD[HH[MMISS]III

Units omitted from the date-time default to their maximum possible values;
for example, —c7502 is equivalent to - c750228235959. Any number of
non-numeric characters may separate the various two-digit pieces of the cut-
off date in the form: —c77/2/2 9: 22: 25.

-a Requests printing of information for both removed (i.e., delta type = R) del-
tas [see rmdel(SD_CMD)] and existing (i.e., delta type = D) deltas. If the —a
keyletter is not specified, information is provided for existing deltas only.

Data Keywords
Data keywords specify which parts of an SCCS file are to be retrieved and output.
All parts of an SCCS file have an associated data keyword. There is no limit on the
number of times a data keyword may appear in a dataspec.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/prs
svid

Page: 371

prs (SD_CMD) prs (SD_CMD)

The information printed by prs consists of: (1) the user supplied text; and (2)
appropriate values (extracted from the SCCS file) substituted for the recognized
data keywords in the order of appearance in the dataspec . The format of a data key-
word value is either Simple (S), in which keyword substitution is direct, or Multi-line
(M), in which keyword substitution is followed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab is
specified by \'t and carriage return/newline is specified by \ n. The default data

keywords are:
":Dt:\t:DL:\nMRs:\ n: MR COWENTS: \ n: C. "
Table 1. SCCS Files Data Keywords
Keyword Data Item File Section Value Format
:Dt: Delta information Delta table See * below S
: DL: Delta line statistics Delta table cLi:/:Ld:/: Lu: S
s Li: Lines inserted by Delta Delta table nnnnn S
:Ld: Lines deleted by Delta Delta table nnnnn S
D Lu: Lines unchanged by Delta Delta table nnnnn S
: DT Delta type Delta table D orR S
tl SCCS ID string (SID) Delta table CR.:L.:B: .S S
'R Release number Delta table nnnn S
:L: Level number Delta table nnnn S
1 B: Branch number Delta table nnnn S
1 S Sequence number Delta table nnnn S
1D Date delta was created Delta table :Dy:/:Dm/:Dd: S
: Dy: Year delta was created Delta table nn S
: Dm Month delta was created Delta table nn S
: Dd: Day delta was created Delta table nn S
1T Time delta was created Delta table cTh:::Tm:: Ts: S
1 Th: Hour delta was created Delta table nn S
:Tm Minutes delta was created Delta table nn S
1 Ts: Seconds delta was created Delta table nn S
C P Programmer who created Delta table | ognane S
delta
: DS: Delta sequence number Delta table nnnn S
: DP: Predecessor delta seq. no. Delta table nnnn S
D Seqg. no. of deltas incl., Deltatable :Dn:/:Dx:/:Dg: S
excl., ignored
: Dn: Deltas included (seq no.) Delta table :DS: :DS: . S
1 Dx: Deltas excluded (seq no.) Delta table :DS: :DS: . S
: Dg: Deltas ignored (seq no.) Delta table :DS: :DS: . S
MR MR numbers for delta Delta table text M
Page 2

FINAL COPY
June 15, 1995
File: sd_cmd/prs
svid

Page: 372

prs (SD_CMD)

prs (SD_CMD)

1 C Comments for delta Delta table text M
T UN: User names User names text M
T FL: Flag list Flags text M

LY Module type flag Flags text S
C MR MR validation flag Flags yes or no S
T VP MR validation program Flags text S

name
: KF: Keyword error/warning Flags yes or no S
flag
T KV: Keyword validation string Flags text S
. BF: Branch flag Flags yes or no S

2 J: Joint edit flag Flags yes or no S
P LK Locked releases Flags TR S

1 Q User defined keyword Flags text S

M Module name Flags text S
. FB: Floor boundary Flags 'R S
: CB: Ceiling boundary Flags 'R S
: Ds: Default SID Flags I S
. ND: Null delta flag Flags yes or no S
. FD: File descriptive text Comments text M
: BD: Body Body text M
1 GB: Gotten body Body text M

T W A form of what(SD_CMD) N/A 1Z oMt S

string

A A form of what(SD_CMD) N/A Y: M :l::Z: S

string

1 Z: what(SD_CMD) string N/A @#) S

delimiter

' F SCCS file name N/7A text S
. PN: SCCS file pathname N/A text S

*:Dt: =:DT::I: :D: :T: :P: :DS: :DP:
Page 3
FINAL COPY

June 15, 1995
File: sd_cmd/prs

svid

Page: 373

prs (SD_CMD) prs (SD_CMD)

EXAMPLES
prs —d"Users and/or user IDs for :F. are:\n:UN" s.file

may produce on the standard output:
Users and/or user IDs for s.file are:
Xyz
131
abc

prs —d"Newest delta for pgm:M: :I: Created :D: By :P:" —-r s.file
may produce on the standard output:

Newest delta for pgmnain.c: 3.7 Created 77/12/1 By cas
As a special case:

prs s.file

may produce on the standard output:
D 1.1 77/12/1 00:00:00 cas 1 000000/ 00000/ 00000
MRs:
bl 78- 12345
bl 79-54321
COMVENTS:
this is the conmment line for s.file initial delta

for each delta table entry of the D type. The only keyletter argument allowed to be
used with the special case is the —a keyletter.

SEE ALSO
admin(SD_CMD), delta(SD_CMD), get(SD_CMD), what(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995
File: sd_cmd/prs
svid

Page: 374

rmdel (SD_CMD) rmdel (SD_CMD)

NAME
rmdel — remove a delta from an SCCS file

SYNOPSIS
rmdel -rSID files

DESCRIPTION
The command r ndel removes the delta specified by the SID from each named
SCCS file. The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named SCCS file. In addition, the SID specified
must not be that of a version being edited for the purpose of making a delta (i.e., if a
p-file [see get(SD_CMD)] exists for the named SCCS file, the SID specified must not
appear in any entry of the p-file).
If a directory is named, r ndel behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name of
— is given, the standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed; non-SCCS files and unreadable files are
silently ignored.
The restrictions on removal of a delta are that only the user who made it or the
owner of the file and directory can remove a delta.

SEE ALSO
delta(SD_CMD), get(SD_CMD), prs(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/rmdel
svid

Page: 375

sact (SD_CMD) sact (SD_CMD)

NAME

sact — print current SCCS file editing activity

SYNOPSIS

sact file...

DESCRIPTION

The command sact informs the user of any impending deltas to a named SCCS
file. This situation occurs when get —e has been previously executed without a
subsequent execution of del ta. If a directory is named on the command line,
sact behaves as though each file in the directory were specified as a named file,
except that non-SCCS files and unreadable files are silently ignored. If a name of —
is given, the standard input is read with each line being taken as the name of an
SCCS file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1
specifies the SID of a delta that currently exists in the SCCS file to which
changes will be made to create the new delta.
Field 2
specifies the SID for the new delta to be created.
Field 3
contains the logname of the user who will make the delta (i.e., executed a
get for editing).
Field 4
contains the date that get —e was executed.
Field 5
contains the time that get —e was executed.

SEE ALSO

USAGE

LEVEL

delta(SD_CMD), get(SD_CMD), unget(SD_CMD).
General.

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/sact
svid

Page: 376

size (SD_CMD) size (SD_CMD)

NAME
size — print section sizes of object files

SYNOPSIS
si ze [- o] [- x] [- V] file ...

DESCRIPTION
The size command produces section size information for each section in the
named object files. The sizes of the loaded sections are printed along with the sum
of these sizes. If an archive file is input to the si ze command, the information for
all archive members is displayed.

Numbers are printed in decimal unless either the —o or the —x option is used, in
which case they are printed in octal or hexadecimal, respectively.

The -V flag supplies the version information on the si ze command.

SEE ALSO

cc(SD_CMD), Id(SD_CMD).
USAGE

General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/size
svid

Page: 377

strip (SD_CMD) strip (SD_CMD)

NAME
stri p - strip symbol table, debugging and line number information from an object
file.

SYNOPSIS
strip [-VWx] file .

DESCRIPTION
The strip command strips the symbol table, debugging information, and line
number information from ELF object files; COFF object files can no longer be
stripped. Once this stripping process has been done, no symbolic debugging access
will be available for that file; therefore, this command is normally run only on pro-
duction modules that have been debugged and tested.
If strip is executed on a common archive file [see ar (BU_CMD)] in addition to
processing the members, stri p will remove the archive symbol table. The archive
symbol table must be restored by executing the ar (BU_CMD) command with the - s
option before the archive can be linked by the | d(SD_CMD) command. stri p will
produce appropriate warning messages when this situation arises.
The amount of information stripped from the ELF object file can be controlled by
using any of the following options:
-V Print, on standard error, the version number of stri p.
- X Do not strip the symbol table; debugging and line number information

may be stripped.

stri p is used to reduce the file storage overhead taken by the object file.

SEE ALSO
ar (BU_CMD), as(SD_CMD), cc(SD_CMD), | d(SD_CMD)

LEVEL
Level 1.

NOTICES

The symbol table section will not be removed if it is contained within a segment, or
the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are contained
within a segment, or their associated relocation section is contained within a seg-
ment.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/strip
svid

Page: 378

time (SD_CMD) time (SD_CMD)

NAME

time — time a command
SYNOPSIS

ti me command
DESCRIPTION

The command is executed; after it is complete, ti ne prints the elapsed time during
the command, the time spent executing system code, and the time spent in execu-
tion of the user code. Times are reported in seconds.

The times are printed on standard error.
USAGE
General.

When ti ne is used on a multi-processor system the sum of system and user time
could be greater than real time.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/time
svid

Page: 379

truss (SD_CMD) truss (SD_CMD)

NAME

truss — trace system calls and signals

SYNOPSIS

truss [- pfcaei J[- t [! Jsyscall[, syscall...]] [- v[! Isyscall[, syscall...]]
[- x[! Isyscall[, syscall...]] [- s[! Isignal[, signal...]] [- n{! Jfault[, fault...]]
[- r [1fd[, fd...]] [- W{!]fd[, fd...]] [- o outfile] command

DESCRIPTION

t russ executes the specified command and produces a trace of the system calls it
performs, the signals it receives, and the machine faults it incurs. Each line of the
trace output reports either the fault or signal name or the system call name with its
arguments and return value(s). System call arguments are displayed symbolically,
when possible, using defines from relevant system header files; for any pathname
pointer argument, the pointed-to string is displayed. Error returns are reported
using the error code names described in errno().

The following options are recognized. For those options which take a list argu-
ment, the name al | can be used as a shorthand to specify all possible members of
the list. If the list begins with a ‘I’, the meaning of the option is negated (e.g.,
exclude rather than trace). Multiple occurrences of the same option may be
specified. For the same name in a list, subsequent options (those to the right) over-
ride previous ones (those to the left).

-p Interpret the arguments to truss as a list of process-ids for exist-
ing processes [see ps(BU_CMD)]. rather than as a command to be
executed. truss takes control of each process and begins tracing
it provided that the userid and groupid of the process match those
of the user or that the user is super-user.

—f Follow all children created by fork() and include their signals,
faults, and system calls in the trace output. Normally, only the
first-level command or process is traced. When —f is specified, the
process-id is included with each line of trace output to indicate
which process executed the system call or received the signal.

—C Count traced system calls, faults, and signals rather than displaying
the trace line-by-line. A summary report is produced after the
traced command terminates or when truss is interrupted. If —f
is also specified, the counts include all traced system calls, faults,
and signals for child processes.

-a Show the argument strings which are passed in each exec(BA_OS)
system call.
-e Show the environment strings which are passed in each

exec(BA_OS) system call.

—i Don’t display interruptible sleeping system calls. Certain system
calls, such as open() and read() on terminal devices or pipes
can sleep for indefinite periods and are interruptible. Normally,
truss reports such sleeping system calls if they remain asleep for
more than one second. The system call is reported again a

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/truss
svid

Page: 380

truss (SD_CMD) truss (SD_CMD)

Page 2

second time when it completes. The —i option causes such system
calls to be reported only once, when they complete.

—t [!]syscall,... System calls to trace or exclude. Those system calls specified in the
comma-separated list are traced. If the list begins with a ‘", the
specified system calls are excluded from the trace output. Default is
—tall.

—v [!]syscall,... Verbose. Display the contents of any structures passed by address
to the specified system calls (if traced). Input values as well as
values returned by the operating system are shown. For any field
used as both input and output, only the output value is shown.
Defaultis—v! al | .

—X [']syscall,... Display the arguments to the specified system calls (if traced) in raw
form, usually hexadecimal, rather than symbolically. Default is
—x!all.

—s [!]signal,... Signals to trace or exclude. Those signals specified in the comma-

separated list are traced. The trace output reports the receipt of
each specified signal, even if the signal is being ignored (not
blocked) by the process. (Blocked signals are not received until the
process releases them.) Signals may be specified by name or
number (see <sys/si gnal . h>). If the list begins with a ‘I’, the
specified signals are excluded from the trace output. Default is
—sal | .

—m[!]fault,... Machine faults to trace or exclude. Those machine faults specified
in the comma-separated list are traced. Faults may be specified by
name or number (see <sys/ f aul t. h>). If the list begins with a ‘’,
the specified faults are excluded from the trace output. Default is
—-mal | —m fltpage.

—r [1fd,... Show the full contents of the 1/0 buffer for each read() on any of
the specified file descriptors. The output is formatted 32 bytes per
line and shows each byte as an ASCII character (preceded by one
blank) or as a 2-character C language escape sequence for control
characters such as horizontal tab (\ t) and newline (\ n). If ASCII
interpretation is not possible, the byte is shown in 2-character hexa-
decimal representation. (The first 16 bytes of the I/0 buffer for
each traced r ead() are shown even in the absence of —r.) Default
is—rlall.

-w["fd,... Show the contents of the I/0 buffer for each write() on any of
the specified file descriptors (see —r). Defaultis—w al | .

—o0 outfile File to be used for the trace output. By default, the output goes to
standard error.

If truss is used to initiate and trace a specified command and if the —o option is
used or if standard error is redirected to a non-terminal file, then truss runs with
hangup, interrupt, and quit signals ignored. This facilitates tracing of interactive
programs which catch interrupt and quit signals from the terminal.

FINAL COPY
June 15, 1995
File: sd_cmd/truss
svid

Page: 381

truss (SD_CMD) truss (SD_CMD)

If the trace output remains directed to the terminal, or if existing processes are
traced (the —p option), then t r uss responds to hangup, interrupt, and quit signals
by releasing all traced processes and exiting. This allows the user to terminate
excessive trace output and to release previously-existing processes. Released
processes continue normally, as though they had never been touched.

SEE ALSO
errno(BA_ENV)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/truss
svid

Page: 382

tsort (SD_CMD) tsort (SD_CMD)

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
t sort produces on the standard output a totally ordered list of items consistent
with a partial ordering of items mentioned in the input file. If no file is specified, the
standard input is understood.
The input consists of pairs of items (nonempty strings) separated by blanks. Pairs
of different items indicate ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/tsort
svid

Page: 383

unget (SD_CMD) unget (SD_CMD)

NAME
unget — undo a previous get of an SCCS file
SYNOPSIS
unget [-r SID] [- s] [- n] files
DESCRIPTION
Unget undoes the effect of a get —e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the directory
were specified as a named file, except that non-SCCS files and unreadable files are
silently ignored. If a name of — is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed.
Keyletter arguments apply independently to each named file.
—r SID
Uniquely identifies which delta is no longer intended. (This would have
been specified by get as the new delta). The use of this keyletter is neces-
sary only if two or more outstanding get s for editing on the same SCCS
file were done by the same person (login name). An error is reported if the
specified SID is ambiguous, or if it is necessary and omitted on the com-
mand line.
-s Suppresses the printout of the intended delta’s SID on the standard output.
-n Causes the retention of the file that was obtained by get , which would nor-
mally be removed from the current directory.
SEE ALSO
delta(SD_CMD), get(SD_CMD), sact(SD_CMD).
USAGE
General.
LEVEL
Level 1.
Page 1
FINAL COPY

June 15, 1995
File: sd_cmd/unget
svid

Page: 384

val (SD_CMD) val (SD_CMD)

NAME
val — validate SCCS file

SYNOPSIS
val -

val [-s][-rSID] [- mame] [- ytype] file . ..

DESCRIPTION
The command val determines if the specified file is an SCCS file meeting the
characteristics specified by the options. The arguments may appear in any order.

val has a special argument, —, which causes reading of the standard input until an
end-of-file condition is detected. Each line read is independently processed as if it
were a command line argument list.

val generates diagnostic messages on the standard output for each command line
and file processed, and also returns a single 8-bit code upon exit as described
below.

The options are defined as follows. The effects of any option apply independently
to each named file on the command line.

-s Silences the diagnostic message, normally generated on the standard
output, for any error that is detected while processing each named file
on a given command line.

-rSID SID (SCCS Identification String) is an SCCS delta nhumber. A check is
made to determine if the SID is ambiguous (e.g., -r1 is ambiguous
because it physically does not exist but implies 1.1, 1.2, etc., which may
exist) or invalid (e.g., -r1.0 or -r1.1.0 are invalid because neither case
can exist as a valid delta number). If the SID is valid and not ambigu-
ous, a check is made to determine if it actually exists.

-mMmame name is compared with the SCCS %vokeyword in file.
- ytype type is compared with the SCCS %r%keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., it can be
interpreted as a bit string where (moving from left to right) set bits are interpreted
as follows:

bit 0 = missing file argument;

bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS file;

bit 3 = cannot open file or file not SCCS;

bit 4 = SID is invalid or ambiguous;

bit 5 = SID does not exist;

bit 6 = %r% —y mismatch;

bit 7 = %o —mmismatch;

Note that val can process two or more files on a given command line and in turn
can process multiple command lines (when reading the standard input). In these
cases an aggregate code is returned, i.e. the logical OR of the codes generated for
each command line and file processed.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/val
svid

Page: 385

val (SD_CMD)

SEE ALSO

USAGE

LEVEL

Page 2

admin(SD_CMD), delta(SD_CMD), get(SD_CMD), prs(SD_CMD).

General.

Level 1.

FINAL COPY
June 15, 1995
File: sd_cmd/val
svid

Page: 386

val (SD_CMD)

what (SD_CMD) what (SD_CMD)

NAME

what - identify SCCS files
SYNOPSIS

what [-s] files
DESCRIPTION

The what command searches the given files for all occurrences of the pattern that
the get command substitutes for %% (@ #)) and prints out what follows until
the first ", >, newline, \ , or null character. For example, if the C language program
in file f . ¢ contains

char ident[] = " @#) identification information" ;
and f . ¢ is compiled to yield f . 0 and a. out , then the command
what f.c f.o a.out
will print

f.c:

identification information
f.o:

identification information
a.out:

identification information

what is intended to be used in conjunction with the SCCS get command, which
automatically inserts identifying information, but it can also be used where the
information is inserted manually.

There is at least one option:
-s Quit after finding the first occurrence of pattern in each file.

ERRORS

Exit status is 0 if any matches are found; otherwise it is 1.

SEE ALSO

USAGE

LEVEL

get(SD_CMD).
General.

Level 1.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/what
svid

Page: 387

xargs (SD_CMD) xargs (SD_CMD)

NAME
xargs — construct argument list(s) and execute command

SYNOPSIS
xar gs [options] [command [initial_arguments]]

DESCRIPTION
xar gs combines the fixed initial_arguments with arguments read from standard
input to execute the specified command one or more times. The number of argu-
ments read for each command invocation and the manner in which they are com-
bined are determined by the options specified.

If command is omitted, echo is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted. Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) quotes the next character.

Each argument list is constructed starting with the initial_arguments, followed by
some number of arguments read from standard input (Exception: see —i). Options
—i, —l, and —n determine how arguments are selected for each command invo-
cation. When none of these options are coded, the initial_arguments are followed
by arguments read continuously from standard input until an internal buffer is full,
and then command is executed with the accumulated arguments. This process is
repeated until all arguments have been read. When there are conflicts (e.g., —| vs.
—n), the last option has precedence. The recognized options are:

—I number Conmand is executed for each non-empty number lines of arguments
from standard input. The last invocation of command will be with fewer
lines of arguments if fewer than number remain. A line is considered to
end with the first newline unless the last character of the line is a blank
or a tab; a trailing blank/tab signals continuation through the next non-
empty line. If number is omitted, 1 is assumed. Option —x is forced.

—i replstr Insert mode: command is executed for each line from standard input,
taking the entire line as a single argument, inserting it in
initial_arguments for each occurrence of replstr. A maximum of five
arguments in initial_arguments may each contain one or more instances
of replstr. Blanks and tabs at the beginning of each line are thrown
away. Constructed arguments may not expand to more than
{ NAME_MAX} characters, and option —x is also forced. {} is assumed
for repl str if not specified.

—nnumber Execute command using as many standard input arguments as possible,
up to number arguments maximum. Fewer arguments will be used if
their total size is greater than size characters (see - s option, below), and
for the last invocation if there are fewer than number arguments remain-
ing. If option —x is also invoked, each number argument must fit in the
size limitation, else xar gs terminates execution.

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/xargs
svid

Page: 388

xargs (SD_CMD) xargs (SD_CMD)

USAGE

—t Trace mode: The command and each constructed argument list are
echoed to standard error just prior to their execution.
-p Prompt mode: The user is asked whether to execute command each invo-

cation. Trace mode (-t) is turned on to print the command instance to
be executed, followed by a ?. .. prompt. A reply of y (optionally fol-
lowed by anything) will execute the command; anything else, including
just a carriage return, skips that particular invocation of command.

—X Causes xar gs to terminate if any argument list would be greater than
size characters; —x is forced by the options —i and —-I. When neither
of the options —i, —I, or —n are coded, the total length of all argu-

ments must be within the size limit.

—ssize The maximum total size of each argument list is set to size characters;
size must be a positive integer less than or equal to 470. If —s is not
coded, 470 is taken as the default. Note that the character count for size
includes one extra character for each argument and the count of charac-
ters in the command name.

—eeofstr eofstr is taken as the logical end-of-file string. Underscore () is assumed
for the logical ECF string if —e is not invoked. The option —e with no
eofstr coded turns off the logical EOF string capability (underbar is taken
literally). xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

xar gs will terminate if either it receives a return code of —1 from, or if it cannot
execute, command. (Thus command should explicitly exit with an appropriate
value to avoid accidentally returning with —1.)

General.

Note that xar gs does not perform parameter substitution. In the following exam-
ples, only the command processor performs substitutions.

EXAMPLES

Page 2

The following will move all files from directory $1 to directory $2, and echo each
move command just before doing it:

Is $1 | xargs -i -t nmv $1/{} $2/{}

The following will combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file | og:

(1 ognane; date; echo $0 $*) | xargs >> |l og
The user is asked which files in the current directory are to be archived and archives
them into ar ch (a.) one at a time, or (b.) many at a time.

a. Is | xargs -p -1 ar -r arch

b. Is | xargs -p -1 | xargs ar -r arch

The following will execute with successive pairs of arguments originally typed as
command line arguments:
echo $* | xargs -n2 diff

FINAL COPY
June 15, 1995
File: sd_cmd/xargs
svid

Page: 389

xargs (SD_CMD)

SEE ALSO

LEVEL

echo(BU_CMD) sh(BU_CMD).

Level 1.

FINAL COPY
June 15, 1995
File: sd_cmd/xargs
svid

Page: 390

xargs (SD_CMD)

Page 3

yacc (SD_CMD) yacc (SD_CMD)

NAME

yacc — a compiler-compiler
SYNOPSIS

yacc [-vdl t] grammar
DESCRIPTION

The yacc command provides a general tool for describing the input to a program.
More precisely, yacc converts a context-free grammar into a set of tables for a sim-
ple automaton which executes an LR(1) parsing algorithm. The grammar may be
ambiguous; built-in precedence rules are used to break ambiguities.

The output file, y.tab. c, must be compiled by the C compiler to produce a pro-
gram yyparse(). This program must be loaded with the lexical analyzer func-
tion, yyl ex(), as well as nmai n() and yyerror (), an error handling routine.
These routines must be supplied by the user (however, see the description of the
yacc library below); | ex is useful for creating lexical analyzers usable by yacc.

If the —v option is used, the file y. out put is prepared, which contains a descrip-
tion of the parsing tables and a report on conflicts generated by ambiguities in the
grammar.

If the —d option is used, the file y.tab. h is generated with the #defi ne state-
ments that associate the yacc-assigned ‘‘token codes” with the user-declared
“token names’. This allows source files other than y. t ab. c to access the token
codes.

If the —I option is used, the code produced in y.tab. c does not contain any
#1 i ne constructs. This should only be used after the grammar and the associated
actions are fully debugged.

Runtime debugging code is always generated in y. t ab. ¢ under conditional com-
pilation control. By default, this code is not included when y. t ab. c is compiled.
However, when yacc’s —t option is used, this debugging code will be compiled
by default. Independent of whether the —t option was used, the runtime debug-
ging code is under the control of YYDEBUG a pre-processor symbol. If YYDEBUG
has a non-zero value, then the debugging code is included. If its value is zero, then
the code is not included. A program produced without the runtime debugging
code will be smaller and slightly faster.

yacc Library
The yacc library | i by. a facilitates the initial use of yacc by providing the rou-
tines:

mai n()

yyerror(char *s)
These routines may be loaded by using the -l y option with cc. The mai n()
routine just calls yyparse(). yyerror() simply prints the string (error mes-
sage) s when a syntax error is detected.

yacc SPECIFICATIONS
The yacc user constructs a specification of the input process; this includes rules
describing the input structure, the code that will be invoked when these rules are
recognized, and a low-level routine to do the basic input. Then yacc generates the
(integer valued) function yypar se(); itin turn calls yyl ex(), the lexical analyzer,

Page 1

FINAL COPY
June 15, 1995
File: sd_cmd/yacc
svid

Page: 391

yacc (SD_CMD) yacc (SD_CMD)

to obtain input tokens.

A structure recognized (and returned) by the lexical analyzer is called a terminal
symbol, here referred to as a token (literal characters must also be passed through the
lexical analyzer, and are also considered tokens). A structure recognized by the
parser is called a nonterminal symbol. Name refers to either tokens or nonterminal
symbols.

Every specification file consists of three sections: declarations, grammar rules, and
programs, separated by double percent marks (9%89. The declarations and programs
sections may be empty. If the latter is empty, then the preceding %®6marks separat-
ing it from the rules section may be omitted.

Blanks, tabs, and new lines are ignored, except that they may not appear in names
or multi-character reserved symbols. Comments are enclosed in /* .. */, and
may appear wherever a name is legal.

Names may be of arbitrary length, made up of letters, dot (.), underscore (_), and
non-initial digits. Upper and lower case letters are distinct. Names beginning with
yy should be avoided because the yacc parser uses such names.

A literal consists of a character enclosed in single quotes. The C escape sequences
(e.g., \ n) are recognized.

Declarations

Page 2

The following declarators may be used in the declarations section:

% oken Names representing tokens must be declared; this may be done by writ-
ing:
% oken namel name2 ...
in the declarations section. Every name not defined in this section is
assumed to represent a nonterminal symbol. Every nonterminal symbol
must appear on the left side of at least one grammar rule.

%tart The start symbol represents the largest, most general structure described
by the grammar rules. By default, it is the left-hand side of the first
grammar rule; this default may be overridden by declaring:

%t art symbol

% ef t

% i ght

%monassoc
Precedence and associativity rules attached to tokens are declared using
these keywords. This is done by a series of lines, each beginning with
one of the keywords % eft, % i ght, or %monassoc, followed by a list
of tokens. (If a token is declared using one of these keywords, a declara-
tion by % oken is not needed.) All tokens on the same line have the
same precedence level and associativity; the lines are in order of increas-
ing precedence or binding strength. The keyword % eft denotes that
the operators on that line are left associative, and % i ght denotes that
the operators are right associative. The keyword 9%mhonassoc denotes
operators that may not associate with themselves.

FINAL COPY
June 15, 1995
File: sd_cmd/yacc
svid

Page: 392

yacc (SD_CMD) yacc (SD_CMD)

%pr ec Unary operators must, in general, be given a precedence. In cases where
a unary and binary operator have the same symbolic representation, but
need to be given different precedences, the keyword %pr ec is used to
change the order of precedence associated with a particular grammar
rule. The keyword %pr ec appears immediately after the body of the
grammar rule, before the action or closing semicolon (see Grammar
Rules below). It is followed by a token name or a literal. It causes the
precedence of the grammar rule to become that of the following token
name or literal.

%uni on By default, the values returned by actions and the lexical analyzer are
integers. Other value types, including structures, are supported: the
yacc value stack is declared to be a union of the various types of values
desired. The yacc command keeps track of types, and inserts appropri-
ate union member names so that the resulting parser command is strictly
type-checked. The declaration is constructed by including a statement of
the form:

%uni on {
body of union

Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. The header
file must be included in the declarations section, by using a #i ncl ude
construct within % and % (see below). Union members must be associ-
ated with the various names. The construction <name> is used to indi-
cate a union member name; if this follows one of the keywords % oken
% eft, % ight, and %monassoc, the union member name is associated
with the tokens listed.

% ype This keyword is used to associate union member names with nontermi-
nals, in the form:
% ype <ntype> a b ...

Other declarations and definitions can appear in the declarations section, enclosed
by the marks % and % . These have global scope within the file, so that they may
be used in the rules and programs sections.

Grammar Rules
The rules section consists of one or more grammar rules. A grammar rule has the
form:
A : BODY ;

The symbol A represents a nonterminal name, and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are yacc punctua-
tion. If several successive grammar rules have the same left-hand side, the vertical
bar (]) can be used to avoid rewriting the left-hand side; in this case, the semicolon
must occur only after the last rule. The BODY part may be empty to indicate that the
nonterminal symbol matches the empty string.

The ASCII null character (0 or ' \ 0’) should not be used in grammar rules.

Page 3

FINAL COPY
June 15, 1995
File: sd_cmd/yacc
svid

Page: 393

yacc (SD_CMD) yacc (SD_CMD)

Page 4

With each grammar rule, the user may associate actions to be performed each time
the rule is recognized in the input process. These actions may return values, and
may obtain the values returned by previous actions. In addition, the lexical
analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input or output, call sub-
programs, and alter external variables. An action is one or more statements
enclosed by braces { and }. Certain pseudo-variables can be used in the action. A
value can be returned by assigning it to $$; the variables $1, $2, ..., refer to the
values returned by the components of the right side of a rule, reading from left to
right. By default, the value of a rule is the value of the first element in it. Actions
may occur in the middle of a rule as well as at the end. An action may access the
values returned by symbols (and actions) to its left: and, in turn, the value it returns
may be accessed by actions to its right.

Internal rules to resolve ambiguities are:
1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the grammar rule
that occurs earlier in the input sequence.

In addition, the declared precedences and associativities (see Declarations Section
above) are used to resolve parsing conflicts as follows:

1 A precedence and associativity is associated with each grammar rule; it is
the precedence and associativity of the last token or literal in the body of the
rule. If the %r ec keyword is used, it overrides this default. Some gram-
mar rules may have no precedence and associativity.

2. When a reduce/reduce conflict, or a shift/reduce conflict occurs and either
the input symbol or the grammar rule has no precedence and associativity,
then the two internal rules given above are used.

3. If a shift/reduce conflict occurs, and both the grammar rule and the input
symbol have precedence and associativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) associated with the
higher precedence. If the precedences are the same, then the associativity is
used; left associative implies reduce, right associative implies shift, and
nonassociative implies error.

Conflicts resolved by precedence are not counted in the shift/reduce and
reduce/reduce conflicts reported by yacc.

The token name error is reserved for error handling. This name can be used in
grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. When an error is encountered, the parser behaves as if the token
error were the current lookahead token, and it performs the action encountered.
The lookahead token is then reset to the token that caused the error. If no special
error rules have been specified, the processing halts when an error is detected.

To prevent a series of error messages, the parser, after detecting an error, remains in
the error state until three tokens have been successfully read and shifted. If an error
is detected while the parser is in the error state, no message is given, and the input
token is quietly deleted.

FINAL COPY
June 15, 1995
File: sd_cmd/yacc
svid

Page: 394

yacc (SD_CMD) yacc (SD_CMD)

The statement

yyerrok;
in an action resets the parser to its normal mode; it may be used if it is desired to
force the parser to believe that an error has been fully recovered from.

The statement

yycl earin;
in an action is used to clear the previous lookahead token; it may be used if a user
supplied routine is to be used to find the correct place to resume input.

Programs

The programs section may include the definition of the lexical analyzer yyl ex(),
or other functions, typically those used in the actions specified in the grammar
rules.

The lexical analyzer yyl ex() is an integer valued function which returns the
token number, representing the kind of token read. If a value is associated with
that token, it should be assigned to the external variable yyl val . The parser and
yyl ex() must agree on these token numbers in order for communications between
them to take place. The numbers may be chosen by yacc, or chosen by the user. In
either case, the #def i ne construct of C is used to allow yyl ex() to return these
numbers symbolically. If the token numbers are chosen by yacc, then literals are
given the numerical value of the character in the local character set, and other
names are assigned token numbers starting at 257.

A token may be assigned a number by following its first appearance in the declara-
tions section with a nonnegative integer. Names and literals not defined this way
retain their default definition. All token numbers must be distinct.

The end of the input is marked by a special token called the endmarker. The end-
marker must have token number 0 or negative. These values are not legal for any
other token. All lexical analyzers should return 0 or negative as a token number
upon reaching the end of their input. If the token up to, but not including, the end-
marker forms a structure which matches the start symbol, the parser accepts the
input. If the endmarker is seen in any other context, it is an error.

ERRORS

FILES

USAGE

The number of reduce-reduce and shift-reduce conflicts is reported on the standard
error output; a more detailed report is found in the y. out put file. Similarly, if
some rules are not reachable from the start symbol, this is also reported.

y. out put
y.tab.c
y.tab. h

General.

SEE ALSO

lex(SD_CMD).

Page 5

FINAL COPY
June 15, 1995
File: sd_cmd/yacc
svid

Page: 395

yacc (SD_CMD)

LEVEL

Page 6

Level 1.

FINAL COPY
June 15, 1995
File: sd_cmd/yacc
svid

Page: 396

yacc (SD_CMD)

Terminal Interface Introduction

Terminal Interface Overview

The Terminal Interface Extension (TI) consists of the facilities provided by the

cur ses/ t er m nf o package to allow application programs to perform terminal
handling functions in a way that is independent of the type of the terminal actu-
ally in use. The cur ses/ t er m nf o0 package supports an asynchronous color char-
acter terminal interface (on asynchronous character and bitmapped terminals).

The following are prerequisite for support of the Terminal Interface Extension:
m Base System
m Basic Utilities Extension
m Advanced Utilities Extension

m Software Development Extension

SUMMARY OF LIBRARY ROUTINES

The following library routines are supported by a SVID-compliant Terminal Inter-
face Extension. Items marked with a (*) are Level 2, as defined in the General Intro-
duction to this volume. Items marked with a (1) are new to this issue of the SVID.
Only those pages reflecting technical content changes or which are new to the
SVID are contained in this volume.

Curses Routines

addch addwst r box curs_set
addchnstr attroff can_change_col or def _prog_nvode
addchstr attron chreak def _shel |l _node
addnstr attrset cl ear del _curterm
addnwst r baudr at e cl ear ok del ay_out put
addstr beep cl rt obot del ch
addwch bkgd clrtoeol del eteln
addwchnst r bkgdset col or _cont ent del screen
addwchst r bor der Copyw n del wi n
Terminal Interface Introduction 20-1

FINAL COPY

June 15, 1995

File: ti_int.txt

svid

Page: 397

Curses Routines

derwin i nnstr nvcur nvwdel ch
doupdat e i nnwst r nvdel ch nvwget ch
dupwi n i nsch nvderw n nvwget nwst r
echo i nsdel I'n nvget ch nmvwget st r
echochar insertln nvget nwst r nvwget wch
echowchar i nsnstr nvget str nvwget wst r
endwi n i nsnwst r nvget wch nvwi n
erase i nsstr nvget wst r nvwi nch
erasechar instr nvi nch nvw nchnstr
filter i nswch nvi nchnstr nvw nchstr
flash i nswstr nvi nchstr nvw nnst r
f1 ushi np intrflush nvi nnst r nvw nnwst r
get begyx i nwch nvi nnwst r nvw nsch
getch i nwchnst r nvi nsch nvw nsnstr
get naxyx i nwchstr nvi nsnst r nvw nsnwst r
get nwst r i nwst r nvi nsnwst r nvw nsstr
get par yx i s_|inetouched nvi nsstr nvw nstr
getstr i s_wi nt ouched nvi nstr nvw nswch
get syx i sendwi n nvi nswch nvw nswst r
getwch keynarre nvi nswst r nvw nwch
getw n keypad nvi nwch nvwi nwchnst r
getwstr killchar nvi nwchnst r nvw nwchstr
get yx | eaveok nvi nwchst r nvw nwst r
hal f del ay | ongnarne nvi nwst r nm/wpr i nt w
has_col ors neta nvprintw nvwscanw
has_i c nove nvscanw napns

has_i | nvaddch nvwaddch newpad

i dcok nvaddchnst r nmvwaddchnst r newt erm

i dl ok nvaddchstr nvwaddchst r newn n

i mredok nvaddnst r nvwaddnst r nl

i nch nvaddnwst r nvwaddnwst r nochbr eak

i nchnstr nvaddstr nmvwaddst r nodel ay

i nchstr nvaddwch nvwaddwch noecho
init_col or nvaddwchnst r nmvwaddwchnst r nonl
init_pair nvaddwchst r nvwaddwchst r nogi fl ush

i nitscr nvaddwst r nvwaddwst r nor aw

20-2 TERMINAL INTERFACE INTRODUCTION

FINAL COPY

June 15, 1995

File: ti_int.txt
svid

Page: 398

not i meout
overl ay
overwite
pai r_cont ent
pechochar
pechowchar
pnout r ef resh
prefresh
printw

put p

put wi n

gi fl ush

raw
redrawni n
refresh

reset prog_node
reset _shel | _node

resetty
restartterm
ripoffline
savetty
scanw
scr_dunp
scr_init
scr_restore
scr_set
scrol
scrol | ok
set_curterm
set_term
setscrreg
set syx
setterm*
setupterm
slk_attroff
slk_attron

Curses Routines

sl k_attrset

sl k_cl ear
sl k_init
sl k_| abel

sl k_nout refresh
sl k_refresh
slk_restore

sl k_set

sl k_touch
srcl

st andend
st andout

start_col or

subpad
subwi n
syncok
ternattrs
t er nnane
tgetent *
tgetflag*
t get num*
tgetstr*
tgoto*
tigetflag
ti get num
tigetstr
ti meout

t ouchl i ne
t ouchwi n
tparm
tputs

t ypeahead
unctrl
unget ch
unget wch

unt ouchwi n

Terminal Interface Introduction

FINAL COPY

June 15, 1995

File: ti_int.txt
svid

Page: 399

use_env
vidattr

vi dput s
VWpri nt w
vwscanw
waddch
waddchnst r
waddchst r
waddnst r
waddnwst r
waddst r
waddwch
waddwchnst r
waddwchst r
waddwst r
wat t r of f
wattron
wat t r set
wbkgd
wbkgdset
wbor der
wel ear
wel rt obot
wel rt oeo
WCur syncup
wdel ch
wdel et el n
wechochar
wechowchar
Wer ase
wget ch
wget nstr
wget nwst r
wget str
wget wch

wget wst r
whl i ne

i nch
nchnstr
nchstr
nnstr
nnwst r
nsch
nsdel | n
nsertln
nsnstr
nsnwst r
nsstr
nstr
nswch
nswst r
nwch
nwchnst r
nwchst r
nwst r
whove
wnout r ef resh
wWpri ntw
wedraw n
wr ef resh
wscanw
wscr |

wset scrreg
wst andend
wst andout
wsyncdown
wsyncup
w i neout
wt ouchl n
wvl i ne

S 22222 sss s s:s22 8282

20-3

current_field
dat a_ahead
dat a_behi nd
dup field
dynanmic _field info
field_ arg
field _back
field_buffer
field_count
field fore
fiel d_i ndex
field_info
field_init
field just
field opts
field opts_of f
field opts_on
field pad
field status
field term
field type
field userptr
formdriver
formfields

current_item
free item
free_nenu

i tem count

i temdescription
i temi ndex
iteminit

i tem name
itemopts

20-4

Forms Routines

forminit
formopts
formopts_of f
formopts_on

f or m page
formsub
formterm
formuserptr
formwin
free field
free fieldtype
free_ form
link field
link_fieldtype
nmove field
new field
new fi el dtype
new form
new_page

pos_f orm cursor
post _form
scale_form
set_current field
set _fiel d_back

Menu Routines

itemopts off
itemopts_on
itemterm
itemuserptr

i temval ue
itemvisible
nenu_back
nmenu_dri ver
nmenu_fore

set field buffer
set_field_ fore
set_field_init
set field just
set field opts
set _field pad

set field status
set_field_term
set field type
set field userptr
set fieldtype arg
set _fiel dtype choice
set formfields
set_forminit

set formopts

set form page

set _formsub
set_formterm

set _formuserptr
set_formw n
set_nax_field

set _new _page
unpost _form

menu_f or nat
nenu_gr ey
nmenu_i ni t
nmenu_i t ens
nmenu_rmar k
nenu_opt s
menu_opts_of f
nmenu_opt s_on
nmenu_pad

TERMINAL INTERFACE INTRODUCTION

FINAL COPY

June 15, 1995

File: ti_int.txt
svid

Page: 400

menu_patt ern

Menu Routines

set_iteminit

set _menu_nar k

nmenu_sub set _itemopts set _nenu_opts
nmenu_term set itemterm set _nenu_pad
nenu_userptr set_itemuserptr set _nmenu_pattern
nenu_wi n set _itemval ue set _nenu_sub
new item set _nenu_back set_nenu_term
new_rrenu set_nenu_fore set _nmenu_user ptr
pos_menu_cur sor set _nenu_f or mat set_menu_w n
post _nenu set _nmenu_grey set _top_row

scal e_nenu set_menu_init top_row

set_current_item

bot t om panel

set_nenu_itens

Panel Routines

panel _above

unpost _nmenu

repl ace_panel

del _panel panel _bel ow set _panel _userptr
hi de_panel panel _hi dden show _panel
nove_panel panel _userptr t op_panel
new_panel panel _w ndow updat e_panel s

SUMMARY OF COMMANDS AND UTILITIES

The following commands and utilities are supported by a SVID-compliant Termi-
nal Interface Extension.

capt oi nfo cl ear i nf ocnp tic t put

ORGANIZATION OF TECHNICAL INFORMATION

The “Terminal Interface Environment’ chapter provides manual page descrip-
tions of the terminal capability database used by this extension to support device
independent terminal 1/0.

The “Terminal Interface Library Routines’ chapter provides manual page descrip-
tions of routine interfaces supported by this extension.

Terminal Interface Introduction 20-5

FINAL COPY

June 15, 1995

File: ti_int.txt
svid

Page: 401

FINAL COPY
June 15, 1995
File

Page: 402

Terminal Interface Environment

Terminal Interface Environment Variables

The components of the Tl extension use the environment variables described
below. [See sh(BU_CMD) for information on the shell environment.]

TERM

The environmental variable TERM by convention, contains a user’s current termi-
nal type and may be set by the user.

TERMINFO

The environmental variable TERM NFOQ, if set, contains the place where local ter-
minal descriptions can be found. TERM NFOcan be set by the user. If it is set,
any program using cur ses checks the TERM NFOlocation for the description of
a terminal before checking / usr/1i b/t er m nf o, the standard location for termi-
nal descriptions. [See curses(TI_LIB) and terminfo(TI_ENV) for further informa-
tion.]

LINES and COLUMNS

The environmental variables LI NES and COLUWNS, if set, contain the number of
lines and the number of columns, respectively, on a terminal screen and can be set
by the user. If defined, the values of these variables, LI NES and COLUWNS, over-
ride the screen size values given in the t er mi nf o description of a terminal. [See
curses(T1_LIB) and terminfo(Tl_ENV) for further information.]

Terminal Interface Environment 21-1

FINAL COPY

June 15, 1995

File: ti_env.txt
svid

Page: 403

MANUAL PAGES

21-2 TERMINAL INTERFACE ENVIRONMENT

FINAL COPY

June 15, 1995

File: ti_env.txt
svid

Page: 404

Terminal Interface Environment Routines

The following section contains the manual pages for the TI_ENV routines.

Terminal Interface Environment Routines 22-1

FINAL COPY

June 15, 1995

File: ti_env.cov
svid

Page: 405

FINAL COPY
June 15, 1995
File

Page: 406

CURSES (TI_ENV) CURSES (TI_ENV)

NAME

CURSES - CRT screen handling and optimization package
SYNOPSIS

#i ncl ude <curses. h>
DESCRIPTION

CURSES library routines give the user a terminal-independent method of updating
character screens with reasonable optimization. A program using these routines
must be compiled with the —I cur ses option of cc.

The CURSES package allows: overall screen, window and pad manipulation; out-
put to windows and pads; reading terminal input; control over terminal and
CURSES input and output options; environment query routines; color manipula-
tion; use of soft label keys; t er m nf o access; and access to low-level CURSES rou-
tines.

To initialize the routines, the routine i ni t scr() or newt ern() must be called
before any of the other routines that deal with windows and screens are used. The
routine endwi n() must be called before exiting. To get character-at-a-time input
without echoing (most interactive, screen-oriented programs want this), the follow-
ing sequence should be used:

initscr(), cbreak(), noecho();

Most programs would additionally use the sequence:
nonl (),intrflush(stdscr, FALSE), keypad(stdscr, TRUE);

Before a CURSES program is run, the tab stops of the terminal should be set and its
initialization strings, if defined, must be output. This can be done by executing the
tput init command after the shell environment variable TERM has been
exported. [See terminfo(TI_ENV) for further details.]

The CURSES library permits manipulation of data structures, called windows, which
can be thought of as two-dimensional arrays of characters. A default window
called st dscr, which is the size of the terminal screen, is supplied. Others may be
created with newwi n() .

Windows are referred to by variables declared as W NDOW *. These data structures
are manipulated with routines described on TI_LIB pages (whose names begin
“curs_""). Among the most basic routines are nove() and addch(). More general
versions of these routines are included that allow the user to specify a window.

After using routines to manipulate a window, r ef r esh() is called, telling CURSES
to make the user’s CRT screen look like st dscr. The characters in a window are
actually of type cht ype (character and attribute data) so that other information
about the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows that are
not necessarily associated with a viewable part of the screen. See curs_pad(TI_LIB)
for more information.

In addition to drawing characters on the screen, video attributes and colors may be
included, causing the characters to show up in such modes as underlined, reverse
video or color on terminals that support such display enhancements. Line drawing
characters may be specified to be output. On input, CURSES is also able to
translate arrow and function keys that transmit escape sequences into single values.

Page 1

FINAL COPY
June 15, 1995
File: ti_env/curses
svid

Page: 407

CURSES (TI_ENV) CURSES (TI_ENV)

The video attributes, line drawing characters and input values use names, defined
in <cur ses. h>, such as A_ REVERSE, ACS_HLI NE and KEY_LEFT.

If the environment variables LI NES and COLUMNS are set, or if the program is exe-
cuting in a window environment, line and column information in the environment
will override information read by term nfo. This would affect a program run-
ning in an AT&T 630 layer, for example, where the size of a screen is changeable.

If the environment variable TERM NFO is defined, any program using CURSES
checks for a local terminal definition before checking in the standard place. For
example, if TERMis set to at t 4424, then the compiled terminal definition is found
in
[usr/share/lib/term nfol/alatt4424.
(The a is copied from the first letter of att 4424 to avoid creation of huge direc-
tories.) However, if TERM NFOis set to $HOVE/ nyt er ms, CURSES first checks
$HOVE/ myt er ms/ al at t 4424,

and if that fails, it then checks
/usr/share/lib/term nfo/alatt4424,

This is useful for developing experimental definitions or when write permission in
[usr/share/lib/term nfoisnotavailable.

The integer variables LI NES and COLS are defined in <cur ses. h> and will be
filled in by i ni t scr () with the size of the screen. The constants TRUE and FALSE
have the values 1 and 0, respectively.

The CURSES routines also define the W NDOW * variable cur scr which is used for
certain low-level operations like clearing and redrawing a screen containing gar-
bage. curscr can be used in only a few routines.

International Functions

Page 2

The number of bytes and the number of columns to hold a character from the sup-
plementary character set is locale-specific (locale category LC_CTYPE) and can be
specified in the character class table.

For editing, operating at the character level is entirely appropriate. For screen for-
matting, arbitrary movement of characters on screen is not desirable.

Overwriting characters (addch(), for example) operates on a screen level.
Overwriting a character by a character that requires a different number of columns
may produce orphaned columns. These orphaned columns are filled with back-
ground characters.

Inserting characters (i nsch() , for example) operates on a character level (that is, at
the character boundaries). The specified character is inserted right before the char-
acter, regardless of which column of a character the cursor points to. Before inser-
tion, the cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (del ch(), for example) operates
on a character level (that is, at the character boundaries). The character at the cur-
sor is deleted whichever column of the character the cursor points to. Before dele-
tion, the cursor position is adjusted to the first column of the character.

FINAL COPY
June 15, 1995
File: ti_env/curses
svid

Page: 408

CURSES (TI_ENV) CURSES (TI_ENV)

A multi-column character cannot be put on the last column of a line. When such
attempts are made, the last column is set to the background character. In addition,
when such an operation creates orphaned columns, the orphaned columns are filled
with background characters.

Overlapping and overwriting a window follows the operation of overwriting char-
acters around its edge. The orphaned columns, if any, are handled as in the charac-
ter operations.

The cursor is allowed to be placed anywhere in a window. If the insertion or dele-
tion is made when the cursor points to the second or later column position of a
character that holds multiple columns, the cursor is adjusted to the first column of
the character before the insertion or deletion.

Routine and Argument Names
Many CURSES routines have two or more versions. Routines prefixed with p
require a pad argument. Routines whose names contain a wgenerally require either
a window argument or a wide-character argument. If wappears twice in a routine
name, the routine usually requires both a window and a wide-character argument.
Routines that do not require a pad or window argument generally use st dscr .

The routines prefixed with mv require an x and y coordinate to move to before per-
forming the appropriate action. The nv routines imply a call to nove() before the
call to the other routine. The coordinate y always refers to the row (of the window),
and x always refers to the column. The upper left-hand corner is always (0,0), not
(1,1).

The routines prefixed with mvw take both a window argument and x and y coordi-
nates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad are
always pointers to type W NDOW

Option setting routines require a Boolean flag bf with the value TRUE or FALSE; bf is
always of type bool . The variables ch and attrs are always of type chtype. The
types W NDOW SCREEN, bool and cht ype are defined in <cur ses. h>. The type
TERM NAL is defined in <t er m h>. All other arguments are integers.

Routine Name Index
The following table lists each CURSES routine and the name of the manual page on
which it is described.

CURSES Routine Name Manual Page Name
addch() curs_addch(TI_LIB)
addchnstr () curs_addchstr(TI_LIB)
addchstr () curs_addchstr(T1_LIB)
addnstr () curs_addstr(TI_LIB)
addnwstr () curs_addwstr(TI_LIB)
addstr () curs_addstr(TI_LIB)
addwch() curs_addwch(TI_LIB)
addwchnstr () curs_addwechstr(TI_LIB)
Page 3
FINAL COPY

June 15, 1995
File: ti_env/curses
svid

Page: 409

CURSES (TI_ENV)

CURSES Routine Name

CURSES (TI_ENV)

Manual Page Name

addwchstr ()
addwstr ()
attroff()
attron()
attrset ()
baudr at e()
beep()

bkgd()
bkgdset ()

bor der ()

box()
can_change_col or ()
cbreak()
clear()

cl earok()
clrtobot ()
clrtoeol ()

col or _content ()
copywi n()
curs_set ()

def _prog_node()
def _shel | _node()
del _curterm()
del ay_out put ()
del ch()

del etel n()

del screen()
del wi n()

derwi n()
doupdat e()
dupwi n()
echo()
echochar ()
echowchar ()
endwi n()
erase()
erasechar ()
filter()
flash()

fl ushinp()

get begyx()
getch()

get maxyx()
getnwstr ()

get par yx()

Page 4

curs_addwechstr(TI_LIB)
curs_addwstr(TI_LIB)
curs_attr(TI_LIB)
curs_attr(TI_LIB)
curs_attr(TI_LIB)
curs_termattrs(TI_LIB)
curs_beep(TI_LIB)
curs_bkgd(TI_LIB)
curs_bkgd(TI_LIB)
curs_border(TI_LIB)
curs_border(TI_LIB)
curs_color(TI_LIB)
curs_inopts(TI_LIB)
curs_clear(TI_LIB)
curs_outopts(TI_LIB)
curs_clear(TI_LIB)
curs_clear(TI_LIB)
curs_color(TI_LIB)
curs_overlay(TIl_LIB)
curs_kernel(TI_LIB)
curs_kernel(TI_LIB)
curs_kernel(TI_LIB)
curs_terminfo(TI_LIB)
curs_util(TI_LIB)
curs_delch(TI_LIB)
curs_deleteln(TI_LIB)
curs_initscr(TI_LIB)
curs_window(TI_LIB)
curs_window(TI_LIB)
curs_refresh(TI_LIB)
curs_window(TI_LIB)
curs_inopts(TI_LIB)
curs_addch(TI_LIB)
curs_addwch(TI_LIB)
curs_initscr(TI1_LIB)
curs_clear(TI_LIB)
curs_termattrs(TI_LIB)
curs_util(T1_LIB)
curs_beep(TI_LIB)
curs_util(TI_LIB)
curs_getyx(TI_LIB)
curs_getch(TI_LIB)
curs_getyx(TI_LIB)
curs_getwstr(T1_LIB)
curs_getyx(TI_LIB)

FINAL COPY
June 15, 1995
File: ti_env/curses

svid

Page: 410

CURSES (TI_ENV)

CURSES Routine Name

Manual Page Name

CURSES (TI_ENV)

s_l i net ouched()
s_w ntouched()

curs_touch(TI_LIB)
curs_touch(TI_LIB)

getstr() curs_getstr(TI_LIB)
get syx() curs_kernel(TI_LIB)
getweh() curs_getwch(TI_LIB)
getwi n() curs_util(T1_LIB)
getwstr() curs_getwstr(TI_LIB)
get yx() curs_getyx(TI_LIB)
hal f del ay() curs_inopts(TI1_LIB)
has_col ors() curs_color(TI_LIB)
has_i c() curs_termattrs(TI_LIB)
has_il () curs_termattrs(TI_LIB)
i dcok() curs_outopts(TI_LIB)
i dl ok() curs_outopts(TI_LIB)
i mredok() curs_outopts(TI_LIB)
i nch() curs_inch(TI_LIB)

i nchnstr() curs_inchstr(TI_LIB)

i nchstr() curs_inchstr(T1_LIB)
init_color() curs_color(TI_LIB)
init_pair() curs_color(TI_LIB)
initscr() curs_initscr(TI_LIB)
innstr() curs_instr(TI_LIB)

i nnwstr () curs_inwstr(TI_LIB)

i nsch() curs_insch(TI_LIB)

i nsdel | n() curs_deleteln(TI_LIB)
insertln() curs_deleteIn(TI_LIB)
i nsnstr() curs_insstr(TI_LIB)

i nsnwstr() curs_inswstr(TI_LIB)
insstr() curs_insstr(TI_LIB)
instr() curs_instr(TI_LIB)

i nsweh() curs_inswch(TI_LIB)

i nswstr() curs_inswstr(TI_LIB)
intrflush() curs_inopts(TI_LIB)

i nmch() curs_inwch(TI_LIB)

i nmchnstr () curs_inwchstr(TI_LIB)
i nachstr() curs_inwchstr(TI_LIB)
i nwstr() curs_inwstr(TI1_LIB)

i

i

i

sendwi n() curs_initscr(TI_LIB)
keynane() curs_util(TI_LIB)
keypad() curs_inopts(TI1_LIB)
killchar() curs_termattrs(TI_LIB)
| eaveok() curs_outopts(TI1_LIB)
| ongnane() curs_termattrs(TI_LIB)
nmet a() curs_inopts(TI_LIB)
nmove() curs_move(TI_LIB)

Page 5

FINAL COPY
June 15, 1995
File: ti_env/curses
svid

Page: 411

CURSES (TI_ENV)

CURSES Routine Name

Manual Page Name

mvaddch()
mvaddchnstr ()
mvaddchstr ()
mvaddnstr ()
mvaddnwstr ()
mvaddstr ()
mvaddwch()
mvaddwchnstr ()
mvaddwchstr ()
mvaddwstr ()
mveur ()

mvdel ch()
mvder wi n()
mvget ch()
mvget nwstr ()
mvgetstr()
mvget weh()
mvget wstr ()
nvi nch()

nmvi nchnstr ()
mvi nchstr ()
nvinnstr ()
mvi nnwst r ()
mvi nsch()

nvi nsnstr()
mvi nsnwstr ()
mvi nsstr()
mvi nstr()

mvi nsweh()
mvi nswstr ()
mvi nweh()

mvi nachnstr ()
mvi nachstr ()
mvi nwstr ()
mvprintw()
mvscanw()
mvwaddch()
mvwaddchnstr ()
m/waddchstr ()
mvwaddnstr ()
m/waddnwst r ()
m/waddstr ()
mywaddweh()
mywaddwehnstr ()
m/waddwehst r ()

Page 6

curs_addch(T1_LIB)
curs_addchstr(TI_LIB)
curs_addchstr(T1_LIB)
curs_addstr(TI_LIB)
curs_addwstr(TI_LIB)
curs_addstr(TI_LIB)
curs_addwch(TI_LIB)
curs_addwechstr(TI_LIB)
curs_addwechstr(TI_LIB)
curs_addwstr(TI1_LIB)
curs_terminfo(TI_LIB)
curs_delch(TI_LIB)
curs_window(TI_LIB)
curs_getch(TI_LIB)
curs_getwstr(TI_LIB)
curs_getstr(TI_LIB)
curs_getwch(TI_LIB)
curs_getwstr(TI_LIB)
curs_inch(TI_LIB)
curs_inchstr(TI_LIB)
curs_inchstr(TI_LIB)
curs_instr(TI_LIB)
curs_inwstr(TI_LIB)
curs_insch(TI_LIB)
curs_insstr(TI_LIB)
curs_inswstr(TI_LIB)
curs_insstr(TI_LIB)
curs_instr(TI_LIB)
curs_inswch(TI_LIB)
curs_inswstr(TI_LIB)
curs_inwch(TI_LIB)
curs_inwchstr(T1_LIB)
curs_inwchstr(TI_LIB)
curs_inwstr(TI_LIB)
curs_printw(TI_LIB)
curs_scanw(TI_LIB)
curs_addch(TI_LIB)
curs_addchstr(T1_LIB)
curs_addchstr(TI_LIB)
curs_addstr(TI_LIB)
curs_addwstr(TI_LIB)
curs_addstr(TI_LIB)
curs_addwch(TI_LIB)
curs_addwechstr(TI_LIB)
curs_addwchstr(TI_LIB)

FINAL COPY
June 15, 1995
File: ti_env/curses
svid

Page: 412

CURSES (TI_ENV)

CURSES (TI_ENV)

CURSES Routine Name

Manual Page Name

CURSES (TI_ENV)

nmvwaddwst r ()
mvwdel ch()
nvwget ch()

nm/wget nwst r ()

m/wget str ()
nmvwget weh()
nm/wget wstr ()
m/wi n()

mvwi nch()

mvwi nchnstr ()

m/wi nchstr ()
nmvwi nnst r ()
mvwi nnwstr ()
m/wi nsch()
nvwi nsnstr ()
m/wi nsnwst r
m/wi nsstr ()
mvwi nstr ()
mvwi nsweh()
m/wi nswstr ()
mvwi nweh()

mvwi nwehnstr ()
m/w nwehstr ()

mvwi nwst r ()
m/wpri ntw()
m/wscanw()
napns()
newpad()
newt er n()
neww n()

nl ()

nocbr eak()
nodel ay()
noecho()
nonl ()
nogi f | ush()
nor aw()

not i meout ()
overlay()
overwite()

pair_content ()

pechochar ()
pechowchar ()

pnout refresh()

prefresh()

curs_addwstr(T1_LIB)
curs_delch(TI_LIB)
curs_getch(TI_LIB)
curs_getwstr(TIl_LIB)
curs_getstr(TI_LIB)
curs_getwch(TI_LIB)
curs_getwstr(TIl_LIB)
curs_window(TI_LIB)
curs_inch(TI1_LIB)
curs_inchstr(TI1_LIB)
curs_inchstr(TI_LIB)
curs_instr(TI_LIB)
curs_inwstr(TI_LIB)
curs_insch(TI_LIB)
curs_insstr(TI_LIB)
curs_inswstr(TI_LIB)
curs_insstr(TI_LIB)
curs_instr(TI_LIB)
curs_inswch(TI1_LIB)
curs_inswstr(TI_LIB)
curs_inwch(TI_LIB)
curs_inwchstr(TI1_LIB)
curs_inwchstr(TI_LIB)
curs_inwstr(TI1_LIB)
curs_printw(TI_LIB)
curs_scanw(TI_LIB)
curs_kernel(TI_LIB)
curs_pad(TI_LIB)
curs_initscr(TI_LIB)
curs_window(TI_LIB)
curs_outopts(TI1_LIB)
curs_inopts(TI_LIB)
curs_inopts(TI_LIB)
curs_inopts(TI_LIB)
curs_outopts(TI_LIB)
curs_inopts(TI_LIB)
curs_inopts(TI_LIB)
curs_inopts(TI_LIB)
curs_overlay(TI_LIB)
curs_overlay(TI_LIB)
curs_color(TI_LIB)
curs_pad(TI_LIB)
curs_pad(TI_LIB)
curs_pad(TI_LIB)
curs_pad(TI_LIB)

FINAL COPY
June 15, 1995
File: ti_env/curses

svid

Page: 413

Page 7

CURSES (TI_ENV)

CURSES Routine Name

Manual Page Name

printw()

put p()

putwi n()

qi flush()

raw()

redraww n()
refresh()

reset _prog_node()
reset _shel | _node()
resetty()
restartterm)
ripoffline()
savetty()

scanw()
scr_dunmp()
scr_init()
scr_restore()
scr_set ()
scrol | ()
scrol | ok()
set _curterm()
set_term)
setscrreg()
set syx()
setterm()
setupterm()
slk_attroff()
slk_attron()
sl k_attrset()
sl k_cl ear ()
slk_init()

sl k_I abel ()
sl k_noutrefresh()
sl k_refresh()
sl k_restore()
sl k_set ()

sl k_touch()
srcl ()

st andend()

st andout ()
start_col or ()
subpad()
subwi n()
syncok()
termattrs()

Page 8

curs_printw(T1_LIB)
curs_terminfo(TI_LIB)
curs_util(T1_LIB)
curs_inopts(TI1_LIB)
curs_inopts(TI_LIB)
curs_refresh(TI_LIB)
curs_refresh(TI_LIB)
curs_kernel(TI_LIB)
curs_kernel(TI_LIB)
curs_kernel(TI_LIB)
curs_terminfo(TI_LIB)
curs_kernel(TI_LIB)
curs_kernel(TI_LIB)
curs_scanw(TI_LIB)
curs_scr_dump(TI_LIB)
curs_scr_dump(TI_LIB)
curs_scr_dump(TI_LIB)
curs_scr_dump(TI_LIB)
curs_scroll(TI_LIB)
curs_outopts(TI_LIB)
curs_terminfo(TI_LIB)
curs_initscr(TI_LIB)
curs_outopts(TI_LIB)
curs_kernel(TI_LIB)
curs_terminfo(TI_LIB)
curs_terminfo(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_slk(TI_LIB)
curs_scroll(TI_LIB)
curs_attr(TI_LIB)
curs_attr(TI_LIB)
curs_color(TI_LIB)
curs_pad(TI_LIB)
curs_window(TI_LIB)
curs_window(TI_LIB)
curs_termattrs(TI_LIB)

FINAL COPY
June 15, 1995
File: ti_env/curses
svid

Page: 414

CURSES (TI_ENV)

CURSES (TI_ENV)

CURSES Routine Name

Manual Page Name

CURSES (TI_ENV)

t er mane()
tgetent ()
tgetflag()

t get num()
tgetstr()

t got o()
tigetflag()
tigetnum()
tigetstr()
ti meout ()
touchl i ne()
t ouchwi n()

t parm()
tputs()

t puts()

t ypeahead()
unctrl ()
unget ch()
unget wch()
unt ouchwi n()
use_env()
vidattr()

vi dput s()
vwpri nt w()
vwscanw)
waddch()
waddchnstr ()
waddchstr ()
waddnstr ()
waddnwstr ()
waddstr ()
waddweh()
waddwchnstr ()
waddwechstr ()
waddwst r ()
wat t rof f ()
wat tron()
wattrset ()
wbkgd()
wbkgdset ()
wbor der ()
wel ear ()

wel rtobot ()
wel rtoeol ()
weur syncup()

curs_termattrs(TI_LIB)
curs_termcap(TI_LIB)
curs_termcap(T1_LIB)
curs_termcap(T1_LIB)
curs_termcap(TI_LIB)
curs_termcap(TI_LIB)
curs_terminfo(TI_LIB)
curs_terminfo(TI_LIB)
curs_terminfo(TI_LIB)
curs_inopts(TI1_LIB)
curs_touch(TI_LIB)
curs_touch(TI_LIB)
curs_terminfo(TI_LIB)
curs_termcap(TI_LIB)
curs_terminfo(TI_LIB)
curs_inopts(T1_LIB)
curs_util(TI_LIB)
curs_getch(TI_LIB)
curs_getwch(T1_LIB)
curs_touch(TI_LIB)
curs_util(TI_LIB)
curs_terminfo(TI_LIB)
curs_terminfo(TI_LIB)
curs_printw(TI_LIB)
curs_scanw(TI_LIB)
curs_addch(TI_LIB)
curs_addchstr(TI_LIB)
curs_addchstr(TI_LIB)
curs_addstr(TI_LIB)
curs_addwstr(TI_LIB)
curs_addstr(TI_LIB)
curs_addwch(TI_LIB)
curs_addwechstr(TI_LIB)
curs_addwechstr(TI_LIB)
curs_addwstr(TI_LIB)
curs_attr(TI_LIB)
curs_attr(TI_LIB)
curs_attr(TI_LIB)
curs_bkgd(TI_LIB)
curs_bkgd(TI_LIB)
curs_border(TI_LIB)
curs_clear(TI1_LIB)
curs_clear(TI_LIB)
curs_clear(TI_LIB)
curs_window(TI_LIB)

Page 9

FINAL COPY
June 15, 1995
File: ti_env/curses
svid

Page: 415

CURSES (TI_ENV)

CURSES Routine Name

CURSES (TI_ENV)

Manual Page Name

wdel ch()
wdel et el n()
wechochar ()
wechowchar ()
wer ase()
wget ch()
wget nstr()
wget nwst r ()
wget str()
wget weh()
wget wstr ()
whl i ne()

i nch()
nchnstr ()
nchstr()
nnstr()
nnwstr ()
nsch()
nsdel | n()
nsertln()
nsnstr()
nsnwstr ()
nsstr()
nstr()
nswech()
nswstr()
nwech()
nwchnstr ()
nwchstr ()

£ 2ssssssssssss22828

wnout r ef resh()
wpri ntw()

wr edr awl n()
wr ef resh()
wscanw()
wscrl ()

wset scrreg()
wst andend()
wst andout ()
wsyncdown()
wsyncup()
wt i meout ()
wt ouchl n()
wline()

Page 10

curs_delch(TI_LIB)
curs_deleteln(TI_LIB)
curs_addch(TI_LIB)
curs_addwch(TI_LIB)
curs_clear(TI_LIB)
curs_getch(TI_LIB)
curs_getstr(TI_LIB)
curs_getwstr(TI_LIB)
curs_getstr(TI_LIB)
curs_getwch(T1_LIB)
curs_getwstr(TI_LIB)
curs_border(TI_LIB)
curs_inch(TI_LIB)
curs_inchstr(TI_LIB)
curs_inchstr(TI_LIB)
curs_instr(TI_LIB)
curs_inwstr(TI_LIB)
curs_insch(TI_LIB)
curs_deleteln(TI_LIB)
curs_deleteln(TI_LIB)
curs_insstr(TI_LIB)
curs_inswstr(TI_LIB)
curs_insstr(TI_LIB)
curs_instr(TI_LIB)
curs_inswch(TI_LIB)
curs_inswstr(TI_LIB)
curs_inwch(TI_LIB)
curs_inwchstr(TI_LIB)
curs_inwchstr(T1_LIB)
curs_inwstr(TI_LIB)
curs_move(TI_LIB)
curs_refresh(TI_LIB)
curs_printw(TI_LIB)
curs_refresh(TI_LIB)
curs_refresh(TI_LIB)
curs_scanw(TI_LIB)
curs_scroll(TI_LIB)
curs_outopts(TI_LIB)
curs_attr(TI1_LIB)
curs_attr(TI_LIB)
curs_window(TI_LIB)
curs_window(TI_LIB)
curs_inopts(TI_LIB)
curs_touch(TI_LIB)
curs_border(TI_LIB)

FINAL COPY
June 15, 1995
File: ti_env/curses

svid

Page: 416

CURSES (TI_ENV) CURSES (TI_ENV)

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion, unless otherwise noted in the routine
descriptions.

All macros return the value of the window version, except setscrreg(),
wsetscrreg(), getyx(), getbegyx() and get maxyx(). The return values of
setscrreg(), wsetscrreg(), getyx(), getbegyx() and get maxyx() are
undefined (i.e., these should not be used as the right-hand side of assignment state-
ments).

Routines that return pointers return NULL on error.
USAGE
Application Program.

The header file <cur ses. h> automatically includes the header files <stdi 0. h>
and <unctrl . h>.

SEE ALSO
TERMINFO(TI_ENV) and TI_LIB pages whose names begin “‘curs_"’ for detailed
routine descriptions.

LEVEL
Level 1.

Page 11

FINAL COPY
June 15, 1995
File: ti_env/curses
svid

Page: 417

FORMS (TI_ENV) FORMS (TI_ENV)

NAME
FORMS - character based forms package

SYNOPSIS
#include <form.h>

DESCRIPTION
The f or mlibrary is built using the cur ses library, and any program using FORMS
routines must call one of the CURSES initialization routines such asi ni tscr (). A
program using these routines must be compiled with —| f or mand —| cur ses on
the cc command line.

The FORMS package gives the applications programmer a terminal-independent
method of creating and customizing forms for user-interaction. The FORMS pack-
age includes: field routines, which are used to create and customize fields, link
fields and assign field types; fieldtype routines, which are used to create new field
types for validating fields; and form routines, which are used to create and custom-
ize forms, assign pre/post processing functions, and display and interact with
forms.

Current Default Values for Field Attributes

The FORMS package establishes initial current default values for field attributes.
During field initialization, each field attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL field pointer. If
an application changes a current default field attribute value, subsequent fields
created using new_fi el d() will have the new default attribute value. (The attri-
butes of previously created fields are not changed if a current default attribute
value is changed.)

Routine Name Index
The following table lists each FORMS routine and the name of the manual page on
which it is described.

FORMS Routine Name Manual Page Name
current _field() form_page(TI_LIB)
dat a_ahead() form_data(T1_LIB)
dat a_behi nd() form_data(TI_LIB)
dup_field() form_field_new(TI_LIB)
dynam c_field_info() form_field_info(T1_LIB)
field_arg() form_field_validation(TI_LIB)
field_back() form_field_attributes(T1_LIB)
field_buffer() form_field_buffer(T1_LIB)
field _count() form_field(TI_LIB)
field_fore() form_field_attributes(TI_LIB)
field_index() form_page(TI_LIB)
field_info() form_field_info(T1_LIB)
field_init() form_hook(TI_LIB)
field_just() form_field_just(TI_LIB)
Page 1
FINAL COPY

June 15, 1995
File: ti_env/forms
svid

Page: 418

FORMS (TI_ENV)

FORMS Routine Name

FORMS (TI_ENV)

Manual Page Name

field_ opts()
field_opts_off()
field_opts_on()
field_pad()
field_status()
field_term))

field_ type()
field_userptr()
formdriver()
formfields()
forminit()
formopts()
formopts_off()
formopts_on()

f orm page()

form sub()
formterm()
formuserptr()
formw n()
free_field()
free_fieldtype()
free_form)
link_field()
link_fieldtype()
move_fiel d()

new fiel d()

new fiel dtype()
new_f or n()
new_page()

pos_form cursor ()
post _form)

scal e_form()

set _current_field()
set _field_back()
set _field_buffer()
set_field_fore()
set_field_init()
set _field_just()
set _field_opts()
set_field_pad()
set _field_status()
set_field_term()
set _field_type()
set _field_ userptr()
set _fieldtype_arg()

Page 2

form_field_opts(TI_LIB)
form_field_opts(TI_LIB)
form_field_opts(TI_LIB)
form_field_attributes(T1_LIB)
form_field_buffer(TI_LIB)
form_hook(T1_LIB)
form_field_validation(T1_LIB)
form_field_userptr(TI_LIB)
form_driver(TI_LIB)
form_field(TI_LIB)
form_hook(TI_LIB)
form_opts(TI_LIB)
form_opts(TI_LIB)
form_opts(TI_LIB)
form_page(TI_LIB)
form_win(TI_LIB)
form_hook(TI_LIB)
form_userptr(TI_LIB)
form_win(TI_LIB)
form_field_new(TI_LIB)
form_fieldtype(TI_LIB)
form_new(TI_LIB)
form_field_new(TI_LIB)
form_fieldtype(TI_LIB)
form_field(T1_LIB)
form_field_new(TI_LIB)
form_fieldtype(TI_LIB)
form_new(TI_LIB)
form_new_page(TI_LIB)
form_cursor(TI_LIB)
form_post(TI_LIB)
form_win(TI_LIB)
form_page(TI_LIB)
form_field_attributes(TI_LIB)
form_field_buffer(TI_LIB)
form_field_attributes(TI_LIB)
form_hook(TI_LIB)
form_field_just(TI_LIB)
form_field_opts(TI_LIB)
form_field_attributes(TI_LIB)
form_field_buffer(TI1_LIB)
form_hook(TI_LIB)
form_field_validation(TI1_LIB)
form_field_userptr(TI1_LIB)
form_fieldtype(TI_LIB)

FINAL COPY
June 15, 1995
File: ti_env/forms
svid

Page: 419

FORMS (TI_ENV)

FORMS Routine Name

FORMS (TI_ENV)

Manual Page Name

set _fieldtype_choice()
set_formfields()
set_forminit()
set_formopts()
set _form page()
set _formsub()
set_formterm()
set _form.userptr()
set_formw n()

set _max_fiel d()
set _new_page()
unpost _form()

RETURN VALUE

form_fieldtype(TI_LIB)
form_field(TI1_LIB)
form_hook(TI_LIB)
form_opts(TI_LIB)
form_page(TI_LIB)
form_win(TI_LIB)
form_hook(TI_LIB)
form_userptr(TI_LIB)
form_win(TI_LIB)
form_field_buffer(TI1_LIB)
form_new_page(TI_LIB)
form_post(TI_LIB)

Routines that return a pointer always return NULL on error. Routines that return an
integer return one of the following:

E K -
E_CONNECTED -
E_SYSTEM ERRCR -
E_BAD_ARGUMENT -
E_CURRENT -
E_POSTED -
E_NOT_POSTED -
E_I N\VALI D_FI ELD -
E_NOT_CONNECTED -
E_NO_ROOM -
E_BAD_STATE -

E_REQUEST DENIED -
E_UNKNOWN_COMMAND ~ —

USAGE
Application Program.

The function returned successfully.

The field is already connected to a form.
System error.

An argument is incorrect.

The field is the current field.

The form is posted.

The form is not posted.

The field contents are invalid.

The field is not connected to a form.

The form does not fit in the subwindow.
The routine was called from an initiali-
zation or termination function.

The form driver request failed.

An unknown request was passed to the
the form driver.

The header file <f or m h> automatically includes the header files <eti . h> and

<cur ses. h>.
SEE ALSO

CURSES(TI_ENV), and TI_LIB pages whose names begin "form_" for detailed rou-

tine descriptions.

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: ti_env/forms
svid

Page: 420

MENUS (TI_ENV)

MENUS (TI_ENV)

MENUS - character based menus package

SYNOPSIS

#i ncl ude <nenu. h>

DESCRIPTION

The nenu library is built using the cur ses library, and any program using MENUS
routines must call one of the CURSES initialization routines, such as i nitscr().
A program using these routines must be compiled with —I menu and —I cur ses on
the cc command line.

The MENUS package gives the applications programmer a terminal-independent
method of creating and customizing menus for user interaction. The MENUS pack-
age includes: item routines, which are used to create and customize menu items;
and menu routines, which are used to create and customize menus, assign pre- and
post-processing routines, and display and interact with menus.

Current Default Values for Item Attributes

The MENUS package establishes initial current default values for item attributes.
During item initialization, each item attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL item pointer. If
an application changes a current default item attribute value, subsequent items
created using new_i t en() will have the new default attribute value. (The attri-
butes of previously created items are not changed if a current default attribute

value is changed.)
Routine Name Index

The following table lists each MENUS routine and the name of the manual page on

which it is described.
MENUS Routine Name

Manual Page Name

current _item)
free_item)
free_menu()
item count ()
itemdescription()
item. i ndex()
iteminit()
item nane()
itemopts()
itemopts_off()
itemopts_on()
itemterm)
itemuserptr()
itemval ue()
itemvisible()
nmenu_back()

menu_item_current(TI_LIB)
menu_item_new(TI_LIB)
menu_new(TI_LIB)
menu_items(T1_LIB)
menu_item_name(TI_LIB)
menu_item_current(TI_LIB)
menu_hook(TI_LIB)
menu_item_name(TI_LIB)
menu_item_opts(TI_LIB)
menu_item_opts(TI_LIB)
menu_item_opts(TI_LIB)
menu_hook(TI_LIB)
menu_item_userptr(TI_LIB)
menu_item_value(TI_LIB)
menu_item_visible(TI_LIB)
menu_attributes(T1_LIB)

Page 1

FINAL COPY
June 15, 1995
File: ti_env/menus
svid

Page: 421

MENUS (TI_ENV)

MENUS Routine Name

MENUS (TI_ENV)

Manual Page Name

menu_dri ver ()
menu_fore()
menu_f or mat ()
menu_grey()
menu_i nit ()
menu_i tens()
menu_rmar k()
menu_opt s()
menu_opt s_of f ()
menu_opts_on()
menu_pad()
menu_pattern()
menu_sub()

menu_t ern()
menu_userptr()
menu_wi n()

new_i ten()
new_menu()
pos_menu_cursor ()
post _menu()

scal e_menu()
set_current_item)
set_iteminit()
set_itemopts()
set_itemtern()
set_itemuserptr()
set _item val ue()
set _nenu_back()
set _nmenu_fore()
set _nenu_f ormat ()
set _nenu_grey()
set_nmenu_init()
set _menu_itens()
set _nmenu_nmar k()
set _menu_opt s()
set _nenu_pad()
set _nmenu_pattern()
set _nmenu_sub()
set _nenu_term()
set _menu_userptr()
set _menu_wi n()
set _top_row()

top_row()
unpost _nenu()

Page 2

menu_driver(TI_LIB)
menu_attributes(TI1_LIB)
menu_format(TI_LIB)
menu_attributes(Tl_LIB)
menu_hook(TI_LIB)
menu_items(T1_LIB)
menu_mark(TI_LIB)
menu_opts(TI_LIB)
menu_opts(TI_LIB)
menu_opts(TI_LIB)
menu_attributes(T1_LIB)
menu_pattern(TI_LIB)
menu_win(TI_LIB)
menu_hook(TI_LIB)
menu_userptr(TI_LIB)
menu_win(TI_LIB)
menu_item_new(TI_LIB)
menu_new(TI_LIB)
menu_cursor(TIl_LIB)
menu_post(TI_LIB)
menu_win(TI_LIB)
menu_item_current(TI_LIB)
menu_hook(TI_LIB)
menu_item_opts(TI_LIB)
menu_hook(TI_LIB)
menu_item_userptr(TI_LIB)
menu_item_value(TI_LIB)
menu_attributes(T1_LIB)
menu_attributes(T1_LIB)
menu_format(TI_LIB)
menu_attributes(T1_LIB)
menu_hook(TI_LIB)
menu_items(TI_LIB)
menu_mark(TI_LIB)
menu_opts(TI_LIB)
menu_attributes(T1_LIB)
menu_pattern(TI_LIB)
menu_win(TI_LIB)
menu_hook(TI_LIB)
menu_userptr(TI_LIB)
menu_win(TI_LIB)
menu_item_current(TI_LIB)
menu_item_current(TI_LIB)
menu_post(TI_LIB)

FINAL COPY
June 15, 1995
File: ti_env/menus

svid

Page: 422

MENUS (TI_ENV)

RETURN VALUE

MENUS (TI_ENV)

Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E K -
E_SYSTEM ERROR -
E_BAD ARGUMENT -

E_POSTED -
E_CONNECTED -

E_BAD_STATE -

E_NO_ROOM -
E_NOT_POSTED -
E_UNKNOWN_COVVAND —

E_NO_MATCH -
E_NOT_SELECTABLE -
E_NOT_CONNECTED -
E_REQUEST DENIED -

USAGE
Application Program.

The routine returned successfully.

System error.

An incorrect argument was passed to the
routine.

The menu is already posted.

One or more items are already connected

to another menu.

The routine was called from an initialization
or termination function.

The menu does not fit within its subwindow.
The menu has not been posted.

An unknown request was passed to the
menu driver.

The character failed to match.

The item cannot be selected.

No items are connected to the menu.

The menu driver could not process the
request.

The header file <menu. h> automatically includes the header files <eti . h> and

<cur ses. h>.
SEE ALSO

CURSES(TI_ENV), and TI_LIB pages whose names begin "menu_" for detailed rou-

tine descriptions.

LEVEL
Level 1.

FINAL COPY
June 15, 1995
File: ti_env/menus
svid

Page: 423

Page 3

PANELS (TI_ENV) PANELS (TI_ENV)

NAME

PANELS - character based panels package
SYNOPSIS

#i ncl ude <panel . h>
DESCRIPTION

The panel library is built using the cur ses library, and any program using
PANELS routines must call one of the CURSES initialization routines such as
initscr(). A program using these routines must be compiled with —| panel
and —| cur ses on the cc command line.

The PANELS package gives the applications programmer a way to have depth rela-
tionships between CURSES windows; a CURSES window is associated with every
panel. The PANELS routines allow CURSES windows to overlap without making
visible the overlapped portions of underlying windows. The initial CURSES win-
dow, st dscr, lies beneath all panels. The set of currently visible panels is the deck
of panels.

The PANELS package allows the applications programmer to create panels, fetch
and set their associated windows, shuffle panels in the deck, and manipulate panels
in other ways.

Routine Name Index

The following table lists each PANELS routine and the name of the manual page on
which it is described.

PANELS Routine Name Manual Page Name
bot t om panel () panel_top(TI_LIB)

del _panel () panel_new(TI_LIB)

hi de_panel () panel_show(TI_LIB)
nove_panel () panel_move(TI_LIB)
new_panel () panel_new(TI_LIB)
panel _above() panel_above(TI_LIB)
panel _bel ow() panel_above(TI_LIB)
panel _hi dden() panel_show(TI_LIB)
panel _userptr() panel_userptr(TI_LIB)
panel _wi ndow() panel_window(TI_LIB)
repl ace_panel () panel_window(TI_LIB)
set _panel _userptr () panel_userptr(TI_LIB)
show_panel () panel_show(TI_LIB)

t op_panel () panel_top(TI_LIB)
updat e_panel s() panel_update(TI_LIB)

RETURN VALUE

USAGE

Each PANELS routine that returns a pointer to an object returns NULL if an error
occurs. Each panel routine that returns an integer, returns OK if it executes success-
fully and ERRif it does not.

Application Program.

Page 1

FINAL COPY
June 15, 1995
File: ti_env/panels
svid

Page: 424

PANELS (TI_ENV) PANELS (TI_ENV)

The header file <panel . h> automatically includes the header file <cur ses. h>.

SEE ALSO
CURSES(TI_ENV), and TI_LIB pages whose names begin "panel_," for detailed rou-
tine descriptions.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ti_env/panels
svid

Page: 425

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

NAME

terminfo — terminal capability data base
SYNOPSIS

/usr/share/lib/term nfo/?/0
DESCRIPTION

t er mi nf o is a database produced by ti c that describes the capabilities of devices
such as terminals and printers. Devices are described in t er mi nf o source files by
specifying a set of capabilities, by quantifying certain aspects of the device, and by
specifying character sequences that effect particular results. This database is often
used by screen oriented applications such as vi and CURSES programs, as well as
by some UNIX system commands such as | s and nor e. This usage allows them to
work with a variety of devices without changes to the programs.

t er mi nf o source files consist of one or more device descriptions. Each description
consists of a header (beginning in column 1) and one or more lines that list the
features for that particular device. Every line in a t er mi nf o source file must end
in a comma (,). Every line in a t er m nf o source file except the header must be
indented with one or more white spaces (either spaces or tabs).

Entries in t er m nf o source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped by
using a backslash. The following example shows the format of a t er mi nf o source
file.

alias, Oalias, O... Oalias,, Olongname,
<white space>am | i nes #24,
<white space> home=\ Eeh,

The first line, commonly referred to as the header line, must begin in column one
and must contain at least two aliases separated by vertical bars. The last field in the
header line must be the long name of the device and it may contain any string.
Alias names must be unique in the t er m nf o database and they must conform to
UNIX system file naming conventions [see tic(TI_CMD)]; they cannot, for example,
contain white space or slashes.

Every device must be assigned a name, such as "vt100". Device names (except the
long name) should be chosen using the following conventions. The name should
not contain hyphens because hyphens are reserved for use when adding suffixes
that indicate special modes.

These special modes may be modes that the hardware can be in, or user prefer-
ences. To assign a special mode to a particular device, append a suffix consisting of
a hyphen and an indicator of the mode to the device name. For example, the -w
suffix means "wide mode"; when specified, it allows for a width of 132 columns
instead of the standard 80 columns. Therefore, if you want to use a vt100 device set
to wide mode, name the device "vt100-w." Use the following suffixes where possi-
ble.

Page 1

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 426

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Suffix Meaning Example
-w Wide mode (more than 80 columns) 5410-w
-am With auto. margins (usually default) vt 100- am
-nam Without automatic margins vt 100- nam
-n Number of lines on the screen 2300- 40
-ha No arrow keys (leave them in local) c100- na
-np Number of pages of memory c100- 4p
-rv Reverse video 4415-rv

The term nfo reference manual page is organized in two sections: "DEVICE
CAPABILITIES" and "PRINTER CAPABILITIES."

PART 1: DEVICE CAPABILITIES

Capabilities in t er mi nf o are of three types: Boolean capabilities (which show that
a device has or does not have a particular feature), numeric capabilities (which
quantify particular features of a device), and string capabilities (which provide
sequences that can be used to perform particular operations on devices).

In the following table, a Variable is the name by which a C programmer accesses a
capability (at the t er mi nf o level). A Capname is the short name for a capability
specified in the t er m nf o source file. It is used by a person updating the source
file and by the t put command. A Termcap Code is a two-letter sequence that
corresponds to the terntap capability name. (Note that t er ncap is no longer
supported.)

Capability names have no real length limit, but an informal limit of five characters
has been adopted to keep them short. Whenever possible, capability names are
chosen to be the same as or similar to those specified by the ANSI X3.64-1979 stan-
dard. Semantics are also intended to match those of the ANSI standard.

All string capabilities listed below may have padding specified, with the exception
of those used for input. Input capabilities, listed under the Strings section in the
following tables, have names beginning with key_. The #i symbol in the descrip-
tion field of the following tables refers to the ith parameter.

Booleans
Cap- Termcap

Variable name Code Description
auto_l eft_margin bw bw cubl wraps from column 0 to

last column
auto_right_margin am am Terminal has automatic margins
back_col or _erase bce be Screen erased with background color
can_change ccc cc Terminal can re-define existing color
ceol _standout _glitch xhp XS Standout not erased by overwriting (hp)
col _addr_glitch xhpa YA Only positive motion for hpa/nmhpa caps
cpi _changes_res cpi x YF Changing character pitch changes

resolution
cr_cancel s_m cro_node crxm YB Using cr turns off micro mode

Page 2
FINAL COPY

June 15, 1995
File: ti_env/terminfo
svid

Page: 427

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap

Variable name Code Description
eat_new ine_glitch xenl xn Newline ignored after 80 columns

(Concept)
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g., dialup, switch)
har d_copy hc hc Hardcopy terminal
hard_cur sor chts HC Cursor is hard to see
has_net a_key km km Has a meta key (shift, sets parity bit)
has_print _wheel dai sy YC Printer needs operator to change

character set
has_status_line hs hs Has extra "status line"
hue_l i ght ness_saturation hl's hl Terminal uses only HLS color

notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
| pi _changes_res | pi x YG Changing line pitch changes resolution
nmenory_above da da Display may be retained above the screen
menory_bel ow db db Display may be retained below the screen
nove_i nsert _node mr m Safe to move while in insert mode
nove_st andout _node nsgr ns Safe to move in standout modes
needs_xon_xof f nxon nx Padding won’t work, xon/xoff required
no_esc_ctlc xsb xb Beehive (fl=escape, f2=ctrl C)
non_r ev_r ntup nrrnc NR sntup does not reverse r ncup
no_pad_char npc NP Pad character doesn’t exist
over_strike 0s os Terminal overstrikes on hard-copy

terminal
prtr_silent nc5i 5i Printer won’t echo on screen
row_addr_glitch xvpa YD Only positive motion for vpa/nvpa caps
sem _auto_right_margin sam YE Printing in last column causes cr
status_line_esc_ok esl ok es Escape can be used on the status line
dest _t abs_magi c_snso xt xt Destructive tabs, magic snso char (t1061)
tilde_glitch hz hz Hazeltine; can’t print tilde (7)
transparent _underline ul ul Underline character overstrikes
xon_xof f xon X0 Terminal uses xon/xoff handshaking

Numbers
Cap- Termcap
Variable name Code Description
buf f er _capacity bufsz Ya Number of bytes buffered before printing
col uims cols co Number of columns in a line
dot _vert_spacing spi nv Yb Spacing of pins vertically in pins per inch
dot _hor z_spaci ng spi nh Yc Spacing of dots horizontally in dots per inch
init_tabs it it Tabs initially every # spaces
| abel _hei ght I'h I'h Number of rows in each label
| abel _wi dth I'w I'w Number of columns in each label
Page 3
FINAL COPY

June 15, 1995
File: ti_env/terminfo
svid

Page: 428

TERMINFO (TI_ENV)

TERMINFO (TI_ENV)

Cap- Termcap

Variable name Code Description
lines l'i nes li Number of lines on a screen or a page
I'i nes_of _menory I'm I'm Lines of memory if > 1 i nes; 0 means varies
magi c_cooki e_glitch Xnc sg Number of blank characters left by

SIS0 Of I MBO
max_col ors col ors Co Maximum number of colors on the screen
max_mi cro_addr ess maddr Yd Maximum value inni cro_. .. _address
max_m cro_j unp nj unp Ye Maximum value inparm ... _mcro
max_pairs pairs pa Maximum number of color-pairs on the

screen
m cro_col _si ze ncs Yf Character step size when in micro mode
mcro_line_size ms Yg Line step size when in micro mode
no_col or_vi deo ncv NC Video attributes that can’t be used

with colors
nunber _of _pi ns npi ns Yh Number of pins in print-head
num | abel s nl ab N Number of labels on screen (start at 1)
out put _res_char orc Yi Horizontal resolution in units per character
output_res_line orl Yj Vertical resolution in units per line
out put _res_horz_inch or hi Yk Horizontal resolution in units per inch
out put _res_vert_inch orvi Yl Vertical resolution in units per inch
paddi ng_baud_rate pb pb Lowest baud rate where padding needed
virtual _term nal vt vt Virtual terminal number (UNIX system)
wi de_char _si ze w dcs Yn Character step size when in double

wide mode
wi dth_status_|ine wsl ws Number of columns in status line

Strings
Cap- Termcap
Variable name Code Description
acs_chars acsc ac Graphic charset pairs aAbBcC
al t _scancode_esc scesca S8 Alternate escape for scancode emulation
(default is for vt100)
back_t ab cht bt Back tab
bel | bel bl Audible signal (bell)
bi t _i mage_r epeat bi rep zy Repeat bit-image cell #1 #2 times (use tparm)
bi t _i mage_new i ne bi nel 7z Move to next row of the bit image (use tparm)
bit_image_carriage_return bi cr Yv Move to beginning of same row (use tparm)
carriage_return cr cr Carriage return
change_char _pitch cpi ZA Change number of characters per inch
change_line_pitch | pi ZB Change number of lines per inch
change_res_horz chr ZC Change horizontal resolution
change_res_vert cvr ZD Change vertical resolution
change_scrol | _regi on csr cs Change to lines #1 through #2 (vt100)
char _paddi ng rnp rP Like i p but when in replace mode
Page 4
FINAL COPY

June 15, 1995

File: ti_env/terminfo
svid

Page: 429

TERMINFO (TI_ENV)

Variable

char _set _nanes
clear_all _tabs
cl ear _margi ns

cl ear _screen
clr_bol

clr_eol

clr_eos

code_set _init

col or _nanes

col utm_addr ess
comrand_char act er

cursor_address
cursor _down
cursor_hone
cursor_invisible
cursor_| eft

cursor_nmem addr ess

cursor _nor mal
cursor_right
cursor_to_II

cursor_up
cursor_visible

define_bit_i mage_regi on

define_char

del ete_character
delete_line

devi ce_type

di s_status_line
di spl ay_pc_char
down_hal f _l i ne
ena_acs

end_bi t _i nage_regi on
enter_al t_charset _node

ent er _am node

ent er _bl i nk_node
ent er _bol d_node
enter _ca_node

ent er _del et e_node
ent er _di m node

Cap- Termcap
name Code
csnm zy
tbc ct
ngc MC
cl ear cl
ell cb
el ce
ed cd
csin ci
colornm Yw
hpa ch
cndch cC
cup cm
cudl do
hone ho
civis v
cubl le
nr cup CM
cnorm ve
cufl nd
I I
cuul up
cvvi s Vs
def bi Yx
defc ZE
dchl dc
dl 1 dl
devt dv
dsl ds
di spc S1
hd hd
enacs eA
endbi Yy
smacs as
smam SA
bl i nk b
bol d md
sncup t
sndc dm
dim mh
FINAL COPY

June 15, 1995

File: ti_env/terminfo

svid

Page: 430

TERMINFO (TI_ENV)

Description

List of character set names
Clear all tab stops

Clear all margins (top, bottom,
and sides)

Clear screen and home cursor

Clear to beginning of line, inclusive

Clear to end of line
Clear to end of display

Init sequence for multiple codesets

Give name for color #1
Horizontal position absolute
Terminal settable cmd character
in prototype

Move to row #1 col #2

Down one line

Home cursor (if no cup)

Make cursor invisible

Move left one space.

Memory relative cursor addressing

Make cursor appear normal
(undo vs/ vi)

Non-destructive space (cursor or

carriage right)

Last line, first column (if no cup)

Upline (cursor up)
Make cursor very visible

Define rectangular bit-image region

(use tparm)

Define a character in a character set t

Delete character
Delete line

Indicate language/codeset support

Disable status line
Display PC character

Half-line down (forward 1/2 linefeed)

Enable alternate character set

End a bit-image region (use tparm)

Start alternate character set
Turn on automatic margins
Turn on blinking

Turn on bold (extra bright) mode

String to begin programs that use cup

Delete mode (enter)
Turn on half-bright mode

Page 5

TERMINFO (TI_ENV)

Page 6

Variable

ent er _doubl ewi de_node
enter_draft_quality
enter_i nsert_node
enter_italics_node
enter_| ef twar d_node
enter_m cro_node
enter_near_letter_quality
enter_normal _quality
ent er _pc_char set _node
ent er _prot ected_node
enter_reverse_node
ent er_scancode_node
ent er _secur e_node

ent er_shadow_node

ent er _st andout _node
enter_subscri pt _node
ent er _super scri pt _node
ent er _under| i ne_node
ent er _upwar d_node

ent er _xon_node
erase_chars

exit_al t_charset_node
exit _am node
exit_attribute_node
exit_ca_node

exi t_del et e_node

exi t _doubl ewi de_node
exi t_insert_node
exit_italics_node
exit_| ef tward_node

exi t_m cro_node

exi t _pc_charset _node
exi t_scancode_node
exi t_shadow_node

exi t_standout _node
exi t_subscri pt_node
exi t_superscript_node
exi t_underline_node
exi t _upwar d_node

exi t_xon_node
flash_screen

Cap- Termcap
name Code
sw dm ZF
sdrfq ZG
smr im
sitm ZH
sl m VAl
smcm VAl
snl g ZK
snrny ZL
snpch S2
pr ot np
rev nr
SnmsC sS4
invis nk
sshm ZM
SNB0 so
ssubm ZN
ssupm Z0
smul us
sum zP
smxon SX
ech ec
rmacs ae
r mam RA
sgr0 me
rmcup te
rmdc ed
rwi dm ZQ
rmr ei
ritm ZR
rim ZS
rmcecm ZT
rmpch S3
rmsc S5
rshm ZU
rmso se
rsubm zv
rsupm A
rmul ue
rum ZX
rmxon RX
flash vb
FINAL COPY

June 15, 1995
File: ti_env/terminfo
svid

Page: 431

TERMINFO (TI_ENV)

Description

Enable double wide printing

Set draft quality print

Insert mode (enter)

Enable italics

Enable leftward carriage motion
Enable micro motion capabilities
Set near-letter quality print

Set normal quality print

Enter PC character display mode
Turn on protected mode

Turn on reverse video mode
Enter PC scancode mode

Turn on blank mode

(characters invisible)

Enable shadow printing

Begin standout mode

Enable subscript printing

Enable superscript printing

Start underscore mode

Enable upward carriage motion
Turn on xon/xoff handshaking
Erase #1 characters

End alternate character set

Turn off automatic margins
Turn off all attributes

String to end programs that use cup
End delete mode

Disable double wide printing
End insert mode

Disable italics

Enable rightward (normal)
carriage motion

Disable micro motion capabilities
Disable PC character display mode
Disable PC scancode mode
Disable shadow printing

End standout mode

Disable subscript printing
Disable superscript printing

End underscore mode

Enable downward (normal)
carriage motion

Turn off xon/xoff handshaking
Visible bell (may not move cursor)

TERMINFO (TI_ENV)

Variable

formfeed
fromstatus_line
init_1string
init_2string
init_3string
init_file
init_prog
initialize_color
initialize_pair
insert_character
insert_line

i nsert_paddi ng

Cap-
name

ff
fsl
isl
is2
is3
if
i prog
initc
initp
ichl
ill
ip

Termcap
Code

ff

fs
il
is
i3
if

iP
lc
I'p
ic
al

ip

TERMINFO (TI_ENV)

Description

Hardcopy terminal page eject

Return from status line

Terminal or printer initialization string
Terminal or printer initialization string
Terminal or printer initialization string
Name of initialization file

Path name of program for initialization
Initialize the definition of color
Initialize color-pair

Insert character

Add new blank line

Insert pad after character inserted

The “key_" strings are sent by specific keys. The ““key_"" descriptions include the
macro, defined in curses. h, for the code returned by the CURSES routine
get ch() when the key is pressed [see curs_getch(TI_LIB)].

key_al
key_a3
key_b2
key_backspace
key_beg
key_bt ab
key_c1
key_c3
key_cance
key_cat ab
key_cl ear

key_cl ose
key_comand

key_copy
key_create
key_ctab
key_dc
key_dl
key_down

key_eic
key_end

key_enter
key_eol

kal K1
ka3 K3
kb2 K2
kbs kb
kbeg a
kcbt kB
kcl K4
kec3 K5
kcan @
kt bc ka
kelr kC
kcl o @3
kend @
kcpy @
kert @
kct ab kt
kdch1 kD
kdl 1 kL
kcudl kd
krmr kM
kend @
kent @B
kel kE
FINAL COPY

June 15, 1995

File: ti_env/terminfo

svid

Page: 432

KEY_A1, upper left of keypad
KEY_A3, upper right of keypad
KEY_B2, center of keypad
KEY_BACKSPACE, sent by backspace key
KEY_BEG, sent by beg(inning) key
KEY_BTAB, sent by back-tab key
KEY_C1, lower left of keypad
KEY_C3, lower right of keypad
KEY_CANCEL, sent by cancel key
KEY_CATAB, sent by clear-all-tabs key
KEY_CLEAR, sent by clear-screen or
erase key

KEY_CLGSE, sent by close key
KEY_COWWAND, sent by cmd (command)
key

KEY_COPY, sent by copy key
KEY_CREATE, sent by create key
KEY_CTAB, sent by clear-tab key
KEY_DC, sent by delete-character key
KEY_DL, sent by delete-line key
KEY_DOVWN, sent by terminal
down-arrow key

KEY_EI C sentbyrmir orsmr in
insert mode

KEY_END, sent by end key
KEY_ENTER, sent by enter/send key
KEY_EQL, sent by clear-to-end-of-line

Page 7

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap

Variable name Code Description
key_f 40 kf 40 FU KEY_F(40), sent by function key f40
key_f 41 kf 41 FV KEY_F(41), sent by function key f41
key_f 42 kf 42 FW KEY_F(42), sent by function key f42
key_f 43 kf 43 FX KEY_F(43), sent by function key f43
key_f 44 kf 44 FY KEY_F(44), sent by function key f44
key_f 45 kf 45 Fz KEY_F(45), sent by function key f45
key_f 46 kf 46 Fa KEY_F(46), sent by function key f46
key_f 47 kf 47 Fb KEY_F(47), sent by function key f47
key_f 48 kf 48 Fc KEY_F(48), sent by function key 48
key_f 49 kf 49 Fd KEY_F(49), sent by function key f49
key_f 50 kf 50 Fe KEY_F(50), sent by function key 50
key_f51 kf 51 Ff KEY_F(51), sent by function key f51
key_f52 kf 52 Fg KEY_F(52), sent by function key f52
key_f53 kf 53 Fh KEY_F(53), sent by function key f53
key_f 54 kf 54 Fi KEY_F(54), sent by function key f54
key_f 55 kf 55 Fj KEY_F(55), sent by function key f55
key_f 56 kf 56 Fk KEY_F(56), sent by function key 56
key_f57 kf 57 Fl KEY_F(57), sent by function key f57
key_f58 kf 58 Fm KEY_F(58), sent by function key 58
key_f59 kf 59 Fn KEY_F(59), sent by function key 59
key_f 60 kf 60 Fo KEY_F(60), sent by function key f60
key_f61 kf 61 Fp KEY_F(61), sent by function key f61
key_f 62 kf 62 Fq KEY_F(62), sent by function key f62
key_f 63 kf 63 Fr KEY_F(63), sent by function key f63
key_find kf nd @ KEY_FI ND, sent by find key
key_hel p khl p % KEY_HELP, sent by help key
key_home khome kh KEY_HOVE, sent by home key
key_ic ki chl ki KEY_I C, sent by ins-char/enter

ins-mode key
key_il kill kA KEY_I L, sent by insert-line key
key_l eft kcubl ki KEY_LEFT, sent by terminal left-arrow

key
key_I1 kil kH KEY_LL, sent by home-down key
key_mar k knt k 9" KEY_MARK, sent by mark key
key_message kmsg 93 KEY_MESSAGE, sent by message key
key_nove knmov % KEY_MOVE, sent by move key
key_next knxt % KEY_NEXT, sent by next-object key
key_npage knp kN KEY_NPAGE, sent by next-page key
key_open kopn %6 KEY_OPEN, sent by open key
key_opti ons kopt % KEY_OPTI ONS, sent by options key
key_ppage kpp kP KEY_PPAGE, sent by previous-page key
key_previ ous kprv 98 KEY_PREVI OQUS, sent by previous-object

key
key_print kprt % KEY_PRI NT, sent by print or copy key

Page 9
FINAL COPY

June 15, 1995
File: ti_env/terminfo
svid

Page: 434

TERMINFO (TI_ENV)

Variable

key_redo
key_reference
key_refresh
key_repl ace
key_restart
key_resune
key_ri ght

key_save
key_sbeg
key_scancel
key_sconmand

key_scopy
key_screate
key_sdc
key_sdl
key_sel ect
key_send
key_seol
key_sexi t
key_sf

key_sfind
key_shel p
key_shone
key_sic

key_sleft

key_smessage
key_snove
key_snext
key_soptions

key_sprevi ous

key_sprint
key_sr

key_sredo
key_srepl ace

key_sright

Page 10

TERMINFO (TI_ENV)

Cap- Termcap

name Code Description

krdo % KEY_REDQ, sent by redo key

kr ef &l KEY_REFERENCE, sent by ref(erence) key

krfr &2 KEY_REFRESH, sent by refresh key

kr pl &3 KEY_REPLACE, sent by replace key

kr st &4 KEY_RESTART, sent by restart key

kres &5 KEY_RESUME, sent by resume key

kcuf 1 kr KEY_RI GHT, sent by terminal
right-arrow key

ksav &6 KEY_SAVE, sent by save key

kBEG &9 KEY_SBEG sent by shifted beginning key

k CAN &0 KEY_SCANCEL, sent by shifted cancel key

kCvD [KEY_SCOMVAND, sent by shifted
command key

kCPY % KEY_SCOPY, sent by shifted copy key

kCRT B KEY_SCREATE, sent by shifted create key

kDC i} KEY_SDC, sent by shifted delete-char key

kDL B3} KEY_SDL, sent by shifted delete-line key

ksl t b KEY_SELECT, sent by select key

k END g KEY_SEND, sent by shifted end key

kEOL B KEY_SEQL, sent by shifted clear-line key

KEXT ® KEY_SEXI T, sent by shifted exit key

ki nd kF KEY_SF, sent by scroll-forward/down
key

kFND] KEY_SFI ND, sent by shifted find key

kHLP #1 KEY_SHELP, sent by shifted help key

kHOM #2 KEY_SHOME, sent by shifted home key

kl C #3 KEY_SI C, sent by shifted input key

KLFT #4 KEY_SLEFT, sent by shifted left-arrow
key

kMSG %a KEY_SMESSAGE, sent by shifted message
key

kMOV % KEY_SMOVE, sent by shifted move key

kNXT % KEY_SNEXT, sent by shifted next key

kOPT %l KEY_SOPTI ONS, sent by shifted options
key

kPRV % KEY_SPREVI OQUS, sent by shifted prev
key

kPRT % KEY_SPRI NT, sent by shifted print key

kri kR KEY_SR, sent by scroll-backward/up
key

kRDO % KEY_SREDOQ, sent by shifted redo key

k RPL % KEY_SREPLACE, sent by shifted replace
key

kRI' T % KEY_SRI GHT, sent by shifted

FINAL COPY

June 15, 1995
File: ti_env/terminfo
svid

Page: 435

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap

Variable name Code Description

right-arrow key
key_srsume kRES % KEY_SRSUME, sent by shifted resume

key
key_ssave kSAV 11 KEY_SSAVE, sent by shifted save key
key_ssuspend kSPD 12 KEY_SSUSPEND, sent by shifted suspend

key
key_stab kht s kT KEY_STAB, sent by set-tab key
key_sundo kUND 13 KEY_SUNDQ, sent by shifted undo key
key_suspend kspd &7 KEY_SUSPEND, sent by

suspend key
key_undo kund &8 KEY_UNDOQ, sent by undo key
key_up kcuul ku KEY_UP, sent by terminal up-arrow key
keypad_| ocal r mkx ke Out of “‘keypad-transmit” mode
keypad_xm t snkx ks Put terminal in *‘keypad-transmit” mode
lab_fo0 1f0 10 Labels on function key f0 if not f0
lab_f1 1f1 11 Labels on function key f1 if not f1
lab_f2 1f2 12 Labels on function key f2 if not f2
lab_f3 13 13 Labels on function key f3 if not f3
lab_f4 1f4 I 4 Labels on function key f4 if not f4
lab_f5 1f5 15 Labels on function key f5 if not f5
lab_f6 16 16 Labels on function key f6 if not f6
lab_f7 17 17 Labels on function key f7 if not 7
lab_f8 1f8 18 Labels on function key f8 if not f8
lab_f9 1f9 19 Labels on function key f9 if not f9
lab_f10 1110 la Labels on function key f10 if not f10
| abel _of f rmn LF Turn off soft labels
| abel _on smn LO Turn on soft labels
met a_of f rmm no Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
m cro_col uim_addr ess mhpa zY Like col um_addr ess for micro

adjustment
m cro_down ncudl Y4 Like cur sor _down for micro adjustment
mcro_|eft ncubl Za Like cur sor _I ef t for micro adjustment
mcro_right ncuf 1 Zb Like cur sor _ri ght for micro

adjustment
m cro_row_addr ess nvpa Zc Like r ow_addr ess for micro adjustment
m cro_up ncuul zZd Like cur sor _up for micro adjustment
new i ne nel nw Newline (behaves like cr followed

by I f)
order _of _pi ns porder Ze Matches software bits to print-head pins
orig_colors oc oc Set all color(-pair)s to the original ones
orig_pair op op Set default color-pair to the original one
pad_char pad pc Pad character (rather than null)
parm dch dch DC Delete #1 chars

Page 11
FINAL COPY

June 15, 1995
File: ti_env/terminfo
svid

Page: 436

TERMINFO (TI_ENV)

Variable

set _a_foreground

set _attributes

set _background

set _bottom margin

set _bottom margi n_parm

set _col or _band
set_col or_pair

set _foreground
set_left_margin

set _l eft _margi n_parm
set_|r_margin

set _page_| ength
set_right_margin
set_right_nmargi n_parm
set _tab
set_tb_margin
set_top_margin

set _top_margi n_parm
set _w ndow
start_bit_i mage
start_char_set _def
stop_bit_i mage
stop_char _set _def
subscri pt _characters
superscript_characters
tab

t hese_cause_cr
to_status_line

under | i ne_char

up_hal f _l'ine
xof f _character
xon_char act er
zero_notion

Sample Entry

Cap-
name

set af
sgr

setb
snmgb
sngbp

Termcap
Code

AF
sa
Sh
Zk
Zl

set col or Yz

scp
setf
sngl
sngl p
snglr
slines
sngr
sngrp
hts
sngt b
sngt
sngt p
wi nd
shim
scsd
rbim
rcsd
subcs
supcs
ht
docr
tsl

uc

hu

xof fc
xonc
zerom

sp
Sf
M
zm
M
Yz
MR
Zn
st

Zo
Zp

Zq
Zr

Zs
Zt

Zu
v
ta
Zw
ts
uc
hu
XF
XN
Zx

TERMINFO (TI_ENV)

Description

Set foreground color using ANSI escape
Define the video attributes #1-#9

Set current background color

Set bottom margin at current line

Set bottom margin at line #1 or #2

lines from bottom

Change to ribbon color #1

Set current color-pair

Set current foreground colorl

Set left margin at current line

Set left (right) margin at column #1 (#2)
Sets both left and right margins

Set page length to #1 lines (use tparm)
Set right margin at current column

Set right margin at column #1

Set a tab in all rows, current column
Sets both top and bottom margins

Set top margin at current line

Set top (bottom) margin at line #1 (#2)
Current window is lines #1-#2 cols #3-#4
Start printing bit image graphics

Start definition of a character set

End printing bit image graphics

End definition of a character set

List of “subscript-able” characters

List of “‘superscript-able’ characters
Tab to next 8-space hardware tab stop
Printing any of these chars causes cr
Go to status line, col #1

Underscore one char and move past it
Half-line up (reverse 172 linefeed)
X-off character

X-on character

No motion for the subsequent character

The following entry, which describes the AT&T 610 terminal, is among the more
complex entries in the t er m nf o file as of this writing.

610| 610bct | ATT610| att 610| AT&T610; 80col umtm; 98key keyboard

am esl ok, hs,
col s#80, it#8,

msgr,

| i nes#24,

xenl ,

xon,
| w#8,

nl ab#8, wsl #80,

acsc='"'aaf f ggj j kkl | mmnooppqqrrssttuuvvwwxyyzz{{||}}" ",
bel =G blink=\E[5m bold=\E[1m cbt=\EfZ,

ci vi s=\ [2251,
cr=\r,
cud=\ E[%p1%B,

clear=\E H E J,
csr=\E % %1%; Y%p2%lr
cudl=\ E[B,

cnor e\ E[?25h\ E[?12] ,
cub=\ E[%1%ID, cubl=\b,

cuf =\ E[%1%IC, cufl1=\FE[C,

FINAL COPY
June 15, 1995

File: ti_env/terminfo

svid

Page: 438

Page 13

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

cup=\ E[% %1%; %p2%lH, cuu=\E Y%p1%A, cuul=\E[A,

cvvi s=\ E[?12; 25h, dch=\E[%1%IP, dchl=\E P, di nme\ Ef 2m

dl =\ E %1%M dl 1=\E[M ed=\EJ, el=\E K, el 1=\F 1K,

fl ash=\ E[?5h$<200>\ E[?5| , fsl =\E8, honme=\E[H, ht=\t,

ich=\E[%1%@ il =\E %1%lL, il1=\E[L, ind=\ED, .ind=\ED$<9>,

i nvi s=\ E[8m

is1=\E[8;0 | \E[?3;4;5;13; 15\ E[13; 201\ E[?7h\ E[12h\ E(B\ E) O,

is2=\E[OnM O is3=\E(B\E)0, KLFT=\E[\s@ kRI T=\E[\SsA,

kbs="H, kcbt=\FE Z, kclr=\E2J, kcubl=\E[D, kcudl=\E[B,

kcuf 1=\ E[C, kcuul=\E[A, kf1=\ECc, kf10=\ ENp,

kf11=\ENg, kf12=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EQd,

kf 3=\ ECe, kf4=\ECf, kf5=\EQg, kf6=\ECh, kf7=\EQG ,

kf 8=\ EG, kf9=\ENo, khome=\E[H, kind=\ES, kri=\ET,

Il =\ E[24H, nc4=\E[?4i, nmc5=\E[?5i, nel =\ EE,

pf xI =\ E[%p1%; %p2% %02dq%%p1% 9} %% \ s\ s\ sF%p1%.d\ s\ s\ s\ s\s
\'s\ s\ s\s\s\s% %p2%s,

p! n=\ E[%1%d; O0; 0; 09%p2% - 16. 16s, rc=\E8, rev=\E 7m

ri=\EM rmacs="0O rmr=\E[4l, rm n=\E 2p, rnso=\E m

rmul =\E[m rs2=\Ec\ E[?3l, sc=\E7,

sgr =\ E[0% %p6% ; 1% %@ %p5% ; 2% %@%p2% ; 4% Y@ %p4% ; 5%
WUP3YP1% | % ; 7% %RYP7% ; 8% B YP9% " Nve” O% ,

sgrO=\E[mM O, smacs="N, smr=\E4h, sn n=\F[p,

snmso=\E[7m snul =\ E[4m tsl =\ E7\ E] 25; % %1%lx,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of t er mi nf o capabilities
listed: Boolean, numeric, and string. All capabilities specified in the t erni nfo
source file must be followed by commas, including the last capability in the source
file. Interm nf o source files, capabilities are referenced by their capability names
(as shown in the previous tables).

Boolean capabilities are specified simply by their comma separated cap names.

Numeric capabilities are followed by the character ‘#’ and then a positive integer
value. Thus, in the sample, col s (which shows the number of columns available
on a device) is assigned the value 80 for the AT&T 610. (Values for numeric capa-
bilities may be specified in decimal, octal, or hexadecimal, using normal C program-
ming language conventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are
listed by a two- to five-character capname, an ‘=’, and a string ended by the next
occurrence of a comma. A delay in milliseconds may appear anywhere in such a
capability, preceded by $ and enclosed in angle brackets, as in el =\ EK$<3>. Pad-
ding characters are supplied by t put. The delay can be any of the following: a
number, a number followed by an asterisk, such as 5[0 a number followed by a
slash, such as 5/, or a number followed by both, such as 50 . A ‘0 shows that the
padding required is proportional to the number of lines affected by the operation,
and the amount given is the per-affected-unit padding required. (In the case of
insert characters, the factor is still the number of lines affected. This is always 1
unless the device has i n and the software uses it) When a ‘0O is specified, it is
sometimes useful to give a delay of the form 3.5 to specify a delay per unit to
tenths of milliseconds. (Only one decimal place is allowed.)

Page 14

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 439

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If there is a way to move the cursor one position to the left (such as backspace), that
capability should be given as cubl. Similarly, sequences to move to the right, up,
and down should be given as cuf 1, cuul, and cudl, respectively. These local
cursor motions must not alter the text they pass over; for example, you would not
normally use “cuf 1=\s"" because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in term nfo
are undefined at the left and top edges of a screen terminal. Programs should never
attempt to backspace around the left edge, unless bw is specified, and should never
attempt to go up locally off the top. To scroll text up, a program goes to the bottom
left corner of the screen and sends the i nd (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends
the ri (reverse index) string. The strings i nd and ri are undefined when not on
their respective corners of the screen.

Parameterized versions of the scrolling sequences are i ndn and ri n. These ver-
sions have the same semantics as i nd and ri, except that they take one parameter
and scroll the number of lines specified by that parameter. They are also undefined
except at the appropriate edge of the screen.

The amcapability tells whether the cursor sticks at the right edge of the screen when
text is output, but this does not necessarily apply to a cuf 1 from the last column.
Backward motion from the left edge of the screen is possible only when bw is
specified. In this case, cubl will move to the right edge of the previous row. If bw
is not given, the effect is undefined. This is useful for drawing a box around the
edge of the screen, for example. If the device has switch selectable automatic mar-
gins, amshould be specified in the t er m nf o source file. In this case, initialization
strings should turn on this option, if possible. If the device has a command that
moves to the first column of the next line, that command can be given as nel (new-
line). It does not matter if the command clears the remainder of the current line, so
if the device hasno cr and | f it may still be possible to craft a working nel out of
one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T 5320 hardcopy terminal is described as follows:

5320| att 5320| AT&T 5320 hardcopy term nal,
am hc, os,
col s#132,
bel =G c¢r=\r, cubl=\b, cndl=\n,
dchl=\E[P, dl 1=\E M
i nd=\n,

while the Lear Siegler ADM-3 is described as

adn8| | si adnB,
am bel=G clear="2Z, cols#80, cr="M cubl="H,
cudl="J, ind="J, |ines#24,

Section 1-2: Parameterized Strings
Cursor addressing and other strings requiring parameters are described by a
parameterized string capability, with pri nt f ()-like escapes (%) in it. For exam-
ple, to address the cursor, the cup capability is given, using two parameters: the
row and column to address to. (Rows and columns are numbered from zero and

Page 16

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 441

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

refer to the physical screen visible to the user, not to any unseen memory.) If the
terminal has memory relative cursor addressing, that can be indicated by nr cup.

The parameter mechanism uses a stack and special %codes to manipulate the stack
in the manner of Reverse Polish Notation (postfix). Typically a sequence will push
one of the parameters onto the stack and then print it in some format. Often more
complex operations are necessary. Operations are in postfix form with the
operands in the usual order. That is, to subtract 5 from the first parameter, one
would use ¥p1% 5} %-.
The %encodings have the following meanings:
) outputs ‘%’
% [:] flags][width[.precision]][dox Xs]
asinprintf (), flagsare[—+#] and space
% print pop() gives %c
%[1- 9]
push ith parm
%[a- z]
set dynamic variable [a-z] to pop()
%g[a- z]
get dynamic variable [a-z] and push it
W[A- Z]
set static variable [a-z] to pop()
%9l A-Z]
get static variable [a-z] and push it
% ¢’ push char constant ¢
9% nn}
push decimal constant nn
% push strlen(pop())
% % %1% %n
arithmetic (%nis mod): push(pop integer, op pop integer;) where integer,
represents the top of the stack

%R N %
bit operations: push(pop integer, op pop integer,)
% % U
logical operations: push(pop integer, op pop integer,)
YA YO
logical operations: and, or
W %
unary operations: push(op pop())
% (for ANSI terminals) add 1 to first parm, if one parm present, or first two

parms, if more than one parm present

Page 17

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 442

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

% expr % thenpart % elsepart %
if-then-else, % elsepart is optional; else-if’s are possible ala Algol 68: % c¢
% bl%ec % b, % c, % b3°/ec4% b4°/eb5°/o
c;are conditions, bi are bodies.

If the “—"" flag is used with “%fdoxXs]”, then a colon (:) must be placed between

the “%’ and the - to differentiate the flag from the binary “%-" operator, e.g.
“% —16. 16s”.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to
be sent \ E&al12c03Y padded for 6 milliseconds. Note that the order of the rows
and columns is inverted here, and that the row and column are zero-padded as two
digits. Thus its cup capability is:

cup=\ E&a%p2%2. 2dc%p19%2. 2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a " T,
with the row and column simply encoded in binary, “cup="T%1% %2%".
Devices that use “% "’ need to be able to backspace the cursor (cubl), and to move
the cursor up one line on the screen (cuul). This is necessary because it is not
always safe to transmit\ n, ~ D, and \ r, as the system may change or discard them.
(The library routines dealing with t er mi nf o set tty modes so that tabs are never
expanded, so \'t is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus “cup=\ E=%01% \ s’ %% %p2% \ s’ %% ". After sending “\ E=",
this pushes the first parameter, pushes the ASCII value for a space (32), adds them
(pushing the sum on the stack in place of the two previous values), and outputs that
value as a character. Then the same is done for the second parameter. More com-
plex arithmetic is possible using the stack.

1

Section 1-3: Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as hone; similarly a fast way of getting to the lower
left-hand corner can be given as | | ; this may involve going up with cuul from the
home position, but a program should never do this itself (unless | | does) because it
can make no assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the top left corner
of the screen, not of memory. (Thus, the \ EH sequence on Hewlett-Packard termi-
nals cannot be used for hone without losing some of the other features on the ter-
minal.)

If the device has row or column absolute-cursor addressing, these can be given as
single parameter capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes these are shorter than the more general two-
parameter sequence (as with the Hewlett-Packard 2645) and can be used in prefer-
ence to cup. If there are parameterized local motions (e.g., move n spaces to the
right) these can be given as cud, cub, cuf, and cuu with a single parameter
indicating how many spaces to move. These are primarily useful if the device does
not have cup, such as the Tektronix 4025.

Page 18

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 443

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the device needs to be in a special mode when running a program that uses these
capabilities, the codes to enter and exit this mode can be given as sntup and
rmcup. This arises, for example, from terminals, such as the Concept, with more
than one page of memory. If the device has only memory relative cursor address-
ing and not screen relative cursor addressing, a one screen-sized window must be
fixed into the device for cursor addressing to work properly. This is also used for
the Tektronix 4025, where sntup sets the command character to be the one used
by term nfo. If the sncup sequence will not restore the screen after an r ncup
sequence is output (to the state prior to outputting r ncup), specify nr r nec.

Section 1-4: Area Clears

If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el . If the terminal can clear from the
beginning of the line to the current position inclusive, leaving the cursor where it is,
this should be given as el 1. If the terminal can clear from the current position to
the end of the display, then this should be given as ed. ed is only defined from
the first column of a line. (Thus, it can be simulated by a request to delete a large
number of lines, if a true ed is not available.)

Section 1-5: Insert/Delete Line
If the terminal can open a new blank line before the line where the cursor is, this
should be given as i | 1; this is done only from the first position of a line. The cur-
sor must then appear on the newly blank line. If the terminal can delete the line
which the cursor is on, then this should be given as dl 1; this is done only from the
first position on the line to be deleted. Versions of il 1 and dl 1 which take a sin-
gle parameter and insert or delete that many lines can be givenas i | and dl .

If the terminal has a settable destructive scrolling region (like the VT100) the com-
mand to set this can be described with the csr capability, which takes two param-
eters: the top and bottom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the effect of insert or
delete line using this command — the sc and rc (save and restore cursor) com-
mands are also useful. Inserting lines at the top or bottom of the screen can also be
done using ri or i nd on many terminals without a true insert/delete line, and is
often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non-
destructive scrolling regions, create a scrolling region in the middle of the screen,
place data on the bottom line of the scrolling region, move the cursor to the top line
of the scrolling region, and do a reverse index (ri) followed by a delete line (dl 1)
or index (i nd). If the data that was originally on the bottom line of the scrolling
region was restored into the scrolling region by the dl 1 or i nd, then the terminal
has non-destructive scrolling regions. Otherwise, it has destructive scrolling
regions. Do not specify csr if the terminal has non-destructive scrolling regions,
unlessind, ri, indn,rin,dl,anddl 1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all com-
mands affect, it should be given as the parameterized string wi nd. The four
parameters are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

Page 19

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 444

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

Section 1-6: Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete char-
acter operations which can be described using term nfo. The most common
insert/delete character operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can
determine the kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type ‘“‘abc def ™ using local cursor motions (not
spaces) between the abc and the def. Then position the cursor before the abc
and put the terminal in insert mode. If typing characters causes the rest of the line
to shift rigidly and characters to fall off the end, then your terminal does not distin-
guish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the capability i n,
which stands for “insert null.” While these are two logically separate attributes
(one line versus multiline insert mode, and special treatment of untyped spaces) we
have seen no terminals whose insert mode cannot be described with the single attri-
bute.

term nf o can describe both terminals that have an insert mode and terminals
which send a simple sequence to open a blank position on the current line. Give as
sm r the sequence to get into insert mode. Give as rm r the sequence to leave
insert mode. Now give as i chl any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode will not give
i chl; terminals that send a sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually preferable to i chl. Do not give
both unless the terminal actually requires both to be used in combination.) If post-
insert padding is needed, give this as a number of milliseconds padding in i p (a
string option). Any other sequence which may need to be sent after an insert of a
single character may also be given in i p. If your terminal needs both to be placed
into an ‘insert mode’ and a special code to precede each inserted character, then
both smir/rmirand i chl can be given, and both will be used. The i ch capabil-
ity, with one parameter, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this
as a number of milliseconds padding in r np.

It is occasionally necessary to move around while in insert mode to delete charac-
ters on the same line (e.g., if there is a tab after the insertion position). If your termi-
nal allows motion while in insert mode you can give the capability m r to speed
up inserting in this case. Omitting mir will affect only speed. Some terminals
(notably Datamedia’s) must not have mi r because of the way their insert mode
works.

Page 20

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 445

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Finally, you can specify dchl to delete a single character, dch with one parame-
ter, n, to delete n characters, and delete mode by giving sntdc and rndc to enter
and exit delete mode (any mode the terminal needs to be placed in for dchl to
work).

A command to erase n characters (equivalent to outputting n blanks without mov-
ing the cursor) can be given as ech with one parameter.

Section 1-7: Highlighting, Underlining, and Visible Bells

Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be available: a
blinking screen (bl i nk), bold or extra-bright characters (bol d), dim or half-bright
characters (di n), blanking or invisible text (i nvi s), protected text (prot), a
reverse-video screen (r ev), and an alternate character set (smacs to enter this mode
and rnmacs to exit it). (If a command is necessary before you can enter alternate
character set mode, give the sequence in enacs or "enable alternate-character-set"
mode.) Turning on any of these modes singly may or may not turn off other
modes.

sgr 0 should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some capabilities,
such as di mor bl i nk.

You should choose one display method as standout mode [see CURSES(TI_LIB)] and
use it to highlight error messages and other kinds of text to which you want to
draw attention. Choose a form of display that provides strong contrast but that is
easy on the eyes. (We recommend reverse-video plus half-bright or reverse-video
alone.) The sequences to enter and exit standout mode are given as snso and
r mso, respectively. If the code to change into or out of standout mode leaves one
or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then
xnt should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as snul and
rmul , respectively. If the device has a sequence to underline the current charac-
ter and to move the cursor one space to the right (such as the Micro-Term MIME),
this sequence can be specified as uc.

Terminals with the “magic cookie” glitch (xnt) deposit special *“‘cookies” when
they receive mode-setting sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a new line or the cur-
sor is addressed. Programs using standout mode should exit standout mode before
moving the cursor or sending a newline, unless the nmsgr capability, asserting that
it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as f | ash; it must not move the cursor. A good
flash can be done by changing the screen into reverse video, pad for 200 ms, then
return the screen to normal video.

Page 21

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 446

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the cursor needs to be made more visible than normal when it is not on the bot-
tom line (to make, for example, a non-blinking underline into an easier to find block
or blinking underline) give this sequence as cvvi s. The boolean chts should
also be given. If there is a way to make the cursor completely invisible, give that as
ci vi s. The capability cnor mshould be given which undoes the effects of either of
these modes.

If your terminal generates underlined characters by using the underline character
(with no special sequences needed) even though it does not otherwise overstrike
characters, then you should specify the capability ul . For devices on which a char-
acter overstriking another leaves both characters on the screen, specify the capabil-
ity os. If overstrikes are erasable with a blank, then this should be indicated by
specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given as
sgr (set attributes), taking nine parameters. Each parameter is either 0 or non-
zero, as the corresponding attribute is on or off. The nine parameters are, in order:
standout, underline, reverse, blink, dim, bold, blank, protect, alternate character set.
Not all modes need to be supported by sgr; only those for which corresponding
separate attribute commands exist should be supported. For example, let’s assume
that the terminal in question needs the following escape sequences to turn on vari-

ous modes.
tparm
parameter attribute escape sequence
none \ E[Om

pl standout \E[O; 4; 7m
p2 underline \E[0; 3m
p3 reverse \E[O; 4m
p4 blink \E[O0; 5m
p5 dim \E[O; 7m
p6 bold \E[O; 3; 4m
p7 invis \E[0; 8m
p8 protect not available
p9 altcharset “0 (off) "N (on)

Note that each escape sequence requires a 0 to turn off other modes before turning
on its own mode. Also note that, as suggested above, standout is set up to be the
combination of reverse and dim. Also, because this terminal has no bold mode, bold is
set up as the combination of reverse and underline. In addition, to allow combina-
tions, such as underline+blink, the sequence to use would be \ E[0; 3; 5m The ter-
minal doesn’t have protect mode, either, but that cannot be simulated in any way, so
p8 is ignored. The altcharset mode is different in that it is either ~ Oor " N, depend-
ing on whether it is off or on. If all modes were to be turned on, the sequence
would be \E[0; 3; 4; 5; 7; 8mi N.

Now look at when different sequences are output. For example, ; 3 is output when
either p2 or p6 is true, that is, if either underline or bold modes are turned on. Writ-
ing out the above sequences, along with their dependencies, gives the following:

Page 22

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 447

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

sequence when to output terminfo translation
\E[O always \E[O
;3 if p2 or p6 %WRYPp2Yp6% % ; 3%
;4 if pl or p3 or p6 %% 1Y%p3% %p6% % ; 4%
5 if p4 %R %p4% ; 5%
07 if p1 or p5 %RYPplYp59 % ; 7%
] if p7 %WUp7% ; 8%
always m

>

Nor O ifp9 "N else” O %W Yp9% " Nve”™ O%

Putting this all together into the sgr sequence gives:

sgr =\ E[0% %p2%p6% % ; 3% %% 1%3% %p6%
| % ; 4% Y@ %p5% ; 5% Y% 1%p5%
| % ; 7% % %7% ; 8% niRY%p9% ~ Nve™ O%

Remember that sgr and sgr 0 must always be specified.

Section 1-8: Keypad
If the device has a keypad that transmits sequences when the keys are pressed, this
information can also be specified. Note that it is not possible to handle devices
where the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit,
specify these sequences as simkx and r mkx. Otherwise the keypad is assumed to
always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcubl, kcufl, kcuul, kcudl, and khone,
respectively. If there are function keys such as f0, f1, ..., f63, the sequences they
send can be specified as kf 0, kf1, ..., kf63. If the first 11 keys have labels
other than the default f0 through f10, the labels can be givenas 1f0, [f1, ...,
| f10. The codes transmitted by certain other special keys can be given: Kkl |
(home down), kbs (backspace), kt bc (clear all tabs), kct ab (clear the tab stop in
this column), kclr (clear screen or erase key), kdchl (delete character), kdl 1
(delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear to
end of screen), ki chl (insert character or enter insert mode), kil 1 (insert line),
knp (next page), kpp (previous page), ki nd (scroll forward/down), kri (scroll
backward/up), khts (set a tab stop in this column). In addition, if the keypad has
a 3 by 3 array of keys including the four arrow keys, the other five keys can be
given as kal, ka3, kb2, kcl, and kc3. These keys are useful when the effects
of a 3 by 3 directional pad are needed. Further keys are defined above in the capa-
bilities list.

Strings to program function keys can be specified as pf key, pfl oc, and pfx. A
string to program screen labels should be specified as pl n. Each of these strings
takes two parameters: a function key identifier and a string to program it with.
pf key causes pressing the given key to be the same as the user typing the given
string; pfl oc causes the string to be executed by the terminal in local mode; and
pf x causes the string to be transmitted to the computer. The capabilities nl ab,
I wand | h define the number of programmable screen labels and their width and
height. If there are commands to turn the labels on and off, give them in sm n and
rm n. sm n is normally output after one or more pl n sequences to make sure

Page 23

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 448

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

that the change becomes visible.

Section 1-9: Tabs and Initialization

If the device has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control I). A “backtab” command that moves leftward to
the next tab stop can be given as cbt. By convention, if tty modes show that tabs
are being expanded by the computer rather than being sent to the device, programs
should not use ht or cbt (even if they are present) because the user may not have
the tab stops properly set. If the device has hardware tabs that are initially set
every n spaces when the device is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is normally used by t put
i nit [see tput(TI_CMD)] to determine whether to set the mode for hardware tab
expansion and whether to set the tab stops. If the device has tab stops that can be
saved in nonvolatile memory, the t er m nf o description can assume that they are
properly set. If there are commands to set and clear tab stops, they can be given as
t bc (clear all tab stops) and hts (set a tab stop in the current column of every
row).

Other capabilities include: i s1, i s2,and i s3, initialization strings for the device;
i prog, the path name of a program to be run to initialize the device; and i f, the
name of a file containing long initialization strings. These strings are expected to
set the device into modes consistent with the rest of the ter m nf o description.
They must be sent to the device each time the user logs in and be output in the fol-
lowing order: run the program i prog; output i s1; output i s2; set the margins
using ngc, sngl and sngr; set the tabs using tbc and ht s; print the file if;
and finally output i s3. This is usually done using the i ni t option of t put .

Most initialization is done with i s2. Special device modes can be set up without
duplicating strings by putting the common sequences in i s2 and special cases in
i s1 and i s3. Sequences that do a reset from a totally unknown state can be given
as rsl, rs2, rf,and rs3, analogousto isl, is2, is3,and if. (The method
using files, if and rf, is wused for a few terminals, from
lusr/share/lib/tabset/ O however, the recommended method is to use the
initialization and reset strings.) These strings are output by t put reset, which is
used when the terminal gets into a wedged state. Commands are normally placed
in rsl, rs2, rs3,and rf only if they produce annoying effects on the screen
and are not necessary when logging in. For example, the command to set a termi-
nal into 80-column mode would normally be part of i s2, but on some terminals it
causes an annoying glitch on the screen and is not normally needed because the ter-
minal is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by using
t bc and ht s, the sequence can be placed in is2or if.

Any margin can be cleared with nmgc. (For instructions on how to specify com-
mands to set and clear margins, see "Margins" below under "PRINTER CAPABILI-
TIES.")

Section 1-10: Delays
Certain capabilities control padding in the t ty driver. These are primarily needed
by hard-copy terminals, and are used by tput init to settty modes appropri-
ately. Delays embedded in the capabilities cr, i nd, cubl, ff,and tab can be
used to set the appropriate delay bits to be set in the tty driver. If pb (padding

Page 24

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 449

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

baud rate) is given, these values can be ignored at baud rates below the value of
pb.

Section 1-11: Status Lines

If the terminal has an extra “‘status line” that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom
line, into which one can cursor address normally (such as the Heathkit h19’s 25th
line, or the 24th line of a VT100 which is set to a 23-line scrolling region), the capa-
bility hs should be given. Special strings that go to a given column of the status
line and return from the status line can be given as tsl and fsl. (f sl mustleave
the cursor position in the same place it was before tsl. If necessary, the sc and
r ¢ strings can be included in tsl and fsl to get this effect) The capability t sl
takes one parameter, which is the column number of the status line the cursor is to
be moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag esl ok can be given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl . If the terminal has com-
mands to save and restore the position of the cursor, give them as sc and rc. The
status line is normally assumed to be the same width as the rest of the screen, e.g.,
col s. If the status line is a different width (possibly because the terminal does not
allow an entire line to be loaded) the width, in columns, can be indicated with the
numeric parameter wsl .

Section 1-12: Line Graphics
If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc. The definition of this string is based on the
alternate character set used in the DEC VT100 terminal, extended slightly with
some characters from the AT&T 4410v1 terminal.

vt100+
glyph name character

arrow pointing right +
arrow pointing left ,
arrow pointing down
solid square block
lantern symbol

arrow pointing up
diamond

checker board (stipple)
degree symbol
plus/minus

board of squares
lower right corner
upper right corner
upper left corner
lower left corner

plus

-l —o-

S3—x—T oS~

Page 25

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 450

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

scan line 1
horizontal line
scan line 9

left tee (£)
right tee (-
bottom tee (_[)
top tee ('O
vertical line
bullet

IXxXs<c~rwao

The best way to describe a new device’s line graphics set is to add a third column to
the above table with the characters for the new device that produce the appropriate
glyph when the device is in the alternate character set mode. For example,

vt100+ new tty

glyph name char char
upper left corner I R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q ,
vertical line X

Now write down the characters left to right, as in “‘acsc=l RnFkTj Gg\ , x. .

In addition, t er m nf o allows you to define multiple character sets. See Section 2-5
for details.

Section 1-13: Color Manipulation

Let us define two methods of color manipulation: the Tektronix method and the
HP method. The Tektronix method uses a set of N predefined colors (usually 8)
from which a user can select "current" foreground and background colors. Thus a
terminal can support up to N colors mixed into N*N color-pairs to be displayed on
the screen at the same time. When using an HP method the user cannot define the
foreground independently of the background, or vice-versa. Instead, the user must
define an entire color-pair at once. Up to M color-pairs, made from 2*M different
colors, can be defined this way. Most existing color terminals belong to one of these
two classes of terminals.

The numeric variables col or s and pai r s define the number of colors and color-
pairs that can be displayed on the screen at the same time. If a terminal can change
the definition of a color (for example, the Tektronix 4100 and 4200 series terminals),
this should be specified with ccc (can change color). To change the definition of a
color (Tektronix 4200 method), use i ni t ¢ (initialize color). It requires four argu-
ments: color number (ranging from 0 to col or s-1) and three RGB (red, green, and
blue) values or three HLS colors (Hue, Lightness, Saturation). Ranges of RGB and
HLS values are terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean vari-
able hl s; that would instruct the CURSES i nit _col or () routine to convert its
RGB arguments to HLS before sending them to the terminal. The last three

Page 26

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 451

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

arguments to the i ni t ¢ string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different
from RGB and HLS, a mapping to either RGB or HLS must be developed.

To set current foreground or background to a given color, use set af (set ANSI
foreground) and set ab (set ANSI background). They require one parameter: the
number of the color. To initialize a color-pair (HP method), use i ni t p (initialize
pair). It requires seven parameters: the number of a color-pair (range=0 to
pai r s-1), and six RGB values: three for the foreground followed by three for the
background. (Each of these groups of three should be in the order RGB.) When
initc orinitp are used, RGB or HLS arguments should be in the order "red,
green, blue" or "hue, lightness, saturation”), respectively. To make a color-pair
current, use scp (set color-pair). It takes one parameter, the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas of
the screen with current background color. In such cases, bce (background color
erase) should be defined. The variable op (original pair) contains a sequence for
setting the foreground and the background colors to what they were at the terminal
start-up time. Similarly, oc (original colors) contains a control sequence for setting
all colors (for the Tektronix method) or color-pairs (for the HP method) to the
values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-to-one
correspondence between the nine least significant bits of that variable and the video
attributes. The following table depicts this correspondence.

Bit Decimal

Attribute Position Value
A _STANDOUT 0 1
A _UNDERLI NE 1 2
A _REVERSE 2 4
A BLI NK 3 8
A DM 4 16
A BOLD 5 32
A INVIS 6 64
A _PROTECT 7 128
A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the correspond-
ing ncv bit should be set to 1; otherwise it should be set to zero. To determine the
information to pack into the ncv variable, you must add together the decimal
values corresponding to those attributes that cannot coexist with colors. For exam-
ple, if the terminal uses colors to simulate reverse video (bit number 2 and decimal
value 4) and bold (bit number 5 and decimal value 32), the resulting value for ncv
will be 36 (4 + 32).

Section 1-14: Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal
does not have a pad character, specify npc.

Page 27

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 452

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give thisas ff (usually control L).

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters) this can be indicated with
the parameterized string rep. The first parameter is the character to be repeated
and the second is the number of times to repeat it. Thus, t parn{repeat _char,

X', 10) isthe same as XXXXXXXXXX.

If the terminal has a settable command character, such as the Tektronix 4025, this
can be indicated with cndch. A prototype command character is chosen which is
used in all capabilities. This character is given in the cndch capability to identify
it. The following convention is supported on some UNIX systems: If the environ-
ment variable CC exists, all occurrences of the prototype character are replaced
with the character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such
as switch, dialup, patch, and network, should include the gn (generic) capability so
that programs can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for which the escape
sequences are known.) If the terminal is one of those supported by the UNIX sys-
tem virtual terminal protocol, the terminal number can be given as vt. A line-
turn-around sequence to be transmitted before doing reads should be specified in
rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding infor-
mation should still be included so that routines can make better decisions about
costs, but actual pad characters will not be transmitted. Sequences to turn on and
off xon/xoff handshaking may be given in snxon and rnxon. If the characters
used for handshaking are not ~S and ~Q they may be specified with xonc and
xof f c.

If the terminal has a ““meta key’” which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings exist to turn
this ““meta mode” on and off, they can be given as shrmand r mm

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with | m A value of | n#0 indicates
that the number of lines is not fixed, but that there is still more memory than fits on
the screen.

Media copy strings which control an auxiliary printer connected to the terminal can
be given as nt0: print the contents of the screen, nt4: turn off the printer, and
nc5: turn on the printer. When the printer is on, all text sent to the terminal will be
sent to the printer. A variation, nc5p, takes one parameter, and leaves the printer
on for as many characters as the value of the parameter, then turns the printer off.
The parameter should not exceed 255. If the text is not displayed on the terminal
screen when the printer is on, specify nt5i (silent printer). All text, including
nc4, is transparently passed to the printer while an nt5p is in effect.

Page 28

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 453

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Section 1-15: Special Cases
The working model used by t er m nf o fits most terminals reasonably well. How-
ever, some terminals do not completely match that model, requiring special support
by t er mi nf 0. These are not meant to be construed as deficiencies in the terminals;
they are just differences between the working model and the actual hardware. They
may be unusual devices or, for some reason, do not have all the features of the t er -
nm nf o model implemented.

Terminals that cannot display tilde (7) characters, such as certain Hazeltine termi-
nals, should indicate hz.

Terminals that ignore a linefeed immediately after an amwrap, such as the Concept
100, should indicate xenl . Those terminals whose cursor remains on the right-most
column until another character has been received, rather than wrapping immedi-
ately upon receiving the right-most character, such as the VT100, should also indi-
cate xenl .

If el is required to get rid of standout (instead of writing normal text on top of it),
xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that it is
not possible to position the cursor on top of a ““magic cookie.” Therefore, to erase
standout mode, it is necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or control-C
characters, should specify xsb, indicating that the f1 key is to be used for escape
and the f2 key for control C.

Section 1-16: Similar Terminals
If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the name
of the similar terminal. The capabilities given before use override those in the ter-
minal type invoked by use. A capability can be canceled by placing xx@to the left
of the capability definition, where xx is the capability. For example, the entry

att4424-2| Tel etype 4424 in display function group ii,
rev@ sgr@ snul @ use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and snul capa-
bilities, and hence cannot do highlighting. This is useful for different modes for a
terminal, or for different user preferences. More than one use capability may be
given.

PART 2: PRINTER CAPABILITIES
The t er mi nf o database allows you to define capabilities of printers as well as ter-
minals. To find out what capabilities are available for printers as well as for termi-
nals, see the two lists under "DEVICE CAPABILITIES" that list capabilities by vari-
able and by capability name.

Section 2-1: Rounding Values
Because parameterized string capabilities work only with integer values, we recom-
mend that t er m nf o designers create strings that expect numeric values that have
been rounded. Application designers should note this and should always round
values to the nearest integer before using them with a parameterized string

Page 29

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 454

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

capability.

Section 2-2: Printer Resolution
A printer’s resolution is defined to be the smallest spacing of characters it can
achieve. In general printers have independent resolution horizontally and verti-
cally. Thus the vertical resolution of a printer can be determined by measuring the
smallest achievable distance between consecutive printing baselines, while the hor-
izontal resolution can be determined by measuring the smallest achievable distance
between the left-most edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and
vertical resolution. The view of printing that t er ni nf o currently presents is one of
printing inside a uniform matrix: All characters are printed at fixed positions rela-
tive to each “cell” in the matrix; furthermore, each cell has the same size given by
the smallest horizontal and vertical step sizes dictated by the resolution. (The cell
size can be changed as will be seen later.)

Many printers are capable of “proportional printing,” where the horizontal spacing
depends on the size of the character last printed. t er m nf o does not make use of
this capability, although it does provide enough capability definitions to allow an
application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizon-
tal and vertical resolutions suggest, but also of “moving’ to a position an integral
multiple of the smallest distance away from a previous position. Thus printed char-
acters can be spaced apart a distance that is an integral multiple of the smallest dis-
tance, up to the length or width of a single page.

Some printers can have different resolutions depending on different ““modes.” In
“normal mode,” the existing t er m nf o capabilities are assumed to work on
columns and lines, just like a video terminal. Thus the old | i nes capability would
give the length of a page in lines, and the col s capability would give the width of
a page in columns. In “micro mode,” many t er m nf o capabilities work on incre-
ments of lines and columns. With some printers the micro mode may be concomi-
tant with normal mode, so that all the capabilities work at the same time.

Section 2-3: Specifying Printer Resolution’
The printing resolution of a printer is given in several ways. Each specifies the reso-
lution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps
or hi Steps per inch horizontally
or vi Steps per inch vertically
orc Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement to the
next column, except in special cases described later; the distance moved is the same
as the per-column resolution. Some printers cause an automatic movement to the
next line when a character is printed in the rightmost position; the distance moved
vertically is the same as the per-line resolution. When printing in micro mode,
these distances can be different, and may be zero for some printers.

Page 30

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 455

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Specification of Printer Resolution
Automatic Motion after Printing

Normal Mode:

orc Steps moved horizontally

orl Steps moved vertically

Micro Mode:
ncs Steps moved horizontally
m s Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a
wide character is printed in normal mode may be different from when a regular
width character is printed. The distance moved when a wide character is printed in
micro mode may also be different from when a regular character is printed in micro
mode, but the differences are assumed to be related: If the distance moved for a reg-
ular character is the same whether in normal mode or micro mode (nmcs=or ¢), then
the distance moved for a wide character is also the same whether in normal mode
or micro mode. This doesn’t mean the normal character distance is necessarily the
same as the wide character distance, just that the distances don’t change with a
change in normal to micro mode. However, if the distance moved for a regular
character is different in micro mode from the distance moved in normal mode
(nts<or c), the micro mode distance is assumed to be the same for a wide character
printed in micro mode, as the table below shows.

Specification of Printer Resolution
Automatic Motion after Printing Wide Character
Normal Mode or Micro Mode (nts = or c):
wi dcs Steps moved horizontally

Micro Mode (nTts <orc):
ncs Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If these
are used, the resolution of the printer changes, but the type of change depends on
the printer:

Specification of Printer Resolution
Changing the Character/Line Pitches

cpi Change character pitch
cpi x Ifset, cpi changes or hi, otherwise changes or c

| pi Change line pitch
| pi x Ifset,| pi changesorvi, otherwise changes or |

chr Change steps per column
cvr Change steps per line

The cpi and | pi string capabilities are each used with a single argument, the
pitch in columns (or characters) and lines per inch, respectively. The chr and cvr
string capabilities are each used with a single argument, the number of steps per
column and line, respectively.

Page 31

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 456

TERMINFO (TI_ENV)

TERMINFO (TI_ENV)

Using any of the control sequences in these strings will imply a change in some of
the values of orc, orhi, orl,and orvi. Also, the distance moved when a wide
character is printed, wi dcs, changes in relation to or ¢. The distance moved when
a character is printed in micro mode, nts, changes similarly, with one exception: if
the distance is 0 or 1, then no change is assumed (see items marked with T in the

following table).

Programs that use cpi, | pi, chr, or cvr should recalculate the printer resolu-
tion (and should recalculate other values see "Effect of Changing Printing Resolu-
tion" under "Dot-Mapped Graphics").

Specification of Printer Resolution

Effects of Changing the Character/Line Pitches

Before After
Using cpi with cpi x clear:
orhi’ orhi .
, orhi
orc orc=
cpi
Using cpi with cpi x set:
orhi’ orhi=orc-V,
orc’ orc
Using | pi with | pi x clear:
orvi' orvi .
, orvi
orl orl=
lei
Using | pi with | pi x set:
orvi' orvi=orl-V
orl’ orl
Using chr:
orhi’ orhi
orc’ Vnr
Using cvr :
orvi' orvi
orl' Ve
Using cpi orchr:
. . . orc
widcs’ widcs =widcs' —
orc
mes’ orc

chir

T

mcs=mcs' —
or

Visis Venr, and Vo, are the arguments used with cpi, I pi, chr,and cvr,

respectively. The prime marks () indicate the old values.

Section 2-4: Capabilities that Cause Movement
In the following descriptions, ‘“movement” refers to the motion of the ““current
position.” With video terminals this would be the cursor; with some printers

Page 32

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 457

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

this is the carriage position. Other printers have different equivalents. In general,
the current position is where a character would be displayed if printed.

term nf o has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for control
sequences that cause movement a number of smallest steps.

String Capabilities for Motion
ncubl Move 1 step left
ncuf 1 Move 1 step right
nmcuul Move 1 step up
ncudl Move 1 step down

ncub Move N steps left
ncuf Move N steps right
ncuu Move N steps up
ncud Move N steps down

mhpa Move N steps from the left
nvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also,
some printers don’t accept absolute motion to the left of the current position.
t er m nf o has capabilities for specifying these limits.

Limits to Motion
nj unp Limiton use of ntubl, ncuf 1, ncuul, ntudl
maddr Limit on use of mhpa, nvpa

xhpa If set, hpa and mhpa can’t move left
xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a “micro mode” for the motion capabilities described
above to work, there are string capabilities defined to contain the control sequence
to enter and exit this mode. A boolean is available for those printers where using a
carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode
sm cm Enter micro mode
rmcm Exit micro mode

crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the next
line, others move to the beginning of the same line. t erm nf o has boolean capa-
bilities for describing all three cases.

Page 33

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 458

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

What Happens After Character
Printed in Rightmost Position
sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for left-
ward or upward motion, because those capabilities can be built from the motion
reversal capability and the rightward or downward motion capabilities. It is best to
leave it up to an application to build the leftward or upward capabilities, though,
and not enter them in the t er mi nf o database. This allows several reverse motions
to be strung together without intervening wasted steps that leave and reenter
reverse mode.

Entering/EXxiting Reverse Modes

sl m Reverse sense of horizontal motions
rlm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
ncubl Move 1 step right

ncuf 1 Move 1 step left

ncub Move N steps right

ncuf Move N steps left
cubl Move 1 column right
cufl Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
ncuul Move 1 step down

ncudl Move 1 step up

ncuu Move N steps down

ncud Move N steps up

cuul Move 1 line down

cudl Move 1 line up
cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse the
action of the line “‘wrapping” that occurs when a character is printed in the right-
most position. Thus printers that have the standard t er mi nf o capability am
defined should experience motion to the beginning of the previous line when a
character is printed in the right-most position under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is
not defined; thus, programs must exit reverse motion modes before using other
motion capabilities.

Page 34

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 459

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Two miscellaneous capabilities complete the list of new motion capabilities. One of
these is needed for printers that move the current position to the beginning of a line
when certain control characters, such as “line-feed” or ““form-feed,” are used. The
other is used for the capability of suspending the motion that normally occurs after
printing a character.

Miscellaneous Motion Strings
docr List of control characters causing cr
zerom Prevent auto motion after printing next single character

Margins

t er mi nf o provides two strings for setting margins on terminals: one for the left
and one for the right margin. Printers, however, have two additional margins, for
the top and bottom margins of each page. Furthermore, some printers require not
using motion strings to move the current position to a margin and then fixing the
margin there, but require the specification of where a margin should be regardless
of the current position. Therefore t erm nf o offers six additional strings for
defining margins with printers.

Setting Margins

sngl Set left margin at current column
sngr Set right margin at current column
sngb Set bottom margin at current line
sngt Set top margin at current line

snmgbp Set bottom margin at line N
sngl p Set left margin at column N
sngrp Setright margin at column N
sngtp Settop margin at line N

The last four strings are used with one or more arguments that give the position of
the margin or margins to set. If both of sngl p and sngr p are set, each is used
with a single argument, N, that gives the column number of the left and right mar-
gin, respectively. If both of sngt p and sngbp are set, each is used to set the top
and bottom margin, respectively: sngt p is used with a single argument, N, the line
number of the top margin; however, snghp is used with two arguments, N and M,
that give the line number of the bottom margin, the first counting from the top of
the page and the second counting from the bottom. This accommodates the two
styles of specifying the bottom margin in different manufacturers’ printers. When
coding a t erni nf o entry for a printer that has a settable bottom margin, only the
first or second parameter should be used, depending on the printer. When writing
an application that uses sngbp to set the bottom margin, both arguments must be
given.

If only one of sngl p and sngr p is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only one of
sngt p and sngbp is set, then it is used with two arguments that give the top and
bottom margins, in that order, counting from the top of the page. Thus when cod-
ing a term nfo entry for a printer that requires setting both left and right or top
and bottom margins simultaneously, only one of sngl p and sngrp or sngtp
and sngbp should be defined; the other should be left blank. When writing an

Page 35

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 460

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

application that uses these string capabilities, the pairs should be first checked to
see if each in the pair is set or only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the left-
most column. A zero value for the second argument with sngbp means the bot-
tom line of the page.

All margins can be cleared with ngc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts
Five new sets of strings are used to describe the capabilities printers have of
enhancing printed text.

Enhanced Printing
sshm Enter shadow-printing mode
rshm Exit shadow-printing mode

sitm Enter italicizing mode
ritm Exit italicizing mode

swi dm Enter wide character mode
rwi dm Exit wide character mode

ssupm Enter superscript mode
rsupm Exit superscript mode
supcs List of characters available as superscripts

ssubm Enter subscript mode
rsubm Exit subscript mode
subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshmstring is left blank. Thus programs that find a control
sequence in sshmbut none in r shmshould use the sshmcontrol sequence before
every character to be shadow-printed; otherwise, the sshm control sequence
should be used once before the set of characters to be shadow-printed, followed by
rshm The same is also true of each of the sitn/ritm sw dn/rw dm
ssupmyr supm and ssubnv r submpairs.

Note that t er mi nf o also has a capability for printing emboldened text (bol d).
While shadow printing and emboldened printing are similar in that they “‘darken”
the text, many printers produce these two types of print in slightly different ways.
Generally, emboldened printing is done by overstriking the same character one or
more times. Shadow printing likewise usually involves overstriking, but with a
slight movement up and/or to the side so that the character is ““fatter.”

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a
wide character should be given in wi dcs.

If only a subset of the printable ASCII characters can be printed as superscripts or
subscripts, they should be listed in supcs or subcs strings, respectively. If the
ssupmor ssubmstrings contain control sequences, but the corresponding supcs
or subcs strings are empty, it is assumed that all printable ASCII characters are

Page 36

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 461

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be
the same as for regular characters. Thus, for example, printing any of the following
three examples will result in equivalent motion:
Bi B, B

Note that the existing nsgr boolean capability describes whether motion control
sequences can be used while in “standout mode.” This capability is extended to
cover the enhanced printing modes added here. nsgr should be set for those
printers that accept any motion control sequences without affecting shadow, itali-
cized, widened, superscript, or subscript printing. Conversely, if nsgr is not set, a
program should end these modes before attempting any motion.

Section 2-5: Alternate Character Sets
In addition to allowing you to define line graphics (described in Section 1-12), t er -
m nf o lets you define alternate character sets. The following capabilities cover
printers and terminals with multiple selectable or definable character sets.

Alternate Character Sets
sCS Select character set N

scsd Start definition of character set N, M characters
def c Define character A, B dots wide, descender D
rcsd End definition of character set N

csnm List of character set names

dai sy Printer has manually changed print-wheels

The scs, rcsd, and csnmstrings are used with a single argument, N, a number
from 0 to 63 that identifies the character set. The scsd string is also used with the
argument N and another, M, that gives the number of characters in the set. The
def ¢ string is used with three arguments: A gives the ASCII code representation
for the character, B gives the width of the character in dots, and D is zero or one
depending on whether the character is a ‘““descender’” or not. The def c string is
also followed by a string of “image-data” bytes that describe how the character
looks (see below).

Character set 0 is the default character set present after the printer has been initial-
ized. Not every printer has 64 character sets, of course; using scs with an argu-
ment that doesn’t select an available character set should cause a null result from
tparm

If a character set has to be defined before it can be used, the scsd control sequence
is to be used before defining the character set, and the r csd is to be used after.
They should also cause a null result from t par mwhen used with an argument N
that doesn’t apply. If a character set still has to be selected after being defined, the
scs control sequence should follow the rcsd control sequence. By examining the
results of using each of the scs, scsd, and rcsd strings with a character set
number in a call to t par m a program can determine which of the three are needed.

Page 37

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 462

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Between use of the scsd and rcsd strings, the def c string should be used to
define each character. To print any character on printers covered by t er mi nf o, the
ASCII code is sent to the printer. This is true for characters in an alternate set as
well as “‘normal’ characters. Thus the definition of a character includes the ASCII
code that represents it. In addition, the width of the character in dots is given,
along with an indication of whether the character should descend below the print
line (such as the lower case letter **g’’ in most character sets). The width of the char-
acter in dots also indicates the number of image-data bytes that will follow the
def ¢ string. These image-data bytes indicate where in a dot-matrix pattern ink
should be applied to “‘draw” the character; the number of these bytes and their
form are defined below under “Dot-Mapped Graphics.”

It's easiest for the creator of t er mi nf o entries to refer to each character set by
number; however, these numbers will be meaningless to the application developer.
The csnmstring alleviates this problem by providing names for each number.

When used with a character set number in a call to t parm the csnmstring will
produce the equivalent name. These names should be used as a reference only. No
naming convention is implied, although anyone who creates a t er mi nf o entry for
a printer should use names consistent with the names found in user documents for
the printer. Application developers should allow a user to specify a character set by
number (leaving it up to the user to examine the csnmstring to determine the
correct number), or by name, where the application examines the csnmstring to
determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are not
available, the strings should not be defined. For printers that have manually
changed print-wheels or font cartridges, the boolean dai sy is set.

Section 2-6: Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing “‘raster-graphics”
images. Three new numeric capabilities and three new string capabilities can help a
program draw raster-graphics images independent of the type of dot-matrix printer
or the number of pins or dots the printer can handle at one time.

Dot-Matrix Graphics
npi ns Number of pins, N, in print-head
spi nv Spacing of pins vertically in pins per inch
spi nh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
shim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

The sbi msring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that ter ni nf o presents is similar to
the technique used for most dot-matrix printers: each pass of the printer’s print-
head is assumed to produce a dot-matrix that is N dots high and B dots wide. This
is typically a wide, squat, rectangle of dots. The height of this rectangle in dots will
vary from one printer to the next; this is given in the npi ns numeric capability.
The size of the rectangle in fractions of an inch will also vary; it can be deduced
from the spinv and spi nh numeric capabilities. With these three values an
application can divide a complete raster-graphics image into several horizontal

Page 38

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 463

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

strips, perhaps interpolating to account for different dot spacing vertically and hor-
izontally.

The sbi mand r bi mstrings are used to start and end a dot-matrix image, respec-
tively. The sbi mstring is used with a single argument that gives the width of the
dot-matrix in dots. A sequence of ‘“‘image-data bytes’ are sent to the printer after
the shbi mstring and before the rbi mstring. The number of bytes is a integral
multiple of the width of the dot-matrix; the multiple and the form of each byte is
determined by the por der string as described below.

The porder string is a comma separated list of pin numbers optionally followed
by an numerical offset. The offset, if given, is separated from the list with a semi-
colon. The position of each pin number in the list corresponds to a bit in an 8-bit
data byte. The pins are numbered consecutively from 1 to npi ns, with 1 being the
top pin. Note that the term “‘pin” is used loosely here; “ink-jet” dot-matrix printers
don’t have pins, but can be considered to have an equivalent method of applying a
single dot of ink to paper. The bit positions in por der are in groups of 8, with the
first position in each group the most significant bit and the last position the least
significant bit. An application produces 8-bit bytes in the order of the groups in
por der.

An application computes the “image-data bytes” from the internal image, mapping
vertical dot positions in each print-head pass into 8-bit bytes, using a 1 bit where
ink should be applied and 0 where no ink should be applied. This can be reversed
(0 bit for ink, 1 bit for no ink) by giving a negative pin number. If a position is
skipped in por der, a 0 bit is used. If a position has a lower case ‘X’ instead of a
pin number, a 1 bit is used in the skipped position. For consistency, a lower case ‘0’
can be used to represent a 0 filled, skipped bit. There must be a multiple of 8 bit
positions used or skipped in por der; if not, 0 bits are used to fill the last byte in
the least significant bits. The offset, if given, is added to each data byte; the offset
can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470,
AT&T 475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are
identified top to bottom by the 8 bits in a byte, from least significant to most. The
por der strings for these printers would be 8,7,6,5,4,3,2,1. The AT&T 478
and AT&T 479 printers also provide eight pins for graphics. However, the pins are
identified in the reverse order. The porder strings for these printers would be
1,2,3,4,5,6,7,8 The AT&T 5310, AT&T 5320, DEC LA100, and DEC LNO03
printers provide six pins for graphics. The pins are identified top to bottom by the
decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low six bits in an 8-bit
byte, although the decimal values are further offset by the value 63. The por der
string for these printers would be ,,6,5,4,3,2,1;63, or alternately
0,0,6,5,4,3,2,1,; 63.

Section 2-7: Effect of Changing Printing Resolution
If the control sequences to change the character pitch or the line pitch are used, the
pin or dot spacing may change:

Page 39

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 464

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Dot-Matrix Graphics
Changing the Character/Line Pitches
cpi Change character pitch
cpi x Ifset,cpi changesspi nh

| pi Change line pitch
I pix Ifset, | pi changesspi nv

Programs that use cpi or | pi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches
Before After
Using cpi with cpi x clear:

spinh’ spinh

Using cpi with cpi x set:

spinh’ spinh=spinh’- grrr?il’

Using | pi with | pi x clear:

spinv’ spinv

Using | pi with| pi x set:

spinv’ spinv:spinv'-Lh_i
orhi’

Using chr:

spinh’ spinh

Using cvr :

spinv’ spinv

orhi’ and orhi are the values of the horizontal resolution in steps per inch, before
using cpi and after using cpi, respectively. Likewise, orvi’ and orvi are the
values of the vertical resolution in steps per inch, before using | pi and after using
| pi, respectively. Thus, the changes in the dots per inch for dot-matrix graphics
follow the changes in steps per inch for printer resolution.

Section 2-8: Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce near
“letter quality” printing or ‘““draft quality’’ printing. Usually it is important to be
able to choose one or the other because the rate of printing generally falls off as the
quality improves. There are three new strings used to describe these capabilities.

Page 40

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 465

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Print Quality
snlq Set near-letter quality print
snrng Set normal quality print
sdrfqg Setdraft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have
all three levels, one or two of the strings should be left blank as appropriate.

Section 2-9: Printing Rate and Buffer Size

FILES

Because there is no standard protocol that can be used to keep a program synchron-
ized with a printer, and because modern printers can buffer data before printing it,
a program generally cannot determine at any time what has been printed. Two
new numeric capabilities can help a program estimate what has been printed.

Print Rate/Buffer Size
cps Nominal print rate in characters per second
buf sz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this
value is not given, the rate should be estimated at one-tenth the prevailing baud
rate. buf sz is the maximum number of subsequent characters buffered before the
guaranteed printing of an earlier character, assuming proper flow control has been
used. If this value is not given it is assumed that the printer does not buffer charac-
ters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter “‘a”
followed by 1000 additional characters is guaranteed to cause the letter ““a” to print.
If the same printer prints at the rate of 100 characters per second, then it should take
10 seconds to print all the characters in the buffer, less if the buffer is not full. By
keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate a
few pages of text, count the number of printable characters, and then see how long
it takes to print the text.

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably
print at close to the advertised print rate and probably faster than the rate in cps.
Graphics data with a lot of control sequences, or very long lines of text, will print at
well below the advertised rate and below the rate in cps. If the application is using
cps to decide how long it should take a printer to print a block of text, the applica-
tion should pad the estimate. If the application is using cps to decide how much
text has already been printed, it should shrink the estimate. The application will
thus err in favor of the user, who wants, above all, to see all the output in its correct
place.

[usr/share/lib/term nfo/?/ 0 compiled terminal description database

Page 41

FINAL COPY
June 15, 1995
File: ti_env/terminfo
svid

Page: 466

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

lusr/share/lib/.COREterm ?/ [
subset of compiled terminal description data-
base

[usr/share/lib/tabset/O tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs)

SEE ALSO
CURSES(TI_LIB), Is(BU_CMD), pg(BU_CMD), printf(BA LIB), stty(AU_CMD),
tic(TI_CMD), tput(TI_CMD), tty(AU_CMD), vi(AU_CMD).

USAGE
Administrator and Application Program.

The most effective way to prepare a terminal description is by imitating the descrip-
tion of a similar terminal in t er mi nf o and to build up a description gradually,
using partial descriptions with a screen oriented editor, such as vi, to check that
they are correct. To easily test a new terminal description the environment variable
TERM NFO can be set to the pathname of a directory containing the compiled

description, and programs will look there rather than in
[usr/share/lib/term nfo.
LEVEL
Level 1.
Page 42
FINAL COPY

June 15, 1995
File: ti_env/terminfo
svid

Page: 467

FINAL COPY
June 15, 1995
File:

Page: 468

Terminal Interface Library Routines

The following section contains the manual pages for the TI_LIB routines.

Terminal Interface Library Routines 23-1

FINAL COPY

June 15, 1995

File: ti_lib.cov
svid

