
System V Interface Definition,
Fourth Edition
Volume 3

FINAL COPY
June 15, 1995

File:

Page: 2

Copyright 1983, 1984, 1985, 1986,1987, 1988, 1995 Novell, Inc.
All Rights Reserved. No part of this publication may be reproduced, photocopied, stored
on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.
122 East 1700 South
Provo, UT 84606
U.S.A.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document,
Novell assumes no liability to any party for any loss of damage caused by errors or omissions or
by statements of any kind in the System V Interface Definition, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. Novell further assumes no liability arising out of the application or
use of any product or system described herein; nor any liability for incidental or consequential
damages arising from the use of this document. Novell disclaims all warranties regarding the
information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

Novell makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting or license to make, use or sell equipment constructed in accordance
with this description.

Novell reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

TRADEMARKS

Ann Arbor is a trademark of Ann Arbor Terminals, Inc.
Beehive is a trademark of Beehive International.
Concept is a trademark of Human Designed Systems, Inc.
HP is a trademark of Hewlett–Packard Co.
LSI is a trademark of Lear Siegler, Inc.
Micro–Term, ACT and MIME are trademarks of Micro–Term, Inc.
OSF/Motif is a trademark of the Open Software Foundation
PostScript is a trademark of Adobe Systems.
Tektronix and Tektronix 4010 are registered trademarks of Tektronix, Inc.
TeleVideo is a registered trademark of TeleVideo Systems, Inc.
Teleray is a trademark of Research, Inc.
Teletype is a registered trademark of AT&T.
The X Window System is a trademark of MIT.
UNIX is a registered trademark in the USA and other countries, licensed
exclusively through X/Open Company, Ltd.
VT100 is a trademark of Digital Equipment Corporation.
X/Open is a trademark of X/Open Company Limited.

1

FINAL COPY
June 15, 1995

File:

Page: 4

Volume 3 Table of Contents

1 AUDITING INTRODUCTION

2 AUDITING EXTENSION LIBRARY
ROUTINES

3 AUDITING EXTENSION COMMANDS AND
UTILITIES

4 ENHANCED SECURITY INTRODUCTION

5 ENHANCED SECURITY EXTENSION
LIBRARY ROUTINES

6 ENHANCED SECURITY EXTENSION
COMMANDS AND UTILITIES

7 REMOTE SERVICES INTRODUCTION

Table of Contents i

FINAL COPY
June 15, 1995

File: MasterToc
svid

Page: 5

8 REMOTE SERVICES DEFINITIONS

9 REMOTE SERVICES LANGUAGES

10 REMOTE SERVICES ENVIRONMENT

11 REMOTE SERVICES ENVIRONMENT
ROUTINES

12 REMOTE SERVICES LIBRARY ROUTINES

13 REMOTE SERVICES COMMANDS AND
UTILITIES

14 REAL TIME AND MEMORY MANAGEMENT
INTRODUCTION

15 REAL TIME AND MEMORY MANAGEMENT
ROUTINES

ii Volume 3 Table of Contents

FINAL COPY
June 15, 1995

File: MasterToc
svid

Page: 6

16 PROGRAMMING LANGUAGE
SPECIFICATION

17 SOFTWARE DEVELOPMENT
INTRODUCTION

18 SOFTWARE DEVELOPMENT LIBRARY
ROUTINES

19 SOFTWARE DEVELOPMENT COMMANDS
AND UTILITIES

20 TERMINAL INTERFACE INTRODUCTION

21 TERMINAL INTERFACE ENVIRONMENT

22 TERMINAL INTERFACE ENVIRONMENT
ROUTINES

23 TERMINAL INTERFACE LIBRARY
ROUTINES

Table of Contents iii

FINAL COPY
June 15, 1995

File: MasterToc
svid

Page: 7

24 TERMINAL INTERFACE COMMANDS AND
UTILITIES

25 WINDOW SYSTEM INTRODUCTION

26 REMOTE ADMINISTRATION
INTRODUCTION

27 REMOTE ADMINISTRATION LIBRARY
ROUTINES

28 REMOTE ADMINISTRATION COMMANDS
AND UTILITIES

iv Volume 3 Table of Contents

FINAL COPY
June 15, 1995

File: MasterToc
svid

Page: 8

Each auditable event, when audited, generates an associated audit record; col-
lected for each event audited are a time stamp, the user identity, object name, level
of the process (subject) causing the event, privileges used, an identification of the
type of event, and an indication of the success or failure of the event. The
a u d i t r p t command is used to print data from the log file.

Summary of Library Routines

The following routines are supported by the Auditing Extension. All of the rou-
tines in this section have been internationalized and may reference environment
variables for localization information. [See envvar(BA_ENV)].

a u d i t b u f a u d i t c t l a u d i t d m p a u d i t e v t a u d i t l o g

SUMMARY OF COMMANDS AND UTILITIES

The following commands and utilities are supported by the Auditing Extension.
All of the commands and utilities in this section have been internationalized and
may reference environment variables for localization information. [See
envvar(BA_ENV)].

a u d i t c n v a u d i t l o g a u d i t o f f a u d i t r p t a u d i t s e t
a u d i t f l t r a u d i t m a p a u d i t o n

Organization of Technical Information

The ‘‘Auditing Library Routines’’ chapter provides manual page descriptions of
library routines supported by this extension.

The ‘‘Auditing Commands and Utilities’’ chapter provides manual page descrip-
tions of commands and utilities supported by this extension.

1-2 AUDITING INTRODUCTION

FINAL COPY
June 15, 1995
File: at_int.txt

svid

Page: 10

Auditing Extension Library Routines

The following section contains the manual pages for AT_LIB routines.

Auditing Extension Library Routines 2-1

FINAL COPY
June 15, 1995
File: at_lib.cov

svid

Page: 11

FINAL COPY
June 15, 1995

File:

Page: 12

auditbuf (AT_LIB) auditbuf (AT_LIB)

NAME
auditbuf – manipulate the audit buffer

SYNOPSIS
i n c l u d e < s y s / a u d i t . h >

i n t a u d i t b u f (i n t cmd, s t r u c t a b u f *bufp, i n t size)

DESCRIPTION
The a u d i t b u f system call is used to get or set the high_water_mark (vhigh) and
size (bsize) of the audit buffer(s). The high_water_mark limits the amount of
memory that can be held within the audit buffer. Use of the a u d i t b u f system call
requires appropriate privileges.

The default h i g h _ w a t e r _ m a r k is equal to the size of an audit buffer (A D T _ B S I Z E).
The valid range of values for vhigh is greater than or equal to zero and less than or
equal to A D T _ B S I Z E. The size of the audit buffer (A D T _ B S I Z E) is a tunable parame-
ter found in / e t c / m a s t e r . d / a u d i t and can not be modified by the a u d i t b u f sys-
tem call.

Two values for cmd are supported: A B U F G E T and A B U F S E T. When the specified cmd
is A B U F G E T, the value of the h i g h _ w a t e r _ m a r k is returned in vhigh, and the size of
the audit buffer is returned in bsize.

When the specified cmd is A B U F S E T, the value of the h i g h _ w a t e r _ m a r k is changed
to vhigh, and the bsize of the audit buffer is ignored.

The bufp argument points to a structure of type a b u f which contains the following
elements:

int vhigh; audit buffer high_water_mark

int bsize; audit buffer size

The s i z e argument is used to verify the size of the a b u f structure being passed in
order to determine the version of auditing.

RETURN VALUE
Upon successful completion, the system call a u d i t b u f returns a value of 0; other-
wise, a value of – 1 is returned and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, a u d i t b u f fails and sets e r r n o to:

E P E R M if the process does not have the appropriate privileges.

E I N V A L if the size of a b u f is not equal to s i z e.

E I N V A L if cmd is A B U F S E T and the value of vhigh is less than zero or greater than
bsize.

E I N V A L if the cmd is invalid.

E N O P K G if the audit package is not installed.

SEE ALSO
auditevt(AT_LIB).

Page 1

FINAL COPY
June 15, 1995

File: at_lib/auditbuf
svid

Page: 13

auditbuf (AT_LIB) auditbuf (AT_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: at_lib/auditbuf
svid

Page: 14

auditctl (AT_LIB) auditctl (AT_LIB)

NAME
auditctl – control or report the status of auditing

SYNOPSIS
i n c l u d e < s y s / a u d i t . h >

i n t a u d i t c t l (i n t cmd, s t r u c t a c t l *actlp, i n t size)

DESCRIPTION
The a u d i t c t l system call fills the appropriate audit control structures or reports
the status of auditing, depending on the values of cmd. Three values of cmd are sup-
ported: A U D I T O N, A U D I T O F F, and A S T A T U S.

When the specified cmd is A U D I T O N, the a u d i t c t l system call performs the follow-
ing actions:

• Copies in the offset in seconds from the Greenwich mean time.

• It initializes the v n o d e for the primary audit log file.

• It initializes the audit buffer and log control structures.

• It exempts system resident processes and /sbin/init from auditing.

• It writes a machine-specific header record.

• It sets the a u d i t o n flag to 1.

When the specified cmd is A U D I T O F F, the a u d i t c t l system call sets the a u d i t o n
field to zero; frees all process audit structures; and locks, flushes, and releases the
audit buffers.

When the specified cmd is A S T A T U S, the a u d i t c t l system call returns the current
status of auditing. A zero value for a u d i t o n in the a c t l structure indicates that
auditing is disabled, and a value of one indicates that auditing is enabled.

The actlp argument points to a structure of type a c t l which contains the following
elements:

int auditon; audit status variable

char version[ADT_VERLEN]; audit version

long gmtsecoff; GMT offset in seconds

The s i z e argument is used to verify the size of the a c t l structure being passed in
order to determine the version of auditing.

Auditing must be installed on the system for this system call to be used. The use of
the a u d i t c t l system call requires the appropriate privilege.

RETURN VALUE
The a u d i t c t l system call returns zero on success. When unsuccessful, a u d i t c t l
returns a value of –1 and sets e r r n o to indicate the error.

ERRORS
Under the following conditions, a u d i t c t l fails and set e r r n o to:

Page 1

FINAL COPY
June 15, 1995

File: at_lib/auditctl
svid

Page: 15

auditctl (AT_LIB) auditctl (AT_LIB)

E I N V A L The size of a c t l is not equal to s i z e.

E I N V A L An attempt was made to disable auditing while it was already dis-
abled.

E I N V A L An attempt was made to enable auditing while it was already
enabled.

E I N V A L The cmd is invalid.

E N O E N T It is not possible to access the primary event log path.

E P E R M The invoking subject does not have the required privilege.

E N O P K G The audit package is not installed.

E E X I S T All the possible log files exist when attempting to enable auditing.

E R O F S The primary audit log file resides within a file system that is mounted
read-only.

E I O An I/O error occurred while performing a write to the audit log file.

SEE ALSO
auditbuf(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB), auditlog(AT_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: at_lib/auditctl
svid

Page: 16

auditdmp (AT_LIB) auditdmp (AT_LIB)

NAME
auditdmp – write audit record to audit buffer

SYNOPSIS
i n c l u d e < s y s / a u d i t . h >

i n t a u d i t d m p (s t r u c t a r e c *arecp, i n t size)

DESCRIPTION
The a u d i t d m p system call is used to write an audit record to the audit buffer. Use
of a u d i t d m p system call requires the appropriate privileges. Upon successful com-
pletion, a record is written to the audit buffer. Trusted user-level commands with
the appropriate privilege append user-level event records to the audit buffer.
Privileged applications append only records of type m i s c to the audit buffer.

The arecp argument points to a structure of type a r e c which contains the following
elements:

i n t rtype; audit record event type

i n t rstatus; audit record event status

i n t rsize; audit record size of argp

c h a r ∗argp; audit record data

The rtype element of the a r e c structure specifies the event type of the audit record.
If the rtype argument is valid (one of the user-level events) and if its corresponding
bit is set in the process e m a s k for the invoking process, the system generates an
audit record. The rstatus element of the a r e c structure is the status of the user-level
event, zero for success, non-zero for failure. The rsize element of the a r e c structure
specifies the size of memory required to record the data to be written. The argp ele-
ment of the a r e c structure is a character pointer to the audit data.

The size argument is used to verify the size of the a r e c structure being passed in
order to determine the version of auditing.

RETURN VALUE
The a u d i t d m p system call returns zero on success. It will also return zero if the
rtype is not currently being audited and no record is written. When unsuccessful,
a u d i t d m p returns a value of –1 and sets e r r n o to indicate the error.

ERRORS
Under the following conditions, a u d i t d m p fails and sets e r r n o to:

E I N V A L if the system call is invoked while auditing is disabled.

E I N V A L if the size of a r e c is not equal to s i z e.

E I N V A L if r t y p e is invalid.

E P E R M if the process does not have the appropriate privileges.

E N O P K G if the audit package is not installed.

SEE ALSO
auditbuf(AT_LIB), auditctl(AT_LIB), auditevt(AT_LIB), auditlog(AT_LIB)

Page 1

FINAL COPY
June 15, 1995

File: at_lib/auditdmp
svid

Page: 17

auditdmp (AT_LIB) auditdmp (AT_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: at_lib/auditdmp
svid

Page: 18

auditevt (AT_LIB) auditevt (AT_LIB)

NAME
a u d i t e v t – get or set auditable events

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / a u d i t . h >

i n t a u d i t e v t (i n t cmd, s t r u c t a e v t ∗aevtp, i n t size)

DESCRIPTION
The a u d i t e v t system call gets or sets auditable events, depending on the value of
cmd. The following values of cmd are supported: A G E T S Y S, A S E T S Y S, A G E T U S R,
A G E T M E, A S E T M E, †A G E T L V L, †A C N T L V L, †A S E T L V L, A S E T U S R, A Y A U D I T, and A N A U D I T.
The auditable event bit mask (emask) is represented by a hexadecimal number. The
value of uid in the a e v t structure is used to identify users to be audited on the sys-
tem.

The aevtp argument points to a structure of type a e v t which contains the following
elements:

a d t e m a s k _ t emask; event mask to be set or retrieved

u i d _ t uid; user’s event mask to be set or retrieved

u i n t flags; event mask flags

u i n t nlvls; size of the individual object level table

l e v e l _ t ∗lvl_minp; minimum object level range criteria

l e v e l _ t ∗lvl_maxp; maximum object level range criteria

l e v e l _ t ∗lvl_tblp; individual object level table

When the specified cmd is A G E T S Y S, the system-wide event mask (a d t _ s y s e m a s k) is
copied to emask in the a e v t structure, and the entire structure is returned. All ele-
ments of the a e v t structure except emask are ignored.

When the specified cmd is A S E T S Y S, the value of emask in the a e v t structure is
OR’ed with the fixed auditable events and then copied into the system wide event
mask. If auditing is enabled, then every process audit structure is updated to reflect
the change. All elements in the a e v t structure except emask are ignored.

When the specified cmd is A G E T U S R, the active process list is searched for a process
that belongs to the uid given in the a e v t structure. If one is located, the value of the
user’s emask is copied into the e m a s k field in the a e v t structure, and the entire
structure is returned. All elements of the structure except for emask and uid are
ignored.

When the specified cmd is A G E T M E, the invoking process user’s emask is retrieved
and copied into the emask field in the a e v t structure. All elements of the structure
except for emask are ignored.

When the specified cmd is A S E T M E, the value of emask is copied into the user’s event
mask field of the user’s process audit structure and then combined by a bitwise OR
with the system wide event mask to create a new process event mask for the invok-
ing process only. All elements of the structure except for emask are ignored.

Page 1

FINAL COPY
June 15, 1995

File: at_lib/auditevt
svid

Page: 19

auditevt (AT_LIB) auditevt (AT_LIB)

When the specified cmd is A S E T U S R, the active process list is searched for every pro-
cess belonging to the given uid. When a valid active process is located, the value of
emask is copied into the user’s event mask field of the process audit structure and
then combined by a bitwise OR with the system wide event mask to create a new
process event mask. This processing continues until it finds and sets every valid
active process belonging to the specified uid. All elements of the structure except
for emask and uid are ignored.

When the specified cmd is A N A U D I T, the current process and any subsequent forked
process is exempt from auditing. All elements of the structure are ignored.

When the specified cmd is A Y A U D I T, the current process is made auditable again.
All elements of the structure are ignored.

†When the specified cmd is A C N T L V L, the number of individual object levels is
copied into the n l v l s field and the entire a e v t structure is returned. All elements
of the structure except for n l v l s are ignored. The Mandatory Access Control
Module (MAC) must be installed for this value of cmd to be used.

†When the specified cmd is A G E T L V L, the object level event mask is retrieved and
copied into the e m a s k field. The object level flags are copied into the f l a g s field,
and the number of individual object levels is copied into the n l v l s field. If the
object level range criteria was set (indicated by a flag setting of A D T _ R M A S K), then
the lvl_minp and lvl_maxp fields are filled. If any individual object level criteria
were set (indicated by a flag setting of A D T _ L M A S K), then the lvl_tblp field is filled.
(Note that the amount of storage space for the lvl_tblp must be allocated by the
invoking process. The amount of space is calculated by multiplying the value of
n l v l s by the size of a level_t. The value of n l v l s is obtained from A C N T L V L.) The
entire a e v t structure is returned; only the uid element is ignored. The Mandatory
Access Control Module must be installed for this value of cmd to be used.

†When the specified cmd is A S E T L V L, the object level audit criteria is set. Object
level auditing may be performed on either a single level or a range of levels, neither
of which can be specified unless an object level event mask has been previously set
or is currently being set. If the object level event mask flag is specified (indicated by
a flag setting of A D T _ O M A S K), then the object level event mask is modified to reflect
the value of the emask field. The Mandatory Access Control Module must be
installed for this value of cmd to be used.

If auditing is to be performed on single levels, the value of flags is set to A D T _ L M A S K,
and the levels specified by lvl_tblp will be set. To clear the individual levels, the
flags value is set to A D T _ L M A S K, and list of null levels is specified by lvl_tblp.

If auditing is to be performed on a level range, the value of flags is set to A D T _ R M A S K,
and the range of levels specified by lvl_maxp and lvl_minp will be set. In this case,
lvl_maxp must dominate lvl_minp. To clear the level range, the value of flags is set to
A D T _ R M A S K, and the values of lvl_maxp and l v l _ m i n p are both null.

The s i z e argument is used to verify the size of the a e v t structure being passed in
order to determine the version of auditing.

Auditing must be installed on the system for this system call to be used. Use of the
a u d i t e v t system call requires the appropriate privilege.

Page 2

FINAL COPY
June 15, 1995

File: at_lib/auditevt
svid

Page: 20

auditevt (AT_LIB) auditevt (AT_LIB)

RETURN VALUE
The a u d i t e v t system call returns zero on success. When unsuccessful, a u d i t e v t
returns a value of –1 and sets e r r n o to indicate the error.

ERRORS
Under the following conditions, a u d i t e v t fails and sets e r r n o to:

E I N V A L The size of a e v t is not equal to s i z e.

E I N V A L Either l v l _ m i n p or l v l _ m a x p points to an invalid level.

†E I N V A L The cmd is A S E T L V L, the flags field is A D T _ R M A S K, and l v l _ m a x p does not
dominate l v l _ m i n p.

†E I N V A L The cmd is A S E T L V L, the flags field is A D T _ R M A S K, and l v l _ m a x p and
l v l _ m i n p are not both NULL.

E I N V A L The cmd is invalid.

†E N O P K G The cmd is A C N T L V L, A G E T L V L, or A S E T L V L, and the MAC feature is not
installed.

E P E R M The invoking subject does not have the required privilege.

E S R C H No process can be found corresponding to that specified by the uid.

SEE ALSO
auditbuf(AT_LIB), auditctl(AT_LIB), auditdmp(AT_LIB), auditlog(AT_LIB).

FUTURE DIRECTIONS
The ACNTLVL cmd value is designated Level 2 as of July 1992. A new command
value will be added that will not require that a structure be passed in order to
return the number of auditing levels.

The concept of Object Level Auditing will not be supported in the future. The
NCSC’s Orange Book makes no specific references to this for a B2 system. In associ-
ation with removing the concept of "Object Level Auditing" from the SVID, the
AGETLVL, and ASETLVL "cmd" values and related descriptions and error condi-
tions are designated Level 2 for removal effective May 1993.

The ACNTLVL, AGETLVL, and ASETLVL cmd values and associated descriptions
will be removed from the SVID when their three year waiting period has been com-
pleted.

LEVEL
Level 1.

ACNTLVL "cmd" value has been designated Level 2, effective July 1992.

AGETLVL, ASETLVL "cmd" values are designated Level 2, effective May 1993.

Page 3

FINAL COPY
June 15, 1995

File: at_lib/auditevt
svid

Page: 21

auditlog (AT_LIB) auditlog (AT_LIB)

NAME
auditlog - get or set audit log file attributes

SYNOPSIS
i n c l u d e < l i m i t s . h >
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / a u d i t . h >

i n t a u d i t l o g (i n t cmd, s t r u c t a l o g *alogp, i n t size)

DESCRIPTION
The a u d i t l o g system call is used to get or to set the audit log file attributes,
depending on whether cmd is A L O G G E T or A L O G S E T. Use of the a u d i t l o g system
call requires the appropriate privilege. The alogp argument points to a structure of
type a l o g which contains the following elements:

i n t flags; log file attributes

i n t onfull; action on log file full

i n t onerr; action on log file error

i n t maxsize; maximum log file size

i n t seqnum; log file sequence number 001-999

c h a r mmp[ADT_DATESZ]; current month time stamp

c h a r ddp[ADT_DATESZ]; current day time stamp

c h a r pnodep[ADT_NODESZ]; optional primary log file node name

c h a r anodep[ADT_NODESZ]; optional alternate log file node name

c h a r *ppathp; optional primary log file pathname

c h a r *apathp; optional alternate primary log file pathname

c h a r *progp; optional program to run during log file switch

c h a r *defpathp; default primary log file pathname

c h a r *defnodep; default primary log file node name

c h a r *defpgmp; default program to run during log file switch

i n t defonfull; default action on log file full

The following values for flags in the a l o g structure are supported and may be
modified or retrieved:

P P A T H set primary audit log file pathname (ppathp)

P N O D E set primary audit log file node name (pnodep)

A P A T H set alternate audit log file pathname (apathp)

A N O D E set alternate audit log file node name (anodep)

P S I Z E set maximum size for primary audit log file

P S P E C I A L set primary audit log file to a character special device

Page 1

FINAL COPY
June 15, 1995

File: at_lib/auditlog
svid

Page: 22

auditlog (AT_LIB) auditlog (AT_LIB)

A S P E C I A L set alternate audit log file to a character special device

The following values for onfull in the a l o g structure are supported and may be
modified or retrieved: A S H U T, A A L O G, A P R O G, and A D I S A. (A P R O G is valid only if
A A L O G is also specified.) The following values of onerr are supported and may be
modified or retrieved: A S H U T and A D I S A.

A S H U T shutdown the system when audit log file is full or an audit log file
error occurs

A A L O G switch to alternate audit log file when current log file is full

A P R O G run optional binary or shell program when audit log file is full

A D I S A disable auditing subsystem when audit log file is full or an audit
log file error occurs

In addition to the ones listed above, the following elements in the a l o g structure
may also be modified or retrieved: maxsize, pnodep, anodep, ppathp, apathp, and
progp.

The following elements in the a l o g structure may only be retrieved because they
can only be set internally: seqnum, mmp, and ddp.

The following elements in the a l o g structure may only be set because the defaults
are read from the /etc/default directory: defpathp, defnodep, defpgmp, and defonfull.

The value of maxsize in the a l o g structure must be greater than or equal to the size
of the audit buffer, A D T _ B S I Z E. The absolute pathnames to the primary audit log
file (ppathp) and to the alternate audit log file (apathp) must be valid and be either of
type directory or character special file. The absolute pathname to the optional pro-
gram to be run during log switch (progp) must be less than P A T H _ M A X - 15. A
seven-character node name may be appended to both the primary audit log file
(pnodep) and the alternate audit log file (anodep).

s e q n u m is the log sequence number that is to be retrieved. s e q n u m can range from
001–999. m m p is the character pointer to the current month time stamp that is to be
retrieved. d d p is the character pointer to the current day time stamp that is to be
retrieved.

When the specified value of cmd is A L O G G E T, the return values of the call are all the
elements of the a l o g structure. Note that the space required for the ppathp, apathp,
and progp must be allocated by the user.

When the value of cmd is A L O G S E T, the elements of the a l o g structure determine
what actions are to be performed.

The size argument is used to verify the size of the a l o g structure being passed in
order to determine the version of auditing.

RETURN VALUE
When invoked successfully, the a u d i t l o g system call returns zero and sets the
appropriate audit log file attributes. When unsuccessful, a u d i t l o g returns a value
of –1 and sets e r r n o to indicate the error.

Page 2

FINAL COPY
June 15, 1995

File: at_lib/auditlog
svid

Page: 23

auditlog (AT_LIB) auditlog (AT_LIB)

ERRORS
Under the following conditions, a u d i t l o g fails and sets e r r n o to:

E A C C E S The cmd is A L O G S E T, and ppathp, apathp, or progp cannot be
accessed.

E A G A I N It is not possible to allocate memory for the alogp.

E A G A I N The cmd is A L O G S E T, and it is not possible to allocate memory for
various elements used to fill in the a l o g structure.

E I N V A L The size of a l o g does not equal s i z e.

E I N V A L The value of cmd is invalid.

E I N V A L The cmd is A L O G S E T, and the value of onfull is not either A S H U T,
A A L O G, A D I S A, or A A L O GA P R O G.

E I N V A L The cmd is A L O G S E T, and the value of onerr is not either A S H U T or
A D I S A.

E I N V A L The cmd is A L O G S E T and the value of maxsize is not equal to zero
and less than the size of the audit buffer (A D T _ B S I Z E).

E I N V A L The cmd is A L O G S E T, and the flags field contains P P A T H or N O D E
when auditing is enabled.

E N O E N T The cmd is A L O G S E T and the pathname to the primary log file,
alternate log file, or program to be run during a log switch does
not exist.

E N A M E T O O L O N G The cmd is A L O G S E T, and the ppathp, apathp, or defpathp fields are
longer than P A T H _ M A X - 15.

E N A M E T O O L O N G The cmd is A L O G S E T, and progp or defpgmp are longer than
P A T H _ M A X.

E N O T B L K The cmd is A L O G S E T, the flags field contains P S I Z E, and the maxsize
value is not zero.

E P E R M The invoking subject does not have the required privilege.

E N O P K G The audit package is not installed.

SEE ALSO
a u d i t b u f(AT_LIB), a u d i t c t l(AT_LIB), a u d i t d m p(AT_LIB), a u d i t e v t(AT_LIB)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: at_lib/auditlog
svid

Page: 24

Auditing Extension Commands And Utilities

The following section contains the manual pages for the AT_CMD routines.

Auditing Extension Commands And Utilities 3-1

FINAL COPY
June 15, 1995

File: at_cmd.cov
svid

Page: 25

FINAL COPY
June 15, 1995

File:

Page: 26

auditcnv (AT_CMD) auditcnv (AT_CMD)

NAME
auditcnv – create audit mask file

SYNOPSIS
a u d i t c n v

DESCRIPTION
The a u d i t c n v shell-level command allows an administrator with the appropriate
privileges to create an audit mask file for the user login interface. The
/ e t c / p a s s w d and / e t c / d e f a u l t / u s e r a d d files are used to assign an initial default
audit mask for every user on the system. When the a u d i t c n v command is invoked
and completes successfully, the following message is displayed:

/ e t c / s e c u r i t y / i a / a u d i t c r e a t e d

FILES
/ e t c / p a s s w d
/ e t c / d e f a u l t / u s e r a d d
/ e t c / s e c u r i t y / i a / a u d i t

USAGE
Administrator.

SEE ALSO
defadm(BU_CMD), useradd(AU_CMD), usermod(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: at_cmd/auditcnv
svid

Page: 27

auditfltr (AT_CMD) auditfltr (AT_CMD)

NAME
auditfltr – convert audit log file for inter-machine portability

SYNOPSIS
a u d i t f l t r [[– i N] [– o X]]  [– i X – o N]

DESCRIPTION
The a u d i t f l t r command is used to convert audit log files from native machine for-
mat into XDR (External Data Representation) format and vice versa. These conver-
sions allow you to transport audit log files from one machine to another for pro-
cessing with a u d i t r p t. a u d i t f l t r does not need to be used in all instances. If the
two machines are of the same architecture and are running the same version of
auditing, the log files can simply be copied from the source machine to the destina-
tion machine. If the two machines are of different architecture, or if they are not
running the same version of auditing, a u d i t f l t r must be used as part of the copy-
ing procedure.

The a u d i t f l t r command has the following options:

– i This option specifies the type of the input file, which is always stan-
dard input.

– o This option specifies the type of the output file, which is always stan-
dard output.

The type of format may be N, for native machine format, or X, for
XDR format. If no options are specified it is assumed the input file is
in native machine format and the output file is in XDR format.

The procedure for transferring an audit log file from one machine to another has
basically three steps. First, the audit log is converted from native machine format to
the portable XDR format, using a command like the following:

c a t / v a r / a u d i t / 1 1 2 5 1 0 3 | a u d i t f l t r – i N – o X > \
/ v a r / t m p / 1 1 2 5 1 0 3 . x f e r

Second, the file is transferred to another machine. This can be done by transferring
the file to magnetic media on one with t c p i o and then restoring it with the same
command on the other. Third, the file is converted back to machine format. To
avoid confusion with the destination machine’s own audit log files, a subdirectory
import under /var/audit is created. The file can then be converted with a command
like the following:

c a t / v a r / t m p / 1 1 2 5 1 0 3 . x f e r | a u d i t f l t r – i X – o N > \
/ v a r / a u d i t / i m p o r t / 1 1 2 5 1 0 3

The a u d i t f l t r command accepts only audit log files as input.

FILES
/ v a r / a u d i t /MMDD###

USAGE
Administrator.

Page 1

FINAL COPY
June 15, 1995

File: at_cmd/auditfltr
svid

Page: 28

auditfltr (AT_CMD) auditfltr (AT_CMD)

SEE ALSO
auditmap(AT_CMD), auditrpt(AT_CMD)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: at_cmd/auditfltr
svid

Page: 29

auditlog (AT_CMD) auditlog (AT_CMD)

character special file does not exist, an error message is displayed.

If the argument to - A is a directory, a u d i t o n creates a regular file
relative to next_path, based upon the current month and day, fol-
lowed by a three digit sequence number (for example, 1231002).
The maximum path allowed is (PATH_MAX - 15). If the path
exceeds this value, an error message is printed.

The valid range of sequence numbers is 001 to 999, and the default
event log file is the regular file / v a r / a u d i t /MMDD###. If the file
exists when the system attempts its initial write, the sequence
number is incremented and another attempt is made.

- a next_node The - a option provides the ability to append an additional seven
characters to the system-generated alternate event log file name.
For example, the command

a u d i t l o g - a a b c d e f g

will create the file / v a r / a u d i t /MMDD###a b c d e f g when a log
switch occurs.

If the next_node is larger than seven characters or if it contains a
slash, an error message is displayed.

If the alternate log is a character special device the - a option is
ignored.

- n pgm The - n option specifies either a shell file or binary executable (pgm)
that will be run when a log switch occurs. The - n option may be
used with at least one of the - a or - A options.

FILES
/ e t c / d e f a u l t / a u d i t
/ e t c / m a s t e r . d / a u d i t
/ v a r / a u d i t /MMDD###

USAGE
Administrator.

SEE ALSO
auditbuf(AT_LIB), auditctl(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB),
auditlog(AT_LIB), auditoff(AT_CMD), auditon(AT_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: at_cmd/auditlog
svid

Page: 32

auditmap (AT_CMD) auditmap (AT_CMD)

NAME
auditmap – create and write the audit map files

SYNOPSIS
a u d i t m a p [- m dirname]

DESCRIPTION
The a u d i t m a p shell-level command creates and writes the audit map data to a set of
files. To execute this command, a user must have the appropriate privileges. This
command is invoked by the a u d i t o n command whenever auditing is started. The
administrator may also invoke this command directly.

The a u d i t r p t command uses the audit map files to translate numeric data in the
log (for example, user ids) into character strings (for example, login names). The
default name of the directory containing the audit map files is
/ v a r / a u d i t / a u d i t m a p. The audit map file contains the following information:

• file identification, consisting of audit software version, timezone information,
privilege mechanism information, system name, machine node name, operating
system release and version, and machine type.

• all / e t c / p a s s w d login names and their corresponding UIDs

• all / e t c / g r o u p names and their GIDs

• all event type names and their corresponding event type numbers

• all event classes defined in / e t c / s e c u r i t y / a u d i t / c l a s s e s and their
corresponding event types

• all privilege names and their corresponding numbers

• all system call names and their corresponding numbers

If the Enhanced Security Extension is implemented a copy of the Level Translation
Database (LTDB) is created in addition to the auditmap file. The LTDB consists of
the following four separate files: ltf.class, ltf.cat, ltf.alias, and lid.internal.

You can specify a name for the audit map directory with the - m option. The
specified directory must exist to be writable. The audit map files are readable only
by users with appropriate privileges. Access controls should be set appropriately
for the directory that contains the map files.

FILES
/ e t c / s e c u r i t y / a u d i t / c l a s s e s
/ v a r / a u d i t / a u d i t m a p / a u d i t m a p
/ v a r / a u d i t / a u d i t m a p / l t f . c l a s s
/ v a r / a u d i t / a u d i t m a p / l t f . c a t
/ v a r / a u d i t / a u d i t m a p / l t f . a l i a s
/ v a r / a u d i t / a u d i t m a p / l i d . i n t e r n a l
/ e t c / s e c u r i t y / m a c / l t f . c l a s s
/ e t c / s e c u r i t y / m a c / l t f . c a t
/ e t c / s e c u r i t y / m a c / l t f . a l i a s
/ e t c / s e c u r i t y / m a c / l i d . i n t e r n a l

Page 1

FINAL COPY
June 15, 1995

File: at_cmd/auditmap
svid

Page: 33

auditmap (AT_CMD) auditmap (AT_CMD)

USAGE
Administrator.

SEE ALSO
auditon(AT_CMD), auditrpt(AT_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: at_cmd/auditmap
svid

Page: 34

auditoff (AT_CMD) auditoff (AT_CMD)

NAME
auditoff – disable auditing

SYNOPSIS
a u d i t o f f

DESCRIPTION
The a u d i t o f f shell-level command allows an administrator with the appropriate
privileges to disable auditing. When auditing is disabled by a u d i t o f f, auditable
events currently in progress will not have a record logged because they will not
complete while auditing is enabled. While auditing is enabled, execution of this
command causes the a u d i t d m p system call to write an audit record to the log file.
If auditing is already disabled, and a u d i t o f f is executed, no record is written.

RETURN VALUE
Upon successful completion of a u d i t o f f, the following informational message is
displayed:

A u d i t i n g d i s a b l e d

If a u d i t o f f is invoked while auditing is already disabled, an error status is
returned and the following informational message displayed:

A u d i t i n g a l r e a d y d i s a b l e d

USAGE
Administrator.

SEE ALSO
auditctl(AT_LIB), auditdmp(AT_LIB), auditlog(AT_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: at_cmd/auditoff
svid

Page: 35

auditon (AT_CMD) auditon (AT_CMD)

NAME
auditon – enable auditing

SYNOPSIS
a u d i t o n

DESCRIPTION
The a u d i t o n shell-level command allows an administrator with the appropriate
privileges to enable auditing.

When auditon is invoked, it initializes the following with default values from the
/etc/default/audit file:

A U D I T _ L O G E R R log full conditions. May have the values "DISABLE" or
"SHUTDOWN".

A U D I T _ L O G F U L L log error conditions. May have the values "DISABLE",
"SHUTDOWN" or "SWITCH".

A U D I T _ D E F P A T H log file path name.

A U D I T _ N O D E log file node name.

A U D I T _ P G M program to be executed during log switch.

The auditlog command can be used to override the values specified in
/etc/default/audit for AUDIT_LOGFULL, AUDIT_DEFPATH, AUDIT_NODE,
and AUDIT_PGM. If access to the / e t c / d e f a u l t / a u d i t file is denied or if a vari-
able name is either missing or invalid, a warning message is printed. The
AUDIT_NODE and AUDIT_PGM parameters are not evaluated unless the value of
AUDIT_LOGFULL is SWITCH.

When auditing is enabled, the fixed events and any selectable events set by previous
execution of a u d i t s e t command take effect. When the a u d i t o n command is
invoked successfully, the following message is displayed:

A u d i t i n g e n a b l e d

If the event log path cannot be accessed a u d i t o n prints an error message.

While auditing is enabled, execution of a u d i t o n results in an audit record being
written to the log file via the auditdmp system call. The a u d i t m a p command is also
invoked to write information to the audit map files. Any event being audited that
completes while auditing is enabled will generate an event log record.

The auditing criteria remain in effect until one of the following occurs:

• When the system is shutdown both the event criteria and the log file attributes
are lost.

• When auditing is disabled the system, object-level, and user event criteria are
maintained but the log file attributes return to their default settings.

• When a log switch occurs the system, object-level, and user event criteria are
maintained but the log file attributes return to their default settings.

• When the a u d i t l o g or a u d i t s e t command is invoked the appropriate criteria
is changed.

Page 1

FINAL COPY
June 15, 1995

File: at_cmd/auditon
svid

Page: 36

auditon (AT_CMD) auditon (AT_CMD)

Auditing remains enabled until the a u d i t o f f command is executed, or until the log
full condition of DISABLE or SHUTDOWN occurs, or until a log error is encoun-
tered. If the system is shutdown, the a u d i t l o g and a u d i t s e t commands may
need to be executed to reset any specified auditing criteria before invoking the
a u d i t o n command.

FILES
/ e t c / d e f a u l t / a u d i t
/ v a r / a u d i t /MMDD###

USAGE
Administrator.

SEE ALSO
auditctl(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB), auditlog(AT_LIB),
auditlog(AT_CMD), auditmap(AT_CMD), auditoff(AT_CMD), auditset(AT_CMD),
defadm(BU_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: at_cmd/auditon
svid

Page: 37

auditrpt (AT_CMD) auditrpt (AT_CMD)

NAME
a u d i t r p t – display recorded information from audit trail

SYNOPSIS
a u d i t r p t [- o] [- i] [- b | - w]

[- e [!]event[, . . .]] [- u user[, . . .]] [- f object_id[, . . .]]
[- t object_type[, . . .]] [- l level | - r levelmin-levelmax]
[- s time] [- h time] [- a outcome] [- m map]
[- p a l l | priv[, . . .]] [log [. . .]]

DESCRIPTION
The a u d i t r p t shell level command allows the administrator with the appropriate
privileges to selectively display the contents of audit log files. Note that if the log
files are presented as standard input that only one log file may be presented at a
time. If more than one log file is presented in this manner, a u d i t r p t will fail when
it encounters data from the second log file. Specify the file names on the command
line if you wish to process multiple log files. The privileges required are a u d i t and
s e t p l e v e l.

The following options are available:

- o Display the events that correspond to the union of the specified
auditing criteria.

- i Take input audit records from standard input.

- b Display the events in reverse chronological order (backwards).
This option cannot be used with the - w option.

- w Display the events as they are being written to the event log file.
This option cannot be used with the - b option.

- e[!] event[,. . .] Display the selected event types or event classes. If ! is specified,
all the events except those listed are displayed. Event classes,
which are aliases for groups of events, are defined in the
/ e t c / s e c u r i t y / a u d i t / c l a s s e s file.

- u user[,. . .] Display all the recorded events for the specified real and effective
uids and/or login names.

- f object_id[,. . .] Display all the recorded events for the specified object_ids. The
object_id must be the full pathname of a regular file, special file,
directory, or a named pipe, or the ID of an IPC object or loadable
module.

- t object_type[,. . .]
Display all the recorded events for the specified object_types.
Valid arguments are f (regular file), c (character special file), l
(links), d (directories), p (named pipes or unnamed pipes), s
(semaphores), h (shared memory), and m (messages).

- l level Display all the recorded events involving objects at the specified
level. Only one level may be specified. Level information is
recorded only if the Mandatory Access Control (MAC) feature
was installed on the system that generated the audit log. This
option cannot be used with the - r option.

Page 1

FINAL COPY
June 15, 1995

File: at_cmd/auditrpt
svid

Page: 38

auditrpt (AT_CMD) auditrpt (AT_CMD)

- r levelmin–levelmax
Display all recorded events involving objects whose security level
falls within the range defined by levelmin and levelmax. Only one
level range may be specified, and the level specified by levelmax
must dominate levelmin. Level information is recorded only if the
MAC feature was installed on the system that generated the audit
log. This option cannot be used with the - l option.

- s time Display all the events occurring at or after the specified time. The
time should be specified in the format used by the d a t e com-
mand. The following are valid values for times: for hours, 00 to
23; for minutes, 00 to 59; for days, 01 to 31; for months, 01 to 12;
and for years, 00 to 99.

When both - s and - h are specified without the - o option, the
start time (- s) must be earlier than the end time (- h).

- h time Display all the events existing at or before the specified time. For-
mat and valid values for time are the same as the - s option.

- a outcome Display all the recorded events for the specified outcome: s (suc-
cess) or f (failure).

- m map Specify the path (absolute or relative) of the auditmap directory.

- p all  priv[,. . .] Display the recorded events that use the specified privilege(s). If
the word a l l follows the - p option, display all recorded events
that use any privilege.

log[. . .] Name (absolute or relative pathname) of the audit log(s) to use.

OUTPUT
The first part of the output of a u d i t r p t consists of the command line entered by
the administrator. For each log file, the output consists of two parts. First,
a u d i t r p t displays audit log file and system identification information to verify that
the correct log file was specified. This includes the internal identification of the
audit log file, the version of the audit software that produced the log file, and the
identification of the machine that produced the log file. Second, all records that
meet the selection criteria are displayed one record per line. Records are displayed
in the following format:

time,event,pid,outcome,user,group(s),session,subj_lvl, \
(obj_id:obj_type:obj_lvl:device:maj:min:inode:fsid)(. . .)[,pgm_prm]

The meanings of the fields are as follows:

time The time is printed as hour:minute:second:day:month:year. For exam-
ple, 1 0 : 3 0 : 0 0 : 1 5 : 0 4 : 9 1 is 10:30am of April 15, 1991.

event The event type.

pid The process ID number of the process that triggered the event, pre-
ceded by the letter P.

outcome The outcome of the event is either s for success or f (exit value) for
failure.

Page 2

FINAL COPY
June 15, 1995

File: at_cmd/auditrpt
svid

Page: 39

auditrpt (AT_CMD) auditrpt (AT_CMD)

user Real and effective user names are displayed. User names are
separated by a colon (that is, real_user_name:effective_user_name).

group(s) Real and effective groups are displayed, followed by a list of supple-
mentary groups, if any. Groups are separated by a colon (that is,
real_grp:effective_grp:suppl_grp1:suppl_grp2: . . .).

session_id The session ID number, preceded by the letter S.

subj_lvl Subject level information is recorded only if the MAC feature was
installed on the system that generated the audit log file. This field will
be blank otherwise.

(obj_id:obj_type:obj_lvl:device:maj:min:inode:fsid)
This field contains file identification information, enclosed in
parentheses. If multiple objects are accessed in a single event, the field
is repeated. This field contains the following subfields:

obj_id The the name of a regular file, special file, directory, named
pipe, or the id of an IPC object. If the full pathname of a
file system object cannot be determined, the partial path-
name will be printed with an asterisk (*) as a prefix.

obj_type The object type, using the codes described in the descrip-
tion of the - t option.

obj_lvl Object level information is recorded only if the MAC
feature was installed on the system that generated the audit
log file. This field will be blank otherwise.

device The object’s device number.

maj The major number component of the object’s device.

min The minor number component of the object’s device.

inode The object’s i n o d e number.

fsid The object’s file system ID number.

pgm_prm This field is specific to each audit event and may be composed of
several subfields. The subfields described for each event will be
displayed in the order shown below and will be separated by com-
mas, unless otherwise specified.

The pgm_prm field can be one of the following:

For the a u d i t _ c t l / a u d i t _ e v t / a u d i t _ l o g / a u d i t _ m a p events when gen-
erated by the audit user level commands a u d i t o n, a u d i t o f f, a u d i t s e t,
a u d i t l o g, a u d i t m a p, respectively: the entire command line.

For the a d d _ g r p / a d d _ u s r / a d d _ u s r _ g r p / m o d _ g r p / m o d _ u s r events: the
entire command line.

For the t f a d m i n event: the entire command line.

For the c h g _ t i m e s / d a t e events: the new date. For the c h g _ t i m e s event
only, the file name is also given.

Page 3

FINAL COPY
June 15, 1995

File: at_cmd/auditrpt
svid

Page: 40

auditrpt (AT_CMD) auditrpt (AT_CMD)

For the f o r k event: the child process ID.

For the i n i t event: if generated by the user level command i n i t (1 M), the
entire command line. If generated by the i n i t process (‘‘process 1’’):

c u r r e n t s t a t e : state1 n e w _ s t a t e : state2

The old init state is represented by state1, and the new init state by state2.

For the k i l l event: the signal and a list of pids to which the signal was
posted.

For the s e t _ u i d event: new user.

For the s e t _ g i d event: the new group.

For the s e t _ p g r p s event: the name of the system call that generated the
event (s e t p g r p or s e t p g i d). In addition, if generated by the s e t p g i d sys-
tem call, the process ID and process group ID passed to the system call.

For the s e t _ g r p s event: the supplementary group access list.

For the l i n k event: the pathname of the target file.

For the d a c _ o w n _ g r p event: if the owner was changed, the new user ID
(preceded by user:) or if the group was changed, the new group ID (pre-
ceded by group:). In addition, for the c h o w n system call, the file name.

For the d a c _ m o d e event: the new mode.

For the m s g _ c t l / m s g _ g e t / m s g _ o p / s e m _ c t l / s e m _ g e t / s e m _ o p / s h m _ c t l /
s h m _ g e t / s h m _ o p events: the operation code, flag and command value. If a
subfield does not pertain to an event type, a zero will be displayed.

For the l o g i n / b a d _ a u t h events, the terminal identification (tty), user, and
group, of the user attempting to log on (if valid). In addition, for the
b a d _ a u t h event: the error message (L O G I N, P A S W D or A U D I T)

For the p a s s w d event: the user whose password is being changed (if valid).

For the p m _ d e n i e d event: the requested privilege, system call name, and
maximum set of privileges.

For the c r o n event: user’s effective uid, user’s effective gid, user’s level
(enclosed in double quotes), and cron job name. User refers to the user that
cron is running on behalf of. Note that the level subfield will be blank if the
Enhanced Security Utilities were not installed and running on the audited
system.

For the o p e n _ r d / o p e n _ w r events: the file descriptor.

For the f i l e _ l v l event: new security level (enclosed in double quotes). In
addition, for the f l v l f i l e system call, the file name.

For the d i s p _ a t t r / s e t _ a t t r events: the release flag (p e r s i s t e n t, l a s t -
c l o s e, or s y s t e m), device mode (s t a t i c or d y n a m i c), low_level (enclosed
in double quotes), high_level (enclosed in double quotes) and device state
(p r i v a t e or p u b l i c). In addition, for the d i s p _ a t t r event: the inuse flag
(i n u s e or u n u s e d). For the f d e v s t a t system call, the file descriptor.

Page 4

FINAL COPY
June 15, 1995

File: at_cmd/auditrpt
svid

Page: 41

auditrpt (AT_CMD) auditrpt (AT_CMD)

For the f i l e _ a c l event: all ACL entries and the file name.

For the i p c _ a c l event: the ipc type, the ipc id and all ACL entries.

For the u l i m i t event: the new limit.

For the s e t r l i m i t event: the resource (R L I M I T _ C O R E, R L I M I T _ C P U,
R L I M I T _ D A T A, R L I M I T _ F S I Z E, R L I M I T _ N O F I L E, R L I M I T _ S T A C K,
R L I M I T _ V M E M), soft limit and hard limit.

For the s c h e d _ l k event: the action (P R O C L O C K, T X T L O C K, D A T L O C K) if gen-
erated by the p l o c k system call. The page mapping attributes (P R I V A T E, or
S H A R E D) and page protection attributes (one or more of the following:
P R O T _ R E A D, P R O T _ W R I T E, P R O T _ E X E C) if generated by the m e m c t l system
call.

For the s c h e d _ f p / s c h e d _ t s / s c h e d _ f c events: If generated by the
p r i o c n t l system call with the P C _ A D M I N command, the function name
(F P _ S E T D P T B L, F C _ S E T D P T B L, R T _ S E T D P T B L or T S _ S E T D P T B L), global prior-
ity and time quantum. In addition, if T S _ S E T D P T B L or F C _ S E T D P T B L, the
time-sharing dispatcher parameters: tqexp, slpret, maxwait and lwait. If
generated by the p r i o c n t l system call with the P C _ S E T P A R M S command,
the function name (R T _ N E W, (F P _ N E W, F C _ N E W, T S _ N E W, R T _ P A R M S E T,
F P _ P A R M S E T, F C _ P A R M S E T, T S _ P A R M S E T), process id and user priority. In
addition, if the s c h e d _ t s or s c h e d _ f c event, user priority limit. If
s c h e d _ f p event, the seconds in time quantum.

For the m o d a d m event: the module type (c h a r a c t e r d e v i c e, b l o c k
d e v i c e, s t r e a m s, f i l e s y s t e m, m i s c, n o n e), the command (r e g i s t e r), and
the module name. Also, module type specific data as follows: if module
type is c h a r a c t e r d e v i c e or b l o c k d e v i c e, the major number; if module
type is f i l e s y s t e m, the file system name; if module type is m i s c or n o n e,
no specific data is displayed.

For the m o d l o a d event: the loadable module id.

For the m o d p a t h event: the absolute pathname added to the loadable
module search path or NULL if the default search path is set.

For the i o c n t l event: the command argument id passed to the system call,
the flags found in the file table entry, if any (separated by colons), (F O P E N,
F R E A D, F W R I T E, F N D E L A Y, F A P P E N D, F S Y N C, F N O N B L O C, F M A S K, F C R E A T,
F T R U N C, F E X C L, F N O C T T Y, F A S Y N C, F N M F S).

For the f c n t l event: the command argument passed to the system call. If
command is F _ S E T F D, close-on-exec flag (0 or 1). If command is F _ S E T F L,
status flags (separated by colons) (O _ A P P E N D, O _ N O N B L O C K, O _ S Y N C). If a
s t r u c t f l o c k was passed to the system call: the command argument
passed to the system call, (F _ A L L C O S P, F _ F R E E S P, F _ S E T L C K, F _ S E T L K W,
F _ R S E T L C K, F _ R S E T L K W) and the following structure members: l_type,
l_whence, l_start, l_len.

For the m o u n t event: the flags passed to the system call and one or more of
the following: R D O N L Y (read-only), F S S (old (4-argument) mount), D A T A (6-
argument mount), N O S U I D (setuid disallowed), R E M O U N T (remount),
N O T R U N C (return E N A M E T O O L O N G for long file names).

Page 5

FINAL COPY
June 15, 1995

File: at_cmd/auditrpt
svid

Page: 42

auditrpt (AT_CMD) auditrpt (AT_CMD)

For the f i l e _ p r i v event: all information in the p r i v _ t masks passed to the
system call, in the following format:

priv_type1:priv_name[:priv_name] ,priv_type2: . . .

priv_type will be the name of the privilege type, if it is recognized by the
privilege mechanism of the audited system. If it is not recognized, it will be
the character representation of the first byte of the p r i v _ t mask (for exam-
ple, i for inheritable).

For the r e c v f d event: the receiver’s process ID, and the LWP ID.

For the m i s c event: the free form string provided by the application.

For the a u d i t _ b u f event: the high water mark value.

For the a u d i t _ c t l event when generated by the a u d i t c t l system call: the
action taken (A U D I T O N o r A U D I T O F F).

For the a u d i t _ l o g event when generated by the a u d i t l o g system call: all
information passed in the a l o g structure to the system call. This will
include: log file attributes (P P A T H : P N O D E : A P A T H : A N O D E : P S I Z E
: A S P E C I A L : P S P E C I A L), the action taken when the log is full
(A S H U T , A D I S A , A A L O G , A A L O G : A P R O G), the action taken when there is an
audit error (A S H U T or A D I S A), the maximum log size, the primary node
name, the alternate node name, the primary log pathname, the alternate log
pathname and the program to be run during a log switch.

For the a u d i t _ d m p event when generated by the a u d i t d m p system call: the
event type and the status (if success: S U C C E S S, if failure: F A I L U R E(status)).

For the a u d i t _ e v t event when generated by the a u d i t e v t system call: all
information passed in the a e v t structure to the system call. This will
include: command argument (A S E T M E , A S E T S Y S , A S E T U S R ,
A N A U D I T , A Y A U D I T). If the command is A S E T M E, the new user event mask
for the invoking process. If the command is A S E T S Y S, the new system event
mask. If the command is A S E T U S R, the user whose mask has been modified,
the new user event mask.

For most events generated from file descriptor based system calls, file information
is returned in the file identification information field.

All the commas in the output line, except possibly the last one (if pgm_prm is
empty), will be displayed as place holders. For all the output fields, null will be
displayed if the field is not appropriate for the event type being displayed. For
example, the date event has no objects related to it, so the
obj_id:obj_type:obj_lvl:device:maj:min:inode:fsid fields will be null (only the comma
separator will be displayed for these fields). Also, in a base system the MAC level
fields will be null.

The a u d i t r p t command will use the audit map to translate users, groups,security
levels, privileges, events and system calls from IDs(numbers) to names. If the infor-
mation for translating a number to a name is not found in the map, raw data (ASCII
representation of the numeric value) will be displayed for the corresponding field.

Page 6

FINAL COPY
June 15, 1995

File: at_cmd/auditrpt
svid

Page: 43

auditrpt (AT_CMD) auditrpt (AT_CMD)

All numeric values are displayed in decimal representation unless preceded by 0 x,
which indicates hexadecimal representation.

If a field is appropriate for an event but its value is "invalid," a ? will be displayed.
For example, if a login event fails because the logname used is unknown to the sys-
tem (cannot be translated into a UID in the log record), the user will be flagged as
"invalid" and a ? will be displayed.

Files
/ v a r / a u d i t /MMDD###
/ v a r / a u d i t / a u d i t m a p / a u d i t m a p
/ v a r / a u d i t / a u d i t m a p / l i d . i n t e r n a l
/ v a r / a u d i t / a u d i t m a p / l t f . a l i a s
/ v a r / a u d i t / a u d i t m a p / l t f . c a t
/ v a r / a u d i t / a u d i t m a p / l t f . c l a s s

SEE ALSO
a u d i t f l t r(AT_CMD), a u d i t l o g(AT_CMD), a u d i t m a p(AT_CMD),
a u d i t o f f(AT_CMD), a u d i t o n(AT_CMD), a u d i t s e t(AT_CMD)

LEVEL
Level 1.

Page 7

FINAL COPY
June 15, 1995

File: at_cmd/auditrpt
svid

Page: 44

auditset (AT_CMD) auditset (AT_CMD)

NAME
auditset – select or display auditing criteria

SYNOPSIS
a u d i t s e t [– d [– u user[, . . .]  – a] [- m]]
a u d i t s e t [– s [operator]event[, . . .]]

† [[– u user[, . . .]  – a] – e [operator]event[, . . .]]
† [– o [operator]event[, . . .]] [– l [+ | –] level]
† [– r [–]levelmin–levelmax]

DESCRIPTION
The a u d i t s e t shell-level command allows an administrator with the appropriate
privileges to set or display the dynamic auditing criteria. The - m, - o, - l, and - r
options are valid only if the Mandatory Access Control (MAC) subsystem is
installed. If it is not installed and these options are used, an error message is
printed. While auditing is enabled, execution of this command will result in an
audit record being written to the log file by the a u d i t d m p system call.

When invoked without options, a u d i t s e t displays the current system, user, and
object-level audit criteria. Each category is separated by a blank line, in the follow-
ing format:

S y s t e m A u d i t C r i t e r i a :
s y s t e m : a l l  events[, . . .]

U s e r A u d i t C r i t e r i a :
user: a l l  n o n e  events[, . . .]

† O b j e c t L e v e l A u d i t C r i t e r i a : a l l  n o n e  events[, . . .]
levelmin – levelmax
level

The - s, - e, - o options take an event or a list of events as arguments to the option.
The event input list must be separated by commas and can be the name of an event
class or event type. The event classes are defined in the modifiable system file
/ e t c / s e c u r i t y / a u d i t / c l a s s e s. One of three operators can precede the event or
list of events. The operators define the action taken with the event list. (Only one
operator may be used for a list of events; the operator affects every event on the
list.) The following are the valid operators:

[no operator] Replace the current auditable event(s), level, or level range with
the specified input.

+ Add the specified auditable event(s) or level to the current audit
criteria.

– Delete the specified auditable event(s), level, or level range from
the current audit criteria.

! All events except those specified replace the current auditable
events.

Additionally the words all or none may be used as event keywords. They may
not be used in conjunction with any other events or keywords.

Page 1

FINAL COPY
June 15, 1995

File: at_cmd/auditset
svid

Page: 45

auditset (AT_CMD) auditset (AT_CMD)

The a u d i t s e t command takes the following options:

- d Display the current audit criteria. If no other options are supplied,
the system audit criteria are displayed. When combined with
either the - a or - u options, - d displays audit criteria for either all
active users or the specified active users, respectively. The login
name is displayed (instead of the UID), and the events are listed in
alphabetical order. When combined with the - m option, - d
displays the audited object events in alphabetical order, followed
by a list of levels and/or level range to which the criteria apply.

– m When combined with – d, this option causes a u d i t s e t to display
the system audit criteria and the object-level audit criteria.

- u user[, . . .] Set (when combined with the - e option) the auditing criteria for
any number of users that are currently logged on or display (when
combined with the - d option), the system audit criteria and the
auditing criteria for any number of users that are currently logged
on. The user can be identified by either login name or UID
number. If more than one user is specified, each login name or
UID in the input list should be separated by commas. This option
cannot be combined with the - a option. If any of the given users
are invalid or not active, a warning message is printed.

- a Set (when combined with the - e option) the auditing criteria for
any number of users that are currently logged on or display (when
combined with the - d option), the system audit criteria and the
auditing criteria for all users that are currently logged on.
This option cannot be combined with the - u option.

- s [operator]event[, . . .]
Set the system-wide auditing criteria. Any valid event type or
event class will be recorded, regardless of user or object levels
involved.

- e [operator]event[, . . .]
This option must be combined with either the - u user or the - a
options to set user audit criteria.

- o [operator]event[, . . .]
Set object-level auditing criteria. The event types specified (types
or classes) are those to be audited for the levels currently in effect.

- l [+–] [level] Set object-level audit criteria for the specified level. When com-
bined with – o, it sets object-level audit criteria for the specified
level. All events specified by the – o option are audited if they
involve objects at the specified level. Only one level may be
specified; to audit more than one level, repeat the – l option. A
valid level is one which is defined to the system (see
l v l n a m e (E S _ C M D)). The maximum number of individual levels
which may be audited is system tunable.

Page 2

FINAL COPY
June 15, 1995

File: at_cmd/auditset
svid

Page: 46

auditset (AT_CMD) auditset (AT_CMD)

If a minus sign precedes the level, delete the level from the levels
used for object-level auditing. If a plus sign precedes the level, add
the level to the levels used for object-level auditing.

- r [–]levelmin–levelmax
Set object-level audit criteria for all levels in the level range
enclosed by levelmin and levelmax. The level range is inclusive
therefore levelmin and levelmax are audited. The maximum level
(levelmax) must dominate the minimum level (levelmin). If a minus
sign (–) precedes the level range, delete audit criteria for the
specified level range.

The a u d i t s e t command sets audit criteria for users dynamically. When you set
audit criteria for a user with the - u option, the criteria are in effect only for that
login session. If the user logs out or logs in from another terminal, the criteria are
no longer in effect. If you wish to set audit criteria for all of a user’s login sessions,
use either the u s e r a d d or u s e r m o d commands.

FILES
/ e t c / s e c u r i t y / a u d i t / c l a s s e s

USAGE
Administrator.

SEE ALSO
auditctl(AT_LIB), auditdmp(AT_LIB), auditevt(AT_LIB), auditlog(AT_CMD),
auditoff(AT_CMD), auditon(AT_CMD), defadm(BU_CMD), useradd(AU_CMD),
usermod(AU_CMD).

FUTURE DIRECTIONS
The concept of Object Level Auditing will not be supported in the future. The
NCSC’s Orange Book makes no specific references to this for a B2 system.

Associated with this, the -m, -o, -r, -l options and the Object Level Audit Criteria
have been moved to Level 2. They will be removed from the SVID when the three
year waiting period has been completed.

LEVEL
Level 1. The -m, -o, -r, -l options are Level 2, effective May 1993.

Page 3

FINAL COPY
June 15, 1995

File: at_cmd/auditset
svid

Page: 47

FINAL COPY
June 15, 1995

File:

Page: 48

Enhanced Security Introduction

The Enhanced Security Extension provides advanced interfaces to support a
secure system. This need has been reflected in the recent publication of several
security guidelines designed to specify a secure operating system. The need to
protect files and directories from unauthorized user access, via the Enhanced
Security Extension features, enhances the security of the system by preventing
both unauthorized disclosure and unauthorized change.

Security Criteria

In 1983 the Department of Defense (DoD) published the definitive guideline to
secure operating systems, the Trusted Computer System Evaluation Criteria
(TCSEC). The TCSEC defined the criteria a system must meet to be certified as
meeting multilevel security standards. The TCSEC defines four security divisions,
D, C, B, and A, with multiple levels in all but the D division. From least to most
secure, the levels are D, C1, C2, B1, B2, B3, and A1. Each level’s requirements
build on those of the previous level.

In 1989 the German Federal Office for Security in Information Technology (BSI)
published the ZSIEC, defining the German security criteria. The ZSIEC is based on
the TCSEC with the main difference being the separation of functionality and
assurance. In 1990 France, the Federal Republic of Germany, the Netherlands, and
the United Kingdom combined their criteria into a single set of harmonized cri-
teria, the Information Technology Security Evaluation Criteria (ITSEC). The
ITSEC follows the model of the German ZSIEC in that it also separates functional-
ity from assurance. Both the ZSIEC and ITSEC provide clear mappings to TCSEC,
as follows:

TCSEC Level ITSEC Level ZSIEC Level

C1 F1/E1 F1/Q1
C2 F2/E2 F2/Q2
B1 F3/E3 F3/Q3
B2 F4/E4 F4/Q4
B3 F5/E5 F5/Q5
A1 F5/E5 F5/Q5

Enhanced Security Introduction 4-1

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 49

If the base SVID (without extensions) were evaluated, it would likely be classified
as C1, not fully meeting the requirements of any higher level, although it would
fulfill selected criteria at the C2 level. (Note, the SVID definition has not been
evaluated and therefore, is considered unrated.)

Security Classes

The Enhanced Security Extension may be configured for various classes of secu-
rity. These classes, as defined in Trusted Computer Systems Evaluation Criteria,
are C2, B1, and B2. The following table lists, for each Enhanced Security feature
area, the associated commands and libraries that must be included to attain a C2,
B1, or B2 class system.
_ __

Class C2 Class B1 Class B2_ __
Commands Libraries Commands Libraries Commands Libraries Enhanced

Security
Feature_ ___ __
A u d i t a u d i t c n v ,

a u d i t l o g ,
a u d i t m a p ,
a u d i t o f f ,
a u d i t o n ,
a u d i t r p t ,
a u d i t f l t r ,
a u d i t s e t

a u d i t b u f ,
a u d i t d m p ,
a u d i t c t l ,
a u d i t e v t ,
a u d i t l o g

a u d i t c n v ,
a u d i t l o g ,
a u d i t m a p ,
a u d i t o f f ,
a u d i t o n ,
a u d i t r p t ,
a u d i t f l t r ,
a u d i t s e t

a u d i t b u f ,
a u d i t d m p ,
a u d i t c t l ,
a u d i t e v t ,
a u d i t l o g

a u d i t c n v ,
a u d i t l o g ,
a u d i t m a p ,
a u d i t o f f ,
a u d i t o n ,
a u d i t r p t ,
a u d i t f l t r ,
a u d i t s e t

a u d i t b u f ,
a u d i t d m p ,
a u d i t c t l ,
a u d i t e v t ,
a u d i t l o g

_ __
t c p i o t c p i o T r u s t e d

I m p o r t
E x p o r t_ __

d e f s a k d e f s a k T r u s t e d
P a t h_ __ 





































































































































































4-2 ENHANCED SECURITY INTRODUCTION

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 50

_ __
Class C2 Class B1 Class B2_ __

Commands Libraries Commands Libraries Commands Libraries Enhanced
Security
Feature_ ___ __
M a n d a t o r y
A c c e s s
C o n t r o l

a d m a l l o c ,
c h l v l ,
d e v a t t r ,
d e v s t a t ,
g e t d e v ,
l v l n a m e ,
l v l d e l e t e ,
l v l p r t ,
m l d m o d e ,
p u t d e v

d e v a l l o c ,
d e v d e a l -
l o c ,
d e v s t a t ,
l v l d o m ,
l v l e q u a l ,
l v l i n ,
l v l i p c ,
l v l v a l i d ,
l v l o u t ,
l v l v f s ,
l v l p r o c ,
m k m l d ,
m l d m o d e

a d m a l l o c ,
c h l v l ,
d e v a t t r ,
d e v s t a t , g e t -
d e v , l v l n a m e ,
l v l d e l e t e ,
l v l p r t ,
m l d m o d e , p u t -
d e v

d e v a l l o c ,
d e v d e a l -
l o c ,
d e v s t a t ,
l v l d o m ,
l v l e q u a l ,
l v l i n ,
l v l i p c ,
l v l v a l i d ,
l v l o u t ,
l v l v f s ,
l v l p r o c ,
m k m l d ,
m l d m o d e_ __

s e t a c l , g e t a c l D i s c r e -
t i o n a r y
A c c e s s
C o n t r o l

a c l ,
a c l i p c ,
a c l s o r t

_ __
T r u s t e d
F a c i l i t y
M a n a g e -
m e n t

a d m i n r o l e ,
a d m i n u s e r ,
f i l e p r i v ,
t f a d m i n

f i l e p r i v ,
p r o c p r i v ,
p r o c p r i v l

_ __ 




















































































































































































































































Background

Prior to the Enhanced Security Extension any attempt to execute a sensitive sys-
tem service (for example, mount a file system) required the use of a "privilege". In
System V there has been traditionally one such privilege, commonly called "root"
or "superuser" which is signified by a process whose effective user id is 0. In the
Enhanced Security Extension this single superuser privilege is subdivided into a
finer grain set of privileges designed to assure that sensitive system services exe-
cute with the minimum amount of privilege required to execute the task. This
feature is currently restricted to use by an administrative (or "trusted") user.

Enhanced Security Introduction 4-3

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 51

Enhanced Security Extension

The Enhanced Security Extension consists of the following features:

Enhanced DISCRETIONARY ACCESS CONTROL (DAC) - The DAC access
mechanism provides a controlling method which enhances the existing file
permission bits mechanism by use of ACCESS CONTROL LISTS (ACLs).
Each ACL consists of a list of named individuals and named groups of indi-
viduals, with their respective access permissions. This enhanced mechan-
ism allows the ability to grant or deny permission access to the granularity
of a single user.

MandATORY ACCESS CONTROL (MAC) - The MAC access mechanism
provides a controlling method by the assignment of sensitivity levels. The
assignment of a security sensitivity level to every process and file/IPC on
the system is the basis of this feature. A level includes both a hierarchical
classification (e.g., "secret") and non-hierarchical categories (e.g., "projxyz").
The levels are the basis for all mandatory access control decisions.

Unlike DAC where sharing (i.e., granting permissions) is at the owner’s dis-
cretion, MAC sharing is mediated by the administrator, and enforced by the
system. The MAC policy can be summarized as "no read up" and "write
equal". This implies that a process at a given level (e.g., secret) can not read
information at a higher level (e.g., top secret) and any process at a given
level can only write information at its own level. The access decision is com-
puted as a dominance/equality relation.

When an access is attempted, both MAC and DAC checks are performed. If
both checks pass, access is granted (see "Access Algorithm Changes" section
below for more details).

IDENTIFICATION and AUTHENTICATION (I&A) - I&A is a mechanism to
identify a user and authenticate their identity in order to gain access to the
system. This facility includes the programs that perform the identification
(login ID) and authentication (password verification) of users and the pro-
grams that manipulate the information used by the I&A programs.

TRUSTED PATH (TP) - TP is a mechanism through which a terminal user
can gain the attention of a trusted system process, requiring support for
identification and authentication. TP provides a trusted communication
path, exclusively initiated by a user, between the system and the user. This
mechanism ensures that the password is being requested by login and not
by a malicious program that masquerades as a system program to gain sen-
sitive information.

4-4 ENHANCED SECURITY INTRODUCTION

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 52

The user gains the attention and access to the trusted system via a terminal
using the Secure Attention Key (SAK). The user must enter the SAK, a char-
acter or asynchronous line condition, such as a break or line drop to invoke
the trusted path. The SAK is defined by a system administrator as a site
configurable option.

TRUSTED FACILITY MANAGEMENT (TFM) - TFM is a mechanism to sup-
port a variety of trusted user classes, including auditors, administrators, and
operators. Separate operator, administrator, and security operator functions
must be defined and implemented to support administrative least privilege.
During normal operations, these roles will replace the current single admin-
istrative role, superuser.

Effects of Enhanced Security

The addition of the Enhanced Security features result in changes that affect previ-
ous UNIX System behavior. When the system is running with Enhanced Security,
every command and data file must have appropriate discretionary and mandatory
access control information. Additionally, those programs that require privilege,
must have process privilege information associated with them.

Access Algorithm Changes

Any access to files/IPC objects will be constrained by the addition of the enhanced
security features. These new features and the effect they will have when an access
request is made are described below.

ACLs enable DAC to be a finer grained control mechanism. In addition to
specifying permissions for the owner, the owning group, and all others, per-
missions may be specified for particular users and particular groups. Thus,
programs that look at the permission bits to determine access permissions
may not receive all of the relevant access permissions. When access is
attempted through a system call, the kernel will mediate the access based on
the ACL entries.

With the introduction of MAC into the system, whenever an attempt is
made to access an object, there will be additions to the checks currently
made for the access check.

– If the requested access is for reading or execution, then the MAC
level of the process must dominate (meaning equal to or greater
than) the MAC level of the object, or the process must have
appropriate privilege.

Enhanced Security Introduction 4-5

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 53

– If the requested access is for writing , then the MAC level of the
process must be equal to the MAC level of the object, or the pro-
cess must have appropriate privilege.

Attempts to directly access a device file may no longer succeed. If the
device file is not in the public state, then it must first be allocated before
being used.

How Users Acquire Privileges

All users, including administrators, log in as unprivileged users; i.e. the initial user
process has no privilege associated with it. Some users designated as administra-
tors or operators that do need to execute commands that require one or more pro-
cess privileges, do so through the tfadmin command (See TFADMIN COMMand
section below for more details).

The addition of a least privilege mechanism separates the privileges formally bes-
towed upon the super-user (uid 0). Access formally granted to processes with
process-ID 0 may now be denied access, since a process-ID of 0 will no longer pos-
sess privilege.

Programs that check to determine if they are executing with a uid of zero, assum-
ing that they are privileged will not function properly. These programs should be
changed to use the required set of discrete privileges for them to successfully com-
plete the task.

Several distinct levels of authorization are created through the proper assignment
of process privileges according to the least privilege principle and the separation
of duties that is accomplished through the TFM database. The least privilege prin-
ciple requires that each subject in a system be granted the most restrictive sets of
privileges needed for the performance of authorized tasks. These mechanisms
ensure that privileged processes run only with the privilege(s) required for the
actions they are authorized to perform, and that unprivileged processes cannot
perform privileged actions.

4-6 ENHANCED SECURITY INTRODUCTION

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 54

Least Privilege Mechanism

The Least Privilege concept defines that a process only acquires the minimum
amount of privilege it requires to execute the operation and only holds that
privilege for the duration of the operation. Additionally, the requested privilege
must be associated with both the process and the executable file to be successfully
enabled. The user may acquire privilege in one of two ways; (1) by invoking a
process with fixed privilege(s) associated with it or (2) by acquiring the
privilege(s) via the tfadmin command. The way the privileges are set varies
between the two and is described briefly below.

Privilege Descriptors

In the Enhanced Security Extension, a process has a maximum and working set of
privileges associated with it. The maximum set represents the most privilege the
process could ever attain and the working set represents the minimum set of
privileges required to execute the task. An executable file may have associated
with it an inheritable or fixed set of privileges. An inheritable privilege is a
privilege which is kept (i.e. left "turned on") only if it already existed in the pro-
cess. A fixed privilege is a privilege which is always given to the process indepen-
dent of the previous process privileges. The fixed and inheritable privileges are
disjoint, a privilege cannot be present in both sets at the same time.

Fixed Privileges

The concept of fixed file privileges is similar to the current concept of setuid bits.
When a file has a privilege or privileges set as fixed those privileges are unioned
with the maximum privilege set of the invoking process forming the new
processes maximum privilege set. In essence these privileges are added (or forced)
onto the invoking process. For example if a site determined that all users should
be able to execute the ps command and not be subject to mandatory or discretion-
ary access control checks the administrator would set the access control override
privileges as fixed privileges on the command. Any user invoking ps would then
acquire these privileges for the duration of the execution of the ps command. This
scheme does not lend itself well to administrative operations such as mounting a
file system since there is no restriction on the acquisition of the privilege (aside
from normal access checks).

Enhanced Security Introduction 4-7

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 55

TFADMIN COMMand

The tfadmin command and its associated database allow for fine grain control over
the acquisition of privilege, typically for administrative operations.

The tfadmin database is organized by "roles" subdivided by "tasks". For example
the role of "operator" may have the task of user backup associated with it. In this
scenario the operator would login to the system and then invoke the tfadmin com-
mand in the role of "operator" to execute the "backup" task. The tfadmin command
will add the privilege(s) which are associated with the invoking user for the
requested task to the maximum privilege set, then exec the task. The enabling of
privilege for the task is then determined by the intersection of the process’s max-
imum privilege set (acquired via tfadmin) and the file’s inheritable privilege set.
The result of this operation is then unioned with the file’s fixed privilege set
resulting in the new processes privilege set.

Multilevel Directories

With Mandatory Access Control (MAC) installed unprivileged users may only
create files at the same level as the level of the parent directory (and at their
current login level). This creates problems for utilities which require access to
"public" directories (i.e. /tmp). To provide the functionality of "public" directories
within a Mandatory Access Control environment a new type of directory known
as a multilevel directory has been introduced.

In normal use, a multilevel directory has the appearance of a directory whose con-
tents are all at that user’s level. To another user at a different level, that the same
multilevel directory would appear to contain a different set of files. This is
because each user sees an "effective" directory consisting only of objects at their
own level. Other directories may be created as multilevel directories at adminis-
trative discretion. An unprivileged user cannot create a multilevel directory; that
is a privileged operation.

Changes to Existing Commands

Several commands may behave differently when the Enhanced Security feature is
supported in a system. These include:

4-8 ENHANCED SECURITY INTRODUCTION

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 56

a t f i n d l p m o u n t u s e r d e l
b a t c h f s c k l p s t a t p a s s w d u s e r m o d
c p i o i p c s l s p s v o l c o p y
c r o n l i s t u s e r s m k d i r u s e r a d d w h o d o
c r o n t a b l o g i n s m k f s

See pages for details of changes.

NEW COMMandS

New commands have been introduced for the feature areas described above.
Also, a new enhanced (trusted) cpio command, tcpio, and a new command to
check for mail at different levels, mailcheck, have been introduced.

Summary of LIBRARY ROUTINES

The following routines are supported by the Enhanced Security Extension. All of
the routines in this section have been internationalized and may reference
environment variables for localization information. [See envvar(BA_ENV)].

a c l d e v d e a l l o c l v l e q u a l l v l o u t m k m l d
a c l i p c d e v s t a t l v l f i l e l v l p r o c m l d m o d e
a c l s o r t f i l e p r i v l v l i n l v l v a l i d p r o c p r i v
d e v a l l o c l v l d o m l v l i p c l v l v f s p r o c p r i v l

Summary of Commands and Utilities

The following commands and utilities are supported by the Enhanced Security
Extension. All of the commands and utilities in this section have been internation-
alized and may reference environment variables for localization information. [See
envvar(BA_ENV)].

Enhanced Security Introduction 4-9

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 57

a d m a l l o c d e f s a k g e t a c l l v l p r t s e t a c l
a d m i n r o l e d e v a t t r g e t d e v m a i l c h e c k t c p i o
a d m i n u s e r d e v s t a t l v l d e l e t e m l d m o d e t f a d m i n
c h l v l f i l e p r i v l v l n a m e p u t d e v

ORGANIZATION of TECHNICAL INFORMATION

The ‘‘Enhanced Security Library Routines’’ chapter provides manual page
descriptions of library routines supported by this extension.

The ‘‘Enhanced Security Commands and Utilities’’ chapter provides manual page
descriptions of commands and utilities supported by this extension.

4-10 ENHANCED SECURITY INTRODUCTION

FINAL COPY
June 15, 1995
File: es_int.txt

svid

Page: 58

Enhanced Security Extension Library Routines

The following section contains the manual pages for the ES_LIB routines.

Enhanced Security Extension Library Routines 5-1

FINAL COPY
June 15, 1995
File: es_lib.cov

svid

Page: 59

FINAL COPY
June 15, 1995

File:

Page: 60

acl (ES_LIB) acl (ES_LIB)

NAME
acl – set a file’s Access Control List (ACL)

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < a c l . h >

i n t a c l (c h a r *pathp, i n t cmd, i n t nentries, s t r u c t a c l *aclbufp)

DESCRIPTION
The a c l system call is used to manipulate ACLs on file system objects.

pathp points to a pathname naming a file.

nentries specifies how many ACL entries fit into buffer aclbufp.

aclbufp a pointer to the a c l struct which contains the following fields:

i n t a _ t y p e ; / * e n t r y t y p e * /
u i d _ t a _ i d ; / * u s e r o r g r o u p I D * /
u s h o r t a _ p e r m ; / * e n t r y p e r m i s s i o n s * /

The values for a _ t y p e are:

U S E R _ O B J Permissions for the owner of the object.

U S E R Permissions for additional users.

G R O U P _ O B J Permissions for members of the owning group of the
object.

G R O U P Permissions for members of additional groups.

C L A S S _ O B J Maximum permissions granted to the file group
class.

O T H E R _ O B J Permissions for other users.

D E F _ U S E R _ O B J Default permissions for the object owner.

D E F _ U S E R Default permissions for additional users.

D E F _ G R O U P _ O B J Default permissions for members of the owning
group of the object.

D E F _ G R O U P Default permissions for members of additional
groups

D E F _ C L A S S _ O B J Default maximum permissions granted to the file
group class.

D E F _ O T H E R _ O B J Default permissions for other users.

cmd The following three values for cmd are available:

A C L _ S E T nentries ACL entries, specified in buffer aclbufp, are
stored in the file’s ACL. Any existing ACL on the file
is replaced by the new ACL. This value for cmd can
only be executed by a process that has an effective
user ID equal to the owner of the file, or by a process
with the appropriate privileges. All directories in the
pathname must be searchable. Mandatory write

Page 1

FINAL COPY
June 15, 1995
File: es_lib/acl

svid

Page: 61

acl (ES_LIB) acl (ES_LIB)

access to the file is required.

A C L _ G E T Buffer aclbufp is filled with the file’s ACL entries.
Discretionary read access to the file is not required,
but all directories in the pathname must be search-
able. Mandatory read access to the file is required.

A C L _ C N T The number of entries in the file’s ACL is returned.
Discretionary read access to the file is not required,
but all directories in the pathname must be search-
able. Mandatory read access to the file is required.
nentries and aclbufp are ignored.

For cmd A C L _ S E T, the a c l call will succeed if all of the following are true:

• There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_OBJ,
and OTHER_OBJ.

• There is at most one entry each of type DEF_USER_OBJ, DEF_GROUP_OBJ,
DEF_CLASS_OBJ, and DEF_OTHER_OBJ.

• Entries of type USER, GROUP, DEF_USER, or DEF_GROUP may not contain
duplicate entries. A duplicate entry is one of the same type containing the
same numeric ID.

• If an ACL contains no entries of type USER and no entries of type GROUP,
then the entries of type GROUP-OBJ and CLASS_OBJ must have the same per-
missions.

• If an ACL contains no entries of type DEF_USER and no entries of type
DEF_GROUP, and an entry of type DEF_GROUP_OBJ is specified, then an
entry of type DEF_CLASS_OBJ must also be specified and the two entries must
have the same permissions.

RETURN VALUE
Upon successful completion, if cmd is A C L _ S E T, a value of 0 is returned. If cmd is
A C L _ G E T or A C L _ C N T, the number of ACL entries is returned. Otherwise, a value of
– 1 is returned and errno is set to indicate the error.

ERRORS
a c l () will fail if one or more of the following is true:

E A C C E S if the caller does not have access to a component of the pathname.

E A C C E S if the caller does not have mandatory read access to the file for
A C L _ G E T and A C L _ C N T, or mandatory write access to the file for
A C L _ S E T.

E I N V A L if cmd is not A C L _ G E T, A C L _ S E T, or A C L _ C N T.

E I N V A L if cmd is A C L _ S E T and nentries is less than the number of mandatory
ACL entries (4).

E I N V A L if cmd is A C L _ S E T and the ACL specified in aclbufp is not valid [see
a c l s o r t(ES_LIB)].

Page 2

FINAL COPY
June 15, 1995
File: es_lib/acl

svid

Page: 62

acl (ES_LIB) acl (ES_LIB)

E I O if a disk I/O error has occurred while storing or retrieving the ACL.

E P E R M if cmd is A C L _ S E T and the effective user ID of the caller does not match
the owner of the file, and the caller does not have the appropriate
privileges to perform the operation.

E N O E N T if a component of the path does not exist.

E N O S P C if cmd is A C L _ G E T and nentries is less than the number of entries in the
file’s ACL.

E N O S P C if cmd is A C L _ S E T and there is insufficient space to store the ACL.

E N O S P C if cmd is A C L _ S E T and nentries is greater than the tunable parameter
aclmax.

E N O T D I R if a component of the path specified by pathp is not a directory.

E N O T D I R if cmd is A C L _ S E T and an attempt is made to set a default ACL on a file
type other than a directory.

E N O S Y S if c m d is A C L _ S E T, the file specified by pathp resides on a file system
that does not support ACLs, and additional entries were specified in
the ACL.

E R O F S if cmd is A C L _ S E T and the file specified by pathp resides on a file sys-
tem that is mounted read-only.

SEE ALSO
aclipc(ES_LIB), aclsort(ES_LIB), getacl(ES_CMD), setacl(ES_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995
File: es_lib/acl

svid

Page: 63

aclipc (ES_LIB) aclipc (ES_LIB)

NAME
aclipc – get or set an IPC object’s ACL, return the number of ACL entries

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < a c l . h >

i n t a c l i p c (i n t type, i n t id, i n t cmd, i n t nentries, s t r u c t a c l *aclbufp)

DESCRIPTION
a c l i p c will get or set an IPC object’s ACL, or return the number of ACL entries.
To get the ACL, the user must have read access to the object. To set an ACL, the
user must be the owner or creator of the object or have appropriate privileges.

nentries specifies how many ACL entries fit into buffer aclbufp.

aclbufp a pointer to the a c l struct which contains the following fields:

i n t a _ t y p e ; / * e n t r y t y p e * /
u i d _ t a _ i d ; / * u s e r o r g r o u p I D * /
u s h o r t a _ p e r m ; / * e n t r y p e r m i s s i o n s * /

The values for a _ t y p e are:

U S E R _ O J B Permissions for the owner of the object.

U S E R Permissions for additional users.

G R O U P _ O B J Permissions for members of the owning group of the
object.

G R O U P Permissions for members of additional groups.

C L A S S _ O B J Maximum permissions granted to the file group class.

O T H E R _ O B J Permissions for other users.

type must be one of the following:

I P C _ S H M id must be a valid shared memory identifier returned by
s h m g e t.

I P C _ S E M id must be a valid semaphore identifier returned by
s e m g e t.

I P C _ M S G id must be a valid message queue identifier returned by
m s g g e t.

cmd must be one of the following:

A C L _ G E T The ACL information for the IPC object specified by type
and id is copied into the user supplied buffer aclbufp. nen-
tries specifies the number of ACL entries which will fit into
aclbufp. The user must have read access to the IPC object.

A C L _ S E T The ACL for the IPC object specified by type and id is set to
the ACL entries in the user supplied buffer aclbufp. nentries
specifies the number of ACL entries currently in aclbufp.
The entries in aclbufp must be valid and in the proper ACL
order. The user must have the appropriate privileges, or
be the creator or owner of the object, to alter the IPC

Page 1

FINAL COPY
June 15, 1995

File: es_lib/aclipc
svid

Page: 64

aclipc (ES_LIB) aclipc (ES_LIB)

object.

A C L _ C N T Returns the number of ACL entries for the IPC object
specified by type and id. nentries and aclbufp are ignored.
The user must have read access to the IPC object.

When the ACL for an IPC object is set, the permission mode (in ipc_perm) may
change. The first three bits of the permission mode are set to the permissions of the
object user entry. The middle three bits of the permission mode are set to the O Red
value of the permissions for the additional users, object group, and additional
group entries. The last three bits of the permission mode are set to the permissions
of the other entry.

For cmd A C L _ S E T the a c l i p c call will succeed if all of the following are true:

• There is exactly one entry each of type U S E R _ O B J, G R O U P _ O B J, C L A S S _ O B J, and
O T H E R _ O B J.

• Entries of type U S E R or G R O U P may not contain duplicate entries. A duplicate
entry is one of the same type containing the same numeric ID.

• If an ACL contains no entries of type U S E R and no entries of type G R O U P, then
the entries of type G R O U P _ O B J and C L A S S _ O B J must have the same permis-
sions.

RETURN VALUE
Upon successful completion, the return value is the number of ACL entries for cmd
A C L _ C N T and A C L _ G E T, and 0 for cmd A C L _ S E T. Otherwise, a value of – 1 is returned
and e r r n o is set to indicate the error.

ERRORS
a c l i p c will fail if one or more of the following are true:

E I N V A L if type is not one of I P C _ S H M, I P C _ S E M, or I P C _ M S G.

E I N V A L if id is not a valid type identifier.

E I N V A L if cmd is not one of A C L _ G E T, A C L _ S E T, or A C L _ C N T.

E I N V A L if cmd is A C L _ S E T and the ACL entries in aclbufp are not valid or in
proper order.

E P E R M if cmd is A C L _ S E T and the user does not have the appropriate
privileges and is neither the creator nor owner of the IPC object.

E I N V A L if cmd is A C L _ S E T and the security level of the calling process is not
equal to the security level of the IPC object.

E I N V A L if cmd is A C L _ G E T or A C L _ C N T and the security level of the calling
process is dominated by the security level of the IPC object.

E A C C E S if cmd is A C L _ G E T or A C L _ C N T and the user does not have discre-
tionary read access to the IPC object.

E N O S P C if cmd is A C L _ S E T and there is not enough space to store the ACL.

E N O S P C if cmd is A C L _ G E T and the number of ACL entries for the IPC object
exceeds nentries.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/aclipc
svid

Page: 65

aclipc (ES_LIB) aclipc (ES_LIB)

E N O S P C if cmd is A C L _ S E T a n d nentries is greater than the tunable parame-
ter a c l m a x.

E I N V A L if cmd is A C L _ S E T and the number of ACL entries is less than the
number of mandatory ACL entries (4).

SEE ALSO
acl(ES_LIB), msgget(KE_OS), semget(KE_OS), shmget(KE_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: es_lib/aclipc
svid

Page: 66

aclsort (ES_LIB) aclsort (ES_LIB)

NAME
aclsort – sort an Access Control List

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < a c l . h >

i n t a c l s o r t (i n t nentries, i n t calclass, s t r u c t a c l *aclbufp) ;

DESCRIPTION
The a c l s o r t routine sorts Access Control List (ACL) entries into the correct order
to be accepted by the a c l system call.

a c l b u f p points to a buffer containing ACL entries; c a l c l a s s, if non-zero, indicates
that the CLASS_OBJ permissions should be recalculated; and n e n t r i e s specifies
the number of ACL entries in the buffer.

a c l s o r t sorts the contents of the ACL buffer as follows:

1) Entries will be in order USER_OBJ, USER, GROUP_OBJ, GROUP, CLASS_OBJ,
OTHER_OBJ, DEF_USER_OBJ, DEF_USER, DEF_GROUP_OBJ, DEF_GROUP,
DEF_CLASS_OBJ, and DEF_OTHER_OBJ.

2) Entries of type USER, GROUP, DEF_USER, and DEF_GROUP will be sorted in
increasing order by ID.

The a c l s o r t call will succeed if all of the following are true:

• There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_OBJ,
and OTHER_OBJ.

• There is at most one entry each of type DEF_USER_OBJ, DEF_GROUP_OBJ,
DEF_CLASS_OBJ, and DEF_OTHER_OBJ.

• Entries of type USER, GROUP, DEF_USER, or DEF_GROUP may not contain
duplicate entries. A duplicate entry is one of the same type containing the
same numeric ID.

• If the c a l c l a s s argument is zero and there are no entries of type USER and
GROUP, the permissions of the GROUP_OBJ and CLASS_OBJ entries must be
the same.

• If there are no entries of type DEF_USER and DEF_GROUP, and the
DEF_GROUP_OBJ entry is specified, then the DEF_CLASS_OBJ entry must
also be specified, and the permissions of the DEF_GROUP_OBJ and
DEF_CLASS_OBJ entries must be the same.

RETURN VALUE
Upon successful completion, the return value is 0. If there are duplicate entries, the
return value is the position of the first duplicate entry. If there is more than one
entry of type USER_OBJ, GROUP_OBJ, CLASS_OBJ, OTHER_OBJ,
DEF_USER_OBJ, DEF_GROUP_OBJ, DEF_CLASS_OBJ, or DEF_OTHER_OBJ, they
will be treated as duplicate entries, and the return value is the position of the first
duplicate entry. For all other errors, the return value is – 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/aclsort
svid

Page: 67

aclsort (ES_LIB) aclsort (ES_LIB)

SEE ALSO
acl(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/aclsort
svid

Page: 68

devalloc (ES_LIB) devalloc (ES_LIB)

NAME
devalloc – get and set the security attributes of a device

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t d e v a l l o c (c o n s t c h a r *device, i n t cmd, s t r u c t d e v _ a l l o c a *bufp)

DESCRIPTION
The d e v a l l o c () routine allows privileged processes to get or set the security attri-
butes of device, based on the specified cmd. The device can be either a device alias
name defined in the Device Database (DDB) or an absolute pathname to a character
or block special file. bufp is a pointer to a struct dev_alloca, defined in m a c . h, which
defines the following security attributes:

state the device state,

mode the device mode,

level the current device level,

hilevel the high level of the device level range,

lolevel the low level of the device level range,

uid the UID (for checking authorization permission), and

relflag the device release flag.

If cmd is D E V _ G E T, d e v a l l o c () gets the security attributes for device from the
Device Database (DDB) and places them into the structure pointed to by bufp. In
this case, d e v a l l o c () does not return any values for the release flag, UID or level.

If the cmd is D E V _ S E T, d e v a l l o c () determines whether the device is allocatable by
comparing the security attributes pointed to by bufp to those defined for the device
in the DDB. d e v a l l o c () checks if:

• the device is allocatable with the specified state

• the device is allocatable with the specified mode

• the specified hilevel and lolevel range is enclosed by the range stored in the
Device Database

• the specified level is enclosed by the hilevel and lolevel range specified

• the release flag passed is either set as d e v _ p e r s i s t e n t or d e v _ l a s t c l o s e

• the UID (when a valid UID is passed) is authorized to allocate the specified
device

• the device is not in use (the release flag setting on all the device special files
mapped to the device is d e v _ s y s t e m, and usecount is 0)

If all these conditions are met, d e v a l l o c () issues a l v l f i l e system call to change
the level of the device to that specified in bufp, clears any access control lists (ACLs)
on the device, changes the DAC permissions to give ownership and read/write
access to only the user, and issues a d e v s t a t system call to set the security attri-
butes of the device, according to information passed in bufp. The DDB is locked dur-
ing the entire process of allocation.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/devalloc
svid

Page: 69

devalloc (ES_LIB) devalloc (ES_LIB)

If device is an absolute pathname, d e v a l l o c () performs these actions on that path-
name only. If device is a device alias name, d e v a l l o c () performs these actions on
each pathname mapped to that device according to information stored in the Device
Database.

If any of the system calls fails on one of the pathnames, d e v a l l o c () tries to undo
all the work on the other pathnames. d e v a l l o c () will reset the level to the previ-
ous level and previous DAC ownership and reset the flag to d e v _ s y s t e m. If the
Enhanced Security Extension is not implemented, d e v a l l o c () will fail.

RETURN VALUE
Upon successful completion, the system call d e v a l l o c () returns a value of 0; oth-
erwise, a value of – 1 is returned and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, d e v a l l o c () fails and sets e r r n o to the indicated
value. (Refer to the descriptions of the system calls called by this function for other
possible e r r n o values.)

E A C C E S if access to the DDB is denied because of MAC or DAC.

E A G A I N if cmd is D E V _ S E T, and the DDB is in use and cannot be locked.

E B U S Y if cmd is D E V _ S E T, and the specified device is in use (not tranquil).

E I N V A L if cmd is D E V _ S E T, and the specified hilevel, lolevel or level is an invalid
level.

E I N V A L if cmd is D E V _ S E T, and hilevel does not dominate lolevel.

E I N V A L if level or the level range specified is not enclosed by the range stored
in DDB for that device.

E I N V A L if cmd is D E V _ S E T, and level is not enclosed by the specified level.

E I N V A L if the specified state is not valid for device.

E I N V A L if the specified mode is not valid for device.

E I N V A L if invalid state specified.

E I N V A L if invalid mode specified.

E I N V A L if invalid cmd specified.

E I N V A L if cmd is D E V _ S E T, and the release flag specified is invalid.

E I N V A L if cmd is D E V _ S E T, and the user ID specified is invalid.

E I N V A L if cmd is D E V _ S E T, and the security attributes are not defined or are
invalid for the specified device.

E N O D E V if device is not defined in the DDB.

E N O E N T if the DDB cannot be found.

E P E R M If cmd is D E V _ S E T and the specified user ID does not have authoriza-
tion permission to have device allocated.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/devalloc
svid

Page: 70

devalloc (ES_LIB) devalloc (ES_LIB)

SEE ALSO
acl(ES_LIB), devdealloc(ES_LIB), devstat(ES_LIB), lvlfile(ES_LIB), lvldom(ES_LIB),
chown(BA_OS), chmod(BA_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: es_lib/devalloc
svid

Page: 71

devdealloc (ES_LIB) devdealloc (ES_LIB)

NAME
devdealloc - deallocates a device and sets its security attributes to system
configuration

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t d e v d e a l l o c (c o n s t c h a r *device)

DESCRIPTION
The d e v d e a l l o c routine sets the security attributes of the specified device back to
"system configuration." The device can be either a device alias name defined in the
Device Database (DDB) or an absolute pathname to a character or block special file.
If the alias is a logical alias, only those device special files mapped to that alias in
the DDB are deallocated. If the alias is a secure device alias, then the routine deallo-
cates all device special files mapped to all the logical aliases that define s e c d e v
equal to the secure device alias.

The system configuration is as follows:

range h i l e v e l = l o l e v e l = 0

state p r i v a t e (unless the driver was configured with security flag set to
INITPUB, in which case state is set to p u b l i c)

mode s t a t i c

release_flag D E V _ S Y S T E M

d e v d e a l l o c sets the device attributes by invoking the d e v s t a t system call with the
release_flag set to D E V _ S Y S T E M. If the d e v s t a t system call fails on one of the path-
names, then d e v d e a l l o c will continue to work on the remaining pathnames and
will exit with a negative value. Note that d e v d e a l l o c does not check if the device
is in use.

The Device Database is locked during the entire process of deallocation of all device
special files.

RETURN VALUE
If successful, d e v d e a l l o c returns a 0; otherwise, it returns – 1 and sets e r r n o to one
of the following values. (See devstat(ES_LIB), lvlfile(ES_LIB), chown(BA_OS), and
chmod(BA_OS) for other e r r n o that may be set if it fails.)

ERRORS
E A C C E S if access to the DDB is denied because of MAC or DAC.

E A C C E S if Device Database files are not in a consistent state.

E A G A I N if the DDB is in use and cannot be locked.

E N O D E V if device is not defined in the DDB.

E N O E N T if the DDB cannot be found.

E P E R M if the invoking process does not have the appropriate privilege to
deallocate a device.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/devdealloc
svid

Page: 72

devdealloc (ES_LIB) devdealloc (ES_LIB)

SEE ALSO
devstat(ES_LIB), devalloc(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/devdealloc
svid

Page: 73

devstat (ES_LIB) devstat (ES_LIB)

NAME
devstat – get or set device security attributes

SYNOPSIS
i n c l u d e < m a c . h >

i n t d e v s t a t (c o n s t c h a r *path, i n t cmd, s t r u c t d e v s t a t *bufp) ;

DESCRIPTION
The d e v s t a t system call gets or sets the security attributes of a device represented
by path . The value in cmd determines if the system call sets or gets the security
attributes. The d e v s t a t system call is a privileged operation and requires
appropriate privileges.

path points to the pathname of a disk-based block or character special file. cmd will
define the operation to be performed. The value of cmd may be one of the follow-
ing:

D E V _ G E T to retrieve security attributes of a device.

D E V _ S E T to set security attributes of a device.

bufp is a pointer to a d e v s t a t structure. The security attributes to be set are taken
from the structure or are returned in the structure, depending on the operation.

The contents of the structure pointed to by bufp include the following members:

u s h o r t d e v _ s t a t e ; /∗ d e v i c e s t a t e ∗/
/∗ D E V _ P R I V A T E o r D E V _ P U B L I C ∗/

u s h o r t d e v _ m o d e ; /∗ m o d e o f t h e d e v i c e ∗/
/∗ D E V _ S T A T I C o r D E V _ D Y N A M I C ∗/

l e v e l _ t d e v _ h i l e v e l ; /∗ m a x i m u m l e v e l r a n g e o f t h e d e v i c e ∗/
l e v e l _ t d e v _ l o l e v e l ; /∗ m i n i m u m l e v e l r a n g e o f t h e d e v i c e ∗/
u s h o r t d e v _ u s e c o u n t ; /∗ 0 i f n o o p e n c o n n e c t i o n s , ∗/

/∗ 1 o t h e r w i s e ∗/
u s h o r t d e v _ r e l f l a g ; /∗ D E V _ P E R S I S T E N T , D E V _ L A S T C L O S E , o r ∗/

/∗ D E V _ S Y S T E M ∗/
d e v _ s t a t e is either p r i v a t e or p u b l i c. When a device is in private state, no
unprivileged access to the device special file is allowed. All new o p e n, r e a d, w r i t e,
i o c t l, m m a p, g e t m s g, g e t p m s g, p u t m s g, and p u t p m s g calls will fail if the process
does not have the appropriate privileges. A process requires appropriate privileges
and MAC and DAC access to open a device special file in the p r i v a t e state.

The device state is used to indicate if the device is a single-level or a multi-level
device. If the device state is p r i v a t e, then the device can be either a single-level or
a multi-level device. If the device state is p u b l i c, then the device is single-level,
because it can be used by an unprivileged process.

d e v _ m o d e should always be D E V _ S T A T I C. Level change on a static device is
allowed only if the device is in private state or if there are no open connections to
the device special file. Please refer to l v l f i l e(ES_LIB). Another possible mode,
D E V _ D Y N A M I C, is provided solely for sites upgrading from another secure system.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/devstat
svid

Page: 74

devstat (ES_LIB) devstat (ES_LIB)

When the d e v _ m o d e is set to D E V _ D Y N A M I C, the level of the device can change while
it is open, MAC access checks are performed for every r e a d, w r i t e, i o c t l, p u t m s g,
and g e t m s g operations.

d e v _ h i l e v e l and d e v _ l o l e v e l specify the allowed level range that will constrain
the l v l f i l e system call. The level of the device special file referenced by path must
be dominated by h i l e v e l and must dominate l o l e v e l. d e v _ h i l e v e l and
d e v _ l o l e v e l limit the level at which the device can be used.

d e v _ u s e c o u n t is set to 1 if there are open connections to the device special file or if
there is any mapping active. It is set to 0 otherwise. This field can only be retrieved
and cannot be set.

d e v _ r e l f l a g indicates how these security attributes can be released. This flag can
take one of three values:

D E V _ P E R S I S T E N T Indicates that the security attributes will be set for the device
while the system is running or until the next d e v s t a t opera-
tion to set attributes.

D E V _ L A S T C L O S E Indicates that the security attributes will be released after the
last close on a device and will be set to the one defined by the
system.

D E V _ S Y S T E M For each device special file, the system defines the following
security attributes: the d e v _ l o l e v e l and d e v _ h i l e v e l are
set to 0, s t a t e is set to p r i v a t e, and m o d e is set to s t a t i c.

If cmd is D E V _ G E T, the system call returns the security attributes of the device in the
buffer pointed to by bufp.

If the cmd is D E V _ S E T, the device named by path has its security attributes set to the
values passed in bufp. When setting the device with the D E V _ S Y S T E M release flag, all
other information passed in bufp is ignored.

The calling process must ensure that no device special file that maps to the same
device as path, as defined by the Device Database, is currently in use. The calling
process must also ensure that the parameters for the device, as defined in the
Device Database, are correctly applied when this system call is used.

RETURN VALUE
The system call returns zero (0) if successful. Otherwise, it returns -1 and sets
e r r n o to one of the below values.

ERRORS
E P E R M The process does not have the appropriate privileges.

E I N V A L The arguments to the system call are invalid.

E I N V A L If the cmd is D E V _ S E T, d e v _ h i l e v e l does not dominate
d e v _ l o l e v e l.

E I N V A L If the cmd is D E V _ S E T, the range delimited by d e v _ h i l e v e l
and d e v _ l o l e v e l does not enclose the level of the device spe-
cial file.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/devstat
svid

Page: 75

devstat (ES_LIB) devstat (ES_LIB)

E N O T D I R A component of the path prefix is not a directory.

E N O E N T A component of the pathname of the named file does not
exist.

E A C C E S Access to path is denied by DAC, MAC or other access restric-
tions.

E N O D E V path indicates a file that is not a disk-based block or character
special file.

E N A M E T O O L O N G if the length of path exceeds PATH_MAX, or the length of a
path component exceeds NAME_MAX while
POSIX_NO_TRUNC is in effect

SEE ALSO
lvlfile(ES_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: es_lib/devstat
svid

Page: 76

filepriv (ES_LIB) filepriv (ES_LIB)

NAME
filepriv – set, get, or count the privileges associated with a file

SYNOPSIS
i n c l u d e < p r i v . h >

i n t f i l e p r i v (c o n s t c h a r *path, i n t cmd, p r i v _ t *privp,
i n t nentries)

DESCRIPTION
The f i l e p r i v system call is used to set, retrieve, or count the privileges associated
with a file. privp is defined as a pointer to an array of privilege descriptors each of
which contains a privilege set and the identity of the requested privilege. (See the
Enhanced Security Extension Introduction for descriptions of terms such as
‘‘privilege set.’’)

The path argument specifies an executable file. nentries is the number of entries con-
tained in privp.

The recognized cmds and their functions are described below:

P U T P R V the fixed and inheritable privilege sets associated with the file indicated
by path are set based on the privilege descriptor(s) contained in privp.
The fixed and inheritable privilege sets resulting from the privilege
descriptor(s) contained in privp must be disjoint. Privileges contained in
either privilege set that are not in the maximum set of the calling pro-
cess are ignored. The calling process must have the appropriate
privilege in its working set when using P U T P R V. If any argument is
invalid, none of the file privileges are changed. The new file privileges
pointed to by *privp replace the existing file privileges.

G E T P R V the fixed and inheritable privilege sets associated with the file indicated
by path are returned in privp in the form of privilege descriptors. None
of the file privileges are changed.

C N T P R V the return value is set to the number of privileges associated with the
named file. The privp and nentries arguments are ignored. None of the
file privileges are changed.

RETURN VALUE
A value of –1 is returned and e r r n o is set to indicate the error if f i l e p r i v is unsuc-
cessful. If successful, f i l e p r i v returns the number of privileges associated with
the named file.

ERRORS
f i l e p r i v fails if one or more of the following is true:

E N O E N T a component of path does not exist.

E N O T D I R a component of path is not a directory.

E I N V A L cmd is invalid.

E I N V A L the cmd is G E T P R V and privp is not large enough to hold the number of
privileges associated with the named file.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/filepriv
svid

Page: 77

filepriv (ES_LIB) filepriv (ES_LIB)

E I N V A L the cmd is P U T P R V and 1) the file pointed to by path is not an executable
file, 2) the fixed and inheritable privilege sets are not disjoint, 3) nentries
is less than 0, or 4) privp includes undefined privileges.

E A C C E S access is prohibited by an access restriction.

E P E R M the calling process does not have the appropriate privileges to set file
privileges.

E A G A I N insufficient kernel memory to allocate a privilege table entry when set-
ting file privileges.

SEE ALSO
procpriv(ES_LIB), procprivl(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/filepriv
svid

Page: 78

lvldom (ES_LIB) lvldom (ES_LIB)

NAME
lvldom – determine domination relationship of two levels

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l d o m (l e v e l _ t *level1p, l e v e l _ t *level2p) ;

DESCRIPTION
The l v l d o m () routine compares the level pointed to by level1p and level2p and
determines whether or not level1p dominates level2p. level1p and level2p must be
pointers to valid levels, as may be obtained from the l v l i n () routine or the
l v l f i l e or l v l p r o c system calls.

RETURN VALUE
If the first level dominates the second, a positive integer is returned; if the first level
does not dominate the second, a value of 0 is returned (note that this does not
imply that the second level dominates the first); otherwise, a value of – 1 is returned
and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, l v l d o m () fails and sets e r r n o to:

E I N V A L if the level referenced by level1p or level2p is not defined on the sys-
tem.

SEE ALSO
lvlequal(ES_LIB), lvlin(ES_LIB), lvlproc(ES_LIB), lvlfile(ES_LIB), lvlvalid(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvldom
svid

Page: 79

lvlequal (ES_LIB) lvlequal (ES_LIB)

NAME
lvlequal – determine equality of two levels

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l e q u a l (l e v e l _ t *level1p, l e v e l _ t *level2p) ;

DESCRIPTION
The l v l e q u a l () routine compares the levels referenced by level1p and level2p and
determines whether or not they are equal. level1p and level2p must be pointers to
valid levels, as may be obtained from the l v l i n(ES_LIB) routine or the
l v l f i l e(ES_LIB) or l v l p r o c(ES_LIB) system calls.

RETURN VALUE
If the first level equals the second, a positive integer is returned; if the first level
does not equal the second, a value of 0 is returned; otherwise, a value of – 1 is
returned and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, l v l e q u a l () fails and sets e r r n o to:

E I N V A L if the level referenced by level1p or level2p is not defined on the sys-
tem.

SEE ALSO
lvldom(ES_LIB), lvlfile(ES_LIB), lvlin(ES_LIB), lvlproc(ES_LIB), lvlvalid(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlequal
svid

Page: 80

lvlfile (ES_LIB) lvlfile (ES_LIB)

NAME
lvlfile – get or set the level of a regular file, directory, named pipe or device special
file

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l f i l e (c h a r *path, i n t cmd, l e v e l _ t *levelp) ;

DESCRIPTION
The l v l f i l e system call will get or set the level of the file represented by path,
depending on the value in cmd.

If cmd is M A C _ G E T, the system call returns the level of the named file to the variable
referenced by levelp. The invoking subject must have MAC read permission on the
file.

If cmd is M A C _ S E T and the file is a regular file, directory or FIFO, the following con-
ditions apply:

privilege The invoking subject must be the owner or have appropriate
privileges. The effective user ID of the calling process must also be
the owner of the file, or the calling process must have appropriate
privilege.

access The invoking subject must have MAC write access and be the
owner.

tranquillity The file must be tranquil, i.e., it should not be open or mapped.

level validity The level must be a valid level, as may be obtained from the l v l i n
routine or the l v l f i l e or l v l p r o c system calls.

If all these conditions are met, the system call will set the level of the named file to
the level referenced by levelp.

If cmd is M A C _ S E T and the file is a character or block special file, the following condi-
tions apply:

privilege The invoking subject must have the P _ D E V privilege if the device
state is p r i v a t e. If the device state is p u b l i c, then the invoking
subject must either have the P _ S E T F L E V E L privilege or, if the new
level strictly dominates the existing level, the P _ M A C U P G R A D E
privilege.

access The invoking subject must be the owner of the file. If the device
state is p u b l i c, the invoking subject must also have MAC write
access.

tranquillity If the device special file is in p u b l i c state and has its security
mode set to s t a t i c, then the device special file must be tranquil.

device range If the device range has been set by a previous call to d e v s t a t, then
the new level must be strictly dominated by the high level of the
device, and must dominate the low level of device.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlfile
svid

Page: 81

lvlfile (ES_LIB) lvlfile (ES_LIB)

level validity The level must be a valid level, as may be obtained from the l v l i n
routine or the l v l f i l e or l v l p r o c system calls.

If all these conditions are met, the system call will set the level of the named charac-
ter or block special file to the level referenced by levelp.

Note that the l v l f i l e system call must be used to set the level of a regular file,
directory or FIFO.

RETURN VALUE
Upon successful completion, the system call returns zero (0). Otherwise, –1 is
returned and e r r n o is set to indicate the error.

ERRORS
E P E R M The cmd is M A C _ S E T, and the invoking subject does not have the

appropriate privileges.

E P E R M The cmd is M A C _ S E T, and the invoking subject is not the owner of
the file referred to by path or fildes.

E N O T D I R For l v l f i l e, a component of the path prefix is not a directory.

E N O E N T For l v l f i l e, a component of path does not exist.

E A C C E S For l v l f i l e, the invoking subject fails the access checks on a com-
ponent of path.

E A C C E S The invoking subject does not have MAC access to the file referred
to by path or fildes.

E I N V A L The cmd is invalid.

E I N V A L The cmd is M A C _ S E T, and levelp is not defined on the system.

E B U S Y The cmd is M A C _ S E T, and the file is not tranquil (open or mapped).

E R A N G E The cmd is M A C _ S E T, and the file is a character or block device spe-
cial file, and levelp is not within device level range.

E N O S Y S The cmd is M A C _ S E T, and the file system type does not support
labeling.

E R O F S The path or fildes refers to a file that resides on a read-only file sys-
tem.

E N A M E T O O L O N G if the length of path exceeds PATH_MAX, or the length of a path
component exceeds NAME_MAX while POSIX_NO_TRUNC is in
effect

SEE ALSO
devstat(ES_LIB), lvlproc(ES_LIB), lvlin(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/lvlfile
svid

Page: 82

lvlin (ES_LIB) lvlin (ES_LIB)

NAME
lvlin – translate a level from text format to internal format

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l i n (c h a r *bufp, l e v e l _ t *levelp) ;

DESCRIPTION
The l v l i n () routine translates the null terminated character string referenced by
bufp to the corresponding internal format of the level and places it in the level refer-
enced by levelp. The character string can contain either an alias or a fully qualified
level name of the following format:

h_name [:c_name [,c_name]. . .]

where h_name is a hierarchical classification name and c_name a non-hierarchical
category name.

RETURN VALUE
Upon successful completion, the l v l i n () routine returns a value of 0 and the resul-
tant level is placed in the variable referenced by levelp; otherwise, a value of – 1 is
returned and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, l v l i n () fails and sets e r r n o to:

E I N V A L if any of the text names given are not defined in the Level Translation
Database (LTDB).

E I N V A L if the resultant level is not defined on the system.

E A C C E S the calling process does not pass the access checks for the LTDB.

SEE ALSO
lvlout(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlin
svid

Page: 83

lvlipc (ES_LIB) lvlipc (ES_LIB)

NAME
lvlipc – manipulate an IPC object’s level

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >
i n c l u d e < s y s / i p c . h >

i n t l v l i p c (i n t type, i n t id, i n t cmd, l e v e l _ t *levelp) ;

DESCRIPTION
The l v l i p c () system call will manipulate an IPC object’s level.

The only cmd currently supported is M A C _ G E T. This implies that this system call can
only be used to retrieve an IPC object’s level.

type must be one of the following:

I P C _ S H M id must be a valid shared memory identifier returned by s h m g e t.

I P C _ S E M id must be a valid semaphore identifier returned by s e m g e t.

I P C _ M S G id must be a valid message queue identifier returned by m s g g e t.

The level of the IPC object specified by type and id is copied into the user supplied
buffer levelp. Note that the level returned is in internal format of a level, which may
be converted to text format via the l v l o u t () routine.

The user must have read access to the IPC object. An unprivileged user has read
access to an IPC object only if the user’s security level dominates the object’s secu-
rity level, and the user has discretionary read access. A user with the appropriate
privilege has access to all objects.

RETURN VALUE
Upon successful completion, the system call l v l i p c () returns a value of 0; other-
wise, a value of – 1 is returned and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, l v l i p c () fails and sets e r r n o to:

E I N V A L if cmd is M A C _ G E T and the security level of the calling process is strictly
dominated by the security level of the IPC object, and the calling pro-
cess lacks the appropriate privileges.

E I N V A L if type is not I P C _ S H M, I P C _ S E M, or I P C _ M S G.

E I N V A L if id is not a valid (or active) type identifier.

E I N V A L if cmd is not M A C _ G E T.

E A C C E S if the user does not have discretionary read access to the IPC object.

SEE ALSO
lvlout(ES_LIB), msgget(KE_OS), semget(KE_OS), shmget(KE_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlipc
svid

Page: 84

lvlout (ES_LIB) lvlout (ES_LIB)

NAME
lvlout – translate a level from internal format to text format

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l o u t (l e v e l _ t *levelp, c h a r *bufp, i n t bufsize, i n t format) ;

DESCRIPTION
The l v l o u t () routine translates the level referenced by levelp to the corresponding
alias or fully qualified level (depending on the value in format), and places it in the
character buffer referenced by bufp.

format must be one of the following:

L V L _ A L I A S the corresponding alias is placed in bufp. If the alias does not exist,
the character representation of the decimal value of the level
identifier (LID) is returned.

L V L _ F U L L the corresponding fully qualified level is placed in bufp. If the level
is valid but inactive (deleted), the character representation of the
decimal value of the LID is returned.

If bufsize is 0, the return value is the length that bufp must be to hold the resultant
string.

RETURN VALUE
Upon successful completion, the following occurs:

bufsize == 0 The size requirement for the resultant null terminated character
string is returned.

bufsize != 0 If the level is in the valid-active state, a value of 0 is returned. If
the level is in the valid-inactive state, a positive integer is returned.

Otherwise, a value of – 1 is returned and e r r n o is set to indicate the error.

ERRORS
Under the following conditions, l v l o u t () fails and sets e r r n o to:

E I N V A L if the format is not valid.

E I N V A L if the level referenced by levelp does not exist on the system.

E N O S P C if the resultant text string is larger than bufsize.

SEE ALSO
lvlin(ES_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlout
svid

Page: 85

lvlproc (ES_LIB) lvlproc (ES_LIB)

NAME
lvlproc – get or set the level of a process

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l p r o c (i n t cmd, l e v e l _ t *levelp)

DESCRIPTION
The l v l p r o c() system call gets or sets the level of the calling process, depending on
the value in cmd.

If cmd is M A C _ G E T, l v l p r o c() returns the level of the calling process to the variable
referenced by levelp.

If cmd is M A C _ S E T, the calling process must have the appropriate privileges. If it
does, l v l p r o c() sets the level of the calling process to the level referenced by levelp.
The level referenced by levelp must be a valid level obtained by a previous
l v l i n(ES_LIB) routine or l v l f i l e(ES_LIB) or l v l p r o c() system call.

RETURN VALUE
Upon successful completion, the system call l v l p r o c() returns a value of 0 and the
following action is taken:

M A C _ G E T The object pointed to by levelp contains the level of the calling process.

M A C _ S E T The level of the calling process is set to the object pointed to by levelp.

Otherwise, a value of – 1 is returned and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, l v l p r o c() fails and sets e r r n o to:

E I N V A L if cmd is invalid.

E I N V A L if cmd is M A C _ S E T and the level referenced by levelp is not defined on
the system.

E P E R M if cmd is M A C _ S E T and the caller lacked the appropriate privileges.

SEE ALSO
lvlfile(ES_LIB), lvlin(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlproc
svid

Page: 86

lvlvalid (ES_LIB) lvlvalid (ES_LIB)

NAME
lvlvalid – check the validity of a level

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l v a l i d (l e v e l _ t *levelp) ;

DESCRIPTION
The l v l v a l i d () routine checks the validity of the level referenced by levelp.

RETURN VALUE
If the level is valid in the active state, a value of 0 is returned; if the level is valid in
the inactive state, a positive integer is returned; otherwise, a value of –1 is returned
and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, l v l v a l i d () fails and sets e r r n o to:

E I N V A L if the level referenced by levelp does not exist on the system.

E A C C E S If the calling process does not pass the access checks for the L e v e l
T r a n s l a t i o n D a t a b a s e (L T D B).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlvalid
svid

Page: 87

lvlvfs (ES_LIB) lvlvfs (ES_LIB)

NAME
lvlvfs - get or set the level ceiling of a mounted file system

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t l v l v f s (c h a r *path, i n t cmd, l e v e l _ t *hilevelp) ;

DESCRIPTION
Depending on the value of cmd, the l v l v f s system call gets or sets the level ceiling
of a mounted file system in which path resides. l v l v f s requires the appropriate
privileges.

If cmd is M A C _ G E T, l v l v f s returns the level ceiling of the mounted file system in the
variable pointed to by hilevelp.

If cmd is M A C _ S E T, l v l v f s sets the level ceiling of the mounted file system to the
value pointed to by hilevelp. The level pointed to by hilevelp must be a valid level,
which may be obtained from the l v l i n routine.

RETURN VALUE
When successful, l v l v f s returns 0. Otherwise, it returns -1 and sets e r r n o to one
of the following values:

ERRORS
E A C C E S The invoking subject failed the access checks on a component of path.

E I N V A L The cmd is invalid.

E I N V A L The cmd is M A C _ S E T, and hilevelp is not defined on the system.

E R A N G E The cmd is M A C _ S E T, and hilevelp does not dominate the floor level of
the file system.

E N O E N T A component of path does not exist.

E N O T D I R A component of the path prefix is not a directory.

E N O S Y S The cmd is M A C _ S E T, and the file system does not support labeling.

E P E R M The invoking subject does not have the appropriate privileges.

E N A M E T O O L O N G
if the length of path exceeds PATH_MAX, or the length of a path com-
ponent exceeds NAME_MAX while POSIX_NO_TRUNC is in effect

SEE ALSO
devstat(ES_LIB), lvlproc(ES_LIB), lvlfile(ES_LIB), lvlin(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/lvlvfs
svid

Page: 88

mkmld (ES_LIB) mkmld (ES_LIB)

NAME
mkmld – make a Multilevel Directory

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s t a t . h >
i n c l u d e < m a c . h >

i n t m k m l d (c o n s t c h a r ∗path, m o d e _ t mode) ;

DESCRIPTION
m k m l d creates a Multilevel Directory (MLD) named by path . The calling process
must possess the appropriate privileges. The mode of the new directory is initial-
ized from mode [see c h m o d(BA_OS) for values of mode]. The protection part of the
mode argument is modified by the process’s file creation mask [see u m a s k(BA_OS)].

The directory’s owner ID is set to the process’s effective user ID. The directory’s
group ID is set to the process’s effective group ID, or if the S _ I S G I D bit is set in its
parent directory, then the group ID of the directory is inherited from the parent.
The S _ I S G I D bit of the new directory is inherited from the parent directory.

If the final component of path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and
its parent directory (. .).

Upon successful completion, m k m l d marks for update the s t _ a t i m e, s t _ c t i m e and
s t _ m t i m e fields of the directory. Also, the s t _ c t i m e and s t _ m t i m e fields of the
directory that contains the new entry are marked for update.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned, and e r r n o is set to indicate the error.

ERRORS
m k m l d fails and creates no directory if one or more of the following are true:

E A C C E S Either a component of the path prefix denies search permission or
write permission is denied on the parent directory of the direc-
tory to be created.

E E X I S T The named file already exists.

E I O An I/O error has occurred while accessing the file system.

E L O O P Too many symbolic links were encountered in translating path.

E M L I N K The maximum number of links to the parent directory would be
exceeded.

E N A M E T O O L O N G The length of the path argument exceeds P A T H _ M A X, or the length
of a path component exceeds N A M E _ M A X while _ P O S I X _ N O _ T R U N C
is in effect.

E N O E N T A component of the path prefix does not exist.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/mkmld
svid

Page: 89

mkmld (ES_LIB) mkmld (ES_LIB)

E N O S P C No free space is available on the device containing the directory.

E N O T D I R A component of the path prefix is not a directory.

E R O F S The path prefix resides on a read-only file system.

E P E R M The calling process lacks the appropriate privileges.

E N O S Y S The file system on which p a t h resides does not support Mul-
tilevel Directories.

SEE ALSO
chmod(BA_OS), mkdir(BA_OS), mknod(BA_OS), umask(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/mkmld
svid

Page: 90

mldmode (ES_LIB) mldmode (ES_LIB)

NAME
mldmode - Retrieve or set the Multilevel Directory mode of a process

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < m a c . h >

i n t m l d m o d e (i n t mode)

DESCRIPTION
The m l d m o d e () system call retrieves or sets the Multilevel Directory mode of the
calling process based on the value in mode. Acceptable values of mode are
M L D _ Q U E R Y, M L D _ R E A L and M L D _ V I R T. If M L D _ Q U E R Y is specified, the return value of
the call will be M L D _ R E A L or M L D _ V I R T, indicating the current Multi-Level Directory
mode of the process. Specifying M L D _ R E A L puts the process in real mode so that
MLDs are treated as regular directories. Specifying M L D _ V I R T puts the process in
virtual mode so that the process deflects through the MLD to the effective directory
at the level of the process.

RETURN VALUE
If M L D _ Q U E R Y is specified, successful completion is indicated by the return value of
M L D _ R E A L or M L D _ V I R T. If M L D _ R E A L or M L D _ V I R T is specified, successful comple-
tion is indicated by a return value of 0. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
m l d m o d e() fails if the following is true:

E I N V A L Arguments to the system call are invalid.

SEE ALSO
mkmld(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/mldmode
svid

Page: 91

procpriv (ES_LIB) procpriv (ES_LIB)

NAME
procpriv – add, remove, set, retrieve, or count privileges associated with the calling
process

SYNOPSIS
i n c l u d e < p r i v . h >

i n t p r o c p r i v (i n t cmd, p r i v _ t *privp, i n t nentries)

DESCRIPTION
The p r o c p r i v system call is used to add, remove, retrieve, count, or put the
privileges associated with the calling process. privp is a pointer to an array of
privilege descriptors, each of which contains the privilege set and identity of the
requested privilege. nentries is the number of entries contained in privp. (See the
Enhanced Security Extension Introduction for descriptions of terms such as
‘‘privilege set.’’)

The recognized cmds and their functions are described below:

S E T P R V the working privilege set for the current process is set based on the
privilege descriptor(s) contained in privp. All requested privileges not
contained in the current maximum privilege set are ignored. All
requested working privileges that are in the current maximum set are
added to the working privilege set. A request may include adding one
or more privileges that are already in the current working privilege set
without causing an error. If any argument is invalid, none of the pro-
cess privileges are changed.

C L R P R V the working and maximum privilege sets for the current process are
cleared based on the privilege descriptor(s) contained in privp. All
requested privileges are removed from their respective sets. If a
privilege is removed from the maximum set it’s automatically removed
from the working set. A request may include removing one or more
privileges from the current working (or maximum) privilege set that are
not in the current working (or maximum) privilege set without causing
an error. If any argument is invalid, none of the process privileges are
changed.

P U T P R V the working and maximum privilege sets for the current process are set
based on the privilege descriptor(s) contained in privp. The working
privilege set is adjusted to be a subset of the resulting maximum set.
Privileges contained in either privilege set that are not in the maximum
set of the calling process are ignored. If any argument is invalid, none
of the process privileges are changed.

G E T P R V the working and maximum privilege sets for the current process are
returned in privp in the form of privilege descriptors. None of the pro-
cess privileges are changed.

C N T P R V returns the number of privileges associated with the current process.
The privp and nentries arguments are ignored. None of the process
privileges are changed.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/procpriv
svid

Page: 92

procpriv (ES_LIB) procpriv (ES_LIB)

RETURN VALUE
A value of –1 is returned and e r r n o is set to indicate the error if p r o c p r i v is unsuc-
cessful. If successful, p r o c p r i v returns 0 for S E T P R V, C L R P R V, P U T P R V or the
number of privileges associated with the current process for G E T P R V, and C N T P R V.

ERRORS
p r o c p r i v fails if the following is true:

E I N V A L cmd or privilege specified is invalid, or nentries is less than 0, or cmd is
G E T P R V and the process privileges exceeds nentries.

E P E R M the calling process does not have the appropriate privileges to set file
privileges.

SEE ALSO
filepriv(ES_LIB), procprivl(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/procpriv
svid

Page: 93

procprivl (ES_LIB) procprivl (ES_LIB)

NAME
procprivl – add, remove, set, or count privileges associated with the calling process

SYNOPSIS
i n c l u d e < p r i v . h >

i n t p r o c p r i v l (i n t cmd, p r i v _ t priv1, . . .)

DESCRIPTION
The p r o c p r i v l system call is used to add, remove, count, or put the privileges
associated with the calling process. priv1 is a list of privilege descriptors, each of
which contains the privilege set and identity of the requested privilege. The list is
terminated with a (p r i v _ t)0 value. (See the Enhanced Security Extension Intro-
duction for descriptions of terms such as ‘‘privilege set.’’)

The recognized cmds and their functions are described below:

S E T P R V the working privilege set for the current process is set based on the
privilege descriptor(s) contained in the list. All requested privileges not
contained in the current maximum privilege set are ignored. All
requested working privileges that are in the current maximum set are
added to the working privilege set. A request may include adding one
or more privileges that are already in the current working privilege set
without causing an error. If any argument is invalid, none of the pro-
cess privileges are changed.

C L R P R V the working and maximum privilege sets for the current process are
cleared based on the privilege descriptor(s) contained in the list. All
requested privileges are removed from their respective sets. If a
privilege is removed from the maximum set it’s automatically removed
from the working set. A request may include removing one or more
privileges from the current working (or maximum) privilege set that are
not in the current working (or maximum) privilege set without causing
an error. If any argument is invalid, none of the process privileges are
changed.

P U T P R V the working and maximum privilege sets for the current process are set
based on the privilege descriptor(s) contained in the list. The working
privilege set is adjusted to be a subset of the resulting maximum set.
Privileges contained in either privilege set that are not in the maximum
set of the calling process are ignored. If any argument is invalid, none
of the process privileges are changed.

C N T P R V returns the number of privileges associated with the current process.
The rest of the arguments, if any, are ignored. None of the process
privileges are changed.

RETURN VALUE
A value of –1 is returned and e r r n o is set to indicate the error if p r o c p r i v l is
unsuccessful. If successful, p r o c p r i v returns 0 for S E T P R V, C L R P R V, P U T P R V or the
number of privileges associated with the current process for G E T P R V, and C N T P R V.

Page 1

FINAL COPY
June 15, 1995

File: es_lib/procprivl
svid

Page: 94

procprivl (ES_LIB) procprivl (ES_LIB)

ERRORS
p r o c p r i v l fails if the following is true:

E I N V A L cmd or privilege specified is invalid.

E P E R M the calling process does not have the appropriate privileges to set file
privileges.

SEE ALSO
filepriv(ES_LIB), procpriv(ES_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_lib/procprivl
svid

Page: 95

FINAL COPY
June 15, 1995

File:

Page: 96

Enhanced Security Extension Commands And
Utilities

The following section contains the manual pages for the ES_CMD routines

Enhanced Security Extension Commands And Utilities 6-1

FINAL COPY
June 15, 1995

File: es_cmd.cov
svid

Page: 97

FINAL COPY
June 15, 1995

File:

Page: 98

admalloc (ES_CMD) admalloc (ES_CMD)

- w used to set the working level, level, of the device (device special file).
This option must be used with the – u option.

- u specifies the user and group to which the device is allocated. The
specified values become the owner and group of the device special files
mapped to the device, and their DAC is set to allow read and write to
only the user. If user, group is not specified, then the invoking user (real
UID and GID) are used.

- r specifies the MAC level range, hilevel-lolevel, to be used to set the level
range on the device (device special file), when it is allocated. A dash
character (-) is the range delimiter. If [- r] is not specified, then the
range defined in the DDB for that device is used. The specified range,
must be within the level range defined in DDB for that device. Other-
wise the command fails.

Allocation at startup option:
- s all devices (aliases) in the Device Database, that have the startup attri-

bute set to yes will be allocated, based on information stored for that
device in the DDB. The device is allocated with the values of range, state,
and mode defined in the DDB. The DAC ownership and permissions on
devices allocated are also taken from the DDB. If all the startup attri-
butes (startup_level, startup_owner, startup_group, and startup_other) are
not defined in the DDB, then the command fails.

Deallocation options:
- d used to deallocate the specified device. Deallocation will be successful if

none of the device special files mapped to a device are open or mapped.
If deallocation is successful and the DDB entry for the specified device
defines startup level and startup owner attributes, then the level and
DAC ownership of the device are reset to those values. However, if the
startup attributes are not defined, then the DAC permissions and MAC
level of the device (dsf) are unchanged. If no device argument is
specified, then admalloc will attempt to deallocate every device defined
in the DDB.

- f implies ‘‘forced release’’. When this option is used with [- d], then the
device is deallocated, even if there are open connections or mapping
active to the specified device.

RETURN VALUE
For incorrect syntax the command fails and the exit code equals 1. For any error
message displayed on partial failure of command (where the command successfully
works for some of the devices in argument list), the exit code equals 2. If the
Enhanced Security Extension is not implemented, then the exit code is set to 3. Exit
code equals 4 for all other error messages.

FILES
/ e t c / d e v i c e . t a b
/ e t c / s e c u r i t y / d d b / d d b _ d s f m a p
/ e t c / s e c u r i t y / d d s b / d d b _ s e c

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/admalloc
svid

Page: 100

admalloc (ES_CMD) admalloc (ES_CMD)

SEE ALSO
devattr(ES_CMD), devstat(ES_CMD), putdev(ES_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: es_cmd/admalloc
svid

Page: 101

adminrole (ES_CMD) adminrole (ES_CMD)

NAME
adminrole – display, add, change, delete roles in the Trusted Facility Management
(TFM) database.

SYNOPSIS
a d m i n r o l e [– n] [– a [cmd:path[:priv [:priv . . .]] [, . . .]] role . . .
a d m i n r o l e [– a [cmd:path[:priv [:priv . . .]] [, . . .]]

[– r cmd [:priv[:priv . . .]] [, . . .]] role . . .
a d m i n r o l e [– d] role . . .
a d m i n r o l e

DESCRIPTION
The a d m i n r o l e command allows administrators to display, add, change, and delete
roles in the TFM database. A role contains a list of commands. Each command con-
tains a (possibly empty) list of privileges. The t f a d m i n command will use these
privileges to set up its process before it invokes this command for a member of the
role. The a d m i n r o l e command has the following options:

- n For every role in the list, create a new role description.

- a Add a command to a role, add the role to the database if it
does not already exist.

- r Remove a command from a role or remove privileges from a
command within a role.

- d Delete a role.

No options List the contents of the specified roles.

No arguments List the contents of all roles in the database.

The a d m i n r o l e command takes as its arguments the list of roles to which the
actions specified by the options applies. The argument to the - a or - r option is a
comma-separated list of command descriptions. For the - a option the command
description includes the name of the command to be added, the full path at which
the command file resides, and the privilege set, represented by a colon separated
list of privilege names, for example:

m o u n t : / e t c / m o u n t : m a c r e a d : m o u n t

The command description for the - r option is the same as for the - a option except
that the full path and the separating colon are not given (for example,
m o u n t : m a c r e a d : m o u n t). If users in the specified roles get no privilege when they
invoke the command, the privilege description may be omitted. When the – a and
– r options are both specified on the command line, the – r options are processed
first.

RETURN VALUE
This command exits with a 0 if all requested operations succeeded, 1 if any opera-
tion failed.

FILES
/ e t c / s e c u r i t y / t f m / r o l e s / *
/ e t c / s e c u r i t y / t f m / r o l e s / * / c m d s / *

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/adminrole
svid

Page: 102

adminrole (ES_CMD) adminrole (ES_CMD)

USAGE
System administrator.

SEE ALSO
adminuser(ES_CMD), tfadmin(ES_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/adminrole
svid

Page: 103

adminuser (ES_CMD) adminuser (ES_CMD)

NAME
adminuser – display, add, change, delete users in the TFM database.

SYNOPSIS
a d m i n u s e r [– n] [– o role[, . . .]]

[– a cmd:path[:priv [:priv. . .]][, . . .]]
[– D cmd]
user . . .

a d m i n u s e r [– o role[, . . .]]
[– r cmd [:priv[:priv. . .]][, . . .]]
[– a cmd:path[:priv [:priv. . .]][, . . .]]
[– D cmd]
user . . .

a d m i n u s e r [– d] user. . .
a d m i n u s e r

DESCRIPTION
The a d m i n u s e r command allows administrators to display, add, change, and delete
users in the TFM database. A user definition contains a list of commands. Each
command contains a list of privileges. The t f a d m i n command uses these privileges
to set up its process before invoking this command for the user. In addition to the
command definitions, there is a list of roles available to the user, and a default com-
mand specification.

- n For every user in the list, create a new user description, and,
optionally, create a role list or add a command to that user.

- o Create the specified role list for every user in the list.

- a Add a list of commands to the definitions of a given list of
users.

- r Remove the list of commands from the list of users. If the
user supplies privileges in the command descriptions, then
leave the command but remove the specified privileges.

- D Set the default command for a given list of users.

- d Delete the given list of users.

No options Print out the capabilities of the given list of users.

No arguments Print the capabilities of every user in the database.

The a d m i n u s e r command takes as its arguments the list of users to which the
actions specified by the options applies. The list of users is a list of user login
names.

The argument to the - o option is a comma-separated list of role names. This list
will create a new role list for the specified users, replacing any existing role lists.

The argument to the - a or - r option is a comma-separated list of command descrip-
tions. For the - a option the command description includes the name of the com-
mand to be added, the full path at which the command file resides, and the
privilege vector, represented by a colon-separated list of privilege names (for exam-
ple, m o u n t : / e t c / m o u n t : m a c r e a d : m o u n t). The command description for the - r
option is the same as for the - a option except that the full path and the separating

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/adminuser
svid

Page: 104

adminuser (ES_CMD) adminuser (ES_CMD)

colon are not given (for example, m o u n t : m a c r e a d : m o u n t). If the users get no
privileges when they invoke the command, the privilege description may be omit-
ted. When the – a and – r options are both specified on the command line, the – r
options are processed first.

The argument to the - D option is the name of the command to be run if user exe-
cutes t f a d m i n without specifying a command name.

RETURN VALUE
This command exits with a 0 if all requested operations succeeded, 1 if any opera-
tion failed.

FILES
/ e t c / s e c u r i t y / t f m / u s e r s / *

/ e t c / s e c u r i t y / t f m / u s e r s / * / d e f a u l t

/ e t c / s e c u r i t y / t f m / u s e r s / * / r o l e s

/ e t c / s e c u r i t y / t f m / u s e r s / * / c m d s / *

USAGE
System administrator.

SEE ALSO
adminrole(ES_CMD), tfadmin(ES_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/adminuser
svid

Page: 105

chlvl (ES_CMD) chlvl (ES_CMD)

NAME
chlvl – change the level of a file

SYNOPSIS
c h l v l level file1. . .

DESCRIPTION
c h l v l will change the level of the named file(s). The new level must be either a
valid alias level, or a valid fully qualified level name of the following format:

h_name[:c_name[,c_name]] . . .]

where h_name is a hierarchical classification name, and c_name is a non-hierarchical
category name. A fully qualified level is valid if the classification and categories
comprising the level are named, and the level has been assigned a system level
identifier number (LID) using the l v l n a m e command. An alias name is valid if the
alias has been assigned to a fully qualified level using the l v l n a m e command.
Valid levels can be viewed using the l v l n a m e command. level must, furthermore,
be within the file system level range.

The named file(s) must be accessible by the user. In addition, except for the root of
a mounted file system and for block or character device special files that are set in
d y n a m i c mode or are in p r i v a t e state, none of the specified files may be open
and/or mapped. If a directory is listed, it must not be the mount point of a
currently mounted filesystem. To change the level of a mount point, unmount the
filesystem, call c h l v l on the mount point, and then remount. For a block or charac-
ter device special file, the specified level must also be within the device level range.
The security attributes of a device special file can be viewed using the d e v s t a t
command. If c h l v l encounters an error for a specific file, an error message is
printed and processing resumes with the next file (if any).

ERRORS
One or more of the following error messages may appear on output:

invalid invocation syntax

invalid security level specified

LTDB is inaccessible

file ‘‘filename’’ is inaccessible

file ‘‘filename’’ is not ’tranquil’ (that is, file is open and/or mapped or root of
mounted file system)

security level specified is not within device range

file system for file ‘‘filename’’ does not support per-file labels

file system for ‘‘filename’’ is mounted read-only

permission denied for file ‘‘filename’’

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/chlvl
svid

Page: 106

chlvl (ES_CMD) chlvl (ES_CMD)

FILES
/ e t c / s e c u r i t y / m a c / l t f . c a t category names
/ e t c / s e c u r i t y / m a c / l t f . c l a s s classification names
/ e t c / s e c u r i t y / m a c / l t f . a l i a s alias names
/ e t c / s e c u r i t y / m a c / l i d . i n t e r n a l fully qualified levels

USAGE
This command is restricted to use by an administrator.

SEE ALSO
devstat(ES_CMD), lvlname(ES_CMD), lvldelete(ES_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/chlvl
svid

Page: 107

defsak (ES_CMD) defsak (ES_CMD)

NAME
defsak – define, remove, change, or display secure attention key

SYNOPSIS
u s r / s b i n / d e f s a k - d sak [- x] path . . .
u s r / s b i n / d e f s a k - d n o n e path . . .
u s r / s b i n / d e f s a k - r path . . .
u s r / s b i n / d e f s a k [path . . .]

DESCRIPTION
The d e f s a k administrative command is used to define, remove, change, or display
the Secure Attention Key (SAK) for terminals. The SAK is a signal that a user sends
to the host computer to establish a secure communications channel, or trusted path,
for login. Users cannot log in on terminals that do not have a defined SAK.

If invoked without any options or arguments, d e f s a k prints the SAKs for all
defined terminal paths, in the following format:

path: sak [+ d r o p]

The path is the absolute path name of the terminal device. The sak is the SAK
defined for the terminal. An optional + d r o p suffix may be displayed; if present, it
indicates that the line drop signal is also recognized as a SAK.

If invoked without options but with the absolute path name(s) of one or more ter-
minals as an argument, d e f s a k displays information about the SAK(s) for the
specified terminal(s).

d e f s a k has the following options:

- d sak This option defines the SAK for a terminal or terminals. The SAK may
be either a control character or the break or line drop signal. A control
character is specified either as an octal number in the range 000 to 015 or
020 to 037 (for example, 0 0 1) or as a character preceded by a caret (for
example, ˆ A). A line drop or break is specified as the SAK by using the
strings b r e a k or d r o p after the - d option. For example, the command
d e f s a k - d d r o p specifies that the line drop is the SAK.

- d n o n e This option disables the trusted path processing for the terminal
specified by the path argument. A warning message is printed, indicat-
ing that the terminal is no longer secure. This feature is intended to sup-
port communications utilities, such as u u c p.

- x This option defines the line drop as a SAK, in addition to the SAK
defined with the - d option. The - x option can be used only with the - d
option.

- r This option removes the SAK for a tty device. If the SAK is removed,
the terminal is disabled and cannot be used for logins. This is not the
same as defining the SAK as n o n e. Defining the SAK as n o n e allows
someone (or some program) to log in without entering the SAK.
Removing the SAK with - r disables the terminal completely.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/defsak
svid

Page: 108

defsak (ES_CMD) defsak (ES_CMD)

RETURN VALUE
Upon successful completion, d e f s a k returns a value of 0. If the SAK is defined as
n o n e, the following warning message is printed:

S A K d i s a b l e d f o r t e r m i n a l path,
t e r m i n a l i s n o l o n g e r s e c u r e

Otherwise, a non-zero value is returned and one of the following error messages is
printed:

path n o t d e f i n e d i n S A K d a t a b a s e
The path argument does not correspond to a known terminal.

i n v a l i d S A K s p e c i f i e d
The SAK specified to - d is not a control character, line drop, break,
or n o n e.

S A K d a t a b a s e i s n o t a c c e s s i b l e
The _ p m t a b database file is not accessible.

I l l e g a l o p t i o n
Incorrect syntax used

FILES
/ e t c / s a f /pmtag/ _ p m t a b

USAGE
Because the system will end a user’s login session whenever it sees the SAK as
input, the SAK should not be a character that users will normally type. It is prefer-
able to use the line drop signal as the SAK, because this signal is not used as normal
user input. Use of the line drop as the SAK is recommended unless tty access to the
system is via a modem or access emulates modem signals. In these cases, use a
break signal.

All terminals at a site should have the same SAK, if possible. This makes it easier
for users to remember the SAK and simplifies system administration.

Using a control character as the SAK is discouraged. A control character should be
used only if it is not possible to use the line drop or break signals as the SAK. Using
a control character as the SAK has the following problems:

• A control character SAK restricts the setting of terminal characteristics, and it
may be difficult to find a character that is not used by application programs and
commands.

• Control character SAKs may not work well in environments, such as terminal-
based windowing packages, where data messages are wrapped by protocol
information. Protocol information may contain the SAK, in which case the user
will be logged out immediately, possibly in the middle of a protocol.

If you choose a character SAK, do not use any character in the set of default settings
for special characters defined in t e r m i o (B A _ D E V). Doing so will cause i o c t l
failures when the tty device’s t e r m i o characteristics are being set. Choosing one of
the following as a SAK is strongly discouraged:

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/defsak
svid

Page: 109

defsak (ES_CMD) defsak (ES_CMD)

back space octal 0 1 0
horizontal tab octal 0 1 1
new line octal 0 1 2
vertical tab octal 0 1 3
new page octal 0 1 4
carriage return octal 0 1 5
Control-D octal 0 0 4
Control-S octal 0 2 3
Control-Q octal 0 2 1

Redefinition of the SAK is discouraged because doing so does not have any security
benefits and can confuse users.

SEE ALSO
termio(BA_DEV)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: es_cmd/defsak
svid

Page: 110

devattr (ES_CMD) devattr (ES_CMD)

NAME
devattr – lists device attributes

SYNOPSIS
d e v a t t r [- v] device [attribute . . .]

DESCRIPTION
d e v a t t r displays the values for a device’s attributes. The display can be presented
in two formats. When run without the - v option, d e v a t t r shows only the attribute
values. When run with - v, d e v a t t r shows the attributes in the format
attribute=value[,value . . .]. When no attributes are given on the command line, all
attributes for the specified device are displayed in alphabetical order by attribute
name. If attributes are given on the command line, only those are shown and they
are displayed in command line order.

The options and arguments for this command are:

- v Specifies verbose format. Attribute values are displayed in an
attribute=value format.

device Defines the device for which attributes should be displayed. It can
be the absolute pathname of the device or the device alias. If it is an
absolute pathname, then d e v a t t r gets the device alias name to
which the pathname maps and displays all the attributes defined for
that alias. If the alias is a secure device alias, then security attributes
are also displayed.

attribute Defines which attribute, or attributes, should be shown. The default
is to show all attributes for a device. [See p u t d e v(ES_CMD) for a
complete list of attributes.] If the system supports multilevel secu-
rity, it is possible to query for information on the secure device alias
and security attributes. Otherwise, such queries will fail.

RETURN VALUE
Upon successful completion, d e v a t t r returns a value of 0. Otherwise, it returns a
non-zero value.

FILES
/ e t c / d e v i c e . t a b
/ e t c / s e c u r i t y / d d b / d d b _ d s f m a p
/ e t c / s e c u r i t y / d d b / d d b _ s e c referenced only if the Enhanced Security

Extension is implemented

SEE ALSO
getdev(ES_CMD), putdev(ES_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/devattr
svid

Page: 111

devstat (ES_CMD) devstat (ES_CMD)

NAME
devstat – gets the current security attributes of a device

SYNOPSIS
d e v s t a t - Z [device . . .]

d e v s t a t - z [device . . .]

DESCRIPTION
The d e v s t a t command allows administrators to get the current security attributes
of a specified device and, thus, to determine which devices are allocated and in use
on the system. The device security attributes are those defined in the kernel, not
those stored in the Device Database [see d e v a t t r(ES_CMD)].

Security information is printed for each of the specified device arguments. If no arg-
ments are passed, d e v s t a t displays information on every device (all device special
files) defined in the Device Database.

The device argument can take any one of the following four forms: (1) an absolute
pathname for a device special file defined in the Device Database, (2) an absolute
pathname for a device special file that’s not defined in the Device Database, (3) a
device alias name, or (4) a secure device alias. If device is an absolute pathname
listed in the Device Database, d e v s t a t prints the security attributes of that device
special file. If device is an absolute pathname for a device special file not defined in
the Device Database (but the character or block device special file exists in the sys-
tem), d e v s t a t displays the information provided by d e v s t a t(BA_OS). If device is a
device alias name, d e v s t a t prints the security attributes of every device special file
mapped to that alias. If device is a secure device alias, d e v s t a t prints the security
attributes of every device special file mapped to all aliases for which the s e c d e v
attribute is equal to that secure device alias.

d e v s t a t has the following options:

- Z Print security levels as fully qualified level names.

- z Print security levels as level aliases.

If the level is not defined in the Level Translation Database (LTDB), d e v s t a t prints
a text representation of the binary value of the level identifier (LID).

For each specified device, d e v s t a t displays a status report in the following form:

d e v i c e n a m e : secure_device_alias
p a t h n a m e : device_special_file

s t a t e : state
m o d e : mode
h i g h : level
l o w : level
u s e c o u n t : use count
r e l e a s e f l a g : relflag

When a requested device is a character or block special file that is not defined in the
Device Database, the values reported for the d e v i c e n a m e and p a t h n a m e fields are
the same.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/devstat
svid

Page: 112

devstat (ES_CMD) devstat (ES_CMD)

Under p a t h n a m e, the following fields are listed:

s t a t e Either p r i v a t e (only privileged processes can access the device) or
p u b l i c.

m o d e Either s t a t i c or d y n a m i c.

h i g h, l o w Either fully qualified level names or level aliases for valid level
identifiers.

u s e c o u n t Set to 1 if connections are open or mappings are being made to the
device special file. Otherwise, set to zero (0).

r e l e a s e f l a g One of three values: p e r s i s t e n t, l a s t c l o s e, or s y s t e m. If p e r -
s i s t e n t, the security attributes remain in effect until they are
explicitly reset. If l a s t c l o s e, the device security attributes
remain in effect until the last close and are then reset to the system
security attributes. If s y s t e m, the device security attributes are set
to the system security attributes.

RETURN VALUE
Whenever d e v s t a t fails to print the status of a specified device, it displays an
appropriate error message and continues processing with the next specified device.
Upon completion, d e v s t a t exits with an exit code of 0 if it was successful, 2 if it
was partially successful, and the appropriate code if it fails.

FILES
/ e t c / d e v i c e . t a b
/ e t c / s e c u r i t y / d d b / d d b _ d s f m a p
/ e t c / s e c u r i t y / d d b / d d b _ s e c

SEE ALSO
admalloc(ES_CMD), devattr(ES_CMD), lvlname(ES_CMD), putdev(ES_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/devstat
svid

Page: 113

filepriv (ES_CMD) filepriv (ES_CMD)

SEE ALSO
filepriv(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/filepriv
svid

Page: 115

getacl (ES_CMD) getacl (ES_CMD)

NAME
getacl – display discretionary information for a file or files

SYNOPSIS
g e t a c l [– a d] file . . .

DESCRIPTION
For each argument that is a regular file, special file, or named pipe, g e t a c l displays
the owner, group, and the Access Control List (ACL). For each directory argument,
g e t a c l displays the owner, group, and the ACL and, optionally, the default ACL.
Only directories contain default ACLs.

With the – a option specified, the filename, owner, group, and the ACL of the file
will be displayed. With the – d option specified, the filename, owner, group, and
the default ACL of the file, if it exists, will be displayed. With no option specified
g e t a c l behaves as if both [– a] and [– d] were specified.

This command may be executed on a file system that does not support ACLs. It
will report the ACL consisting of only the owning user, owning group, class and
other entries, based on the permission bits.

When multiple files are specified on the command line, a blank line will separate
the ACL for each file. The format of an ACL is:

f i l e: filename
o w n e r: uid
g r o u p: gid
u s e r::perm
u s e r:uid:perm
g r o u p::perm
g r o u p:gid:perm
c l a s s:perm
o t h e r:perm
d e f a u l t : u s e r::perm
d e f a u l t : u s e r:uid:perm
d e f a u l t : g r o u p::perm
d e f a u l t : g r o u p:gid:perm
d e f a u l t : c l a s s:perm
d e f a u l t : o t h e r:perm

The first three lines show the filename, the file owner, and the file owning group.
Note that when only the – d option is specified, and the file has no default ACL,
only these three lines will be displayed.

The u s e r entry without a user ID indicates the permissions that will be granted to
the owner of the file. One or more additional u s e r entries indicate the permissions
that will be granted to the specified users. The g r o u p entry without a group
identifier indicates the permissions that will be granted to the owning group of the
file. One or more additional g r o u p entries indicate the permissions that will be
granted to the specified groups. The o t h e r entry indicates the permissions that will
be granted to others.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/getacl
svid

Page: 116

getacl (ES_CMD) getacl (ES_CMD)

The default entries (d e f a u l t : u s e r, d e f a u l t : g r o u p, d e f a u l t : c l a s s, and
d e f a u l t : o t h e r) may only exist for directories, and indicate the default u s e r,
g r o u p, and o t h e r entries that will be added to a file created within the directory.

A uid is a login name, or a user ID if there is no entry for the uid in the system’s
password file; gid is a group name, or a group ID if there is no entry for the gid in
the system’s group file; and perm is a three character string composed of the letters
representing the separate discretionary access rights: r (read), w (write), x
(execute/search), or the placeholder character –. The perm will be displayed in the
following order: r w x. If a permission is not granted by an ACL entry, the place-
holder character will appear.

The ACL entries will be displayed in the order in which they will be evaluated
when an access check is performed. The default ACL entries which may exist on a
directory have no effect on access checks.

The file owner permission bits represent the access that the owning user ACL entry
has. The file group class permission bits constrain the ACL (represent the most
access that any entry in the ACL may have). If a user executes the c h m o d command
and changes the file group class permission bits, this may change the permissions
that would be granted based on the ACL alone. This behavior is necessary for the
save/restore model (all permissions are temporarily removed via c h m o d 0 0 0 file
and then restored) to work correctly. The file other permission bits represent the
access that the other ACL entry has. If a user invokes the c h m o d command and
changes the file group class permission bits, the access granted by the additional
ACL entries may be restricted.

In order to indicate that the file group class permission bits restrict an ACL entry,
g e t a c l will display, on the same line (after each affected entry) text in the form
e f f e c t i v e :perm, where perm will show only the permissions actually granted.

The output from g e t a c l will be in the correct format for input to the s e t a c l com-
mand. If the output from g e t a c l is redirected to a file, the file may be used as
input to s e t a c l. In this way, a user may easily assign one file’s ACL to another file.

FILES
/ e t c / p a s s w d for user IDs

/ e t c / g r o u p for group IDs

USAGE
System administrator.

EXAMPLE
Given file f i l e a, with an ACL five entries long, the command

$ g e t a c l f i l e a

could print:
f i l e : f i l e a
o w n e r : f l e t c h e r
g r o u p : u s
u s e r : : r w x
u s e r : s p y : - - -
u s e r : a r c h e r : r w -
g r o u p : : r - -

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/getacl
svid

Page: 117

getacl (ES_CMD) getacl (ES_CMD)

c l a s s : r w -
o t h e r : - - -

After the command c h m o d 7 0 0 f i l e a was issued on the same file the command
$ g e t a c l f i l e a

could print:
f i l e : f i l e a
o w n e r : f l e t c h e r
g r o u p : u s
u s e r : : r w x
u s e r : s p y : - - -
u s e r : a r c h e r : r w - # e f f e c t i v e : - - -
g r o u p : : r - - # e f f e c t i v e : - - -
c l a s s : - - -
o t h e r : - - -

Given directory f i l e b, with an ACL containing default entries, the command
$ g e t a c l - d f i l e b

could print:
f i l e : f i l e b
o w n e r : f l e t c h e r
g r o u p : u s
d e f a u l t : u s e r : : r w x
d e f a u l t : u s e r : s p y : - - -
d e f a u l t : g r o u p : : r - -
d e f a u l t : o t h e r : - - -

Given directory f i l e b, the command
$ g e t a c l f i l e b

would print:
f i l e : f i l e b
o w n e r : f l e t c h e r
g r o u p : u s
u s e r : : r w x
u s e r : s p y : - - -
u s e r : a r c h e r : r w -
g r o u p : : r - -
o t h e r : - - -
d e f a u l t : u s e r : : r w x
d e f a u l t : u s e r : s p y : - - -
d e f a u l t : g r o u p : : r - -
d e f a u l t : o t h e r : - - -

SEE ALSO
acl(ES_LIB), aclsort(ES_LIB), chmod(BU_CMD), ls(BU_CMD), setacl(ES_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: es_cmd/getacl
svid

Page: 118

getdev (ES_CMD) getdev (ES_CMD)

NAME
getdev – lists devices defined in the Device Database based on criteria

SYNOPSIS
g e t d e v [- a e] [criteria . . .] [device . . .]

DESCRIPTION
g e t d e v generates a list of devices that match certain criteria. The criteria include a
list of attributes (given in expressions) and a list of devices. If no criteria are given,
all devices are included in the generated list.

Devices must satisfy at least one of the criteria in the list unless the - a option is
used. Then only those devices that match all of the criteria in a list will be included
in the generated list.

Devices named on the command line and that match the criteria are included in the
generated list. However, if the - e flag is used, the list of devices named on the com-
mand line becomes the set of devices to be excluded from the list.

Criteria Expression Types
There are four possible expression forms which the criteria specified in the criteria
argument may follow:

attribute=value Selects all devices whose attribute attribute is defined and is
equal to value.

attribute! =value Selects all devices whose attribute attribute is defined and does
not equal value.

attribute:∗ Selects all devices which have the attribute attribute defined.

attribute! :∗ Selects all devices which do not have the attribute attribute
defined.

See p u t d e v(ES_CMD) for a complete listing and description of available attributes.

Options and Arguments
The options and arguments for this command are:

- a Specifies that the list of devices that follows on the command
line must match all criteria to be included in the list generated
by this command. The flag has no effect if no criteria are
defined.

- e Specifies that the list of devices which follows on the command
line should be excluded from the list generated by this com-
mand. The flag has no effect if no devices are defined.

criteria Defines criteria that a device must match to be included in the
generated list. Should be given in expressions.

device Defines devices that should be included or excluded (based on
the command options) in the generated list. Can be the path-
name of the device or the device alias.

RETURN VALUES
Upon successful completion, g e t d e v returns a value of 0. Otherwise, it returns a
non-zero value.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/getdev
svid

Page: 119

getdev (ES_CMD) getdev (ES_CMD)

FILES
/ e t c / d e v i c e . t a b
/ e t c / s e c u r i t y / d d b / d d b _ d s f m a p
/ e t c / s e c u r i t y / d d b / d d b _ s e c referenced only if the Enhanced Security

Extension is implemented

SEE ALSO
devattr(ES_CMD), putdev(ES_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/getdev
svid

Page: 120

lvldelete (ES_CMD) lvldelete (ES_CMD)

NAME
lvldelete – delete Mandatory Access Control (MAC) levels

SYNOPSIS
l v l d e l e t e [- r] – a alias_name[,alias_name. . .]
l v l d e l e t e [- r] – c cat_id[,cat_id. . .]
l v l d e l e t e [- r] – f level_name
l v l d e l e t e [- r] – h class_id[,class_id. . .]
l v l d e l e t e [- r] – l lid[,lid. . .]

DESCRIPTION
The l v l d e l e t e command will delete (unname) a level, hierarchical classification,
non-hierarchical category, or alias name from the system. This command is res-
tricted to use by an administrator.

The following options are recognized:

– a Delete the alias alias_name.

– c Delete the category indicated by cat_id. cat_id may be the category number
or the category name.

– f Delete the level whose fully qualified level name is level_name (that is, of the
format h_name[:c_name,c_name. . .], where h_name is a classification name
and c_name a category name).

– h Delete the classification indicated by class_id. class_id may be the
classification number or the classification name.

– l Delete the level whose numeric level identifier (LID) is lid.

– r Override restriction on deletion of reserved identifiers. Reserved identifiers
are described in l v l n a m e(ES_CMD).

Options that allow multiple entries to be deleted at a time should not contain dupli-
cates. Furthermore, entries to be deleted must have been previously named using
the l v l n a m e command. If an entry on the input line is in error, an error message is
produced, the option-argument containing the entry in error is skipped, and pro-
cessing is resumed with the next option-argument (if any).

A level is deleted using the – l or – f option. In addition to unnaming the LID or
fully qualified level tuple, l v l d e l e t e also deletes the alias name assigned to the
removed level. Note, however, that deleting an alias name using the – a option does
not delete the level itself. Once a LID or fully qualified level tuple has been deleted,
the LID cannot be re-assigned. The fully qualified level name, however, can be
assigned a new LID.

Any identifier may be deleted regardless of its current state. The deletion of an
alias, classification, or category is not an atomic operation. The effect of the delete
is realized when the level (for classification/category) or alias is validated against
the system’s level translation database. Furthermore, that deleting a classification
or category does not automatically delete levels containing the deleted classification
or category. It is the administrator’s responsibility to delete identifiers in a quies-
cent state and to delete all dependent identifiers. It is strongly recommended that
this command be used in maintenance mode only.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/lvldelete
svid

Page: 121

lvldelete (ES_CMD) lvldelete (ES_CMD)

A level is undefined on the system if it was never assigned, it has been deleted, or
its classification or any of its categories has been deleted. See l v l n a m e(ES_CMD)
for details on the various states of a level.

When a level, alias, classification, or category is deleted, an entry will be added to
the history log maintained by l v l n a m e. The history log entry will contain the
deleted identifier and a time stamp. The history log may be printed using the – p
option of the l v l n a m e command.

FILES
/ e t c / s e c u r i t y / m a c / l i d . i n t e r n a l fully qualified levels

/ e t c / s e c u r i t y / m a c / l t f . a l i a s alias names

/ e t c / s e c u r i t y / m a c / l t f . c a t category names

/ e t c / s e c u r i t y / m a c / l t f . c l a s s classification names

/ e t c / s e c u r i t y / m a c / h i s t . * history files

EXAMPLE
In the following example, classification number 2 is deleted, as are categories 1 and
3. Any user attempting to login at a level containing classification 2 or categories 1
or 3 will be denied access to the system.

l v l d e l e t e - h 2 - c 1 , 3

In the next example, the alias name, OBSERVE, is deleted. Any user attempting to
login using the alias will be denied access to the system.

l v l d e l e t e - a O B S E R V E

SEE ALSO
lvlname(ES_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/lvldelete
svid

Page: 122

lvlname (ES_CMD) lvlname (ES_CMD)

If the – h or – c option is given, the specified classification or category number(s)
must fall within the range of supported numbers for classifications or categories,
respectively. Additionally, the classification or category number must be unnamed.
A classification or category number repeated on the input line can be viewed as a
classification or category that has previously been named. If a classification or
category number is out of range or previously named, an error message is printed,
the option-argument containing the entry in error is skipped, and processing is
resumed with the next option-argument (if any).

The – l option is used to assign a new level; that is, a fully qualified level name is
assigned a LID, which is the system’s sole means of level identification. The
classifications and categories must have been previously named, and level_name
must be unique (that is, it cannot already be assigned to another LID). When
invoked with the – l option and without a specified level_identifier, l v l n a m e will
automatically assign a LID to the level_name on input. The LID assigned automati-
cally to a level is the LID just after the highest assigned LID on the system so far.
The l v l n a m e command allows for the system assigned LID to be explicitly overrid-
den on input. This ability allows multiple systems to use the same LIDs for the
same level names. It is recommended that this option be used with discretion, since
"gaps" in the LID sequence may occur. For example, if the next automatically
assigned LID is 1027 and the user overrides the system assigned LID with 2052, the
next automatically assigned LID will be 2053. The numbers 1027 through 2051, are
in essence skipped by the system during automatic LID assignment although they
could be manually assigned.

When level_identifier is specified, the LID must be in the invalid state. A LID is in the
invalid state if the LID has never been assigned to a level. When a LID is assigned to
a level, the LID’s state becomes valid-active. A LID in the valid-active state is valid
for both l o g i n and mandatory access control (MAC) checks. When a LID is
deleted, the LID transitions to the valid-inactive state. A LID in the valid-inactive
state is valid for MAC checks but is no longer valid for l o g i n.

A level is undefined on the system if it has never been assigned, it has been deleted,
or its classification or any of its categories has been deleted.

The – a option is used to assign an alias name to a level. The level_name must have
previously been assigned a LID to have an alias assigned. In addition, level_name
may not already have an alias assigned.

All successful assignments through l v l n a m e add an entry in the history log. When
invoked with the – p option, l v l n a m e prints the history log in the following format
and order:

Level Identifiers (LIDs):
operation level_identifier: :level_name a_date

Classifications:
operation class_no:h_name a_date

Categories:
operation cat_no:c_name a_date

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/lvlname
svid

Page: 124

lvlname (ES_CMD) lvlname (ES_CMD)

Alias Names:
operation alias_name: :level_name a_date

where operation is A D D or D E L (delete) indicating the nature of the history log entry,
and a_date is the date (in setlocale format) the operation took place. Note that the
l v l d e l e t e command is used for the D E L operation.

The LIDs, classifications, and categories are listed in ascending order, with the LID
or classification/category number used as the sort key. Multiple entries are sorted
by ascending date within the number. Alias names are printed in ascending alpha-
betical order.

When l v l n a m e is invoked without options, all the system’s current level definitions
are printed in the following format and order:

Levels:
level_identifier: :[alias_name: :]level_name [*]

Classifications:
class_no:h_name

Categories:
cat_no:c_name

Levels are listed in ascending order by LID number; classifications are listed in
ascending order by classification number; and categories are listed in ascending
order by category number. Both valid-active and valid-inactive levels are displayed;
valid-inactive levels have a * appended to the fully qualified level name. Unnamed
classifications and categories do not appear on output.

FILES
/ e t c / s e c u r i t y / m a c / h i s t . * history log

/ e t c / s e c u r i t y / m a c / l i d . i n t e r n a l fully qualified levels

/ e t c / s e c u r i t y / m a c / l t f . a l i a s alias names

/ e t c / s e c u r i t y / m a c / l t f . c a t category names

/ e t c / s e c u r i t y / m a c / l t f . c l a s s classification names

USAGE
Administrator.

EXAMPLE
Suppose the following state initially:

$ l v l n a m e

Levels:
100::Analias::Not_so_secret:group_43
101::Top_secret*

Classifications:
1:Not_so_secret
15:Top_secret

Page 3

FINAL COPY
June 15, 1995

File: es_cmd/lvlname
svid

Page: 125

lvlname (ES_CMD) lvlname (ES_CMD)

Categories:
1:syseng
43:group_43

and the history log is empty. Then, the operations:

$ l v l n a m e – h 5 : A _ b i t _ s e c r e t - c 3 : N a t o , 5 0 : P r o j e c t X
$ l v l n a m e – l 1 2 5 : : T o p _ s e c r e t : N a t o , P r o j e c t X
$ l v l n a m e – a N o J o k e : : T o p _ s e c r e t : N a t o , P r o j e c t X

will produce the following history log:

$ l v l n a m e – p

Level Identifiers (LIDs):
ADD 125::Top_secret:Nato,ProjectX Jan 10 12:01:52 EST 1989

Classifications:
ADD 5:A_bit_secret Jan 10 12:01:10 EST 1989

Categories:
ADD 3:Nato Jan 10 12:01:10 EST 1989
ADD 50:ProjectX Jan 10 12:01:10 EST 1989

Alias Names:
ADD Nojoke::Top_secret:Nato,ProjectX Jan 10 12:02:10 EST 1989

and the following state:

$ l v l n a m e

Levels:
100::Analias::Not_so_secret:group_43
101::Top_secret*
125::Nojoke::Top_secret:Nato,ProjectX

Classifications:
1:Not_so_secret
5:A_bit_secret
15:Top_secret

Categories:
1:syseng
3:Nato
43:group_43
50:ProjectX

Page 4

FINAL COPY
June 15, 1995

File: es_cmd/lvlname
svid

Page: 126

lvlname (ES_CMD) lvlname (ES_CMD)

SEE ALSO
lvldelete(ES_CMD).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: es_cmd/lvlname
svid

Page: 127

lvlprt (ES_CMD) lvlprt (ES_CMD)

NAME
lvlprt – print system’s current level definitions

SYNOPSIS
l v l p r t [– s]

DESCRIPTION
The l v l p r t command prints the system’s current level identification, including
fully qualified level names, alias names, classifications, and categories. Only valid-
active levels, named classifications and categories are displayed. The – s option
suppresses the printing of classifications and categories.

The format and order of the output are as follows:

Levels:
[alias_name: :]level_name

Classifications:
class_no:h_name

Categories:
cat_no:c_name

Levels are listed in ascending alphabetical order using level_name as the key. When
defined, alias names are printed before the fully qualified level names.
Classifications are listed in ascending order by classification number, and categories
are listed in ascending order by category number.

USAGE
General.

EXAMPLE
$ l v l p r t

Levels:
Zalias::Not_so_secret:group_43
Top_secret

Classifications:
1:Not_so_secret
15:Top_secret

Categories:
1:syseng
43:group_43

SEE ALSO
lvlname(ES_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/lvlprt
svid

Page: 128

mailcheck (ES_CMD) mailcheck (ES_CMD)

NAME
mailcheck – check for mail at all security levels

SYNOPSIS
m a i l c h e c k [– Z]

DESCRIPTION
m a i l c h e c k checks for the existence of mail. Whenever it finds some, it prints a
message on standard output:

You have mail

If the Enhanced Security Extension is implemented, m a i l c h e c k loops through the
dominated security levels looking for mail. For example, if you were logged in at
TopSecret , you might see the message:

You have mail at level: Top Secret
You have mail at level: Unclassified

However, if you were logged in at Unclassified , you would only see the message:

You have mail at level: Unclassified

If there is no mail, it prints on standard error

No mail

By default, when the Enhanced Security Extension is implemented, m a i l c h e c k
prints the level alias of the fully qualified levels dominated by the level at which the
user is currently logged in. The – Z option forces m a i l c h e c k to print the fully
qualified level instead of the alias. The – Z option is valid only when the Enhanced
Security Extension is installed.

m a i l c h e c k is commonly used in a person’s $ H O M E / . p r o f i l e as follows:

mailcheck 2>/dev/null

This prints a message when there is mail, and is otherwise silent.

RETURN VALUE
0 mail exists at some level

1 no mail at any checked level

2 some error occurred

FILES
/ v a r / m a i l mail directory

SEE ALSO
m a i l (B U _ C M D) .

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/mailcheck
svid

Page: 129

mldmode (ES_CMD) mldmode (ES_CMD)

NAME
mldmode – change MLD mode or execute a command in a given MLD mode

SYNOPSIS
m l d m o d e
m l d m o d e – r [string]
m l d m o d e – v [string]

DESCRIPTION
With no options, m l d m o d e reports the current Multi-Level Directory (MLD) mode
(virtual or real). That is, it reports the MLD mode of the invoking process.

– r [string] If – r alone is specified, the MLD mode of the interactive shell is
changed to real mode.

If a string specifying a command line follows the – r, that command
line alone is executed in real mode. (The actual directory structure of
any MLDs encountered will not be hidden from the command.)

– v [string] If – v alone is specified, the MLD mode of the interactive shell is
changed to virtual mode.

If a string specifying a command line follows the – v, that command
line alone is executed in virtual mode. (If an MLD is encountered, the
command will see only the corresponding effective directory at the
level of the invoking process.)

RETURN VALUE
Upon successful completion, the m l d m o d e command returns a value of 0; otherwise,
a diagnostic is printed and a non-zero value is returned.

EXAMPLE
To print the actual directory structure of any directory tree containing an MLD:

m l d m o d e - r f i n d . - p r i n t

SEE ALSO
mkdir(BU_CMD), sh(BU_CMD), mkmld(ES_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/mldmode
svid

Page: 130

putdev (ES_CMD) putdev (ES_CMD)

NAME
putdev – creates and updates the device database

SYNOPSIS
p u t d e v – a alias [secdev=value] [attribute=value ...]
p u t d e v – m device attribute=value [attribute=value ...]
p u t d e v – d device [attribute ...]
p u t d e v – p device attribute=value[,value ...]
p u t d e v – r device attribute=value[,value ...]

DESCRIPTION
The p u t d e v command is used to add a new device to the Device Database (DDB),
modify an existing device’s attributes, or remove a device entry from the DDB. It
also allows appending new values to attributes that take value-lists (separated by
commas), and removal of specific values from value-lists.

The options for the p u t d e v command are:

- a Adds a device to the DDB using the specified attributes. The device must
be referenced by its alias.

- m Modifies a device entry in the DDB. If a specified attribute does not exist
in the device entry, p u t d e v adds the specified attribute to the entry. It
also modifies attributes that already have a value with the value specified.

- d Removes a device entry from the DDB, when executed without the attri-
butes argument. If the attribute argument is specified, the attribute and its
value are deleted from the device entry.

- p Appends the list of values to the attribute value-list of the device. If the
value item is multiply defined in the input value-list or already defined
in the DDB, the command fails and prints an error message.

- r Removes the list of values from the attribute value-list, of the device.

alias must be unique throughout the DDB. alias is limited to 64 characters
(D D B _ M A X A L I A S) and should contain only alphanumeric characters and any of the
following special characters: . (period), _ (underscore), $ (dollar sign), and -
(hyphen).

secdev designates the alias of the secure device that defines all the security attri-
butes. If secdev is not specified during creation (- a option) or is deleted (- d option),
the current alias is used as the default value of secdev. The validation rules for secdev
are the same as those for alias.

device designates the absolute pathname or alias name of the device whose attribute
is to be added, modified, or removed. If device is a pathname, then the attributes of
the alias to which it maps are updated.

attribute designates a device attribute to be added, modified, or deleted. This
prevents an accidental modification or deletion of a device’s alias from the DDB.

value designates the value to be assigned to a device’s attribute. If any of the values
are invalid, then the command fails and prints an error message.

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/putdev
svid

Page: 131

putdev (ES_CMD) putdev (ES_CMD)

A t t r i b u t e s :

The following list shows all of the attributes that can be defined for a device:

a l i a s A unique name by which a device is known. No two devices in
the database may share the same alias name. The name is limited
in length to 64 characters (D D B _ M A X A L I A S) and should contain
only alphanumeric characters and also the following special char-
acters underscore (_), dollar sign ($), hyphen (-), and period (.).

b d e v i c e The absolute pathname to the block special device node associ-
ated with the device, if any, with maximum length of P A T H _ M A X.

b d e v l i s t It contains a list of additional pathnames of block device special
files mapping to the same logical or secure device. Each item in
the list is separated by a comma, and each must be an absolute
pathname of the device special file, with a maximum length of
P A T H _ M A X. Since this attribute takes a list of values, options - p
a n d - r can be used for this attribute.

c a p a c i t y The capacity of the device or of the typical volume, if removable.

c d e v i c e The absolute pathname to the character special device node asso-
ciated with the device, if any, with maximum length of P A T H _ M A X.

c d e v l i s t It contains a list of additional pathnames of character device spe-
cial files mapping to the same logical or secure device. Each item
in the list is separated by a comma, and each must be an absolute
pathname of the device special file, with a maximum length of
P A T H _ M A X. Since, this attribute takes a list of values, options - p
a n d - r can be used for this attribute.

c y l Used by the command specified in the m k f s c m d attribute.

d e s c A description of any instance of a volume associated with this
device (such as floppy diskette).

d p a r t l i s t The list of disk partitions associated with this device. Used only
if t y p e = d i s k. The list should contain device aliases, each of
which must have t y p e = d p a r t.

d p a r t t y p e The type of disk partition represented by this device. Used only
if t y p e = d p a r t. It should be either f s (for filesystem) or d p (for
data partition).

e r a s e c m d The command string that, when executed, erases the device.

f m t c m d The command string that, when executed, formats the device.

f s n a m e The filesystem name on the file system administered on this parti-
tion, as supplied to the l a b e l i t command. This attribute is
specified only if t y p e = d p a r t and d p a r t t y p e = f s.

g a p Used by the command specified in the m k f s c m d attribute.

m k f s c m d The command string that, when executed, places a file system on
a previously formatted device.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/putdev
svid

Page: 132

putdev (ES_CMD) putdev (ES_CMD)

m o u n t p t The default mount point to use for the device. Used only if the
device is mountable. For disk partitions where t y p e = d p a r t and
d p a r t t y p e = f s, this attribute should specify the location where
the partition is normally mounted.

n b l o c k s The number of blocks in the filesystem administered on this parti-
tion. Used only if t y p e = d p a r t and d p a r t t y p e = f s.

n i n o d e s The number of inodes in the filesystem administered on this par-
tition. Used only if t y p e = d p a r t and d p a r t t y p e = f s.

n o r e w i n d The name of the character special device node that allows access
to the serial device without rewinding when the device is closed.

p a t h n a m e Defines the pathname to an i-node describing the device (used for
non-block or character device pathnames, such as directories).

t y p e A token that represents inherent qualities of the device. Standard
types include: 9 - t r a c k , c t a p e , d i s k , d i r e c t o r y ,
d i s k e t t e , d p a r t , a n d q t a p e.

v o l n a m e The volume name on the filesystem administered on this parti-
tion, as supplied to the l a b e l i t command. Used only if
t y p e = d p a r t and d p a r t t y p e = f s.

v o l u m e A text string used to describe any instance of a volume associated
with this device. This attribute should not be defined for devices
which are not removable.

S e c u r i t y A t t r i b u t e s :

The following list of security attributes could be defined for a device alias, if the
Enhanced Security Extension is implemented.

s e c d e v the alias name of the physical device or secure device, and is
unique throughout the Device Database(DDB). This alias name is
limited to 64 characters (D D B _ M A X A L I A S), and should contain only
alphanumeric characters and the special characters "_", "$", "-" or
".". For a secure device alias this attribute’s value is the same as
the device’s alias. For a logical device alias, this attribute’s value
is different from the device alias. By default, s e c d e v is defined to
be equal to the device’s alias.

r a n g e the sensitivity Mandatory Access Control (MAC) level range of
the device. It should by a hilevel-lolevel pair, where hilevel and
lolevel are both MAC level names or fully qualified levels. The "-"
character is the delimiter between hilevel and lolevel. These levels
are stored in the DDB as LIDs, converted to ASCII characters. The
LIDs are validated against the Label Translation Database, and
hilevel is checked to verify that it dominates lolevel, before they are
saved in the DDB. This attribute must be defined.

s t a t e determines whether the device is to be used as a private or public
device. It can take any one of p r i v a t e, p u b l i c, or p u b _ p r i v. If it
is set to p u b _ p r i v, then the device can either be used as private
or public device. If the s t a r t u p attribute is enabled, then the

Page 3

FINAL COPY
June 15, 1995

File: es_cmd/putdev
svid

Page: 133

putdev (ES_CMD) putdev (ES_CMD)

device is allocated as p r i v a t e, when the s t a t e is set to either
p r i v a t e or p u b _ p r i v. This attribute must be defined.

m o d e determines the mode of the device. This attribute can either be
static or dynamic. This attribute must be defined.

s t a r t u p is a flag (y [e s] / n [o]) that indicates whether the device is allo-
cated during startup or not. This attribute is optional, and startup
default value is n o.

s t a r t u p _ l e v e l defines the MAC level at which the device should be set at
startup. This can be specified as a level name or fully qualified
level. However, the value is saved in the DDB as an ASCII LID
value. This attribute is optional.

s t a r t u p _ o w n e r defines the owner of the device. The value of s t a r t u p _ o w n e r can
be specified as the UID or user name followed by the access per-
missions. The value must be specified in the format uid>rwx. If
any of the read, write, or execute access is denied, that field must
contain a "-". The ">" character serves as delimiter between the
UID or user name and the access permissions. The uid or user
name must be defined on the system (in / e t c / p a s s w d), at the
time this attribute is defined. This attribute is optional but must
be defined if attribute s t a r t u p is set to y e s.

s t a r t u p _ g r o u p defines the group to which the device belongs. The value of
s t a r t u p _ g r o u p can be specified as the GID or group name fol-
lowed by the access permissions. The value must be specified in
the format gid>rwx. If any of the read, write or execute access is
denied, that field must contain a "-". The ">" character serves as
delimiter between the GID or group name and the access permis-
sions. The gid or group name must be defined on the system (in
/ e t c / g r o u p), at the time this attribute is defined. This attribute
is optional but must be defined if attribute s t a r t u p is set to y e s.

s t a r t u p _ o t h e r defines the access permissions for o t h e r. The value of
s t a r t u p _ o t h e r must be specified in the format >rwx. If any of
the read, write or execute access is denied, then that field must
contain a "-". This attribute is optional but must be defined if attri-
bute s t a r t u p is set to y e s.

u a l _ e n a b l e this attribute serves as a flag that enables or disables depending
on its value the user authorization list defined in the u s e r s and
o t h e r attributes. This attribute can either be values: y [e s] ,
n [o]. If y e s", then the user authorization list is checked when
authorizing an user to use this device. If n o, then no users are
authorized to use this device. This attribute is optional, and value
assumed as n o if u a l _ e n a b l e is not defined.

u s e r s is the user authorization list that defines the allocation permis-
sions for u s e r s. Each item is a UID-authorization or username-
authorization pair separated by a ">" character. The items in the
list are separated by commas. The attribute’s value must be
specified in the format uid1>n,uid2>n,uid3>y. Each UID or

Page 4

FINAL COPY
June 15, 1995

File: es_cmd/putdev
svid

Page: 134

putdev (ES_CMD) putdev (ES_CMD)

username must be unique in a device entry, and all UIDs or user-
names must be defined in / e t c / p a s s w d, when this attribute is
defined. Since, this attribute takes a list of values, options - p a n d
- r can be used. This attribute is optional.

o t h e r is the other authorization that defines the authorization permis-
sions for o t h e r. This attribute contains only one item and it can
take either > y [e s] o r > n [o]. This attribute is optional, and its
value is assumed as n o, if o t h e r is not defined.

The following rules and guidelines should be followed when using the p u t d e v
command.

• The a l i a s names of devices must be valid (see description under A t t r i -
b u t e s) and unique throughout the DDB; and will fail if nonunique.

• The pathnames to device special files in attributes cdevice, bdevice, cdevlist,
and bdevlist must be absolute pathnames. They cannot be repeated within
an entry or occur in multiple entries. The p u t d e v command checks the
uniqueness of pathnames and will fail if nonunique.

• Security attributes can be defined for device, or alias only if the system is
configured for multilevel security; otherwise, the command fails.

• The MAC level values for the security level range (hilevel-lolevel) must be
valid security level aliases or fully qualified level names defined in the Level
Translation Database (LTDB); otherwise, the command fails. If hilevel does
not dominate lolevel, the command fails.

Special handling of the secdev attribute:

• The secdev attribute is used to define the essential security attributes of a
device. This attribute’s name must be valid (see description under S e c u r i t y
A t t r i b u t e s) and unique throughout the DDB; otherwise the command
fails.

• By default, when adding a new device alias into the Device Database, if the
secdev attribute is not defined at the command line, the new device entry is
assigned a secdev equal to its alias.

• The essential security attributes are range, state, and mode.

• The alias that defines security attributes of a device is called a secure device
alias. One can define other non-security attributes for this alias, if needed.
For all secure devices, by default, secdev must have same value as alias.

• When adding (using - a) or modifying (using - m) a device entry and specify-
ing a secdev attribute not equal to the alias being added or modified, p u t d e v
performs the following checks in the order specified below:

1. If the essential security attributes are being defined for alias, the com-
mand fails and displays an error message. An entry defining the essential
security attributes must have the secdev attribute be equal to its alias.

2. If the essential security attributes are not being defined for alias, and if
the specified secdev does not exist in the Device Database, a warning mes-
sage is displayed.

Page 5

FINAL COPY
June 15, 1995

File: es_cmd/putdev
svid

Page: 135

putdev (ES_CMD) putdev (ES_CMD)

3. If the essential security attributes are not being defined for alias, and the
specified secdev exists in the Device Database but does not define the essen-
tial security attributes, the command fails and displays an error message.

4. If the essential security attributes are not being defined for alias, and the
specified secdev exists in the Device Database and defines the essential
security attributes, then the command is successful.

• It is recommended that the secure alias be created before any logical
aliases are created that map to the same secure alias. Similarly, it is recom-
mended not to remove a secure device alias if any logical alias are
currently mapped to that secure alias.

• Additional aliases that share the security attributes defined for a secure
device can be created by specifying their secdev to have the same value as
the alias of the secure device. If secdev is not specified, and the essential
security attributes are also not specified, then a logical device entry is
created that does not have security attributes.

Special handling of the essential security attributes:

• The essential security attributes, mode, state, and range must be created
(using - a or - m) and deleted (using - d) together. Otherwise, the command
fails and issues an error message.

• The essential security attributes of a secure alias can be modified (- m)
separately after they are defined.

• If the essential security attributes are being deleted from a device entry
whose alias is a secdev attribute for at least another entry in the Device Data-
base, then the command fails and displays an error message.

RETURN VALUE
Upon successful completion, p u t d e v returns 0; otherwise, a diagnostic is printed
and a non-zero value is returned.

EXAMPLE
The following example shows you how to create one secure device (t a p e d r i v e 1)
and two device aliases (s l o w t a p e, f a s t t a p e) that map to the secure device. (In the
following example, the input is split onto two lines; you should enter the com-
mands as one line.)

p u t d e v - a t a p e d r i v e 1 r a n g e = S Y S _ P R I V A T E - S Y S _ P U B L I C s t a t e = p u b l i c \
m o d e = s t a t i c s t a r t u p = n u a l _ e n a b l e = y u s e r s = " 1 0 0 > n , 1 0 1 > n " o t h e r = " > y "

p u t d e v - a s l o w t a p e s e c d e v = t a p e d r i v e 1 c d e v i c e = / d e v / t a p e 8 0 0

p u t d e v - a f a s t t a p e s e c d e v = t a p e d r i v e 1 c d e v i c e = / d e v / t a p e 1 6 0 0

The preceding command sequence creates one secure device alias (t a p e d r i v e 1)
with the specified security attributes for the tape drive, and two logical device
aliases (s l o w t a p e and f a s t t a p e) with the specified non-security attributes in the
DDB.

However, one could create one entry per device with all security attributes specified
on the command line:

Page 6

FINAL COPY
June 15, 1995

File: es_cmd/putdev
svid

Page: 136

putdev (ES_CMD) putdev (ES_CMD)

p u t d e v - a t a p e 1 r a n g e = S Y S _ P R I V A T E _ S Y S _ P U B L I C s t a t e = p u b l i c m o d e = s t a t i c \
s t a r t u p = n u a l _ e n a b l e = y u s e r s = " 1 0 0 > n , 1 0 1 > n " o t h e r = " > y " \
c d e v l i s t = / d e v / t a p e 8 0 0 , / d e v / t a p e 1 6 0 0 d e s c = t a p e d e v i c e

The DDB can be queried for any alias, or attribute value using the d e v a t t r and
g e t d e v commands.

FILES
/ e t c / d e v i c e . t a b
/ e t c / s e c u r i t y / d d b / d d b _ d s f m a p
/ e t c / s e c u r i t y / d d b / d d b _ s e c exists only if the Enhanced

Security Extension is implemented

SEE ALSO
admalloc(ES_CMD), devattr(ES_CMD), devstat(ES_CMD), getdev(ES_CMD),
devstat(ES_LIB).

LEVEL
Level 1.

Page 7

FINAL COPY
June 15, 1995

File: es_cmd/putdev
svid

Page: 137

setacl (ES_CMD) setacl (ES_CMD)

In the above lists, the user specifies the following:

perm is a permissions string composed of the characters r (read), w (write), and x
(execute), each of which may appear at most one time, in any order. The
character – may be specified as a placeholder.

operm is the octal representation of the above permissions, with 7 representing all
permissions, or r w x, and 0 representing no permissions.

uid is a login name or user ID.

gid is a group name or group ID.

The options have the following meanings:

– r Recalculate the group class entry so as to ensure that permissions granted in
the additional ACL entries will actually be granted. If the – r option is
specified, the value specified in the c l a s s entry is ignored.

– s Set a file’s ACL. All old ACL entries are removed, and replaced with the
newly specified ACL. There must be exactly one u s e r entry specified for
the owner of the file, exactly one g r o u p entry specified for the owning
group of the file, exactly one c l a s s entry specified for the file group class,
and exactly one o t h e r entry specified. There may be additional u s e r ACL
entries and additional g r o u p ACL entries specified, but there may not be
duplicate additional u s e r ACL entries with the same uid, or duplicate addi-
tional g r o u p ACL entries with the same gid. If the file is a directory, default
ACL entries may be specified. There may be at most one default u s e r entry
for the owner of the file, at most one default g r o u p entry for the owning
group of the file, at most one default c l a s s entry for the file group class,
and at most one default o t h e r entry for other. There may be additional
default u s e r entries and additional default g r o u p entries specified, but
there may not be duplicate additional default u s e r entries with the same
uid, or duplicate additional default g r o u p entries with the same gid. An
entry with no permissions will result in the specified uid or gid being denied
access to the file. The entries need not be in order. They will be sorted by
the command before being applied to the file.

– m Add one or more new ACL entries to the file, and/or change one or more
existing ACL entries on the file. If an entry already exists for a specified uid
or gid the specified permissions will replace the current permissions. If an
entry does not exist for the specified uid or gid, an entry will be created.

– d Delete one or more existing ACL entries from the file. The entries for the file
owner, the owning group, and others may not be deleted from the ACL.
Note that deleting an entry does not necessarily have the same effect as
removing all permissions from the entry. Specifically, deleting an entry for
a specific user would cause that user’s permissions to be determined by the
o t h e r entry (or the owning g r o u p entry, if the user is in that group).

– f Set a file’s ACL with the ACL entries contained in the file named acl_file.
The same constraints on specified entries hold as with the – s option. The
entries are not required to be in any specific order in the file specified as
a c l _ f i l e. The character "#" in acl_file may be used to indicate a comment.
All characters, starting with the "#", until the end of the line, will be ignored.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/setacl
svid

Page: 139

setacl (ES_CMD) setacl (ES_CMD)

Note that if the acl_file has been created as the output of the g e t a c l com-
mand, any effective permissions, which will have been written with a
preceding "#", will also be ignored.

When the s e t a c l command is used, it may result in changes to the file permission
bits. When the u s e r ACL entry for the file owner is changed, the file owner permis-
sion bits will be modified. When the o t h e r ACL entry is changed, the file other
permission bits will be modified. When additional u s e r ACL entries and/or any
g r o u p ACL entries are set or modified, the file group class permission bits will be
modified to reflect the maximum permissions allowed by the additional u s e r
entries and all the g r o u p entries.

If an ACL does not contain additional u s e r and additional g r o u p entries, the per-
missions in the g r o u p entry for the object owning group and the c l a s s entry must
be the same. Therefore, if the - d option is specified and results in no additional
user entries and no additional group entries, the c l a s s entry permissions will be
set equal to the permissions of the owning group entry. (Note, this is equivalent to
using the - r option.)

A directory may contain default ACL entries. If a file is created in a directory which
contains default ACL entries, the entries will be added to the newly created file.
Note that the default permissions specified for the file owner, file owning group,
and others, will be constrained by the u m a s k and the mode specified in the file crea-
tion call.

If an ACL does not contain additional d e f a u l t : u s e r and additional
d e f a u l t : g r o u p entries and a d e f a u l t : g r o u p entry is specified for the object own-
ing group, a d e f a u l t : c l a s s entry must also be specified, and the permissions in
the d e f a u l t : g r o u p entry for the object owning group and the permissions for the
d e f a u l t : c l a s s entry must be the same.

This command may be executed on a file system that does not support ACLs, to set
the permissions for the three base entries for the file owner, file owning group, and
others. Additional entries and default entries will not be allowed in this case.

FILES
/ e t c / p a s s w d for user IDs

/ e t c / g r o u p for group IDs

EXAMPLE
To add one ACL entry to file f i l e a, giving user a r c h e r read permission only, type:

s e t a c l – m u s e r : a r c h e r : r – – f i l e a

If an entry for user a r c h e r already exists, this command will set the permissions in
that entry to r – –.

To replace the entire ACL for file f i l e a, adding entries for users a r c h e r, and
f l e t c h e r, allowing read/write access, an entry for the file owner allowing all
access, an entry for the file group allowing read access only, and an entry for others
disallowing all access, type:

s e t a c l – r – s u s e r : : r w x , u s e r : a r c h e r : r w – , u s e r : f l e t c h e r : r w – , \
g r o u p : : r – – , o t h e r : – – – f i l e a

Page 3

FINAL COPY
June 15, 1995

File: es_cmd/setacl
svid

Page: 140

setacl (ES_CMD) setacl (ES_CMD)

Note that this command would set the file permission bits to – r w x r w – – – –. Even
though the file owning group has only read permission, the maximum permissions
available to all additional u s e r ACL entries and all g r o u p ACL entries are read and
write, since the two additional u s e r entries both specify these permissions.

To set the same ACL on file f i l e a as in the above example, using the – f option,
type:

s e t a c l – r – f f i l e a . a c l f i l e a

with file f i l e a . a c l edited to contain:

u s e r : : r w x
u s e r : a r c h e r : r w –
u s e r : f l e t c h e r : r w –
g r o u p : : r – –
o t h e r : – – –

Because the – r option was specified, no c l a s s entry was needed. If a c l a s s entry
had been present it would have been ignored.

SEE ALSO
acl(ES_LIB), aclsort(ES_LIB), chmod(BU_CMD), getacl(ES_CMD), ls(BU_CMD).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: es_cmd/setacl
svid

Page: 141

tcpio (ES_CMD) tcpio (ES_CMD)

NAME
tcpio – trusted cpio for copying file archives in and out

SYNOPSIS
t c p i o – o [a L v V] [– C bufsize] – O file [– M message]

t c p i o – i [b d f k P r s S t u v V x] [– C bufsize] [– E file] – I file [– M message]
[– R ID]] [- N level] [– T file] [– X low_level,high_level] [– nnum] [pattern ...]

DESCRIPTION
The – i and – o options select the action to be performed. The following list
describes each of the actions (which are mutually exclusive).

t c p i o – o
(copy out) reads the standard input to obtain a list of path names and copies
those files, together with path name and status information, onto the file or
device specified with the - O option. Output is padded to a 512-byte boun-
dary by default. The data is preceded by MAC and DAC security-related
information saved to enable validation of the data when it is read back in.

t c p i o – i
(copy in) extracts files from the archive file or device specified by the - I
option, which is assumed to be the product of a previous t c p i o – o. Only
files with names that match patterns are selected. patterns are regular
expressions given in the filename-generating notation of s h(BU_CMD). In
patterns , meta-characters ?, ∗, and [. . .] match the slash (/) character, and
backslash (\) is an escape character. A ! meta-character means not. (For
example, the ! a b c * pattern would exclude all files that begin with a b c.)
Multiple patterns may be specified and if no patterns are specified, the
default for patterns is ∗ (i.e., select all files). When t c p i o is invoked from
the shell, each pattern should be quoted; otherwise the pattern may be
expanded.

Extracted files are conditionally created based upon the options described
below.

Before a file is extracted, the user, group, classification, category and level
identifiers (IDs) it references are validated. If any of the identifiers has been
deleted from the system, or changed in any way (and is not remapped to a
valid identifier), the file will not be extracted.

The permissions of the files will be those of the previous t c p i o – o. The
owner and group of the files will be that of the current user unless the user
has appropriate privilege, which causes t c p i o to retain the owner and
group of the files of the previous t c p i o – o.

NOTE: If t c p i o – i tries to create a file that already exists and the existing
file is the same age or newer, t c p i o will output a warning message and not
replace the file. (The – u option can be used to unconditionally overwrite the
existing file.)

The meanings of the available options are

Page 1

FINAL COPY
June 15, 1995

File: es_cmd/tcpio
svid

Page: 142

tcpio (ES_CMD) tcpio (ES_CMD)

– a Reset access times of input files after they have been copied.

– b Reverse the order of the bytes within each word.

– C bufsize
Input/output is to be blocked bufsize bytes to the record, where bufsize is
replaced by a positive integer. The default buffer size is 512 bytes when this
option is not used. (– C is meaningful only with data directed to or from a
character special device, e.g., / d e v / r m t / 0 m.)

– d Directories are to be created as needed.

– E file
Specify an input file (file) that contains a list of filenames to be extracted
from the archive (one filename per line).

– f Copy in all files except those in patterns. (See the paragraph on t c p i o – i for
a description of patterns.)

– I file
Read the contents of file as input. If file is a character special device, when
the first medium is full replace the medium and type a carriage return to
continue to the next medium.

– k Attempt to skip corrupted file headers and I/O errors that may be encoun-
tered. If you want to copy files from a medium that is corrupted or out of
sequence, this option lets you read only those files with good headers. (For
t c p i o archives that contain other t c p i o archives, if an error is encountered
t c p i o may terminate prematurely. t c p i o will find the next good header,
which may be one for a smaller archive, and terminate when the smaller
archive’s trailer is encountered.)

– L Follow symbolic links. The default is not to follow symbolic links. If the
– f o l l o w option is used with f i n d, the – L option should be used to ensure
that the file pointed to by the symbolic link is archived rather than the sym-
bolic link itself.

– M message
Define a message to use when switching media. When you use the – O or – I
options and specify a character special device, you can use this option to
define the message that is printed when you reach the end of the medium.
One % d can be placed in message to print the sequence number of the next
medium needed to continue.

– nnum
Disable the validation of one or more identifiers (type or item). The permis-
sible values of num are:

1 - disable the comparison of the original system name to the current
system

2 - disable all checks of UIDs
3 - disable all checks of GIDs
4 - disable all checks of LID existence
5 - disable all checks of LID state (LIDs must be valid, but can be in the

inactive state)

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/tcpio
svid

Page: 143

tcpio (ES_CMD) tcpio (ES_CMD)

SEE ALSO
a r(BU_CMD), c a t(BU_CMD), c p i o(BU_CMD), e c h o(BU_CMD), f i n d(BU_CMD),
l s(BU_CMD), t a r(AU_CMD), l v l n a m e(ES_CMD).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: es_cmd/tcpio
svid

Page: 146

tfadmin (ES_CMD) tfadmin (ES_CMD)

SEE ALSO
adminrole(ES_CMD), adminuser(ES_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: es_cmd/tfadmin
svid

Page: 148

Remote Services Introduction

The Remote Services Extension provides standard interfaces to support network-
ing applications. Support is provided for Remote Procedure Call (RPC), External
Data Representation (XDR), Network Selection, Name to Address Translation, and
Distributed File Systems.

The following are prerequisite for support of the Remote Services Extension:

Base System

Basic Utilities Extension

Advanced Utilities Extension

Administered Systems Extension

Summary of Library Routines

The following library routines are supported by the Services extension. Items
marked with a dagger (†) are new to this issue of the SVID.

a u t h _ d e s t r o y c l n t _ s p c r e a t e e r r o r g e t p u b l i c k e y
a u t h d e s _ g e t u c r e d c l n t _ s p e r r n o g e t s e c r e t k e y
a u t h d e s _ s e c c r e a t e c l n t _ s p e r r o r h o s t 2 n e t n a m e
a u t h n o n e _ c r e a t e c l n t _ t l i _ c r e a t e k e y _ d e c r y p t s e s s i o n
a u t h s y s _ c r e a t e c l n t _ t p _ c r e a t e k e y _ e n c r y p t s e s s i o n
a u t h s y s _ c r e a t e _ d e f a u l t c l n t _ v c _ c r e a t e k e y _ g e n d e s
c l n t _ c a l l c s _ c o n n e c t k e y _ s e t s e c r e t
c l n t _ c o n t r o l c s _ p e r r o r n c _ p e r r o r
c l n t _ c r e a t e e n d n e t c o n f i g n c _ s p e r r o r †
c l n t _ d e s t r o y e n d n e t p a t h n e t d i r _ f r e e
c l n t _ d g _ c r e a t e f r e e n e t c o n f i g e n t n e t d i r _ g e t b y a d d r
c l n t _ f r e e r e s g e t _ r p c _ c r e a t e e r r n e t d i r _ g e t b y n a m e
c l n t _ g e t e r r g e t _ t _ e r r n o n e t d i r _ o p t i o n s
c l n t _ p c r e a t e e r r o r g e t n e t c o n f i g n e t d i r _ p e r r o r †
c l n t _ p e r r n o g e t n e t c o n f i g e n t n e t d i r _ s p e r r o r †
c l n t _ p e r r o r g e t n e t n a m e n e t n a m e 2 h o s t
c l n t _ r a w _ c r e a t e g e t n e t p a t h n e t n a m e 2 u s e r

Remote Services Introduction 7-1

FINAL COPY
June 15, 1995
File: rs_int.txt

svid

Page: 149

r p c _ b r o a d c a s t s v c _ u n r e g x d r _ i n t
r p c _ b r o a d c a s t _ e x p † s v c _ v c _ c r e a t e x d r _ l o n g
r p c _ c a l l s v c e r r _ a u t h x d r _ o p a q u e
r p c _ r e g s v c e r r _ d e c o d e x d r _ o p a q u e _ a u t h
r p c b _ g e t a d d r s v c e r r _ n o p r o c x d r _ p o i n t e r
r p c b _ g e t m a p s s v c e r r _ n o p r o g x d r _ r e f e r e n c e
r p c b _ g e t t i m e s v c e r r _ p r o g v e r s x d r _ r e j e c t e d _ r e p l y
r p c b _ r m t c a l l s v c e r r _ s y s t e m e r r x d r _ r e p l y m s g
r p c b _ s e t s v c e r r _ w e a k a u t h x d r _ s e t p o s
r p c b _ u n s e t t a d d r 2 u a d d r x d r _ s h o r t
s e t n e t c o n f i g u a d d r 2 t a d d r x d r _ s t r i n g
s e t n e t p a t h u s e r 2 n e t n a m e x d r _ u _ c h a r
s v c _ c r e a t e x d r _ a c c e p t e d _ r e p l y x d r _ u _ i n t †
s v c _ d e s t r o y x d r _ a r r a y x d r _ u _ l o n g
s v c _ d g _ c r e a t e x d r _ a u t h s y s _ p a r m s x d r _ u _ s h o r t
s v c _ f d _ c r e a t e x d r _ b o o l x d r _ u n i o n
s v c _ f r e e a r g s x d r _ b y t e s x d r _ v e c t o r
s v c _ g e t a r g s x d r _ c a l l h d r x d r _ v o i d
s v c _ g e t r e q _ c o m m o n † x d r _ c a l l m s g x d r _ w r a p s t r i n g
s v c _ g e t r e q _ p o l l † x d r _ c h a r x d r m e m _ c r e a t e
s v c _ g e t r e q s e t x d r _ d e s t r o y x d r r e c _ c r e a t e
s v c _ g e t r p c c a l l e r x d r _ d o u b l e x d r r e c _ e n d o f r e c o r d †
s v c _ r a w _ c r e a t e x d r _ e n u m x d r r e c _ e o f
s v c _ r e g x d r _ f l o a t x d r r e c _ s k i p r e c o r d †
s v c _ r u n x d r _ f r e e x d r s t d i o _ c r e a t e
s v c _ s e n d r e p l y x d r _ g e t p o s x p r t _ r e g i s t e r
s v c _ t l i _ c r e a t e x d r _ i n l i n e x p r t _ u n r e g i s t e r
s v c _ t p _ c r e a t e

7-2 REMOTE SERVICES INTRODUCTION

FINAL COPY
June 15, 1995
File: rs_int.txt

svid

Page: 150

Summary of Commands and Utilities

The following commands and utilities are supported by the Remote Services
extension.

c h k e y k e y s e r v r p c i n f o
d f m o u n t s n e w k e y s h a r e
d f s h a r e s r p c b i n d u n s h a r e
k e y l o g i n r p c g e n

Organization of Technical Information

The ‘‘Remote Services Library Routines’’ chapter provides manual page descrip-
tions of library routines supported by this extension.

Remote Services Introduction 7-3

FINAL COPY
June 15, 1995
File: rs_int.txt

svid

Page: 151

FINAL COPY
June 15, 1995

File:

Page: 152

Remote Services Definitions

Generic Distributed File Systems Definitions

Client

A host that has mounted resources from another host (a server).

Host

A computer system.

Mount

Make a resource available in the file hierarchy of a host.

Multihop Access

Multihop access refers to the following remote resource scenario: Suppose host A
shares a resource that has mounted within it a resource from host B. If any other
host mounts the resource from host A and uses it to access a file on the resource
from host B, then that access is termed multihop access.

Name Space

The set of names that may be given to the objects in a given class, such as files on a
computer system or computer systems on a network.

Resource

A file system object, such as a regular file, a directory, or an entire file system.

Server

A host that has shared local resources with a remote host (a client).

Share

Make a local resource available to remote hosts (clients).

Remote Services Definitions 8-1

FINAL COPY
June 15, 1995
File: rs_def.txt

svid

Page: 153

RPC Definitions

Program

A program that implements one or more remote procedures. Remote programs
are referenced by program number. See remote procedure.

Procedure

Remote procedures are executed by remote programs on behalf of client processes
that make remote procedure calls. A server may support multiple versions of a
program. Remote procedures are referenced by program number, version
number and procedure number.

Version

All remote programs have a version number, used in conjunction with a program
number and procedure number to uniquely identify the remote procedure. See
remote procedure.

The Network File System Definitions

Export

Share a local resource with remote systems.

Exporting a resource only involves making the resource available to remote sys-
tems. No other host is informed of the availability of the resource. In order to
mount the resource, a client must give both the name of the server and the path-
name of the resource on the server. Only whole file systems or parts of file sys-
tems (regular files or directories) may be exported.

Data Structures

AUTH structure

The A U T H structure is used by many of the library routines. It is defined in the
other header files included by < r p c / r p c . h > file.

The A U T H structure contains the following members:

8-2 REMOTE SERVICES DEFINITIONS

FINAL COPY
June 15, 1995
File: rs_def.txt

svid

Page: 154

struct opaque_auth ah_cred; /* Credentials */
struct opaque_auth ah_verf; /* Verifier */
union des_block ah_key; /* DES key */
struct auth_ops {

void (*ah_nextverf)(); /* nextverf */
int (*ah_marshal)(); /* serialize */
int (*ah_validate)(); /* validate varifier */
int (*ah_refresh)(); /* refresh credentials */
void (*ah_destroy)(); /* destroy this structure */

} *ah_ops;
caddr_t ah_private;

CLIENT structure

The C L I E N T structure is used by many of the library routines. It is defined in the
other header files included by < r p c / r p c . h > file.

The C L I E N T structure contains the following members:

AUTH *cl_auth; /* authenticator */
struct clnt_ops {

enum clnt_stat (*cl_call)(); /* call remote procedure */
void (*cl_abort)(); /* abort a call */
void (*cl_geterr)(); /* get specific error code */
bool_t (*cl_freeres)(); /* frees results */
void (*cl_destroy)(); /* destroy this structure */
bool_t (*cl_control)(); /* the ioctl() of rpc */

} *cl_ops;
caddr_t cl_private; /* private stuff */
char *cl_netid; /* network token */
char *cl_tp; /* device name */

SVCXPRT structure

The S V C X P R T structure is used by many of the library routines. It is defined in the
other header files included by < r p c / r p c . h > file.

The S V C X P R T structure contains the following members:

int xp_fd; /* associated file descriptor */
struct xp_ops {

bool_t (*xp_recv)(); /* receive incoming requests */
enum xprt_stat (*xp_stat)(); /* get transport status */
bool_t (*xp_getargs)(); /* get arguments */
bool_t (*xp_reply)(); /* send reply */
bool_t (*xp_freeargs)(); /* free mem allocated for args */
void (*xp_destroy)(); /* destroy this struct */

} *xp_ops;
char *xp_tp; /* transport provider device name */

Remote Services Definitions 8-3

FINAL COPY
June 15, 1995
File: rs_def.txt

svid

Page: 155

char *xp_netid; /* network token */
struct netbuf xp_ltaddr; /* local transport address */
struct netbuf xp_rtaddr; /* remote callers address */
struct opaque_auth xp_verf; /* raw response verifier */
caddr_t xp_p1; /* private: for use by svc ops */
caddr_t xp_p2; /* private: for use by svc ops */
caddr_t xp_p3; /* private: for use by svc lib */

XDR structure

The X D R structure is used by many of the library routines. It is defined in the other
header files included by < r p c / r p c . h > file.

The X D R structure, which is used in all X D R routines, contains the following
members:

enum xdr_op x_op; /* operation */
struct xdr_ops {

bool_t (*x_getlong)(); /* get a long from underlying stream */
bool_t (*x_putlong)(); /* put a long to underlying stream */
bool_t (*x_getbytes)();/* get some bytes from underlying stream */
bool_t (*x_putbytes)();/* put some bytes to underlying stream */
u_int (*x_getpostn)();/* returns bytes off from beginning */
bool_t (*x_setpostn)();/* reposition the stream */
long * (*x_inline)(); /* buf quick ptr to buffered data */
void (*x_destroy)(); /* free privates of this xdr_stream */

} *x_ops;
caddr_t x_public; /* users’ data */
caddr_t x_private; /* pointer to private data */
caddr_t x_base; /* private used for position info */
int x_handy; /* extra private word */

opaque_auth structure

The opaque_auth structure is referenced in the A U T H, C L I E N T, S V C X P R T, and X D R
structures.

The opaque_auth structure contains the following members:

enum_t oa_flavor; /* flavor of auth */
caddr_t oa_base; /* address of more auth stuff */
u_int oa_length; /* not to exceed 400 bytes */

8-4 REMOTE SERVICES DEFINITIONS

FINAL COPY
June 15, 1995
File: rs_def.txt

svid

Page: 156

clnt_stat enumeration

The clnt_stat enumeration is referenced in the A U T H, C L I E N T, S V C X P R T, and X D R
structures.

The c l n t _ s t a t enumeraton contains the following members:

RPC_SUCCESS=0, /* call succeeded */

/*

* local errors

*/

RPC_CANTENCODEARGS=1, /* cannot encode arguments */

RPC_CANTDECODERES=2, /* cannot decode results */

RPC_CANTSEND=3, /* failure in sending call */

RPC_CANTRECV=4, /* failure in receiving result */

RPC_TIMEDOUT=5, /* call timed out */

RPC_INTR=18, /* call interrupted */

/*

* remote errors

*/

RPC_VERSMISMATCH=6, /* rpc versions not compatible */

RPC_AUTHERROR=7, /* authentication error */

RPC_PROGUNAVAIL=8, /* program not available */

RPC_PROGVERSMISMATCH=9, /* program version mismatched */

RPC_PROCUNAVAIL=10, /* procedure unavailable */

RPC_CANTDECODEARGS=11, /* decode arguments error */

RPC_SYSTEMERROR=12, /* generic "other problem" */

/*

* rpc_call & CLNT creation errors

*/

RPC_UNKNOWNHOST=13, /* unknown host name */

RPC_UNKNOWNPROTO=17, /* unknown protocol */

RPC_UNKNOWNADDR=19, /* Remote address unknown */

RPC_NOBROADCAST=21, /* Broadcasting not supported */

/*

* binding errors

*/

RPC_RPCBFAILURE=14, /* rpcbind failed in its call */

RPC_PROGNOTREGISTERED=15, /* remote program not registered */

RPC_N2AXLATEFAILURE=22, /* Name to address translation failed */

/*

* Misc error in the TLI library

*/

RPC_TLIERROR=20,

/*

* unspecified error

*/

Remote Services Definitions 8-5

FINAL COPY
June 15, 1995
File: rs_def.txt

svid

Page: 157

RPC_FAILED=16

8-6 REMOTE SERVICES DEFINITIONS

FINAL COPY
June 15, 1995
File: rs_def.txt

svid

Page: 158

Remote Services Languages

EXTERNAL DATA REPRESENTATION (XDR)

XDR is a standard for the description and encoding of data. It is useful for
transferring data between different computer architectures, and has been used to
communicate data between such diverse machines as the AT&T 3B2, Sun Works-
tation, VAX, IBM-PC, and Cray. XDR fits into the ISO presentation layer, and is
roughly analogous in purpose to X.409, ISO Abstract Syntax Notation. The major
difference between these two is that XDR uses implicit typing, while X.409 uses
explicit typing.

XDR uses a language to describe data formats. The language can only be used
only to describe data; it is not a programming language. This language allows one
to describe intricate data formats in a concise manner. The alternative of using
graphical representations (itself an informal language) quickly becomes
incomprehensible when faced with complexity. The XDR language itself is similar
to the C language, just as Courier is similar to Mesa. Network facilities, such as
RPC (Remote Procedure Call) and the NFS (Network File System) use XDR to
describe the format of their data.

The XDR Language Specification

Notational Conventions

This specification uses an extended Backus-Naur Form notation for describing the
XDR language. Here is a brief description of the notation:

1 . The characters  , (,) , [,] , , and * are special.

2 . Terminal symbols are strings of any characters surrounded by double
quotes.

3 . Non-terminal symbols are strings of non-special characters.

4 . Alternative items are separated by a vertical bar () .

5 . Optional items are enclosed in brackets.

6 . Items are grouped together by enclosing them in parentheses.

7 . A * following an item means 0 or more occurrences of that item.

Remote Services Languages 9-1

FINAL COPY
June 15, 1995
File: rs_lan.txt

svid

Page: 159

Lexical Notes

1 . Comments begin with ’/*’ and terminate with ’*/’.

2 . White space serves to separate items and is otherwise ignored.

3 . An identifier is a letter followed by an optional sequence of letters, digits or
underbar (’_’). The case of identifiers is not ignored.

4 . A constant is a sequence of one or more decimal digits, optionally preceded
by a minus-sign (’-’).

Syntax Information

declaration:
type-specifier identifier
 type-specifier identifier "[" value "]"
 type-specifier identifier "<" [value] ">"
 "opaque" identifier "[" value "]"
 "opaque" identifier "<" [value] ">"
 "string" identifier "<" [value] ">"
 type-specifier "*" identifier
 "void"

value:
constant
 identifier

type-specifier:
["unsigned"] "int"

 ["unsigned"] "hyper"
 "float"
 "double"
 "bool"
 enum-type-spec
 struct-type-spec
 union-type-spec
 identifier

enum-type-spec:
"enum" enum-body

enum-body:
"{"
(identifier "=" value)
("," identifier "=" value)*

9-2 REMOTE SERVICES LANGUAGES

FINAL COPY
June 15, 1995
File: rs_lan.txt

svid

Page: 160

"}"

struct-type-spec:
"struct" struct-body

struct-body:
"{"
(declaration ";")
(declaration ";")*
"}"

union-type-spec:
"union" union-body

union-body:
"switch" "(" declaration ")" "{"
("case" value ":" declaration ";")
("case" value ":" declaration ";")*
["default" ":" declaration ";"]
"}"

constant-def:
"const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"
 "enum" identifier enum-body ";"
 "struct" identifier struct-body ";"
 "union" identifier union-body ";"

definition:
type-def
 constant-def

specification:
definition *

Remote Services Languages 9-3

FINAL COPY
June 15, 1995
File: rs_lan.txt

svid

Page: 161

Syntax Notes

1 . The following are keywords and cannot be used as identifiers: "int", "bool",
"char", "case", "const", "default", "double", "enum", "float", "hyper", "opaque",
"string", "struct", "switch", "typedef", "union", "unsigned" and "void".

2 . Only unsigned constants may be used as size specifications for arrays. If an
identifier is used, it must have been declared previously as an unsigned
constant in a "const" definition.

3 . Constant and type identifiers within the scope of a specification are in the
same name space and must be declared uniquely within this scope.

4 . Similarly, variable names must be unique within the scope of struct and
union declarations. Nested struct and union declarations create new
scopes.

5 . The discriminant of a union must be of a type that evaluates to an integer.
That is, "int", "unsigned int", "bool", an enumerated type or any typedefed
type that evaluates to one of these is legal. Also, the case values must be
one of the legal values of the discriminant. Finally, a case value may not be
specified more than once within the scope of a union declaration.

An Example of an XDR Data Description

Here is a short XDR data description of an object called a "file", which might be
used to transfer files from one machine to another.

9-4 REMOTE SERVICES LANGUAGES

FINAL COPY
June 15, 1995
File: rs_lan.txt

svid

Page: 162

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file name */

/*
* Types of files:
*/

enum filekind {
TEXT = 0, /* ascii data */
DATA = 1, /* raw data */
EXEC = 2 /* executable */

};

/*
* File information, per kind of file:
*/

union filetype switch (filekind kind) {
case TEXT:

void; /* no extra information */
case DATA:

string creator<MAXNAMELEN>; /* data creator */
case EXEC:

string interpretor<MAXNAMELEN>; /* program interpretor */
};

/*
* A complete file:
*/

struct file {
string filename<MAXNAMELEN>; /* name of file */
filetype type; /* info about file */
string owner<MAXUSERNAME>; /* owner of file */
opaque data<MAXFILELEN>; /* file data */

};

Remote Services Languages 9-5

FINAL COPY
June 15, 1995
File: rs_lan.txt

svid

Page: 163

REMOTE PROCEDURE CALL (RPC)

The RPC Model

The remote procedure call model is similar to the local procedure call model. In
the local case, the caller places arguments to a procedure in some well-specified
location (such as a result register). It then transfers control to the procedure, and
eventually gains back control. At that point, the results of the procedure are
extracted from the well-specified location, and the caller continues execution.

The remote procedure call is similar, in that one thread of control logically winds
through two processes—one is the caller’s process, the other is a server’s process.
That is, the caller process sends a call message to the server process and waits
(blocks) for a reply message. The call message contains the procedure’s parame-
ters, among other things. The reply message contains the procedure’s results,
among other things. Once the reply message is received, the results of the pro-
cedure are extracted, and caller’s execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call message.
When one arrives, the server process extracts the procedure’s parameters, com-
putes the results, sends a reply message, and then awaits the next call message.

Note that in this model, only one of the two processes is active at any given time.
However, this model is only given as an example. The RPC protocol makes no
restrictions on the concurrency model implemented, and others are possible. For
example, an implementation may choose to have RPC calls be asynchronous, so
that the client may do useful work while waiting for the reply from the server.
Another possibility is to have the server create a task to process an incoming
request, so that the server can be free to receive other requests.

The RPC Language

Just as there was a need to describe the XDR data-types in a formal language,
there is also need to describe the procedures that operate on these XDR data-types
in a formal language as well. We use the RPC Language for this purpose. It is an
extension to the XDR language.

The RPC Language Specification

The RPC language is identical to the XDR language, except for the added
definition of a program-def described below.

9-6 REMOTE SERVICES LANGUAGES

FINAL COPY
June 15, 1995
File: rs_lan.txt

svid

Page: 164

program-def:
"program" identifier "{"

version-def
version-def *

"}" "=" constant ";"

version-def:
"version" identifier "{"

procedure-def
procedure-def *

"}" "=" constant ";"

procedure-def:
type-specifier identifier "(" type-specifier ")"
"=" constant ";"

Syntax Notes

1 . The following keywords are added and cannot be used as identifiers: "pro-
gram" and "version";

2 . A version name cannot occur more than once within the scope of a program
definition. Nor can a version number occur more than once within the
scope of a program definition.

3 . A procedure name cannot occur more than once within the scope of a ver-
sion definition. Nor can a procedure number occur more than once within
the scope of version definition.

4 . Program identifiers are in the same name space as constant and type
identifiers.

5 . Only unsigned constants can be assigned to programs, versions and pro-
cedures.

Remote Services Languages 9-7

FINAL COPY
June 15, 1995
File: rs_lan.txt

svid

Page: 165

FINAL COPY
June 15, 1995

File:

Page: 166

Remote Services Environment

Remote Procedure Call (RPC)

Remote Procedure Call (RPC) is a high-level communications paradigm, including
functions, that provide a protocol-independent application interface to network-
ing services. Application developers access the functions that provide services at a
particular level and need not care about the protocol implementation that is pro-
viding those services. These services provide end-to-end data transmission using
the services of an underlying network. Applications written using the top most
layers of the RPC interface are independent of the underlying transport protocols.
By providing media and protocol independence, the interface enables networking
applications to have the flexibility to run in various protocol environments. The
RPC protocol compiler (rpcgen) and the C-like RPC language that it uses to
specify RPC applications and define network data give application developers a
simplified interface to the lower-level RPC mechanism. The RPC system uses
External Data Representation (XDR) (a set of library routines) as its data transfer
syntax mechanism.

External Data Representation (XDR)

External Data Representation (XDR) interfaces allow a user to describe arbitrary
data structures in a machine-independent fashion. Any program running on any
machine can use XDR to create portable data by translating local representations
to XDR standard representations; similarly, any program running on any machine
can read portable data by translating XDR standard representations to local
equivalents. By solving data portability problems, the XDR library interface pro-
vides networking applications with the flexibility to run in various operating
environments. XDR is the backbone of RPC, in the sense that the RPC system uses
XDR as its data transfer syntax mechanism.

Remote Services Environment 10-1

FINAL COPY
June 15, 1995
File: rs_env.txt

svid

Page: 167

Network Selection

Network Selection interfaces provide protocol-independent applications with a
simple, consistent mechanism for dynamically selecting communication service
providers (e.g., transport providers as currently supported by the Transport Level
Interface (TLI)) according to users preferences and availability. Typically, this
capability is employed by the client portion of an application in its initialization
stage. On a machine having only a single network, this makes it possible for the
application to use that network without requiring any application-specific action
by the administrator or user. On machines having multiple networks, this makes
it easy for the application to try each of the alternative networks in turn until it
succeeds in establishing communication, and to try them in the order preferred by
the user or specified as the local default by the administrator. This component is
built around a network configuration database, listing the networks available on
that system, and an optional NETPATH environment variable, set by a user to con-
tain an ordered list of network identifiers (as defined in the network configuration
database). The interface consists of a set of library routines for determining the
identifiers of the networks available for use, and certain information relevant for
each network.

Network Selection is used in the Name-to-Address Translation facility and in the
RPC mechanism.

Name to Address Translation

The Name-to-Address Translation interfaces provide a protocol-independent
means for finding the protocol specific addresses for services on a given machine.
Given the name of the service and the name of the machine, the communications
address(es) can be determined. This facility is typically used by the client portion
of an application when it wishes to establish a communication path with a server.
It is used by the RPC mechanism, but it can also be used directly by an application
in conjunction with TLI. The facility will accommodate the addressing style of any
communication service provider, and will function in environments where there
are multiple communication service providers per machine, and multiple sources
of addresses for each communication service provider. Queries may use the Net-
work Selection facility to determine the communication service provider(s) for
which addresses are to be retrieved.

The interface consists of a set of library routines that return one (or, optionally, all)
of the addresses that can be found for the specified service on the specified
machine. The addresses returned are communication provider’s addresses, in a
form appropriate for use with TLI.

10-2 REMOTE SERVICES ENVIRONMENT

FINAL COPY
June 15, 1995
File: rs_env.txt

svid

Page: 168

Distributed File Systems

The Remote Services Extension provides mechanisms for sharing resources among
interconnected systems and utilities for administering these mechanisms. Such
mechanisms and utilities comprise a distributed file system. The Remote Services
Extension supports the distributed file system: The Network File System (NFS).
Using NFS, programs can access files resident on remote systems as though the
files were on the local system.

The generic utilities support the administration of different distributed file sys-
tems through the use of a flexible command syntax. This syntax includes a –F
option, for specifying a file system type, and a –o option, for passing suboptions
to commands that are specific to a file system type. A new distributed file system
type can be administered with the generic utilities, provided that commands to
support each generic operation are supplied with the new file system type.

The Remote Services Extension provides basic functionality for administering dis-
tributed file systems and expands the functionality of some components of the
Base System, Basic Utilities Extension and the Administered Systems Extension
[see effects(RS_ENV) and errno(RS_ENV)].

Conforming System Characteristics

Systems that support the Remote Services Extension provide an overall Distri-
buted Files Systems environment having the following characteristics:

network compatibility

operation across heterogeneous processors

reliability against a single point of failure

These characteristics ensure portability of source code from single-system environ-
ments to a network of systems sharing resources.

Network Compatibility

There are implementation-specific criteria for the underlying network(s) that
would support distributed file systems. The NFS requires either the User
Datagram Protocol (UDP) or the OSI connectionless transport-level protocol, TP4.

Operation Across Heterogeneous Processors

Some application-level operations may depend on characteristics of the underly-
ing processor. For example, when an application writes a floating-point number
into a file, it is typically stored in a format specific to that processor, which may
differ in size or byte-ordering from the representation of the same number on a
different processor. Similar considerations apply to the representation of more
elaborate structured data items, which may also differ across processors in their

Remote Services Environment 10-3

FINAL COPY
June 15, 1995
File: rs_env.txt

svid

Page: 169

alignment characteristics. Because the identification and interpretation of such
complex data items are solely under the control of the application process and is
not known to the operating system, the operating system cannot automatically
perform the translations required for the proper interpretation of those data items
when they are shared among processors of different types. By agreeing on a stan-
dard external data representation format, applications may manipulate arbitrarily
complex data items as a pure sequence of bytes, and thus share those data items
across dissimilar processors.

For any set of systems that are running NFS, applications on those systems will be
able to share regular files and directories without concern for the underlying pro-
cessor characteristics.

Reliability Against a Single Point of Failure

If one system running NFS ceases operation, then the operation of NFS between
pairs of other systems must not be affected, except that access to a resource on a
client may not be possible if any component of the pathname on that client resides
on the system that ceased operation.

Distributed File Systems

NFS provides a user with access to files from remote systems as though they were
on the system that the user has logged into. Remote files are named using the
same conventions as for local files, and most operations on remote files work the
same as they do on local files. This section presents an overview of the functional-
ity and administrative features of Distributed File Systems.

In a network of systems that support the Remote Services Extension, a system is
able to make selected parts of its file tree available to remote systems, by sharing
them. Correspondingly, each system is able to augment its own file tree by mount-
ing the shared files from other systems. The system that shares a resource is called
the server system, while the system that uses the resource is called a client system.
The following sections describes the concepts share, unshare, and remote mount.

Share

The right to allow remote access to a file belongs to the administrator of the sys-
tem where the file resides. To allow remote access, an administrator shares a
resource using the share command.

NFS allows any directory or file to be shared. Once a directory is shared by NFS,
all of the regular files and directories under it are accessible to an authorized sys-
tem, provided they are in the same file system as the directory shared. Named
pipes and special devices on the server are not accessible to the client, however.
Any such object in a shared directory is assumed to be on the client system.

10-4 REMOTE SERVICES ENVIRONMENT

FINAL COPY
June 15, 1995
File: rs_env.txt

svid

Page: 170

where foo is the name of the server on which /fs1 resides.

Figure 10-2: Remote Mount

usr fs1

/

usr filesystem

/

Client Machine

fs2 usr

Server Machine

fs1 filesystem

Figure 2 shows the two systems’ file systems after the remote mount. When a user
on the client machine refers to the subtree under /fs2, the file referenced is the
one on the server machine subtree under /fs1. For example, a user on the client
system who uses the file name /fs2/src/uts refers to the file /fs1/src/uts
on the server system.

There is no need for the structures of client and server file trees to match in any
way, or for shared resources to be mounted at the same level on the client as they
occupy on the server. If the client had done the remote mount onto its /usr direc-
tory, then its references to files under /usr would be to the server subtree under
/fs1.

A client cannot get to parts of the server file tree that are not under the shared
directory. For example, if a user on a client system uses ‘‘cd ..’’ to move up from
the top directory in a remotely mounted subtree, the user always ends up back in
the client file tree.

An NFS client may even be able to access files that are not accessible on the server,
since a server can mount another file system over a resource after a client has esta-
blished its means of access to the file.

10-6 REMOTE SERVICES ENVIRONMENT

FINAL COPY
June 15, 1995
File: rs_env.txt

svid

Page: 172

The Network File System Administration

The following sections describe the resource naming and security features of NFS.

Resource Naming

Resource names are composed of two parts, the server’s name and the pathname
of the resource on the server. For example, a client would refer to resource
/usr/smith from server foo as foo:/usr/smith.

Security Features

Security in NFS is provided by three mechanisms: client authentication, client
authorization, and id mapping.

Client Authentication By default, the client, at each access, provides the server with
the client’s system name and the requesting user’s user id (uid).

To provide greater security, the server machine may share the filesystem as fol-
lows:

share -F nfs -o secure /usr/private

The client must then mount the file system specifying the secure option as follows:

mount -F nfs -o secure server:/usr/private /fs2

Client Authorization NFS provides a way for an administrator to share directories
selectively through the share command. For example, to share /usr/private
so that only systems mach1 and mach2 could mount that directory, the administra-
tor could issue the command

share -F nfs -o rw=mach1:mach2 /usr/private

Without a list of systems, the share command puts no restriction on availability.

An administrator may also choose to share a directory read-only by using the –o
ro suboption. Here, a remote mount will only succeed if the mount command
also includes the –o ro suboption.

ID Mapping Within a group of systems sharing resources via NFS, administration
is simplified when the /etc/passwd and /etc/group files are identical or can
be made to appear identical across all systems. More elaborate mechanism may
add flexibility in particular installations.

Remote Services Environment 10-7

FINAL COPY
June 15, 1995
File: rs_env.txt

svid

Page: 173

Manual Pages

10-8 REMOTE SERVICES ENVIRONMENT

FINAL COPY
June 15, 1995
File: rs_env.txt

svid

Page: 174

FINAL COPY
June 15, 1995

File:

Page: 176

effects (RS_ENV) effects (RS_ENV)

NAME
effects – effects of the Remote Services Extension on other extensions.

DESCRIPTION
Support for the Remote Services extension effects the behavior of some routines
belonging to other extensions. The effects are listed below for each routine.

mount(AS_CMD)
For users and applications processes, the effect of a remote mount is the
same as a local mount: an additional file system has been mounted into the
local file tree. Once a remote resource has been mounted, all operating sys-
tem service routines will operate on the remote files as they do on local files,
with the following exceptions. For The Network File System, only regular
files and directories are accessible as remote resources. For Remote File
Sharing, it is implementation-specific whether the following operating sys-
tem service routines will accept a remote file:

acct(KE_OS) poll(BA_OS)
getmsg(BA_OS) putmsg(BA_OS)

Errors. If the command

mount –F FSType –o suboptions options special directory

is given and any of the additional conditions below hold, then an error mes-
sage will be sent to standard error. The additional conditions are the fol-
lowing: (1) The distributed file system FSType is not available on the local
host, (2) the resource is not currently shared, or (3) the client is not author-
ized to access the resource.

For Remote File Sharing, the following additional conditions will also cause
an error message to be sent to standard error: (1) the mount point directory is
itself shared as a resource, (2) the mount point directory is already a mount
point, (3) the –r option or –o ro suboption is not specified and the
resource was shared as read-only, or (4) the resource is already mounted.

umount(AS_CMD)
Errors. With Remote File Sharing, additional error conditions can arise on
servers when they attempt to unmount local resources that are currently
shared or remotely mounted. If (1) the resource has not been unshared or
(2) the resource is still currently mounted on a remote system, then an error
message will be sent to standard error.

fuser(AS_CMD)
For all distributed file systems, remote resources mounted locally can be
specified on the command line by giving the resource name or the mount
point directory as an argument.

sar(AS_CMD)
For Remote File Sharing, the options –S and –D are available with sar. If
neither of these options is specified on the command line, the output of sar
will not change. The complete synopsis is:

sar [–ubdycwaqvmprADS] [–o file] t [n]
sar [–ubdycwaqvmprADS] [–s time] [–e time] [–i sec] [–f file]

Page 1

FINAL COPY
June 15, 1995

File: rs_env/effects
svid

Page: 177

effects (RS_ENV) effects (RS_ENV)

The –D option is used in combination with either the –u or –c option. If
the –D is used and neither –u nor –c is specified, –u is assumed.

The command sar -u reports time spent in user mode, in system mode,
idle with some process waiting for block I/O, and otherwise idle. If the –D
option is also specified, system time is reported for time servicing remote
requests and all other system time. The command sar -c reports activity
data on system calls. If the –D option is also specified, the data are reported
for three categories: system calls resulting in outgoing remote activity, sys-
tem calls resulting from incoming remote activity, and strictly local system
calls.

The –S option is used to obtain reports on server processes and request
queue status. Every request from a remote host to access your resources is
conveyed by a request message that is handled by a server process. When
there are too many messages for the servers to handle, the messages are
placed on a request queue. Messages leave the queue and are processed
when servers are available. The data reported by the –S option are the fol-
lowing: average number of server processes on the system (serv/lo-hi),
percent of time request messages are on the request queue (request
%busy), average number of request messages waiting for service when the
request queue is occupied (request avg lgth), percent of time there are
idle servers (server %avail), and average number of idle servers when
idle ones exist (server avg avail).

sa1(AS_CMD)
The new –S and –D options described for sar are also available for sa2;
the interfaces to sa1 and sadc are unchanged. The complete synopsis for
sa2 is:

/usr/lib/sa/sa2 [–ubdycwaqvmprADS] [–s time]
[–e time] [–i sec]

FUTURE DIRECTIONS
The four operating system service routines acct(KE_OS), poll(BA_OS),
getmsg(BA_OS) and putmsg(BA_OS) will be extended in the future to operate with
remote files accessed via Remote File Sharing.

Due to changes in Remote File Sharing architecture, sar -Dc will be removed in a
future issue of the SVID. sar will instead report Remote File Sharing operations
with a different option.

LEVEL
Level 1.

The following have moved to Level 2 effective September 30, 1989: sar(AS_CMD)
and sa1(AS_CMD).

Page 2

FINAL COPY
June 15, 1995

File: rs_env/effects
svid

Page: 178

errno (RS_ENV) errno (RS_ENV)

In addition, some operating system service routines may return the errno value of
EINTR when accessing a remote resource. The following operating system service
routines may return this value of errno when operating on objects via distributed
file systems:

access chown dup link unlink
chdir close exec mknod ustat
chmod creat fcntl stat utime

An application that checks the value of errno must include the header file
<errno.h>.

SEE ALSO
errno(BA_ENV), errno(KE_ENV), mount(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_env/errno
svid

Page: 180

netconfig (RS_ENV) netconfig (RS_ENV)

The network device is the full pathname of the device used to connect to the transport
provider. Typically, this device will be in the /dev directory. This device must be
specified.

The struct netconfig structure includes the following members, which
correspond to the fields in the entries in the netconfig database:

char * nc_netid — Network ID, including ASCII NUL terminator.
unsigned long nc_semantics — semantics of protocol (i.e., connectionless
or connection oriented)
char * nc_flag — Flags.
unsigned long nc_proto — Protocol name.
char * nc_protofmly — Protocol family.
char * nc_device — The network device (full pathname).
unsigned long nc_nlookups — Number of directory lookup libraries.
char ** nc_lookups — The directory lookup libraries themselves (full path-
names).

The nc_semantics field contains one of the following values, depending upon
whether the transport is connection oriented, connection oriented and supports
orderly release, or connectionless:

NC_TPI_COTS
NC_TPI_COTS_ORD
NC_TPI_CLTS

The nc_flag field is a bitfield. The following bits are recognized, corresponding to
the "v" and "–" respectively.

NC_VISIBLE
NC_NOFLAG

The nc_protofmly field takes on values of the protocol family character strings.
The nc_proto field takes on values of the protocol names. These can be any char-
acter string of at least 1 character.

USAGE
The combination of the layer and the mode (circuit or datagram) determines the
"semantics" of the network. Typically, an application will specify an API (applica-
tion programming interface) by pushing appropriate STREAMS modules (such as
timod, and using user-level library functions (such as the TLI library).

SEE ALSO
getnetconfig(RS_LIB), getnetpath(RS_LIB), netdir(RS_LIB).

FILES
/etc/netconfig.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_env/netconfig
svid

Page: 182

publickey (RS_ENV) publickey (RS_ENV)

NAME
publickey – public key database

SYNOPSIS
publickey

DESCRIPTION
publickey is the public key database used in secure RPC. Each entry in the data-
base consists of a network user name (which may either refer to a user or a host-
name), followed by the user’s public key (in hex notation), a colon, and then the
user’s secret key encrypted with a password (also in hex notation).

This file is altered either by the user through the chkey command [see
chkey(RS_CMD)] or by the system administrator through the newkey command
[see newkey(RS_CMD)].

SEE ALSO
chkey(RS_CMD), newkey(RS_CMD), publickey(RS_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_env/publickey
svid

Page: 183

rpc (RS_ENV) rpc (RS_ENV)

NAME
rpc – rpc program number data base

SYNOPSIS
rpc

DESCRIPTION
The rpc program number database contains user readable names that can be used
in place of RPC program numbers. Each line has the following information:

name of server for the RPC program
RPC program number
aliases

Items are separated by any number of blanks and/or tab characters. A # indicates
the beginning of a comment; characters up to the end of the line are not interpreted
by routines which search the file.

Below is an example of an RPC database:

#
rpc
#

rpcbind 100000 portmap sunrpc portmapper
rusersd 100002 rusers
nfs 100003 nfsprog
mountd 100005 mount showmount
walld 100008 rwall shutdown
sprayd 100012 spray
llockmgr 100020
nlockmgr 100021
status 100024
bootparam 100026
keyserv 100029 keyserver

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_env/rpc
svid

Page: 184

Remote Services Library Routines

The following section contains the manual pages for the RS_LIB routines.

Remote Services Library Routines 12-1

FINAL COPY
June 15, 1995
File: rs_lib.cov

svid

Page: 185

FINAL COPY
June 15, 1995

File:

Page: 186

cs_connect (RS_LIB) cs_connect (RS_LIB)

NAME
cs_connect, cs_perror – application interface to the Connection Server

SYNOPSIS
i n c l u d e < c s . h >
i n c l u d e < n e t c o n f i g . h >
i n c l u d e < n e t b u f . h >

int cs_connect(char *host, char *service, struct csopts *cs_opt, int *error);

void cs_perror(char *string, int error)

DESCRIPTION
The library routines c s _ c o n n e c t (), and c s _ p e r r o r () provide an interface that
network applications use to establish an authenticated TLI/XTI connection to a net-
work service on host. The Connection Server interface shields the client application
from details of connection establishment and authentication. Since c s _ c o n n e c t ()
performs authentication on behalf of the client process, authentication is effectively
automated. The way in which c s _ c o n n e c t () accesses authentication schemes also
allows the system administrator to use modular schemes that are interchangeable
and can be administered on a per-service basis.

c s _ c o n n e c t () communicates with the Connection Server daemon which estab-
lishes a TLI/XTI connection on behalf of the client application and returns a file
descriptor associated with the connection. The Connection Server uses the Net-
work Selection mechanism to determine the transport provider needed to connect
to the specified service and uses the Name-to-Address Mapping facility to obtain
the address of the network service over that transport.

The arguments are defined as follows:

host The name of the server machine that is supplying the service. This name
can be any string acceptable to the Name-to-Address Mapping facility.

service The name of the service the application wishes to communicate with.

c s o p t s The c s o p t s structure is provided to allow the programmer more flexibil-
ity. In most applications the third argument, c s _ o p t, will be NULL.
c s o p t s is defined in the header file / u s r / i n c l u d e / c s . h as:

s t r u c t c s o p t s {
s t r u c t n e t c o n f i g * n c _ p ;
i n t n d _ o p t ;
s t r u c t n e t b u f * n b _ p ;

}

Each element of this structure is described below.

s t r u c t n e t c o n f i g * n c _ p
To restrict the networks which may be used in making a connection,
the user should set the element n c _ p to point to a n e t c o n f i g struc-
ture. A network will be selected which matches with all the ele-
ments in the n e t c o n f i g structure that have been filled in by the
user (see n e t c o n f i g(RS_ENV)). For example, if the user wants to
use only TCP protocol networks then n c _ p - > n c _ p r o t o should be
set to t c p and all other elements should be set to zero or NULL. If

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/cs_connect
svid

Page: 187

cs_connect (RS_LIB) cs_connect (RS_LIB)

the user does not want to restrict network selection, n c _ p should be
set to

(s t r u c t n e t c o n f i g *) N U L L

i n t n d _ o p t
To bind to a reserved port, set this element to
N D _ S E T _ R E S E R V E D P O R T (see n e t d i r(RS_LIB)).

s t r u c t n e t b u f * n b _ p
To bind to a reserved port on a specific address, n d _ o p t should be
set as described above and n b _ p should be set to point to a n e t b u f
structure (see n e t d i r(RS_LIB)).

error A pointer to an i n t. When an error occurs, c s _ c o n n e c t () sets the value
of error. c s _ p e r r o r () can then be called by the application with error as
an argument to print a description of the error.

string The string that is to precede error messages.

c s _ c o n n e c t () establishes communication with the Connection Server daemon via
a named stream and sends the host name and service name as parameters.
c s _ c o n n e c t () also sends the value of the NETPATH environment variable, or a
NULL value if NETPATH is not set, and the contents of the c s o p t s structure. Note
that it does not send the values of the last two elements of n c _ p.

The Connection Server daemon uses the Network Selection and Name-to-Address
Mapping facilities to attempt to establish an authenticated connection to host for ser-
vice over each available transport until a connection is established or connection
establishment fails for every tranport.

The Connection Server consults the / e t c / i a f / s e r v e . a l l o w file for the list of
authentication schemes acceptable to the client machine for service on host.

If an authenticated connection is established, the Connection Server returns a file
descriptor associated with the connection. The application can then perform all
TLI/XTI operations (t _ s n d, t _ r c v, etc.) on the file descriptor.

c s _ p e r r o r () prints an error message on the standard error. The error message is
derived from indexing a value referenced by error, which was set by c s _ c o n n e c t.
The message is preceded by string and a colon.

RETURN VALUE
On successful completion, c s _ c o n n e c t () returns a file descriptor containing a
positive integer. On failure c s _ c o n n e c t () returns a – 1.

On failure, c s _ p e r r o r () may report the following errors:

C S _ N O E R R O R N o e r r o r
C S _ S Y S E R R O R S y s t e m E r r o r
C S _ M A L L O C N o M e m o r y
C S _ A U T H N O T A C C E P T A B L E A u t h e n t i c a t i o n s c h e m e s p e c i f i e d b y s e r v e r i s n o t a c c e p t a b l e
C S _ C O N N E C T F A I L E D C o n n e c t i o n t o s e r v i c e f a i l e d
C S _ I N V O K E F A I L E D E r r o r i n i n v o k i n g a u t h e n t i c a t i o n s c h e m e
C S _ S C H E M E F A I L E D A u t h e n t i c a t i o n s c h e m e u n s u c c e s s f u l
C S _ N O T R A N S P O R T C o u l d n o t o b t a i n a d d r e s s o f s e r v i c e o v e r a n y t r a n s p o r t

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/cs_connect
svid

Page: 188

cs_connect (RS_LIB) cs_connect (RS_LIB)

C S _ P I P E C o u l d n o t c r e a t e C S p i p e
C S _ F A T T A C H C o u l d n o t m o u n t r e m o t e s t r e a m t o C S p i p e
C S _ C O N N L D C o u l d n o t p u s h C O N N L D
C S _ F O R K C o u l d n o t f o r k C S c h i l d r e q u e s t
C S _ C H D I R C o u l d n o t c h d i r
C S _ S E T N E T P A T H H o s t / S e r v i c e n o t f o u n d o v e r a v a i l a b l e t r a n s p o r t
C S _ T O P E N T L I / X T I f a i l u r e : t _ o p e n f a i l e d
C S _ T B I N D T L I / X T I f a i l u r e : t _ b i n d f a i l e d
C S _ T C O N N E C T T L I / X T I f a i l u r e : t _ c o n n e c t f a i l e d
C S _ T A L L O C T L I / X T I f a i l u r e : t _ a l l o c f a i l e d
C S _ M A C F A I L E D M A C c h e c k f a i l u r e o r S e c u r e D e v i c e a c c e s s d e n i e d
C S _ D A C F A I L E D D A C c h e c k f a i l u r e o r S e c u r e D e v i c e a c c e s s d e n i e d
C S _ T I M E D O U T C o n n e c t i o n a t t e m p t t i m e d o u t
C S _ N E T P R I V P r i v i l e g e s n o t c o r r e c t f o r r e q u e s t e d n e t w o r k o p t i o n s
C S _ B A D O P T I O N N e t d i r o p t i o n i n c o r r e c t l y s e t i n c s o p t s s t r u c t
C S _ D I A L E R R O R D i a l e r r o r
C S _ S T A T E R R O R U n a b l e t o d o d e v a l l o c () o r s t a t ()
C S _ N O T F O U N D S e r v i c e n o t f o u n d i n _ p m t a b

USAGE
Not all values stored in the c s o p t s structure are sent to the Connection Server. In
particular, the last two elements of n c _ p, that is, n c _ l o o k u p s and n c _ n l o o k u p s,
are not sent. See n e t c o n f i g(RS_ENV).

The Connection Server daemon will log a message to / v a r / c o n n s e r v / l o g on
startup.

The Connection Server daemon will print debug information to
/ v a r / c o n n s e r v / d e b u g if it is invoked with the debug option:

/ u s r / s b i n / c s - d

In order for network applications to use c s _ c o n n e c t (), the following network
components must be correctly administered:

– The port monitor administrative files.
– Authentication schemes, where used.
– ID Mapping.

EXAMPLE
A typical call to c s _ c o n n e c t will be of the form:

i n c l u d e < n e t c o n f i g . h >
i n c l u d e < n e t b u f . h >
i n c l u d e < c s . h >

.

.

.
i n t e r r o r = 0 ;

.

.

.
i f ((f d = c s _ c o n n e c t (" h o s t " , " s e r v i c e " , (s t r u c t c s o p t s *) N U L L , & e r r o r)) < 0) {

/ * d o e r r o r h a n d l i n g * /

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/cs_connect
svid

Page: 189

cs_connect (RS_LIB) cs_connect (RS_LIB)

c s _ p e r r o r (" a p p l i c a t i o n s p e c i f i c s t r i n g " , e r r o r) ;
e x i t (1) ;

}
/ * c o n t i n u e w i t h n o r m a l e x e c u t i o n * /

.

.

.

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: rs_lib/cs_connect
svid

Page: 190

getnetconfig (RS_LIB) getnetconfig (RS_LIB)

NAME
getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent – net-
work configuration database

SYNOPSIS
#include <netconfig.h>

struct netconfig *getnetconfig(void *handlep);
void *setnetconfig(void);
int endnetconfig(void *handlep);
struct netconfig *getnetconfigent(char *netid);
void freenetconfigent(struct netconfig *netconfigp);
void nc_perror (char ∗msg);
char ∗nc_sperror (void);

DESCRIPTION
These routines are part of the network selection feature. They are a set of manipu-
lation routines for the local system network configuration (netconfig) database [see
netconfig(RS_ENV)].

A call to setnetconfig() has the effect of "binding" or "rewinding" (figuratively
speaking) the netconfig database. It must be called before the first call to get-
netconfig() (but not before getnetconfigent()), and may be called any other
time. It returns a "handle" that is passed to getnetconfig() when looping. The
handle uniquely identifies each instance of a loop.

getnetconfig(), when first called, returns a pointer to the (formatted) first entry
in the netconfig database; formatted as a struct netconfig thereafter, it subse-
quently returns a pointer to the successive entries in the database. In this manner,
getnetconfig() can be used to traverse the netconfig database. It takes the han-
dle returned by setnetconfig() as an argument to uniquely identify each
instance of the loop.

endnetconfig() may be called to "unbind" the netconfig database after it has
been bound by setnetconfig(), when processing is complete. It takes the han-
dle returned by setnetconfig() as an argument.

getnetconfigent() returns a pointer to the netconfig database entry
corresponding to the network identifier netid.

freenetconfigent() frees the space allocated by getnetconfigent().

n c _ p e r r o r prints a message to the standard error indicating why any of the above
routines failed. The message is prepended with string msg and a colon. A NEW-
LINE is appended at the end of the message.

n c _ s p e r r o r is similar to n c _ p e r r o r but instead of sending the message to the stan-
dard error indicating why the network selection routines failed, it returns a pointer
to the message.

RETURN VALUE
When the database has been exhausted, getnetconfig() returns NULL. It
returns NULL and sets errno in case of failure (e.g., if setnetconfig() was not
called previously).

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/getnetconfig
svid

Page: 191

getnetconfig (RS_LIB) getnetconfig (RS_LIB)

setnetconfig() returns a handle to be used in looping. Each call returns a dif-
ferent handle, so loops can be nested.

endnetconfig() returns 0 on success, -1 on failure (e.g., if setnetconfig()
was not called previously).

getnetconfigent() returns NULL if netid is invalid (does not name an entry in
the netconfig database).

n c _ s p e r r o r returns NULL if space can not be allocated for the message.

USAGE
These routines do not use static memory areas. All their data areas are dynamically
allocated, and must be freed by the user. endnetconfig() does this automati-
cally; freenetconfigent() frees data allocated by getnetconfgent().

SEE ALSO
getnetpath(RS_LIB), netconfig(RS_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/getnetconfig
svid

Page: 192

getnetpath (RS_LIB) getnetpath (RS_LIB)

NAME
getnetpath, setnetpath, endnetpath – manipulate NETPATH

SYNOPSIS
#include <netconfig.h>

struct netconfig *getnetpath(void *handlep);
void *setnetpath(void);
int endnetpath(void *handlep);

DESCRIPTION
These routines are part of the network selection feature. They are a set of manipu-
lation routines for the system network configuration (netconfig) database [see
netconfig(RS_ENV)], as "filtered" by the NETPATH environment variable.

A call to setnetpath() has the effect of "binding" or "rewinding" (figuratively
speaking) NETPATH. It must be called before the first call to getnetpath(), and
may be called any other time. It returns a "handle" used by getnetpath().

getnetpath(), when first called, returns a pointer to the (formatted) netconfig
database entry corresponding to the first component of NETPATH (unless NETPATH
is unset — see below); thereafter, it subsequently returns a pointer to the successive
entries of NETPATH. In this manner, getnetpath() can be used to search the
whole of NETPATH. It takes as an argument the handle returned by setnet-
path().

getnetpath() silently ignores invalid components of NETPATH (components
which do not have a corresponding entry in the netconfig database).

endnetpath() may be called to "unbind" NETPATH when processing is complete.
It takes as an argument the handle returned by setnetpath().

If the NETPATH variable is not set (or has been unset), then getnetpath(), set-
netpath() and endnetpath() behave as though NETPATH were set to the
sequence of "default" (visible) networks in the netconfig database (in the order they
are listed there). The default networks are those with a "v" in the flags field of the
netconfig database.

RETURN VALUE
When NETPATH has been exhausted, getnetpath() returns NULL. It returns
NULL if an error occurs (e.g., if setnetpath() was not called previously).
nc_perror(RS_LIB) can be called to report the error.

setnetpath() returns a handle that is to be used by getnetpath().

endnetpath() returns 0 on success, -1 on failure (e.g., if setnetpath() was not
called previously).

USAGE
These routines do not use static data memory areas. All their data areas are dynam-
ically allocated, and must be freed by the user. endnetconfig() does this
automatically.

SEE ALSO
getnetconfig(RS_LIB), netconfig(RS_ENV).

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/getnetpath
svid

Page: 193

getnetpath (RS_LIB) getnetpath (RS_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/getnetpath
svid

Page: 194

netdir (RS_LIB) netdir (RS_LIB)

NAME
netdir: netdir_free, netdir_getbyname, netdir_getbyaddr, netdir_options,
taddr2uaddr, uaddr2taddr, netdir_perror, netdir_sperror – generic transport
name-to-address translation

SYNOPSIS
i n c l u d e < n e t d i r . h >
i n c l u d e < n e t c o n f i g . h >

int netdir_getbyname(const struct netconfig *netconf,
const struct nd_hostserv *service, struct nd_addrlist **addrs);

int netdir_getbyaddr(const struct netconfig *netconf,
struct nd_hostservlist **service, const struct netbuf *netaddr);

void netdir_free(void *ptr, int ident);

int netdir_options(const struct netconfig *netconf, int option,
int fd, const char *pointer_to_args);

char * taddr2uaddr(const struct netconfig *netconf, const struct netbuf *addr);

struct netbuf *uaddr2taddr(const struct netconfig *netconf, const char *uaddr);

void netdir_perror(char *s);

char * netdir_sperror(void);

DESCRIPTION
These routines provide a generic interface for name-to-address mapping that will
work with all transport protocols. This interface provides a generic way for pro-
grams to convert transport specific addresses into common structures and back
again.

The netdir_getbyname() routine maps the machine name and service name in
the nd_hostserv structure to a collection of addresses of the type understood by
the transport identified in the netconfig structure netconf. This routine returns all
addresses that are valid for that transport in the nd_addrlist structure.

The nd_hostserv structure contains the following members:

char *h_host
char *h_serv

The nd_addrlist structure contains the following members:

int n_cnt
struct netbuf *n_addrs

n_cnt contains the number of addresses which netdir_getbyname() found.

netdir_getbyname() accepts some special case host names. These host names
are hints to the underlying mapping routines that define the intent of the request.
This information is required for some transport provider developers to provide the
correct information back to the caller. The host names are defined in
/usr/include/netdir.h. The currently defined host names are:

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/netdir
svid

Page: 195

netdir (RS_LIB) netdir (RS_LIB)

HOST_SELF This host name represents the address to which local programs will
bind their endpoints. This differs from the host name provided by
gethostname() which represents the address to which remote pro-
grams will bind their endpoints.

HOST_ANY This host name represents any host accessible by this transport pro-
vider. This name is provided to allow applications to specify a
required service without specifying a particular host name.

HOST_BROADCAST
This host name represents the address for all hosts accessible by this
transport provider. Network requests to this address will be received
by all machines.

All fields of the nd_hostserv structure must be initialized.

To find all available transports, repeatedly call the netdir_getbyname() routine
with each netconfig structure returned by the getnetpath() call.

The netdir_getbyaddr() routine maps addresses to service names. This rou-
tine returns a list of host and service pairs that would yield this address. If more
than one tuple of host and service name is returned then the first tuple contains the
preferred host and service names. The nd_hostservlist structure contains the
following members:

int *h_cnt
struct nd_hostserv *h_hostservs

h_cnt contains the number of host service names which netdir_getbyaddr()
found.

The n e t d i r _ f r e e structure is used to free the structures allocated by the name to
address translation routines.

The following types of structures may be specified by the ident argument:

N D _ A D D R Frees a n e t b u f structure.

N D _ A D D R L I S T
Frees the n d _ a d d r l i s t structure such as that allocated by
n e t d i r _ g e t b y n a m e.

N D _ H O S T S E R V
Frees a n d _ h o s t s e r v structure.

N D _ H O S T S E R V L I S T
Frees the n d _ h o s t s e r v l i s t structure such as that allocated by
n e t d i r _ g e t b y a d d r.

The n e t d i r _ o p t i o n s routine is used to pass options in a transport independent
manner to the transport provider specified by netconfig. There are seven values for
option:

N D _ S E T _ B R O A D C A S T
N D _ C L E A R _ B R O A D C A S T
N D _ S E T _ R E U S E A D D R
N D _ C L E A R _ R E U S E A D D R
N D _ S E T _ R E S E R V E D P O R T
N D _ C H E C K _ R E S E R V E D P O R T

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/netdir
svid

Page: 196

netdir (RS_LIB) netdir (RS_LIB)

N D _ M E R G E A D D R

The specific actions of each option follow.

N D _ S E T _ B R O A D C A S T Sets the transport provider up to allow broadcast, if the tran-
sport supports broadcast. fd is a file descriptor into the tran-
sport (that is, the result of a t _ o p e n of / d e v / u d p).
pointer_to_args is not used. If this completes, broadcast
operations may be performed on file descriptor fd.

N D _ C L E A R _ B R O A D C A S T
Turn off permission to send broadcast messages for the tran-
sport endpoint.

N D _ S E T _ R E U S E A D D R Allow the transport provider to bind additional transport
endpoints to the same local address to which another end-
point has already been bound.

N D _ C L E A R _ R E U S E A D D R
Do not allow the transport provider to bind a transport end-
point to a local address to which another endpoint has
already been bound.

N D _ S E T _ R E S E R V E D P O R T
Allows the application to bind to a reserved port, if that con-
cept exists for the transport provider. fd is a file descriptor
into the transport (it must not be bound to an address). If
pointer_to_args is N U L L, fd will be bound to a reserved port. If
pointer_to_args is a pointer to a n e t b u f structure, an attempt
will be made to bind to a reserved port on the specified
address.

N D _ C H E C K _ R E S E R V E D P O R T
Used to verify that an address corresponds to a reserved
port, if that concept exists for the transport provider. fd is
not used. pointer_to_args is a pointer to a n e t b u f structure
that contains an address. This option returns 0 only if the
address specified in pointer_to_args is reserved.

N D _ M E R G E A D D R Used to take a ‘‘local address’’ and return a ‘‘real address’’
that client machines can connect to. fd is not used.
pointer_to_args is a pointer to a s t r u c t n d _ m e r g e a r g, which
has the following members:

c h a r ∗s _ u a d d r ; / * s e r v e r ’ s u n i v e r s a l a d d r e s s * /
c h a r ∗c _ u a d d r ; / * c l i e n t ’ s u n i v e r s a l a d d r e s s * /
c h a r ∗m _ u a d d r ; / * m e r g e d u n i v e r s a l a d d r e s s * /

RETURN VALUE
The uaddr2taddr() and taddr2uaddr() routines support translation between
universal addresses and TLI/XTI type netbufs. They take and return character
string pointers. The taddr2uaddr() routine returns a pointer to a string that
contains the universal address and returns NULL if the conversion is not possible.
This is not a fatal condition as some transports may not suppose a universal address
form.

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/netdir
svid

Page: 197

netdir (RS_LIB) netdir (RS_LIB)

The netdir_perror routine prints an error message on the standard output stating
why one of the name-to-address mapping routines failed. The error message is pre-
ceded by the string given as an argument.

The netdir_sperror routine returns a string containing an error message stating why
one of the name-to-address mapping routines failed.

USAGE
General.

SEE ALSO
getnetconfig(RS_LIB), getnetpath(RS_LIB).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: rs_lib/netdir
svid

Page: 198

publickey (RS_LIB) publickey (RS_LIB)

NAME
publickey: getpublickey, getsecretkey – get public or secret key

SYNOPSIS
#include <rpc/rpc.h>
#include <rpc/key_prot.h>

getpublickey(const char netname[MAXNETNAMELEN],
char publickey[HEXKEYBYTES]);

getsecretkey(const char netname[MAXNETNAMELEN],
char secretkey[HEXKEYBYTES], const char *passwd);

DESCRIPTION
getpublickey() and getsecretkey() get public and secret keys for netname
from the publickey database. getsecretkey() has an extra argument, passwd,
which is used to decrypt the encrypted secret key stored in the database. Both rou-
tines return 1 if they are successful in finding the key, 0 otherwise. The keys are
returned as NULL-terminated, hexadecimal strings. If the password supplied to
getsecretkey() fails to decrypt the secret key, the routine will return 1 but the
secretkey argument will be a NULL string.

SEE ALSO
publickey(RS_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/publickey
svid

Page: 199

rpc_clnt_auth (RS_LIB) rpc_clnt_auth (RS_LIB)

NAME
rpc_clnt_auth: auth_destroy, authnone_create, authsys_create,
authsys_create_default – library routines for client side remote procedure call
authentication

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network, with desired authenti-
cation. First, the client calls a procedure to send a data packet to the server. Upon
receipt of the packet, the server calls a dispatch routine to perform the requested
service, and then sends back a reply.

These routines are normally called after creating the CLIENT handle. The client’s
authentication information is passed to the server when the RPC call is made.

Routines
The following routines require that the header rpc.h. be included [see the Remote
Services Definitions chapter for the definition of the AUTH data structure].

#include <rpc/rpc.h>

void
auth_destroy(AUTH *auth);

A function macro that destroys the authentication information associated
with auth. Destruction usually involves deallocation of private data struc-
tures. The use of auth is undefined after calling auth_destroy().

AUTH *
authnone_create(void);

Create and return an RPC authentication handle that passes nonusable
authentication information with each remote procedure call. This is the
default authentication used by RPC.

AUTH *
authsys_create(const char *host, const uid_t uid, const gid_t gid,

const int len, const gid_t *aup_gids);

Create and return an RPC authentication handle that contains authentica-
tion information. The parameter host is the name of the machine on which
the information was created; uid is the user’s user ID; gid is the user’s
current group ID; len and aup_gids refer to a counted array of groups to
which the user belongs.

AUTH *
authsys_create_default(void);

Call authsys_create() with the appropriate parameters.

SEE ALSO
rpc_clnt_create(RS_LIB), rpc_clnt_calls(RS_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_auth
svid

Page: 200

rpc_clnt_calls (RS_LIB) rpc_clnt_calls (RS_LIB)

NAME
rpc_clnt_calls: clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror,
clnt_sperrno, clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – library rou-
tines for client side calls

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other
machines across the network. First, the client calls a procedure to send a data
packet to the server. Upon receipt of the packet, the server calls a dispatch routine
to perform the requested service, and then sends back a reply.

The clnt_call(), rpc_call() and rpc_broadcast(),
rpc_broadcast_exp() routines handle the client side of the procedure call. The
remaining routines deal with error handling in the case of errors.

Routines
See the Remote Services Definitions chapter for the definition of the CLIENT data
structure.

#include <rpc/rpc.h>

enum clnt_stat
clnt_call(CLIENT *clnt, const u_long procnum, const xdrproc_t inproc,

caddr_t in, const xdrproc_t outproc, caddr_t out,
const struct timeval tout);

A function macro that calls the remote procedure procnum associated with
the client handle, clnt, which is obtained with an RPC client creation routine
such as clnt_create() [see rpc_clnt_create(RS_LIB)]. The parameter in
is the address of the procedure’s argument(s), and out is the address of
where to place the result(s); inproc is used to encode the procedure’s param-
eters, and outproc is used to decode the procedure’s results; tout is the time
allowed for results to be returned.

If the remote call succeeds, the status is returned in RPC_SUCCESS, other-
wise an appropriate status is returned [see the Remote Services Definitions
chapter for possible error numbers].

bool_t clnt_freeres(CLIENT *clnt, const xdrproc_t outproc, caddr_t out);

A function macro that frees any data allocated by the RPC/XDR system
when it decoded the results of an RPC call. The parameter out is the address
of the results, and outproc is the XDR routine describing the results. This
routine returns 1 if the results were successfully freed, and 0 otherwise.

void
clnt_geterr(const CLIENT *clnt, struct rpc_err *errp);

A function macro that copies the error structure out of the client handle to
the structure at address errp.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_calls
svid

Page: 201

rpc_clnt_calls (RS_LIB) rpc_clnt_calls (RS_LIB)

void
clnt_perrno(const enum clnt_stat stat);

Print a message to standard error corresponding to the condition indicated
by stat. A NEWLINE is appended at the end of the message. Normally
used after a procedure call fails, for instance rpc_call().

void
clnt_perror(const CLIENT *clnt, const char *s);

Print a message to standard error indicating why an RPC call failed; clnt is
the handle used to do the call. The message is prepended with string s and
a colon. A NEWLINE is appended at the end of the message. Normally
used after a procedure call fails, for instance clnt_call().

char *
clnt_sperrno(const enum clnt_stat stat);

Take the same arguments as clnt_perrno(), but instead of sending a
message to the standard error indicating why an RPC call failed, return a
pointer to a string which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when the
program does not have a standard error (as a program running as a server
quite likely does not), or if the programmer does not want the message to be
output with printf() [see printf(BA_LIB)], or if a message format dif-
ferent than that supported by clnt_perrno() is to be used. Note: unlike
clnt_sperror() and clnt_spcreaterror() [see
rpc_clnt_create(RS_LIB)], clnt_sperrno() does not return pointer to
static data so the result will not get overwritten on each call.

char *
clnt_sperror(const CLIENT *clnt, const char *s);

Like clnt_perror(), except that (like clnt_sperrno()) it returns a
string instead of printing to standard error. However, clnt_sperror()
does not append a NEWLINE at the end of the message.

Warning: returns pointer to static data that is overwritten on each call.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_calls
svid

Page: 202

rpc_clnt_calls (RS_LIB) rpc_clnt_calls (RS_LIB)

enum clnt_stat
rpc_broadcast(const u_long prognum, const u_long versnum,

const u_long procnum, const xdrproc_t inproc, caddr_t in,
const xdrproc_t outproc, caddr_t out, const resultproc_t eachresult,
const char *nettype);

enum clnt_stat
rpc_broadcast_exp(const u_long prognum, const u_long versnum,

const u_long procnum, const xdrproc_t inproc, caddr_t in,
const xdrproc_t outproc, caddr_t out,
const resultproc_t eachresult, int inittime
int waittime, const char *nettype);

These calls are like r p c _ c a l l, except the call message is broadcast to the
connectionless network specified by nettype. If nettype is N U L L, it defaults to
n e t p a t h. rpc_broadcast simply calls rpc_broadcast_exp with particular mil-
lisecond values of i n i t t i m e and w a i t t i m e. Each time rpc_broadcast_exp
receives a response, it calls e a c h r e s u l t, whose form is:

b o o l _ t
e a c h r e s u l t (c o n s t c a d d r _ t out, c o n s t s t r u c t n e t b u f *addr,

s t r u c t n e t c o n f i g *netconf) ;

where out is the same as out passed to r p c _ b r o a d c a s t and
r p c _ b r o a d c a s t _ e x p except that the remote procedure’s output is decoded
in r p c _ b r o a d c a s t _ e x p; addr points to the address of the machine that sent
the results, and netconf is the netconfig structure of the transport on which
the remote server responded. If e a c h r e s u l t returns 0,
r p c _ b r o a d c a s t _ e x p and therefore r p c _ b r o a d c a s t wait for more replies;
otherwise they return with appropriate status.

Warning: broadcast file descriptors are limited in size to the maximum
transfer size of that transport. For Ethernet, this value is 1500 bytes.

enum clnt_stat
rpc_call(const char *host, const u_long prognum,

const u_long versnum, const u_long procnum,
const xdrproc_t inproc, const char *in,
const xdrproc_t outproc, char *out,
const char *nettype);

Call the remote procedure associated with prognum, versnum, and procnum
on the machine, host. The parameter in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure’s parameters, and outproc is used to decode
the procedure’s results. nettype can be any of the values listed in the Remote
Services Definitions chapter. If nettype is NULL, it defaults to netpath.
This routine returns 0 if it succeeds, or the value of enum clnt_stat()
cast to an integer if it fails. Use the clnt_perrno() routine to translate
failure statuses into messages.

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_calls
svid

Page: 203

rpc_clnt_calls (RS_LIB) rpc_clnt_calls (RS_LIB)

Warning: rpc_call() uses the first available transport belonging to the
class nettype, on which it can create a connection. You do not have control
of timeouts or authentication using this routine. There is also no way to
destroy the client handle.

SEE ALSO
printf(BA_LIB), rpc_clnt_auth(RS_LIB), rpc_clnt_create(RS_LIB).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_calls
svid

Page: 204

rpc_clnt_create (RS_LIB) rpc_clnt_create (RS_LIB)

NAME
rpc_clnt_create: clnt_control, clnt_create, clnt_destroy, clnt_dg_create,
clnt_pcreateerror, clnt_raw_create, clnt_spcreateerror, clnt_tli_create,
clnt_tp_create, clnt_vc_create – library routines for dealing with creation and mani-
pulation of CLIENT handles

DESCRIPTION
RPC library routines allow C language programs to make procedure calls on other
machines across the network. First a CLIENT handle is created and then the client
calls a procedure to send a data packet to the server. Upon receipt of the packet,
the server calls a dispatch routine to perform the requested service, and then sends
back a reply.

Routines
See the Remote Services Definitions chapter for the definition of the CLIENT data
structure.

#include <rpc/rpc.h>

bool_t
clnt_control(CLIENT *clnt, const u_int req, char *info);

A function macro used to change or retrieve various information about a
client object. req indicates the type of operation, and info is a pointer to the
information. For both connectionless and connection-oriented transports,
the supported values of req and their argument types and what they do are:

CLSET_TIMEOUT struct timeval set total timeout
CLGET_TIMEOUT struct timeval get total timeout

Note: if you set the timeout using clnt_control(), the timeout parame-
ter passed to clnt_call() will be ignored in all future calls.

CLGET_FD int get the associated file descriptor
CLGET_SVC_ADDR struct netbuf get servers address
CLSET_FD_CLOSE int close the file descriptor when

destroying the client handle
[see clnt_destroy()]

CLSET_FD_NCLOSE int do not close the file
descriptor when destroying
the client handle

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns 1 on success and 0 on failure.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_creat
svid

Page: 205

rpc_clnt_create (RS_LIB) rpc_clnt_create (RS_LIB)

CLIENT *
clnt_create(const char *host, const u_long prognum,

const u_long versnum, const char *nettype);

Generic client creation routine. host identifies the name of the remote host
where the server is located. nettype indicates the class of transport protocol
to use. The transports are tried in left to right order in NETPATH variable or
in top to down order in the netconfig database.

clnt_create() tries all the transports of the nettype class available from
the NETPATH environment variable and the the netconfig database, and
chooses the first successful one. Default timeouts are set, but can be
modified using clnt_control().

void
clnt_destroy(CLIENT *clnt);

A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of
clnt is undefined after calling clnt_destroy(). If the RPC library opened
the associated file descriptor, or CLSET_FD_CLOSE was set using
clnt_control(), it will be closed.

CLIENT *
clnt_dg_create(const int fd, const struct netbuf *svcaddr,

const u_long prognum, const u_long versnum,
const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver-
sion versnum; the client uses a connectionless transport. The remote pro-
gram is located at address svcaddr. The parameter fd is an open and bound
file descriptor. This routine will resend the call message in intervals of 15
seconds until a response is received or until the call times out. The total
time for the call to time out is specified by clnt_call() [see
clnt_call() in rpc_clnt_calls(RS_LIB)]. This routine returns NULL if it
fails. The retry time out and the total time out periods can be changed using
clnt_control(). The user may set the size of the send and receive
buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults.

void
clnt_pcreateerror(const char *s);

Print a message to standard error indicating why a client RPC handle could
not be created. The message is prepended with the string s and a colon, and
appended with a NEWLINE.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_creat
svid

Page: 206

rpc_clnt_create (RS_LIB) rpc_clnt_create (RS_LIB)

CLIENT *
clnt_vc_create(const int fd, const struct netbuf *svcaddr,

const u_long prognum, const u_long versnum,
const u_int sendsz, const u_int recvsz);

This routine creates an RPC client for the remote program prognum and ver-
sion versnum; the client uses a connection-oriented transport. The remote
program is located at address svcaddr. The parameter fd is an open and
bound file descriptor. The user may specify the size of the send and receive
buffers with the parameters sendsz and recvsz; values of 0 choose suitable
defaults. This routine returns NULL if it fails.

The address svcaddr should not be NULL and should point to the actual
address of the remote program. clnt_vc_create() will not consult the
remote rpcbind service for this information.

SEE ALSO
rpcbind(RS_CMD), rpc_clnt_auth(RS_LIB), rpc_clnt_calls(RS_LIB).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: rs_lib/rpc_clnt_creat
svid

Page: 208

rpc_svc_calls (RS_LIB) rpc_svc_calls (RS_LIB)

NAME
rpc_svc_calls: rpc_reg, svc_reg, svc_unreg, xprt_register, xprt_unregister – library
routines for registering servers

DESCRIPTION
These routines are a part of the RPC library which allows the RPC servers to regis-
ter themselves with rpcbind [see rpcbind(RS_CMD)], and it associates the given
program and version number with the dispatch function.

Routines
See the Remote Services Definitions chapter for the definition of the SVCXPRT data
structure.

#include <rpc/rpc.h>

int
rpc_reg(const u_long prognum, const u_long versnum,

const u_long procnum, const char *(*procname)(),
const xdrproc_t inproc, const xdrproc_t outproc,
const char *nettype);

Register program prognum, procedure procname, and version versnum with
the RPC service package. If a request arrives for program prognum, version
versnum, and procedure procnum, procname is called with a pointer to its
parameter(s); procname should return a pointer to its static result(s); inproc is
used to decode the parameters while outproc is used to encode the results.
Procedures are registered on all available transports of the class nettype. net-
type defines a class of transports which can be used for a particular applica-
tion. The transports are tried in left to right order in NETPATH variable or
in top to down order in the netconfig database.

If nettype is NULL, it defaults to netpath. This routine returns 0 if the
registration succeeded, –1 otherwise.

int
svc_reg(const SVCXPRT *xprt, const u_long prognum, const u_long versnum,

const void (*dispatch), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure,
dispatch. If netconf is NULL, the service is not registered with the rpcbind
service. If netconf is non-zero, then a mapping of the triple [prognum, vers-
num, netconf–>nc_netid] to xprt–>xp_ltaddr is established with the local
rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise

void
svc_unreg(const u_long prognum, const u_long versnum);

Remove all mapping of the double [prognum, versnum] to dispatch routines,
and of the triple [prognum, versnum, *] to network address.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_calls
svid

Page: 209

rpc_svc_calls (RS_LIB) rpc_svc_calls (RS_LIB)

void
xprt_register(const SVCXPRT *xprt);

After RPC service transport handle xprt is created, it is registered with the
RPC service package. This routine modifies the global variable svc_fds.
Service implementors usually do not need this routine.

void
xprt_unregister(const SVCXPRT *xprt);

Before an RPC service transport handle xprt is destroyed, it unregisters itself
with the RPC service package. This routine modifies the global variable
svc_fds. Service implementors usually do not need this routine.

SEE ALSO
rpcbind(RS_CMD), rpcbind(RS_LIB), rpc_svc_err(RS_LIB), rpc_svc_create(RS_LIB),
rpc_svc_reg(RS_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_calls
svid

Page: 210

rpc_svc_create (RS_LIB) rpc_svc_create (RS_LIB)

SVCXPRT *
svc_fd_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a service on top of any open and bound descriptor, and
returns the handle to it. Typically, this descriptor is a connected file descrip-
tor for a stream protocol. sendsz and recvsz indicate sizes for the send and
receive buffers. If they are 0, a reasonable default is chosen. This routine
returns NULL, if it fails, and an error message is logged.

SVCXPRT *
svc_raw_create(void);

This routine creates a toy RPC service transport, to which it returns a
pointer. The transport is really a buffer within the process’s address space,
so the corresponding RPC client should live in the same address space; [see
clnt_raw_create() in rpc_clnt_create()]. This routine allows simulation
of RPC and acquisition of RPC overheads (such as round trip times),
without any kernel interference. This routine returns NULL if it fails, and
an error message is logged.

SVCXPRT *
svc_tli_create(int fd, const struct netconfig *netconf,

const struct t_bind *bindaddr, const u_int sendsz,
const u_int recvsz);

This routine creates an RPC server handle, and returns a pointer to it. fd is
the file descriptor on which the service is listening. If fd is RPC_ANYFD, it
opens a file descriptor on the transport specified by netconf. If the file
descriptor is unbound, it is bound to the address specified by bindaddr, if
bindaddr is non-NULL, otherwise it is bound to a default address chosen by
the transport. In the case where the default address is chosen, the number
of outstanding connect requests is set to 8 for connection-oriented tran-
sports. The user may specify the size of the send and receive buffers with
the parameters sendsz and recvsz; values of 0 choose suitable defaults. This
routine returns NULL if it fails, and an error message is logged.

SVCPRT *
svc_tp_create(const void (*dispatch)(const struct svc_req *,

const SVCXPRT *), const u_long prognum, const u_long versnum,
const struct netconfig *netconf);

svc_tp_create() creates a server handle for the network specified by
netconf, and registers itself with the rpcbind service. dispatch is called
when there is a remote procedure call for the given prognum and versnum;
this requires calling svc_run(). svc_tp_create() returns the service
handle if it succeeds, otherwise a NULL is returned, and an error message is
logged.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_create
svid

Page: 212

rpc_svc_create (RS_LIB) rpc_svc_create (RS_LIB)

SVCXPRT *
svc_vc_create(const int fd, const u_int sendsz, const u_int recvsz);

This routine creates a connection-oriented RPC service and returns a pointer
to it. This routine returns NULL if it fails, and an error message is logged.
The users may specify the size of the send and receive buffers with the
parameters sendsz and recvsz; values of 0 choose suitable defaults. The file
descriptor fd should be open and bound.

SEE ALSO
rpcbind(RS_CMD), rpc_svc_calls(RS_LIB), rpc_svc_err(RS_LIB),
rpc_svc_reg(RS_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_create
svid

Page: 213

rpc_svc_err (RS_LIB) rpc_svc_err (RS_LIB)

NAME
rpc_svc_err: svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog,
svcerr_progvers, svcerr_systemerr, svcerr_weakauth – library routines for server
side remote procedure call errors

DESCRIPTION
These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network. First, the client calls a
procedure to send a data packet to the server. Upon receipt of the packet, the
server calls a dispatch routine to perform the requested service, and then sends
back a reply.

These routines can be called by the server side dispatch function if there is any error
in the transaction with the client.

Routines
See the Remote Services Definitions chapter for the definition of the SVCXPRT data
structure.

#include <rpc/rpc.h>

void
svcerr_auth(const SVCXPRT *xprt, const enum auth_stat why);

Called by a service dispatch routine that refuses to perform a remote pro-
cedure call due to an authentication error.

void
svcerr_decode(const SVCXPRT *xprt);

Called by a service dispatch routine that cannot successfully decode the
remote parameters [see svc_getargs() in rpc_svc_reg(RS_LIB)].

void
svcerr_noproc(const SVCXPRT *xprt);

Called by a service dispatch routine that does not implement the procedure
number that the caller requests.

void
svcerr_noprog(const SVCXPRT *xprt);

Called when the desired program is not registered with the RPC package.
Service implementors usually do not need this routine.

void
svcerr_progvers(const SVCXPRT *xprt);

Called when the desired version of a program is not registered with the RPC
package. Service implementors usually do not need this routine.

void
svcerr_systemerr(const SVCXPRT *xprt);

Called by a service dispatch routine when it detects a system error not
covered by any particular protocol. For example, if a service can no longer
allocate storage, it may call this routine.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_err
svid

Page: 214

rpc_svc_err (RS_LIB) rpc_svc_err (RS_LIB)

void
svcerr_weakauth(const SVCXPRT *xprt);

Called by a service dispatch routine that refuses to perform a remote pro-
cedure call due to insufficient (but correct) authentication parameters. The
routine calls svcerr_auth(xprt, AUTH_TOOWEAK).

SEE ALSO
rpc_svc_calls(RS_LIB), rpc_svc_create(RS_LIB), rpc_svc_reg(RS_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_err
svid

Page: 215

rpc_svc_reg (RS_LIB) rpc_svc_reg (RS_LIB)

struct netbuf *
svc_getrpccaller(const SVCXPRT *xprt);

The approved way of getting the network address of the caller of a pro-
cedure associated with the RPC service transport handle xprt.

void
svc_run(void);

This routine never returns. It waits for RPC requests to arrive, and calls the
appropriate service procedure using svc_getreqset() when one arrives.
This procedure is usually waiting for a poll() library call to return.

bool_t
svc_sendreply(const SVCXPRT *xprt, const xdrproc_t outproc,

const caddr_t out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport han-
dle; outproc is the XDR routine which is used to encode the results; and out is
the address of the results. This routine returns 1 if it succeeds, 0 otherwise.

#include <sys/poll.h>

void
svc_getreq_common(int fd)

This routine processes incoming RPC requests on a file descriptor specified
by fd. All higher level service implementations like s v c _ r u n,
s v c _ g e t r e q s e t, and s v c _ g e t r e q _ p o l l use this routine to process RPC
requests.

This routine authenticates incoming RPC requests on the file descriptor fd
and calls the appropriate dispatch routine registered with r p c b i n d. If the
transport provider is connection-oriented, the succeeding requests, if any,
are processed repeatedly. This is called batched Remote Procedure Calls.

Note that this routine is thread-safe. However, a different file descriptor
must be specified in each concurrent call to s v c _ g e t r e q _ c o m m o n.

#include <sys/poll.h>

void
svc_getreq_poll(struct pollfd *pfdp, int retval);

Like s v c _ g e t r e q s e t, this routine is only of interest if a service implementor
does not call s v c _ r u n, but instead implements custom asynchronous event
processing. The s v c _ r u n routine provided in the RPC library is currently
implemented using this routine.

It should be called when p o l l has determined that an RPC request has
arrived on some RPC file descriptors; pfdp is the poll data used during poll,
and retval is the number of file descriptors to service, typically the return
value from poll. The routine returns when all file descriptors specified by
pfdp have been serviced.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_reg
svid

Page: 217

rpc_svc_reg (RS_LIB) rpc_svc_reg (RS_LIB)

Note that this routine is not thread-safe. Hence the service implementor
must use appropriate synchronization to avoid calls to this routine from
multiple threads at the same time.

#include <sys/poll.h>

void
svc_getreq_poll_parallel(struct pollfd *pfdp, int retval);

This routine is the thread-safe version of s v c _ g e t r e q _ p o l l and provides
exactly the same functionality.

svc_run_parallel(int timeout, int minthreads, int maxthreads);

This is the multithreaded version of svc_run. This routine waits for RPC
requests to arrive, and calls the appropriate service procedure via a call to
svc_getreq_poll_parallel. Depending on the rate of incoming RPC requests,
this routine will dynamically create or delete threads from the process. Each
created thread services an RPC request and then waits for more to arrive.

The timeout argument specifies the number of milliseconds to wait for and
RPC request to arrive. After waiting for this time, any thread created by
s v c _ r u n _ p a r a l l e l will exit, provided the total number of threads is above
minthreads. The maximum number of threads created by this routine is
always less than maxthreads.

Note that this routine provides a performance gain for server processes
which service a sustained rate of incoming RPC requests. Also, the service
procedure may be called concurrently from many server threads, so it must
be thread-safe. Currently, it is only supported for connectionless transports.

This routine returns -1 if either of minthreads or maxthreads is less than or
equal to zero. It also returns -1 if maxthreads is is less than or equal to
minthreads.

It returns zero if there are no file server file descriptors to wait on.

SEE ALSO
poll(BA_OS), rpc_svc_calls(RS_LIB), rpc_svc_create(RS_LIB), rpc_svc_err(RS_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/rpc_svc_reg
svid

Page: 218

rpc_xdr (RS_LIB) rpc_xdr (RS_LIB)

NAME
rpc_xdr: xdr_accepted_reply, xdr_authsys_parms, xdr_callhdr, xdr_callmsg,
xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg – XDR library routines for
remote procedure calls

DESCRIPTION
These routines are used for describing the RPC messages in XDR language. They
should normally be used by those who do not want to use the RPC package.

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#include <rpc/rpc.h>

bool_t
xdr_accepted_reply(XDR *xdrs, const struct accepted_reply *ar);

Used for encoding RPC reply messages. It encodes the status of the RPC
call in the XDR language format, and in the case of success, it encodes the
call results also.

bool_t
xdr_authsys_parms(XDR *xdrs, const struct authsys_parms *aupp);

Used for describing operating system credentials. It includes machine-
name, uid, gid list, etc.

void
xdr_callhdr(XDR *xdrs, const struct rpc_msg *chdr);

Used for describing RPC call header messages. It encodes the static part of
the call message header in the XDR language format. It includes informa-
tion such as transaction ID, RPC version number, program and version
number.

bool_t
xdr_callmsg(XDR *xdrs, const struct rpc_msg *cmsg);

Used for describing RPC call messages. This includes all the RPC call infor-
mation such as transaction ID, RPC version number, program number, ver-
sion number, authentication information, etc. This is normally used by
servers to determine information about the client RPC call.

bool_t
xdr_opaque_auth(XDR *xdrs, const struct opaque_auth *ap);

Used for describing RPC opaque authentication information messages.

bool_t
xdr_rejected_reply(XDR *xdrs, const struct rejected_reply *rr);

Used for describing RPC reply messages. It encodes the rejected RPC mes-
sage in the XDR language format. The message could be rejected either
because of version number mis-match or because of authentication errors.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/rpc_xdr
svid

Page: 219

rpc_xdr (RS_LIB) rpc_xdr (RS_LIB)

bool_t
xdr_replymsg(XDR *xdrs, const struct rpc_msg *rmsg);

Used for describing RPC reply messages. It encodes all the RPC reply mes-
sage in the XDR language format This reply could be either an acceptance,
rejection or NULL.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpc_xdr
svid

Page: 220

rpcbind (RS_LIB) rpcbind (RS_LIB)

NAME
rpcbind: rpcb_getmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall, rpcb_set,
rpcb_unset – library routines for RPC bind service.

DESCRIPTION
These routines allow client C programs to make procedure calls to the RPC binder
service. rpcbind [see rpcbind(RS_CMD)] maintains a list of mappings between
programs and their universal addresses.

Routines
#include <rpc/rpc.h>

struct rpcblist *
rpcb_getmaps(const struct netconfig *netconf, const char *host);

A user interface to the rpcbind service, which returns a list of the current
RPC program-to-address mappings on the host named. It uses the transport
specified through netconf to contact the remote rpcbind service on host
host. This routine will return NULL, if the remote rpcbind could not be
contacted. The command rpcinfo [see rpcinfo(RS_CMD)] uses this rou-
tine.

bool_t
rpcb_getaddr(const u_long prognum, const u_long versnum,

const struct netconfig *netconf, struct netbuf *svcaddr,
const char *host);

A user interface to the rpcbind service, which finds the address of the ser-
vice on host that is registered with program number prognum, version vers-
num, and speaks the transport protocol associated with netconf. The address
found is returned in svcaddr. svcaddr should be preallocated. This routine
returns 1 if it succeeds. A return value of 0 means that the mapping does
not exist or that the RPC system failed to contact the remote rpcbind ser-
vice. In the latter case, the global variable rpc_createerr contains the
RPC status.

bool_t
rpcb_gettime(const char *host, time_t *timep);

This routine returns the time on host in timep. If host is NULL,
rpcb_gettime() returns the time on its own machine. This routine
returns 1 if it succeeds, 0 if it fails. rpcb_gettime can be used to syn-
chronize the time between the client and the remote server. This routine is
particularly useful for secure RPC.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/rpcbind
svid

Page: 221

rpcbind (RS_LIB) rpcbind (RS_LIB)

enum clnt_stat
rpcb_rmtcall(const struct netconfig *netconf, const char *host,

u_long prognum, u_long versnum, u_long procnum,
xdrproc_t inproc, caddr_t in, xdrproc_t outproc,

caddr_t out, struct timeval tout,
struct netbuf *svcaddr);

A user interface to the rpcbind service, which instructs rpcbind on host
to make an RPC call on your behalf to a procedure on that host. The param-
eter *svcaddr will be modified to the server’s address if the procedure
succeeds [see rpc_call() and clnt_call() in rpc_clnt_calls(RS_LIB) for
the definitions of other parameters]. This procedure should be used for a
ping and nothing else [see rpc_broadcast() in rpc_clnt_calls(RS_LIB)].

This routine allows programs to do lookup and call, all in one step.

bool_t
rpcb_set(const u_long prognum, const u_long versnum,

const struct netconfig *netconf, const struct netbuf *svcaddr);

A user interface to the rpcbind service, which establishes a mapping
between the triple [prognum, versnum, netconf->nc_netid] and svcaddr on the
machine’s rpcbind service. The value of transport must correspond to a
network token that is defined by the netconfig database. This routine
returns 1 if it succeeds, 0 otherwise, and is automatically performed by
svc_reg() [see svc_reg() in rpc_svc_calls(RS_LIB)].

bool_t
rpcb_unset(const u_long prognum, const u_long versnum,

const struct netconfig *netconf);

A user interface to the rpcbind service, which destroys all mapping
between the triple [prognum, versnum, netconf->nc_netid] and the address on
the machine’s rpcbind service. If netconf is NULL, rpcb_unset() des-
troys all mapping between the triple [prognum, versnum, *] and the addresses
on the machine’s rpcbind service. rpcb_unset will return 1 if the
registered entry was previously unset or was not found. This routine
returns 1 if it succeeds, 0 otherwise.

USAGE
General.

SEE ALSO
rpc_clnt_calls(RS_LIB), rpc_svc_calls(RS_LIB), rpcbind(RS_CMD),
rpcinfo(RS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/rpcbind
svid

Page: 222

secure_rpc (RS_LIB) secure_rpc (RS_LIB)

NAME
secure_rpc: authdes_seccreate, authdes_getucred, getnetname, host2netname,
key_decryptsession, key_encryptsession, key_gendes, key_setsecret, netname2host,
netname2user, user2netname – library routines for secure remote procedure calls

DESCRIPTION
RPC library routines allow C programs to make procedure calls on other machines
across the network. First, the client calls a procedure to send a data packet to the
server. Upon receipt of the packet, the server calls a dispatch routine to perform the
requested service, and then sends back a reply.

RPC allows various authentication flavors [see the Remote Services Introduction
chapter]. The authdes_getucred() and authdes_seccreate() routines
implement the DES authentication flavor. The keyserver daemon keyserv [see
keyserv(RS_CMD)] must be running for the DES authentication system to work.

Routines
#include <rpc/rpc.h>

int
authdes_getucred(const struct authdes_cred *adc, uid_t *uidp,

gid_t *gidp, short *gidlenp, int *gidlist);

authdes_getucred() is the first of the two routines which interface to the
RPC secure authentication system known as DES. The second is
authdes_seccreate(), below. authdes_getucred() is used on the
server side for converting a DES credential, which is operating system
independent, into a UNIX credential. This routine returns 1 if it succeeds, 0
if it fails.

*uidp is set to the user’s numerical ID associated with adc. *gidp is set to the
numerical ID of the group to which the user belongs. gidlist contains the
numerical IDs of the other groups to which the user belongs. *gidlenp is set
to the number of valid group ID entries in gidlist [see netname2user(),
below].

AUTH *
authdes_seccreate(const char *name, const unsigned int window,

struct netbuf *syncaddr, const des_block *ckey);

authdes_seccreate(), the second of two DES authentication routines, is
used on the client side to return an authentication handle that will enable
the use of the secure authentication system. The first parameter name is the
network name, or netname, of the owner of the server process. This field usu-
ally represents a hostname derived from the utility routine
host2netname(), but could also represent a user name using
user2netname(). The second field is window on the validity of the client
credential, given in seconds. A small window is more secure than a large
one, but choosing too small of a window will increase the frequency of
resynchronizations because of clock drift. The third parameter, syncaddr, the
host’s address, is optional. If it is NULL, then the authentication system will
assume that the local clock is always in sync with the syncaddr clock, and
will not attempt resynchronizations. If an address is supplied, however,
then the system will use the address for consulting the remote time service

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/secure_rpc
svid

Page: 223

secure_rpc (RS_LIB) secure_rpc (RS_LIB)

whenever resynchronization is required. This parameter is usually the
address of the RPC server itself. The final parameter ckey is also optional. If
it is NULL, then the authentication system will generate a random DES key
to be used for the encryption of credentials. If ckey is supplied, then it will
be used instead.

int
getnetname(char name[MAXNETNAMELEN+1]);

getnetname() installs the unique, operating-system independent netname
of the caller in the fixed-length array name. Returns 1 if it succeeds, and 0 if
it fails.

int
host2netname(char name[MAXNETNAMELEN+1], const char *host,

const char *domain);

Convert from a domain-specific hostname host to an operating-system
independent netname. Return 1 if it succeeds, and 0 if it fails. Inverse of
netname2host(). If domain is NULL, getnetname() uses the default
domain name of the machine. If host is NULL, it defaults to that machine
itself.

int
key_decryptsession(const char *remotename, des_block *deskey);

key_decryptsession() is an interface to the keyserver daemon, which is
associated with RPC’s secure authentication system (DES authentication).
User programs rarely need to call it, or its associated routines
key_encryptsession(), key_gendes() and key_setsecret().

key_decryptsession() takes a server netname remotename and a DES
key deskey, and decrypts the key by using the the public key of the the server
and the secret key associated with the effective UID of the calling process. It
is the inverse of key_encryptsession().

int
key_encryptsession(const char *remotename, des_block *deskey);

key_encryptsession() is a keyserver interface routine. It takes a server
netname remotename and a DES key deskey, and encrypts it using the public
key of the the server and the secret key associated with the effective UID of
the calling process. It is the inverse of key_decryptsession(). This
routine returns 0 if it succeeds, –1 if it fails.

int
key_gendes(des_block *deskey);

key_gendes() is a keyserver interface routine. It is used to ask the
keyserver for a secure conversation key. Choosing one at random is usu-
ally not good enough, because the common ways of choosing random
numbers, such as using the current time, are very easy to guess.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/secure_rpc
svid

Page: 224

secure_rpc (RS_LIB) secure_rpc (RS_LIB)

int
key_setsecret(const char *key);

key_setsecret() is a keyserver interface routine. It is used to set the key
for the effective UID of the calling process. this routine returns 0 if it
succeeds, –1 if it fails.

int
netname2host(const char *name, char *host, const int hostlen);

Convert from an operating-system independent netname name to a domain-
specific hostname host. hostlen is the maximum size of host. Returns 1 if it
succeeds, and 0 if it fails. Inverse of host2netname().

int
netname2user(const char *name, uid_t *uidp, gid_t *gidp,

int *gidlenp, gid_t gidlist[NGROUPS]);

Convert from an operating-system independent netname to a domain-
specific user ID. Returns 1 if it succeeds, and 0 if it fails. Inverse of
user2netname().

*uidp is set to the user’s numerical ID associated with name. *gidp is set to
the numerical ID of the group to which the user belongs. gidlist contains the
numerical IDs of the other groups to which the user belongs. *gidlenp is set
to the number of valid group ID entries in gidlist.

int
user2netname(char name[MAXNETNAMELEN+1], const uid_t uid,

const char *domain);

Convert from a domain-specific username to an operating-system indepen-
dent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of
netname2user().

SEE ALSO
chkey(RS_CMD), keyserv(RS_CMD), newkey(RS_CMD), rpc_clnt_auth(RS_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/secure_rpc
svid

Page: 225

xdr_admin (RS_LIB) xdr_admin (RS_LIB)

NAME
xdr_admin: xdr_getpos, xdr_inline, xdrrec_endofrecord, xdrrec_eof,
xdrrec_skiprecord, xdr_setpos – library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe arbitrary data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#include <rpc/xdr.h>

u_int
xdr_getpos(const XDR *xdrs);

A macro that invokes the get-position routine associated with the XDR
stream, xdrs. The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is that
simple arithmetic works with this number, although the XDR stream
instances need not guarantee this. Therefore, applications written for porta-
bility should not depend on this feature.

long *
xdr_inline(XDR *xdrs; const int len);

A macro that invokes the in-line routine associated with the XDR stream,
xdrs. The routine returns a pointer to a contiguous piece of the stream’s
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
long *.

Warning: xdr_inline() may return NULL (0) if it cannot allocate a con-
tiguous piece of a buffer. Therefore the behavior may vary among stream
instances; it exists for the sake of efficiency, and applications written for
portability should not depend on this feature.

bool_t
xdrrec_endofrecord(XDR *xdrs; int sendnow);

This routine can be invoked only on streams created by
xdrrec_create(). The data in the output buffer is marked as a com-
pleted record, and the output buffer is optionally written out if sendnow is
non-zero. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdrrec_eof(XDR *xdrs);

This routine can be invoked only on streams created by
xdrrec_create(). After consuming the rest of the current record in the
stream, this routine returns 1 if the stream has no more input, 0 otherwise.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/xdr_admin
svid

Page: 226

xdr_admin (RS_LIB) xdr_admin (RS_LIB)

bool_t
xdrrec_skiprecord(XDR *xdrs);

This routine can be invoked only on streams created by
xdrrec_create(). It tells the XDR implementation that the rest of the
current record in the stream’s input buffer should be discarded. This rou-
tine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_setpos(XDR *xdrs, const u_int pos);

A macro that invokes the set position routine associated with the XDR
stream xdrs. The parameter pos is a position value obtained from
xdr_getpos(). This routine returns 1 if the XDR stream was repositioned,
and 0 otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this rou-
tine may fail with one type of stream and succeed with another. Therefore,
applications written for portability should not depend on this feature.

SEE ALSO
xdr_complex(RS_LIB), xdr_create(RS_LIB), xdr_simple(RS_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/xdr_admin
svid

Page: 227

xdr_complex (RS_LIB) xdr_complex (RS_LIB)

NAME
xdr_complex: xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference,
xdr_string, xdr_union, xdr_vector, xdr_wrapstring – library routines for external
data representation

DESCRIPTION
XDR library routines allow C programmers to describe complex data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#include <rpc/xdr.h>

bool_t
xdr_array(XDR *xdrs, caddr_t *arrp, u_int *sizep,

const u_int maxsize, const u_int elsize, const xdrproc_t elproc);

xdr_array() translates between variable-length arrays and their
corresponding external representations. The parameter arrp is a pointer to
the array, while sizep is the address of the element count of the array; this
element count cannot exceed maxsize. The parameter elsize is the sizeof
each of the array’s elements, and elproc is an XDR routine that translates
between the array elements’ C form and their external representation. This
routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_bytes(XDR *xdrs, char **sp, u_int *sizep,

const u_int maxsize);

xdr_bytes() translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep; strings cannot be longer than
maxsize. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_opaque(XDR *xdrs, caddr_t cp, const u_int cnt);

xdr_opaque() translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and
cnt is its size in bytes. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_pointer(XDR *xdrs, char **objpp, u_int objsize,

const xdrproc_t xdrobj);

Like xdr_reference() except that it serializes NULL pointers, whereas
xdr_reference() does not. Thus, xdr_pointer() can represent recur-
sive data structures, such as binary trees or linked lists.

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/xdr_complex
svid

Page: 228

xdr_complex (RS_LIB) xdr_complex (RS_LIB)

bool_t
xdr_reference(XDR *xdrs, caddr_t *pp, u_int size,

const xdrproc_t proc);

xdr_reference() provides pointer chasing within structures. The
parameter pp is the address of the pointer; size is the sizeof the structure
that *pp points to; and proc is an XDR procedure that translates the structure
between its C form and its external representation. This routine returns 1 if
it succeeds, 0 otherwise.

Warning: this routine does not understand NULL pointers. Use
xdr_pointer() instead.

bool_t
xdr_string(XDR *xdrs, char **sp, const u_int maxsize);

xdr_string() translates between C strings and their corresponding exter-
nal representations. Strings cannot be longer than maxsize. Note: sp is the
address of the string’s pointer. This routine returns 1 if it succeeds, 0 oth-
erwise.

bool_t
xdr_union(XDR *xdrs, enum_t *dscmp, char *unp,

const struct xdr_discrim *choices,
const bool_t (*defaultarm)(const XDR *, const char *, const int));

xdr_union() translates between a discriminated C union and its
corresponding external representation. It first translates the discriminant of
the union located at dscmp. This discriminant is always an enum_t. Next
the union located at unp is translated. The parameter choices is a pointer to
an array of xdr_discrim() structures. Each structure contains an
ordered pair of [value, proc]. If the union’s discriminant is equal to the asso-
ciated value, then the proc is called to translate the union. The end of the
xdr_discrim() structure array is denoted by a routine of value NULL. If
the discriminant is not found in the choices array, then the defaultarm pro-
cedure is called (if it is not NULL). Returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_vector(XDR *xdrs, char *arrp, const u_int size,

const u_int elsize, const xdrproc_t elproc);

xdr_vector() translates between fixed-length arrays and their
corresponding external representations. The parameter arrp is a pointer to
the array, while size is is the element count of the array. The parameter elsize
is the sizeof each of the array’s elements, and elproc is an XDR routine
that translates between the array elements’ C form and their external
representation. This routine returns 1 if it succeeds, 0 otherwise.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/xdr_complex
svid

Page: 229

xdr_complex (RS_LIB) xdr_complex (RS_LIB)

bool_t
xdr_wrapstring(XDR *xdrs, char **sp);

A routine that calls xdr_string(xdrs, sp, maxuint); where maxuint is
the maximum value of an unsigned integer.

Many routines, such as xdr_array(), xdr_pointer() and
xdr_vector() take a function pointer of type xdrproc_t, which takes
two arguments. xdr_string(), one of the most frequently used rou-
tines, requires three arguments, while xdr_wrapstring() only requires
two. For these routines, xdr_wrapstring() is desirable. This routine
returns 1 if it succeeds, 0 otherwise.

SEE ALSO
xdr_admin(RS_LIB), xdr_create(RS_LIB), xdr_simple(RS_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/xdr_complex
svid

Page: 230

xdr_create (RS_LIB) xdr_create (RS_LIB)

void
xdrstdio_create(XDR *xdrs, FILE *file, const enum xdr_op op);

This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the standard I/O stream file. The
parameter op determines the direction of the XDR stream (either
XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Warning: the destroy routine associated with such XDR streams calls
fflush() on the file stream, but never fclose() [see fclose(BA_OS)].

SEE ALSO
fclose(BA_OS), read(BA_OS), write(BA_OS), xdr_admin(RS_LIB),
xdr_complex(RS_LIB), xdr_simple(RS_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/xdr_create
svid

Page: 232

xdr_simple (RS_LIB) xdr_simple (RS_LIB)

NAME
xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free,
xdr_int, xdr_long, xdr_short, xdr_u_char, xdr_u_int, xdr_u_long, xdr_u_short,
xdr_void – library routines for external data representation

DESCRIPTION
XDR library routines allow C programmers to describe simple data structures in a
machine-independent fashion. Protocols such as remote procedure calls (RPC) use
these routines to describe the format of the data.

These routines require the creation of XDR streams [see xdr_create(RS_LIB)].

Routines
See the Remote Services Definitions chapter for the definition of the XDR data struc-
ture.

#include <rpc/xdr.h>

bool_t
xdr_bool(XDR *xdrs, bool_t *bp);

xdr_bool() translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either 1
or 0. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_char(XDR *xdrs, char *cp);

xdr_char() translates between C characters and their external representa-
tions. This routine returns 1 if it succeeds, 0 otherwise. Note: encoded
characters are not packed, and occupy 4 bytes each. For arrays of charac-
ters, it is worthwhile to consider xdr_bytes(), xdr_opaque() or
xdr_string() [see xdr_bytes(), xdr_opaque() and
xdr_string() in xdr_complex(RS_LIB)].

bool_t
xdr_double(XDR *xdrs, double *dp);

xdr_double() translates between C double precision numbers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_enum(XDR *xdrs, enum_t *ep);

xdr_enum() translates between C enums (actually integers) and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

void
xdr_free(xdrproc_t proc, char *objp);

Generic freeing routine. The first argument is the XDR routine for the object
being freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it points to is freed
(recursively).

Page 1

FINAL COPY
June 15, 1995

File: rs_lib/xdr_simple
svid

Page: 233

xdr_simple (RS_LIB) xdr_simple (RS_LIB)

bool_t
xdr_float(XDR *xdrs, float *fp);

xdr_float() translates between C floats and their external representa-
tions. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_int(XDR *xdrs, int *ip);

xdr_int() translates between C integers and their external representa-
tions. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_long(XDR *xdrs, long *lp);

xdr_long() translates between C long integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_short(XDR *xdrs, short *sp);

xdr_short() translates between C short integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_u_char(XDR *xdrs, char *ucp);

xdr_u_char() translates between unsigned C characters and their exter-
nal representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_u_int(XDR *xdrs, unsigned int *up);

xdr_u_int() translates between C unsigned integers and their external
representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_u_long(XDR *xdrs, unsigned long *ulp);

xdr_u_long() translates between C unsigned long integers and their
external representations. This routine returns 1 if it succeeds, 0 otherwise.

bool_t
xdr_u_short(XDR *xdrs, unsigned short *usp);

xdr_u_short() translates between C unsigned short integers and
their external representations. This routine returns 1 if it succeeds, 0 other-
wise.

bool_t
xdr_void(void);

This routine always returns 1. It may be passed to RPC routines that
require a function parameter, where nothing is to be done.

SEE ALSO
xdr_admin(RS_LIB), xdr_complex(RS_LIB), xdr_create(RS_LIB).

Page 2

FINAL COPY
June 15, 1995

File: rs_lib/xdr_simple
svid

Page: 234

xdr_simple (RS_LIB) xdr_simple (RS_LIB)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rs_lib/xdr_simple
svid

Page: 235

FINAL COPY
June 15, 1995

File:

Page: 236

Remote Services Commands And Utilities

The following section contains the manual pages for the RS_CMD routines.

Remote Services Commands And Utilities 13-1

FINAL COPY
June 15, 1995

File: rs_cmd.cov
svid

Page: 237

FINAL COPY
June 15, 1995

File:

Page: 238

chkey (RS_CMD) chkey (RS_CMD)

NAME
chkey – change your encryption key

SYNOPSIS
chkey

DESCRIPTION
The chkey command prompts the user for a password, and uses it to encrypt a
new encryption key for the user to be stored in the publickey database [see
publickey(RS_ENV)].

SEE ALSO
keylogin(RS_CMD), keyserv(RS_CMD), newkey(RS_CMD), publickey(RS_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/chkey
svid

Page: 239

dfmounts (RS_CMD) dfmounts (RS_CMD)

NAME
dfmounts – display mounted resource information

SYNOPSIS
dfmounts [-F fstype] [-h] [-o specific_options] [restriction ...]

DESCRIPTION
The dfmounts command shows the resources shared through a distributed file sys-
tem fstype along with a list of clients that have the resource mounted. If no argu-
ments are given, then information is displayed about the clients that have mounted
each local resource via any distributed file system type. If just -F fstype is given,
then only information for that fstype is displayed. If one or more restrictions are
given, dfmounts shows the resources that satisfy any of the restrictions. If the -F
flag is omitted, and one or more restrictions are given, the file system in the first line
of /etc/dfs/fstypes is used as the default. The specific_options, as well as the
availability and semantics of restriction, are specific to particular distributed file sys-
tems.

The output of dfmounts consists of an optional header line (suppressed with the
-h flag) followed by a list of lines containing whitespace separated fields. For each
resource, the first four fields are:

resource server pathname clients
where

resource specifies the resource name that was given to the mount
command.

server specifies the system from which the resource was mounted.

pathname specifies the pathname that was given to the share com-
mand.

clients lists the systems, comma-separated, by which the resource
was mounted.

A field may be null. Each null field is indicated by a hyphen (-) unless the
remainder of the fields on the line are also null, in which case it may be omitted.
Any fields containing whitespace are enclosed in quotes.

ERRORS
If a restriction name is invalid, an error message will be sent to standard error.

USAGE
Administrator.

SEE ALSO
fumount(RS_CMD), dfshares(RS_CMD), mount(AS_CMD), share(RS_CMD),
unshare(RS_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/dfmounts
svid

Page: 240

dfshares (RS_CMD) dfshares (RS_CMD)

NAME
dfshares – list available resources from remote systems

SYNOPSIS
dfshares [-F fstype] [-h] [-o specific_options] [server ...]

DESCRIPTION
The dfshares command provides information about resources available to the
host through a distributed file system of type fstype. If the command is given with
no arguments, information about resources available through each distributed file
system shall be displayed. If the command is given with just -F fstype as the argu-
ment, then only information for that fstype is displayed. If one or more servers are
given, then dfshares shows information about resources shared by those servers.
If the -F flag is omitted, and one or more servers are given, then the file system in
the first line of /etc/dfs/fstypes is used as the default. The specific_options as
well as the syntax of server are specific to particular distributed file systems.

The output of dfshares consists of an optional header line (suppressed with the
-h flag) followed by a list of lines containing whitespace separated fields. For each
resource, the first five fields are:

resource server access transport description
where

resource specifies the resource name that must be given to the mount
command [see mount(AS_CMD)].

server specifies the system from which the resource is available.

access specifies the access granted the client systems, either ro or
rw (for read-only or read/write, respectively).

transport specifies the transport provider on which the resource is
shared.

description describes the resource.

A field may be null. Each null field is indicated by a hyphen (–) unless the
remainder of the fields on the line are also null, in which case it may be omitted.
Any fields containing whitespace are enclosed in quotes.

ERRORS
If (1) the domain name server cannot be contacted or (2) the argument is a domain
name unknown to the domain name server, an error message will be sent to stan-
dard error.

USAGE
Administrator, End-User.

SEE ALSO
dfmounts(RS_CMD), mount(AS_CMD), share(RS_CMD), unshare(RS_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/dfshares
svid

Page: 241

keylogin (RS_CMD) keylogin (RS_CMD)

NAME
keylogin – decrypt and store secret key

SYNOPSIS
keylogin

DESCRIPTION
The keylogin command prompts the user for a password, and uses it to decrypt
the user’s secret key stored in the publickey database [see publickey(RS_ENV)].
Once decrypted, the user’s key is stored by the local key server process keyserv
[see keyserv(RS_CMD)] to be used by any secure network services, such as NFS.

SEE ALSO
chkey(RS_CMD), keyserv(RS_CMD), newkey(RS_CMD), publickey(RS_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/keylogin
svid

Page: 242

keyserv (RS_CMD) keyserv (RS_CMD)

NAME
keyserv – server for storing public and private keys

SYNOPSIS
keyserv [–n]

DESCRIPTION
The keyserv command is a daemon that is used for storing the private encryption
keys of each user logged into the system. These encryption keys are used for
accessing secure network services such as secure NFS.

Normally, root’s key is read from the rootkey database when the daemon is started.
This is useful during power-fail reboots when no one is around to type a password,
yet you still want the secure network services to operate normally.

The –n option prompts the user for the password to decrypt root’s key stored in the
publickey database and then store the decrypted key in the rootkey database for
future use. Root’s key is not read from the rootkey database. This option is useful
if the the rootkey database ever gets out of date or corrupted.

SEE ALSO
publickey(RS_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/keyserv
svid

Page: 243

newkey (RS_CMD) newkey (RS_CMD)

NAME
newkey – create a new key in the publickey database

SYNOPSIS
newkey [–u username]

newkey [–h hostname]

DESCRIPTION
The newkey command is normally run by the network administrator on the
machine that contains the publickey database, to establish public keys for users and
privileged users on the network. These keys are needed when using secure RPC or
secure NFS.

newkey will prompt for a password for the given username and then create a new
public/secret key pair for the user in the publickey database, encrypted with the
given password.

The following options are available:

–u username Create a new public/secret key pair for the given username.
Prompts for a password for the given username.

–h hostname Create a new public/secret key pair for the privileged user at the
given hostname. Prompts for a root password for the given host-
name.

SEE ALSO
chkey(RS_CMD), keylogin(RS_CMD), keyserv(RS_CMD), publickey(RS_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/newkey
svid

Page: 244

rpcbind (RS_CMD) rpcbind (RS_CMD)

NAME
rpcbind – universal addresses to RPC program number mapper

SYNOPSIS
rpcbind

DESCRIPTION
rpcbind is a server that converts RPC program numbers into universal addresses.
It must be running in order to make RPC calls.

When an RPC service is started, it will tell rpcbind at what address it is listening
to, and what RPC program numbers it is prepared to serve. When a client wishes to
make an RPC call to a given program number, it will first contact rpcbind on the
server machine to determine the address where RPC packets should be sent.

Normally, standard RPC servers are started by port monitors, so rpcbind must be
started before port monitors are invoked.

rpcbind is restricted to users with appropriate privileges.

USAGE
Administrator.

If rpcbind crashes, all RPC servers must be restarted.

SEE ALSO
rpcinfo(RS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/rpcbind
svid

Page: 245

rpcgen (RS_CMD) rpcgen (RS_CMD)

NAME
rpcgen – an RPC protocol compiler

SYNOPSIS
rpcgen infile
rpcgen [–Dname[=value]] [–T] infile
rpcgen –c|–h|–l|–m|–t [–o outfile] [infile]
rpcgen –s nettype [–o outfile] [infile]
rpcgen –n netid [–o outfile] [infile]

DESCRIPTION
rpcgen is a tool that generates C code to implement an RPC protocol. The input to
rpcgen is a language similar to C known as RPC Language (Remote Procedure
Call Language) [see the Remote Services Introduction chapter for details on the RPC
Language].

rpcgen is normally used as in the first synopsis where it takes an input file and
generates four output files. If the infile is named proto.x, then rpcgen will gen-
erate a header file in proto.h, XDR routines in proto_xdr.c, server-side stubs
in proto_svc.c, and client-side stubs in proto_clnt.c. With the –T option, it
will also generate the RPC dispatch table in proto_tbl.i.

The second synopsis provides special features which allow for the creation of more
sophisticated RPC servers. These features include support for user provided
#defines and RPC dispatch tables, The entries in the RPC dispatch table contain:

• pointers to the service routine corresponding to that procedure,
• a pointer to the input and output arguments
• the size of these routines

A server can use the dispatch table to check authorization and then to execute the
service routine; a client library may use it to deal with the details of storage
management and XDR data conversion.

The other three synopses shown above are used when one does not want to gen-
erate all the output files, but only a particular one. Some examples of their usage is
described in the EXAMPLE section below. When rpcgen is executed with the –s
option, it creates servers for that particular class of transports. When executed with
the –n option, it creates a server for the transport specified by netid. If infile is not
specified, rpcgen accepts the standard input.

The C preprocessor, cc –E [see cc(SD_CMD)], is run on the input file before it is
actually interpreted by rpcgen. For each type of output file, rpcgen defines a
special preprocessor symbol for use by the rpcgen programmer:

RPC_HDR defined when compiling into header files
RPC_XDR defined when compiling into XDR routines
RPC_SVC defined when compiling into server-side stubs
RPC_CLNT defined when compiling into client-side stubs
RPC_TBL defined when compiling into RPC dispatch tables

Any line beginning with ‘%’ is passed directly into the output file, uninterpreted by
rpcgen.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/rpcgen
svid

Page: 246

rpcgen (RS_CMD) rpcgen (RS_CMD)

For every data type referred to in infile, rpcgen assumes that there exists a routine
with the string xdr_ prepended to the name of the data type. If this routine does
not exist in the RPC/XDR library, it must be provided. Providing an undefined
data type allows customization of XDR routines.

The following options are available:

–c Compile into XDR routines.

–Dname[=value]
Define a symbol name. Equivalent to the #define directive in the source.
If no value is given, value is defined as 1. This option may be specified more
than once.

–h Compile into C data-definitions (a header file). –T option can be used in
conjunction to produce a header file which supports RPC dispatch tables.

–l Compile into client-side stubs.

–m Compile into server-side stubs, but do not generate a main routine. This
option is useful for doing callback-routines and for users who need to write
their own main routine to do initialization.

–n netid
Compile into server-side stubs for the transport specified by netid. There
should be an entry for netid in the netconfig database. This option may be
specified more than once, so as to compile a server that serves multiple tran-
sports.

–o outfile
Specify the name of the output file. If none is specified, standard output is
used (–c, –h, –l, –m, –n, –s and –t modes only).

–s nettype
Compile into server-side stubs for all the transports belonging to the class
nettype. The supported classes are netpath, visible, circuit_n,
circuit_v, datagram_n, datagram_v, tcp, and udp [see the Remote
Services Definitions chapter for the meanings associated with these classes].
This option may be specified more than once. Note: the transports are
chosen at run time and not at compile time.

–t Compile into RPC dispatch table.

–T Generate the code to support RPC dispatch tables.

The options –c, –h, –l, –m, –n, –s and –t are used exclusively to generate a
particular type of file, while the options –D and –T are global and can be used
with the other options.

USAGE
General.

The RPC Language does not support nesting of structures. As a work-around,
structures can be declared at the top-level, and their name used inside other struc-
tures in order to achieve the same effect.

Page 2

FINAL COPY
June 15, 1995

File: rs_cmd/rpcgen
svid

Page: 247

rpcgen (RS_CMD) rpcgen (RS_CMD)

Name clashes can occur when using program definitions, since the apparent scop-
ing does not really apply. Most of these can be avoided by giving unique names for
programs, versions, procedures and types.

The server code generated with –n option refers to the transport indicated by netid
and hence is very site specific.

EXAMPLE
The following example:

$ rpcgen –T prot.x

generates all the five files: prot.h, prot_clnt.c, prot_svc.c, prot_xdr.c
and prot_tbl.i.

The following example sends the C data-definitions (header file) to the standard
output.

$ rpcgen –h prot.x

To send the test version of the -DTEST, server side stubs for all the transport
belonging to the class datagram_n on standard output, use:

$ rpcgen –s datagram_n –DTEST prot.x

To create the server side stubs for the transport indicated by netid tcp, use:

$ rpcgen –n tcp –o prot_svc.c prot.x

SEE ALSO
cc(SD_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rs_cmd/rpcgen
svid

Page: 248

rpcinfo (RS_CMD) rpcinfo (RS_CMD)

NAME
rpcinfo – report RPC information

SYNOPSIS
rpcinfo [–T transport] [host]
rpcinfo [–T transport] host program [version]
rpcinfo –a serv_addres –T transport program [version]
rpcinfo –b program version
rpcinfo –d [–T transport] program version

DESCRIPTION
The rpcinfo command makes an RPC call to an RPC server and reports what it
finds. rpcinfo without any arguments lists all the registered RPC services. This
usage, shown by the first synopsis, is the most common. In the second synopsis,
rpcinfo makes an RPC call to 0 on the specified host and reports whether a
response was received. See EXAMPLE for other ways to use rpcinfo.

The following options are available, and all except –T are mutually exclusive.

–T transport Specify the transport on which the service is required. If this
option is not specified, rpcinfo uses the transport specified in
the NETPATH environment variable, or if that is unset, in the
netconfig database. This is a generic option, and can be used in
conjunction with any other option, except the –b option.

–a serv_address Use serv_address as the universal address for the service on tran-
sport, ping procedure 0 of the specified program, and report
whether a response was received. This option requires the –T
option.

–b Make an RPC broadcast to procedure 0 of the specified program
and version and report all hosts that respond. Send the broadcast
request on all transports that support broadcasts. If broadcasting
is not supported by any transport, an error message is printed.

–d Delete registration for the RPC service of the specified program and
version. This option can be exercised only by the super-user. If
transport is specified, unregister the service on only that transport,
otherwise unregister the services on all the transports on which it
was registered.

The program argument can be either a name or a number.

If a version is specified, rpcinfo attempts to call that version of the specified pro-
gram. Otherwise, rpcinfo attempts to find all the registered version numbers for
the specified program by calling version 0, which is presumed not to exist; if it does
exist, rpcinfo attempts to obtain this information by calling an extremely high
version number instead, and attempts to call each registered version. Note: the ver-
sion number is required for –b and –d options.

Page 1

rpcinfo (RS_CMD) rpcinfo (RS_CMD)

EXAMPLE
To show all of the RPC services registered on the local machine use:

$ rpcinfo

To show all of the RPC services registered on the machine named klaxon and on
transport tcp use:

$ rpcinfo –T tcp klaxon

To delete the registration for version 1 of the walld for all transports use:

$ rpcinfo –d walld 1

USAGE
General.

SEE ALSO
rpcbind(RS_LIB).

LEVEL
Level 1.

Page 2

share (RS_CMD) share (RS_CMD)

NAME
share – make local resource available for sharing by remote systems

SYNOPSIS
share [-F fstype] [-o specific_options] [-d description]

[pathname [resourcename]]

DESCRIPTION
The share command makes a resource available for sharing through a distributed
file system of type fstype. When invoked without any arguments, share displays all
resources on the local system that are shared through any distributed file system.
When invoked with only a file system type, share displays all resources shared on
the local system through the given file system. If the -F flag is omitted, and path-
name is given, then the file system in the first line of /etc/dfs/fstypes is used as
the default. specific_options as well as the syntax of resourcename are specific to par-
ticular distributed file systems.

The -d flag may be used to provide a description of the resource being shared.

ERRORS
If (1) the network is not up and running, (2) pathname is not a full path name or (3)
pathname is not on a file system mounted locally, an error message will be sent to
the standard error output.

FILES
/etc/dfs/dfstab
/etc/dfs/sharetab
/etc/dfs/fstypes

USAGE
Administrator.

SEE ALSO
unshare(RS_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/share
svid

Page: 251

unshare (RS_CMD) unshare (RS_CMD)

NAME
unshare – make local resource unavailable for sharing by remote systems

SYNOPSIS
unshare [-F fstype] [-o specific_options] pathname
unshare [-F fstype] [-o specific_options] resourcename

DESCRIPTION
The unshare command makes a resource that was shared with share unavailable
for sharing through a remote file system of type fstype. If the -F flag is omitted, the
file system in the first line of /etc/dfs/fstypes is used as the default.
specific_options as well as the syntax of resourcename are specific to particular distri-
buted file systems.

ERRORS
If resourcename is not found in the shared information, an error message will be sent
to standard error.

FILES
/etc/dfs/dfstab
/etc/dfs/sharetab
/etc/dfs/fstypes

USAGE
Administrator.

SEE ALSO
share(RS_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rs_cmd/unshare
svid

Page: 252

Real Time And Memory Management
Introduction

Real Time And Memory Management Overview

The Real Time and Memory Management Extension (RT) consists of facilities to
allow application programs to respond in a deterministic and timely manner to
external interrupts. This issue of the SVID includes BSD-based timer functionality
to provide fine granularity alarms and a memcntl() interface to provide applica-
tion control over memory residence [see memcntl(RT_OS)].

USL is committed to support the standardization of a Real Time interface as
defined by POSIX. The IEEE P1003.4 working group is currently pursuing a draft
standard for a Real Time interface. Full conformance to this standard will be
strongly considered upon formal approval.

The following are prerequisite for support of the Real Time and Memory Manage-
ment Extension:

Base System

Kernel Extension

SUMMARY OF OS SERVICE ROUTINES

The following OS service routines are supported by the Real Time and Memory
Management Extension. All of these items are new to this issue of the SVID.
Items marked with a star (*) are Level 2, as defined in the General Introduction to
this volume.

getitimer * memcntl mlockall munlockall settimeofday
gettimeofday *mlock munlock setitimer swapctl

Real Time And Memory Management Introduction 14-1

FINAL COPY
June 15, 1995
File: rt_int.txt

svid

Page: 253

ORGANIZATION OF TECHNICAL INFORMATION

The Real Time and Memory Management OS Service Routines chapter provides
manual page descriptions of library routines supported by this extension.

14-2 REAL TIME AND MEMORY MANAGEMENT INTRODUCTION

FINAL COPY
June 15, 1995
File: rt_int.txt

svid

Page: 254

Real Time And Memory Management Routines

The following section contains the manual pages for the RT_OS routines.

Real Time And Memory Management Routines 15-1

FINAL COPY
June 15, 1995
File: rt_os.cov

svid

Page: 255

FINAL COPY
June 15, 1995

File:

Page: 256

getitimer (RT_OS) getitimer (RT_OS)

NAME
g e t i t i m e r, s e t i t i m e r – get/set value of interval timer

SYNOPSIS
i n c l u d e < s y s / t i m e . h >

i n t g e t i t i m e r (i n t which, s t r u c t i t i m e r v a l ∗value) ;

i n t s e t i t i m e r (i n t which, s t r u c t i t i m e r v a l ∗value, s t r u c t i t i m e r v a l
∗ovalue) ;

DESCRIPTION
The system provides each process with three interval timers, defined in
s y s / t i m e . h. The g e t i t i m e r call stores the current value of the timer specified by
which into the structure pointed to by value. The s e t i t i m e r call sets the value of
the timer specified by which to the value specified in the structure pointed to by
value, and if ovalue is not N U L L, stores the previous value of the timer in the struc-
ture pointed to by ovalue.

A timer value is defined by the i t i m e r v a l structure for the definition of t i m e v a l],
which includes the following members:

s t r u c t t i m e v a l i t _ i n t e r v a l ; /∗ t i m e r i n t e r v a l ∗/
s t r u c t t i m e v a l i t _ v a l u e ; /∗ c u r r e n t v a l u e ∗/

If i t _ v a l u e is non-zero, it indicates the time to the next timer expiration. If
i t _ i n t e r v a l is non-zero, it specifies a value to be used in reloading i t _ v a l u e
when the timer expires. Setting i t _ v a l u e to zero disables a timer, regardless of the
value of i t _ i n t e r v a l. Setting i t _ i n t e r v a l to zero disables a timer after its next
expiration (assuming i t _ v a l u e is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this
resolution.

The three timers are:

I T I M E R _ R E A L Decrements in real time. A S I G A L R M signal is delivered when
this timer expires.

I T I M E R _ V I R T U A L Decrements in process virtual time. It runs only when the pro-
cess is executing. A S I G V T A L R M signal is delivered when it
expires.

I T I M E R _ P R O F Decrements both in process virtual time and when the system
is running on behalf of the process. It is designed to be used by
interpreters in statistically profiling the execution of interpreted
programs. Each time the I T I M E R _ P R O F timer expires, the S I G -
P R O F signal is delivered. Because this signal may interrupt in-
progress system calls, programs using this timer must be
prepared to restart interrupted system calls.

Return Values
If the calls succeed, a value of 0 is returned. If an error occurs, the value – 1 is
returned, and an error code is placed in the global variable e r r n o.

Page 1

FINAL COPY
June 15, 1995

File: rt_os/getitimer
svid

Page: 257

getitimer (RT_OS) getitimer (RT_OS)

Errors
Under the following conditions, the functions g e t i t i m e r and s e t i t i m e r fail and
set e r r n o to:

E I N V A L The specified number of seconds is greater than 100,000,000, the number
of microseconds is greater than or equal to 1,000,000, or the which
parameter is unrecognized.

SEE ALSO
a l a r m(BA_OS)

LEVEL
Level 1.

NOTICES
The microseconds field should not be equal to or greater than one second.

s e t i t i m e r is independent of the a l a r m system call.

Do not use s e t i t i m e r with the s l e e p routine. A s l e e p following a s e t i t i m e r
wipes out knowledge of the user signal handler.

Page 2

FINAL COPY
June 15, 1995

File: rt_os/getitimer
svid

Page: 258

gettimeofday (RT_OS) gettimeofday (RT_OS)

NAME
gettimeofday, settimeofday – get or set the date and time

SYNOPSIS
#include <sys/time.h>

int gettimeofday(struct timeval *tp);

int settimeofday(struct timeval *tp);

DESCRIPTION
The system’s notion of the current Greenwich time is obtained with the get-
timeofday() call, and set with the settimeofday() call. The current time is
expressed in elapsed seconds and microseconds since 00:00 UTC, January 1, 1970
(zero hour). The resolution of the system clock is hardware dependent; the time
may be updated continuously, or in ticks .

tp points to a timeval structure, which includes the following members:

long tv_sec; /* seconds since Jan. 1, 1970 */
long tv_usec; /* and microseconds */

The flag indicating the type of daylight savings time correction should have one of
the following values (as defined in <sys/time.h>):

DST_NONE daylight savings time not observed.
DST_USA United States DST.
DST_AUST Australian DST.
DST_WET Western European DST.
DST_MET Middle European DST.
DST_EET Eastern European DST.
DST_CAN Canadian DST.
DST_GB Great Britain and Eire DST.
DST_RUM Rumanian DST.
DST_TUR Turkish.
DST_AUSTALT Australian-style DST with shift in 1986.

Also note that the offset of the local time zone from UTC may change over time, as
may the rules for daylight saving time correction. The localtime() routine [see
localtime() in ctime(BA_LIB)] obtains this information from a file rather than
from gettimeofday(). Programs should use localtime() to convert dates and
times.

Only a process with appropriate privileges may set the time of day.

RETURN VALUE
If the call succeeds, a value of 0 is returned. If an error occurs, a value of –1 is
returned and errno is set to indicate the error.

ERRORS
Under the following condition, the functions gettimeofday() and
settimeofday() will fail and set errno to:

Page 1

FINAL COPY
June 15, 1995

File: rt_os/gettimeofday
svid

Page: 259

gettimeofday (RT_OS) gettimeofday (RT_OS)

EPERM if a process without appropriate privileges attempts to set the time.

In addition, under the following condition, the function settimeofday() will fail
and set errno to:

EINVAL if the tp parameter is not in canonical form, i.e., the number of
microseconds is greater than zero and less than 1,000,000, and the
number of seconds is non-negative.

FILES
/usr/include/sys/time.h

USAGE
Administrator.

SEE ALSO
adjtime(BA_OS), ctime(BA_LIB).

FUTURE DIRECTIONS
It is expected that these routines will be replaced by POSIX 1003.4 routines in a
future issue of the SVID.

LEVEL
Level 2: June 30, 1989.

Page 2

FINAL COPY
June 15, 1995

File: rt_os/gettimeofday
svid

Page: 260

memcntl (RT_OS) memcntl (RT_OS)

MC_LOCK Lock in memory all pages in the range with attributes attr. A
given page may be locked multiple times through different map-
pings; however, within a given mapping, page locks do not nest.
Multiple lock operations on the same address in the same process
will all be removed with a single unlock operation. A page
locked in one process and mapped in another (or visible through
a different mapping in the locking process) is locked in memory
as long as the locking process does neither an implicit nor explicit
unlock operation. If a locked mapping is removed, or a page is
deleted through file truncation, an unlock operation is implicitly
performed. If a writable MAP_PRIVATE page in the address
range is changed, the lock will be transferred to the private page.

At present arg is unused, but must be 0 to ensure compatibility
with potential future enhancements.

MC_LOCKAS Lock in memory all pages mapped by the address space with
attributes attr. At present addr and len are unused, but must be
NULL and 0 respectively, to ensure compatibility with potential
future enhancements. arg is a bit pattern built from the flags:

MCL_CURRENT Lock current mappings
MCL_FUTURE Lock future mappings

The value of arg determines whether the pages to be locked are
those currently mapped by the address space, those that will be
mapped in the future, or both. If MCL_FUTURE is specified, then
all mappings subsequently added to the address space will be
locked, provided sufficient memory is available.

MC_SYNC Write to their permanent storage locations all modified pages in
the range with attributes attr. Optionally, invalidate cache copies.
arg is a bit pattern built from the flags used to control the
behavior of the operation:

MS_ASYNC perform asynchronous writes
MS_SYNC perform synchronous writes
MS_INVALIDATE invalidate mappings

MS_ASYNC returns immediately once all write operations are
scheduled; with MS_SYNC the system call will not return until all
write operations are completed.

MS_INVALIDATE invalidates all cached copies of data in
memory, so that further references to the pages will be obtained
by the system from their permanent storage locations. This
operation should be used by applications that require a memory
object to be in a known state.

MC_UNLOCK Unlock all pages in the range with attributes attr. At present arg
is unused, but must be 0 to ensure compatibility with potential
future enhancements.

Page 2

FINAL COPY
June 15, 1995

File: rt_os/memcntl
svid

Page: 262

memcntl (RT_OS) memcntl (RT_OS)

MC_UNLOCKAS Remove address space memory locks, and locks on all pages in
the address space with attributes attr. At present addr, len, and
arg are unused, but must be NULL, 0 and 0 respectively, to ensure
compatibility with potential future enhancements.

Locks established with the lock operations are not inherited by a child process after
fork(). Attempts to lock more memory than a system-specific limit, will fail.

Due to the potential impact on system resources, all operations, with the exception
of MC_SYNC, are restricted to processes with appropriate privileges. The
memcntl() function subsumes the operations of plock().

RETURN VALUE
Upon successful completion, the function memcntl() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function memcntl() fails and sets errno to:

EAGAIN if some or all of the memory identified by the operation could not be
locked when MC_LOCK or MC_LOCKAS is specified.

EBUSY if some or all the addresses in the range [addr, addr + len) are locked
and MC_SYNC with MS_INVALIDATE option is specified.

EINVAL if addr is not a multiple of the page size as returned by sysconf().

EINVAL if addr and/or len do not have the value 0 when MC_LOCKAS or
MC_UNLOCKAS is specified.

EINVAL if arg is not valid for the function specified.

EINVAL if invalid selection criteria are specified in attr.

ENOMEM if some or all the addresses in the range [addr, addr + len) are invalid
for the address space of the process or pages not mapped are
specified.

EPERM if the process does not have appropriate privilege to perform the
requested operation.

SEE ALSO
sysconf(BA_OS), mlock(RT_OS), mlockall(RT_OS), mmap(KE_OS),
mprotect(KE_OS), msync(KE_OS), plock(KE_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rt_os/memcntl
svid

Page: 263

mlock (RT_OS) mlock (RT_OS)

NAME
mlock, munlock – lock (or unlock) pages in memory

SYNOPSIS
#include <sys/types.h>

int mlock(caddr_t addr, size_t len);

int munlock(caddr_t addr, size_t len);

DESCRIPTION
The function mlock() uses the mappings established for the address range [addr,
addr + len) to identify pages to be locked in memory. The effect of mlock(addr,
len) is equivalent to memcntl(addr, len, MC_LOCK, 0, 0).

munlock() removes locks established with mlock(). The effect of
munlock(addr, len) is equivalent to memcntl(addr, len, MC_UNLOCK, 0,
0).

Locks established with mlock() are not inherited by a child process after a
fork().

RETURN VALUE
Upon successful completion, the functions mlock() and munlock() return a
value of 0; otherwise, they return a value of –1 and set errno to indicate an error.

ERRORS
See memcntl(RT_OS).

USAGE
Use of mlock() and munlock() requires that the user have appropriate privileges.

SEE ALSO
fork(BA_OS), memcntl(RT_OS), mmap(KE_OS), mlockall(RT_OS), plock(KE_OS),
sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rt_os/mlock
svid

Page: 264

mlockall (RT_OS) mlockall (RT_OS)

NAME
mlockall, munlockall – lock or unlock address space

SYNOPSIS
#include <sys/mman.h>

int mlockall(int flags);

int munlockall(void);

DESCRIPTION
The function mlockall() causes all pages mapped by an address space to be
locked in memory. The effect of mlockall(flags) is equivalent to:

memcntl(0, 0, MC_LOCKAS, 0, flags)
The value of flags determines whether the pages to be locked are those currently
mapped by the address space, those that will be mapped in the future, or both. [See
memcntl(RT_OS) for the values of flags.]

The function munlockall() removes address space locks and locks on mappings
in the address space. The effect of munlockall() is equivalent to:

memcntl(0, 0, MC_UNLOCKAS, 0, 0)

Locks established with mlockall() are not inherited by a child process after a
fork().

RETURN VALUE
Upon successful completion, the functions mlockall() and munlockall()
return a value of 0; otherwise, they return a value of –1 and set errno to indicate
an error.

ERRORS
See memcntl(RT_OS).

USAGE
Use of mlockall() and munlockall() requires that the process have appropri-
ate privileges.

SEE ALSO
fork(BA_OS), memcntl(RT_OS), mlock(RT_OS), mmap(KE_OS), plock(KE_OS),
sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: rt_os/mlockall
svid

Page: 265

swapctl(RT_OS) swapctl(RT_OS)

NAME
swapctl – manage swap space

SYNOPSIS
#include <sys/stat.h>
#include <sys/swap.h>

int swapctl(int cmd, void *arg);

DESCRIPTION
The function swapctl() provides a means for a process to add, delete, and iden-
tify resources providing memory for swap space. cmd specifies one of the following
options contained in <sys/swap.h>:

SC_ADD /* add a resource for swapping */
SC_LIST /* list the resources for swapping */
SC_REMOVE /* remove a resource for swapping */
SC_GETNSWP /* return number of swap resources */

When SC_ADD or SC_REMOVE are specified, arg is a pointer to a swapres struc-
ture containing the following members:

char *sr_name; /* pathname of resource */
off_t sr_start; /* offset to start of swap area */
off_t sr_length; /* length of swap area */

A successful SC_ADD adds a reference to the associated file, which guarantees that it
will continue to be usable for swap space, even if the file is removed from the direc-
tory by unlink(BA_OS). This reference will be removed by the corresponding
SC_REMOVE.

When SC_LIST is specified, arg is a pointer to a swaptable structure containing
the following members:

int swt_n; /* number of swapents following */
struct swapent swt_ent[];/* array of swt_n swapents */

A swapent structure contains the following members:

char *ste_path; /* name of the swap file */
off_t ste_start; /* starting block for swapping */
off_t ste_length; /* length of swap area */
long ste_pages; /* number of pages for swapping */
long ste_free; /* number of ste_pages free */
long ste_flags; /* see below */

SC_LIST causes swapctl() to returns at most swt_n entries. The value of
swapctl() is the number actually returned.

When SC_GETNSWP is specified, swapctl() returns as its value the number of
swap resources in use. arg is ignored for this operation.

The SC_ADD and SC_REMOVE functions will fail if calling process does not have
appropriate privileges.

Page 1

FINAL COPY
June 15, 1995

File: rt_os/swapctl
svid

Page: 266

swapctl(RT_OS) swapctl(RT_OS)

RETURN VALUE
Upon successful completion, the function swapctl() returns a value of 0 for
SC_ADD or SC_REMOVE, the number of struct swapent entries actually returned
for SC_LIST, or the number of swap resources in use for SC_GETNSWP. Upon
failure, the function swapctl() returns a value of –1 and sets errno to indicate an
error.

Page 2

FINAL COPY
June 15, 1995

File: rt_os/swapctl
svid

Page: 267

swapctl(RT_OS) swapctl(RT_OS)

ERRORS
Under the following conditions, the function swapctl() fails and sets errno to:

EEXIST if the specified resource is already being used for swapping
(SC_ADD) or else can not be removed (SC_REMOVE).

EINTR if interrupted by signal (SC_REMOVE).

EINVAL if the specified function value is not valid (that is, none of
SC_ADD, SC_LIST, or SC_REMOVE).

EISDIR if the path specified for SC_ADD is a directory.

ELOOP if too many symbolic links were encountered in translating
the pathname provided to SC_ADD or SC_REMOVE .

ENAMETOOLONG if the length of a component of the path specified for
SC_ADD or SC_REMOVE exceeds {NAME_MAX} characters or
the length of the path exceeds {PATH_MAX} characters and
{_POSIX_NO_TRUNC} is in effect.

ENOENT Pathname specified for SC_ADD or SC_REMOVE does not
exist.

ENOMEM An insufficient number of struct swapent structures
were provided to SC_LIST, or there were insufficient sys-
tem storage resources available during an SC_ADD or
SC_REMOVE.

ENOTDIR Pathname provided to SC_ADD or SC_REMOVE contained a
component in the path prefix that was not a directory.

EPERM The process does not have appropriate privileges.

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: rt_os/swapctl
svid

Page: 268

C Language Specification

C Language Specification Overview

The C Language Specification defines the programming language recognized by a
SVID-conforming C compiler [see cc(SD_CMD)]. The SVID-conforming C
language is based on the American National Standard for Information
Systems–Programming Language C (ANSI C Standard), with extensions that pro-
vide additional functionality. This definition does not address C library functions.
It assumes that the reader is familiar with the C language and does not attempt to
duplicate the information in the ANSI C standard, but rather provides a reference
of differences and additions to the language.

UNDEFINED AND IMPLEMENTATION DEFINED
BEHAVIOR

The ANSI C standard specifies that the behavior of a conforming compilation sys-
tem is undefined or implementation defined under certain circumstances. Unless
explicitly defined in the SVID, ANSI C undefined or implementation defined
behaviors are also undefined or implementation defined for SVID-conforming C
language implementations.

Undefined behavior is indicated in the ANSI C standard by the words ‘‘undefined
behavior’’, by the omission of any explicit definition of behavior, or by a violation
of a ‘‘shall’’ or ‘‘shall not’’ requirement outside of a constraint. ANSI C conform-
ing language behavior, in these circumstances, includes ignoring the situation
with unpredictable results, behaving in a documented manner, or terminating
with a diagnostic message. A SVID-conforming C language extends this to
require that the compilation system behavior not be arbitrary, e.g., dump core.
Therefore, some behavior not defined by the ANSI C standard is defined for a
SVID-conforming compilation system.

C Language Specification 16-1

FINAL COPY
June 15, 1995
File: pl_c.txt

svid

Page: 269

OPTIONAL BEHAVIOR

The SVID definition of the C language defines several ANSI C ‘‘implementation-
defined’’ behaviors, extentions, and optional extentions to the standard. The
optional extentions, if provided in a SVID-conforming C language, should con-
form to the definitions provided. They are

addition of the keyword asm, a non-conforming extention,

addition of the preprocessing directives #assert, #unassert, and
#ident,

specification of certain #pragma directives.

SVID-conforming C language implementations may provide additional behavior
not defined in the SVID. For example, a SVID-conforming C language may pro-
vide old style ‘‘unsigned-preserving’’ integral promotion behavior, in addition to
the ANSI C ‘‘value-preserving’’ integral promotion behavior.

DIAGNOSTICS

The ANSI C standard requires a conforming implementation to define how a diag-
nostic is identified. Any message written to standard error is taken to be a diag-
nostic. The SVID-conforming C language recommends, but does not require, the
following formats:

"filename", line lineno: msg

and

"filename", line lineno: warning: msg

where

filename is the name of the file containing the error,

lineno is the number of the line on which the error was found,

and msg is the diagnostic message.

In the case where an error occurs while processing the command line before open-
ing any files, the filename may not be available for use in the diagnostic message.
Therefore, the described diagnostic format holds only after successfully opening
the input file.

16-2 PROGRAMMING LANGUAGE SPECIFICATION

FINAL COPY
June 15, 1995
File: pl_c.txt

svid

Page: 270

CHARACTER SETS

The default execution character set for a SVID-conforming C language is ASCII
and the default direction of printing is left-to-right.

SOURCE FILES AND TOKENIZATION

Identifiers

Identifiers are used to name things like variables, functions, data types and mac-
ros.

Identifiers are made up of letters, digits, or underscore (_) characters. The first
character must be a letter or an underscore.

A SVID-conforming C language will treat upper and lower case letters as distinct
in external identifiers. It will also support internal and external identifiers that are
significant to at least the first 100 characters.

C Language Specification 16-3

FINAL COPY
June 15, 1995
File: pl_c.txt

svid

Page: 271

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

asm default for short union
auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch
continue float return typedef

The keyword asm is a non-conforming extension to the ANSI C standard, and is
optional in a SVID-conforming C language. If it is supported, the asm keyword
may be used to insert assembly-language code directly into the translator output.
The most common implementation allows a statement of the form:

asm (character-string-literal);

PREPROCESSING

The SVID defines several optional extensions to the ANSI C standard in the area
of preprocessing.

Preprocessing Directives

Assertions

Assertions are optional in a SVID-conforming C language. If assertions are imple-
mented, a line of the form

#assert predicate (token-sequence)

associates the list of tokens with the predicate in the assertion name space (separate
from the space used for macro definitions). The predicate must be an identifier
token. The assertion lasts until a corresponding #unassert directive, if any. In
the argument preprocessing tokens, parentheses must balance and commas have
no special meaning.

#assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

16-4 PROGRAMMING LANGUAGE SPECIFICATION

FINAL COPY
June 15, 1995
File: pl_c.txt

svid

Page: 272

The compiler provides the following predefined predicate by default:

#assert system (unix)

A line of the form

#unassert predicate (token-sequence)

deletes the list of tokens asserted on the predicate. A line of the form

#unassert predicate

deletes all assertions on the predicate.

Version Control

The #ident directive is optional in a SVID-conforming C language and is used to
help administer version control information.

#ident "version"

puts an arbitrary string in the .comment section of an executable file. The .com-
ment section is not loaded into memory when an executable file is executed.

Pragmas

Preprocessing lines of the form

#pragma token-sequence

specify implementation-defined actions. These lines must be handled by a con-
forming ANSI C implementation, but need not have any effect.

The following #pragma’s are optional in a SVID-conforming C language. If these
are implemented, a line of the form

#pragma ident "version"

is identical in function to:

#ident "version"

A SVID-conforming C compiler ignores all unrecognized pragmas.

Macro Replacement

A SVID-conforming C language shall allow empty token list macro arguments.
The resulting token list for such an invocation will contain no tokens for any
parameter which was associated with an empty argument.

C Language Specification 16-5

FINAL COPY
June 15, 1995
File: pl_c.txt

svid

Page: 273

DECLARATIONS AND DEFINITIONS

Types

As an extension to the ANSI C standard, a SVID-conforming C language imple-
mentation may support bit-fields having any integral type. In such an implemen-
tation, bit-fields that are declared with the signed keyword or with the
unsigned keyword act like their int counterpart with respect to the high-order
bit’s behaving like a sign bit. Whether bit-fields that are declared ‘‘plain’’ int
sign-extend is implementation-dependent. (Note this means enum bit-fields
behave like ‘‘plain’’ int.)

Storage Class Specifiers

As an extention, SVID-conforming C languages allow ‘‘multiply-defined external
definitions’’: there may be more than one external definition for the identifier of an
object, with or without the explicit use of the keyword extern. If the definitions
disagree, or if more than one is initialized, the behavior is undefined.

16-6 PROGRAMMING LANGUAGE SPECIFICATION

FINAL COPY
June 15, 1995
File: pl_c.txt

svid

Page: 274

Software Development Introduction

Software Development Overview

The Software Development Extension provides facilities for the compilation and
maintenance of C language software. Principal components are the C compiler cc
and its related utilities, the program development aids yacc and lex, and the
Source Code Control System (SCCS) utilities.

The following are prerequisite for support of the Software Development Exten-
sion:

Base System

Basic Utilities Extension

Advanced Utilities Extension

Kernel Extension

SUMMARY OF LIBRARY ROUTINES

The following library routines are supported in a SVID-compliant Software
Development Extension (exception: items marked with a sharp (#) are optional and
need not be supported). Items marked with a star (*) are level 2, as defined in the
General Introduction to this volume. Items marked with a dagger (†) are new to
this edition of the SVID.

MARK # getutxent† monitor # setutxent†
a64l getutxid† nlist sgetl *
endutxent† getutxline† putpwent * sputl *
getpass l64a pututxline† utmpxname†

Software Development Introduction 17-1

FINAL COPY
June 15, 1995
File: sd_int.txt

svid

Page: 275

SUMMARY OF COMMANDS AND UTILITIES

The following library commands and utilities are supported in a SVID-compliant
Software Development Extension (exception: items marked with a sharp (#) are
optional and need not be supported). Items marked with a star (*) are Level 2, as
defined in the General Introduction to this volume. Items marked with a dagger (†)
are new to this issue of the SVID. Items marked with a doube dagger (‡) are inter-
nationalized.

admin‡ delta‡ lint rmdel tsort
as # * dis # * lorder sact unget
cc‡ env m4 size val
cflow * gcore make strip * what
chroot get‡ nm * time xargs
cxref * ld prof # * truss yacc
debug† lex prs

ORGANIZATION OF TECHNICAL INFORMATION

The Software Development Environment chapter is a new addition to the SVID,
appearing first in SVID 4. This chapter describes the /proc subsystem, which
provides support for the new, enhanced debugger, debug, described in the com-
mands section.

The Software Development Library Routines chapter provides manual page descrip-
tions of routine interfaces supported by this extension.

The Software Development Commands and Utilities chapter provides manual page
descriptions of commands and utilities supported by this extension.

Software Development C Library support requirements are defined at the end of
this introduction.

C LIBRARY SUPPORT REQUIREMENTS

The following libraries are required to support the C compiler command cc.

17-2 SOFTWARE DEVELOPMENT INTRODUCTION

FINAL COPY
June 15, 1995
File: sd_int.txt

svid

Page: 276

Standard C Library

The Standard C library is automatically searched by cc to resolve external refer-
ences. This library supports all of the interfaces of the Base System, as defined in
Volume 1, except for the Math Routines.

Standard C Mathematical Library

This library supports the Base System math routines, as defined in Volume 1. The
cc option -lm is used to search this library.

Lex Library

The lex library is required by lex(SD_CMD). The cc option -ll is used to search
this library.

Object File Library

The Object File Library is required for use of sgetl and sputl, as defined under
sputl(SD_LIB). The cc option -lld is used to search this library.

YACC Library

The yacc library facilitates use of yacc(SD_CMD). The cc option -ly is used to
search this library.

Software Development Introduction 17-3

FINAL COPY
June 15, 1995
File: sd_int.txt

svid

Page: 277

FINAL COPY
June 15, 1995

File:

Page: 278

Software Development Library Routines

The following section contains the manual pages for the SD_LIB routines.

Software Development Library Routines 18-1

FINAL COPY
June 15, 1995
File: sd_lib.cov

svid

Page: 279

FINAL COPY
June 15, 1995

File:

Page: 280

a64l (SD_LIB) a64l (SD_LIB)

NAME
a64l, l64a – convert between long integer and base-64 ASCII string

SYNOPSIS
#include <stdlib.h>

long a64l(const char *s);

char *l64a(long value);

DESCRIPTION
These routines are used to maintain numbers stored in base-64 ASCII characters.
This is a notation by which long integers can be represented by up to six characters;
each character represents a digit in radix-64 notation.

The characters used to represent ‘digits’ are . for 0, / for 1, 0 through 9 for 2–11,
A through Z for 12–37, and a through z for 38–63.

The routine a64l() takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to by s contains more
than six characters, a64l() will use the first six.

The routine l64a() takes a long argument and returns a pointer to the
corresponding base-64 representation. If value is 0, l64a() returns a pointer to a
null string.

USAGE
The value returned by l64a() may be a pointer into a static buffer, the contents of
which would therefore be overwritten by each call.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_lib/a64l
svid

Page: 281

getpass (SD_LIB) getpass (SD_LIB)

NAME
getpass – read a password

SYNOPSIS
#include <stdlib.h>

char *getpass(const char *prompt);

DESCRIPTION
The routine getpass() reads up to a newline or an EOF from the file /dev/tty,
after prompting on the standard error output with the null-terminated string prompt
and disabling echoing. A pointer is returned to a null-terminated string of at most
{PASS_MAX} characters. If /dev/tty cannot be opened, a NULL pointer is
returned. An interrupt will terminate input and send an interrupt signal to the cal-
ling program before returning. getpass() restores the terminal state and closes
/dev/tty before returning.

The function getpass marks for update the st_atime field of the file /dev/tty.

FILES
/dev/tty

USAGE
The return value points to static data whose content is overwritten by each call.

SEE ALSO
devtty(BA_DEV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_lib/getpass
svid

Page: 282

getutx (SD_LIB) getutx (SD_LIB)

s e t u t x e n t resets the input stream to the beginning of the file. This should be done
before each search for a new entry if it is desired that the entire file be examined.

e n d u t x e n t closes the currently open file.

u t m p x n a m e allows the user to change the name of the file examined, from
/ v a r / a d m / u t m p x to any other file. It is most often expected that this other file will
be / v a r / a d m / w t m p x. If the file does not exist, this will not be apparent until the
first attempt to reference the file is made. u t m p x n a m e does not open the file. It just
closes the old file if it is currently open and saves the new file name. The new file
name must end with the ‘‘x’’ character to allow the name of the corresponding u t m p
file to be easily obtainable (otherwise an error code of 0 is returned).

g e t u t m p copies the information stored in the fields of the u t m p x structure to the
corresponding fields of the u t m p structure. If the information in any field of u t m p x
does not fit in the corresponding u t m p field, the data is truncated.

g e t u t m p x copies the information stored in the fields of the u t m p structure to the
corresponding fields of the u t m p x structure.

u p d w t m p checks the existence of wfile and its parallel file, whose name is obtained
by appending an ‘‘x’’ to wfile. If only one of them exists, the second one is created
and initialized to reflect the state of the existing file. utmp is written to wfile and the
corresponding u t m p x structure is written to the parallel file. If neither file exists
nothing will happen.

u p d w t m p x checks the existence of wfilex and its parallel file, whose name is obtained
by truncating the final ‘‘x’’ from wfilex. If only one of them exists, the second one is
created and initialized to reflect the state of the existing file. utmpx is written to
wfilex, and the corresponding u t m p structure is written to the parallel file. If neither
file exists nothing will happen.

Files
/ v a r / a d m / u t m p, / v a r / a d m / u t m p x
/ v a r / a d m / w t m p, / v a r / a d m / w t m p x

Errors
A null pointer is returned upon failure to read, whether for permissions or having
reached the end of file, or upon failure to write.

LEVEL
Level 1.

NOTICES
The most current entry is saved in a static structure. Multiple accesses require that
it be copied before further accesses are made. On each call to either g e t u t x i d or
g e t u t x l i n e, the routine examines the static structure before performing more I/O.
If the contents of the static structure match what it is searching for, it looks no
further. For this reason, to use g e t u t x l i n e to search for multiple occurrences it
would be necessary to zero out the static after each success, or g e t u t x l i n e would
just return the same structure over and over again. There is one exception to the
rule about emptying the structure before further reads are done. The implicit read
done by p u t u t x l i n e (if it finds that it is not already at the correct place in the file)
will not hurt the contents of the static structure returned by the g e t u t x e n t,

Page 2

FINAL COPY
June 15, 1995

File: sd_lib/getutx
svid

Page: 284

getutx (SD_LIB) getutx (SD_LIB)

g e t u t x i d, or g e t u t x l i n e routines, if the user has just modified those contents and
passed the pointer back to p u t u t x l i n e.

These routines use buffered standard I/O for input, but p u t u t x l i n e uses an un-
buffered write to avoid race conditions between processes trying to modify the
u t m p x and w t m p x files.

Page 3

FINAL COPY
June 15, 1995

File: sd_lib/getutx
svid

Page: 285

MARK (SD_LIB) MARK (SD_LIB)

LEVEL
Level 1.

Optional. (When used, MARK() requires the profil() system service routine).

Page 2

FINAL COPY
June 15, 1995

File: sd_lib/mark
svid

Page: 287

monitor (SD_LIB) monitor (SD_LIB)

NAME
monitor – prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor(int (*lowpc)(), int (*highpc)(),
WORD *buffer, int bufsize, int nfunc);

DESCRIPTION
The routine monitor() is an interface to the profil() system service routine [see
profil(KE_OS)]; lowpc and highpc are the addresses of two functions; buffer is the
address of a (user supplied) array of bufsize WORDs (WORD is defined in the <mon.h>
header file). The monitor() routine arranges to record a histogram of periodically
sampled values of the program counter, and of counts of calls of certain functions,
in the buffer. The lowest address sampled is that of lowpc and the highest is just
below highpc; lowpc may not equal 0 for this use of monitor(). At most, nfunc call
counts can be kept; only calls of functions compiled with the profiling option –p of
cc are recorded.

An executable program created by using the –p option with cc automatically
includes calls for the monitor() routine with default parameters; therefore
monitor() need not be called explicitly except to gain fine control over profiling.

For the results to be significant, especially where there are small, heavily used rou-
tines, it is suggested that the buffer be no more than a few times smaller than the
range of locations sampled.

To profile the entire program, it is sufficient to use

extern int etext();
. . .
monitor((int (*)())2, etext, buf, bufsize, nfunc);

The routine etext() lies just above all the program text.

To stop execution monitoring and write the results, use

monitor((int (*)())0, (int (*)())0, (WORD *) 0, 0, 0);

The prof() command [see prof(SD_CMD)] can then be used to examine the
results.

The name of the file written by monitor() is controlled by the environmental vari-
able PROFDIR. If PROFDIR is not set, then the file mon.out is created in the current
directory. If PROFDIR is set to the null string, then no profiling is done and no out-
put file is created. Otherwise, the value of PROFDIR is used as the name of the
directory in which to create the output file. If PROFDIR is dirname, then the output
file is named dirname/pid.mon.out, where pid is the process ID of the program.
(When monitor() is called automatically by using the –p option of cc, the file
created is dirname/pid.progname, where progname is the name of the program.)

FILES
mon.out

Page 1

FINAL COPY
June 15, 1995

File: sd_lib/monitor
svid

Page: 288

monitor (SD_LIB) monitor (SD_LIB)

SEE ALSO
profil(KE_OS), cc(SD_CMD), prof(SD_CMD).

LEVEL
Level 1.

Optional. (When used, monitor() requires the profil() system service routine.)

Page 2

FINAL COPY
June 15, 1995

File: sd_lib/monitor
svid

Page: 289

nlist (SD_LIB) nlist (SD_LIB)

NAME
nlist – get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist(const char *filename, struct nlist *nl);

DESCRIPTION
The routine nlist() examines the name list in the executable file whose name is
pointed to by filename, and selectively extracts a list of values and puts them into the
array of nlist structures pointed to by nl. Each nlist structure contains at least the
following information:

char *n_name;
long n_value;
unsigned short n_type;

n_name points to the symbol name, n_value is the value of the symbol, n_type
the type (or derived type).

nl is terminated with a null name; a null string is placed in the name position of the
last nlist structure.

Each symbol name is looked up in the name list of the file. If the name is found, the
type and value of the symbol are inserted in the appropriate fields. The type field
may be set to 0 unless the file was compiled with the –g option of cc. If the file was
compiled with the -g option, the type field may contain information such as
whether the symbol is a function or an object, but, in general, may not contain use-
ful information. If the name is not found, both entries are set to 0.

RETURN VALUE
Returns –1 upon error; otherwise returns 0.

All value entries are set to 0 if the file cannot be read or if it does not contain a valid
name list.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_lib/nlist
svid

Page: 290

putpwent (SD_LIB) putpwent (SD_LIB)

NAME
putpwent – write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent(const struct passwd *p, FILE *f);

DESCRIPTION
The routine putpwent() is the inverse of getpwent(). Given a pointer to a
password structure created by getpwent() (or getpwuid() or getpwnam()),
putpwent() writes a line on the file f, which must have the format of
/etc/passwd.

RETURN VALUE
Returns a non-zero value if an error was detected during its operation, otherwise
returns 0.

SEE ALSO
getpwent(BA_LIB).

FUTURE DIRECTIONS
The function putpwent() may be replaced in a future issue of the SVID.

LEVEL
Level 2: September 30, 1989

Page 1

FINAL COPY
June 15, 1995

File: sd_lib/putpwent
svid

Page: 291

sputl (SD_LIB) sputl (SD_LIB)

NAME
s p u t l, s g e t l – access long integer data in a machine-independent fashion

SYNOPSIS
c c [flag . . .] file . . . - l l d [library] . . .

i n c l u d e < l d f c n . h >

v o i d s p u t l (l o n g value, c h a r ∗buffer) ;

l o n g s g e t l (c o n s t c h a r ∗buffer) ;

DESCRIPTION
s p u t l takes the four bytes of the long integer value and places them in memory
starting at the address pointed to by buffer. The ordering of the bytes is the same
across all machines.

s g e t l retrieves the four bytes in memory starting at the address pointed to by
buffer and returns the long integer value in the byte ordering of the host machine.

The combination of s p u t l and s g e t l provides a machine-independent way of stor-
ing long numeric data in a file in binary form without conversion to characters.

LEVEL
Level 2

Page 1

FINAL COPY
June 15, 1995

File: sd_lib/sputl
svid

Page: 292

Software Development Commands And Utilities

The following section contains the manual pages for SD_CMD routines.

Software Development Commands And Utilities 19-1

FINAL COPY
June 15, 1995

File: sd_cmd.cov
svid

Page: 293

FINAL COPY
June 15, 1995

File:

Page: 294

admin (SD_CMD) admin (SD_CMD)

NAME
a d m i n – create and administer SCCS files

SYNOPSIS
a d m i n [- i [name]] [- b] [- n] [- rrel] [- t [name]] [- fflag[flag-val]]

[- dflag[flag-val]] [- alogin] [- elogin] [- m [mrlist]] [- y [comment]]
[- h] [- z] file . . .

DESCRIPTION
a d m i n is used to create new SCCS files and change parameters of existing ones.
Arguments to a d m i n, which may appear in any order, consist of keyletter argu-
ments (that begin with -) and file names (note that SCCS file names (file) must begin
with the ASCII characters s .).

If file does not exist, it is created and its parameters are initialized according to the
specified keyletter arguments. Parameters not initialized by a keyletter argument
are assigned a default value. If file does exist, parameters corresponding to
specified keyletter arguments are changed, and other parameters are left
unchanged.

If file is a directory, a d m i n behaves as though each file in the directory were
specified as file, except that non-SCCS files (last component of the path name does
not begin with s .) and unreadable files are silently ignored.

If file is -, the standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed. Again, non-SCCS files and unreadable
files are silently ignored.

a d m i n recognizes supplementary code set characters in all files, as well as in file
names and in arguments given to the - i, - t, - f, and - y options (see below), accord-
ing to the locale specified in the L C _ C T Y P E environment variable As noted, file
names must begin with the ASCII characters s .

The keyletter arguments are listed below. Each argument is explained as if only one
file were to be processed because the effect of each argument applies independently
to each file.

- i[name] The name of a file from which the contents for a new SCCS file are to be
taken. (If name is a binary file, then you must specify the - b option.)
This contents constitutes the first delta of the file (see - r keyletter for
delta numbering scheme). If the - i keyletter is used, but name is omit-
ted, the contents are obtained by reading the standard input until an
end-of-file is encountered. If this keyletter is omitted, then the SCCS
file is created so that the result of a g e t(SD_CMD) will be an empty
file. Only one SCCS file may be created by an a d m i n command on
which the i keyletter is supplied. Using a single a d m i n to create two
or more SCCS files requires that they be created empty (no - i
keyletter). Note that the - i keyletter implies the - n keyletter. Supple-
mentary code set characters may be used in name and in the file itself.

- b encode the contents of name, specified to the - i option. This keyletter
must be used if name is a binary file; otherwise, a binary file will not be
handled properly by SCCS commands.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/admin
svid

Page: 295

admin (SD_CMD) admin (SD_CMD)

The character a in list is equivalent to specifying all releases for
file.

n Causes d e l t a to create a null delta in each of those releases (if
any) being skipped when a delta is made in a new release (for
example, in making delta 5.1 after delta 2.7, releases 3 and 4 are
skipped). These null deltas serve as anchor points so that
branch deltas may later be created from them. The absence of
this flag causes skipped releases to be non-existent in the SCCS
file, preventing branch deltas from being created from them in
the future.

q text User-definable text substituted for all occurrences of the % Q %
keyword in SCCS file text retrieved by g e t. Supplementary
code set characters may be used in text.

m mod module name of the SCCS file substituted for all occurrences of
the % M % keyword in SCCS file text retrieved by g e t. If the m flag
is not specified, the value assigned is the name of the SCCS file
with the leading s . removed. Supplementary code set charac-
ters may be used in the module name mod.

t type type of module in the SCCS file substituted for all occurrences
of % Y % keyword in SCCS file contents retrieved by g e t.

v[pgm]
Causes d e l t a to prompt for Modification Request (MR)
numbers as the reason for creating a delta. The optional value
specifies the name of an MR number validity checking program
[see d e l t a(SD_CMD)]. This program will receive as arguments
the module name, the value of the type flag (see t type above),
and the mrlist. (If this flag is set when creating an SCCS file, the
m keyletter must also be used even if its value is null).

x Causes g e t to create files with execute permissions.

- d flag Causes removal (deletion) of the specified flag from an SCCS file. The
- d keyletter may be specified only when processing existing SCCS files.
Several - d keyletters may be supplied in a single a d m i n command. See
the - f keyletter for allowable flag names.

(l list used with - d indicates a list of releases to be unlocked. See the
- f keyletter for a description of the l flag and the syntax of a list.)

- a login A login name, or numerical UNIX System group ID, to be added to the
list of users who may make deltas (changes) to the SCCS file. A group
ID is equivalent to specifying all login names common to that group
ID. Several a keyletters may be used on a single a d m i n command line.
As many logins or numerical group IDs as desired may be on the list
simultaneously. If the list of users is empty, then anyone may add del-
tas. If login or group ID is preceded by a ! they are to be denied per-
mission to make deltas.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/admin
svid

Page: 297

admin (SD_CMD) admin (SD_CMD)

- e login A login name, or numerical group ID, to be erased from the list of
users allowed to make deltas (changes) to the SCCS file. Specifying a
group ID is equivalent to specifying all l o g i n names common to that
group ID. Several - e keyletters may be used on a single a d m i n com-
mand line.

- m[mrlist] The list of Modification Requests (MR) numbers is inserted into the
SCCS file as the reason for creating the initial delta in a manner identi-
cal to d e l t a. The v flag must be set and the MR numbers are validated
if the v flag has a value (the name of an MR number validation
program). Diagnostics will occur if the v flag is not set or MR valida-
tion fails.

- y[comment]
The comment text is inserted into the SCCS file as a comment for the
initial delta in a manner identical to that of d e l t a. Omission of the - y
keyletter results in a default comment line being inserted.

The - y keyletter is valid only if the - i and/or - n keyletters are
specified (that is, a new SCCS file is being created). Supplementary
code set characters may be used in comment.

- h Causes a d m i n to check the structure of the SCCS file and to compare a
newly computed check-sum (the sum of all the characters in the SCCS
file except those in the first line) with the check-sum that is stored in
the first line of the SCCS file. Appropriate error diagnostics are pro-
duced. This keyletter inhibits writing to the file, nullifying the effect of
any other keyletters supplied; therefore, it is only meaningful when
processing existing files.

- z The SCCS file check-sum is recomputed and stored in the first line of
the SCCS file (see - h, above). Note that use of this keyletter on a truly
corrupted file may prevent future detection of the corruption.

The last component of all SCCS file names must be of the form s .file. New SCCS
files are given mode 444 [see c h m o d(BU_CMD)]. Write permission in the pertinent
directory is, of course, required to create a file. All writing done by a d m i n is to a
temporary file, called x .file, [see g e t(SD_CMD)], created with mode 444 if the
a d m i n command is creating a new SCCS file, or with the same mode as the SCCS
file if it exists. After successful execution of a d m i n, the SCCS file is removed (if it
exists), and x .file is renamed with the name of the SCCS file. This renaming process
ensures that changes are made to the SCCS file only if no errors occurred.

It is recommended that directories containing SCCS files have mode 755 and that
SCCS files themselves have mode 444. The mode of the directories allows only the
owner to modify SCCS files contained in the directories. The mode of the SCCS
files prevents any modification at all except by SCCS commands.

a d m i n also makes use of a transient lock file (called z .file), which is used to prevent
simultaneous updates to the SCCS file by different users. See g e t(SD_CMD) for
further information.

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/admin
svid

Page: 298

admin (SD_CMD) admin (SD_CMD)

FILES
x .file [see d e l t a(SD_CMD)]
z .file [see d e l t a(SD_CMD)]
b d i f f Program to compute differences between the ‘‘gotten’’ file and the g .file

[see g e t(SD_CMD)].

EXAMPLES
The following example shows how to create an SCCS file, s . p r o g . c, from the con-
tents of a file containing a C language program, p r o g . c.

a d m i n - i p r o g . c s . p r o g . c

An example for a file containing a shell program is similar, except that you should
use the - f x option , so that g e t(SD_CMD) will create f i l e . s h to be executable.

a d m i n - i f i l e . s h - f x s . f i l e . s h

You should include some SCCS information at the top of a file. In the above shell
example, to include the file name, the SCCS version number, and the date and time
of the last delta, include the following line at the beginning of f i l e . s h:

I d : % W % L a s t D e l t a : % G % % U %

The above line would be translated by a g e t(SD_CMD) command as:

I d : @ (#) f i l e . s h 1 . 8 L a s t D e l t a : 4 / 2 5 / 9 1 1 7 : 0 5 : 1 9

SEE ALSO
d e l t a(SD_CMD), e d(BU_CMD), g e t(SD_CMD), p r s(SD_CMD)

LEVEL
Level 1.

DIAGNOSTICS
Use the h e l p command for explanations.

NOTICES
If it is necessary to patch an SCCS file for any reason, the mode may be changed to
644 by the owner allowing use of a text editor. You must run a d m i n - h on the
edited file to check for corruption followed by an a d m i n - z to generate a proper
check-sum. Another a d m i n - h is recommended to ensure the SCCS file is valid.

Page 5

FINAL COPY
June 15, 1995

File: sd_cmd/admin
svid

Page: 299

as (SD_CMD) as (SD_CMD)

NAME
as – common assembler

SYNOPSIS
as [-oobjfile] [-m] [-V] file

DESCRIPTION
The as command assembles the named file. The following options may be
specified in any order:

–o objfile Put the output of the assembly in objfile. Without this option, the
default behavior is to create the output file name by removing the
suffix, if there is one, from the input file name and appending a suffix.

–m Run the m4 macro pre-processor on the input to the assembler.

–V Write the version number of the assembler being run on the standard
error output.

USAGE
General.

The command cc is the recommended interface to the assembler. The as command
may not be present on all implementations of System V.

If the –m option (m4 macro pre-processor invocation) is used, keywords for m4 [see
m4(SD_CMD)] cannot be used as symbols (variables, functions, labels) in the input
file since m4 cannot determine which are assembler symbols and which are real m4
macros.

SEE ALSO
cc(SD_CMD), ld(SD_CMD), m4(SD_CMD).

FUTURE DIRECTIONS
The –Y option is reserved for future use. It will be used to allow the user to specify
the directories where the m4 pre-processor and the file of predefined macros are
located.

Users will also be able to specify, by means of the TMPDIR environmental variable,
the directory in which any temporary files are to be created.

These additions are part of the effort to eliminate hard-coded pathnames from the
compilation system.

All functionality provided by the as command is accessible through the cc com-
mand. Compilation using the cc command may not necessarily invoke as as a
separate process.

LEVEL
Level 2: June 30, 1989

Optional.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/as
svid

Page: 300

cc (SD_CMD) cc (SD_CMD)

NAME
cc – C compiler

SYNOPSIS
cc [options] file ...

DESCRIPTION
The cc command is the interface to the C compilation system. The system concep-
tually consists of preprocessor, compiler, optimizer, assembler, and link-editor
phases. The cc command processes the supplied options and then executes the
various phases with the appropriate arguments.

The suffix of a filename argument indicates how the file is to be treated. Files
whose names end with .c are taken to be C source programs, and may be prepro-
cessed, compiled, optimized, assembled, and link-edited. The compilation process
may be stopped after the completion of any conceptual phase if the appropriate
options are supplied. If the compilation process is allowed to complete the assem-
bly phase, then an object program is produced; the object program for a source file
called xyz.c is created in a file called xyz.o. However, the .o file is normally
deleted if a single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly
source programs, and may be assembled and link-edited. Files with names ending
in .i are taken to be preprocessed C source programs and may be compiled, optim-
ized, assembled, and link-edited. Files whose names do not end in .c, .s, or .i are
handed to the link-editor phase.

By default, if an executable file is produced (i.e., the link-editor phase is allowed to
complete), the file is called a.out. This default name can be changed with the –o
option (see below).

The following options are interpreted by cc:

–c Suppress the link-editor phase of the compilation, and do not remove any
produced object files.

– d c c can be either y or n. If the system supports it, – d y specifies a file suitable
for dynamic linking. – d n specifies a file suitable for static linking. This
option and its argument are passed to l d.

–f Include floating-point support for systems without an automatically
included floating-point implementation. This option is ignored on systems
that do not need it.

–g Cause the compiler to generate additional information needed for the use of
a debugger.

– l name
Search the library l i bname. a or if shared objects are supported libname.so.
Its placement on the command line is significant as a library is searched at a
point in time relative to the placement of other libraries and object files on
the command line. This option and its argument are passed to l d.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/cc
svid

Page: 301

cc (SD_CMD) cc (SD_CMD)

–o outfile
Use the name outfile, instead of the default a.out, for the executable file
produced. This is a link-editor option.

–p Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link-editing takes place, a profiled version of
the standard C library is linked, and monitor() [see monitor(SD_LIB)] is
automatically called. A mon.out file will then be produced on normal ter-
mination of the program. An execution profile can then be generated by use
of prof.

–q This option is reserved for specification of implementation specific profiling
directives.

– B c c can be either d y n a m i c or s t a t i c. If the system supports dynamic linking,
– B d y n a m i c causes the link editor to look for files named l i bx. s o and then
for files named l i bx. a when given the – lx option. – B s t a t i c causes the
link editor to look only for files named l i bx. a. This option may be
specified multiple times on the command line as a toggle. This option and
its argument are passed to l d.

–E Preprocess the named C programs and send the result to the standard out-
put.

–F This option is reserved for implementation specific optimization directives.

– G Used to direct the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to l d. It cannot be
used with the – d n option.

– K [P I C]

– K P I C
Causes position-independent code (PIC) to be generated if PIC is
supported. Other implementation-defined values may be used with
this option.

– L dir Add dir to the list of directories searched for libraries by l d. This option
and its argument are passed to l d.

–O Do compilation phase optimization. This option will not affect .s files.

–P Preprocess the named C programs and leave the result in corresponding
files suffixed .i.

–S Compile and do not assemble or link-edit the named C files. The assembly
language output is left in corresponding files suffixed .s.

–V Cause each invoked phase to print its version information on the standard
error output.

–C Cause the preprocessing phase to pass along all comments other than those
on preprocessing directive lines.

–D name[=tokens]
Associates name with the specified tokens as if by a #define preprocessor
directive. If no =tokens is specified, the token 1 is supplied.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/cc
svid

Page: 302

cc (SD_CMD) cc (SD_CMD)

–I dir Alter the search for included files whose names do not begin with / to look
in dir prior to the usual directories. The directories for multiple –I options
are searched in the order specified.

–U name
Causes any definition of name to be forgotten, as if by a #undef preprocess-
ing directive. If the same name is specified for both –D and –U, name is not
defined, regardless of the order of the options.

–W c,arg1[,arg2 ...]
Hand off the argument(s) argi to phase c where c is one of [p02al] indicat-
ing preprocessing, compilation, optimization, assembly, or link-editing
phases, respectively. For example, –W a,-m passes –m to the assembler
phase.

–Y items,dir
Specify a new directory, dir, for the location of items. items is any grouping
of following characters representing directories containing special files:
I directory searched last for include files
P new search path to locate libraries, dir takes the form of $PATH.
S directory containing the start-up object files

or, depending upon the implementation, it may also be one of [p02al].

If the location of a phase [p02al] is specified and the phase does not exist as
a separate process, then cc may ignore the -Y option for that phase.

If the location of a phase is being specified, then the new pathname for the
phase will be dir/phase. If more than one –Y option is applied to any one
item, then the last occurrence holds.

The cc command passes any unrecognized options to the link-editor phase without
any diagnostic [see ld(SD_CMD) for descriptions of ld options].

Other arguments are taken to be C-compatible object programs or libraries of C-
compatible routines and are passed directly to the link-editor phase. These pro-
grams, together with the results of any compilations specified, are linked (in the
order given) to produce an executable program with the name a.out (unless the
–o link-editor option is used).

The standard C library is automatically available to the C program. Other libraries
must be specified explicitly using the -l option with cc [see ld(SD_CMD) for
details].

FILES
file.c input file

file.i preprocessed C source file

file.o object file

file.s assembly language file

a.out
link-edited (executable) output

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/cc
svid

Page: 303

cc (SD_CMD) cc (SD_CMD)

SEE ALSO
ld(SD_CMD), prof(SD_CMD), sdb(SD_CMD), exit(BA_OS), monitor(SD_LIB), Pro-
gramming Language Specifications Extension.

USAGE
General.

Because the cc command usually creates files in the current directory during the
compilation process, it is typically necessary to run the cc command in a directory
in which a file can be created.

The meaning of the terms shared library and dynamic linking are described in the
System V ABI.

FUTURE DIRECTIONS
Users will also be able to specify, by means of the TMPDIR environment variable,
the directory in which any temporary files are to be created.

This addition is part of the effort to eliminate hard-coded pathnames from the com-
pilation system.

If the c phase of the –W option does not exist as a separate process, then cc may
ignore the –W option for that phase.

LEVEL
Level 2, June 30, 1989
The following options are dependent upon dynamic linking being supported and
therefore are marked as Optional:
-d, -B, -K PIC
The following options are marked Level 2, effective September 30, 1993, and will be
removed when the three year waiting period has expired:
-f, -F

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/cc
svid

Page: 304

cflow (SD_CMD) cflow (SD_CMD)

NAME
c f l o w – generate C flowgraph

SYNOPSIS
c f l o w [- r] [- i x] [- i _] [- dnum] files

DESCRIPTION
The c f l o w command analyzes a collection of C, y a c c, l e x, assembler, and object
files and builds a graph charting the external function references. Files suffixed
with . y, . l, and . c are processed by y a c c, l e x, and the C compiler as appropriate.
The results of the preprocessed files, and files suffixed with . i, are then run
through the first pass of l i n t. Files suffixed with . s are assembled. Assembled
files, and files suffixed with . o, have information extracted from their symbol
tables. The results are collected and turned into a graph of external references that
is written on the standard output. c f l o w processes supplementary code set charac-
ters in literals and constants according to the locale specified in the L C _ C T Y P E
environment variable [see L A N G on e n v v a r(BA_ENV)].

Each line of output begins with a reference number, followed by a suitable number
of tabs indicating the level, then the name of the global symbol followed by a colon
and its definition. Normally only function names that do not begin with an under-
score are listed (see the - i options below). For information extracted from C
source, the definition consists of an abstract type declaration (for example, c h a r ∗),
and, delimited by angle brackets, the name of the source file and the line number
where the definition was found. Definitions extracted from object files indicate the
file name and location counter under which the symbol appeared (for example,
text). If the compilation system adds a leading underscore to external names, it is
removed. Once a definition of a name has been printed, subsequent references to
that name contain only the reference number of the line where the definition may
be found. For undefined references, only < > is printed.

As an example, suppose the following code is in f i l e . c:

i n t i ;

m a i n ()
{

f () ;
g () ;
f () ;

}

f ()
{

i = h () ;
}

The command

c f l o w – i x f i l e . c

produces the output

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/cflow
svid

Page: 305

cflow (SD_CMD) cflow (SD_CMD)

1 m a i n : i n t () , < f i l e . c 4 >
2 f : i n t () , < f i l e . c 1 1 >
3 h : < >
4 i : i n t , < f i l e . c 1 >
5 g : < >

When the nesting level becomes too deep, the output of c f l o w can be piped to the
p r command, using the - e option, to compress the tab expansion to something less
than every eight spaces.

In addition to the - D, - I, and - U options (which are interpreted just as they are by
c c), the following options are interpreted by c f l o w:

- r Reverse the ‘‘caller:callee’’ relationship producing an inverted listing show-
ing the callers of each function. The listing is also sorted in lexicographical
order by callee.

- i x Include external and static data symbols. The default is to include only
functions in the flowgraph.

- i _ Include names that begin with an underscore. The default is to exclude
these functions (and data if - i x is used).

- dnum The num decimal integer indicates the depth at which the flowgraph is cut
off. By default this number is very large. Attempts to set the cutoff depth
to a nonpositive integer will be ignored.

Errors
Complains about multiple definitions and only believes the first.

SEE ALSO
a s(SD_CMD), c c(SD_CMD), l e x(SD_CMD), l i n t(SD_CMD), n m(SD_CMD),
y a c c(SD_CMD)

LEVEL
Level 2.

NOTICES
Files produced by l e x and y a c c cause the reordering of line number declarations,
which can confuse c f l o w. To get proper results, feed c f l o w the y a c c or l e x input.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/cflow
svid

Page: 306

chroot (SD_CMD) chroot (SD_CMD)

NAME
chroot – change root directory for a command

SYNOPSIS
/usr/sbin/chroot newroot command

DESCRIPTION
The command chroot executes the given command, relative to root newroot. The
meaning of any initial slashes (/) in path names is changed for command and any of
its children to newroot. Furthermore, the initial working directory is newroot.

This command is restricted to the super-user.

Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.

The new root path name is always relative to the current root: even if a chroot is
currently in effect, the newroot argument is relative to the current root of the run-
ning process.

SEE ALSO
chdir(BA_OS)

USAGE
General.

The user should exercise caution when referencing special files in the new root file
system.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/chroot
svid

Page: 307

cxref (SD_CMD) cxref (SD_CMD)

NAME
c x r e f – generate C program cross-reference

SYNOPSIS
c x r e f [options] files

DESCRIPTION
The c x r e f command analyzes a collection of C files and builds a cross-reference
table. c x r e f uses a special version of c c to include # d e f i n e’d information in its
symbol table. It generates a list of all symbols (auto, static, and global) in each indi-
vidual file, or, with the - c option, in combination. The table includes four fields:
NAME, FILE, FUNCTION, and LINE. The line numbers appearing in the LINE
field also show reference marks as appropriate. The reference marks include:

assignment =
declaration –
definition ∗

If no reference marks appear, you can assume a general reference.

c x r e f processes supplementary code set characters according to the locale specified
in the L C _ C T Y P E environment variable [see L A N G on e n v v a r(BA_ENV)].

The - D, - I, and - U options are interpreted as by c c. In addition, c x r e f interprets
the following options:

- c Combine the source files into a single report. Without the - c option,
c x r e f generates a separate report for each file on the command line.

- o file Direct output to file.

- s Operates silently; does not print input file names.

- w num Width option that formats output no wider than num (decimal) columns.
This option will default to 80 if num is not specified or is less than 51.

- V Prints version information on the standard error.

- Wname, file, function, line
Changes the default width of at least one field. The default widths are:

Field Columns_ __________________________________
NAME 15
FILE 13
FUNCTION 15
LINE 20 (4 per table column)

EXAMPLES
a . c
1 m a i n ()
2 {
3 i n t i ;
4 e x t e r n c h a r c ;
5
6 i = 6 5 ;
7 c = (c h a r) i ;
8 }

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/cxref
svid

Page: 308

cxref (SD_CMD) cxref (SD_CMD)

Resulting cross-reference table:

N A M E F I L E F U N C T I O N L I N E
c a . c - - - 4 - 7 =
i a . c m a i n 3∗ 6 = 7
m a i n a . c - - - 2∗
u 3 b 2 p r e d e f i n e d - - - 0∗
u n i x p r e d e f i n e d - - - 0∗

Errors
Error messages usually mean you cannot compile the files.

SEE ALSO
c c(SD_CMD).

USAGE
General.

LEVEL
Level 2: June 30, 1989.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/cxref
svid

Page: 309

debug (SD_CMD) debug (SD_CMD)

NAME
d e b u g – source-level, interactive, object file debugger

SYNOPSIS
d e b u g [opts] [[- f n o n e | p r o c s | a l l] [- r] [- l start_loc] cmd_line]

d e b u g [opts] [- f n o n e | p r o c s | a l l] [- l object_file] process_id . . .

d e b u g [opts] - c core_file object_file

opts: [- V] [- i c | x] [- X opt] [- d defaults] [- s path] [- Yitem,dir]

DESCRIPTION
d e b u g is a tool that facilitates the finding of errors in user programs by allowing the
user to control the execution of a program and examine its state. The user can
create a new process from an executable program, take over control of an existing
process, or examine the state of a process that terminated abnormally with a c o r e
dump

To take full advantage of the symbolic capabilities of d e b u g, the programs exam-
ined and controlled by d e b u g should be compiled with the - g option to the com-
piler [see c c(SD_CMD)]. If the controlled program has not been compiled with - g,
the capabilities of d e b u g will be limited, but the program can still be controlled and
examined.

Some implementations of d e b u g provide both a command line interface and an X
Windows based graphical user interface. Only the command line interface is
described here.

Invocation
d e b u g can be invoked in one of three ways. In the first, the user may specify a
cmd_line. cmd_line consists of one or more executable files, and their associated
arguments. The individual commands can be linked by shell-style pipes, and the
input and output of the cmd_line can be redirected (characters special to the shell
must be quoted). d e b u g creates a new controlled process for each command
specified in cmd_line, taking care of any necessary redirections of input and output.
The processes are set up to stop at the starting address specified by start_loc. If no
start_loc is supplied, the processes are set up to stop at the symbol m a i n, if present,
otherwise at the starting address specified by the object file. d e b u g then e x e c’s
each command, passing each the specified arguments.

If no cmd_line is specified, d e b u g simply enters interactive mode.

In the second form of invocation, the user specifies one or more existing processes
by giving a list of process_ids. The debugger attempts to control the specified objects
as live processes and, if successful, suspends their execution.

Finally, the user may specify an executable program in one of the object file formats
understood by d e b u g, along with a core_file. d e b u g interprets the core_file as a
record of the process state at the time of the death of the process associated with the
object_file and lets the user examine the contents of the process stack, registers and
data segments.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 310

debug (SD_CMD) debug (SD_CMD)

d e b u g associates the name of each object (program name) with all processes derived
from the current invocation of that object. This name may be used in any command
that accepts a process list. If the object name matches the name of an already exist-
ing debugger-controlled program, the debugger will create a new name for the pro-
gram. The default program name may be reset using the r e n a m e command (see
below).

Options
The following options are recognized:
- c Associate the c o r e image core_file with the specified object_file.
- d Specify a defaults file containing debugger commands. If no defaults is given,

d e b u g will search for a file called . d e b u g r c in the user’s home directory. If
a default command file exists, d e b u g executes the commands it contains
before it processes any other command line options or user requests.

- f Specify whether d e b u g will follow all child processes created by any of the
live_objects or by any of the programs given in the cmd_line, (p r o c s, or a l l)
or none of the child processes (n o n e). See ‘‘Process Control’’.

- i The interface mode for the debugger. - i c instructs d e b u g to use the com-
mand line interface. - i x instructs d e b u g to use the X Window based inter-
face, if supported. If no - i option is given, d e b u g uses the X Window inter-
face, if the necessary hardware and software is present, otherwise, it uses
the command line interface.

- l For the first form of invocation, specify the location at which d e b u g will
stop the process after it is created. For the second form of invocation,
specify an alternate object_file from which to load symbolic information
when debugging a process_id. If no alternate object is specified, d e b u g finds
the object file from which the process image was created. If - l is used, only
one process_id may be specified. See c r e a t e and g r a b under ‘‘Commands’’.

- r Redirect input and output of the created objects to a pseudo-terminal (this
does not affect subsequent redirection by the shell or the processes them-
selves). See ‘‘Redirection of Process I/O’’.

- s Specify initial value for the global search path, % g l o b a l _ p a t h. The path is a
colon separated list of directory pathnames. See ‘‘Directory Search Paths’’.

- V Print out version information about d e b u g.
- X Specify option to be passed to the X Windows initialization routine. This

option may be specified multiple times.
- Y Specify a new directory dir for the location of item. item can consist of any of

the following:
a file containing definitions of built-in aliases for d e b u g
g graphical user interface for d e b u g

Command Language
d e b u g provides a simple, user-extensible command language, with a syntax similar
to s h(BU_CMD) in style, using keywords and dash options. Command options
may appear in any order. Multiple options may be specified together, as in s y m -
b o l s - l f or separately, as in s y m b o l s - l - f, but multiple occurrences of the
same option letter are invalid.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 311

debug (SD_CMD) debug (SD_CMD)

Several commands separated by semi-colons (;) may be given on a single line. A
backslash (\) at the end of a line indicates that the command is continued on the fol-
lowing line. The output of a command may be redirected to a file or shell pipeline
using the s h syntax of >, > > and |. (For example, s y m b o l s - g | p g). As in the
shell, > and > > may appear anywhere within a command, but | must appear at the
end of a debugger command, since the rest of the line is treated as a shell command
that will receive the output of the debugger command. A sequence of debugger
commands may be enclosed in curly braces ({ }), forming a command block. The
output of such a block may be redirected as a whole. A debugger comment is intro-
duced by a pound sign (#). Any characters following a pound sign on a line will be
ignored.

Many debugger commands have built-in aliases. These are one or two character
names that may be used wherever the full command is used. The user can redefine
any of the built-in aliases, or may define his or her own aliases. An alias can consist
of any valid debugger command sequence and may take parameters. See a l i a s
under ‘‘Commands’’ for more details.

Built-In Variables
d e b u g maintains a set of special variables that describe the current debugger state
and allow the user to customize certain debugger features. These variables all begin
with a percent sign (%). The processor registers are also considered to be built-in
variables and use the same naming convention. The current value of a debugger
variable may be seen with the p r i n t or s y m b o l s commands. Some built-in vari-
ables are read-only. Those that can be modified may be changed using the s e t
command.

User-Defined Variables
The user may also define variables in the debugger. The names of these variables
consist of a dollar sign followed by a C-style identifier ($username). A user-defined
variable is defined by assigning it an initial value using the s e t command, and may
subsequently be modified. All of the user’s environment variables are imported to
debugger variables of the same name when d e b u g is invoked.

User-defined variables are polymorphic, having either string or numeric values,
according to the type of the last value assigned to them. Any variable, string or
numeric, may be used where a string value is required, and any string-valued vari-
able which is convertible to an integer via the s t r t o l(BA_LIB) function may be
used where a numeric value is required.

Process Control
d e b u g provides control over both single and multiprocess applications and over
both single and multithreaded processes. For each active process under its control,
d e b u g detects when the object program and shared library association changes and
maintains current knowledge of the associations. In particular, processes may
attach or detach shared objects into/from their address spaces using the interfaces
d l o p e n(BA_OS), d l c l o s e(BA_OS), d l s y m(BA_OS).

d e b u g provides control of an arbitrary number of threads within a given process.
These threads may be bound threads or multiplexed threads (see t h r _ c r e a t e).
The only restriction is that in some implementations, the user may not be able to
start (r u n or s t e p) a multiplexed thread that is not currently associated with some
operating system execution entity. Some implementations refer to this execution

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 312

debug (SD_CMD) debug (SD_CMD)

entity as LWP.

By default, d e b u g detects when a new process is created by one of its controlled
threads or processes and includes the new object in its set of controlled objects. The
user can release such newly created objects from debugger control by using the
r e l e a s e command (see below). The default behavior may be overridden by indivi-
dual c r e a t e or g r a b commands, or may be changed by setting the value of the
built-in variable % f o l l o w. Legal values are:

n o n e Do not control child processes.

p r o c s Follow all child processes.

a l l Follow all child processes (same as p r o c s).

d e b u g assigns a unique identifier to each process and thread under its control. Pro-
cess identifiers are in the form pid (p 1, p 2, p 3, ...). Thread identifiers are in the form
pid.id (p 1 . 1, p 1 . 2, p 2 . 5, ...). d e b u g maintains a record of the current process in the
built-in variable % p r o c. The current thread is maintained in the built-in variable
% t h r e a d. For all debugger commands that accept an optional list of threads and
processes, the default action, if no such list is given, is to apply the command to the
current thread (or the current process, if it is single-threaded).

Foreground and Background Execution
When the user enters a command that sets a controlled object in motion, d e b u g, by
default, waits for that object to stop before returning control to the user. If the
debugger built-in variable % w a i t is set to 0 or n o, or b a c k g r o u n d, the debugger
does not wait for the affected object to stop. The default behavior may be re-
asserted by setting % w a i t to 1 or y e s, or f o r e g r o u n d. This global behavior may be
overridden by each command that sets a process in motion.

Redirection of Process I/O
When the user creates a debugger-controlled object, d e b u g does not, by default,
attempt to intercept the input or output for the generated processes. Subject pro-
cess output is unlabeled, and the subject competes with the debugger for the termi-
nal input. If the debugger variable % r e d i r is set to 1 or y e s, the process or thread
I/O is redirected to a pseudo-terminal. All output from that process or thread is
labeled with an indication of which pseudo-terminal has been written. Subsequent
input to the process or thread must be made through the i n p u t command (see
below). The default behavior may be re-asserted by setting % r e d i r to 0 or n o. This
global behavior may be overridden by an individual c r e a t e command.

d e b u g does not attempt to redirect the I/O of grabbed processes, or of the child
processes of some created subject, since it cannot tell what those processes may
have already done to redirect their own I/O. Note, too, that all of the processes and
threads that result from a single c r e a t e command read and write from/to the
same pseudo-terminal.

Process Lists
A process list is a way to specify one or more processes and threads as the target of a
command. Many debugger commands take an argument (- p proc_list) that lists
the names of those processes and threads which should be affected by the com-
mand. A program is the set of all processes and threads created as the result of
invoking a single binary executable. It does not include processes created from dif-
ferent executables when a process within a program e x e cs.

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 313

debug (SD_CMD) debug (SD_CMD)

The command language represents process lists as comma-separated lists of process
names. A process name is defined as either:

the keyword a l l, denoting all controlled processes, processes and threads,

a user or debugger-generated program name, denoting all processes and
threads created from the current invocation of the same executable,

a debugger-generated thread id, of the form pinteger.integer, denoting a
specific controlled thread,

a debugger-generated process id, of the form pinteger, denoting either all
threads that belong to a specific controlled process, or, if the process is not
multithreaded, the process itself, denoting a specific controlled object,

the debugger built-in variable % p r o g r a m, denoting all active processes and
threads derived from the current program,

the debugger built-in variable % t h r e a d, the current thread,

the debugger built-in variable % p r o c, the current process, or all threads
derived from the current process,

a decimal integer, denoting the process which has the given integer as its
system pid (or all threads derived from that process),

any user-defined variable that has an integer value, interpreted as a system
pid,

any user-defined variable that has a string value, which can be interpreted
as one of the above forms, or as a list of the above forms.

Context Variables
The context for the execution of most debugger commands that describe the state of
controlled objects is determined by a subset of the debugger built-in variables.
% p r o g r a m, % p r o c and % t h r e a d % p r o g r a m and % p r o c determine the object(s) to
which a command applies. Setting one affects the others. In addition, there is a set
of context variables specific to each thread or process. For each controlled object,
the following debugger built-in variables are available:

% d b _ l a n g The source language of the current context.

% f r a m e The current frame (an integer representing the frame number).

% f u n c The current function.

% f i l e The current source file.

% l i n e The current source line number.

% l i s t _ f i l e The next file to be displayed by the l i s t command.

% l i s t _ l i n e The next line to be displayed by the l i s t command.

% l o c The current program address.

These variables are reset whenever the thread or process that owns them stops for
any reason. % f r a m e may be explicitly set by the user to any active frame and
changes the value of the other context variables accordingly. % f u n c may be expli-
citly set to any function with a currently active frame and results in setting % f r a m e
to the most recent instance of that function. % d b _ l a n g, % f i l e, % l i n e, and % l o c are

Page 5

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 314

debug (SD_CMD) debug (SD_CMD)

read-only. If no debugging or symbolic information is available for the current
function, % d b _ l a n g, % f u n c, % f i l e, % l i s t _ f i l e, % l i n e, and % l i s t _ l i n e, may be
null.

Verbosity Levels
When a user process or thread under the debugger’s control stops for any reason,
single step, breakpoint, signal, and so on, the debugger generates output to the ter-
minal. This output can sometimes be more voluminous than the user would desire.
For that reason the amount of user-visible output can be adjusted on a global basis
by setting the % v e r b o s e variable. The legal values are:

q u i e t No output is generated for debugger events.

s o u r c e The debugger displays the next source or disassembly line.

e v e n t s If the process stops for an event (system call, signal or stop
event) the debugger announces the type of event and the
current location. For all stops, it displays the next source line.

r e a s o n (default) This is the same as e v e n t s, except that the debugger announces
each single step in addition to all of the events.

a l l The highest verbosity level. Currently, this is the same as r e a -
s o n.

Certain commands allow the user to specify the q u i e t verbosity level, with a - q
option, overriding the global % v e r b o s e setting.

Thread State Changes
A thread may undergo several different kinds of state changes during its lifetime: it
is created and it exits; it can be suspended or continued; and a multiplexed thread
may give up its LWP or be picked up by an LWP. The debugger variable
% t h r e a d _ c h a n g e governs the behavior of the debugger when any of these state
changes occur. The valid values are:

i g n o r e The debugger will not print a message announcing the change
or stop the thread involved. A newly created or continued
thread, or a thread picked up by an LWP will be set running, if
possible.

a n n o u n c e The debugger will print a message announcing the state change
but will not stop the thread involved. A newly created or con-
tinued thread, or a thread picked up by an LWP will be set run-
ning, if possible.

s t o p (default) The debugger will print a message announcing the state change
and stop the thread involved, if possible. A continued thread or
a thread picked up by an LWP will be stopped (or in the Off
LWP state). For thread creation, the thread that created the new
thread will be stopped and the new thread will stop when it
reaches the function specified in the t h r _ c r e a t e call.

Directory Search Paths
To associate program addresses with source listings, d e b u g must know where to
look for the source of the programs being debugged. The built-in variable
% g l o b a l _ p a t h contains a colon-separated list of directory pathnames. d e b u g

Page 6

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 315

debug (SD_CMD) debug (SD_CMD)

combines this information with the names of source files it derives from the debug-
ging information in the object file, to search for source code. In addition to the glo-
bal path, each program may have a program-specific path. This path is stored in the
built-in variable % p a t h. Each program has its own version of this variable. When
attempting to find the source for a given program, d e b u g searches first the list of
directories in that program‘s % p a t h variable, and then the list specified by
% g l o b a l _ p a t h.

Events
Events in the debugger are triggers in the execution sequence of a process or thread
that cause control to pass from the process or thread to the debugger. These
triggers are activated at the user’s request and consist of changes in the process
address space, signals and entry to or exit from system calls. Events may also con-
sist of user-specified actions taken by the debugger when a controlled entity stops
for any reason.

Event triggers may apply to a given thread or process or to a set of threads and
processes. The event fires if any of the specified objects encounter the trigger.
Commands that create events apply, by default, to the current program, rather than
the current thread. current process.

With each event, the user may specify an optional debugger command block. This
block is executed whenever the event triggers. Events and their associated com-
mands can be deleted, or temporarily deactivated and then reactivated.

For each user-specified event, d e b u g assigns a unique identifier in a common name
space. This identifier may be used in the commands that delete, enable, disable and
list events. The last event identifier assigned is maintained in the special variable
% l a s t e v e n t, which is updated automatically by the debugger. When an event
triggers, d e b u g executes the commands associated with the event, after setting the
special variables % p r o g r a m, % p r o c, % t h r e a d, % f i l e, % l i n e, % f u n c, % f r a m e, % l o c,
% d b _ l a n g to indicate the process and location at the context in which the event
occurred, and % t h i s e v e n t to the event number of the triggered event. These vari-
ables are set only for the execution of the commands associated with the triggering
event. They revert to their previous values (or are updated to reflect the new
debugger state) when those commands complete.

The default action for each event is to announce the occurrence of the event and
display the current source line (or current instruction, if no line number information
or source is available).

When a controlled process dies, d e b u g remembers the events created for that pro-
cess. If a new process is created for the same program, all events that applied to the
entire program (the default) are re-instantiated for the new process. Events that
were created to apply only to a single process within a multiprocess program or to
a single thread, are not recreated. Similarly, when a process creates a new child
process via f o r k(BA_OS), all events that apply to the entire program from which
the parent process is derived are copied in the child process. Events that apply to
the parent process only or to a single thread are not copied.

Page 7

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 316

debug (SD_CMD) debug (SD_CMD)

cmd A simple command or a block.

cmd_line A shell-style command line (possibly including shell scripts,
environment variables, pipes, and I/O redirection) which will be
interpreted by the shell, but the resulting processes will be con-
trolled by the debugger.

core_file The relative or complete pathname of a file which was created by
the kernel upon abnormal termination of some process.

count An unsigned decimal integer.

event_command Any of o n s t o p, s t o p, s i g n a l or s y s c a l l.

event_num A small integer, assigned by the debugger when any event is
created, that identifies the resulting set of actions.

expr An expression in the current language. See ‘‘Expressions’’, above.

func_name The name of a function in the current process.

location A designation of an address in a subject process. It includes line
numbers, program symbols, processor registers, and limited
expressions involving these components. The syntax is:

address[±constant] # i n c l u d e s d e b u g g e r a n d u s e r v a r i a b l e s
[thread id@] [filename@]func_name[±constant]
[thread id@] [filename@]line_number
[process id@] [filename@]func_name[±constant]
[process id@] [filename@]line_number

object_file The relative or complete pathname of an executable object file.

pattern Simple regular expressions used to restrict a list of names.
s h(BU_CMD) syntax is used.

process_id A system process identifier.

proc_list See ‘‘Process Lists’’.

reg_exp A simple internationalized regular expression using the syntax
accepted by e d(BU_CMD).

signal A signal name or number. A signal name may be specified with or
without the S I G prefix, and case is not significant.

stop_expr An expression denoting conditions under which specified
processes should be stopped. See s t o p.

. . . Denotes optional repetition of the preceding element.

xxxyyy Denotes that either xxx or yyy, but not both, may appear.

Commands
! shell-command

This command passes the entire command line, less the exclamation mark,
to the shell ($ S H E L L, if set, or else / u s r / b i n / s h) for execution. Note that
any redirection will be interpreted by the shell, not the debugger.

Page 9

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 318

debug (SD_CMD) debug (SD_CMD)

If the shell escape operator is given twice, with no arguments, that is, ! !,
d e b u g re-executes the last shell escape specified.

a l i a s [- r] [name [tokens]]
The a l i a s command, with no arguments, lists the current aliases and their
definitions. If the - r option is present, it removes the alias with the given
name from the list of aliases. If no - r option is present, but a name is given,
the a l i a s command displays the definition, if any, for the alias with the
given name . If any characters, other than spaces, tabs, or comments, follow
the name argument, the command establishes a new alias for the name , con-
sisting of all the characters up to, but not including, the comment or new-
line.

Alias definitions may contain the special identifiers $ 1, $ 2, . . . Each such
special identifier $n in an alias definition is replaced by the nth argument in
an alias invocation, where the arguments are numbered beginning at 1.
Each argument must be preceded by whitespace and is terminated by whi-
tespace, a newline, the comment character (#) or the beginning of a block
({). The special identifiers $ 1, $ 2, . . . will not be replaced within a quoted
string.

If an alias definition contains the special identifier $ #, it will be replaced
during invocation of the alias with the number of arguments actually used
during the current alias invocation. If an alias definition contains the special
identifier $ *, it will be replaced during invocation of the alias with a list of
all arguments passed during the current alias invocation, each separated
from the next by a single space.

Aliases may be defined in terms of other aliases, but not recursively. At
least 20 levels of nested alias definitions are supported.

If the name given is the same as any existing built-in command, a warning
will be generated. Aliases take precedence over built-in commands.

b r e a k The b r e a k command causes the debugger to exit from the innermost enclos-
ing w h i l e loop (see w h i l e).

c a n c e l [- p proc_list] [signal . . .]
c a n c e l takes a list of signals, that are specified as in the k i l l command. If
d e b u g has intercepted any of the listed signals for any of the specified
objects, it will ensure that those objects do not see the specified signals when
they continue execution. If no signals are specified, d e b u g cancels all pend-
ing signals for the specified objects.

c d [pathname]
The c d command changes the debugger’s current working directory to path-
name. If no pathname is given, c d uses the directory specified by the environ-
ment variable H O M E.

c h a n g e event_num [- p proc_list] [- e q v x] [- c count] [stop_expr|call...| signal...]
[block]

The c h a n g e command allows the user to modify various attributes associ-
ated with a previously assigned event. event_num must come before the
optional stop expression, signal or system call specifications and must be the
number of an event that is currently defined (although it may be disabled).

Page 10

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 319

debug (SD_CMD) debug (SD_CMD)

The list of threads and processes to which the event is applied may be
changed with the - p option.

The - q option specifies that d e b u g will not announce the occurrence of the
event. - v specifies that the event occurrence will be announced.

The - e and - x options work as in the s y s c a l l command, and specify
whether the system call will be trapped on entry, exit or both entry and exit.

The - c option specifies the number of times the event must occur before it
triggers. The - c option is valid only for s t o p and s y s c a l l events.

Alternate expressions, signals or system calls and/or an alternate command
block, may be specified.

The resulting event will have the same event number as event_num . Note
that the c h a n g e command does not allow the type of event: o n s t o p, s t o p,
s i g n a l or s y s c a l l, to be changed. Further note that the command list
must be in the form of a block (that is, with enclosing braces) to distinguish it
from a stop expression, system call or signal name.

c o n t i n u e
The c o n t i n u e command causes the debugger to begin execution of the next
iteration of the innermost enclosing w h i l e loop. The debugger continues by
re-evaluating the e x p r part of the w h i l e command (see w h i l e).

c r e a t e [- f n o n e | p r o c s | a l l] [- d r] [- l start_loc] [cmd_line]
cmd_line consists of one or more executable files, in any of the object file for-
mats understood by the debugger, and their associated arguments. The
individual commands can be linked by shell-style pipes, and the input and
output of the cmd_line can be redirected. Shell meta-characters need not be
quoted. The length of cmd_line is limited only by the length of the argument
list accepted by e x e c (A R G _ M A X). See l i m i t s(BA_ENV).

d e b u g creates a new controlled process for each command specified in
cmd_line , taking care of any necessary redirections of input and output. The
processes are set up to stop at the location specified by start_loc. If no
start_loc is supplied, the processes are set up to start at the symbol m a i n, if it
exists, otherwise at the starting address specified by the object file. d e b u g
then e x e c’s each command, passing each the specified arguments.

If no cmd_line is specified to c r e a t e, d e b u g re-executes the last c r e a t e com-
mand issued, (first killing all processes created as a result of the last c r e a t e
command, if they still exist) in effect, re-running the last process (or
processes) created with the same set of arguments.

If the - r option is specified, d e b u g redirects the I/O of the resulting subjects
to a pseudo-terminal, as described above. If the - d option is given no
redirection is attempted. If neither - r nor - d is specified, the default is
determined by the value of the debugger variable % r e d i r.

d e b u g resets its notion of the current program to the first executable
specified on the cmd_line . The current process is reset to the process gen-
erated from that executable. The current thread is set to the first thread in
that process, if the program uses the threads interfaces.

Page 11

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 320

debug (SD_CMD) debug (SD_CMD)

The - f option may be used to specify whether the debugger should take
control of child processes, and overrides the default behavior of the
debugger. The arguments to the - f option have the same meanings as do
the legal values for the % f o l l o w built-in variable (see ‘‘Process Control’’).

d e b u g associates the name of each object (program name) with all processes
derived from the current invocation of that object. This name may be used
in any command that accepts a process list. If the command name matches
the name of an already existing debugger-controlled program, d e b u g creates
a new name for the program. The default program name may be reset with
the r e n a m e command (see below).

d e l e t e event_num . . .
d e l e t e - a [- p proc_list] [event_command]

d e l e t e can be invoked in one of two ways. In the first, the user specifies a
list of previously assigned event identifiers. d e b u g deletes any associated
events, removing the planted breakpoint or canceling the signal or system
call trigger.

In the second form, all debugger events for the current thread or process (or
all events associated with the optional proc_list) are deleted. If an
event_command (o n s t o p, s t o p, s i g n a l or s y s c a l l) is given, only events of
the type specified are deleted.

d i s [- p proc_list] [- c instr_count] [location]
The d i s command with no arguments displays the result of disassembling
% n u m _ l i n e s instructions. % n u m _ l i n e s starts out at 10 and may be reset by
the user. If an instr_count is given, d i s displays instr_count instructions,
instead.

If a location is given, d i s begins disassembling at that address. If no location
has been specified, and the context for the specified process or thread has
not changed since the last d i s invocation on that object, d i s begins with the
address following the last instruction displayed for that object. Otherwise,
d i s begins its display with the current location, as specified by the debugger
variable % l o c, which is reset whenever the context for the specified process
or thread changes.

If more than one thread or process is specified by the proc_list argument, the
disassembly request is performed for each thread or process in turn.

d i s a b l e event_num . . .
d i s a b l e - a [- p proc_list] [event_command]

d i s a b l e can be invoked in one of two ways. In the first, the user specifies a
list of previously assigned event identifiers. The debugger marks any asso-
ciated events as inactive, but does not delete them. The event identifiers are
still valid, but the actions specified by the events are not performed.

In the second form, all debugger events for the current thread or process (or
all events associated with the optional proc_list) are disabled. If an
event_command is given, only events of the type specified are disabled.

Page 12

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 321

debug (SD_CMD) debug (SD_CMD)

d u m p [- p proc_list] [- c byte_count] location
The d u m p command displays % n u m _ b y t e s bytes of memory, 16 bytes per
line, starting at the address specified by the location truncated to a multiple
of 16, in hexadecimal and ASCII. If a byte_count is given, that many bytes of
memory are dumped instead. % n u m _ b y t e s starts out at 256 and may be set
by the user.

If more than one thread or process is specified by the proc_list argument, the
dump request is performed for each thread or process in turn.

e n a b l e event_num . . .
e n a b l e - a [- p proc_list] [event_command]

e n a b l e can be invoked in one of two ways. In the first, the user specifies a
list of previously assigned event identifiers. For each, if the associated event
is currently disabled, the debugger reactivates it.

In the second form, all disabled debugger events for the current thread or
process (or all events associated with the optional proc_list) are enabled. If
an event_command is given, only events of the type specified are enabled.

e v e n t s [- p proc_list] [event_num . . .]
The e v e n t s command without any arguments prints the entire list of user-
specified events for the current program. For each event, the event identifier
and status (active or disabled), event type, list of associated processes, the
event trigger (stop expression, system call or signal) and the beginning of
the associated command list is printed.

If a proc_list is specified, those events associated with the list of threads or
processes are printed. If a list of event numbers is given, a more detailed
record of the specified events is printed, including the full set of associated
commands.

e x p o r t $username
The e x p o r t command makes a user-defined variable and its value available
in the debugger’s environment. The variable is thereafter passed to all
processes created by d e b u g. If the value of $username is changed using the
s e t command, after it has been exported, it must be explicitly re-exported
for the new value to be visible in the environment. $username is exported
without the leading $ sign.

g r a b [- f n o n e | p r o c s | a l l] [- l object_file] process_id . . .
g r a b - c core_file object_file

The g r a b command can take one of two forms. In the first, the user
specifies one or more existing processes by giving a list of process_ids. In
either case, d e b u g attempts to control the specified objects as live processes
and, if successful, suspends their execution. d e b u g resets its notion of the
current program to the executable from which the first process specified was
derived. The current process is reset to the first process specified.

d e b u g, by default, loads symbolic information for the process from the
object file from which the process was created. The - l option specifies an
alternate object_file from which to load symbolic information. If - l is used,
only one process_id may be specified. This option is useful when debugging
long running applications that have no symbol information.

Page 13

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 322

debug (SD_CMD) debug (SD_CMD)

The - f option may be used to specify whether the debugger should take
control of child processes, and overrides the default behavior of the
debugger. The arguments to the - f option have the same meanings as do
the legal values for the % f o l l o w built-in variable (see ‘‘Process Control’’)

In the second form of g r a b, the user specifies an executable program in one
of the object file formats understood by the debugger. d e b u g interprets the
core_file as a kernel-created record of the process state at the time of the
death of the process associated with the object_file and lets the user examine
the contents of the process stack, registers and data segments.

d e b u g associates the name of each object with all processes derived from the
current invocation of that object. This name may be used in any command
that accepts a process list. If the command name matches the name of an
already existing debugger-controlled program, d e b u g creates a new name
for the program. The default program name may be reset using the r e n a m e
command (see below).

h a l t [- p proc_list]
d e b u g instructs the specified threads or processes to stop execution and
waits for them to stop.

h e l p [topic]
The h e l p command, with no arguments, lists all of the available commands
and help topics. If a command name is given, it gives a detailed syntax and
usage message for that command. If a ‘‘help topic’’ name is given, it lists the
help available on that topic. Each debugger command has a help message
which describes its syntax, options, and usage, and gives examples of its
use. In addition, there are help topics which are not also command names,
to explain the syntax for process lists, expressions, command output redirec-
tion and ‘‘locations,’’ and to list the available languages for expression
evaluation.

i f (expr) cmd [e l s e cmd]
This is the traditional conditional branch statement, similar to that present
in C, with the exception that semicolons are not necessary, except to
separate multiple commands on a single line.

expr can be any valid expression in the current language (see ‘‘Expres-
sions’’). The expression is evaluated, and if it evaluates to ‘‘true’’ in the
semantics of the current language, the cmd associated with the i f clause is
executed. Otherwise, if there is an e l s e clause, the c m d associated with it is
executed.

The i f construct is more likely to be used in commands associated with
events, or in scripts, than to be typed interactively as a top-level command.

i n p u t [- p proc_name| - r pseudo_tty] [- n] string
The i n p u t command is used to send user input to a process whose I/O has
been redirected by the debugger to a pseudo-terminal (see ‘‘Redirection of
Process I/O’’). The first argument may be either the name of a single pro-
gram or process (as specified in a process list), or the name of a pseudo-
terminal, as used by d e b u g to label process output. If a proc_name is
specified, d e b u g finds the pseudo-terminal (if any) associated with that

Page 14

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 323

debug (SD_CMD) debug (SD_CMD)

program. If neither a program nor a pseudo-terminal is specified, d e b u g
attempts to find a pseudo-terminal associated with the current program.

d e b u g sends the input string to the specified pseudo-terminal, after append-
ing a new-line. If the - n option is given, no new-line is appended.

It is an error if the specified p r o c _ n a m e has no associated pseudo-terminal.

j u m p [- p proc_list] location
location may be any debugger expression that resolves to an address in one
of the specified threads or processes. For each thread or process specified, if
the given object is currently stopped, and if the specified location is valid for
that process, d e b u g adjusts the program counter for that object to that loca-
tion. Subsequent r u n or s t e p commands for that object continue execution
from the specified location . d e b u g does not attempt to adjust the thread or
process stack if the specified location is in a different function.

k i l l [- p proc_list] [signal]
k i l l sends a single signal to the current thread or process or to the list of
threads and processes specified by proc_list. Unlike most other debugger
commands, if a process identifier is given in the proc_list, the signal is sent to
the process as a whole, rather than to each thread in the process.

If no signal is specified, the default is S I G K I L L. signal may be either a valid
signal number or a symbolic name, formed from the manifest constant name
listed in s i g n a l(BA_ENV) with or without the S I G prefix. Case is ignored.

l i s t [- p proclist] [- c count] [linefunc_namereg_exp]
The l i s t command displays source lines for the specified threads or
processes. The default is the current thread or process.

If no count argument is given, the l i s t command displays % n u m _ l i n e s
source lines. % n u m _ l i n e s starts out at 10 and may be reset by the user. If a
count is given, l i s t displays count lines, instead.

The starting place for the listing may be specified in several ways. If a regu-
lar expression is given, the current file is searched for the next occurrence of
a line which matches the given reg_exp , beginning from the line immedi-
ately following the current line (preceding, if the reg_exp is surrounded by
question marks). If a match is found, and no count is given, only the line
containing the match is listed. If a count is given, the line containing the
match begins the display. e d(BU_CMD) syntax is used for regular expres-
sions.

A function name as an argument causes the l i s t command to begin its
display at the first line of the named function. The function may be
specified as in the location syntax: a name, the debugger built-in variable
% f u n c, or filename@ func_name.

A line number may be specified as in the location syntax: a single decimal
constant, the debugger built-in variables % l i n e or % l i s t _ l i n e, or filename@
line.

Page 15

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 324

debug (SD_CMD) debug (SD_CMD)

If no starting location is specified, the l i s t command begins the display
with % l i s t _ f i l e @ % l i s t _ l i n e. % l i s t _ f i l e is set to the current file
(% f i l e) and % l i s t _ l i n e is set to the current line (% l i n e) whenever the
current context changes. In addition, % l i s t _ l i n e is set to the last line
displayed each time l i s t is invoked. Thus, if the current context has not
changed and no starting location is specified, l i s t begins with the last line
displayed in the previous l i s t invocation.

l o g o f f
The l o g o f f command stops session logging.

l o g o n [filename]
The l o g o n command starts debugger session logging. All debugger input
and output are sent to filename in addition to being echoed at the terminal.
Output lines are printed as comments.

If no filename is given, the last filename used in a l o g o n command is
assumed, and new debugger commands and output are appended to that
file.

m a p [- p proc_list]
The m a p command prints out a list of all mapped segments for the current
process, or for each thread or process specified in proc_list. The listing
includes the virtual address range and access permissions for all segments,
and the pathname, for all segments associated with the a . o u t and associ-
ated shared libraries.

Note that since all threads within a process share a common address space,
the virtual memory map will be identical for each thread within a process.

o n s t o p [- p proc_list] [cmd]
The o n s t o p command, by default, applies to all threads or processes
derived from the current program. The o n s t o p command with no argu-
ments prints out the list of o n s t o p events with their associated commands.

c m d is a debugger command block. The commands are executed whenever
the specified list of processes stops for any reason.

p r i n t [- p proc_list] [- v] [- f fmt] expr [, expr] . . .
The p r i n t command displays the results of evaluating the (comma-
separated) list of expressions. The expressions are evaluated in the context
of the current thread or process, unless other threads or processes are
specified in the proc_list argument. If more than one thread or process is
specified, the expressions are evaluated and printed in the context of each
specified object, with the % p r o c and % t h r e a d debugger variables set to the
process and thread with the % p r o c debugger variable set to the process
identifiers of the object in which the expressions are being evaluated. All
events which would be triggered as a side effect of evaluating an expression
(breakpoints in a function, a call to which appears in the expression, for
example) are ignored, as if they had been disabled.

The - f option allows specification of a list of format expressions to be used
when printing values. The fmt is a string enclosed in quotation marks ("")
and may contain a subset of the format expressions accepted by
p r i n t f(BA_LIB). A format expression may have the following form:

Page 16

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 325

debug (SD_CMD) debug (SD_CMD)

% [flags] [width] [. [precision]] [conversion] specifier

The flags, width, precision, and conversion fields have the same meanings as in
the p r i n t f routine, with the exception that positional parameters are not
accepted. The specifier may be one of the following characters:
c unsigned char
d , i signed decimal integer
e , E floating point in style [-]d.ddde±dd
f floating point in style [-] ddd.dddd
g , G floating point in either of above 2 styles
o unsigned octal integer
p v o i d * (generic data pointer; hexadecimal address)
s string
u unsigned decimal integer
x , X unsigned hexadecimal integer
z debugger default style for the expression
% %

Any character in the fmt that is not part of a format expression is printed as
given. The default format for a particular expression is determined by the
expression evaluator for the current language. The expression evaluators
will attempt to present information formatted in a way that is meaningful
for the given language. For example, for C, a pointer to a character would
be printed as a character string, a reference to an array variable would print
all members of that array and dereferencing a pointer to a structure would
print each member of that structure. Each expr may be any valid expression
in the current language (see ‘‘Expressions’’).

Each expression in the list is converted to its printable representation, a
newline is added, and the result displayed. This process is repeated for each
object named in the proc_list . If a fmt is given, no terminating newline is
printed unless specified in the fmt . The - v option specifies verbose mode.
The debugger prints the function prototype of any function that was called
as a result of evaluating the given expressions. This is particularly useful in
evaluating C++ expressions to see how overloaded functions or operators
are resolved.

p s [- p proc_list]
The p s command prints the debugger-generated identifiers, kernel-
generated identifiers, current state, location, if the object is stopped, and
object name for all controlled threads and processes, or for only those
objects specified by the - p option, if present.

p w d The p w d command prints the debugger’s current working directory. The
current working directory may be changed using the c d command.

q u i t The q u i t command causes the debugger to exit, releasing and running any
grabbed processes and killing any processes created by the debugger.

If a user wishes to leave a grabbed process suspended, perhaps to be
grabbed at a later time from a different invocation of the debugger, he or
she should use the r e l e a s e command with the - s option before quitting.

Page 17

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 326

debug (SD_CMD) debug (SD_CMD)

r e g s [- p proc_list]
The r e g s command displays in hexadecimal the contents of the processor
registers for the current thread or process. If more than one thread or pro-
cess is specified by the proc_list argument, the register display is performed
for each process object in turn.

r e l e a s e [- s] [- p proc_list]
d e b u g removes all planted breakpoints from all threads or processes
specified in proc_list and relinquishes control over them. Releasing all
threads within a given process is equivalent to releasing the entire process.
If the - s option is specified, the processes are released, but halted. Other-
wise, the released objects are allowed to continue execution. The - s option
is ignored for threads. If the current thread or process is released, d e b u g
chooses a new object to become current.

Processes released in the halted state may be grabbed by the debugger in a
different d e b u g session.

r e l e a s e can be used on core images as well as live processes. The
debugger deletes the core image and associated object file from the list of
objects that can be examined.

r e n a m e prog_name name
The r e n a m e command changes the name by which a related group of
processes are known. All threads and processes derived from a single invo-
cation of the executable from which prog_name was derived, can be referred
to by the new name. name can be used in any command that accepts a
proc_list and will appear in any debugger output that would have used
prog_name.

r u n [- p proc_list] [- b f r] [- u location]
d e b u g starts the current thread or single-threaded process or each object
specified by proc_list. Execution continues from the program address at
which it was suspended when the given object last stopped, or at the
address specified in a preceding j u m p command.

The - f and - b options allow the global behavior set by the % w a i t debugger
variable to be overridden. - f specifies foreground execution for the threads
or processes. - b specifies background execution.

The - r option causes d e b u g to continue execution of the given object until
each returns from its current stack frame, that is, until the return address of
the current function is reached (or until some other event causes execution
to halt).

The - u option specifies that d e b u g continues execution of the specified
objects until the address specified by location is reached (or until some other
event causes execution to halt).

A multiplexed thread that is not currently running on an LWP cannot be set
running.

Page 18

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 327

debug (SD_CMD) debug (SD_CMD)

s c r i p t [- q] fname
The s c r i p t command reads and executes debugger commands from the
named file. Commands are echoed before execution, unless the - q option is
given.

Scripts may nest; the debugger implementation does not place a limit on the
number of nested scripts (although external limits, such as the number of
open files supported by s t d i o, may apply).

s e t [- p proc_list] [- v] expr
s e t [- p proc_list] debug_or_user_var [=] expr [, expr] . . .

The s e t command has two forms. In the first, expr may be any valid expres-
sion in the current language (see ‘‘Expressions’’). While any valid language
expression may be given, the typical use of the s e t command is to evaluate
assignment expressions. The - v option specifies verbose mode. The
debugger prints the function prototype of any function that was called as a
result of evaluating the given expressions. This is particularly useful in
evaluating C++ expressions to see how overloaded functions or operators
are resolved.

In the second form of the command, s e t is used to change the value of a
debugger built-in variable name or user-defined variable name. Debugger
built-in variables may have special semantics associated with them, such as
% p a t h, which requires a string value having a particular structure, or
% f r a m e, which denotes a frame number and must be within the range of
currently active frame numbers. Setting a built-in variable such as % f r a m e,
may cause the values of other built-in variables to change as well (for exam-
ple, % l i n e or % f u n c). There is also an implied string concatenation opera-
tor. Any pair of string-valued expressions which appear separated by com-
mas will be concatenated into a single string-valued expression before the
assignment is performed.

The debug_or_user_var and expr are both evaluated in the context of the
current thread or single-threaded process, unless one or more other threads
or processes have been specified in the proc_list argument. If more than one
thread or process is specified, the s e t command is evaluated in the context
of each of the specified objects, in turn.

s i g n a l [- p proc_list] [[- i q] signal . . . [cmd]]
The s i g n a l command, by default, applies to all threads or processes
derived from the current program. Signals are different from other
debugger events in that the debugger catches all signals by default. That is,
when a signal is posted to a thread or process, the debugger stops that
object and announces that the signal has been posted. The user can then
request that the signal be canceled before the thread or process actually
receives it (see c a n c e l).

d e b u g can be instructed to ignore a given signal for a particular object (or
set of objects) with the - i option to the s i g n a l command. So s i g n a l - i
s i g u s r 1 instructs the debugger to let S I G U S R 1 go directly to the current
thread or process, while s i g n a l s i g u s r 1 re-establishes the default action
for S I G U S R 1 for the current object.

Page 19

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 328

debug (SD_CMD) debug (SD_CMD)

The s i g n a l command can also be used to create events triggered by the
receipt of a signal. If a user associates a command block with a signal or set
of signals, the debugger creates an event number for that signal in the same
name space as the other event commands. These events may be manipu-
lated using e v e n t s, d e l e t e, d i s a b l e or e n a b l e. Multiple events may be
assigned for the same signal in any given thread or process. The creation of
an event for a signal takes precedence over any instruction to ignore that
signal (using s i g n a l - i).

The - q option specifies that d e b u g will not announce the occurrence of the
signal and applies only to signal events.

The s i g n a l command with no signal arguments prints the current signal
disposition for each signal and the current list of user-specified signal
events, including the event identifier and current status (active or disabled),
list of associated processes, signal name and the beginning of any associated
command block.

s t a c k [- p proc_list] [- c count] [- f frame] [- a address] [- s stack]
The s t a c k command with no arguments prints the entire call stack for the
current thread or process. Frames are numbered from 0 for the bottom of
the stack (initial stack frame). Displays begin with the top of the stack,
unless the - f option is given, in which case they begin with frame. The count
argument restricts the display to at most count frames from each stack. If
more than one object is specified by the proc_list argument, the stack request
is performed for each object in turn.

The address and stack arguments may be used to specify beginning values for
the program counter and/or stack pointer, respectively. This can be useful
when attempting to print a stack trace for a process that has jumped to an
illegal address or whose stack pointer has been corrupted. Both the address
and stack arguments must be hexadecimal numbers.

s t e p [- p proc_list] [- b f i o q] [- c count]
The s t e p command continues execution of the current thread or single-
threaded process or of each object specified by proc_list.. The - i option
specifies stepping at the machine instruction level. The specified objects are
instructed to execute a single machine instruction, or count instructions, if a
count is specified.

The default is stepping at the source statement level. d e b u g continues exe-
cution until the object reaches the next source statement as defined by the
compiler-generated debugging information. If a count is specified, the
debugger repeats the s t e p command count times, or until execution is inter-
rupted by some other event. An explicit count of zero is interpreted to mean
‘‘step forever.’’

The - o option specifies stepping over function calls. When the debugger
encounters a subroutine call while stepping with the - o option, it will set a
temporary breakpoint at the return point of the call and run at ‘‘full speed’’
until the temporary breakpoint is reached. Stepping over function calls is
available with both the instruction and source level stepping.

Page 20

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 329

debug (SD_CMD) debug (SD_CMD)

The - f and - b options allow the global behavior set by the % w a i t debugger
variable to be overridden. - f specifies foreground execution for the threads
or processes. - b specifies background execution.

The - q option specifies quiet stepping: the debugger does not announce the
step action nor the new source line.

A multiplexed thread that is not currently running on an LWP cannot be
stepped.

s t o p [- p proc_list] [[- q] [- c count] stop_expr [cmd]]
The s t o p command specifies conditions in the address space of one or more
controlled objects that should cause a list of threads or processes to stop. By
default, the s t o p command applies to all threads or processes derived from
the current program.

A stop_expr consists of one or more stop events , joined by the special
debugger conjunction (& &) or disjunction (| |) operators. These operators
are left-associative, and d e b u g does not guarantee the order in which their
operands are evaluated. A stop event can take one of three forms:

location
* lvalue
(expr)

Each type of stop event has some action that will cause the event to be
noticed by the debugger. When such an action occurs, the entire stop_expr is
evaluated for ‘‘truth’’. If true, the event triggers in the normal way (d e b u g
informs the user of the event and executes any associated commands).

A location is an address in the process’s text where d e b u g can set a break-
point. When the thread or process reaches the specified location d e b u g
notices the event. For location stop events that refer to function names, the
expression is true as long as that function is active. For location stop events
that apply to a particular address or line number, the expression is true only
when the thread or process is at that address or line.

lvalue may be any expression in the current language that would be valid on
the left-hand side of an assignment statement in that language. The
debugger notices this event when the contents of the location change. The
change itself makes this kind of stop event true.

expr can be any valid expression in the current language. The debugger
notices the stop event when any of the identifiers involved in the expression
changes value. The entire expression is then evaluated in the context of the
current language.

stop events are evaluated continuously while the thread or process is execut-
ing. The debugger is free to choose whatever means it has available to
achieve this effect. This may include hardware support or may involve con-
tinuous single stepping of the object.

The optional count specifies the number of times the stop_expr must evaluate
to true before the event triggers. After count times, the event triggers each
time the stop_expr evaluates to true.

Page 21

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 330

debug (SD_CMD) debug (SD_CMD)

The - q option specifies that d e b u g will not announce the occurrence of the
event.

The s t o p command with no stop_expr arguments prints the list of user-
specified stop expressions including the event identifier and current status
(active or disabled).

s y m b o l s [- p proc_list] [- o object] [- n filename] [- d f g l t u v] [pattern]
The s y m b o l s command with no arguments displays ‘‘local’’ symbols; that
is, names of variables which are defined within the current function
(% f r a m e) and are visible from the current location. This is also the behavior
of the - l option.

The - g option displays only the names of global variables which are visible
from the current location. This includes only those symbols defined within
the current object (executable program or shared library). The - o option, in
conjunction with - g, displays the names of global variables in the named
object.

The - f option displays only the names of variables which are local to the
current file (% f i l e) and are visible from the current location (% l o c). If the
- n option is used, the symbols local to filename are displayed instead.

The - d option displays the debugger built-in variables. The - u option
displays the debugger-maintained, user-defined variables.

If a pattern is given, the display is further restricted to symbols which match
the pattern. s h(BU_CMD) syntax is used.

If the - v option is specified, the value of each symbol is displayed, along
with its name. The - t option displays the type of the variable.

If more than one thread or process is specified by the proc_list argument, the
s y m b o l s request is performed in the context of each object in turn.

s y s c a l l [- p proc_list] [[- e q x] [- c count] call . . . [cmd]]
The s y s c a l l command, by default, applies to all threads or processes
derived from the current program. The s y s c a l l command with no call
arguments prints the current list of user-specified system call actions,
including the event identifier and current status (active or disabled), list of
associated processes, system call name and the beginning of any associated
command block.

Each call may be given as either a system call entry number, or as the name
used in the C language interface to the call. The - e option specifies system
call entry, and is the default. The - x option specifies system call exit. Both
may be given on a single invocation of the s y s c a l l command. For each call
listed, the debugger arranges for the specified objects to stop on entry to or
exit from that call, or on both entry and exit. The resulting set of actions is
then assigned a unique event identifier.

The optional count specifies the number of times the call must occur before
the event triggers. After count times, the event triggers each time the call
occurs.

Page 22

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 331

debug (SD_CMD) debug (SD_CMD)

The - q option specifies that d e b u g will not announce the occurrence of the
system call.

w h a t i s [- p proc_list] expr
w h a t i s prints the type of expr as evaluated in the current context. expr can
be any valid expression in the current language.

If no proc_list is given, the type of expr is evaluated in the context of the
current thread or process. Otherwise, it is evaluated for each object
specified by the proc_list, in turn.

w h i l e (expr) cmd
This is the traditional conditional loop statement, similar to that present in
C, with the exception that semicolons are not necessary, except to separate
multiple commands on a single line.

expr can be any valid expression in the current language (see ‘‘Expres-
sions’’). The expression is evaluated, and if it evaluates to ‘‘true’’ in the
semantics of the current language, the cmd is executed. The expression is
then re-evaluated.

Unlike i f, the w h i l e construct is often useful as a top-level command.

Summary of Built-In Variables
% d b _ l a n g The current language as determined from the object file (read-

only, thread specific).

% f i l e The current file (read-only, thread specific).

% f o l l o w Should d e b u g follow child processes? Valid values are n o n e,
p r o c s, a l l (global).

% f r a m e The current active stack frame. Affects % d b _ l a n g, % f u n c,
% f i l e, % l i n e, % l i s t _ f i l e, % l i s t _ l i n e, % l o c (thread
specific).

% f u n c The current function. Affects % f r a m e (thread specific).

% g l o b a l _ p a t h The list of directory pathnames used to search for source files
for all processes. Searched after the program specific list % p a t h
(global).

% l a n g The current language. Setting % l a n g overrides the language as
determined from the object file and maintained in % d b _ l a n g
(global) .

% l a s t e v e n t The id of the last event created (read-only, global).

% l i n e The current line (read-only, thread specific).

% l i s t _ f i l e The name of the file to be displayed by the l i s t command.
Reset when the current context changes (thread specific).

% l i s t _ l i n e The number of the next source line to be displayed by the l i s t
command. Reset when the current context changes. Set to the
last line displayed by any invocation of l i s t (thread specific).

Page 23

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 332

debug (SD_CMD) debug (SD_CMD)

% l o c The current location (read-only, thread specific).

% n u m _ b y t e s The default number of bytes printed by the d u m p command
(global).

% n u m _ l i n e s The default number of lines printed by the d i s and l i s t com-
mands (global).

% p a t h The list of directory pathnames used to search for source files
for a given program. Searched before the global list
% g l o b a l _ p a t h (program specific).

% p r o c The current process (global).

% p r o g r a m The current program (global).

% p r o m p t The string used by d e b u g to prompt the user for input; default
is d e b u g > (global).

% r e d i r Should process I/O be redirected to a pseudo-terminal for
processes created by d e b u g? Valid values are 0, 1, n o, y e s (glo-
bal).

% r e s u l t The result status of any debugger command. 0 indicates suc-
cess, non-zero failure (read-only, global).

% t h i s e v e n t The id of the event whose associated command list is currently
being executed (read-only, global).

% t h r e a d The current thread (global).

% t h r e a d _ c h a n g e Control debugger behavior when a thread changes state (glo-
bal).

% v e r b o s e Level of verbosity for event notification (global). Valid values
are q u i e t, s o u r c e, e v e n t s, r e a s o n, a l l.

% w a i t Should threads and processes run in the foreground or back-
ground? Valid values are 0, 1, b a c k g r o u n d, f o r e g r o u n d, n o,
y e s (global).

%register The processor registers.

DIAGNOSTICS
If d e b u g is invoked with invalid arguments, it prints a diagnostic message and exits
with a non-zero exit status. If the command-line processing fails for any other rea-
son, d e b u g continues execution, allowing the user to enter requests interactively.
d e b u g prints diagnostics for any failure in processing user requests. The result
status of each command is recorded in the debugger variable % r e s u l t. A value of
0 indicates successful execution; a non-zero value indicates failure.

If d e b u g cannot create or execute processes for any of the commands specified in
cmd_line, it acts as if the entire cmd_line request had failed. In particular, any
processes that had been created as part of the same cmd_line request are killed.

On the other hand, if d e b u g cannot gain control of one or more of the live_objects
specified in the second form of invocation, it continues to attempt to control the
other objects specified.

Page 24

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 333

debug (SD_CMD) debug (SD_CMD)

If d e b u g is invoked with the - i x option and cannot start the X Window based
interface, it prints a diagnostic message and exits with a non-zero exit status.

FILES
$ H O M E / . d e b u g r c defaults file
LIBDIR/ d e b u g _ a l i a s built-in alias definitions
LIBDIR/ d e b u g . o l . u i graphical interface
LIBDIR usually / u s r / c c s / l i b
/ u s r / l i b / l o c a l e / C / M S G F I L E S / d e b u g . s t r

default message file
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / d e b u g . s t r

language-specific message file
/ u s r / l i b / l o c a l e / C / M S G F I L E S / d e b u g . u i . s t r

X interface default message file
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / d e b u g . u i . s t r

X interface language-specific message file
/ u s r / X / l i b / l o c a l e / C / h e l p / d e b u g / *

help screens
/ u s r / l i b / l o c a l e / C / M S G F I L E S / d b g . h e l p . t h r

default help messages
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / d b g . h e l p . t h r

language-specific help messages

SEE ALSO
c c(SD_CMD), d l c l o s e(BA_OS), d l o p e n(BA_OS), d l s y m(BA_OS), e d(BU_CMD),
e x e c(BA_OS), f o r k(BA_OS), p r i n t f(BA_LIB), s h(BU_CMD), s t r t o l(BA_LIB),
t h r _ c r e a t e(MT_LIB)

LEVEL
Level 1.

Page 25

FINAL COPY
June 15, 1995

File: sd_cmd/debug
svid

Page: 334

delta (1) (SD_CMD) delta (1)

from the MR number validation program, d e l t a terminates. (It is
assumed that the MR numbers were not all valid.)

- y[comment] Arbitrary text used to describe the reason for making the delta. A
null string is considered a valid comment. If - y is not specified and
the standard input is a terminal, the prompt c o m m e n t s ? is issued on
the standard output before the standard input is read; if the standard
input is not a terminal, no prompt is issued. An unescaped new-line
character terminates the comment text. Supplementary code set
characters may be used in comment.

- p Causes d e l t a to print (on the standard output) the SCCS file differ-
ences before and after the delta is applied in a d i f f(BU_CMD)
d i f f(1) format.

Files
g .file Existed before the execution of d e l t a; removed after completion of

d e l t a.
p .file Existed before the execution of d e l t a; may exist after completion of

d e l t a.
q .file Created during the execution of d e l t a; removed after completion of

d e l t a.
x .file Created during the execution of d e l t a; renamed to SCCS file after com-

pletion of d e l t a.
z .file Created during the execution of d e l t a; removed during the execution of

d e l t a.
d .file Created during the execution of d e l t a; removed after completion of

d e l t a.
b d i f f Program to compute differences between the ‘‘gotten’’ file and the g .file.

Errors
Use h e l p for explanations.

SEE ALSO
a d m i n (SD_CMD), g e t (SD_CMD), p r s (SD_CMD), r m d e l (SD_CMD),

LEVEL
Level 1.

NOTICES
A g e t of many SCCS files, followed by a d e l t a of those files, should be avoided
when the g e t generates a large amount of data. Instead, multiple g e t/d e l t a
sequences should be used.

If the standard input (-) is specified on the d e l t a command line, the - m (if neces-
sary) and - y keyletters must also be present. Omission of these keyletters causes an
error.

Comments are limited to text strings of at most 1024 bytes. Line lengths greater
than 1000 bytes cause undefined results.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/delta
svid

Page: 336

dis (SD_CMD) dis (SD_CMD)

NAME
d i s – object code disassembler

SYNOPSIS
d i s [- o] [- V] [- L] [- s] [- F function]

[- l string] file . . .

DESCRIPTION
The d i s command produces an assembly language listing of file, which may be an
object file or an archive of object files. The listing includes assembly statements and
an octal or hexadecimal representation of the binary that produced those state-
ments.

The following options are interpreted by the disassembler and may be specified in
any order.

- F function Disassemble only the named function in each object file specified on
the command line. The - F option may be specified multiple times on
the command line.

- L Lookup source labels for subsequent printing. This option works only
if the file was compiled with additional debugging information (for
example, the - g option of c c).

- l string Disassemble the archive file specified by string. For example, you
would issue the command d i s - l x – l z to disassemble l i b x . a
and l i b z . a, which are assumed to be in LIBDIR.

- o Print numbers in octal. The default is hexadecimal.

- s Perform symbolic disassembly where possible. Symbolic disassembly
output will appear on the line following the instruction. Symbol
names will be printed using C syntax.

- V Print, on standard error, the version number of the disassembler being
executed.

Errors
The self-explanatory diagnostics indicate errors in the command line or problems
encountered with the specified files.

SEE ALSO
a s(SD_CMD), c c(SD_CMD), l d(SD_CMD)

LEVEL
Level 2: June 30, 1989. Optional

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/dis
svid

Page: 337

env (SD_CMD) env (SD_CMD)

NAME
e n v, p r i n t e n v – set environment for command execution

SYNOPSIS
e n v [-] [name=value] . . . [command args]

DESCRIPTION
e n v obtains the current environment, modifies it according to its arguments, then
executes the command with the modified environment. Arguments of the form
name=value are merged into the inherited environment before the command is exe-
cuted. The - flag causes the inherited environment to be ignored completely, so
that the command is executed with exactly the environment specified by the argu-
ments. If no command is specified, the resulting environment is printed, one
name-value pair per line.

e n v recognizes supplementary code set characters in value, command, and args
according to the locale specified in the L C _ C T Y P E environment variable [see L A N G on
e n v v a r (BA_ENV).]

If the Application Compatibility Package is installed, then p r i n t e n v replaces e n v.

SEE ALSO
e n v v a r (BA_ENV), e x e c (BA_OS), s h (BU_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/env
svid

Page: 338

gcore (SD_CMD) gcore (SD_CMD)

NAME
gcore – get core images of running processes

SYNOPSIS
gcore [-o filename] process-id ...

DESCRIPTION
gcore creates a core image of each specified process. The name of the core image
file for the process whose process ID is process-id will be core.process-id.

–o filename
Substitute filename in place of core as the first part of the name of the core
image files.

FILES
core.process–id core image

SEE ALSO
kill(BU_CMD), ptrace(KE_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/gcore
svid

Page: 339

get (SD_CMD) get (SD_CMD)

NAME
g e t – get a version of an SCCS file

SYNOPSIS
g e t [- ccutoff] [- ilist] [- rSID] [- xlist] [- l [p]]

[- b] [- e] [- g] [- k] [- m] [- n] [- p] [- s] [- t] file . . .

DESCRIPTION
g e t extracts the contents of each named SCCS file based on the values of the
keyletter arguments. The arguments may be specified in any order, but all keyletter
arguments apply to all named SCCS files. The file name specified must be in the
form s .file or be the name of a directory. If a directory is named, g e t behaves as
though each file in the directory were specified as a named file, except that non-
SCCS files (last component of the path name does not begin with s .) and unread-
able files are silently ignored. If a name of - is given, the standard input is read;
each line of the standard input is taken to be the name of an SCCS file to be pro-
cessed.

The generated text is normally written into a file called the g .file whose name is
derived from the SCCS file name by simply removing the leading ‘‘s .’’ (see the Files
section below).

Each of the keyletter arguments is explained below as though only one SCCS file is
to be processed, but the effects of any keyletter argument apply independently to
each named file.

- rSID The SCCS identification string (SID) of the version (delta) of an SCCS file to
be retrieved. Table 1 below shows, for the most useful cases, what
version of an SCCS file is retrieved (as well as the SID of the version to be
eventually created by d e l t a(1) if the - e keyletter is also used), as a func-
tion of the SID specified.

- ccutoff Cutoff date-time, in the form:
YY[MM[DD[HH[MM[SS]]]]]

No changes (deltas) to the SCCS file that were created after the specified
cutoff date-time are included in the generated ASCII text file. Units omit-
ted from the date-time default to their maximum possible values; that is,
- c 7 5 0 2 is equivalent to - c 7 5 0 2 2 8 2 3 5 9 5 9. Any number of non-numeric
characters may separate the two-digit pieces of the cutoff date-time. This
feature allows one to specify a cutoff date in the form:

- c " 7 7 / 2 / 2 9 : 2 2 : 2 5 " .

- ilist A list of deltas to be included (forced to be applied) in the creation of the
generated file. The list has the following syntax:

<list> : : = <range> | <list> , <range>
<range> : : = SID | SID – SID

SID, the SCCS Identification of a delta, may be in any form shown in the
‘‘SID Specified’’ column of Table 1.

- xlist A list of deltas to be excluded in the creation of the generated file. See the
- i keyletter for the list format.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/get
svid

Page: 340

get (SD_CMD) get (SD_CMD)

- e Indicates that the g e t is for the purpose of editing or making a change
(delta) to the SCCS file via a subsequent use of d e l t a(1). The - e keyletter
used in a g e t for a particular version (SID) of the SCCS file prevents
further g e ts for editing on the same SID until d e l t a is executed or the j
(joint edit) flag is set in the SCCS file [see a d m i n(SD_CMD)]. [see
a d m i n(1)]. Concurrent use of g e t - e for different SIDs is always
allowed.

If the g .file generated by g e t with an - e keyletter is accidentally ruined
in the process of editing it, it may be regenerated by re-executing the g e t
command with the - k keyletter in place of the - e keyletter.

SCCS file protection specified via the ceiling, floor, and authorized user
list stored in the SCCS file [see a d m i n(SD_CMD)] are enforced when the
- e keyletter is used.

- b Used with the - e keyletter to indicate that the new delta should have an
SID in a new branch as shown in Table 1. This keyletter is ignored if the b
flag is not present in the file or if the retrieved d e l t a is not a leaf d e l t a.
(A leaf d e l t a is one that has no successors on the SCCS file tree.) A
branch d e l t a may always be created from a non-leaf d e l t a. Partial SIDs
are interpreted as shown in the ‘‘SID Retrieved’’ column of Table 1.

- k Suppresses replacement of identification keywords in the retrieved text
by their value. The - k keyletter is implied by the - e keyletter.

- l[p] Causes a delta summary to be written into an l .file. If - l p is used, then
an l .file is not created; the delta summary is written on the standard out-
put instead. See the ‘‘Identification Keywords’’ section below for
detailed information on the l .file.

- p Causes the text retrieved from the SCCS file to be written on the standard
output. No g .file is created. All output that normally goes to the stan-
dard output goes to file descriptor 2 instead, unless the - s keyletter is
used, in which case it disappears.

- s Suppresses all output normally written on the standard output. How-
ever, fatal error messages (which always go to file descriptor 2) remain
unaffected.

- m Causes each text line retrieved from the SCCS file to be preceded by the
SID of the delta that inserted the text line in the SCCS file. The format is:
SID, followed by a horizontal tab, followed by the text line.

- n Causes each generated text line to be preceded with the % M % identification
keyword value The format is: % M % value, followed by a horizontal tab,
followed by the text line. When both the - m and - n keyletters are used,
the format is: % M % value, followed by a horizontal tab, followed by the - m
keyletter generated format.

- g Suppresses the actual retrieval of text from the SCCS file. It is primarily
used to generate an l .file, or to verify the existence of a particular SID.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/get
svid

Page: 341

get (SD_CMD) get (SD_CMD)

- t Used to access the most recently created delta in a given release (for
example, - r 1), or release and level (for example, - r 1 . 2).

For each file processed, g e t responds (on the standard output) with the SID being
accessed and with the number of lines retrieved from the SCCS file.

If the - e keyletter is used, the SID of the delta to be made appears after the SID
accessed and before the number of lines generated. If there is more than one named
file or if a directory or standard input is named, each file name is printed (preceded
by a new-line) before it is processed. If the - i keyletter is used, included deltas are
listed following the notation ‘‘I n c l u d e d;’’ if the - x keyletter is used, excluded del-
tas are listed following the notation ‘‘E x c l u d e d.’’

TABLE 1. Determination of SCCS Identification String_ ___
SID* - b Keyletter Other SID SID of Delta

Specified Used† Conditions Retrieved to be Created_ ___
none‡ no R defaults to mR mR.mL mR.(mL+1)
none‡ yes R defaults to mR mR.mL mR.mL.(mB+1).1_ ___
R no R > mR mR.mL R.1***
R no R = mR mR.mL mR.(mL+1)
R yes R > mR mR.mL mR.mL.(mB+1).1
R yes R = mR mR.mL mR.mL.(mB+1).1
R – R < mR and R hR.mL** hR.mL.(mB+1).1

does not exist
R – Trunk succ.# R.mL R.mL.(mB+1).1

in release > R
and R exists_ ___

R.L no No trunk succ. R.L R.(L+1)
R.L yes No trunk succ. R.L R.L.(mB+1).1
R.L – Trunk succ. R.L R.L.(mB+1).1

in release ≥ R_ ___
R.L.B no No branch succ. R.L.B.mS R.L.B.(mS+1)
R.L.B yes No branch succ. R.L.B.mS R.L.(mB+1).1_ ___
R.L.B.S no No branch succ. R.L.B.S R.L.B.(S+1)
R.L.B.S yes No branch succ. R.L.B.S R.L.(mB+1).1
R.L.B.S – Branch succ. R.L.B.S R.L.(mB+1).1_ ___

* ‘‘R,’’ ‘‘L,’’ ‘‘B,’’ and ‘‘S’’ are the ‘‘release,’’ ‘‘level,’’ ‘‘branch,’’ and ‘‘sequence’’ components
of the SID, respectively; ‘‘m’’ means ‘‘maximum.’’ Thus, for example, ‘‘R.mL’’ means ‘‘the
maximum level number within release R;’’ ‘‘R.L.(mB+1).1’’ means ‘‘the first sequence
number on the new branch (for example, maximum branch number plus one) of level L
within release R.’’ Note that if the SID specified is of the form ‘‘R.L’’, ‘‘R.L.B’’, or
‘‘R.L.B.S’’, each of the specified components must exist.

** ‘‘hR’’ is the highest existing release that is lower than the specified, nonexistent, release R.

*** This is used to force creation of the first delta in a new release.

Successor.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/get
svid

Page: 342

get (SD_CMD) get (SD_CMD)

† The - b keyletter is effective only if the b flag [see a d m i n(SD_CMD)] is present in the file.
An entry of - means ‘‘irrelevant.’’

‡ This case applies if the d (default SID) flag is not present in the file. If the d flag is present
in the file, then the SID obtained from the d flag is interpreted as if it had been specified on
the command line. Thus, one of the other cases in this table applies.

Identification Keywords
Identifying information is inserted into the text retrieved from the SCCS file by
replacing identification keywords with their value wherever they occur. The
following keywords may be used in the text stored in an SCCS file:

Keyword Value
% M % Module name: either the value of the m flag in the file [see

a d m i n(SD_CMD)], or if absent, the name of the SCCS file with the lead-
ing s . removed.

% I % SCCS identification (SID) (% R % . % L % . % B % . % S %) of the retrieved text.
% R % Release.
% L % Level.
% B % Branch.
% S % Sequence.
% D % Current date (YY/MM/DD).
% H % Current date (MM/DD/YY).
% T % Current time (HH:MM:SS).
% E % Date newest applied delta was created (YY/MM/DD).
% G % Date newest applied delta was created (MM/DD/YY).
% U % Time newest applied delta was created (HH:MM:SS).
% Y % Module type: value of the t flag in the SCCS file [see a d m i n(SD_CMD)].
% F % SCCS file name.
% P % Fully qualified SCCS file name.
% Q % The value of the q flag in the file [see a d m i n(SD_CMD)].
% C % Current line number. This keyword is intended for identifying messages

output by the program such as ‘‘this should not have happened’’ type
errors. It is not intended to be used on every line to provide sequence
numbers.

% Z % The four-character string @ (#) recognizable by the w h a t command.
% W % A shorthand notation for constructing w h a t strings for UNIX System

program files. % W % = % Z % % M %<tab>% I %
% A % Another shorthand notation for constructing w h a t strings for non-UNIX

System program files: % A % = % Z % % Y % % M % % I % % Z %

Several auxiliary files may be created by g e t. These files are known generically as
the g .file, l .file, p .file, and z .file. The letter before the dot is called the tag. An aux-
iliary file name is formed from the SCCS file name: the last component of all SCCS
file names must be of the form s .module-name, the auxiliary files are named by
replacing the leading s with the tag. The g .file is an exception to this scheme: the
g .file is named by removing the s . prefix. For example, s . x y z . c, the auxiliary file
names would be x y z . c, l . x y z . c, p . x y z . c, and z . x y z . c, respectively.

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/get
svid

Page: 343

get (SD_CMD) get (SD_CMD)

Files
g .file created by the execution of g e t.
l .file created by - l option; contains delta summary
p .file [see d e l t a(SD_CMD)]
q .file [see d e l t a(SD_CMD)]
z .file [see d e l t a(SD_CMD)]
b d i f f Program to compute differences between the ‘‘gotten’’ file and the g .file.
/ u s r / l i b / l o c a l e /locale/ L C _ M E S S A G E S / u x u e

language-specific message file [see L A N G on e n v v a r(BA_ENV)].

Errors
Use h e l p for explanations.

SEE ALSO
a d m i n (SD_CMD), d e l t a (SD_CMD), p r s (SD_CMD), w h a t (SD_CMD)

LEVEL
Level 1.

NOTICES
If the effective user has write permission (either explicitly or implicitly) in the direc-
tory containing the SCCS files, but the real user does not, then only one file may be
named when the - e keyletter is used.

Page 6

FINAL COPY
June 15, 1995

File: sd_cmd/get
svid

Page: 345

ld (SD_CMD) ld (SD_CMD)

NAME
ld – link editor for object files

SYNOPSIS
ld [options] file ...

DESCRIPTION
The ld command combines several object files into one, performs relocation and
resolves external symbols. In the simplest case, the names of several object pro-
grams are given, and ld combines them, producing an object module that can
either be executed or, if the –r option is specified, used as input for a subsequent ld
run. The output of ld is left in a.out if no errors occurred during the load. This
file is by default executable. If any input file is not an object file, ld assumes it is a
library.

If any argument is an archive library, it is searched at the point it is encountered in
the argument list. Only those routines defining an unresolved external reference
are loaded. The archive library symbol table is searched to resolve external refer-
ences which can be satisfied by library members. The ordering of archive library
members is unimportant, unless there exist multiple library members defining the
same external symbol.

The following options are recognized by ld:

– a In static mode only, produce an executable object file; give errors for
undefined references. This is the default behavior for static mode. – a may
not be used with the – r option.

– d yn l d uses static linking only when yn is n; otherwise if supported, when yn is
y, l d uses dynamic linking.

–e epsym
Set the default entry point address for the output file to be that of the sym-
bol epsym.

– h name
In dynamic mode only and dynamic linking is supported, when building a
shared object, record name in an implementation defined manner in the
object. name will be recorded in executables that are linked with this object
rather than the object’s UNIX System file name. Accordingly, name will be
used by the dynamic linker as the name of the shared object to search for at
run time.

–lx Search the library l i bname. a or if shared objects are supported libname.so.
Its placement on the command line is significant as a library is searched at a
point in time relative to the placement of other libraries and object files on
the command line.

–o outfile
Produce an output object file by the name outfile. The name of the default
object file is a.out.

–r Retain relocation entries in the output object file. Relocation entries must be
saved if the output file is to become an input file in a subsequent ld run.
The link editor will not complain about unresolved references, and the out-
put file will not be made executable.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/ld
svid

Page: 346

ld (SD_CMD) ld (SD_CMD)

–s Strip all symbolic debugging information from the output object file.

–u symname
Enter symname as an undefined symbol in the symbol table. This is useful
for loading entirely from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first rou-
tine.

– z d e f s
Force a fatal error if any undefined symbols remain at the end of the link.
This is the default when building an executable. It is also useful if dynamic
linking is supported when building a shared object to assure that the object
is self-contained, that is, that all its symbolic references are resolved inter-
nally.

– z n o d e f s
Allow undefined symbols. This is the default, if dynamic linking is sup-
ported, when building a shared object. It may be used when building an
executable in dynamic mode and linking with a shared object that has
unresolved references in routines not used by that executable. This option
should be used with caution.

– z t e x t
If in dynamic mode and dynamic linking is supported, only, force a fatal
error if any relocations against non-writable, allocatable sections remain.

– B arg arg can be any one of the following: dynsat, symb

dynstat When dynamic linking is supported, dynstat can be either
d y n a m i c or s t a t i c. These options govern library inclusion.
d y n a m i c is valid in dynamic mode only. If the system supports
dynamic linking, – B d y n a m i c causes the link editor to look for
files named l i bx. s o and then for files named l i bx. a when
given the – lx option. – B s t a t i c causes the link editor to look
only for files named l i bx. a. These options may be specified any
number of times on the command line as toggles: if – B s t a t i c is
given, no shared objects will be accepted until – B d y n a m i c is seen.
See also the – l option.

symb When dynamic linking is supported symb may take the form
s y m b o l i c[=symbol, . . .]
When building a shared object, if a definition for symbol exists,
bind all references to symbol to that definition. If no list of sym-
bols is provided, bind all references to symbols to definitions that
are available; l d will issue warnings for undefined symbols
unless – z d e f s overrides. Normally, references to global sym-
bols within shared objects are not bound until run time, even if
definitions are available, so that definitions of the same symbol in
an executable or other shared objects can override the object’s
own definition.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/ld
svid

Page: 347

ld (SD_CMD) ld (SD_CMD)

– G If dynamic linking is supported and in dynamic mode only, produce a
shared object. Undefined symbols are allowed.

–L dir
Change the algorithm of searching for the library x to look in dir before
looking in the default library directories. This option is effective only if it
precedes the –l option on the command line.

–V Output a message giving information about the version of ld being used.

– Y P , dirlist
Change the default directories used for finding libraries. dirlist is a colon-
separated path list.

FILES
a.out

output file

USAGE
General.

When the link editor is called through cc, a startup routine is linked with the user’s
program. This routine calls exit() after execution of the main program. If the
user calls the link editor directly, then the user must ensure that the program
always calls exit() rather than falling through the end of the entry routine.

The symbols _etext, _edata, and _end are reserved and are defined by the link
editor. It is erroneous for a user program to redefine them.

The meaning of the terms shared library and dynamic linking are described in the
System V ABI.

SEE ALSO
ar(BU_CMD), cc(SD_CMD), strip(SD_CMD).

LEVEL
Level 1.
The following options are dependent upon dynamic linking being supported and
therefore are marked as Optional:
-d, -h, -z, -B dynstat, -B symb, -G

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/ld
svid

Page: 348

lex (SD_CMD) lex (SD_CMD)

NAME
lex – generate programs for simple lexical analysis of text

SYNOPSIS
lex [-ctvn] [file] ...

DESCRIPTION
The command lex generates programs to be used in lexical processing of character
input and may be used as an interface to yacc.

The input file(s), which contain lex source code, contain a table of regular expres-
sions each with a corresponding action in the form of a C program fragment. Mul-
tiple input files are treated as a single file. When lex processes file(s), this source is
translated into a C program. Normally lex writes the program it generates to the
file lex.yy.c. If the -t option is used, the resulting program is written instead
to the standard output. When the program generated by lex is compiled and exe-
cuted, it will read character input from the standard input and partition it into
strings that match the given expressions. When an expression is matched, the input
string that was matched is left in an external character array yytext and the
expression’s corresponding program fragment, or action, is executed. lex also
provides a count yyleng of the number of characters matched. During pattern
matching the set of patterns will be searched for a match in the order in which they
appeared in the lex source and the single longest possible match will be chosen.
Among rules that match the same number of characters, the rule given first will be
matched.

The program generated by lex, e.g., lex.yy.c, should be compiled and loaded
with the lex library (using the -ll option with cc).

The option –c indicates C language actions and is the default, –t causes the pro-
gram generated to be written instead to standard output, –v provides a one-line
summary of statistics of the finite state machine generated, –n will not print out
the –v summary (as explained under Definitions, below).

The general format of lex source is:
{definitions}
%%
{rules}
%%
{user subroutines}

The definitions and the user subroutines may be omitted. The first %% is required
to mark the beginning of the rules (regular expressions and actions); the second %%
is required only if user subroutines follow.

Any line in the source beginning with a blank is assumed to contain only C text and
is copied to lex.yy.c; if it precedes %% it is copied into the external definition
area of the lex.yy.c file. Anything included between lines containing only %{
and %} is copied unchanged to lex.yy.c and the delimiter lines are discarded.
Anything after the third %% delimiter is copied to lex.yy.c.

Definitions
Definitions must appear before the first %% delimiter. Any line in this section not
contained between %{ and %} lines and beginning in column 1 is assumed to
define a lex substitution string. The format of these lines is

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/lex
svid

Page: 349

lex (SD_CMD) lex (SD_CMD)

name substitute
The name must begin with a letter and be followed by at least one blank or tab. The
substitute will replace the string name when it is used in a rule.

Certain table sizes for the resulting finite state machine can be set in the definitions
section:

%p n number of positions is n

%n n number of states is n

%e n number of parse tree nodes is n

%a n number of transitions is n

%k n number of packed character classes is n

%o n size of the output array is n

The use of one or more of the above automatically implies the –v option, unless the
–n option is used.

Rules
The rules in lex source files are a table in which the left column contains regular
expressions and the right column contains actions and program fragments to be
executed when the expressions are recognized.

regular-expression <whitespace> action
regular-expression <whitespace> action

. . .

Because the regular-expression portion of a rule is terminated by the first blank or
tab, any blank or tab used within a regular expression must be quoted (its special
meaning escaped). That is, it must appear within double quotes, square brackets or
must be preceded by a backslash character.

The program fragment that is the action associated with a particular regular-
expression may extend across several lines if it is enclosed in curly braces:

regular-expression whitespace { program statement
program statement }

Regular Expressions
The lex command supports the sets of regular expressions recognized by ed and
awk, and some additional expressions. Some characters have special meanings
when used in a regular-expression and are called regular expression operators.
Below is a table of expressions supported by lex.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/lex
svid

Page: 350

lex (SD_CMD) lex (SD_CMD)

_ __
Regular Pattern

Expression Matched_ __
c the character c where c is not a special character.
\c the character c where c is any character.
"c" the character c where c is any character except \.
ˆ the beginning of the line being compared.
$ the end of the line being compared.
. any character in the input but newline
[s] any character in the set s where s is a sequence of charac-

ters and/or a range of characters, c-c.
[ˆs] any character not in the set s, where s is defined as above.
r* zero or more successive occurrences of the regular expres-

sion r.
r+ one or more successive occurrences of the regular expres-

sion r.
r? zero or one occurrence of the regular expression r.
(r) the regular expression r. (Grouping)
rx the occurrence of regular expression r followed by the

occurrence of regular expression x. (Concatenation)
r|x the occurrence of regular expression r or the occurrence of

regular expression x.
<s>r the occurrence of regular expression r only when the pro-

gram is in start condition (state) s.
r/x the occurrence of regular expression r only if it is followed

by the occurrence of regular expression x. (Note: This is r
in the context of x and only r is matched.)

{S} the substitution of S from the Definitions section.
r{m,n} m through n successive occurrences of the regular expres-

sion r._ __

The notation r{m,n} in a rule indicates between m and n instances of regular
expression r. It has higher precedence than , but lower than ∗, ?, +, and concate-
nation.

The character ˆ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

The character / in an expression indicates trailing context; only the part of the
expression up to the slash is returned in yytext, but the remainder of the expres-
sion must follow in the input stream. An operator character may be used as an
ordinary symbol if it is within double quotes, "c," preceded by \, \c, or is within
square brackets, [c]. Two operators have special meaning when used within
square brackets. A - denotes a range, [c-c], unless it is just after the open bracket
or before the closing bracket, [-c] or [c-] in which case it has no special meaning.
When used within brackets, ˆ has the meaning "complement of" if it immediately
follows the open bracket, [ˆc], elsewhere between brackets, [cˆ], it stands for the
ordinary character ˆ. The special meaning of the \ operator can be escaped only
by preceding it with another \.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/lex
svid

Page: 351

lex (SD_CMD) lex (SD_CMD)

Actions
The default action when a string in the input to a lex.yy.c program is not
matched by any expression is to copy the string to the output. Because the default
behavior of a program generated by lex is to read the input and copy it to the out-
put, a minimal lex source program that has just %% will generate a C program that
simply copies the input to the output unchanged. A null C statement, the statement
‘;’, may be specified as an action in a rule. Any string in the lex.yy.c input that
matches the pattern portion of such a rule will be effectively ignored or skipped.

Three special actions are available, |, REJECT, and ECHO. The action | means
that the action for the next rule is the action for this rule. ECHO prints the contents
of yytext on the output. Normally only a single expression is matched by a given
string in the input. REJECT means "continue to the next expression that matches
the current input" and causes whatever rule was second choice after the current rule
to be executed for the same input. Thus, it allows multiple rules to be matched and
executed for one input string or overlapping input strings. For example, given the
expressions xyz and yz and the input xyz, normally only one pattern, xyz would
match and the next attempted match would start after z. If the last action in the xyz
rule is REJECT, both this rule and the yz rule would be executed.

The lex command provides several routines that can be used in the lex source pro-
gram: yymore(), yyless(n), input(), output(c), and unput(c).

The function yymore() may be called to indicate that the next input string recog-
nized is to be concatenated onto the end of the current string in yytext rather
than overwriting it in yytext.

yyless(n) returns to the input some of the characters matched by the currently
successful expression. The argument n indicates the number of initial characters in
yytext to be retained; the remaining trailing characters in yytext are returned to
the input.

input() returns the next character from the input. input() returns a zero on
end of file.

unput(c) pushes the character c back onto the input stream to be read later by
input().

output(c) writes the character c on the output.

To perform custom processing when the end of input is reached, a user may supply
their own yywrap() function. yywrap() is called whenever lex.yy.c
reaches an end-of-file. If yywrap() returns a one, lex.yy.c continues with the
normal wrap-up on end of input. The default yywrap() always returns a one. If
the user wants lex.yy.c to continue processing with another source of input,
then a yywrap() must be supplied that arranges for the new input and returns a
zero. These routines may be redefined by the user.

The external names generated by lex all begin with the prefix yy or YY.

The program generated by lex is named yylex(); if the user does not supply a
main routine, the default main() routine calls yylex(). If the user supplies a
main() routine, it should call yylex().

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/lex
svid

Page: 352

lex (SD_CMD) lex (SD_CMD)

FILES
lex.yy.c.

USAGE
General.

EXAMPLE
%{
void skipcommnts(void);
%}
D [0–9]
%%
if printf("IF statement\n");
[a–z]+ printf("tag, value %s\n",yytext);
0{D}+ printf("octal number %s\n",yytext);
{D}+ printf("decimal number %s\n",yytext);
"++" printf("unary op\n");
"+" printf("binary op\n");
"/∗" skipcommnts();
%%
void skipcommnts(void)
{

for(;;) {
while (input() != ′∗′);

;
if (input() != ′/′)

unput(yytext[yylen - 1]);
else

return;
}

}

SEE ALSO
cc(SD_CMD), yacc(SD_CMD).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: sd_cmd/lex
svid

Page: 353

lint (SD_CMD) lint (SD_CMD)

The following options alter lint’s behavior:

–lx Include additional lint library x (e.g., –lm for the math library).

–n Do not check compatibility against either the standard or the portable lint
library.

–p Attempt to check portability.

–c Cause lint to produce a .ln file for every .c file on the command line.
These .ln files are the product of lint’s first pass only, and are not
checked for inter-function compatibility.

–o lib Cause lint to create a lint library with the name lib. The –c option
nullifies any use of the –o option. The lint library produced is the input
that is given to lint’s second pass. The –o option simply causes this file
to be saved in the named lint library. To produce the lint library without
extraneous messages, use of the –x option is suggested. The –v option is
useful if the source file(s) for the lint library are just external interfaces.
These option settings are also available through the use of lint comments
(see below).

The –D, –U, and –I options of cpp [see cpp(SD_CMD)] are recognized as
separate arguments.

The –g and –O options of cc are also recognized as separate arguments. These
options are ignored, but, by recognizing these options, lint’s behavior is closer to
that of the cc command. Other options are warned about and ignored. The pre-
processor symbol lint is defined to allow certain questionable code to be altered
or removed for lint. Therefore, the symbol lint should be thought of as a
reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of lint:

/∗NOTREACHED∗/
at appropriate points stops comments about unreachable code. This com-
ment is typically placed just after calls to functions like exit.

/∗VARARGSn∗/
suppresses the usual checking for variable numbers of arguments in the fol-
lowing function declaration. The data types of the first n arguments are
checked; a missing n is taken to be zero.

/∗ARGSUSED∗/
turns on the –v option for the next function.

/∗LINTLIBRARY∗/
at the beginning of a file shuts off complaints about unused functions and
function arguments in this file. This is equivalent to using the –v and –x
options.

The command lint produces its first output on a per-source-file basis. Complaints
regarding included files are collected and printed after all source files have been
processed. Finally, if the –c option is not used, information gathered from all
input files is collected and checked for consistency. At this point, if it is not clear
whether a complaint stems from a given source file or from one of its included files,
the source file name will be printed followed by a question mark.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/lint
svid

Page: 355

lint (SD_CMD) lint (SD_CMD)

The behavior of the –c and the –o options allows for incremental use of lint on
a set of C source files. Generally, lint is invoked once for each source file with
the –c option. Each of these invocations produces a .ln file which corresponds to
the .c file, and prints all messages that are about just that source file. After all the
source files have been separately run through lint, it is invoked once more
(without the –c option), listing all the .ln files with the needed –lx options.
This will print all the inter-file inconsistencies. This scheme works well with make;
it allows make to be used to lint only the source files that have been modified
since the last time the set of source files were checked by lint.

USAGE
General.

SEE ALSO
cc(SD_CMD), cpp(SD_CMD), make(SD_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/lint
svid

Page: 356

lorder (SD_CMD) lorder (SD_CMD)

NAME
lorder – find ordering relation for an object library

SYNOPSIS
lorder file ...

DESCRIPTION
The input is one or more object or library archive files [see ar(BU_CMD)]. The stan-
dard output is a list of pairs of object file names, meaning that the first file of the
pair refers to external identifiers defined in the second. The output may be pro-
cessed by tsort to find an ordering of a library suitable for one-pass access by the
link editor ld. Note that ld is capable of multiple passes over an archive in the
portable archive format and does not require that lorder be used when building
an archive. The usage of the lorder command may, however, allow for a slightly
more efficient access of the archive during the link edit process.

EXAMPLE
The following example builds a new library from existing .o files.

ar –cr library ` lorder ∗.o  tsort`

SEE ALSO
ar(BU_CMD), ld(SD_CMD), tsort(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/lorder
svid

Page: 357

m4 (SD_CMD) m4 (SD_CMD)

NAME
m4 – macro processor

SYNOPSIS
m4 [options] [file ...]

DESCRIPTION
The command m4 is a macro processor intended as a front end for C and other
languages. Each of the argument files is processed in order; if there are no files, or
if a file name is –, the standard input is read. The processed text is written on the
standard output.

The options and their effects are as follows:

–s Enable line sync output for the C preprocessor (i.e., #line directives).

This option must appear before any file names and before the following
options.

–Dname [=val]
Defines name to val or to null if val is absent.

–Uname
undefines name.

Macro calls have the form:

name(arg1,arg2, . . ., argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no argu-
ments. Potential macro names consist of alphabetic letters, digits, and underscore,
_, where the first character is not a digit.

Leading unquoted blanks, tabs, and newlines are ignored while collecting argu-
ments. Left and right single quotes are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be null. Macro evaluation proceeds
normally during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested call are as effec-
tive as those in the original input text. After argument collection, the value of the
macro is pushed back onto the input stream and rescanned.

The command m4 makes available the following built-in macros. They may be
redefined, but once this is done the original meaning is lost. Their values are null
unless otherwise stated.

define
The second argument is installed as the value of the macro whose name is
the first argument. Each occurrence of $n in the replacement text, where n
is a digit, is replaced by the n-th argument. Argument 0 is the name of the
macro; missing arguments are replaced by the null string; $# is replaced by
the number of arguments; $∗ is replaced by a list of all the arguments
separated by commas; $@ is like $∗, but each argument is quoted (with the

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/m4
svid

Page: 358

m4 (SD_CMD) m4 (SD_CMD)

current quotes).

undefine
removes the definition of the macro named in its argument.

defn returns the quoted definition of its argument(s). It is useful for renaming
macros, especially built-ins.

pushdef
is like define, but saves any previous definition.

popdef
removes the current definition of its argument(s), exposing the previous
one, if any.

ifdef
If the first argument is defined, the value is the second argument, otherwise
the third. If there is no third argument, the value is null.

shift
returns all but its first argument. The other arguments are quoted and
pushed back with commas in between. The quoting nullifies the effect of
the extra scan that will subsequently be performed.

changequote
changes quote symbols to the first and second arguments. The symbols may
be up to five characters long. the command changequote without argu-
ments restores the original values (i.e., ` ́).

changecom
changes left and right comment markers from the default # and newline.
With no arguments, the comment mechanism is effectively disabled. With
one argument, the left marker becomes the argument and the right marker
becomes newline. With two arguments, both markers are affected. Com-
ment markers may be up to five characters long.

divert
The command m4 maintains 10 output streams, numbered 0-9. The final
output is the concatenation of the streams in numerical order; initially
stream 0 is the current stream. The divert macro changes the current out-
put stream to its (digit-string) argument. Output diverted to a stream other
than 0 through 9 is discarded.

undivert
causes immediate output of text from diversions named as arguments, or all
diversions if no argument. Text may be undiverted into another diversion.
Undiverting discards the diverted text.

divnum
returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

ifelse
has three or more arguments. If the first argument is the same string as the
second, then the value is the third argument. If not, and if there are more
than four arguments, the process is repeated with arguments 4, 5, 6 and 7.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/m4
svid

Page: 359

m4 (SD_CMD) m4 (SD_CMD)

Otherwise, the value is either the fourth string or, if it is not present, null.

incr returns the value of its argument incremented by 1. The value of the argu-
ment is calculated by interpreting an initial digit-string as a decimal
number.

decr returns the value of its argument decremented by 1.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic.
Operators include +, –, ∗, /, %, ∗*, (exponentiation), bitwise &, , ˆ,
and ˜; relationals; parentheses. Octal and hex numbers may be specified as
in C. The second argument specifies the radix for the result; the default is
10. The third argument may be used to specify the minimum number of
digits in the result.

len returns the number of characters in its argument.

index
returns the position in its first argument where the second argument begins
(zero origin), or –1 if the second argument does not occur.

substr
returns a substring of its first argument. The second argument is a zero ori-
gin number selecting the first character; the third argument indicates the
length of the substring. A missing third argument is taken to be large
enough to extend to the end of the first string.

translit
transliterates the characters in its first argument from the set given by the
second argument to the set given by the third. No abbreviations are permit-
ted.

include
returns the contents of the file named in the argument.

sinclude
is identical to include, except that it says nothing if the file is inaccessible.

syscmd
executes the system command given in the first argument. No value is
returned.

sysval
is the return code from the last call to syscmd.

maketemp
fills in a string of XXXXX in its argument with the current process ID.

m4exit
causes immediate exit from m4. Argument 1, if given, is the exit code; the
default is 0.

m4wrap
Argument 1 will be pushed back at final EOF; example:
m4wrap(`cleanup()´)

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/m4
svid

Page: 360

m4 (SD_CMD) m4 (SD_CMD)

errprint
prints its argument on the diagnostic output file.

dumpdef
prints current names and definitions, for the named items, or for all if no
arguments are given.

traceon
with no arguments, turns on tracing for all macros (including built-ins).
Otherwise, turns on tracing for named macros.

traceoff
turns off trace globally and for any macros specified. Macros specifically
traced by traceon can be untraced only by specific calls to traceoff.

USAGE
General.

SEE ALSO
cc(SD_CMD), cpp(SD_CMD).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/m4
svid

Page: 361

make (SD_CMD) make (SD_CMD)

NAME
make – maintain, update, and regenerate groups of programs

SYNOPSIS
make [-f makefile] [-p] [-i] [-k] [-s] [-r] [-n] [-e] [-t] [-q] [name ...]

DESCRIPTION
The options are interpreted as follows:

–f makefile
Description file name. The argument makefile is assumed to be the name of a
description file. A file name of – denotes the standard input.

–p Print out the complete set of macro definitions and target descriptions.

–i Ignore error codes returned by invoked commands. This mode is entered if
the fake target name .IGNORE appears in the description file.

–k Abandon work on the current entry if it fails, but continue on other
branches that do not depend on that entry.

–s Silent mode. Do not print command lines before executing. This mode is
also entered if the fake target name .SILENT appears in the description
file.

–r Do not use the built-in rules.

–n No execute mode. Print commands, but do not execute them. Even lines
beginning with an @ are printed.

–e Environmental variables override assignments within makefiles.

–t Touch the target files (causing them to be up-to-date) rather than issue the
usual commands.

–q Question. The make command returns a zero or non-zero status code
depending on whether the target file is or is not up-to-date.

The following target names may be defined in the makefile, and are interpreted as
follows:

.DEFAULT
If a file must be made but there are no explicit commands or relevant built-
in rules, the commands associated with the name .DEFAULT are used if it
exists.

.PRECIOUS
Dependents of this target will not be removed when quit or interrupt are hit.

.SILENT
Same effect as the –s option.

.IGNORE
Same effect as the –i option.

The command make executes commands in makefile to update one or more target
names. The argument name is typically a program. If no –f option is present,
makefile, Makefile, and the SCCS files s.makefile and s.Makefile are tried
in order. If makefile is –, the standard input is used. More than one –fmakefile
argument pair may appear.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/make
svid

Page: 362

make (SD_CMD) make (SD_CMD)

The command make updates a target only if its dependents are newer than the tar-
get. All prerequisite files of a target are added recursively to the list of targets.
Missing files are deemed to be out-of-date.

The argument makefile contains a sequence of entries that specify dependencies. The
first line of an entry is a blank-separated, non-null list of targets, then a colon, then
a (possibly null) list of prerequisite files or dependencies. Text following a semi-
colon and all following lines that begin with a tab are commands to be executed to
update the target. The first line that does not begin with a tab or # begins a new
dependency or a macro definition. Commands may be continued across lines with
the <backslash><newline> sequence. Everything printed by make (except the initial
tab) is passed directly to the command interpreter as is.

The symbols # and newline surround comments.

The following makefile says that pgm depends on two files a.o and b.o, and that
they in turn depend on their corresponding source files (a.c and b.c) and a com-
mon file incl.h:

pgm: a.o b.o ; cc a.o b.o –o pgm

a.o: incl.h a.c ; cc –c a.c

b.o: incl.h b.c ; cc –c b.c

Command lines are executed one at a time. The first one or two characters in a
command can be the following: -, @, -@, or @-. If @ is present, printing of the com-
mand is suppressed. If - is present, make ignores an error. A line is printed when
it is executed unless the –s option is present, or the entry .SILENT: is in makefile,
or unless the initial character sequence contains a @. The –n option specifies print-
ing without execution; however, if the command line has the string $(MAKE) in it,
the line is always executed (see discussion of the MAKEFLAGS macro under
Environment, below. The –t (touch) option updates the modified date of a file
without executing any commands.

Commands returning non-zero status normally terminate make. If the –i option
is present, or the entry .IGNORE: appears in makefile, or the initial character
sequence of the command contains -, the error is ignored. If the –k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

Interrupt and quit cause the target to be deleted unless the target is a dependent of
the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro
definitions and processed as such. The environmental variables are processed
before any makefile and after the internal rules; thus, macro assignments in a
makefile override environmental variables. The –e option causes the environment
to override the macro assignments in a makefile.

The environmental variable MAKEFLAGS is processed by make as containing any
legal input option (except –f and –p) defined for the command line. Further, upon
invocation, make ‘‘invents’’ the variable if it is not in the environment, puts the
current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves very useful for

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/make
svid

Page: 363

make (SD_CMD) make (SD_CMD)

‘‘super-makes’’ where the makefile contains actions that (recursively) invoke make.
In fact, when the –n option is used, a recursive invocation of make, where the
sequence $(MAKE) appears anywhere in the invocation command line, is executed
anyway; hence, by judicious use of the $(MAKE) string in a makefile, one can per-
form a make –n recursively on a whole software system to see what would have
been executed. This is because the –n is put in MAKEFLAGS and passed to further
invocations of make. This is one way of debugging all of the makefiles for a
software project without actually doing anything.

Macros
Entries of the form string1 = string2 are macro definitions. The macro string2 is
defined as all characters up to a comment character or an unescaped newline. Sub-
sequent appearances of $(string1[:subst1=[subst2]]) are replaced by string2. The
parentheses are optional if a single character macro name is used and there is no
substitute sequence. The optional :subst1=subst2 is a substitute sequence. If it is
specified, all non-overlapping occurrences of subst1 in the named macro are
replaced by subst2. Strings (for the purposes of this type of substitution) are delim-
ited by blanks, tabs, newline characters, and beginnings of lines. An example of the
use of the substitute sequence is shown under Libraries, below.

Internal Macros
There are five internally maintained macros which are useful for writing rules for
building targets.

$∗ The macro $∗ stands for the file name part of the current dependent with
the suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It
is the module which is out-of-date with respect to the target (i.e., the
‘‘manufactured’’ dependent file name). Thus, in the .c.o rule, the $<
macro would evaluate to the .c file. An example for making optimized .o
files from .c files is:

.c.o
cc –c –O $∗.c

or:

.c.o:
cc –c –O $<

$? The $? macro is evaluated when explicit rules from the makefile are
evaluated. It is the list of prerequisites that are out-of-date with respect to
the target; essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library
member of the form lib(file.o). In this case, $@ evaluates to lib and
$% evaluates to the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to ‘‘directory part’’ for
D and ‘‘file part’’ for F. Thus, $(@D) refers to the directory part of the string $@. If
there is no directory part, ./ is generated. The only macro excluded from this

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/make
svid

Page: 364

make (SD_CMD) make (SD_CMD)

alternative form is $?.

Suffixes
Certain names (for instance, those ending with .o) have inferable prerequisites such
as .c, .s, etc. If no update commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled to make the target. In this
case, make has inference rules which allow building files from other files by exa-
mining the suffixes and determining an appropriate inference rule to use. Inference
rules in the makefile override the default rules.

The internal rules for make are compiled into the make program. To print out the
rules compiled into the make program, the following command is used:

make –fp – 2>/dev/null </dev/null

A tilde in the above rules refers to an SCCS file. Thus, the rule .c˜.o would
transform an SCCS C source file into an object file (.o). Because the s. of the SCCS
files is a prefix, it is incompatible with make’s suffix point of view. Hence, the tilde
is a way of changing any file reference into an SCCS file reference.

A rule with only one suffix (e.g., .c:) is the definition of how to build x from x.c.
In effect, the other suffix is null. This is useful for building targets from only one
source file (e.g., command scripts, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is inferred as
a prerequisite.

Here again, the above command for printing the internal rules will display the list
of suffixes implemented on the current machine. Multiple suffix lists accumulate;
.SUFFIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o –o pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user may add
rules to this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to cc, lex, and yacc, respectively. Again,
the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix
.o from a file with suffix .c is specified as an entry with .c.o: as the target and
no dependents. Commands associated with the target define the rule for making a
.o file from a .c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library.
Thus lib(file.o) and $(LIB)(file.o) both refer to an archive library which

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/make
svid

Page: 365

make (SD_CMD) make (SD_CMD)

contains file.o. (This assumes the LIB macro has been previously defined.) The
expression $(LIB)(file1.o file2.o) is not legal. Rules pertaining to archive
libraries have the form .XX.a where the XX is the suffix from which the archive
member is to be made. The most common use of the archive interface follows.
Here, we assume the source files are all C type source:

lib:
lib(file1.o) lib(file2.o) lib(file3.o)
@echo lib is now up-to-date

.c.a:
$(CC) –c $(CFLAGS) $<
ar rv $@ $*.o
rm –f $*.o

In fact, the .c.a rule listed above is built into make and is unnecessary in this
example. A more interesting, but more limited example of an archive library
maintenance construction follows:

lib:
lib(file1.o) lib(file2.o) lib(file3.o)
$(CC) –c $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $?
@echo lib is now up-to-date

.c.a:;

Here the substitution mode of the macro expansions is used. The $? list is defined
to be the set of object file names (inside lib) whose C source files are out-of-date.
The substitution mode translates the .o to .c. Note also, the disabling of the
.c.a: rule, which would have created each object file, one by one. This particular
construct speeds up archive library maintenance considerably. This type of con-
struct becomes very cumbersome if the archive library contains a mix of assembly
programs and C programs.

FILES
[Mm]akefile and s.[Mm]akefile

USAGE
General.

The characters = : @ in file names may give trouble.

SEE ALSO
cc(SD_CMD), lex(SD_CMD), sh(BU_CMD), yacc(SD_CMD).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: sd_cmd/make
svid

Page: 366

nm (SD_CMD) nm (SD_CMD)

NAME
nm – print name list of common object file

SYNOPSIS
nm [options] file ...

DESCRIPTION
The nm command displays the symbol table of each common object file file. The
argument file may be a relocatable or absolute common object file; or it may be an
archive of relocatable or absolute common object files. For each symbol, at least the
following information is printed:

Name The name of the symbol.

Value Its value expressed as an offset or an address, depending on its storage
class.

Size Its size in bytes, if available.

The output of nm may be controlled using the following options:

–o Print the value and size of a symbol in octal instead of decimal.

–x Print the value and size of a symbol in hexadecimal instead of decimal.

–e Print only external and static symbols.

–f Produce full output. Print redundant symbols (.text, .data, and .bss),
normally suppressed.

–u Print undefined symbols only.

–V Print the version of the nm command executing on the standard error out-
put.

SEE ALSO
cc(SD_CMD), ld(SD_CMD).

USAGE
General.

FUTURE DIRECTIONS
The options –e and –f will be removed.

LEVEL
Level 2: June 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/nm
svid

Page: 367

prof (SD_CMD) prof (SD_CMD)

- m mdata
Use file mdata instead of m o n . o u t as the input profile file.

A program creates a profile file if it has been link edited with the - p option of c c.
This option to the c c command arranges for calls to m o n i t o r at the beginning and
end of execution. It is the call to m o n i t o r at the end of execution that causes the
system to write a profile file. The number of calls to a function is tallied if the - p
option was used when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the environmen-
tal variable P R O F D I R. If P R O F D I R is not set, m o n . o u t is produced in the directory
current when the program terminates. If P R O F D I R =string, string/pid.progname is
produced, where progname consists of a r g v [0] with any path prefix removed, and
pid is the process ID of the program. If P R O F D I R is set, but null, no profiling output
are produced.

A single function may be split into subfunctions for profiling by means of the M A R K
macro

FILES
m o n . o u t default profile file

a . o u t default namelist (object) file

USAGE
General.

The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes.
Even if a program seems to be the only one using the machine, hidden background
or asynchronous processes may blur the data.

In rare cases, the clock ticks initiating recording of the program counter may "beat"
with loops in a program, grossly distorting measurements. Call counts are always
recorded precisely, however.

Only programs that call e x i t (B A _ O S) are guaranteed to produce a profile file,
unless a final call to m o n i t o r(SD_LIB) is explicitly coded.

SEE ALSO
c c(SD_CMD), e x i t(BA_OS), p r o f i l(KE_OS), m o n i t o r(SD_LIB), m a r k(SD_LIB).

LEVEL
Level 2.

NOTICES
The times reported in successive identical runs may show variances because of
varying cache-hit ratios that result from sharing the cache with other processes.
Even if a program seems to be the only one using the machine, hidden background
or asynchronous processes may blur the data. In rare cases, the clock ticks initiating
recording of the program counter may ‘‘beat’’ with loops in a program, grossly dis-
torting measurements. Call counts are always recorded precisely, however.

Only programs that call e x i t or return from m a i n are guaranteed to produce a
profile file, unless a final call to m o n i t o r is explicitly coded.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/prof
svid

Page: 369

prof (SD_CMD) prof (SD_CMD)

The times for static functions are attributed to the preceding external text symbol if
the - g option is not used. However, the call counts for the preceding function are
still correct; that is, the static function call counts are not added to the call counts of
the external function.

If more than one of the options - t, - c, - a, and - n is specified, the last option
specified is used and the user is warned.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/prof
svid

Page: 370

prs (SD_CMD) prs (SD_CMD)

NAME
prs – print an SCCS file

SYNOPSIS
prs [options] files

DESCRIPTION
The command prs prints, on the standard output, parts or all of an SCCS file in a
user supplied format. If a directory is named, prs behaves as though each file in
the directory were specified as a named file, except that non-SCCS files (last com-
ponent of the pathname does not begin with s.), and unreadable files are silently
ignored. If a name of – is given, the standard input is read; each line of the stan-
dard input is taken to be the name of an SCCS file or directory to be processed;
non-SCCS files and unreadable files are silently ignored.

Arguments to prs, which may appear in any order, consist of options and
filenames.

All the described options apply independently to each named file.

-d[dataspec]
Used to specify the output data specification. The dataspec is a string con-
sisting of SCCS file data keywords (see Data Keywords) interspersed with
optional user supplied text.

-rSID
Used to specify the SCCS identification string of a delta for which informa-
tion is desired. If no SID is specified, the SID of the most recently created
delta is assumed.

-e Requests information for all deltas created earlier than and including the
delta designated via the –r keyletter or the date given by the –c option.

-l Requests information for all deltas created later than and including the delta
designated via the –r keyletter or the date given by the –c option.

-c[date-time]
The cutoff date-time is in the form:

YY[MM[DD[HH[MM[SS]]]]]

Units omitted from the date-time default to their maximum possible values;
for example, –c7502 is equivalent to -c750228235959. Any number of
non-numeric characters may separate the various two-digit pieces of the cut-
off date in the form: –c77/2/2 9:22:25.

-a Requests printing of information for both removed (i.e., delta type = R) del-
tas [see rmdel(SD_CMD)] and existing (i.e., delta type = D) deltas. If the –a
keyletter is not specified, information is provided for existing deltas only.

Data Keywords
Data keywords specify which parts of an SCCS file are to be retrieved and output.
All parts of an SCCS file have an associated data keyword. There is no limit on the
number of times a data keyword may appear in a dataspec.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/prs
svid

Page: 371

prs (SD_CMD) prs (SD_CMD)

The information printed by prs consists of: (1) the user supplied text; and (2)
appropriate values (extracted from the SCCS file) substituted for the recognized
data keywords in the order of appearance in the dataspec . The format of a data key-
word value is either Simple (S), in which keyword substitution is direct, or Multi-line
(M), in which keyword substitution is followed by a carriage return.

User supplied text is any text other than recognized data keywords. A tab is
specified by \t and carriage return/newline is specified by \n. The default data
keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

Table 1. SCCS Files Data Keywords
_ ___

Keyword Data Item File Section Value Format_ ___
:Dt: Delta information Delta table See * below S
:DL: Delta table :Li:/:Ld:/:Lu: S Delta line statistics
:Li: Delta table nnnnn S Lines inserted by Delta
:Ld: Delta table nnnnn S Lines deleted by Delta
:Lu: Delta table nnnnn S Lines unchanged by Delta
:DT: Delta type Delta table D or R S
:I: Delta table :R:.:L:.:B:.:S: S SCCS ID string (SID)
:R: Release number Delta table nnnn S
:L: Level number Delta table nnnn S
:B: Branch number Delta table nnnn S
:S: Sequence number Delta table nnnn S
:D: Delta table :Dy:/:Dm:/:Dd: S Date delta was created
:Dy: Delta table nn S Year delta was created
:Dm: Delta table nn S Month delta was created
:Dd: Delta table nn S Day delta was created
:T: Delta table :Th:::Tm:::Ts: S Time delta was created
:Th: Delta table nn S Hour delta was created
:Tm: Delta table nn S Minutes delta was created
:Ts: Delta table nn S Seconds delta was created
:P: Delta table logname S Programmer who created

delta
:DS: Delta table nnnn S Delta sequence number
:DP: Delta table nnnn S Predecessor delta seq. no.
:DI: Delta table :Dn:/:Dx:/:Dg: S Seq. no. of deltas incl.,

excl., ignored
:Dn: Deltas included (seq no.) Delta table :DS: :DS: . . . S
:Dx: Deltas excluded (seq no.) Delta table :DS: :DS: . . . S
:Dg: Deltas ignored (seq no.) Delta table :DS: :DS: . . . S
:MR: MR numbers for delta Delta table text M

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/prs
svid

Page: 372

prs (SD_CMD) prs (SD_CMD)

:C: Comments for delta Delta table text M
:UN: User names User names text M
:FL: Flag list Flags text M
:Y: Module type flag Flags text S
:MF: Flags yes or no S MR validation flag
:MP: Flags text S MR validation program

name
:KF: Flags yes or no S Keyword error/warning

flag
:KV: Keyword validation string Flags text S
:BF: Branch flag Flags yes or no S
:J: Joint edit flag Flags yes or no S
:LK: Locked releases Flags :R: . . . S
:Q: User defined keyword Flags text S
:M: Module name Flags text S
:FB: Floor boundary Flags :R: S
:CB: Ceiling boundary Flags :R: S
:Ds: Default SID Flags :I: S
:ND: Null delta flag Flags yes or no S
:FD: Comments text M File descriptive text
:BD: Body Body text M
:GB: Gotten body Body text M
:W: N/A :Z::M:\t:I: S A form of what(SD_CMD)

string
:A: N/A :Z::Y: :M: :I::Z: S A form of what(SD_CMD)

string
:Z: N/A @(#) S what(SD_CMD) string

delimiter
:F: SCCS file name N/A text S
:PN: SCCS file pathname N/A text S

_ ___
* :Dt: = :DT: :I: :D: :T: :P: :DS: :DP:

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/prs
svid

Page: 373

prs (SD_CMD) prs (SD_CMD)

EXAMPLES
prs –d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs –d"Newest delta for pgm :M:: :I: Created :D: By :P:" –r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:
D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
bl78-12345
bl79-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the D type. The only keyletter argument allowed to be
used with the special case is the –a keyletter.

SEE ALSO
admin(SD_CMD), delta(SD_CMD), get(SD_CMD), what(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/prs
svid

Page: 374

rmdel (SD_CMD) rmdel (SD_CMD)

NAME
rmdel – remove a delta from an SCCS file

SYNOPSIS
rmdel -rSID files

DESCRIPTION
The command rmdel removes the delta specified by the SID from each named
SCCS file. The delta to be removed must be the newest (most recent) delta in its
branch in the delta chain of each named SCCS file. In addition, the SID specified
must not be that of a version being edited for the purpose of making a delta (i.e., if a
p-file [see get(SD_CMD)] exists for the named SCCS file, the SID specified must not
appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-SCCS files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name of
– is given, the standard input is read; each line of the standard input is taken to be
the name of an SCCS file to be processed; non-SCCS files and unreadable files are
silently ignored.

The restrictions on removal of a delta are that only the user who made it or the
owner of the file and directory can remove a delta.

SEE ALSO
delta(SD_CMD), get(SD_CMD), prs(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/rmdel
svid

Page: 375

sact (SD_CMD) sact (SD_CMD)

NAME
sact – print current SCCS file editing activity

SYNOPSIS
sact file ...

DESCRIPTION
The command sact informs the user of any impending deltas to a named SCCS
file. This situation occurs when get –e has been previously executed without a
subsequent execution of delta. If a directory is named on the command line,
sact behaves as though each file in the directory were specified as a named file,
except that non-SCCS files and unreadable files are silently ignored. If a name of –
is given, the standard input is read with each line being taken as the name of an
SCCS file to be processed.

The output for each named file consists of five fields separated by spaces.

Field 1
specifies the SID of a delta that currently exists in the SCCS file to which
changes will be made to create the new delta.

Field 2
specifies the SID for the new delta to be created.

Field 3
contains the logname of the user who will make the delta (i.e., executed a
get for editing).

Field 4
contains the date that get –e was executed.

Field 5
contains the time that get –e was executed.

SEE ALSO
delta(SD_CMD), get(SD_CMD), unget(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/sact
svid

Page: 376

size (SD_CMD) size (SD_CMD)

NAME
size – print section sizes of object files

SYNOPSIS
size [-o] [-x] [-V] file ...

DESCRIPTION
The size command produces section size information for each section in the
named object files. The sizes of the loaded sections are printed along with the sum
of these sizes. If an archive file is input to the size command, the information for
all archive members is displayed.

Numbers are printed in decimal unless either the –o or the –x option is used, in
which case they are printed in octal or hexadecimal, respectively.

The –V flag supplies the version information on the size command.

SEE ALSO
cc(SD_CMD), ld(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/size
svid

Page: 377

strip (SD_CMD) strip (SD_CMD)

NAME
s t r i p – strip symbol table, debugging and line number information from an object
file.

SYNOPSIS
s t r i p [- V x] file . . .

DESCRIPTION
The s t r i p command strips the symbol table, debugging information, and line
number information from ELF object files; COFF object files can no longer be
stripped. Once this stripping process has been done, no symbolic debugging access
will be available for that file; therefore, this command is normally run only on pro-
duction modules that have been debugged and tested.

If s t r i p is executed on a common archive file [see a r(BU_CMD)] in addition to
processing the members, s t r i p will remove the archive symbol table. The archive
symbol table must be restored by executing the a r(BU_CMD) command with the - s
option before the archive can be linked by the l d(SD_CMD) command. s t r i p will
produce appropriate warning messages when this situation arises.

The amount of information stripped from the ELF object file can be controlled by
using any of the following options:

- V Print, on standard error, the version number of s t r i p.

- x Do not strip the symbol table; debugging and line number information
may be stripped.

s t r i p is used to reduce the file storage overhead taken by the object file.

SEE ALSO
a r(BU_CMD), a s(SD_CMD), c c(SD_CMD), l d(SD_CMD)

LEVEL
Level 1.

NOTICES
The symbol table section will not be removed if it is contained within a segment, or
the file is either a relocatable or dynamic shared object.

The line number and debugging sections will not be removed if they are contained
within a segment, or their associated relocation section is contained within a seg-
ment.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/strip
svid

Page: 378

time (SD_CMD) time (SD_CMD)

NAME
time – time a command

SYNOPSIS
time command

DESCRIPTION
The command is executed; after it is complete, time prints the elapsed time during
the command, the time spent executing system code, and the time spent in execu-
tion of the user code. Times are reported in seconds.

The times are printed on standard error.

USAGE
General.

When time is used on a multi-processor system the sum of system and user time
could be greater than real time.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/time
svid

Page: 379

truss (SD_CMD) truss (SD_CMD)

NAME
truss – trace system calls and signals

SYNOPSIS
truss [-pfcaei] [-t[!]syscall[,syscall...]] [-v[!]syscall[,syscall...]]

[-x[!]syscall[,syscall...]] [-s[!]signal[,signal...]] [-m[!]fault[,fault...]]
[-r[!]fd[,fd...]] [-w[!]fd[,fd...]] [-o outfile] command

DESCRIPTION
truss executes the specified command and produces a trace of the system calls it
performs, the signals it receives, and the machine faults it incurs. Each line of the
trace output reports either the fault or signal name or the system call name with its
arguments and return value(s). System call arguments are displayed symbolically,
when possible, using defines from relevant system header files; for any pathname
pointer argument, the pointed-to string is displayed. Error returns are reported
using the error code names described in errno().

The following options are recognized. For those options which take a list argu-
ment, the name all can be used as a shorthand to specify all possible members of
the list. If the list begins with a ‘!’, the meaning of the option is negated (e.g.,
exclude rather than trace). Multiple occurrences of the same option may be
specified. For the same name in a list, subsequent options (those to the right) over-
ride previous ones (those to the left).

–p Interpret the arguments to truss as a list of process-ids for exist-
ing processes [see ps(BU_CMD)]. rather than as a command to be
executed. truss takes control of each process and begins tracing
it provided that the userid and groupid of the process match those
of the user or that the user is super-user.

–f Follow all children created by fork() and include their signals,
faults, and system calls in the trace output. Normally, only the
first-level command or process is traced. When –f is specified, the
process-id is included with each line of trace output to indicate
which process executed the system call or received the signal.

–c Count traced system calls, faults, and signals rather than displaying
the trace line-by-line. A summary report is produced after the
traced command terminates or when truss is interrupted. If –f
is also specified, the counts include all traced system calls, faults,
and signals for child processes.

–a Show the argument strings which are passed in each exec(BA_OS)
system call.

–e Show the environment strings which are passed in each
exec(BA_OS) system call.

–i Don’t display interruptible sleeping system calls. Certain system
calls, such as open() and read() on terminal devices or pipes
can sleep for indefinite periods and are interruptible. Normally,
truss reports such sleeping system calls if they remain asleep for
more than one second. The system call is reported again a

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/truss
svid

Page: 380

truss (SD_CMD) truss (SD_CMD)

second time when it completes. The –i option causes such system
calls to be reported only once, when they complete.

–t [!]syscall,... System calls to trace or exclude. Those system calls specified in the
comma-separated list are traced. If the list begins with a ‘!’, the
specified system calls are excluded from the trace output. Default is
–tall.

–v [!]syscall,... Verbose. Display the contents of any structures passed by address
to the specified system calls (if traced). Input values as well as
values returned by the operating system are shown. For any field
used as both input and output, only the output value is shown.
Default is –v!all.

–x [!]syscall,... Display the arguments to the specified system calls (if traced) in raw
form, usually hexadecimal, rather than symbolically. Default is
–x!all.

–s [!]signal,... Signals to trace or exclude. Those signals specified in the comma-
separated list are traced. The trace output reports the receipt of
each specified signal, even if the signal is being ignored (not
blocked) by the process. (Blocked signals are not received until the
process releases them.) Signals may be specified by name or
number (see <sys/signal.h>). If the list begins with a ‘!’, the
specified signals are excluded from the trace output. Default is
–sall.

–m [!]fault,... Machine faults to trace or exclude. Those machine faults specified
in the comma-separated list are traced. Faults may be specified by
name or number (see <sys/fault.h>). If the list begins with a ‘!’,
the specified faults are excluded from the trace output. Default is
–mall –m!fltpage.

–r [!]fd,... Show the full contents of the I/O buffer for each read() on any of
the specified file descriptors. The output is formatted 32 bytes per
line and shows each byte as an ASCII character (preceded by one
blank) or as a 2-character C language escape sequence for control
characters such as horizontal tab (\t) and newline (\n). If ASCII
interpretation is not possible, the byte is shown in 2-character hexa-
decimal representation. (The first 16 bytes of the I/O buffer for
each traced read() are shown even in the absence of –r.) Default
is –r!all.

–w [!]fd,... Show the contents of the I/O buffer for each write() on any of
the specified file descriptors (see –r). Default is –w!all.

–o outfile File to be used for the trace output. By default, the output goes to
standard error.

If truss is used to initiate and trace a specified command and if the –o option is
used or if standard error is redirected to a non-terminal file, then truss runs with
hangup, interrupt, and quit signals ignored. This facilitates tracing of interactive
programs which catch interrupt and quit signals from the terminal.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/truss
svid

Page: 381

truss (SD_CMD) truss (SD_CMD)

If the trace output remains directed to the terminal, or if existing processes are
traced (the –p option), then truss responds to hangup, interrupt, and quit signals
by releasing all traced processes and exiting. This allows the user to terminate
excessive trace output and to release previously-existing processes. Released
processes continue normally, as though they had never been touched.

SEE ALSO
errno(BA_ENV)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/truss
svid

Page: 382

tsort (SD_CMD) tsort (SD_CMD)

NAME
tsort – topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
tsort produces on the standard output a totally ordered list of items consistent
with a partial ordering of items mentioned in the input file. If no file is specified, the
standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs
of different items indicate ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/tsort
svid

Page: 383

unget (SD_CMD) unget (SD_CMD)

NAME
unget – undo a previous get of an SCCS file

SYNOPSIS
unget [-rSID] [-s] [-n] files

DESCRIPTION
Unget undoes the effect of a get –e done prior to creating the intended new
delta. If a directory is named, unget behaves as though each file in the directory
were specified as a named file, except that non-SCCS files and unreadable files are
silently ignored. If a name of – is given, the standard input is read with each line
being taken as the name of an SCCS file to be processed.

Keyletter arguments apply independently to each named file.

–rSID
Uniquely identifies which delta is no longer intended. (This would have
been specified by get as the new delta). The use of this keyletter is neces-
sary only if two or more outstanding gets for editing on the same SCCS
file were done by the same person (login name). An error is reported if the
specified SID is ambiguous, or if it is necessary and omitted on the com-
mand line.

–s Suppresses the printout of the intended delta’s SID on the standard output.

–n Causes the retention of the file that was obtained by get, which would nor-
mally be removed from the current directory.

SEE ALSO
delta(SD_CMD), get(SD_CMD), sact(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/unget
svid

Page: 384

val (SD_CMD) val (SD_CMD)

NAME
val – validate SCCS file

SYNOPSIS
val –

val [-s] [-rSID] [-mname] [-ytype] file ...

DESCRIPTION
The command val determines if the specified file is an SCCS file meeting the
characteristics specified by the options. The arguments may appear in any order.

val has a special argument, –, which causes reading of the standard input until an
end-of-file condition is detected. Each line read is independently processed as if it
were a command line argument list.

val generates diagnostic messages on the standard output for each command line
and file processed, and also returns a single 8-bit code upon exit as described
below.

The options are defined as follows. The effects of any option apply independently
to each named file on the command line.

-s Silences the diagnostic message, normally generated on the standard
output, for any error that is detected while processing each named file
on a given command line.

-rSID SID (SCCS Identification String) is an SCCS delta number. A check is
made to determine if the SID is ambiguous (e.g., -r1 is ambiguous
because it physically does not exist but implies 1.1, 1.2, etc., which may
exist) or invalid (e.g., -r1.0 or -r1.1.0 are invalid because neither case
can exist as a valid delta number). If the SID is valid and not ambigu-
ous, a check is made to determine if it actually exists.

-mname name is compared with the SCCS %M% keyword in file.

-ytype type is compared with the SCCS %Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., it can be
interpreted as a bit string where (moving from left to right) set bits are interpreted
as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate keyletter argument;
bit 2 = corrupted SCCS file;
bit 3 = cannot open file or file not SCCS;
bit 4 = SID is invalid or ambiguous;
bit 5 = SID does not exist;
bit 6 = %Y%, –y mismatch;
bit 7 = %M%, –m mismatch;

Note that val can process two or more files on a given command line and in turn
can process multiple command lines (when reading the standard input). In these
cases an aggregate code is returned, i.e. the logical OR of the codes generated for
each command line and file processed.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/val
svid

Page: 385

val (SD_CMD) val (SD_CMD)

SEE ALSO
admin(SD_CMD), delta(SD_CMD), get(SD_CMD), prs(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/val
svid

Page: 386

what (SD_CMD) what (SD_CMD)

NAME
what – identify SCCS files

SYNOPSIS
what [–s] files

DESCRIPTION
The what command searches the given files for all occurrences of the pattern that
the get command substitutes for %Z% (@(#)) and prints out what follows until
the first ", >, newline, \, or null character. For example, if the C language program
in file f.c contains

char ident[] = " @(#) identification information";

and f.c is compiled to yield f.o and a.out, then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

what is intended to be used in conjunction with the SCCS get command, which
automatically inserts identifying information, but it can also be used where the
information is inserted manually.

There is at least one option:

-s Quit after finding the first occurrence of pattern in each file.

ERRORS
Exit status is 0 if any matches are found; otherwise it is 1.

SEE ALSO
get(SD_CMD).

USAGE
General.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/what
svid

Page: 387

xargs (SD_CMD) xargs (SD_CMD)

NAME
xargs – construct argument list(s) and execute command

SYNOPSIS
xargs [options] [command [initial_arguments]]

DESCRIPTION
xargs combines the fixed initial_arguments with arguments read from standard
input to execute the specified command one or more times. The number of argu-
ments read for each command invocation and the manner in which they are com-
bined are determined by the options specified.

If command is omitted, echo is used.

Arguments read in from standard input are defined to be contiguous strings of
characters delimited by one or more blanks, tabs, or new lines; empty lines are
always discarded. Blanks and tabs may be embedded as part of an argument if
escaped or quoted. Characters enclosed in quotes (single or double) are taken
literally, and the delimiting quotes are removed. Outside of quoted strings a
backslash (\) quotes the next character.

Each argument list is constructed starting with the initial_arguments, followed by
some number of arguments read from standard input (Exception: see –i). Options
–i, –l, and –n determine how arguments are selected for each command invo-
cation. When none of these options are coded, the initial_arguments are followed
by arguments read continuously from standard input until an internal buffer is full,
and then command is executed with the accumulated arguments. This process is
repeated until all arguments have been read. When there are conflicts (e.g., –l vs.
–n), the last option has precedence. The recognized options are:

–lnumber Command is executed for each non-empty number lines of arguments
from standard input. The last invocation of command will be with fewer
lines of arguments if fewer than number remain. A line is considered to
end with the first newline unless the last character of the line is a blank
or a tab; a trailing blank/tab signals continuation through the next non-
empty line. If number is omitted, 1 is assumed. Option –x is forced.

–ireplstr Insert mode: command is executed for each line from standard input,
taking the entire line as a single argument, inserting it in
initial_arguments for each occurrence of replstr. A maximum of five
arguments in initial_arguments may each contain one or more instances
of replstr. Blanks and tabs at the beginning of each line are thrown
away. Constructed arguments may not expand to more than
{NAME_MAX} characters, and option –x is also forced. {} is assumed
for replstr if not specified.

–nnumber Execute command using as many standard input arguments as possible,
up to number arguments maximum. Fewer arguments will be used if
their total size is greater than size characters (see -s option, below), and
for the last invocation if there are fewer than number arguments remain-
ing. If option –x is also invoked, each number argument must fit in the
size limitation, else xargs terminates execution.

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/xargs
svid

Page: 388

xargs (SD_CMD) xargs (SD_CMD)

–t Trace mode: The command and each constructed argument list are
echoed to standard error just prior to their execution.

–p Prompt mode: The user is asked whether to execute command each invo-
cation. Trace mode (–t) is turned on to print the command instance to
be executed, followed by a ?... prompt. A reply of y (optionally fol-
lowed by anything) will execute the command; anything else, including
just a carriage return, skips that particular invocation of command.

–x Causes xargs to terminate if any argument list would be greater than
size characters; –x is forced by the options –i and –l. When neither
of the options –i, –l, or –n are coded, the total length of all argu-
ments must be within the size limit.

–ssize The maximum total size of each argument list is set to size characters;
size must be a positive integer less than or equal to 470. If –s is not
coded, 470 is taken as the default. Note that the character count for size
includes one extra character for each argument and the count of charac-
ters in the command name.

–eeofstr eofstr is taken as the logical end-of-file string. Underscore (_) is assumed
for the logical EOF string if –e is not invoked. The option –e with no
eofstr coded turns off the logical EOF string capability (underbar is taken
literally). xargs reads standard input until either end-of-file or the
logical EOF string is encountered.

xargs will terminate if either it receives a return code of –1 from, or if it cannot
execute, command. (Thus command should explicitly exit with an appropriate
value to avoid accidentally returning with –1.)

USAGE
General.

Note that xargs does not perform parameter substitution. In the following exam-
ples, only the command processor performs substitutions.

EXAMPLES
The following will move all files from directory $1 to directory $2, and echo each
move command just before doing it:

ls $1 | xargs -i -t mv $1/{} $2/{}

The following will combine the output of the parenthesized commands onto one
line, which is then echoed to the end of file log:

(logname; date; echo $0 $*) | xargs >> log

The user is asked which files in the current directory are to be archived and archives
them into arch (a.) one at a time, or (b.) many at a time.

a. ls | xargs -p -l ar -r arch
b. ls | xargs -p -l | xargs ar -r arch

The following will execute with successive pairs of arguments originally typed as
command line arguments:

echo $* | xargs -n2 diff

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/xargs
svid

Page: 389

xargs (SD_CMD) xargs (SD_CMD)

SEE ALSO
echo(BU_CMD) sh(BU_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/xargs
svid

Page: 390

yacc (SD_CMD) yacc (SD_CMD)

NAME
yacc – a compiler-compiler

SYNOPSIS
yacc [-vdlt] grammar

DESCRIPTION
The yacc command provides a general tool for describing the input to a program.
More precisely, yacc converts a context-free grammar into a set of tables for a sim-
ple automaton which executes an LR(1) parsing algorithm. The grammar may be
ambiguous; built-in precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a pro-
gram yyparse(). This program must be loaded with the lexical analyzer func-
tion, yylex(), as well as main() and yyerror(), an error handling routine.
These routines must be supplied by the user (however, see the description of the
yacc library below); lex is useful for creating lexical analyzers usable by yacc.

If the –v option is used, the file y.output is prepared, which contains a descrip-
tion of the parsing tables and a report on conflicts generated by ambiguities in the
grammar.

If the –d option is used, the file y.tab.h is generated with the #define state-
ments that associate the yacc-assigned ‘‘token codes’’ with the user-declared
‘‘token names’’. This allows source files other than y.tab.c to access the token
codes.

If the –l option is used, the code produced in y.tab.c does not contain any
#line constructs. This should only be used after the grammar and the associated
actions are fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional com-
pilation control. By default, this code is not included when y.tab.c is compiled.
However, when yacc’s –t option is used, this debugging code will be compiled
by default. Independent of whether the –t option was used, the runtime debug-
ging code is under the control of YYDEBUG, a pre-processor symbol. If YYDEBUG
has a non-zero value, then the debugging code is included. If its value is zero, then
the code is not included. A program produced without the runtime debugging
code will be smaller and slightly faster.

yacc Library
The yacc library liby.a facilitates the initial use of yacc by providing the rou-
tines:

main()
yyerror(char *s)

These routines may be loaded by using the –ly option with cc. The main()
routine just calls yyparse(). yyerror() simply prints the string (error mes-
sage) s when a syntax error is detected.

yacc SPECIFICATIONS
The yacc user constructs a specification of the input process; this includes rules
describing the input structure, the code that will be invoked when these rules are
recognized, and a low-level routine to do the basic input. Then yacc generates the
(integer valued) function yyparse(); it in turn calls yylex(), the lexical analyzer,

Page 1

FINAL COPY
June 15, 1995

File: sd_cmd/yacc
svid

Page: 391

yacc (SD_CMD) yacc (SD_CMD)

to obtain input tokens.

A structure recognized (and returned) by the lexical analyzer is called a terminal
symbol, here referred to as a token (literal characters must also be passed through the
lexical analyzer, and are also considered tokens). A structure recognized by the
parser is called a nonterminal symbol. Name refers to either tokens or nonterminal
symbols.

Every specification file consists of three sections: declarations, grammar rules, and
programs, separated by double percent marks (%%). The declarations and programs
sections may be empty. If the latter is empty, then the preceding %% marks separat-
ing it from the rules section may be omitted.

Blanks, tabs, and new lines are ignored, except that they may not appear in names
or multi-character reserved symbols. Comments are enclosed in /* ... */, and
may appear wherever a name is legal.

Names may be of arbitrary length, made up of letters, dot (.), underscore (_), and
non-initial digits. Upper and lower case letters are distinct. Names beginning with
yy should be avoided because the yacc parser uses such names.

A literal consists of a character enclosed in single quotes. The C escape sequences
(e.g., \n) are recognized.

Declarations
The following declarators may be used in the declarations section:

%token Names representing tokens must be declared; this may be done by writ-
ing:

%token name1 name2 ...
in the declarations section. Every name not defined in this section is
assumed to represent a nonterminal symbol. Every nonterminal symbol
must appear on the left side of at least one grammar rule.

%start The start symbol represents the largest, most general structure described
by the grammar rules. By default, it is the left-hand side of the first
grammar rule; this default may be overridden by declaring:

%start symbol

%left
%right
%nonassoc

Precedence and associativity rules attached to tokens are declared using
these keywords. This is done by a series of lines, each beginning with
one of the keywords %left, %right, or %nonassoc, followed by a list
of tokens. (If a token is declared using one of these keywords, a declara-
tion by %token is not needed.) All tokens on the same line have the
same precedence level and associativity; the lines are in order of increas-
ing precedence or binding strength. The keyword %left denotes that
the operators on that line are left associative, and %right denotes that
the operators are right associative. The keyword %nonassoc denotes
operators that may not associate with themselves.

Page 2

FINAL COPY
June 15, 1995

File: sd_cmd/yacc
svid

Page: 392

yacc (SD_CMD) yacc (SD_CMD)

%prec Unary operators must, in general, be given a precedence. In cases where
a unary and binary operator have the same symbolic representation, but
need to be given different precedences, the keyword %prec is used to
change the order of precedence associated with a particular grammar
rule. The keyword %prec appears immediately after the body of the
grammar rule, before the action or closing semicolon (see Grammar
Rules below). It is followed by a token name or a literal. It causes the
precedence of the grammar rule to become that of the following token
name or literal.

%union By default, the values returned by actions and the lexical analyzer are
integers. Other value types, including structures, are supported: the
yacc value stack is declared to be a union of the various types of values
desired. The yacc command keeps track of types, and inserts appropri-
ate union member names so that the resulting parser command is strictly
type-checked. The declaration is constructed by including a statement of
the form:

%union {
body of union

}
Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. The header
file must be included in the declarations section, by using a #include
construct within %{ and %} (see below). Union members must be associ-
ated with the various names. The construction <name> is used to indi-
cate a union member name; if this follows one of the keywords %token
%left, %right, and %nonassoc, the union member name is associated
with the tokens listed.

%type This keyword is used to associate union member names with nontermi-
nals, in the form:

%type <ntype> a b ...

Other declarations and definitions can appear in the declarations section, enclosed
by the marks %{ and %}. These have global scope within the file, so that they may
be used in the rules and programs sections.

Grammar Rules
The rules section consists of one or more grammar rules. A grammar rule has the
form:

A : BODY ;
The symbol A represents a nonterminal name, and BODY represents a sequence of
zero or more names and literals. The colon and the semicolon are yacc punctua-
tion. If several successive grammar rules have the same left-hand side, the vertical
bar (|) can be used to avoid rewriting the left-hand side; in this case, the semicolon
must occur only after the last rule. The BODY part may be empty to indicate that the
nonterminal symbol matches the empty string.

The ASCII null character (0 or ’\0’) should not be used in grammar rules.

Page 3

FINAL COPY
June 15, 1995

File: sd_cmd/yacc
svid

Page: 393

yacc (SD_CMD) yacc (SD_CMD)

With each grammar rule, the user may associate actions to be performed each time
the rule is recognized in the input process. These actions may return values, and
may obtain the values returned by previous actions. In addition, the lexical
analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input or output, call sub-
programs, and alter external variables. An action is one or more statements
enclosed by braces { and }. Certain pseudo-variables can be used in the action. A
value can be returned by assigning it to $$; the variables $1, $2, ..., refer to the
values returned by the components of the right side of a rule, reading from left to
right. By default, the value of a rule is the value of the first element in it. Actions
may occur in the middle of a rule as well as at the end. An action may access the
values returned by symbols (and actions) to its left: and, in turn, the value it returns
may be accessed by actions to its right.

Internal rules to resolve ambiguities are:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the grammar rule
that occurs earlier in the input sequence.

In addition, the declared precedences and associativities (see Declarations Section
above) are used to resolve parsing conflicts as follows:

1. A precedence and associativity is associated with each grammar rule; it is
the precedence and associativity of the last token or literal in the body of the
rule. If the %prec keyword is used, it overrides this default. Some gram-
mar rules may have no precedence and associativity.

2. When a reduce/reduce conflict, or a shift/reduce conflict occurs and either
the input symbol or the grammar rule has no precedence and associativity,
then the two internal rules given above are used.

3. If a shift/reduce conflict occurs, and both the grammar rule and the input
symbol have precedence and associativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) associated with the
higher precedence. If the precedences are the same, then the associativity is
used; left associative implies reduce, right associative implies shift, and
nonassociative implies error.

Conflicts resolved by precedence are not counted in the shift/reduce and
reduce/reduce conflicts reported by yacc.

The token name error is reserved for error handling. This name can be used in
grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. When an error is encountered, the parser behaves as if the token
error were the current lookahead token, and it performs the action encountered.
The lookahead token is then reset to the token that caused the error. If no special
error rules have been specified, the processing halts when an error is detected.

To prevent a series of error messages, the parser, after detecting an error, remains in
the error state until three tokens have been successfully read and shifted. If an error
is detected while the parser is in the error state, no message is given, and the input
token is quietly deleted.

Page 4

FINAL COPY
June 15, 1995

File: sd_cmd/yacc
svid

Page: 394

yacc (SD_CMD) yacc (SD_CMD)

The statement
yyerrok;

in an action resets the parser to its normal mode; it may be used if it is desired to
force the parser to believe that an error has been fully recovered from.

The statement
yyclearin;

in an action is used to clear the previous lookahead token; it may be used if a user
supplied routine is to be used to find the correct place to resume input.

Programs
The programs section may include the definition of the lexical analyzer yylex(),
or other functions, typically those used in the actions specified in the grammar
rules.

The lexical analyzer yylex() is an integer valued function which returns the
token number, representing the kind of token read. If a value is associated with
that token, it should be assigned to the external variable yylval. The parser and
yylex() must agree on these token numbers in order for communications between
them to take place. The numbers may be chosen by yacc, or chosen by the user. In
either case, the #define construct of C is used to allow yylex() to return these
numbers symbolically. If the token numbers are chosen by yacc, then literals are
given the numerical value of the character in the local character set, and other
names are assigned token numbers starting at 257.

A token may be assigned a number by following its first appearance in the declara-
tions section with a nonnegative integer. Names and literals not defined this way
retain their default definition. All token numbers must be distinct.

The end of the input is marked by a special token called the endmarker. The end-
marker must have token number 0 or negative. These values are not legal for any
other token. All lexical analyzers should return 0 or negative as a token number
upon reaching the end of their input. If the token up to, but not including, the end-
marker forms a structure which matches the start symbol, the parser accepts the
input. If the endmarker is seen in any other context, it is an error.

ERRORS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard
error output; a more detailed report is found in the y.output file. Similarly, if
some rules are not reachable from the start symbol, this is also reported.

FILES
y.output
y.tab.c
y.tab.h

USAGE
General.

SEE ALSO
lex(SD_CMD).

Page 5

FINAL COPY
June 15, 1995

File: sd_cmd/yacc
svid

Page: 395

yacc (SD_CMD) yacc (SD_CMD)

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995

File: sd_cmd/yacc
svid

Page: 396

Terminal Interface Introduction

Terminal Interface Overview

The Terminal Interface Extension (TI) consists of the facilities provided by the
c u r s e s / t e r m i n f o package to allow application programs to perform terminal
handling functions in a way that is independent of the type of the terminal actu-
ally in use. The c u r s e s / t e r m i n f o package supports an asynchronous color char-
acter terminal interface (on asynchronous character and bitmapped terminals).

The following are prerequisite for support of the Terminal Interface Extension:

Base System

Basic Utilities Extension

Advanced Utilities Extension

Software Development Extension

SUMMARY OF LIBRARY ROUTINES

The following library routines are supported by a SVID-compliant Terminal Inter-
face Extension. Items marked with a (*) are Level 2, as defined in the General Intro-
duction to this volume. Items marked with a (†) are new to this issue of the SVID.
Only those pages reflecting technical content changes or which are new to the
SVID are contained in this volume.

Curses Routines

a d d c h a d d w s t r b o x c u r s _ s e t
a d d c h n s t r a t t r o f f c a n _ c h a n g e _ c o l o r d e f _ p r o g _ m o d e
a d d c h s t r a t t r o n c b r e a k d e f _ s h e l l _ m o d e
a d d n s t r a t t r s e t c l e a r d e l _ c u r t e r m
a d d n w s t r b a u d r a t e c l e a r o k d e l a y _ o u t p u t
a d d s t r b e e p c l r t o b o t d e l c h
a d d w c h b k g d c l r t o e o l d e l e t e l n
a d d w c h n s t r b k g d s e t c o l o r _ c o n t e n t d e l s c r e e n
a d d w c h s t r b o r d e r c o p y w i n d e l w i n

Terminal Interface Introduction 20-1

FINAL COPY
June 15, 1995
File: ti_int.txt

svid

Page: 397

Curses Routines

d e r w i n i n n s t r m v c u r m v w d e l c h
d o u p d a t e i n n w s t r m v d e l c h m v w g e t c h
d u p w i n i n s c h m v d e r w i n m v w g e t n w s t r
e c h o i n s d e l l n m v g e t c h m v w g e t s t r
e c h o c h a r i n s e r t l n m v g e t n w s t r m v w g e t w c h
e c h o w c h a r i n s n s t r m v g e t s t r m v w g e t w s t r
e n d w i n i n s n w s t r m v g e t w c h m v w i n
e r a s e i n s s t r m v g e t w s t r m v w i n c h
e r a s e c h a r i n s t r m v i n c h m v w i n c h n s t r
f i l t e r i n s w c h m v i n c h n s t r m v w i n c h s t r
f l a s h i n s w s t r m v i n c h s t r m v w i n n s t r
f l u s h i n p i n t r f l u s h m v i n n s t r m v w i n n w s t r
g e t b e g y x i n w c h m v i n n w s t r m v w i n s c h
g e t c h i n w c h n s t r m v i n s c h m v w i n s n s t r
g e t m a x y x i n w c h s t r m v i n s n s t r m v w i n s n w s t r
g e t n w s t r i n w s t r m v i n s n w s t r m v w i n s s t r
g e t p a r y x i s _ l i n e t o u c h e d m v i n s s t r m v w i n s t r
g e t s t r i s _ w i n t o u c h e d m v i n s t r m v w i n s w c h
g e t s y x i s e n d w i n m v i n s w c h m v w i n s w s t r
g e t w c h k e y n a m e m v i n s w s t r m v w i n w c h
g e t w i n k e y p a d m v i n w c h m v w i n w c h n s t r
g e t w s t r k i l l c h a r m v i n w c h n s t r m v w i n w c h s t r
g e t y x l e a v e o k m v i n w c h s t r m v w i n w s t r
h a l f d e l a y l o n g n a m e m v i n w s t r m v w p r i n t w
h a s _ c o l o r s m e t a m v p r i n t w m v w s c a n w
h a s _ i c m o v e m v s c a n w n a p m s
h a s _ i l m v a d d c h m v w a d d c h n e w p a d
i d c o k m v a d d c h n s t r m v w a d d c h n s t r n e w t e r m
i d l o k m v a d d c h s t r m v w a d d c h s t r n e w w i n
i m m e d o k m v a d d n s t r m v w a d d n s t r n l
i n c h m v a d d n w s t r m v w a d d n w s t r n o c b r e a k
i n c h n s t r m v a d d s t r m v w a d d s t r n o d e l a y
i n c h s t r m v a d d w c h m v w a d d w c h n o e c h o
i n i t _ c o l o r m v a d d w c h n s t r m v w a d d w c h n s t r n o n l
i n i t _ p a i r m v a d d w c h s t r m v w a d d w c h s t r n o q i f l u s h
i n i t s c r m v a d d w s t r m v w a d d w s t r n o r a w

20-2 TERMINAL INTERFACE INTRODUCTION

FINAL COPY
June 15, 1995
File: ti_int.txt

svid

Page: 398

Curses Routines

n o t i m e o u t s l k _ a t t r s e t u s e _ e n v w g e t w s t r
o v e r l a y s l k _ c l e a r v i d a t t r w h l i n e
o v e r w r i t e s l k _ i n i t v i d p u t s w i n c h
p a i r _ c o n t e n t s l k _ l a b e l v w p r i n t w w i n c h n s t r
p e c h o c h a r s l k _ n o u t r e f r e s h v w s c a n w w i n c h s t r
p e c h o w c h a r s l k _ r e f r e s h w a d d c h w i n n s t r
p n o u t r e f r e s h s l k _ r e s t o r e w a d d c h n s t r w i n n w s t r
p r e f r e s h s l k _ s e t w a d d c h s t r w i n s c h
p r i n t w s l k _ t o u c h w a d d n s t r w i n s d e l l n
p u t p s r c l w a d d n w s t r w i n s e r t l n
p u t w i n s t a n d e n d w a d d s t r w i n s n s t r
q i f l u s h s t a n d o u t w a d d w c h w i n s n w s t r
r a w s t a r t _ c o l o r w a d d w c h n s t r w i n s s t r
r e d r a w w i n s u b p a d w a d d w c h s t r w i n s t r
r e f r e s h s u b w i n w a d d w s t r w i n s w c h
r e s e t _ p r o g _ m o d e s y n c o k w a t t r o f f w i n s w s t r
r e s e t _ s h e l l _ m o d e t e r m a t t r s w a t t r o n w i n w c h
r e s e t t y t e r m n a m e w a t t r s e t w i n w c h n s t r
r e s t a r t t e r m t g e t e n t * w b k g d w i n w c h s t r
r i p o f f l i n e t g e t f l a g * w b k g d s e t w i n w s t r
s a v e t t y t g e t n u m * w b o r d e r w m o v e
s c a n w t g e t s t r * w c l e a r w n o u t r e f r e s h
s c r _ d u m p t g o t o * w c l r t o b o t w p r i n t w
s c r _ i n i t t i g e t f l a g w c l r t o e o l w r e d r a w l n
s c r _ r e s t o r e t i g e t n u m w c u r s y n c u p w r e f r e s h
s c r _ s e t t i g e t s t r w d e l c h w s c a n w
s c r o l l t i m e o u t w d e l e t e l n w s c r l
s c r o l l o k t o u c h l i n e w e c h o c h a r w s e t s c r r e g
s e t _ c u r t e r m t o u c h w i n w e c h o w c h a r w s t a n d e n d
s e t _ t e r m t p a r m w e r a s e w s t a n d o u t
s e t s c r r e g t p u t s w g e t c h w s y n c d o w n
s e t s y x t y p e a h e a d w g e t n s t r w s y n c u p
s e t t e r m * u n c t r l w g e t n w s t r w t i m e o u t
s e t u p t e r m u n g e t c h w g e t s t r w t o u c h l n
s l k _ a t t r o f f u n g e t w c h w g e t w c h w v l i n e
s l k _ a t t r o n u n t o u c h w i n

Terminal Interface Introduction 20-3

FINAL COPY
June 15, 1995
File: ti_int.txt

svid

Page: 399

Forms Routines

c u r r e n t _ f i e l d f o r m _ i n i t s e t _ f i e l d _ b u f f e r
d a t a _ a h e a d f o r m _ o p t s s e t _ f i e l d _ f o r e
d a t a _ b e h i n d f o r m _ o p t s _ o f f s e t _ f i e l d _ i n i t
d u p _ f i e l d f o r m _ o p t s _ o n s e t _ f i e l d _ j u s t
d y n a m i c _ f i e l d _ i n f o f o r m _ p a g e s e t _ f i e l d _ o p t s
f i e l d _ a r g f o r m _ s u b s e t _ f i e l d _ p a d
f i e l d _ b a c k f o r m _ t e r m s e t _ f i e l d _ s t a t u s
f i e l d _ b u f f e r f o r m _ u s e r p t r s e t _ f i e l d _ t e r m
f i e l d _ c o u n t f o r m _ w i n s e t _ f i e l d _ t y p e
f i e l d _ f o r e f r e e _ f i e l d s e t _ f i e l d _ u s e r p t r
f i e l d _ i n d e x f r e e _ f i e l d t y p e s e t _ f i e l d t y p e _ a r g
f i e l d _ i n f o f r e e _ f o r m s e t _ f i e l d t y p e _ c h o i c e
f i e l d _ i n i t l i n k _ f i e l d s e t _ f o r m _ f i e l d s
f i e l d _ j u s t l i n k _ f i e l d t y p e s e t _ f o r m _ i n i t
f i e l d _ o p t s m o v e _ f i e l d s e t _ f o r m _ o p t s
f i e l d _ o p t s _ o f f n e w _ f i e l d s e t _ f o r m _ p a g e
f i e l d _ o p t s _ o n n e w _ f i e l d t y p e s e t _ f o r m _ s u b
f i e l d _ p a d n e w _ f o r m s e t _ f o r m _ t e r m
f i e l d _ s t a t u s n e w _ p a g e s e t _ f o r m _ u s e r p t r
f i e l d _ t e r m p o s _ f o r m _ c u r s o r s e t _ f o r m _ w i n
f i e l d _ t y p e p o s t _ f o r m s e t _ m a x _ f i e l d
f i e l d _ u s e r p t r s c a l e _ f o r m s e t _ n e w _ p a g e
f o r m _ d r i v e r s e t _ c u r r e n t _ f i e l d u n p o s t _ f o r m
f o r m _ f i e l d s s e t _ f i e l d _ b a c k

Menu Routines

c u r r e n t _ i t e m i t e m _ o p t s _ o f f m e n u _ f o r m a t
f r e e _ i t e m i t e m _ o p t s _ o n m e n u _ g r e y
f r e e _ m e n u i t e m _ t e r m m e n u _ i n i t
i t e m _ c o u n t i t e m _ u s e r p t r m e n u _ i t e m s
i t e m _ d e s c r i p t i o n i t e m _ v a l u e m e n u _ m a r k
i t e m _ i n d e x i t e m _ v i s i b l e m e n u _ o p t s
i t e m _ i n i t m e n u _ b a c k m e n u _ o p t s _ o f f
i t e m _ n a m e m e n u _ d r i v e r m e n u _ o p t s _ o n
i t e m _ o p t s m e n u _ f o r e m e n u _ p a d

20-4 TERMINAL INTERFACE INTRODUCTION

FINAL COPY
June 15, 1995
File: ti_int.txt

svid

Page: 400

Menu Routines

m e n u _ p a t t e r n s e t _ i t e m _ i n i t s e t _ m e n u _ m a r k
m e n u _ s u b s e t _ i t e m _ o p t s s e t _ m e n u _ o p t s
m e n u _ t e r m s e t _ i t e m _ t e r m s e t _ m e n u _ p a d
m e n u _ u s e r p t r s e t _ i t e m _ u s e r p t r s e t _ m e n u _ p a t t e r n
m e n u _ w i n s e t _ i t e m _ v a l u e s e t _ m e n u _ s u b
n e w _ i t e m s e t _ m e n u _ b a c k s e t _ m e n u _ t e r m
n e w _ m e n u s e t _ m e n u _ f o r e s e t _ m e n u _ u s e r p t r
p o s _ m e n u _ c u r s o r s e t _ m e n u _ f o r m a t s e t _ m e n u _ w i n
p o s t _ m e n u s e t _ m e n u _ g r e y s e t _ t o p _ r o w
s c a l e _ m e n u s e t _ m e n u _ i n i t t o p _ r o w
s e t _ c u r r e n t _ i t e m s e t _ m e n u _ i t e m s u n p o s t _ m e n u

Panel Routines

b o t t o m _ p a n e l p a n e l _ a b o v e r e p l a c e _ p a n e l
d e l _ p a n e l p a n e l _ b e l o w s e t _ p a n e l _ u s e r p t r
h i d e _ p a n e l p a n e l _ h i d d e n s h o w _ p a n e l
m o v e _ p a n e l p a n e l _ u s e r p t r t o p _ p a n e l
n e w _ p a n e l p a n e l _ w i n d o w u p d a t e _ p a n e l s

SUMMARY OF COMMANDS AND UTILITIES

The following commands and utilities are supported by a SVID-compliant Termi-
nal Interface Extension.

c a p t o i n f o c l e a r i n f o c m p t i c t p u t

ORGANIZATION OF TECHNICAL INFORMATION

The ‘‘Terminal Interface Environment’’ chapter provides manual page descrip-
tions of the terminal capability database used by this extension to support device
independent terminal I/O.

The ‘‘Terminal Interface Library Routines’’ chapter provides manual page descrip-
tions of routine interfaces supported by this extension.

Terminal Interface Introduction 20-5

FINAL COPY
June 15, 1995
File: ti_int.txt

svid

Page: 401

FINAL COPY
June 15, 1995

File:

Page: 402

Terminal Interface Environment

Terminal Interface Environment Variables

The components of the TI extension use the environment variables described
below. [See sh(BU_CMD) for information on the shell environment.]

TERM

The environmental variable TERM, by convention, contains a user’s current termi-
nal type and may be set by the user.

TERMINFO

The environmental variable TERMINFO, if set, contains the place where local ter-
minal descriptions can be found. TERMINFO can be set by the user. If it is set,
any program using curses checks the TERMINFO location for the description of
a terminal before checking /usr/lib/terminfo, the standard location for termi-
nal descriptions. [See curses(TI_LIB) and terminfo(TI_ENV) for further informa-
tion.]

LINES and COLUMNS

The environmental variables LINES and COLUMNS, if set, contain the number of
lines and the number of columns, respectively, on a terminal screen and can be set
by the user. If defined, the values of these variables, LINES and COLUMNS, over-
ride the screen size values given in the terminfo description of a terminal. [See
curses(TI_LIB) and terminfo(TI_ENV) for further information.]

Terminal Interface Environment 21-1

FINAL COPY
June 15, 1995
File: ti_env.txt

svid

Page: 403

MANUAL PAGES

21-2 TERMINAL INTERFACE ENVIRONMENT

FINAL COPY
June 15, 1995
File: ti_env.txt

svid

Page: 404

Terminal Interface Environment Routines

The following section contains the manual pages for the TI_ENV routines.

Terminal Interface Environment Routines 22-1

FINAL COPY
June 15, 1995
File: ti_env.cov

svid

Page: 405

FINAL COPY
June 15, 1995

File:

Page: 406

CURSES (TI_ENV) CURSES (TI_ENV)

NAME
CURSES – CRT screen handling and optimization package

SYNOPSIS
#include <curses.h>

DESCRIPTION
CURSES library routines give the user a terminal-independent method of updating
character screens with reasonable optimization. A program using these routines
must be compiled with the –lcurses option of cc.

The CURSES package allows: overall screen, window and pad manipulation; out-
put to windows and pads; reading terminal input; control over terminal and
CURSES input and output options; environment query routines; color manipula-
tion; use of soft label keys; terminfo access; and access to low-level CURSES rou-
tines.

To initialize the routines, the routine initscr() or newterm() must be called
before any of the other routines that deal with windows and screens are used. The
routine endwin() must be called before exiting. To get character-at-a-time input
without echoing (most interactive, screen-oriented programs want this), the follow-
ing sequence should be used:

initscr(),cbreak(),noecho();

Most programs would additionally use the sequence:
nonl(),intrflush(stdscr,FALSE),keypad(stdscr,TRUE);

Before a CURSES program is run, the tab stops of the terminal should be set and its
initialization strings, if defined, must be output. This can be done by executing the
tput init command after the shell environment variable TERM has been
exported. [See terminfo(TI_ENV) for further details.]

The CURSES library permits manipulation of data structures, called windows, which
can be thought of as two-dimensional arrays of characters. A default window
called stdscr, which is the size of the terminal screen, is supplied. Others may be
created with newwin().

Windows are referred to by variables declared as WINDOW *. These data structures
are manipulated with routines described on TI_LIB pages (whose names begin
‘‘curs_’’). Among the most basic routines are move() and addch(). More general
versions of these routines are included that allow the user to specify a window.

After using routines to manipulate a window, refresh() is called, telling CURSES
to make the user’s CRT screen look like stdscr. The characters in a window are
actually of type chtype (character and attribute data) so that other information
about the character may also be stored with each character.

Special windows called pads may also be manipulated. These are windows that are
not necessarily associated with a viewable part of the screen. See curs_pad(TI_LIB)
for more information.

In addition to drawing characters on the screen, video attributes and colors may be
included, causing the characters to show up in such modes as underlined, reverse
video or color on terminals that support such display enhancements. Line drawing
characters may be specified to be output. On input, CURSES is also able to
translate arrow and function keys that transmit escape sequences into single values.

Page 1

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 407

CURSES (TI_ENV) CURSES (TI_ENV)

The video attributes, line drawing characters and input values use names, defined
in <curses.h>, such as A_REVERSE, ACS_HLINE and KEY_LEFT.

If the environment variables LINES and COLUMNS are set, or if the program is exe-
cuting in a window environment, line and column information in the environment
will override information read by terminfo. This would affect a program run-
ning in an AT&T 630 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using CURSES
checks for a local terminal definition before checking in the standard place. For
example, if TERM is set to att4424, then the compiled terminal definition is found
in

/usr/share/lib/terminfo/a/att4424.

(The a is copied from the first letter of att4424 to avoid creation of huge direc-
tories.) However, if TERMINFO is set to $HOME/myterms, CURSES first checks

$HOME/myterms/a/att4424,

and if that fails, it then checks
/usr/share/lib/terminfo/a/att4424.

This is useful for developing experimental definitions or when write permission in
/usr/share/lib/terminfo is not available.

The integer variables LINES and COLS are defined in <curses.h> and will be
filled in by initscr() with the size of the screen. The constants TRUE and FALSE
have the values 1 and 0, respectively.

The CURSES routines also define the WINDOW * variable curscr which is used for
certain low-level operations like clearing and redrawing a screen containing gar-
bage. curscr can be used in only a few routines.

International Functions
The number of bytes and the number of columns to hold a character from the sup-
plementary character set is locale-specific (locale category LC_CTYPE) and can be
specified in the character class table.

For editing, operating at the character level is entirely appropriate. For screen for-
matting, arbitrary movement of characters on screen is not desirable.

Overwriting characters (addch(), for example) operates on a screen level.
Overwriting a character by a character that requires a different number of columns
may produce orphaned columns. These orphaned columns are filled with back-
ground characters.

Inserting characters (insch(), for example) operates on a character level (that is, at
the character boundaries). The specified character is inserted right before the char-
acter, regardless of which column of a character the cursor points to. Before inser-
tion, the cursor position is adjusted to the first column of the character.

As with inserting characters, deleting characters (delch(), for example) operates
on a character level (that is, at the character boundaries). The character at the cur-
sor is deleted whichever column of the character the cursor points to. Before dele-
tion, the cursor position is adjusted to the first column of the character.

Page 2

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 408

CURSES (TI_ENV) CURSES (TI_ENV)

A multi-column character cannot be put on the last column of a line. When such
attempts are made, the last column is set to the background character. In addition,
when such an operation creates orphaned columns, the orphaned columns are filled
with background characters.

Overlapping and overwriting a window follows the operation of overwriting char-
acters around its edge. The orphaned columns, if any, are handled as in the charac-
ter operations.

The cursor is allowed to be placed anywhere in a window. If the insertion or dele-
tion is made when the cursor points to the second or later column position of a
character that holds multiple columns, the cursor is adjusted to the first column of
the character before the insertion or deletion.

Routine and Argument Names
Many CURSES routines have two or more versions. Routines prefixed with p
require a pad argument. Routines whose names contain a w generally require either
a window argument or a wide-character argument. If w appears twice in a routine
name, the routine usually requires both a window and a wide-character argument.
Routines that do not require a pad or window argument generally use stdscr.

The routines prefixed with mv require an x and y coordinate to move to before per-
forming the appropriate action. The mv routines imply a call to move() before the
call to the other routine. The coordinate y always refers to the row (of the window),
and x always refers to the column. The upper left-hand corner is always (0,0), not
(1,1).

The routines prefixed with mvw take both a window argument and x and y coordi-
nates. The window argument is always specified before the coordinates.

In each case, win is the window affected, and pad is the pad affected; win and pad are
always pointers to type WINDOW.

Option setting routines require a Boolean flag bf with the value TRUE or FALSE; bf is
always of type bool. The variables ch and attrs are always of type chtype. The
types WINDOW, SCREEN, bool and chtype are defined in <curses.h>. The type
TERMINAL is defined in <term.h>. All other arguments are integers.

Routine Name Index
The following table lists each CURSES routine and the name of the manual page on
which it is described.

CURSES Routine Name Manual Page Name

addch() curs_addch(TI_LIB)
addchnstr() curs_addchstr(TI_LIB)
addchstr() curs_addchstr(TI_LIB)
addnstr() curs_addstr(TI_LIB)
addnwstr() curs_addwstr(TI_LIB)
addstr() curs_addstr(TI_LIB)
addwch() curs_addwch(TI_LIB)
addwchnstr() curs_addwchstr(TI_LIB)

Page 3

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 409

CURSES (TI_ENV) CURSES (TI_ENV)

CURSES Routine Name Manual Page Name

addwchstr() curs_addwchstr(TI_LIB)
addwstr() curs_addwstr(TI_LIB)
attroff() curs_attr(TI_LIB)
attron() curs_attr(TI_LIB)
attrset() curs_attr(TI_LIB)
baudrate() curs_termattrs(TI_LIB)
beep() curs_beep(TI_LIB)
bkgd() curs_bkgd(TI_LIB)
bkgdset() curs_bkgd(TI_LIB)
border() curs_border(TI_LIB)
box() curs_border(TI_LIB)
can_change_color() curs_color(TI_LIB)
cbreak() curs_inopts(TI_LIB)
clear() curs_clear(TI_LIB)
clearok() curs_outopts(TI_LIB)
clrtobot() curs_clear(TI_LIB)
clrtoeol() curs_clear(TI_LIB)
color_content() curs_color(TI_LIB)
copywin() curs_overlay(TI_LIB)
curs_set() curs_kernel(TI_LIB)
def_prog_mode() curs_kernel(TI_LIB)
def_shell_mode() curs_kernel(TI_LIB)
del_curterm() curs_terminfo(TI_LIB)
delay_output() curs_util(TI_LIB)
delch() curs_delch(TI_LIB)
deleteln() curs_deleteln(TI_LIB)
delscreen() curs_initscr(TI_LIB)
delwin() curs_window(TI_LIB)
derwin() curs_window(TI_LIB)
doupdate() curs_refresh(TI_LIB)
dupwin() curs_window(TI_LIB)
echo() curs_inopts(TI_LIB)
echochar() curs_addch(TI_LIB)
echowchar() curs_addwch(TI_LIB)
endwin() curs_initscr(TI_LIB)
erase() curs_clear(TI_LIB)
erasechar() curs_termattrs(TI_LIB)
filter() curs_util(TI_LIB)
flash() curs_beep(TI_LIB)
flushinp() curs_util(TI_LIB)
getbegyx() curs_getyx(TI_LIB)
getch() curs_getch(TI_LIB)
getmaxyx() curs_getyx(TI_LIB)
getnwstr() curs_getwstr(TI_LIB)
getparyx() curs_getyx(TI_LIB)

Page 4

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 410

CURSES (TI_ENV) CURSES (TI_ENV)

CURSES Routine Name Manual Page Name

getstr() curs_getstr(TI_LIB)
getsyx() curs_kernel(TI_LIB)
getwch() curs_getwch(TI_LIB)
getwin() curs_util(TI_LIB)
getwstr() curs_getwstr(TI_LIB)
getyx() curs_getyx(TI_LIB)
halfdelay() curs_inopts(TI_LIB)
has_colors() curs_color(TI_LIB)
has_ic() curs_termattrs(TI_LIB)
has_il() curs_termattrs(TI_LIB)
idcok() curs_outopts(TI_LIB)
idlok() curs_outopts(TI_LIB)
immedok() curs_outopts(TI_LIB)
inch() curs_inch(TI_LIB)
inchnstr() curs_inchstr(TI_LIB)
inchstr() curs_inchstr(TI_LIB)
init_color() curs_color(TI_LIB)
init_pair() curs_color(TI_LIB)
initscr() curs_initscr(TI_LIB)
innstr() curs_instr(TI_LIB)
innwstr() curs_inwstr(TI_LIB)
insch() curs_insch(TI_LIB)
insdelln() curs_deleteln(TI_LIB)
insertln() curs_deleteln(TI_LIB)
insnstr() curs_insstr(TI_LIB)
insnwstr() curs_inswstr(TI_LIB)
insstr() curs_insstr(TI_LIB)
instr() curs_instr(TI_LIB)
inswch() curs_inswch(TI_LIB)
inswstr() curs_inswstr(TI_LIB)
intrflush() curs_inopts(TI_LIB)
inwch() curs_inwch(TI_LIB)
inwchnstr() curs_inwchstr(TI_LIB)
inwchstr() curs_inwchstr(TI_LIB)
inwstr() curs_inwstr(TI_LIB)
is_linetouched() curs_touch(TI_LIB)
is_wintouched() curs_touch(TI_LIB)
isendwin() curs_initscr(TI_LIB)
keyname() curs_util(TI_LIB)
keypad() curs_inopts(TI_LIB)
killchar() curs_termattrs(TI_LIB)
leaveok() curs_outopts(TI_LIB)
longname() curs_termattrs(TI_LIB)
meta() curs_inopts(TI_LIB)
move() curs_move(TI_LIB)

Page 5

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 411

CURSES (TI_ENV) CURSES (TI_ENV)

CURSES Routine Name Manual Page Name

mvaddch() curs_addch(TI_LIB)
mvaddchnstr() curs_addchstr(TI_LIB)
mvaddchstr() curs_addchstr(TI_LIB)
mvaddnstr() curs_addstr(TI_LIB)
mvaddnwstr() curs_addwstr(TI_LIB)
mvaddstr() curs_addstr(TI_LIB)
mvaddwch() curs_addwch(TI_LIB)
mvaddwchnstr() curs_addwchstr(TI_LIB)
mvaddwchstr() curs_addwchstr(TI_LIB)
mvaddwstr() curs_addwstr(TI_LIB)
mvcur() curs_terminfo(TI_LIB)
mvdelch() curs_delch(TI_LIB)
mvderwin() curs_window(TI_LIB)
mvgetch() curs_getch(TI_LIB)
mvgetnwstr() curs_getwstr(TI_LIB)
mvgetstr() curs_getstr(TI_LIB)
mvgetwch() curs_getwch(TI_LIB)
mvgetwstr() curs_getwstr(TI_LIB)
mvinch() curs_inch(TI_LIB)
mvinchnstr() curs_inchstr(TI_LIB)
mvinchstr() curs_inchstr(TI_LIB)
mvinnstr() curs_instr(TI_LIB)
mvinnwstr() curs_inwstr(TI_LIB)
mvinsch() curs_insch(TI_LIB)
mvinsnstr() curs_insstr(TI_LIB)
mvinsnwstr() curs_inswstr(TI_LIB)
mvinsstr() curs_insstr(TI_LIB)
mvinstr() curs_instr(TI_LIB)
mvinswch() curs_inswch(TI_LIB)
mvinswstr() curs_inswstr(TI_LIB)
mvinwch() curs_inwch(TI_LIB)
mvinwchnstr() curs_inwchstr(TI_LIB)
mvinwchstr() curs_inwchstr(TI_LIB)
mvinwstr() curs_inwstr(TI_LIB)
mvprintw() curs_printw(TI_LIB)
mvscanw() curs_scanw(TI_LIB)
mvwaddch() curs_addch(TI_LIB)
mvwaddchnstr() curs_addchstr(TI_LIB)
mvwaddchstr() curs_addchstr(TI_LIB)
mvwaddnstr() curs_addstr(TI_LIB)
mvwaddnwstr() curs_addwstr(TI_LIB)
mvwaddstr() curs_addstr(TI_LIB)
mvwaddwch() curs_addwch(TI_LIB)
mvwaddwchnstr() curs_addwchstr(TI_LIB)
mvwaddwchstr() curs_addwchstr(TI_LIB)

Page 6

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 412

CURSES (TI_ENV) CURSES (TI_ENV)

CURSES Routine Name Manual Page Name

mvwaddwstr() curs_addwstr(TI_LIB)
mvwdelch() curs_delch(TI_LIB)
mvwgetch() curs_getch(TI_LIB)
mvwgetnwstr() curs_getwstr(TI_LIB)
mvwgetstr() curs_getstr(TI_LIB)
mvwgetwch() curs_getwch(TI_LIB)
mvwgetwstr() curs_getwstr(TI_LIB)
mvwin() curs_window(TI_LIB)
mvwinch() curs_inch(TI_LIB)
mvwinchnstr() curs_inchstr(TI_LIB)
mvwinchstr() curs_inchstr(TI_LIB)
mvwinnstr() curs_instr(TI_LIB)
mvwinnwstr() curs_inwstr(TI_LIB)
mvwinsch() curs_insch(TI_LIB)
mvwinsnstr() curs_insstr(TI_LIB)
mvwinsnwstr curs_inswstr(TI_LIB)
mvwinsstr() curs_insstr(TI_LIB)
mvwinstr() curs_instr(TI_LIB)
mvwinswch() curs_inswch(TI_LIB)
mvwinswstr() curs_inswstr(TI_LIB)
mvwinwch() curs_inwch(TI_LIB)
mvwinwchnstr() curs_inwchstr(TI_LIB)
mvwinwchstr() curs_inwchstr(TI_LIB)
mvwinwstr() curs_inwstr(TI_LIB)
mvwprintw() curs_printw(TI_LIB)
mvwscanw() curs_scanw(TI_LIB)
napms() curs_kernel(TI_LIB)
newpad() curs_pad(TI_LIB)
newterm() curs_initscr(TI_LIB)
newwin() curs_window(TI_LIB)
nl() curs_outopts(TI_LIB)
nocbreak() curs_inopts(TI_LIB)
nodelay() curs_inopts(TI_LIB)
noecho() curs_inopts(TI_LIB)
nonl() curs_outopts(TI_LIB)
noqiflush() curs_inopts(TI_LIB)
noraw() curs_inopts(TI_LIB)
notimeout() curs_inopts(TI_LIB)
overlay() curs_overlay(TI_LIB)
overwrite() curs_overlay(TI_LIB)
pair_content() curs_color(TI_LIB)
pechochar() curs_pad(TI_LIB)
pechowchar() curs_pad(TI_LIB)
pnoutrefresh() curs_pad(TI_LIB)
prefresh() curs_pad(TI_LIB)

Page 7

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 413

CURSES (TI_ENV) CURSES (TI_ENV)

CURSES Routine Name Manual Page Name

printw() curs_printw(TI_LIB)
putp() curs_terminfo(TI_LIB)
putwin() curs_util(TI_LIB)
qiflush() curs_inopts(TI_LIB)
raw() curs_inopts(TI_LIB)
redrawwin() curs_refresh(TI_LIB)
refresh() curs_refresh(TI_LIB)
reset_prog_mode() curs_kernel(TI_LIB)
reset_shell_mode() curs_kernel(TI_LIB)
resetty() curs_kernel(TI_LIB)
restartterm() curs_terminfo(TI_LIB)
ripoffline() curs_kernel(TI_LIB)
savetty() curs_kernel(TI_LIB)
scanw() curs_scanw(TI_LIB)
scr_dump() curs_scr_dump(TI_LIB)
scr_init() curs_scr_dump(TI_LIB)
scr_restore() curs_scr_dump(TI_LIB)
scr_set() curs_scr_dump(TI_LIB)
scroll() curs_scroll(TI_LIB)
scrollok() curs_outopts(TI_LIB)
set_curterm() curs_terminfo(TI_LIB)
set_term() curs_initscr(TI_LIB)
setscrreg() curs_outopts(TI_LIB)
setsyx() curs_kernel(TI_LIB)
setterm() curs_terminfo(TI_LIB)
setupterm() curs_terminfo(TI_LIB)
slk_attroff() curs_slk(TI_LIB)
slk_attron() curs_slk(TI_LIB)
slk_attrset() curs_slk(TI_LIB)
slk_clear() curs_slk(TI_LIB)
slk_init() curs_slk(TI_LIB)
slk_label() curs_slk(TI_LIB)
slk_noutrefresh() curs_slk(TI_LIB)
slk_refresh() curs_slk(TI_LIB)
slk_restore() curs_slk(TI_LIB)
slk_set() curs_slk(TI_LIB)
slk_touch() curs_slk(TI_LIB)
srcl() curs_scroll(TI_LIB)
standend() curs_attr(TI_LIB)
standout() curs_attr(TI_LIB)
start_color() curs_color(TI_LIB)
subpad() curs_pad(TI_LIB)
subwin() curs_window(TI_LIB)
syncok() curs_window(TI_LIB)
termattrs() curs_termattrs(TI_LIB)

Page 8

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 414

CURSES (TI_ENV) CURSES (TI_ENV)

CURSES Routine Name Manual Page Name

termname() curs_termattrs(TI_LIB)
tgetent() curs_termcap(TI_LIB)
tgetflag() curs_termcap(TI_LIB)
tgetnum() curs_termcap(TI_LIB)
tgetstr() curs_termcap(TI_LIB)
tgoto() curs_termcap(TI_LIB)
tigetflag() curs_terminfo(TI_LIB)
tigetnum() curs_terminfo(TI_LIB)
tigetstr() curs_terminfo(TI_LIB)
timeout() curs_inopts(TI_LIB)
touchline() curs_touch(TI_LIB)
touchwin() curs_touch(TI_LIB)
tparm() curs_terminfo(TI_LIB)
tputs() curs_termcap(TI_LIB)
tputs() curs_terminfo(TI_LIB)
typeahead() curs_inopts(TI_LIB)
unctrl() curs_util(TI_LIB)
ungetch() curs_getch(TI_LIB)
ungetwch() curs_getwch(TI_LIB)
untouchwin() curs_touch(TI_LIB)
use_env() curs_util(TI_LIB)
vidattr() curs_terminfo(TI_LIB)
vidputs() curs_terminfo(TI_LIB)
vwprintw() curs_printw(TI_LIB)
vwscanw() curs_scanw(TI_LIB)
waddch() curs_addch(TI_LIB)
waddchnstr() curs_addchstr(TI_LIB)
waddchstr() curs_addchstr(TI_LIB)
waddnstr() curs_addstr(TI_LIB)
waddnwstr() curs_addwstr(TI_LIB)
waddstr() curs_addstr(TI_LIB)
waddwch() curs_addwch(TI_LIB)
waddwchnstr() curs_addwchstr(TI_LIB)
waddwchstr() curs_addwchstr(TI_LIB)
waddwstr() curs_addwstr(TI_LIB)
wattroff() curs_attr(TI_LIB)
wattron() curs_attr(TI_LIB)
wattrset() curs_attr(TI_LIB)
wbkgd() curs_bkgd(TI_LIB)
wbkgdset() curs_bkgd(TI_LIB)
wborder() curs_border(TI_LIB)
wclear() curs_clear(TI_LIB)
wclrtobot() curs_clear(TI_LIB)
wclrtoeol() curs_clear(TI_LIB)
wcursyncup() curs_window(TI_LIB)

Page 9

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 415

CURSES (TI_ENV) CURSES (TI_ENV)

CURSES Routine Name Manual Page Name

wdelch() curs_delch(TI_LIB)
wdeleteln() curs_deleteln(TI_LIB)
wechochar() curs_addch(TI_LIB)
wechowchar() curs_addwch(TI_LIB)
werase() curs_clear(TI_LIB)
wgetch() curs_getch(TI_LIB)
wgetnstr() curs_getstr(TI_LIB)
wgetnwstr() curs_getwstr(TI_LIB)
wgetstr() curs_getstr(TI_LIB)
wgetwch() curs_getwch(TI_LIB)
wgetwstr() curs_getwstr(TI_LIB)
whline() curs_border(TI_LIB)
winch() curs_inch(TI_LIB)
winchnstr() curs_inchstr(TI_LIB)
winchstr() curs_inchstr(TI_LIB)
winnstr() curs_instr(TI_LIB)
winnwstr() curs_inwstr(TI_LIB)
winsch() curs_insch(TI_LIB)
winsdelln() curs_deleteln(TI_LIB)
winsertln() curs_deleteln(TI_LIB)
winsnstr() curs_insstr(TI_LIB)
winsnwstr() curs_inswstr(TI_LIB)
winsstr() curs_insstr(TI_LIB)
winstr() curs_instr(TI_LIB)
winswch() curs_inswch(TI_LIB)
winswstr() curs_inswstr(TI_LIB)
winwch() curs_inwch(TI_LIB)
winwchnstr() curs_inwchstr(TI_LIB)
winwchstr() curs_inwchstr(TI_LIB)
winwstr() curs_inwstr(TI_LIB)
wmove() curs_move(TI_LIB)
wnoutrefresh() curs_refresh(TI_LIB)
wprintw() curs_printw(TI_LIB)
wredrawln() curs_refresh(TI_LIB)
wrefresh() curs_refresh(TI_LIB)
wscanw() curs_scanw(TI_LIB)
wscrl() curs_scroll(TI_LIB)
wsetscrreg() curs_outopts(TI_LIB)
wstandend() curs_attr(TI_LIB)
wstandout() curs_attr(TI_LIB)
wsyncdown() curs_window(TI_LIB)
wsyncup() curs_window(TI_LIB)
wtimeout() curs_inopts(TI_LIB)
wtouchln() curs_touch(TI_LIB)
wvline() curs_border(TI_LIB)

Page 10

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 416

CURSES (TI_ENV) CURSES (TI_ENV)

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion, unless otherwise noted in the routine
descriptions.

All macros return the value of the window version, except setscrreg(),
wsetscrreg(), getyx(), getbegyx() and getmaxyx(). The return values of
setscrreg(), wsetscrreg(), getyx(), getbegyx() and getmaxyx() are
undefined (i.e., these should not be used as the right-hand side of assignment state-
ments).

Routines that return pointers return NULL on error.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

SEE ALSO
TERMINFO(TI_ENV) and TI_LIB pages whose names begin ‘‘curs_’’ for detailed
routine descriptions.

LEVEL
Level 1.

Page 11

FINAL COPY
June 15, 1995

File: ti_env/curses
svid

Page: 417

FORMS (TI_ENV) FORMS (TI_ENV)

NAME
FORMS – character based forms package

SYNOPSIS
#include <form.h>

DESCRIPTION
The form library is built using the curses library, and any program using FORMS
routines must call one of the CURSES initialization routines such as initscr(). A
program using these routines must be compiled with –lform and –lcurses on
the cc command line.

The FORMS package gives the applications programmer a terminal-independent
method of creating and customizing forms for user-interaction. The FORMS pack-
age includes: field routines, which are used to create and customize fields, link
fields and assign field types; fieldtype routines, which are used to create new field
types for validating fields; and form routines, which are used to create and custom-
ize forms, assign pre/post processing functions, and display and interact with
forms.

Current Default Values for Field Attributes
The FORMS package establishes initial current default values for field attributes.
During field initialization, each field attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL field pointer. If
an application changes a current default field attribute value, subsequent fields
created using new_field() will have the new default attribute value. (The attri-
butes of previously created fields are not changed if a current default attribute
value is changed.)

Routine Name Index
The following table lists each FORMS routine and the name of the manual page on
which it is described.

FORMS Routine Name Manual Page Name

current_field() form_page(TI_LIB)
data_ahead() form_data(TI_LIB)
data_behind() form_data(TI_LIB)
dup_field() form_field_new(TI_LIB)
dynamic_field_info() form_field_info(TI_LIB)
field_arg() form_field_validation(TI_LIB)
field_back() form_field_attributes(TI_LIB)
field_buffer() form_field_buffer(TI_LIB)
field_count() form_field(TI_LIB)
field_fore() form_field_attributes(TI_LIB)
field_index() form_page(TI_LIB)
field_info() form_field_info(TI_LIB)
field_init() form_hook(TI_LIB)
field_just() form_field_just(TI_LIB)

Page 1

FINAL COPY
June 15, 1995

File: ti_env/forms
svid

Page: 418

FORMS (TI_ENV) FORMS (TI_ENV)

FORMS Routine Name Manual Page Name

field_opts() form_field_opts(TI_LIB)
field_opts_off() form_field_opts(TI_LIB)
field_opts_on() form_field_opts(TI_LIB)
field_pad() form_field_attributes(TI_LIB)
field_status() form_field_buffer(TI_LIB)
field_term() form_hook(TI_LIB)
field_type() form_field_validation(TI_LIB)
field_userptr() form_field_userptr(TI_LIB)
form_driver() form_driver(TI_LIB)
form_fields() form_field(TI_LIB)
form_init() form_hook(TI_LIB)
form_opts() form_opts(TI_LIB)
form_opts_off() form_opts(TI_LIB)
form_opts_on() form_opts(TI_LIB)
form_page() form_page(TI_LIB)
form_sub() form_win(TI_LIB)
form_term() form_hook(TI_LIB)
form_userptr() form_userptr(TI_LIB)
form_win() form_win(TI_LIB)
free_field() form_field_new(TI_LIB)
free_fieldtype() form_fieldtype(TI_LIB)
free_form() form_new(TI_LIB)
link_field() form_field_new(TI_LIB)
link_fieldtype() form_fieldtype(TI_LIB)
move_field() form_field(TI_LIB)
new_field() form_field_new(TI_LIB)
new_fieldtype() form_fieldtype(TI_LIB)
new_form() form_new(TI_LIB)
new_page() form_new_page(TI_LIB)
pos_form_cursor() form_cursor(TI_LIB)
post_form() form_post(TI_LIB)
scale_form() form_win(TI_LIB)
set_current_field() form_page(TI_LIB)
set_field_back() form_field_attributes(TI_LIB)
set_field_buffer() form_field_buffer(TI_LIB)
set_field_fore() form_field_attributes(TI_LIB)
set_field_init() form_hook(TI_LIB)
set_field_just() form_field_just(TI_LIB)
set_field_opts() form_field_opts(TI_LIB)
set_field_pad() form_field_attributes(TI_LIB)
set_field_status() form_field_buffer(TI_LIB)
set_field_term() form_hook(TI_LIB)
set_field_type() form_field_validation(TI_LIB)
set_field_userptr() form_field_userptr(TI_LIB)
set_fieldtype_arg() form_fieldtype(TI_LIB)

Page 2

FINAL COPY
June 15, 1995

File: ti_env/forms
svid

Page: 419

FORMS (TI_ENV) FORMS (TI_ENV)

FORMS Routine Name Manual Page Name

set_fieldtype_choice() form_fieldtype(TI_LIB)
set_form_fields() form_field(TI_LIB)
set_form_init() form_hook(TI_LIB)
set_form_opts() form_opts(TI_LIB)
set_form_page() form_page(TI_LIB)
set_form_sub() form_win(TI_LIB)
set_form_term() form_hook(TI_LIB)
set_form_userptr() form_userptr(TI_LIB)
set_form_win() form_win(TI_LIB)
set_max_field() form_field_buffer(TI_LIB)
set_new_page() form_new_page(TI_LIB)
unpost_form() form_post(TI_LIB)

RETURN VALUE
Routines that return a pointer always return NULL on error. Routines that return an
integer return one of the following:

E_OK – The function returned successfully.
E_CONNECTED – The field is already connected to a form.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_CURRENT – The field is the current field.
E_POSTED – The form is posted.
E_NOT_POSTED – The form is not posted.
E_INVALID_FIELD – The field contents are invalid.
E_NOT_CONNECTED – The field is not connected to a form.
E_NO_ROOM – The form does not fit in the subwindow.
E_BAD_STATE – The routine was called from an initiali-

zation or termination function.
E_REQUEST_DENIED – The form driver request failed.
E_UNKNOWN_COMMAND – An unknown request was passed to the

the form driver.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), and TI_LIB pages whose names begin "form_" for detailed rou-
tine descriptions.

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ti_env/forms
svid

Page: 420

MENUS (TI_ENV) MENUS (TI_ENV)

NAME
MENUS – character based menus package

SYNOPSIS
#include <menu.h>

DESCRIPTION
The menu library is built using the curses library, and any program using MENUS
routines must call one of the CURSES initialization routines, such as initscr().
A program using these routines must be compiled with –lmenu and –lcurses on
the cc command line.

The MENUS package gives the applications programmer a terminal-independent
method of creating and customizing menus for user interaction. The MENUS pack-
age includes: item routines, which are used to create and customize menu items;
and menu routines, which are used to create and customize menus, assign pre- and
post-processing routines, and display and interact with menus.

Current Default Values for Item Attributes
The MENUS package establishes initial current default values for item attributes.
During item initialization, each item attribute is assigned the current default value
for that attribute. An application can change or retrieve a current default attribute
value by calling the appropriate set or retrieve routine with a NULL item pointer. If
an application changes a current default item attribute value, subsequent items
created using new_item() will have the new default attribute value. (The attri-
butes of previously created items are not changed if a current default attribute
value is changed.)

Routine Name Index
The following table lists each MENUS routine and the name of the manual page on
which it is described.

MENUS Routine Name Manual Page Name

current_item() menu_item_current(TI_LIB)
free_item() menu_item_new(TI_LIB)
free_menu() menu_new(TI_LIB)
item_count() menu_items(TI_LIB)
item_description() menu_item_name(TI_LIB)
item_index() menu_item_current(TI_LIB)
item_init() menu_hook(TI_LIB)
item_name() menu_item_name(TI_LIB)
item_opts() menu_item_opts(TI_LIB)
item_opts_off() menu_item_opts(TI_LIB)
item_opts_on() menu_item_opts(TI_LIB)
item_term() menu_hook(TI_LIB)
item_userptr() menu_item_userptr(TI_LIB)
item_value() menu_item_value(TI_LIB)
item_visible() menu_item_visible(TI_LIB)
menu_back() menu_attributes(TI_LIB)

Page 1

FINAL COPY
June 15, 1995

File: ti_env/menus
svid

Page: 421

MENUS (TI_ENV) MENUS (TI_ENV)

MENUS Routine Name Manual Page Name

menu_driver() menu_driver(TI_LIB)
menu_fore() menu_attributes(TI_LIB)
menu_format() menu_format(TI_LIB)
menu_grey() menu_attributes(TI_LIB)
menu_init() menu_hook(TI_LIB)
menu_items() menu_items(TI_LIB)
menu_mark() menu_mark(TI_LIB)
menu_opts() menu_opts(TI_LIB)
menu_opts_off() menu_opts(TI_LIB)
menu_opts_on() menu_opts(TI_LIB)
menu_pad() menu_attributes(TI_LIB)
menu_pattern() menu_pattern(TI_LIB)
menu_sub() menu_win(TI_LIB)
menu_term() menu_hook(TI_LIB)
menu_userptr() menu_userptr(TI_LIB)
menu_win() menu_win(TI_LIB)
new_item() menu_item_new(TI_LIB)
new_menu() menu_new(TI_LIB)
pos_menu_cursor() menu_cursor(TI_LIB)
post_menu() menu_post(TI_LIB)
scale_menu() menu_win(TI_LIB)
set_current_item() menu_item_current(TI_LIB)
set_item_init() menu_hook(TI_LIB)
set_item_opts() menu_item_opts(TI_LIB)
set_item_term() menu_hook(TI_LIB)
set_item_userptr() menu_item_userptr(TI_LIB)
set_item_value() menu_item_value(TI_LIB)
set_menu_back() menu_attributes(TI_LIB)
set_menu_fore() menu_attributes(TI_LIB)
set_menu_format() menu_format(TI_LIB)
set_menu_grey() menu_attributes(TI_LIB)
set_menu_init() menu_hook(TI_LIB)
set_menu_items() menu_items(TI_LIB)
set_menu_mark() menu_mark(TI_LIB)
set_menu_opts() menu_opts(TI_LIB)
set_menu_pad() menu_attributes(TI_LIB)
set_menu_pattern() menu_pattern(TI_LIB)
set_menu_sub() menu_win(TI_LIB)
set_menu_term() menu_hook(TI_LIB)
set_menu_userptr() menu_userptr(TI_LIB)
set_menu_win() menu_win(TI_LIB)
set_top_row() menu_item_current(TI_LIB)
top_row() menu_item_current(TI_LIB)
unpost_menu() menu_post(TI_LIB)

Page 2

FINAL COPY
June 15, 1995

File: ti_env/menus
svid

Page: 422

MENUS (TI_ENV) MENUS (TI_ENV)

RETURN VALUE
Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the

routine.
E_POSTED – The menu is already posted.
E_CONNECTED – One or more items are already connected

to another menu.
E_BAD_STATE – The routine was called from an initialization

or termination function.
E_NO_ROOM – The menu does not fit within its subwindow.
E_NOT_POSTED – The menu has not been posted.
E_UNKNOWN_COMMAND – An unknown request was passed to the

menu driver.
E_NO_MATCH – The character failed to match.
E_NOT_SELECTABLE – The item cannot be selected.
E_NOT_CONNECTED – No items are connected to the menu.
E_REQUEST_DENIED – The menu driver could not process the

request.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), and TI_LIB pages whose names begin "menu_" for detailed rou-
tine descriptions.

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ti_env/menus
svid

Page: 423

PANELS (TI_ENV) PANELS (TI_ENV)

NAME
PANELS – character based panels package

SYNOPSIS
#include <panel.h>

DESCRIPTION
The panel library is built using the curses library, and any program using
PANELS routines must call one of the CURSES initialization routines such as
initscr(). A program using these routines must be compiled with –lpanel
and –lcurses on the cc command line.

The PANELS package gives the applications programmer a way to have depth rela-
tionships between CURSES windows; a CURSES window is associated with every
panel. The PANELS routines allow CURSES windows to overlap without making
visible the overlapped portions of underlying windows. The initial CURSES win-
dow, stdscr, lies beneath all panels. The set of currently visible panels is the deck
of panels.

The PANELS package allows the applications programmer to create panels, fetch
and set their associated windows, shuffle panels in the deck, and manipulate panels
in other ways.

Routine Name Index
The following table lists each PANELS routine and the name of the manual page on
which it is described.

PANELS Routine Name Manual Page Name

bottom_panel() panel_top(TI_LIB)
del_panel() panel_new(TI_LIB)
hide_panel() panel_show(TI_LIB)
move_panel() panel_move(TI_LIB)
new_panel() panel_new(TI_LIB)
panel_above() panel_above(TI_LIB)
panel_below() panel_above(TI_LIB)
panel_hidden() panel_show(TI_LIB)
panel_userptr() panel_userptr(TI_LIB)
panel_window() panel_window(TI_LIB)
replace_panel() panel_window(TI_LIB)
set_panel_userptr() panel_userptr(TI_LIB)
show_panel() panel_show(TI_LIB)
top_panel() panel_top(TI_LIB)
update_panels() panel_update(TI_LIB)

RETURN VALUE
Each PANELS routine that returns a pointer to an object returns NULL if an error
occurs. Each panel routine that returns an integer, returns OK if it executes success-
fully and ERR if it does not.

USAGE
Application Program.

Page 1

FINAL COPY
June 15, 1995

File: ti_env/panels
svid

Page: 424

PANELS (TI_ENV) PANELS (TI_ENV)

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), and TI_LIB pages whose names begin "panel_," for detailed rou-
tine descriptions.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_env/panels
svid

Page: 425

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

NAME
terminfo – terminal capability data base

SYNOPSIS
/usr/share/lib/terminfo/?/∗

DESCRIPTION
terminfo is a database produced by tic that describes the capabilities of devices
such as terminals and printers. Devices are described in terminfo source files by
specifying a set of capabilities, by quantifying certain aspects of the device, and by
specifying character sequences that effect particular results. This database is often
used by screen oriented applications such as vi and CURSES programs, as well as
by some UNIX system commands such as ls and more. This usage allows them to
work with a variety of devices without changes to the programs.

terminfo source files consist of one or more device descriptions. Each description
consists of a header (beginning in column 1) and one or more lines that list the
features for that particular device. Every line in a terminfo source file must end
in a comma (,). Every line in a terminfo source file except the header must be
indented with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped by
using a backslash. The following example shows the format of a terminfo source
file.

alias 1  alias 2  ...  alias n  longname,
<white space> am, lines #24,
<white space> home=\Eeh,

The first line, commonly referred to as the header line, must begin in column one
and must contain at least two aliases separated by vertical bars. The last field in the
header line must be the long name of the device and it may contain any string.
Alias names must be unique in the terminfo database and they must conform to
UNIX system file naming conventions [see tic(TI_CMD)]; they cannot, for example,
contain white space or slashes.

Every device must be assigned a name, such as "vt100". Device names (except the
long name) should be chosen using the following conventions. The name should
not contain hyphens because hyphens are reserved for use when adding suffixes
that indicate special modes.

These special modes may be modes that the hardware can be in, or user prefer-
ences. To assign a special mode to a particular device, append a suffix consisting of
a hyphen and an indicator of the mode to the device name. For example, the -w
suffix means "wide mode"; when specified, it allows for a width of 132 columns
instead of the standard 80 columns. Therefore, if you want to use a vt100 device set
to wide mode, name the device "vt100-w." Use the following suffixes where possi-
ble.

Page 1

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 426

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Suffix Meaning Example

-w Wide mode (more than 80 columns) 5410-w
-am With auto. margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections: "DEVICE
CAPABILITIES" and "PRINTER CAPABILITIES."

PART 1: DEVICE CAPABILITIES
Capabilities in terminfo are of three types: Boolean capabilities (which show that
a device has or does not have a particular feature), numeric capabilities (which
quantify particular features of a device), and string capabilities (which provide
sequences that can be used to perform particular operations on devices).

In the following table, a Variable is the name by which a C programmer accesses a
capability (at the terminfo level). A Capname is the short name for a capability
specified in the terminfo source file. It is used by a person updating the source
file and by the tput command. A Termcap Code is a two-letter sequence that
corresponds to the termcap capability name. (Note that termcap is no longer
supported.)

Capability names have no real length limit, but an informal limit of five characters
has been adopted to keep them short. Whenever possible, capability names are
chosen to be the same as or similar to those specified by the ANSI X3.64-1979 stan-
dard. Semantics are also intended to match those of the ANSI standard.

All string capabilities listed below may have padding specified, with the exception
of those used for input. Input capabilities, listed under the Strings section in the
following tables, have names beginning with key_. The #i symbol in the descrip-
tion field of the following tables refers to the ith parameter.

Booleans
Cap- Termcap

Variable name Code Description

auto_left_margin bw bw cub1 wraps from column 0 to
last column

auto_right_margin am am Terminal has automatic margins
back_color_erase bce be Screen erased with background color
can_change ccc cc Terminal can re-define existing color
ceol_standout_glitch xhp xs Standout not erased by overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for hpa/mhpa caps
cpi_changes_res cpix YF Changing character pitch changes

resolution
cr_cancels_micro_mode crxm YB Using cr turns off micro mode

Page 2

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 427

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

eat_newline_glitch xenl xn Newline ignored after 80 columns
(Concept)

erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g., dialup, switch)
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key km km Has a meta key (shift, sets parity bit)
has_print_wheel daisy YC Printer needs operator to change

character set
has_status_line hs hs Has extra "status line"
hue_lightness_saturation hls hl Terminal uses only HLS color

notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch changes resolution
memory_above da da Display may be retained above the screen
memory_below db db Display may be retained below the screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won’t work, xon/xoff required
no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
no_pad_char npc NP Pad character doesn’t exist
over_strike os os Terminal overstrikes on hard-copy

terminal
prtr_silent mc5i 5i Printer won’t echo on screen
row_addr_glitch xvpa YD Only positive motion for vpa/mvpa caps
semi_auto_right_margin sam YE Printing in last column causes cr
status_line_esc_ok eslok es Escape can be used on the status line
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)
tilde_glitch hz hz Hazeltine; can’t print tilde (˜)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff handshaking

Numbers
Cap- Termcap

Variable name Code Description

buffer_capacity bufsz Ya Number of bytes buffered before printing
columns cols co Number of columns in a line
dot_vert_spacing spinv Yb Spacing of pins vertically in pins per inch
dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch
init_tabs it it Tabs initially every # spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label

Page 3

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 428

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

lines lines li Number of lines on a screen or a page
lines_of_memory lm lm Lines of memory if > lines; 0 means varies
magic_cookie_glitch xmc sg Number of blank characters left by

smso or rmso
max_colors colors Co Maximum number of colors on the screen
max_micro_address maddr Yd Maximum value in micro_..._address

max_micro_jump mjump Ye Maximum value in parm_..._micro

max_pairs pairs pa Maximum number of color-pairs on the
screen

micro_col_size mcs Yf Character step size when in micro mode
micro_line_size mls Yg Line step size when in micro mode
no_color_video ncv NC Video attributes that can’t be used

with colors
number_of_pins npins Yh Number of pins in print-head
num_labels nlab Nl Number of labels on screen (start at 1)
output_res_char orc Yi Horizontal resolution in units per character
output_res_line orl Yj Vertical resolution in units per line
output_res_horz_inch orhi Yk Horizontal resolution in units per inch
output_res_vert_inch orvi Yl Vertical resolution in units per inch
padding_baud_rate pb pb Lowest baud rate where padding needed
virtual_terminal vt vt Virtual terminal number (UNIX system)
wide_char_size widcs Yn Character step size when in double

wide mode
width_status_line wsl ws Number of columns in status line

Strings
Cap- Termcap

Variable name Code Description

acs_chars acsc ac Graphic charset pairs aAbBcC
alt_scancode_esc scesca S8 Alternate escape for scancode emulation

(default is for vt100)
back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
bit_image_repeat birep Zy Repeat bit-image cell #1 #2 times (use tparm)
bit_image_newline binel Zz Move to next row of the bit image (use tparm)
bit_image_carriage_return bicr Yv Move to beginning of same row (use tparm)
carriage_return cr cr Carriage return
change_char_pitch cpi ZA Change number of characters per inch
change_line_pitch lpi ZB Change number of lines per inch
change_res_horz chr ZC Change horizontal resolution
change_res_vert cvr ZD Change vertical resolution
change_scroll_region csr cs Change to lines #1 through #2 (vt100)
char_padding rmp rP Like ip but when in replace mode

Page 4

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 429

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

char_set_names csnm Zy List of character set names
clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear all margins (top, bottom,

and sides)
clear_screen clear cl Clear screen and home cursor
clr_bol el1 cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display
code_set_init csin ci Init sequence for multiple codesets
color_names colornm Yw Give name for color #1
column_address hpa ch Horizontal position absolute
command_character cmdch CC Terminal settable cmd character

in prototype
cursor_address cup cm Move to row #1 col #2
cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 le Move left one space.
cursor_mem_address mrcup CM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal

(undo vs/vi)
cursor_right cuf1 nd Non-destructive space (cursor or

carriage right)
cursor_to_ll ll ll Last line, first column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
define_bit_image_region defbi Yx Define rectangular bit-image region

(use tparm)
define_char defc ZE Define a character in a character set †
delete_character dch1 dc Delete character
delete_line dl1 dl Delete line
device_type devt dv Indicate language/codeset support
dis_status_line dsl ds Disable status line
display_pc_char dispc S1 Display PC character
down_half_line hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region (use tparm)
enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode

Page 5

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 430

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

enter_doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_leftward_mode slm ZI Enable leftward carriage motion
enter_micro_mode smicm ZJ Enable micro motion capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode

(characters invisible)
enter_shadow_mode sshm ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode
enter_subscript_mode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm ZO Enable superscript printing
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode sgr0 me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion
exit_micro_mode rmicm ZT Disable micro motion capabilities
exit_pc_charset_mode rmpch S3 Disable PC character display mode
exit_scancode_mode rmsc S5 Disable PC scancode mode
exit_shadow_mode rshm ZU Disable shadow printing
exit_standout_mode rmso se End standout mode
exit_subscript_mode rsubm ZV Disable subscript printing
exit_superscript_mode rsupm ZW Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward_mode rum ZX Enable downward (normal)

carriage motion
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
flash_screen flash vb Visible bell (may not move cursor)

Page 6

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 431

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

form_feed ff ff Hardcopy terminal page eject
from_status_line fsl fs Return from status line
init_1string is1 i1 Terminal or printer initialization string
init_2string is2 is Terminal or printer initialization string
init_3string is3 i3 Terminal or printer initialization string
init_file if if Name of initialization file
init_prog iprog iP Path name of program for initialization
initialize_color initc Ic Initialize the definition of color
initialize_pair initp Ip Initialize color-pair
insert_character ich1 ic Insert character
insert_line il1 al Add new blank line
insert_padding ip ip Insert pad after character inserted

The ‘‘key_’’ strings are sent by specific keys. The ‘‘key_’’ descriptions include the
macro, defined in curses.h, for the code returned by the CURSES routine
getch() when the key is pressed [see curs_getch(TI_LIB)].

key_a1 ka1 K1 KEY_A1, upper left of keypad
key_a3 ka3 K3 KEY_A3, upper right of keypad
key_b2 kb2 K2 KEY_B2, center of keypad
key_backspace kbs kb KEY_BACKSPACE, sent by backspace key
key_beg kbeg @1 KEY_BEG, sent by beg(inning) key
key_btab kcbt kB KEY_BTAB, sent by back-tab key
key_c1 kc1 K4 KEY_C1, lower left of keypad
key_c3 kc3 K5 KEY_C3, lower right of keypad
key_cancel kcan @2 KEY_CANCEL, sent by cancel key
key_catab ktbc ka KEY_CATAB, sent by clear-all-tabs key
key_clear kclr kC KEY_CLEAR, sent by clear-screen or

erase key
key_close kclo @3 KEY_CLOSE, sent by close key
key_command kcmd @4 KEY_COMMAND, sent by cmd (command)

key
key_copy kcpy @5 KEY_COPY, sent by copy key
key_create kcrt @6 KEY_CREATE, sent by create key
key_ctab kctab kt KEY_CTAB, sent by clear-tab key
key_dc kdch1 kD KEY_DC, sent by delete-character key
key_dl kdl1 kL KEY_DL, sent by delete-line key
key_down kcud1 kd KEY_DOWN, sent by terminal

down-arrow key
key_eic krmir kM KEY_EIC, sent by rmir or smir in

insert mode
key_end kend @7 KEY_END, sent by end key
key_enter kent @8 KEY_ENTER, sent by enter/send key
key_eol kel kE KEY_EOL, sent by clear-to-end-of-line

Page 7

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 432

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

key_f40 kf40 FU KEY_F(40), sent by function key f40
key_f41 kf41 FV KEY_F(41), sent by function key f41
key_f42 kf42 FW KEY_F(42), sent by function key f42
key_f43 kf43 FX KEY_F(43), sent by function key f43
key_f44 kf44 FY KEY_F(44), sent by function key f44
key_f45 kf45 FZ KEY_F(45), sent by function key f45
key_f46 kf46 Fa KEY_F(46), sent by function key f46
key_f47 kf47 Fb KEY_F(47), sent by function key f47
key_f48 kf48 Fc KEY_F(48), sent by function key f48
key_f49 kf49 Fd KEY_F(49), sent by function key f49
key_f50 kf50 Fe KEY_F(50), sent by function key f50
key_f51 kf51 Ff KEY_F(51), sent by function key f51
key_f52 kf52 Fg KEY_F(52), sent by function key f52
key_f53 kf53 Fh KEY_F(53), sent by function key f53
key_f54 kf54 Fi KEY_F(54), sent by function key f54
key_f55 kf55 Fj KEY_F(55), sent by function key f55
key_f56 kf56 Fk KEY_F(56), sent by function key f56
key_f57 kf57 Fl KEY_F(57), sent by function key f57
key_f58 kf58 Fm KEY_F(58), sent by function key f58
key_f59 kf59 Fn KEY_F(59), sent by function key f59
key_f60 kf60 Fo KEY_F(60), sent by function key f60
key_f61 kf61 Fp KEY_F(61), sent by function key f61
key_f62 kf62 Fq KEY_F(62), sent by function key f62
key_f63 kf63 Fr KEY_F(63), sent by function key f63
key_find kfnd @0 KEY_FIND, sent by find key
key_help khlp %1 KEY_HELP, sent by help key
key_home khome kh KEY_HOME, sent by home key
key_ic kich1 kI KEY_IC, sent by ins-char/enter

ins-mode key
key_il kil1 kA KEY_IL, sent by insert-line key
key_left kcub1 kl KEY_LEFT, sent by terminal left-arrow

key
key_ll kll kH KEY_LL, sent by home-down key
key_mark kmrk %2 KEY_MARK, sent by mark key
key_message kmsg %3 KEY_MESSAGE, sent by message key
key_move kmov %4 KEY_MOVE, sent by move key
key_next knxt %5 KEY_NEXT, sent by next-object key
key_npage knp kN KEY_NPAGE, sent by next-page key
key_open kopn %6 KEY_OPEN, sent by open key
key_options kopt %7 KEY_OPTIONS, sent by options key
key_ppage kpp kP KEY_PPAGE, sent by previous-page key
key_previous kprv %8 KEY_PREVIOUS, sent by previous-object

key
key_print kprt %9 KEY_PRINT, sent by print or copy key

Page 9

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 434

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

key_redo krdo %0 KEY_REDO, sent by redo key
key_reference kref &1 KEY_REFERENCE, sent by ref(erence) key
key_refresh krfr &2 KEY_REFRESH, sent by refresh key
key_replace krpl &3 KEY_REPLACE, sent by replace key
key_restart krst &4 KEY_RESTART, sent by restart key
key_resume kres &5 KEY_RESUME, sent by resume key
key_right kcuf1 kr KEY_RIGHT, sent by terminal

right-arrow key
key_save ksav &6 KEY_SAVE, sent by save key
key_sbeg kBEG &9 KEY_SBEG, sent by shifted beginning key
key_scancel kCAN &0 KEY_SCANCEL, sent by shifted cancel key
key_scommand kCMD ∗1 KEY_SCOMMAND, sent by shifted

command key
key_scopy kCPY ∗2 KEY_SCOPY, sent by shifted copy key
key_screate kCRT ∗3 KEY_SCREATE, sent by shifted create key
key_sdc kDC ∗4 KEY_SDC, sent by shifted delete-char key
key_sdl kDL ∗5 KEY_SDL, sent by shifted delete-line key
key_select kslt ∗6 KEY_SELECT, sent by select key
key_send kEND ∗7 KEY_SEND, sent by shifted end key
key_seol kEOL ∗8 KEY_SEOL, sent by shifted clear-line key
key_sexit kEXT ∗9 KEY_SEXIT, sent by shifted exit key
key_sf kind kF KEY_SF, sent by scroll-forward/down

key
key_sfind kFND ∗0 KEY_SFIND, sent by shifted find key
key_shelp kHLP #1 KEY_SHELP, sent by shifted help key
key_shome kHOM #2 KEY_SHOME, sent by shifted home key
key_sic kIC #3 KEY_SIC, sent by shifted input key
key_sleft kLFT #4 KEY_SLEFT, sent by shifted left-arrow

key
key_smessage kMSG %a KEY_SMESSAGE, sent by shifted message

key
key_smove kMOV %b KEY_SMOVE, sent by shifted move key
key_snext kNXT %c KEY_SNEXT, sent by shifted next key
key_soptions kOPT %d KEY_SOPTIONS, sent by shifted options

key
key_sprevious kPRV %e KEY_SPREVIOUS, sent by shifted prev

key
key_sprint kPRT %f KEY_SPRINT, sent by shifted print key
key_sr kri kR KEY_SR, sent by scroll-backward/up

key
key_sredo kRDO %g KEY_SREDO, sent by shifted redo key
key_sreplace kRPL %h KEY_SREPLACE, sent by shifted replace

key
key_sright kRIT %i KEY_SRIGHT, sent by shifted

Page 10

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 435

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

right-arrow key
key_srsume kRES %j KEY_SRSUME, sent by shifted resume

key
key_ssave kSAV !1 KEY_SSAVE, sent by shifted save key
key_ssuspend kSPD !2 KEY_SSUSPEND, sent by shifted suspend

key
key_stab khts kT KEY_STAB, sent by set-tab key
key_sundo kUND !3 KEY_SUNDO, sent by shifted undo key
key_suspend kspd &7 KEY_SUSPEND, sent by

suspend key
key_undo kund &8 KEY_UNDO, sent by undo key
key_up kcuu1 ku KEY_UP, sent by terminal up-arrow key
keypad_local rmkx ke Out of ‘‘keypad-transmit’’ mode
keypad_xmit smkx ks Put terminal in ‘‘keypad-transmit’’ mode
lab_f0 lf0 l0 Labels on function key f0 if not f0
lab_f1 lf1 l1 Labels on function key f1 if not f1
lab_f2 lf2 l2 Labels on function key f2 if not f2
lab_f3 lf3 l3 Labels on function key f3 if not f3
lab_f4 lf4 l4 Labels on function key f4 if not f4
lab_f5 lf5 l5 Labels on function key f5 if not f5
lab_f6 lf6 l6 Labels on function key f6 if not f6
lab_f7 lf7 l7 Labels on function key f7 if not f7
lab_f8 lf8 l8 Labels on function key f8 if not f8
lab_f9 lf9 l9 Labels on function key f9 if not f9
lab_f10 lf10 la Labels on function key f10 if not f10
label_off rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
meta_off rmm mo Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
micro_column_address mhpa ZY Like column_address for micro

adjustment
micro_down mcud1 ZZ Like cursor_down for micro adjustment
micro_left mcub1 Za Like cursor_left for micro adjustment
micro_right mcuf1 Zb Like cursor_right for micro

adjustment
micro_row_address mvpa Zc Like row_address for micro adjustment
micro_up mcuu1 Zd Like cursor_up for micro adjustment
newline nel nw Newline (behaves like cr followed

by lf)
order_of_pins porder Ze Matches software bits to print-head pins
orig_colors oc oc Set all color(-pair)s to the original ones
orig_pair op op Set default color-pair to the original one
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars

Page 11

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 436

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Cap- Termcap
Variable name Code Description

set_a_foreground setaf AF Set foreground color using ANSI escape
set_attributes sgr sa Define the video attributes #1-#9
set_background setb Sb Set current background color
set_bottom_margin smgb Zk Set bottom margin at current line
set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 or #2

lines from bottom
set_color_band setcolor Yz Change to ribbon color #1
set_color_pair scp sp Set current color-pair
set_foreground setf Sf Set current foreground color1
set_left_margin smgl ML Set left margin at current line
set_left_margin_parm smglp Zm Set left (right) margin at column #1 (#2)
set_lr_margin smglr ML Sets both left and right margins
set_page_length slines YZ Set page length to #1 lines (use tparm)
set_right_margin smgr MR Set right margin at current column
set_right_margin_parm smgrp Zn Set right margin at column #1
set_tab hts st Set a tab in all rows, current column
set_tb_margin smgtb MT Sets both top and bottom margins
set_top_margin smgt Zo Set top margin at current line
set_top_margin_parm smgtp Zp Set top (bottom) margin at line #1 (#2)
set_window wind wi Current window is lines #1-#2 cols #3-#4
start_bit_image sbim Zq Start printing bit image graphics
start_char_set_def scsd Zr Start definition of a character set
stop_bit_image rbim Zs End printing bit image graphics
stop_char_set_def rcsd Zt End definition of a character set
subscript_characters subcs Zu List of ‘‘subscript-able’’ characters
superscript_characters supcs Zv List of ‘‘superscript-able’’ characters
tab ht ta Tab to next 8-space hardware tab stop
these_cause_cr docr Zw Printing any of these chars causes cr
to_status_line tsl ts Go to status line, col #1
underline_char uc uc Underscore one char and move past it
up_half_line hu hu Half-line up (reverse 1/2 linefeed)
xoff_character xoffc XF X-off character
xon_character xonc XN X-on character
zero_motion zerom Zx No motion for the subsequent character

Sample Entry
The following entry, which describes the AT&T 610 terminal, is among the more
complex entries in the terminfo file as of this writing.

610 | 610bct | ATT610 | att610 | AT&T 610; 80 column; 98key keyboard
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80,
acsc=‘‘aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}˜˜,
bel=ˆG, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12l,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,

Page 13

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 438

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[?5h$<200>\E[?5l, fsl=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15l\E[13;20l\E[?7h\E[12h\E(B\E)0,
is2=\E[0mˆO, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=ˆH, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kf1=\EOc, kf10=\ENp,
kf11=\ENq, kf12=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EOd,
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%p1%d;%p2%l%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=ˆO, rmir=\E[4l, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3l, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;

%?%p3%p1% | %t;7%;%?%p7%t;8%;m%?%p9%tˆN%eˆO%;,
sgr0=\E[mˆO, smacs=ˆN, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

Types of Capabilities in the Sample Entry
The sample entry shows the formats for the three types of terminfo capabilities
listed: Boolean, numeric, and string. All capabilities specified in the terminfo
source file must be followed by commas, including the last capability in the source
file. In terminfo source files, capabilities are referenced by their capability names
(as shown in the previous tables).

Boolean capabilities are specified simply by their comma separated cap names.

Numeric capabilities are followed by the character ‘#’ and then a positive integer
value. Thus, in the sample, cols (which shows the number of columns available
on a device) is assigned the value 80 for the AT&T 610. (Values for numeric capa-
bilities may be specified in decimal, octal, or hexadecimal, using normal C program-
ming language conventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are
listed by a two- to five-character capname, an ‘=’, and a string ended by the next
occurrence of a comma. A delay in milliseconds may appear anywhere in such a
capability, preceded by $ and enclosed in angle brackets, as in el=\EK$<3>. Pad-
ding characters are supplied by tput. The delay can be any of the following: a
number, a number followed by an asterisk, such as 5∗, a number followed by a
slash, such as 5/, or a number followed by both, such as 5∗/. A ‘∗’ shows that the
padding required is proportional to the number of lines affected by the operation,
and the amount given is the per-affected-unit padding required. (In the case of
insert characters, the factor is still the number of lines affected. This is always 1
unless the device has in and the software uses it.) When a ‘∗’ is specified, it is
sometimes useful to give a delay of the form 3.5 to specify a delay per unit to
tenths of milliseconds. (Only one decimal place is allowed.)

Page 14

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 439

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If there is a way to move the cursor one position to the left (such as backspace), that
capability should be given as cub1. Similarly, sequences to move to the right, up,
and down should be given as cuf1, cuu1, and cud1, respectively. These local
cursor motions must not alter the text they pass over; for example, you would not
normally use ‘‘cuf1=\s’’ because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo
are undefined at the left and top edges of a screen terminal. Programs should never
attempt to backspace around the left edge, unless bw is specified, and should never
attempt to go up locally off the top. To scroll text up, a program goes to the bottom
left corner of the screen and sends the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends
the ri (reverse index) string. The strings ind and ri are undefined when not on
their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These ver-
sions have the same semantics as ind and ri, except that they take one parameter
and scroll the number of lines specified by that parameter. They are also undefined
except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when
text is output, but this does not necessarily apply to a cuf1 from the last column.
Backward motion from the left edge of the screen is possible only when bw is
specified. In this case, cub1 will move to the right edge of the previous row. If bw
is not given, the effect is undefined. This is useful for drawing a box around the
edge of the screen, for example. If the device has switch selectable automatic mar-
gins, am should be specified in the terminfo source file. In this case, initialization
strings should turn on this option, if possible. If the device has a command that
moves to the first column of the next line, that command can be given as nel (new-
line). It does not matter if the command clears the remainder of the current line, so
if the device has no cr and lf it may still be possible to craft a working nel out of
one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the
AT&T 5320 hardcopy terminal is described as follows:

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=ˆG, cr=\r, cub1=\b, cnd1=\n,
dch1=\E[P, dl1=\E[M,
ind=\n,

while the Lear Siegler ADM–3 is described as

adm3 | lsi adm3,
am, bel=ˆG, clear=ˆZ, cols#80, cr=ˆM, cub1=ˆH,
cud1=ˆJ, ind=ˆJ, lines#24,

Section 1-2: Parameterized Strings
Cursor addressing and other strings requiring parameters are described by a
parameterized string capability, with printf()-like escapes (%x) in it. For exam-
ple, to address the cursor, the cup capability is given, using two parameters: the
row and column to address to. (Rows and columns are numbered from zero and

Page 16

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 441

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

refer to the physical screen visible to the user, not to any unseen memory.) If the
terminal has memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate the stack
in the manner of Reverse Polish Notation (postfix). Typically a sequence will push
one of the parameters onto the stack and then print it in some format. Often more
complex operations are necessary. Operations are in postfix form with the
operands in the usual order. That is, to subtract 5 from the first parameter, one
would use %p1%{5}%–.

The % encodings have the following meanings:

%% outputs ‘%’

%[[:]flags][width[.precision]][doxXs]
as in printf(), flags are [–+#] and space

%c print pop() gives %c

%p[1-9]
push ith parm

%P[a-z]
set dynamic variable [a-z] to pop()

%g[a-z]
get dynamic variable [a-z] and push it

%P[A-Z]
set static variable [a-z] to pop()

%g[A-Z]
get static variable [a-z] and push it

%’c’ push char constant c

%{nn}
push decimal constant nn

%l push strlen(pop())

%+ %– %∗ %/ %m
arithmetic (%m is mod): push(pop integer 2 op pop integer 1) where integer 1
represents the top of the stack

%& %| %ˆ
bit operations: push(pop integer 2 op pop integer 1)

%= %> %<
logical operations: push(pop integer 2 op pop integer 1)

%A %O
logical operations: and, or

%! %˜
unary operations: push(op pop())

%i (for ANSI terminals) add 1 to first parm, if one parm present, or first two
parms, if more than one parm present

Page 17

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 442

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

%? expr %t thenpart %e elsepart %;
if-then-else, %e elsepart is optional; else-if’s are possible ala Algol 68: %? c

1
%t b

1
%e c

2
%t b

2
%e c

3
%t b

3
%e c

4
%t b

4
%e b

5
%;

ci are conditions, bi are bodies.

If the ‘‘–’’ flag is used with ‘‘%[doxXs]’’, then a colon (:) must be placed between
the ‘‘%’’ and the ‘‘–’’ to differentiate the flag from the binary ‘‘%–’’ operator, e.g.
‘‘%:–16.16s’’.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to
be sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the rows
and columns is inverted here, and that the row and column are zero-padded as two
digits. Thus its cup capability is:

cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a ˆT,
with the row and column simply encoded in binary, ‘‘cup=ˆT%p1%c%p2%c’’.
Devices that use ‘‘%c’’ need to be able to backspace the cursor (cub1), and to move
the cursor up one line on the screen (cuu1). This is necessary because it is not
always safe to transmit \n, ˆD, and \r, as the system may change or discard them.
(The library routines dealing with terminfo set tty modes so that tabs are never
expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus ‘‘cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c’’. After sending ‘‘\E=’’,
this pushes the first parameter, pushes the ASCII value for a space (32), adds them
(pushing the sum on the stack in place of the two previous values), and outputs that
value as a character. Then the same is done for the second parameter. More com-
plex arithmetic is possible using the stack.

Section 1-3: Cursor Motions
If the terminal has a fast way to home the cursor (to very upper left corner of
screen) then this can be given as home; similarly a fast way of getting to the lower
left-hand corner can be given as ll; this may involve going up with cuu1 from the
home position, but a program should never do this itself (unless ll does) because it
can make no assumption about the effect of moving up from the home position.
Note that the home position is the same as addressing to (0,0): to the top left corner
of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard termi-
nals cannot be used for home without losing some of the other features on the ter-
minal.)

If the device has row or column absolute-cursor addressing, these can be given as
single parameter capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes these are shorter than the more general two-
parameter sequence (as with the Hewlett-Packard 2645) and can be used in prefer-
ence to cup. If there are parameterized local motions (e.g., move n spaces to the
right) these can be given as cud, cub, cuf, and cuu with a single parameter
indicating how many spaces to move. These are primarily useful if the device does
not have cup, such as the Tektronix 4025.

Page 18

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 443

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the device needs to be in a special mode when running a program that uses these
capabilities, the codes to enter and exit this mode can be given as smcup and
rmcup. This arises, for example, from terminals, such as the Concept, with more
than one page of memory. If the device has only memory relative cursor address-
ing and not screen relative cursor addressing, a one screen-sized window must be
fixed into the device for cursor addressing to work properly. This is also used for
the Tektronix 4025, where smcup sets the command character to be the one used
by terminfo. If the smcup sequence will not restore the screen after an rmcup
sequence is output (to the state prior to outputting rmcup), specify nrrmc.

Section 1-4: Area Clears
If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el. If the terminal can clear from the
beginning of the line to the current position inclusive, leaving the cursor where it is,
this should be given as el1. If the terminal can clear from the current position to
the end of the display, then this should be given as ed. ed is only defined from
the first column of a line. (Thus, it can be simulated by a request to delete a large
number of lines, if a true ed is not available.)

Section 1-5: Insert/Delete Line
If the terminal can open a new blank line before the line where the cursor is, this
should be given as il1; this is done only from the first position of a line. The cur-
sor must then appear on the newly blank line. If the terminal can delete the line
which the cursor is on, then this should be given as dl1; this is done only from the
first position on the line to be deleted. Versions of il1 and dl1 which take a sin-
gle parameter and insert or delete that many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the com-
mand to set this can be described with the csr capability, which takes two param-
eters: the top and bottom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the effect of insert or
delete line using this command — the sc and rc (save and restore cursor) com-
mands are also useful. Inserting lines at the top or bottom of the screen can also be
done using ri or ind on many terminals without a true insert/delete line, and is
often faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non-
destructive scrolling regions, create a scrolling region in the middle of the screen,
place data on the bottom line of the scrolling region, move the cursor to the top line
of the scrolling region, and do a reverse index (ri) followed by a delete line (dl1)
or index (ind). If the data that was originally on the bottom line of the scrolling
region was restored into the scrolling region by the dl1 or ind, then the terminal
has non-destructive scrolling regions. Otherwise, it has destructive scrolling
regions. Do not specify csr if the terminal has non-destructive scrolling regions,
unless ind, ri, indn, rin, dl, and dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all com-
mands affect, it should be given as the parameterized string wind. The four
parameters are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

Page 19

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 444

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

Section 1-6: Insert/Delete Character
There are two basic kinds of intelligent terminals with respect to insert/delete char-
acter operations which can be described using terminfo. The most common
insert/delete character operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals, such as the Concept
100 and the Perkin Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can
determine the kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type ‘‘abc def’’ using local cursor motions (not
spaces) between the abc and the def. Then position the cursor before the abc
and put the terminal in insert mode. If typing characters causes the rest of the line
to shift rigidly and characters to fall off the end, then your terminal does not distin-
guish between blanks and untyped positions. If the abc shifts over to the def
which then move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the capability in,
which stands for ‘‘insert null.’’ While these are two logically separate attributes
(one line versus multiline insert mode, and special treatment of untyped spaces) we
have seen no terminals whose insert mode cannot be described with the single attri-
bute.

terminfo can describe both terminals that have an insert mode and terminals
which send a simple sequence to open a blank position on the current line. Give as
smir the sequence to get into insert mode. Give as rmir the sequence to leave
insert mode. Now give as ich1 any sequence needed to be sent just before sending
the character to be inserted. Most terminals with a true insert mode will not give
ich1; terminals that send a sequence to open a screen position should give it here.
(If your terminal has both, insert mode is usually preferable to ich1. Do not give
both unless the terminal actually requires both to be used in combination.) If post-
insert padding is needed, give this as a number of milliseconds padding in ip (a
string option). Any other sequence which may need to be sent after an insert of a
single character may also be given in ip. If your terminal needs both to be placed
into an ‘insert mode’ and a special code to precede each inserted character, then
both smir/rmir and ich1 can be given, and both will be used. The ich capabil-
ity, with one parameter, n , will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this
as a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete charac-
ters on the same line (e.g., if there is a tab after the insertion position). If your termi-
nal allows motion while in insert mode you can give the capability mir to speed
up inserting in this case. Omitting mir will affect only speed. Some terminals
(notably Datamedia’s) must not have mir because of the way their insert mode
works.

Page 20

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 445

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Finally, you can specify dch1 to delete a single character, dch with one parame-
ter, n , to delete n characters, and delete mode by giving smdc and rmdc to enter
and exit delete mode (any mode the terminal needs to be placed in for dch1 to
work).

A command to erase n characters (equivalent to outputting n blanks without mov-
ing the cursor) can be given as ech with one parameter.

Section 1-7: Highlighting, Underlining, and Visible Bells
Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following
display modes (shown with the names by which they are set) may be available: a
blinking screen (blink), bold or extra-bright characters (bold), dim or half-bright
characters (dim), blanking or invisible text (invis), protected text (prot), a
reverse-video screen (rev), and an alternate character set (smacs to enter this mode
and rmacs to exit it). (If a command is necessary before you can enter alternate
character set mode, give the sequence in enacs or "enable alternate-character-set"
mode.) Turning on any of these modes singly may or may not turn off other
modes.

sgr0 should be used to turn off all video enhancement capabilities. It should
always be specified because it represents the only way to turn off some capabilities,
such as dim or blink.

You should choose one display method as standout mode [see CURSES(TI_LIB)] and
use it to highlight error messages and other kinds of text to which you want to
draw attention. Choose a form of display that provides strong contrast but that is
easy on the eyes. (We recommend reverse-video plus half-bright or reverse-video
alone.) The sequences to enter and exit standout mode are given as smso and
rmso, respectively. If the code to change into or out of standout mode leaves one
or even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do, then
xmc should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and
rmul , respectively. If the device has a sequence to underline the current charac-
ter and to move the cursor one space to the right (such as the Micro-Term MIME),
this sequence can be specified as uc.

Terminals with the ‘‘magic cookie’’ glitch (xmc) deposit special ‘‘cookies’’ when
they receive mode-setting sequences, which affect the display algorithm rather than
having extra bits for each character. Some terminals, such as the Hewlett-Packard
2621, automatically leave standout mode when they move to a new line or the cur-
sor is addressed. Programs using standout mode should exit standout mode before
moving the cursor or sending a newline, unless the msgr capability, asserting that
it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as flash; it must not move the cursor. A good
flash can be done by changing the screen into reverse video, pad for 200 ms, then
return the screen to normal video.

Page 21

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 446

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the cursor needs to be made more visible than normal when it is not on the bot-
tom line (to make, for example, a non-blinking underline into an easier to find block
or blinking underline) give this sequence as cvvis. The boolean chts should
also be given. If there is a way to make the cursor completely invisible, give that as
civis. The capability cnorm should be given which undoes the effects of either of
these modes.

If your terminal generates underlined characters by using the underline character
(with no special sequences needed) even though it does not otherwise overstrike
characters, then you should specify the capability ul. For devices on which a char-
acter overstriking another leaves both characters on the screen, specify the capabil-
ity os. If overstrikes are erasable with a blank, then this should be indicated by
specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given as
sgr (set attributes), taking nine parameters. Each parameter is either 0 or non-
zero, as the corresponding attribute is on or off. The nine parameters are, in order:
standout, underline, reverse, blink, dim, bold, blank, protect, alternate character set.
Not all modes need to be supported by sgr; only those for which corresponding
separate attribute commands exist should be supported. For example, let’s assume
that the terminal in question needs the following escape sequences to turn on vari-
ous modes.

tparm
parameter attribute escape sequence

none \E[0m
p1 standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
p8 protect not available
p9 altcharset ˆO (off) ˆN (on)

Note that each escape sequence requires a 0 to turn off other modes before turning
on its own mode. Also note that, as suggested above, standout is set up to be the
combination of reverse and dim. Also, because this terminal has no bold mode, bold is
set up as the combination of reverse and underline. In addition, to allow combina-
tions, such as underline+blink, the sequence to use would be \E[0;3;5m. The ter-
minal doesn’t have protect mode, either, but that cannot be simulated in any way, so
p8 is ignored. The altcharset mode is different in that it is either ˆO or ˆN, depend-
ing on whether it is off or on. If all modes were to be turned on, the sequence
would be \E[0;3;4;5;7;8mˆN.

Now look at when different sequences are output. For example, ;3 is output when
either p2 or p6 is true, that is, if either underline or bold modes are turned on. Writ-
ing out the above sequences, along with their dependencies, gives the following:

Page 22

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 447

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

sequence when to output terminfo translation

\E[0 always \E[0
;3 if p2 or p6 %?%p2%p6%|%t;3%;
;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;
;5 if p4 %?%p4%t;5%;
;7 if p1 or p5 %?%p1%p5%|%t;7%;
;8 if p7 %?%p7%t;8%;
m always m
ˆN or ˆO if p9 ̂ N, else ˆO %?%p9%tˆN%eˆO%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6%
|%t;4%;%?%p5%t;5%;%?%p1%p5%
|%t;7%;%?%p7%t;8%;m%?%p9%tˆN%eˆO%;,

Remember that sgr and sgr0 must always be specified.

Section 1-8: Keypad
If the device has a keypad that transmits sequences when the keys are pressed, this
information can also be specified. Note that it is not possible to handle devices
where the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit,
specify these sequences as smkx and rmkx. Otherwise the keypad is assumed to
always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kcub1, kcuf1, kcuu1, kcud1, and khome,
respectively. If there are function keys such as f0, f1, ..., f63, the sequences they
send can be specified as kf0, kf1, ..., kf63. If the first 11 keys have labels
other than the default f0 through f10, the labels can be given as lf0, lf1, ...,
lf10. The codes transmitted by certain other special keys can be given: kll
(home down), kbs (backspace), ktbc (clear all tabs), kctab (clear the tab stop in
this column), kclr (clear screen or erase key), kdch1 (delete character), kdl1
(delete line), krmir (exit insert mode), kel (clear to end of line), ked (clear to
end of screen), kich1 (insert character or enter insert mode), kil1 (insert line),
knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll
backward/up), khts (set a tab stop in this column). In addition, if the keypad has
a 3 by 3 array of keys including the four arrow keys, the other five keys can be
given as ka1, ka3, kb2, kc1, and kc3. These keys are useful when the effects
of a 3 by 3 directional pad are needed. Further keys are defined above in the capa-
bilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A
string to program screen labels should be specified as pln. Each of these strings
takes two parameters: a function key identifier and a string to program it with.
pfkey causes pressing the given key to be the same as the user typing the given
string; pfloc causes the string to be executed by the terminal in local mode; and
pfx causes the string to be transmitted to the computer. The capabilities nlab,
lw and lh define the number of programmable screen labels and their width and
height. If there are commands to turn the labels on and off, give them in smln and
rmln. smln is normally output after one or more pln sequences to make sure

Page 23

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 448

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

that the change becomes visible.

Section 1-9: Tabs and Initialization
If the device has hardware tabs, the command to advance to the next tab stop can
be given as ht (usually control I). A ‘‘backtab’’ command that moves leftward to
the next tab stop can be given as cbt. By convention, if tty modes show that tabs
are being expanded by the computer rather than being sent to the device, programs
should not use ht or cbt (even if they are present) because the user may not have
the tab stops properly set. If the device has hardware tabs that are initially set
every n spaces when the device is powered up, the numeric parameter it is given,
showing the number of spaces the tabs are set to. This is normally used by tput
init [see tput(TI_CMD)] to determine whether to set the mode for hardware tab
expansion and whether to set the tab stops. If the device has tab stops that can be
saved in nonvolatile memory, the terminfo description can assume that they are
properly set. If there are commands to set and clear tab stops, they can be given as
tbc (clear all tab stops) and hts (set a tab stop in the current column of every
row).

Other capabilities include: is1, is2, and is3, initialization strings for the device;
iprog, the path name of a program to be run to initialize the device; and if, the
name of a file containing long initialization strings. These strings are expected to
set the device into modes consistent with the rest of the terminfo description.
They must be sent to the device each time the user logs in and be output in the fol-
lowing order: run the program iprog; output is1; output is2; set the margins
using mgc, smgl and smgr; set the tabs using tbc and hts; print the file if;
and finally output is3. This is usually done using the init option of tput.

Most initialization is done with is2. Special device modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in
is1 and is3. Sequences that do a reset from a totally unknown state can be given
as rs1, rs2, rf, and rs3, analogous to is1, is2, is3, and if. (The method
using files, if and rf, is used for a few terminals, from
/usr/share/lib/tabset/∗; however, the recommended method is to use the
initialization and reset strings.) These strings are output by tput reset, which is
used when the terminal gets into a wedged state. Commands are normally placed
in rs1, rs2, rs3, and rf only if they produce annoying effects on the screen
and are not necessary when logging in. For example, the command to set a termi-
nal into 80-column mode would normally be part of is2, but on some terminals it
causes an annoying glitch on the screen and is not normally needed because the ter-
minal is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by using
tbc and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify com-
mands to set and clear margins, see "Margins" below under "PRINTER CAPABILI-
TIES.")

Section 1-10: Delays
Certain capabilities control padding in the tty driver. These are primarily needed
by hard-copy terminals, and are used by tput init to set tty modes appropri-
ately. Delays embedded in the capabilities cr, ind, cub1, ff, and tab can be
used to set the appropriate delay bits to be set in the tty driver. If pb (padding

Page 24

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 449

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

baud rate) is given, these values can be ignored at baud rates below the value of
pb.

Section 1-11: Status Lines
If the terminal has an extra ‘‘status line’’ that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom
line, into which one can cursor address normally (such as the Heathkit h19’s 25th
line, or the 24th line of a VT100 which is set to a 23-line scrolling region), the capa-
bility hs should be given. Special strings that go to a given column of the status
line and return from the status line can be given as tsl and fsl. (fsl must leave
the cursor position in the same place it was before tsl. If necessary, the sc and
rc strings can be included in tsl and fsl to get this effect.) The capability tsl
takes one parameter, which is the column number of the status line the cursor is to
be moved to.

If escape sequences and other special commands, such as tab, work while in the
status line, the flag eslok can be given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl. If the terminal has com-
mands to save and restore the position of the cursor, give them as sc and rc. The
status line is normally assumed to be the same width as the rest of the screen, e.g.,
cols. If the status line is a different width (possibly because the terminal does not
allow an entire line to be loaded) the width, in columns, can be indicated with the
numeric parameter wsl.

Section 1-12: Line Graphics
If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc. The definition of this string is based on the
alternate character set used in the DEC VT100 terminal, extended slightly with
some characters from the AT&T 4410v1 terminal.

vt100+
glyph name character

arrow pointing right +
arrow pointing left ,
arrow pointing down .
solid square block 0
lantern symbol I
arrow pointing up –
diamond ‘
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner l
lower left corner m
plus n

Page 25

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 450

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

scan line 1 o
horizontal line q
scan line 9 s
left tee (–) t
right tee (–) u
bottom tee (_ ) v
top tee ( ) w
vertical line x
bullet ˜

The best way to describe a new device’s line graphics set is to add a third column to
the above table with the characters for the new device that produce the appropriate
glyph when the device is in the alternate character set mode. For example,

vt100+ new tty
glyph name char char

upper left corner l R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q ,
vertical line x .

Now write down the characters left to right, as in ‘‘acsc=lRmFkTjGq\,x.’’.

In addition, terminfo allows you to define multiple character sets. See Section 2-5
for details.

Section 1-13: Color Manipulation
Let us define two methods of color manipulation: the Tektronix method and the
HP method. The Tektronix method uses a set of N predefined colors (usually 8)
from which a user can select "current" foreground and background colors. Thus a
terminal can support up to N colors mixed into N*N color-pairs to be displayed on
the screen at the same time. When using an HP method the user cannot define the
foreground independently of the background, or vice-versa. Instead, the user must
define an entire color-pair at once. Up to M color-pairs, made from 2*M different
colors, can be defined this way. Most existing color terminals belong to one of these
two classes of terminals.

The numeric variables colors and pairs define the number of colors and color-
pairs that can be displayed on the screen at the same time. If a terminal can change
the definition of a color (for example, the Tektronix 4100 and 4200 series terminals),
this should be specified with ccc (can change color). To change the definition of a
color (Tektronix 4200 method), use initc (initialize color). It requires four argu-
ments: color number (ranging from 0 to colors–1) and three RGB (red, green, and
blue) values or three HLS colors (Hue, Lightness, Saturation). Ranges of RGB and
HLS values are terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean vari-
able hls; that would instruct the CURSES init_color() routine to convert its
RGB arguments to HLS before sending them to the terminal. The last three

Page 26

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 451

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

arguments to the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different
from RGB and HLS, a mapping to either RGB or HLS must be developed.

To set current foreground or background to a given color, use setaf (set ANSI
foreground) and setab (set ANSI background). They require one parameter: the
number of the color. To initialize a color-pair (HP method), use initp (initialize
pair). It requires seven parameters: the number of a color-pair (range=0 to
pairs–1), and six RGB values: three for the foreground followed by three for the
background. (Each of these groups of three should be in the order RGB.) When
initc or initp are used, RGB or HLS arguments should be in the order "red,
green, blue" or "hue, lightness, saturation"), respectively. To make a color-pair
current, use scp (set color-pair). It takes one parameter, the number of a color-pair.

Some terminals (for example, most color terminal emulators for PCs) erase areas of
the screen with current background color. In such cases, bce (background color
erase) should be defined. The variable op (original pair) contains a sequence for
setting the foreground and the background colors to what they were at the terminal
start-up time. Similarly, oc (original colors) contains a control sequence for setting
all colors (for the Tektronix method) or color-pairs (for the HP method) to the
values they had at the terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes
should not be combined with colors. Information about these video attributes
should be packed into the ncv (no color video) variable. There is a one-to-one
correspondence between the nine least significant bits of that variable and the video
attributes. The following table depicts this correspondence.

Bit Decimal
Attribute Position Value_ __________________________________

A_STANDOUT 0 1
A_UNDERLINE 1 2
A_REVERSE 2 4
A_BLINK 3 8
A_DIM 4 16
A_BOLD 5 32
A_INVIS 6 64
A_PROTECT 7 128
A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the correspond-
ing ncv bit should be set to 1; otherwise it should be set to zero. To determine the
information to pack into the ncv variable, you must add together the decimal
values corresponding to those attributes that cannot coexist with colors. For exam-
ple, if the terminal uses colors to simulate reverse video (bit number 2 and decimal
value 4) and bold (bit number 5 and decimal value 32), the resulting value for ncv
will be 36 (4 + 32).

Section 1-14: Miscellaneous
If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal
does not have a pad character, specify npc.

Page 27

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 452

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control L).

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters) this can be indicated with
the parameterized string rep. The first parameter is the character to be repeated
and the second is the number of times to repeat it. Thus, tparm(repeat_char,
’x’, 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025, this
can be indicated with cmdch. A prototype command character is chosen which is
used in all capabilities. This character is given in the cmdch capability to identify
it. The following convention is supported on some UNIX systems: If the environ-
ment variable CC exists, all occurrences of the prototype character are replaced
with the character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such
as switch, dialup, patch, and network, should include the gn (generic) capability so
that programs can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for which the escape
sequences are known.) If the terminal is one of those supported by the UNIX sys-
tem virtual terminal protocol, the terminal number can be given as vt. A line-
turn-around sequence to be transmitted before doing reads should be specified in
rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding infor-
mation should still be included so that routines can make better decisions about
costs, but actual pad characters will not be transmitted. Sequences to turn on and
off xon/xoff handshaking may be given in smxon and rmxon. If the characters
used for handshaking are not ˆS and ˆQ, they may be specified with xonc and
xoffc.

If the terminal has a ‘‘meta key’’ which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings exist to turn
this ‘‘meta mode’’ on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with lm. A value of lm#0 indicates
that the number of lines is not fixed, but that there is still more memory than fits on
the screen.

Media copy strings which control an auxiliary printer connected to the terminal can
be given as mc0: print the contents of the screen, mc4: turn off the printer, and
mc5: turn on the printer. When the printer is on, all text sent to the terminal will be
sent to the printer. A variation, mc5p, takes one parameter, and leaves the printer
on for as many characters as the value of the parameter, then turns the printer off.
The parameter should not exceed 255. If the text is not displayed on the terminal
screen when the printer is on, specify mc5i (silent printer). All text, including
mc4, is transparently passed to the printer while an mc5p is in effect.

Page 28

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 453

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Section 1-15: Special Cases
The working model used by terminfo fits most terminals reasonably well. How-
ever, some terminals do not completely match that model, requiring special support
by terminfo. These are not meant to be construed as deficiencies in the terminals;
they are just differences between the working model and the actual hardware. They
may be unusual devices or, for some reason, do not have all the features of the ter-
minfo model implemented.

Terminals that cannot display tilde (˜) characters, such as certain Hazeltine termi-
nals, should indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept
100, should indicate xenl. Those terminals whose cursor remains on the right-most
column until another character has been received, rather than wrapping immedi-
ately upon receiving the right-most character, such as the VT100, should also indi-
cate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it),
xhp should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks,
should indicate xt (destructive tabs). This capability is also taken to mean that it is
not possible to position the cursor on top of a ‘‘magic cookie.’’ Therefore, to erase
standout mode, it is necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or control–C
characters, should specify xsb, indicating that the f1 key is to be used for escape
and the f2 key for control C.

Section 1-16: Similar Terminals
If there are two very similar terminals, one can be defined as being just like the
other with certain exceptions. The string capability use can be given with the name
of the similar terminal. The capabilities given before use override those in the ter-
minal type invoked by use. A capability can be canceled by placing xx@ to the left
of the capability definition, where xx is the capability. For example, the entry

att4424-2|Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 4424 terminal that does not have the rev, sgr, and smul capa-
bilities, and hence cannot do highlighting. This is useful for different modes for a
terminal, or for different user preferences. More than one use capability may be
given.

PART 2: PRINTER CAPABILITIES
The terminfo database allows you to define capabilities of printers as well as ter-
minals. To find out what capabilities are available for printers as well as for termi-
nals, see the two lists under "DEVICE CAPABILITIES" that list capabilities by vari-
able and by capability name.

Section 2-1: Rounding Values
Because parameterized string capabilities work only with integer values, we recom-
mend that terminfo designers create strings that expect numeric values that have
been rounded. Application designers should note this and should always round
values to the nearest integer before using them with a parameterized string

Page 29

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 454

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

capability.

Section 2-2: Printer Resolution
A printer’s resolution is defined to be the smallest spacing of characters it can
achieve. In general printers have independent resolution horizontally and verti-
cally. Thus the vertical resolution of a printer can be determined by measuring the
smallest achievable distance between consecutive printing baselines, while the hor-
izontal resolution can be determined by measuring the smallest achievable distance
between the left-most edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and
vertical resolution. The view of printing that terminfo currently presents is one of
printing inside a uniform matrix: All characters are printed at fixed positions rela-
tive to each ‘‘cell’’ in the matrix; furthermore, each cell has the same size given by
the smallest horizontal and vertical step sizes dictated by the resolution. (The cell
size can be changed as will be seen later.)

Many printers are capable of ‘‘proportional printing,’’ where the horizontal spacing
depends on the size of the character last printed. terminfo does not make use of
this capability, although it does provide enough capability definitions to allow an
application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizon-
tal and vertical resolutions suggest, but also of ‘‘moving’’ to a position an integral
multiple of the smallest distance away from a previous position. Thus printed char-
acters can be spaced apart a distance that is an integral multiple of the smallest dis-
tance, up to the length or width of a single page.

Some printers can have different resolutions depending on different ‘‘modes.’’ In
‘‘normal mode,’’ the existing terminfo capabilities are assumed to work on
columns and lines, just like a video terminal. Thus the old lines capability would
give the length of a page in lines, and the cols capability would give the width of
a page in columns. In ‘‘micro mode,’’ many terminfo capabilities work on incre-
ments of lines and columns. With some printers the micro mode may be concomi-
tant with normal mode, so that all the capabilities work at the same time.

Section 2-3: Specifying Printer Resolution’
The printing resolution of a printer is given in several ways. Each specifies the reso-
lution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps_ ___________________________________
orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement to the
next column, except in special cases described later; the distance moved is the same
as the per-column resolution. Some printers cause an automatic movement to the
next line when a character is printed in the rightmost position; the distance moved
vertically is the same as the per-line resolution. When printing in micro mode,
these distances can be different, and may be zero for some printers.

Page 30

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 455

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Specification of Printer Resolution
Automatic Motion after Printing_ ______________________________

Normal Mode:
orc Steps moved horizontally
orl Steps moved vertically

Micro Mode:
mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a
wide character is printed in normal mode may be different from when a regular
width character is printed. The distance moved when a wide character is printed in
micro mode may also be different from when a regular character is printed in micro
mode, but the differences are assumed to be related: If the distance moved for a reg-
ular character is the same whether in normal mode or micro mode (mcs=orc), then
the distance moved for a wide character is also the same whether in normal mode
or micro mode. This doesn’t mean the normal character distance is necessarily the
same as the wide character distance, just that the distances don’t change with a
change in normal to micro mode. However, if the distance moved for a regular
character is different in micro mode from the distance moved in normal mode
(mcs<orc), the micro mode distance is assumed to be the same for a wide character
printed in micro mode, as the table below shows.

Specification of Printer Resolution
Automatic Motion after Printing Wide Character_ ___
Normal Mode or Micro Mode (mcs = orc):
widcs Steps moved horizontally

Micro Mode (mcs < orc):
mcs Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If these
are used, the resolution of the printer changes, but the type of change depends on
the printer:

Specification of Printer Resolution
Changing the Character/Line Pitches_ ___

cpi Change character pitch
cpix If set, cpi changes orhi, otherwise changes orc

lpi Change line pitch
lpix If set, lpi changes orvi, otherwise changes orl

chr Change steps per column
cvr Change steps per line

The cpi and lpi string capabilities are each used with a single argument, the
pitch in columns (or characters) and lines per inch, respectively. The chr and cvr
string capabilities are each used with a single argument, the number of steps per
column and line, respectively.

Page 31

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 456

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Using any of the control sequences in these strings will imply a change in some of
the values of orc, orhi, orl, and orvi. Also, the distance moved when a wide
character is printed, widcs, changes in relation to orc. The distance moved when
a character is printed in micro mode, mcs, changes similarly, with one exception: if
the distance is 0 or 1, then no change is assumed (see items marked with † in the
following table).

Programs that use cpi, lpi, chr, or cvr should recalculate the printer resolu-
tion (and should recalculate other values see "Effect of Changing Printing Resolu-
tion" under "Dot-Mapped Graphics").

Specification of Printer Resolution
Effects of Changing the Character/Line Pitches_ __

Before After_ __
Using cpi with cpix clear:
orhi ′ orhi

orc ′ orc =
V cpi

orhi_ ____

Using cpi with cpix set:
orhi ′ orhi = orc .V cpi
orc ′ orc

Using lpi with lpix clear:
orvi ′ orvi

orl ′ orl =
V lpi

orvi_ ____

Using lpi with lpix set:
orvi ′ orvi = orl .V lpi
orl ′ orl

Using chr:
orhi ′ orhi
orc ′ V chr

Using cvr:
orvi ′ orvi
orl ′ V cvr

Using cpi or chr:

widcs ′ widcs = widcs ′
orc ′
orc_ ____

mcs ′ mcs = mcs ′
orc ′
orc_ ____

V cpi , V lpi , V chr , and V cvr are the arguments used with cpi, lpi, chr, and cvr,
respectively. The prime marks (’) indicate the old values.

Section 2-4: Capabilities that Cause Movement
In the following descriptions, ‘‘movement’’ refers to the motion of the ‘‘current
position.’’ With video terminals this would be the cursor; with some printers

Page 32

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 457

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

this is the carriage position. Other printers have different equivalents. In general,
the current position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for control
sequences that cause movement a number of smallest steps.

String Capabilities for Motion_ ________________________________
mcub1 Move 1 step left
mcuf1 Move 1 step right
mcuu1 Move 1 step up
mcud1 Move 1 step down

mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down

mhpa Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N .

Sometimes the motion is limited to less than the width or length of a page. Also,
some printers don’t accept absolute motion to the left of the current position.
terminfo has capabilities for specifying these limits.

Limits to Motion__
mjump Limit on use of mcub1, mcuf1, mcuu1, mcud1
maddr Limit on use of mhpa, mvpa

xhpa If set, hpa and mhpa can’t move left
xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a ‘‘micro mode’’ for the motion capabilities described
above to work, there are string capabilities defined to contain the control sequence
to enter and exit this mode. A boolean is available for those printers where using a
carriage return causes an automatic return to normal mode.

Entering/Exiting Micro Mode_________________________________
smicm Enter micro mode
rmicm Exit micro mode

crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the next
line, others move to the beginning of the same line. terminfo has boolean capa-
bilities for describing all three cases.

Page 33

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 458

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

What Happens After Character
Printed in Rightmost Position_ __

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is
reversed. This mode can be especially useful when there are no capabilities for left-
ward or upward motion, because those capabilities can be built from the motion
reversal capability and the rightward or downward motion capabilities. It is best to
leave it up to an application to build the leftward or upward capabilities, though,
and not enter them in the terminfo database. This allows several reverse motions
to be strung together without intervening wasted steps that leave and reenter
reverse mode.

Entering/Exiting Reverse Modes_ __
slm Reverse sense of horizontal motions
rlm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
mcub1 Move 1 step right
mcuf1 Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cub1 Move 1 column right
cuf1 Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuu1 Move 1 step down
mcud1 Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuu1 Move 1 line down
cud1 Move 1 line up
cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse the
action of the line ‘‘wrapping’’ that occurs when a character is printed in the right-
most position. Thus printers that have the standard terminfo capability am
defined should experience motion to the beginning of the previous line when a
character is printed in the right-most position under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is
not defined; thus, programs must exit reverse motion modes before using other
motion capabilities.

Page 34

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 459

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Two miscellaneous capabilities complete the list of new motion capabilities. One of
these is needed for printers that move the current position to the beginning of a line
when certain control characters, such as ‘‘line-feed’’ or ‘‘form-feed,’’ are used. The
other is used for the capability of suspending the motion that normally occurs after
printing a character.

Miscellaneous Motion Strings_ __
docr List of control characters causing cr
zerom Prevent auto motion after printing next single character

Margins
terminfo provides two strings for setting margins on terminals: one for the left
and one for the right margin. Printers, however, have two additional margins, for
the top and bottom margins of each page. Furthermore, some printers require not
using motion strings to move the current position to a margin and then fixing the
margin there, but require the specification of where a margin should be regardless
of the current position. Therefore terminfo offers six additional strings for
defining margins with printers.

Setting Margins_ _______________________________________
smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line

smgbp Set bottom margin at line N
smglp Set left margin at column N
smgrp Set right margin at column N
smgtp Set top margin at line N

The last four strings are used with one or more arguments that give the position of
the margin or margins to set. If both of smglp and smgrp are set, each is used
with a single argument, N, that gives the column number of the left and right mar-
gin, respectively. If both of smgtp and smgbp are set, each is used to set the top
and bottom margin, respectively: smgtp is used with a single argument, N, the line
number of the top margin; however, smgbp is used with two arguments, N and M,
that give the line number of the bottom margin, the first counting from the top of
the page and the second counting from the bottom. This accommodates the two
styles of specifying the bottom margin in different manufacturers’ printers. When
coding a terminfo entry for a printer that has a settable bottom margin, only the
first or second parameter should be used, depending on the printer. When writing
an application that uses smgbp to set the bottom margin, both arguments must be
given.

If only one of smglp and smgrp is set, then it is used with two arguments, the
column number of the left and right margins, in that order. Likewise, if only one of
smgtp and smgbp is set, then it is used with two arguments that give the top and
bottom margins, in that order, counting from the top of the page. Thus when cod-
ing a terminfo entry for a printer that requires setting both left and right or top
and bottom margins simultaneously, only one of smglp and smgrp or smgtp
and smgbp should be defined; the other should be left blank. When writing an

Page 35

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 460

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

application that uses these string capabilities, the pairs should be first checked to
see if each in the pair is set or only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the left-
most column. A zero value for the second argument with smgbp means the bot-
tom line of the page.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts
Five new sets of strings are used to describe the capabilities printers have of
enhancing printed text.

Enhanced Printing_ __
sshm Enter shadow-printing mode
rshm Exit shadow-printing mode

sitm Enter italicizing mode
ritm Exit italicizing mode

swidm Enter wide character mode
rwidm Exit wide character mode

ssupm Enter superscript mode
rsupm Exit superscript mode
supcs List of characters available as superscripts

ssubm Enter subscript mode
rsubm Exit subscript mode
subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a control
sequence in sshm but none in rshm should use the sshm control sequence before
every character to be shadow-printed; otherwise, the sshm control sequence
should be used once before the set of characters to be shadow-printed, followed by
rshm. The same is also true of each of the sitm/ritm, swidm/rwidm,
ssupm/rsupm, and ssubm/ rsubm pairs.

Note that terminfo also has a capability for printing emboldened text (bold).
While shadow printing and emboldened printing are similar in that they ‘‘darken’’
the text, many printers produce these two types of print in slightly different ways.
Generally, emboldened printing is done by overstriking the same character one or
more times. Shadow printing likewise usually involves overstriking, but with a
slight movement up and/or to the side so that the character is ‘‘fatter.’’

It is assumed that enhanced printing modes are independent modes, so that it
would be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a
wide character should be given in widcs.

If only a subset of the printable ASCII characters can be printed as superscripts or
subscripts, they should be listed in supcs or subcs strings, respectively. If the
ssupm or ssubm strings contain control sequences, but the corresponding supcs
or subcs strings are empty, it is assumed that all printable ASCII characters are

Page 36

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 461

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be
the same as for regular characters. Thus, for example, printing any of the following
three examples will result in equivalent motion:

Bi B
i

Bi

Note that the existing msgr boolean capability describes whether motion control
sequences can be used while in ‘‘standout mode.’’ This capability is extended to
cover the enhanced printing modes added here. msgr should be set for those
printers that accept any motion control sequences without affecting shadow, itali-
cized, widened, superscript, or subscript printing. Conversely, if msgr is not set, a
program should end these modes before attempting any motion.

Section 2-5: Alternate Character Sets
In addition to allowing you to define line graphics (described in Section 1-12), ter-
minfo lets you define alternate character sets. The following capabilities cover
printers and terminals with multiple selectable or definable character sets.

Alternate Character Sets_ __
scs Select character set N

scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
rcsd End definition of character set N

csnm List of character set names

daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N , a number
from 0 to 63 that identifies the character set. The scsd string is also used with the
argument N and another, M , that gives the number of characters in the set. The
defc string is used with three arguments: A gives the ASCII code representation
for the character, B gives the width of the character in dots, and D is zero or one
depending on whether the character is a ‘‘descender’’ or not. The defc string is
also followed by a string of ‘‘image-data’’ bytes that describe how the character
looks (see below).

Character set 0 is the default character set present after the printer has been initial-
ized. Not every printer has 64 character sets, of course; using scs with an argu-
ment that doesn’t select an available character set should cause a null result from
tparm.

If a character set has to be defined before it can be used, the scsd control sequence
is to be used before defining the character set, and the rcsd is to be used after.
They should also cause a null result from tparm when used with an argument N
that doesn’t apply. If a character set still has to be selected after being defined, the
scs control sequence should follow the rcsd control sequence. By examining the
results of using each of the scs, scsd, and rcsd strings with a character set
number in a call to tparm, a program can determine which of the three are needed.

Page 37

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 462

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Between use of the scsd and rcsd strings, the defc string should be used to
define each character. To print any character on printers covered by terminfo, the
ASCII code is sent to the printer. This is true for characters in an alternate set as
well as ‘‘normal’’ characters. Thus the definition of a character includes the ASCII
code that represents it. In addition, the width of the character in dots is given,
along with an indication of whether the character should descend below the print
line (such as the lower case letter ‘‘g’’ in most character sets). The width of the char-
acter in dots also indicates the number of image-data bytes that will follow the
defc string. These image-data bytes indicate where in a dot-matrix pattern ink
should be applied to ‘‘draw’’ the character; the number of these bytes and their
form are defined below under ‘‘Dot-Mapped Graphics.’’

It’s easiest for the creator of terminfo entries to refer to each character set by
number; however, these numbers will be meaningless to the application developer.
The csnm string alleviates this problem by providing names for each number.

When used with a character set number in a call to tparm, the csnm string will
produce the equivalent name. These names should be used as a reference only. No
naming convention is implied, although anyone who creates a terminfo entry for
a printer should use names consistent with the names found in user documents for
the printer. Application developers should allow a user to specify a character set by
number (leaving it up to the user to examine the csnm string to determine the
correct number), or by name, where the application examines the csnm string to
determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are not
available, the strings should not be defined. For printers that have manually
changed print-wheels or font cartridges, the boolean daisy is set.

Section 2-6: Dot-Matrix Graphics
Dot-matrix printers typically have the capability of reproducing ‘‘raster-graphics’’
images. Three new numeric capabilities and three new string capabilities can help a
program draw raster-graphics images independent of the type of dot-matrix printer
or the number of pins or dots the printer can handle at one time.

Dot-Matrix Graphics_ ___
npins Number of pins, N, in print-head
spinv Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
sbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

The sbim sring is used with a single argument, B , the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to
the technique used for most dot-matrix printers: each pass of the printer’s print-
head is assumed to produce a dot-matrix that is N dots high and B dots wide. This
is typically a wide, squat, rectangle of dots. The height of this rectangle in dots will
vary from one printer to the next; this is given in the npins numeric capability.
The size of the rectangle in fractions of an inch will also vary; it can be deduced
from the spinv and spinh numeric capabilities. With these three values an
application can divide a complete raster-graphics image into several horizontal

Page 38

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 463

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

strips, perhaps interpolating to account for different dot spacing vertically and hor-
izontally.

The sbim and rbim strings are used to start and end a dot-matrix image, respec-
tively. The sbim string is used with a single argument that gives the width of the
dot-matrix in dots. A sequence of ‘‘image-data bytes’’ are sent to the printer after
the sbim string and before the rbim string. The number of bytes is a integral
multiple of the width of the dot-matrix; the multiple and the form of each byte is
determined by the porder string as described below.

The porder string is a comma separated list of pin numbers optionally followed
by an numerical offset. The offset, if given, is separated from the list with a semi-
colon. The position of each pin number in the list corresponds to a bit in an 8-bit
data byte. The pins are numbered consecutively from 1 to npins, with 1 being the
top pin. Note that the term ‘‘pin’’ is used loosely here; ‘‘ink-jet’’ dot-matrix printers
don’t have pins, but can be considered to have an equivalent method of applying a
single dot of ink to paper. The bit positions in porder are in groups of 8, with the
first position in each group the most significant bit and the last position the least
significant bit. An application produces 8-bit bytes in the order of the groups in
porder.

An application computes the ‘‘image-data bytes’’ from the internal image, mapping
vertical dot positions in each print-head pass into 8-bit bytes, using a 1 bit where
ink should be applied and 0 where no ink should be applied. This can be reversed
(0 bit for ink, 1 bit for no ink) by giving a negative pin number. If a position is
skipped in porder, a 0 bit is used. If a position has a lower case ‘x’ instead of a
pin number, a 1 bit is used in the skipped position. For consistency, a lower case ‘o’
can be used to represent a 0 filled, skipped bit. There must be a multiple of 8 bit
positions used or skipped in porder; if not, 0 bits are used to fill the last byte in
the least significant bits. The offset, if given, is added to each data byte; the offset
can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470,
AT&T 475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are
identified top to bottom by the 8 bits in a byte, from least significant to most. The
porder strings for these printers would be 8,7,6,5,4,3,2,1. The AT&T 478
and AT&T 479 printers also provide eight pins for graphics. However, the pins are
identified in the reverse order. The porder strings for these printers would be
1,2,3,4,5,6,7,8. The AT&T 5310, AT&T 5320, DEC LA100, and DEC LN03
printers provide six pins for graphics. The pins are identified top to bottom by the
decimal values 1, 2, 4, 8, 16 and 32. These correspond to the low six bits in an 8-bit
byte, although the decimal values are further offset by the value 63. The porder
string for these printers would be ,,6,5,4,3,2,1;63, or alternately
o,o,6,5,4,3,2,1;63.

Section 2-7: Effect of Changing Printing Resolution
If the control sequences to change the character pitch or the line pitch are used, the
pin or dot spacing may change:

Page 39

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 464

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Dot-Matrix Graphics
Changing the Character/Line Pitches_ _________________________________
cpi Change character pitch
cpix If set, cpi changes spinh

lpi Change line pitch
lpix If set, lpi changes spinv

Programs that use cpi or lpi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches_ __

Before After_ __
Using cpi with cpix clear:

spinh ′ spinh

Using cpi with cpix set:

spinh ′ spinh = spinh ′ .
orhi ′
orhi_ _____

Using lpi with lpix clear:

spinv ′ spinv

Using lpi with lpix set:

spinv ′ spinv = spinv ′ .
orhi ′
orhi_ _____

Using chr:

spinh ′ spinh

Using cvr:

spinv ′ spinv

orhi’ and orhi are the values of the horizontal resolution in steps per inch, before
using cpi and after using cpi, respectively. Likewise, orvi’ and orvi are the
values of the vertical resolution in steps per inch, before using lpi and after using
lpi, respectively. Thus, the changes in the dots per inch for dot-matrix graphics
follow the changes in steps per inch for printer resolution.

Section 2-8: Print Quality
Many dot-matrix printers can alter the dot spacing of printed text to produce near
‘‘letter quality’’ printing or ‘‘draft quality’’ printing. Usually it is important to be
able to choose one or the other because the rate of printing generally falls off as the
quality improves. There are three new strings used to describe these capabilities.

Page 40

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 465

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

Print Quality_ _________________________________
snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have
all three levels, one or two of the strings should be left blank as appropriate.

Section 2-9: Printing Rate and Buffer Size
Because there is no standard protocol that can be used to keep a program synchron-
ized with a printer, and because modern printers can buffer data before printing it,
a program generally cannot determine at any time what has been printed. Two
new numeric capabilities can help a program estimate what has been printed.

Print Rate/Buffer Size_ ___
cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this
value is not given, the rate should be estimated at one-tenth the prevailing baud
rate. bufsz is the maximum number of subsequent characters buffered before the
guaranteed printing of an earlier character, assuming proper flow control has been
used. If this value is not given it is assumed that the printer does not buffer charac-
ters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter ‘‘a’’
followed by 1000 additional characters is guaranteed to cause the letter ‘‘a’’ to print.
If the same printer prints at the rate of 100 characters per second, then it should take
10 seconds to print all the characters in the buffer, less if the buffer is not full. By
keeping track of the characters sent to a printer, and knowing the print rate and
buffer size, a program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate a
few pages of text, count the number of printable characters, and then see how long
it takes to print the text.

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably
print at close to the advertised print rate and probably faster than the rate in cps.
Graphics data with a lot of control sequences, or very long lines of text, will print at
well below the advertised rate and below the rate in cps. If the application is using
cps to decide how long it should take a printer to print a block of text, the applica-
tion should pad the estimate. If the application is using cps to decide how much
text has already been printed, it should shrink the estimate. The application will
thus err in favor of the user, who wants, above all, to see all the output in its correct
place.

FILES
/usr/share/lib/terminfo/?/∗ compiled terminal description database

Page 41

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 466

TERMINFO (TI_ENV) TERMINFO (TI_ENV)

/usr/share/lib/.COREterm/?/∗
subset of compiled terminal description data-
base

/usr/share/lib/tabset/∗ tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and tabs)

SEE ALSO
CURSES(TI_LIB), ls(BU_CMD), pg(BU_CMD), printf(BA_LIB), stty(AU_CMD),
tic(TI_CMD), tput(TI_CMD), tty(AU_CMD), vi(AU_CMD).

USAGE
Administrator and Application Program.

The most effective way to prepare a terminal description is by imitating the descrip-
tion of a similar terminal in terminfo and to build up a description gradually,
using partial descriptions with a screen oriented editor, such as vi, to check that
they are correct. To easily test a new terminal description the environment variable
TERMINFO can be set to the pathname of a directory containing the compiled
description, and programs will look there rather than in
/usr/share/lib/terminfo.

LEVEL
Level 1.

Page 42

FINAL COPY
June 15, 1995

File: ti_env/terminfo
svid

Page: 467

FINAL COPY
June 15, 1995

File:

Page: 468

Terminal Interface Library Routines

The following section contains the manual pages for the TI_LIB routines.

Terminal Interface Library Routines 23-1

FINAL COPY
June 15, 1995
File: ti_lib.cov

svid

Page: 469

FINAL COPY
June 15, 1995

File:

Page: 470

curs_addch (TI_LIB) curs_addch (TI_LIB)

NAME
curs_addch: addch, waddch, mvaddch, mvwaddch, echochar, wechochar – add a
character (with attributes) to a CURSES window and advance cursor

SYNOPSIS
#include <curses.h>

int addch(chtype ch);

int waddch(WINDOW *win, chtype ch);

int mvaddch(int y, int x, chtype ch);

int mvwaddch(WINDOW *win, int y, int x, chtype ch);

int echochar(chtype ch);

int wechochar(WINDOW *win, chtype ch);

DESCRIPTION
With the addch(), waddch(), mvaddch() and mvwaddch() routines, the char-
acter ch is put into the window at the current cursor position of the window and the
position of the window cursor is advanced. Its function is similar to that of
putchar(). At the right margin, an automatic newline is performed. At the bot-
tom of the scrolling region, if scrollok() is enabled, the scrolling region is
scrolled up one line.

If ch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a clrtoeol() before moving. Tabs are considered
to be at every eighth column. If ch is another control character, it is drawn in the ˆX
notation. Calling winch() after adding a control character does not return the con-
trol character, but instead returns the representation of the control character.

Video attributes can be combined with a character by OR-ing them into the parame-
ter. This results in these attributes also being set. (The intent here is that text,
including attributes, can be copied from one place to another using inch() and
addch().) [see standout(), predefined video attribute constants, on the
curs_attr(TI_LIB) page].

The echochar() and wechochar() routines are functionally equivalent to a call
to addch() followed by a call to refresh(), or a call to waddch() followed by a
call to wrefresh(). The knowledge that only a single character is being output is
taken into consideration and, for non-control characters, a considerable perfor-
mance gain might be seen by using these routines instead of their equivalents.

Line Graphics
The following variables may be used to add line drawing characters to the screen
with routines of the addch() family. When variables are defined for the terminal,
the A_ALTCHARSET bit is turned on [see curs_attr(TI_LIB)]. Otherwise, the default
character listed below is stored in the variable. The names chosen are consistent
with the VT100 nomenclature.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_addch
svid

Page: 471

curs_addch (TI_LIB) curs_addch (TI_LIB)

_ __

Name Default Glyph Description
_ __
ACS_ULCORNER + upper left-hand corner
ACS_LLCORNER + lower left-hand corner
ACS_URCORNER + upper right-hand corner
ACS_LRCORNER + lower right-hand corner
ACS_RTEE + right tee (–)
ACS_LTEE + left tee (–)
ACS_BTEE + bottom tee (_ )
ACS_TTEE + top tee ( )
ACS_HLINE – horizontal line
ACS_VLINE  vertical line
ACS_PLUS + plus
ACS_S1 – scan line 1
ACS_S9 _ scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD : checker board (stipple)
ACS_DEGREE ’ degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET o bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW ˆ arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block_ __

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion, unless otherwise noted in the preceding routine
descriptions.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that addch(), mvaddch(), mvwaddch(), and echochar() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_attr(TI_LIB), curs_clear(TI_LIB), curs_inch(TI_LIB),
curs_outopts(TI_LIB), curs_refresh(TI_LIB) putc(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_addch
svid

Page: 472

curs_addchstr (TI_LIB) curs_addchstr (TI_LIB)

NAME
curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,
mvaddchnstr, mvwaddchstr, mvwaddchnstr – add string of characters (and attri-
butes) to a CURSES window

SYNOPSIS
#include <curses.h>

int addchstr(chtype *chstr);

int addchnstr(chtype *chstr, int n);

int waddchstr(WINDOW *win, chtype *chstr);

int waddchnstr(WINDOW *win, chtype *chstr, int n);

int mvaddchstr(int y, int x, chtype *chstr);

int mvaddchnstr(int y, int x, chtype *chstr, int n);

int mvwaddchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwaddchnstr(WINDOW *win, int y, int x,
chtype *chstr, int n);

DESCRIPTION
All of these routines copy chstr directly into the window image structure starting at
the current cursor position. The four routines with n as the last argument copy at
most n elements, but no more than will fit on the line. If n=-1 then the whole string
is copied, to the maximum number that fit on the line.

The position of the window cursor is NOT advanced. These routines works faster
than waddnstr() because they merely copy chstr into the window image structure.
On the other hand, care must be taken when using these functions because they
don’t perform any kind of checking (such as for the newline character), they don’t
advance the current cursor position, and they truncate the string, rather then wrap-
ping it around to the new line.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion, unless otherwise noted in the preceding routine
descriptions.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all routines except waddchnstr() may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_addchst
svid

Page: 473

curs_addstr (TI_LIB) curs_addstr (TI_LIB)

NAME
curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr,
mvwaddstr, mvwaddnstr – add a string of characters to a CURSES window and
advance cursor

SYNOPSIS
#include <curses.h>

int addstr(char *str);

int addnstr(char *str, int n);

int waddstr(WINDOW *win, char *str);

int waddnstr(WINDOW *win, char *str, int n);

int mvaddstr(int y, int x, char *str);

int mvaddnstr(int y, int x, char *str, int n);

int mvwaddstr(WINDOW *win, int y, int x, char *str);

int mvwaddnstr(WINDOW *win, int y, int x, char *str,
int n);

DESCRIPTION
All of these routines write all the characters of the null terminated character string
str on the given window. It is similar to calling waddch() once for each character
in the string. The four routines with n as the last argument write at most n charac-
ters. If n is negative, then the entire string will be added.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all of these routines except waddstr() and waddnstr() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_addch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_addstr
svid

Page: 474

curs_addwch (TI_LIB) curs_addwch (TI_LIB)

NAME
curs_addwch: addwch, waddwch, mvaddwch, mvwaddwch, echowchar,
wechowchar – add a wchar_t character (with attributes) to a CURSES window and
advance cursor

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t a d d w c h (c h t y p e wch) ;

i n t w a d d w c h (W I N D O W *win, c h t y p e wch) ;

i n t m v a d d w c h (i n t y, i n t x, c h t y p e wch) ;

i n t m v w a d d w c h (W I N D O W *win, i n t y, i n t x, c h t y p e wch) ;

i n t e c h o w c h a r (c h t y p e wch) ;

i n t w e c h o w c h a r (W I N D O W *win, c h t y p e wch) ;

DESCRIPTION
The a d d w c h (), w a d d w c h (), m v a d d w c h () and m v w a d d w c h () routines put the charac-
ter wch, holding a w c h a r _ t character, into the window at the current cursor posi-
tion of the window and advance the position of the window cursor. At the right
margin, an automatic newline is performed. At the bottom of the scrolling region,
if s c r o l l o k () is enabled, the scrolling region is scrolled up one line.

If wch is a tab, newline, or backspace, the cursor is moved appropriately within the
window. A newline also does a c l r t o e o l before moving. Tabs are considered to
be at every eighth column. If wch is another control character, it is drawn in the ˆX
notation. Calling w i n w c h () after adding a control character does not return the
control character, but instead returns the representation of the control character.

Video attributes can be combined with a w c h a r _ t character by OR-ing them into
the parameter. This results in these attributes also being set. (The intent here is that
text, including attributes, can be copied from one place to another using i n w c h ()
and a d d w c h ().) [See s t a n d o u t (), predefined video attribute constants, on the
curs_attr(TI_LIB) page].

The e c h o w c h a r () and w e c h o w c h a r () routines are functionally equivalent to a call
to a d d w c h () followed by a call to r e f r e s h (), or a call to w a d d w c h () followed by a
call to w r e f r e s h (). The knowledge that only a single character is being output is
taken into consideration and, for non-control characters, a considerable perfor-
mance gain might be seen by using these routines instead of their equivalents.

Line Graphics
The following variables may be used to add line drawing characters to the screen
with routines of the a d d w c h () family. When variables are defined for the terminal,
the A _ A L T C H A R S E T bit is turned on [see curs_attr(TI_LIB)]. Otherwise, the default
character listed below is stored in the variable. The names chosen are consistent
with the VT100 nomenclature.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_addwch
svid

Page: 475

curs_addwch (TI_LIB) curs_addwch (TI_LIB)

_ __

Name Default Glyph Description
_ __
ACS_ULCORNER + upper left-hand corner
ACS_LLCORNER + lower left-hand corner
ACS_URCORNER + upper right-hand corner
ACS_LRCORNER + lower right-hand corner
ACS_RTEE + right tee (–)
ACS_LTEE + left tee (–)
ACS_BTEE + bottom tee (_ )
ACS_TTEE + top tee ( )
ACS_HLINE – horizontal line
ACS_VLINE  vertical line
ACS_PLUS + plus
ACS_S1 – scan line 1
ACS_S9 _ scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD : checker board (stipple)
ACS_DEGREE ’ degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET o bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW ˆ arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block_ __

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that a d d w c h (), m v a d d w c h (), m v w a d d w c h (), and e c h o w c h a r () may be mac-
ros.

SEE ALSO
CURSES(TI_ENV), curs_attr(TI_LIB), curs_clear(TI_LIB), curs_inwch(TI_LIB),
curs_outopts(TI_LIB), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_addwch
svid

Page: 476

curs_addwchstr (TI_LIB) curs_addwchstr (TI_LIB)

NAME
curs_addwchstr: addwchstr, addwchnstr, waddwchstr, waddwchnstr,
mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr – add string of
w c h a r _ t characters (and attributes) to a CURSES window

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t a d d w c h s t r (c h t y p e *wchstr) ;

i n t a d d w c h n s t r (c h t y p e *wchstr, i n t n) ;

i n t w a d d w c h s t r (W I N D O W *win, c h t y p e *wchstr) ;

i n t w a d d w c h n s t r (W I N D O W *win, c h t y p e *wchstr, i n t n) ;

i n t m v a d d w c h s t r (i n t y, i n t x, c h t y p e *wchstr) ;

i n t m v a d d w c h n s t r (i n t y, i n t x, c h t y p e *wchstr, i n t n) ;

i n t m v w a d d w c h s t r (W I N D O W *win, i n t y, i n t x, c h t y p e *wchstr) ;

i n t m v w a d d w c h n s t r (W I N D O W *win, i n t y, i n t x, c h t y p e *wchstr, i n t n) ;

DESCRIPTION
All of these routines copy wchstr, which points to a string of w c h a r _ t characters,
directly into the window image structure starting at the current cursor position.
The four routines with n as the last argument copy at most n elements, but no more
than will fit on the line. If n=- 1, then the whole string is copied, to the maximum
number that fit on the line.

The position of the window cursor is not advanced. These routines work faster
than w a d d n w s t r () because they merely copy wchstr into the window image struc-
ture. On the other hand, care must be taken when using these functions because
they don’t perform any kind of checking (such as for the newline character), they
don’t advance the current cursor position, and they truncate the string, rather than
wrapping it around to the new line.

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion, unless otherwise noted in the preceding routine
descriptions.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that all routines except w a d d w c h n s t r () may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_addwchstr
svid

Page: 477

curs_addwstr (TI_LIB) curs_addwstr (TI_LIB)

NAME
curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr,
mvaddnwstr, mvwaddwstr, mvwaddnwstr – add a string of w c h a r _ t characters to
a CURSES window and advance cursor

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t a d d w s t r (w c h a r _ t *wstr) ;

i n t a d d n w s t r (w c h a r _ t *wstr, i n t n) ;

i n t w a d d w s t r (W I N D O W *win, w c h a r _ t *wstr) ;

i n t w a d d n w s t r (W I N D O W *win, w c h a r _ t *wstr, i n t n) ;

i n t m v a d d w s t r (y, i n t x, w c h a r _ t *wstr) ;

i n t m v a d d n w s t r (y, i n t x, w c h a r _ t *wstr, i n t n) ;

i n t m v w a d d w s t r (W I N D O W *win, i n t y, i n t x, w c h a r _ t *wstr) ;

i n t m v w a d d n w s t r (W I N D O W *win, i n t y, i n t x, w c h a r _ t *wstr, i n t n) ;

DESCRIPTION
All of these routines write all the characters of the null-terminated w c h a r _ t charac-
ter string str on the given window. The effect is similar to calling w a d d w c h () once
for each w c h a r _ t character in the string. The four routines with n as the last argu-
ment write at most n w c h a r _ t characters. If n is negative, then the entire string will
be added.

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that all of these routines except w a d d w s t r () and w a d d n w s t r () may be mac-
ros.

SEE ALSO
CURSES(TI_ENV), curs_addwch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_addwstr
svid

Page: 478

curs_attr (TI_LIB) curs_attr (TI_LIB)

NAME
curs_attr: attroff, wattroff, attron, wattron, attrset, wattrset, standend, wstandend,
standout, wstandout – CURSES character and window attribute control routines

SYNOPSIS
#include <curses.h>

int attroff(chtype attrs);
int wattroff(WINDOW *win, chtype attrs);
int attron(chtype attrs);
int wattron(WINDOW *win, chtype attrs);
int attrset(chtype attrs);
int wattrset(WINDOW *win, chtype attrs);
int standend(void);

int wstandend(WINDOW *win);
int standout(void);

int wstandout(WINDOW *win);

DESCRIPTION
All of these routines manipulate the current attributes of the named window. The
current attributes of a window are applied to all characters that are written into the
window with waddch(), waddstr() and wprintw(). Attributes are a property
of the character, and move with the character through any scrolling and
insert/delete line/character operations. To the extent possible on the particular ter-
minal, they are displayed as the graphic rendition of characters put on the screen.

The routine attrset() sets the current attributes of the given window to attrs.
The routine attroff() turns off the named attributes without turning any other
attributes on or off. The routine attron() turns on the named attributes without
affecting any others. The routine standout() is the same as
attron(A_STANDOUT). The routine standend() is the same as attrset(0),
that is, it turns off all attributes.

Attributes
The following video attributes, defined in <curses.h>, can be passed to the rou-
tines attron(), attroff(), and attrset(), or OR-ed with the characters
passed to addch().

A_STANDOUT Best highlighting mode of the terminal.
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_ALTCHARSET Alternate character set
A_CHARTEXT Bit-mask to extract a character
COLOR_PAIR(n) Color-pair number n

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_attr
svid

Page: 479

curs_attr (TI_LIB) curs_attr (TI_LIB)

The following macro is the reverse of COLOR_PAIR(n):

PAIR_NUMBER(attrs) Returns the pair number associated
with the COLOR_PAIR(n) attribute.

RETURN VALUE
These routines always return 1.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that attroff(), wattroff(), attron(), wattron(), attrset(), wat-
trset(), standend() and standout() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_addch(TI_LIB), curs_addstr(TI_LIB), curs_printw(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_attr
svid

Page: 480

curs_beep (TI_LIB) curs_beep (TI_LIB)

NAME
curs_beep: beep, flash – CURSES bell and screen flash routines

SYNOPSIS
#include <curses.h>

int beep(void);

int flash(void);

DESCRIPTION
The beep() and flash() routines are used to signal the terminal user. The rou-
tine beep() sounds the audible alarm on the terminal, if possible; if that is not pos-
sible, it flashes the screen (visible bell), if that is possible. The routine flash()
flashes the screen, and if that is not possible, sounds the audible signal. If neither
signal is possible, nothing happens. Nearly all terminals have an audible signal
(bell or beep), but only some can flash the screen.

RETURN VALUE
These routines always return OK.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_beep
svid

Page: 481

curs_bkgd (TI_LIB) curs_bkgd (TI_LIB)

NAME
curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd – CURSES window background
manipulation routines

SYNOPSIS
#include <curses.h>

void bkgdset(chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

int bkgd(chtype ch);

int wbkgd(WINDOW *win, chtype ch);

DESCRIPTION
The bkgdset() and wbkgdset() routines manipulate the background of the
named window. Background is a chtype consisting of any combination of attri-
butes and a character. The attribute part of the background is combined (ORed)
with all non-blank characters that are written into the window with waddch().
Both the character and attribute parts of the background are combined with the
blank characters. The background becomes a property of the character and moves
with the character through any scrolling and insert/delete line/character opera-
tions. To the extent possible on a particular terminal, the attribute part of the back-
ground is displayed as the graphic rendition of the character put on the screen.

The bkgd() and wbkgd() routines combine the new background with every posi-
tion in the window. Background is any combination of attributes and a character.
Only the attribute part is used to set the background of non-blank characters, while
both character and attributes are used for blank positions. To the extent possible on
a particular terminal, the attribute part of the background is displayed as the
graphic rendition of the character put on the screen.

RETURN VALUE
bkgd() and wbkgd() return the integer OK, or a non-negative integer, if
immedok() is set.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that bkgdset() and bkgd() may be macros.

SEE ALSO
CURSES(TI_LIB), curs_addch(TI_LIB), curs_outopts(TI_LIB).

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_bkgd
svid

Page: 482

curs_border (TI_LIB) curs_border (TI_LIB)

NAME
curs_border: border, wborder, box, whline, wvline – create CURSES borders, hor-
izontal and vertical lines

SYNOPSIS
#include <curses.h>

int border(chtype ls, chtype rs, chtype ts, chtype bs,
chtype tl, chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs,
chtype ts, chtype bs, chtype tl, chtype tr,
chtype bl, chtype br);

int box(WINDOW *win, chtype verch, chtype horch);
int hline(chtype ch, int n);
int whline(WINDOW *win, chtype ch, int n);
int vline(chtype ch, int n);
int wvline(WINDOW *win, chtype ch, int n);

DESCRIPTION
With the border(), wborder() and box() routines, a border is drawn around
the edges of the window. The argument ls is a character and attributes used for the
left side of the border, rs - right side, ts - top side, bs - bottom side, tl - top left-hand
corner, tr - top right-hand corner, bl - bottom left-hand corner, and br - bottom
right-hand corner. If any of these arguments is zero, then the following default
values (defined in <curses.h>) are used instead: ACS_VLINE, ACS_VLINE,
ACS_HLINE, ACS_HLINE, ACS_ULCORNER, ACS_URCORNER,
ACS_BLCORNER, ACS_BRCORNER.

box(win, verch, horch) is a shorthand for the following call: wborder(win,
verch, verch, horch, horch, 0, 0, 0, 0).

hline() and whline() draw a horizontal (left to right) line using ch starting at
the current cursor position in the window. The current cursor position is not
changed. The line is at most n characters long, or as many as fit into the window.

vline() and wvline() draw a vertical (top to bottom) line using ch starting at the
current cursor position in the window. The current cursor position is not changed.
The line is at most n characters long, or as many as fit into the window.

RETURN VALUE
All routines return the integer OK, or a non-negative integer if immedok() is set.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that border() and box() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_outopts(TI_LIB).

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_border
svid

Page: 483

curs_border (TI_LIB) curs_border (TI_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_border
svid

Page: 484

curs_clear (TI_LIB) curs_clear (TI_LIB)

NAME
curs_clear: erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol, wclrtoeol –
clear all or part of a CURSES window

SYNOPSIS
include <curses.h>

int erase(void);

int werase(WINDOW *win);

int clear(void);

int wclear(WINDOW *win);

int clrtobot(void);

int wclrtobot(WINDOW *win);

int clrtoeol(void);

int wclrtoeol(WINDOW *win);

DESCRIPTION
The erase() and werase() routines copy blanks to every position in the win-
dow.

The clear() and wclear() routines are like erase() and werase(), but they
also call clearok(), so that the screen is cleared completely on the next call to
wrefresh() for that window and repainted from scratch.

The clrtobot() and wclrtobot() routines erase all lines below the cursor in the
window. Also, the current line to the right of the cursor, inclusive, is erased.

The clrtoeol() and wclrtoeol() routines erase the current line to the right of
the cursor, inclusive.

RETURN VALUE
All routines return the integer OK, or a non-negative integer if immedok() is set.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that erase(), werase(), clear(), wclear(), clrtobot(), and
clrtoeol() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_outopts(TI_LIB), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_clear
svid

Page: 485

curs_color (TI_LIB) curs_color (TI_LIB)

NAME
curs_color: start_color, init_pair, init_color, has_colors, can_change_color,
color_content, pair_content – CURSES color manipulation routines

SYNOPSIS
include <curses.h>

int start_color(void);

int init_pair(short pair, short f, short b);
int init_color(short color, short r, short g, short b);
bool has_colors(void);

bool can_change_color(void);

int color_content(short color, short *r, short *g, short *b);
int pair_content(short pair, short *f, short *b);

DESCRIPTION
Overview

CURSES provides routines that manipulate color on color alphanumeric terminals.
To use these routines start_color() must be called, usually right after
initscr(). Colors are always used in pairs (referred to as color-pairs). A color-
pair consists of a foreground color (for characters) and a background color (for the
field on which the characters are displayed). A programmer initializes a color-pair
with the routine init_pair(). After it has been initialized, COLOR_PAIR(n), a
macro defined in <curses.h>, can be used in the same ways other video attri-
butes can be used. If a terminal is capable of redefining colors, the programmer can
use the routine init_color() to change the definition of a color. The routines
has_colors() and can_change_color() return TRUE or FALSE, depending on
whether the terminal has color capabilities and whether the programmer can
change the colors. The routine color_content() allows a programmer to iden-
tify the amounts of red, green, and blue components in an initialized color. The
routine pair_content() allows a programmer to find out how a given color-pair
is currently defined.

Routine Descriptions
The start_color() routine requires no arguments. It must be called if the pro-
grammer wants to use colors, and before any other color manipulation routine is
called. It is good practice to call this routine right after initscr().
start_color() initializes eight basic colors (black, blue, green, cyan, red,
magenta, yellow, and white), and two global variables, COLORS and COLOR_PAIRS
(respectively defining the maximum number of colors and color-pairs the terminal
can support). It also restores the colors on the terminal to the values they had when
the terminal was just turned on.

The init_pair() routine changes the definition of a color-pair. It takes three
arguments: the number of the color-pair to be changed, the foreground color
number, and the background color number. The value of the first argument must
be between 1 and the smaller of 63 and COLOR_PAIRS-1. The value of the second
and third arguments must be between 0 and COLORS. If the color-pair was previ-
ously initialized, the screen is refreshed and all occurrences of that color-pair is
changed to the new definition.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_color
svid

Page: 486

curs_color (TI_LIB) curs_color (TI_LIB)

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

SEE ALSO
CURSES(TI_ENV), curs_initscr(TI_LIB), curs_attr(TI_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ti_lib/curs_color
svid

Page: 488

curs_delch (TI_LIB) curs_delch (TI_LIB)

NAME
curs_delch: delch, wdelch, mvdelch, mvwdelch – delete character under cursor in a
CURSES window.

SYNOPSIS
#include <curses.h>

int delch(void);

int wdelch(WINDOW *win);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

DESCRIPTION
With these routines the character under the cursor in the window is deleted; all
characters to the right of the cursor on the same line are moved to the left one posi-
tion and the last character on the line is filled with a blank. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware delete character feature.)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that delch(), mvdelch(), and mvwdelch() may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_delch
svid

Page: 489

curs_deleteln (TI_LIB) curs_deleteln (TI_LIB)

NAME
curs_deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln, winsertln – delete
and insert lines in a CURSES window

SYNOPSIS
#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW *win);

int insdelln(int n);

int winsdelln(WINDOW *win, int n);

int insertln(void);

int winsertln(WINDOW *win);

DESCRIPTION
With the deleteln() and wdeleteln() routines, the line under the cursor in the
window is deleted; all lines below the current line are moved up one line. The bot-
tom line of the window is cleared. The cursor position does not change. (This does
not imply use of a hardware delete line feature.)

With the insdelln() and winsdelln() routines, for positive n, insert n lines
into the specified window above the current line. The n bottom lines are lost. For
negative n, delete n lines (starting with the one under the cursor), and move the
remaining lines up. The bottom n lines are cleared. The current cursor position
remains the same.

With the insertln() and insertln() routines, a blank line is inserted above the
current line and the bottom line is lost. (This does not imply use of a hardware
insert line feature.)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all but winsdelln() may be a macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_delln
svid

Page: 490

curs_getch (TI_LIB) curs_getch (TI_LIB)

NAME
curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch – get (or push back) char-
acters from CURSES terminal keyboard

SYNOPSIS
#include <curses.h>

int getch(void);

int wgetch(WINDOW *win);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int ch);

DESCRIPTION
With the getch(), wgetch(), mvgetch() and mvwgetch(), routines a charac-
ter is read from the terminal associated with the window. In no-delay mode, if no
input is waiting, the value ERR is returned. In delay mode, the program waits until
the system passes text through to the program. Depending on the setting of
cbreak(), this is after one character (cbreak mode), or after the first newline (noc-
break mode). In half-delay mode, the program waits until a character is typed or
the specified timeout has been reached. Unless noecho() has been set, the charac-
ter will also be echoed into the designated window.

If the window is not a pad, and it has been moved or modified since the last call to
wrefresh(), wrefresh() will be called before another character is read.

If keypad() is TRUE, and a function key is pressed, the token for that function key
is returned instead of the raw characters. Possible function keys are defined in
<curses.h> with integers beginning with 0401, whose names begin with KEY_.
If a character that could be the beginning of a function key (such as escape) is
received, CURSES sets a timer. If the remainder of the sequence does not come in
within the designated time, the character is passed through; otherwise, the function
key value is returned. For this reason, many terminals experience a delay between
the time a user presses the escape key and the escape is returned to the program.
Since tokens returned by these routines are outside the ASCII range, they are not
printable.

The ungetch() routine places ch back onto the input queue to be returned by the
next call to wgetch().

Function Keys
The following function keys, defined in <curses.h>, might be returned by
getch() if keypad() has been enabled. Note that not all of these may be sup-
ported on a particular terminal if the terminal does not transmit a unique code
when the key is pressed or if the definition for the key is not present in the terminfo
database.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_getch
svid

Page: 491

curs_getch (TI_LIB) curs_getch (TI_LIB)

_ __
Name Key name_ __
KEY_BREAK Break key
KEY_DOWN The four arrow keys ...
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACE Backspace
KEY_F0 Function keys; space for 64 keys is reserved.
KEY_F(n) For 0 ≤ n ≤ 63
KEY_DL Delete line
KEY_IL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send
KEY_SRESET Soft (partial) reset
KEY_RESET Reset or hard reset
KEY_PRINT Print or copy
KEY_LL Home down or bottom (lower left).

Keypad is arranged like this:
A1 up A3
left B2 right
C1 down C3

KEY_A1 Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_BTAB Back tab key
KEY_BEG Beg(inning) key
KEY_CANCEL Cancel key
KEY_CLOSE Close key
KEY_COMMAND Cmd (command) key
KEY_COPY Copy key
KEY_CREATE Create key

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_getch
svid

Page: 492

curs_getch (TI_LIB) curs_getch (TI_LIB)

_ __
Name Key name_ __
KEY_END End key
KEY_EXIT Exit key
KEY_FIND Find key
KEY_HELP Help key
KEY_MARK Mark key
KEY_MESSAGE Message key
KEY_MOVE Move key
KEY_NEXT Next object key
KEY_OPEN Open key
KEY_OPTIONS Options key
KEY_PREVIOUS Previous object key
KEY_REDO Redo key
KEY_REFERENCE Ref(erence) key
KEY_REFRESH Refresh key
KEY_REPLACE Replace key
KEY_RESTART Restart key
KEY_RESUME Resume key
KEY_SAVE Save key
KEY_SBEG Shifted beginning key
KEY_SCANCEL Shifted cancel key
KEY_SCOMMAND Shifted command key
KEY_SCOPY Shifted copy key
KEY_SCREATE Shifted create key
KEY_SDC Shifted delete char key
KEY_SDL Shifted delete line key
KEY_SELECT Select key
KEY_SEND Shifted end key
KEY_SEOL Shifted clear line key
KEY_SEXIT Shifted exit key
KEY_SFIND Shifted find key
KEY_SHELP Shifted help key
KEY_SHOME Shifted home key
KEY_SIC Shifted input key
KEY_SLEFT Shifted left arrow key
KEY_SMESSAGE Shifted message key
KEY_SMOVE Shifted move key
KEY_SNEXT Shifted next key
KEY_SOPTIONS Shifted options key
KEY_SPREVIOUS Shifted prev key
KEY_SPRINT Shifted print key
KEY_SREDO Shifted redo key
KEY_SREPLACE Shifted replace key
KEY_SRIGHT Shifted right arrow
KEY_SRSUME Shifted resume key
KEY_SSAVE Shifted save key

Page 3

FINAL COPY
June 15, 1995

File: ti_lib/curs_getch
svid

Page: 493

curs_getch (TI_LIB) curs_getch (TI_LIB)

_ __
Name Key name_ __
KEY_SSUSPEND Shifted suspend key
KEY_SUNDO Shifted undo key
KEY_SUSPEND Suspend key
KEY_UNDO Undo key
_ __

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Use of the escape key by a programmer for a single character function is
discouraged.

When using getch(), wgetch(), mvgetch(), or mvwgetch(), nocbreak mode
(nocbreak()) and echo mode (echo()) should not be used at the same time.
Depending on the state of the tty driver when each character is typed, the program
may produce undesirable results.

Note that getch(), mvgetch(), and mvwgetch() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_inopts(TI_LIB), curs_move(TI_LIB), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ti_lib/curs_getch
svid

Page: 494

curs_getstr (TI_LIB) curs_getstr (TI_LIB)

NAME
curs_getstr: getstr, wgetstr, mvgetstr, mvwgetstr, wgetnstr – get character strings
from CURSES terminal keyboard

SYNOPSIS
#include <curses.h>

int getstr(char *str);

int wgetstr(WINDOW *win, char *str);

int mvgetstr(int y, int x, char *str);

int mvwgetstr(WINDOW *win, int y, int x, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

DESCRIPTION
The effect of getstr() is as though a series of calls to getch() were made, until
a newline or carriage return is received. The resulting value is placed in the area
pointed to by the character pointer str. wgetnstr() reads at most n characters,
thus preventing a possible overflow of the input buffer. The user’s erase and kill
characters are interpreted, as well as any special keys (such as function keys,
"home" key, "clear" key, etc.).

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that getstr(), mvgetstr(), and mvwgetstr() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_getch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_getstr
svid

Page: 495

curs_getwch (TI_LIB) curs_getwch (TI_LIB)

_ __
Name Key name_ __
KEY_BREAK Break key
KEY_DOWN The four arrow keys ...
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACE Backspace
KEY_F0 Function keys; space for 64 keys is reserved.
KEY_F(n) For 0 ≤ n ≤ 63
KEY_DL Delete line
KEY_IL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send
KEY_SRESET Soft (partial) reset
KEY_RESET Reset or hard reset
KEY_PRINT Print or copy
KEY_LL Home down or bottom (lower left).

Keypad is arranged like this:
A 1 u p A 3
l e f t B 2 r i g h t
C 1 d o w n C 3

KEY_A1 Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad
KEY_BTAB Back tab key
KEY_BEG Beg(inning) key
KEY_CANCEL Cancel key
KEY_CLOSE Close key
KEY_COMMAND Cmd (command) key
KEY_COPY Copy key
KEY_CREATE Create key

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_getwch
svid

Page: 497

curs_getwch (TI_LIB) curs_getwch (TI_LIB)

_ __
Name Key name_ __
KEY_END End key
KEY_EXIT Exit key
KEY_FIND Find key
KEY_HELP Help key
KEY_MARK Mark key
KEY_MESSAGE Message key
KEY_MOVE Move key
KEY_NEXT Next object key
KEY_OPEN Open key
KEY_OPTIONS Options key
KEY_PREVIOUS Previous object key
KEY_REDO Redo key
KEY_REFERENCE Ref(erence) key
KEY_REFRESH Refresh key
KEY_REPLACE Replace key
KEY_RESTART Restart key
KEY_RESUME Resume key
KEY_SAVE Save key
KEY_SBEG Shifted beginning key
KEY_SCANCEL Shifted cancel key
KEY_SCOMMAND Shifted command key
KEY_SCOPY Shifted copy key
KEY_SCREATE Shifted create key
KEY_SDC Shifted delete char key
KEY_SDL Shifted delete line key
KEY_SELECT Select key
KEY_SEND Shifted end key
KEY_SEOL Shifted clear line key
KEY_SEXIT Shifted exit key
KEY_SFIND Shifted find key
KEY_SHELP Shifted help key
KEY_SHOME Shifted home key
KEY_SIC Shifted input key
KEY_SLEFT Shifted left arrow key
KEY_SMESSAGE Shifted message key
KEY_SMOVE Shifted move key
KEY_SNEXT Shifted next key
KEY_SOPTIONS Shifted options key
KEY_SPREVIOUS Shifted prev key
KEY_SPRINT Shifted print key
KEY_SREDO Shifted redo key
KEY_SREPLACE Shifted replace key
KEY_SRIGHT Shifted right arrow
KEY_SRSUME Shifted resume key
KEY_SSAVE Shifted save key

Page 3

FINAL COPY
June 15, 1995

File: ti_lib/curs_getwch
svid

Page: 498

curs_getwch (TI_LIB) curs_getwch (TI_LIB)

_ __
Name Key name_ __
KEY_SSUSPEND Shifted suspend key
KEY_SUNDO Shifted undo key
KEY_SUSPEND Suspend key
KEY_UNDO Undo key

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Use of the escape key by a programmer for a single character function is
discouraged.

When using g e t w c h (), w g e t w c h (), m v g e t w c h () or m v w g e t w c h (), n o c b r e a k ()
mode and e c h o () mode should not be used at the same time. Depending on the
state of the tty driver when each character is typed, the program may produce
undesirable results.

Note that g e t w c h (), m v g e t w c h () and m v w g e t w c h () may be macros.

SEE ALSO
CURSES (TI_ENV), curs_inopts(TI_LIB), curs_move(TI_LIB), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ti_lib/curs_getwch
svid

Page: 499

curs_getwstr (TI_LIB) curs_getwstr (TI_LIB)

NAME
curs_getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr,
mvwgetwstr, mvwgetnwstr – get w c h a r _ t character strings from CURSES terminal
keyboard

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t g e t w s t r (w c h a r _ t *wstr) ;

i n t g e t n w s t r (w c h a r _ t *wstr, i n t n) ;

i n t w g e t w s t r (W I N D O W *win, w c h a r _ t *wstr) ;

i n t w g e t n w s t r (W I N D O W *win, w c h a r _ t *wstr, i n t n) ;

i n t m v g e t w s t r (i n t y, i n t x, w c h a r _ t *wstr) ;

i n t m v g e t n w s t r (i n t y, i n t x, w c h a r _ t *wstr, i n t n) ;

i n t m v w g e t w s t r (W I N D O W *win, i n t y, i n t x, w c h a r _ t *wstr) ;

i n t m v w g e t n w s t r (W I N D O W *win, i n t y, i n t x, w c h a r _ t *wstr, i n t n) ;

DESCRIPTION
The effect of g e t w s t r () is as though a series of calls to g e t w c h () were made, until
a newline and carriage return is received. The resulting value is placed in the area
pointed to by the w c h a r _ t pointer str. g e t n w s t r () reads at most n w c h a r _ t char-
acters, thus preventing a possible overflow of the input buffer. The user’s erase and
kill characters are interpreted, as well as any special keys (such as function keys,
‘‘home’’ key, ‘‘clear’’ key, etc.).

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that all routines except w g e t n w s t r () may be macros.

SEE ALSO
CURSES(TI_ENV), curs_getwch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_getwstr
svid

Page: 500

curs_getyx (TI_LIB) curs_getyx (TI_LIB)

NAME
curs_getyx: getyx, getparyx, getbegyx, getmaxyx – get CURSES cursor and win-
dow coordinates

SYNOPSIS
#include <curses.h>

void getyx(WINDOW *win, int y, int x);

void getparyx(WINDOW *win, int y, int x);

void getbegyx(WINDOW *win, int y, int x);

void getmaxyx(WINDOW *win, int y, int x);

DESCRIPTION
With the getyx() macro, the cursor position of the window is placed in the two
integer variables y and x.

With the getparyx() macro, if win is a subwindow, the beginning coordinates of
the subwindow relative to the parent window are placed into two integer variables,
y and x. Otherwise, –1 is placed into y and x.

Like getyx(), the getbegyx() and getmaxyx() macros store the current begin-
ning coordinates and size of the specified window.

RETURN VALUE
The return values of these macros are undefined (i.e., they should not be used as the
right-hand side of assignment statements).

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all of these interfaces are macros and that "&" is not necessary before the
variables y and x.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_getyx
svid

Page: 501

curs_inch (TI_LIB) curs_inch (TI_LIB)

NAME
curs_inch: inch, winch, mvinch, mvwinch – get a character and its attributes from a
CURSES window

SYNOPSIS
#include <curses.h>

chtype inch(void);

chtype winch(WINDOW *win);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the character, of type chtype, at the current position in the
named window is returned. If any attributes are set for that position, their values
are OR-ed into the value returned. Constants defined in <curses.h> can be used
with the & (logical AND) operator to extract the character or attributes alone.

Attributes
The following bit-masks may be AND-ed with characters returned by winch().

A_CHARTEXT Bit-mask to extract character
A_ATTRIBUTES Bit-mask to extract attributes
A_COLOR Bit-mask to extract color-pair field information

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all of these routines may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inch
svid

Page: 502

curs_inchstr (TI_LIB) curs_inchstr (TI_LIB)

NAME
curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr,
mvwinchstr, mvwinchnstr – get a string of characters (and attributes) from a
CURSES window

SYNOPSIS
#include <curses.h>

int inchstr(chtype *chstr);

int inchnstr(chtype *chstr, int n);

int winchstr(WINDOW *win, chtype *chstr);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

DESCRIPTION
With these routines, a string of type chtype, starting at the current cursor position
in the named window and ending at the right margin of the window, is returned.
The four functions with n as the last argument, return the string at most n charac-
ters long. Constants defined in <curses.h> can be used with the & (logical AND)
operator to extract the character or the attribute alone from any position in the chstr
[see curs_inch(TI_LIB)].

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all routines except winchnstr() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_inch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inchstr
svid

Page: 503

curs_initscr (TI_LIB) curs_initscr (TI_LIB)

NAME
curs_initscr: initscr, newterm, endwin, isendwin, set_term, delscreen – CURSES
screen initialization and manipulation routines

SYNOPSIS
#include <curses.h>

WINDOW *initscr(void);

int endwin(void);

int isendwin(void);

SCREEN *newterm(char *type, FILE *outfd, FILE *infd);

SCREEN *set_term(SCREEN *new);

void delscreen(SCREEN *sp);

DESCRIPTION
initscr() is almost always the first routine that should be called (the exceptions
are slk_init(), filter(), ripoffline(), use_env() and, for multiple-
terminal applications, newterm().) This determines the terminal type and initial-
izes all CURSES data structures. initscr() also causes the first call to
refresh() to clear the screen. If errors occur, initscr() writes an appropriate
error message to standard error and exits; otherwise, a pointer is returned to
stdscr. If the program needs an indication of error conditions, newterm()
should be used instead of initscr(); initscr() should only be called once per
application.

A program that outputs to more than one terminal should use the newterm() rou-
tine for each terminal instead of initscr(). A program that needs an indication
of error conditions, so it can continue to run in a line-oriented mode if the terminal
cannot support a screen-oriented program, would also use this routine. The routine
newterm() should be called once for each terminal. It returns a variable of type
SCREEN * which should be saved as a reference to that terminal. The arguments
are the type of the terminal to be used in place of $TERM, a file pointer for output to
the terminal, and another file pointer for input from the terminal (if type is NULL,
$TERM will be used). The program must also call endwin() for each terminal
being used before exiting from curses. If newterm() is called more than once for
the same terminal, the first terminal referred to must be the last one for which
endwin() is called.

A program should always call endwin() before exiting or escaping from CURSES
mode temporarily. This routine restores tty modes, moves the cursor to the lower
left-hand corner of the screen and resets the terminal into the proper non-visual
mode. Calling refresh() or doupdate() after a temporary escape causes the
program to resume visual mode.

The isendwin() routine returns TRUE if endwin() has been called without any
subsequent calls to wrefresh(), and FALSE otherwise.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_initscr
svid

Page: 504

curs_initscr (TI_LIB) curs_initscr (TI_LIB)

The set_term() routine is used to switch between different terminals. The screen
reference new becomes the new current terminal. The previous terminal is
returned by the routine. This is the only routine which manipulates SCREEN
pointers; all other routines affect only the current terminal.

The delscreen() routine frees storage associated with the SCREEN data struc-
ture. The endwin() routine does not do this, so delscreen() should be called
after endwin() if a particular SCREEN is no longer needed.

RETURN VALUE
endwin() returns the integer ERR upon failure and OK upon successful completion.

Routines that return pointers always return NULL on error.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that initscr() and newterm() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_kernel(TI_LIB), curs_refresh(TI_LIB), curs_slk(TI_LIB),
curs_util(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_initscr
svid

Page: 505

curs_inopts (TI_LIB) curs_inopts (TI_LIB)

NAME
curs_inopts: cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta,
nodelay, notimeout, raw, noraw, noqiflush, qiflush, timeout, wtimeout, typeahead –
CURSES terminal input option control routines

SYNOPSIS
#include <curses.h>

int cbreak(void);

int nocbreak(void);

int echo(void);

int noecho(void);

int halfdelay(int tenths);

int intrflush(WINDOW *win, bool bf);

int keypad(WINDOW *win, bool bf);

int meta(WINDOW *win, bool bf);

int nodelay(WINDOW *win, bool bf);

int notimeout(WINDOW *win, bool bf);

int raw(void);

int noraw(void);

void noqiflush(void);

void qiflush(void);

void timeout(int delay);

void wtimeout(WINDOW *win, int delay);

int typeahead(int fd);

DESCRIPTION
The cbreak() and nocbreak() routines put the terminal into and out of cbreak
mode, respectively. In this mode, characters typed by the user are immediately
available to the program, and erase/kill character-processing is not performed.
When out of this mode, the tty driver buffers the typed characters until a newline or
carriage return is typed. Interrupt and flow control characters are unaffected by
this mode. Initially the terminal may or may not be in cbreak mode, as the mode
is inherited; therefore, a program should call cbreak() or nocbreak() explicitly.
Most interactive programs using CURSES set the cbreak mode.

Note that cbreak() overrides raw(). [See curs_getch(TI_LIB) for a discussion of
how these routines interact with echo() and noecho().]

The echo() and noecho() routines control whether characters typed by the user
are echoed by getch() as they are typed. Echoing by the tty driver is always dis-
abled, but initially getch() is in echo mode, so characters typed are echoed.
Authors of most interactive programs prefer to do their own echoing in a controlled
area of the screen, or not to echo at all, so they disable echoing by calling

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inopts
svid

Page: 506

curs_inopts (TI_LIB) curs_inopts (TI_LIB)

noecho(). [See curs_getch(TI_LIB) for a discussion of how these routines interact
with cbreak() and nocbreak().]

The halfdelay() routine is used for half-delay mode, which is similar to
cbreak() mode in that characters typed by the user are immediately available to
the program. However, after blocking for tenths tenths of seconds, ERR is returned
if nothing has been typed. The value of tenths must be a number between 1 and
255. Use nocbreak() to leave half-delay mode.

If the intrflush() option is enabled, (bf is TRUE), when an interrupt key is
pressed on the keyboard (interrupt, break, quit) all output in the tty driver queue
will be flushed, giving the effect of faster response to the interrupt, but causing
CURSES to have the wrong idea of what is on the screen. Disabling (bf is FALSE),
the option prevents the flush. The default for the option is inherited from the tty
driver settings. The window argument is ignored.

The keypad() option enables the keypad of the user’s terminal. If enabled (bf is
TRUE), the user can press a function key (such as an arrow key) and wgetch()
returns a single value representing the function key, as in KEY_LEFT. If disabled (bf
is FALSE), CURSES does not treat function keys specially and the program has to
interpret the escape sequences itself. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this option causes the
terminal keypad to be turned on when wgetch() is called. The default value for
keypad is false.

Initially, whether the terminal returns 7 or 8 significant bits on input depends on
the control mode of the tty driver [see termio(BA_DEV)]. To force 8 bits to be
returned, invoke meta(win, TRUE). To force 7 bits to be returned, invoke
meta(win, FALSE). The window argument, win, is always ignored. If the terminfo
capabilities smm (meta_on) and rmm (meta_off) are defined for the terminal, smm is
sent to the terminal when meta(win, TRUE) is called and rmm is sent when
meta(win, FALSE) is called.

The nodelay() option causes getch() to be a non-blocking call. If no input is
ready, getch() returns ERR. If disabled (bf is FALSE), getch() waits until a key
is pressed.

While interpreting an input escape sequence, wgetch() sets a timer while waiting
for the next character. If notimeout(win, TRUE) is called, then wgetch() does
not set a timer. The purpose of the timeout is to differentiate between sequences
received from a function key and those typed by a user.

With the raw() and noraw() routines, the terminal is placed into or out of raw
mode. Raw mode is similar to cbreak mode, in that characters typed are immedi-
ately passed through to the user program. The differences are that in raw mode,
the interrupt, quit, suspend, and flow control characters are all passed through
uninterpreted, instead of generating a signal. The behavior of the BREAK key
depends on other bits in the tty driver that are not set by CURSES.

When the noqiflush() routine is used, normal flush of input and output queues
associated with the INTR, QUIT and SUSP characters will not be done [see
termio(BA_DEV)]. When qiflush() is called, the queues will be flushed when
these control characters are read.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_inopts
svid

Page: 507

curs_inopts (TI_LIB) curs_inopts (TI_LIB)

The timeout() and wtimeout() routines set blocking or non-blocking read for a
given window. If delay is negative, blocking read is used (i.e., waits indefinitely for
input). If delay is zero, then non-blocking read is used (i.e., read returns ERR if no
input is waiting). If delay is positive, then read blocks for delay milliseconds, and
returns ERR if there is still no input. Hence, these routines provide the same func-
tionality as nodelay(), plus the additional capability of being able to block for
only delay milliseconds (where delay is positive).

CURSES does ‘‘line-breakout optimization’’ by looking for typeahead periodically
while updating the screen. If input is found, and it is coming from a tty, the current
update is postponed until refresh() or doupdate() is called again. This allows
faster response to commands typed in advance. Normally, the input FILE pointer
passed to newterm(), or stdin in the case that initscr() was used, will be
used to do this typeahead checking. The typeahead() routine specifies that the
file descriptor fd is to be used to check for typeahead instead. If fd is –1, then no
typeahead checking is done.

RETURN VALUE
All routines that return an integer return ERR upon failure and an integer value
other than ERR upon successful completion, unless otherwise noted in the preced-
ing routine descriptions.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that echo, noecho(), halfdelay(), intrflush(), meta(), nodelay(),
notimeout(), noqiflush(), qiflush(), timeout(), and wtimeout() may
be macros.

SEE ALSO
CURSES(TI_ENV), curs_getch(TI_LIB), curs_initscr(TI_LIB), termio(BA_DEV).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ti_lib/curs_inopts
svid

Page: 508

curs_insch (TI_LIB) curs_insch (TI_LIB)

NAME
curs_insch: insch, winsch, mvinsch, mvwinsch – insert a character before the char-
acter under the cursor in a CURSES window

SYNOPSIS
#include <curses.h>

int insch(chtype ch);

int winsch(WINDOW *win, chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

DESCRIPTION
With these routines, the character ch is inserted before the character under the cur-
sor. All characters to the right of the cursor are moved one space to the right, with
the possibility of the rightmost character on the line being lost. The cursor position
does not change (after moving to y, x, if specified). (This does not imply use of the
hardware insert character feature.)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that insch(), mvinsch(), and mvwinsch() may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_insch
svid

Page: 509

curs_insstr (TI_LIB) curs_insstr (TI_LIB)

NAME
curs_instr: insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr,
mvwinsnstr – insert string before character under the cursor in a CURSES window

SYNOPSIS
#include <curses.h>

int insstr(char *str);
int insnstr(char *str, int n);
int winsstr(WINDOW *win, char *str);
int winsnstr(WINDOW *win, char *str, int n);
int mvinsstr(int y, int x, char *str);
int mvinsnstr(int y, int x, char *str, int n);
int mvwinsstr(WINDOW *win, int y, int x, char *str);
int mvwinsnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
With these routines, a character string (as many characters as will fit on the line) is
inserted before the character under the cursor. All characters to the right of the cur-
sor are moved to the right, with the possibility of the rightmost characters on the
line being lost. The cursor position does not change (after moving to y, x, if
specified). (This does not imply use of the hardware insert character feature.) The
four routines with n as the last argument insert at most n characters. If n<=0, then
the entire string is inserted.

If a character in str is a tab, newline, carriage return or backspace, the cursor is
moved appropriately within the window. A newline also does a clrtoeol()
before moving. Tabs are considered to be at every eighth column. If a character in
str is another control character, it is drawn in the ˆX notation. Calling winch()
after adding a control character (and moving to it, if necessary) does not return the
control character, but instead returns the representation of the control character.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all but winsnstr() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_clear(TI_LIB), curs_inch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_insstr
svid

Page: 510

curs_instr (TI_LIB) curs_instr (TI_LIB)

NAME
curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr, mvwinnstr –
get a string of characters from a CURSES window

SYNOPSIS
#include <curses.h>

int instr(char *str);

int innstr(char *str, int n);

int winstr(WINDOW *win, char *str);

int winnstr(WINDOW *win, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

DESCRIPTION
These routines return a string of characters in str, starting at the current cursor posi-
tion in the named window and ending at the right margin of the window. Attri-
butes are stripped from the characters. The four functions with n as the last argu-
ment return the string at most n characters long.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all routines except winnstr() may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_instr
svid

Page: 511

curs_inswch (TI_LIB) curs_inswch (TI_LIB)

NAME
curs_inswch: inswch, winswch, mvinswch, mvwinswch – insert a w c h a r _ t charac-
ter before the character under the cursor in a CURSES window

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t i n s w c h (c h t y p e wch) ;

i n t w i n s w c h (W I N D O W *win, c h t y p e wch) ;

i n t m v i n s w c h (i n t y, i n t x, c h t y p e wch) ;

i n t m v w i n s w c h (W I N D O W *win, i n t y, i n t x, c h t y p e wch) ;

DESCRIPTION
These routines insert the character wch, holding a w c h a r _ t character, before the
character under the cursor. All characters to the right of the cursor are moved one
space to the right, with the possibility of the rightmost character on the line being
lost. The cursor position does not change (after moving to y, x, if specified). (This
does not imply use of the hardware insert character feature.)

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that i n s w c h (), m v i n s w c h () and m v w i n s w c h () may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inswch
svid

Page: 512

curs_inswstr (TI_LIB) curs_inswstr (TI_LIB)

NAME
curs_inswstr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr,
mvwinswstr, mvwinsnwstr – insert w c h a r _ t string before character under the cur-
sor in a CURSES window

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t i n s w s t r (w c h a r * w s t r) ;

i n t i n s n w s t r (w c h a r * w s t r , i n t n) ;

i n t w i n s w s t r (W I N D O W * w i n , w c h a r * w s t r) ;

i n t w i n s n w s t r (W I N D O W * w i n , w c h a r * w s t r , i n t n) ;

i n t m v i n s w s t r (i n t y , i n t x , w c h a r * w s t r) ;

i n t m v i n s n w s t r (i n t y , i n t x , w c h a r * w s t r , i n t n) ;

i n t m v w i n s w s t r (W I N D O W * w i n , i n t y , i n t x , w c h a r * w s t r) ;

i n t m v w i n s n w s t r (W I N D O W * w i n , i n t y , i n t x , w c h a r * w s t r , i n t n) ;

DESCRIPTION
These routines insert a w c h a r _ t character string (as many w c h a r _ t characters as
will fit on the line) before the character under the cursor. All characters to the right
of the cursor are moved to the right, with the possibility of the rightmost characters
on the line being lost. The cursor position does not change (after moving to y, x, if
specified). (This does not imply use of the hardware insert character feature.) The
four routines with n as the last argument insert at most n w c h a r _ t characters. If
n< = 0, then the entire string is inserted.

If a character in wstr is a tab, newline, carriage return or backspace, the cursor is
moved appropriately within the window. A newline also does a c l r t o e o l before
moving. Tabs are considered to be at every eighth column. If a character in wstr is
another control character, it is drawn in the ˆX notation. Calling w i n c h () after
adding a control character (and moving to it, if necessary) does not return the con-
trol character, but instead returns the representation of the control character.

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that all but w i n s n w s t r () may be macros.

SEE ALSO
CURSES(TI_ENV), curs_clear(TI_LIB), curs_inwch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inswstr
svid

Page: 513

curs_inwch (TI_LIB) curs_inwch (TI_LIB)

NAME
curs_inwch: inwch, winwch, mvinwch, mvwinwch – get a w c h a r _ t character and
its attributes from a CURSES window

SYNOPSIS
i n c l u d e < c u r s e s . h >

c h t y p e i n w c h (v o i d) ;

c h t y p e w i n w c h (W I N D O W *win) ;

c h t y p e m v i n w c h (i n t y, i n t x) ;

c h t y p e m v w i n w c h (W I N D O W *win, i n t y, i n t x) ;

DESCRIPTION
These routines return the w c h a r _ t character, of type c h t y p e, at the current position
in the named window. If any attributes are set for that position, their values are
OR-ed into the value returned. Constants defined in < c u r s e s . h > can be used with
the & (logical AND) operator to extract the character or attributes alone.

Attributes
The following bit-masks may be AND-ed with characters returned by w i n w c h ().

A _ C H A R T E X T Bit-mask to extract character
A _ A T T R I B U T E S Bit-mask to extract attributes
A _ C O L O R Bit-mask to extract color-pair field information

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that all of these routines may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inwch
svid

Page: 514

curs_inwchstr (TI_LIB) curs_inwchstr (TI_LIB)

NAME
curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,
mvinwchnstr, mvwinwchstr, mvwinwchnstr – get a string of w c h a r _ t characters
(and attributes) from a CURSES window

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t i n w c h s t r (c h t y p e *wchstr) ;

i n t i n w c h n s t r (c h t y p e *wchstr, i n t n) ;

i n t w i n w c h s t r (W I N D O W *win, c h t y p e *wchstr) ;

i n t w i n w c h n s t r (W I N D O W *win, c h t y p e *wchstr, i n t n) ;

i n t m v i n w c h s t r (i n t y, i n t x, c h t y p e *wchstr) ;

i n t m v i n w c h n s t r (i n t y, i n t x, c h t y p e *wchstr, i n t n) ;

i n t m v w i n w c h s t r (W I N D O W *win, i n t y, i n t x, c h t y p e *wchstr) ;

i n t m v w i n w c h n s t r (W I N D O W *win, i n t y, i n t x, c h t y p e *wchstr, i n t n) ;

DESCRIPTION
These routines return a string of type c h t y p e, holding w c h a r _ t characters, starting
at the current cursor position in the named window and ending at the right margin
of the window. The four functions with n as the last argument return the string at
most n w c h a r _ t characters long. Constants defined in < c u r s e s . h > can be used
with the & (logical AND) operator to extract the w c h a r _ t character or the attribute
alone from any position in the chstr [see curs_inwch(TI_LIB)].

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that all routines except w i n w c h n s t r () may be macros.

SEE ALSO
CURSES(TI_ENV), curs_inwch(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inwchstr
svid

Page: 515

curs_inwstr (TI_LIB) curs_inwstr (TI_LIB)

NAME
curs_inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr,
mvwinwstr, mvwinnwstr – get a string of w c h a r _ t characters from a CURSES win-
dow

SYNOPSIS
i n c l u d e < c u r s e s . h >

i n t i n w s t r (c h a r *str) ;

i n t i n n w s t r (c h a r *str, i n t n) ;

i n t w i n w s t r (W I N D O W *win, c h a r *str) ;

i n t w i n n w s t r (W I N D O W *win, c h a r *str, i n t n) ;

i n t m v i n w s t r (i n t y, i n t x, c h a r *str) ;

i n t m v i n n w s t r (i n t y, i n t x, c h a r *str, i n t n) ;

i n t m v w i n w s t r (W I N D O W *win, i n t y, i n t x, c h a r *str) ;

i n t m v w i n n w s t r (W I N D O W *win, i n t y, i n t x, c h a r *str, i n t n) ;

DESCRIPTION
These routines return the string of w c h a r _ t characters in str starting at the current
cursor position in the named window and ending at the right margin of the win-
dow. Attributes are stripped from the characters. The four functions with n as the
last argument return the string at most n w c h a r _ t characters long.

RETURN VALUE
All routines return the integer E R R upon failure and an integer value other than E R R
upon successful completion.

USAGE
Application Program.

The header file < c u r s e s . h > automatically includes the header files < s t d i o . h > and
< u n c t r l . h >.

Note that all routines except w i n n w s t r () may be macros.

SEE ALSO
CURSES(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_inwstr
svid

Page: 516

curs_kernel (TI_LIB) curs_kernel (TI_LIB)

NAME
curs_kernel: def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode,
resetty, savetty, getsyx, setsyx, ripoffline, curs_set, napms – low-level CURSES rou-
tines

SYNOPSIS
#include <curses.h>

int def_prog_mode(void);

int def_shell_mode(void);

int reset_prog_mode(void);

int reset_shell_mode(void);

int resetty(void);

int savetty(void);

int getsyx(int y, int x);

int setsyx(int y, int x);

int ripoffline(int line, int (*init)(WINDOW *win, int));

int curs_set(int visibility);

int napms(int ms);

DESCRIPTION
The following routines give low-level access to various CURSES functionality.
Theses routines typically are used inside library routines.

The def_prog_mode() and def_shell_mode() routines save the current termi-
nal modes as the "program" (in CURSES) or "shell" (not in CURSES) state for use by
the reset_prog_mode() and reset_shell_mode() routines. This is done
automatically by initscr().

The reset_prog_mode() and reset_shell_mode() routines restore the ter-
minal to "program" (in CURSES) or "shell" (out of CURSES) state. These are done
automatically by endwin() and, after an endwin(), by doupdate(), so they nor-
mally are not called.

The resetty() and savetty() routines save and restore the state of the terminal
modes. savetty() saves the current state in a buffer and resetty() restores
the state to what it was at the last call to savetty().

With the getsyx() routine, the current coordinates of the virtual screen cursor are
returned in y and x. If leaveok() is currently TRUE, then –1,–1 is returned. If
lines have been removed from the top of the screen, using ripoffline(), y and x
include these lines; therefore, y and x should be used only as arguments for set-
syx().

With the setsyx() routine, the virtual screen cursor is set to y, x. If y and x are
both –1, then leaveok() is set. The two routines getsyx() and setsyx() are
designed to be used by a library routine, which manipulates CURSES windows but
does not want to change the current position of the program’s cursor. The library

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_kernel
svid

Page: 517

curs_move (TI_LIB) curs_move (TI_LIB)

NAME
curs_move: move, wmove – move CURSES window cursor

SYNOPSIS
#include <curses.h>

int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

DESCRIPTION
With these routines, the cursor associated with the window is moved to line y and
column x. This routine does not move the physical cursor of the terminal until
refresh() is called. The position specified is relative to the upper left-hand
corner of the window, which is (0,0).

RETURN VALUE
These routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that move() may be a macro.

SEE ALSO
CURSES(TI_ENV), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_move
svid

Page: 519

curs_outopts (TI_LIB) curs_outopts (TI_LIB)

NAME
curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg, wsetscrreg, scrol-
lok, nl, nonl – CURSES terminal output option control routines

SYNOPSIS
#include <curses.h>

int clearok(WINDOW *win, bool bf);

int idlok(WINDOW *win, bool bf);

void idcok(WINDOW *win, bool bf);

void immedok(WINDOW *win, bool bf);

int leaveok(WINDOW *win, bool bf);

int setscrreg(int top, int bot);

int wsetscrreg(WINDOW *win, int top, int bot);

int scrollok(WINDOW *win, bool bf);

int nl(void);

int nonl(void);

DESCRIPTION
These routines set options that deal with output within CURSES. All options are
initially FALSE, unless otherwise stated. It is not necessary to turn these options off
before calling endwin().

With the clearok() routine, if enabled (bf is TRUE), the next call to wrefresh()
with this window will clear the screen completely and redraw the entire screen
from scratch. This is useful when the contents of the screen are uncertain, or in
some cases for a more pleasing visual effect. If the win argument to clearok() is
the global variable curscr, the next call to wrefresh() with any window causes
the screen to be cleared and repainted from scratch.

With the idlok() routine, if enabled (bf is TRUE), CURSES considers using the
hardware insert/delete line feature of terminals so equipped. If disabled (bf is
FALSE), CURSES very seldom uses this feature. (The insert/delete character
feature is always considered.) This option should be enabled only if the application
needs insert/delete line, for example, for a screen editor. It is disabled by default
because insert/delete line tends to be visually annoying when used in applications
where it isn’t really needed. If insert/delete line cannot be used, CURSES redraws
the changed portions of all lines.

With the idcok() routine, if enabled (bf is TRUE), CURSES considers using the
hardware insert/delete character feature of terminals so equipped. This is enabled
by default.

With the immedok() routine, if enabled (bf is TRUE), any change in the window
image, such as the ones caused by waddch(), wclrtobot(), wscrl(), etc.,
automatically cause a call to wrefresh(). However, it may degrade the perfor-
mance considerably, due to repeated calls to wrefresh(). It is disabled by
default.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_outopts
svid

Page: 520

curs_outopts (TI_LIB) curs_outopts (TI_LIB)

Normally, the hardware cursor is left at the location of the window cursor being
refreshed. The leaveok() option allows the cursor to be left wherever the update
happens to leave it. It is useful for applications where the cursor is not used, since
it reduces the need for cursor motions. If possible, the cursor is made invisible
when this option is enabled.

The setscrreg() and wsetscrreg() routines allow the application program-
mer to set a software scrolling region in a window. top and bot are the line numbers
of the top and bottom margin of the scrolling region. (Line 0 is the top line of the
window.) If this option and scrollok() are enabled, an attempt to move off the
bottom margin line causes all lines in the scrolling region to scroll up one line. Only
the text of the window is scrolled. (Note that this has nothing to do with the use of
a physical scrolling region capability in the terminal, like that in the VT100. If
idlok() is enabled and the terminal has either a scrolling region or insert/delete
line capability, they will probably be used by the output routines.)

The scrollok() option controls what happens when the cursor of a window is
moved off the edge of the window or scrolling region, either as a result of a newline
action on the bottom line, or typing the last character of the last line. If disabled, (bf
is FALSE), the cursor is left on the bottom line. If enabled, (bf is TRUE),
wrefresh() is called on the window, and the physical terminal and window are
scrolled up one line. [Note that in order to get the physical scrolling effect on the
terminal, it is also necessary to call idlok().]

The nl() and nonl() routines control whether newline is translated into carriage
return and linefeed on output, and whether return is translated into newline on
input. Initially, the translations do occur. By disabling these translations using
nonl(), CURSES is able to make better use of the linefeed capability, resulting in
faster cursor motion.

RETURN VALUE
setscrreg() and wsetscrreg() return OK upon success and ERR upon failure.
All other routines that return an integer always return OK.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that clearok(), leaveok(), scrollok(), idcok(), nl(), nonl()
and setscrreg() may be macros.

The immedok() routine is useful for windows that are used as terminal emulators.

SEE ALSO
CURSES(TI_ENV), curs_addch(TI_LIB), curs_clear(TI_LIB), curs_initscr(TI_LIB),
curs_scroll(TI_LIB), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_outopts
svid

Page: 521

curs_overlay (TI_LIB) curs_overlay (TI_LIB)

NAME
curs_overlay: overlay, overwrite, copywin – overlap and manipulate overlapped
CURSES windows

SYNOPSIS
#include <curses.h>

int overlay(WINDOW *srcwin, WINDOW *dstwin);

int overwrite(WINDOW *srcwin, WINDOW *dstwin);

int copywin(WINDOW *srcwin, WINDOW *dstwin, int sminrow,
int smincol, int dminrow, int dmincol, int dmaxrow,
int dmaxcol, int overlay);

DESCRIPTION
The overlay() and overwrite() routines overlay srcwin on top of dstwin.
scrwin and dstwin are not required to be the same size; only text where the two win-
dows overlap is copied. The difference is that overlay() is non-destructive
(blanks are not copied) whereas overwrite() is destructive.

The copywin() routine provides a finer granularity of control over the
overlay() and overwrite() routines. Like in the prefresh() routine, a rec-
tangle is specified in the destination window, (dminrow, dmincol) and (dmaxrow,
dmaxcol), and the upper-left-corner coordinates of the source window, (sminrow,
smincol). If the argument overlay is true, then copying is non-destructive, as in
overlay().

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that overlay() and overwrite() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_pad(TI_LIB), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_overlay
svid

Page: 522

curs_pad (TI_LIB) curs_pad (TI_LIB)

and, for non-control characters, a considerable performance gain might be seen by
using these routines instead of their equivalents. In the case of pechochar(), the
last location of the pad on the screen is reused for the arguments to prefresh().

The pechowchar() routine is functionally equivalent to a call to addwch() fol-
lowed by a call to refresh(), a call to waddwch() followed by a call to
wrefresh() or a call to waddwch() followed by a call to prefresh().

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that pechochar() may be a macro.

SEE ALSO
CURSES(TI_ENV), curs_refresh(TI_LIB), curs_touch(TI_LIB), curs_addch(TI_LIB),
curs_addwch(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_pad
svid

Page: 524

curs_printw (TI_LIB) curs_printw (TI_LIB)

NAME
curs_printw: printw, wprintw, mvprintw, mvwprintw, vwprintw – print formatted
output in CURSES windows

SYNOPSIS
#include <curses.h>

int printw(char *fmt [, arg] ...);

int wprintw(WINDOW *win, char *fmt [, arg] ...);

int mvprintw(int y, int x, char *fmt [, arg] ...);

int mvwprintw(WINDOW *win, int y, int x,
char *fmt [, arg] ...);

#include <varargs.h>

int vwprintw(WINDOW *win, char *fmt, varglist);

DESCRIPTION
The printw(), wprintw(), mvprintw() and mvwprintw() routines are analo-
gous to printf() [see printf(BA_LIB)]. In effect, the string that would be output
by printf() is output instead as though waddstr() were used on the given win-
dow.

The vwprintw() routine is analogous to vprintf() [see vprintf(BA_LIB)] and
performs a wprintw() using a variable argument list. The third argument is a
va_list, a pointer to a list of arguments, as defined in <varargs.h>.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

SEE ALSO
CURSES(TI_ENV), printf(BA_LIB), vprintf(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_printw
svid

Page: 525

curs_refresh (TI_LIB) curs_refresh (TI_LIB)

NAME
curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin, wredrawln –
refresh CURSES windows and lines

SYNOPSIS
#include <curses.h>

int refresh(void);

int wrefresh(WINDOW *win);

int wnoutrefresh(WINDOW *win);

int doupdate(void);

int redrawwin(WINDOW *win);

int wredrawln(WINDOW *win, int beg_line, int num_lines);

DESCRIPTION
The refresh() and wrefresh() routines (or wnoutrefresh() and
doupdate()) must be called to get any output on the terminal, as other routines
merely manipulate data structures. The routine wrefresh() copies the named
window to the physical terminal screen, taking into account what is already there in
order to do optimizations. The refresh() routine is the same, using stdscr as
the default window. Unless leaveok() has been enabled, the physical cursor of
the terminal is left at the location of the cursor for that window.

The wnoutrefresh() and doupdate() routines allow multiple updates with
more efficiency than wrefresh() alone. In addition to all the window structures,
CURSES keeps two data structures representing the terminal screen: a physical
screen, describing what is actually on the screen, and a virtual screen, describing
what the programmer wants to have on the screen.

The routine wrefresh() works by first calling wnoutrefresh(), which copies
the named window to the virtual screen, and then calling doupdate(), which com-
pares the virtual screen to the physical screen and does the actual update. If the
programmer wishes to output several windows at once, a series of calls to
wrefresh() results in alternating calls to wnoutrefresh() and doupdate(),
causing several bursts of output to the screen. By first calling wnoutrefresh()
for each window, it is then possible to call doupdate() once, resulting in only one
burst of output, with fewer total characters transmitted and less CPU time used. If
the win argument to wrefresh() is the global variable curscr, the screen is
immediately cleared and repainted from scratch.

The redrawwin() routine indicates to CURSES that some screen lines are cor-
rupted and should be thrown away before anything is written over them. These
routines could be used for programs such as editors, which want a command to
redraw some part of the screen or the entire screen. The routine redrawln() is
preferred over redrawwin() where a noisy communication line exists and redraw-
ing the entire window could be subject to even more communication noise. Just
redrawing several lines offers the possibility that they would show up unblem-
ished.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_refresh
svid

Page: 526

curs_refresh (TI_LIB) curs_refresh (TI_LIB)

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that refresh() and redrawwin() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_outopts(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_refresh
svid

Page: 527

curs_scanw (TI_LIB) curs_scanw (TI_LIB)

NAME
curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw – convert formatted
input from a CURSES widow

SYNOPSIS
#include <curses.h>

int scanw(char *fmt [, arg] ...);

int wscanw(WINDOW *win, char *fmt [, arg] ...);

int mvscanw(int y, int x, char *fmt [, arg] ...);

int mvwscanw(WINDOW *win, int y, int x,
char *fmt [, arg] ...);

int vwscanw(WINDOW *win, char *fmt, va_list varglist);

DESCRIPTION
The scanw(), wscanw() and mvscanw() routines correspond to scanf [see
scanf(BA_LIB)]. The effect of these routines is as though wgetstr() were called
on the window, and the resulting line used as input for the scan. Fields which do
not map to a variable in the fmt field are lost.

The vwscanw() routine is similar to vwprintw() in that it performs a wscanw()
using a variable argument list. The third argument is a va_list, a pointer to a list of
arguments, as defined in <varargs.h>.

RETURN VALUE
vwscanw() returns ERR on failure and an integer equal to the number of fields
scanned on success.

Applications may interrogate the return value from the scanw(), wscanw(),
mvscanw() and mvwscanw() routines to determine the number of fields which
were mapped in the call.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

SEE ALSO
CURSES(TI_ENV), curs_getstr, curs_printw, scanf(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_scanw
svid

Page: 528

curs_scr_dump (TI_LIB) curs_scr_dump (TI_LIB)

NAME
curs_scr_dump: scr_dump, scr_restore, scr_init, scr_set – read (write) a CURSES
screen from (to) a file

SYNOPSIS
#include <curses.h>

int scr_dump(char *filename);

int scr_restore(char *filename);

int scr_init(char *filename);

int scr_set(char *filename);

DESCRIPTION
With the scr_dump() routine, the current contents of the virtual screen are written
to the file filename.

With the scr_restore() routine, the virtual screen is set to the contents of
filename, which must have been written using scr_dump(). The next call to
doupdate() restores the screen to the way it looked in the dump file.

With the scr_init() routine, the contents of filename are read in and used to ini-
tialize the CURSES data structures about what the terminal currently has on its
screen. If the data is determined to be valid, CURSES bases its next update of the
screen on this information rather than clearing the screen and starting from scratch.
scr_init() is used after initscr() or a system() [see system(BA_LIB)] call
to share the screen with another process which has done a scr_dump() after its
endwin() call. The data is declared invalid if the time-stamp of the tty is old or the
terminfo capabilities rmcup and nrrmc exist.

The scr_set() routine is a combination of scr_restore() and scr_init(). It
tells the program that the information in filename is what is currently on the screen,
and also what the program wants on the screen. This can be thought of as a screen
inheritance function.

To read (write) a window from (to) a file, use the getwin() and putwin() rou-
tines [see curs_util(TI_LIB)].

RETURN VALUE
All routines return the integer ERR upon failure and OK upon success.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that scr_init(), scr_set(), and scr_restore() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_initscr(TI_LIB), curs_refresh(TI_LIB), curs_util(TI_LIB),
system(BA_LIB).

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_scr_dmp
svid

Page: 529

curs_scr_dump (TI_LIB) curs_scr_dump (TI_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_scr_dmp
svid

Page: 530

curs_scroll (TI_LIB) curs_scroll (TI_LIB)

NAME
curs_scroll: scroll, srcl, wscrl – scroll a CURSES window

SYNOPSIS
#include <curses.h>

int scroll(WINDOW *win);

int scrl(int n);

int wscrl(WINDOW *win, int n);

DESCRIPTION
With the scroll() routine, the window is scrolled up one line. This involves
moving the lines in the window data structure. As an optimization, if the scrolling
region of the window is the entire screen, the physical screen is scrolled at the same
time.

With the scrl() and wscrl() routines, for positive n scroll the window up n lines
(line i+n becomes i); otherwise scroll the window down n lines. This involves mov-
ing the lines in the window character image structure. The current cursor position
is not changed.

For these functions to work, scrolling must be enabled via scrollok().

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that scrl() and scroll() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_outopts(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_scroll
svid

Page: 531

curs_slk (TI_LIB) curs_slk (TI_LIB)

With the slk_touch() routine, all the soft labels are forced to be output the next
time a slk_noutrefresh() is performed.

The slk_attron(), slk_attrset() and slk_attroff() routines correspond
to attron(), attrset(), and attroff(). They have an effect only if soft
labels are simulated on the bottom line of the screen.

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

slk_label() returns NULL on error.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Most applications would use slk_noutrefresh() because a wrefresh() is
likely to follow soon.

SEE ALSO
CURSES(TI_ENV), curs_attr(TI_LIB), curs_initscr(TI_LIB), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_slk
svid

Page: 533

curs_termattrs (TI_LIB) curs_termattrs (TI_LIB)

NAME
curs_termattrs: baudrate, erasechar, has_ic, has_il, killchar, longname, termattrs,
termname – CURSES environment query routines

SYNOPSIS
#include <curses.h>

int baudrate(void);

char erasechar(void);

int has_ic(void);

int has_il(void);

char killchar(void);

char *longname(void);

chtype termattrs(void);

char *termname(void);

DESCRIPTION
The baudrate() routine returns the output speed of the terminal. The number
returned is in bits per second, for example 9600, and is an integer.

With the erasechar() routine, the user’s current erase character is returned.

The has_ic() routine is true if the terminal has insert- and delete-character capa-
bilities.

The has_il() routine is true if the terminal has insert- and delete-line capabilities,
or can simulate them using scrolling regions. This might be used to determine if it
would be appropriate to turn on physical scrolling using scrollok().

With the killchar() routine, the user’s current line kill character is returned.

The longname() routine returns a pointer to a static area containing a verbose
description of the current terminal. The maximum length of a verbose description
is 128 characters. It is defined only after the call to initscr() or newterm().
The area is overwritten by each call to newterm() and is not restored by
set_term(), so the value should be saved between calls to newterm() if long-
name() is going to be used with multiple terminals.

If a given terminal doesn’t support a video attribute that an application program is
trying to use, CURSES may substitute a different video attribute for it. The ter-
mattrs() function returns a logical OR of all video attributes supported by the ter-
minal. This information is useful when a CURSES program needs complete control
over the appearance of the screen.

The termname() routine returns the value of the environmental variable TERM
(truncated to 14 characters).

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_termatt
svid

Page: 534

curs_termattrs (TI_LIB) curs_termattrs (TI_LIB)

RETURN VALUE
longname() and termname() return NULL on error.

Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that termattrs() may be a macro.

SEE ALSO
CURSES(TI_ENV), curs_initscr(TI_LIB), curs_outopts(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_termatt
svid

Page: 535

curs_termcap (TI_LIB) curs_termcap (TI_LIB)

NAME
curs_termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs – CURSES interfaces
(emulated) to the termcap library

SYNOPSIS
#include <curses.h>
#include <term.h>

int tgetent(char *bp, char *name);
int tgetflag(char id[2]);
int tgetnum(char id[2]);
char *tgetstr(char id[2], char **area);
char *tgoto(char *cap, int col, int row);
int tputs(char *str, int affcnt, int (*putc)(void));

DESCRIPTION
These routines are included as a conversion aid for programs that use the termcap
library. Their parameters are the same and the routines are emulated using the ter-
minfo database. These routines are supported at Level 2 and should not be used in
new applications.

The tgetent() routine looks up the termcap entry for name. The emulation
ignores the buffer pointer bp.

The tgetflag() routine gets the boolean entry for id.

The tgetnum() routine gets the numeric entry for id.

The tgetstr() routine returns the string entry for id. Use tputs() to output the
returned string.

The tgoto() routine instantiates the parameters into the given capability. The out-
put from this routine is to be passed to tputs().

The tputs() routine is described on the curs_terminfo(TI_LIB) manual page.

RETURN VALUE
Routines that return an integer return ERR upon failure and an integer value other
than ERR upon successful completion.

Routines that return pointers return NULL on error.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

SEE ALSO
CURSES(TI_ENV), curs_terminfo(TI_LIB), putc(BA_LIB).

LEVEL
Level 1: tputs().

Level 2: December 1, 1985, tgetent(), tgetflag(), tgetnum(), tgetstr(),
tgoto().

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_termcap
svid

Page: 536

curs_terminfo (TI_LIB) curs_terminfo (TI_LIB)

NAME
curs_terminfo: setupterm, setterm, set_curterm, del_curterm, restartterm, tparm,
tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr – CURSES inter-
faces to terminfo database

SYNOPSIS
#include <curses.h>
#include <term.h>

int setupterm(char *term, int fildes, int *errret);

int setterm(char *term);

TERMINAL *set_curterm(TERMINAL *nterm);

int del_curterm(TERMINAL *oterm);

int restartterm(char *term, int fildes, int *errret);

char *tparm(char *str, long int p1, long int p2, long int p3,
long int p4, long int p5, long int p6, long int p7,
long int p8, long int p9);

int tputs(char *str, int affcnt, int (*putc)(int));

int putp(char *str);

int vidputs(chtype attrs, int (*putc)(int));

int vidattr(chtype attrs);

int mvcur(int oldrow, int oldcol, int newrow, int newcol);

int tigetflag(char *capname);

int tigetnum(char *capname);

int tigetstr(char *capname);

DESCRIPTION
These low-level routines must be called by programs that have to deal directly with
the terminfo database to handle certain terminal capabilities, such as programming
function keys. For all other functionality, CURSES routines are more suitable and
their use is recommended.

Initially, setupterm() should be called. Note that setupterm() is automatically
called by initscr() and newterm(). This defines the set of terminal-dependent
variables [listed in terminfo(TI_ENV)]. The terminfo variables lines and columns
are initialized by setupterm() as follows: If use_env(FALSE) has been called,
values for lines and columns specified in terminfo are used. Otherwise, if the
environment variables LINES and COLUMNS exist, their values are used. If these
environment variables do not exist and the program is running in a window, the
current window size is used. Otherwise, if the environment variables do not exist,
the values for lines and columns specified in the terminfo database are used.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_termin
svid

Page: 537

curs_terminfo (TI_LIB) curs_terminfo (TI_LIB)

The header files <curses.h> and <term.h> should be included (in this order) to
get the definitions for these strings, numbers, and flags. Parameterized strings
should be passed through tparm() to instantiate them. All terminfo strings
[including the output of tparm()] should be printed with tputs() or putp().
Call the reset_shell_mode() to restore the tty modes before exiting [see
curs_kernel(TI_LIB)]. Programs which use cursor addressing should output
enter_ca_mode upon startup and should output exit_ca_mode before exiting.
Programs desiring shell escapes should call reset_shell_mode() and output
exit_ca_mode before the shell is called and should output enter_ca_mode and
call reset_prog_mode() after returning from the shell.

The setupterm() routine reads in the terminfo database, initializing the terminfo
structures, but does not set up the output virtualization structures used by
CURSES. The terminal type is the character string term; if term is null, the environ-
ment variable TERM is used. All output is to file descriptor fildes which is initial-
ized for output. If errret is not null, then setupterm() returns OK or ERR and
stores a status value in the integer pointed to by errret. A status of 1 in errret is nor-
mal, 0 means that the terminal could not be found, and –1 means that the terminfo
database could not be found. If errret is null, setupterm() prints an error mes-
sage upon finding an error and exits. Thus, the simplest call is:

setupterm((char *)0, 1, (int *)0);,
which uses all the defaults and sends the output to stdout.

The setterm() routine is being replaced by setupterm(). The call:
setupterm(term, 1, (int *)0)

provides the same functionality as setterm(term). The setterm() routine is
included here for compatibility and is supported at Level 2.

The set_curterm() routine sets the variable cur_term to nterm, and makes all of
the terminfo boolean, numeric, and string variables use the values from nterm.

The del_curterm() routine frees the space pointed to by oterm and makes it
available for further use. If oterm is the same as cur_term, references to any of the
terminfo boolean, numeric, and string variables thereafter may refer to invalid
memory locations until another setupterm() has been called.

The restartterm() routine is similar to setupterm() and initscr(), except
that it is called after restoring memory to a previous state. It assumes that the win-
dows and the input and output options are the same as when memory was saved,
but the terminal type and baud rate may be different.

The tparm() routine instantiates the string str with parameters pi. A pointer is
returned to the result of str with the parameters applied.

The tputs() routine applies padding information to the string str and outputs it.
The str must be a terminfo string variable or the return value from tparm(),
tgetstr(), or tgoto(). affcnt is the number of lines affected, or 1 if not applica-
ble. putc() is a putchar()-like routine to which the characters are passed, one at a
time.

The putp() routine calls tputs(str, 1, putchar). Note that the output of
putp() always goes to stdout, not to the fildes specified in setupterm().

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_termin
svid

Page: 538

curs_touch (TI_LIB) curs_touch (TI_LIB)

NAME
curs_touch: touchwin, touchline, untouchwin, wtouchln, is_linetouched,
is_wintouched – CURSES refresh control routines

SYNOPSIS
#include <curses.h>

int touchwin(WINDOW *win);
int touchline(WINDOW *win, int start, int count);
int untouchwin(WINDOW *win);
int wtouchln(WINDOW *win, int y, int n, int changed);
int is_linetouched(WINDOW *win, int line);
int is_wintouched(WINDOW *win);

DESCRIPTION
The touchwin() and touchline() routines throw away all optimization infor-
mation about which parts of the window have been touched, by pretending that the
entire window has been drawn on. This is sometimes necessary when using over-
lapping windows, since a change to one window affects the other window, but the
records of which lines have been changed in the other window do not reflect the
change. The routine touchline() only pretends that count lines have been
changed, beginning with line start.

The untouchwin() routine marks all lines in the window as unchanged since the
last call to wrefresh().

The wtouchln() routine makes n lines in the window, starting at line y, look as if
they have (changed=1) or have not (changed=0) been changed since the last call to
wrefresh().

The is_linetouched() and is_wintouched() routines return TRUE if the
specified line/window was modified since the last call to wrefresh(); otherwise
they return FALSE. In addition, is_linetouched() returns ERR if line is not
valid for the given window.

RETURN VALUE
All routines return the integer ERR upon failure and an integer value other than
ERR upon successful completion, unless otherwise noted in the preceding routine
descriptions.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that all routines except wtouchln() may be macros.

SEE ALSO
CURSES(TI_ENV), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_touch
svid

Page: 540

curs_util (TI_LIB) curs_util (TI_LIB)

NAME
curs_util: unctrl, keyname, filter, use_env, putwin, getwin, delay_output, flushinp –
miscellaneous CURSES utility routines

SYNOPSIS
#include <curses.h>

char *unctrl(chtype c);

char *keyname(int c);

void filter(void);

void use_env(char bool);

int putwin(WINDOW *win, FILE *filep);

WINDOW *getwin(FILE *filep);

int delay_output(int ms);

int flushinp(void);

DESCRIPTION
The unctrl() macro expands to a character string which is a printable representa-
tion of the character c. Control characters are displayed in the ˆX notation. Print-
ing characters are displayed as is.

With the keyname() routine, a character string corresponding to the key c is
returned.

The filter() routine, if used, is called before initscr() or newterm() are
called. It makes CURSES think that there is a one-line screen. CURSES does not
use any terminal capabilities that assume that they know on what line of the screen
the cursor is positioned.

The use_env() routine, if used, is called before initscr() or newterm() are
called. When called with FALSE as an argument, the values of lines and
columns specified in the terminfo database will be used, even if environment vari-
ables LINES and COLUMNS (used by default) are set, or if CURSES is running in a
window (in which case default behavior would be to use the window size if LINES
and COLUMNS are not set).

With the putwin() routine, all data associated with window win is written into the
file to which filep points. This information can be later retrieved using the
getwin() function.

The getwin() routine reads window related data stored in the file by putwin().
The routine then creates and initializes a new window using that data. It returns a
pointer to the new window.

The delay_output() routine inserts an ms millisecond pause in output. This rou-
tine should not be used extensively because padding characters are used rather than
a CPU pause.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_util
svid

Page: 541

curs_util (TI_LIB) curs_util (TI_LIB)

The flushinp() routine throws away any typeahead that has been typed by the
user and has not yet been read by the program.

RETURN VALUE
Except for flushinp(), routines that return an integer return ERR upon failure
and an integer value other than ERR upon successful completion.

flushinp() always returns OK.

Routines that return pointers return NULL on error.

USAGE
Application Program.

The header file <curses.h> automatically includes the header files <stdio.h>
and <unctrl.h>.

Note that unctrl() is a macro, which is defined in <unctrl.h>.

SEE ALSO
CURSES(TI_ENV), curs_initscr(TI_LIB), curs_scr_dump(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/curs_util
svid

Page: 542

curs_window (TI_LIB) curs_window (TI_LIB)

NAME
curs_window: newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,
wsyncup, syncok, wcursyncup, wsyncdown – create CURSES windows

SYNOPSIS
#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin_y,
int begin_x);

int delwin(WINDOW *win);

int mvwin(WINDOW *win, int y, int x);

WINDOW *subwin(WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

WINDOW *derwin(WINDOW *orig, int nlines, int ncols,
int begin_y, int begin_x);

int mvderwin(WINDOW *win, int par_y, int par_x);

WINDOW *dupwin(WINDOW *win);

void wsyncup(WINDOW *win);

int syncok(WINDOW *win, bool bf);

void wcursyncup(WINDOW *win);

void wsyncdown(WINDOW *win);

DESCRIPTION
The newwin() routine creates and returns a pointer to a new window with the
given number of lines, nlines, and columns, ncols. The upper left-hand corner of the
window is at line begin_y, column begin_x. If either nlines or ncols is zero, they
default to LINES — begin_y and COLS — begin_x. A new full-screen window is
created by calling newwin(0,0,0,0).

The delwin() routine deletes the named window, freeing all memory associated
with it. Subwindows must be deleted before the main window can be deleted.

The mvwin() routine moves the window so that the upper left-hand corner is at
position (x, y). If the move would cause the window to be off the screen, it is an
error and the window is not moved. Moving subwindows is allowed, but should
be avoided.

The subwin() routine creates and returns a pointer to a new window with the
given number of lines, nlines, and columns, ncols. The window is at position
(begin_y, begin_x) on the screen. (This position is relative to the screen, and not to
the window orig.) The window is made in the middle of the window orig, so that
changes made to one window will affect both windows. The subwindow shares
memory with the window orig. When using this routine, it is necessary to call
touchwin() or touchline() on orig before calling wrefresh() on the subwin-
dow.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/curs_window
svid

Page: 543

form_cursor (TI_LIB) form_cursor (TI_LIB)

NAME
form_cursor: pos_form_cursor – position FORMS window cursor

SYNOPSIS
#include <form.h>

int pos_form_cursor(FORM *form);

DESCRIPTION
pos_form_cursor() moves the form window cursor to the location required by
the form driver to resume form processing. This may be needed after the applica-
tion calls a CURSES library I/O routine.

RETURN VALUE
pos_form_cursor() returns one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_NOT_POSTED – The form is not posted.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_cursor
svid

Page: 545

form_data (TI_LIB) form_data (TI_LIB)

NAME
form_data: data_ahead, data_behind – tell if FORMS field has off-screen data ahead
or behind

SYNOPSIS
#include <form.h>

int data_ahead(FORM *form);

int data_behind(FORM *form);

DESCRIPTION
data_ahead() returns TRUE (1) if the current field has more off-screen data
ahead; otherwise it returns FALSE (0).

data_behind() returns TRUE (1) if the current field has more off-screen data
behind; otherwise it returns FALSE (0).

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_data
svid

Page: 546

form_driver (TI_LIB) form_driver (TI_LIB)

NAME
form_driver – command processor for the FORMS subsystem

SYNOPSIS
#include <form.h>

int form_driver(FORM *form, int c);

DESCRIPTION
form_driver() is the workhorse of the FORMS subsystem; it checks to determine
whether the character c is a FORMS request or data. If it is a request, the form
driver executes the request and reports the result. If it is data (a printable ASCII
character), it enters the data into the current position in the current field. If it is not
recognized, the form driver assumes it is an application-defined command and
returns E_UNKNOWN_COMMAND. Application defined commands should be defined
relative to MAX_COMMAND, the maximum value of a request listed below.

Form driver requests:

REQ_NEXT_PAGE Move to the next page.
REQ_PREV_PAGE Move to the previous page.
REQ_FIRST_PAGE Move to the first page.
REQ_LAST_PAGE Move to the last page.

REQ_NEXT_FIELD Move to the next field.
REQ_PREV_FIELD Move to the previous field.
REQ_FIRST_FIELD Move to the first field.
REQ_LAST_FIELD Move to the last field.
REQ_SNEXT_FIELD Move to the sorted next field.
REQ_SPREV_FIELD Move to the sorted prev field.
REQ_SFIRST_FIELD Move to the sorted first field.
REQ_SLAST_FIELD Move to the sorted last field.
REQ_LEFT_FIELD Move left to field.
REQ_RIGHT_FIELD Move right to field.
REQ_UP_FIELD Move up to field.
REQ_DOWN_FIELD Move down to field.

REQ_NEXT_CHAR Move to the next character in the field.
REQ_PREV_CHAR Move to the previous character in the field.
REQ_NEXT_LINE Move to the next line in the field.
REQ_PREV_LINE Move to the previous line in the field.
REQ_NEXT_WORD Move to the next word in the field.
REQ_PREV_WORD Move to the previous word in the field.
REQ_BEG_FIELD Move to the first char in the field.
REQ_END_FIELD Move after the last char in the field.
REQ_BEG_LINE Move to the beginning of the line.
REQ_END_LINE Move after the last char in the line.
REQ_LEFT_CHAR Move left in the field.
REQ_RIGHT_CHAR Move right in the field.
REQ_UP_CHAR Move up in the field.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_driver
svid

Page: 547

form_driver (TI_LIB) form_driver (TI_LIB)

REQ_DOWN_CHAR Move down in the field.

REQ_NEW_LINE Insert/overlay a new line.
REQ_INS_CHAR Insert the blank character at the cursor.
REQ_INS_LINE Insert a blank line at the cursor.
REQ_DEL_CHAR Delete the character at the cursor.
REQ_DEL_PREV Delete the character before the cursor.
REQ_DEL_LINE Delete the line at the cursor.
REQ_DEL_WORD Delete the word at the cursor.
REQ_CLR_EOL Clear to the end of the line.
REQ_CLR_EOF Clear to the end of the field.
REQ_CLR_FIELD Clear the entire field.
REQ_OVL_MODE Enter overlay mode.
REQ_INS_MODE Enter insert mode.

REQ_SCR_FLINE Scroll the field forward a line.
REQ_SCR_BLINE Scroll the field backward a line.
REQ_SCR_FPAGE Scroll the field forward a page.
REQ_SCR_BPAGE Scroll the field backward a page.
REQ_SCR_FHPAGE Scroll the field forward half a page.
REQ_SCR_BHPAGE Scroll the field backward half a page.

REQ_SCR_FCHAR Horizontal scroll forward a character.
REQ_SCR_BCHAR Horizontal scroll backward a character.
REQ_SCR_HFLINE Horizontal scroll forward a line.
REQ_SCR_HBLINE Horizontal scroll backward a line.
REQ_SCR_HFHALF Horizontal scroll forward half a line.
REQ_SCR_HBHALF Horizontal scroll backward half a line.

REQ_VALIDATION Validate field.
REQ_PREV_CHOICE Display the previous field choice.
REQ_NEXT_CHOICE Display the next field choice.

RETURN VALUE
form_driver() returns one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_NOT_POSTED – The form is not posted.
E_INVALID_FIELD – The field contents are invalid.
E_BAD_STATE – The routine was called from an initialization or termi-

nation function.
E_REQUEST_DENIED – The form driver request failed.
E_UNKNOWN_COMMAND – An unknown request was passed to the the form

driver.

USAGE
Application Program.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/form_driver
svid

Page: 548

form_driver (TI_LIB) form_driver (TI_LIB)

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ti_lib/form_driver
svid

Page: 549

form_field (TI_LIB) form_field (TI_LIB)

NAME
form_field: set_form_fields, form_fields, field_count, move_field – connect fields to
FORMS

SYNOPSIS
#include <form.h>

int set_form_fields(FORM *form, FIELD **field);

FIELD **form_fields(FORM *form);

int field_count(FORM *form);

int move_field(FIELD *field, int frow, int fcol);

DESCRIPTION
set_form_fields() changes the fields connected to form to fields. The original
fields are disconnected.

form_fields() returns a pointer to the field pointer array connected to form.

field_count() returns the number of fields connected to form.

move_field() moves the disconnected field to the location frow, fcol in the FORMS
subwindow.

RETURN VALUE
form_fields() returns NULL on error.

field_count() returns -1 on error.

set_form_fields() and move_field() return one of the following:

E_OK – The function returned successfully.
E_CONNECTED – The field is already connected to a form.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_POSTED – The form is posted.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f
svid

Page: 550

form_field_attributes (TI_LIB) form_field_attributes (TI_LIB)

NAME
form_field_attributes: set_field_fore, field_fore, set_field_back, field_back,
set_field_pad, field_pad – format the general display attributes of FORMS

SYNOPSIS
#include <form.h>

int set_field_fore(FIELD *field, chtype attr);
chtype field_fore(FIELD *field);

int set_field_back(FIELD *field, chtype attr);
chtype field_back(FIELD *field);

int set_field_pad(FIELD *field, int pad);
int field_pad(FIELD *field);

DESCRIPTION
set_field_fore() sets the foreground attribute of field. The foreground attri-
bute is the low-level CURSES display attribute used to display the field contents.
field_fore() returns the foreground attribute of field.

set_field_back() sets the background attribute of field. The background attri-
bute is the low-level CURSES display attribute used to display the extent of the
field. field_back() returns the background attribute of field.

set_field_pad() sets the pad character of field to pad. The pad character is the
character used to fill within the field. field_pad() returns the pad character of
field.

RETURN VALUE
field_fore(), field_back() and field_pad() return default values if field
is NULL. If field is not NULL and is not a valid FIELD pointer, the return value from
these routines is undefined.

set_field_fore(), set_field_back() and set_field_pad() return one
of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_attr
svid

Page: 551

form_field_buffer (TI_LIB) form_field_buffer (TI_LIB)

NAME
form_field_buffer: set_field_buffer, field_buffer, set_field_status, field_status,
set_max_field – set and get FORMS field attributes

SYNOPSIS
#include <form.h>

int set_field_buffer(FIELD *field, int buf, char *value);
char *field_buffer(FIELD *field, int buf);

int set_field_status(FIELD *field, int status);
int field_status(FIELD *field);

int set_max_field(FIELD *field, int max);

DESCRIPTION
set_field_buffer() sets buffer buf of field to value. Buffer 0 stores the displayed
contents of the field. Buffers other than 0 are application specific and not used by
the FORMS library routines. field_buffer() returns the value of field buffer
buf.

Every field has an associated status flag that is set whenever the contents of field
buffer 0 changes. set_field_status() sets the status flag of field to status.
field_status() returns the status of field.

set_max_field() sets a maximum growth on a dynamic field, or if max=0 turns
off any maximum growth.

RETURN VALUE
field_buffer() returns NULL on error.

field_status() returns TRUE or FALSE.

set_field_buffer(), set_field_status() and set_max_field() return
one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_buf
svid

Page: 552

form_field_info (TI_LIB) form_field_info (TI_LIB)

NAME
form_field_info: field_info, dynamic_field_info – get FORMS field characteristics

SYNOPSIS
#include <form.h>

int field_info(FIELD *field, int *rows, int *cols,
int *frow, int *fcol, int *nrow, int *nbuf);

int dynamic_field_info(FIELD *field, int *drows, int *dcols,
int *max);

DESCRIPTION
field_info() returns the size, position, and other named field characteristics, as
defined in the original call to new_field(), to the locations pointed to by the
arguments rows, cols, frow, fcol, nrow, and nbuf.

dynamic_field_info() returns the actual size of the field in the pointer argu-
ments drows, dcols and returns the maximum growth allowed for field in max. If no
maximum growth limit is specified for field, max will contain 0. A field can be made
dynamic by turning off the field option O_STATIC.

RETURN VALUE
These routines return one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_info
svid

Page: 553

form_field_just (TI_LIB) form_field_just (TI_LIB)

NAME
form_field_just: set_field_just, field_just – format the general appearance of
FORMS

SYNOPSIS
#include <form.h>

int set_field_just(FIELD *field, int justification);

int field_just(FIELD *field);

DESCRIPTION
set_field_just() sets the justification for field. Justification may be one of:

NO_JUSTIFICATION, JUSTIFY_RIGHT, JUSTIFY_LEFT, or
JUSTIFY_CENTER.

The field justification will be ignored if field is a dynamic field.

field_just() returns the type of justification assigned to field.

RETURN VALUE
field_just() returns the one of:

NO_JUSTIFICATION, JUSTIFY_RIGHT, JUSTIFY_LEFT, or
JUSTIFY_CENTER.

set_field_just() returns one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_just
svid

Page: 554

form_field_new (TI_LIB) form_field_new (TI_LIB)

NAME
form_field_new: new_field, dup_field, link_field, free_field, – create and destroy
FORMS fields

SYNOPSIS
#include <form.h>

FIELD *new_field(int r, int c, int frow, int fcol,
int nrow, int ncol);

FIELD *dup_field(FIELD *field, int frow, int fcol);

FIELD *link_field(FIELD *field, int frow, int fcol);

int free_field(FIELD *field);

DESCRIPTION
new_field() creates a new field with r rows and c columns, starting at frow, fcol,
in the subwindow of a form. nrow is the number of off-screen rows and nbuf is the
number of additional working buffers. This routine returns a pointer to the new
field.

dup_field() duplicates field at the specified location. All field attributes are
duplicated, including the current contents of the field buffers.

link_field() also duplicates field at the specified location. However, unlike
dup_field(), the new field shares the field buffers with the original field. After
creation, the attributes of the new field can be changed without affecting the origi-
nal field.

free_field() frees the storage allocated for field.

RETURN VALUE
Routines that return pointers return NULL on error. free_field() returns one
of the following:

E_OK – The function returned successfully.
E_CONNECTED – The field is already connected to a form.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_new
svid

Page: 555

form_field_opts (TI_LIB) form_field_opts (TI_LIB)

NAME
form_field_opts: set_field_opts, field_opts_on, field_opts_off, field_opts – FORMS
field option routines

SYNOPSIS
#include <form.h>

int set_field_opts(FIELD *field, OPTIONS opts);
int field_opts_on(FIELD *field, OPTIONS opts);
int field_opts_off(FIELD *field, OPTIONS opts);
OPTIONS field_opts(FIELD *field);

DESCRIPTION
set_field_opts() turns on the named options of field and turns off all remain-
ing options. Options are boolean values that can be OR-ed together.

field_opts_on() turns on the named options; no other options are changed.

field_opts_off() turns off the named options; no other options are changed.

field_opts() returns the options set for field.

Field Options:

O_VISIBLE The field is displayed.
O_ACTIVE The field is visited during processing.
O_PUBLIC The field contents are displayed as data is entered.
O_EDIT The field can be edited.
O_WRAP Words not fitting on a line are wrapped to the next line.
O_BLANK The whole field is cleared if a character is entered in the

first position.
O_AUTOSKIP Skip to the next field when the current field becomes full.
O_NULLOK A blank field is considered valid.
O_STATIC The field buffers are fixed in size.
O_PASSOK Validate field only if modified by user.

RETURN VALUE
set_field_opts(), field_opts_on() and field_opts_off() return one
of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_CURRENT – The field is the current field.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_opts
svid

Page: 556

form_field_opts (TI_LIB) form_field_opts (TI_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/form_f_opts
svid

Page: 557

form_field_userptr (TI_LIB) form_field_userptr (TI_LIB)

NAME
form_field_userptr: set_field_userptr, field_userptr – associate application data
with FORMS

SYNOPSIS
#include <form.h>

int set_field_userptr(FIELD *field, char *ptr);
char *field_userptr(FIELD *field);

DESCRIPTION
Every field has an associated user pointer that can be used to store pertinent data.
set_field_userptr() sets the user pointer of field. field_userptr()
returns the user pointer of field.

RETURN VALUE
field_userptr() returns NULL on error. set_field_userptr() returns one
of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_uptr
svid

Page: 558

form_field_validation (TI_LIB) form_field_validation (TI_LIB)

NAME
form_field_validation: set_field_type, field_type, field_arg – FORMS field data type
validation

SYNOPSIS
#include <form.h>

int set_field_type(FIELD *field, FIELDTYPE *type, ...);

FIELDTYPE *field_type(FIELD *field);

char *field_arg(FIELD *field);

DESCRIPTION
set_field_type() associates the specified field type with field. Certain field
types take additional arguments. TYPE_ALNUM, for instance, requires one, the
minimum width specification for the field. The other predefined field types are:
TYPE_ALPHA, TYPE_ENUM, TYPE_INTEGER, TYPE_NUMERIC, TYPE_REGEXP.

field_type() returns a pointer to the field type of field. NULL is returned if no
field type is assigned.

field_arg() returns a pointer to the field arguments associated with the field
type of field. NULL is returned if no field type is assigned.

RETURN VALUE
field_type() and field_arg() return NULL on error.

set_field_type() returns one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_f_valid
svid

Page: 559

form_fieldtype (TI_LIB) form_fieldtype (TI_LIB)

NAME
form_fieldtype: new_fieldtype, free_fieldtype, set_fieldtype_arg,
set_fieldtype_choice, link_fieldtype – FORMS fieldtype routines

SYNOPSIS
#include <form.h>

FIELDTYPE *new_fieldtype(int (* field_check)(FIELD *, char *),
int (* char_check)(int, char *));

int free_fieldtype(FIELDTYPE *fieldtype);

int set_fieldtype_arg(FIELDTYPE *fieldtype,
char *(* mak_arg)(va_list *),
char *(* copy_arg)(char *), void (* free_arg)(char *));

int set_fieldtype_choice(FIELDTYPE *fieldtype,
int (* next_choice)(FIELD *, char *),
int (* prev_choice)(FIELD *, char *));

FIELDTYPE *link_fieldtype(FIELDTYPE *type1, FIELDTYPE *type2);

DESCRIPTION
new_fieldtype() creates a new field type. The application programmer must
write the function field_check(), which validates the field value, and the function
char_check(), which validates each character. free_fieldtype() frees the space
allocated for the field type.

By associating function pointers with a field type, set_fieldtype_arg() con-
nects to the field type additional arguments necessary for a set_field_type()
call. Function mak_arg() allocates a structure for the field specific parameters to
set_field_type() and returns a pointer to the saved data. Function copy_arg()
duplicates the structure created by make_arg(). Function free_arg() frees any storage
allocated by make_arg() or copy_arg().

The form_driver() requests REQ_NEXT_CHOICE and REQ_PREV_CHOICE let
the user request the next or previous value of a field type comprising an ordered set
of values. set_fieldtype_choice() allows the application programmer to
implement these requests for the given field type. It associates with the given field
type those application-defined functions that return pointers to the next or previous
choice for the field.

link_fieldtype() returns a pointer to the field type built from the two given
types. The constituent types may be any application-defined or pre-defined types.

RETURN VALUE
Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_fldtype
svid

Page: 560

form_fieldtype (TI_LIB) form_fieldtype (TI_LIB)

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_CONNECTED – Type is connected to one or more fields.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/form_fldtype
svid

Page: 561

form_hook (TI_LIB) form_hook (TI_LIB)

NAME
form_hook: set_form_init, form_init, set_form_term, form_term, set_field_init,
field_init, set_field_term, field_term – assign application-specific routines for invo-
cation by FORMS

SYNOPSIS
#include <form.h>

int set_form_init(FORM *form, void (*func)(FORM *));
void (*)(FORM *) form_init(FORM *form);

int set_form_term(FORM *form, void (*func)(FORM *));
void (*)(FORM *) form_term(FORM *form);

int set_field_init(FORM *form, void (*func)(FORM *));
void (*)(FORM *) field_init(FORM *form);

int set_field_term(FORM *form, void (*func)(FORM *));
void (*)(FORM *) field_term(FORM *form);

DESCRIPTION
These routines allow the programer to assign application specific routines to be exe-
cuted automatically at initialization and termination points in the FORMS applica-
tion. The user need not specify any application-defined initialization or termination
routines at all, but they may be helpful for displaying messages or page numbers
and other chores.

set_form_init() assigns an application-defined initialization function to be
called when the form is posted and just after a page change. form_init()
returns a pointer to the initialization function, if any.

set_form_term() assigns an application-defined function to be called when the
form is unposted and just before a page change. form_term() returns a pointer
to the function, if any.

set_field_init() assigns an application-defined function to be called when the
form is posted and just after the current field changes. field_init() returns a
pointer to the function, if any.

set_field_term() assigns an application-defined function to be called when the
form is unposted and just before the current field changes. field_term()
returns a pointer to the function, if any.

RETURN VALUE
Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_hook
svid

Page: 562

form_hook (TI_LIB) form_hook (TI_LIB)

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/form_hook
svid

Page: 563

form_new (TI_LIB) form_new (TI_LIB)

NAME
form_new: new_form, free_form – create and destroy FORMS

SYNOPSIS
#include <form.h>

FORM *new_form(FIELD **fields);

int free_form(FORM *form);

DESCRIPTION
new_form() creates a new form connected to the designated fields and returns a
pointer to the form.

free_form() disconnects the form from its associated field pointer array and deal-
locates the space for the form.

RETURN VALUE
new_form() always returns NULL on error. free_form() returns one of the fol-
lowing:

E_OK – The function returned successfully.
E_BAD_ARGUMENT – An argument is incorrect.
E_POSTED – The form is posted.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_new
svid

Page: 564

form_new_page (TI_LIB) form_new_page (TI_LIB)

NAME
form_new_page: set_new_page, new_page – FORMS pagination

SYNOPSIS
#include <form.h>

int set_new_page(FIELD *field, int bool);

int new_page(FIELD *field);

DESCRIPTION
set_new_page() marks field as the beginning of a new page on the form.

new_page() returns a boolean value indicating whether or not field begins a new
page of the form.

RETURN VALUE
new_page() returns TRUE or FALSE.

set_new_page() returns one of the following:

E_OK – The function returned successfully.
E_CONNECTED – The field is already connected to a form.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_new_pg
svid

Page: 565

form_opts (TI_LIB) form_opts (TI_LIB)

NAME
form_opts: set_form_opts, form_opts_on, form_opts_off, form_opts – FORMS
option routines

SYNOPSIS
#include <form.h>

int set_form_opts(FORM *form, OPTIONS opts);
int form_opts_on(FORM *form, OPTIONS opts);
int form_opts_off(FORM *form, OPTIONS opts);
OPTIONS form_opts(FORM *form);

DESCRIPTION
set_form_opts() turns on the named options for form and turns off all remain-
ing options. Options are boolean values which can be OR-ed together.

form_opts_on() turns on the named options; no other options are changed.

form_opts_off() turns off the named options; no other options are changed.

form_opts() returns the options set for form.

Form Options:
O_NL_OVERLOAD Overload the REQ_NEW_LINE form driver request.
O_BS_OVERLOAD Overload the REQ_DEL_PREV form driver request.

RETURN VALUE
set_form_opts(), form_opts_on() and form_opts_off() return one of
the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_opts
svid

Page: 566

form_page (TI_LIB) form_page (TI_LIB)

NAME
form_page: set_form_page, form_page, set_current_field, current_field, field_index
– set FORMS current page and field

SYNOPSIS
#include <form.h>

int set_form_page(FORM *form, int page);
int form_page(FORM *form);

int set_current_field(FORM *form, FIELD *field);
FIELD *current_field(FORM *form);

int field_index(FIELD *field);

DESCRIPTION
set_form_page() sets the page number of form to page. form_page() returns
the current page number of form.

set_current_field() sets the current field of form to field.
current_field() returns a pointer to the current field of form.

field_index() returns the index in the field pointer array of field.

RETURN VALUE
form_page() returns -1 on error.

current_field() returns NULL on error.

field_index() returns -1 on error.

set_form_page() and set_current_field() return one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_BAD_STATE – The routine was called from an initialization

or termination function.
E_INVALID_FIELD – The field contents are invalid.
E_REQUEST_DENIED – The form driver request failed.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_page
svid

Page: 567

form_post (TI_LIB) form_post (TI_LIB)

NAME
form_post: post_form, unpost_form – write or erase FORMS from associated
subwindows

SYNOPSIS
#include <form.h>

int post_form(FORM *form);

int unpost_form(FORM *form);

DESCRIPTION
post_form() writes form into its associated subwindow. The application pro-
grammer must use CURSES library routines to display the form on the physical
screen or call update_panels() if the PANELS library is being used.

unpost_form() erases form from its associated subwindow.

RETURN VALUE
These routines return one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_POSTED – The form is posted.
E_NOT_POSTED – The form is not posted.
E_NO_ROOM – The form does not fit in the subwindow.
E_BAD_STATE – The routine was called from an initialization

or termination function.
E_NOT_CONNECTED – The field is not connected to a form.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV), PANELS(TI_ENV), panel_update(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_post
svid

Page: 568

form_userptr (TI_LIB) form_userptr (TI_LIB)

NAME
form_userptr: set_form_userptr, form_userptr – associate application data with
FORMS

SYNOPSIS
#include <form.h>

int set_form_userptr(FORM *form, char *ptr);
char *form_userptr(FORM *form);

DESCRIPTION
Every form has an associated user pointer that can be used to store pertinent data.
set_form_userptr() sets the user pointer of form. form_userptr() returns
the user pointer of form.

RETURN VALUE
form_userptr() returns NULL on error. set_form_userptr() returns one of
the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_uptr
svid

Page: 569

form_win (TI_LIB) form_win (TI_LIB)

NAME
form_win: set_form_win, form_win, set_form_sub, form_sub, scale_form – FORMS
window and subwindow association routines

SYNOPSIS
#include <form.h>

int set_form_win(FORM *form, WINDOW *win);
WINDOW *form_win(FORM *form);

int set_form_sub(FORM *form, WINDOW *sub);
WINDOW *form_sub(FORM *form);

int scale_form(FORM *form, int *rows, int *cols);

DESCRIPTION
set_form_win() sets the window of form to win. form_win() returns a
pointer to the window associated with form.

set_form_sub() sets the subwindow of form to sub. form_sub() returns a
pointer to the subwindow associated with form.

scale_form() returns the smallest window size necessary for the subwindow of
form. rows and cols are pointers to the locations used to return the number of rows
and columns for the form.

RETURN VALUE
Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK – The function returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An argument is incorrect.
E_NOT_CONNECTED – The field is not connected to a form.
E_POSTED – The form is posted.

USAGE
Application Program.

The header file <form.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), FORMS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/form_win
svid

Page: 570

menu_attributes (TI_LIB) menu_attributes (TI_LIB)

NAME
menu_attributes: set_menu_fore, menu_fore, set_menu_back, menu_back,
set_menu_grey, menu_grey, set_menu_pad, menu_pad – control MENUS display
attributes

SYNOPSIS
#include <menu.h>

int set_menu_fore(MENU *menu, chtype attr);
chtype menu_fore(MENU *menu);
int set_menu_back(MENU *menu, chtype attr);
chtype menu_back(MENU *menu);
int set_menu_grey(MENU *menu, chtype attr);
chtype menu_grey(MENU *menu);
int set_menu_pad(MENU *menu, int pad);
int menu_pad(MENU *menu);

DESCRIPTION
set_menu_fore() sets the foreground attribute of menu — the display attribute
for the current item (if selectable) on single-valued menus and for selected items on
multi-valued menus. This display attribute is a CURSES library visual attribute.
menu_fore() returns the foreground attribute of menu.

set_menu_back() sets the background attribute of menu — the display attribute
for unselected, yet selectable, items. This display attribute is a CURSES library
visual attribute.

set_menu_grey() sets the grey attribute of menu — the display attribute for non-
selectable items in multi-valued menus. This display attribute is a CURSES library
visual attribute. menu_grey() returns the grey attribute of menu.

The pad character is the character that fills the space between the name and descrip-
tion of an item. set_menu_pad() sets the pad character for menu to pad.
menu_pad() returns the pad character of menu.

RETURN VALUE
These routines return one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_attrib
svid

Page: 571

menu_cursor (TI_LIB) menu_cursor (TI_LIB)

NAME
menu_cursor: pos_menu_cursor – correctly position a MENUS cursor

SYNOPSIS
#include <menu.h>

int pos_menu_cursor(MENU *menu);

DESCRIPTION
pos_menu_cursor() moves the cursor in the window of menu to the correct posi-
tion to resume menu processing. This is needed after the application calls a
CURSES library I/O routine.

RETURN VALUE
This routine returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_NOT_POSTED – The menu has not been posted.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV), PANELS(TI_ENV), panel_update(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_cursor
svid

Page: 572

menu_driver (TI_LIB) menu_driver (TI_LIB)

NAME
menu_driver – command processor for the MENUS subsystem

SYNOPSIS
#include <menu.h>

int menu_driver(MENU *menu, int c);

DESCRIPTION
menu_driver() is the workhorse of the MENUS subsystem. It checks to deter-
mine whether the character c is a menu request or data. If c is a request, the menu
driver executes the request and reports the result. If c is data (a printable ASCII
character), it enters the data into the pattern buffer and tries to find a matching
item. If no match is found, the menu driver deletes the character from the pattern
buffer and returns E_NO_MATCH. If the character is not recognized, the menu driver
assumes it is an application-defined command and returns E_UNKNOWN_COMMAND.

Menu driver requests:

REQ_LEFT_ITEM Move left to an item.
REQ_RIGHT_ITEM Move right to an item.
REQ_UP_ITEM Move up to an item.
REQ_DOWN_ITEM Move down to an item.

REQ_SCR_ULINE Scroll up a line.
REQ_SCR_DLINE Scroll down a line.
REQ_SCR_DPAGE Scroll up a page.
REQ_SCR_UPAGE Scroll down a page.

REQ_FIRST_ITEM Move to the first item.
REQ_LAST_ITEM Move to the last item.
REQ_NEXT_ITEM Move to the next item.
REQ_PREV_ITEM Move to the previous item.

REQ_TOGGLE_ITEM Select/de-select an item.
REQ_CLEAR_PATTERN Clear the menu pattern buffer.
REQ_BACK_PATTERN Delete the previous character from pattern buffer.
REQ_NEXT_MATCH Move the next matching item.
REQ_PREV_MATCH Move to the previous matching item.

RETURN VALUE
menu_driver() returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_BAD_STATE – The routine was called from an initialization or

termination function.
E_NOT_POSTED – The menu has not been posted.
E_UNKNOWN_COMMAND – An unknown request was passed to the menu

driver.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_driver
svid

Page: 573

menu_driver (TI_LIB) menu_driver (TI_LIB)

E_NO_MATCH – The character failed to match.
E_NOT_SELECTABLE – The item cannot be selected.
E_REQUEST_DENIED – The menu driver could not process the request.

USAGE
Application Program.

Application defined commands should be defined relative to (greater than)
MAX_COMMAND, the maximum value of a request listed above.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/menu_driver
svid

Page: 574

menu_format (TI_LIB) menu_format (TI_LIB)

NAME
menu_format: set_menu_format, menu_format – set and get maximum numbers of
rows and columns in MENUS

SYNOPSIS
#include <menu.h>

int set_menu_format(MENU *menu, int rows, int cols);

void menu_format(MENU *menu, int *rows, int *cols);

DESCRIPTION
set_menu_format() sets the maximum number of rows and columns of items
that may be displayed at one time on a menu. If the menu contains more items than
can be displayed at once, the menu will be scrollable.

menu_format() returns the maximum number of rows and columns that may be
displayed at one time on menu. rows and cols are pointers to the variables used to
return these values.

RETURN VALUE
set_menu_format() returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_POSTED – The menu is already posted.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_format
svid

Page: 575

menu_hook (TI_LIB) menu_hook (TI_LIB)

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV), menu_control(TI_LIB), menu_hook(TI_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ti_lib/menu_hook
svid

Page: 577

menu_item_current (TI_LIB) menu_item_current (TI_LIB)

NAME
menu_item_current: set_current_item, current_item, set_top_row, top_row,
item_index – set and get current MENUS items

SYNOPSIS
#include <menu.h>

int set_current_item(MENU *menu, ITEM *item);
ITEM *current_item(MENU *menu);

int set_top_row(MENU *menu, int row);
int top_row(MENU *menu);

int item_index(ITEM *item);

DESCRIPTION
The current item of a menu is the item where the cursor is currently positioned.
set_current_item() sets the current item of menu to item. current_item()
returns a pointer to the the current item in menu.

set_top_row() sets the top row of menu to row. The left-most item on the new
top row becomes the current item. top_row() returns the number of the menu
row currently displayed at the top of menu.

item_index() returns the index to the item in the item pointer array. The value of
this index ranges from 0 through N-1, where N is the total number of items con-
nected to the menu.

RETURN VALUE
current_item() returns NULL on error.

top_row() and index_item() return -1 on error.

set_current_item() and set_top_row() return one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_BAD_STATE – The routine was called from an initialization or

termination function.
E_NOT_CONNECTED – No items are connected to the menu.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_i_cur
svid

Page: 578

menu_item_name (TI_LIB) menu_item_name (TI_LIB)

NAME
menu_item_name: item_name, item_description – get MENUS item name and
description

SYNOPSIS
#include <menu.h>

char *item_name(ITEM *item);

char *item_description(ITEM *item);

DESCRIPTION
item_name() returns a pointer to the name of item.

item_description() returns a pointer to the description of item.

RETURN VALUE
These routines return NULL on error.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV), menu_new(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_i_name
svid

Page: 579

menu_item_new (TI_LIB) menu_item_new (TI_LIB)

NAME
menu_item_new: new_item, free_item – create and destroy MENUS items

SYNOPSIS
#include <menu.h>

ITEM *new_item(char *name, char *desc);

int free_item(ITEM *item);

DESCRIPTION
new_item() creates a new item from name and description, and returns a pointer to
the new item.

free_item() frees the storage allocated for item. Once an item is freed, the user
can no longer connect it to a menu.

RETURN VALUE
new_item() returns NULL on error.

free_item() returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_CONNECTED – One or more items are already connected

to another menu.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_i_new
svid

Page: 580

menu_item_opts (TI_LIB) menu_item_opts (TI_LIB)

NAME
menu_item_opts: set_item_opts, item_opts_on, item_opts_off, item_opts – MENUS
item option routines

SYNOPSIS
#include <menu.h>

int set_item_opts(ITEM *item, OPTIONS opts);
int item_opts_on(ITEM *item, OPTIONS opts);
int item_opts_off(ITEM *item, OPTIONS opts);
OPTIONS item_opts(ITEM *item);

DESCRIPTION
set_item_opts() turns on the named options for item and turns off all other
options. Options are boolean values that can be OR-ed together.

item_opts_on() turns on the named options for item; no other option is changed.

item_opts_off() turns off the named options for item; no other option is
changed.

item_opts() returns the current options of item.

Item Options:

O_SELECTABLE The item can be selected during menu processing.

RETURN VALUE
Except for item_opts(), these routines return one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_i_opts
svid

Page: 581

menu_item_userptr (TI_LIB) menu_item_userptr (TI_LIB)

NAME
menu_item_userptr: set_item_userptr, item_userptr – associate application data
with MENUS items

SYNOPSIS
#include <menu.h>

int set_item_userptr(ITEM *item, char *userptr);

char *item_userptr(ITEM *item);

DESCRIPTION
Every item has an associated user pointer that can be used to store relevant infor-
mation. set_item_userptr() sets the user pointer of item.
item_userptr() returns the user pointer of item.

RETURN VALUE
item_userptr() returns NULL on error. set_item_userptr() returns one of
the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_i_uptr
svid

Page: 582

menu_item_value (TI_LIB) menu_item_value (TI_LIB)

NAME
menu_item_value: set_item_value, item_value – set and get MENUS item values

SYNOPSIS
#include <menu.h>

int set_item_value(ITEM *item, int bool);

int item_value(ITEM *item);

DESCRIPTION
Unlike single-valued menus, multi-valued menus enable the end-user to select one
or more items from a menu. set_item_value() sets the selected value of the
item — TRUE (selected) or FALSE (not selected). set_item_value() may be
used only with multi-valued menus. To make a menu multi-valued, use
set_menu_opts() or menu_opts_off() to turn off the option O_ONEVALUE.
[see menu_opts(TI_LIB)].

item_value() returns the select value of item, either TRUE (selected) or FALSE
(unselected).

RETURN VALUE
set_item_value() returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_REQUEST_DENIED – The menu driver could not pro-

cess the request.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV), menu_opts(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_i_value
svid

Page: 583

menu_item_visible (TI_LIB) menu_item_visible (TI_LIB)

NAME
menu_item_visible: item_visible – tell if MENUS item is visible

SYNOPSIS
#include <menu.h>

int item_visible(ITEM *item);

DESCRIPTION
A menu item is visible if it currently appears in the subwindow of a posted menu.
item_visible() returns TRUE if item is visible, otherwise it returns FALSE.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV), menu_new(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_i_vis
svid

Page: 584

menu_items (TI_LIB) menu_items (TI_LIB)

NAME
menu_items: set_menu_items, menu_items, item_count – connect and disconnect
items to and from MENUS

SYNOPSIS
#include <menu.h>

int set_menu_items(MENU *menu, ITEM **items);

ITEM **menu_items(MENU *menu);

int item_count(MENU *menu);

DESCRIPTION
set_menu_items() changes the item pointer array connected to menu to the item
pointer array items.

menu_items() returns a pointer to the item pointer array connected to menu.

item_count() returns the number of items in menu.

RETURN VALUE
menu_items() returns NULL on error.

item_count() returns -1 on error.

set_menu_items() returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_POSTED – The menu is already posted.
E_CONNECTED – One or more items are already connected to

another menu.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_items
svid

Page: 585

menu_mark (TI_LIB) menu_mark (TI_LIB)

NAME
menu_mark: set_menu_mark, menu_mark – MENUS mark string routines

SYNOPSIS
#include <menu.h>

int set_menu_mark(MENU *menu, char *mark);

char *menu_mark(MENU *menu);

DESCRIPTION
MENUS displays mark strings to distinguish selected items in a menu (or the
current item in a single-valued menu). set_menu_mark() sets the mark string of
menu to mark. menu_mark() returns a pointer to the mark string of menu.

RETURN VALUE
menu_mark() returns NULL on error. set_menu_mark() returns one of the fol-
lowing:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_mark
svid

Page: 586

menu_new (TI_LIB) menu_new (TI_LIB)

NAME
menu_new: new_menu, free_menu – create and destroy MENUS

SYNOPSIS
#include <menu.h>

MENU *new_menu(ITEM **items);

int free_menu(MENU *menu);

DESCRIPTION
new_menu() creates a new menu connected to the item pointer array items and
returns a pointer to the new menu.

free_menu() disconnects menu from its associated item pointer array and frees
the storage allocated for the menu.

RETURN VALUE
new_menu() returns NULL on error.

free_menu() returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_POSTED – The menu is already posted.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_new
svid

Page: 587

menu_opts (TI_LIB) menu_opts (TI_LIB)

NAME
menu_opts: set_menu_opts, menu_opts_on, menu_opts_off, menu_opts – MENUS
option routines

SYNOPSIS
#include <menu.h>

int set_menu_opts(MENU *menu, OPTIONS opts);
int menu_opts_on(MENU *menu, OPTIONS opts);
int menu_opts_off(MENU *menu, OPTIONS opts);
OPTIONS menu_opts(MENU *menu);

DESCRIPTION
Menu Options

set_menu_opts() turns on the named options for menu and turns off all other
options. Options are boolean values that can be OR-ed together.

menu_opts_on() turns on the named options for menu; no other option is
changed.

menu_opts_off() turns off the named options for menu; no other option is
changed.

menu_opts() returns the current options of menu.

Menu Options:

O_ONEVALUE Only one item can be selected from the menu.
O_SHOWDESC Display the description of the items.
O_ROWMAJOR Display the menu in row major order.
O_IGNORECASE Ignore the case when pattern matching.
O_SHOWMATCH Place the cursor within the item name when pat-

tern matching.
O_NONCYCLIC Make certain menu driver requests non-cyclic.

RETURN VALUE
Except for menu_opts(), these routines return one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_POSTED – The menu is already posted.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_opts
svid

Page: 588

menu_pattern (TI_LIB) menu_pattern (TI_LIB)

NAME
menu_pattern: set_menu_pattern, menu_pattern – set and get MENUS pattern
match buffer

SYNOPSIS
#include <menu.h>

int set_menu_pattern(MENU *menu, char *pat);

char *menu_pattern(MENU *menu);

DESCRIPTION
Every menu has a pattern buffer to match entered data with menu items.
set_menu_pattern() sets the pattern buffer to pat and tries to find the first item
that matches the pattern. If it does, the matching item becomes the current item. If
not, the current item does not change. menu_pattern() returns the string in the
pattern buffer of menu.

RETURN VALUE
menu_pattern() returns NULL on error. set_menu_pattern() returns one of
the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_NO_MATCH – The character failed to match.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_pattern
svid

Page: 589

menu_post (TI_LIB) menu_post (TI_LIB)

NAME
menu_post: post_menu, unpost_menu – write or erase MENUS from associated
subwindows

SYNOPSIS
#include <menu.h>

int post_menu(MENU *menu);

int unpost_menu(MENU *menu);

DESCRIPTION
post_menu() writes menu to the subwindow. The application programmer must
use CURSES library routines to display the menu on the physical screen or call
update_panels() if the PANELS library is being used.

unpost_menu() erases menu from its associated subwindow.

RETURN VALUE
These routines return one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_POSTED – The menu is already posted.
E_BAD_STATE – The routine was called from an initialization or

termination function.
E_NO_ROOM – The menu does not fit within its subwindow.
E_NOT_POSTED – The menu has not been posted.
E_NOT_CONNECTED – No items are connected to the menu.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV), PANELS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_post
svid

Page: 590

menu_userptr (TI_LIB) menu_userptr (TI_LIB)

NAME
menu_userptr: set_menu_userptr, menu_userptr – associate application data with
MENUS

SYNOPSIS
#include <menu.h>

int set_menu_userptr(MENU *menu, char *userptr);
char *menu_userptr(MENU *menu);

DESCRIPTION
Every menu has an associated user pointer that can be used to store relevant infor-
mation. set_menu_userptr() sets the user pointer of menu.
menu_userptr() returns the user pointer of menu.

RETURN VALUE
menu_userptr() returns NULL on error.

set_menu_userptr() returns one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_userptr
svid

Page: 591

menu_win (TI_LIB) menu_win (TI_LIB)

NAME
menu_win: set_menu_win, menu_win, set_menu_sub, menu_sub, scale_menu –
MENUS window and subwindow association routines

SYNOPSIS
#include <menu.h>

int set_menu_win(MENU *menu, WINDOW *win);
WINDOW *menu_win(MENU *menu);

int set_menu_sub(MENU *menu, WINDOW *sub);
WINDOW *menu_sub(MENU *menu);

int scale_window(MENU *menu, int *rows, int *cols);

DESCRIPTION
set_menu_win() sets the window of menu to win. menu_win() returns a
pointer to the window of menu.

set_menu_sub() sets the subwindow of menu to sub. menu_sub() returns a
pointer to the subwindow of menu.

scale_window() returns the minimum window size necessary for the subwin-
dow of menu. rows and cols are pointers to the locations used to return the values.

RETURN VALUE
Routines that return pointers always return NULL on error. Routines that return an
integer return one of the following:

E_OK – The routine returned successfully.
E_SYSTEM_ERROR – System error.
E_BAD_ARGUMENT – An incorrect argument was passed to the routine.
E_POSTED – The menu is already posted.
E_NOT_CONNECTED – No items are connected to the menu.

USAGE
Application Program.

The header file <menu.h> automatically includes the header files <eti.h> and
<curses.h>.

SEE ALSO
CURSES(TI_ENV), MENUS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/menu_win
svid

Page: 592

panel_above (TI_LIB) panel_above (TI_LIB)

NAME
panel_above: panel_above, panel_below – PANELS deck traversal primitives

SYNOPSIS
#include <panel.h>

PANEL *panel_above(PANEL *panel);

PANEL *panel_below(PANEL *panel);

DESCRIPTION
panel_above() returns a pointer to the panel just above panel, or NULL if panel is
the top panel. panel_below() returns a pointer to the panel just below panel, or
NULL if panel is the bottom panel.

If NULL is passed for panel, panel_above() returns a pointer to the bottom panel
in the deck, and panel_below() returns a pointer to the top panel in the deck.

RETURN VALUE
NULL is returned if an error occurs.

USAGE
Application Program.

These routines allow traversal of the deck of currently visible panels.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_above
svid

Page: 593

panel_move (TI_LIB) panel_move (TI_LIB)

NAME
panel_move: move_panel – move a PANELS window on the virtual screen

SYNOPSIS
#include <panel.h>

int move_panel(PANEL *panel, int starty, int startx);

DESCRIPTION
move_panel() moves the CURSES window associated with panel so that its upper
left-hand corner is at starty, startx. See usage note, below.

RETURN VALUE
OK is returned if the routine completes successfully, otherwise ERR is returned.

USAGE
Application Program.

For PANELS windows, use move_panel() instead of the mvwin() CURSES rou-
tine. Otherwise, update_panels() will not properly update the virtual screen.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV), panel_update(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_move
svid

Page: 594

panel_new (TI_LIB) panel_new (TI_LIB)

NAME
panel_new: new_panel, del_panel – create and destroy PANELS

SYNOPSIS
#include <panel.h>

PANEL *new_panel(WINDOW *win);

int del_panel(PANEL *panel);

DESCRIPTION
new_panel() creates a new panel associated with win and returns the panel
pointer. The new panel is placed on top of the panel deck.

del_panel() destroys panel, but not its associated window.

RETURN VALUE
new_panel() returns NULL if an error occurs.

del_win() returns OK if successful, ERR otherwise.

USAGE
Application Program.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV), panel_update(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_new
svid

Page: 595

panel_show (TI_LIB) panel_show (TI_LIB)

NAME
panel_show: show_panel, hide_panel, panel_hidden – PANELS deck manipulation
routines

SYNOPSIS
#include <panel.h>

int show_panel(PANEL *panel);

int hide_panel(PANEL *panel);

int panel_hidden(PANEL *panel);

DESCRIPTION
show_panel() makes panel, previously hidden, visible and places it on top of the
deck of panels.

hide_panel() removes panel from the panel deck and, thus, hides it from view.
The internal data structure of the panel is retained.

panel_hidden() returns TRUE (1) or FALSE (0) indicating whether or not panel
is in the deck of panels.

RETURN VALUE
show_panel() and hide_panel() return the integer OK upon successful comple-
tion or ERR upon error.

USAGE
Application Program.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV), panel_update(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_show
svid

Page: 596

panel_top (TI_LIB) panel_top (TI_LIB)

NAME
panel_top: top_panel, bottom_panel – PANELS deck manipulation routines

SYNOPSIS
#include <panel.h>

int top_panel(PANEL *panel);

int bottom_panel(PANEL *panel);

DESCRIPTION
top_panel() pulls panel to the top of the desk of panels. It leaves the size, loca-
tion, and contents of its associated window unchanged.

bottom_panel() puts panel at the bottom of the deck of panels. It leaves the size,
location, and contents of its associated window unchanged.

RETURN VALUE
All of these routines return the integer OK upon successful completion or ERR upon
error.

USAGE
Application Program.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV), panel_update(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_top
svid

Page: 597

panel_update (TI_LIB) panel_update (TI_LIB)

NAME
panel_update: update_panels – PANELS virtual screen refresh routine

SYNOPSIS
#include <panel.h>

void update_panels(void);

DESCRIPTION
update_panels() refreshes the virtual screen to reflect the depth relationships
between the panels in the deck. The user must use the curses library call doup-
date() [see curs_refresh(TI_LIB)] to refresh the physical screen.

USAGE
Application Program.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV), curs_refresh(TI_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_update
svid

Page: 598

panel_userptr (TI_LIB) panel_userptr (TI_LIB)

NAME
panel_userptr: set_panel_userptr, panel_userptr – associate application data with a
PANELS panel

SYNOPSIS
#include <panel.h>

int set_panel_userptr(PANEL *panel, char *ptr);

char * panel_userptr(PANEL *panel);

DESCRIPTION
Each panel has a user pointer available for maintaining relevant information.

set_panel_userptr() sets the user pointer of panel to ptr.

panel_userptr() returns the user pointer of panel.

RETURN VALUE
set_panel_userptr() returns OK if successful, ERR otherwise.

panel_userptr() returns NULL if there is no user pointer assigned to panel.

USAGE
Application Program.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_usrptr
svid

Page: 599

panel_window (TI_LIB) panel_window (TI_LIB)

NAME
panel_window: panel_window, replace_panel – get or set the current window of a
PANELS panel

SYNOPSIS
#include <panel.h>

WINDOW *panel_window(PANEL *panel);

int replace_panel(PANEL *panel, WINDOW *win);

DESCRIPTION
panel_window() returns a pointer to the window of panel.

replace_panel() replaces the current window of panel with win.

RETURN VALUE
panel_window() returns NULL on failure.

replace_panel() returns OK on successful completion, ERR otherwise.

USAGE
Application Program.

The header file <panel.h> automatically includes the header file <curses.h>.

SEE ALSO
CURSES(TI_ENV), PANELS(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_lib/panel_window
svid

Page: 600

Terminal Interface Commands And Utilities

The following section contains the manual pages for the TI_CMD routines.

Terminal Interface Commands And Utilities 24-1

FINAL COPY
June 15, 1995

File: ti_cmd.cov
svid

Page: 601

FINAL COPY
June 15, 1995

File:

Page: 602

captoinfo (TI_CMD) captoinfo (TI_CMD)

NAME
captoinfo — convert a termcap description into a terminfo description

SYNOPSIS
captoinfo [-v ...] [-V] [-1] [-w width] file ...

DESCRIPTION
captoinfo looks in file for termcap descriptions. For each one found, an
equivalent terminfo description is written to standard output, along with any
comments found. A description which is expressed as relative to another descrip-
tion (as specified in the termcap tc = field) will be reduced to the minimum
superset before being output.

If no file is given, then the environment variable TERMCAP is used for the filename
or entry. If TERMCAP is a full pathname to a file, only the terminal whose name is
specified in the environment variable TERM is extracted from that file. If the
environment variable TERMCAP is not set, then the file
/usr/share/lib/termcap is read.

–v print out tracing information on standard error as the program runs. Speci-
fying additional –v options will cause more detailed information to be
printed.

–V print out the version of the program in use on standard error and exit.

–1 cause the fields to print out one to a line. Otherwise, the fields will be
printed several to a line to a maximum width of 60 characters.

–w change the output to width characters.

FILES
/usr/share/lib/terminfo/?/* Compiled terminal description database.

USAGE
Administrator.

captoinfo should be used to convert termcap entries to terminfo entries
because the termcap database (from earlier versions of UNIX System V) may not
be supplied in future releases.

SEE ALSO
CURSES(TI_ENV), infocmp(TI_CMD), terminfo(TI_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_cmd/captoinfo
svid

Page: 603

clear (TI_CMD) clear (TI_CMD)

NAME
clear – clear the terminal screen

SYNOPSIS
clear

DESCRIPTION
clear clears the terminal’s screen if possible. It checks the environment for the ter-
minal type and then searches the terminfo database for the correct codes for clear-
ing the screen.

SEE ALSO
tput(TI_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ti_cmd/clear
svid

Page: 604

infocmp (TI_CMD) infocmp (TI_CMD)

NAME
infocmp – compare or print out terminfo descriptions

SYNOPSIS
infocmp [-d] [-c] [-n] [-I] [-L] [-C] [-r] [-u] [-s d i l c] [-v] [-V]

[-1] [-w width] [-A directory] [-B directory] [termname ...]

DESCRIPTION
infocmp can be used to compare a binary terminfo entry with other terminfo
entries, rewrite a terminfo description to take advantage of the use= terminfo
field, or print out a terminfo description from the binary file (term) in a variety
of formats. In all cases, the boolean fields will be printed first, followed by the
numeric fields, followed by the string fields.

Default Options
If no options are specified and zero or one termnames are specified, the –I option
will be assumed. If more than one termname is specified, the –d option will be
assumed.

Comparison Options [–d] [–c] [–n]
infocmp compares the terminfo description of the first terminal termname with
each of the descriptions given by the entries for the other terminal’s termnames . If a
capability is defined for only one of the terminals, the value returned will depend
on the type of the capability: F for boolean variables, –1 for integer variables, and
NULL for string variables.

–d produces a list of each capability that is different between two entries.
This option is useful to show the difference between two entries, created
by different people, for the same or similar terminals.

–c produces a list of each capability that is common between two entries.
Capabilities that are not set are ignored. This option can be used as a
quick check to see if the –u option is worth using.

–n produces a list of each capability that is in neither entry. If no termnames
are given, the environment variable TERM will be used for both of the
termnames . This can be used as a quick check to see if anything was left
out of a description.

Source Listing Options [–I] [–L] [–C] [–r]
The –I, –L, and –C options will produce a source listing for each terminal named.
–I use the terminfo names
–L use the long C variable name listed in <term.h>
–C use the termcap names
–r when using –C, put out all capabilities in termcap form

If no termnames are given, the environment variable TERM will be used for the ter-
minal name.

The source produced by the –C option may be used directly as a termcap entry,
but not all of the parameterized strings may be changed to the termcap format.
infocmp will attempt to convert most of the parameterized information, but any-
thing not converted will be plainly marked in the output and commented out.
These should be edited by hand.

Page 1

FINAL COPY
June 15, 1995

File: ti_cmd/infocmp
svid

Page: 605

infocmp (TI_CMD) infocmp (TI_CMD)

All padding information for strings will be collected together and placed at the
beginning of the string where termcap expects it. Mandatory padding (padding
information with a trailing ’/’) will become optional.

All termcap variables no longer supported by terminfo, but which are derivable
from other terminfo variables, will be output. Not all terminfo capabilities will
be translated; only those variables which were part of termcap will normally be
output. Specifying the –r option will take off this restriction, allowing all capabili-
ties to be output in termcap form.

Note that because padding is collected to the beginning of the capability, not all
capabilities are output. Mandatory padding is not supported. Because termcap
strings are not as flexible, it is not always possible to convert a terminfo string
capability into an equivalent termcap format. A subsequent conversion of the
termcap file back into terminfo format will not necessarily reproduce the origi-
nal terminfo source.

Some common terminfo parameter sequences, their termcap equivalents, and
some terminal types which commonly have such sequences, are:

terminfo termcap Representative Terminals

%p1%c %. adm
%p1%d %d hp, ANSI standard, vt100
%p1%’x’%+%c %+x concept
%i %i ANSI standard, vt100
%p1%?%’x’%>%t%p1%’y’%+%; %>xy concept
%p2 is printed before %p1 %r hp

Use= Option [–u]
–u produces a terminfo source description of the first terminal termname

which is relative to the sum of the descriptions given by the entries for the
other terminals termnames . It does this by analyzing the differences
between the first termname and the other termnames and producing a
description with use= fields for the other terminals. In this manner, it is
possible to retrofit generic terminfo entries into a terminal’s description.
Or, if two similar terminals exist, but were coded at different times or by
different people so that each description is a full description, using
infocmp will show what can be done to change one description to be rela-
tive to the other.

A capability will get printed with an at-sign (@) if it no longer exists in the first
termname , but one of the other termname entries contains a value for it. A
capability’s value gets printed if the value in the first termname is not found in any
of the other termname entries, or if the first of the other termname entries
that has this capability gives a different value for the capability than that in the first
termname .

The order of the other termname entries is significant. Since the terminfo compiler
tic does a left-to-right scan of the capabilities, specifying two use= entries that
contain differing entries for the same capabilities will produce different results
depending on the order that the entries are given in. infocmp will flag any such

Page 2

FINAL COPY
June 15, 1995

File: ti_cmd/infocmp
svid

Page: 606

infocmp (TI_CMD) infocmp (TI_CMD)

inconsistencies between the other termname entries as they are found.

Alternatively, specifying a capability after a use= entry that contains that capability
will cause the second specification to be ignored. Using infocmp to recreate a
description can be a useful check to make sure that everything was specified
correctly in the original source description.

Another error that does not cause incorrect compiled files, but will slow down the
compilation time, is specifying extra use= fields that are superfluous. infocmp
will flag any other termname use= fields that were not needed.

Other Options [–s d  i  l  c] [–v] [–V] [–1] [–w width]
–s sorts the fields within each type according to the argument below:

d leave fields in the order that they are stored in the terminfo database.

i sort by terminfo name.

l sort by the long C variable name.

c sort by the termcap name.

If the –s option is not given, the fields printed out will be sorted alphabeti-
cally by the terminfo name within each type, except in the case of the –C
or the –L options, which cause the sorting to be done by the termcap
name or the long C variable name, respectively.

–v prints out tracing information on standard error as the program runs.

–V prints out the version of the program in use on standard error and exit.

–1 causes the fields to be printed out one to a line. Otherwise, the fields will
be printed several to a line to a maximum width of 60 characters.

–w changes the output to width characters.

Changing Databases [–A directory] [–B directory]
The location of the compiled terminfo database is taken from the environment
variable TERMINFO . If the variable is not defined, or the terminal is not found in
that location, the system terminfo database, usually in
/usr/share/lib/terminfo, will be used. The options –A and –B may be used
to override this location. The –A option will set TERMINFO for the first termname
and the –B option will set TERMINFO for the other termnames . With this, it is pos-
sible to compare descriptions for a terminal with the same name located in two dif-
ferent databases. This is useful for comparing descriptions for the same terminal
created by different people.

FILES
/usr/share/lib/terminfo/?/* Compiled terminal description database.

SEE ALSO
CURSES(TI_LIB), captoinfo(TI_CMD), terminfo(TI_ENV), tic(TI_CMD).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ti_cmd/infocmp
svid

Page: 607

tic (TI_CMD) tic (TI_CMD)

NAME
tic – terminfo compiler

SYNOPSIS
tic [-v[n]] [-c] file

DESCRIPTION
The command tic translates a terminfo file from the source format into the com-
piled format. The results are placed in the directory
/usr/share/lib/terminfo. The compiled format is necessary for use with the
library routines in CURSES(TI_ENV).

–vn specifies that (verbose) output be written to standard error trace informa-
tion showing tic’s progress. The optional integer n is a number from 1 to
10, inclusive, indicating the desired level of detail of information. If n is
omitted, the default level is 1. If n is specified and greater than 1, the level
of detail is increased.

–c specifies to check only file for errors. Errors in use= links are not detected.

file contains one or more terminfo terminal descriptions in source format
[see terminfo(TI_ENV)]. Each description in the file describes the capabili-
ties of a particular terminal. When a use=entry-name field is discovered in
a terminal entry currently being compiled, tic reads in the binary from
/usr/share/lib/terminfo to complete the entry. (Entries created
from file will be used first. If the environment variable TERMINFO is set,
that directory is searched instead of /usr/share/lib/terminfo.)
tic duplicates the capabilities in entry-name for the current entry, with the
exception of those capabilities that explicitly are defined in the current
entry.

If the environment variable TERMINFO is set, the compiled results are placed there
instead of /usr/share/lib/terminfo.

Total compiled entries cannot exceed 4096 bytes. The name field cannot exceed 128
bytes. Terminal names exceeding 14 characters will be truncated to 14 characters
and a warning message will be printed.

FILES
/usr/share/lib/terminfo/?/* Compiled terminal description database.

USAGE
Administrator.

If the Enhanced Security Utilities are installed and running, privileged use of this
command is restricted to maintenance mode. See the System Administrator’s Guide
for a description of maintenance mode.

When an entry, e.g., entry_name_1, contains a use=entry_name_2 field, any can-
celed capabilities in entry_name_2 must also appear in entry_name_1 before use=
for these capabilities to be canceled in entry_name_1.

SEE ALSO
CURSES(TI_ENV), captoinfo(TI_CMD), infocmp(TI_CMD), terminfo(TI_ENV).

Page 1

FINAL COPY
June 15, 1995
File: ti_cmd/tic

svid

Page: 608

tic (TI_CMD) tic (TI_CMD)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ti_cmd/tic

svid

Page: 609

tput (TI_CMD) tput (TI_CMD)

NAME
tput – initialize a terminal or query the terminfo database

SYNOPSIS
tput [-Ttype] capname [parms ...]
tput [-Ttype] init
tput [-Ttype] longname
tput [-Ttype] reset
tput -S

DESCRIPTION
The command tput uses the terminfo database to make the values of terminal-
dependent capabilities and information available to the shell [see sh(BU_CMD)], to
initialize or reset the terminal, or return the long name of the requested terminal
type. The command tput outputs a string if the attribute is of type string, or an
integer if the attribute is of type integer. If the attribute is of type boolean, tput
simply sets the exit code (0 for true if the terminal has the capability, 1 for false if it
does not), and produces no output.

–Ttype
indicates the type of terminal. Normally this option is unnecessary, as the
default is taken from the environment variable TERM. If –T is specified, then
the shell variables LINES and COLUMNS and the layer size will not be refer-
enced.

capname
indicates the attribute from the terminfo database [see
terminfo(TI_ENV)].

parms If the attribute is a string that takes parameters, the arguments parms will be
instantiated into the string. An all numeric argument will be passed to the
attribute as a number.

init If the terminfo database is present and an entry for the user’s terminal
exists, then the following will occur: (1) if present, the terminal’s initializa-
tion strings will be output (is1, is2, is3, if, iprog) (2) any delays
(e.g., newline) specified in the entry will be set in the tty driver (3) tabs
expansion will be turned on or off according to the specification in the entry,
and (4) if tabs are not expanded, standard tabs will be set (every 8 spaces).
If an entry does not contain the information needed for any of the four
above activities, that activity will silently be skipped.

longname
If the terminfo database is present and an entry for the user’s terminal
exists, then the long name of the terminal will be output. The long name is
the last name in the first line of the terminal’s description in the terminfo
database.

reset
reset behaves identically to init with the following exception. Instead of
outputting initialization strings, the terminal’s reset strings will be output if
present (rs1, rs2, rs3, rf). If the reset strings are not present, but ini-
tialization strings are, the initialization strings will be output.

Page 1

FINAL COPY
June 15, 1995

File: ti_cmd/tput
svid

Page: 610

tput (TI_CMD) tput (TI_CMD)

–S allows more than one capability per invocation of tput. The capabilities
must be passed to tput from the standard input instead of from the com-
mand line (see Example). Only one capname is allowed per line. The –S
option changes the meaning of the 0 and 1 boolean and string exit codes
(see Return Value).

RETURN VALUE
Before using a value returned on standard output, the user should test the exit code
[$?, see sh()] to be sure it is 0.

If capname is of type boolean, an exit code of 0 is returned for true and 1 for false
unless the –S option is used.

If capname is of type string, an exit code of 0 is returned if the capname is defined for
this terminal type (the value of capname is returned on standard output); an exit code
of 1 is returned if capname is not defined for this terminal type (a null value is
returned on standard output).

If capname is of type boolean or type string and the –S option is used, an exit code
of 0 is returned to indicate that all lines were successful. No indication of which
line failed can be given, therefore, exit code 1 will never appear. Exit codes 2, 3,
and 4 retain their usual interpretation.

If capname is of type integer, exit code of 0 is always set, whether or not capname is
defined for this terminal type. To determine if capname is defined for this terminal
type, the user must test the value of standard output. A value of –1 means that cap-
name is not defined for this terminal.

Any other exit code indicates an error.

tput prints the following messages corresponding to the exit codes.
exit
code message

0 -1 (capname is a numeric variable that is not specified in the
terminfo database for this terminal type, e.g.
tput –T450 lines and tput –T2621 xmc)

1 no error message is printed, see above.
2 usage error
3 unknown terminal type or no terminfo database
4 unknown terminfo capability capname

FILES
/usr/lib/terminfo/?/* Compiled terminal description database.

USAGE
Application Program.

tput init or tput reset may clear the user’s screen.

EXAMPLES
tput init

Initialize the terminal according to the type of terminal in the environmental
variable TERM. This command should be included in .profile after the
environmental variable TERM has been exported.

Page 2

FINAL COPY
June 15, 1995

File: ti_cmd/tput
svid

Page: 611

tput (TI_CMD) tput (TI_CMD)

tput –T5620 reset
Reset an AT&T 5620 terminal, overriding the type of terminal in the
environmental variable TERM.

tput clear
Echo clear-screen sequence for the current terminal.

tput cols
Print the number of columns for the current terminal.

tput –T450 cols
Print the number of columns for the 450 terminal.

bold= tput smso
offbold= tput rmso

Set the shell variables bold and offbold to begin standout mode sequence
and to end standout mode sequence for the current terminal respectively.
This may be followed by a prompt, e.g.:

echo "${bold}Name: ${offbold}\c"

tput hc
Set exit code to indicate if the current terminal is a hardcopy terminal.

tput cup 23 4
Print the sequence to move the cursor to row 23, column 4.

tput longname
Print the long name from the terminfo database for the type of terminal
specified in the environmental variable TERM.

tput cup 0 0
Send the sequence to move the cursor to row 0, column 0 (the upper left
corner of the screen, usually known as the "home" cursor position).

tput –S <<!
> clear
> cup 10 10
> bold
> !

This example shows tput processing several capabilities in one invocation.
This example clears the screen, moves the cursor to position 10, 10 and turns
on bold (extra bright) mode. The list is terminated by an exclamation mark
(!) on a line by itself.

SEE ALSO
sh(BU_CMD), stty(BU_CMD), terminfo(TI_ENV).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ti_cmd/tput
svid

Page: 612

Window System Introduction

Overview Of The Window System Extension

The Window System Extension supports the creation of application programs that
communicate with the user through a windowed user interface. This extension
defines low-level libraries and communication protocol. It does not define
higher-level graphical toolkits or a specific development environment. In a future
issue of the SVID, toolkit interfaces will be added to this extension.

The following are prerequisites for support of the Window System Extension:

Base System

Kernel Extension

Basic Utilities Extension

Advanced Utilities Extension

Software Development Extension

Terminal Interface Extension

OVERVIEW OF THE WINDOW SYSTEM ENVIRONMENT

The System V Window System Extension supports the X11 Window System. The
X11 Window System interface is required.

The X11 window system follows the client/server model; a collection of client pro-
grams communicate with a window system server that drives high-resolution bit-
mapped display devices. Client applications communicate with their server using
the appropriate (X11) protocol. Multiple applications can run on the same display
screen simultaneously. A server process arbritrates a shared display, a keyboard,
and a pointing device, and it performs I/O on behalf of the client applications.
Client applications can execute on the local processor, or they can run on a remote
processor and communicate with the server through a network connection.

The Window System Extension is network-transparent. A client program can run
on any machine in a network, and the client and server programs need not execute
on machines that share a common architecture. When the client and server reside
on different machines, the window system uses the Transport Interface (TI)
library, libnsl, to access the services of a transport provider on a remote machine.
When the client and server reside on the same machine, messages are transmitted

Window System Introduction 25-1

FINAL COPY
June 15, 1995
File: ws_int.txt

svid

Page: 613

using a local interprocess communication mechanism.

REQUIRED COMPONENTS OF THE WINDOW SYSTEM
EXTENSION

The window system server is not a required component of the Window System
Extension. For example, a host might omit the server if its terminals do not have
graphics capabilities. In this case, other hosts on the network may have graphics
capabilities and may provide servers. Since the Window System Extension is
network-transparent, clients built on a host that does not provide a server may
connect to a server elsewhere on the network to display their data.

If a host offers a window system server, the server can be an X11 server.

To communicate with the server, X clients use the library Xlib. The components of
Xlib are described in the X11 Library Routines chapter. Typically, Xlib is installed
as libX11.a or libX11.so.

Several subsets of the Window System Extension are acceptable for System V com-
pliance. These options are summarized below.

If graphics hardware is present, the following two options are acceptable:

1 . Xlib and its header files, and the X11 server

2 .

3 . Xlib and its header files

If no graphics hardware is present, option 2) is acceptable.

ORGANIZATION OF TECHNICAL INFORMATION

The information is this extension is now a points to the "X Window System Proto-
col, Version 11 Specification" (Massachusetts Institute of Technology, 1987, 1988)
and Xlib - C Language Interface, X Window System, X Version 11, Release 5, (Mas-
sachusetts Institute of Technology, 1991). This information will no longer be
duplicated in the SVID. The SVID will track upward-compatible future releases
of the X library.

25-2 WINDOW SYSTEM INTRODUCTION

FINAL COPY
June 15, 1995
File: ws_int.txt

svid

Page: 614

X11 WINDOW SYSTEM COMPONENTS

A client application communicates with the X capabilities of the System V window
system server using the X11 protocol. The X11 protocol specifies exchange format,
rules for data exchange, X11 protocol and message semantics, but is policy-free
and does not impose any specific appearance on the interface. The look and feel of
a particular interface is defined by the window manager and different toolkits that
define a higher-level program interface to the X capabilities.

The X Version 11 protocol defines the format, syntax, common types, errors codes,
keyboard keycodes, pointers, predefined atoms, connection setup, requests, con-
nection close, and events. A detailed description of these can be found in the X
Window System Protocol, Version 11 Specification (Massachusetts Institute of Tech-
nology, 1987, 1988).

The X library, l i b X, generates the X11 protocol and buffers traffic between each
client application and the server. A full specification of the libX library and its
contents can be found in Xlib - C Language Interface, X Window System, X Version 11,
Release 5, (Massachusetts Institute of Technology, 1991).

The X Toolkit Intrinsics library l i b X t provides a framework for building X-based
toolkits. A full specification of the X Toolkit Intrinsics can be found in X Toolkit
Intrinsics - C Language X Interface, X Window System, X Version 11, Release 5, (Mas-
sachusetts Institute of Technology, 1991).

Window System Introduction 25-3

FINAL COPY
June 15, 1995
File: ws_int.txt

svid

Page: 615

FUTURE DIRECTIONS

The Motif Graphical User Interface Release 1.2 will be supported in a future edi-
tion of the SVID. Motif is a trademark of the Open Software Foundation Inc. The
header files required to use Xlib are listed below. These header files are required
for SVID compliance.

25-4 WINDOW SYSTEM INTRODUCTION

FINAL COPY
June 15, 1995
File: ws_int.txt

svid

Page: 616

Remote Administration Introduction

Remote Administration Overview

The Remote Administration Extension contains additional system management
services that provide support in a networked environment. These services are the
Remote Operations Interface (ROI) and the Software Distribution Service (SDS).

All of the interfaces and commands in this extension have been moved to Level 2
in the SVID, Fourth Edition. In the future, they are to be phased out in favor of
the Distributed Management Functionality. In this introduction, all the com-
mands and utilities are marked with an asterisk (*) to indicate that they have been
moved to Level 2.

The following are prerequisite for support of the REMOTE ADMINISTRATION
EXTENSION:

Base System

Basic Utilities Extension

Advanced Utilities Extension

Administered Systems Extension

REMOTE OPERATIONS INTERFACE

The Remote Operations Interface offers uniform networking access for applica-
tions that desire network service independence. This allows a service to invoke
remote operations following a client/server scenario without regard to which net-
work services will be used. The application controls whether synchronous or
queued services are called. The ROI has three components:

library subroutines to initiate remote operations;

library subroutines to build additional ROI connections to network services
outside of the delivered set;

commands to administer ROI parameters, and to monitor and cancel ROI
jobs.

Remote Administration Introduction 26-1

FINAL COPY
June 15, 1995
File: ra_int.txt

svid

Page: 617

SOFTWARE DISTRIBUTION SERVICE

The Software Distribution Service (SDS) is a facility that enables computers
defined as "servers" to distribute software packages across a network to computers
defined as either "clients" or "target servers" (other servers that receive packages
and then distribute them to their own clients.)

Features of SDS include:

support for a hierarchical configuration of authorized clients and servers

administrative commands for maintaining databases of information needed
to run an SDS network

catalogs (lists of software packages) from which clients can request pack-
ages

three methods of package transfer:

– broadcast- a server sends a package to a client on its own initiative
(that is, not in response to any request by a client)

– request- a client asks a server to send a specified package, selected
from a catalog of available packages

– subscription- a client sets up a mechanism that automatically
requests (from a server) a new version of a specified package as
soon as it becomes available

a mechanism for tracking package distribution

SUMMARY OF LIBRARY ROUTINES

The following routines are supported by the Remote Administration Extension.

m g r o u p * r o i s t a t * r o i t o s v a l * r o i j o b i d s *
r o i g e t u s e r * r o i t o s p a r s e * r e m o p *

26-2 REMOTE ADMINISTRATION INTRODUCTION

FINAL COPY
June 15, 1995
File: ra_int.txt

svid

Page: 618

SUMMARY OF COMMANDS AND UTILITIES

The following commands and utilities are supported by the Remote Administra-
tion Extension. All of the commands and utilities in this section have been inter-
nationalized and may reference environment variables for localization informa-
tion. [See envvar(BA_ENV)].

c a t r e q * c a t s e n d * d i s t a u t h * r e m t a b *
d i s t r p t * p k g c a t * p k g d e l * d i s t c o n f *
p k g r e q * p k g s e n d * p k g t r k * p k g p u t *
r e m a l i a s * r e m c l e a n * r e m k i l l * r e m a d m i n *
r e m o p * r e m s t a t *

ORGANIZATION OF TECHNICAL INFORMATION

The ‘‘Remote Administration Library Routines’’ chapter provides manual page
descriptions of library routines supported by this extension.

The ‘‘Remote Administration Commands and Utilities’’ chapter provides manual
page descriptions of commands and utilities supported by this extension.

Remote Administration Introduction 26-3

FINAL COPY
June 15, 1995
File: ra_int.txt

svid

Page: 619

FINAL COPY
June 15, 1995

File:

Page: 620

Remote Administration Library Routines

The following section contains the manual pages for the RA_LIB routines.

Remote Administration Library Routines 27-1

FINAL COPY
June 15, 1995
File: ra_lib.cov

svid

Page: 621

FINAL COPY
June 15, 1995

File:

Page: 622

mgroup (RA_LIB) mgroup (RA_LIB)

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_lib/mgroup
svid

Page: 624

remop (RA_LIB) remop (RA_LIB)

NAME
remop – initiate a remote operation

SYNOPSIS
i n c l u d e < r e m o p . h >
i n t r e m o p (c o n s t c h a r *type, c o n s t c h a r *primitive,

c o n s t c h a r *operand, s t r u c t r e m o p *remreq,
c o n s t c h a r *svc, c o n s t c h a r *notify);

DESCRIPTION
r e m o p() provides interactive and queued remote operation capabilities on one or
more machines by initiating a primitive remote operation on each system specified
in the m a c h i n e argument of the r e m o p structure. Mapping from machine aliases to
machine names (supplied in the r e m r e q list) will need to be done by the calling the
m g r o u p() function prior to calling r e m o p().

The remreq argument points to a structure of type r e m o p which contains the follow-
ing elements:

c h a r *machine;

i n t sid;

i n t adminid;

i n t primid;

i n t depend_flg;

i n t dependid;

i n t exit_status;

i n t filler;

s t r u c t r e m o p *next;

The remreq argument points to a NULL-terminated, linked list of r e m o p structures.
It is a good practice to call the m g r o u p() function before calling r e m o p() because
m g r o u p() will provide a r e m r e q list. The r e m r e q list returned by m g r o u p() sets the
following fields and values for the r e m o p structure: m a c h i n e, which points to the
name of the remote system; e x i t _ s t a t u s, which is set to -1; and s i d, a d m i n i d and
p r i m i d, which are set to 0.

type, primitive and operand are NULL-terminated strings; their meaning and use are
described below.

The type argument specifies whether the remote operation will execute in synchro-
nous or batch fashion. The letter s is used for synchronous operations and the
application will receive the exit status interactively. Only one remote system may
be specified with s (that is, the r e m r e q list contains one member). The letter q is
used for queued operations and the application will receive an indication of
whether the primitive was successfully queued.

Job identifier assignments are performed on three levels: service jobs, administra-
tive jobs, and primitive jobs. All job identifiers assigned by r e m o p() are unique per
user and assigned from the same allocator, in ascending order from 1 to I N T _ M A X
(defined in < l i m i t s . h >). When the maximum number is reached, the sequence
wraps around.

Page 1

FINAL COPY
June 15, 1995

File: ra_lib/remop
svid

Page: 625

remop (RA_LIB) remop (RA_LIB)

The r e m o p structure will assign new service job identifiers and administrative job
identifiers if their values are zero upon the call to r e m o p() and the specified job type
is q. For example, if the values for the s i d and a d m i n i d fields of the r e m o p struc-
ture are zero, each field is assigned job identifiers from 1 to I N T _ M A X. If the values
are positive integers, they become the actual job identifier values. If the values are
negative, an error message is generated. The job identifier for the p r i m i d field of
the r e m o p structure is assigned by the system from the counter using 1 to I N T _ M A X.

The d e p e n d _ f l g and d e p e n d i d fields provide applications with the means to
specify job dependencies. Possible values for d e p e n d _ f l g are defined in r e m o p . h.
They are D E P _ N O N E, D E P _ S T A R T, D E P _ M I D and D E P _ E N D.

An application may indicate that there are no job dependencies by initializing the
d e p e n d _ f l g and d e p e n d i d fields to D E P _ N O N E. When set to D E P _ S T A R T,
d e p e n d _ f l g marks the first job in a dependency list; when set to D E P _ M I D, it marks
any job in the middle; when set to D E P _ E N D, it marks the last job to execute. Appli-
cations must use the d e p e n d i d field to tell r e m o p() the primitive job identifier on
which the current field depends. Dependency lists cannot be used with linked
r e m o p structure lists; that is, the n e x t field of the r e m o p structure must be NULL.

The primitive argument specifies the remote operation to be invoked. Three primitive
strings are supported: f t will invoke a file transfer, r e will invoke a remote com-
mand execution, and d t will invoke a directory transfer.

The operand argument provides data to direct the remote operation. Its meaning is
dependent on the value of the primitive argument. Where primitive is f t, operand
contains a pathname specification to transfer a local file to the remote system.
operand is of the form p a t h 1 or p a t h 1 = p a t h 2, where p a t h 1 is the local pathname
and p a t h 2, if supplied, is the full remote pathname. If p a t h 2 is not supplied, the
Remote Operation Interface uses its standard naming convention of
/ v a r / s p o o l / r o i / u s e r s /logname/ r e c e i v e /svc/mach. (See FILES section.)

Where primitive is r e, operand contains a command to be remotely executed. The
o p e r a n d string is interpreted with s h(BU_CMD) rules on the remote system.

Where primitive is d t, operand contains a pathname specification to copy a local
directory tree structure to a remote system. The pathname conventions described
for the f t primitive apply; the character string can be of the form p a t h 1 or
p a t h 1 = p a t h 2. The d t primitive transfers the complete directory structure to each
remote system. In the case where p a t h 1 is a file rather than a directory, the d t
primitive is equivalent to an f t.

The svc argument specifies an identifier used to indicate membership in an adminis-
trative service. The svc argument is used in naming the destination directory,
/ v a r / s p o o l / r o i / u s e r s /logname/ r e c e i v e /svc/mach on the remote system if
p a t h 2 was not specified in the operand. It also can be used as a status report selec-
tion option on the local system (see r e m s t a t(RA_CMD)).

The last argument, notify, can be specified if the application has selected the queued
type of operation. notify is the full pathname of an executable on the local system.
One or more space characters must separate the name of the executable from addi-
tional arguments or shell command separators. When the operation reaches the
final state, notify can be used to report the success or failure of a remote job to each
destination machine. If notify is not specified, no corresponding executable will be

Page 2

FINAL COPY
June 15, 1995

File: ra_lib/remop
svid

Page: 626

remop (RA_LIB) remop (RA_LIB)

invoked. Certain environment variables are available to the notify executable as
shown by the table below.

_ __
Variable Description_ __
R E M E X I T Exit value of a remote primitive
R E M S T A T Status of the job
R E M M A C H The destination machine name
R E M S V C The service job ID
R E M A D M The administrative job ID
R E M P R I M The primitive job ID
S T D O U T Full pathname to s t d o u t file
S T D E R R Full pathname to s t d e r r file_ __ 












































Possible values for R E M S T A T are defined in r e m o p . h. They are R O I _ F A I L E D ,
R O I _ R E J E C T, R O I _ S U C C, R O I _ T M O U T, R O I _ I N P R O G, R O I _ Q U E U E D, R O I _ C A N C E L, and
R O I _ N O S T A T. S T D O U T and S T D E R R are set to the full pathnames of local files con-
taining, respectively, the standard output and standard error output of the remotely
executed operation.

The order for trying network services can be determined by the environment vari-
ables R E M O P S and R E M O P Q. R E M O P S specifies the order for trying synchronous net-
work services; R E M O P Q specifies the order for trying queued network services. The
value of each environment variable is a colon-separated list of network services. If
these variables are not set, the default order of the network services is the order set
by the r e m t a b administrative command.

When invoked, r e m o p() will interrogate the _ R O I D E B U G environment variable,
which assists users in debugging ROI. _ R O I D E B U G provides output to standard out-
put so users can follow the execution of primitive operations. To enable this trac-
ing, _ R O I D E B U G must be set to y e s and exported.

RETURN VALUE
Upon successful completion of a synchronous operation, the value of 0 is returned.
Otherwise, a value of -1 is returned, and the e x i t _ s t a t u s field of the r e m o p struc-
ture is set to indicate the exit status. When all operations are successfully queued, a
value of 0 is returned and the fields s i d, a d m i n i d, and p r i m i d of the r e m o p struc-
ture are set to the assigned job IDs. Otherwise, a value of -1 is returned and the
e x i t _ s t a t u s field of the r e m o p structure is set to indicate the exit status.

EXAMPLE
Below are examples for using the r e m o p() function for synchronous operation,
queued operations, and queued operations with dependencies. All examples use
the following declaration statements:
i n c l u d e < r e m o p . h >

s t a t i c c o n s t s t r u c t r e m o p e m p t y = { 0 } ;
s t r u c t r e m o p r e m r e q = e m p t y ;
i n t r e t ;
c h a r * s v c = " d i s t " ;
c h a r * n o t i f y = " e c h o j o b c o m p l e t e d | / u s r / b i n / m a i l u s e r 1 " ;
r e m r e q . m a c h i n e = " i n t l " ;
r e m r e q . e x i t _ s t a t u s = - 1 ;

Page 3

FINAL COPY
June 15, 1995

File: ra_lib/remop
svid

Page: 627

remop (RA_LIB) remop (RA_LIB)

EXAMPLE 1 — Synchronous Operation

The following function call will copy the file / f s 1 / u s e r 1 / f o o 1 . c to the remote
system i n t l over a synchronous network service. The returned value indicates the
completion status of the operation.

r e t = r e m o p (" s " , " f t " , " / f s 1 / u s e r 1 / f o o 1 . c " , & r e m r e q , s v c , (c h a r
*) 0) ;

EXAMPLE 2 — Queued Operation

The following function call will copy the file / f s 1 / u s e r 1 / f o o 1 . c to the remote
system i n t l over a queued network service. The user u s e r 1 will be notified via
m a i l(BU_CMD) on the completion of the operation.

r e t = r e m o p (" q " , " f t " , " / f s 1 / u s e r 1 / f o o 1 . c " , & r e m r e q , s v c , n o t i f y) ;

EXAMPLE 3 — Queued Operations With Dependencies

The following function call will copy the files / f s 1 / u s e r 1 / f o o 1 . c and
/ f s 1 / u s e r 2 / f o o 2 . c into the / t m p directory on the remote system i n t l. Finally, a
compilation will be initiated on the system i n t l and the file f o o will be created in
the / t m p directory on i n t l.

r e m r e q . d e p e n d _ f l g = D E P _ S T A R T ;
r e m r e q . d e p e n d i d = D E P _ N O N E ;
r e t = r e m o p (" q " , " f t " ,

" / f s 1 / u s e r 1 / f o o 1 . c = / t m p / f o o 1 . c " ,
& r e m r e q , s v c , n o t i f y) ;
.
.

r e m r e q . d e p e n d _ f l g = D E P _ M I D ; / * d e p e n d s o n f o o 1 . c t r a n s f e r * /
r e m r e q . d e p e n d i d = r e m r e q . p r i m i d ;
r e t = r e m o p (" q " , " f t " ,

" / f s 1 / u s e r 1 / f o o 2 . c = / t m p / f o o 2 . c " ,
& r e m r e q , s v c , n o t i f y) ;
.
.

r e m r e q . d e p e n d _ f l g = D E P _ E N D ; / * d e p e n d s o n f o o 2 . c t r a n s f e r * /
r e m r e q . d e p e n d i d = r e m r e q . p r i m i d ;
r e t = r e m o p (" q " , " r e " ,

" c d / t m p ; / u s r / b i n / c c - o / t m p / f o o / t m p / f o o 1 . c / t m p / f o o 2 . c " ,
& r e m r e q , s v c , n o t i f y) ;

SEE ALSO
mgroup(RA_LIB), remop(RA_CMD), remtab(RA_CMD), remclean(RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the

Page 4

FINAL COPY
June 15, 1995

File: ra_lib/remop
svid

Page: 628

remop (RA_LIB) remop (RA_LIB)

ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 5

FINAL COPY
June 15, 1995

File: ra_lib/remop
svid

Page: 629

roigetuser (RA_LIB) roigetuser (RA_LIB)

NAME
roigetuser – get login name of the user

SYNOPSIS
i n c l u d e < r e m o p . h >
c h a r ∗r o i g e t u s e r (c h a r *logname)

DESCRIPTION
r o i g e t u s e r() returns the login name from the password file that matches the effec-
tive ID of the current process. The argument logname must point to a pre-allocated
character array. As a result, r o i g e t u s e r() returns a pointer to the login name and
puts the login name in logname.

RETURN VALUE
If the login name cannot be found in the / e t c / p a s s w d file, r o i g e t u s e r returns a
NULL pointer; otherwise, r o i g e t u s e r() copies the login name to the character
array pointed to by logname and returns a pointer to the argument logname.

EXAMPLE
This example gets a user’s login name and loads it into a character array.

i n c l u d e < s t d i o . h >
i n c l u d e < r e m o p . h >

c h a r l o g n a m e [2 0] ;

i f (r o i g e t u s e r (l o g n a m e) ! = (c h a r *) N U L L)

SEE ALSO
remop(RA_CMD), roijobids(RA_CMD), getpwuid(BA_LIB)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 1

FINAL COPY
June 15, 1995

File: ra_lib/roigetuser
svid

Page: 630

roijobids (RA_LIB) roijobids (RA_LIB)

NAME
roijobids – get unique remote job identifiers

SYNOPSIS
i n c l u d e < r e m o p . h >
i n t r o i j o b i d s (i n t count, i n t *ids) ;

DESCRIPTION
r o i j o b i d s is used by remote administrative programs to pre-assign job IDs before
calling the r e m o p routine. While r e m o p() includes this capability, some applications
may have a need for pre-assignment. r o i j o b i d s returns unique job identifiers and
initializes the array ids with their values. It will set as many unique remote job
identifiers as the value of the argument count.

The remote job identifiers assigned by r o i j o b i d s are unique per user.

RETURN VALUE
Upon failure, the value -1 is returned. The value -1 is also returned if the supplied
value of count is less than or equal to 0. Otherwise, 0 is returned.

EXAMPLE
This example gets a remote job identifier and initializes the array ids.

i n c l u d e < r e m o p . h >

i n t i d s [2] ;
i n t r e t ;

r e t = r o i j o b i d s (2 , i d s) ;

SEE ALSO
remop(RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 1

FINAL COPY
June 15, 1995

File: ra_lib/roijobids
svid

Page: 631

roistat (RA_LIB) roistat (RA_LIB)

NAME
roistat – update job status record

SYNOPSIS
i n c l u d e < r e m o p . h >

i n t r o i s t a t (i n t optype, c o n s t c h a r *logname,
s t r u c t j o b _ r e c o r d *jobinfop) ;

DESCRIPTION
r o i s t a t updates or reads the remote operations job status file associated with the
user specified by logname. This function is used by network service interface appli-
cations to update job status records for a remote job.

The jobinfop argument points to a structure of type j o b _ r e c o r d which contains the
following elements:

l o n g rtime;

i n t sid;

i n t adminid;

i n t primid;

i n t stat;

c h a r dst[DST_LEN];

c h a r svc[SVC_LEN];

c h a r prim[PRIM_LEN];

c h a r ns[NS_LEN];

The operations prescribed by the values of optype are as follows:

A P P E N D Append the job status record referenced by jobinfop to the end of
the job status file.

U P D A T E Change the state of the job in the job status file. The p r i m i d field
of the r o i s t a t structure indicates the job entry in the file, and the
s t a t field of the r o i s t a t structure indicates the new state. The
states are: S T _ Q U E U E D, S T _ I N P R O G R E S S, S T _ S U C C E E D E D,
S T _ F A I L E D, S T _ C A N C E L L E D, S T _ T I M E O U T, and S T _ R E J E C T E D.

R E A D Read the job status record from the job status file. The record is
copied into the structure pointed to by jobinfop. The p r i m i d field
of the r o i s t a t structure indicates the job entry in the file.

RETURN VALUE
Upon successful completion, r o i s t a t, returns a value of 0; otherwise, it returns a
value of -1.

EXAMPLE
The following example will append a job status record to the job status file for user
u s e r 1.

Page 1

FINAL COPY
June 15, 1995

File: ra_lib/roistat
svid

Page: 632

roistat (RA_LIB) roistat (RA_LIB)

i n c l u d e < r e m o p . h >
.
.

i n t r e t ;
s t r u c t j o b _ r e c o r d j o b i n f o ;

.

.
/ * I n i t i a l i z e e l e m e n t s o f j o b i n f o s t r u c t u r e * /

t i m e (& j o b i n f o . r t i m e) ;
j o b i n f o . s i d = 1 0 ;
j o b i n f o . a d m i n i d = 1 1 ;
j o b i n f o . p r i m i d = 1 2 ;
j o b i n f o . s t a t = S T _ S U C C E E D E D ;
(v o i d) s t r c p y (j o b i n f o . d s t , " i n t l ") ;
(v o i d) s t r c p y (j o b i n f o . s v c , " b c k ") ;
(v o i d) s t r c p y (j o b i n f o . p r i m , " f t ") ;
(v o i d) s t r c p y (j o b i n f o . n s , " r e x e c ") ;

.

.
r e t = r o i s t a t (A P P E N D , " u s e r 1 " , & j o b i n f o) ;

SEE ALSO
remop(RA_LIB), remstat(RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_lib/roistat
svid

Page: 633

roitosparse (RA_LIB) roitosparse (RA_LIB)

NAME
roitosparse – parse a Transaction Operation Script (TOS) file

SYNOPSIS
i n c l u d e < r e m o p . h >
i n t r o i t o s p a r s e (c o n s t c h a r *tos_file,

struct stringll **tos_list);

DESCRIPTION
r o i t o s p a r s e is a Remote Operation Interface (ROI) function that parses a TOS file
created by r e m o p() and provides a NULL-terminated list of s t r i n g l l structures.

A TOS file is created by r e m o p() for communicating job information to all network
service modules. Each network service primitive may also use the TOS file to store
network service-specific information.

The tos_file argument points to the pathname of the TOS file. The TOS file format is
a newline-separated list of strings of the form n a m e = v a l u e. The file name is the
same as the primitive job ID. tos_list is a NULL-terminated list of s t r i n g l l struc-
tures. Note that m a l l o c(BA_OS) is used to allocate space for elements in tos_list.

The argument tos_list points to a structure of type s t r i n g l l which contains the fol-
lowing elements:

c h a r *name;
c h a r *value;
s t r u c t s t r i n g l l *next;

r o i t o s p a r s e initializes the field n a m e to point to the name part of a string; the
v a l u e field of the r o i t o s p a r s e structure points to the value part. The field n e x t
will point to the next s t r i n g l l structure in the list.

Any line with a ‘‘#’’ character in column 1 is treated as comment and ignored by
r o i t o s p a r s e. Blank lines may be inserted at any point.

RETURN VALUE
Upon successful completion, r o i t o s p a r s e returns 0. Otherwise, the value -1 is
returned.

EXAMPLES
The following example shows how to use the r o i t o s p a r s e function.

i n c l u d e < r e m o p . h >
i n c l u d e < s t d i o . h >

.

.
s t r i n g l l _ t * t o s _ l i s t ;
c h a r * s j i d p , * n e x t p ;
c o n s t c h a r t o s _ f i l e [] = " / v a r / s p o o l / r o i / u s e r s / d i s t / t o s / 3 4 " ;

.

.
i f (r o i t o s p a r s e (t o s _ f i l e , & t o s _ l i s t) = = - 1) {

.
< f a i l e d t o p a r s e t h e t o s f i l e >
.

Page 1

FINAL COPY
June 15, 1995

File: ra_lib/roitosparse
svid

Page: 634

roitosparse (RA_LIB) roitosparse (RA_LIB)

}

/ * E x t r a c t t h e v a l u e s o f S J I D a n d N E X T f r o m t h e T O S f i l e * /

s j i d p = r o i t o s v a l (t o s _ l i s t , " S J I D ") ;
n e x t p = r o i t o s v a l (t o s _ l i s t , " N E X T ") ;

/ * C h e c k i f t h e v a l u e s a r e f o u n d i n t h e T O S f i l e * /

i f ((s j i d p = = (c h a r *) N U L L) | | (n e x t p = = (c h a r *) N U L L)) {
.
< f a i l e d t o f i n d t h e v a l u e s >
.

}

SEE ALSO
remop(RA_CMD), remop(RA_LIB), mgroup(RA_LIB), roitosval(RA_LIB),
malloc(BA_OS)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_lib/roitosparse
svid

Page: 635

roitosval (RA_LIB) roitosval (RA_LIB)

NAME
roitosval – get a value for a variable name

SYNOPSIS
i n c l u d e < r e m o p . h >
c h a r * r o i t o s v a l (s t r u c t s t r i n g l l *tos_list,

c o n s t c h a r *name) ;

DESCRIPTION
r o i t o s v a l searches the tos_list created by r o i t o s p a r s e() for a string with a name
equal to the argument name. It returns a pointer to the v a l u e field, if such a name is
found. Otherwise, it returns a NULL pointer. When a name is defined in a Transac-
tion Operation Script (TOS) file, r o i t o s v a l returns the last instance.

The argument tos_list is of structure type s t r i n g l l which contains the following
elements:

c h a r *name;
c h a r *value;
s t r u c t s t r i n g l l *next;

EXAMPLES
The following example shows how to use the r o i t o s v a l function.

i n c l u d e < r e m o p . h >
i n c l u d e < s t d i o . h >

.

.
s t r i n g l l _ t * t o s _ l i s t ;
c h a r * s j i d p , * n e x t p ;
c o n s t c h a r t o s _ f i l e [] = " / v a r / s p o o l / r o i / u s e r s / d i s t / t o s / 3 4 " ;

.

.
i f (r o i t o s p a r s e (t o s _ f i l e , & t o s _ l i s t) = = - 1) {

.
< f a i l e d t o p a r s e t h e t o s f i l e >
.

}

/ * E x t r a c t t h e v a l u e s o f S J I D a n d N E X T n a m e s f r o m t h e T O S f i l e * /

s j i d p = r o i t o s v a l (t o s _ l i s t , " S J I D ") ;
n e x t p = r o i t o s v a l (t o s _ l i s t , " N E X T ") ;

/ * C h e c k i f t h e v a l u e s a r e f o u n d i n t h e T O S f i l e * /

i f ((s j i d p = = (c h a r *) N U L L) | | (n e x t p = = (c h a r *) N U L L)) {
.
< f a i l e d t o f i n d t h e v a l u e s >
.

}

Page 1

FINAL COPY
June 15, 1995

File: ra_lib/roitosval
svid

Page: 636

roitosval (RA_LIB) roitosval (RA_LIB)

SEE ALSO
r e m o p(RA_LIB), r o i t o s p a r s e(RA_LIB), r e m o p(RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_lib/roitosval
svid

Page: 637

FINAL COPY
June 15, 1995

File:

Page: 638

Remote Administration Commands And
Utilities

The following section contains the manual pages for the RA_CMD routines.

Remote Administration Commands And Utilities 28-1

FINAL COPY
June 15, 1995

File: ra_cmd.cov
svid

Page: 639

FINAL COPY
June 15, 1995

File:

Page: 640

catreq (RA_CMD) catreq (RA_CMD)

NAME
catreq – request a catalog of packages from a server

SYNOPSIS
c a t r e q [- q t] server . . .

DESCRIPTION
c a t r e q requests that one or more servers on the software distribution network
send a catalog of currently available packages to the invoking system. When the
catalog arrives on the invoking system, it is installed, and subscriptions previously
set up via the d i s t a u t h command are checked; p k g r e q is invoked for any subscrip-
tions found.

The requesting system must previously have configured all specified servers in its
configuration database (via the d i s t c o n f command). Servers may be invoked by
server name, alias, or the token a l l .

The following options are available:

- q Queue the request via ROI, which returns a job ID. The default invoca-
tion (c a t r e q without the - q option) processes the request in real time.

You can use the r e m s t a t command to check the status of the queued
catalog request. See remstat(RA_CMD).

– t Test mode: cause c a t s e n d to display the catalog on s t d o u t or, if the - q
option is also included, to mail the catalog to the user(s) specified by the
N O T I F Y U S E R parameter. (The N O T I F Y U S E R parameter is set using the
d i s t c o n f command.) The catalog is not installed and subscriptions are
not enabled.

server Specify the name of the server(s) or server machine alias(es) from which
the catalog should be requested. The token a l l may be used to specify
that catalogs should be requested from all known server machines. Use
a space-separated list to specify multiple arguments.

RETURN VALUES
Upon successful completion, c a t r e q returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is available on client and full system configurations.

Subscription may occur as a side effect of a successful c a t r e q invocation (assuming
that subscription lists have been set up with d i s t a u t h). If many subscriptions are
triggered, c a t r e q execution might take a long time; you might therefore want to
use the – q option.

If you use this command on a regular basis, you might want to arrange for c a t r e q
to be executed periodically by c r o n. See crontab(AU_CMD).

If the Enhanced Security Extension is implemented on your system, you cannot run
this command unless you are logged in as d i s t.

EXAMPLES
Example 1:

This example requests a catalog:

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/catreq
svid

Page: 641

catreq (RA_CMD) catreq (RA_CMD)

c a t r e q s n o o p y
C a t a l o g r e q u e s t e d f r o m < s n o o p y > . . .
I n s t a l l i n g c a t a l o g f r o m < s n o o p y > . . .
S u b s c r i p t i o n t r i g g e r e d . . . o r d e r i n g . . .
P a c k a g e < s p e l l , 1 . 0 > r e q u e s t e d f r o m < s n o o p y > . . .
P a c k a g e < s p e l l > s p o o l e d i n < d i s t _ s n o o p y >

This c a t r e q command requests a catalog from server s n o o p y , and installs it while
you wait. When the catalog arrives, the authorization database is checked to deter-
mine whether there are any subscriptions for any of the packages in the new cata-
log. If subscriptions are found, requests are sent to the appropriate servers.
Because this process may take a long time, you may want to queue the command
(with the - q option), as shown in the next example.

Example 2:

This example shows a queued c a t r e q command:

c a t r e q - q s n o o p y
R O I j o b I D t o m a c h i n e < s n o o p y > i s < a - 2 2 >
R e q u e s t f o r c a t a l o g f r o m < s n o o p y > q u e u e d .

The appropriate user(s), as specified by the NOTIFYUSER parameter, will be
notified when the catalog is installed. [See distconf(RA_CMD).] Use the r e m s t a t
command to track the job’s progress. [See remstat(RA_CMD).]

Example 3:

This example shows the test mode of c a t r e q:

c a t r e q - t c h a r l i e
C a t a l o g r e q u e s t e d f r o m < c h a r l i e > . . .
T e s t c a t a l o g f r o m < c h a r l i e > c o n t a i n s :
c d s C D e v e l o p m e n t S e t

(i 3 8 6) 5 . 0
l p L P P r i n t S e r v i c e

(i 3 8 6) 4 . 1
t e r m i n f T e r m i n a l I n f o r m a t i o n U t i l i t i e s

(i 3 8 6) 4 . 0 k 1 8

S u b s c r i p t i o n s f o r t h e f o l l o w i n g p a c k a g e s w o u l d h a v e b e e n t r i g g e r e d :
c d s C D e v e l o p m e n t S e t c l i e n t u p d a t e

(i 3 8 6) 5 . 0
l p L P P r i n t S e r v i c e t a r g e t s e r v e r r e q u e s t

(i 3 8 6) 4 . 1

The catalog is requested, but not installed. Instead it is displayed to the user along
with any subscriptions which would have been triggered.

SEE ALSO
catsend(RA_CMD), distauth(RA_CMD), distconf(RA_CMD), pkgreq(RA_CMD),
remalias(RA_CMD).

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/catreq
svid

Page: 642

catreq (RA_CMD) catreq (RA_CMD)

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 3

FINAL COPY
June 15, 1995

File: ra_cmd/catreq
svid

Page: 643

catsend (RA_CMD) catsend (RA_CMD)

NAME
catsend – send a catalog of packages to a client or target server

SYNOPSIS
c a t s e n d [- q- t] client . . .

DESCRIPTION
c a t s e n d sends a catalog of currently available packages from a server to the
specified clients and/or target servers. c a t s e n d may be invoked by server
administrators or indirectly as a result of a remote c a t r e q command issued on a
client or a target server machine.

c a t s e n d inspects the catalog information on the server to create a personalized
catalog of packages available to the client or target server. If invoked with the token
a l l, c a t s e n d uses the list of known clients and target servers in the configuration
database.

The following options are available:

- q Queue the delivery via ROI, which returns a job ID. The default invoca-
tion (c a t s e n d without the - q option) processes the delivery in real time.

You can use remstat(RA_CMD) to check the status of the queued catalog
delivery.

- t Test mode: cause c a t s e n d to display the catalog on standard output. If
more than one client or target server is specified on the command line,
each section of the display is preceded by the machine name of the
appropriate client or target server. When - t is not specified, ROI is
invoked to send the catalog to the client.

client Specify the name(s) or alias(es) of the client and/or target server
machine(s) to whom the catalog(s) will be sent. The token a l l may be
specified, where a l l indicates all configured clients and target servers,
as previously defined in the configuration database. [See
distconf(RA_CMD).] Use a space-separated list to specify multiple argu-
ments.

RETURN VALUES
Upon successful completion, c a t s e n d returns a value of 0. Otherwise, it returns a
non-zero value. If subscription occurs during a c a t s e n d invocation, you may
receive p k g r e q return values.

USAGE
This command is available on server and full system configurations.

Subscription on the client may occur as a side effect of a successful c a t s e n d invoca-
tion (assuming that subscription lists have been set up on the client with d i s t a u t h).
If many subscriptions are triggered, c a t s e n d execution might take a long time; you
might therefore want to use the – q option.

If you use this command on a regular basis, you might want to arrange for c a t s e n d
to be executed periodically by c r o n. See crontab(AU_CMD).

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/catsend
svid

Page: 644

catsend (RA_CMD) catsend (RA_CMD)

If the Enhanced Security Extension is implemented on your system, you cannot run
this command unless you are logged in as d i s t.

EXAMPLES
Example 1:

This example sends a catalog:

c a t s e n d l u c y
T r a n s f e r r i n g c a t a l o g t o c l i e n t < l u c y > . . .
I n s t a l l i n g c a t a l o g . . . c h e c k i n g f o r s u b s c r i p t i o n s . . .
C a t a l o g i n s t a l l e d .

The c a t s e n d command sends a catalog to client l u c y, and installs it there while
you wait. When the catalog arrives, the client authorization database is checked to
determine whether there are any subscriptions for any of the packages in the new
catalog. If subscriptions are found, requests are sent to the appropriate servers.
Because this process may take a long time, you may want to queue the command
(with the - q option), as shown in the next example.

Example 2:

This example shows a queued c a t s e n d command:

c a t s e n d - q l u c y
R O I j o b I D t o m a c h i n e < l u c y > i s < a - 2 2 > .
D i s t r i b u t i o n o f c a t a l o g t o < l u c y > q u e u e d .

Example 3:

This example shows the test mode of c a t s e n d:

c a t s e n d - t a l l
< l i n u s > :
c d s C D e v e l o p m e n t S e t

(i 3 8 6) 5 . 0
u s r e n v U s e r E n v i r o n m e n t U t i l i t i e s

(i 3 8 6) 4 . 0
< l u c y > :
c d s C D e v e l o p m e n t S e t

(i 3 8 6) 5 . 0
s y s a d m S y s t e m A d m i n i s t r a t i o n U t i l i t i e s

(i 3 8 6) 4 . 0 k 1 8
t e r m i n f T e r m i n a l I n f o r m a t i o n U t i l i t i e s

(i 3 8 6) 4 . 0 k 1 8

The catalogs for all configured clients and target servers are created, formatted, and
displayed, but are not sent.

SEE ALSO
catreq(RA_CMD), distconf(RA_CMD), pkgput(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/catsend
svid

Page: 645

distauth (RA_CMD) distauth (RA_CMD)

NAME
distauth – authorize subscription and broadcast of packages

SYNOPSIS
d i s t a u t h [- S]
d i s t a u t h [- i [- f admin]] [- a arch] pkg server
d i s t a u t h - s [- U] [- i [- f admin] [- r resp]] [- a arch] pkg server
d i s t a u t h - S [- s] [- i [- f catadmin]] [- a arch] pkg server
d i s t a u t h - d [- S s n] pkg server

DESCRIPTION
d i s t a u t h is used to administer the authorization database, which stores authoriza-
tions for acceptance of broadcast packages and subscriptions to packages. Broad-
cast packages are those sent (via p k g s e n d) by servers without a preceding request
by the client or target server receiving them. Broadcast authorization is the default
for the d i s t a u t h command. Package subscription—that is, specifying - s to
d i s t a u t h—automatically generates a request [pkgreq(RA_CMD)] when a new ver-
sion of a package appears in the catalog.

Invoking the command without options or with only the - S option displays author-
ization information on s t d o u t .

Each entry in the d i s t a u t h output includes the following fields:

S E R V E R the name or alias of the authorized server (or a l l)

A U T H type of authorization: b (broadcast), s (subscription), U (subscription
update)

P K G the package abbreviation, category, or the token a l l

A R C H the specified package architecture(s) or the token a l l

A C T I O N install, initiate, or spool

A D M I N | C A T A D M I N
the name of the a d m i n file (for installation) or c a t a d m i n file (for initia-
tion) or d e f a u l t, if none is specified. Will be blank if authorization is
to spool.

R E S P O N S E file that provides responses to prompts during non-interactive pack-
age installation. Will be blank if none is specified or authorization is
to spool. Heading will not appear for - S option.

The options for d i s t a u t h are:

- S Indicate that the authorization is for the target server role only.
Without - S, d i s t a u t h authorizes for the client role.

- s Subscribe to a package. The default—d i s t a u t h invoked without the
- s option—is to authorize acceptance of a broadcast package.

- U Request updates for the package during subscription [p k g r e q - U].

- i Install (or initiate if - S was specified) the package automatically. By
default, a package is spooled when received.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/distauth
svid

Page: 646

distauth (RA_CMD) distauth (RA_CMD)

If the Enhanced Security Extension is implemented on your system,
do not use this option unless you also specify the - S option (which
requests initiation).

- f admin  catadmin
Use admin when installing the package. If the - S option has been
specified, then use catadmin when initiating the package. This option
is valid only with the - i option.

If - f is not supplied, the default admin or catadmin file will be used.

- a arch Authorize the specified package architecture arch.

- r resp Use the r e s p o n s e file resp when installing an interactive package on a
client. This option is valid only with the - i and - s (subscription)
options; do not use it with the - S option or for broadcast.

If resp is the token + (plus sign), a default r e s p o n s e file (if available
from the server, as indicated by the catalog entry triggering the sub-
scription) will be sent and used during the installation.

Specifying a local r e s p o n s e file is valid only if a single package is
specified and a version of the package is already installed. A
r e s p o n s e file is generated by invoking p k g a s k pkginst, where pkginst
is the instance identifier for an interactive package. See
pkgask(RA_CMD) for more information.

- d Delete the specified authorization(s) from the database. For each
entry matching the specified deletion criteria, d i s t a u t h will prompt
for confirmation (unless the - n option has also been specified).

- n Delete without prompting for confirmation.

pkg Specify one of the following values: (1) the package abbreviation that
is authorized; (2) the token a l l, to authorize all packages; or (3) a
category of package. A category is distinguished from a package name
by its having a per cent prefix (%category). For more information, see
pkginfo(AS_CMD).

server Authorize server according to the permissions described by other
options. A server will be validated against the list of known servers as
defined using the d i s t c o n f command. The token a l l may be used to
specify the set of all known servers, or a server alias may be specified.
[See remalias(RA_CMD).]

RETURN VALUES
Upon successful completion, d i s t a u t h returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is found on all client configurations.

Subscription assumes ‘‘well formed’’ version names such that sequencing can be
determined between versions of the same package. If the progression of version
names is ambiguous, p k g r e q may not be invoked. Subscription for a package will
not be triggered if the same (or a newer) version of the package is already installed
or initiated on the system.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/distauth
svid

Page: 647

distauth (RA_CMD) distauth (RA_CMD)

d i s t a u t h does not modify existing entries. To modify an entry, use d i s t a u t h - d
to delete an entry; then use another d i s t a u t h invocation to add the entry in the
modified form.

If the Enhanced Security Extension is implemented on your system, you can run
this command only if you have the appropriate administrative privileges, and you
can request only initiation (not installation) of packages.

EXAMPLES
Example 1:

This example authorizes all broadcasts from server c h a r l i e, and displays the
resulting authorization database:

d i s t a u t h a l l c h a r l i e
d i s t a u t h
S E R V E R A U T H P K G A R C H A C T I O N A D M I N R E S P O N S E
c h a r l i e b a l l a l l s p o o l

Example 2:

This example subscribes to updates for package s p e l l from server s n o o p y:

d i s t a u t h - s U - i - f m y a d m i n s p e l l s n o o p y
d i s t a u t h
S E R V E R A U T H P K G A R C H A C T I O N A D M I N R E S P O N S E
c h a r l i e b a l l a l l s p o o l
s n o o p y s U s p e l l a l l i n s t a l l m y a d m i n

The package will be installed on arrival using the file m y a d m i n.

Example 3:

This example displays the contents of the authorization database relevant to the tar-
get server, then deletes all target server subscription authorizations from the
authorization database:

d i s t a u t h - S
S E R V E R A U T H P K G A R C H A C T I O N C A T A D M I N
p a t t y s t e r m i n f i 3 8 6 s p o o l
m a r c i e b % s y s t e m i 3 8 6 i n i t i a t e d e f a u l t

d i s t a u t h - S - d - s a l l a l l
p a t t y s t e r m i n f i 3 8 6 s p o o l

D o y o u w a n t t o d e l e t e t h i s a u t h o r i z a t i o n e n t r y [y , n , ? , q] y

SEE ALSO
catreq(RA_CMD), catsend(RA_CMD), distconf(RA_CMD), pkgask(AS_CMD),
pkginfo(AS_CMD), pkgreq(RA_CMD), pkgsend(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 3

FINAL COPY
June 15, 1995

File: ra_cmd/distauth
svid

Page: 648

distconf (RA_CMD) distconf (RA_CMD)

NAME
distconf – add machine and notification entries to software distribution
configuration database

SYNOPSIS
d i s t c o n f [- d] [- u user [, user . . .]] [- e client_event [, client_event . . .]]

[- s server [, server . . .]]

d i s t c o n f - S [- d] [- u user [, user . . .]] [- e server_event [, server_event . . .]]
[- s target_server [, target_server . . .]] [- c client [, client . . .]]

DESCRIPTION
d i s t c o n f provides an administrative interface to the distribution configuration
database, which stores data such as known servers, clients, target servers, and
notification event handling. Servers who originate packages for their network of
dependent clients/target servers use the - S option. Clients and target servers use
d i s t c o n f without the - S option. When used without any options or with only the
- S option, d i s t c o n f displays configuration information on s t d o u t.

Information is organized in the client and server configuration databases by the fol-
lowing parameters:

N O T I F Y E V E N T N O T I F Y E V E N T
N O T I F Y U S E R N O T I F Y U S E R
S E R V E R S C L I E N T S

T S E R V E R S

Use a comma-separated list (no internal spaces) to specify multiple arguments to an
option. (See SYNOPSIS above.)

The options for this command are:

- S Indicate that the invocation of d i s t c o n f applies to the originating
server role only, that is, to servers that originate packages. (Note that
the target server role does not include origination of packages.) In the
absence of the – S option, the invocation of d i s t c o n f applies to the
client role and target server role.

– d Delete specified information; must include one or more parameter(s) on
the command line.

– c client Add (or delete) the specified client to (or from) the C L I E N T S parameter.

- s server  target_server
Add (or delete) the specified server to (or from) the S E R V E R S parameter.
(If the – S option is included on the command line, the specified server is
added to or deleted from the T S E R V E R S—‘‘target servers’’—parameter.)

- u user Identify user(s) to whom electronic mail is sent in the case of a
N O T I F Y E V E N T. The specified list is to be added to (or deleted from) the
N O T I F Y U S E R parameter.

– e client_event  server_event
Indicate that the subsequent list of notification event(s) should be added
to (or deleted from) any existing list associated with the N O T I F Y E V E N T
parameter.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/distconf
svid

Page: 649

distconf (RA_CMD) distconf (RA_CMD)

Valid client and target server events:

a l l All of the following events are configured as
notification events.

r e c e i v e d A package (requested or broadcast) has been received
from a server.

b r o a d c a s t A broadcast package (a package not requested by this
machine) has been received from a server.

s u b s c r i b e A request has been automatically issued for a sub-
scribed package.

c a t a l o g A catalog has arrived from a server.

c a t f a i l A request for a catalog from a server has failed.

r e j e c t e d A request for a package has been rejected by a server
due to authorization problems.

u n a u t h o r i z e d A server has attempted to broadcast a package which is
not authorized by this machine.

s p o o l e d A requested or broadcast package has been delivered. It
has been spooled for future installation or initiation.

i n s t a l l e d A requested or broadcast package has been delivered to
this client (or target server) and successfully installed
(or initiated).

p a r t i a l A requested or broadcast package has been delivered to
this client (or target server), but automatic installation
(or initiation) of the package has failed.

f a i l e d An attempt to request a package from a server has been
unsuccessful. The request was successfully queued
with the server, but the package could not be delivered.

h e l d A request has been logged on the server because objects
were not readily available; manual intervention by the
server administrator is required.

c l e a n s p o o l The spool areas have been cleaned.

Valid server events:

a l l All of the following events are configured as server
notification events.

u n a u t h o r i z e d A request to distribute a package is received from an
unauthorized client (or target server).

r e j e c t e d An attempt to send a package to a client (or target
server) is rejected because of authorization problems.

f a i l e d An attempt to send a package to a client (or target
server) is not successful.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/distconf
svid

Page: 650

distconf (RA_CMD) distconf (RA_CMD)

i n s t a l l e d A package is successfully installed on a client (or ini-
tiated on a target server).

s p o o l e d A package is successfully spooled on a client (or target
server).

p a r t i a l A package was delivered, but automatic installation (or
initiation in the case of a target server) failed.

h e l d A request was placed in the w a i t l o g because objects
were not available in the server spool area (that is,
p k g p u t - o must be run to service the request).

c a t f a i l An attempt to deliver a catalog has failed.

RETURN VALUES
Upon successful completion, d i s t c o n f returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is available on all configurations.

The specification of an invalid notification event will result in command failure and
an error message which lists and describes each valid notification event. An
attempt to remove a non–active attribute value will result in a warning message.

When an administrator for a machine in the client role/target server role uses
d i s t c o n f to specify a valid server for this machine, a device alias is automatically
created for that server’s ROI spool directory on this machine. The alias is in the
form

d i s t _server

where server is the name or alias of the configured server.

If the Enhanced Security Extension is implemented on your system, you can run
this command only if you have the appropriate administrative privileges.

EXAMPLES
Example 1:

This example displays a client’s configuration database:

d i s t c o n f
N O T I F Y E V E N T = b r o a d c a s t i n s t a l l e d
N O T I F Y U S E R = r o o t
S E R V E R S = s n o o p y

s n o o p y is this client’s only server, and when a package is broadcast to or installed
on this client, notification (mail) is sent to root.

Example 2:

The following example adds a new server to a client’s configuration database, and
displays the new configuration:

Page 3

FINAL COPY
June 15, 1995

File: ra_cmd/distconf
svid

Page: 651

distconf (RA_CMD) distconf (RA_CMD)

d i s t c o n f - s l u c y
A d d i n g a l i a s < d i s t _ l u c y > t o d e v i c e t a b l e . . .

d i s t c o n f
N O T I F Y E V E N T = a l l
N O T I F Y U S E R = l i n u s ! j a n e
S E R V E R S = c h a r l i e l u c y

Example 3:

In this example, a server administrator cancels notification of all server events as
well as mail notification to user j o e; the administrator adds a subset of events for
notification—those that indicate some failure—back to the configuration database.

d i s t c o n f - S - d - e a l l - u j o e
d i s t c o n f - S - e f a i l e d , r e j e c t e d , c a t f a i l

SEE ALSO
distauth(RA_CMD), distrpt(RA_CMD), pkgput(RA_CMD), remalias(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 4

FINAL COPY
June 15, 1995

File: ra_cmd/distconf
svid

Page: 652

distrpt (RA_CMD) distrpt (RA_CMD)

NAME
distrpt – report on the contents of the software distribution administrative data-
bases

SYNOPSIS
d i s t r p t [- p pkg [, pkg . . .]] [mach . . .]

DESCRIPTION
d i s t r p t displays summary information about this system’s software distribution
databases on s t d o u t. The administrator may specify a package and/or machine
name as selection criteria to limit the display. Run without options, the command
displays all configuration, authorization, and catalog databases.

Options include:

- p pkg Request that only information about the package pkg be shown. The
token a l l may be used to specify the instances when all packages are
allowed. Please note that a l l is not the same as any package.

Optionally, you can specify a category of packages. A category is dis-
tinguished from a package name by its per cent prefix (%category). For
more information, see pkginfo(AS_CMD).

Use commas with no internal spaces to separate multiple arguments.

mach Request that only information about the machine mach (specified by
name or alias) be shown. If you specify more than one machine,
separate the items in your list with spaces.

RETURN VALUES
Upon successful completion, d i s t r p t returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is found on all configurations.

If the Enhanced Security Extension is implemented on your system, you can run
this command only if you have the appropriate administrative privileges.

EXAMPLES
The following example shows output that d i s t r p t might generate on a system
configured as a client.

d i s t r p t
= =
S o f t w a r e D i s t r i b u t i o n D a t a b a s e R e p o r t f o r m a c h i n e < h a l > :
= =

- - - - - - - - - - - - - - - - - S t a r t o f C L I E N T i n f o -

W h e n I R E C E I V E p a c k a g e s a s a C L I E N T :

F r o m F o r I a c c e p t I a u t o -
S E R V E R P A C K A G E B R O A D C A S T S U B S C R I B E
- -
c h a r l i e a l l s p o o l i n s t a l l
l i n u s d w b N O s p o o l

p w b i n s t a l l N O

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/distrpt
svid

Page: 653

pkgcat (RA_CMD) pkgcat (RA_CMD)

NAME
pkgcat – display a catalog of packages available to a client or target server

SYNOPSIS
p k g c a t [- S d] [- x- l] [- p pkg [, pkg . . .]] [- n days] [server . . .]

DESCRIPTION
p k g c a t displays on s t d o u t a catalog of packages that are available for request (via
p k g r e q) by the invoking system. p k g c a t produces output similar in format to that
of the p k g i n f o command. (See the EXAMPLES section.)

When invoked without options or arguments, p k g c a t lists all packages available to
the invoking machine in its role as a client. The default format lists category, pack-
age instance, and package name; one line per package is produced. Other formats
can be selected—see the descriptions of the - x and – l options.

Options for p k g c a t include the following:

- S Display a ‘‘target-server-role’’ view of the catalog—that is, a list of pack-
ages that can be ordered by p k g r e q - S. If - S is not specified, a ‘‘client-
role’’ view of the catalog will be displayed.

- d Display only the catalog entries for packages not already installed (or
initiated, if the - S option has also been specified) on this machine.

- x Display an extracted listing of package information. Output in this for-
mat contains the package abbreviation, package name, package architec-
ture, and package version.

- l Display a listing in long format. Output in this format contains all avail-
able information about the designated package(s).

- p pkg Display only the catalog entries for the specified pkg. The token a l l
may be used to specify the instances when all packages are allowed. pkg
may also be a category, which is distinguished from a package name by
a prepended per cent sign (%category). For more information, see
pkginfo(AS_CMD).

Use a comma-separated list (no internal spaces) to specify multiple pack-
ages.

- n days Display only the catalog entries for packages that have been added to
the catalog in the last days, where days is an integer (for example, 30).

server Display catalog entries for only those packages available from a
specified server. Use a space-separated list to specify multiple servers.

RETURN VALUES
Upon successful completion, p k g c a t returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is available on client and full system configurations.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/pkgcat
svid

Page: 655

pkgcat (RA_CMD) pkgcat (RA_CMD)

EXAMPLES
Example 1:
This example displays all entries from all server catalogs:

$ p k g c a t
s y s t e m b n u B a s i c N e t w o r k i n g U t i l i t i e s
s y s t e m c d s C D e v e l o p m e n t S e t
u t i l i t i e s d f s d f s u t i l i t i e s
s y s t e m s y s a d m S y s t e m A d m i n i s t r a t i o n U t i l i t i e s
a p p l i c a t i o n t s t p k g t s t p k g T e s t P a c k a g e

Example 2:

This example displays packages for a specified package category:

$ p k g c a t - p % s y s t e m
s y s t e m e d E d i t i n g U t i l i t i e s
s y s t e m i p c I n t e r - P r o c e s s C o m m u n i c a t i o n U t i l i t i e s
s y s t e m s y s S y s t e m H e a d e r F i l e s

Example 3:

This example shows entries newer than seven days in long format:

$ p k g c a t - l - n 7
P K G : t s t p k g
N A M E : t s t p k g T e s t P a c k a g e

C A T E G O R Y : a p p l i c a t i o n
A R C H : i 3 8 6

V E R S I O N : D e v R e l e a s e 0 1 / 0 4 / 9 0
D E S C : L o c a l t e s t i n g p a c k a g e

S E R I A L N U M : 7 7 1 0 3 - 9 4 g
S E R V E R : s n o o p y

R E S P O N S E : y e s
U P D A T E A B L E : y e s

Example 4:

This example displays, in extracted format, the packages from server l i n u s that can
be ordered in the server role:

$ p k g c a t - S - x l i n u s
c d s C D e v e l o p m e n t S e t

(i 3 8 6) 5 . 0
t e r m i n f T e r m i n a l I n f o r m a t i o n U t i l i t i e s

(i 3 8 6) 4 . 0

SEE ALSO
pkginfo(AS_CMD), pkgreq(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/pkgcat
svid

Page: 656

pkgdel (RA_CMD) pkgdel (RA_CMD)

NAME
pkgdel – remove a previously initiated package

SYNOPSIS
p k g d e l [- o n] pkginst . . .
p k g d e l - i [- n] [- N r u] pkginst . . .
p k g d e l - i [- n] [- s target_server[,target_server . . .]]

[- c client [,client . . .] [- r u]] pkginst . . .

DESCRIPTION
On a server, p k g d e l deletes a package that has been previously initiated for distri-
bution by the p k g p u t command.

By default, information about the specified package is removed from the catalog
database, and its objects are removed from the server’s spool area (d i s t s p o o l).
The - i option can be specified to only remove catalog information.

p k g d e l does not remove tracking information for the specified package [see
pkgtrk(RA_CMD)].

The options for this command are:

- n Specify that removal will occur without prompting for confirmation;
invoking p k g d e l without this option gives the administrator the oppor-
tunity to verify by responding to a prompt.

- o Remove package objects only; leave catalog information intact.

- i Remove specified catalog information only (leave package objects
intact). For multiple arguments to - s or - c, use a comma-separated list
with no internal spaces.

- N Remove the serial number from all catalog entries for the pack-
age.

- s Remove entries for the specified target servers (or aliases).

- c Remove entries for the specified clients (or aliases).

- u Remove the restriction on updates for specified clients or, if none
are specified, all clients (clients will now be able to use p k g r e q
- U).

- r Remove the response file for specified clients or, if none are
specified, all clients.

pkginst Specify the package instance(s) to be deleted. A package instance is a
variation of a software package, distinguished from other package
instances by version or architecture or both; each package instance on a
device or in a directory has a unique identifier, composed of either the
package abbreviation (such as p k g A) or the package abbreviation plus a
numerical suffix (such as p k g A . 2).

Use a space-separated list to specify multiple package instances.

RETURN VALUES
Upon successful completion, p k g d e l returns a value of 0. Otherwise, it returns a
non-zero value.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/pkgdel
svid

Page: 657

pkgdel (RA_CMD) pkgdel (RA_CMD)

USAGE
This command is available on server and full system configurations.

Use p k g p u t - l to see package instances in the server spool directory.

If the Enhanced Security Extension is implemented on your system, you can run
this command only if you have the appropriate administrative privileges.

EXAMPLES
Example 1:

This example deletes the package s p e l l from the server’s distribution spool area
and deletes information for the package from the catalog database:

p k g d e l s p e l l
T h e f o l l o w i n g p a c k a g e i s c u r r e n t l y i n i t i a t e d :

s p e l l S p e l l U t i l i t i e s
(i 3 8 6) 4 . 0

D o y o u w a n t t o d e l e t e t h i s p a c k a g e [y , n , ? , q] y
- D e l e t i n g t a r g e t s e r v e r < l i n u s > c a t a l o g e n t r y f o r < s p e l l , 4 . 0 >
- D e l e t i n g c l i e n t < l u c y > c a t a l o g e n t r y f o r < s p e l l , 4 . 0 >
D e l e t i n g p a c k a g e < s p e l l > f r o m s e r v e r s p o o l a r e a . . .

Example 2:

This example operates non-interactively on catalog database information for pack-
age s p e l l. It deletes authorization for client l u c y to order the package:

p k g d e l - n - i - c l u c y s p e l l

SEE ALSO
pkgput(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/pkgdel
svid

Page: 658

pkgput (RA_CMD) pkgput (RA_CMD)

NAME
pkgput – initiate a package on a server

SYNOPSIS
p k g p u t [- x | - l] [- p pkg [, . . .]]

p k g p u t [- I] [- d device] [- c client [,client . . .] [- u] [- r resp]] [- s server [,server
. . .]] [- N serial] pkginst . . .

p k g p u t [- I] [- d device] - f c a t a d m i n pkginst . . .

p k g p u t - i [- c client [,client . . .] [- u] [- r resp]] [- s server [,server . . .]] pkginst . . .

p k g p u t - i - N serial pkginst

p k g p u t - o [- d device] pkginst . . .

DESCRIPTION
p k g p u t initiates a package for request. Package initiation consists of:

entering package information in the catalog database

spooling the package objects into the server spool area (by default)

The server spool area can be referenced by the device alias d i s t s p o o l.

The catalog database contains information about all packages advertised to clients
and target servers through catalogs [sent via c a t s e n d or c a t r e q]. Clients and tar-
get servers can then order packages in catalogs via the p k g r e q command.

p k g p u t can also do the following: (1) display catalog entries for initiated packages
(first synopsis), (2) update catalog entries for initiated packages (fourth and fifth
synopses), and (3) spool objects to initiated packages (sixth synopsis).

The specified actions are executed for each pkginst. (Note, however, that options - r
and - N may be specified only if a single pkginst has been specified.) Use a comma-
separated list (no internal spaces) to specify multiple arguments to the - p, - c, and
- s options.

Options for p k g p u t include the following:

- x Display an extracted listing (package abbreviation, name, architecture,
and version) of catalog database entries for initiated packages.

- l Display a long format listing (all available package information) of
catalog database entries for initiated packages.

- p pkg Display only the catalog database entries for the specified pkg. pkg
may also be a category, which is distinguished from a package name
by its per cent prefix (%category).

- I Initiate only the catalog information for the package instance specified
(do not transfer objects).

- d device Initiate package from device. device can be a full pathname to a direc-
tory (such as / v a r / t m p), a device identifier (such as / d e v / d i s k e t t e
for a removable disk), or a device alias (such as q t a p e 1 for a tape).
[See putdev(ES_CMD).] In the absence of the option - d, p k g p u t looks
for the package in the default installation spool directory referenced
by the device alias s p o o l.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/pkgput
svid

Page: 659

pkgput (RA_CMD) pkgput (RA_CMD)

Catalog options for p k g p u t include the following:

- c client(s) Make the package available to the listed client machine(s) and/or
machine alias(es). The token a l l may be used to indicate that all
client machines are authorized to request the package. Client names
and aliases must have been configured previously, using the
d i s t c o n f command. The absence of this option means no client
machines are authorized to receive the package.

At least one client and/or target server must be specified when initiat-
ing a package (either via - s or - c, or in the c a t a d m i n file being used).

- u Prevent clients from ordering updates of the package. By default,
updates can be ordered for any initiated package.

- r resp Send resp as the default response file when a client orders an interac-
tive package for installation. Valid only if a single pkginst has been
specified.

An appropriate response file is generated by invoking p k g a s k - r
resp pkginst, where pkginst is the instance identifier for an interactive
package. See pkgask(AS_CMD) for more information.

- s target_server(s)
Make the package available to the listed target_server machine(s)
and/or machine alias(es). See the description of the - c option above.

- N serial Specify serial as the serial number for a package. Valid only if a single
pkginst has been specified. (Client and target server entries added
later will not inherit the serial number.)

Other options for p k g p u t include the following:

- f catadmin Use catadmin as input to the catalog entry.

If you invoke p k g p u t with no display options and no catalog input
options (that is, with none of the following: - c, - s, - r, - N, - u, - f), the
default c a t a d m i n file will be used as input to the package initiation
process.

pkginst Specify the package instance(s) to be initiated. A package instance is a
variation of a software package, distinguished from other package
instances by version or architecture or both; each package instance on
a device or in a directory has a unique identifier, composed of either
the package abbreviation (such as p k g A) or the package abbreviation
plus a numerical suffix (such as p k g A . 2).

Use a space-separated list to specify multiple package instances.

- i Update the catalog information for the initiated package instance
specified. At least one catalog option (- c , - s , - r , - N , - u) must be
specified. If - r and - u are specified without the - c option, the update
will affect all client catalog entries for that pkginst. - N may not be
combined with - c or - s; the serial number for all entries of the pkginst
will be updated.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/pkgput
svid

Page: 660

pkgput (RA_CMD) pkgput (RA_CMD)

- o Add objects to an initiated package instance. Useful when rejuvenat-
ing a client request that has been held because package objects were
not previously spooled online; can also be used to overwrite objects of
an initiated package.

RETURN VALUES
Upon successful completion, p k g p u t returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is available on server and full system configurations.

To modify existing catalog information, use

p k g d e l - i old_catalog_info pkginst
p k g p u t - i new_catalog_info pkginst

If the Enhanced Security Extension is implemented on your system, you can run
this command only if you have the appropriate administrative privileges.

EXAMPLES
Example 1:

This example initiates the package s p e l l:

p k g p u t - c l u c y , l i n u s - N C 4 5 3 s p e l l
I n i t i a t i n g p a c k a g e < s p e l l > . . .

- T r a n s f e r r i n g < s p e l l > p a c k a g e i n s t a n c e t o
< / v a r / s p o o l / d i s t > i n f i l e s y s t e m f o r m a t

- M a k i n g p a c k a g e i n s t a n c e < s p e l l > a c c e s s i b l e t o i d < d i s t > . . .
- C r e a t i n g c l i e n t < l u c y > c a t a l o g e n t r y f o r < s p e l l , 2 . 0 >
- C r e a t i n g c l i e n t < l i n u s > c a t a l o g e n t r y f o r < s p e l l , 2 . 0 >

P a c k a g e < s p e l l > i n i t i a t e d i n s e r v e r s p o o l a r e a

The p k g p u t command line specifies that clients l u c y and l i n u s may order the
package s p e l l and that the serial number for this package is C 4 5 3. p k g p u t places
the package in the server’s distribution spool area and adds information about the
package to the catalog database.

Example 2:

This example adds target server w o o d s t o c k to the catalog information for package
s p e l l:

p k g p u t - i - c w o o d s t o c k s p e l l
U p d a t i n g i n f o f o r p a c k a g e < s p e l l > . . .
- C r e a t i n g c l i e n t < w o o d s t o c k > c a t a l o g e n t r y f o r < s p e l l , 2 . 0 >

Example 3:

This example initiates the package l p without objects (to save disk space) and uses
the c a t a d m i n file called m y a d m i n as catalog input:

Page 3

FINAL COPY
June 15, 1995

File: ra_cmd/pkgput
svid

Page: 661

pkgput (RA_CMD) pkgput (RA_CMD)

p k g p u t - I - f m y a d m i n l p
I n i t i a t i n g p a c k a g e < l p > . . .

- T r a n s f e r r i n g i n f o r m a t i o n f i l e s f o r < l p > p a c k a g e i n s t a n c e t o
< / v a r / s p o o l / d i s t > i n f i l e s y s t e m f o r m a t

- M a k i n g p a c k a g e i n s t a n c e < l p > a c c e s s i b l e t o i d < d i s t > . . .
- C r e a t i n g c l i e n t < a l l > c a t a l o g e n t r y f o r < l p , R e l e a s e 3 > . . .

P a c k a g e < l p > i n i t i a t e d i n s e r v e r s p o o l a r e a

SEE ALSO
catsend(RA_CMD), distconf(RA_CMD), pkgdel(RA_CMD), pkgreq(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 4

FINAL COPY
June 15, 1995

File: ra_cmd/pkgput
svid

Page: 662

pkgreq (RA_CMD) pkgreq (RA_CMD)

NAME
pkgreq – request delivery of a software package

SYNOPSIS
p k g r e q [- q] [- U] [- s server] [- i [- f admin] [- r resp]] [- a arch] [- v version] pkg
p k g r e q - S [- q] [- s server] [- i [- f catadmin]] [- a arch] [- v version] pkg
p k g r e q - l [jobid  server  pkg]
p k g r e q - k jobid

DESCRIPTION
p k g r e q requests delivery of a package from a server to this client (or this target
server). It can also request an update to a package currently installed. It can pro-
vide status information on package requests and allow a queued request to be can-
celed.

p k g r e q verifies the requested package is listed in the current catalog. Once vali-
dated, the request is sent to the appropriate server. The package is delivered to the
directory referenced by the device alias d i s t _server, and optionally installed or ini-
tiated from there.

Other processing occurs as specified for each of the following options:

- q Queue the request via the Remote Operation Interface (ROI); ROI will
return a jobid. The default invocation (p k g r e q without the - q option)
processes the request in real time.

You can use p k g r e q - l or the r e m s t a t command to check the status of
the queued package request. [See remstat(RA_CMD).]

- S Indicate that the request is being made by a target server. The package
should be sent in a form such that it can be initiated for further distribu-
tion rather than installed on the calling machine. The default invocation
of p k g r e q (without - S) requests that the package be sent in a form suit-
able for installation on a client.

- s Request pkg from the specified server. If the token a l l is specified,
p k g r e q will examine the catalog for all entries that match the requested
package; the server in the first catalog entry it finds will be used. If the
token was not specified and multiple servers are available, the user is
interactively prompted to make a selection.

- i Request installation or initiation of the package after it has been
received. In the case of a target server role (that is, if - S has been
specified on the command line), p k g p u t will be executed for this pack-
age (package initiation). In the case of a client role, p k g a d d will be
invoked (package installation).

If the Enhanced Security Extension is implemented on your system, do
not use this option unless you also specify the - S option (which requests
initiation).

- f admin  catadmin
Use admin when installing the package. If the - S option has been
specified, use catadmin when executing p k g p u t. This option is valid
only with the - i option.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/pkgreq
svid

Page: 663

pkgreq (RA_CMD) pkgreq (RA_CMD)

If - f is not supplied, the default admin or catadmin file will be used.

- r resp Specify resp, which is the r e s p o n s e file to be used when installing an
interactive package on a client. This option is valid only with the - i
option; do not use it with the - S option.

If resp is the token + (plus sign), a default r e s p o n s e file (if available) will
be sent and used during the installation. Check the R E S P O N S E parameter
in the display produced by p k g c a t - l p pkg to see if a default r e s p o n s e
file is available from the server.

Specifying a local r e s p o n s e file is valid only when a version of the pack-
age is already installed. A r e s p o n s e file is generated by invoking
p k g a s k pkginst, where pkginst is the instance identifier for a package.
See pkgask(AS_CMD) for more information.

- a Specify arch as the architecture of the requested package.

- v Specify version as the version of the requested package.

- U Request an update to the currently installed version. - v version
specifies the new version. By default (without the - v option), the
currently installed version is updated to the new version in the catalog;
if several new versions are available, the user is prompted to select one.

pkg Specify the package abbreviation of the requested package. The package
abbreviation, architecture, and version uniquely identify a package
instance. Specify all three to avoid p k g r e q prompting when there are
multiple instances of a package available.

- l Display status of job associated with jobid, client, or pkg. If the - l option
is used without any arguments, the status of all recent package requests
will be displayed in short format. (See EXAMPLES below.)

- k jobid Cancel (kill) the queued request specified by jobid.

server Request the package from server.

jobid Specify the ROI job identifier of a package request.

RETURN VALUES
Upon successful completion, p k g r e q returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is available on client and full system configurations.

If you invoke p k g r e q in real time (that is, without the - q option), package delivery
or update may take a long time; it could take even longer with the - i option since
initiation or installation takes place while you wait. To avoid waiting, use the - q
option.

If the Enhanced Security Extension is implemented on your system, you can run
this command only if you are logged in as d i s t, and you can request only initiation
(not installation) of packages.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/pkgreq
svid

Page: 664

pkgreq (RA_CMD) pkgreq (RA_CMD)

Example 4:

This example cancels a queued package request:

p k g r e q - k a - 2 1 6
J o b (r - 2 1 4 a - 2 1 6 p - 2 1 7) t o m a c h i n e s n o o p y h a s b e e n c a n c e l e d .
U X : r e q s t a t : W A R N I N G : R e q u e s t o f < m y p k g > f r o m < s n o o p y > c a n c e l e d

SEE ALSO
pkgadd(RA_CMD), pkgcat(RA_CMD), pkginfo(AS_CMD), pkgput(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 4

FINAL COPY
June 15, 1995

File: ra_cmd/pkgreq
svid

Page: 666

pkgsend (RA_CMD) pkgsend (RA_CMD)

- l Display status of job associated with jobid / client / pkg. If the - l option is
used without any arguments, the status of all recent deliveries is displayed
in short format.

- k jobid
Cancel (kill) queued job associated with the indicated jobid.

client Client that will be the recipient of the p k g s e n d (or if the - S option is
specified, target_server); may be a machine alias or the token a l l , in which
case delivery to all configured clients or target servers is requested. Use a
space-separated list to specify multiple arguments.

jobid Specify the ROI job identifier associated with a package delivery.

RETURN VALUES
Upon successful completion, p k g s e n d returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is found on all server configurations.

If you invoke p k g s e n d in real time (that is, without the - q option), package delivery
may take a long time; it could take even longer with the - i option, since initiation
or installation takes place while you wait. To avoid waiting, use the - q option.

If the Enhanced Security Extension is implemented on your system, you cannot run
this command unless you are logged in as d i s t, and you can request only initiation
(not installation) of packages.

EXAMPLES
Example 1:

This example broadcasts the package s p e l l to client l i n u s:

p k g s e n d s p e l l l i n u s
P o l l i n g < l i n u s > f o r p a c k a g e a c c e p t a n c e . . .
T r a n s f e r r i n g p a c k a g e < s p e l l > t o c l i e n t < l i n u s > . . .
S p o o l i n g p a c k a g e < s p e l l > o n < l i n u s > . . .
P a c k a g e < s p e l l > s u c c e s s f u l l y s p o o l e d o n < l i n u s > .

Example 2:

This example creates a response file for package l p, then queues delivery of the
package and its newly created response file:

p k g a s k - r / v a r / s a d m / d i s t / r e s p o n s e - d d i s t s p o o l l p
.
.
.
R e s p o n s e f i l e < / v a r / s a d m / d i s t / r e s p o n s e / l p > w a s c r e a t e d .
P r o c e s s i n g o f r e q u e s t s c r i p t w a s s u c c e s s f u l .
p k g s e n d - q - i - r l p l p l u c y
R O I j o b I D t o m a c h i n e < l p > i s < a - 5 6 6 >
D i s t r i b u t i o n o f p a c k a g e < l p > q u e u e d t o < l u c y >

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/pkgsend
svid

Page: 668

pkgsend (RA_CMD) pkgsend (RA_CMD)

Assuming l u c y has authorized the broadcast and installation of the package l p, it
will be automatically installed using the response file l p and under the control of
the a d m i n file specified in the broadcast authorization entry. [See
distauth(RA_CMD).]

Example 3:

This example lists current status of recent p k g s e n d commands:

p k g s e n d - l
S R V I D C L I E N T P K G D A T E S T A T U S
a - 5 6 0 l i n u s s p e l l F e b 1 9 1 3 : 1 7 s p o o l e d
a - 5 6 6 l u c y l p F e b 1 9 1 3 : 2 0 p o l l i n g

Example 4:

This example cancels a queued package delivery:

p k g s e n d - k a - 5 6 6
J o b (r - 5 6 5 a - 5 6 6 p - 5 6 7) t o m a c h i n e l u c y h a s b e e n c a n c e l e d
U X : s n d s t a t : W A R N I N G : D i s t r i b u t i o n o f < l p > t o < l u c y > c a n c e l e d .

SEE ALSO
distauth(RA_CMD), distconf(RA_CMD), pkgadd(AS_CMD), pkgask(AS_CMD),
pkgput(RA_CMD), pkgreq(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 3

FINAL COPY
June 15, 1995

File: ra_cmd/pkgsend
svid

Page: 669

pkgtrk (RA_CMD) pkgtrk (RA_CMD)

NAME
pkgtrk – display/delete tracking information for delivered packages

SYNOPSIS
p k g t r k [- x- l [- s]] [pkg . . .]
p k g t r k - d [- n] [- a days] pkg . . .

DESCRIPTION
p k g t r k displays on s t d o u t the names of successfully delivered packages and the
number of machines to which they were delivered. Delivered packages are any
packages sent via either the p k g s e n d command or in response to a client’s invoca-
tion of p k g r e q. When used as shown in the second synopsis line (see SYNOPSIS
above), p k g t r k deletes tracking information for the specified package(s). p k g t r k
prompts the user to confirm each deletion, unless the - n option is included on the
command line.

The default format lists package abbreviation, architecture, version, and the number
of recipient machines.

Fields for long format are:

package information (package abbreviation, package name, category, archi-
tecture, version, serial number)

currently held requests (requesting machine name, time, client or target
server, update)

currently sending (machine name, time, client or target server, update)

successful broadcasts (machine, delivery date, client or target server, instal-
lation status)

successful requests (machine, delivery date, client or target server, status,
update)

client total, target server total

The options for this command are:

- l Print long format (all fields printed in a report format), which includes all
available information about the designated package(s).

- x Print extracted format, suitable for parsing, which contains the same fields
in the same order as in long format. Fields are delimited by carets (ˆ).

- s Summarize in extracted or long format. Must be specified in conjunction
with - x or - l.

pkg Package abbreviation or category. The token a l l may be used to specify
the instances when all packages are allowed. pkg may also be a category,
which is distinguished from a package name by its per cent prefix
(%category). For more information, see pkginfo(AS_CMD).

Use a space-separated list to specify multiple packages.

- d Delete tracking information for the specified package abbreviation or
%category.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/pkgtrk
svid

Page: 670

pkgtrk (RA_CMD) pkgtrk (RA_CMD)

- a days Delete tracking information older than days for the specified pkg (or for all
packages if the token a l l is specified).

- n Delete tracking information without any further interaction (to be used
with the - d option).

RETURN VALUES
Upon successful completion, p k g t r k returns a value of 0. Otherwise, it returns a
non-zero value.

USAGE
This command is found on all server configurations.

If the Enhanced Security Extension is implemented on your system, you can run
this command only if you have the appropriate administrative privileges.

EXAMPLES
Example 1:

With no options or arguments, p k g t r k produces output such as the following:

p k g t r k
s p e l l (i 3 8 6) 4 . 0 7
t e r m i n f (i 3 8 6) 1 . 0 8

Example 2:

This example displays tracking information in long format. (For a display of the
same information in extracted format, see Example 3.)

p k g t r k - l s p e l l
P K G : s p e l l
N A M E : S P E L L U t i l i t i e s

C A T E G O R Y : s y s t e m
A R C H : i 3 8 6

V E R S I O N : 4 . 0
S E R I A L N U M : 2 2 B - 5 6 7

C U R R E N T L Y - (o b j e c t s n o t o n s e r v e r)
W A I T I N G : w o o d s t o c k s i n c e J u l 1 8 1 0 : 3 6

s p i k e s i n c e J u l 1 8 1 0 : 5 0
D E L I V E R E D -

B R O A D C A S T S : c h a r l i e M a y 1 9 1 5 : 0 0 c l i e n t i n s t a l l e d
l u c y M a y 2 0 1 1 : 0 3 c l i e n t s p o o l e d
s n o o p y J u n 2 0 0 9 : 4 7 c l i e n t p a r t i a l
l i n u s J u n 2 1 0 8 : 0 1 t a r g e t s e r v e r s p o o l e d

R E Q U E S T S : p a t t y M a y 1 9 1 0 : 4 2 c l i e n t i n s t a l l e d
m a r c i e M a y 2 0 1 1 : 0 1 c l i e n t i n s t a l l e d
s a l l y M a y 2 1 0 2 : 3 3 t a r g e t s e r v e r i n i t i a t e d

C L I E N T T O T A L : 5
S E R V E R T O T A L : 2

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/pkgtrk
svid

Page: 671

pkgtrk (RA_CMD) pkgtrk (RA_CMD)

Example 3:

This example displays the same information shown in Example 2 in extracted for-
mat:

p k g t r k - x s p e l l
s p e l l ̂ S P E L L U t i l i t i e s ̂ s y s t e m ̂ i 3 8 6 ̂ 1 . 0 ̂ 2 2 B - 5 6 7 ̂ w o o d s t o c k (J u l 1 8 1
0 : 3 6) , s p i k e (J u l 1 8 1 0 : 5 0) ̂ ̂ c h a r l i e (M a y 1 9 1 5 : 0 0) c l i e n t - i n s t a l l e d ,
. . . . ̂ p a t t y (M a y 1 9 1 0 : 4 2) c l i e n t - i n s t a l l e d - u p d a t e , . . . ̂ 5 ̂ 2

Example 4:

This example displays information in summarized long format (- l s):

p k g t r k - l s i n s t b a c k u p
P K G A R C H V E R S I O N W A I T I N G S E N D I N G C L I E N T S S E R V E R S
i n s t i 3 8 6 R e l e a s e 1 . 0 2 0 5 2
b a c k u p i 3 8 6 R e l e a s e 2 . 2 0 3 2 6

SEE ALSO
pkginfo(AS_CMD), pkgput(RA_CMD), pkgsend(RA_CMD).

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 3

FINAL COPY
June 15, 1995

File: ra_cmd/pkgtrk
svid

Page: 672

remadmin (RA_CMD) remadmin (RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/remadmin
svid

Page: 674

remalias (RA_CMD) remalias (RA_CMD)

NAME
remalias – administer machine aliases

SYNOPSIS
r e m a l i a s
r e m a l i a s [- x] - m alias[,alias...]
r e m a l i a s - a | - A - m alias[,alias. . .] machine_or_alias[,machine_or_alias. . .]
r e m a l i a s - d alias[,alias. . .]
r e m a l i a s - d - m alias[,alias. . .] machine_or_alias[,machine_or_alias. . .]
r e m a l i a s - l machine_or_alias[,machine_or_alias. . .]

DESCRIPTION
The r e m a l i a s utility is used to administer machine aliases that contain one or more
machine names, aliases, or both. The m g r o u p() function expands machine aliases to
support remote administration.

The following are options to r e m a l i a s:

– x Expand aliases to component machines.

– m alias[,alias. . .] Select one or more aliases.

– a machine_or_alias[,machine_or_alias. . .]
Add machine names or aliases. This is used with - m to
select target aliases.

– A machine_or_alias[,machine_or_alias. . .]
Overwrite machine names or aliases with new machine
names or aliases. This is used with - m to select target
aliases.

– d machine_or_alias[,machine_or_alias. . .]
Delete machine names or aliases. Can be used with - m
to select target aliases.

– l machine_or_alias[,machine_or_alias. . .]
List machines names or aliases.

r e m a l i a s with no options or arguments lists all known machine aliases.

Invoking r e m a l i a s with the - m and - x options expands machine aliases into
machine names. Machines are listed once. Invoking r e m a l i a s with only the - m
option lists the contents (machine and alias) of the specified alias; it does not
expand any component aliases into machine names.

r e m a l i a s - a adds machine names or aliases to the file containing specified aliases.
the new machine names or aliases are appended to machine names or aliases
already included. The - A option adds machine names or aliases after deleting any
machine names or aliases already included.

r e m a l i a s - d deletes the specified aliases. r e m a l i a s - d with the - m option deletes
the specified machine names or aliases from the file containing specified aliases.

r e m a l i a s - l shows all aliases to which a machine or alias belongs. One machine
name and alias are listed per line.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/remalias
svid

Page: 675

remalias (RA_CMD) remalias (RA_CMD)

USAGE
System administrators can use r e m a l i a s with all its options. Users can invoke
r e m a l i a s with no options, or with the - x, - m, and - l options only.

SEE ALSO
mgroup(RA_LIB)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/remalias
svid

Page: 676

remclean (RA_CMD) remclean (RA_CMD)

NAME
remclean – remote operation interface clean-up program

SYNOPSIS
r e m c l e a n

DESCRIPTION
r e m c l e a n scans the remote operation log directories and removes jobs that have
completed or have timed out.

Complete jobs exceeding the aging parameter are removed from the tracking log
and no longer show up in the output of the r e m s t a t command. This applies to jobs
with the status succeeded, failed, canceled, timeout, or rejected.

r e m c l e a n cancels queued jobs exceeding the timeout parameter via the appropriate
network-specific cancel operation, and changes the status of the job in the status log
to timeout. r e m c l e a n invokes the - n "notify" argument to the r e m o p(RA_CMD)
command, if specified when the job was initiated, and it informs the user via
m a i l(BU_CMD) that the job timed out. This applies to jobs with the status inpro-
gress and queued. If the job is part of a dependency list, the remaining jobs in the
list are canceled and the - n "notify" argument to r e m o p(RA_CMD) is invoked if
specified when the job was started.

USAGE
r e m c l e a n is available only to administrators.

SEE ALSO
remadmin(RA_CMD), remstat(1), cron(RA_CMD), remop(RA_LIB), remop(RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/remclean
svid

Page: 677

remkill (RA_CMD) remkill (RA_CMD)

NAME
remkill – cancel remote operation jobs

SYNOP
r e m k i l l - a [- u user]
r e m k i l l - j jobid [- u user]

DESCRIPTION
The r e m k i l l utility cancels remote jobs in the queued state.

The options are as follows:

– a Cancel all jobs belonging to the user. If the - u flag is not used,
then the current user login is assumed. Although administrators
can cancel jobs for all users, non-privileged users can cancel only
their own jobs.

– j jobid Cancel the specified job known to the machine by its service job
identifiers, administrative job identifiers, or primitive job
identifiers. Job identifiers take the format c-x where c is the job
identifier type and x is a value from 1 to I N T _ M A X (defined in the
header file l i m i t s . h). Service job identifiers take the format r -x,
administrative job identifiers take the format a -x, and primitive
job identifiers take the format p -x.

– u user Cancel a job for the specified user. If the - u flag is not used, then
the current user login is assumed. Although administrators can
cancel jobs for all users, non-privileged users can cancel only their
own jobs. Since - u must take an argument, non-privileged users
must include only their own logins.

If the job is part of a dependency list and the r e m k i l l operation was successful, the
remaining jobs in the list are also canceled.

Successfully canceling a job depends on how far the job has proceeded, which in
turn depends on how the network service interface is designed on the initiating
machine. The success or failure of an operation is reported to the user.

USAGE
Only system administrators can cancel remote jobs for other users. Users can cancel
their own jobs only, and must specify their login as the user argument to
- u.

SEE ALSO
remop(RA_LIB), remstat(RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/remkill
svid

Page: 678

remkill (RA_CMD) remkill (RA_CMD)

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/remkill
svid

Page: 679

remop (RA_CMD) remop (RA_CMD)

NAME
remop – command interface to r e m o p for remote operations

SYNOPSIS
r e m o p - e cmd [- q [- n notify]] - m machine_or_alias[,machine_or_alias. . .]

[- s svc]
r e m o p - t local [- d remote] [- q [- n notify]]

- m machine_or_alias[,machine_or_alias. . .] [- s svc]

DESCRIPTION
The r e m o p utility provides a command interface to the remote operations library
routines r e m o p(RA_LIB) and m g r o u p(RA_LIB).

The options are as follows:

– e cmd Execute a command on a remote system. cmd is an exe-
cutable command, with arguments, that is enclosed with
double quote characters. If the command does not take
arguments, double quote characters are unnecessary.

– t local Transfer a file or directory to a remote system.

– q Perform remote operation over queued network ser-
vices. The default is to use synchronous network ser-
vices.

– n notify notify is the full pathname of an executable called after
the job is completed. Environment variables are avail-
able to notify as described in r e m o p(RA_LIB) This option
works over queued network services only and can be
used only in conjunction with the - q option. If one or
more space characters separates the executable from
arguments or shell special characters, enclose the entire
string with double quote characters.

– s svc Use a service identifier to place output on remote
machines according to Remote Operations Interface
(ROI) standard directory naming conventions of
/ v a r / s p o o l / r o i / u s e r s /logname/ r e c e i v e /svc/mach
where svc is a service identifier and mach is the originat-
ing machine. If svc is not specified, the value d e f a u l t is
substituted where the svc identifier normally appears.

– m machine_or_alias[,machine_or_alias. . .]
Provide a comma-separated list of machines names,
machine aliases, or both on which remote jobs will be
executed using queued network services. For jobs exe-
cuted over synchronous network services, only one
machine can be specified.

– d remote Designate a destination file or directory. If the remote file
name or directory exists, the local file or directory is
copied into the specified destination. If you do not
specify a destination on the remote machine,
r e m o p(RA_LIB) creates it based on ROI’s standard

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/remop
svid

Page: 680

remop (RA_CMD) remop (RA_CMD)

directory naming convention,
/ v a r / s p o o l / r o i / u s e r s /logname/ r e c e i v e /svc/mach
where svc is the service identifier and mach is the ori-
ginating machine. If the - d remote destination does not
exist, you receive an error message.

r e m o p satisfies the request via available network services.

The order for accessing network services may be influenced by two user-defined
environment variables—R E M O P S and R E M O P Q. These variables override the order
specified by the system administrator using the r e m t a b(RA_CMD) command.
R E M O P S specifies the order for trying synchronous network services, and R E M O P Q
specifies the order for queued network services. The value of each environment
variable is expected to be a colon-separated list of network services. If more than
one remote machine is specified for file or directory transfer, each machine receives
a copy of the file or directory (queued mode only).

USAGE
Both users and system administrators can use r e m o p with all its options.

EXAMPLE
Below are examples for using the r e m o p command for synchronous and queued
operations.

Example 1 — Synchronous Operation

The following example shows how to execute the command / s b i n / m o u n t on the
remote system i n t l and receive the output on the local system and terminal. The
operation will be initiated over a synchronous network service.

r e m o p - e / s b i n / m o u n t - m i n t l

Example 2 — Queued Operation

The following example shows how to execute the command / s b i n / m o u n t on the
remote system i n t l and receive the output on the local system. The
/ h o m e / u s e r 1 / b i n / m y n o t i f y command on the local system will be executed when
the operation completes. The operation will be initiated over a queued network ser-
vice.

r e m o p - e / s b i n / m o u n t - q - n / h o m e / u s e r 1 / b i n / m y n o t i f y - m i n t l

Unless redirected, the standard output of the notify script will be in the file
/ v a r / s p o o l / r o i / u s e r s /login/ n o t i f y / oprimid on the local system. The s t d e r r
will be found in the file, / v a r / s p o o l / r o i / u s e r s /login/ n o t i f y / eprimid.

Unless redirected, the standard output of the notify script will be in the file
/ v a r / s p o o l / r o i / u s e r s /logname/ n o t i f y / oprimid. The standard error will be
found in the file, / v a r / s p o o l / r o i / u s e r s /logname/ n o t i f y / eprimid.

SEE ALSO
mgroup(RA_LIB), remop(RA_LIB), remalias(RA_CMD), remkill(RA_CMD),
remtab(RA_CMD), remstat(RA_CMD)

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/remop
svid

Page: 681

remop (RA_CMD) remop (RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 3

FINAL COPY
June 15, 1995

File: ra_cmd/remop
svid

Page: 682

remstat (RA_CMD) remstat (RA_CMD)

NAME
remstat – track the status and retrieve output of remote jobs

SYNOPSIS
r e m s t a t [- v | - p] [- l] [- a | - u user] [- i svc] [- s state]

[- m machine_or_alias[,machine_or_alias. .]] [- j jobid]
r e m s t a t - c [- u user] - j jobid

DESCRIPTION
The r e m s t a t utility tracks the status and retrieves output of remote jobs. With no
options, r e m s t a t displays the status of the invoking user’s administrative jobs.

The options are as follows:

– a Produce a report on all users. Without this or the - u option,
the report defaults to those ROI jobs initiated by the current
user.

– c This option displays s t d o u t and s t d e r r from a selected job
and must be used with the - j jobid option. Without the - u
option, the current user login is assumed.

– i svc Select a specific administrative service. svc is a token that
associates a remote operation with a specific administrative
service. For example, you could use d i s t to represent the
Software Distribution service.

– j jobid Specify the service, administrative or primitive job id. Job
identifiers take the format c-x where c is the job identifier
type and x is a value from 1 to I N T _ M A X (defined in the
header file l i m i t s . h). Service job identifiers take the format
r -x, administrative job identifiers take the format a -x, and
primitive job identifiers take the format p -x. A short-hand
notation is allowed for the job id specification, where leading
zeroes may be omitted on the command line.

– l Produce a list of colon-separated fields rather than formatted
output.

– m machine_or_alias[,machine_or_alias. . .]
Select one or more machines or aliases. machine_or_alias is a
comma-separated list of machine names or aliases.

– p List all remote jobs associated with each network service
primitive. The report contains the status and the originated
time of a remote operation.

– s state Select a specific state. Defined states are: queued, inprogress,
succeeded, failed, canceled, rejected, and timeout. The first
letter in the name of each defined state can be used as a
status argument. An administrative remote job runs until its
component remote primitives are done; it is considered failed
as soon as one primitive remote operation fails.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/remstat
svid

Page: 683

remstat (RA_CMD) remstat (RA_CMD)

– u user Produce a report on the specified user only. Without this or
the - a option, the report defaults to those ROI jobs initiated
by the current user.

– v List all primitive remote jobs associated with each adminis-
trative job and destination machine.

USAGE
Both users and system administrators can use r e m s t a t with all its options.

EXAMPLE
Below is an example of using r e m s t a t with the - l option alone and combined with
other options.

Sample output from r e m s t a t - l:

u s e r a : r - l : a - 4 : s u c c : d i s t : m a c h b
u s e r a : r - l : a - 4 : q u e u e d : d i s t : m a c h b
u s e r a : r - l : a - 7 : i n p r o g : d i s t : m a c h c
u s e r a : r - l : a - 7 : q u e u e d : d i s t : m a c h c
u s e r a : r - l : a - 1 0 : i n p r o g : d i s t : m a c h d
u s e r a : r - l : a - 1 0 : q u e u e d : d i s t : m a c h d
u s e r a : r - l : a - 1 2 : i n p r o g : b c k : m a c h e

This display takes the output for r e m s t a t with no options and produces a list of
colon-separated fields without headings. The first field is the user followed by the
fields for the service identifier, administrative identifier, status, type of service, and
destination machine. Note that leading zeros are omitted for service and adminis-
trative identifiers.

Sample output from r e m s t a t - l - v:

u s e r a : r - 1 : a - 4 : p - 2 : f t : s u c c : d i s t : m a c h b
u s e r a : r - 1 : a - 4 : p - 3 : f t : q u e u e d : d i s t : m a c h b
u s e r a : r - 1 : a - 7 : p - 5 : r e : i n p r o g : d i s t : m a c h c
u s e r a : r - 1 : a - 7 : p - 6 : f t : q u e u e d : d i s t : m a c h c
u s e r a : r - 1 : a - 1 0 : p - 8 : f t : i n p r o g : d i s t : m a c h d
u s e r a : r - 1 : a - 1 0 : p - 9 : d t : q u e u e d : d i s t : m a c h d
u s e r a : r - 1 1 : a - 1 2 : p - 1 3 : d t : i n p r o g : b c k : m a c h e

This display takes the output from r e m s t a t - v and produces a list of colon-
separated fields without headings. The first field is the user followed by the fields
for the service identifier, administrative identifier, primitive identifier, primitive
module, status, type of service and destination machine. Note that leading zeros
are omitted for service, administrative, and primitive identifiers.

Page 2

FINAL COPY
June 15, 1995

File: ra_cmd/remstat
svid

Page: 684

remstat (RA_CMD) remstat (RA_CMD)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 4

FINAL COPY
June 15, 1995

File: ra_cmd/remstat
svid

Page: 686

remtab (RA_CMD) remtab (RA_CMD)

NAME
remtab – specify the order in which the function r e m o p() accesses network services

SYNOPSIS
r e m t a b - a- A net_service[,net_service. . .] - s | - q
r e m t a b - d net_service[,net_service. . .] - s | - q

DESCRIPTION
System administrators use the r e m t a b utility to specify the order in which r e m o p()
accesses network services for remote administrative jobs. Users can invoke r e m t a b
with no options for a display of available network services.

The options listed below are available only if you are an administrator.

– a net_service[,net_services. . .]
Append one or more new network service specifications to an
existing list of network services.

– A net_service[,net_services. . .]
Add network services after deleting old specifications.

– d net_service[,net_services. . .]
Delete network services.

– s Indicate that the network service entry is for synchronous opera-
tion only.

– q Indicate that the network service entry is for queued operation
only.

With no arguments, r e m t a b displays current network service selection information.
Non-privileged users can not invoke r e m t a b with arguments.

USAGE
System administrators can use r e m t a b with all its options. Users can only invoke
r e m t a b without options.

SEE ALSO
remop(RA_LIB)

FUTURE DIRECTIONS
Certain of the Remote Operations Interface library and commands have been
moved to Level 2 for the following reasons. On going standards and industry
direction has converged around an object-oriented approach to distributed, as
opposed to remote, system administration. The ROI interfaces will become obsolete
as standards and consensus mature within the workings of the Object Management
Group, X/Open Systems Management, and IEEE P1003.7. It is expected that the
ROI interfaces will be replaced by standard API’s and command-line interfaces as
part of the ongoing efforts in the area of Distributed Systems and Network Manage-
ment.

LEVEL
Level 2, September 30, 1993. In the future, the RA_ extension will be phased out in
favor of distributed management functionality.

Page 1

FINAL COPY
June 15, 1995

File: ra_cmd/remtab
svid

Page: 687

FINAL COPY
June 15, 1995

File:

Page: 688

Permuted Index

diff3 3-way differential file comparison diff3(BU_CMD) VOL 2

integer and base-64 ASCII string a64l, l64a convert between long a64l(SD_LIB) VOL 3

abort generate an abnormal termination signal abort(BA_OS) VOL 1

termination signal abort generate an abnormal abort(BA_OS) VOL 1

value abs, labs return integer absolute abs(BA_LIB) VOL 1

abs, labs return integer absolute value ... abs(BA_LIB) VOL 1

/fabs floor, ceiling, remainder, absolute value functions floor(BA_LIB) VOL 1

t_accept accept a connect request t_accept(BA_LIB) VOL 1

structure utime: utime.h access and modification times utime(BA_ENV) VOL 1

utime set file access and modification times utime(BA_OS) VOL 1

file touch update access and modification times of a touch(BU_CMD) VOL 2

aclsort sort an Access Control List .. aclsort(ES_LIB) VOL 3

acl set a file’s Access Control List (ACL) acl(ES_LIB) VOL 3

file or files setacl modify the Access Control List (ACL) for a setacl(ES_CMD) VOL 3

lvldelete delete Mandatory Access Control (MAC) levels lvldelete(ES_CMD) VOL 3

lvlname assign or display Mandatory Access Control (MAC) levels lvlname(ES_CMD) VOL 3

sacadm service access controller administration sacadm(AS_CMD) VOL 2

file access determine accessibility of a access(BA_OS) VOL 1

initialize the supplementary group access list initgroups initgroups(BA_LIB) VOL 1

machine-independent/ sputl, sgetl access long integer data in a sputl(SD_LIB) VOL 3

sadp disk access profiler .. sadp(AS_CMD) VOL 2

inter-process communication access structure sys/ipc.h sys/ipc.h(KE_ENV) VOL 1

device grantpt grant access to the slave pseudo-terminal grantpt(BA_LIB) VOL 1

getutmpx, updwtmp, updwtmpx access utmpx file entry /getutmp, getutx(SD_LIB) VOL 3

order in which the function remop() accesses network services /the remtab(RA_CMD) VOL 3

access determine accessibility of a file .. access(BA_OS) VOL 1

acct enable or disable process accounting .. acct(KE_OS) VOL 1

acctprc, acctprc1, acctprc2 process accounting .. acctprc(AS_CMD) VOL 2

runacct run daily accounting ... runacct(AS_CMD) VOL 2

acctcon2, prctmp connect-time accounting acctcon: acctcon1, acctcon(AS_CMD) VOL 2

/startup, turnacct miscellaneous accounting and support commands acct(AS_CMD) VOL 2

diskusg, acctdisk generate disk accounting data by user ID diskusg(AS_CMD) VOL 2

acctcom search and print process accounting file(s) acctcom(AS_CMD) VOL 2

acctmerg merge or add total accounting files .. acctmerg(AS_CMD) VOL 2

fwtmp, wtmpfix manipulate connect accounting records fwtmp(AS_CMD) VOL 2

command summary from per-process accounting records acctcms acctcms(AS_CMD) VOL 2

ckpacct, dodisk, lastlogin,/ acct: accton, acctwtmp, chargefee, acct(AS_CMD) VOL 2

accounting acct enable or disable process acct(KE_OS) VOL 1

per-process accounting records acctcms command summary from
.. acctcms(AS_CMD) VOL 2

accounting file(s) acctcom search and print process acctcom(AS_CMD) VOL 2

connect-time accounting acctcon: acctcon1, acctcon2, prctmp
... acctcon(AS_CMD) VOL 2

connect-time accounting acctcon: acctcon1, acctcon2, prctmp acctcon(AS_CMD) VOL 2

accounting acctcon: acctcon1, acctcon2, prctmp connect-time acctcon(AS_CMD) VOL 2

Permuted Index 1

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 689

/mvwaddchstr, mvwaddchnstr add string of characters (and/
.. curs_addchstr(TI_LIB) VOL 3

(and/ /mvwaddwchstr, mvwaddwchnstr add string of wchar_t characters
.. curs_addwchstr(TI_LIB) VOL 3

acctmerg merge or add total accounting files acctmerg(AS_CMD) VOL 2

putenv change or add value to environment putenv(BA_LIB) VOL 1

echochar, wechochar/ curs_addch: addch, waddch, mvaddch, mvwaddch,
.. curs_addch(TI_LIB) VOL 3

curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr,/
.. curs_addchstr(TI_LIB) VOL 3

waddchnstr,/ curs_addchstr: addchstr, addchnstr, waddchstr,
.. curs_addchstr(TI_LIB) VOL 3

addsev define additional severities addsev(BA_LIB) VOL 1

mvaddstr,/ curs_addstr: addstr, addnstr, waddstr, waddnstr, curs_addstr(TI_LIB) VOL 3

mvaddwstr,/ curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr,
.. curs_addwstr(TI_LIB) VOL 3

object dlsym get the address of a symbol in shared dlsym(BA_OS) VOL 1

mlockall, munlockall lock or unlock address space .. mlockall(RT_OS) VOL 3

t_bind bind an address to a transport endpoint t_bind(BA_LIB) VOL 1

t_getprotaddr get protocol addresses ... t_getprotaddr(BA_LIB) VOL 1

mapper rpcbind universal addresses to RPC program number
.. rpcbind(RS_CMD) VOL 3

addsev define additional severities addsev(BA_LIB) VOL 1

mvaddstr, mvaddnstr,/ curs_addstr: addstr, addnstr, waddstr, waddnstr,
.. curs_addstr(TI_LIB) VOL 3

mvwaddwch, echowchar,/ curs_addwch: addwch, waddwch, mvaddwch,
... curs_addwch(TI_LIB) VOL 3

curs_addwchstr: addwchstr, addwchnstr, waddwchstr,/ curs_addwchstr(TI_LIB) VOL 3

waddwchnstr,/ curs_addwchstr: addwchstr, addwchnstr, waddwchstr,
.. curs_addwchstr(TI_LIB) VOL 3

waddnwstr,/ curs_addwstr: addwstr, addnwstr, waddwstr,
.. curs_addwstr(TI_LIB) VOL 3

synchronize the system clock adjtime correct the time to adjtime(adjtime(BA_OS)) VOL 1

based on information stored in the/ admalloc allocates devices to users
.. admalloc(ES_CMD) VOL 3

files admin create and administer SCCS admin(SD_CMD) VOL 3

remalias administer machine aliases remalias(RA_CMD) VOL 3

admin create and administer SCCS files admin(SD_CMD) VOL 3

sacadm service access controller administration .. sacadm(AS_CMD) VOL 2

modadmin loadable kernel module administration AS_CMD) modadmin(AS_CMD) VOL 2

of the software distribution administrative databases /contents
... distrpt(RA_CMD) VOL 3

delete roles in the Trusted/ adminrole display, add, change,
.. adminrole(ES_CMD) VOL 3

delete users in the TFM database adminuser display, add, change,
... adminuser(ES_CMD) VOL 3

attributes) to a CURSES window and advance cursor /a character (with
.. curs_addch(TI_LIB) VOL 3

characters to a CURSES window and advance cursor /a string of wchar_t
.. curs_addwstr(TI_LIB) VOL 3

characters to a CURSES window and advance cursor /add a string of curs_addstr(TI_LIB) VOL 3

Permuted Index 3

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 691

tar file archiver ... tar(AU_CMD) VOL 2

cpio copy file archives in and out .. cpio(BU_CMD) VOL 2

tcpio trusted cpio for copying file archives in and out .. tcpio(ES_CMD) VOL 3

wide character input of a variable argument list /convert formatted vfwscanf(BA_LIB) VOL 1

wide character output of a variable argument list /print formatted vfwprintf(BA_LIB) VOL 1

va_arg, va_end handle variable argument list stdarg: va_start, stdarg(BA_ENV) VOL 1

formatted output of a variable argument list /vsnprintf print vprintf(BA_LIB) VOL 1

formatted input of a variable argument list /vsscanf convert vscanf(BA_LIB) VOL 1

command xargs construct argument list(s) and execute xargs(SD_CMD) VOL 3

getopt get option letter from argument vector .. getopt(BA_LIB) VOL 1

echo echo arguments .. echo(BU_CMD) VOL 2

expr evaluate arguments as an expression expr(BU_CMD) VOL 2

encode a binary file, or decode its ASCII representation /uudecode
... uuencode(AU_CMD) VOL 2

between long integer and base-64 ASCII string a64l, l64a convert a64l(SD_LIB) VOL 3

module administration AS_CMD) modadmin loadable kernel
.. modadmin(AS_CMD) VOL 2

time to/ ctime, localtime, gmtime, asctime, tzset convert date and ctime(BA_LIB) VOL 1

trigonometric/ trig: sin, cos, tan, asin, acos, atan, atan2 .. trig(BA_LIB) VOL 1

hyperbolic: sinh, cosh, tanh, asinh, acosh, atanh hyperbolic/ hyperbolic(BA_LIB) VOL 1

as common assembler .. as(SD_CMD) VOL 3

assertion assert: assert.h verify program assert(BA_ENV) VOL 1

assert verify program assertion assert(BA_LIB) VOL 1

assert: assert.h verify program assertion assert(BA_ENV) VOL 1

assert: assert.h verify program assertion .. assert(BA_ENV) VOL 1

assert verify program assertion ... assert(BA_LIB) VOL 1

/set_field_term, field_term assign application-specific/ form_hook(TI_LIB) VOL 3

/menu_init, set_menu_term, menu_term assign application-specific/ menu_hook(TI_LIB) VOL 3

setbuf, setvbuf assign buffering to a stdio-stream setbuf(BA_LIB) VOL 1

Control (MAC) levels lvlname assign or display Mandatory Access
.. lvlname(ES_CMD) VOL 3

/set_field_userptr, field_userptr associate application data with/
... form_field_userptr(TI_LIB) VOL 3

/set_form_userptr, form_userptr associate application data with/
... form_userptr(TI_LIB) VOL 3

/set_item_userptr, item_userptr associate application data with/
.. menu_item_userptr(TI_LIB) VOL 3

/set_menu_userptr, menu_userptr associate application data with/
.. menu_userptr(TI_LIB) VOL 3

/set_panel_userptr, panel_userptr associate application data with a/
.. panel_userptr(TI_LIB) VOL 3

write or erase FORMS from associated subwindows /unpost_form
.. form_post(TI_LIB) VOL 3

write or erase MENUS from associated subwindows /unpost_menu
... menu_post(TI_LIB) VOL 3

or display privilege information associated with a file /delete, filepriv(ES_CMD) VOL 3

set, get, or count the privileges associated with a file filepriv filepriv(ES_LIB) VOL 3

/set, retrieve, or count privileges associated with the calling process procpriv(ES_LIB) VOL 3

/remove, set, or count privileges associated with the calling process procprivl(ES_LIB) VOL 3

FORMS window and subwindow association routines /scale_form form_win(TI_LIB) VOL 3

MENUS window and subwindow association routines /scale_menu menu_win(TI_LIB) VOL 3

t_look check for asynchronous event .. t_look(BA_LIB) VOL 1

Permuted Index 5

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 693

aio_suspend suspend until asynchronous I/O completes aio_suspend(MT_LIB) VOL 1

aiocb Asynchronous I/O Control Block aiocb(MT_LIB) VOL 1

aio_error retrieve asynchronous I/O error status aio_error(MT_LIB) VOL 1

/retrieve return status of asynchronous I/O operation aio_return(MT_LIB) VOL 1

aio_cancel cancel asynchronous I/O operations aio_cancel(MT_LIB) VOL 1

aio_read asynchronous read aio_read(MT_LIB) VOL 1

aio_write asynchronous write aio_write(MT_LIB) VOL 1

later time at, batch execute commands at a at(AU_CMD) VOL 2

trig: sin, cos, tan, asin, acos, atan, atan2 trigonometric functions trig(BA_LIB) VOL 1

/sin, cos, tan, asin, acos, atan, atan2 trigonometric functions trig(BA_LIB) VOL 1

/sinh, cosh, tanh, asinh, acosh, atanh hyperbolic functions hyperbolic(BA_LIB) VOL 1

routine atexit add program termination
.. atexit(atexit(BA_OS)) VOL 1

double-precision/ strtod, strtold, atof convert string to strtod(BA_LIB) VOL 1

strtol, strtoul, atol, atoi convert string to integer strtol(BA_LIB) VOL 1

integer strtol, strtoul, atol, atoi convert string to strtol(BA_LIB) VOL 1

pread atomic position and read pread(BA_OS) VOL 1

pwrite atomic position and write pwrite(BA_OS) VOL 1

run at specified times atq display the queue of jobs to be atq(AU_CMD) VOL 2

batch atrm remove jobs spooled by at or atrm(AU_CMD) VOL 2

descriptor to an object in/ fattach attach a STREAMS-based file fattach(BA_LIB) VOL 1

remove, change, or display secure attention key defsak define, defsak(ES_CMD) VOL 3

/CURSES character and window attribute control routines curs_attr(TI_LIB) VOL 3

auditlog get or set audit log file attributes ... auditlog(AT_LIB) VOL 3

devattr lists device attributes ... devattr(ES_CMD) VOL 3

devstat get or set device security attributes .. devstat(ES_LIB) VOL 3

display or set audit event log file attributes auditlog auditlog(AT_CMD) VOL 3

/get a string of characters (and attributes) from a CURSES window
... curs_inchstr(TI_LIB) VOL 3

/mvwinch get a character and its attributes from a CURSES window
.. curs_inch(TI_LIB) VOL 3

/a string of wchar_t characters (and attributes) from a CURSES window
.. curs_inwchstr(TI_LIB) VOL 3

/get a wchar_t character and its attributes from a CURSES window
.. curs_inwch(TI_LIB) VOL 3

set/ /tcgetsid get and set terminal attributes, line control, get and termios(BA_OS) VOL 1

devalloc get and set the security attributes of a device devalloc(ES_LIB) VOL 3

devstat gets the current security attributes of a device devstat(ES_CMD) VOL 3

format the general display attributes of FORMS /field_pad
... form_field_attributes(TI_LIB) VOL 3

set and get FORMS field attributes /set_max_field form_field_buffer(TI_LIB) VOL 3

menu_pad control MENUS display attributes /set_menu_pad, menu_attributes(TI_LIB) VOL 3

/add string of characters (and attributes) to a CURSES window
.. curs_addchstr(TI_LIB) VOL 3

string of wchar_t characters (and attributes) to a CURSES window /add
.. curs_addwchstr(TI_LIB) VOL 3

/wechochar add a character (with attributes) to a CURSES window and/
.. curs_addch(TI_LIB) VOL 3

/add a wchar_t character (with attributes) to a CURSES window and/
... curs_addwch(TI_LIB) VOL 3

6 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 694

/a device and sets its security attributes to system configuration
... devdealloc(ES_LIB) VOL 3

attrset, wattrset,/ curs_attr: attroff, wattroff, attron, wattron, curs_attr(TI_LIB) VOL 3

curs_attr: attroff, wattroff, attron, wattron, attrset, wattrset,/ curs_attr(TI_LIB) VOL 3

/attroff, wattroff, attron, wattron, attrset, wattrset, standend,/ curs_attr(TI_LIB) VOL 3

auditbuf manipulate the audit buffer ... auditbuf(AT_LIB) VOL 3

auditdmp write audit record to audit buffer .. auditdmp(AT_LIB) VOL 3

auditlog display or set audit event log file attributes auditlog(AT_CMD) VOL 3

auditlog get or set audit log file attributes auditlog(AT_LIB) VOL 3

portability auditfltr convert audit log file for inter-machine auditfltr(AT_CMD) VOL 3

auditmap create and write the audit map files .. auditmap(AT_CMD) VOL 3

auditcnv create audit mask file ... auditcnv(AT_CMD) VOL 3

auditdmp write audit record to audit buffer auditdmp(AT_LIB) VOL 3

display recorded information from audit trail auditrpt auditrpt(AT_CMD) VOL 3

auditevt get or set auditable events ... auditevt(AT_LIB) VOL 3

buffer auditbuf manipulate the audit auditbuf(AT_LIB) VOL 3

auditcnv create audit mask file auditcnv(AT_CMD) VOL 3

status of auditing auditctl control or report the auditctl(AT_LIB) VOL 3

audit buffer auditdmp write audit record to auditdmp(AT_LIB) VOL 3

events auditevt get or set auditable auditevt(AT_LIB) VOL 3

for inter-machine portability auditfltr convert audit log file auditfltr(AT_CMD) VOL 3

auditoff disable auditing .. auditoff(AT_CMD) VOL 3

auditon enable auditing .. auditon(AT_CMD) VOL 3

control or report the status of auditing auditctl .. auditctl(AT_LIB) VOL 3

auditset select or display auditing criteria ... auditset(AT_CMD) VOL 3

log file attributes auditlog display or set audit event
.. auditlog(AT_CMD) VOL 3

attributes auditlog get or set audit log file auditlog(AT_LIB) VOL 3

map files auditmap create and write the audit
.. auditmap(AT_CMD) VOL 3

auditoff disable auditing auditoff(AT_CMD) VOL 3

auditon enable auditing auditon(AT_CMD) VOL 3

information from audit trail auditrpt display recorded auditrpt(AT_CMD) VOL 3

criteria auditset select or display auditing
... auditset(AT_CMD) VOL 3

secure_rpc: authdes_seccreate, authdes_getucred, getnetname,/ secure_rpc(RS_LIB) VOL 3

authdes_getucred,/ secure_rpc: authdes_seccreate, secure_rpc(RS_LIB) VOL 3

authsys_create,/ rpc_clnt_auth: auth_destroy, authnone_create,
... rpc_clnt_auth(RS_LIB) VOL 3

client side remote procedure call authentication /routines for rpc_clnt_auth(RS_LIB) VOL 3

rpc_clnt_auth: auth_destroy, authnone_create, authsys_create,/
... rpc_clnt_auth(RS_LIB) VOL 3

broadcast of packages distauth authorize subscription and distauth(RA_CMD) VOL 3

auth_destroy, authnone_create, authsys_create,/ rpc_clnt_auth:
... rpc_clnt_auth(RS_LIB) VOL 3

/authnone_create, authsys_create, authsys_create_default library/
... rpc_clnt_auth(RS_LIB) VOL 3

/application-specific routines for automatic invocation by MENUS
... menu_hook(TI_LIB) VOL 3

systems share make local resource available for sharing by remote share(RS_CMD) VOL 3

systems dfshares list available resources from remote dfshares(RS_CMD) VOL 3

/display a catalog of packages available to a client or target/ pkgcat(RA_CMD) VOL 3

Permuted Index 7

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 695

wait await completion of process wait(BU_CMD) VOL 2

processing language awk pattern-directed scanning and awk(BU_CMD) VOL 2

/mvwgetch, ungetch get (or push back) characters from CURSES/ curs_getch(TI_LIB) VOL 3

/mvwgetwch, ungetwch get (or push back) wchar_t characters from/ curs_getwch(TI_LIB) VOL 3

/wbkgdset, bkgd, wbkgd CURSES window background manipulation routines
.. curs_bkgd(TI_LIB) VOL 3

backup session backup initiate or control a system
... backup(AS_CMD) VOL 2

bkhistory report on completed backup operations bkhistory(AS_CMD) VOL 2

bkstatus display the status of backup operations bkstatus(AS_CMD) VOL 2

insertion/ bkoper interact with backup operations to service media
... bkoper(AS_CMD) VOL 2

backup initiate or control a system backup session .. backup(AS_CMD) VOL 2

change or display the contents of a backup table bkreg bkreg(AS_CMD) VOL 2

an exception list for incremental backups bkexcept change or display
.. bkexcept(AS_CMD) VOL 2

banner make large letters banner(BU_CMD) VOL 2

barrier_destroy destroy a blocking barrier ... barrier_destroy(MT_LIB) VOL 1

barrier_init initialize a blocking barrier .. barrier_init(MT_LIB) VOL 1

barrier_wait wait at a blocking barrier .. barrier_wait(MT_LIB) VOL 1

barrier barrier_destroy destroy a blocking
... barrier_destroy(MT_LIB) VOL 1

barrier barrier_init initialize a blocking barrier_init(MT_LIB) VOL 1

barrier barrier_wait wait at a blocking
.. barrier_wait(MT_LIB) VOL 1

rpc rpc program number data base .. rpc(RS_ENV) VOL 3

a text string from a message data base gettxt retrieve gettxt(BU_CMD) VOL 2

signal base signals ... signal(BA_ENV) VOL 1

of the Kernel Extension on the Base System effects effects effects(KE_ENV) VOL 1

convert between long integer and base-64 ASCII string a64l, l64a a64l(SD_LIB) VOL 3

defined in the Device Database based on criteria /lists devices getdev(ES_CMD) VOL 3

admalloc allocates devices to users based on information stored in the/
.. admalloc(ES_CMD) VOL 3

/a command, regulating privilege based on the information in the TFM/
.. tfadmin(ES_CMD) VOL 3

of path names basename, dirname deliver portions
.. basename(BU_CMD) VOL 2

for a text string in, message data bases /contents of, or search srchtxt(AS_CMD) VOL 2

atrm remove jobs spooled by at or batch ... atrm(AU_CMD) VOL 2

time at, batch execute commands at a later at(AU_CMD) VOL 2

/line control, get and set baud rate, get and set terminal/ termios(BA_OS) VOL 1

has_il, killchar,/ curs_termattrs: baudrate, erasechar, has_ic, curs_termattrs(TI_LIB) VOL 3

su become super-user or another user su(AU_CMD) VOL 2

flash routines curs_beep: beep, flash CURSES bell and screen
... curs_beep(TI_LIB) VOL 3

field has off-screen data ahead or behind /data_behind tell if FORMS
.. form_data(TI_LIB) VOL 3

curs_beep: beep, flash CURSES bell and screen flash routines curs_beep(TI_LIB) VOL 3

Bessel: j0, j1, jn, y0, y1, yn Bessel functions .. Bessel(BA_LIB) VOL 1

Bessel functions Bessel: j0, j1, jn, y0, y1, yn Bessel(BA_LIB) VOL 1

8 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 696

uuencode, uudecode encode a binary file, or decode its ASCII/
... uuencode(AU_CMD) VOL 2

fread, fwrite binary input/output .. fread(BA_OS) VOL 1

bsearch binary search on a sorted table bsearch(BA_LIB) VOL 1

tfind, tdelete, twalk manage binary search trees tsearch, tsearch(BA_LIB) VOL 1

endpoint t_bind bind an address to a transport t_bind(BA_LIB) VOL 1

rpcb_unset library routines for RPC bind service /rpcb_set, rpcbind(RS_LIB) VOL 3

exception list for incremental/ bkexcept change or display an bkexcept(AS_CMD) VOL 2

curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd CURSES window/ curs_bkgd(TI_LIB) VOL 3

CURSES window/ curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd curs_bkgd(TI_LIB) VOL 3

backup operations bkhistory report on completed bkhistory(AS_CMD) VOL 2

operations to service media/ bkoper interact with backup bkoper(AS_CMD) VOL 2

contents of a backup table bkreg change or display the bkreg(AS_CMD) VOL 2

backup operations bkstatus display the status of bkstatus(AS_CMD) VOL 2

aiocb Asynchronous I/O Control Block ... aiocb(MT_LIB) VOL 1

sum print checksum and block count of a file ... sum(BU_CMD) VOL 2

sigpending examine signals that are blocked and pending sigpending(BA_OS) VOL 1

barrier_destroy destroy a blocking barrier barrier_destroy(MT_LIB) VOL 1

barrier_init initialize a blocking barrier barrier_init(MT_LIB) VOL 1

barrier_wait wait at a blocking barrier barrier_wait(MT_LIB) VOL 1

df report number of free disk blocks and i-nodes ... df(BU_CMD) VOL 2

wvline create CURSES/ curs_border: border, wborder, box, whline, curs_border(TI_LIB) VOL 3

/box, whline, wvline create CURSES borders, horizontal and vertical/
... curs_border(TI_LIB) VOL 3

manipulation/ panel_top: top_panel, bottom_panel PANELS deck panel_top(TI_LIB) VOL 3

two wide character strings with bound wcsncat concatenate wcsncat(BA_LIB) VOL 1

two wide character strings with bound wcsncmp compare wcsncmp(BA_LIB) VOL 1

copy a wide character string with bound wcsncpy .. wcsncpy(BA_LIB) VOL 1

curs_border: border, wborder, box, whline, wvline create CURSES/
... curs_border(TI_LIB) VOL 3

waiting on a/ cond_broadcast broadcast a wake up to all threads
.. cond_broadcast(MT_LIB) VOL 1

distauth authorize subscription and broadcast of packages distauth(RA_CMD) VOL 3

more, page browse or page through a text file more(BU_CMD) VOL 2

table bsearch binary search on a sorted bsearch(BA_LIB) VOL 1

auditbuf manipulate the audit buffer ... auditbuf(AT_LIB) VOL 3

write audit record to audit buffer auditdmp auditdmp(AT_LIB) VOL 3

set and get MENUS pattern match buffer /menu_pattern menu_pattern(TI_LIB) VOL 3

stdio: stdio.h standard buffered input/output stdio(BA_ENV) VOL 1

stdio standard buffered input/output package stdio(BA_LIB) VOL 1

setbuf, setvbuf assign buffering to a stdio-stream setbuf(BA_LIB) VOL 1

sync flush system buffers ... sync(AS_CMD) VOL 2

mknod build special file .. mknod(AS_CMD) VOL 2

wctob wide character to byte conversion .. wctob(BA_LIB) VOL 1

swab swap bytes .. swab(BA_LIB) VOL 1

cc C compiler ... cc(SD_CMD) VOL 3

cflow generate C flowgraph .. cflow(SD_CMD) VOL 3

lint a C program checker .. lint(SD_CMD) VOL 3

cxref generate C program cross-reference cxref(SD_CMD) VOL 3

cal print calendar .. cal(BU_CMD) VOL 2

cal print calendar ... cal(BU_CMD) VOL 2

calendar reminder service calendar(BU_CMD) VOL 2

Permuted Index 9

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 697

database adminuser display, add, change, delete users in the TFM
... adminuser(ES_CMD) VOL 3

chmod change file mode ... chmod(BU_CMD) VOL 2

chown change file owner chown(AU_CMD) VOL 2

search path modpath change loadable kernel modules modpath(KE_OS) VOL 1

passwd change login password passwd(AU_CMD) VOL 2

command in a given MLD/ mldmode change MLD mode or execute a mldmode(ES_CMD) VOL 3

chmod, fchmod change mode of file ... chmod(BA_OS) VOL 1

putenv change or add value to environment
.. putenv(BA_LIB) VOL 1

for incremental backups bkexcept change or display an exception list
.. bkexcept(AS_CMD) VOL 2

key defsak define, remove, change, or display secure attention defsak(ES_CMD) VOL 3

backup table bkreg change or display the contents of a bkreg(AS_CMD) VOL 2

sigprocmask change or examine signal mask
... sigprocmask(BA_OS) VOL 1

of a thread thr_sigsetmask change or examine the signal mask
... thr_sigsetmask(MT_LIB) VOL 1

configuration strchg, strconf change or query stream strchg(BU_CMD) VOL 2

chown, lchown, fchown change owner and group of a file chown(BA_OS) VOL 1

process nice change priority of a time-sharing nice(KE_OS) VOL 1

chroot change root directory chroot(KE_OS) VOL 1

chroot change root directory for a command
.. chroot(SD_CMD) VOL 3

waitid wait for child process to change state ... waitid(BA_OS) VOL 1

waitpid wait for child process to change state .. waitpid(BA_OS) VOL 1

init change system run level init(AS_CMD) VOL 2

file chgrp change the group ownership of a chgrp(AU_CMD) VOL 2

chlvl change the level of a file chlvl(ES_CMD) VOL 3

rename change the name of a file rename(BA_OS) VOL 1

newgrp change to a new group newgrp(AU_CMD) VOL 2

delta make a delta (change) to an SCCS file delta(SD_CMD) VOL 3

cd change working directory cd(BU_CMD) VOL 2

chdir, fchdir change working directory chdir(BA_OS) VOL 1

chkey change your encryption key chkey(RS_CMD) VOL 3

setuname changes machine information setuname(AS_CMD) VOL 2

pipe create an interprocess channel .. pipe(BA_OS) VOL 1

/inch, winch, mvinch, mvwinch get a character and its attributes from a/
.. curs_inch(TI_LIB) VOL 3

/mvinwch, mvwinwch get a wchar_t character and its attributes from a/
.. curs_inwch(TI_LIB) VOL 3

control/ /standout, wstandout CURSES character and window attribute curs_attr(TI_LIB) VOL 3

stdio-stream ungetc push character back into input ungetc(BA_LIB) VOL 1

ungetwc push wchar_t character back into input stream ungetwc(BA_LIB) VOL 1

/winsch, mvinsch, mvwinsch insert a character before the character/ curs_insch(TI_LIB) VOL 3

under/ /mvwinswch insert a wchar_t character before the character curs_inswch(TI_LIB) VOL 3

of column positions for a wide character /determine the number wcwidth(BA_LIB) VOL 1

getwchar, fgetwc get next wide character from a stream getwc, getwc(BA_LIB) VOL 1

mbrtowc, wcrtomb, mbrlen multibyte character handling /wctomb, mblen,
... mbchar(BA_LIB) VOL 1

/vswscanf convert formatted wide character input of a variable/ vfwscanf(BA_LIB) VOL 1

convert formatted wide/multibyte character input /wscanf, swscanf fwscanf(BA_LIB) VOL 1

Permuted Index 11

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 699

cuserid get character login name of the user
... cuserid(cuserid(BA_OS)) VOL 1

putwc, putwchar, fputwc put wide character on a stream putwc(BA_LIB) VOL 1

getc, getchar, fgetc, getw get character or word from a stream getc(BA_LIB) VOL 1

putc, putchar, fputc, putw put character or word on a stream putc(BA_LIB) VOL 1

/vswprintf print formatted wide character output of a variable/ vfwprintf(BA_LIB) VOL 1

print formatted wide/multibyte character output /wprintf, swprintf
.. fwprintf(BA_LIB) VOL 1

wcschr scan a wide character string ... wcschr(BA_LIB) VOL 1

wcscpy copy a wide character string .. wcscpy(BA_LIB) VOL 1

collating information wcscoll wide character string comparison using wcscoll(BA_LIB) VOL 1

characters wcspbrk scan a wide character string for wide wcspbrk(BA_LIB) VOL 1

wcstok split a wide character string into tokens wcstok(BA_LIB) VOL 1

wcslen obtain wide character string length wcslen(BA_LIB) VOL 1

wcsrchr reverse wide character string scan wcsrchr(BA_LIB) VOL 1

of column positions for a wide character string /the number wcswidth(BA_LIB) VOL 1

wcstol convert a wide character string to a long integer wcstol(BA_LIB) VOL 1

wcsxfrm wide character string transformation wcsxfrm(BA_LIB) VOL 1

convert date and time to wide character string wcsftime wcsftime(BA_LIB) VOL 1

wcsncpy copy a wide character string with bound wcsncpy(BA_LIB) VOL 1

wcscat concatenate two wide character strings .. wcscat(BA_LIB) VOL 1

wcscmp compare two wide character strings ... wcscmp(BA_LIB) VOL 1

/mvgetstr, mvwgetstr, wgetnstr get character strings from CURSES/ curs_getstr(TI_LIB) VOL 3

/mvwgetwstr, mvwgetnwstr get wchar_t character strings from CURSES/
.. curs_getwstr(TI_LIB) VOL 3

wcsncat concatenate two wide character strings with bound wcsncat(BA_LIB) VOL 1

wcsncmp compare two wide character strings with bound wcsncmp(BA_LIB) VOL 1

wctob wide character to byte conversion wctob(BA_LIB) VOL 1

ctype: ctype.h character types .. ctype(BA_ENV) VOL 1

/wdelch, mvdelch, mvwdelch delete character under cursor in a CURSES/
.. curs_delch(TI_LIB) VOL 3

/insert a character before the character under the cursor in a/ curs_insch(TI_LIB) VOL 3

/mvwinsnstr insert string before character under the cursor in a/ curs_instr(TI_LIB) VOL 3

/a wchar_t character before the character under the cursor in a/
... curs_inswch(TI_LIB) VOL 3

/insert wchar_t string before character under the cursor in a/
.. curs_inswstr(TI_LIB) VOL 3

wchar extended wide character utilities ... wchar(BA_ENV) VOL 1

/mvwaddch, echochar, wechochar add a character (with attributes) to a/ curs_addch(TI_LIB) VOL 3

/echowchar, wechowchar add a wchar_t character (with attributes) to a/
... curs_addwch(TI_LIB) VOL 3

dynamic_field_info get FORMS field characteristics /field_info, form_field_info(TI_LIB) VOL 3

tr translate characters .. tr(BU_CMD) VOL 2

wconv: towupper, towlower translate characters ... wconv(BA_LIB) VOL 1

CURSES/ /mvwinchnstr get a string of characters (and attributes) from a
... curs_inchstr(TI_LIB) VOL 3

CURSES/ /get a string of wchar_t characters (and attributes) from a
.. curs_inwchstr(TI_LIB) VOL 3

CURSES/ /mvwaddchnstr add string of characters (and attributes) to a
.. curs_addchstr(TI_LIB) VOL 3

12 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 700

/wclrtobot, clrtoeol, wclrtoeol clear all or part of a CURSES/ curs_clear(TI_LIB) VOL 3

clear clear the terminal screen clear(TI_CMD) VOL 3

clear clear the terminal screen clear(TI_CMD) VOL 3

curs_clear: erase, werase, clear, wclear, clrtobot, wclrtobot,/
... curs_clear(TI_LIB) VOL 3

status inquiries ferror, feof, clearerr, fileno stdio-stream ferror(ferror(BA_OS)) VOL 1

leaveok, setscrreg,/ curs_outopts: clearok, idlok, idcok immedok, curs_outopts(TI_LIB) VOL 3

with creation and manipulation of CLIENT handles /for dealing
... rpc_clnt_create(RS_LIB) VOL 3

send a catalog of packages to a client or target server catsend catsend(RA_CMD) VOL 3

catalog of packages available to a client or target server /display a pkgcat(RA_CMD) VOL 3

pkgsend deliver packages to client or target server machine(s)
.. pkgsend(RA_CMD) VOL 3

/rpc_call library routines for client side calls rpc_clnt_calls(RS_LIB) VOL 3

/library routines for client side remote procedure call/
... rpc_clnt_auth(RS_LIB) VOL 3

clnt_geterr,/ rpc_clnt_calls: clnt_call, clnt_freeres, rpc_clnt_calls(RS_LIB) VOL 3

clnt_destroy,/ rpc_clnt_create: clnt_control, clnt_create, rpc_clnt_create(RS_LIB) VOL 3

rpc_clnt_create: clnt_control, clnt_create, clnt_destroy,/ rpc_clnt_create(RS_LIB) VOL 3

/clnt_control, clnt_create, clnt_destroy, clnt_dg_create,/
... rpc_clnt_create(RS_LIB) VOL 3

/clnt_create, clnt_destroy, clnt_dg_create, clnt_pcreateerror,/
... rpc_clnt_create(RS_LIB) VOL 3

rpc_clnt_calls: clnt_call, clnt_freeres, clnt_geterr,/ rpc_clnt_calls(RS_LIB) VOL 3

/clnt_call, clnt_freeres, clnt_geterr, clnt_perrno,/ rpc_clnt_calls(RS_LIB) VOL 3

/clnt_destroy, clnt_dg_create, clnt_pcreateerror, clnt_raw_create,/
... rpc_clnt_create(RS_LIB) VOL 3

/clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror,/ rpc_clnt_calls(RS_LIB) VOL 3

/clnt_geterr, clnt_perrno, clnt_perror, clnt_sperrno,/ rpc_clnt_calls(RS_LIB) VOL 3

clnt_dg_create, clnt_pcreateerror, clnt_raw_create,/ /clnt_destroy,
... rpc_clnt_create(RS_LIB) VOL 3

/clnt_pcreateerror, clnt_raw_create, clnt_spcreateerror,/ rpc_clnt_create(RS_LIB) VOL 3

/clnt_perrno, clnt_perror, clnt_sperrno, clnt_sperror,/ rpc_clnt_calls(RS_LIB) VOL 3

/clnt_perror, clnt_sperrno, clnt_sperror, rpc_broadcast,/ rpc_clnt_calls(RS_LIB) VOL 3

clnt_vc_create/ /clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
... rpc_clnt_create(RS_LIB) VOL 3

library routines/ /clnt_tli_create, clnt_tp_create, clnt_vc_create
... rpc_clnt_create(RS_LIB) VOL 3

/clnt_tli_create, clnt_tp_create, clnt_vc_create library routines for/
... rpc_clnt_create(RS_LIB) VOL 3

alarm set process alarm clock .. alarm(BA_OS) VOL 1

the time to synchronize the system clock adjtime correct adjtime(adjtime(BA_OS)) VOL 1

cron clock daemon .. cron(AU_CMD) VOL 2

clock report CPU time used clock(BA_LIB) VOL 1

close close a file descriptor .. close(BA_OS) VOL 1

dlclose close a shared object .. dlclose(BA_OS) VOL 1

t_close close a transport endpoint t_close(BA_LIB) VOL 1

close close a file descriptor close(BA_OS) VOL 1

fclose, fflush close or flush a stdio-stream fclose(BA_OS) VOL 1

/readdir, readdir_r, rewinddir, closedir directory operations directory(BA_OS) VOL 1

/erase, werase, clear, wclear, clrtobot, wclrtobot, clrtoeol,/ curs_clear(TI_LIB) VOL 3

/clear, wclear, clrtobot, wclrtobot, clrtoeol, wclrtoeol clear all or/ curs_clear(TI_LIB) VOL 3

14 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 702

wcscmp compare two wide character strings
.. wcscmp(BA_LIB) VOL 1

with bound wcsncmp compare two wide character strings
.. wcsncmp(BA_LIB) VOL 1

diff3 3-way differential file comparison .. diff3(BU_CMD) VOL 2

dircmp directory comparison ... dircmp(AU_CMD) VOL 2

wcscoll wide character string comparison using collating/ wcscoll(BA_LIB) VOL 1

/step, advance regular expression compile and match routines regexp(BA_LIB) VOL 1

expression compile and/ regexp: compile, step, advance regular regexp(BA_LIB) VOL 1

cc C compiler .. cc(SD_CMD) VOL 3

rpcgen an RPC protocol compiler .. rpcgen(RS_CMD) VOL 3

tic terminfo compiler ... tic(TI_CMD) VOL 3

zic time zone compiler ... zic(AS_CMD) VOL 2

yacc a compiler-compiler ... yacc(SD_CMD) VOL 3

erf, erfc error function and complementary error function erf(BA_LIB) VOL 1

wcscspn get length of complementary wide substring wcscspn(BA_LIB) VOL 1

bkhistory report on completed backup operations bkhistory(AS_CMD) VOL 2

suspend until asynchronous I/O completes aio_suspend aio_suspend(MT_LIB) VOL 1

wait await completion of process wait(BU_CMD) VOL 2

localeconv set the components of a locale localeconv(BA_LIB) VOL 1

pack, pcat, unpack compress and expand files pack(BU_CMD) VOL 2

compress, uncompress, zcat compress data for storage,/ compress(BU_CMD) VOL 2

/hashmake, spellin, hashcheck, compress find spelling errors spell(BU_CMD) VOL 2

data for storage, uncompress and/ compress, uncompress, zcat compress
... compress(BU_CMD) VOL 2

for storage, uncompress and display compressed files /compress data
... compress(BU_CMD) VOL 2

div, ldiv compute the quotient and remainder div(BA_LIB) VOL 1

calendar times difftime computes the difference between two
... difftime(BA_LIB) VOL 1

cat concatenate and print files cat(BU_CMD) VOL 2

strings wcscat concatenate two wide character wcscat(BA_LIB) VOL 1

strings with bound wcsncat concatenate two wide character wcsncat(BA_LIB) VOL 1

retrieve the level of concurrency thr_getconcurrency
.. thr_getconcurrency(MT_LIB) VOL 1

request a level of concurrency thr_setconcurrency
.. thr_setconcurrency(MT_LIB) VOL 1

to all threads waiting on a/ cond_broadcast broadcast a wake up
.. cond_broadcast(MT_LIB) VOL 1

variable cond_destroy destroy a condition
.. cond_destroy(MT_LIB) VOL 1

variable cond_init initialize a condition cond_init(MT_LIB) VOL 1

error error codes and condition definitions error(KE_ENV) VOL 1

errors error code and condition definitions errors(BA_ENV) VOL 1

Remote Services error codes and condition definitions errno errno(RS_ENV) VOL 3

test condition evaluation command test(BU_CMD) VOL 2

cond_destroy destroy a condition variable cond_destroy(MT_LIB) VOL 1

cond_init initialize a condition variable cond_init(MT_LIB) VOL 1

cond_wait wait on a condition variable cond_wait(MT_LIB) VOL 1

wake up to all threads waiting on a condition variable /broadcast a
.. cond_broadcast(MT_LIB) VOL 1

16 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 704

time cond_timedwait wait on a condition variable for a limited
... cond_timedwait(MT_LIB) VOL 1

up a single thread waiting on a condition variable /wake cond_signal(MT_LIB) VOL 1

reader-writer lock in/ rw_tryrdlock conditionally acquire a rw_tryrdlock(MT_LIB) VOL 1

reader-writer lock in/ rw_trywrlock conditionally acquire a rw_trywrlock(MT_LIB) VOL 1

the semaphore’s/ sema_trywait conditionally claim resources under
.. sema_trywait(MT_LIB) VOL 1

mutex_trylock conditionally lock a mutex mutex_trylock(MT_LIB) VOL 1

mutex rmutex_trylock conditionally lock a recursive
... rmutex_trylock(MT_LIB) VOL 1

waiting on a condition variable cond_signal wake up a single thread
... cond_signal(MT_LIB) VOL 1

variable for a limited time cond_timedwait wait on a condition
... cond_timedwait(MT_LIB) VOL 1

variable cond_wait wait on a condition cond_wait(MT_LIB) VOL 1

fpathconf, pathconf get configurable pathname variables fpathconf(BA_OS) VOL 1

confstr obtain configurable string values confstr(BA_OS) VOL 1

sysconf get configurable system variables sysconf(BA_OS) VOL 1

prtconf print system configuration ... prtconf(AS_CMD) VOL 2

its security attributes to system configuration /a device and sets devdealloc(ES_LIB) VOL 3

/entries to software distribution configuration database distconf(RA_CMD) VOL 3

/freenetconfigent network configuration database getnetconfig(RS_LIB) VOL 3

netconfig network configuration database netconfig(RS_ENV) VOL 3

strconf change or query stream configuration strchg, strchg(BU_CMD) VOL 2

t_rcvconnect receive the confirmation from a connect request
.. t_rcvconnect(BA_LIB) VOL 1

values confstr obtain configurable string confstr(BA_OS) VOL 1

fwtmp, wtmpfix manipulate connect accounting records fwtmp(AS_CMD) VOL 2

from MENUS /menu_items, item_count connect and disconnect items to and
... menu_items(TI_LIB) VOL 3

/field_count, move_field connect fields to FORMS form_field(TI_LIB) VOL 3

t_accept accept a connect request ... t_accept(BA_LIB) VOL 1

t_listen listen for a connect request .. t_listen(BA_LIB) VOL 1

receive the confirmation from a connect request t_rcvconnect t_rcvconnect(BA_LIB) VOL 1

application interface to the Connection Server /cs_perror cs_connect(RS_LIB) VOL 3

or expedited data sent over a connection t_rcv receive normal t_rcv(BA_LIB) VOL 1

normal or expedited data over a connection t_snd send t_snd(BA_LIB) VOL 1

user t_connect establish a connection with another transport
.. t_connect(BA_LIB) VOL 1

line discipline for unique stream connections connld connld(BA_DEV) VOL 1

acctcon: acctcon1, acctcon2, prctmp connect-time accounting acctcon(AS_CMD) VOL 2

stream connections connld line discipline for unique connld(BA_DEV) VOL 1

on standard error and the system console /in the standard format fmtmsg(BA_LIB) VOL 1

on standard error and the system console /in the standard format fmtmsg(BU_CMD) VOL 2

devcon: console system console interface .. devcon(BA_DEV) VOL 1

devcon: console system console interface devcon(BA_DEV) VOL 1

unistd: unistd.h standard symbolic constants and structures unistd(BA_ENV) VOL 1

langinfo.h language information constants langinfo: langinfo(BA_ENV) VOL 1

limits.h implementation specific constants limits: .. limits(BA_ENV) VOL 1

mkfs construct a file system mkfs(AS_CMD) VOL 2

execute command xargs construct argument list(s) and xargs(SD_CMD) VOL 3

control maximum system resource consumption getrlimit, setrlimit getrlimit(BA_OS) VOL 1

Permuted Index 17

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 705

bkreg change or display the contents of a backup table bkreg(AS_CMD) VOL 2

ls, lc list contents of directory .. ls(BU_CMD) VOL 2

string in, message/ srchtxt display contents of, or search for a text srchtxt(AS_CMD) VOL 2

distribution/ distrpt report on the contents of the software distrpt(RA_CMD) VOL 3

ucontext user context .. ucontext(BA_ENV) VOL 1

setcontext get and set current user context getcontext, getcontext(BA_OS) VOL 1

set or get signal alternate stack context sigaltstack sigaltstack(BA_OS) VOL 1

csplit context split .. csplit(AU_CMD) VOL 2

swapcontext manipulate user contexts makecontext, makecontext(BA_LIB) VOL 1

suspended thread thr_continue continue the execution of a thr_continue(MT_LIB) VOL 1

fcntl file control ... fcntl(BA_OS) VOL 1

memcntl memory management control .. memcntl(RT_OS) VOL 3

priocntl process scheduler control .. priocntl(AU_CMD) VOL 2

priocntl process scheduler control .. priocntl(KE_OS) VOL 1

uustat uucp status inquiry and job control ... uustat(AU_CMD) VOL 2

backup initiate or control a system backup session backup(AS_CMD) VOL 2

aiocb Asynchronous I/O Control Block .. aiocb(MT_LIB) VOL 1

resources under the semaphore’s control /conditionally claim sema_trywait(MT_LIB) VOL 1

ioctl control device ... ioctl(BA_OS) VOL 1

/and set terminal attributes, line control, get and set baud rate, get/ termios(BA_OS) VOL 1

aclsort sort an Access Control List ... aclsort(ES_LIB) VOL 3

acl set a file’s Access Control List (ACL) .. acl(ES_LIB) VOL 3

files setacl modify the Access Control List (ACL) for a file or setacl(ES_CMD) VOL 3

lvldelete delete Mandatory Access Control (MAC) levels lvldelete(ES_CMD) VOL 3

assign or display Mandatory Access Control (MAC) levels lvlname lvlname(ES_CMD) VOL 3

consumption getrlimit, setrlimit control maximum system resource getrlimit(BA_OS) VOL 1

/menu_grey, set_menu_pad, menu_pad control MENUS display attributes
.. menu_attributes(TI_LIB) VOL 3

msgctl message control operations .. msgctl(KE_OS) VOL 1

semctl semaphore control operations .. semctl(KE_OS) VOL 1

shmctl shared memory control operations shmctl(shmctl(KE_OS)) VOL 1

fcntl: fcntl.h file control options .. fcntl(BA_ENV) VOL 1

auditing auditctl control or report the status of auditctl(AT_LIB) VOL 3

thr_join join control paths with another thread thr_join(MT_LIB) VOL 1

environment remadmin control remote operation remadmin(RA_CMD) VOL 3

is_wintouched CURSES refresh control routines /is_linetouched, curs_touch(TI_LIB) VOL 3

nonl CURSES terminal output option control routines /scrollok, nl, curs_outopts(TI_LIB) VOL 3

CURSES terminal input option control routines /typeahead curs_inopts(TI_LIB) VOL 3

character and window attribute control routines /wstandout CURSES
... curs_attr(TI_LIB) VOL 3

sacadm service access controller administration sacadm(AS_CMD) VOL 2

devtty: tty controlling terminal interface devtty(BA_DEV) VOL 1

_tolower, toascii translate/ conv: toupper, tolower, _toupper, conv(BA_LIB) VOL 1

strptime date and time conversion ... strptime(BA_LIB) VOL 1

wctob wide character to byte conversion ... wctob(BA_LIB) VOL 1

iconv_open code conversion allocation function iconv_open(BA_LIB) VOL 1

iconv_close code conversion deallocation function
.. iconv_close(BA_LIB) VOL 1

mbsinit test for initial multibyte conversion state ... mbsinit(BA_LIB) VOL 1

iconv code set conversion utility ... iconv(BU_CMD) VOL 2

18 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 706

/color_content, pair_content CURSES color manipulation routines
.. curs_color(TI_LIB) VOL 3

getparyx, getbegyx, getmaxyx get CURSES cursor and window/ /getyx,
... curs_getyx(TI_LIB) VOL 3

/longname, termattrs, termname CURSES environment query routines
... curs_termattrs(TI_LIB) VOL 3

/tgetnum, tgetstr, tgoto, tputs CURSES interfaces (emulated) to the/
... curs_termcap(TI_LIB) VOL 3

/tigetflag, tigetnum, tigetstr CURSES interfaces to terminfo/
.. curs_terminfo(TI_LIB) VOL 3

pechowchar create and display CURSES pads /pechochar, curs_pad(TI_LIB) VOL 3

/is_linetouched, is_wintouched CURSES refresh control routines curs_touch(TI_LIB) VOL 3

curs_set, napms low-level CURSES routines /ripoffline, curs_kernel(TI_LIB) VOL 3

/scr_init, scr_set read (write) a CURSES screen from (to) a file
... curs_scr_dump(TI_LIB) VOL 3

/isendwin, set_term, delscreen CURSES screen initialization and/
.. curs_initscr(TI_LIB) VOL 3

/slk_attrset, slk_attroff CURSES soft label routines curs_slk(TI_LIB) VOL 3

/timeout, wtimeout, typeahead CURSES terminal input option/ curs_inopts(TI_LIB) VOL 3

/wgetnstr get character strings from CURSES terminal keyboard curs_getstr(TI_LIB) VOL 3

/get wchar_t character strings from CURSES terminal keyboard curs_getwstr(TI_LIB) VOL 3

push back) wchar_t characters from CURSES terminal keyboard /get (or
.. curs_getwch(TI_LIB) VOL 3

get (or push back) characters from CURSES terminal keyboard /ungetch
.. curs_getch(TI_LIB) VOL 3

/wsetscrreg, scrollok, nl, nonl CURSES terminal output option/
.. curs_outopts(TI_LIB) VOL 3

/flushinp miscellaneous CURSES utility routines curs_util(TI_LIB) VOL 3

convert formatted input from a CURSES widow /mvwscanw, vwscanw
.. curs_scanw(TI_LIB) VOL 3

the character under the cursor in a CURSES window /a character before
.. curs_insch(TI_LIB) VOL 3

characters (and attributes) from a CURSES window /a string of wchar_t
.. curs_inwchstr(TI_LIB) VOL 3

of characters (and attributes) to a CURSES window /add string curs_addchstr(TI_LIB) VOL 3

/a character (with attributes) to a CURSES window and advance cursor
.. curs_addch(TI_LIB) VOL 3

/add a string of characters to a CURSES window and advance cursor
.. curs_addstr(TI_LIB) VOL 3

/character (with attributes) to a CURSES window and advance cursor
... curs_addwch(TI_LIB) VOL 3

/a string of wchar_t characters to a CURSES window and advance cursor
.. curs_addwstr(TI_LIB) VOL 3

/bkgdset, wbkgdset, bkgd, wbkgd CURSES window background/ curs_bkgd(TI_LIB) VOL 3

the character under the cursor in a CURSES window /character before
... curs_inswch(TI_LIB) VOL 3

curs_move: move, wmove move CURSES window cursor curs_move(TI_LIB) VOL 3

scroll, srcl, wscrl scroll a CURSES window curs_scroll: curs_scroll(TI_LIB) VOL 3

characters (and attributes) from a CURSES window /get a string of
... curs_inchstr(TI_LIB) VOL 3

character and its attributes from a CURSES window /get a wchar_t curs_inwch(TI_LIB) VOL 3

22 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 710

character under the cursor in a CURSES window /insert string before
... curs_instr(TI_LIB) VOL 3

delete and insert lines in a CURSES window /insertln, winsertln
... curs_deleteln(TI_LIB) VOL 3

delete character under cursor in a CURSES window /mvdelch, mvwdelch
.. curs_delch(TI_LIB) VOL 3

character and its attributes from a CURSES window /mvwinch get a curs_inch(TI_LIB) VOL 3

string of wchar_t characters from a CURSES window /mvwinnwstr get a
.. curs_inwstr(TI_LIB) VOL 3

get a string of characters from a CURSES window /mvwinstr, mvwinnstr
... curs_instr(TI_LIB) VOL 3

character under the cursor in a CURSES window /string before
.. curs_inswstr(TI_LIB) VOL 3

characters (and attributes) to a CURSES window /string of wchar_t
.. curs_addwchstr(TI_LIB) VOL 3

wclrtoeol clear all or part of a CURSES window /wclrtobot, clrtoeol,
... curs_clear(TI_LIB) VOL 3

redrawwin, wredrawln refresh CURSES windows and lines /doupdate,
... curs_refresh(TI_LIB) VOL 3

vwprintw print formatted output in CURSES windows /mvwprintw,
... curs_printw(TI_LIB) VOL 3

overlap and manipulate overlapped CURSES windows /overwrite, copywin
.. curs_overlay(TI_LIB) VOL 3

wcursyncup, wsyncdown create CURSES windows /wsyncup, syncok,
.. curs_window(TI_LIB) VOL 3

mvwgetch, ungetch get (or push/ curs_getch: getch, wgetch, mvgetch,
.. curs_getch(TI_LIB) VOL 3

mvgetstr, mvwgetstr, wgetnstr get/ curs_getstr: getstr, wgetstr, curs_getstr(TI_LIB) VOL 3

mvgetwch, mvwgetwch, ungetwch get/ curs_getwch: getwch, wgetwch,
.. curs_getwch(TI_LIB) VOL 3

wgetwstr, wgetnwstr, mvgetwstr,/ curs_getwstr: getwstr, getnwstr,
.. curs_getwstr(TI_LIB) VOL 3

getbegyx, getmaxyx get CURSES/ curs_getyx: getyx, getparyx, curs_getyx(TI_LIB) VOL 3

mvwinch get a character and its/ curs_inch: inch, winch, mvinch, curs_inch(TI_LIB) VOL 3

winchstr, winchnstr, mvinchstr,/ curs_inchstr: inchstr, inchnstr, curs_inchstr(TI_LIB) VOL 3

endwin, isendwin, set_term,/ curs_initscr: initscr, newterm, curs_initscr(TI_LIB) VOL 3

echo, noecho, halfdelay,/ curs_inopts: cbreak, nocbreak, curs_inopts(TI_LIB) VOL 3

mvwinsch insert a character before/ curs_insch: insch, winsch, mvinsch,
.. curs_insch(TI_LIB) VOL 3

winsstr, winsnstr, mvinsstr,/ curs_instr: insstr, insnstr, curs_instr(TI_LIB) VOL 3

winnstr, mvinstr, mvinnstr,/ curs_instr: instr, innstr, winstr, curs_instr(TI_LIB) VOL 3

mvinswch, mvwinswch insert a/ curs_inswch: inswch, winswch, curs_inswch(TI_LIB) VOL 3

winswstr, winsnwstr, mvinswstr,/ curs_inswstr: inswstr, insnwstr,
.. curs_inswstr(TI_LIB) VOL 3

mvwinwch get a wchar_t character/ curs_inwch: inwch, winwch, mvinwch,
.. curs_inwch(TI_LIB) VOL 3

winwchstr, winwchnstr, mvinwchstr,/ curs_inwchstr: inwchstr, inwchnstr,
.. curs_inwchstr(TI_LIB) VOL 3

winwstr, winnwstr, mvinwstr,/ curs_inwstr: inwstr, innwstr, curs_inwstr(TI_LIB) VOL 3

def_shell_mode, reset_prog_mode,/ curs_kernel: def_prog_mode, curs_kernel(TI_LIB) VOL 3

Permuted Index 23

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 711

window cursor curs_move: move, wmove move CURSES
... curs_move(TI_LIB) VOL 3

to a CURSES window and advance cursor /add a string of characters
.. curs_addstr(TI_LIB) VOL 3

/getbegyx, getmaxyx get CURSES cursor and window coordinates curs_getyx(TI_LIB) VOL 3

to a CURSES window and advance cursor /character (with attributes)
.. curs_addch(TI_LIB) VOL 3

to a CURSES window and advance cursor /character (with attributes)
... curs_addwch(TI_LIB) VOL 3

move, wmove move CURSES window cursor curs_move: curs_move(TI_LIB) VOL 3

/before the character under the cursor in a CURSES window curs_insch(TI_LIB) VOL 3

/before the character under the cursor in a CURSES window curs_inswch(TI_LIB) VOL 3

string before character under the cursor in a CURSES window /insert
... curs_instr(TI_LIB) VOL 3

mvwdelch delete character under cursor in a CURSES window /mvdelch,
.. curs_delch(TI_LIB) VOL 3

string before character under the cursor in a CURSES window /wchar_t
.. curs_inswstr(TI_LIB) VOL 3

to a CURSES window and advance cursor /of wchar_t characters curs_addwstr(TI_LIB) VOL 3

position FORMS window cursor /pos_form_cursor form_cursor(TI_LIB) VOL 3

correctly position a MENUS cursor /pos_menu_cursor menu_cursor(TI_LIB) VOL 3

immedok, leaveok, setscrreg,/ curs_outopts: clearok, idlok, idcok
.. curs_outopts(TI_LIB) VOL 3

copywin overlap and manipulate/ curs_overlay: overlay, overwrite,
.. curs_overlay(TI_LIB) VOL 3

pnoutrefresh, pechochar,/ curs_pad: newpad, subpad, prefresh,
.. curs_pad(TI_LIB) VOL 3

mvprintw, mvwprintw, vwprintw/ curs_printw: printw, wprintw, curs_printw(TI_LIB) VOL 3

wnoutrefresh, doupdate, redrawwin,/ curs_refresh: refresh, wrefresh, curs_refresh(TI_LIB) VOL 3

mvwscanw, vwscanw convert/ curs_scanw: scanw, wscanw, mvscanw,
.. curs_scanw(TI_LIB) VOL 3

scr_restore, scr_init, scr_set/ curs_scr_dump: scr_dump, curs_scr_dump(TI_LIB) VOL 3

scroll a CURSES window curs_scroll: scroll, srcl, wscrl curs_scroll(TI_LIB) VOL 3

/getsyx, setsyx, ripoffline, curs_set, napms low-level CURSES/
.. curs_kernel(TI_LIB) VOL 3

slk_refresh, slk_noutrefresh,/ curs_slk: slk_init, slk_set, curs_slk(TI_LIB) VOL 3

erasechar, has_ic, has_il,/ curs_termattrs: baudrate, curs_termattrs(TI_LIB) VOL 3

tgetnum, tgetstr, tgoto, tputs/ curs_termcap: tgetent, tgetflag,
... curs_termcap(TI_LIB) VOL 3

set_curterm, del_curterm,/ curs_terminfo: setupterm, setterm,
.. curs_terminfo(TI_LIB) VOL 3

untouchwin, wtouchln,/ curs_touch: touchwin, touchline, curs_touch(TI_LIB) VOL 3

use_env, putwin, getwin,/ curs_util: unctrl, keyname, filter, curs_util(TI_LIB) VOL 3

subwin, derwin, mvderwin, dupwin,/ curs_window: newwin, delwin, mvwin,
.. curs_window(TI_LIB) VOL 3

the user cuserid get character login name of
... cuserid(cuserid(BA_OS)) VOL 1

line of a file cut cut out selected fields of each cut(BU_CMD) VOL 2

line of a file cut cut out selected fields of each cut(BU_CMD) VOL 2

cross-reference cxref generate C program cxref(SD_CMD) VOL 3

cron clock daemon .. cron(AU_CMD) VOL 2

runacct run daily accounting ... runacct(AS_CMD) VOL 2

24 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 712

prof display profile data .. prof(SD_CMD) VOL 3

thr_getspecific get thread-specific data ... thr_getspecific(MT_LIB) VOL 1

thr_setspecific set thread-specific data ... thr_setspecific(MT_LIB) VOL 1

tell if FORMS field has off-screen data ahead or behind /data_behind
.. form_data(TI_LIB) VOL 3

time a command; report process data and system activity timex timex(AS_CMD) VOL 2

rpc rpc program number data base ... rpc(RS_ENV) VOL 3

a text string from a message data base gettxt retrieve gettxt(BU_CMD) VOL 2

for a text string in, message data bases /contents of, or search srchtxt(AS_CMD) VOL 2

acctdisk generate disk accounting data by user ID diskusg, diskusg(AS_CMD) VOL 2

t_rcvuderr receive a unit data error indication t_rcvuderr(BA_LIB) VOL 1

compress, uncompress, zcat compress data for storage, uncompress and/
... compress(BU_CMD) VOL 2

sputl, sgetl access long integer data in a machine-independent/ sputl(SD_LIB) VOL 3

thr_keydelete thread-specific data key ... thr_keydelete(MT_LIB) VOL 1

create thread-specific data key thr_keycreate thr_keycreate(MT_LIB) VOL 1

t_snd send normal or expedited data over a connection t_snd(BA_LIB) VOL 1

initiate restores of file systems, data partitions, or disks restore restore(AS_CMD) VOL 2

memory or unlock process, text, or data plock lock into .. plock(KE_OS) VOL 1

/library routines for external data representation stream creation
... xdr_create(RS_LIB) VOL 3

library routines for external data representation /xdr_setpos xdr_admin(RS_LIB) VOL 3

library routines for external data representation /xdr_void xdr_simple(RS_LIB) VOL 3

library routines for external data representation /xdr_wrapstring
.. xdr_complex(RS_LIB) VOL 3

stat: sys/stat.h data returned by stat function stat(BA_ENV) VOL 1

t_rcv receive normal or expedited data sent over a connection t_rcv(BA_LIB) VOL 1

t_alloc allocate a data structure ... t_alloc(BA_LIB) VOL 1

t_free free a data structure .. t_free(BA_LIB) VOL 1

/field_type, field_arg FORMS field data type validation form_field_validation(TI_LIB) VOL 3

nl_types: nl_types.h data types ... nl_types(BA_ENV) VOL 1

types: sys/types.h data types ... types(BA_ENV) VOL 1

t_rcvudata receive a data unit .. t_rcvudata(BA_LIB) VOL 1

t_sndudata send a data unit ... t_sndudata(BA_LIB) VOL 1

/panel_userptr associate application data with a PANELS panel panel_userptr(TI_LIB) VOL 3

field_userptr associate application data with FORMS /set_field_userptr,
... form_field_userptr(TI_LIB) VOL 3

form_userptr associate application data with FORMS /set_form_userptr,
... form_userptr(TI_LIB) VOL 3

/item_userptr associate application data with MENUS items menu_item_userptr(TI_LIB) VOL 3

menu_userptr associate application data with MENUS /set_menu_userptr,
.. menu_userptr(TI_LIB) VOL 3

FORMS field has/ form_data: data_ahead, data_behind tell if form_data(TI_LIB) VOL 3

netconfig network configuration database ... netconfig(RS_ENV) VOL 3

publickey public key database .. publickey(RS_ENV) VOL 3

change, delete users in the TFM database adminuser display, add,
... adminuser(ES_CMD) VOL 3

lists devices defined in the Device Database based on criteria getdev getdev(ES_CMD) VOL 3

on information stored in the Device Database (DDB) /to users based admalloc(ES_CMD) VOL 3

Trusted Facility Management (TFM) database /delete roles in the adminrole(ES_CMD) VOL 3

network configuration database /freenetconfigent getnetconfig(RS_LIB) VOL 3

a file to the software installation database installf add installf(AS_CMD) VOL 2

Permuted Index 25

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 713

sysdef system definition ... sysdef(AS_CMD) VOL 2

groupdel delete a group definition from the system groupdel(AS_CMD) VOL 2

groupadd add (create) a new group definition on the system groupadd(AS_CMD) VOL 2

groupmod modify a group definition on the system groupmod(AS_CMD) VOL 2

error error codes and condition definitions ... error(KE_ENV) VOL 1

errors error code and condition definitions ... errors(BA_ENV) VOL 1

lvlprt print system’s current level definitions .. lvlprt(ES_CMD) VOL 3

stddef: stddef.h standard definitions .. stddef(BA_ENV) VOL 1

stdlib: stdlib.h standard library definitions .. stdlib(BA_ENV) VOL 1

tar: tar.h extended tar definitions ... tar(BA_ENV) VOL 1

Services error codes and condition definitions errno Remote errno(RS_ENV) VOL 3

reset_prog_mode,/ curs_kernel: def_prog_mode, def_shell_mode,
.. curs_kernel(TI_LIB) VOL 3

display secure attention key defsak define, remove, change, or defsak(ES_CMD) VOL 3

curs_kernel: def_prog_mode, def_shell_mode, reset_prog_mode,/
.. curs_kernel(TI_LIB) VOL 3

filter, use_env, putwin, getwin, delay_output, flushinp/ /keyname, curs_util(TI_LIB) VOL 3

delete character under/ curs_delch: delch, wdelch, mvdelch, mvwdelch
.. curs_delch(TI_LIB) VOL 3

/setupterm, setterm, set_curterm, del_curterm, restartterm, tparm,/
.. curs_terminfo(TI_LIB) VOL 3

system groupdel delete a group definition from the
... groupdel(AS_CMD) VOL 2

system userdel delete a user’s login from the userdel(AS_CMD) VOL 2

/winsdelln, insertln, winsertln delete and insert lines in a CURSES/
... curs_deleteln(TI_LIB) VOL 3

/delch, wdelch, mvdelch, mvwdelch delete character under cursor in a/
.. curs_delch(TI_LIB) VOL 3

(MAC) levels lvldelete delete Mandatory Access Control
... lvldelete(ES_CMD) VOL 3

information/ filepriv set, delete, or display privilege filepriv(ES_CMD) VOL 3

adminrole display, add, change, delete roles in the Trusted/ adminrole(ES_CMD) VOL 3

adminuser display, add, change, delete users in the TFM database
... adminuser(ES_CMD) VOL 3

winsdelln,/ curs_deleteln: deleteln, wdeleteln, insdelln, curs_deleteln(TI_LIB) VOL 3

target server machine(s) pkgsend deliver packages to client or pkgsend(RA_CMD) VOL 3

basename, dirname deliver portions of path names basename(BU_CMD) VOL 2

tail deliver the last part of a file tail(BU_CMD) VOL 2

tracking information for delivered packages /display/delete
... pkgtrk(RA_CMD) VOL 3

pkgreq request delivery of a software package pkgreq(RA_CMD) VOL 3

panel_new: new_panel, del_panel create and destroy PANELS
... panel_new(TI_LIB) VOL 3

endwin, isendwin, set_term, delscreen CURSES screen/ /newterm,
.. curs_initscr(TI_LIB) VOL 3

delta make a delta (change) to an SCCS file delta(SD_CMD) VOL 3

rmdel remove a delta from an SCCS file rmdel(SD_CMD) VOL 3

SCCS file delta make a delta (change) to an delta(SD_CMD) VOL 3

mvderwin,/ curs_window: newwin, delwin, mvwin, subwin, derwin,
.. curs_window(TI_LIB) VOL 3

unload a loadable kernel module on demand KE_OS) moduload moduload(KE_OS) VOL 1

load a loadable kernel module on demand modload modload(KE_OS) VOL 1

Permuted Index 27

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 715

mesg permit or deny messages ... mesg(AU_CMD) VOL 2

/newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin, wsyncup,/
.. curs_window(TI_LIB) VOL 3

termcap description into a terminfo description captoinfo convert a captoinfo(TI_CMD) VOL 3

captoinfo convert a termcap description into a terminfo/ captoinfo(TI_CMD) VOL 3

get MENUS item name and description /item_description
... menu_item_name(TI_LIB) VOL 3

compare or print out terminfo descriptions infocmp infocmp(TI_CMD) VOL 3

close close a file descriptor ... close(BA_OS) VOL 1

dup duplicate an open file descriptor .. dup(BA_OS) VOL 1

isastream test a file descriptor .. isastream(BA_LIB) VOL 1

a name from a STREAMS-based file descriptor fdetach detach fdetach(BA_LIB) VOL 1

fattach attach a STREAMS-based file descriptor to an object in the file/ fattach(BA_LIB) VOL 1

barrier_destroy destroy a blocking barrier barrier_destroy(MT_LIB) VOL 1

cond_destroy destroy a condition variable cond_destroy(MT_LIB) VOL 1

mutex_destroy destroy a mutex mutex_destroy(MT_LIB) VOL 1

rwlock_destroy destroy a reader-writer lock
.. rwlock_destroy(MT_LIB) VOL 1

rmutex_destroy destroy a recursive mutex rmutex_destroy(MT_LIB) VOL 1

sema_destroy destroy a semaphore sema_destroy(MT_LIB) VOL 1

link_field, free_field, create and destroy FORMS fields /dup_field,
.. form_field_new(TI_LIB) VOL 3

new_form, free_form create and destroy FORMS form_new: form_new(TI_LIB) VOL 3

new_item, free_item create and destroy MENUS items menu_item_new:
... menu_item_new(TI_LIB) VOL 3

new_menu, free_menu create and destroy MENUS menu_new: menu_new(TI_LIB) VOL 3

new_panel, del_panel create and destroy PANELS panel_new: panel_new(TI_LIB) VOL 3

file descriptor fdetach detach a name from a STREAMS-based
.. fdetach(BA_LIB) VOL 1

sigaction detailed signal management sigaction(BA_OS) VOL 1

access determine accessibility of a file access(BA_OS) VOL 1

of two levels lvldom determine domination relationship lvldom(ES_LIB) VOL 3

lvlequal determine equality of two levels lvlequal(ES_LIB) VOL 3

fstyp determine file system type fstyp(AS_CMD) VOL 2

file determine file type .. file(BU_CMD) VOL 2

positions for a wide/ wcswidth determine the number of column wcswidth(BA_LIB) VOL 1

positions for a wide/ wcwidth determine the number of column wcwidth(BA_LIB) VOL 1

attributes of a device devalloc get and set the security devalloc(ES_LIB) VOL 3

devattr lists device attributes devattr(ES_CMD) VOL 3

interface devcon: console system console devcon(BA_DEV) VOL 1

sets its security attributes to/ devdealloc deallocates a device and
... devdealloc(ES_LIB) VOL 3

ioctl control device ... ioctl(BA_OS) VOL 1

devdealloc deallocates a device and sets its security/ devdealloc(ES_LIB) VOL 3

devattr lists device attributes .. devattr(ES_CMD) VOL 3

putdev creates and updates the device database .. putdev(ES_CMD) VOL 3

getdev lists devices defined in the Device Database based on criteria getdev(ES_CMD) VOL 3

based on information stored in the Device Database (DDB) /to users
.. admalloc(ES_CMD) VOL 3

set the security attributes of a device devalloc get and devalloc(ES_LIB) VOL 3

current security attributes of a device devstat gets the devstat(ES_CMD) VOL 3

access to the slave pseudo-terminal device grantpt grant grantpt(BA_LIB) VOL 1

28 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 716

pkgparam display package parameter values
... pkgparam(AS_CMD) VOL 2

filepriv set, delete, or display privilege information/ filepriv(ES_CMD) VOL 3

prof display profile data .. prof(SD_CMD) VOL 3

audit trail auditrpt display recorded information from
... auditrpt(AT_CMD) VOL 3

defsak define, remove, change, or display secure attention key defsak(ES_CMD) VOL 3

information pkginfo display software package pkginfo(AS_CMD) VOL 2

table bkreg change or display the contents of a backup bkreg(AS_CMD) VOL 2

at specified times atq display the queue of jobs to be run atq(AU_CMD) VOL 2

operations bkstatus display the status of backup bkstatus(AS_CMD) VOL 2

for delivered packages pkgtrk display/delete tracking information
... pkgtrk(RA_CMD) VOL 3

defadm display/modify default values defadm(BU_CMD) VOL 2

hypot Euclidean distance function .. hypot(BA_LIB) VOL 1

broadcast of packages distauth authorize subscription and
.. distauth(RA_CMD) VOL 3

notification entries to software/ distconf add machine and distconf(RA_CMD) VOL 3

/seed48, lcong48 generate uniformly distributed pseudo-random numbers
.. drand48(BA_LIB) VOL 1

on the contents of the software distribution administrative/ /report
... distrpt(RA_CMD) VOL 3

/notification entries to software distribution configuration database
... distconf(RA_CMD) VOL 3

the software distribution/ distrpt report on the contents of distrpt(RA_CMD) VOL 3

remainder div, ldiv compute the quotient and div(BA_LIB) VOL 1

dlclose close a shared object dlclose(BA_OS) VOL 1

dlerror get diagnostic information dlerror(BA_OS) VOL 1

dlopen open a shared object dlopen(BA_OS) VOL 1

in shared object dlsym get the address of a symbol dlsym(BA_OS) VOL 1

/acctwtmp, chargefee, ckpacct, dodisk, lastlogin, monacct,/ acct(AS_CMD) VOL 2

whodo who is doing what ... whodo(AS_CMD) VOL 2

levels lvldom determine domination relationship of two lvldom(ES_LIB) VOL 3

strtold, atof convert string to double-precision number strtod, strtod(BA_LIB) VOL 1

/refresh, wrefresh, wnoutrefresh, doupdate, redrawwin, wredrawln/
... curs_refresh(TI_LIB) VOL 3

mrand48, jrand48, srand48, seed48,/ drand48, erand48, lrand48, nrand48,
.. drand48(BA_LIB) VOL 1

du estimate file space usage du(BU_CMD) VOL 2

od octal dump ... od(AU_CMD) VOL 2

zdump time zone dumper ... zdump(AS_CMD) VOL 2

descriptor dup duplicate an open file dup(BA_OS) VOL 1

create/ form_field_new: new_field, dup_field, link_field, free_field,
.. form_field_new(TI_LIB) VOL 3

dup duplicate an open file descriptor dup(BA_OS) VOL 1

mvwin, subwin, derwin, mvderwin, dupwin, wsyncup, syncok,/ /delwin,
.. curs_window(TI_LIB) VOL 3

form_field_info: field_info, dynamic_field_info get FORMS field/
... form_field_info(TI_LIB) VOL 3

echo echo arguments ... echo(BU_CMD) VOL 2

echo echo arguments echo(BU_CMD) VOL 2

Permuted Index 31

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 719

curs_inopts: cbreak, nocbreak, echo, noecho, halfdelay, intrflush,/
.. curs_inopts(TI_LIB) VOL 3

/addch, waddch, mvaddch, mvwaddch, echochar, wechochar add a character/
.. curs_addch(TI_LIB) VOL 3

/waddwch, mvaddwch, mvwaddwch, echowchar, wechowchar add a wchar_t/
... curs_addwch(TI_LIB) VOL 3

ed, red text editor ... ed(BU_CMD) VOL 2

sact print current SCCS file editing activity .. sact(SD_CMD) VOL 3

ed, red text editor .. ed(BU_CMD) VOL 2

ex text editor .. ex(AU_CMD) VOL 2

sed stream editor ... sed(BU_CMD) VOL 2

vi screen-oriented (visual) display editor ... vi(AU_CMD) VOL 2

ld link editor for object files .. ld(SD_CMD) VOL 3

effective user, real group, and effective group IDs /get real user, getuid(BA_OS) VOL 1

/getgid, getegid get real user, effective user, real group, and/ getuid(BA_OS) VOL 1

Extension on the Base System effects effects of the Kernel effects(KE_ENV) VOL 1

Services Extension on other/ effects effects of the Remote effects(RS_ENV) VOL 3

the Base System effects effects of the Kernel Extension on effects(KE_ENV) VOL 1

Extension on other/ effects effects of the Remote Services effects(RS_ENV) VOL 3

/tgoto, tputs CURSES interfaces (emulated) to the termcap library
... curs_termcap(TI_LIB) VOL 3

ptem STREAMS Pseudo Terminal Emulation module .. ptem(BA_DEV) VOL 1

auditon enable auditing .. auditon(AT_CMD) VOL 3

accounting acct enable or disable process acct(KE_OS) VOL 1

ASCII/ uuencode, uudecode encode a binary file, or decode its
... uuencode(AU_CMD) VOL 2

setkey, encrypt generate string encoding crypt, .. crypt(BA_LIB) VOL 1

crypt, setkey, encrypt generate string encoding crypt(BA_LIB) VOL 1

chkey change your encryption key ... chkey(RS_CMD) VOL 3

/getgrgid, getgrnam , setgrent, endgrent, fgetgrent get group file/ getgrent(BA_LIB) VOL 1

getnetconfig, setnetconfig, endnetconfig, getnetconfigent,/
.. getnetconfig(RS_LIB) VOL 3

getnetpath, setnetpath, endnetpath manipulate NETPATH
... getnetpath(RS_LIB) VOL 3

t_close close a transport endpoint ... t_close(BA_LIB) VOL 1

t_open establish a transport endpoint ... t_open(BA_LIB) VOL 1

t_unbind disable a transport endpoint ... t_unbind(BA_LIB) VOL 1

bind an address to a transport endpoint t_bind ... t_bind(BA_LIB) VOL 1

manage options for a transport endpoint t_optmgmt t_optmgmt(BA_LIB) VOL 1

/getpwuid, getpwnam, setpwent, endpwent, fgetpwent manipulate/
.. getpwent(BA_LIB) VOL 1

/getutxline, pututxline, setutxent, endutxent, utmpxname, getutmp,/ getutx(SD_LIB) VOL 3

curs_initscr: initscr, newterm, endwin, isendwin, set_term,/ curs_initscr(TI_LIB) VOL 3

pkgproto generate prototype file entries ... pkgproto(AS_CMD) VOL 2

dirent.h format of directory entries dirent: ... dirent(BA_ENV) VOL 1

nlist get entries from name list ... nlist(SD_LIB) VOL 3

ACL, return the number of ACL entries /get or set an IPC object’s aclipc(ES_LIB) VOL 3

/add machine and notification entries to software distribution/ distconf(RA_CMD) VOL 3

putpwent write password file entry .. putpwent(SD_LIB) VOL 3

unlink remove directory entry ... unlink(BA_OS) VOL 1

endgrent, fgetgrent get group file entry /getgrnam , setgrent, getgrent(BA_LIB) VOL 1

updwtmp, updwtmpx access utmpx file entry /getutmp, getutmpx, getutx(SD_LIB) VOL 3

32 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 720

fgetpwent manipulate password file entry /setpwent, endpwent, getpwent(BA_LIB) VOL 1

command execution env, printenv set environment for env(SD_CMD) VOL 3

putenv change or add value to environment .. putenv(BA_LIB) VOL 1

remadmin control remote operation environment .. remadmin(RA_CMD) VOL 3

setjmp: setjmp.h stack environment declarations setjmp(BA_ENV) VOL 1

env, printenv set environment for command execution env(SD_CMD) VOL 3

getenv return value for environment name ... getenv(BA_LIB) VOL 1

/termattrs, termname CURSES environment query routines curs_termattrs(TI_LIB) VOL 3

envvar environment variables envvar(BA_ENV) VOL 1

envvar environment variables envvar(BA_ENV) VOL 1

lvlequal determine equality of two levels lvlequal(ES_LIB) VOL 3

jrand48, srand48, seed48,/ drand48, erand48, lrand48, nrand48, mrand48,
.. drand48(BA_LIB) VOL 1

/post_form, unpost_form write or erase FORMS from associated/ form_post(TI_LIB) VOL 3

/post_menu, unpost_menu write or erase MENUS from associated/ menu_post(TI_LIB) VOL 3

clrtobot, wclrtobot,/ curs_clear: erase, werase, clear, wclear, curs_clear(TI_LIB) VOL 3

curs_termattrs: baudrate, erasechar, has_ic, has_il,/ curs_termattrs(TI_LIB) VOL 3

complementary error function erf, erfc error function and erf(BA_LIB) VOL 1

complementary error function erf, erfc error function and .. erf(BA_LIB) VOL 1

and condition definitions errno Remote Services error codes errno(RS_ENV) VOL 3

/in the standard format on standard error and the system console fmtmsg(BA_LIB) VOL 1

/in the standard format on standard error and the system console fmtmsg(BU_CMD) VOL 2

definitions errors error code and condition errors(BA_ENV) VOL 1

definitions errno Remote Services error codes and condition errno(RS_ENV) VOL 3

definitions error error codes and condition error(KE_ENV) VOL 1

definitions error error codes and condition error(KE_ENV) VOL 1

error function erf, erfc error function and complementary erf(BA_LIB) VOL 1

error function and complementary error function erf, erfc ... erf(BA_LIB) VOL 1

t_rcvuderr receive a unit data error indication .. t_rcvuderr(BA_LIB) VOL 1

t_error write an error message .. t_error(BA_LIB) VOL 1

and pass/ lfmt lfmt, vlfmt; display error message in standard format lfmt(BA_LIB) VOL 1

and pass to logging/ lfmt display error message in standard format lfmt(BU_CMD) VOL 2

pfmt, vpfmt display error message in standard format pfmt(BA_LIB) VOL 1

pfmt display error message in standard format pfmt(BU_CMD) VOL 2

strerror get error message string strerror(BA_LIB) VOL 1

t_strerror get error message string t_strerror(BA_LIB) VOL 1

perror system error messages ... perror(BA_LIB) VOL 1

aio_error retrieve asynchronous I/O error status .. aio_error(MT_LIB) VOL 1

definitions errors error code and condition errors(BA_ENV) VOL 1

server side remote procedure call errors /library routines for rpc_svc_err(RS_LIB) VOL 3

hashcheck, compress find spelling errors spell, hashmake, spellin, spell(BU_CMD) VOL 2

transport user t_connect establish a connection with another
.. t_connect(BA_LIB) VOL 1

t_open establish a transport endpoint t_open(BA_LIB) VOL 1

setmnt establish mount table setmnt(AS_CMD) VOL 2

du estimate file space usage du(BU_CMD) VOL 2

hypot Euclidean distance function hypot(BA_LIB) VOL 1

expr evaluate arguments as an expression
... expr(BU_CMD) VOL 2

test condition evaluation command .. test(BU_CMD) VOL 2

t_look check for asynchronous event .. t_look(BA_LIB) VOL 1

auditlog display or set audit event log file attributes auditlog(AT_CMD) VOL 3

Permuted Index 33

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 721

auditevt get or set auditable events ... auditevt(AT_LIB) VOL 3

create a tags file for use with ex and vi ctags .. ctags(BU_CMD) VOL 2

ex text editor ... ex(AU_CMD) VOL 2

sigprocmask change or examine signal mask sigprocmask(BA_OS) VOL 1

and pending sigpending examine signals that are blocked
.. sigpending(BA_OS) VOL 1

thr_sigsetmask change or examine the signal mask of a thread
... thr_sigsetmask(MT_LIB) VOL 1

bkexcept change or display an exception list for incremental/ bkexcept(AS_CMD) VOL 2

execlp, execvp execute a file exec: execl, execv, execle, execve, exec(BA_OS) VOL 1

execlp, execvp execute a/ exec: execl, execv, execle, execve, exec(BA_OS) VOL 1

execute a file exec: execl, execv, execle, execve, execlp, execvp exec(BA_OS) VOL 1

exec: execl, execv, execle, execve, execlp, execvp execute a file exec(BA_OS) VOL 1

mode mldmode change MLD mode or execute a command in a given MLD
... mldmode(ES_CMD) VOL 3

execle, execve, execlp, execvp execute a file exec: execl, execv, exec(BA_OS) VOL 1

construct argument list(s) and execute command xargs xargs(SD_CMD) VOL 3

at, batch execute commands at a later time at(AU_CMD) VOL 2

uux remote command execution ... uux(AU_CMD) VOL 2

set environment for command execution env, printenv env(SD_CMD) VOL 3

sleep suspend execution for an interval sleep(BU_CMD) VOL 2

sleep suspend execution for interval sleep(sleep(BA_OS)) VOL 1

thr_continue continue the execution of a suspended thread
.. thr_continue(MT_LIB) VOL 1

thr_suspend suspend the execution of a thread thr_suspend(MT_LIB) VOL 1

thr_exit terminate execution of the calling thread thr_exit(MT_LIB) VOL 1

monitor prepare execution profile ... monitor(SD_LIB) VOL 3

profil execution time profile .. profil(KE_OS) VOL 1

execvp execute a file exec: execl, execv, execle, execve, execlp, exec(BA_OS) VOL 1

file exec: execl, execv, execle, execve, execlp, execvp execute a exec(BA_OS) VOL 1

execv, execle, execve, execlp, execvp execute a file exec: execl, exec(BA_OS) VOL 1

calls link, unlink exercise link and unlink system link(AS_CMD) VOL 2

create a new file or rewrite an existing one creat ... creat(BA_OS) VOL 1

exit, _exit terminate process exit(BA_OS) VOL 1

exit, _exit terminate process exit(KE_OS) VOL 1

exit, _exit terminate process ... exit(BA_OS) VOL 1

exit, _exit terminate process ... exit(KE_OS) VOL 1

exponential, logarithm, power,/ exp, log, log10, pow, sqrt, cbrt exp(BA_LIB) VOL 1

mgroup expand aliases to machine names mgroup(RA_LIB) VOL 3

pack, pcat, unpack compress and expand files .. pack(BU_CMD) VOL 2

wordexp, wordfree perform word expansions ... wordexp(BA_LIB) VOL 1

t_snd send normal or expedited data over a connection t_snd(BA_LIB) VOL 1

connection t_rcv receive normal or expedited data sent over a t_rcv(BA_LIB) VOL 1

exp, log, log10, pow, sqrt, cbrt exponential, logarithm, power, root/ exp(BA_LIB) VOL 1

expression expr evaluate arguments as an expr(BU_CMD) VOL 2

expr evaluate arguments as an expression .. expr(BU_CMD) VOL 2

/compile, step, advance regular expression compile and match/ regexp(BA_LIB) VOL 1

/regular expression matching regcomp(BA_LIB) VOL 1

termiox extended general terminal interface
... termiox(BA_DEV) VOL 1

tar: tar.h extended tar definitions tar(BA_ENV) VOL 1

wchar extended wide character utilities wchar(BA_ENV) VOL 1

34 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 722

/effects of the Remote Services Extension on other extensions effects(RS_ENV) VOL 3

effects effects of the Kernel Extension on the Base System effects(KE_ENV) VOL 1

Remote Services Extension on other extensions effects effects of the effects(RS_ENV) VOL 3

/xdr_setpos library routines for external data representation xdr_admin(RS_LIB) VOL 3

/xdr_wrapstring library routines for external data representation xdr_complex(RS_LIB) VOL 3

/xdr_void library routines for external data representation xdr_simple(RS_LIB) VOL 3

creation /library routines for external data representation stream
... xdr_create(RS_LIB) VOL 3

floor, ceil, fmod, remainder, fabs floor, ceiling, remainder,/ floor(BA_LIB) VOL 1

report inter-process communication facilities status ipcs ... ipcs(AS_CMD) VOL 2

msgalert message alerting facility .. msgalert(AS_CMD) VOL 2

msgrpt log reporting facility ... msgrpt(AS_CMD) VOL 2

sys/sem.h semaphore facility .. sys/sem.h(KE_ENV) VOL 1

sys/shm.h shared memory facility .. sys/shm.h(KE_ENV) VOL 1

/change, delete roles in the Trusted Facility Management (TFM) database
.. adminrole(ES_CMD) VOL 3

true, false provide truth values true(BU_CMD) VOL 2

data in a machine-independent fashion /sgetl access long integer sputl(SD_LIB) VOL 3

descriptor to an object in the/ fattach attach a STREAMS-based file
... fattach(BA_LIB) VOL 1

chdir, fchdir change working directory chdir(BA_OS) VOL 1

chmod, fchmod change mode of file chmod(BA_OS) VOL 1

file chown, lchown, fchown change owner and group of a
.. chown(BA_OS) VOL 1

stdio-stream fclose, fflush close or flush a fclose(BA_OS) VOL 1

fcntl: fcntl.h file control options fcntl(BA_ENV) VOL 1

fcntl file control .. fcntl(BA_OS) VOL 1

fcntl: fcntl.h file control options fcntl(BA_ENV) VOL 1

STREAMS-based file descriptor fdetach detach a name from a fdetach(BA_LIB) VOL 1

fopen, freopen, fdopen open a stdio-stream fopen(fopen(BA_OS)) VOL 1

status inquiries ferror, feof, clearerr, fileno stdio-stream
... ferror(ferror(BA_OS)) VOL 1

stdio-stream status inquiries ferror, feof, clearerr, fileno ferror(ferror(BA_OS)) VOL 1

head display first few lines of files .. head(BU_CMD) VOL 2

stdio-stream fclose, fflush close or flush a .. fclose(BA_OS) VOL 1

from a stream getc, getchar, fgetc, getw get character or word getc(BA_LIB) VOL 1

/getgrnam , setgrent, endgrent, fgetgrent get group file entry getgrent(BA_LIB) VOL 1

in a stdio-stream fsetpos, fgetpos reposition a file pointer
.. fsetpos(fsetpos(BA_OS)) VOL 1

/getpwnam, setpwent, endpwent, fgetpwent manipulate password file/
.. getpwent(BA_LIB) VOL 1

stdio-stream gets, fgets get a string from a gets(BA_LIB) VOL 1

a stream getwc, getwchar, fgetwc get next wide character from getwc(BA_LIB) VOL 1

stream fgetws get a wchar_t string from a fgetws(BA_LIB) VOL 1

set_max_field set and get FORMS field attributes /field_status,
... form_field_buffer(TI_LIB) VOL 3

dynamic_field_info get FORMS field characteristics /field_info,
... form_field_info(TI_LIB) VOL 3

set FORMS current page and field /current_field, field_index form_page(TI_LIB) VOL 3

/field_type, field_arg FORMS field data type validation
.. form_field_validation(TI_LIB) VOL 3

behind /data_behind tell if FORMS field has off-screen data ahead or form_data(TI_LIB) VOL 3

Permuted Index 35

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 723

passwd password file ... passwd(BA_ENV) VOL 1

prs print an SCCS file .. prs(SD_CMD) VOL 3

read, readv read from file .. read(BA_OS) VOL 1

remove remove file ... remove(remove(BA_OS)) VOL 1

rename change the name of a file ... rename(BA_OS) VOL 1

rmdel remove a delta from an SCCS file .. rmdel(SD_CMD) VOL 3

symlink make symbolic link to a file .. symlink(BA_OS) VOL 1

tail deliver the last part of a file .. tail(BU_CMD) VOL 2

tmpfile create a temporary file ... tmpfile(BA_LIB) VOL 1

uniq report repeated lines in a file .. uniq(BU_CMD) VOL 2

val validate SCCS file ... val(SD_CMD) VOL 3

write, writev write on a file ... write(BA_OS) VOL 1

utime set file access and modification times utime(BA_OS) VOL 1

/report the status of posted user file and directory restore requests
.. ursstatus(AS_CMD) VOL 2

tar file archiver ... tar(AU_CMD) VOL 2

cpio copy file archives in and out cpio(BU_CMD) VOL 2

tcpio trusted cpio for copying file archives in and out tcpio(ES_CMD) VOL 3

auditlog get or set audit log file attributes ... auditlog(AT_LIB) VOL 3

display or set audit event log file attributes auditlog auditlog(AT_CMD) VOL 3

pwck, grpck password/group file checkers .. pwck(AS_CMD) VOL 2

change the group ownership of a file chgrp .. chgrp(AU_CMD) VOL 2

fchown change owner and group of a file chown, lchown, .. chown(BA_OS) VOL 1

diff differential file comparator .. diff(BU_CMD) VOL 2

diff3 3-way differential file comparison .. diff3(BU_CMD) VOL 2

fcntl file control ... fcntl(BA_OS) VOL 1

fcntl: fcntl.h file control options ... fcntl(BA_ENV) VOL 1

uupick public system-to-system file copy uuto, ... uuto(AU_CMD) VOL 2

umask set and get file creation mask ... umask(BA_OS) VOL 1

selected fields of each line of a file cut cut out ... cut(BU_CMD) VOL 2

source-level, interactive, object file debugger debug debug(SD_CMD) VOL 3

information associated with a file /delete, or display privilege filepriv(ES_CMD) VOL 3

make a delta (change) to an SCCS file delta .. delta(SD_CMD) VOL 3

close close a file descriptor ... close(BA_OS) VOL 1

dup duplicate an open file descriptor .. dup(BA_OS) VOL 1

isastream test a file descriptor ... isastream(BA_LIB) VOL 1

detach a name from a STREAMS-based file descriptor fdetach fdetach(BA_LIB) VOL 1

fattach attach a STREAMS-based file descriptor to an object in the/ fattach(BA_LIB) VOL 1

file determine file type file(BU_CMD) VOL 2

/get or set the level of a regular file, directory, named pipe or/ lvlfile(ES_LIB) VOL 3

sact print current SCCS file editing activity .. sact(SD_CMD) VOL 3

pkgproto generate prototype file entries ... pkgproto(AS_CMD) VOL 2

putpwent write password file entry .. putpwent(SD_LIB) VOL 3

endgrent, fgetgrent get group file entry /getgrnam , setgrent, getgrent(BA_LIB) VOL 1

updwtmp, updwtmpx access utmpx file entry /getutmp, getutmpx, getutx(SD_LIB) VOL 3

fgetpwent manipulate password file entry /setpwent, endpwent, getpwent(BA_LIB) VOL 1

execve, execlp, execvp execute a file exec: execl, execv, execle, exec(BA_OS) VOL 1

the privileges associated with a file filepriv set, get, or count filepriv(ES_LIB) VOL 3

grant thread ownership of a file flockfile .. flockfile(MT_LIB) VOL 1

grep search a file for a pattern ... grep(BU_CMD) VOL 2

auditfltr convert audit log file for inter-machine portability auditfltr(AT_CMD) VOL 3

ctags create a tags file for use with ex and vi ctags(BU_CMD) VOL 2

Permuted Index 37

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 725

database removef remove a file from the installation software
... removef(AS_CMD) VOL 2

grant thread ownership of a file ftrylockfile ftrylockfile(MT_LIB) VOL 1

relinquish thread ownership of a file funlockfile .. funlockfile(MT_LIB) VOL 1

split split a file into pieces .. split(BU_CMD) VOL 2

files or subsequent lines of one file /merge same lines of several paste(BU_CMD) VOL 2

directory, or a special or ordinary file mknod make a ... mknod(BA_OS) VOL 1

chmod change file mode ... chmod(BU_CMD) VOL 2

page browse or page through a text file more, .. more(BU_CMD) VOL 2

named pipe or device special file /of a regular file, directory, lvlfile(ES_LIB) VOL 3

uuencode, uudecode encode a binary file, or decode its ASCII/ uuencode(AU_CMD) VOL 2

fuser identify processes using a file or file structure ... fuser(AS_CMD) VOL 2

discretionary information for a file or files getacl display getacl(ES_CMD) VOL 3

the Access Control List (ACL) for a file or files setacl modify setacl(ES_CMD) VOL 3

creat create a new file or rewrite an existing one creat(BA_OS) VOL 1

chown change file owner ... chown(AU_CMD) VOL 2

pg file perusal filter for CRTs pg(BU_CMD) VOL 2

lseek move read/write file pointer .. lseek(BA_OS) VOL 1

fsetpos, fgetpos reposition a file pointer in a stdio-stream
.. fsetpos(fsetpos(BA_OS)) VOL 1

Transaction Operation Script (TOS) file roitosparse parse a roitosparse(RA_LIB) VOL 3

(write) a CURSES screen from (to) a file /scr_init, scr_set read curs_scr_dump(TI_LIB) VOL 3

du estimate file space usage ... du(BU_CMD) VOL 2

stat, lstat, fstat get file status ... stat(BA_OS) VOL 1

identify processes using a file or file structure fuser ... fuser(AS_CMD) VOL 2

print checksum and block count of a file sum .. sum(BU_CMD) VOL 2

mkfs construct a file system .. mkfs(AS_CMD) VOL 2

mount mount a file system ... mount(BA_OS) VOL 1

umount unmount a file system ... umount(BA_OS) VOL 1

fsdb file system debugger fsdb(AS_CMD) VOL 2

structure file system directory tree file(BA_ENV) VOL 1

statvfs, fstatvfs get file system information statvfs(BA_OS) VOL 1

set the level ceiling of a mounted file system lvlvfs get or lvlvfs(ES_LIB) VOL 3

/file descriptor to an object in the file system name space fattach(BA_LIB) VOL 1

ustat get file system statistics .. ustat(BA_OS) VOL 1

fstyp determine file system type ... fstyp(AS_CMD) VOL 2

fsck check and repair file systems .. fsck(AS_CMD) VOL 2

mount, umount mount or unmount file systems and remote resources mount(AS_CMD) VOL 2

disks restore initiate restores of file systems, data partitions, or restore(AS_CMD) VOL 2

volcopy, labelit copy file systems with label checking volcopy(AS_CMD) VOL 2

number information from an object file /table, debugging and line strip(SD_CMD) VOL 3

create a name for a temporary file tmpnam, tempnam tmpnam(BA_LIB) VOL 1

database installf add a file to the software installation installf(AS_CMD) VOL 2

access and modification times of a file touch update .. touch(BU_CMD) VOL 2

ftw, nftw walk a file tree .. ftw(BA_LIB) VOL 1

ftw: ftw.h file tree traversal ... ftw(BA_ENV) VOL 1

file determine file type ... file(BU_CMD) VOL 2

undo a previous get of an SCCS file unget ... unget(SD_CMD) VOL 3

umask set file-creation mode mask umask(BU_CMD) VOL 2

mktemp make a unique filename ... mktemp(BA_LIB) VOL 1

ctermid generate filename for terminal ctermid(BA_LIB) VOL 1

fnmatch match filename or pattern fnmatch(BA_LIB) VOL 1

38 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 726

a file flockfile grant thread ownership of
.. flockfile(MT_LIB) VOL 1

floor, ceiling, remainder,/ floor, ceil, fmod, remainder, fabs floor(BA_LIB) VOL 1

floor, ceil, fmod, remainder, fabs floor, ceiling, remainder, absolute/ floor(BA_LIB) VOL 1

cflow generate C flowgraph ... cflow(SD_CMD) VOL 3

fclose, fflush close or flush a stdio-stream ... fclose(BA_OS) VOL 1

sync flush system buffers .. sync(AS_CMD) VOL 2

/putwin, getwin, delay_output, flushinp miscellaneous CURSES/ curs_util(TI_LIB) VOL 3

ceiling, remainder,/ floor, ceil, fmod, remainder, fabs floor, floor(BA_LIB) VOL 1

fmt simple text formatters fmt(BU_CMD) VOL 2

standard format on standard error/ fmtmsg display a message in the fmtmsg(BA_LIB) VOL 1

standard format on standard error/ fmtmsg display a message in the fmtmsg(BU_CMD) VOL 2

fnmatch match filename or pattern fnmatch(BA_LIB) VOL 1

stdio-stream fopen, freopen, fdopen open a fopen(fopen(BA_OS)) VOL 1

/set baud rate, get and set terminal foreground process group ID, get/ termios(BA_OS) VOL 1

fork create a new process fork(BA_OS) VOL 1

pkgtrans translate package format .. pkgtrans(AS_CMD) VOL 2

/display error message in standard format and pass to logging and/ lfmt(BA_LIB) VOL 1

/display error message in standard format and pass to logging and/ lfmt(BU_CMD) VOL 2

getdate convert user format date and time getdate(BA_LIB) VOL 1

level from text format to internal format lvlin translate a lvlin(ES_LIB) VOL 3

level from internal format to text format lvlout translate a lvlout(ES_LIB) VOL 3

dirent: dirent.h format of directory entries dirent(BA_ENV) VOL 1

/display a message in the standard format on standard error and the/ fmtmsg(BA_LIB) VOL 1

/display a message in the standard format on standard error and the/
.. fmtmsg(BU_CMD) VOL 2

display error message in standard format pfmt .. pfmt(BU_CMD) VOL 2

display error message in standard format pfmt, vpfmt .. pfmt(BA_LIB) VOL 1

FORMS /set_field_just, field_just format the general appearance of
.. form_field_just(TI_LIB) VOL 3

/set_field_pad, field_pad format the general display/
... form_field_attributes(TI_LIB) VOL 3

lvlin translate a level from text format to internal format lvlin(ES_LIB) VOL 3

translate a level from internal format to text format lvlout lvlout(ES_LIB) VOL 3

fscanf, scanf, sscanf convert formatted input .. fscanf(BA_LIB) VOL 1

/mvscanw, mvwscanw, vwscanw convert formatted input from a CURSES widow
.. curs_scanw(TI_LIB) VOL 3

vscanf, vfscanf, vsscanf convert formatted input of a variable/ vscanf(BA_LIB) VOL 1

gencat generate a formatted message catalogue gencat(AU_CMD) VOL 2

printf, snprintf, sprintf print formatted output fprintf, fprintf(BA_LIB) VOL 1

/mvprintw, mvwprintw, vwprintw print formatted output in CURSES windows
... curs_printw(TI_LIB) VOL 3

/vfprintf, vsprintf, vsnprintf print formatted output of a variable/ vprintf(BA_LIB) VOL 1

vfwscanf, vwscanf, vswscanf convert formatted wide character input of a/
... vfwscanf(BA_LIB) VOL 1

a/ /vwprintf, vswprintf print formatted wide character output of
.. vfwprintf(BA_LIB) VOL 1

fwprintf, wprintf, swprintf print formatted wide/multibyte character/
.. fwprintf(BA_LIB) VOL 1

fwscanf, wscanf, swscanf convert formatted wide/multibyte character/
... fwscanf(BA_LIB) VOL 1

fmt simple text formatters ... fmt(BU_CMD) VOL 2

40 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 728

move_field connect fields to FORMS /form_fields, field_count,
.. form_field(TI_LIB) VOL 3

free_form create and destroy FORMS form_new: new_form, form_new(TI_LIB) VOL 3

associate application data with FORMS /form_userptr form_userptr(TI_LIB) VOL 3

/unpost_form write or erase FORMS from associated subwindows
.. form_post(TI_LIB) VOL 3

/form_opts_off, form_opts FORMS option routines form_opts(TI_LIB) VOL 3

set_new_page, new_page FORMS pagination form_new_page:
.. form_new_page(TI_LIB) VOL 3

format the general appearance of FORMS /set_field_just, field_just
.. form_field_just(TI_LIB) VOL 3

command processor for the FORMS subsystem form_driver form_driver(TI_LIB) VOL 3

/set_form_sub, form_sub, scale_form FORMS window and subwindow/
... form_win(TI_LIB) VOL 3

pos_form_cursor position FORMS window cursor form_cursor:
... form_cursor(TI_LIB) VOL 3

and/ /form_win, set_form_sub, form_sub, scale_form FORMS window
... form_win(TI_LIB) VOL 3

/form_init, set_form_term, form_term, set_field_init,/ form_hook(TI_LIB) VOL 3

form_userptr: set_form_userptr, form_userptr associate application/
... form_userptr(TI_LIB) VOL 3

form_userptr associate application/ form_userptr: set_form_userptr,
... form_userptr(TI_LIB) VOL 3

scale_form/ form_win: set_form_win, form_win, set_form_sub, form_sub,
... form_win(TI_LIB) VOL 3

set_form_sub, form_sub, scale_form/ form_win: set_form_win, form_win,
... form_win(TI_LIB) VOL 3

configurable pathname variables fpathconf, pathconf get fpathconf(BA_OS) VOL 1

print formatted output fprintf, printf, snprintf, sprintf fprintf(BA_LIB) VOL 1

on a stream putc, putchar, fputc, putw put character or word putc(BA_LIB) VOL 1

stdio-stream puts, fputs put a string on a .. puts(BA_LIB) VOL 1

stream putwc, putwchar, fputwc put wide character on a putwc(BA_LIB) VOL 1

stream fputws put a wchar_t string on a fputws(BA_LIB) VOL 1

fread, fwrite binary input/output fread(BA_OS) VOL 1

t_free free a data structure ... t_free(BA_LIB) VOL 1

df report number of free disk blocks and i-nodes df(BU_CMD) VOL 2

allocator malloc, free, realloc, calloc, memory malloc(BA_OS) VOL 1

/new_field, dup_field, link_field, free_field, create and destroy/
.. form_field_new(TI_LIB) VOL 3

form_fieldtype: new_fieldtype, free_fieldtype, set_fieldtype_arg,/
.. form_fieldtype(TI_LIB) VOL 3

form_new: new_form, free_form create and destroy FORMS
.. form_new(TI_LIB) VOL 3

items menu_item_new: new_item, free_item create and destroy MENUS
... menu_item_new(TI_LIB) VOL 3

menu_new: new_menu, free_menu create and destroy MENUS
... menu_new(TI_LIB) VOL 3

/endnetconfig, getnetconfigent, freenetconfigent network/ getnetconfig(RS_LIB) VOL 3

fopen, freopen, fdopen open a stdio-stream
... fopen(fopen(BA_OS)) VOL 1

of floating-point numbers frexp, ldexp, modf manipulate parts frexp(BA_LIB) VOL 1

formatted input fscanf, scanf, sscanf convert fscanf(BA_LIB) VOL 1

42 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 730

fsck check and repair file systems fsck(AS_CMD) VOL 2

fsdb file system debugger fsdb(AS_CMD) VOL 2

file-pointer in a stdio-stream fseek, rewind, ftell reposition a fseek(fseek(BA_OS)) VOL 1

pointer in a stdio-stream fsetpos, fgetpos reposition a file
.. fsetpos(fsetpos(BA_OS)) VOL 1

stat, lstat, fstat get file status .. stat(BA_OS) VOL 1

information statvfs, fstatvfs get file system statvfs(BA_OS) VOL 1

fstyp determine file system type fstyp(AS_CMD) VOL 2

in-memory state with that on the/ fsync synchronize a file’s fsync(fsync(BA_OS)) VOL 1

a stdio-stream fseek, rewind, ftell reposition a file-pointer in fseek(fseek(BA_OS)) VOL 1

communication package ftok standard interprocess ftok(BA_LIB) VOL 1

of a file ftrylockfile grant thread ownership
... ftrylockfile(MT_LIB) VOL 1

ftw: ftw.h file tree traversal ftw(BA_ENV) VOL 1

ftw, nftw walk a file tree ftw(BA_LIB) VOL 1

ftw: ftw.h file tree traversal ftw(BA_ENV) VOL 1

hypot Euclidean distance function .. hypot(BA_LIB) VOL 1

MARK profile within a function .. MARK(SD_LIB) VOL 3

function erf, erfc error function and complementary error erf(BA_LIB) VOL 1

function and complementary error function erf, erfc error ... erf(BA_LIB) VOL 1

code conversion deallocation function iconv_close iconv_close(BA_LIB) VOL 1

code conversion allocation function iconv_open iconv_open(BA_LIB) VOL 1

/specify the order in which the function remop() accesses network/
... remtab(RA_CMD) VOL 3

sys/stat.h data returned by stat function stat: ... stat(BA_ENV) VOL 1

lgamma, gamma log gamma functions .. lgamma(BA_LIB) VOL 1

j0, j1, jn, y0, y1, yn Bessel functions Bessel: ... Bessel(BA_LIB) VOL 1

exponential, logarithm, power, root functions /log10, pow, sqrt, cbrt exp(BA_LIB) VOL 1

ceiling, remainder, absolute value functions /remainder, fabs floor, floor(BA_LIB) VOL 1

logb, nextafter radix-independent functions scalb, ... scalb(BA_LIB) VOL 1

acos, atan, atan2 trigonometric functions /sin, cos, tan, asin, trig(BA_LIB) VOL 1

asinh, acosh, atanh hyperbolic functions /sinh, cosh, tanh, hyperbolic(BA_LIB) VOL 1

wcsrtombs multibyte string functions /wcstombs, mbsrtowcs, mbstring(BA_LIB) VOL 1

ownership of a file funlockfile relinquish thread funlockfile(MT_LIB) VOL 1

file or file structure fuser identify processes using a fuser(AS_CMD) VOL 2

formatted wide/multibyte character/ fwprintf, wprintf, swprintf print fwprintf(BA_LIB) VOL 1

fread, fwrite binary input/output fread(BA_OS) VOL 1

formatted wide/multibyte character/ fwscanf, wscanf, swscanf convert fwscanf(BA_LIB) VOL 1

accounting records fwtmp, wtmpfix manipulate connect
.. fwtmp(AS_CMD) VOL 2

lgamma, gamma log gamma functions .. lgamma(BA_LIB) VOL 1

lgamma, gamma log gamma functions lgamma(BA_LIB) VOL 1

processes gcore get core images of running gcore(SD_CMD) VOL 3

catalogue gencat generate a formatted message
... gencat(AU_CMD) VOL 2

/field_just format the general appearance of FORMS
.. form_field_just(TI_LIB) VOL 3

/set_field_pad, field_pad format the general display attributes of FORMS
... form_field_attributes(TI_LIB) VOL 3

termio: ioctl general terminal interface termio(BA_DEV) VOL 1

termiox extended general terminal interface termiox(BA_DEV) VOL 1

catalogue gencat generate a formatted message gencat(AU_CMD) VOL 2

Permuted Index 43

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 731

getpass read a password getpass(SD_LIB) VOL 3

and/ getpid, getpgrp, getppid, getpgid get process, process group, getpid(BA_OS) VOL 1

process, process group,/ getpid, getpgrp, getppid, getpgid get getpid(BA_OS) VOL 1

get process, process group, and/ getpid, getpgrp, getppid, getpgid getpid(BA_OS) VOL 1

stream getmsg, getpmsg get next message off a getmsg(BA_OS) VOL 1

process group,/ getpid, getpgrp, getppid, getpgid get process, getpid(BA_OS) VOL 1

public or secret key publickey: getpublickey, getsecretkey get publickey(RS_LIB) VOL 3

setpwent, endpwent, fgetpwent/ getpwent, getpwuid, getpwnam, getpwent(BA_LIB) VOL 1

fgetpwent/ getpwent, getpwuid, getpwnam, setpwent, endpwent, getpwent(BA_LIB) VOL 1

endpwent, fgetpwent/ getpwent, getpwuid, getpwnam, setpwent, getpwent(BA_LIB) VOL 1

maximum system resource/ getrlimit, setrlimit control getrlimit(BA_OS) VOL 1

stdio-stream gets, fgets get a string from a gets(BA_LIB) VOL 1

attributes of a device devstat gets the current security devstat(ES_CMD) VOL 3

key publickey: getpublickey, getsecretkey get public or secret publickey(RS_LIB) VOL 3

get_t_errno, set_t_errno get/set t_errno value get_t_errno(BA_LIB) VOL 1

getitimer, setitimer get/set value of interval timer getitimer(RT_OS) VOL 3

getsid get session ID ... getsid(BA_OS) VOL 1

mvwgetstr, wgetnstr/ curs_getstr: getstr, wgetstr, mvgetstr, curs_getstr(TI_LIB) VOL 3

string getsubopt parse sub options from a
... getsubopt(BA_LIB) VOL 1

/reset_shell_mode, resetty, savetty, getsyx, setsyx, ripoffline,/ curs_kernel(TI_LIB) VOL 3

t_errno value get_t_errno, set_t_errno get/set
.. get_t_errno(BA_LIB) VOL 1

set the date and time gettimeofday, settimeofday get or
... gettimeofday(RT_OS) VOL 3

create message files for use by gettxt mkmsgs ... mkmsgs(AS_CMD) VOL 2

gettxt retrieve a text string gettxt(BA_LIB) VOL 1

a message data base gettxt retrieve a text string from gettxt(BU_CMD) VOL 2

get real user, effective user,/ getuid, geteuid, getgid, getegid getuid(BA_OS) VOL 1

/setutxent, endutxent, utmpxname, getutmp, getutmpx, updwtmp,/ getutx(SD_LIB) VOL 3

/endutxent, utmpxname, getutmp, getutmpx, updwtmp, updwtmpx access/
.. getutx(SD_LIB) VOL 3

getutxline, pututxline, setutxent,/ getutx: getutxent, getutxid, getutx(SD_LIB) VOL 3

pututxline, setutxent,/ getutx: getutxent, getutxid, getutxline, getutx(SD_LIB) VOL 3

setutxent,/ getutx: getutxent, getutxid, getutxline, pututxline, getutx(SD_LIB) VOL 3

getutx: getutxent, getutxid, getutxline, pututxline, setutxent,/ getutx(SD_LIB) VOL 3

stream getc, getchar, fgetc, getw get character or word from a getc(BA_LIB) VOL 1

wide character from a stream getwc, getwchar, fgetwc get next getwc(BA_LIB) VOL 1

mvwgetwch, ungetwch/ curs_getwch: getwch, wgetwch, mvgetwch, curs_getwch(TI_LIB) VOL 3

character from a stream getwc, getwchar, fgetwc get next wide getwc(BA_LIB) VOL 1

/keyname, filter, use_env, putwin, getwin, delay_output, flushinp/ curs_util(TI_LIB) VOL 3

wgetnwstr,/ curs_getwstr: getwstr, getnwstr, wgetwstr, curs_getwstr(TI_LIB) VOL 3

get CURSES cursor and/ curs_getyx: getyx, getparyx, getbegyx, getmaxyx
... curs_getyx(TI_LIB) VOL 3

MLD mode or execute a command in a given MLD mode mldmode change
... mldmode(ES_CMD) VOL 3

matching a pattern glob, globfree generate pathnames glob(BA_LIB) VOL 1

getksym get information for a global kernel symbol getksym(KE_OS) VOL 1

matching a pattern glob, globfree generate pathnames glob(BA_LIB) VOL 1

and time to/ ctime, localtime, gmtime, asctime, tzset convert date ctime(BA_LIB) VOL 1

setjmp, longjmp non-local goto ... setjmp(BA_LIB) VOL 1

sigsetjmp, siglongjmp a non-local goto with signal state sigsetjmp(BA_LIB) VOL 1

Permuted Index 45

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 733

pseudo-terminal device grantpt grant access to the slave grantpt(BA_LIB) VOL 1

flockfile grant thread ownership of a file flockfile(MT_LIB) VOL 1

ftrylockfile grant thread ownership of a file ftrylockfile(MT_LIB) VOL 1

pseudo-terminal device grantpt grant access to the slave grantpt(BA_LIB) VOL 1

grep search a file for a pattern grep(BU_CMD) VOL 2

newgrp change to a new group .. newgrp(AU_CMD) VOL 2

initialize the supplementary group access list initgroups initgroups(BA_LIB) VOL 1

/get real user, effective user, real group, and effective group IDs getuid(BA_OS) VOL 1

/getpgid get process, process group, and parent process IDs getpid(BA_OS) VOL 1

groupdel delete a group definition from the system
... groupdel(AS_CMD) VOL 2

groupadd add (create) a new group definition on the system groupadd(AS_CMD) VOL 2

groupmod modify a group definition on the system
... groupmod(AS_CMD) VOL 2

group group file .. group(BA_ENV) VOL 1

setgrent, endgrent, fgetgrent get group file entry /getgrnam , getgrent(BA_LIB) VOL 1

group group file .. group(BA_ENV) VOL 1

setpgid set process group ID ... setpgid(setpgid(BA_OS)) VOL 1

/and set terminal foreground process group ID, get terminal session ID termios(BA_OS) VOL 1

setuid, setgid set user and group IDs ... setuid(BA_OS) VOL 1

user, real group, and effective group IDs /get real user, effective getuid(BA_OS) VOL 1

setgroups get or set supplementary group IDs getgroups, getgroups(BA_OS) VOL 1

groups show group memberships groups(AU_CMD) VOL 2

id print the user name and ID, and group name and ID .. id(AU_CMD) VOL 2

lchown, fchown change owner and group of a file chown, chown(BA_OS) VOL 1

send a signal to a process or a group of processes kill ... kill(BA_OS) VOL 1

send a signal to a process or a group of processes /sigsendset sigsend(BA_OS) VOL 1

chgrp change the group ownership of a file chgrp(AU_CMD) VOL 2

grp: grp.h group structure .. grp(BA_ENV) VOL 1

definition on the system groupadd add (create) a new group
.. groupadd(AS_CMD) VOL 2

from the system groupdel delete a group definition
... groupdel(AS_CMD) VOL 2

on the system groupmod modify a group definition
... groupmod(AS_CMD) VOL 2

maintain, update, and regenerate groups of programs make make(BU_CMD) VOL 2

maintain, update, and regenerate groups of programs make make(SD_CMD) VOL 3

groups show group memberships
.. groups(AU_CMD) VOL 2

grp: grp.h group structure grp(BA_ENV) VOL 1

pwck, grpck password/group file checkers
.. pwck(AS_CMD) VOL 2

grp: grp.h group structure .. grp(BA_ENV) VOL 1

/cbreak, nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta,/
.. curs_inopts(TI_LIB) VOL 3

stdarg: va_start, va_arg, va_end handle variable argument list stdarg(BA_ENV) VOL 1

dealing with the creation of server handles /library routines for rpc_svc_create(RS_LIB) VOL 3

creation and manipulation of CLIENT handles /routines for dealing with
... rpc_clnt_create(RS_LIB) VOL 3

wcrtomb, mbrlen multibyte character handling /wctomb, mblen, mbrtowc,
... mbchar(BA_LIB) VOL 1

nohup run a command immune to hangups and quits nohup(BU_CMD) VOL 2

46 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 734

/start_color, init_pair, init_color, has_colors, can_change_color,/ curs_color(TI_LIB) VOL 3

hsearch, hcreate, hdestroy manage hash search tables ... hsearch(BA_LIB) VOL 1

errors spell, hashmake, spellin, hashcheck, compress find spelling spell(BU_CMD) VOL 2

compress find spelling/ spell, hashmake, spellin, hashcheck, spell(BU_CMD) VOL 2

termattrs,/ /baudrate, erasechar, has_ic, has_il, killchar, longname,
... curs_termattrs(TI_LIB) VOL 3

/baudrate, erasechar, has_ic, has_il, killchar, longname,/ curs_termattrs(TI_LIB) VOL 3

search tables hsearch, hcreate, hdestroy manage hash hsearch(BA_LIB) VOL 1

hsearch, hcreate, hdestroy manage hash search tables
... hsearch(BA_LIB) VOL 1

files head display first few lines of head(BU_CMD) VOL 2

deck/ panel_show: show_panel, hide_panel, panel_hidden PANELS
... panel_show(TI_LIB) VOL 3

/wvline create CURSES borders, horizontal and vertical lines curs_border(TI_LIB) VOL 3

/authdes_getucred, getnetname, host2netname, key_decryptsession,/
... secure_rpc(RS_LIB) VOL 3

hash search tables hsearch, hcreate, hdestroy manage hsearch(BA_LIB) VOL 1

cosh, tanh, asinh, acosh, atanh hyperbolic functions /sinh, hyperbolic(BA_LIB) VOL 1

asinh, acosh, atanh hyperbolic/ hyperbolic: sinh, cosh, tanh, hyperbolic(BA_LIB) VOL 1

hypot Euclidean distance function hypot(BA_LIB) VOL 1

iconv code set conversion utility iconv(BU_CMD) VOL 2

deallocation function iconv_close code conversion iconv_close(BA_LIB) VOL 1

allocation function iconv_open code conversion iconv_open(BA_LIB) VOL 1

getsid get session ID ... getsid(BA_OS) VOL 1

setpgid set process group ID .. setpgid(setpgid(BA_OS)) VOL 1

setsid set session ID .. setsid(setsid(BA_OS)) VOL 1

id print the user name and ID, and group name and ID id(AU_CMD) VOL 2

disk accounting data by user ID diskusg, acctdisk generate diskusg(AS_CMD) VOL 2

terminal foreground process group ID, get terminal session ID /set termios(BA_OS) VOL 1

name and ID, and group name and ID id print the user ... id(AU_CMD) VOL 2

semaphore set or shared memory ID ipcrm remove a message queue, ipcrm(AS_CMD) VOL 2

group name and ID id print the user name and ID, and id(AU_CMD) VOL 2

group ID, get terminal session ID /set terminal foreground process termios(BA_OS) VOL 1

curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg,/
.. curs_outopts(TI_LIB) VOL 3

thr_self get thread identifier of the calling thread thr_self(MT_LIB) VOL 1

roijobids get unique remote job identifiers ... roijobids(RA_LIB) VOL 3

file structure fuser identify processes using a file or fuser(AS_CMD) VOL 2

what identify SCCS files .. what(SD_CMD) VOL 3

rsnotify display or modify the identity of the individual in/ rsnotify(AS_CMD) VOL 2

setscrreg,/ curs_outopts: clearok, idlok, idcok immedok, leaveok,
.. curs_outopts(TI_LIB) VOL 3

setuid, setgid set user and group IDs ... setuid(BA_OS) VOL 1

real group, and effective group IDs /get real user, effective user, getuid(BA_OS) VOL 1

get or set supplementary group IDs getgroups, setgroups getgroups(BA_OS) VOL 1

process group, and parent process IDs /getppid, getpgid get process, getpid(BA_OS) VOL 1

gcore get core images of running processes gcore(SD_CMD) VOL 3

curs_outopts: clearok, idlok, idcok immedok, leaveok, setscrreg,/ curs_outopts(TI_LIB) VOL 3

nohup run a command immune to hangups and quits nohup(BU_CMD) VOL 2

limits: limits.h implementation specific constants limits(BA_ENV) VOL 1

of, or search for a text string in, message data bases /contents srchtxt(AS_CMD) VOL 2

Permuted Index 47

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 735

access list initgroups initialize the supplementary group
.. initgroups(BA_LIB) VOL 1

pkgput initiate a package on a server pkgput(RA_CMD) VOL 3

remop initiate a remote operation remop(RA_LIB) VOL 3

t_sndrel initiate an orderly release t_sndrel(BA_LIB) VOL 1

session backup initiate or control a system backup
... backup(AS_CMD) VOL 2

popen, pclose initiate pipe to/from a process popen(BA_OS) VOL 1

data partitions, or disks restore initiate restores of file systems, restore(AS_CMD) VOL 2

pkgdel remove a previously initiated package .. pkgdel(RA_CMD) VOL 3

curs_color: start_color, init_pair, init_color, has_colors,/ curs_color(TI_LIB) VOL 3

set_term, delscreen/ curs_initscr: initscr, newterm, endwin, isendwin,
.. curs_initscr(TI_LIB) VOL 3

fsync synchronize a file’s in-memory state with that on the/
... fsync(fsync(BA_OS)) VOL 1

mvinnstr,/ curs_instr: instr, innstr, winstr, winnstr, mvinstr, curs_instr(TI_LIB) VOL 3

mvinwstr,/ curs_inwstr: inwstr, innwstr, winwstr, winnwstr, curs_inwstr(TI_LIB) VOL 3

number of free disk blocks and i-nodes df report .. df(BU_CMD) VOL 2

tee join pipes and make copies of input ... tee(BU_CMD) VOL 2

mvwscanw, vwscanw convert formatted input from a CURSES widow /mvscanw,
.. curs_scanw(TI_LIB) VOL 3

scanf, sscanf convert formatted input fscanf, ... fscanf(BA_LIB) VOL 1

/convert formatted wide character input of a variable argument list vfwscanf(BA_LIB) VOL 1

/vfscanf, vsscanf convert formatted input of a variable argument list vscanf(BA_LIB) VOL 1

/wtimeout, typeahead CURSES terminal input option control routines curs_inopts(TI_LIB) VOL 3

ungetc push character back into input stdio-stream .. ungetc(BA_LIB) VOL 1

push wchar_t character back into input stream ungetwc ungetwc(BA_LIB) VOL 1

formatted wide/multibyte character input /wscanf, swscanf convert fwscanf(BA_LIB) VOL 1

fread, fwrite binary input/output ... fread(BA_OS) VOL 1

stdio: stdio.h standard buffered input/output .. stdio(BA_ENV) VOL 1

poll input/output multiplexing poll(BA_OS) VOL 1

stdio standard buffered input/output package stdio(BA_LIB) VOL 1

fileno stdio-stream status inquiries ferror, feof, clearerr, ferror(ferror(BA_OS)) VOL 1

uustat uucp status inquiry and job control uustat(AU_CMD) VOL 2

insert a character/ curs_insch: insch, winsch, mvinsch, mvwinsch
.. curs_insch(TI_LIB) VOL 3

curs_deleteln: deleteln, wdeleteln, insdelln, winsdelln, insertln,/ curs_deleteln(TI_LIB) VOL 3

/insch, winsch, mvinsch, mvwinsch insert a character before the/ curs_insch(TI_LIB) VOL 3

the/ /winswch, mvinswch, mvwinswch insert a wchar_t character before
... curs_inswch(TI_LIB) VOL 3

/insertln, winsertln delete and insert lines in a CURSES window
... curs_deleteln(TI_LIB) VOL 3

/mvinsnstr, mvwinsstr, mvwinsnstr insert string before character/ curs_instr(TI_LIB) VOL 3

/mvinsnwstr, mvwinswstr, mvwinsnwstr insert wchar_t string before/ curs_inswstr(TI_LIB) VOL 3

backup operations to service media insertion prompts /interact with bkoper(AS_CMD) VOL 2

restore requests and service media insertion prompts /service pending
.. rsoper(AS_CMD) VOL 2

/wdeleteln, insdelln, winsdelln, insertln, winsertln delete and/ curs_deleteln(TI_LIB) VOL 3

mvinsstr,/ curs_instr: insstr, insnstr, winsstr, winsnstr, curs_instr(TI_LIB) VOL 3

mvinswstr,/ curs_inswstr: inswstr, insnwstr, winswstr, winsnwstr, curs_inswstr(TI_LIB) VOL 3

mvinsstr, mvinsnstr,/ curs_instr: insstr, insnstr, winsstr, winsnstr, curs_instr(TI_LIB) VOL 3

Permuted Index 49

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 737

process until signal sigsuspend install a signal mask and suspend
.. sigsuspend(BA_OS) VOL 1

pkgmk produce an installable package pkgmk(AS_CMD) VOL 2

pkgchk check accuracy of installation ... pkgchk(AS_CMD) VOL 2

installf add a file to the software installation database installf(AS_CMD) VOL 2

removef remove a file from the installation software database removef(AS_CMD) VOL 2

installation database installf add a file to the software installf(AS_CMD) VOL 2

mvinstr, mvinnstr,/ curs_instr: instr, innstr, winstr, winnstr, curs_instr(TI_LIB) VOL 3

mvwinswch insert a/ curs_inswch: inswch, winswch, mvinswch, curs_inswch(TI_LIB) VOL 3

winsnwstr,/ curs_inswstr: inswstr, insnwstr, winswstr, curs_inswstr(TI_LIB) VOL 3

abs, labs return integer absolute value .. abs(BA_LIB) VOL 1

a64l, l64a convert between long integer and base-64 ASCII string a64l(SD_LIB) VOL 3

sputl, sgetl access long integer data in a/ ... sputl(SD_LIB) VOL 3

atol, atoi convert string to integer strtol, strtoul, strtol(BA_LIB) VOL 1

a wide character string to a long integer wcstol convert wcstol(BA_LIB) VOL 1

service media insertion/ bkoper interact with backup operations to
... bkoper(AS_CMD) VOL 2

system mailx interactive message processing mailx(AU_CMD) VOL 2

debug source-level, interactive, object file debugger debug(SD_CMD) VOL 3

devcon: console system console interface ... devcon(BA_DEV) VOL 1

devtty: tty controlling terminal interface .. devtty(BA_DEV) VOL 1

termio: ioctl general terminal interface .. termio(BA_DEV) VOL 1

termiox extended general terminal interface .. termiox(BA_DEV) VOL 1

remclean remote operation interface clean-up program remclean(RA_CMD) VOL 3

module timod Transport Interface cooperating STREAMS timod(BA_DEV) VOL 1

STREAMS module tirdwr Transport Interface read/write interface tirdwr(BA_DEV) VOL 1

Transport Interface read/write interface STREAMS module tirdwr tirdwr(BA_DEV) VOL 1

operations remop command interface to remop for remote remop(RA_CMD) VOL 3

cs_connect, cs_perror application interface to the Connection Server
... cs_connect(RS_LIB) VOL 3

/tgetstr, tgoto, tputs CURSES interfaces (emulated) to the/ curs_termcap(TI_LIB) VOL 3

/tigetnum, tigetstr CURSES interfaces to terminfo database
.. curs_terminfo(TI_LIB) VOL 3

/convert audit log file for inter-machine portability auditfltr(AT_CMD) VOL 3

a level from text format to internal format lvlin translate lvlin(ES_LIB) VOL 3

lvlout translate a level from internal format to text format lvlout(ES_LIB) VOL 3

the standard/restricted command interpreter sh, jsh, rsh shell, sh(BU_CMD) VOL 2

pipe create an interprocess channel .. pipe(BA_OS) VOL 1

facilities status ipcs report inter-process communication ipcs(AS_CMD) VOL 2

structure sys/ipc.h inter-process communication access
.. sys/ipc.h(KE_ENV) VOL 1

ftok standard interprocess communication package ftok(BA_LIB) VOL 1

sleep suspend execution for an interval ... sleep(BU_CMD) VOL 2

sleep suspend execution for interval ... sleep(sleep(BA_OS)) VOL 1

get the round-robin scheduling interval thr_get_rr_interval
... thr_get_rr_interval(MT_LIB) VOL 1

setitimer get/set value of interval timer getitimer, getitimer(RT_OS) VOL 3

/nocbreak, echo, noecho, halfdelay, intrflush, keypad, meta, nodelay,/
.. curs_inopts(TI_LIB) VOL 3

application-specific routines for invocation by FORMS /assign form_hook(TI_LIB) VOL 3

/routines for automatic invocation by MENUS menu_hook(TI_LIB) VOL 3

privilege based on the/ tfadmin invoke a command, regulating tfadmin(ES_CMD) VOL 3

50 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 738

get a wchar_t/ curs_inwch: inwch, winwch, mvinwch, mvwinwch
.. curs_inwch(TI_LIB) VOL 3

curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr,/
.. curs_inwchstr(TI_LIB) VOL 3

winwchnstr,/ curs_inwchstr: inwchstr, inwchnstr, winwchstr,
.. curs_inwchstr(TI_LIB) VOL 3

mvinwstr, mvinnwstr,/ curs_inwstr: inwstr, innwstr, winwstr, winnwstr,
.. curs_inwstr(TI_LIB) VOL 3

suspend until asynchronous I/O completes aio_suspend aio_suspend(MT_LIB) VOL 1

aiocb Asynchronous I/O Control Block .. aiocb(MT_LIB) VOL 1

aio_error retrieve asynchronous I/O error status .. aio_error(MT_LIB) VOL 1

return status of asynchronous I/O operation aio_return retrieve
.. aio_return(MT_LIB) VOL 1

aio_cancel cancel asynchronous I/O operations ... aio_cancel(MT_LIB) VOL 1

lio_listio issue list of I/O requests .. lio_listio(MT_LIB) VOL 1

streamio STREAMS ioctl commands ... streamio(BA_DEV) VOL 1

ioctl control device ... ioctl(BA_OS) VOL 1

termio: ioctl general terminal interface termio(BA_DEV) VOL 1

of ACL/ aclipc get or set an IPC object’s ACL, return the number aclipc(ES_LIB) VOL 3

lvlipc manipulate an IPC object’s level .. lvlipc(ES_LIB) VOL 3

semaphore set or shared memory ID ipcrm remove a message queue, ipcrm(AS_CMD) VOL 2

communication facilities status ipcs report inter-process ipcs(AS_CMD) VOL 2

/islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/ ctype(BA_LIB) VOL 1

isxdigit, isalnum, isspace,/ ctype: isalpha, isupper, islower, isdigit, ctype(BA_LIB) VOL 1

/ispunct, isprint, isgraph, iscntrl, isascii classify characters ctype(BA_LIB) VOL 1

isastream test a file descriptor isastream(BA_LIB) VOL 1

ttyname, isatty find name of a terminal ttyname(BA_LIB) VOL 1

isspace, ispunct, isprint, isgraph, iscntrl, isascii classify/ /isalnum, ctype(BA_LIB) VOL 1

ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum,/ ctype(BA_LIB) VOL 1

CURSES/ /initscr, newterm, endwin, isendwin, set_term, delscreen curs_initscr(TI_LIB) VOL 3

/isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii classify/ ctype(BA_LIB) VOL 1

/touchline, untouchwin, wtouchln, is_linetouched, is_wintouched/ curs_touch(TI_LIB) VOL 3

isalnum,/ ctype: isalpha, isupper, islower, isdigit, isxdigit, ctype(BA_LIB) VOL 1

isnan, isnand test for NaN isnan(BA_LIB) VOL 1

isnan, isnand test for NaN ... isnan(BA_LIB) VOL 1

/isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii/ ctype(BA_LIB) VOL 1

/isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl,/ ctype(BA_LIB) VOL 1

/isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph,/ ctype(BA_LIB) VOL 1

system issue a command system(system(BA_OS)) VOL 1

lio_listio issue list of I/O requests lio_listio(MT_LIB) VOL 1

isxdigit, isalnum,/ ctype: isalpha, isupper, islower, isdigit, ctype(BA_LIB) VOL 1

/iswlower, iswdigit, iswxdigit, iswalnum, iswspace, iswpunct,/ wctype(BA_LIB) VOL 1

iswdigit, iswxdigit,/ wctype: iswalpha, iswupper, iswlower, wctype(BA_LIB) VOL 1

/iswpunct, iswprint, iswgraph, iswcntrl test wide characters for a/ wctype(BA_LIB) VOL 1

/iswalpha, iswupper, iswlower, iswdigit, iswxdigit, iswalnum,/ wctype(BA_LIB) VOL 1

/iswspace, iswpunct, iswprint, iswgraph, iswcntrl test wide/ wctype(BA_LIB) VOL 1

control/ /wtouchln, is_linetouched, is_wintouched CURSES refresh curs_touch(TI_LIB) VOL 3

wctype: iswalpha, iswupper, iswlower, iswdigit, iswxdigit,/ wctype(BA_LIB) VOL 1

wide/ /iswalnum, iswspace, iswpunct, iswprint, iswgraph, iswcntrl test wctype(BA_LIB) VOL 1

/iswxdigit, iswalnum, iswspace, iswpunct, iswprint, iswgraph,/ wctype(BA_LIB) VOL 1

/iswdigit, iswxdigit, iswalnum, iswspace, iswpunct, iswprint,/ wctype(BA_LIB) VOL 1

iswxdigit,/ wctype: iswalpha, iswupper, iswlower, iswdigit, wctype(BA_LIB) VOL 1

Permuted Index 51

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 739

/iswupper, iswlower, iswdigit, iswxdigit, iswalnum, iswspace,/ wctype(BA_LIB) VOL 1

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,/ ctype: ctype(BA_LIB) VOL 1

item_visible tell if MENUS item is visible menu_item_visible:
... menu_item_visible(TI_LIB) VOL 3

/item_description get MENUS item name and description
... menu_item_name(TI_LIB) VOL 3

item_opts_off, item_opts MENUS item option routines /item_opts_on,
... menu_item_opts(TI_LIB) VOL 3

item_value set and get MENUS item values /set_item_value,
... menu_item_value(TI_LIB) VOL 3

items/ /set_menu_items, menu_items, item_count connect and disconnect
... menu_items(TI_LIB) VOL 3

name/ menu_item_name: item_name, item_description get MENUS item
... menu_item_name(TI_LIB) VOL 3

/current_item, set_top_row, top_row, item_index set and get current/
.. menu_item_current(TI_LIB) VOL 3

menu_hook: set_item_init, item_init, set_item_term,/ menu_hook(TI_LIB) VOL 3

MENUS item name/ menu_item_name: item_name, item_description get
... menu_item_name(TI_LIB) VOL 3

/item_opts_on, item_opts_off, item_opts MENUS item option/
... menu_item_opts(TI_LIB) VOL 3

/set_item_opts, item_opts_on, item_opts_off, item_opts MENUS item/
... menu_item_opts(TI_LIB) VOL 3

menu_item_opts: set_item_opts, item_opts_on, item_opts_off,/
... menu_item_opts(TI_LIB) VOL 3

news print news items .. news(AU_CMD) VOL 2

application data with MENUS items /item_userptr associate
.. menu_item_userptr(TI_LIB) VOL 3

free_item create and destroy MENUS items menu_item_new: new_item,
... menu_item_new(TI_LIB) VOL 3

/item_count connect and disconnect items to and from MENUS menu_items(TI_LIB) VOL 3

set and get current MENUS items /top_row, item_index
.. menu_item_current(TI_LIB) VOL 3

/item_init, set_item_term, item_term, set_menu_init,/ menu_hook(TI_LIB) VOL 3

data with MENUS/ /set_item_userptr, item_userptr associate application
.. menu_item_userptr(TI_LIB) VOL 3

menu_item_value: set_item_value, item_value set and get MENUS item/
... menu_item_value(TI_LIB) VOL 3

visible menu_item_visible: item_visible tell if MENUS item is
... menu_item_visible(TI_LIB) VOL 3

functions Bessel: j0, j1, jn, y0, y1, yn Bessel Bessel(BA_LIB) VOL 1

Bessel: j0, j1, jn, y0, y1, yn Bessel functions Bessel(BA_LIB) VOL 1

Bessel: j0, j1, jn, y0, y1, yn Bessel functions Bessel(BA_LIB) VOL 1

uustat uucp status inquiry and job control ... uustat(AU_CMD) VOL 2

roijobids get unique remote job identifiers ... roijobids(RA_LIB) VOL 3

roistat update job status record .. roistat(RA_LIB) VOL 3

remkill cancel remote operation jobs ... remkill(RA_CMD) VOL 3

and retrieve output of remote jobs remstat track the status remstat(RA_CMD) VOL 3

atrm remove jobs spooled by at or batch atrm(AU_CMD) VOL 2

atq display the queue of jobs to be run at specified times atq(AU_CMD) VOL 2

thread thr_join join control paths with another thr_join(MT_LIB) VOL 1

tee join pipes and make copies of input tee(BU_CMD) VOL 2

52 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 740

join relational database operator join(AU_CMD) VOL 2

/erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48/ drand48(BA_LIB) VOL 1

standard/restricted command/ sh, jsh, rsh shell, the .. sh(BU_CMD) VOL 2

kernel module on demand KE_OS) moduload unload a loadable
.. moduload(KE_OS) VOL 1

effects effects of the Kernel Extension on the Base System
... effects(KE_ENV) VOL 1

AS_CMD) modadmin loadable kernel module administration modadmin(AS_CMD) VOL 2

modload load a loadable kernel module on demand modload(KE_OS) VOL 1

KE_OS) moduload unload a loadable kernel module on demand moduload(KE_OS) VOL 1

get information for loadable kernel modules modstat modstat(KE_OS) VOL 1

modpath change loadable kernel modules search path modpath(KE_OS) VOL 1

get information for a global kernel symbol getksym getksym(KE_OS) VOL 1

chkey change your encryption key ... chkey(RS_CMD) VOL 3

keylogin decrypt and store secret key .. keylogin(RS_CMD) VOL 3

thr_keydelete thread-specific data key ... thr_keydelete(MT_LIB) VOL 1

publickey public key database ... publickey(RS_ENV) VOL 3

change, or display secure attention key defsak define, remove, defsak(ES_CMD) VOL 3

newkey create a new key in the publickey database newkey(RS_CMD) VOL 3

getsecretkey get public or secret key publickey: getpublickey, publickey(RS_LIB) VOL 3

create thread-specific data key thr_keycreate thr_keycreate(MT_LIB) VOL 1

characters from CURSES terminal keyboard /get (or push back) curs_getch(TI_LIB) VOL 3

strings from CURSES terminal keyboard /get wchar_t character
.. curs_getwstr(TI_LIB) VOL 3

characters from CURSES terminal keyboard /(or push back) wchar_t
.. curs_getwch(TI_LIB) VOL 3

strings from CURSES terminal keyboard /wgetnstr get character
... curs_getstr(TI_LIB) VOL 3

/getnetname, host2netname, key_decryptsession,/ secure_rpc(RS_LIB) VOL 3

/host2netname, key_decryptsession, key_encryptsession, key_gendes,/
... secure_rpc(RS_LIB) VOL 3

netname2host,/ /key_encryptsession, key_gendes, key_setsecret, secure_rpc(RS_LIB) VOL 3

key keylogin decrypt and store secret
... keylogin(RS_CMD) VOL 3

getwin,/ curs_util: unctrl, keyname, filter, use_env, putwin, curs_util(TI_LIB) VOL 3

/echo, noecho, halfdelay, intrflush, keypad, meta, nodelay, notimeout,/
.. curs_inopts(TI_LIB) VOL 3

for storing public and private keys keyserv server keyserv(RS_CMD) VOL 3

and private keys keyserv server for storing public keyserv(RS_CMD) VOL 3

/key_encryptsession, key_gendes, key_setsecret, netname2host,/ secure_rpc(RS_LIB) VOL 3

killall kill all active processes killall(AS_CMD) VOL 2

kill send a signal to a process kill(BU_CMD) VOL 2

a group of processes kill send a signal to a process or kill(BA_OS) VOL 1

killall kill all active processes killall(AS_CMD) VOL 2

/erasechar, has_ic, has_il, killchar, longname, termattrs,/
... curs_termattrs(TI_LIB) VOL 3

and base-64 ASCII string a64l, l64a convert between long integer a64l(SD_LIB) VOL 3

labelit copy file systems with label checking volcopy, volcopy(AS_CMD) VOL 2

setlabel define the label for pfmt() and lfmt() setlabel(BA_LIB) VOL 1

slk_attroff CURSES soft label routines /slk_attrset, curs_slk(TI_LIB) VOL 3

label checking volcopy, labelit copy file systems with volcopy(AS_CMD) VOL 2

abs, labs return integer absolute value abs(BA_LIB) VOL 1

Permuted Index 53

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 741

stdlib: stdlib.h standard library definitions ... stdlib(BA_ENV) VOL 1

ordering relation for an object library lorder find lorder(SD_CMD) VOL 3

remote/ /authsys_create_default library routines for client side rpc_clnt_auth(RS_LIB) VOL 3

calls /rpc_broadcast_exp, rpc_call library routines for client side rpc_clnt_calls(RS_LIB) VOL 3

/clnt_tp_create, clnt_vc_create library routines for dealing with/
... rpc_clnt_create(RS_LIB) VOL 3

the/ /svc_tp_create, svc_vc_create library routines for dealing with
.. rpc_svc_create(RS_LIB) VOL 3

/xdrrec_skiprecord, xdr_setpos library routines for external data/
.. xdr_admin(RS_LIB) VOL 3

/xdr_vector, xdr_wrapstring library routines for external data/
.. xdr_complex(RS_LIB) VOL 3

/xdrrec_create, xdrstdio_create library routines for external data/
... xdr_create(RS_LIB) VOL 3

/xdr_u_long, xdr_u_short, xdr_void library routines for external data/
.. xdr_simple(RS_LIB) VOL 3

/xprt_register, xprt_unregister library routines for registering/
.. rpc_svc_calls(RS_LIB) VOL 3

procedure calls /xdr_replymsg XDR library routines for remote rpc_xdr(RS_LIB) VOL 3

/rpcb_rmtcall, rpcb_set, rpcb_unset library routines for RPC bind/ rpcbind(RS_LIB) VOL 3

/svc_run_parallel library routines for RPC servers
.. rpc_svc_reg(RS_LIB) VOL 3

/netname2user, user2netname library routines for secure remote/
... secure_rpc(RS_LIB) VOL 3

/svcerr_systemerr, svcerr_weakauth library routines for server side/ rpc_svc_err(RS_LIB) VOL 3

(emulated) to the termcap library /tputs CURSES interfaces
... curs_termcap(TI_LIB) VOL 3

wait on a condition variable for a limited time cond_timedwait
... cond_timedwait(MT_LIB) VOL 1

float: float.h numerical limits .. float(BA_ENV) VOL 1

ulimit get and set user limits ... ulimit(BA_OS) VOL 1

specific constants limits: limits.h implementation limits(BA_ENV) VOL 1

constants limits: limits.h implementation specific limits(BA_ENV) VOL 1

line read one line .. line(BU_CMD) VOL 2

/get and set terminal attributes, line control, get and set baud/ termios(BA_OS) VOL 1

connections connld line discipline for unique stream connld(BA_DEV) VOL 1

ldterm standard STREAMS terminal line discipline module ldterm(BA_DEV) VOL 1

/strip symbol table, debugging and line number information from an/ strip(SD_CMD) VOL 3

nl line numbering filter ... nl(BU_CMD) VOL 2

cut cut out selected fields of each line of a file ... cut(BU_CMD) VOL 2

line read one line .. line(BU_CMD) VOL 2

lsearch, lfind linear search and update lsearch(BA_LIB) VOL 1

col filter reverse line-feeds ... col(BU_CMD) VOL 2

comm select or reject lines common to two sorted files comm(BU_CMD) VOL 2

winsertln delete and insert lines in a CURSES window /insertln,
... curs_deleteln(TI_LIB) VOL 3

uniq report repeated lines in a file ... uniq(BU_CMD) VOL 2

head display first few lines of files .. head(BU_CMD) VOL 2

of several files or subsequent lines of one file /merge same lines paste(BU_CMD) VOL 2

subsequent lines/ paste merge same lines of several files or paste(BU_CMD) VOL 2

refresh CURSES windows and lines /redrawwin, wredrawln curs_refresh(TI_LIB) VOL 3

Permuted Index 55

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 743

borders, horizontal and vertical lines /whline, wvline create CURSES
... curs_border(TI_LIB) VOL 3

readlink read value of a symbolic link ... readlink(readlink(BA_OS)) VOL 1

link, unlink exercise link and unlink system calls link(AS_CMD) VOL 2

ld link editor for object files ld(SD_CMD) VOL 3

ln link files ... ln(BU_CMD) VOL 2

link link to a file .. link(BA_OS) VOL 1

link link to a file .. link(BA_OS) VOL 1

symlink make symbolic link to a file ... symlink(BA_OS) VOL 1

unlink system calls link, unlink exercise link and link(AS_CMD) VOL 2

destroy/ /new_field, dup_field, link_field, free_field, create and
.. form_field_new(TI_LIB) VOL 3

routines /set_fieldtype_choice, link_fieldtype FORMS fieldtype
.. form_fieldtype(TI_LIB) VOL 3

lint a C program checker lint(SD_CMD) VOL 3

requests lio_listio issue list of I/O lio_listio(MT_LIB) VOL 1

aclsort sort an Access Control List ... aclsort(ES_LIB) VOL 3

nlist get entries from name list .. nlist(SD_LIB) VOL 3

acl set a file’s Access Control List (ACL) .. acl(ES_LIB) VOL 3

setacl modify the Access Control List (ACL) for a file or files setacl(ES_CMD) VOL 3

remote systems dfshares list available resources from dfshares(RS_CMD) VOL 3

ls, lc list contents of directory ls(BU_CMD) VOL 2

/change or display an exception list for incremental backups bkexcept(AS_CMD) VOL 2

output of a variable argument list /formatted wide character vfwprintf(BA_LIB) VOL 1

input of a variable argument list /formatted wide character vfwscanf(BA_LIB) VOL 1

the supplementary group access list initgroups initialize initgroups(BA_LIB) VOL 1

nm print name list of common object file nm(SD_CMD) VOL 3

lio_listio issue list of I/O requests lio_listio(MT_LIB) VOL 1

va_end handle variable argument list stdarg: va_start, va_arg, stdarg(BA_ENV) VOL 1

information logins list user and system login logins(AS_CMD) VOL 2

listusers list user information listusers(BU_CMD) VOL 2

output of a variable argument list /vsnprintf print formatted vprintf(BA_LIB) VOL 1

input of a variable argument list /vsscanf convert formatted vscanf(BA_LIB) VOL 1

t_listen listen for a connect request t_listen(BA_LIB) VOL 1

xargs construct argument list(s) and execute command xargs(SD_CMD) VOL 3

devattr lists device attributes devattr(ES_CMD) VOL 3

Database based on criteria getdev lists devices defined in the Device getdev(ES_CMD) VOL 3

listusers list user information listusers(BU_CMD) VOL 2

ln link files .. ln(BU_CMD) VOL 2

demand modload load a loadable kernel module on modload(KE_OS) VOL 1

administration AS_CMD) modadmin loadable kernel module modadmin(AS_CMD) VOL 2

modload load a loadable kernel module on demand
.. modload(KE_OS) VOL 1

KE_OS) moduload unload a loadable kernel module on demand
.. moduload(KE_OS) VOL 1

modstat get information for loadable kernel modules modstat(KE_OS) VOL 1

modpath change loadable kernel modules search path
.. modpath(KE_OS) VOL 1

sharing by remote/ share make local resource available for share(RS_CMD) VOL 3

sharing by remote/ unshare make local resource unavailable for unshare(RS_CMD) VOL 3

localeconv set the components of a locale .. localeconv(BA_LIB) VOL 1

locale: locale.h category macros locale(BA_ENV) VOL 1

56 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 744

modifies and queries a program’s locale setlocale ... setlocale(BA_OS) VOL 1

locale localeconv set the components of a
.. localeconv(BA_LIB) VOL 1

locale: locale.h category macros locale(BA_ENV) VOL 1

convert date and time to/ ctime, localtime, gmtime, asctime, tzset ctime(BA_LIB) VOL 1

stream telldir current location of a named directory telldir(BA_OS) VOL 1

rw_unlock release a reader-writer lock .. rw_unlock(MT_LIB) VOL 1

mutex_lock lock a mutex ... mutex_lock(MT_LIB) VOL 1

mutex_trylock conditionally lock a mutex mutex_trylock(MT_LIB) VOL 1

rmutex_lock lock a recursive mutex rmutex_lock(MT_LIB) VOL 1

rmutex_trylock conditionally lock a recursive mutex rmutex_trylock(MT_LIB) VOL 1

value of the/ sema_post release a lock by incrementing the count sema_post(MT_LIB) VOL 1

rw_rdlock acquire a reader-writer lock in read mode rw_rdlock(MT_LIB) VOL 1

acquire a reader-writer lock in read mode /conditionally
... rw_tryrdlock(MT_LIB) VOL 1

rw_wrlock acquire a reader-writer lock in write mode rw_wrlock(MT_LIB) VOL 1

acquire a reader-writer lock in write mode /conditionally
.. rw_trywrlock(MT_LIB) VOL 1

text, or data plock lock into memory or unlock process, plock(KE_OS) VOL 1

mlockall, munlockall lock or unlock address space mlockall(RT_OS) VOL 3

mlock, munlock lock (or unlock) pages in memory mlock(RT_OS) VOL 3

overview of reader-writer lock routines /rwlock_destroy, rwlock(MT_LIB) VOL 1

destroy a reader-writer lock rwlock_destroy rwlock_destroy(MT_LIB) VOL 1

initialize a reader-writer lock rwlock_init rwlock_init(MT_LIB) VOL 1

lockf record locking on files lockf(BA_OS) VOL 1

lockf record locking on files .. lockf(BA_OS) VOL 1

auditlog display or set audit event log file attributes auditlog(AT_CMD) VOL 3

auditlog get or set audit log file attributes .. auditlog(AT_LIB) VOL 3

auditfltr convert audit log file for inter-machine/ auditfltr(AT_CMD) VOL 3

lgamma, gamma log gamma functions lgamma(BA_LIB) VOL 1

exponential, logarithm,/ exp, log, log10, pow, sqrt, cbrt exp(BA_LIB) VOL 1

msgrpt log reporting facility msgrpt(AS_CMD) VOL 2

logarithm, power, root/ exp, log, log10, pow, sqrt, cbrt exponential, exp(BA_LIB) VOL 1

/log10, pow, sqrt, cbrt exponential, logarithm, power, root functions exp(BA_LIB) VOL 1

functions scalb, logb, nextafter radix-independent scalb(BA_LIB) VOL 1

/in standard format and pass to logging and monitoring services lfmt(BA_LIB) VOL 1

/in standard format and pass to logging and monitoring services lfmt(BU_CMD) VOL 2

userdel delete a user’s login from the system userdel(AS_CMD) VOL 2

logins list user and system login information .. logins(AS_CMD) VOL 2

usermod modify a user’s login information on the system usermod(AS_CMD) VOL 2

getlogin get login name ... getlogin(BA_LIB) VOL 1

logname get login name .. logname(AU_CMD) VOL 2

cuserid get character login name of the user cuserid(cuserid(BA_OS)) VOL 1

roigetuser get login name of the user roigetuser(RA_LIB) VOL 3

useradd add a new user login on the system useradd(AS_CMD) VOL 2

passwd change login password .. passwd(AU_CMD) VOL 2

last indicate last logins by user or terminal last(AS_CMD) VOL 2

information logins list user and system login logins(AS_CMD) VOL 2

logname get login name logname(AU_CMD) VOL 2

setjmp, longjmp non-local goto setjmp(BA_LIB) VOL 1

Permuted Index 57

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 745

CURSES/ /has_ic, has_il, killchar, longname, termattrs, termname
... curs_termattrs(TI_LIB) VOL 3

ticlts, ticots, ticotsord loopback transport providers ticlts(BA_DEV) VOL 1

an object library lorder find ordering relation for lorder(SD_CMD) VOL 3

nice run a command at low priority ... nice(AS_CMD) VOL 2

setsyx, ripoffline, curs_set, napms low-level CURSES routines /getsyx,
.. curs_kernel(TI_LIB) VOL 3

requests lp, cancel send/cancel print lp(AU_CMD) VOL 2

information about the status of the LP print service lpstat print lpstat(AU_CMD) VOL 2

status of the LP print service lpstat print information about the lpstat(AU_CMD) VOL 2

srand48, seed48,/ drand48, erand48, lrand48, nrand48, mrand48, jrand48,
.. drand48(BA_LIB) VOL 1

ls, lc list contents of directory ls(BU_CMD) VOL 2

update lsearch, lfind linear search and lsearch(BA_LIB) VOL 1

lseek move read/write file pointer lseek(BA_OS) VOL 1

stat, lstat, fstat get file status .. stat(BA_OS) VOL 1

Control (MAC) levels lvldelete delete Mandatory Access
... lvldelete(ES_CMD) VOL 3

relationship of two levels lvldom determine domination lvldom(ES_LIB) VOL 3

levels lvlequal determine equality of two lvlequal(ES_LIB) VOL 3

regular file, directory, named/ lvlfile get or set the level of a lvlfile(ES_LIB) VOL 3

format to internal format lvlin translate a level from text lvlin(ES_LIB) VOL 3

level lvlipc manipulate an IPC object’s lvlipc(ES_LIB) VOL 3

Access Control (MAC) levels lvlname assign or display Mandatory
.. lvlname(ES_CMD) VOL 3

internal format to text format lvlout translate a level from lvlout(ES_LIB) VOL 3

process lvlproc get or set the level of a lvlproc(ES_LIB) VOL 3

definitions lvlprt print system’s current level lvlprt(ES_CMD) VOL 3

level lvlvalid check the validity of a lvlvalid(ES_LIB) VOL 3

of a mounted file system lvlvfs get or set the level ceiling lvlvfs(ES_LIB) VOL 3

m4 macro processor ... m4(SD_CMD) VOL 3

delete Mandatory Access Control (MAC) levels lvldelete lvldelete(ES_CMD) VOL 3

or display Mandatory Access Control (MAC) levels lvlname assign lvlname(ES_CMD) VOL 3

remalias administer machine aliases ... remalias(RA_CMD) VOL 3

software distribution/ distconf add machine and notification entries to
... distconf(RA_CMD) VOL 3

setuname changes machine information setuname(AS_CMD) VOL 2

mgroup expand aliases to machine names ... mgroup(RA_LIB) VOL 3

sgetl access long integer data in a machine-independent fashion sputl, sputl(SD_LIB) VOL 3

packages to client or target server machine(s) pkgsend deliver pkgsend(RA_CMD) VOL 3

m4 macro processor ... m4(SD_CMD) VOL 3

locale: locale.h category macros ... locale(BA_ENV) VOL 1

mail, rmail send or read mail .. mail(BU_CMD) VOL 2

mailcheck check for mail at all security levels mailcheck(ES_CMD) VOL 3

mail, rmail send or read mail mail(BU_CMD) VOL 2

security levels mailcheck check for mail at all mailcheck(ES_CMD) VOL 3

processing system mailx interactive message mailx(AU_CMD) VOL 2

library ar maintain portable archive or ar(BU_CMD) VOL 2

groups of programs make maintain, update, and regenerate make(BU_CMD) VOL 2

groups of programs make maintain, update, and regenerate make(SD_CMD) VOL 3

58 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 746

user contexts makecontext, swapcontext manipulate
.. makecontext(BA_LIB) VOL 1

memory allocator malloc, free, realloc, calloc, malloc(BA_OS) VOL 1

tsearch, tfind, tdelete, twalk manage binary search trees tsearch(BA_LIB) VOL 1

hsearch, hcreate, hdestroy manage hash search tables hsearch(BA_LIB) VOL 1

endpoint t_optmgmt manage options for a transport t_optmgmt(BA_LIB) VOL 1

swapctl manage swap space swapctl(swapctl(RT_OS)) VOL 3

sigaction detailed signal management ... sigaction(BA_OS) VOL 1

memcntl memory management control memcntl(RT_OS) VOL 3

sigpause simplified signal management /sigrelse, sigignore, signal(BA_OS) VOL 1

roles in the Trusted Facility Management (TFM) database /delete
.. adminrole(ES_CMD) VOL 3

levels lvldelete delete Mandatory Access Control (MAC)
... lvldelete(ES_CMD) VOL 3

levels lvlname assign or display Mandatory Access Control (MAC)
.. lvlname(ES_CMD) VOL 3

lvlipc manipulate an IPC object’s level lvlipc(ES_LIB) VOL 3

records fwtmp, wtmpfix manipulate connect accounting fwtmp(AS_CMD) VOL 2

getnetpath, setnetpath, endnetpath manipulate NETPATH getnetpath(RS_LIB) VOL 3

/overwrite, copywin overlap and manipulate overlapped CURSES/
.. curs_overlay(TI_LIB) VOL 3

numbers frexp, ldexp, modf manipulate parts of floating-point frexp(BA_LIB) VOL 1

/setpwent, endpwent, fgetpwent manipulate password file entry getpwent(BA_LIB) VOL 1

/sigaddset, sigdelset, sigismember manipulate sets of signals sigsetops(BA_OS) VOL 1

auditbuf manipulate the audit buffer auditbuf(AT_LIB) VOL 3

makecontext, swapcontext manipulate user contexts makecontext(BA_LIB) VOL 1

/for dealing with creation and manipulation of CLIENT handles
... rpc_clnt_create(RS_LIB) VOL 3

/pair_content CURSES color manipulation routines curs_color(TI_LIB) VOL 3

wbkgd CURSES window background manipulation routines /bkgd, curs_bkgd(TI_LIB) VOL 3

CURSES screen initialization and manipulation routines /delscreen
.. curs_initscr(TI_LIB) VOL 3

panel_hidden PANELS deck manipulation routines /hide_panel,
... panel_show(TI_LIB) VOL 3

top_panel, bottom_panel PANELS deck manipulation routines panel_top: panel_top(TI_LIB) VOL 3

auditmap create and write the audit map files .. auditmap(AT_CMD) VOL 3

mmap map pages of memory mmap(KE_OS) VOL 1

addresses to RPC program number mapper rpcbind universal rpcbind(RS_CMD) VOL 3

mprotect set protection of memory mapping .. mprotect(KE_OS) VOL 1

MARK profile within a function MARK(SD_LIB) VOL 3

set_menu_mark, menu_mark MENUS mark string routines menu_mark:
... menu_mark(TI_LIB) VOL 3

umask set and get file creation mask .. umask(BA_OS) VOL 1

umask set file-creation mode mask .. umask(BU_CMD) VOL 2

signal sigsuspend install a signal mask and suspend process until sigsuspend(BA_OS) VOL 1

auditcnv create audit mask file .. auditcnv(AT_CMD) VOL 3

change or examine the signal mask of a thread thr_sigsetmask
... thr_sigsetmask(MT_LIB) VOL 1

change or examine signal mask sigprocmask sigprocmask(BA_OS) VOL 1

unlockpt unlock a pseudo-terminal master/slave pair unlockpt(BA_LIB) VOL 1

set and get MENUS pattern match buffer /menu_pattern menu_pattern(TI_LIB) VOL 3

fnmatch match filename or pattern fnmatch(BA_LIB) VOL 1

Permuted Index 59

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 747

regular expression compile and match routines /step, advance regexp(BA_LIB) VOL 1

/regular expression matching ... regcomp(BA_LIB) VOL 1

glob, globfree generate pathnames matching a pattern .. glob(BA_LIB) VOL 1

declarations math: math.h mathematical math(BA_ENV) VOL 1

math: math.h mathematical declarations math(BA_ENV) VOL 1

math: math.h mathematical declarations math(BA_ENV) VOL 1

in MENUS /menu_format set and get maximum numbers of rows and columns
... menu_format(TI_LIB) VOL 3

getrlimit, setrlimit control maximum system resource consumption
.. getrlimit(BA_OS) VOL 1

mbrtowc, wcrtomb, mbrlen multibyte/ mbchar: mbtowc, wctomb, mblen, mbchar(BA_LIB) VOL 1

multibyte/ mbchar: mbtowc, wctomb, mblen, mbrtowc, wcrtomb, mbrlen mbchar(BA_LIB) VOL 1

/wctomb, mblen, mbrtowc, wcrtomb, mbrlen multibyte character handling
... mbchar(BA_LIB) VOL 1

mbchar: mbtowc, wctomb, mblen, mbrtowc, wcrtomb, mbrlen multibyte/
... mbchar(BA_LIB) VOL 1

conversion state mbsinit test for initial multibyte mbsinit(BA_LIB) VOL 1

mbstring: mbstowcs, wcstombs, mbsrtowcs, wcsrtombs multibyte/
... mbstring(BA_LIB) VOL 1

wcsrtombs multibyte/ mbstring: mbstowcs, wcstombs, mbsrtowcs, mbstring(BA_LIB) VOL 1

mbsrtowcs, wcsrtombs multibyte/ mbstring: mbstowcs, wcstombs, mbstring(BA_LIB) VOL 1

wcrtomb, mbrlen multibyte/ mbchar: mbtowc, wctomb, mblen, mbrtowc, mbchar(BA_LIB) VOL 1

with backup operations to service media insertion prompts /interact bkoper(AS_CMD) VOL 2

restore requests and service media insertion prompts /pending rsoper(AS_CMD) VOL 2

state with that on the physical medium /a file’s in-memory fsync(fsync(BA_OS)) VOL 1

groups show group memberships .. groups(AU_CMD) VOL 2

memmove, memset memory/ memory: memccpy, memchr, memcmp, memcpy,
.. memory(BA_LIB) VOL 1

memset memory/ memory: memccpy, memchr, memcmp, memcpy, memmove,
.. memory(BA_LIB) VOL 1

memory/ memory: memccpy, memchr, memcmp, memcpy, memmove, memset
.. memory(BA_LIB) VOL 1

memcntl memory management control
... memcntl(RT_OS) VOL 3

memory: memccpy, memchr, memcmp, memcpy, memmove, memset memory/
.. memory(BA_LIB) VOL 1

/memccpy, memchr, memcmp, memcpy, memmove, memset memory operations
.. memory(BA_LIB) VOL 1

mmap map pages of memory .. mmap(KE_OS) VOL 1

munmap unmap pages of memory ... munmap(KE_OS) VOL 1

malloc, free, realloc, calloc, memory allocator ... malloc(BA_OS) VOL 1

shmctl shared memory control operations shmctl(shmctl(KE_OS)) VOL 1

sys/shm.h shared memory facility sys/shm.h(KE_ENV) VOL 1

queue, semaphore set or shared memory ID ipcrm remove a message
... ipcrm(AS_CMD) VOL 2

memcntl memory management control memcntl(RT_OS) VOL 3

mprotect set protection of memory mapping .. mprotect(KE_OS) VOL 1

memcpy, memmove, memset memory/ memory: memccpy, memchr, memcmp,
.. memory(BA_LIB) VOL 1

munlock lock (or unlock) pages in memory mlock, .. mlock(RT_OS) VOL 3

shmop shared memory operations shmop(shmop(KE_OS)) VOL 1

60 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 748

/set_menu_opts, menu_opts_on, menu_opts_off, menu_opts MENUS/
... menu_opts(TI_LIB) VOL 3

menu_opts: set_menu_opts, menu_opts_on, menu_opts_off,/ menu_opts(TI_LIB) VOL 3

/menu_grey, set_menu_pad, menu_pad control MENUS display/
.. menu_attributes(TI_LIB) VOL 3

menu_pattern: set_menu_pattern, menu_pattern set and get MENUS/
.. menu_pattern(TI_LIB) VOL 3

menu_pattern set and get MENUS/ menu_pattern: set_menu_pattern,
.. menu_pattern(TI_LIB) VOL 3

write or erase MENUS from/ menu_post: post_menu, unpost_menu
... menu_post(TI_LIB) VOL 3

correctly position a MENUS cursor /pos_menu_cursor
... menu_cursor(TI_LIB) VOL 3

/set_menu_pad, menu_pad control MENUS display attributes menu_attributes(TI_LIB) VOL 3

/unpost_menu write or erase MENUS from associated subwindows
... menu_post(TI_LIB) VOL 3

/item_visible tell if MENUS item is visible menu_item_visible(TI_LIB) VOL 3

/item_name, item_description get MENUS item name and description
... menu_item_name(TI_LIB) VOL 3

/item_opts_off, item_opts MENUS item option routines
... menu_item_opts(TI_LIB) VOL 3

item_value set and get MENUS item values /set_item_value,
... menu_item_value(TI_LIB) VOL 3

and disconnect items to and from MENUS /item_count connect menu_items(TI_LIB) VOL 3

associate application data with MENUS items /item_userptr
.. menu_item_userptr(TI_LIB) VOL 3

free_item create and destroy MENUS items /new_item, menu_item_new(TI_LIB) VOL 3

item_index set and get current MENUS items /set_top_row, top_row,
.. menu_item_current(TI_LIB) VOL 3

menu_mark: set_menu_mark, menu_mark MENUS mark string routines menu_mark(TI_LIB) VOL 3

free_menu create and destroy MENUS menu_new: new_menu, menu_new(TI_LIB) VOL 3

associate application data with MENUS /menu_userptr menu_userptr(TI_LIB) VOL 3

/menu_opts_off, menu_opts MENUS option routines menu_opts(TI_LIB) VOL 3

/menu_pattern set and get MENUS pattern match buffer menu_pattern(TI_LIB) VOL 3

for automatic invocation by MENUS /routines menu_hook(TI_LIB) VOL 3

numbers of rows and columns in MENUS /set and get maximum
... menu_format(TI_LIB) VOL 3

command processor for the MENUS subsystem menu_driver
... menu_driver(TI_LIB) VOL 3

/set_menu_sub, menu_sub, scale_menu MENUS window and subwindow/
.. menu_win(TI_LIB) VOL 3

and/ /menu_win, set_menu_sub, menu_sub, scale_menu MENUS window
.. menu_win(TI_LIB) VOL 3

menu_init, set_menu_term, menu_term assign/ /set_menu_init,
... menu_hook(TI_LIB) VOL 3

menu_userptr: set_menu_userptr, menu_userptr associate application/
.. menu_userptr(TI_LIB) VOL 3

menu_userptr associate application/ menu_userptr: set_menu_userptr,
.. menu_userptr(TI_LIB) VOL 3

scale_menu/ menu_win: set_menu_win, menu_win, set_menu_sub, menu_sub,
.. menu_win(TI_LIB) VOL 3

62 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 750

mktemp make a unique filename mktemp(BA_LIB) VOL 1

calendar time mktime converts a tm structure to a
... mktime(BA_LIB) VOL 1

or execute a command in a given MLD mode mldmode change MLD mode
... mldmode(ES_CMD) VOL 3

given MLD mode mldmode change MLD mode or execute a command in a
... mldmode(ES_CMD) VOL 3

a command in a given MLD mode mldmode change MLD mode or execute
... mldmode(ES_CMD) VOL 3

Multilevel Directory mode of a/ mldmode Retrieve or set the mldmode(ES_LIB) VOL 3

pages in memory mlock, munlock lock (or unlock) mlock(RT_OS) VOL 3

address space mlockall, munlockall lock or unlock
... mlockall(RT_OS) VOL 3

mmap map pages of memory mmap(KE_OS) VOL 1

administration AS_CMD) modadmin loadable kernel module
.. modadmin(AS_CMD) VOL 2

chmod change file mode ... chmod(BU_CMD) VOL 2

a reader-writer lock in read mode /conditionally acquire rw_tryrdlock(MT_LIB) VOL 1

a reader-writer lock in write mode /conditionally acquire rw_trywrlock(MT_LIB) VOL 1

umask set file-creation mode mask ... umask(BU_CMD) VOL 2

or execute a command in a given MLD mode mldmode change MLD mode
... mldmode(ES_CMD) VOL 3

pckt STREAMS Packet Mode module .. pckt(BA_DEV) VOL 1

or set the Multilevel Directory mode of a process mldmode Retrieve
... mldmode(ES_LIB) VOL 3

chmod, fchmod change mode of file ... chmod(BA_OS) VOL 1

given MLD mode mldmode change MLD mode or execute a command in a
... mldmode(ES_CMD) VOL 3

a reader-writer lock in read mode rw_rdlock acquire rw_rdlock(MT_LIB) VOL 1

a reader-writer lock in write mode rw_wrlock acquire rw_wrlock(MT_LIB) VOL 1

floating-point/ frexp, ldexp, modf manipulate parts of frexp(BA_LIB) VOL 1

utime set file access and modification times ... utime(BA_OS) VOL 1

touch update access and modification times of a file touch(BU_CMD) VOL 2

utime: utime.h access and modification times structure utime(BA_ENV) VOL 1

locale setlocale modifies and queries a program’s setlocale(BA_OS) VOL 1

system groupmod modify a group definition on the
... groupmod(AS_CMD) VOL 2

on the system usermod modify a user’s login information
.. usermod(AS_CMD) VOL 2

(ACL) for a file or files setacl modify the Access Control List setacl(ES_CMD) VOL 3

individual in/ rsnotify display or modify the identity of the rsnotify(AS_CMD) VOL 2

module on demand modload load a loadable kernel modload(KE_OS) VOL 1

modules search path modpath change loadable kernel modpath(KE_OS) VOL 1

loadable kernel modules modstat get information for modstat(KE_OS) VOL 1

pckt STREAMS Packet Mode module ... pckt(BA_DEV) VOL 1

AS_CMD) modadmin loadable kernel module administration modadmin(AS_CMD) VOL 2

STREAMS terminal line discipline module ldterm standard ldterm(BA_DEV) VOL 1

modload load a loadable kernel module on demand modload(KE_OS) VOL 1

moduload unload a loadable kernel module on demand KE_OS) moduload(KE_OS) VOL 1

STREAMS Pseudo Terminal Emulation module ptem .. ptem(BA_DEV) VOL 1

Interface cooperating STREAMS module timod Transport timod(BA_DEV) VOL 1

read/write interface STREAMS module tirdwr Transport Interface tirdwr(BA_DEV) VOL 1

64 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 752

get information for loadable kernel modules modstat ... modstat(KE_OS) VOL 1

modpath change loadable kernel modules search path modpath(KE_OS) VOL 1

module on demand KE_OS) moduload unload a loadable kernel
.. moduload(KE_OS) VOL 1

/ckpacct, dodisk, lastlogin, monacct, prdaily, prtacct,/ acct(AS_CMD) VOL 2

strfmon convert monetary value to string strfmon(BA_LIB) VOL 1

monitor prepare execution profile monitor(SD_LIB) VOL 3

format and pass to logging and monitoring services /in standard lfmt(BA_LIB) VOL 1

format and pass to logging and monitoring services /in standard lfmt(BU_CMD) VOL 2

text file more, page browse or page through a
.. more(BU_CMD) VOL 2

mount mount a file system .. mount(BA_OS) VOL 1

mount mount a file system mount(BA_OS) VOL 1

remote resources mount, umount mount or unmount file systems and
.. mount(AS_CMD) VOL 2

setmnt establish mount table .. setmnt(AS_CMD) VOL 2

systems and remote resources mount, umount mount or unmount file
.. mount(AS_CMD) VOL 2

get or set the level ceiling of a mounted file system lvlvfs lvlvfs(ES_LIB) VOL 3

dfmounts display mounted resource information dfmounts(RS_CMD) VOL 3

mvdir move a directory ... mvdir(AS_CMD) VOL 2

screen panel_move: move_panel move a PANELS window on the virtual
... panel_move(TI_LIB) VOL 3

curs_move: move, wmove move CURSES window cursor curs_move(TI_LIB) VOL 3

lseek move read/write file pointer lseek(BA_OS) VOL 1

cursor curs_move: move, wmove move CURSES window
... curs_move(TI_LIB) VOL 3

/form_fields, field_count, move_field connect fields to FORMS
.. form_field(TI_LIB) VOL 3

the virtual screen panel_move: move_panel move a PANELS window on
... panel_move(TI_LIB) VOL 3

mapping mprotect set protection of memory mprotect(KE_OS) VOL 1

drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,/
.. drand48(BA_LIB) VOL 1

msgalert message alerting facility
.. msgalert(AS_CMD) VOL 2

msgctl message control operations msgctl(KE_OS) VOL 1

msgget get message queue msgget(KE_OS) VOL 1

operations msgop: msgsnd, msgrcv message msgop(KE_OS) VOL 1

msgop: msgsnd, msgrcv message operations msgop(KE_OS) VOL 1

msgrpt log reporting facility msgrpt(AS_CMD) VOL 2

msgop: msgsnd, msgrcv message operations msgop(KE_OS) VOL 1

physical storage msync synchronize memory with msync(KE_OS) VOL 1

/mblen, mbrtowc, wcrtomb, mbrlen multibyte character handling mbchar(BA_LIB) VOL 1

mbsinit test for initial multibyte conversion state mbsinit(BA_LIB) VOL 1

/wcstombs, mbsrtowcs, wcsrtombs multibyte string functions mbstring(BA_LIB) VOL 1

mkmld make a Multilevel Directory mkmld(ES_LIB) VOL 3

mldmode Retrieve or set the Multilevel Directory mode of a/ mldmode(ES_LIB) VOL 3

poll input/output multiplexing .. poll(BA_OS) VOL 1

memory mlock, munlock lock (or unlock) pages in mlock(RT_OS) VOL 3

space mlockall, munlockall lock or unlock address mlockall(RT_OS) VOL 3

Permuted Index 65

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 753

munmap unmap pages of memory
.. munmap(KE_OS) VOL 1

mutex_destroy destroy a mutex .. mutex_destroy(MT_LIB) VOL 1

mutex_init initialize a mutex .. mutex_init(MT_LIB) VOL 1

mutex_lock lock a mutex .. mutex_lock(MT_LIB) VOL 1

mutex_trylock conditionally lock a mutex ... mutex_trylock(MT_LIB) VOL 1

mutex_unlock unlock a mutex .. mutex_unlock(MT_LIB) VOL 1

rmutex_destroy destroy a recursive mutex ... rmutex_destroy(MT_LIB) VOL 1

rmutex_init initialize a recursive mutex .. rmutex_init(MT_LIB) VOL 1

rmutex_lock lock a recursive mutex ... rmutex_lock(MT_LIB) VOL 1

rmutex_unlock unlock a recursive mutex .. rmutex_unlock(MT_LIB) VOL 1

conditionally lock a recursive mutex rmutex_trylock rmutex_trylock(MT_LIB) VOL 1

mutex_destroy destroy a mutex
... mutex_destroy(MT_LIB) VOL 1

mutex_init initialize a mutex mutex_init(MT_LIB) VOL 1

mutex_lock lock a mutex mutex_lock(MT_LIB) VOL 1

mutex mutex_trylock conditionally lock a
.. mutex_trylock(MT_LIB) VOL 1

mutex_unlock unlock a mutex
... mutex_unlock(MT_LIB) VOL 1

curs_addch: addch, waddch, mvaddch, mvwaddch, echochar,/
.. curs_addch(TI_LIB) VOL 3

/waddchstr, waddchnstr, mvaddchstr, mvaddchnstr, mvwaddchstr,/
.. curs_addchstr(TI_LIB) VOL 3

addchnstr, waddchstr, waddchnstr, mvaddchstr, mvaddchnstr,/ /addchstr,
.. curs_addchstr(TI_LIB) VOL 3

add a/ /waddstr, waddnstr, mvaddstr, mvaddnstr, mvwaddstr, mvwaddnstr
.. curs_addstr(TI_LIB) VOL 3

/waddwstr, waddnwstr, mvaddwstr, mvaddnwstr, mvwaddwstr, mvwaddnwstr/
.. curs_addwstr(TI_LIB) VOL 3

/addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr, mvwaddstr,/
.. curs_addstr(TI_LIB) VOL 3

curs_addwch: addwch, waddwch, mvaddwch, mvwaddwch, echowchar,/
... curs_addwch(TI_LIB) VOL 3

/waddwchnstr, mvaddwchstr, mvaddwchnstr, mvwaddwchstr,/
.. curs_addwchstr(TI_LIB) VOL 3

/waddwchstr, waddwchnstr, mvaddwchstr, mvaddwchnstr,/
.. curs_addwchstr(TI_LIB) VOL 3

/addnwstr, waddwstr, waddnwstr, mvaddwstr, mvaddnwstr, mvwaddwstr,/
.. curs_addwstr(TI_LIB) VOL 3

tputs, putp, vidputs, vidattr, mvcur, tigetflag, tigetnum,/ /tparm,
.. curs_terminfo(TI_LIB) VOL 3

under/ curs_delch: delch, wdelch, mvdelch, mvwdelch delete character
.. curs_delch(TI_LIB) VOL 3

/delwin, mvwin, subwin, derwin, mvderwin, dupwin, wsyncup, syncok,/
.. curs_window(TI_LIB) VOL 3

mvdir move a directory mvdir(AS_CMD) VOL 2

push/ curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch get (or
.. curs_getch(TI_LIB) VOL 3

/wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr, mvwgetwstr, mvwgetnwstr/
.. curs_getwstr(TI_LIB) VOL 3

66 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 754

curs_getstr: getstr, wgetstr, mvgetstr, mvwgetstr, wgetnstr get/
... curs_getstr(TI_LIB) VOL 3

(or/ curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch get
.. curs_getwch(TI_LIB) VOL 3

/getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr, mvwgetwstr,/
.. curs_getwstr(TI_LIB) VOL 3

its/ curs_inch: inch, winch, mvinch, mvwinch get a character and
.. curs_inch(TI_LIB) VOL 3

/winchstr, winchnstr, mvinchstr, mvinchnstr, mvwinchstr, mvwinchnstr/
... curs_inchstr(TI_LIB) VOL 3

/inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr, mvwinchstr,/
... curs_inchstr(TI_LIB) VOL 3

/innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr, mvwinnstr get a/
... curs_instr(TI_LIB) VOL 3

get a/ /winwstr, winnwstr, mvinwstr, mvinnwstr, mvwinwstr, mvwinnwstr
.. curs_inwstr(TI_LIB) VOL 3

curs_insch: insch, winsch, mvinsch, mvwinsch insert a/ curs_insch(TI_LIB) VOL 3

/winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr, mvwinsnstr/
... curs_instr(TI_LIB) VOL 3

/winswstr, winsnwstr, mvinswstr, mvinsnwstr, mvwinswstr, mvwinsnwstr/
.. curs_inswstr(TI_LIB) VOL 3

/insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr, mvwinsstr,/ curs_instr(TI_LIB) VOL 3

/instr, innstr, winstr, winnstr, mvinstr, mvinnstr, mvwinstr,/ curs_instr(TI_LIB) VOL 3

curs_inswch: inswch, winswch, mvinswch, mvwinswch insert a/
... curs_inswch(TI_LIB) VOL 3

/insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr, mvwinswstr,/
.. curs_inswstr(TI_LIB) VOL 3

curs_inwch: inwch, winwch, mvinwch, mvwinwch get a wchar_t/
.. curs_inwch(TI_LIB) VOL 3

/winwchstr, winwchnstr, mvinwchstr, mvinwchnstr, mvwinwchstr,/
.. curs_inwchstr(TI_LIB) VOL 3

inwchnstr, winwchstr, winwchnstr, mvinwchstr, mvinwchnstr,/ /inwchstr,
.. curs_inwchstr(TI_LIB) VOL 3

/inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr, mvwinwstr,/
.. curs_inwstr(TI_LIB) VOL 3

curs_printw: printw, wprintw, mvprintw, mvwprintw, vwprintw print/
... curs_printw(TI_LIB) VOL 3

curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw convert/
.. curs_scanw(TI_LIB) VOL 3

curs_addch: addch, waddch, mvaddch, mvwaddch, echochar, wechochar add a/
.. curs_addch(TI_LIB) VOL 3

/mvaddchnstr, mvwaddchstr, mvwaddchnstr add string of/
.. curs_addchstr(TI_LIB) VOL 3

string of/ /mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr add
.. curs_addchstr(TI_LIB) VOL 3

/mvaddstr, mvaddnstr, mvwaddstr, mvwaddnstr add a string of/ curs_addstr(TI_LIB) VOL 3

/mvaddwstr, mvaddnwstr, mvwaddwstr, mvwaddnwstr add a string of wchar_t/
.. curs_addwstr(TI_LIB) VOL 3

of/ /waddnstr, mvaddstr, mvaddnstr, mvwaddstr, mvwaddnstr add a string
.. curs_addstr(TI_LIB) VOL 3

Permuted Index 67

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 755

add a/ /addwch, waddwch, mvaddwch, mvwaddwch, echowchar, wechowchar
... curs_addwch(TI_LIB) VOL 3

/mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr add string of wchar_t/
.. curs_addwchstr(TI_LIB) VOL 3

string/ /mvaddwchstr, mvaddwchnstr, mvwaddwchstr, mvwaddwchnstr add
.. curs_addwchstr(TI_LIB) VOL 3

/waddnwstr, mvaddwstr, mvaddnwstr, mvwaddwstr, mvwaddnwstr add a/
.. curs_addwstr(TI_LIB) VOL 3

curs_delch: delch, wdelch, mvdelch, mvwdelch delete character under/
.. curs_delch(TI_LIB) VOL 3

curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch get (or push/
.. curs_getch(TI_LIB) VOL 3

/mvgetwstr, mvgetnwstr, mvwgetwstr, mvwgetnwstr get wchar_t character/
.. curs_getwstr(TI_LIB) VOL 3

strings/ /getstr, wgetstr, mvgetstr, mvwgetstr, wgetnstr get character
... curs_getstr(TI_LIB) VOL 3

back)/ /getwch, wgetwch, mvgetwch, mvwgetwch, ungetwch get (or push
.. curs_getwch(TI_LIB) VOL 3

/wgetnwstr, mvgetwstr, mvgetnwstr, mvwgetwstr, mvwgetnwstr get wchar_t/
.. curs_getwstr(TI_LIB) VOL 3

curs_window: newwin, delwin, mvwin, subwin, derwin, mvderwin,/
.. curs_window(TI_LIB) VOL 3

curs_inch: inch, winch, mvinch, mvwinch get a character and its/ curs_inch(TI_LIB) VOL 3

/mvinchstr, mvinchnstr, mvwinchstr, mvwinchnstr get a string of/ curs_inchstr(TI_LIB) VOL 3

/winchnstr, mvinchstr, mvinchnstr, mvwinchstr, mvwinchnstr get a/
... curs_inchstr(TI_LIB) VOL 3

mvinstr, mvinnstr, mvwinstr, mvwinnstr get a string of/ /winnstr,
... curs_instr(TI_LIB) VOL 3

/mvinwstr, mvinnwstr, mvwinwstr, mvwinnwstr get a string of wchar_t/
.. curs_inwstr(TI_LIB) VOL 3

curs_insch: insch, winsch, mvinsch, mvwinsch insert a character before/
.. curs_insch(TI_LIB) VOL 3

/mvinsstr, mvinsnstr, mvwinsstr, mvwinsnstr insert string before/ curs_instr(TI_LIB) VOL 3

/mvinswstr, mvinsnwstr, mvwinswstr, mvwinsnwstr insert wchar_t string/
.. curs_inswstr(TI_LIB) VOL 3

/winsnstr, mvinsstr, mvinsnstr, mvwinsstr, mvwinsnstr insert string/
... curs_instr(TI_LIB) VOL 3

/winstr, winnstr, mvinstr, mvinnstr, mvwinstr, mvwinnstr get a string of/
... curs_instr(TI_LIB) VOL 3

/inswch, winswch, mvinswch, mvwinswch insert a wchar_t/ curs_inswch(TI_LIB) VOL 3

/winsnwstr, mvinswstr, mvinsnwstr, mvwinswstr, mvwinsnwstr insert/
.. curs_inswstr(TI_LIB) VOL 3

curs_inwch: inwch, winwch, mvinwch, mvwinwch get a wchar_t character/
.. curs_inwch(TI_LIB) VOL 3

wchar_t/ /mvinwchnstr, mvwinwchstr, mvwinwchnstr get a string of curs_inwchstr(TI_LIB) VOL 3

string of/ /mvinwchstr, mvinwchnstr, mvwinwchstr, mvwinwchnstr get a
.. curs_inwchstr(TI_LIB) VOL 3

of/ /winnwstr, mvinwstr, mvinnwstr, mvwinwstr, mvwinnwstr get a string
.. curs_inwstr(TI_LIB) VOL 3

output/ /printw, wprintw, mvprintw, mvwprintw, vwprintw print formatted
... curs_printw(TI_LIB) VOL 3

68 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 756

curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw convert formatted/
.. curs_scanw(TI_LIB) VOL 3

devnm device name .. devnm(AS_CMD) VOL 2

getenv return value for environment name ... getenv(BA_LIB) VOL 1

getlogin get login name ... getlogin(BA_LIB) VOL 1

logname get login name .. logname(AU_CMD) VOL 2

pwd working directory name ... pwd(BU_CMD) VOL 2

item_description get MENUS item name and description /item_name,
... menu_item_name(TI_LIB) VOL 3

id print the user name and ID, and group name and ID id(AU_CMD) VOL 2

the user name and ID, and group name and ID id print .. id(AU_CMD) VOL 2

tmpnam, tempnam create a name for a temporary file tmpnam(BA_LIB) VOL 1

descriptor fdetach detach a name from a STREAMS-based file fdetach(BA_LIB) VOL 1

nlist get entries from name list .. nlist(SD_LIB) VOL 3

nm print name list of common object file nm(SD_CMD) VOL 3

rename change the name of a file ... rename(BA_OS) VOL 1

ttyname, isatty find name of a terminal ttyname(BA_LIB) VOL 1

uname get name of current operating system
... uname(uname(BA_OS)) VOL 1

uname print name of current system uname(BU_CMD) VOL 2

device ptsname get name of the slave pseudo-terminal ptsname(BA_LIB) VOL 1

tty get the name of the terminal ... tty(AU_CMD) VOL 2

cuserid get character login name of the user cuserid(cuserid(BA_OS)) VOL 1

roigetuser get login name of the user roigetuser(RA_LIB) VOL 3

get a value for a variable name roitosval ... roitosval(RA_LIB) VOL 3

to an object in the file system name space /file descriptor fattach(BA_LIB) VOL 1

utsname: sys/utsname.h system name structure ... utsname(BA_ENV) VOL 1

telldir current location of a named directory stream telldir(BA_OS) VOL 1

/level of a regular file, directory, named pipe or device special file lvlfile(ES_LIB) VOL 3

mgroup expand aliases to machine names ... mgroup(RA_LIB) VOL 3

dirname deliver portions of path names basename, basename(BU_CMD) VOL 2

/netdir_sperror generic transport name-to-address translation netdir(RS_LIB) VOL 3

isnan, isnand test for NaN ... isnan(BA_LIB) VOL 1

/setsyx, ripoffline, curs_set, napms low-level CURSES routines
.. curs_kernel(TI_LIB) VOL 3

processing language nawk pattern-directed scanning and
... nawk(BU_CMD) VOL 2

database netconfig network configuration netconfig(RS_ENV) VOL 3

netdir_getbyname,/ netdir: netdir_free, .. netdir(RS_LIB) VOL 3

netdir_getbyaddr,/ netdir: netdir_free, netdir_getbyname, netdir(RS_LIB) VOL 3

/netdir_free, netdir_getbyname, netdir_getbyaddr, netdir_options,/ netdir(RS_LIB) VOL 3

netdir: netdir_free, netdir_getbyname, netdir_getbyaddr,/
... netdir(RS_LIB) VOL 3

/netdir_getbyname, netdir_getbyaddr, netdir_options, taddr2uaddr,/ netdir(RS_LIB) VOL 3

generic/ /taddr2uaddr, uaddr2taddr, netdir_perror, netdir_sperror netdir(RS_LIB) VOL 3

/uaddr2taddr, netdir_perror, netdir_sperror generic transport/ netdir(RS_LIB) VOL 3

/key_gendes, key_setsecret, netname2host, netname2user,/ secure_rpc(RS_LIB) VOL 3

/key_setsecret, netname2host, netname2user, user2netname library/
... secure_rpc(RS_LIB) VOL 3

setnetpath, endnetpath manipulate NETPATH getnetpath, getnetpath(RS_LIB) VOL 3

Permuted Index 69

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 757

/getnetconfigent, freenetconfigent network configuration database
.. getnetconfig(RS_LIB) VOL 3

netconfig network configuration database netconfig(RS_ENV) VOL 3

which the function remop() accesses network services /the order in remtab(RA_CMD) VOL 3

free_field, create/ form_field_new: new_field, dup_field, link_field,
.. form_field_new(TI_LIB) VOL 3

set_fieldtype_arg,/ form_fieldtype: new_fieldtype, free_fieldtype,
.. form_fieldtype(TI_LIB) VOL 3

destroy FORMS form_new: new_form, free_form create and form_new(TI_LIB) VOL 3

newgrp change to a new group newgrp(AU_CMD) VOL 2

destroy MENUS items menu_item_new: new_item, free_item create and
... menu_item_new(TI_LIB) VOL 3

publickey database newkey create a new key in the newkey(RS_CMD) VOL 3

destroy MENUS menu_new: new_menu, free_menu create and
... menu_new(TI_LIB) VOL 3

pnoutrefresh, pechochar,/ curs_pad: newpad, subpad, prefresh, curs_pad(TI_LIB) VOL 3

form_new_page: set_new_page, new_page FORMS pagination
.. form_new_page(TI_LIB) VOL 3

destroy PANELS panel_new: new_panel, del_panel create and panel_new(TI_LIB) VOL 3

news print news items .. news(AU_CMD) VOL 2

news print news items news(AU_CMD) VOL 2

set_term,/ curs_initscr: initscr, newterm, endwin, isendwin, curs_initscr(TI_LIB) VOL 3

derwin, mvderwin,/ curs_window: newwin, delwin, mvwin, subwin,
.. curs_window(TI_LIB) VOL 3

getmsg, getpmsg get next message off a stream getmsg(BA_OS) VOL 1

getwc, getwchar, fgetwc get next wide character from a stream getwc(BA_LIB) VOL 1

functions scalb, logb, nextafter radix-independent scalb(BA_LIB) VOL 1

ftw, nftw walk a file tree .. ftw(BA_LIB) VOL 1

time-sharing process nice change priority of a nice(KE_OS) VOL 1

nice run a command at low priority nice(AS_CMD) VOL 2

nl line numbering filter nl(BU_CMD) VOL 2

/setscrreg, wsetscrreg, scrollok, nl, nonl CURSES terminal output/
.. curs_outopts(TI_LIB) VOL 3

nlist get entries from name list nlist(SD_LIB) VOL 3

nl_langinfo language information
... nl_langinfo(BA_LIB) VOL 1

nl_types: nl_types.h data types nl_types(BA_ENV) VOL 1

nl_types: nl_types.h data types nl_types(BA_ENV) VOL 1

file nm print name list of common object nm(SD_CMD) VOL 3

intrflush,/ curs_inopts: cbreak, nocbreak, echo, noecho, halfdelay,
.. curs_inopts(TI_LIB) VOL 3

/halfdelay, intrflush, keypad, meta, nodelay, notimeout, raw, noraw,/
.. curs_inopts(TI_LIB) VOL 3

keypad,/ /cbreak, nocbreak, echo, noecho, halfdelay, intrflush, curs_inopts(TI_LIB) VOL 3

hangups and quits nohup run a command immune to nohup(BU_CMD) VOL 2

control/ /wsetscrreg, scrollok, nl, nonl CURSES terminal output option
.. curs_outopts(TI_LIB) VOL 3

setjmp, longjmp non-local goto .. setjmp(BA_LIB) VOL 1

sigsetjmp, siglongjmp a non-local goto with signal state sigsetjmp(BA_LIB) VOL 1

nodelay, notimeout, raw, noraw, noqiflush, qiflush, timeout,/ /meta,
.. curs_inopts(TI_LIB) VOL 3

70 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 758

/meta, nodelay, notimeout, raw, noraw, noqiflush, qiflush, timeout,/
.. curs_inopts(TI_LIB) VOL 3

connection t_snd send normal or expedited data over a t_snd(BA_LIB) VOL 1

a connection t_rcv receive normal or expedited data sent over t_rcv(BA_LIB) VOL 1

distconf add machine and notification entries to software/ distconf(RA_CMD) VOL 3

/intrflush, keypad, meta, nodelay, notimeout, raw, noraw, noqiflush,/
.. curs_inopts(TI_LIB) VOL 3

seed48,/ drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48,
.. drand48(BA_LIB) VOL 1

devnul: null the null file ... devnul(BA_DEV) VOL 1

devnul: null the null file .. devnul(BA_DEV) VOL 1

rpc rpc program number data base .. rpc(RS_ENV) VOL 3

/symbol table, debugging and line number information from an object/ strip(SD_CMD) VOL 3

universal addresses to RPC program number mapper rpcbind rpcbind(RS_CMD) VOL 3

set an IPC object’s ACL, return the number of ACL entries /get or aclipc(ES_LIB) VOL 3

wide/ wcswidth determine the number of column positions for a wcswidth(BA_LIB) VOL 1

wide/ wcwidth determine the number of column positions for a wcwidth(BA_LIB) VOL 1

i-nodes df report number of free disk blocks and df(BU_CMD) VOL 2

convert string to double-precision number strtod, strtold, atof strtod(BA_LIB) VOL 1

nl line numbering filter ... nl(BU_CMD) VOL 2

manipulate parts of floating-point numbers frexp, ldexp, modf frexp(BA_LIB) VOL 1

/menu_format set and get maximum numbers of rows and columns in/
... menu_format(TI_LIB) VOL 3

uniformly distributed pseudo-random numbers /seed48, lcong48 generate
.. drand48(BA_LIB) VOL 1

float: float.h numerical limits .. float(BA_ENV) VOL 1

dlclose close a shared object ... dlclose(BA_OS) VOL 1

dlopen open a shared object ... dlopen(BA_OS) VOL 1

dis object code disassembler dis(SD_CMD) VOL 3

the address of a symbol in shared object dlsym get .. dlsym(BA_OS) VOL 1

nm print name list of common object file ... nm(SD_CMD) VOL 3

debug source-level, interactive, object file debugger debug(SD_CMD) VOL 3

and line number information from an object file /table, debugging strip(SD_CMD) VOL 3

ld link editor for object files .. ld(SD_CMD) VOL 3

size print section sizes of object files .. size(SD_CMD) VOL 3

STREAMS-based file descriptor to an object in the file system name/ /a fattach(BA_LIB) VOL 1

find ordering relation for an object library lorder lorder(SD_CMD) VOL 3

ACL/ aclipc get or set an IPC object’s ACL, return the number of aclipc(ES_LIB) VOL 3

lvlipc manipulate an IPC object’s level .. lvlipc(ES_LIB) VOL 3

confstr obtain configurable string values confstr(BA_OS) VOL 1

substring wcsspn obtain the length of a wide wcsspn(BA_LIB) VOL 1

wcslen obtain wide character string length wcslen(BA_LIB) VOL 1

od octal dump .. od(AU_CMD) VOL 2

od octal dump .. od(AU_CMD) VOL 2

message/ srchtxt display contents of, or search for a text string in, srchtxt(AS_CMD) VOL 2

/data_behind tell if FORMS field has off-screen data ahead or behind form_data(TI_LIB) VOL 3

dlopen open a shared object dlopen(BA_OS) VOL 1

fopen, freopen, fdopen open a stdio-stream fopen(fopen(BA_OS)) VOL 1

dup duplicate an open file descriptor .. dup(BA_OS) VOL 1

open open for reading or writing open(BA_OS) VOL 1

open open for reading or writing open(BA_OS) VOL 1

catopen, catclose open/close a message catalog catopen(BA_LIB) VOL 1

Permuted Index 71

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 759

rewinddir, closedir/ directory: opendir, readdir, readdir_r, directory(BA_OS) VOL 1

uname get name of current operating system uname(uname(BA_OS)) VOL 1

remop initiate a remote operation .. remop(RA_LIB) VOL 3

return status of asynchronous I/O operation aio_return retrieve aio_return(MT_LIB) VOL 1

remadmin control remote operation environment remadmin(RA_CMD) VOL 3

program remclean remote operation interface clean-up remclean(RA_CMD) VOL 3

remkill cancel remote operation jobs ... remkill(RA_CMD) VOL 3

roitosparse parse a Transaction Operation Script (TOS) file roitosparse(RA_LIB) VOL 3

aio_cancel cancel asynchronous I/O operations ... aio_cancel(MT_LIB) VOL 1

msgctl message control operations .. msgctl(KE_OS) VOL 1

msgop: msgsnd, msgrcv message operations ... msgop(KE_OS) VOL 1

semctl semaphore control operations .. semctl(KE_OS) VOL 1

semop semaphore operations .. semop(KE_OS) VOL 1

shmctl shared memory control operations ... shmctl(shmctl(KE_OS)) VOL 1

shmop shared memory operations .. shmop(shmop(KE_OS)) VOL 1

string: string.h string operations ... string(BA_ENV) VOL 1

report on completed backup operations bkhistory bkhistory(AS_CMD) VOL 2

display the status of backup operations bkstatus bkstatus(AS_CMD) VOL 2

memcpy, memmove, memset memory operations /memchr, memcmp, memory(BA_LIB) VOL 1

rewinddir, closedir directory operations /readdir, readdir_r, directory(BA_OS) VOL 1

interface to remop for remote operations remop command remop(RA_CMD) VOL 3

strcspn, strtok, strstr string operations /strpbrk, strspn, string(BA_LIB) VOL 1

bkoper interact with backup operations to service media/ bkoper(AS_CMD) VOL 2

join relational database operator ... join(AU_CMD) VOL 2

nl, nonl CURSES terminal output option control routines /scrollok,
.. curs_outopts(TI_LIB) VOL 3

typeahead CURSES terminal input option control routines /wtimeout,
.. curs_inopts(TI_LIB) VOL 3

getopt get option letter from argument vector getopt(BA_LIB) VOL 1

field_opts FORMS field option routines /field_opts_off,
.. form_field_opts(TI_LIB) VOL 3

form_opts_off, form_opts FORMS option routines /form_opts_on, form_opts(TI_LIB) VOL 3

item_opts_off, item_opts MENUS item option routines /item_opts_on,
... menu_item_opts(TI_LIB) VOL 3

menu_opts_off, menu_opts MENUS option routines /menu_opts_on, menu_opts(TI_LIB) VOL 3

fcntl: fcntl.h file control options ... fcntl(BA_ENV) VOL 1

stty set the options for a terminal stty(AU_CMD) VOL 2

t_optmgmt manage options for a transport endpoint
... t_optmgmt(BA_LIB) VOL 1

getsubopt parse sub options from a string getsubopt(BA_LIB) VOL 1

/mvgetch, mvwgetch, ungetch get (or push back) characters from/ curs_getch(TI_LIB) VOL 3

/mvgetwch, mvwgetwch, ungetwch get (or push back) wchar_t characters/
.. curs_getwch(TI_LIB) VOL 3

mlock, munlock lock (or unlock) pages in memory mlock(RT_OS) VOL 3

accesses/ remtab specify the order in which the function remop()
... remtab(RA_CMD) VOL 3

library lorder find ordering relation for an object lorder(SD_CMD) VOL 3

t_sndrel initiate an orderly release .. t_sndrel(BA_LIB) VOL 1

t_rcvrel acknowledge receipt of an orderly release indication t_rcvrel(BA_LIB) VOL 1

make a directory, or a special or ordinary file mknod mknod(BA_OS) VOL 1

snprintf, sprintf print formatted output fprintf, printf, fprintf(BA_LIB) VOL 1

72 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 760

mvwprintw, vwprintw print formatted output in CURSES windows /mvprintw,
... curs_printw(TI_LIB) VOL 3

/print formatted wide character output of a variable argument list vfwprintf(BA_LIB) VOL 1

/vsprintf, vsnprintf print formatted output of a variable argument list vprintf(BA_LIB) VOL 1

track the status and retrieve output of remote jobs remstat remstat(RA_CMD) VOL 3

/scrollok, nl, nonl CURSES terminal output option control routines curs_outopts(TI_LIB) VOL 3

formatted wide/multibyte character output /wprintf, swprintf print fwprintf(BA_LIB) VOL 1

CURSES/ /overlay, overwrite, copywin overlap and manipulate overlapped
.. curs_overlay(TI_LIB) VOL 3

/copywin overlap and manipulate overlapped CURSES windows curs_overlay(TI_LIB) VOL 3

and manipulate/ curs_overlay: overlay, overwrite, copywin overlap
.. curs_overlay(TI_LIB) VOL 3

/rw_unlock, rwlock_destroy, overview of reader-writer lock/ rwlock(MT_LIB) VOL 1

manipulate/ curs_overlay: overlay, overwrite, copywin overlap and
.. curs_overlay(TI_LIB) VOL 3

chown change file owner ... chown(AU_CMD) VOL 2

chown, lchown, fchown change owner and group of a file chown(BA_OS) VOL 1

chgrp change the group ownership of a file chgrp(AU_CMD) VOL 2

flockfile grant thread ownership of a file flockfile(MT_LIB) VOL 1

ftrylockfile grant thread ownership of a file ftrylockfile(MT_LIB) VOL 1

funlockfile relinquish thread ownership of a file funlockfile(MT_LIB) VOL 1

expand files pack, pcat, unpack compress and pack(BU_CMD) VOL 2

pkgmk produce an installable package .. pkgmk(AS_CMD) VOL 2

pkgtrans translate package format .. pkgtrans(AS_CMD) VOL 2

pkgrm removes a package from the system pkgrm(AS_CMD) VOL 2

standard interprocess communication package ftok ... ftok(BA_LIB) VOL 1

pkginfo display software package information pkginfo(AS_CMD) VOL 2

pkgput initiate a package on a server pkgput(RA_CMD) VOL 3

pkgadd transfer software package or set to the system pkgadd(AS_CMD) VOL 2

pkgparam display package parameter values pkgparam(AS_CMD) VOL 2

remove a previously initiated package pkgdel ... pkgdel(RA_CMD) VOL 3

request delivery of a software package pkgreq ... pkgreq(RA_CMD) VOL 3

sa2, sadc system activity report package sa1, .. sa(AS_CMD) VOL 2

standard buffered input/output package stdio .. stdio(BA_LIB) VOL 1

target/ pkgcat display a catalog of packages available to a client or pkgcat(RA_CMD) VOL 3

subscription and broadcast of packages distauth authorize distauth(RA_CMD) VOL 3

catreq request a catalog of packages from a server catreq(RA_CMD) VOL 3

tracking information for delivered packages pkgtrk display/delete pkgtrk(RA_CMD) VOL 3

server catsend send a catalog of packages to a client or target catsend(RA_CMD) VOL 3

machine(s) pkgsend deliver packages to client or target server
.. pkgsend(RA_CMD) VOL 3

pckt STREAMS Packet Mode module pckt(BA_DEV) VOL 1

create and display CURSES pads /pechochar, pechowchar curs_pad(TI_LIB) VOL 3

field_index set FORMS current page and field /current_field, form_page(TI_LIB) VOL 3

file more, page browse or page through a text more(BU_CMD) VOL 2

more, page browse or page through a text file more(BU_CMD) VOL 2

mlock, munlock lock (or unlock) pages in memory ... mlock(RT_OS) VOL 3

mmap map pages of memory .. mmap(KE_OS) VOL 1

munmap unmap pages of memory ... munmap(KE_OS) VOL 1

set_new_page, new_page FORMS pagination form_new_page: form_new_page(TI_LIB) VOL 3

a pseudo-terminal master/slave pair unlockpt unlock unlockpt(BA_LIB) VOL 1

/can_change_color, color_content, pair_content CURSES color/ curs_color(TI_LIB) VOL 3

Permuted Index 73

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 761

application data with a PANELS panel /panel_userptr associate
.. panel_userptr(TI_LIB) VOL 3

set the current window of a PANELS panel /replace_panel get or panel_window(TI_LIB) VOL 3

panel_below PANELS deck traversal/ panel_above: panel_above, panel_above(TI_LIB) VOL 3

deck traversal/ panel_above: panel_above, panel_below PANELS
.. panel_above(TI_LIB) VOL 3

panel_above: panel_above, panel_below PANELS deck traversal/
.. panel_above(TI_LIB) VOL 3

panel_show: show_panel, hide_panel, panel_hidden PANELS deck/ panel_show(TI_LIB) VOL 3

PANELS window on the virtual/ panel_move: move_panel move a
... panel_move(TI_LIB) VOL 3

create and destroy PANELS panel_new: new_panel, del_panel
... panel_new(TI_LIB) VOL 3

/hide_panel, panel_hidden PANELS deck manipulation routines
... panel_show(TI_LIB) VOL 3

panel_top: top_panel, bottom_panel PANELS deck manipulation routines
... panel_top(TI_LIB) VOL 3

/panel_above, panel_below PANELS deck traversal primitives
.. panel_above(TI_LIB) VOL 3

associate application data with a PANELS panel /panel_userptr
.. panel_userptr(TI_LIB) VOL 3

get or set the current window of a PANELS panel /replace_panel
.. panel_window(TI_LIB) VOL 3

del_panel create and destroy PANELS panel_new: new_panel, panel_new(TI_LIB) VOL 3

panel_update: update_panels PANELS virtual screen refresh/
.. panel_update(TI_LIB) VOL 3

panel_move: move_panel move a PANELS window on the virtual screen
... panel_move(TI_LIB) VOL 3

panel_hidden PANELS deck/ panel_show: show_panel, hide_panel,
... panel_show(TI_LIB) VOL 3

PANELS deck manipulation routines panel_top: top_panel, bottom_panel
... panel_top(TI_LIB) VOL 3

virtual screen refresh routine panel_update: update_panels PANELS
.. panel_update(TI_LIB) VOL 3

panel_userptr: set_panel_userptr, panel_userptr associate application/
.. panel_userptr(TI_LIB) VOL 3

panel_userptr associate/ panel_userptr: set_panel_userptr,
.. panel_userptr(TI_LIB) VOL 3

replace_panel get or set the/ panel_window: panel_window,
.. panel_window(TI_LIB) VOL 3

set the current/ panel_window: panel_window, replace_panel get or
.. panel_window(TI_LIB) VOL 3

pkgparam display package parameter values pkgparam(AS_CMD) VOL 2

get process, process group, and parent process IDs /getpgid getpid(BA_OS) VOL 1

Script (TOS) file roitosparse parse a Transaction Operation roitosparse(RA_LIB) VOL 3

getsubopt parse sub options from a string getsubopt(BA_LIB) VOL 1

clrtoeol, wclrtoeol clear all or part of a CURSES window /wclrtobot,
... curs_clear(TI_LIB) VOL 3

tail deliver the last part of a file .. tail(BU_CMD) VOL 2

restores of file systems, data partitions, or disks /initiate restore(AS_CMD) VOL 2

frexp, ldexp, modf manipulate parts of floating-point numbers frexp(BA_LIB) VOL 1

/message in standard format and pass to logging and monitoring/ lfmt(BA_LIB) VOL 1

74 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 762

/message in standard format and pass to logging and monitoring/ lfmt(BU_CMD) VOL 2

passwd change login password passwd(AU_CMD) VOL 2

passwd password file passwd(BA_ENV) VOL 1

getpass read a password ... getpass(SD_LIB) VOL 1

getpass read a password ... getpass(SD_LIB) VOL 3

passwd change login password .. passwd(AU_CMD) VOL 2

passwd password file ... passwd(BA_ENV) VOL 1

putpwent write password file entry putpwent(SD_LIB) VOL 3

endpwent, fgetpwent manipulate password file entry /setpwent, getpwent(BA_LIB) VOL 1

pwd: pwd.h password structure .. pwd(BA_ENV) VOL 1

pwck, grpck password/group file checkers pwck(AS_CMD) VOL 2

files or subsequent lines of one/ paste merge same lines of several paste(BU_CMD) VOL 2

loadable kernel modules search path modpath change modpath(KE_OS) VOL 1

dirname deliver portions of path names basename, basename(BU_CMD) VOL 2

variables fpathconf, pathconf get configurable pathname
... fpathconf(BA_OS) VOL 1

directory getcwd get pathname of current working getcwd(BA_OS) VOL 1

pathconf get configurable pathname variables fpathconf, fpathconf(BA_OS) VOL 1

glob, globfree generate pathnames matching a pattern glob(BA_LIB) VOL 1

thr_join join control paths with another thread thr_join(MT_LIB) VOL 1

fnmatch match filename or pattern .. fnmatch(BA_LIB) VOL 1

grep search a file for a pattern .. grep(BU_CMD) VOL 2

generate pathnames matching a pattern glob, globfree glob(BA_LIB) VOL 1

/menu_pattern set and get MENUS pattern match buffer menu_pattern(TI_LIB) VOL 3

processing language awk pattern-directed scanning and awk(BU_CMD) VOL 2

processing language nawk pattern-directed scanning and nawk(BU_CMD) VOL 2

pause suspend process until signal pause(BA_OS) VOL 1

files pack, pcat, unpack compress and expand pack(BU_CMD) VOL 2

pckt STREAMS Packet Mode module pckt(BA_DEV) VOL 1

process popen, pclose initiate pipe to/from a popen(BA_OS) VOL 1

/subpad, prefresh, pnoutrefresh, pechochar, pechowchar create and/
.. curs_pad(TI_LIB) VOL 3

/prefresh, pnoutrefresh, pechochar, pechowchar create and display/ curs_pad(TI_LIB) VOL 3

service media/ rsoper service pending restore requests and rsoper(AS_CMD) VOL 2

signals that are blocked and pending sigpending examine sigpending(BA_OS) VOL 1

wordexp, wordfree perform word expansions wordexp(BA_LIB) VOL 1

mesg permit or deny messages mesg(AU_CMD) VOL 2

acctcms command summary from per-process accounting records acctcms(AS_CMD) VOL 2

perror system error messages perror(BA_LIB) VOL 1

pg file perusal filter for CRTs pg(BU_CMD) VOL 2

setlabel define the label for pfmt() and lfmt() .. setlabel(BA_LIB) VOL 1

standard format pfmt display error message in pfmt(BU_CMD) VOL 2

in standard format pfmt, vpfmt display error message pfmt(BA_LIB) VOL 1

pg file perusal filter for CRTs pg(BU_CMD) VOL 2

in-memory state with that on the physical medium /a file’s fsync(fsync(BA_OS)) VOL 1

msync synchronize memory with physical storage .. msync(KE_OS) VOL 1

split split a file into pieces ... split(BU_CMD) VOL 2

pipe create an interprocess channel pipe(BA_OS) VOL 1

of a regular file, directory, named pipe or device special file /level lvlfile(ES_LIB) VOL 3

popen, pclose initiate pipe to/from a process popen(BA_OS) VOL 1

tee join pipes and make copies of input tee(BU_CMD) VOL 2

Permuted Index 75

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 763

server for storing public and private keys keyserv keyserv(RS_CMD) VOL 3

in/ /invoke a command, regulating privilege based on the information
.. tfadmin(ES_CMD) VOL 3

filepriv set, delete, or display privilege information associated/ filepriv(ES_CMD) VOL 3

filepriv set, get, or count the privileges associated with a file filepriv(ES_LIB) VOL 3

/remove, set, retrieve, or count privileges associated with the/ procpriv(ES_LIB) VOL 3

calling/ /add, remove, set, or count privileges associated with the procprivl(ES_LIB) VOL 3

/routines for client side remote procedure call authentication rpc_clnt_auth(RS_LIB) VOL 3

routines for server side remote procedure call errors /library rpc_svc_err(RS_LIB) VOL 3

library routines for secure remote procedure calls /user2netname secure_rpc(RS_LIB) VOL 3

XDR library routines for remote procedure calls /xdr_replymsg rpc_xdr(RS_LIB) VOL 3

exit, _exit terminate process .. exit(BA_OS) VOL 1

exit, _exit terminate process .. exit(KE_OS) VOL 1

fork create a new process ... fork(BA_OS) VOL 1

kill send a signal to a process .. kill(BU_CMD) VOL 2

lvlproc get or set the level of a process .. lvlproc(ES_LIB) VOL 3

wait await completion of process .. wait(BU_CMD) VOL 2

acct enable or disable process accounting .. acct(KE_OS) VOL 1

acctprc, acctprc1, acctprc2 process accounting acctprc(AS_CMD) VOL 2

acctcom search and print process accounting file(s) acctcom(AS_CMD) VOL 2

alarm set process alarm clock ... alarm(BA_OS) VOL 1

structure times: sys/times.h process and child process times times(BA_ENV) VOL 1

times get process and child process times times(BA_OS) VOL 1

timex time a command; report process data and system activity timex(AS_CMD) VOL 2

IDs /getppid, getpgid get process, process group, and parent process getpid(BA_OS) VOL 1

setpgid set process group ID setpgid(setpgid(BA_OS)) VOL 1

/get and set terminal foreground process group ID, get terminal/ termios(BA_OS) VOL 1

process, process group, and parent process IDs /getppid, getpgid get getpid(BA_OS) VOL 1

the Multilevel Directory mode of a process mldmode Retrieve or set mldmode(ES_LIB) VOL 3

change priority of a time-sharing process nice .. nice(KE_OS) VOL 1

kill send a signal to a process or a group of processes kill(BA_OS) VOL 1

/sigsendset send a signal to a process or a group of processes sigsend(BA_OS) VOL 1

associated with the calling process /or count privileges procpriv(ES_LIB) VOL 3

pclose initiate pipe to/from a process popen, .. popen(BA_OS) VOL 1

/getpgrp, getppid, getpgid get process, process group, and parent/ getpid(BA_OS) VOL 1

priocntl process scheduler control priocntl(AU_CMD) VOL 2

priocntl process scheduler control priocntl(KE_OS) VOL 1

associated with the calling process /set, or count privileges procprivl(ES_LIB) VOL 3

ps report process status ... ps(BU_CMD) VOL 2

plock lock into memory or unlock process, text, or data .. plock(KE_OS) VOL 1

times get process and child process times .. times(BA_OS) VOL 1

sys/times.h process and child process times structure times: times(BA_ENV) VOL 1

waitid wait for child process to change state waitid(BA_OS) VOL 1

waitpid wait for child process to change state waitpid(BA_OS) VOL 1

wait wait for child process to stop or terminate wait(BA_OS) VOL 1

ptrace process trace .. ptrace(KE_OS) VOL 1

pause suspend process until signal ... pause(BA_OS) VOL 1

install a signal mask and suspend process until signal sigsuspend sigsuspend(BA_OS) VOL 1

gcore get core images of running processes ... gcore(SD_CMD) VOL 3

killall kill all active processes ... killall(AS_CMD) VOL 2

a signal to a process or a group of processes kill send .. kill(BA_OS) VOL 1

a signal to a process or a group of processes sigsend, sigsendset send sigsend(BA_OS) VOL 1

78 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 766

structure fuser identify processes using a file or file fuser(AS_CMD) VOL 2

awk pattern-directed scanning and processing language .. awk(BU_CMD) VOL 2

nawk pattern-directed scanning and processing language nawk(BU_CMD) VOL 2

mailx interactive message processing system .. mailx(AU_CMD) VOL 2

m4 macro processor ... m4(SD_CMD) VOL 3

thr_yield yield the processor ... thr_yield(MT_LIB) VOL 1

form_driver command processor for the FORMS subsystem
... form_driver(TI_LIB) VOL 3

menu_driver command processor for the MENUS subsystem
... menu_driver(TI_LIB) VOL 3

retrieve, or count privileges/ procpriv add, remove, set, procpriv(ES_LIB) VOL 3

count privileges associated with/ procprivl add, remove, set, or procprivl(ES_LIB) VOL 3

pkgmk produce an installable package pkgmk(AS_CMD) VOL 2

prof display profile data prof(SD_CMD) VOL 3

profil execution time profile profil(KE_OS) VOL 1

monitor prepare execution profile ... monitor(SD_LIB) VOL 3

profil execution time profile .. profil(KE_OS) VOL 1

prof display profile data .. prof(SD_CMD) VOL 3

MARK profile within a function MARK(SD_LIB) VOL 3

sadp disk access profiler .. sadp(AS_CMD) VOL 2

raise send signal to program ... raise(raise(BA_OS)) VOL 1

assert: assert.h verify program assertion .. assert(BA_ENV) VOL 1

assert verify program assertion .. assert(BA_LIB) VOL 1

lint a C program checker .. lint(SD_CMD) VOL 3

cxref generate C program cross-reference cxref(SD_CMD) VOL 3

catgets read a program message ... catgets(BA_LIB) VOL 1

rpc rpc program number data base rpc(RS_ENV) VOL 3

rpcbind universal addresses to RPC program number mapper rpcbind(RS_CMD) VOL 3

remote operation interface clean-up program remclean remclean(RA_CMD) VOL 3

atexit add program termination routine atexit(atexit(BA_OS)) VOL 1

analysis of text lex generate programs for simple lexical lex(SD_CMD) VOL 3

setlocale modifies and queries a program’s locale ... setlocale(BA_OS) VOL 1

update, and regenerate groups of programs make maintain, make(BU_CMD) VOL 2

update, and regenerate groups of programs make maintain, make(SD_CMD) VOL 3

and service media insertion prompts /pending restore requests rsoper(AS_CMD) VOL 2

to service media insertion prompts /with backup operations bkoper(AS_CMD) VOL 2

mprotect set protection of memory mapping mprotect(KE_OS) VOL 1

t_getprotaddr get protocol addresses t_getprotaddr(BA_LIB) VOL 1

rpcgen an RPC protocol compiler .. rpcgen(RS_CMD) VOL 3

information t_getinfo get protocol-specific service t_getinfo(BA_LIB) VOL 1

pkgproto generate prototype file entries pkgproto(AS_CMD) VOL 2

true, false provide truth values .. true(BU_CMD) VOL 2

ticotsord loopback transport providers ticlts, ticots, ticlts(BA_DEV) VOL 1

prs print an SCCS file .. prs(SD_CMD) VOL 3

/lastlogin, monacct, prdaily, prtacct, shutacct, startup,/ acct(AS_CMD) VOL 2

prtconf print system configuration
... prtconf(AS_CMD) VOL 2

ps report process status ps(BU_CMD) VOL 2

ptem STREAMS Pseudo Terminal Emulation module ptem(BA_DEV) VOL 1

generate uniformly distributed pseudo-random numbers /lcong48 drand48(BA_LIB) VOL 1

grantpt grant access to the slave pseudo-terminal device grantpt(BA_LIB) VOL 1

ptsname get name of the slave pseudo-terminal device ptsname(BA_LIB) VOL 1

Permuted Index 79

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 767

unlockpt unlock a pseudo-terminal master/slave pair
... unlockpt(BA_LIB) VOL 1

Emulation module ptem STREAMS Pseudo Terminal ptem(BA_DEV) VOL 1

ptrace process trace .. ptrace(KE_OS) VOL 1

pseudo-terminal device ptsname get name of the slave ptsname(BA_LIB) VOL 1

keyserv server for storing public and private keys keyserv(RS_CMD) VOL 3

publickey public key database publickey(RS_ENV) VOL 3

getpublickey, getsecretkey get public or secret key publickey: publickey(RS_LIB) VOL 3

uuto, uupick public system-to-system file copy uuto(AU_CMD) VOL 2

newkey create a new key in the publickey database newkey(RS_CMD) VOL 3

getsecretkey get public or secret/ publickey: getpublickey, publickey(RS_LIB) VOL 3

publickey public key database publickey(RS_ENV) VOL 3

/mvgetch, mvwgetch, ungetch get (or push back) characters from CURSES/
.. curs_getch(TI_LIB) VOL 3

CURSES/ /mvwgetwch, ungetwch get (or push back) wchar_t characters from
.. curs_getwch(TI_LIB) VOL 3

stdio-stream ungetc push character back into input ungetc(BA_LIB) VOL 1

input stream ungetwc push wchar_t character back into ungetwc(BA_LIB) VOL 1

puts, fputs put a string on a stdio-stream puts(BA_LIB) VOL 1

fputws put a wchar_t string on a stream fputws(BA_LIB) VOL 1

putc, putchar, fputc, putw put character or word on a stream putc(BA_LIB) VOL 1

putwc, putwchar, fputwc put wide character on a stream putwc(BA_LIB) VOL 1

character or word on a stream putc, putchar, fputc, putw put putc(BA_LIB) VOL 1

or word on a stream putc, putchar, fputc, putw put character putc(BA_LIB) VOL 1

device database putdev creates and updates the putdev(ES_CMD) VOL 3

environment putenv change or add value to putenv(BA_LIB) VOL 1

stream putmsg, putpmsg send a message on a
.. putmsg(BA_OS) VOL 1

/restartterm, tparm, tputs, putp, vidputs, vidattr, mvcur,/
.. curs_terminfo(TI_LIB) VOL 3

putmsg, putpmsg send a message on a stream
.. putmsg(BA_OS) VOL 1

putpwent write password file entry
.. putpwent(SD_LIB) VOL 3

stdio-stream puts, fputs put a string on a puts(BA_LIB) VOL 1

/getutxent, getutxid, getutxline, pututxline, setutxent, endutxent,/ getutx(SD_LIB) VOL 3

stream putc, putchar, fputc, putw put character or word on a putc(BA_LIB) VOL 1

character on a stream putwc, putwchar, fputwc put wide putwc(BA_LIB) VOL 1

on a stream putwc, putwchar, fputwc put wide character
.. putwc(BA_LIB) VOL 1

/unctrl, keyname, filter, use_env, putwin, getwin, delay_output,/ curs_util(TI_LIB) VOL 3

checkers pwck, grpck password/group file pwck(AS_CMD) VOL 2

pwd: pwd.h password structure pwd(BA_ENV) VOL 1

pwd working directory name pwd(BU_CMD) VOL 2

pwd: pwd.h password structure pwd(BA_ENV) VOL 1

pwrite atomic position and write pwrite(BA_OS) VOL 1

/notimeout, raw, noraw, noqiflush, qiflush, timeout, wtimeout,/ curs_inopts(TI_LIB) VOL 3

qsort quicker sort ... qsort(BA_LIB) VOL 1

setlocale modifies and queries a program’s locale setlocale(BA_OS) VOL 1

termname CURSES environment query routines /termattrs, curs_termattrs(TI_LIB) VOL 3

strchg, strconf change or query stream configuration strchg(BU_CMD) VOL 2

tput initialize a terminal or query the terminfo database tput(TI_CMD) VOL 3

80 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 768

msgget get message queue .. msgget(KE_OS) VOL 1

specified times atq display the queue of jobs to be run at atq(AU_CMD) VOL 2

memory ID ipcrm remove a message queue, semaphore set or shared ipcrm(AS_CMD) VOL 2

sys/msg.h message queue structures sys/msg.h(KE_ENV) VOL 1

qsort quicker sort ... qsort(BA_LIB) VOL 1

run a command immune to hangups and quits nohup ... nohup(BU_CMD) VOL 2

div, ldiv compute the quotient and remainder div(BA_LIB) VOL 1

scalb, logb, nextafter radix-independent functions scalb(BA_LIB) VOL 1

raise send signal to program raise(raise(BA_OS)) VOL 1

generator rand, srand simple random-number rand(BA_LIB) VOL 1

rand, srand simple random-number generator rand(BA_LIB) VOL 1

/line control, get and set baud rate, get and set terminal/ termios(BA_OS) VOL 1

/keypad, meta, nodelay, notimeout, raw, noraw, noqiflush, qiflush,/ curs_inopts(TI_LIB) VOL 3

aio_read asynchronous read ... aio_read(MT_LIB) VOL 1

pread atomic position and read ... pread(BA_OS) VOL 1

getpass read a password ... getpass(SD_LIB) VOL 1

getpass read a password ... getpass(SD_LIB) VOL 3

catgets read a program message catgets(BA_LIB) VOL 1

read, readv read from file .. read(BA_OS) VOL 1

mail, rmail send or read mail ... mail(BU_CMD) VOL 2

acquire a reader-writer lock in read mode /conditionally rw_tryrdlock(MT_LIB) VOL 1

acquire a reader-writer lock in read mode rw_rdlock rw_rdlock(MT_LIB) VOL 1

line read one line .. line(BU_CMD) VOL 2

read, readv read from file read(BA_OS) VOL 1

readlink read value of a symbolic link
.. readlink(readlink(BA_OS)) VOL 1

/scr_restore, scr_init, scr_set read (write) a CURSES screen from/
... curs_scr_dump(TI_LIB) VOL 3

closedir/ directory: opendir, readdir, readdir_r, rewinddir, directory(BA_OS) VOL 1

directory: opendir, readdir, readdir_r, rewinddir, closedir/ directory(BA_OS) VOL 1

rwlock_destroy destroy a reader-writer lock rwlock_destroy(MT_LIB) VOL 1

rwlock_init initialize a reader-writer lock rwlock_init(MT_LIB) VOL 1

rw_unlock release a reader-writer lock rw_unlock(MT_LIB) VOL 1

rw_rdlock acquire a reader-writer lock in read mode rw_rdlock(MT_LIB) VOL 1

/conditionally acquire a reader-writer lock in read mode
... rw_tryrdlock(MT_LIB) VOL 1

/conditionally acquire a reader-writer lock in write mode
.. rw_trywrlock(MT_LIB) VOL 1

rw_wrlock acquire a reader-writer lock in write mode
... rw_wrlock(MT_LIB) VOL 1

/rwlock_destroy, overview of reader-writer lock routines rwlock(MT_LIB) VOL 1

open open for reading or writing .. open(BA_OS) VOL 1

link readlink read value of a symbolic
.. readlink(readlink(BA_OS)) VOL 1

read, readv read from file ... read(BA_OS) VOL 1

lseek move read/write file pointer lseek(BA_OS) VOL 1

tirdwr Transport Interface read/write interface STREAMS module
... tirdwr(BA_DEV) VOL 1

/get real user, effective user, real group, and effective group IDs getuid(BA_OS) VOL 1

/geteuid, getgid, getegid get real user, effective user, real/ getuid(BA_OS) VOL 1

malloc, free, realloc, calloc, memory allocator malloc(BA_OS) VOL 1

indication t_rcvrel acknowledge receipt of an orderly release t_rcvrel(BA_LIB) VOL 1

Permuted Index 81

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 769

environment remadmin control remote operation
... remadmin(RA_CMD) VOL 3

div, ldiv compute the quotient and remainder ... div(BA_LIB) VOL 1

/remainder, fabs floor, ceiling, remainder, absolute value functions floor(BA_LIB) VOL 1

remainder,/ floor, ceil, fmod, remainder, fabs floor, ceiling, floor(BA_LIB) VOL 1

remalias administer machine aliases
.. remalias(RA_CMD) VOL 3

clean-up program remclean remote operation interface
... remclean(RA_CMD) VOL 3

calendar reminder service calendar(BU_CMD) VOL 2

jobs remkill cancel remote operation remkill(RA_CMD) VOL 3

/the order in which the function remop() accesses network services
... remtab(RA_CMD) VOL 3

for remote operations remop command interface to remop
... remop(RA_CMD) VOL 3

remop command interface to remop for remote operations remop(RA_CMD) VOL 3

remop initiate a remote operation remop(RA_LIB) VOL 3

uux remote command execution uux(AU_CMD) VOL 2

roijobids get unique remote job identifiers roijobids(RA_LIB) VOL 3

the status and retrieve output of remote jobs remstat track remstat(RA_CMD) VOL 3

remop initiate a remote operation .. remop(RA_LIB) VOL 3

remadmin control remote operation environment
... remadmin(RA_CMD) VOL 3

program remclean remote operation interface clean-up
... remclean(RA_CMD) VOL 3

remkill cancel remote operation jobs remkill(RA_CMD) VOL 3

command interface to remop for remote operations remop remop(RA_CMD) VOL 3

/library routines for client side remote procedure call/ rpc_clnt_auth(RS_LIB) VOL 3

/library routines for server side remote procedure call errors rpc_svc_err(RS_LIB) VOL 3

/XDR library routines for remote procedure calls rpc_xdr(RS_LIB) VOL 3

/library routines for secure remote procedure calls secure_rpc(RS_LIB) VOL 3

mount or unmount file systems and remote resources mount, umount mount(AS_CMD) VOL 2

condition definitions errno Remote Services error codes and errno(RS_ENV) VOL 3

extensions effects effects of the Remote Services Extension on other effects(RS_ENV) VOL 3

list available resources from remote systems dfshares dfshares(RS_CMD) VOL 3

resource available for sharing by remote systems share make local share(RS_CMD) VOL 3

resource unavailable for sharing by remote systems unshare make local
.. unshare(RS_CMD) VOL 3

rmdel remove a delta from an SCCS file rmdel(SD_CMD) VOL 3

rmdir remove a directory .. rmdir(BA_OS) VOL 1

software database removef remove a file from the installation
... removef(AS_CMD) VOL 2

set or shared memory ID ipcrm remove a message queue, semaphore
... ipcrm(AS_CMD) VOL 2

package pkgdel remove a previously initiated pkgdel(RA_CMD) VOL 3

attention key defsak define, remove, change, or display secure defsak(ES_CMD) VOL 3

unlink remove directory entry unlink(BA_OS) VOL 1

remove remove file remove(remove(BA_OS)) VOL 1

rm, rmdir remove files or directories rm(BU_CMD) VOL 2

atrm remove jobs spooled by at or batch atrm(AU_CMD) VOL 2

remove remove file remove(remove(BA_OS)) VOL 1

associated with the/ procprivl add, remove, set, or count privileges procprivl(ES_LIB) VOL 3

Permuted Index 83

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 771

privileges/ procpriv add, remove, set, retrieve, or count procpriv(ES_LIB) VOL 3

installation software database removef remove a file from the removef(AS_CMD) VOL 2

pkgrm removes a package from the system
.. pkgrm(AS_CMD) VOL 2

retrieve output of remote jobs remstat track the status and remstat(RA_CMD) VOL 3

the function remop() accesses/ remtab specify the order in which remtab(RA_CMD) VOL 3

rename change the name of a file rename(BA_OS) VOL 1

fsck check and repair file systems .. fsck(AS_CMD) VOL 2

uniq report repeated lines in a file uniq(BU_CMD) VOL 2

panel_window: panel_window, replace_panel get or set the/ panel_window(TI_LIB) VOL 3

clock report CPU time used clock(BA_LIB) VOL 1

facilities status ipcs report inter-process communication ipcs(AS_CMD) VOL 2

and i-nodes df report number of free disk blocks df(BU_CMD) VOL 2

operations bkhistory report on completed backup bkhistory(AS_CMD) VOL 2

software distribution/ distrpt report on the contents of the distrpt(RA_CMD) VOL 3

sa1, sa2, sadc system activity report package ... sa(AS_CMD) VOL 2

activity timex time a command; report process data and system timex(AS_CMD) VOL 2

ps report process status ... ps(BU_CMD) VOL 2

uniq report repeated lines in a file uniq(BU_CMD) VOL 2

rpcinfo report RPC information rpcinfo(RS_CMD) VOL 3

auditctl control or report the status of auditing auditctl(AT_LIB) VOL 3

requests rsstatus report the status of posted restore
.. rsstatus(AS_CMD) VOL 2

file and directory/ ursstatus report the status of posted user ursstatus(AS_CMD) VOL 2

sar system activity reporter .. sar(AS_CMD) VOL 2

msgrpt log reporting facility ... msgrpt(AS_CMD) VOL 2

stdio-stream fsetpos, fgetpos reposition a file pointer in a fsetpos(fsetpos(BA_OS)) VOL 1

stdio-stream fseek, rewind, ftell reposition a file-pointer in a fseek(fseek(BA_OS)) VOL 1

/library routines for external data representation stream creation xdr_create(RS_LIB) VOL 3

a binary file, or decode its ASCII representation /uudecode encode
... uuencode(AU_CMD) VOL 2

library routines for external data representation /xdr_setpos xdr_admin(RS_LIB) VOL 3

library routines for external data representation /xdr_void xdr_simple(RS_LIB) VOL 3

library routines for external data representation /xdr_wrapstring
.. xdr_complex(RS_LIB) VOL 3

t_accept accept a connect request ... t_accept(BA_LIB) VOL 1

t_listen listen for a connect request ... t_listen(BA_LIB) VOL 1

a server catreq request a catalog of packages from catreq(RA_CMD) VOL 3

thr_setconcurrency request a level of concurrency
.. thr_setconcurrency(MT_LIB) VOL 1

package pkgreq request delivery of a software pkgreq(RA_CMD) VOL 3

directories urestore request restore of files and urestore(AS_CMD) VOL 2

pkgask stores answers to a request script ... pkgask(AS_CMD) VOL 2

the confirmation from a connect request t_rcvconnect receive t_rcvconnect(BA_LIB) VOL 1

send user-initiated disconnect request t_snddis ... t_snddis(BA_LIB) VOL 1

lio_listio issue list of I/O requests .. lio_listio(MT_LIB) VOL 1

lp, cancel send/cancel print requests .. lp(AU_CMD) VOL 2

rsoper service pending restore requests and service media/ rsoper(AS_CMD) VOL 2

the individual in charge of restore requests /or modify the identity of
.. rsnotify(AS_CMD) VOL 2

report the status of posted restore requests rsstatus rsstatus(AS_CMD) VOL 2

user file and directory restore requests /the status of posted ursstatus(AS_CMD) VOL 2

84 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 772

/def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode,/
.. curs_kernel(TI_LIB) VOL 3

/def_shell_mode, reset_prog_mode, reset_shell_mode, resetty, savetty,/
.. curs_kernel(TI_LIB) VOL 3

/reset_prog_mode, reset_shell_mode, resetty, savetty, getsyx, setsyx,/ curs_kernel(TI_LIB) VOL 3

remote systems share make local resource available for sharing by share(RS_CMD) VOL 3

setrlimit control maximum system resource consumption getrlimit, getrlimit(BA_OS) VOL 1

dfmounts display mounted resource information dfmounts(RS_CMD) VOL 3

remote systems unshare make local resource unavailable for sharing by
.. unshare(RS_CMD) VOL 3

dfshares list available resources from remote systems dfshares(RS_CMD) VOL 3

or unmount file systems and remote resources mount, umount mount mount(AS_CMD) VOL 2

sema_trywait conditionally claim resources under the semaphore’s/
.. sema_trywait(MT_LIB) VOL 1

/setterm, set_curterm, del_curterm, restartterm, tparm, tputs, putp,/
.. curs_terminfo(TI_LIB) VOL 3

systems, data partitions, or disks restore initiate restores of file restore(AS_CMD) VOL 2

urestore request restore of files and directories urestore(AS_CMD) VOL 2

insertion/ rsoper service pending restore requests and service media rsoper(AS_CMD) VOL 2

of posted user file and directory restore requests /report the status
.. ursstatus(AS_CMD) VOL 2

report the status of posted restore requests rsstatus rsstatus(AS_CMD) VOL 2

of the individual in charge of restore requests /the identity rsnotify(AS_CMD) VOL 2

partitions, or/ restore initiate restores of file systems, data restore(AS_CMD) VOL 2

gettxt retrieve a text string ... gettxt(BA_LIB) VOL 1

message data base gettxt retrieve a text string from a gettxt(BU_CMD) VOL 2

priority thr_getprio retrieve a thread’s scheduling thr_getprio(MT_LIB) VOL 1

status aio_error retrieve asynchronous I/O error aio_error(MT_LIB) VOL 1

disconnect t_rcvdis retrieve information from t_rcvdis(BA_LIB) VOL 1

procpriv add, remove, set, retrieve, or count privileges/ procpriv(ES_LIB) VOL 3

Directory mode of a/ mldmode Retrieve or set the Multilevel mldmode(ES_LIB) VOL 3

remstat track the status and retrieve output of remote jobs remstat(RA_CMD) VOL 3

asynchronous I/O/ aio_return retrieve return status of aio_return(MT_LIB) VOL 1

thr_getconcurrency retrieve the level of concurrency
.. thr_getconcurrency(MT_LIB) VOL 1

abs, labs return integer absolute value abs(BA_LIB) VOL 1

operation aio_return retrieve return status of asynchronous I/O
.. aio_return(MT_LIB) VOL 1

thread thr_minstack return the minimum stack size for a
... thr_minstack(MT_LIB) VOL 1

/get or set an IPC object’s ACL, return the number of ACL entries aclipc(ES_LIB) VOL 3

getenv return value for environment name getenv(BA_LIB) VOL 1

stat: sys/stat.h data returned by stat function stat(BA_ENV) VOL 1

col filter reverse line-feeds ... col(BU_CMD) VOL 2

wcsrchr reverse wide character string scan wcsrchr(BA_LIB) VOL 1

file-pointer in a/ fseek, rewind, ftell reposition a fseek(fseek(BA_OS)) VOL 1

/opendir, readdir, readdir_r, rewinddir, closedir directory/ directory(BA_OS) VOL 1

creat create a new file or rewrite an existing one creat(BA_OS) VOL 1

/resetty, savetty, getsyx, setsyx, ripoffline, curs_set, napms/ curs_kernel(TI_LIB) VOL 3

directories rm, rmdir remove files or rm(BU_CMD) VOL 2

mail, rmail send or read mail mail(BU_CMD) VOL 2

Permuted Index 85

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 773

file rmdel remove a delta from an SCCS
... rmdel(SD_CMD) VOL 3

rmdir remove a directory rmdir(BA_OS) VOL 1

rm, rmdir remove files or directories rm(BU_CMD) VOL 2

mutex rmutex_destroy destroy a recursive
.. rmutex_destroy(MT_LIB) VOL 1

mutex rmutex_init initialize a recursive
... rmutex_init(MT_LIB) VOL 1

rmutex_lock lock a recursive mutex
.. rmutex_lock(MT_LIB) VOL 1

recursive mutex rmutex_trylock conditionally lock a
... rmutex_trylock(MT_LIB) VOL 1

mutex rmutex_unlock unlock a recursive
... rmutex_unlock(MT_LIB) VOL 1

user roigetuser get login name of the roigetuser(RA_LIB) VOL 3

identifiers roijobids get unique remote job roijobids(RA_LIB) VOL 3

roistat update job status record roistat(RA_LIB) VOL 3

Operation Script (TOS) file roitosparse parse a Transaction roitosparse(RA_LIB) VOL 3

variable name roitosval get a value for a roitosval(RA_LIB) VOL 3

/display, add, change, delete roles in the Trusted Facility/ adminrole(ES_CMD) VOL 3

chroot change root directory .. chroot(KE_OS) VOL 1

chroot change root directory for a command chroot(SD_CMD) VOL 3

cbrt exponential, logarithm, power, root functions /log10, pow, sqrt, exp(BA_LIB) VOL 1

thr_get_rr_interval get the round-robin scheduling interval
... thr_get_rr_interval(MT_LIB) VOL 1

atexit add program termination routine ... atexit(atexit(BA_OS)) VOL 1

PANELS virtual screen refresh routine /update_panels panel_update(TI_LIB) VOL 3

window background manipulation routines /bkgd, wbkgd CURSES curs_bkgd(TI_LIB) VOL 3

flash CURSES bell and screen flash routines curs_beep: beep, curs_beep(TI_LIB) VOL 3

and window attribute control routines /CURSES character curs_attr(TI_LIB) VOL 3

miscellaneous CURSES utility routines /delay_output, flushinp curs_util(TI_LIB) VOL 3

initialization and manipulation routines /delscreen CURSES screen
.. curs_initscr(TI_LIB) VOL 3

field_opts FORMS field option routines /field_opts_off, form_field_opts(TI_LIB) VOL 3

by/ /assign application-specific routines for automatic invocation
... menu_hook(TI_LIB) VOL 3

/rpc_broadcast_exp, rpc_call library routines for client side calls rpc_clnt_calls(RS_LIB) VOL 3

/authsys_create_default library routines for client side remote/
... rpc_clnt_auth(RS_LIB) VOL 3

and/ /clnt_vc_create library routines for dealing with creation
... rpc_clnt_create(RS_LIB) VOL 3

creation of/ /svc_vc_create library routines for dealing with the rpc_svc_create(RS_LIB) VOL 3

representation /xdr_setpos library routines for external data xdr_admin(RS_LIB) VOL 3

/xdr_vector, xdr_wrapstring library routines for external data/ xdr_complex(RS_LIB) VOL 3

/xdrstdio_create library routines for external data/ xdr_create(RS_LIB) VOL 3

/xdr_u_short, xdr_void library routines for external data/ xdr_simple(RS_LIB) VOL 3

/assign application-specific routines for invocation by FORMS
... form_hook(TI_LIB) VOL 3

/xprt_unregister library routines for registering servers
.. rpc_svc_calls(RS_LIB) VOL 3

/xdr_replymsg XDR library routines for remote procedure calls rpc_xdr(RS_LIB) VOL 3

/rpcb_set, rpcb_unset library routines for RPC bind service rpcbind(RS_LIB) VOL 3

86 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 774

/svc_run_parallel library routines for RPC servers rpc_svc_reg(RS_LIB) VOL 3

/netname2user, user2netname library routines for secure remote/ secure_rpc(RS_LIB) VOL 3

procedure/ /svcerr_weakauth library routines for server side remote rpc_svc_err(RS_LIB) VOL 3

form_opts FORMS option routines /form_opts_off, form_opts(TI_LIB) VOL 3

PANELS deck manipulation routines /hide_panel, panel_hidden
... panel_show(TI_LIB) VOL 3

CURSES refresh control routines /is_wintouched curs_touch(TI_LIB) VOL 3

item_opts MENUS item option routines /item_opts_off, menu_item_opts(TI_LIB) VOL 3

termname CURSES environment query routines /longname, termattrs,
... curs_termattrs(TI_LIB) VOL 3

menu_mark MENUS mark string routines menu_mark: set_menu_mark,
... menu_mark(TI_LIB) VOL 3

menu_opts MENUS option routines /menu_opts_off, menu_opts(TI_LIB) VOL 3

CURSES color manipulation routines /pair_content curs_color(TI_LIB) VOL 3

overview of reader-writer lock routines /rwlock_destroy, rwlock(MT_LIB) VOL 1

window and subwindow association routines /scale_form FORMS form_win(TI_LIB) VOL 3

window and subwindow association routines /scale_menu MENUS menu_win(TI_LIB) VOL 3

terminal output option control routines /scrollok, nl, nonl CURSES
.. curs_outopts(TI_LIB) VOL 3

link_fieldtype FORMS fieldtype routines /set_fieldtype_choice,
.. form_fieldtype(TI_LIB) VOL 3

curs_set, napms low-level CURSES routines /setsyx, ripoffline, curs_kernel(TI_LIB) VOL 3

slk_attroff CURSES soft label routines /slk_attron, slk_attrset, curs_slk(TI_LIB) VOL 3

expression compile and match routines /step, advance regular regexp(BA_LIB) VOL 1

PANELS deck manipulation routines /top_panel, bottom_panel
... panel_top(TI_LIB) VOL 3

terminal input option control routines /typeahead CURSES curs_inopts(TI_LIB) VOL 3

/set and get maximum numbers of rows and columns in MENUS menu_format(TI_LIB) VOL 3

rpcb_unset library routines for RPC bind service /rpcb_set, rpcbind(RS_LIB) VOL 3

rpcinfo report RPC information ... rpcinfo(RS_CMD) VOL 3

rpc rpc program number data base rpc(RS_ENV) VOL 3

rpcbind universal addresses to RPC program number mapper rpcbind(RS_CMD) VOL 3

rpcgen an RPC protocol compiler rpcgen(RS_CMD) VOL 3

rpc rpc program number data base rpc(RS_ENV) VOL 3

library routines for RPC servers /svc_run_parallel rpc_svc_reg(RS_LIB) VOL 3

rpcbind: rpcb_getmaps, rpcb_getaddr, rpcb_gettime,/ rpcbind(RS_LIB) VOL 3

rpcb_gettime,/ rpcbind: rpcb_getmaps, rpcb_getaddr, rpcbind(RS_LIB) VOL 3

/rpcb_getmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall,/ rpcbind(RS_LIB) VOL 3

rpcb_getaddr, rpcb_gettime,/ rpcbind: rpcb_getmaps, rpcbind(RS_LIB) VOL 3

program number mapper rpcbind universal addresses to RPC
.. rpcbind(RS_CMD) VOL 3

/rpcb_getaddr, rpcb_gettime, rpcb_rmtcall, rpcb_set, rpcb_unset/
.. rpcbind(RS_LIB) VOL 3

/clnt_sperrno, clnt_sperror, rpc_broadcast, rpc_broadcast_exp,/
.. rpc_clnt_calls(RS_LIB) VOL 3

/clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call library/
.. rpc_clnt_calls(RS_LIB) VOL 3

/rpcb_gettime, rpcb_rmtcall, rpcb_set, rpcb_unset library/ rpcbind(RS_LIB) VOL 3

bind/ /rpcb_rmtcall, rpcb_set, rpcb_unset library routines for RPC rpcbind(RS_LIB) VOL 3

/rpc_broadcast, rpc_broadcast_exp, rpc_call library routines for/ rpc_clnt_calls(RS_LIB) VOL 3

authnone_create, authsys_create,/ rpc_clnt_auth: auth_destroy, rpc_clnt_auth(RS_LIB) VOL 3

clnt_freeres, clnt_geterr,/ rpc_clnt_calls: clnt_call, rpc_clnt_calls(RS_LIB) VOL 3

Permuted Index 87

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 775

clnt_create, clnt_destroy,/ rpc_clnt_create: clnt_control,
... rpc_clnt_create(RS_LIB) VOL 3

rpcgen an RPC protocol compiler rpcgen(RS_CMD) VOL 3

rpcinfo report RPC information rpcinfo(RS_CMD) VOL 3

xprt_register,/ rpc_svc_calls: rpc_reg, svc_reg, svc_unreg, rpc_svc_calls(RS_LIB) VOL 3

svc_unreg, xprt_register,/ rpc_svc_calls: rpc_reg, svc_reg,
.. rpc_svc_calls(RS_LIB) VOL 3

svc_destroy, svc_dg_create,/ rpc_svc_create: svc_create, rpc_svc_create(RS_LIB) VOL 3

svcerr_decode, svcerr_noproc,/ rpc_svc_err: svcerr_auth, rpc_svc_err(RS_LIB) VOL 3

svc_getargs, svc_getreqset,/ rpc_svc_reg: svc_freeargs, rpc_svc_reg(RS_LIB) VOL 3

xdr_authsys_parms, xdr_callhdr,/ rpc_xdr: xdr_accepted_reply, rpc_xdr(RS_LIB) VOL 3

command interpreter sh, jsh, rsh shell, the standard/restricted sh(BU_CMD) VOL 2

identity of the individual in/ rsnotify display or modify the rsnotify(AS_CMD) VOL 2

requests and service media/ rsoper service pending restore rsoper(AS_CMD) VOL 2

posted restore requests rsstatus report the status of rsstatus(AS_CMD) VOL 2

nice run a command at low priority nice(AS_CMD) VOL 2

quits nohup run a command immune to hangups and
.. nohup(BU_CMD) VOL 2

atq display the queue of jobs to be run at specified times atq(AU_CMD) VOL 2

runacct run daily accounting runacct(AS_CMD) VOL 2

init change system run level .. init(AS_CMD) VOL 2

runacct run daily accounting runacct(AS_CMD) VOL 2

gcore get core images of running processes .. gcore(SD_CMD) VOL 3

rw_wrlock, rw_tryrdlock,/ rwlock: rwlock_init, rw_rdlock, rwlock(MT_LIB) VOL 1

reader-writer lock rwlock_destroy destroy a rwlock_destroy(MT_LIB) VOL 1

/rw_trywrlock, rw_unlock, rwlock_destroy, overview of/ rwlock(MT_LIB) VOL 1

reader-writer lock rwlock_init initialize a rwlock_init(MT_LIB) VOL 1

rw_tryrdlock,/ rwlock: rwlock_init, rw_rdlock, rw_wrlock, rwlock(MT_LIB) VOL 1

lock in read mode rw_rdlock acquire a reader-writer
.. rw_rdlock(MT_LIB) VOL 1

rw_trywrlock,/ rwlock: rwlock_init, rw_rdlock, rw_wrlock, rw_tryrdlock,
.. rwlock(MT_LIB) VOL 1

a reader-writer lock in read mode rw_tryrdlock conditionally acquire
... rw_tryrdlock(MT_LIB) VOL 1

/rwlock_init, rw_rdlock, rw_wrlock, rw_tryrdlock, rw_trywrlock,/ rwlock(MT_LIB) VOL 1

a reader-writer lock in write mode rw_trywrlock conditionally acquire
.. rw_trywrlock(MT_LIB) VOL 1

/rw_rdlock, rw_wrlock, rw_tryrdlock, rw_trywrlock, rw_unlock,/ rwlock(MT_LIB) VOL 1

lock rw_unlock release a reader-writer
... rw_unlock(MT_LIB) VOL 1

of/ /rw_tryrdlock, rw_trywrlock, rw_unlock, rwlock_destroy, overview
.. rwlock(MT_LIB) VOL 1

lock in write mode rw_wrlock acquire a reader-writer
... rw_wrlock(MT_LIB) VOL 1

rwlock: rwlock_init, rw_rdlock, rw_wrlock, rw_tryrdlock,/ rwlock(MT_LIB) VOL 1

report package sa1, sa2, sadc system activity sa(AS_CMD) VOL 2

package sa1, sa2, sadc system activity report sa(AS_CMD) VOL 2

administration sacadm service access controller sacadm(AS_CMD) VOL 2

editing activity sact print current SCCS file sact(SD_CMD) VOL 3

sa1, sa2, sadc system activity report package sa(AS_CMD) VOL 2

sadp disk access profiler sadp(AS_CMD) VOL 2

sar system activity reporter sar(AS_CMD) VOL 2

88 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 776

/reset_shell_mode, resetty, savetty, getsyx, setsyx,/ curs_kernel(TI_LIB) VOL 3

radix-independent functions scalb, logb, nextafter .. scalb(BA_LIB) VOL 1

/form_win, set_form_sub, form_sub, scale_form FORMS window and/ form_win(TI_LIB) VOL 3

/menu_win, set_menu_sub, menu_sub, scale_menu MENUS window and/
.. menu_win(TI_LIB) VOL 3

wcschr scan a wide character string wcschr(BA_LIB) VOL 1

wide characters wcspbrk scan a wide character string for wcspbrk(BA_LIB) VOL 1

reverse wide character string scan wcsrchr .. wcsrchr(BA_LIB) VOL 1

input fscanf, scanf, sscanf convert formatted fscanf(BA_LIB) VOL 1

awk pattern-directed scanning and processing language awk(BU_CMD) VOL 2

nawk pattern-directed scanning and processing language nawk(BU_CMD) VOL 2

vwscanw convert/ curs_scanw: scanw, wscanw, mvscanw, mvwscanw,
.. curs_scanw(TI_LIB) VOL 3

delta make a delta (change) to an SCCS file .. delta(SD_CMD) VOL 3

get get a version of an SCCS file .. get(SD_CMD) VOL 3

prs print an SCCS file .. prs(SD_CMD) VOL 3

rmdel remove a delta from an SCCS file ... rmdel(SD_CMD) VOL 3

unget undo a previous get of an SCCS file ... unget(SD_CMD) VOL 3

val validate SCCS file .. val(SD_CMD) VOL 3

sact print current SCCS file editing activity sact(SD_CMD) VOL 3

admin create and administer SCCS files .. admin(SD_CMD) VOL 3

what identify SCCS files ... what(SD_CMD) VOL 3

priocntl process scheduler control priocntl(AU_CMD) VOL 2

priocntl process scheduler control ... priocntl(KE_OS) VOL 1

/get the round-robin scheduling interval thr_get_rr_interval(MT_LIB) VOL 1

thr_setscheduler set the scheduling policy for a thread
... thr_setscheduler(MT_LIB) VOL 1

thread thr_getscheduler get the scheduling policy information for a
.. thr_getscheduler(MT_LIB) VOL 1

thr_getprio retrieve a thread’s scheduling priority thr_getprio(MT_LIB) VOL 1

thr_setprio set a thread’s scheduling priority thr_setprio(MT_LIB) VOL 1

scr_set read/ curs_scr_dump: scr_dump, scr_restore, scr_init,
... curs_scr_dump(TI_LIB) VOL 3

clear clear the terminal screen ... clear(TI_CMD) VOL 3

beep, flash CURSES bell and screen flash routines curs_beep: curs_beep(TI_LIB) VOL 3

scr_set read (write) a CURSES screen from (to) a file /scr_init,
... curs_scr_dump(TI_LIB) VOL 3

/set_term, delscreen CURSES screen initialization and/ curs_initscr(TI_LIB) VOL 3

move a PANELS window on the virtual screen panel_move: move_panel panel_move(TI_LIB) VOL 3

/update_panels PANELS virtual screen refresh routine panel_update(TI_LIB) VOL 3

editor vi screen-oriented (visual) display vi(AU_CMD) VOL 2

CURSES/ /scr_dump, scr_restore, scr_init, scr_set read (write) a
... curs_scr_dump(TI_LIB) VOL 3

pkgask stores answers to a request script ... pkgask(AS_CMD) VOL 2

parse a Transaction Operation Script (TOS) file roitosparse roitosparse(RA_LIB) VOL 3

curs_scroll: scroll, srcl, wscrl scroll a CURSES window curs_scroll(TI_LIB) VOL 3

window curs_scroll: scroll, srcl, wscrl scroll a CURSES
.. curs_scroll(TI_LIB) VOL 3

/leaveok, setscrreg, wsetscrreg, scrollok, nl, nonl CURSES terminal/
.. curs_outopts(TI_LIB) VOL 3

Permuted Index 89

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 777

(write) a/ curs_scr_dump: scr_dump, scr_restore, scr_init, scr_set read
... curs_scr_dump(TI_LIB) VOL 3

/scr_dump, scr_restore, scr_init, scr_set read (write) a CURSES/
... curs_scr_dump(TI_LIB) VOL 3

grep search a file for a pattern grep(BU_CMD) VOL 2

file(s) acctcom search and print process accounting
... acctcom(AS_CMD) VOL 2

lsearch, lfind linear search and update .. lsearch(BA_LIB) VOL 1

srchtxt display contents of, or search for a text string in,/ srchtxt(AS_CMD) VOL 2

bsearch binary search on a sorted table bsearch(BA_LIB) VOL 1

change loadable kernel modules search path modpath modpath(KE_OS) VOL 1

search: search.h search tables search(BA_ENV) VOL 1

search: search.h search tables ... search(BA_ENV) VOL 1

hcreate, hdestroy manage hash search tables hsearch, hsearch(BA_LIB) VOL 1

tfind, tdelete, twalk manage binary search trees tsearch, tsearch(BA_LIB) VOL 1

search: search.h search tables search(BA_ENV) VOL 1

keylogin decrypt and store secret key ... keylogin(RS_CMD) VOL 3

getsecretkey get public or secret key /getpublickey, publickey(RS_LIB) VOL 3

size print section sizes of object files size(SD_CMD) VOL 3

define, remove, change, or display secure attention key defsak defsak(ES_CMD) VOL 3

/user2netname library routines for secure remote procedure calls secure_rpc(RS_LIB) VOL 3

authdes_getucred, getnetname,/ secure_rpc: authdes_seccreate, secure_rpc(RS_LIB) VOL 3

devstat get or set device security attributes ... devstat(ES_LIB) VOL 3

devalloc get and set the security attributes of a device devalloc(ES_LIB) VOL 3

devstat gets the current security attributes of a device devstat(ES_CMD) VOL 3

/deallocates a device and sets its security attributes to system/ devdealloc(ES_LIB) VOL 3

mailcheck check for mail at all security levels ... mailcheck(ES_CMD) VOL 3

sed stream editor ... sed(BU_CMD) VOL 2

/nrand48, mrand48, jrand48, srand48, seed48, lcong48 generate uniformly/
.. drand48(BA_LIB) VOL 1

stream seekdir set position of directory seekdir(BA_OS) VOL 1

shmget get shared memory segment ... shmget(shmget(KE_OS)) VOL 1

auditset select or display auditing criteria auditset(AT_CMD) VOL 3

two sorted files comm select or reject lines common to comm(BU_CMD) VOL 2

file cut cut out selected fields of each line of a cut(BU_CMD) VOL 2

sema_destroy destroy a semaphore
.. sema_destroy(MT_LIB) VOL 1

sema_init initialize a semaphore sema_init(MT_LIB) VOL 1

sema_destroy destroy a semaphore .. sema_destroy(MT_LIB) VOL 1

sema_init initialize a semaphore .. sema_init(MT_LIB) VOL 1

sema_wait acquire a semaphore .. sema_wait(MT_LIB) VOL 1

semctl semaphore control operations semctl(KE_OS) VOL 1

sys/sem.h semaphore facility sys/sem.h(KE_ENV) VOL 1

semop semaphore operations semop(KE_OS) VOL 1

incrementing the count value of the semaphore /release a lock by sema_post(MT_LIB) VOL 1

ipcrm remove a message queue, semaphore set or shared memory ID
... ipcrm(AS_CMD) VOL 2

semget get set of semaphores .. semget(KE_OS) VOL 1

claim resources under the semaphore’s control /conditionally
.. sema_trywait(MT_LIB) VOL 1

incrementing the count value of/ sema_post release a lock by sema_post(MT_LIB) VOL 1

90 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 778

getgrent, getgrgid, getgrnam , setgrent, endgrent, fgetgrent get/ getgrent(BA_LIB) VOL 1

group IDs getgroups, setgroups get or set supplementary
.. getgroups(BA_OS) VOL 1

set_item_term,/ menu_hook: set_item_init, item_init, menu_hook(TI_LIB) VOL 3

item_opts_off,/ menu_item_opts: set_item_opts, item_opts_on,
... menu_item_opts(TI_LIB) VOL 3

/set_item_init, item_init, set_item_term, item_term,/ menu_hook(TI_LIB) VOL 3

associate/ menu_item_userptr: set_item_userptr, item_userptr
.. menu_item_userptr(TI_LIB) VOL 3

get MENUS item/ menu_item_value: set_item_value, item_value set and
... menu_item_value(TI_LIB) VOL 3

timer getitimer, setitimer get/set value of interval getitimer(RT_OS) VOL 3

setjmp, longjmp non-local goto setjmp(BA_LIB) VOL 1

declarations setjmp: setjmp.h stack environment
... setjmp(BA_ENV) VOL 1

declarations setjmp: setjmp.h stack environment setjmp(BA_ENV) VOL 1

encoding crypt, setkey, encrypt generate string crypt(BA_LIB) VOL 1

pfmt() and lfmt() setlabel define the label for setlabel(BA_LIB) VOL 1

program’s locale setlocale modifies and queries a setlocale(BA_OS) VOL 1

/set_field_status, field_status, set_max_field set and get FORMS/
... form_field_buffer(TI_LIB) VOL 3

/set_menu_fore, menu_fore, set_menu_back, menu_back,/
.. menu_attributes(TI_LIB) VOL 3

set_menu_back,/ menu_attributes: set_menu_fore, menu_fore, menu_attributes(TI_LIB) VOL 3

and get maximum/ menu_format: set_menu_format, menu_format set
... menu_format(TI_LIB) VOL 3

/set_menu_back, menu_back, set_menu_grey, menu_grey,/
.. menu_attributes(TI_LIB) VOL 3

/set_item_term, item_term, set_menu_init, menu_init,/ menu_hook(TI_LIB) VOL 3

item_count connect and/ menu_items: set_menu_items, menu_items, menu_items(TI_LIB) VOL 3

string routines menu_mark: set_menu_mark, menu_mark MENUS mark
... menu_mark(TI_LIB) VOL 3

menu_opts_off,/ menu_opts: set_menu_opts, menu_opts_on, menu_opts(TI_LIB) VOL 3

MENUS/ /set_menu_grey, menu_grey, set_menu_pad, menu_pad control
.. menu_attributes(TI_LIB) VOL 3

and get MENUS/ menu_pattern: set_menu_pattern, menu_pattern set
.. menu_pattern(TI_LIB) VOL 3

menu_win: set_menu_win, menu_win, set_menu_sub, menu_sub, scale_menu/
.. menu_win(TI_LIB) VOL 3

/set_menu_init, menu_init, set_menu_term, menu_term assign/
... menu_hook(TI_LIB) VOL 3

associate/ menu_userptr: set_menu_userptr, menu_userptr
.. menu_userptr(TI_LIB) VOL 3

set_menu_sub, menu_sub,/ menu_win: set_menu_win, menu_win, menu_win(TI_LIB) VOL 3

setmnt establish mount table setmnt(AS_CMD) VOL 2

getnetconfigent,/ getnetconfig, setnetconfig, endnetconfig, getnetconfig(RS_LIB) VOL 3

NETPATH getnetpath, setnetpath, endnetpath manipulate
... getnetpath(RS_LIB) VOL 3

pagination form_new_page: set_new_page, new_page FORMS
.. form_new_page(TI_LIB) VOL 3

94 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 782

associate/ panel_userptr: set_panel_userptr, panel_userptr
.. panel_userptr(TI_LIB) VOL 3

setpgid set process group ID
... setpgid(setpgid(BA_OS)) VOL 1

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent/ getpwent(BA_LIB) VOL 1

resource consumption getrlimit, setrlimit control maximum system getrlimit(BA_OS) VOL 1

devdealloc deallocates a device and sets its security attributes to/ devdealloc(ES_LIB) VOL 3

sigdelset, sigismember manipulate sets of signals /sigaddset, sigsetops(BA_OS) VOL 1

nl,/ /idlok, idcok immedok, leaveok, setscrreg, wsetscrreg, scrollok, curs_outopts(TI_LIB) VOL 3

setsid set session ID setsid(setsid(BA_OS)) VOL 1

/resetty, savetty, getsyx, setsyx, ripoffline, curs_set, napms/
.. curs_kernel(TI_LIB) VOL 3

/initscr, newterm, endwin, isendwin, set_term, delscreen CURSES screen/
.. curs_initscr(TI_LIB) VOL 3

curs_terminfo: setupterm, setterm, set_curterm, del_curterm,/
.. curs_terminfo(TI_LIB) VOL 3

get_t_errno, set_t_errno get/set t_errno value
.. get_t_errno(BA_LIB) VOL 1

and time gettimeofday, settimeofday get or set the date
... gettimeofday(RT_OS) VOL 3

/set_current_item, current_item, set_top_row, top_row, item_index/
.. menu_item_current(TI_LIB) VOL 3

IDs setuid, setgid set user and group setuid(BA_OS) VOL 1

information setuname changes machine setuname(AS_CMD) VOL 2

del_curterm,/ curs_terminfo: setupterm, setterm, set_curterm,
.. curs_terminfo(TI_LIB) VOL 3

/getutxid, getutxline, pututxline, setutxent, endutxent, utmpxname,/ getutx(SD_LIB) VOL 3

stdio-stream setbuf, setvbuf assign buffering to a setbuf(BA_LIB) VOL 1

of one/ paste merge same lines of several files or subsequent lines paste(BU_CMD) VOL 2

addsev define additional severities ... addsev(BA_LIB) VOL 1

machine-independent fashion sputl, sgetl access long integer data in a sputl(SD_LIB) VOL 3

standard/restricted command/ sh, jsh, rsh shell, the .. sh(BU_CMD) VOL 2

for sharing by remote systems share make local resource available share(RS_CMD) VOL 3

shmctl shared memory control operations
.. shmctl(shmctl(KE_OS)) VOL 1

sys/shm.h shared memory facility sys/shm.h(KE_ENV) VOL 1

a message queue, semaphore set or shared memory ID ipcrm remove ipcrm(AS_CMD) VOL 2

shmop shared memory operations shmop(shmop(KE_OS)) VOL 1

shmget get shared memory segment shmget(shmget(KE_OS)) VOL 1

dlclose close a shared object .. dlclose(BA_OS) VOL 1

dlopen open a shared object .. dlopen(BA_OS) VOL 1

get the address of a symbol in shared object dlsym .. dlsym(BA_OS) VOL 1

make local resource available for sharing by remote systems share share(RS_CMD) VOL 3

make local resource unavailable for sharing by remote systems unshare
.. unshare(RS_CMD) VOL 3

command interpreter sh, jsh, rsh shell, the standard/restricted sh(BU_CMD) VOL 2

operations shmctl shared memory control
.. shmctl(shmctl(KE_OS)) VOL 1

shmget get shared memory segment
... shmget(shmget(KE_OS)) VOL 1

Permuted Index 95

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 783

shmop shared memory operations
... shmop(shmop(KE_OS)) VOL 1

groups show group memberships groups(AU_CMD) VOL 2

panel_hidden PANELS/ panel_show: show_panel, hide_panel, panel_show(TI_LIB) VOL 3

/monacct, prdaily, prtacct, shutacct, startup, turnacct/ acct(AS_CMD) VOL 2

thr_kill send a signal to a sibling thread ... thr_kill(MT_LIB) VOL 1

library routines for client side calls /rpc_call rpc_clnt_calls(RS_LIB) VOL 3

/library routines for client side remote procedure call/ rpc_clnt_auth(RS_LIB) VOL 3

/library routines for server side remote procedure call errors
... rpc_svc_err(RS_LIB) VOL 3

management sigaction detailed signal sigaction(BA_OS) VOL 1

sigsetops: sigemptyset, sigfillset, sigaddset, sigdelset, sigismember/
... sigsetops(BA_OS) VOL 1

alternate stack context sigaltstack set or get signal sigaltstack(BA_OS) VOL 1

/sigemptyset, sigfillset, sigaddset, sigdelset, sigismember manipulate/
... sigsetops(BA_OS) VOL 1

sigdelset, sigismember/ sigsetops: sigemptyset, sigfillset, sigaddset, sigsetops(BA_OS) VOL 1

sigsetops: sigemptyset, sigfillset, sigaddset, sigdelset,/ sigsetops(BA_OS) VOL 1

sigpause/ signal, sigset, sighold, sigrelse, sigignore, signal(BA_OS) VOL 1

signal, sigset, sighold, sigrelse, sigignore, sigpause simplified/ signal(BA_OS) VOL 1

information siginfo signal generation siginfo(BA_ENV) VOL 1

/sigfillset, sigaddset, sigdelset, sigismember manipulate sets of/ sigsetops(BA_OS) VOL 1

signal state sigsetjmp, siglongjmp a non-local goto with sigsetjmp(BA_LIB) VOL 1

pause suspend process until signal ... pause(BA_OS) VOL 1

generate an abnormal termination signal abort .. abort(BA_OS) VOL 1

sigaltstack set or get signal alternate stack context sigaltstack(BA_OS) VOL 1

signal base signals ... signal(BA_ENV) VOL 1

siginfo signal generation information siginfo(BA_ENV) VOL 1

sigaction detailed signal management sigaction(BA_OS) VOL 1

sigignore, sigpause simplified signal management /sigrelse, signal(BA_OS) VOL 1

sigprocmask change or examine signal mask .. sigprocmask(BA_OS) VOL 1

until signal sigsuspend install a signal mask and suspend process
.. sigsuspend(BA_OS) VOL 1

/change or examine the signal mask of a thread thr_sigsetmask(MT_LIB) VOL 1

sigignore, sigpause simplified/ signal, sigset, sighold, sigrelse, signal(BA_OS) VOL 1

mask and suspend process until signal sigsuspend install a signal sigsuspend(BA_OS) VOL 1

siglongjmp a non-local goto with signal state sigsetjmp, sigsetjmp(BA_LIB) VOL 1

kill send a signal to a process ... kill(BU_CMD) VOL 2

processes kill send a signal to a process or a group of kill(BA_OS) VOL 1

sigsend, sigsendset send a signal to a process or a group of/ sigsend(BA_OS) VOL 1

thr_kill send a signal to a sibling thread thr_kill(MT_LIB) VOL 1

sigwait wait for a signal to be posted .. sigwait(BA_OS) VOL 1

raise send signal to program raise(raise(BA_OS)) VOL 1

signal base signals .. signal(BA_ENV) VOL 1

truss trace system calls and signals ... truss(SD_CMD) VOL 3

sigismember manipulate sets of signals /sigaddset, sigdelset, sigsetops(BA_OS) VOL 1

pending sigpending examine signals that are blocked and sigpending(BA_OS) VOL 1

sighold, sigrelse, sigignore, sigpause simplified signal/ /sigset, signal(BA_OS) VOL 1

blocked and pending sigpending examine signals that are
.. sigpending(BA_OS) VOL 1

96 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 784

signal mask sigprocmask change or examine
... sigprocmask(BA_OS) VOL 1

signal, sigset, sighold, sigrelse, sigignore, sigpause/ signal(BA_OS) VOL 1

to a process or a group of/ sigsend, sigsendset send a signal sigsend(BA_OS) VOL 1

process or a group of/ sigsend, sigsendset send a signal to a sigsend(BA_OS) VOL 1

sigignore, sigpause/ signal, sigset, sighold, sigrelse, signal(BA_OS) VOL 1

goto with signal state sigsetjmp, siglongjmp a non-local sigsetjmp(BA_LIB) VOL 1

sigaddset, sigdelset, sigismember/ sigsetops: sigemptyset, sigfillset, sigsetops(BA_OS) VOL 1

and suspend process until signal sigsuspend install a signal mask sigsuspend(BA_OS) VOL 1

posted sigwait wait for a signal to be sigwait(BA_OS) VOL 1

lex generate programs for simple lexical analysis of text lex(SD_CMD) VOL 3

rand, srand simple random-number generator rand(BA_LIB) VOL 1

fmt simple text formatters fmt(BU_CMD) VOL 2

/sigrelse, sigignore, sigpause simplified signal management signal(BA_OS) VOL 1

atan2 trigonometric/ trig: sin, cos, tan, asin, acos, atan, trig(BA_LIB) VOL 1

condition/ cond_signal wake up a single thread waiting on a cond_signal(MT_LIB) VOL 1

atanh hyperbolic/ hyperbolic: sinh, cosh, tanh, asinh, acosh, hyperbolic(BA_LIB) VOL 1

return the minimum stack size for a thread thr_minstack thr_minstack(MT_LIB) VOL 1

files size print section sizes of object size(SD_CMD) VOL 3

size print section sizes of object files .. size(SD_CMD) VOL 3

grantpt grant access to the slave pseudo-terminal device grantpt(BA_LIB) VOL 1

ptsname get name of the slave pseudo-terminal device ptsname(BA_LIB) VOL 1

interval sleep suspend execution for sleep(sleep(BA_OS)) VOL 1

interval sleep suspend execution for an sleep(BU_CMD) VOL 2

/slk_touch, slk_attron, slk_attrset, slk_attroff CURSES soft label/ curs_slk(TI_LIB) VOL 3

/slk_clear, slk_restore, slk_touch, slk_attron, slk_attrset,/ curs_slk(TI_LIB) VOL 3

/slk_restore, slk_touch, slk_attron, slk_attrset, slk_attroff CURSES/ curs_slk(TI_LIB) VOL 3

/slk_noutrefresh, slk_label, slk_clear, slk_restore, slk_touch,/ curs_slk(TI_LIB) VOL 3

slk_noutrefresh,/ curs_slk: slk_init, slk_set, slk_refresh, curs_slk(TI_LIB) VOL 3

/slk_refresh, slk_noutrefresh, slk_label, slk_clear, slk_restore,/ curs_slk(TI_LIB) VOL 3

/slk_init, slk_set, slk_refresh, slk_noutrefresh, slk_label,/ curs_slk(TI_LIB) VOL 3

curs_slk: slk_init, slk_set, slk_refresh, slk_noutrefresh,/ curs_slk(TI_LIB) VOL 3

slk_attrset,/ /slk_label, slk_clear, slk_restore, slk_touch, slk_attron, curs_slk(TI_LIB) VOL 3

curs_slk: slk_init, slk_set, slk_refresh,/ curs_slk(TI_LIB) VOL 3

/slk_label, slk_clear, slk_restore, slk_touch, slk_attron, slk_attrset,/ curs_slk(TI_LIB) VOL 3

output fprintf, printf, snprintf, sprintf print formatted fprintf(BA_LIB) VOL 1

slk_attrset, slk_attroff CURSES soft label routines /slk_attron, curs_slk(TI_LIB) VOL 3

remove a file from the installation software database removef removef(AS_CMD) VOL 2

/machine and notification entries to software distribution configuration/
... distconf(RA_CMD) VOL 3

report on the contents of the software distribution/ distrpt distrpt(RA_CMD) VOL 3

installf add a file to the software installation database installf(AS_CMD) VOL 2

pkgreq request delivery of a software package .. pkgreq(RA_CMD) VOL 3

pkginfo display software package information pkginfo(AS_CMD) VOL 2

system pkgadd transfer software package or set to the pkgadd(AS_CMD) VOL 2

qsort quicker sort ... qsort(BA_LIB) VOL 1

tsort topological sort ... tsort(SD_CMD) VOL 3

aclsort sort an Access Control List aclsort(ES_LIB) VOL 3

sort sort and/or merge files sort(BU_CMD) VOL 2

sort sort and/or merge files sort(BU_CMD) VOL 2

or reject lines common to two sorted files comm select comm(BU_CMD) VOL 2

bsearch binary search on a sorted table ... bsearch(BA_LIB) VOL 1

Permuted Index 97

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 785

file debugger debug source-level, interactive, object debug(SD_CMD) VOL 3

swapctl manage swap space ... swapctl(swapctl(RT_OS)) VOL 3

an object in the file system name space /file descriptor to fattach(BA_LIB) VOL 1

munlockall lock or unlock address space mlockall, .. mlockall(RT_OS) VOL 3

du estimate file space usage ... du(BU_CMD) VOL 2

mkfifo make FIFO special file ... mkfifo(AS_CMD) VOL 2

mknod build special file .. mknod(AS_CMD) VOL 2

directory, named pipe or device special file /of a regular file, lvlfile(ES_LIB) VOL 3

mknod make a directory, or a special or ordinary file mknod(BA_OS) VOL 1

limits: limits.h implementation specific constants .. limits(BA_ENV) VOL 1

iswcntrl test wide characters for a specified class /iswgraph, wctype(BA_LIB) VOL 1

the queue of jobs to be run at specified times atq display atq(AU_CMD) VOL 2

function remop() accesses/ remtab specify the order in which the remtab(RA_CMD) VOL 3

hashcheck, compress find spelling/ spell, hashmake, spellin, spell(BU_CMD) VOL 2

spelling errors spell, hashmake, spellin, hashcheck, compress find spell(BU_CMD) VOL 2

spellin, hashcheck, compress find spelling errors spell, hashmake, spell(BU_CMD) VOL 2

csplit context split ... csplit(AU_CMD) VOL 2

split split a file into pieces split(BU_CMD) VOL 2

tokens wcstok split a wide character string into wcstok(BA_LIB) VOL 1

split split a file into pieces split(BU_CMD) VOL 2

atrm remove jobs spooled by at or batch atrm(AU_CMD) VOL 2

fprintf, printf, snprintf, sprintf print formatted output fprintf(BA_LIB) VOL 1

data in a machine-independent/ sputl, sgetl access long integer sputl(SD_LIB) VOL 3

power, root/ exp, log, log10, pow, sqrt, cbrt exponential, logarithm, exp(BA_LIB) VOL 1

generator rand, srand simple random-number rand(BA_LIB) VOL 1

/lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 generate/
.. drand48(BA_LIB) VOL 1

search for a text string in,/ srchtxt display contents of, or srchtxt(AS_CMD) VOL 2

curs_scroll: scroll, srcl, wscrl scroll a CURSES window
.. curs_scroll(TI_LIB) VOL 3

fscanf, scanf, sscanf convert formatted input fscanf(BA_LIB) VOL 1

set or get signal alternate stack context sigaltstack sigaltstack(BA_OS) VOL 1

setjmp: setjmp.h stack environment declarations setjmp(BA_ENV) VOL 1

thr_minstack return the minimum stack size for a thread thr_minstack(MT_LIB) VOL 1

stdio: stdio.h standard buffered input/output stdio(BA_ENV) VOL 1

package stdio standard buffered input/output stdio(BA_LIB) VOL 1

stddef: stddef.h standard definitions stddef(BA_ENV) VOL 1

/a message in the standard format on standard error and the system/ fmtmsg(BA_LIB) VOL 1

/a message in the standard format on standard error and the system/ fmtmsg(BU_CMD) VOL 2

pfmt display error message in standard format .. pfmt(BU_CMD) VOL 2

/vlfmt; display error message in standard format and pass to logging/ lfmt(BA_LIB) VOL 1

and/ lfmt display error message in standard format and pass to logging lfmt(BU_CMD) VOL 2

fmtmsg display a message in the standard format on standard error/
... fmtmsg(BA_LIB) VOL 1

fmtmsg display a message in the standard format on standard error/
.. fmtmsg(BU_CMD) VOL 2

vpfmt display error message in standard format pfmt, pfmt(BA_LIB) VOL 1

package ftok standard interprocess communication ftok(BA_LIB) VOL 1

stdlib: stdlib.h standard library definitions stdlib(BA_ENV) VOL 1

discipline module ldterm standard STREAMS terminal line ldterm(BA_DEV) VOL 1

structures unistd: unistd.h standard symbolic constants and unistd(BA_ENV) VOL 1

sh, jsh, rsh shell, the standard/restricted command/ sh(BU_CMD) VOL 2

98 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 786

/attron, wattron, attrset, wattrset, standend, wstandend, standout,/ curs_attr(TI_LIB) VOL 3

/wattrset, standend, wstandend, standout, wstandout CURSES/ curs_attr(TI_LIB) VOL 3

has_colors,/ curs_color: start_color, init_pair, init_color, curs_color(TI_LIB) VOL 3

/prdaily, prtacct, shutacct, startup, turnacct miscellaneous/ acct(AS_CMD) VOL 2

stat: sys/stat.h data returned by stat function .. stat(BA_ENV) VOL 1

stat, lstat, fstat get file status stat(BA_OS) VOL 1

stat function stat: sys/stat.h data returned by stat(BA_ENV) VOL 1

ustat get file system statistics .. ustat(BA_OS) VOL 1

ps report process status ... ps(BU_CMD) VOL 2

stat, lstat, fstat get file status ... stat(BA_OS) VOL 1

retrieve asynchronous I/O error status aio_error ... aio_error(MT_LIB) VOL 1

remote jobs remstat track the status and retrieve output of remstat(RA_CMD) VOL 3

feof, clearerr, fileno stdio-stream status inquiries ferror, ferror(ferror(BA_OS)) VOL 1

uustat uucp status inquiry and job control uustat(AU_CMD) VOL 2

communication facilities status ipcs report inter-process ipcs(AS_CMD) VOL 2

aio_return retrieve return status of asynchronous I/O/ aio_return(MT_LIB) VOL 1

auditctl control or report the status of auditing .. auditctl(AT_LIB) VOL 3

bkstatus display the status of backup operations bkstatus(AS_CMD) VOL 2

rsstatus report the status of posted restore requests rsstatus(AS_CMD) VOL 2

directory/ ursstatus report the status of posted user file and ursstatus(AS_CMD) VOL 2

lpstat print information about the status of the LP print service lpstat(AU_CMD) VOL 2

roistat update job status record .. roistat(RA_LIB) VOL 3

information statvfs, fstatvfs get file system statvfs(BA_OS) VOL 1

handle variable argument list stdarg: va_start, va_arg, va_end stdarg(BA_ENV) VOL 1

definitions stddef: stddef.h standard stddef(BA_ENV) VOL 1

stddef: stddef.h standard definitions stddef(BA_ENV) VOL 1

input/output package stdio standard buffered stdio(BA_LIB) VOL 1

input/output stdio: stdio.h standard buffered stdio(BA_ENV) VOL 1

input/output stdio: stdio.h standard buffered stdio(BA_ENV) VOL 1

fclose, fflush close or flush a stdio-stream .. fclose(BA_OS) VOL 1

fopen, freopen, fdopen open a stdio-stream ... fopen(fopen(BA_OS)) VOL 1

gets, fgets get a string from a stdio-stream .. gets(BA_LIB) VOL 1

puts, fputs put a string on a stdio-stream ... puts(BA_LIB) VOL 1

reposition a file-pointer in a stdio-stream fseek, rewind, ftell fseek(fseek(BA_OS)) VOL 1

reposition a file pointer in a stdio-stream fsetpos, fgetpos
.. fsetpos(fsetpos(BA_OS)) VOL 1

setvbuf assign buffering to a stdio-stream setbuf, setbuf(BA_LIB) VOL 1

ferror, feof, clearerr, fileno stdio-stream status inquiries ferror(ferror(BA_OS)) VOL 1

push character back into input stdio-stream ungetc ungetc(BA_LIB) VOL 1

definitions stdlib: stdlib.h standard library stdlib(BA_ENV) VOL 1

definitions stdlib: stdlib.h standard library stdlib(BA_ENV) VOL 1

compile and match/ regexp: compile, step, advance regular expression regexp(BA_LIB) VOL 1

stime set time .. stime(BA_OS) VOL 1

wait wait for child process to stop or terminate .. wait(BA_OS) VOL 1

synchronize memory with physical storage msync ... msync(KE_OS) VOL 1

/uncompress, zcat compress data for storage, uncompress and display/
... compress(BU_CMD) VOL 2

keylogin decrypt and store secret key ... keylogin(RS_CMD) VOL 3

/to users based on information stored in the Device Database (DDB)
.. admalloc(ES_CMD) VOL 3

pkgask stores answers to a request script pkgask(AS_CMD) VOL 2

keyserv server for storing public and private keys keyserv(RS_CMD) VOL 3

Permuted Index 99

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 787

strcpy, strncpy, strdup,/ string: strcat, strncat, strcmp, strncmp, string(BA_LIB) VOL 1

stream configuration strchg, strconf change or query strchg(BU_CMD) VOL 2

/strcpy, strncpy, strdup, strlen, strchr, strrchr, strpbrk, strspn,/ string(BA_LIB) VOL 1

strdup,/ string: strcat, strncat, strcmp, strncmp, strcpy, strncpy, string(BA_LIB) VOL 1

strcoll string collation strcoll(BA_LIB) VOL 1

configuration strchg, strconf change or query stream strchg(BU_CMD) VOL 2

/strcat, strncat, strcmp, strncmp, strcpy, strncpy, strdup, strlen,/ string(BA_LIB) VOL 1

/strchr, strrchr, strpbrk, strspn, strcspn, strtok, strstr string/ string(BA_LIB) VOL 1

/strcmp, strncmp, strcpy, strncpy, strdup, strlen, strchr, strrchr,/ string(BA_LIB) VOL 1

fgetws get a wchar_t string from a stream ... fgetws(BA_LIB) VOL 1

fputws put a wchar_t string on a stream .. fputws(BA_LIB) VOL 1

putmsg, putpmsg send a message on a stream .. putmsg(BA_OS) VOL 1

seekdir set position of directory stream ... seekdir(BA_OS) VOL 1

strchg, strconf change or query stream configuration strchg(BU_CMD) VOL 2

connld line discipline for unique stream connections connld(BA_DEV) VOL 1

for external data representation stream creation /library routines xdr_create(RS_LIB) VOL 3

sed stream editor .. sed(BU_CMD) VOL 2

getw get character or word from a stream getc, getchar, fgetc, getc(BA_LIB) VOL 1

getpmsg get next message off a stream getmsg, .. getmsg(BA_OS) VOL 1

get next wide character from a stream getwc, getwchar, fgetwc getwc(BA_LIB) VOL 1

putw put character or word on a stream putc, putchar, fputc, putc(BA_LIB) VOL 1

fputwc put wide character on a stream putwc, putwchar, putwc(BA_LIB) VOL 1

location of a named directory stream telldir current telldir(BA_OS) VOL 1

wchar_t character back into input stream ungetwc push ungetwc(BA_LIB) VOL 1

streamio STREAMS ioctl commands
... streamio(BA_DEV) VOL 1

streamio STREAMS ioctl commands streamio(BA_DEV) VOL 1

Transport Interface cooperating STREAMS module timod timod(BA_DEV) VOL 1

Interface read/write interface STREAMS module tirdwr Transport
... tirdwr(BA_DEV) VOL 1

pckt STREAMS Packet Mode module pckt(BA_DEV) VOL 1

module ptem STREAMS Pseudo Terminal Emulation
... ptem(BA_DEV) VOL 1

module ldterm standard STREAMS terminal line discipline ldterm(BA_DEV) VOL 1

fdetach detach a name from a STREAMS-based file descriptor fdetach(BA_LIB) VOL 1

object in the/ fattach attach a STREAMS-based file descriptor to an
... fattach(BA_LIB) VOL 1

strerror get error message string strerror(BA_LIB) VOL 1

string strfmon convert monetary value to strfmon(BA_LIB) VOL 1

string strftime convert date and time to strftime(BA_LIB) VOL 1

getsubopt parse sub options from a string ... getsubopt(BA_LIB) VOL 1

gettxt retrieve a text string .. gettxt(BA_LIB) VOL 1

printf print a text string ... printf(BU_CMD) VOL 2

strerror get error message string ... strerror(BA_LIB) VOL 1

strfmon convert monetary value to string ... strfmon(BA_LIB) VOL 1

strftime convert date and time to string ... strftime(BA_LIB) VOL 1

t_strerror get error message string .. t_strerror(BA_LIB) VOL 1

wcschr scan a wide character string .. wcschr(BA_LIB) VOL 1

wcscpy copy a wide character string ... wcscpy(BA_LIB) VOL 1

long integer and base-64 ASCII string a64l, l64a convert between a64l(SD_LIB) VOL 3

/mvwinsstr, mvwinsnstr insert string before character under the/ curs_instr(TI_LIB) VOL 3

100 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 788

cursor/ /mvwinsnwstr insert wchar_t string before character under the
.. curs_inswstr(TI_LIB) VOL 3

strcoll string collation ... strcoll(BA_LIB) VOL 1

information wcscoll wide character string comparison using collating wcscoll(BA_LIB) VOL 1

crypt, setkey, encrypt generate string encoding .. crypt(BA_LIB) VOL 1

wcspbrk scan a wide character string for wide characters wcspbrk(BA_LIB) VOL 1

gettxt retrieve a text string from a message data base gettxt(BU_CMD) VOL 2

gets, fgets get a string from a stdio-stream gets(BA_LIB) VOL 1

fgetws get a wchar_t string from a stream fgetws(BA_LIB) VOL 1

mbsrtowcs, wcsrtombs multibyte string functions /wcstombs, mbstring(BA_LIB) VOL 1

/contents of, or search for a text string in, message data bases srchtxt(AS_CMD) VOL 2

wcstok split a wide character string into tokens ... wcstok(BA_LIB) VOL 1

wcslen obtain wide character string length .. wcslen(BA_LIB) VOL 1

tzset convert date and time to string /localtime, gmtime, asctime, ctime(BA_LIB) VOL 1

/mvwaddchstr, mvwaddchnstr add string of characters (and/ curs_addchstr(TI_LIB) VOL 3

/mvwinchstr, mvwinchnstr get a string of characters (and/ curs_inchstr(TI_LIB) VOL 3

/mvinnstr, mvwinstr, mvwinnstr get a string of characters from a CURSES/
... curs_instr(TI_LIB) VOL 3

window/ /mvwaddstr, mvwaddnstr add a string of characters to a CURSES
.. curs_addstr(TI_LIB) VOL 3

/mvwaddwchstr, mvwaddwchnstr add string of wchar_t characters (and/
.. curs_addwchstr(TI_LIB) VOL 3

/mvwinwchstr, mvwinwchnstr get a string of wchar_t characters (and/
.. curs_inwchstr(TI_LIB) VOL 3

CURSES/ /mvwinwstr, mvwinnwstr get a string of wchar_t characters from a
.. curs_inwstr(TI_LIB) VOL 3

/mvwaddwstr, mvwaddnwstr add a string of wchar_t characters to a/
.. curs_addwstr(TI_LIB) VOL 3

puts, fputs put a string on a stdio-stream puts(BA_LIB) VOL 1

fputws put a wchar_t string on a stream ... fputws(BA_LIB) VOL 1

string: string.h string operations .. string(BA_ENV) VOL 1

strspn, strcspn, strtok, strstr string operations /strpbrk, string(BA_LIB) VOL 1

set_menu_mark, menu_mark MENUS mark string routines menu_mark: menu_mark(TI_LIB) VOL 3

wcsrchr reverse wide character string scan .. wcsrchr(BA_LIB) VOL 1

strncmp, strcpy, strncpy, strdup,/ string: strcat, strncat, strcmp, string(BA_LIB) VOL 1

string: string.h string operations string(BA_ENV) VOL 1

positions for a wide character string /the number of column wcswidth(BA_LIB) VOL 1

wcstol convert a wide character string to a long integer wcstol(BA_LIB) VOL 1

strtod, strtold, atof convert string to double-precision number strtod(BA_LIB) VOL 1

/wcstof, wcstold convert wide string to floating point value wcstod(BA_LIB) VOL 1

strtol, strtoul, atol, atoi convert string to integer ... strtol(BA_LIB) VOL 1

strxfrm string transformation strxfrm(BA_LIB) VOL 1

wcsxfrm wide character string transformation wcsxfrm(BA_LIB) VOL 1

confstr obtain configurable string values ... confstr(BA_OS) VOL 1

date and time to wide character string wcsftime convert wcsftime(BA_LIB) VOL 1

wcsncpy copy a wide character string with bound wcsncpy(BA_LIB) VOL 1

string: string.h string operations string(BA_ENV) VOL 1

wcscmp compare two wide character strings .. wcscmp(BA_LIB) VOL 1

/mvwgetstr, wgetnstr get character strings from CURSES terminal/ curs_getstr(TI_LIB) VOL 3

/mvwgetnwstr get wchar_t character strings from CURSES terminal/
.. curs_getwstr(TI_LIB) VOL 3

concatenate two wide character strings wcscat ... wcscat(BA_LIB) VOL 1

Permuted Index 101

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 789

wcsncmp compare two wide character strings with bound wcsncmp(BA_LIB) VOL 1

concatenate two wide character strings with bound wcsncat wcsncat(BA_LIB) VOL 1

and line number information from/ strip strip symbol table, debugging strip(SD_CMD) VOL 3

line number information from/ strip strip symbol table, debugging and strip(SD_CMD) VOL 3

/strncmp, strcpy, strncpy, strdup, strlen, strchr, strrchr, strpbrk,/ string(BA_LIB) VOL 1

strncpy, strdup,/ string: strcat, strncat, strcmp, strncmp, strcpy, string(BA_LIB) VOL 1

string: strcat, strncat, strcmp, strncmp, strcpy, strncpy, strdup,/ string(BA_LIB) VOL 1

/strncat, strcmp, strncmp, strcpy, strncpy, strdup, strlen, strchr,/ string(BA_LIB) VOL 1

/strdup, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok,/ string(BA_LIB) VOL 1

strptime date and time conversion strptime(BA_LIB) VOL 1

/strncpy, strdup, strlen, strchr, strrchr, strpbrk, strspn, strcspn,/ string(BA_LIB) VOL 1

/strlen, strchr, strrchr, strpbrk, strspn, strcspn, strtok, strstr/ string(BA_LIB) VOL 1

strpbrk, strspn, strcspn, strtok, strstr string operations /strrchr, string(BA_LIB) VOL 1

string to double-precision number strtod, strtold, atof convert strtod(BA_LIB) VOL 1

/strrchr, strpbrk, strspn, strcspn, strtok, strstr string operations string(BA_LIB) VOL 1

string to integer strtol, strtoul, atol, atoi convert strtol(BA_LIB) VOL 1

double-precision number strtod, strtold, atof convert string to strtod(BA_LIB) VOL 1

to integer strtol, strtoul, atol, atoi convert string strtol(BA_LIB) VOL 1

file system directory tree structure ... file(BA_ENV) VOL 1

grp: grp.h group structure .. grp(BA_ENV) VOL 1

pwd: pwd.h password structure .. pwd(BA_ENV) VOL 1

t_alloc allocate a data structure ... t_alloc(BA_LIB) VOL 1

t_free free a data structure ... t_free(BA_LIB) VOL 1

utsname: sys/utsname.h system name structure ... utsname(BA_ENV) VOL 1

processes using a file or file structure fuser identify fuser(AS_CMD) VOL 2

inter-process communication access structure sys/ipc.h sys/ipc.h(KE_ENV) VOL 1

process and child process times structure times: sys/times.h times(BA_ENV) VOL 1

mktime converts a tm structure to a calendar time mktime(BA_LIB) VOL 1

access and modification times structure utime: utime.h utime(BA_ENV) VOL 1

sys/msg.h message queue structures .. sys/msg.h(KE_ENV) VOL 1

standard symbolic constants and structures unistd: unistd.h unistd(BA_ENV) VOL 1

strxfrm string transformation strxfrm(BA_LIB) VOL 1

stty set the options for a terminal stty(AU_CMD) VOL 2

user su become super-user or another su(AU_CMD) VOL 2

getsubopt parse sub options from a string getsubopt(BA_LIB) VOL 1

pechochar,/ curs_pad: newpad, subpad, prefresh, pnoutrefresh, curs_pad(TI_LIB) VOL 3

packages distauth authorize subscription and broadcast of distauth(RA_CMD) VOL 3

same lines of several files or subsequent lines of one file /merge paste(BU_CMD) VOL 2

wcsspn obtain the length of a wide substring ... wcsspn(BA_LIB) VOL 1

wcsstr, ‡wcswcs find wide substring ... wcsstr(BA_LIB) VOL 1

get length of complementary wide substring wcscspn wcscspn(BA_LIB) VOL 1

command processor for the FORMS subsystem form_driver form_driver(TI_LIB) VOL 3

command processor for the MENUS subsystem menu_driver menu_driver(TI_LIB) VOL 3

curs_window: newwin, delwin, mvwin, subwin, derwin, mvderwin, dupwin,/
.. curs_window(TI_LIB) VOL 3

/scale_form FORMS window and subwindow association routines form_win(TI_LIB) VOL 3

/scale_menu MENUS window and subwindow association routines menu_win(TI_LIB) VOL 3

or erase FORMS from associated subwindows /unpost_form write form_post(TI_LIB) VOL 3

or erase MENUS from associated subwindows /unpost_menu write
... menu_post(TI_LIB) VOL 3

102 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 790

of a file sum print checksum and block count
.. sum(BU_CMD) VOL 2

records acctcms command summary from per-process accounting
.. acctcms(AS_CMD) VOL 2

sync update super-block ... sync(BA_OS) VOL 1

su become super-user or another user su(AU_CMD) VOL 2

initgroups initialize the supplementary group access list initgroups(BA_LIB) VOL 1

getgroups, setgroups get or set supplementary group IDs getgroups(BA_OS) VOL 1

miscellaneous accounting and support commands /startup, turnacct acct(AS_CMD) VOL 2

sleep suspend execution for an interval sleep(BU_CMD) VOL 2

sleep suspend execution for interval sleep(sleep(BA_OS)) VOL 1

pause suspend process until signal pause(BA_OS) VOL 1

/install a signal mask and suspend process until signal sigsuspend(BA_OS) VOL 1

thr_suspend suspend the execution of a thread
.. thr_suspend(MT_LIB) VOL 1

completes aio_suspend suspend until asynchronous I/O
.. aio_suspend(MT_LIB) VOL 1

continue the execution of a suspended thread thr_continue
.. thr_continue(MT_LIB) VOL 1

svc_dg_create,/ rpc_svc_create: svc_create, svc_destroy, rpc_svc_create(RS_LIB) VOL 3

rpc_svc_create: svc_create, svc_destroy, svc_dg_create,/
.. rpc_svc_create(RS_LIB) VOL 3

/svc_create, svc_destroy, svc_dg_create, svc_fd_create,/
.. rpc_svc_create(RS_LIB) VOL 3

svcerr_noproc,/ rpc_svc_err: svcerr_auth, svcerr_decode, rpc_svc_err(RS_LIB) VOL 3

rpc_svc_err: svcerr_auth, svcerr_decode, svcerr_noproc,/ rpc_svc_err(RS_LIB) VOL 3

/svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog,/
... rpc_svc_err(RS_LIB) VOL 3

/svcerr_decode, svcerr_noproc, svcerr_noprog, svcerr_progvers,/
... rpc_svc_err(RS_LIB) VOL 3

/svcerr_noproc, svcerr_noprog, svcerr_progvers, svcerr_systemerr,/
... rpc_svc_err(RS_LIB) VOL 3

/svcerr_noprog, svcerr_progvers, svcerr_systemerr, svcerr_weakauth/
... rpc_svc_err(RS_LIB) VOL 3

/svcerr_progvers, svcerr_systemerr, svcerr_weakauth library routines/
... rpc_svc_err(RS_LIB) VOL 3

/svc_destroy, svc_dg_create, svc_fd_create, svc_raw_create,/
.. rpc_svc_create(RS_LIB) VOL 3

svc_getreqset,/ rpc_svc_reg: svc_freeargs, svc_getargs, rpc_svc_reg(RS_LIB) VOL 3

rpc_svc_reg: svc_freeargs, svc_getargs, svc_getreqset,/ rpc_svc_reg(RS_LIB) VOL 3

/svc_run, svc_sendreply, svc_getreq_common, svc_getreq_poll,/
.. rpc_svc_reg(RS_LIB) VOL 3

svc_sendreply, svc_getreq_common, svc_getreq_poll,/ /svc_run, rpc_svc_reg(RS_LIB) VOL 3

/svc_getreq_common, svc_getreq_poll, svc_getreq_poll_parallel,/ rpc_svc_reg(RS_LIB) VOL 3

/svc_freeargs, svc_getargs, svc_getreqset, svc_getrpccaller,/
.. rpc_svc_reg(RS_LIB) VOL 3

/svc_getargs, svc_getreqset, svc_getrpccaller, svc_run,/ rpc_svc_reg(RS_LIB) VOL 3

/svc_dg_create, svc_fd_create, svc_raw_create, svc_tli_create,/
.. rpc_svc_create(RS_LIB) VOL 3

rpc_svc_calls: rpc_reg, svc_reg, svc_unreg, xprt_register,/
.. rpc_svc_calls(RS_LIB) VOL 3

/svc_getreqset, svc_getrpccaller, svc_run, svc_sendreply,/ rpc_svc_reg(RS_LIB) VOL 3

Permuted Index 103

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 791

for RPC/ /svc_getreq_poll_parallel, svc_run_parallel library routines
.. rpc_svc_reg(RS_LIB) VOL 3

/svc_getrpccaller, svc_run, svc_sendreply, svc_getreq_common,/
.. rpc_svc_reg(RS_LIB) VOL 3

/svc_fd_create, svc_raw_create, svc_tli_create, svc_tp_create,/
.. rpc_svc_create(RS_LIB) VOL 3

/svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create/
.. rpc_svc_create(RS_LIB) VOL 3

rpc_svc_calls: rpc_reg, svc_reg, svc_unreg, xprt_register,/ rpc_svc_calls(RS_LIB) VOL 3

/svc_tli_create, svc_tp_create, svc_vc_create library routines for/
.. rpc_svc_create(RS_LIB) VOL 3

swab swap bytes .. swab(BA_LIB) VOL 1

swab swap bytes .. swab(BA_LIB) VOL 1

swapctl manage swap space swapctl(swapctl(RT_OS)) VOL 3

contexts makecontext, swapcontext manipulate user makecontext(BA_LIB) VOL 1

swapctl manage swap space
.. swapctl(swapctl(RT_OS)) VOL 3

wide/multibyte/ fwprintf, wprintf, swprintf print formatted fwprintf(BA_LIB) VOL 1

wide/multibyte/ fwscanf, wscanf, swscanf convert formatted fwscanf(BA_LIB) VOL 1

get information for a global kernel symbol getksym .. getksym(KE_OS) VOL 1

dlsym get the address of a symbol in shared object dlsym(BA_OS) VOL 1

number information/ strip strip symbol table, debugging and line strip(SD_CMD) VOL 3

unistd: unistd.h standard symbolic constants and structures unistd(BA_ENV) VOL 1

readlink read value of a symbolic link readlink(readlink(BA_OS)) VOL 1

symlink make symbolic link to a file symlink(BA_OS) VOL 1

file symlink make symbolic link to a symlink(BA_OS) VOL 1

sync flush system buffers sync(AS_CMD) VOL 2

sync update super-block sync(BA_OS) VOL 1

state with that on the/ fsync synchronize a file’s in-memory fsync(fsync(BA_OS)) VOL 1

storage msync synchronize memory with physical msync(KE_OS) VOL 1

adjtime correct the time to synchronize the system clock
... adjtime(adjtime(BA_OS)) VOL 1

t_sync synchronize transport library t_sync(BA_LIB) VOL 1

/derwin, mvderwin, dupwin, wsyncup, syncok, wcursyncup, wsyncdown/
.. curs_window(TI_LIB) VOL 3

variables sysconf get configurable system sysconf(BA_OS) VOL 1

sysdef system definition sysdef(AS_CMD) VOL 2

communication access structure sys/ipc.h inter-process sys/ipc.h(KE_ENV) VOL 1

sys/msg.h message queue structures
.. sys/msg.h(KE_ENV) VOL 1

sys/sem.h semaphore facility sys/sem.h(KE_ENV) VOL 1

sys/shm.h shared memory facility
.. sys/shm.h(KE_ENV) VOL 1

function stat: sys/stat.h data returned by stat stat(BA_ENV) VOL 1

cu call another system .. cu(AU_CMD) VOL 2

mkfs construct a file system ... mkfs(AS_CMD) VOL 2

mount mount a file system .. mount(BA_OS) VOL 1

pkgrm removes a package from the system ... pkgrm(AS_CMD) VOL 2

umount unmount a file system ... umount(BA_OS) VOL 1

uname print name of current system ... uname(BU_CMD) VOL 2

uname get name of current operating system ... uname(uname(BA_OS)) VOL 1

useradd add a new user login on the system ... useradd(AS_CMD) VOL 2

104 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 792

who who is on the system .. who(AU_CMD) VOL 2

sa1, sa2, sadc system activity report package sa(AS_CMD) VOL 2

sar system activity reporter sar(AS_CMD) VOL 2

a command; report process data and system activity timex time timex(AS_CMD) VOL 2

backup initiate or control a system backup session backup(AS_CMD) VOL 2

sync flush system buffers .. sync(AS_CMD) VOL 2

truss trace system calls and signals truss(SD_CMD) VOL 3

unlink exercise link and unlink system calls link, ... link(AS_CMD) VOL 2

correct the time to synchronize the system clock adjtime adjtime(adjtime(BA_OS)) VOL 1

prtconf print system configuration prtconf(AS_CMD) VOL 2

and sets its security attributes to system configuration /a device devdealloc(ES_LIB) VOL 3

format on standard error and the system console /in the standard fmtmsg(BA_LIB) VOL 1

format on standard error and the system console /in the standard fmtmsg(BU_CMD) VOL 2

devcon: console system console interface devcon(BA_DEV) VOL 1

fsdb file system debugger .. fsdb(AS_CMD) VOL 2

sysdef system definition .. sysdef(AS_CMD) VOL 2

file system directory tree structure file(BA_ENV) VOL 1

of the Kernel Extension on the Base System effects effects effects(KE_ENV) VOL 1

perror system error messages perror(BA_LIB) VOL 1

a new group definition on the system groupadd add (create) groupadd(AS_CMD) VOL 2

delete a group definition from the system groupdel groupdel(AS_CMD) VOL 2

modify a group definition on the system groupmod groupmod(AS_CMD) VOL 2

statvfs, fstatvfs get file system information .. statvfs(BA_OS) VOL 1

system issue a command system(system(BA_OS)) VOL 1

logins list user and system login information logins(AS_CMD) VOL 2

the level ceiling of a mounted file system lvlvfs get or set lvlvfs(ES_LIB) VOL 3

interactive message processing system mailx .. mailx(AU_CMD) VOL 2

descriptor to an object in the file system name space /file fattach(BA_LIB) VOL 1

utsname: sys/utsname.h system name structure utsname(BA_ENV) VOL 1

software package or set to the system pkgadd transfer pkgadd(AS_CMD) VOL 2

/setrlimit control maximum system resource consumption getrlimit(BA_OS) VOL 1

init change system run level ... init(AS_CMD) VOL 2

ustat get file system statistics ... ustat(BA_OS) VOL 1

fstyp determine file system type ... fstyp(AS_CMD) VOL 2

delete a user’s login from the system userdel .. userdel(AS_CMD) VOL 2

a user’s login information on the system usermod modify usermod(AS_CMD) VOL 2

sysconf get configurable system variables ... sysconf(BA_OS) VOL 1

fsck check and repair file systems ... fsck(AS_CMD) VOL 2

mount, umount mount or unmount file systems and remote resources mount(AS_CMD) VOL 2

lvlprt print system’s current level definitions lvlprt(ES_CMD) VOL 3

restore initiate restores of file systems, data partitions, or disks restore(AS_CMD) VOL 2

available resources from remote systems dfshares list dfshares(RS_CMD) VOL 3

unavailable for sharing by remote systems /make local resource unshare(RS_CMD) VOL 3

available for sharing by remote systems share make local resource share(RS_CMD) VOL 3

volcopy, labelit copy file systems with label checking volcopy(AS_CMD) VOL 2

uucp, uulog, uuname system-to-system copy uucp(AU_CMD) VOL 2

uuto, uupick public system-to-system file copy uuto(AU_CMD) VOL 2

process times structure times: sys/times.h process and child times(BA_ENV) VOL 1

types: sys/types.h data types types(BA_ENV) VOL 1

utsname: sys/utsname.h system name structure
... utsname(BA_ENV) VOL 1

wait: sys/wait.h declarations for waiting wait(BA_ENV) VOL 1

Permuted Index 105

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 793

bsearch binary search on a sorted table ... bsearch(BA_LIB) VOL 1

setmnt establish mount table ... setmnt(AS_CMD) VOL 2

or display the contents of a backup table bkreg change bkreg(AS_CMD) VOL 2

information/ strip strip symbol table, debugging and line number strip(SD_CMD) VOL 3

search: search.h search tables ... search(BA_ENV) VOL 1

hdestroy manage hash search tables hsearch, hcreate, hsearch(BA_LIB) VOL 1

tabs set tabs on a terminal .. tabs(AU_CMD) VOL 2

tabs set tabs on a terminal tabs(AU_CMD) VOL 2

t_accept accept a connect request t_accept(BA_LIB) VOL 1

/netdir_getbyaddr, netdir_options, taddr2uaddr, uaddr2taddr,/ netdir(RS_LIB) VOL 3

ctags create a tags file for use with ex and vi ctags(BU_CMD) VOL 2

file tail deliver the last part of a tail(BU_CMD) VOL 2

t_alloc allocate a data structure t_alloc(BA_LIB) VOL 1

trigonometric/ trig: sin, cos, tan, asin, acos, atan, atan2 trig(BA_LIB) VOL 1

hyperbolic/ hyperbolic: sinh, cosh, tanh, asinh, acosh, atanh hyperbolic(BA_LIB) VOL 1

tar: tar.h extended tar definitions ... tar(BA_ENV) VOL 1

tar file archiver ... tar(AU_CMD) VOL 2

tar: tar.h extended tar definitions tar(BA_ENV) VOL 1

catalog of packages to a client or target server catsend send a catsend(RA_CMD) VOL 3

packages available to a client or target server /display a catalog of pkgcat(RA_CMD) VOL 3

deliver packages to client or target server machine(s) pkgsend
.. pkgsend(RA_CMD) VOL 3

tar: tar.h extended tar definitions tar(BA_ENV) VOL 1

transport endpoint t_bind bind an address to a t_bind(BA_LIB) VOL 1

tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow,/ termios: termios(BA_OS) VOL 1

/tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed, cfgetispeed,/ termios(BA_OS) VOL 1

/tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed,/ termios(BA_OS) VOL 1

tcdrain, tcflush, tcflow,/ termios: tcgetattr, tcsetattr, tcsendbreak, termios(BA_OS) VOL 1

and set/ /cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid get termios(BA_OS) VOL 1

/cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid get and set terminal/ termios(BA_OS) VOL 1

t_close close a transport endpoint t_close(BA_LIB) VOL 1

with another transport user t_connect establish a connection t_connect(BA_LIB) VOL 1

archives in and out tcpio trusted cpio for copying file tcpio(ES_CMD) VOL 3

termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush,/ termios(BA_OS) VOL 1

tcflush,/ termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, termios(BA_OS) VOL 1

terminal/ /cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid get and set termios(BA_OS) VOL 1

trees tsearch, tfind, tdelete, twalk manage binary search tsearch(BA_LIB) VOL 1

input tee join pipes and make copies of tee(BU_CMD) VOL 2

form_data: data_ahead, data_behind tell if FORMS field has off-screen/
.. form_data(TI_LIB) VOL 3

menu_item_visible: item_visible tell if MENUS item is visible
... menu_item_visible(TI_LIB) VOL 3

directory stream telldir current location of a named telldir(BA_OS) VOL 1

temporary file tmpnam, tempnam create a name for a tmpnam(BA_LIB) VOL 1

tmpfile create a temporary file ... tmpfile(BA_LIB) VOL 1

tmpnam, tempnam create a name for a temporary file ... tmpnam(BA_LIB) VOL 1

/has_ic, has_il, killchar, longname, termattrs, termname CURSES/
... curs_termattrs(TI_LIB) VOL 3

description captoinfo convert a termcap description into a terminfo
.. captoinfo(TI_CMD) VOL 3

CURSES interfaces (emulated) to the termcap library /tgoto, tputs curs_termcap(TI_LIB) VOL 3

ctermid generate filename for terminal .. ctermid(BA_LIB) VOL 1

106 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 794

stty set the options for a terminal ... stty(AU_CMD) VOL 2

tabs set tabs on a terminal ... tabs(AU_CMD) VOL 2

tty get the name of the terminal ... tty(AU_CMD) VOL 2

ttyname, isatty find name of a terminal ... ttyname(BA_LIB) VOL 1

/tcsetpgrp, tcgetsid get and set terminal attributes, line control,/ termios(BA_OS) VOL 1

ptem STREAMS Pseudo Terminal Emulation module ptem(BA_DEV) VOL 1

/get and set baud rate, get and set terminal foreground process group/
.. termios(BA_OS) VOL 1

/timeout, wtimeout, typeahead CURSES terminal input option control/ curs_inopts(TI_LIB) VOL 3

devtty: tty controlling terminal interface .. devtty(BA_DEV) VOL 1

termio: ioctl general terminal interface .. termio(BA_DEV) VOL 1

termiox extended general terminal interface .. termiox(BA_DEV) VOL 1

character strings from CURSES terminal keyboard /get wchar_t
.. curs_getwstr(TI_LIB) VOL 3

wchar_t characters from CURSES terminal keyboard /(or push back)
.. curs_getwch(TI_LIB) VOL 3

push back) characters from CURSES terminal keyboard /ungetch get (or
.. curs_getch(TI_LIB) VOL 3

get character strings from CURSES terminal keyboard /wgetnstr curs_getstr(TI_LIB) VOL 3

indicate last logins by user or terminal last .. last(AS_CMD) VOL 2

ldterm standard STREAMS terminal line discipline module ldterm(BA_DEV) VOL 1

database tput initialize a terminal or query the terminfo tput(TI_CMD) VOL 3

routines /scrollok, nl, nonl CURSES terminal output option control curs_outopts(TI_LIB) VOL 3

clear clear the terminal screen .. clear(TI_CMD) VOL 3

foreground process group ID, get terminal session ID /set terminal termios(BA_OS) VOL 1

thread thr_exit terminate execution of the calling thr_exit(MT_LIB) VOL 1

exit, _exit terminate process .. exit(BA_OS) VOL 1

exit, _exit terminate process .. exit(KE_OS) VOL 1

wait for child process to stop or terminate wait ... wait(BA_OS) VOL 1

atexit add program termination routine atexit(atexit(BA_OS)) VOL 1

abort generate an abnormal termination signal .. abort(BA_OS) VOL 1

tic terminfo compiler ... tic(TI_CMD) VOL 3

tigetstr CURSES interfaces to terminfo database /tigetnum, curs_terminfo(TI_LIB) VOL 3

initialize a terminal or query the terminfo database tput tput(TI_CMD) VOL 3

a termcap description into a terminfo description /convert captoinfo(TI_CMD) VOL 3

infocmp compare or print out terminfo descriptions infocmp(TI_CMD) VOL 3

interface termio: ioctl general terminal termio(BA_DEV) VOL 1

tcsendbreak, tcdrain, tcflush,/ termios: tcgetattr, tcsetattr, termios(BA_OS) VOL 1

termios.h define values for termios termios: ... termios(BA_ENV) VOL 1

for termios termios: termios.h define values termios(BA_ENV) VOL 1

termios: termios.h define values for termios
... termios(BA_ENV) VOL 1

interface termiox extended general terminal
... termiox(BA_DEV) VOL 1

/killchar, longname, termattrs, termname CURSES environment query/
... curs_termattrs(TI_LIB) VOL 3

get_t_errno, set_t_errno get/set t_errno value ... get_t_errno(BA_LIB) VOL 1

t_error write an error message t_error(BA_LIB) VOL 1

isastream test a file descriptor isastream(BA_LIB) VOL 1

test condition evaluation command test(BU_CMD) VOL 2

conversion state mbsinit test for initial multibyte mbsinit(BA_LIB) VOL 1

isnan, isnand test for NaN ... isnan(BA_LIB) VOL 1

Permuted Index 107

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 795

/iswprint, iswgraph, iswcntrl test wide characters for a/ wctype(BA_LIB) VOL 1

ed, red text editor ... ed(BU_CMD) VOL 2

ex text editor .. ex(AU_CMD) VOL 2

more, page browse or page through a text file ... more(BU_CMD) VOL 2

a level from internal format to text format lvlout translate lvlout(ES_LIB) VOL 3

lvlin translate a level from text format to internal format lvlin(ES_LIB) VOL 3

fmt simple text formatters ... fmt(BU_CMD) VOL 2

for simple lexical analysis of text lex generate programs lex(SD_CMD) VOL 3

lock into memory or unlock process, text, or data plock ... plock(KE_OS) VOL 1

gettxt retrieve a text string ... gettxt(BA_LIB) VOL 1

printf print a text string ... printf(BU_CMD) VOL 2

base gettxt retrieve a text string from a message data gettxt(BU_CMD) VOL 2

/contents of, or search for a text string in, message data bases srchtxt(AS_CMD) VOL 2

regulating privilege based on the/ tfadmin invoke a command, tfadmin(ES_CMD) VOL 3

search trees tsearch, tfind, tdelete, twalk manage binary tsearch(BA_LIB) VOL 1

add, change, delete users in the TFM database adminuser display,
... adminuser(ES_CMD) VOL 3

in the Trusted Facility Management (TFM) database /delete roles adminrole(ES_CMD) VOL 3

based on the information in the TFM database /regulating privilege
.. tfadmin(ES_CMD) VOL 3

t_free free a data structure t_free(BA_LIB) VOL 1

tgetstr, tgoto,/ curs_termcap: tgetent, tgetflag, tgetnum, curs_termcap(TI_LIB) VOL 3

tputs/ curs_termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto,
... curs_termcap(TI_LIB) VOL 3

service information t_getinfo get protocol-specific t_getinfo(BA_LIB) VOL 1

curs_termcap: tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs/ curs_termcap(TI_LIB) VOL 3

addresses t_getprotaddr get protocol t_getprotaddr(BA_LIB) VOL 1

t_getstate get the current state t_getstate(BA_LIB) VOL 1

/tgetent, tgetflag, tgetnum, tgetstr, tgoto, tputs CURSES/ curs_termcap(TI_LIB) VOL 3

/tgetflag, tgetnum, tgetstr, tgoto, tputs CURSES interfaces/
... curs_termcap(TI_LIB) VOL 3

of a suspended thread thr_continue continue the execution
.. thr_continue(MT_LIB) VOL 1

thr_create create a thread thr_create(MT_LIB) VOL 1

thr_create create a thread ... thr_create(MT_LIB) VOL 1

thr_kill send a signal to a sibling thread .. thr_kill(MT_LIB) VOL 1

thread thr_self get thread identifier of the calling thr_self(MT_LIB) VOL 1

flockfile grant thread ownership of a file flockfile(MT_LIB) VOL 1

ftrylockfile grant thread ownership of a file ftrylockfile(MT_LIB) VOL 1

funlockfile relinquish thread ownership of a file funlockfile(MT_LIB) VOL 1

the execution of a suspended thread thr_continue continue thr_continue(MT_LIB) VOL 1

terminate execution of the calling thread thr_exit ... thr_exit(MT_LIB) VOL 1

scheduling policy information for a thread thr_getscheduler get the
.. thr_getscheduler(MT_LIB) VOL 1

join control paths with another thread thr_join .. thr_join(MT_LIB) VOL 1

return the minimum stack size for a thread thr_minstack thr_minstack(MT_LIB) VOL 1

thread identifier of the calling thread thr_self get thr_self(MT_LIB) VOL 1

set the scheduling policy for a thread thr_setscheduler thr_setscheduler(MT_LIB) VOL 1

or examine the signal mask of a thread thr_sigsetmask change
... thr_sigsetmask(MT_LIB) VOL 1

suspend the execution of a thread thr_suspend thr_suspend(MT_LIB) VOL 1

108 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 796

cond_signal wake up a single thread waiting on a condition/
... cond_signal(MT_LIB) VOL 1

thr_getprio retrieve a thread’s scheduling priority thr_getprio(MT_LIB) VOL 1

thr_setprio set a thread’s scheduling priority thr_setprio(MT_LIB) VOL 1

/broadcast a wake up to all threads waiting on a condition/
.. cond_broadcast(MT_LIB) VOL 1

thr_getspecific get thread-specific data thr_getspecific(MT_LIB) VOL 1

thr_setspecific set thread-specific data thr_setspecific(MT_LIB) VOL 1

thr_keycreate create thread-specific data key thr_keycreate(MT_LIB) VOL 1

thr_keydelete thread-specific data key thr_keydelete(MT_LIB) VOL 1

calling thread thr_exit terminate execution of the thr_exit(MT_LIB) VOL 1

level of concurrency thr_getconcurrency retrieve the
.. thr_getconcurrency(MT_LIB) VOL 1

scheduling priority thr_getprio retrieve a thread’s thr_getprio(MT_LIB) VOL 1

round-robin scheduling interval thr_get_rr_interval get the
... thr_get_rr_interval(MT_LIB) VOL 1

policy information for a thread thr_getscheduler get the scheduling
.. thr_getscheduler(MT_LIB) VOL 1

data thr_getspecific get thread-specific
.. thr_getspecific(MT_LIB) VOL 1

another thread thr_join join control paths with thr_join(MT_LIB) VOL 1

thread-specific data key thr_keycreate create thr_keycreate(MT_LIB) VOL 1

key thr_keydelete thread-specific data
.. thr_keydelete(MT_LIB) VOL 1

thread thr_kill send a signal to a sibling thr_kill(MT_LIB) VOL 1

stack size for a thread thr_minstack return the minimum
... thr_minstack(MT_LIB) VOL 1

the calling thread thr_self get thread identifier of thr_self(MT_LIB) VOL 1

of concurrency thr_setconcurrency request a level
.. thr_setconcurrency(MT_LIB) VOL 1

scheduling priority thr_setprio set a thread’s thr_setprio(MT_LIB) VOL 1

policy for a thread thr_setscheduler set the scheduling
... thr_setscheduler(MT_LIB) VOL 1

data thr_setspecific set thread-specific
... thr_setspecific(MT_LIB) VOL 1

the signal mask of a thread thr_sigsetmask change or examine
... thr_sigsetmask(MT_LIB) VOL 1

of a thread thr_suspend suspend the execution
.. thr_suspend(MT_LIB) VOL 1

thr_yield yield the processor thr_yield(MT_LIB) VOL 1

tic terminfo compiler .. tic(TI_CMD) VOL 3

transport providers ticlts, ticots, ticotsord loopback ticlts(BA_DEV) VOL 1

transport providers ticlts, ticots, ticotsord loopback ticlts(BA_DEV) VOL 1

providers ticlts, ticots, ticotsord loopback transport ticlts(BA_DEV) VOL 1

/putp, vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr/ curs_terminfo(TI_LIB) VOL 3

vidputs, vidattr, mvcur, tigetflag, tigetnum, tigetstr CURSES/ /putp,
.. curs_terminfo(TI_LIB) VOL 3

/mvcur, tigetflag, tigetnum, tigetstr CURSES interfaces to/
.. curs_terminfo(TI_LIB) VOL 3

stime set time .. stime(BA_OS) VOL 1

time get time .. time(time(BA_OS)) VOL 1

time time a command .. time(SD_CMD) VOL 3

Permuted Index 109

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 797

and system activity timex time a command; report process data
.. timex(AS_CMD) VOL 2

batch execute commands at a later time at, ... at(AU_CMD) VOL 2

a condition variable for a limited time cond_timedwait wait on
... cond_timedwait(MT_LIB) VOL 1

strptime date and time conversion .. strptime(BA_LIB) VOL 1

time get time .. time(time(BA_OS)) VOL 1

convert user format date and time getdate .. getdate(BA_LIB) VOL 1

get or set the date and time gettimeofday, settimeofday
... gettimeofday(RT_OS) VOL 3

a tm structure to a calendar time mktime converts mktime(BA_LIB) VOL 1

profil execution time profile .. profil(KE_OS) VOL 1

time time a command time(SD_CMD) VOL 3

time: time.h time types time(BA_ENV) VOL 1

strftime convert date and time to string ... strftime(BA_LIB) VOL 1

asctime, tzset convert date and time to string /localtime, gmtime, ctime(BA_LIB) VOL 1

clock adjtime correct the time to synchronize the system
... adjtime(adjtime(BA_OS)) VOL 1

wcsftime convert date and time to wide character string wcsftime(BA_LIB) VOL 1

time: time.h time types .. time(BA_ENV) VOL 1

clock report CPU time used .. clock(BA_LIB) VOL 1

zic time zone compiler ... zic(AS_CMD) VOL 2

zdump time zone dumper zdump(AS_CMD) VOL 2

time: time.h time types .. time(BA_ENV) VOL 1

/raw, noraw, noqiflush, qiflush, timeout, wtimeout, typeahead CURSES/
.. curs_inopts(TI_LIB) VOL 3

setitimer get/set value of interval timer getitimer, ... getitimer(RT_OS) VOL 3

times get process and child process times ... times(BA_OS) VOL 1

of jobs to be run at specified times atq display the queue atq(AU_CMD) VOL 2

the difference between two calendar times difftime computes difftime(BA_LIB) VOL 1

times times get process and child process times(BA_OS) VOL 1

update access and modification times of a file touch touch(BU_CMD) VOL 2

process and child process times structure times: sys/times.h times(BA_ENV) VOL 1

utime.h access and modification times structure utime: utime(BA_ENV) VOL 1

child process times structure times: sys/times.h process and times(BA_ENV) VOL 1

set file access and modification times utime ... utime(BA_OS) VOL 1

nice change priority of a time-sharing process .. nice(KE_OS) VOL 1

process data and system activity timex time a command; report timex(AS_CMD) VOL 2

cooperating STREAMS module timod Transport Interface timod(BA_DEV) VOL 1

read/write interface STREAMS/ tirdwr Transport Interface tirdwr(BA_DEV) VOL 1

request t_listen listen for a connect t_listen(BA_LIB) VOL 1

t_look check for asynchronous event t_look(BA_LIB) VOL 1

mktime converts a tm structure to a calendar time mktime(BA_LIB) VOL 1

tmpfile create a temporary file tmpfile(BA_LIB) VOL 1

temporary file tmpnam, tempnam create a name for a
.. tmpnam(BA_LIB) VOL 1

read (write) a CURSES screen from (to) a file /scr_init, scr_set curs_scr_dump(TI_LIB) VOL 3

/tolower, _toupper, _tolower, toascii translate characters conv(BA_LIB) VOL 1

popen, pclose initiate pipe to/from a process ... popen(BA_OS) VOL 1

split a wide character string into tokens wcstok ... wcstok(BA_LIB) VOL 1

conv: toupper, tolower, _toupper, _tolower, toascii translate/ conv(BA_LIB) VOL 1

toascii translate/ conv: toupper, tolower, _toupper, _tolower, conv(BA_LIB) VOL 1

110 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 798

endpoint t_open establish a transport t_open(BA_LIB) VOL 1

tsort topological sort .. tsort(SD_CMD) VOL 3

manipulation routines panel_top: top_panel, bottom_panel PANELS deck
... panel_top(TI_LIB) VOL 3

current/ /current_item, set_top_row, top_row, item_index set and get
.. menu_item_current(TI_LIB) VOL 3

transport endpoint t_optmgmt manage options for a
... t_optmgmt(BA_LIB) VOL 1

a Transaction Operation Script (TOS) file roitosparse parse roitosparse(RA_LIB) VOL 3

acctmerg merge or add total accounting files acctmerg(AS_CMD) VOL 2

modification times of a file touch update access and touch(BU_CMD) VOL 2

curs_touch: touchwin, touchline, untouchwin, wtouchln,/
... curs_touch(TI_LIB) VOL 3

wtouchln,/ curs_touch: touchwin, touchline, untouchwin,
... curs_touch(TI_LIB) VOL 3

translate/ conv: toupper, tolower, _toupper, _tolower, toascii conv(BA_LIB) VOL 1

_tolower, toascii translate/ conv: toupper, tolower, _toupper, conv(BA_LIB) VOL 1

wconv: towupper, towlower translate characters wconv(BA_LIB) VOL 1

characters wconv: towupper, towlower translate wconv(BA_LIB) VOL 1

vidattr,/ /del_curterm, restartterm, tparm, tputs, putp, vidputs, curs_terminfo(TI_LIB) VOL 3

the terminfo database tput initialize a terminal or query tput(TI_CMD) VOL 3

/tgetflag, tgetnum, tgetstr, tgoto, tputs CURSES interfaces (emulated)/
... curs_termcap(TI_LIB) VOL 3

/del_curterm, restartterm, tparm, tputs, putp, vidputs, vidattr,/ curs_terminfo(TI_LIB) VOL 3

tr translate characters .. tr(BU_CMD) VOL 2

ptrace process trace .. ptrace(KE_OS) VOL 1

truss trace system calls and signals truss(SD_CMD) VOL 3

output of remote jobs remstat track the status and retrieve remstat(RA_CMD) VOL 3

packages pkgtrk display/delete tracking information for delivered
... pkgtrk(RA_CMD) VOL 3

recorded information from audit trail auditrpt display auditrpt(AT_CMD) VOL 3

file roitosparse parse a Transaction Operation Script (TOS)
... roitosparse(RA_LIB) VOL 3

the system pkgadd transfer software package or set to
.. pkgadd(AS_CMD) VOL 2

strxfrm string transformation ... strxfrm(BA_LIB) VOL 1

wcsxfrm wide character string transformation ... wcsxfrm(BA_LIB) VOL 1

format to text format lvlout translate a level from internal lvlout(ES_LIB) VOL 3

to internal format lvlin translate a level from text format lvlin(ES_LIB) VOL 3

tr translate characters .. tr(BU_CMD) VOL 2

wconv: towupper, towlower translate characters ... wconv(BA_LIB) VOL 1

_toupper, _tolower, toascii translate characters /tolower, conv(BA_LIB) VOL 1

pkgtrans translate package format pkgtrans(AS_CMD) VOL 2

generic transport name-to-address translation /netdir_sperror netdir(RS_LIB) VOL 3

t_bind bind an address to a transport endpoint .. t_bind(BA_LIB) VOL 1

t_close close a transport endpoint ... t_close(BA_LIB) VOL 1

t_open establish a transport endpoint ... t_open(BA_LIB) VOL 1

t_optmgmt manage options for a transport endpoint t_optmgmt(BA_LIB) VOL 1

t_unbind disable a transport endpoint t_unbind(BA_LIB) VOL 1

STREAMS module timod Transport Interface cooperating timod(BA_DEV) VOL 1

interface STREAMS module tirdwr Transport Interface read/write tirdwr(BA_DEV) VOL 1

t_sync synchronize transport library .. t_sync(BA_LIB) VOL 1

Permuted Index 111

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 799

translation /netdir_sperror generic transport name-to-address netdir(RS_LIB) VOL 3

ticlts, ticots, ticotsord loopback transport providers .. ticlts(BA_DEV) VOL 1

establish a connection with another transport user t_connect t_connect(BA_LIB) VOL 1

ftw: ftw.h file tree traversal ... ftw(BA_ENV) VOL 1

panel_below PANELS deck traversal primitives /panel_above,
.. panel_above(TI_LIB) VOL 3

data sent over a connection t_rcv receive normal or expedited t_rcv(BA_LIB) VOL 1

confirmation from a connect/ t_rcvconnect receive the t_rcvconnect(BA_LIB) VOL 1

disconnect t_rcvdis retrieve information from t_rcvdis(BA_LIB) VOL 1

orderly release indication t_rcvrel acknowledge receipt of an t_rcvrel(BA_LIB) VOL 1

t_rcvudata receive a data unit t_rcvudata(BA_LIB) VOL 1

error indication t_rcvuderr receive a unit data t_rcvuderr(BA_LIB) VOL 1

ftw, nftw walk a file tree .. ftw(BA_LIB) VOL 1

file system directory tree structure ... file(BA_ENV) VOL 1

ftw: ftw.h file tree traversal ... ftw(BA_ENV) VOL 1

tdelete, twalk manage binary search trees tsearch, tfind, tsearch(BA_LIB) VOL 1

atan, atan2 trigonometric/ trig: sin, cos, tan, asin, acos, trig(BA_LIB) VOL 1

cos, tan, asin, acos, atan, atan2 trigonometric functions trig: sin, trig(BA_LIB) VOL 1

true, false provide truth values true(BU_CMD) VOL 2

signals truss trace system calls and truss(SD_CMD) VOL 3

archives in and out tcpio trusted cpio for copying file tcpio(ES_CMD) VOL 3

/add, change, delete roles in the Trusted Facility Management (TFM)/
.. adminrole(ES_CMD) VOL 3

true, false provide truth values ... true(BU_CMD) VOL 2

manage binary search trees tsearch, tfind, tdelete, twalk tsearch(BA_LIB) VOL 1

over a connection t_snd send normal or expedited data t_snd(BA_LIB) VOL 1

disconnect request t_snddis send user-initiated t_snddis(BA_LIB) VOL 1

release t_sndrel initiate an orderly t_sndrel(BA_LIB) VOL 1

t_sndudata send a data unit t_sndudata(BA_LIB) VOL 1

tsort topological sort tsort(SD_CMD) VOL 3

t_strerror get error message string
.. t_strerror(BA_LIB) VOL 1

library t_sync synchronize transport t_sync(BA_LIB) VOL 1

devtty: tty controlling terminal interface devtty(BA_DEV) VOL 1

tty get the name of the terminal tty(AU_CMD) VOL 2

terminal ttyname, isatty find name of a ttyname(BA_LIB) VOL 1

endpoint t_unbind disable a transport t_unbind(BA_LIB) VOL 1

and/ /prtacct, shutacct, startup, turnacct miscellaneous accounting acct(AS_CMD) VOL 2

tsearch, tfind, tdelete, twalk manage binary search trees tsearch(BA_LIB) VOL 1

file determine file type .. file(BU_CMD) VOL 2

fstyp determine file system type ... fstyp(AS_CMD) VOL 2

field_arg FORMS field data type validation /field_type,
.. form_field_validation(TI_LIB) VOL 3

option/ /qiflush, timeout, wtimeout, typeahead CURSES terminal input
.. curs_inopts(TI_LIB) VOL 3

ctype: ctype.h character types ... ctype(BA_ENV) VOL 1

nl_types: nl_types.h data types .. nl_types(BA_ENV) VOL 1

time: time.h time types ... time(BA_ENV) VOL 1

types: sys/types.h data types ... types(BA_ENV) VOL 1

types: sys/types.h data types types(BA_ENV) VOL 1

ctime, localtime, gmtime, asctime, tzset convert date and time to/ ctime(BA_LIB) VOL 1

/netdir_options, taddr2uaddr, uaddr2taddr, netdir_perror,/ netdir(RS_LIB) VOL 3

112 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 800

ucontext user context ucontext(BA_ENV) VOL 1

ulimit: ulimit.h ulimit commands ... ulimit(BA_ENV) VOL 1

ulimit get and set user limits ulimit(BA_OS) VOL 1

ulimit: ulimit.h ulimit commands ulimit(BA_ENV) VOL 1

ulimit: ulimit.h ulimit commands ulimit(BA_ENV) VOL 1

mask umask set and get file creation umask(BA_OS) VOL 1

umask set file-creation mode mask
... umask(BU_CMD) VOL 2

systems and remote/ mount, umount mount or unmount file mount(AS_CMD) VOL 2

umount unmount a file system umount(BA_OS) VOL 1

system uname get name of current operating
... uname(uname(BA_OS)) VOL 1

uname print name of current system
... uname(BU_CMD) VOL 2

unshare make local resource unavailable for sharing by remote/
.. unshare(RS_CMD) VOL 3

/zcat compress data for storage, uncompress and display compressed/
... compress(BU_CMD) VOL 2

storage, uncompress and/ compress, uncompress, zcat compress data for
... compress(BU_CMD) VOL 2

putwin, getwin,/ curs_util: unctrl, keyname, filter, use_env, curs_util(TI_LIB) VOL 3

unget undo a previous get of an SCCS file unget(SD_CMD) VOL 3

SCCS file unget undo a previous get of an unget(SD_CMD) VOL 3

input stdio-stream ungetc push character back into ungetc(BA_LIB) VOL 1

/getch, wgetch, mvgetch, mvwgetch, ungetch get (or push back)/ curs_getch(TI_LIB) VOL 3

into input stream ungetwc push wchar_t character back
.. ungetwc(BA_LIB) VOL 1

/wgetwch, mvgetwch, mvwgetwch, ungetwch get (or push back) wchar_t/
.. curs_getwch(TI_LIB) VOL 3

/srand48, seed48, lcong48 generate uniformly distributed pseudo-random/
.. drand48(BA_LIB) VOL 1

file uniq report repeated lines in a uniq(BU_CMD) VOL 2

mktemp make a unique filename ... mktemp(BA_LIB) VOL 1

roijobids get unique remote job identifiers roijobids(RA_LIB) VOL 3

connld line discipline for unique stream connections connld(BA_DEV) VOL 1

constants and structures unistd: unistd.h standard symbolic unistd(BA_ENV) VOL 1

constants and structures unistd: unistd.h standard symbolic unistd(BA_ENV) VOL 1

t_rcvudata receive a data unit ... t_rcvudata(BA_LIB) VOL 1

t_sndudata send a data unit .. t_sndudata(BA_LIB) VOL 1

t_rcvuderr receive a unit data error indication t_rcvuderr(BA_LIB) VOL 1

number mapper rpcbind universal addresses to RPC program
.. rpcbind(RS_CMD) VOL 3

system calls link, unlink exercise link and unlink link(AS_CMD) VOL 2

unlink remove directory entry unlink(BA_OS) VOL 1

link, unlink exercise link and unlink system calls ... link(AS_CMD) VOL 2

demand KE_OS) moduload unload a loadable kernel module on
.. moduload(KE_OS) VOL 1

mutex_unlock unlock a mutex mutex_unlock(MT_LIB) VOL 1

master/slave pair unlockpt unlock a pseudo-terminal unlockpt(BA_LIB) VOL 1

rmutex_unlock unlock a recursive mutex rmutex_unlock(MT_LIB) VOL 1

mlockall, munlockall lock or unlock address space mlockall(RT_OS) VOL 3

mlock, munlock lock (or unlock) pages in memory mlock(RT_OS) VOL 3

Permuted Index 113

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 801

plock lock into memory or unlock process, text, or data plock(KE_OS) VOL 1

master/slave pair unlockpt unlock a pseudo-terminal
... unlockpt(BA_LIB) VOL 1

munmap unmap pages of memory munmap(KE_OS) VOL 1

umount unmount a file system umount(BA_OS) VOL 1

resources mount, umount mount or unmount file systems and remote mount(AS_CMD) VOL 2

pack, pcat, unpack compress and expand files pack(BU_CMD) VOL 2

from/ form_post: post_form, unpost_form write or erase FORMS
.. form_post(TI_LIB) VOL 3

from/ menu_post: post_menu, unpost_menu write or erase MENUS
... menu_post(TI_LIB) VOL 3

unavailable for sharing by remote/ unshare make local resource unshare(RS_CMD) VOL 3

aio_suspend suspend until asynchronous I/O completes
.. aio_suspend(MT_LIB) VOL 1

pause suspend process until signal .. pause(BA_OS) VOL 1

a signal mask and suspend process until signal sigsuspend install sigsuspend(BA_OS) VOL 1

curs_touch: touchwin, touchline, untouchwin, wtouchln,/ curs_touch(TI_LIB) VOL 3

lsearch, lfind linear search and update .. lsearch(BA_LIB) VOL 1

times of a file touch update access and modification touch(BU_CMD) VOL 2

programs make maintain, update, and regenerate groups of make(BU_CMD) VOL 2

programs make maintain, update, and regenerate groups of make(SD_CMD) VOL 3

roistat update job status record roistat(RA_LIB) VOL 3

sync update super-block ... sync(BA_OS) VOL 1

refresh routine panel_update: update_panels PANELS virtual screen
.. panel_update(TI_LIB) VOL 3

putdev creates and updates the device database putdev(ES_CMD) VOL 3

/utmpxname, getutmp, getutmpx, updwtmp, updwtmpx access utmpx file/
.. getutx(SD_LIB) VOL 3

/getutmp, getutmpx, updwtmp, updwtmpx access utmpx file entry getutx(SD_LIB) VOL 3

and directories urestore request restore of files urestore(AS_CMD) VOL 2

posted user file and directory/ ursstatus report the status of ursstatus(AS_CMD) VOL 2

du estimate file space usage .. du(BU_CMD) VOL 2

mkmsgs create message files for use by gettxt .. mkmsgs(AS_CMD) VOL 2

ctags create a tags file for use with ex and vi .. ctags(BU_CMD) VOL 2

curs_util: unctrl, keyname, filter, use_env, putwin, getwin,/ curs_util(TI_LIB) VOL 3

roigetuser get login name of the user ... roigetuser(RA_LIB) VOL 3

su become super-user or another user ... su(AU_CMD) VOL 2

write write to another user .. write(AU_CMD) VOL 2

setuid, setgid set user and group IDs ... setuid(BA_OS) VOL 1

logins list user and system login information logins(AS_CMD) VOL 2

ucontext user context .. ucontext(BA_ENV) VOL 1

setcontext get and set current user context getcontext, getcontext(BA_OS) VOL 1

makecontext, swapcontext manipulate user contexts ... makecontext(BA_LIB) VOL 1

crontab user crontab file ... crontab(AU_CMD) VOL 2

get character login name of the user cuserid cuserid(cuserid(BA_OS)) VOL 1

/geteuid, getgid, getegid get real user, effective user, real group,/ getuid(BA_OS) VOL 1

/report the status of posted user file and directory restore/ ursstatus(AS_CMD) VOL 2

getdate convert user format date and time getdate(BA_LIB) VOL 1

generate disk accounting data by user ID diskusg, acctdisk diskusg(AS_CMD) VOL 2

listusers list user information listusers(BU_CMD) VOL 2

ulimit get and set user limits ... ulimit(BA_OS) VOL 1

useradd add a new user login on the system useradd(AS_CMD) VOL 2

114 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 802

and ID id print the user name and ID, and group name id(AU_CMD) VOL 2

last indicate last logins by user or terminal ... last(AS_CMD) VOL 2

/getegid get real user, effective user, real group, and effective/ getuid(BA_OS) VOL 1

a connection with another transport user t_connect establish t_connect(BA_LIB) VOL 1

secure/ /netname2host, netname2user, user2netname library routines for
... secure_rpc(RS_LIB) VOL 3

system useradd add a new user login on the
... useradd(AS_CMD) VOL 2

the system userdel delete a user’s login from userdel(AS_CMD) VOL 2

t_snddis send user-initiated disconnect request t_snddis(BA_LIB) VOL 1

information on the system usermod modify a user’s login usermod(AS_CMD) VOL 2

wall write to all users .. wall(AU_CMD) VOL 2

in/ admalloc allocates devices to users based on information stored
.. admalloc(ES_CMD) VOL 3

/display, add, change, delete users in the TFM database adminuser(ES_CMD) VOL 3

userdel delete a user’s login from the system userdel(AS_CMD) VOL 2

system usermod modify a user’s login information on the usermod(AS_CMD) VOL 2

fuser identify processes using a file or file structure fuser(AS_CMD) VOL 2

/wide character string comparison using collating information wcscoll(BA_LIB) VOL 1

ustat get file system statistics ustat(BA_OS) VOL 1

wchar extended wide character utilities .. wchar(BA_ENV) VOL 1

iconv code set conversion utility ... iconv(BU_CMD) VOL 2

flushinp miscellaneous CURSES utility routines /delay_output, curs_util(TI_LIB) VOL 3

modification times utime set file access and utime(BA_OS) VOL 1

modification times structure utime: utime.h access and utime(BA_ENV) VOL 1

times structure utime: utime.h access and modification utime(BA_ENV) VOL 1

getutmpx, updwtmp, updwtmpx access utmpx file entry /getutmp, getutx(SD_LIB) VOL 3

/pututxline, setutxent, endutxent, utmpxname, getutmp, getutmpx,/ getutx(SD_LIB) VOL 3

structure utsname: sys/utsname.h system name
... utsname(BA_ENV) VOL 1

uustat uucp status inquiry and job control
.. uustat(AU_CMD) VOL 2

system-to-system copy uucp, uulog, uuname uucp(AU_CMD) VOL 2

decode its ASCII/ uuencode, uudecode encode a binary file, or
... uuencode(AU_CMD) VOL 2

file, or decode its ASCII/ uuencode, uudecode encode a binary
... uuencode(AU_CMD) VOL 2

uucp, uulog, uuname system-to-system copy
.. uucp(AU_CMD) VOL 2

uucp, uulog, uuname system-to-system copy uucp(AU_CMD) VOL 2

copy uuto, uupick public system-to-system file uuto(AU_CMD) VOL 2

control uustat uucp status inquiry and job uustat(AU_CMD) VOL 2

system-to-system file copy uuto, uupick public .. uuto(AU_CMD) VOL 2

uux remote command execution uux(AU_CMD) VOL 2

argument list stdarg: va_start, va_arg, va_end handle variable stdarg(BA_ENV) VOL 1

list stdarg: va_start, va_arg, va_end handle variable argument stdarg(BA_ENV) VOL 1

val validate SCCS file .. val(SD_CMD) VOL 3

val validate SCCS file ... val(SD_CMD) VOL 3

field_arg FORMS field data type validation /field_type, form_field_validation(TI_LIB) VOL 3

lvlvalid check the validity of a level .. lvlvalid(ES_LIB) VOL 3

abs, labs return integer absolute value ... abs(BA_LIB) VOL 1

roitosval get a value for a variable name roitosval(RA_LIB) VOL 3

Permuted Index 115

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 803

getenv return value for environment name getenv(BA_LIB) VOL 1

floor, ceiling, remainder, absolute value functions /remainder, fabs floor(BA_LIB) VOL 1

set_t_errno get/set t_errno value get_t_errno, get_t_errno(BA_LIB) VOL 1

readlink read value of a symbolic link readlink(readlink(BA_OS)) VOL 1

getitimer, setitimer get/set value of interval timer getitimer(RT_OS) VOL 3

a lock by incrementing the count value of the semaphore /release sema_post(MT_LIB) VOL 1

putenv change or add value to environment putenv(BA_LIB) VOL 1

strfmon convert monetary value to string ... strfmon(BA_LIB) VOL 1

wide string to floating point value /wcstof, wcstold convert wcstod(BA_LIB) VOL 1

confstr obtain configurable string values .. confstr(BA_OS) VOL 1

cpio: cpio.h cpio archive values ... cpio(BA_ENV) VOL 1

defadm display/modify default values .. defadm(BU_CMD) VOL 2

pkgparam display package parameter values .. pkgparam(AS_CMD) VOL 2

true, false provide truth values ... true(BU_CMD) VOL 2

termios: termios.h define values for termios termios(BA_ENV) VOL 1

item_value set and get MENUS item values /set_item_value, menu_item_value(TI_LIB) VOL 3

cond_destroy destroy a condition variable .. cond_destroy(MT_LIB) VOL 1

cond_init initialize a condition variable ... cond_init(MT_LIB) VOL 1

cond_wait wait on a condition variable ... cond_wait(MT_LIB) VOL 1

formatted wide character input of a variable argument list /convert vfwscanf(BA_LIB) VOL 1

wide character output of a variable argument list /formatted vfwprintf(BA_LIB) VOL 1

va_start, va_arg, va_end handle variable argument list stdarg: stdarg(BA_ENV) VOL 1

print formatted output of a variable argument list /vsnprintf vprintf(BA_LIB) VOL 1

convert formatted input of a variable argument list /vsscanf vscanf(BA_LIB) VOL 1

all threads waiting on a condition variable /broadcast a wake up to
.. cond_broadcast(MT_LIB) VOL 1

cond_timedwait wait on a condition variable for a limited time cond_timedwait(MT_LIB) VOL 1

roitosval get a value for a variable name .. roitosval(RA_LIB) VOL 3

thread waiting on a condition variable /wake up a single cond_signal(MT_LIB) VOL 1

envvar environment variables .. envvar(BA_ENV) VOL 1

sysconf get configurable system variables ... sysconf(BA_OS) VOL 1

pathconf get configurable pathname variables fpathconf, fpathconf(BA_OS) VOL 1

variable argument list stdarg: va_start, va_arg, va_end handle stdarg(BA_ENV) VOL 1

get option letter from argument vector getopt .. getopt(BA_LIB) VOL 1

assert: assert.h verify program assertion assert(BA_ENV) VOL 1

assert verify program assertion assert(BA_LIB) VOL 1

get get a version of an SCCS file get(SD_CMD) VOL 3

CURSES borders, horizontal and vertical lines /wvline create curs_border(TI_LIB) VOL 3

formatted output of a/ vprintf, vfprintf, vsprintf, vsnprintf print vprintf(BA_LIB) VOL 1

input of a variable/ vscanf, vfscanf, vsscanf convert formatted vscanf(BA_LIB) VOL 1

print formatted wide character/ vfwprintf, vwprintf, vswprintf vfwprintf(BA_LIB) VOL 1

formatted wide character input of/ vfwscanf, vwscanf, vswscanf convert
... vfwscanf(BA_LIB) VOL 1

a tags file for use with ex and vi ctags create .. ctags(BU_CMD) VOL 2

editor vi screen-oriented (visual) display vi(AU_CMD) VOL 2

/tparm, tputs, putp, vidputs, vidattr, mvcur, tigetflag,/ curs_terminfo(TI_LIB) VOL 3

/restartterm, tparm, tputs, putp, vidputs, vidattr, mvcur, tigetflag,/
.. curs_terminfo(TI_LIB) VOL 3

move a PANELS window on the virtual screen /move_panel panel_move(TI_LIB) VOL 3

panel_update: update_panels PANELS virtual screen refresh routine panel_update(TI_LIB) VOL 3

116 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 804

item_visible tell if MENUS item is visible menu_item_visible:
... menu_item_visible(TI_LIB) VOL 3

vi screen-oriented (visual) display editor .. vi(AU_CMD) VOL 2

standard format and/ lfmt lfmt, vlfmt; display error message in lfmt(BA_LIB) VOL 1

with label checking volcopy, labelit copy file systems volcopy(AS_CMD) VOL 2

standard format pfmt, vpfmt display error message in pfmt(BA_LIB) VOL 1

vsnprintf print formatted output/ vprintf, vfprintf, vsprintf, vprintf(BA_LIB) VOL 1

formatted input of a variable/ vscanf, vfscanf, vsscanf convert vscanf(BA_LIB) VOL 1

a/ vprintf, vfprintf, vsprintf, vsnprintf print formatted output of vprintf(BA_LIB) VOL 1

output of a/ vprintf, vfprintf, vsprintf, vsnprintf print formatted vprintf(BA_LIB) VOL 1

a variable/ vscanf, vfscanf, vsscanf convert formatted input of vscanf(BA_LIB) VOL 1

character/ vfwprintf, vwprintf, vswprintf print formatted wide vfwprintf(BA_LIB) VOL 1

character input/ vfwscanf, vwscanf, vswscanf convert formatted wide vfwscanf(BA_LIB) VOL 1

wide character output/ vfwprintf, vwprintf, vswprintf print formatted
.. vfwprintf(BA_LIB) VOL 1

/wprintw, mvprintw, mvwprintw, vwprintw print formatted output in/
... curs_printw(TI_LIB) VOL 3

wide character input of/ vfwscanf, vwscanf, vswscanf convert formatted
... vfwscanf(BA_LIB) VOL 1

/scanw, wscanw, mvscanw, mvwscanw, vwscanw convert formatted input/
.. curs_scanw(TI_LIB) VOL 3

echochar,/ curs_addch: addch, waddch, mvaddch, mvwaddch, curs_addch(TI_LIB) VOL 3

/addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,/ curs_addchstr(TI_LIB) VOL 3

curs_addchstr: addchstr, addchnstr, waddchstr, waddchnstr, mvaddchstr,/
.. curs_addchstr(TI_LIB) VOL 3

/addstr, addnstr, waddstr, waddnstr, mvaddstr, mvaddnstr,/
.. curs_addstr(TI_LIB) VOL 3

/addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr, mvaddnwstr,/
.. curs_addwstr(TI_LIB) VOL 3

curs_addstr: addstr, addnstr, waddstr, waddnstr, mvaddstr,/ curs_addstr(TI_LIB) VOL 3

echowchar,/ curs_addwch: addwch, waddwch, mvaddwch, mvwaddwch,
... curs_addwch(TI_LIB) VOL 3

/addwchstr, addwchnstr, waddwchstr, waddwchnstr, mvaddwchstr,/
.. curs_addwchstr(TI_LIB) VOL 3

/addwchstr, addwchnstr, waddwchstr, waddwchnstr,/
.. curs_addwchstr(TI_LIB) VOL 3

curs_addwstr: addwstr, addnwstr, waddwstr, waddnwstr, mvaddwstr,/
.. curs_addwstr(TI_LIB) VOL 3

barrier_wait wait at a blocking barrier barrier_wait(MT_LIB) VOL 1

wait await completion of process wait(BU_CMD) VOL 2

sigwait wait for a signal to be posted sigwait(BA_OS) VOL 1

state waitid wait for child process to change waitid(BA_OS) VOL 1

state waitpid wait for child process to change waitpid(BA_OS) VOL 1

terminate wait wait for child process to stop or wait(BA_OS) VOL 1

cond_wait wait on a condition variable cond_wait(MT_LIB) VOL 1

limited time cond_timedwait wait on a condition variable for a
... cond_timedwait(MT_LIB) VOL 1

waiting wait: sys/wait.h declarations for wait(BA_ENV) VOL 1

or terminate wait wait for child process to stop wait(BA_OS) VOL 1

change state waitid wait for child process to waitid(BA_OS) VOL 1

wait: sys/wait.h declarations for waiting ... wait(BA_ENV) VOL 1

Permuted Index 117

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 805

/broadcast a wake up to all threads waiting on a condition variable
.. cond_broadcast(MT_LIB) VOL 1

cond_signal wake up a single thread waiting on a condition variable
... cond_signal(MT_LIB) VOL 1

change state waitpid wait for child process to waitpid(BA_OS) VOL 1

a condition variable cond_signal wake up a single thread waiting on
... cond_signal(MT_LIB) VOL 1

cond_broadcast broadcast a wake up to all threads waiting on a/
.. cond_broadcast(MT_LIB) VOL 1

ftw, nftw walk a file tree ... ftw(BA_LIB) VOL 1

wall write to all users wall(AU_CMD) VOL 2

wattrset,/ curs_attr: attroff, wattroff, attron, wattron, attrset, curs_attr(TI_LIB) VOL 3

/attroff, wattroff, attron, wattron, attrset, wattrset,/ curs_attr(TI_LIB) VOL 3

/wattroff, attron, wattron, attrset, wattrset, standend, wstandend,/ curs_attr(TI_LIB) VOL 3

curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd CURSES window background/
.. curs_bkgd(TI_LIB) VOL 3

background/ curs_bkgd: bkgdset, wbkgdset, bkgd, wbkgd CURSES window
.. curs_bkgd(TI_LIB) VOL 3

CURSES/ curs_border: border, wborder, box, whline, wvline create
... curs_border(TI_LIB) VOL 3

wc word count .. wc(BU_CMD) VOL 2

utilities wchar extended wide character wchar(BA_ENV) VOL 1

winwch, mvinwch, mvwinwch get a wchar_t character and its/ /inwch,
.. curs_inwch(TI_LIB) VOL 3

stream ungetwc push wchar_t character back into input ungetwc(BA_LIB) VOL 1

/mvinswch, mvwinswch insert a wchar_t character before the/ curs_inswch(TI_LIB) VOL 3

CURSES/ /mvwgetwstr, mvwgetnwstr get wchar_t character strings from curs_getwstr(TI_LIB) VOL 3

to a/ /echowchar, wechowchar add a wchar_t character (with attributes)
... curs_addwch(TI_LIB) VOL 3

to a/ /mvwaddwchnstr add string of wchar_t characters (and attributes)
.. curs_addwchstr(TI_LIB) VOL 3

from/ /mvwinwchnstr get a string of wchar_t characters (and attributes)
.. curs_inwchstr(TI_LIB) VOL 3

window /mvwinnwstr get a string of wchar_t characters from a CURSES
.. curs_inwstr(TI_LIB) VOL 3

/ungetwch get (or push back) wchar_t characters from CURSES/
.. curs_getwch(TI_LIB) VOL 3

window/ /mvwaddnwstr add a string of wchar_t characters to a CURSES
.. curs_addwstr(TI_LIB) VOL 3

/mvwinswstr, mvwinsnwstr insert wchar_t string before character/
.. curs_inswstr(TI_LIB) VOL 3

fgetws get a wchar_t string from a stream fgetws(BA_LIB) VOL 1

fputws put a wchar_t string on a stream fputws(BA_LIB) VOL 1

curs_clear: erase, werase, clear, wclear, clrtobot, wclrtobot,/ curs_clear(TI_LIB) VOL 3

/werase, clear, wclear, clrtobot, wclrtobot, clrtoeol, wclrtoeol/ curs_clear(TI_LIB) VOL 3

/clrtobot, wclrtobot, clrtoeol, wclrtoeol clear all or part of a/ curs_clear(TI_LIB) VOL 3

characters wconv: towupper, towlower translate
... wconv(BA_LIB) VOL 1

/mbtowc, wctomb, mblen, mbrtowc, wcrtomb, mbrlen multibyte character/
... mbchar(BA_LIB) VOL 1

character strings wcscat concatenate two wide wcscat(BA_LIB) VOL 1

wcschr scan a wide character string wcschr(BA_LIB) VOL 1

118 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 806

strings wcscmp compare two wide character
.. wcscmp(BA_LIB) VOL 1

comparison using collating/ wcscoll wide character string wcscoll(BA_LIB) VOL 1

wcscpy copy a wide character string
.. wcscpy(BA_LIB) VOL 1

wide substring wcscspn get length of complementary
.. wcscspn(BA_LIB) VOL 1

wide character string wcsftime convert date and time to wcsftime(BA_LIB) VOL 1

length wcslen obtain wide character string wcslen(BA_LIB) VOL 1

character strings with bound wcsncat concatenate two wide wcsncat(BA_LIB) VOL 1

strings with bound wcsncmp compare two wide character
.. wcsncmp(BA_LIB) VOL 1

string with bound wcsncpy copy a wide character wcsncpy(BA_LIB) VOL 1

string for wide characters wcspbrk scan a wide character wcspbrk(BA_LIB) VOL 1

string scan wcsrchr reverse wide character wcsrchr(BA_LIB) VOL 1

/mbstowcs, wcstombs, mbsrtowcs, wcsrtombs multibyte string/ mbstring(BA_LIB) VOL 1

substring wcsspn obtain the length of a wide wcsspn(BA_LIB) VOL 1

substring wcsstr, ‡wcswcs find wide wcsstr(BA_LIB) VOL 1

wide string to floating point/ wcstod, wcstof, wcstold convert wcstod(BA_LIB) VOL 1

to floating point value wcstod, wcstof, wcstold convert wide string wcstod(BA_LIB) VOL 1

string into tokens wcstok split a wide character wcstok(BA_LIB) VOL 1

string to a long integer wcstol convert a wide character wcstol(BA_LIB) VOL 1

floating point/ wcstod, wcstof, wcstold convert wide string to wcstod(BA_LIB) VOL 1

multibyte/ mbstring: mbstowcs, wcstombs, mbsrtowcs, wcsrtombs mbstring(BA_LIB) VOL 1

column positions for a wide/ wcswidth determine the number of
.. wcswidth(BA_LIB) VOL 1

transformation wcsxfrm wide character string wcsxfrm(BA_LIB) VOL 1

conversion wctob wide character to byte wctob(BA_LIB) VOL 1

mbrlen multibyte/ mbchar: mbtowc, wctomb, mblen, mbrtowc, wcrtomb,
... mbchar(BA_LIB) VOL 1

iswlower, iswdigit, iswxdigit,/ wctype: iswalpha, iswupper, wctype(BA_LIB) VOL 1

/mvderwin, dupwin, wsyncup, syncok, wcursyncup, wsyncdown create CURSES/
.. curs_window(TI_LIB) VOL 3

column positions for a wide/ wcwidth determine the number of wcwidth(BA_LIB) VOL 1

character under/ curs_delch: delch, wdelch, mvdelch, mvwdelch delete
.. curs_delch(TI_LIB) VOL 3

insertln,/ curs_deleteln: deleteln, wdeleteln, insdelln, winsdelln, curs_deleteln(TI_LIB) VOL 3

/mvaddch, mvwaddch, echochar, wechochar add a character (with/
.. curs_addch(TI_LIB) VOL 3

/mvaddwch, mvwaddwch, echowchar, wechowchar add a wchar_t character/
... curs_addwch(TI_LIB) VOL 3

wclrtobot,/ curs_clear: erase, werase, clear, wclear, clrtobot, curs_clear(TI_LIB) VOL 3

get (or push/ curs_getch: getch, wgetch, mvgetch, mvwgetch, ungetch
.. curs_getch(TI_LIB) VOL 3

/wgetstr, mvgetstr, mvwgetstr, wgetnstr get character strings from/
... curs_getstr(TI_LIB) VOL 3

/getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr, mvgetnwstr,/
.. curs_getwstr(TI_LIB) VOL 3

wgetnstr get/ curs_getstr: getstr, wgetstr, mvgetstr, mvwgetstr, curs_getstr(TI_LIB) VOL 3

ungetwch get/ curs_getwch: getwch, wgetwch, mvgetwch, mvwgetwch,
.. curs_getwch(TI_LIB) VOL 3

Permuted Index 119

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 807

curs_getwstr: getwstr, getnwstr, wgetwstr, wgetnwstr, mvgetwstr,/
.. curs_getwstr(TI_LIB) VOL 3

curs_border: border, wborder, box, whline, wvline create CURSES/ curs_border(TI_LIB) VOL 3

whodo who is doing what whodo(AS_CMD) VOL 2

number of column positions for a wide character /determine the wcwidth(BA_LIB) VOL 1

getwc, getwchar, fgetwc get next wide character from a stream getwc(BA_LIB) VOL 1

/vwscanf, vswscanf convert formatted wide character input of a variable/
... vfwscanf(BA_LIB) VOL 1

putwc, putwchar, fputwc put wide character on a stream putwc(BA_LIB) VOL 1

/vwprintf, vswprintf print formatted wide character output of a variable/
.. vfwprintf(BA_LIB) VOL 1

wcschr scan a wide character string wcschr(BA_LIB) VOL 1

wcscpy copy a wide character string wcscpy(BA_LIB) VOL 1

wcsftime convert date and time to wide character string wcsftime(BA_LIB) VOL 1

transformation wcsxfrm wide character string wcsxfrm(BA_LIB) VOL 1

using collating/ wcscoll wide character string comparison wcscoll(BA_LIB) VOL 1

characters wcspbrk scan a wide character string for wide wcspbrk(BA_LIB) VOL 1

wcstok split a wide character string into tokens wcstok(BA_LIB) VOL 1

wcslen obtain wide character string length wcslen(BA_LIB) VOL 1

wcsrchr reverse wide character string scan wcsrchr(BA_LIB) VOL 1

number of column positions for a wide character string /the wcswidth(BA_LIB) VOL 1

integer wcstol convert a wide character string to a long wcstol(BA_LIB) VOL 1

wcsncpy copy a wide character string with bound wcsncpy(BA_LIB) VOL 1

wcscat concatenate two wide character strings wcscat(BA_LIB) VOL 1

wcscmp compare two wide character strings wcscmp(BA_LIB) VOL 1

wcsncat concatenate two wide character strings with bound wcsncat(BA_LIB) VOL 1

wcsncmp compare two wide character strings with bound
.. wcsncmp(BA_LIB) VOL 1

wctob wide character to byte conversion wctob(BA_LIB) VOL 1

wchar extended wide character utilities wchar(BA_ENV) VOL 1

/iswprint, iswgraph, iswcntrl test wide characters for a specified/ wctype(BA_LIB) VOL 1

scan a wide character string for wide characters wcspbrk wcspbrk(BA_LIB) VOL 1

wcstod, wcstof, wcstold convert wide string to floating point value wcstod(BA_LIB) VOL 1

wcscspn get length of complementary wide substring ... wcscspn(BA_LIB) VOL 1

wcsspn obtain the length of a wide substring ... wcsspn(BA_LIB) VOL 1

wcsstr, ‡wcswcs find wide substring ... wcsstr(BA_LIB) VOL 1

/wscanf, swscanf convert formatted wide/multibyte character input fwscanf(BA_LIB) VOL 1

/wprintf, swprintf print formatted wide/multibyte character output fwprintf(BA_LIB) VOL 1

formatted input from a CURSES widow /mvwscanw, vwscanw convert
.. curs_scanw(TI_LIB) VOL 3

character and its/ curs_inch: inch, winch, mvinch, mvwinch get a curs_inch(TI_LIB) VOL 3

/inchstr, inchnstr, winchstr, winchnstr, mvinchstr, mvinchnstr,/
... curs_inchstr(TI_LIB) VOL 3

curs_inchstr: inchstr, inchnstr, winchstr, winchnstr, mvinchstr,/
... curs_inchstr(TI_LIB) VOL 3

(and attributes) to a CURSES window /add string of characters
.. curs_addchstr(TI_LIB) VOL 3

/(with attributes) to a CURSES window and advance cursor curs_addch(TI_LIB) VOL 3

/(with attributes) to a CURSES window and advance cursor curs_addwch(TI_LIB) VOL 3

of wchar_t characters to a CURSES window and advance cursor /a string
.. curs_addwstr(TI_LIB) VOL 3

120 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 808

a string of characters to a CURSES window and advance cursor /add
.. curs_addstr(TI_LIB) VOL 3

/form_sub, scale_form FORMS window and subwindow association/
... form_win(TI_LIB) VOL 3

/menu_sub, scale_menu MENUS window and subwindow association/
.. menu_win(TI_LIB) VOL 3

/wstandout CURSES character and window attribute control routines curs_attr(TI_LIB) VOL 3

/wbkgdset, bkgd, wbkgd CURSES window background manipulation/
.. curs_bkgd(TI_LIB) VOL 3

under the cursor in a CURSES window /before the character curs_insch(TI_LIB) VOL 3

under the cursor in a CURSES window /before the character curs_inswch(TI_LIB) VOL 3

clear all or part of a CURSES window /clrtoeol, wclrtoeol curs_clear(TI_LIB) VOL 3

getmaxyx get CURSES cursor and window coordinates /getbegyx, curs_getyx(TI_LIB) VOL 3

curs_move: move, wmove move CURSES window cursor .. curs_move(TI_LIB) VOL 3

pos_form_cursor position FORMS window cursor form_cursor: form_cursor(TI_LIB) VOL 3

scroll, srcl, wscrl scroll a CURSES window curs_scroll: curs_scroll(TI_LIB) VOL 3

(and attributes) from a CURSES window /get a string of characters
... curs_inchstr(TI_LIB) VOL 3

and its attributes from a CURSES window /get a wchar_t character
.. curs_inwch(TI_LIB) VOL 3

delete and insert lines in a CURSES window /insertln, winsertln curs_deleteln(TI_LIB) VOL 3

character under cursor in a CURSES window /mvdelch, mvwdelch delete
.. curs_delch(TI_LIB) VOL 3

and its attributes from a CURSES window /mvwinch get a character curs_inch(TI_LIB) VOL 3

of wchar_t characters from a CURSES window /mvwinnwstr get a string
.. curs_inwstr(TI_LIB) VOL 3

string of characters from a CURSES window /mvwinstr, mvwinnstr get a
... curs_instr(TI_LIB) VOL 3

/get or set the current window of a PANELS panel panel_window(TI_LIB) VOL 3

(and attributes) to a CURSES window /of wchar_t characters
.. curs_addwchstr(TI_LIB) VOL 3

(and attributes) from a CURSES window /of wchar_t characters
.. curs_inwchstr(TI_LIB) VOL 3

/move_panel move a PANELS window on the virtual screen panel_move(TI_LIB) VOL 3

under the cursor in a CURSES window /string before character curs_instr(TI_LIB) VOL 3

under the cursor in a CURSES window /string before character
.. curs_inswstr(TI_LIB) VOL 3

redrawwin, wredrawln refresh CURSES windows and lines /doupdate, curs_refresh(TI_LIB) VOL 3

wcursyncup, wsyncdown create CURSES windows /dupwin, wsyncup, syncok,
.. curs_window(TI_LIB) VOL 3

print formatted output in CURSES windows /mvwprintw, vwprintw
... curs_printw(TI_LIB) VOL 3

and manipulate overlapped CURSES windows /overwrite, copywin overlap
.. curs_overlay(TI_LIB) VOL 3

curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr,/ curs_instr(TI_LIB) VOL 3

/inwstr, innwstr, winwstr, winnwstr, mvinwstr, mvinnwstr,/
.. curs_inwstr(TI_LIB) VOL 3

character/ curs_insch: insch, winsch, mvinsch, mvwinsch insert a
.. curs_insch(TI_LIB) VOL 3

/deleteln, wdeleteln, insdelln, winsdelln, insertln, winsertln/ curs_deleteln(TI_LIB) VOL 3

Permuted Index 121

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 809

in/ /insdelln, winsdelln, insertln, winsertln delete and insert lines
... curs_deleteln(TI_LIB) VOL 3

/insstr, insnstr, winsstr, winsnstr, mvinsstr, mvinsnstr,/ curs_instr(TI_LIB) VOL 3

/inswstr, insnwstr, winswstr, winsnwstr, mvinswstr, mvinsnwstr,/
.. curs_inswstr(TI_LIB) VOL 3

curs_instr: insstr, insnstr, winsstr, winsnstr, mvinsstr,/ curs_instr(TI_LIB) VOL 3

curs_instr: instr, innstr, winstr, winnstr, mvinstr, mvinnstr,/
... curs_instr(TI_LIB) VOL 3

a wchar_t/ curs_inswch: inswch, winswch, mvinswch, mvwinswch insert
... curs_inswch(TI_LIB) VOL 3

curs_inswstr: inswstr, insnwstr, winswstr, winsnwstr, mvinswstr,/
.. curs_inswstr(TI_LIB) VOL 3

wchar_t/ curs_inwch: inwch, winwch, mvinwch, mvwinwch get a
.. curs_inwch(TI_LIB) VOL 3

/inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,/ curs_inwchstr(TI_LIB) VOL 3

curs_inwchstr: inwchstr, inwchnstr, winwchstr, winwchnstr, mvinwchstr,/
.. curs_inwchstr(TI_LIB) VOL 3

curs_inwstr: inwstr, innwstr, winwstr, winnwstr, mvinwstr,/ curs_inwstr(TI_LIB) VOL 3

/echochar, wechochar add a character (with attributes) to a CURSES/ curs_addch(TI_LIB) VOL 3

/wechowchar add a wchar_t character (with attributes) to a CURSES/
... curs_addwch(TI_LIB) VOL 3

MARK profile within a function .. MARK(SD_LIB) VOL 3

curs_move: move, wmove move CURSES window cursor
... curs_move(TI_LIB) VOL 3

curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate, redrawwin,/
... curs_refresh(TI_LIB) VOL 3

wc word count .. wc(BU_CMD) VOL 2

wordexp, wordfree perform word expansions ... wordexp(BA_LIB) VOL 1

fgetc, getw get character or word from a stream getc, getchar, getc(BA_LIB) VOL 1

fputc, putw put character or word on a stream putc, putchar, putc(BA_LIB) VOL 1

expansions wordexp, wordfree perform word wordexp(BA_LIB) VOL 1

wordexp, wordfree perform word expansions
... wordexp(BA_LIB) VOL 1

cd change working directory ... cd(BU_CMD) VOL 2

chdir, fchdir change working directory .. chdir(BA_OS) VOL 1

getcwd get pathname of current working directory ... getcwd(BA_OS) VOL 1

pwd working directory name pwd(BU_CMD) VOL 2

wide/multibyte character/ fwprintf, wprintf, swprintf print formatted fwprintf(BA_LIB) VOL 1

vwprintw/ curs_printw: printw, wprintw, mvprintw, mvwprintw,
... curs_printw(TI_LIB) VOL 3

/wnoutrefresh, doupdate, redrawwin, wredrawln refresh CURSES windows/
... curs_refresh(TI_LIB) VOL 3

redrawwin,/ curs_refresh: refresh, wrefresh, wnoutrefresh, doupdate,
... curs_refresh(TI_LIB) VOL 3

aio_write asynchronous write .. aio_write(MT_LIB) VOL 1

pwrite atomic position and write ... pwrite(BA_OS) VOL 1

/scr_restore, scr_init, scr_set read (write) a CURSES screen from (to) a/
... curs_scr_dump(TI_LIB) VOL 3

t_error write an error message t_error(BA_LIB) VOL 1

auditdmp write audit record to audit buffer auditdmp(AT_LIB) VOL 3

acquire a reader-writer lock in write mode /conditionally rw_trywrlock(MT_LIB) VOL 1

acquire a reader-writer lock in write mode rw_wrlock rw_wrlock(MT_LIB) VOL 1

122 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 810

write, writev write on a file .. write(BA_OS) VOL 1

form_post: post_form, unpost_form write or erase FORMS from/ form_post(TI_LIB) VOL 3

menu_post: post_menu, unpost_menu write or erase MENUS from/ menu_post(TI_LIB) VOL 3

putpwent write password file entry putpwent(SD_LIB) VOL 3

auditmap create and write the audit map files auditmap(AT_CMD) VOL 3

wall write to all users .. wall(AU_CMD) VOL 2

write write to another user write(AU_CMD) VOL 2

write write to another user write(AU_CMD) VOL 2

write, writev write on a file write(BA_OS) VOL 1

write, writev write on a file .. write(BA_OS) VOL 1

open open for reading or writing .. open(BA_OS) VOL 1

wide/multibyte character/ fwscanf, wscanf, swscanf convert formatted fwscanf(BA_LIB) VOL 1

convert/ curs_scanw: scanw, wscanw, mvscanw, mvwscanw, vwscanw
.. curs_scanw(TI_LIB) VOL 3

curs_scroll: scroll, srcl, wscrl scroll a CURSES window curs_scroll(TI_LIB) VOL 3

/idcok immedok, leaveok, setscrreg, wsetscrreg, scrollok, nl, nonl/ curs_outopts(TI_LIB) VOL 3

/attrset, wattrset, standend, wstandend, standout, wstandout/ curs_attr(TI_LIB) VOL 3

/standend, wstandend, standout, wstandout CURSES character and/
... curs_attr(TI_LIB) VOL 3

/wsyncup, syncok, wcursyncup, wsyncdown create CURSES windows
.. curs_window(TI_LIB) VOL 3

/subwin, derwin, mvderwin, dupwin, wsyncup, syncok, wcursyncup,/
.. curs_window(TI_LIB) VOL 3

/noraw, noqiflush, qiflush, timeout, wtimeout, typeahead CURSES terminal/
.. curs_inopts(TI_LIB) VOL 3

accounting records fwtmp, wtmpfix manipulate connect fwtmp(AS_CMD) VOL 2

/touchwin, touchline, untouchwin, wtouchln, is_linetouched,/ curs_touch(TI_LIB) VOL 3

/border, wborder, box, whline, wvline create CURSES borders,/
... curs_border(TI_LIB) VOL 3

and execute command xargs construct argument list(s) xargs(SD_CMD) VOL 3

/xdr_rejected_reply, xdr_replymsg XDR library routines for remote/ rpc_xdr(RS_LIB) VOL 3

xdr_authsys_parms,/ rpc_xdr: xdr_accepted_reply, rpc_xdr(RS_LIB) VOL 3

xdrrec_endofrecord, xdrrec_eof,/ xdr_admin: xdr_getpos, xdr_inline,
.. xdr_admin(RS_LIB) VOL 3

xdr_pointer,/ xdr_complex: xdr_array, xdr_bytes, xdr_opaque,
.. xdr_complex(RS_LIB) VOL 3

rpc_xdr: xdr_accepted_reply, xdr_authsys_parms, xdr_callhdr,/ rpc_xdr(RS_LIB) VOL 3

xdr_enum, xdr_float,/ xdr_simple: xdr_bool, xdr_char, xdr_double,
.. xdr_simple(RS_LIB) VOL 3

xdr_complex: xdr_array, xdr_bytes, xdr_opaque, xdr_pointer,/
.. xdr_complex(RS_LIB) VOL 3

/xdr_authsys_parms, xdr_callhdr, xdr_callmsg,/ rpc_xdr(RS_LIB) VOL 3

/xdr_authsys_parms, xdr_callhdr, xdr_callmsg, xdr_opaque_auth,/ rpc_xdr(RS_LIB) VOL 3

xdr_float,/ xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum,
.. xdr_simple(RS_LIB) VOL 3

xdr_opaque, xdr_pointer,/ xdr_complex: xdr_array, xdr_bytes,
.. xdr_complex(RS_LIB) VOL 3

xdrmem_create, xdrrec_create,/ xdr_create: xdr_destroy, xdr_create(RS_LIB) VOL 3

xdrrec_create,/ xdr_create: xdr_destroy, xdrmem_create, xdr_create(RS_LIB) VOL 3

xdr_simple: xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float,/
.. xdr_simple(RS_LIB) VOL 3

/xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free,/ xdr_simple(RS_LIB) VOL 3

Permuted Index 123

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 811

/xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free, xdr_int,/ xdr_simple(RS_LIB) VOL 3

/xdr_double, xdr_enum, xdr_float, xdr_free, xdr_int, xdr_long,/ xdr_simple(RS_LIB) VOL 3

xdrrec_endofrecord,/ xdr_admin: xdr_getpos, xdr_inline, xdr_admin(RS_LIB) VOL 3

xdrrec_eof,/ xdr_admin: xdr_getpos, xdr_inline, xdrrec_endofrecord, xdr_admin(RS_LIB) VOL 3

/xdr_enum, xdr_float, xdr_free, xdr_int, xdr_long, xdr_short,/ xdr_simple(RS_LIB) VOL 3

/xdr_float, xdr_free, xdr_int, xdr_long, xdr_short, xdr_u_char,/
.. xdr_simple(RS_LIB) VOL 3

xdr_create: xdr_destroy, xdrmem_create, xdrrec_create,/ xdr_create(RS_LIB) VOL 3

xdr_complex: xdr_array, xdr_bytes, xdr_opaque, xdr_pointer,/ xdr_complex(RS_LIB) VOL 3

/xdr_callhdr, xdr_callmsg, xdr_opaque_auth,/ rpc_xdr(RS_LIB) VOL 3

/xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference,/ xdr_complex(RS_LIB) VOL 3

/xdr_destroy, xdrmem_create, xdrrec_create, xdrstdio_create/ xdr_create(RS_LIB) VOL 3

xdr_admin: xdr_getpos, xdr_inline, xdrrec_endofrecord, xdrrec_eof,/
.. xdr_admin(RS_LIB) VOL 3

/xdr_inline, xdrrec_endofrecord, xdrrec_eof, xdrrec_skiprecord,/ xdr_admin(RS_LIB) VOL 3

/xdrrec_endofrecord, xdrrec_eof, xdrrec_skiprecord, xdr_setpos/ xdr_admin(RS_LIB) VOL 3

/xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference, xdr_string,/ xdr_complex(RS_LIB) VOL 3

XDR/ /xdr_callmsg, xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg rpc_xdr(RS_LIB) VOL 3

for remote/ /xdr_rejected_reply, xdr_replymsg XDR library routines rpc_xdr(RS_LIB) VOL 3

/xdrrec_eof, xdrrec_skiprecord, xdr_setpos library routines for/ xdr_admin(RS_LIB) VOL 3

/xdr_free, xdr_int, xdr_long, xdr_short, xdr_u_char, xdr_u_int,/
.. xdr_simple(RS_LIB) VOL 3

xdr_double, xdr_enum, xdr_float,/ xdr_simple: xdr_bool, xdr_char, xdr_simple(RS_LIB) VOL 3

for/ /xdrmem_create, xdrrec_create, xdrstdio_create library routines xdr_create(RS_LIB) VOL 3

/xdr_pointer, xdr_reference, xdr_string, xdr_union, xdr_vector,/
.. xdr_complex(RS_LIB) VOL 3

/xdr_int, xdr_long, xdr_short, xdr_u_char, xdr_u_int, xdr_u_long,/
.. xdr_simple(RS_LIB) VOL 3

/xdr_long, xdr_short, xdr_u_char, xdr_u_int, xdr_u_long, xdr_u_short,/
.. xdr_simple(RS_LIB) VOL 3

/xdr_short, xdr_u_char, xdr_u_int, xdr_u_long, xdr_u_short, xdr_void/
.. xdr_simple(RS_LIB) VOL 3

/xdr_reference, xdr_string, xdr_union, xdr_vector,/ xdr_complex(RS_LIB) VOL 3

/xdr_u_char, xdr_u_int, xdr_u_long, xdr_u_short, xdr_void library/ xdr_simple(RS_LIB) VOL 3

routines/ /xdr_string, xdr_union, xdr_vector, xdr_wrapstring library
.. xdr_complex(RS_LIB) VOL 3

/xdr_u_int, xdr_u_long, xdr_u_short, xdr_void library routines for/ xdr_simple(RS_LIB) VOL 3

/xdr_string, xdr_union, xdr_vector, xdr_wrapstring library routines for/
.. xdr_complex(RS_LIB) VOL 3

/rpc_reg, svc_reg, svc_unreg, xprt_register, xprt_unregister/
.. rpc_svc_calls(RS_LIB) VOL 3

/svc_reg, svc_unreg, xprt_register, xprt_unregister library routines/
.. rpc_svc_calls(RS_LIB) VOL 3

Bessel: j0, j1, jn, y0, y1, yn Bessel functions Bessel(BA_LIB) VOL 1

Bessel: j0, j1, jn, y0, y1, yn Bessel functions Bessel(BA_LIB) VOL 1

yacc a compiler-compiler yacc(SD_CMD) VOL 3

thr_yield yield the processor thr_yield(MT_LIB) VOL 1

Bessel: j0, j1, jn, y0, y1, yn Bessel functions .. Bessel(BA_LIB) VOL 1

uncompress/ compress, uncompress, zcat compress data for storage, compress(BU_CMD) VOL 2

zdump time zone dumper zdump(AS_CMD) VOL 2

zic time zone compiler zic(AS_CMD) VOL 2

zic time zone compiler .. zic(AS_CMD) VOL 2

124 Permuted Index

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 812

zdump time zone dumper ... zdump(AS_CMD) VOL 2

Permuted Index 125

FINAL COPY
June 15, 1995
File: PI.master

svid

Page: 813

