Of;eﬁOf fice.org

OpenOffice.org 1.1

Developer's Guide

aaaaaaaaaaa

This documentation is distributed under licenses restricting its use. You may
make copies of and redistribute it, but you may not modify or make derivative
works of this documentation without prior written authorization of Sun and its
licensors, if any.

Copyright 2003 Sun Microsystems, Inc.

Contents

1 Reader's Guide

1.1 What This Manual Covers
1.2 How This Book is Organized
1.3 OpenOffice.org Version History

1.4 Related documentation

1.5 Conventions

1.6 Acknowledgments

2 First Steps

2.1 Programming with UNO
2.2 Fields of Application for UNO
2.3 Getting Started

231
23.2
233

234

Required Files
Installation Sets
Configuration
Enable Java in OpenOffice.org
Use Java UNO class files
Make the office listen
Add the API Reference to your IDE
First Connection
Getting Connected
Service Managers
Failed Connections

2.4 How to get Objects in OpenOffice.org
2.5 Working with Objects

251

252
253

254
255
256
25.7

Services
Using Interfaces
Using Properties

Example: Working with a Spreadsheet Document

Common Types
Simple Types
Strings
Enum Types and Groups of Constants
Struct
Any
Sequence
Element Access
Name Access
Index Access

Enumeration Access

2.6 How do I know Which Type I Have?

25

25
25
26
26
27
27

29

29
29
30
30
30
31
31
31
31
32
33
33
34
36
37
38
38
41
42
43
44
44
45
45
46
46
48
49
51
52
52
53

2.7 Example: Hello Text, Hello Table, Hello Shape

2.7.1
2.7.2

Common Mechanisms for Text, Tables and Drawings

Creating Text, Tables and Drawing Shapes
Text, Tables and Drawings in Writer
Text, Tables and Drawings in Calc
Drawings and Text in Draw

3 Professional UNO

3.1 Introduction
3.2 API Concepts

321

322

Data Types
Simple Types
The Any Type
Interfaces
Services
Structs
Predefined Values
Sequences
Modules
Exceptions
Singletons
Understanding the API Reference
Specification, Implementation and Instances
Object Composition

3.3 UNO Concepts

331

332

333
334
335
33.6
3.3.7

UNO Interprocess Connections
Starting OpenOffice.org in Listening Mode
Importing a UNO Object
Characteristics of the Interprocess Bridge
Opening a Connection
Creating the Bridge
Closing a Connection
Example: A Connection Aware Client
Service Manager and Component Context
Service Manager
Component Context
Using UNO Interfaces
Properties
Collections and Containers
Event Model
Exception Handling
User-Defined Exceptions
Runtime Exceptions
Good Exception Handling

53
54
58
59
59
60

63

63
64
64
64
65
65
67
71
71
72
72
73
73
74
74
75
75
75
75
76
77
78
80
81
82
84
84
85
88
91
94
97
97
98
99
99

34

4.1
4.2

3.3.8 Lifetime of UNO Objects
acquire() and release()
The XComponent Interface
Children of the XEventListener Interface
Weak Objects and References

Differences Between the Lifetime of C++ and Java Objects

3.3.9 Object Identity
UNO Language Bindings
34.1 Java Language Binding
Getting a Service Manager
Handling Interfaces
Type Mappings
34.2 UNO C++ Binding
Library Overview
System Abstraction Layer
File Access
Threadsafe Reference Counting
Threads and Thread Synchronization
Establishing Interprocess Connections
Type Mappings
Using Weak References
Exception Handling in C++
34.3 OpenOffice.org Basic
Handling UNO Objects
Mapping of UNO and Basic Types
Case Sensitivity
Exception Handling
Listeners
344 Automation Bridge
Introduction
Requirements
A Quick Tour
The Service Manager Component
Using UNO from Automation
Type Mappings
Automation Objects with UNO Interfaces
DCOM
The Bridge Services
Unsupported COM Features

4 Writing UNO Components

Required Files
Using UNOIDL to Specify New Components
421 Writing the Specification

100
100
101
103
104
104
106
106
107
107
108
109
117
118
119
119
119
120
121
122
126
127
128
129
135
141
142
143
145
145
146
146
148
150
156
168
171
173
176

177

178
179
179

43
4.4

4.5

422

Preprocessing
Grouping Definitions in Modules
Fundamental Types
Defining an Interface
Defining a Service
Defining a Sequence
Defining a Struct
Defining an Exception
Predefining Values
Using Comments
Singleton

Reserved Types

Generating Source Code from UNOIDL Definitions

Component Architecture

Core Interfaces to Implement

441

44.2

443

444

445

44.6

44.7

448
449

XlInterface
Requirements for queryInterface()
Reference Counting
XTypeProvider
Provided Types
ImplementationID
XServicelnfo
Implementation Name
Supported Service Names
XWeak
XComponent
Disposing of an XComponent
Xlnitialization
XMain
XAggregation
XUnoTunnel

Simple Component in Java

451

45.2
453
454
455

45.6
4.5.7

Class Definition with Helper Classes
XlInterface, XTypeProvider and XWeak
XServicelnfo

Implementing your own Interfaces

Providing a Single Factory Using Helper Method

Write Registration Info Using Helper Method

Implementing without Helpers
XlInterface
XTypeProvider
XComponent

Storing the Service Manager for Further Use

Create Instance with Arguments

180
180
181
182
185
187
187
188
189
190
191
191
192
193
194
196
197
197
197
198
198
198
198
199
199
200
200
200
201
201
201
202
203
203
203
204
205
206
207
207
207
208
209
209

4.6

4.7

458

459

Possible Structures for Java Components
One Implementation per Component File
Multiple Implementations per Component File
Running and Debugging Java Components
Registration
Debugging
The Java Environment in OpenOffice.org
Troubleshooting

C++ Component

4.6.1

4.6.2
4.6.3
4.6.4
4.6.5
4.6.6

4.6.7
4.6.8
4.6.9
4.6.10

Class Definition with Helper Template Classes
XlInterface, XTypeProvider and XWeak
XServicelnfo

Implementing your own Interfaces

Providing a Single Factory Using a Helper Method

Write Registration Info Using Helper Method

Provide Implementation Environment

Implementing without Helpers
XlInterface Implementation
XTypeProvider Implementation
Providing a Single Factory
Write Registration Info

Storing the Service Manager for Further Use

Create Instance with Arguments

Multiple Components in One Dynamic Link Library

Building and Testing C++ Components
Build Process

Test Registration and Use

Integrating Components into OpenOffice.org

4.7.1

4.7.2

473

Protocol Handler
Overview
Implementation
Configuration
Installation
Jobs
Overview
Execution Environment
Implementation
Initialization
Returning Results
Configuration
Installation
Using the vnd.sun.star.jobs: URL Schema
List of supported Events
Add-Ons

210
210
212
214
214
216
217
218
220
221
221
221
222
222
224
224
225
225
226
227
228
228
228
229
229
229
230
231
232
233
233
242
243
244
244
245
246
248
250
251
253
253
255
256

474

4.7.5

Overview

Guidelines

Configuration

Installation
Disable Commands

Configuration

Disabling Commands at Runtime
Intercepting Context Menus

Register and Remove an Interceptor

Writing an Interceptor

4.8 File Naming Conventions

4.9 Deployment Options for Components

49.1

492

493

494

495
4.9.6

UNO Package Installation
Package Structure
Path Settings
Additional Options
Background: UNO Registries
UNO Type Library
Component Registration
Command Line Registry Tools
Component Registration Tool
UNO Type Library Tools
Manual Component Installation

Manually Merging a Registry and Adding it to uno.ini or soffice.ini

Alternatives

Bootstrapping a Service Manager

Special Service Manager Configurations
Dynamically Modifying the Service Manager

Creating a ServiceManager from a Given Registry File

4.10 The UNO Executable

Standalone Use Case
Server Use Case

Using the uno Executable

5 Advanced UNO

5.1 Choosing an Implementation Language

51.1

5.1.2

Supported Programming Environments
Java
C++
OpenOffice.org Basic
OLE Automation Bridge
Python
Use Cases
Java

257
258
259
270
271
273
274
277
277
277
281
283
283
284
286
286
286
287
288
288
289
290
290
290
291
292
293
294
295
296
296
298
300

301

301
301
302
302
302
303
303
303
303

C++ 303

OpenOffice.org Basic 304

OLE Automation 304

Python 304

5.1.3 Recommendation 304

5.2 Language Bindings 304
5.2.1 Implementing UNO Language Bindings 305
Overview of Language Bindings and Bridges 305

Implementation Options 306

5.22 UNO C++ bridges 307
Binary UNO Interfaces 308

C++ Proxy 309

Binary UNO Proxy 310

Additional Hints 311

5.23 UNO Reflection API 312
XTypeProvider Interface 312

Converter Service 312

CoreReflection Service 312

5.2.4 Xlnvocation Bridge 316
Scripting Existing UNO Objects 316

Implementing UNO objects 319

Example: Python Bridge PyUNO 320

5.2.,5 Implementation Loader 322
Shared Library Loader 324

Bridges 324

5.2.6 Help with New Language Bindings 325

5.3 Differences Between UNO and Corba 325
54 UNO Design Patterns and Coding Styles 327
5.4.1 Double-Checked Locking 327

6 Office Development 331
6.1 OpenOffice.org Application Environment 331
6.1.1 Overview 331
Desktop Environment 332

Framework API 333

6.1.2 Using the Desktop 339
6.1.3 Using the Component Framework 343
Getting Frames, Controllers and Models from Each Other 344

Frames 345

Controllers 350

Models 352

Window Interfaces 355

6.1.4 Creating Frames Manually 356

6.1.5 Handling Documents 358

6.2

Loading Documents
Closing Documents
Storing Documents
Printing Documents
6.1.6 Using the Dispatch Framework
Command URL
Processing Chain
Dispatch Process
Dispatch Results
Dispatch Interception
6.1.7 Java Window Integration
The Window Handle
Using the Window Handle
More Remote Problems
Common Application Features
6.2.1 Clipboard
Using the Clipboard

OpenOffice.org Clipboard Data Formats

6.2.2 Internationalization
Introduction

Overview and Using the API

Implementing a New Locale
6.2.3 Linguistics

Services Overview

Using Spellchecker

Using Hyphenator

Using Thesaurus

Events

Implementing a Spell Checker

Implementing a Hyphenator
Implementing a Thesaurus

6.2.4 Integrating Import and Export Filters

Approaches

Document API Filter Development
XML Based Filter Development

6.2.5 Number Formats
Managing Number Formats
Applying Number Formats
6.2.6 Document Events
6.2.7 Path Organization
Path Settings
Path Variables

6.2.8 OpenOffice.org Single Sign-On API

Overview

358
366
372
373
373
374
374
375
379
379
381
381
381
384
384
384
385
388
389
389
389
392
399
399
402
403
404
405
406
408
409
409
409
410
424
432
432
433
435
440
440
447
457
457

Implementing the OpenOffice.org SSO API

7 Text Documents

7.1

7.2

7.3

Overview
7.1.1 Example: Fields in a Template
7.1.2 Example: Visible Cursor Position
Handling Text Document Files
7.2.1 Creating and Loading Text Documents
7.2.2 Saving Text Documents
Storing
Exporting
7.2.3 Printing Text Documents
Printer and Print Job Settings
Printing Multiple Pages on one Page
Working with Text Documents
7.3.1 Word Processing
Editing Text
Iterating over Text
Inserting a Paragraph where no Cursor can go
Sorting Text
Inserting Text Files
Auto Text
7.3.2 Formatting
7.3.3 Navigating
Cursors
Locating Text Contents
Search and Replace
734 Tables
Table Architecture
Named Table Cells in Rows, Columns and the Table Cursor
Indexed Cells and Cell Ranges
Table Naming, Sorting, Charting and Autoformatting
Text Table Properties
Inserting Tables
Accessing Existing Tables
7.3.5 Text Fields
7.3.6 Bookmarks
7.3.7 Indexes and Index Marks
Indexes
Index marks
7.3.8 Reference Marks
7.3.9 Footnotes and Endnotes
7.3.10 Shape Objects in Text
Base Frames vs. Drawing Shapes

458

463

463
466
467
469
469
470
470
470
471
471
472
473
473
473
477
479
479
479
479
480
486
486
487
488
491
491
494
496
497
497
498
502
503
509
510
510
513
514
515
517
517

7.4

7.5

Text Frames
Embedded Objects
Graphic Objects
Drawing Shapes
7.3.11 Redline
7.3.12 Ruby
Overall Document Features
74.1 Styles
Character Styles
Paragraph Styles
Frame Styles
Page Styles
Numbering Styles
7.4.2 Settings
General Document Information
Document Properties
Creating Default Settings
Creating Document Settings
7.4.3 Line Numbering and Outline Numbering
Paragraph and Outline Numbering
Line Numbering
Number Formats
7.4.4 Text Sections
7.4.5 Page Layout
7.4.6 Columns
7.4.7 Link targets
Text Document Controller
751 TextView
7.5.2 TextViewCursor

8 Spreadsheet Documents

8.1

8.2

Overview
8.1.1 Example: Adding a New Spreadsheet
8.1.2 Example: Editing Spreadsheet Cells
Handling Spreadsheet Document Files
8.2.1 Creating and Loading Spreadsheet Documents
8.2.2 Saving Spreadsheet Documents
Storing
Exporting
Filter Options
8.2.3 Printing Spreadsheet Documents
Printer and Print Job Settings
Page Breaks and Scaling for Printout
Print Areas

521
522
522
523
526
526
527
527
529
529
529
530
530
531
531
531
532
532
532
532
535
535
535
537
537
539
540
540
541

543

543
545
546
546
546
547
547
548
548
551
551
552
552

8.3 Working with Spreadsheet Documents 553

8.3.1 Document Structure 553
Spreadsheet Document 553
Spreadsheet Services - Overview 557
Spreadsheet 568
Cell Ranges 570
Cells 577
Cell Ranges and Cells Container 581
Columns and Rows 584

8.3.2 Formatting 586
Cell Formatting 586
Character and Paragraph Format 586
Indentation 587
Equally Formatted Cell Ranges 587
Table Auto Formats 591
Conditional Formats 595

8.3.3 Navigating 596
Cell Cursor 597
Referencing Ranges by Name 600
Named Ranges 601
Label Ranges 602
Querying for Cells with Specific Properties 604
Search and Replace 607

8.3.4 Sorting 607
Table Sort Descriptor 607

8.3.5 Database Operations 609
Filtering 610
Subtotals 613
Database Import 614
Database Ranges 614

8.3.6 Linking External Data 615
Sheet Links 615
Cell Area Links 617
DDE Links 618

8.3.7 DataPilot 619
DataPilot Tables 619
DataPilot Sources 623

8.3.8 Protecting Spreadsheets 632

8.3.9 Sheet Outline 633

8.3.10 Detective 633

8.3.11 Other Table Operations 633
Data Validation 633
Data Consolidation 635

Charts 636

Scenarios
8.4 Overall Document Features
8.4.1 Styles
Cell Styles
Page Styles
8.4.2 Function Handling
Calculating Function Results
Information about Functions
Recently Used Functions
8.4.3 Settings
8.5 Spreadsheet Document Controller
8.5.1 Spreadsheet View
8.5.2 View Panes
8.5.3 View Settings
8.5.4 Range Selection
8.6 Spreadsheet Add-Ins
8.6.1 Function Descriptions
8.6.2 Service Names
8.6.3 Compatibility Names
8.6.4 Custom Functions
8.6.5 Variable Results

Drawing Documents and Presentation Documents

9.1 Overview
9.1.1 Example: Creating a Simple Organizational Chart
9.2 Handling Drawing Document Files
9.2.1 Creating and Loading Drawing Documents
9.22 Saving Drawing Documents
Storing
Exporting
Filter Options
9.23 Printing Drawing Documents
Printer and Print Job Settings
Special Print Settings
9.3 Working with Drawing Documents
9.3.1 Drawing Document
Document Structure
Page Handling
Page Partitioning
9.3.2 Shapes
Bezier Shapes
Shape Operations
9.3.3 Inserting Files
9.3.4 Navigating

637
640
640
641
642
643
643
644
646
647
647
647
649
650
650
653
653
655
655
655
655

657

657
659
661
661
662
662
663
664
665
665
667
667
667
667
668
669
669
675
678
690
690

10

11

9.4

9.5

9.6

9.7

Handling Presentation Document Files
9.4.1 Creating and Loading Presentation Documents
9.4.2 Printing Presentation Documents
Working with Presentation Documents
9.5.1 Presentation Document
9.5.2 Presentation Settings
Custom Slide Show
Presentation Effects
Slide Transition
Animations and Interactions
Overall Document Features
9.6.1 Styles
Graphics Styles
Presentation Styles
9.6.2 Settings
9.6.3 Page Formatting
Drawing and Presentation Document Controller
9.7.1 Setting the Current Page, Using the Selection
9.7.2 Zooming
9.7.3 Other Drawing-Specific View Settings

Charts

10.1
10.2

10.3

10.4
10.5

Overview
Handling Chart Documents
10.2.1 Creating Charts

Creating and Adding a Chart to a Spreadsheet
Creating a Chart OLE Object in Draw and Impress

Setting the Chart Type
10.2.2 Accessing Existing Chart Documents
Working with Charts
10.3.1 Document Structure
10.3.2 Data Access
10.3.3 Chart Document Parts
Common Parts of all Chart Types
Features of Special Chart Types
Chart Document Controller
Chart Add-Ins
10.5.1 Prerequisites
10.5.2 How Add-Ins work
10.5.3 How to Apply an Add-In to a Chart Document

OpenOffice.org Basic and Dialogs

11.1

First Steps with OpenOffice.org Basic
Step By Step Tutorial

691
691
691
691
691
693
694
696
696
697
701
701
701
703
704
705
706
706
706
707

709

709
709
709
709
710
711
712
712
712
714
716
717
721
724
724
724
724
726

729

730
730

A Simple Dialog 735

11.2 OpenOffice.org Basic IDE 740
11.2.1 Managing Basic and Dialog Libraries 741
Macro Dialog 741

Macro Organizer Dialog 743

11.2.2 Basic IDE Window 748
Basic Source Editor and Debugger 750

Dialog Editor 752

11.2.3 Assigning Macros to GUI Events 757
11.3 Features of OpenOffice.org Basic 760
11.3.1 Functional Range Overview 760
Screen I/0O Functions 760

File I/O 760

Date and Time Functions 761

Numeric Functions 762

String Functions 762

Specific UNO Functions 763

11.3.2 Accessing the UNO API 763
StarDesktop 763
ThisComponent 763

11.3.3 Special Behavior of OpenOffice.org Basic 765
Threads 765
Rescheduling 765

11.4 Advanced Library Organization 766
11.4.1 General Structure 767
11.4.2 Accessing Libraries from Basic 768
Library Container Properties in Basic 768

Loading Libraries 769

Library Container API 770

11.4.3 Variable Scopes 772
11.5 Programming Dialogs and Dialog Controls 773
11.5.1 Dialog Handling 773
Showing a Dialog 773

Getting the Dialog Model 774

Dialog as Control Container 774

Dialog Properties 775

Common Properties 775
Multi-Page Dialogs 775

11.5.2 Dialog Controls 776
Command Button 776

Image Control 776

Check Box 777

Option Button 777

Label Field 777

Text Field
List Box
Combo Box
Horizontal/Vertical Scroll Bar
Group Box
Progress Bar
Horizontal/Vertical Line
Date Field
Time Field
Numeric Field
Currency Field
Formatted Field
Pattern Field
File Control
11.6 Creating Dialogs at Runtime
11.7 Library File Structure
11.7.1 Application Library Container
11.7.2 Document Library Container
11.8 Library Deployment
Package Structure
Path Settings
Additional Options

12 Database Access

12.1 Overview

12.1.1 Capabilities
Platform Independence
Functioning of the OpenOffice.org API Database Integration
Integration with OpenOffice.org API

12.1.2 Architecture

12.1.3 Example: Querying the Bibliography Database

12.2 Data Sources in OpenOffice.org API

12.2.1 DatabaseContext

12.2.2 DataSources
The DataSource Service
Queries
Forms and Other Links
Tables and Columns

12.2.3 Connections
Understanding Connections
Connecting Using the DriverManager and a Database URL
Connecting Through a Specific Driver
Driver Specifics
Connection Pooling

778
779
779
780
781
781
782
782
782
782
783
783
783
783
784
787
788
790
792
792
793
794

795

795
795
795
795
796
796
796
798
798
800
800
802
808
808
813
813
816
817
817
821

Piggyback Connections 822

12.3 Manipulating Data 823
12.3.1 The RowSet Service 823
Usage 823

Events and Other Notifications 826

Clones of the RowSet Service 829

12.3.2 Statements 829
Creating Statements 829

Inserting and Updating Data 830

Getting Data from a Table 832

12.3.3 Result Sets 833
Retrieving Values from Result Sets 836

Moving the Result Set Cursor 836

Using the getXXX Methods 837

Scrollable Result Sets 839
Modifiable Result Sets 841

Update 841

Insert 843

Delete 844

Seeing Changes in Result Sets 845

12.3.4 ResultSetMetaData 846
12.3.5 Using Prepared Statements 846
When to Use a PreparedStatement Object 846

Creating a PreparedStatement Object 847

Supplying Values for PreparedStatement Parameters 847

12.3.6 PreparedStatement From DataSource Queries 848
12.4 Database Design 849
12.4.1 Retrieving Information about a Database 849
Retrieving General Information 849
Determining Feature Support 850

Database Limits 850

SQL Objects and their Attributes 850

12.4.2 Using DDL to Change the Database Design 851
12.4.3 Using SDBCX to Access the Database Design 854
The Extension Layer SDBCX 854

Catalog Service 855

Table Service 856

Column Service 859

Index Service 860

Key Service 862

View Service 864

Group Service 864

User Service 866

The Descriptor Pattern 866

Adding an Index 869

Creating a User 869

Adding a Group 869

12.5 Using DBMS Features 870
12.5.1 Transaction Handling 870
12.5.2 Stored Procedures 871

12.6 Writing Database Drivers 871
12.6.1 SDBC Driver 872
12.6.2 Driver Service 873
12.6.3 Connection Service 874
12.6.4 XDatabaseMetaData Interface 875
12.6.5 Statements 876
PreparedStatement 877

Result Set 877

12.6.6 Support Scalar Functions 877
Open Group CLI Numeric Functions 877

Open Group CLI String Functions 878

Open Group CLI Time and Date Functions 879

Open Group CLI System Functions 879

Open Group CLI Conversion Functions 880

Handling Unsupported Functionality 880

13 Forms 881
13.1 Introduction 881
13.2 Models and Views 881
13.2.1 The Model-View Paradigm 881
13.2.2 Models and Views for Form Controls 882
13.2.3 Model-View Interaction 883
13.2.4 Form Layer Views 883
View Modes 883

Locating Controls 884

Focussing Controls 884

13.3 Form Elements in the Document Model 884
13.3.1 A Hierarchy of Models 885
FormComponent Service 885
FormComponents Service 885

Logical Forms 886

Forms Container 886

Form Control Models 887

13.3.2 Control Models and Shapes 887
Programmatic Creation of Controls 888

13.4 Form Components 890
13.4.1 Basics 890

Control Models 890

Forms
13.4.2 HTML Forms
13.5 Data Awareness
13.,5.1 Forms
Forms as Row Sets
Loadable Forms
Sub Forms
Filtering and Sorting
Parameters
13.5.2 Data Aware Controls
Control Models as Bound Components
Committing Controls
13.6 Common Tasks
13.6.1 Initializing Bound Controls
13.6.2 Automatic Key Generation
13.6.3 Data Validation

14 Universal Content Broker

14.1 Overview
14.1.1 Capabilities
14.1.2 Architecture
14.2 Services and Interfaces
14.3 Content Providers
14.4 Using the UCB API
14.4.1 Instantiating the UCB
14.4.2 Accessing a UCB Content
14.4.3 Executing Content Commands
14.4.4 Obtaining Content Properties
14.4.5 Setting Content Properties
14.4.6 Folders
Accessing the Children of a Folder
14.4.7 Documents
Reading a Document Content
Storing a Document Content
14.4.8 Managing Contents
Creating
Deleting
Copying, Moving and Linking
14.4.9 UCP Registration Information
14.4.10 Unconfigured UCBs
14.4.11 Preconfigured UCBs
14.4.12 Content Provider Proxies

15 Configuration Management

891
892
892
893
893
893
893
895
895
896
897
898
899
899
900
901

903

903
903
903
904
906
906
907
907
908
909
910
911
911
913
913
915
915
915
917
918
919
919
921
922

925

15.1 Overview 925

15.1.1 Capabilities 925
15.1.2 Architecture 925

15.2 Object Model 928
15.3 Configuration Data Sources 930
15.3.1 Connecting to a Data Source 930
15.3.2 Using a Data Source 933

15.4 Accessing Configuration Data 936
15.4.1 Reading Configuration Data 936
15.4.2 Updating Configuration Data 939

15.5 Customizing Configuration Data 947
15.5.1 Creating a Custom Configuration Schema 948
15.5.2 Preparing Custom Configuration Data 949
15.5.3 Installing Custom Configuration Data 950

15.6 Adding a Backend Data Store 951
16 Office Bean 953
16.1 Introduction 953
16.2 Overview of the OfficeBean API 954
16.2.1 OfficeConnection Interface 955
16.2.2 OfficeWindow Interface 956
16.2.3 ContainerFactory Interface 956

16.3 LocalOfficeConnection and LocalOfficeWindow 956
16.4 Configuring the OfficeBean 957
16.4.1 Default Configuration 957
16.4.2 Customized Configuration 958

16.5 Using the OfficeBean 959
16.5.1 SimpleBean Example 961
Using SimpleBean 961

SimpleBean Internals 963

16.5.2 OfficeWriterBean Example 965

17 Accessibility 967
17.1 Overview 967
17.2 Bridges 968
17.3 Accessibility Tree 968
17.4 Content Information 969
17.5 Listeners and Broadcasters 969
17.6 Implementing Accessible Objects 970
17.6.1 Implementation Rules 970
17.6.2 Services 970

17.7 Using the Accessibility API 971
17.7.1 A Simple Screen Reader 971

Features 973

Class Overview
Putting the Accessibility Interfaces to Work

Appendix A: OpenOffice.org API-Design-Guidelines

Al

A2

A3
A4
A5

General Design Rules
A.1.1 Universality
A.1.2 Orthogonality
A.1.3 Inheritance
A.1.4 Uniformity
A.1.5 Correct English
Definition of API Elements
A.2.1 Attributes
A.2.2 Methods

A.2.3 Interfaces
A.2.4 Properties
A.2.5 Events

A.2.6 Services

A.2.7 Exceptions
A.2.8 Enums

A.29 Typedefs
A.2.10 Structs

A.2.11 Parameter
Special Cases
Abbreviations

Source Files and Types

Appendix B: IDL Documentation Guidelines

B.1

B.2

B3

B.4

Introduction

B.1.1 Process

B.1.2 File Assembly

B.1.3 Readable & Editable Structure

B.1.4 Contents

File structure

B.2.1 General

B.2.2 File-Header

B.2.3 File-Footer

Element Documentation

B.3.1 General Element Documentation

B.3.2 Example for a Major Element Documentation
B.3.3 Example for a Minor Element Documentation
Markups and Tags

B.4.1 Special Markups

B.4.2 Special Documentation Tags

B.4.3 Useful XHTML Tags

973
974

987

987
987
988
988
988
988
988
988
989
991
991
992
992
993
993
994
994
994
995
995
996

997

997
997
997
998
998
998
998
999
1000
1000
1000
1001
1002
1002
1002
1003
1005

Appendix C: Universal Content Providers

C.1 The Hierarchy Content Provider

C.1.1
C.1.2
C.1l3
Cl4
C.15

Preface

HCP Contents

Creation of New HCP Content
URL Scheme for HCP Contents
Commands and Properties

C.2 The File Content Provider

C21
C.2.2
C23
C24
C.25

Preface

File Contents

Creation of New File Contents
URL Schemes for File Contents

Commands and Properties

C.3 The FTP Content Provider

C3.1
C.3.2
C33
C34
C35

Preface

FTP Contents

Creation of New FTP Content
URL Scheme for FTP Contents

Commands and Properties

C.4 The WebDAYV Content Provider

C4.1
C4.2
C43
C44
C45
C4.6
C4.7

Preface

DCP Contents

Creation of New DCP Contents
Authentication

Property Handling

URL Scheme for DCP Contents

Commands and Properties

C.5 The Package Content Provider

C5.1
C5.2
C53
C54
C55

Preface

PCP Contents

Creation of New PCP Contents
URL Scheme for PCP Contents
Commands and Properties

C.6 The Help Content Provider

C.6.1
C.6.2
C.6.3
C64

Preface

Help Content Provider Contents
URL Scheme for Help Contents
Properties and Commands

Appendix D: UNOIDL Syntax Specification

Glossary

Index

1009

1009
1009
1009
1010
1010
1011
1011
1011
1011
1012
1012
1013
1013
1013
1013
1014
1014
1015
1016
1016
1016
1017
1017
1017
1018
1019
1019
1019
1019
1020
1020
1021
1021
1021
1022
1022
1023

1027

1031

1049

Reader's Guide

1.1 What This Manual Covers

This manual describes how to write programs using the component technology UNO (Universal
Network Objects) with OpenOffice.org.

Most examples provided are written in Java. As well as Java, the language binding for C++, the
UNO access for OpenOffice.org Basic and the OLE Automation bridge that uses OpenOffice.org
through Microsoft's component technology COM/DCOM is described.

1.2 How This Book is Organized

First Steps
The First Steps chapter describes the setting up of a Java UNO development environment to
achieve the solutions you need. At the end of this chapter, you will be equipped with the essen-
tials required for the following chapters about the OpenOffice.org applications.

Professional UNO Projects
This chapter introduces API and UNO concepts and explains the specifics of the programming
languages and technologies that can be used with UNO. It will help you to write industrial-
strength UNO programs, use one of the languages besides Java or improve your understanding
of the API reference.

Writing UNO Components
This chapter describes how to write UNO components. It alsoprovides an insight into the
UNOIDL (UNO Interface Definition Language) language and the inner workings of service
manager. Before beginning this chapter, you should be familiar with the First Steps and Profes-
sional UNO chapters.

Advanced UNO
This chapter describes the technical basis of UNO, how the language bindings and bridges
work, how the service manager goes about its tasks and what the core reflection actually does.

Olffice Development
This chapter describes the application framework of the OpenOffice.org application that
includes how the OpenOffice.org API deals with the OpenOffice.org application and the
features available across all parts of OpenOffice.org.

25

26

Text Documents - Spreadsheet Documents - Drawings and Presentations — Chart
These chapters describes how OpenOffice.org revolves around documents. These chapters
teach you what to do with these documents programmatically.

Basic and Dialogs
This chapter provides the functionality to create and manage Basic macros and dialogs.

Database Access
This chapter describes how you can take advantage of this capability in your own projects
OpenOffice.org can connect to databases in a universal manner.

Forms
This chapter describes how OpenOffice.org documents contain form controls that are
programmed using an event-driven programming model. The Forms chapter shows you how to
enhance your documents with controls for data input.

UCB
This chapter describes how the Universal Content Broker is the generic resource access service
used by the entire office application. It handles not only files and directories, but hierarchic and
non-hierarchic contents, in general.

OpenOffice.org Configuration
This chapter decribes how the OpenOffice.org API offers access to the office configuration
options that is found in the Tools — Options dialog.

OlfficeBean
This chapter describes how the OfficeBean Java Bean component allows the developer to inte-
grate office functionality in Java applications.

1.3 OpenOffice.org Version History

OpenOffice.org exists in two versions www.openoffice.org
OpenOffice.org - an open source edition
StarOffice and StarSuite - "branded" editions derived from OpenOffice.org

In 2000, Sun Microsystems released the source code of their current developer version of StarOffice
on www.openoffice.org, and made the ongoing development process public. Sun's development
team, which developed StarOffice, continued its work on www.openoffice.org, and developers from
all over the world joined them to port, translate, repair bugs and discuss future plans. StarOffice
6.0 and OpenOffice.org 1.0, which were released in spring 2002, share the same code basis.

1.4 Related documentation

The api and udk projects on www.openoffice.org have related documentation, examples and FAQs
(frequently asked questions) on the OpenOffice.org API. Most important are probably the refer-
ences, you can find them at api.openoffice.org or udk. openoffice.org.

The API Reference covers the programmable features of OpenOffice.org.
The Java Reference describes the features of the Java UNO runtime environment.

The C++ Reference is about the C++ language binding.

OpenOffice.org 1.1 Developer's Guide « January 2004

1.5 Conventions

This book uses the following formatting conventions:

Bold refers to the keys on the keyboard or elements of a user interface, such as the OK button
or File menu.

Italics are used for emphasis and to signify the first use of a term. Italics are also used for web
sites, file and directory names and email addresses.

Courier New isused in all Code Listings and for everything that is typed when programming.

1.6 Acknowledgments

A publication like this can never be the work of a single person — it is the result of tremendous
team effort. Of course, the OpenOffice.org/StarOffice development team played the most impor-
tant role by creating the API in the first place. The knowledge and experience of this team will be
documented here. Furthermore, there were several devoted individuals who contributed to
making this documentation reality.

First of all, we would like to thank Ralf Kuhnert and Dietrich Schulten. Using their technical exper-
tise and articulate mode of expression, they accomplished the challenging task of gathering the
weatlth of API knowledge from the minds of the developers and transforming it into an under-
standable document.

Many reviewers were involved in the creation of this documentation. Special thanks go to Michael
Honnig who was one of the few who reviewed almost every single word. His input also played a
decisive role in how the documentation was structured. A big thank you also goes to Diane O'Brien
for taking on the daunting task of reviewing the final draft and providing us with extensive feed-
back at such short notice.

When looking at the diagrams and graphics, it is clear that a creative person with the right touch
for design and aesthetics was involved. Many thanks, therefore, are due Stella Schulze who re-
drew all of the diagrams and graphics from the originals supplied by various developers. We also
thank Svante Schubert who converted the original XML file format into HTML pages and was
most patient with us in spite of our demands and changes. Special thanks also to Jorg Heilig, who
made this whole project possible.

Jirgen would like to thank G6tz Wohlberg for all his help in getting the right people involved and
making sure things ran smoothly.

Gotz would like to thank Jirgen Schmidt for his never-ending energy to hold everything together
and for pushing the contributors in the right direction. He can be considered as the heart of the
opus because of his guidance and endurance throughout the entire project.

We would like to take this opportunity to thank all these people —and anyone else we forgot! — for

their support.

Jirgen Schmidt, Gtz Wohlberg

Chapter 1 Reader's Guide 27

First Steps

This chapter shows you the first steps when using the OpenOffice.org API. Following these steps is
essential to understand and use the chapters about OpenOffice.org documents such as 7 Text Docu-
ments, 8 Spreadsheet Documents and 9 Drawing. After you have successfully done the first steps, you
can go directly to the other chapters of this manual.

The focus of the first steps will be Java, but other languages are covered as well. If you want to use
OpenOffice.org Basic afterwards, please refer to the chapters 11.1 OpenOffice.org Basic and Dialogs -
First Steps with OpenOlffice.org Basicand 3.4.3 Professional UNO - UNO Language Bindings -
OpenOffice.org Basic. The usage of C++ is described in 3.4.2 Professional UNO - UNO Language Bind-
ings - UNO C++ Binding.

2.1 Programming with UNO

UNO (pronounced [ju:nou]) stands for Universal Network Objects and is the base component
technology for OpenOffice.org. You can utilize and write components that interact across
languages, component technologies, computer platforms, and networks. Currently, UNO is avail-
able on Linux, Solaris, and Windows for Java, C++ and OpenOffice.org Basic. As well, UNO is
available through the component technology Microsoft COM for many other languages.

UNO is used to access OpenOffice.org, using its Application Programming Interface (API). The
OpenOffice.org API is the comprehensive specification that describes the programmable features
of OpenOffice.org.

2.2 Fields of Application for UNO

You can connect to a local or remote instance of OpenOffice.org from C++, Java and COM/DCOM.
C++ and Java Desktop applications, Java servlets, Java Server Pages, JScript and VBScript, and
languages, such as Delphi, Visual Basic and many others can use OpenOffice.org to work with
Office documents.

It is possible to develop UNO Components in C++ or Java that can be instantiated by the office
process and add new capabilities to OpenOffice.org. For example, you can write Chart Add-ins or
Calc Add-ins, linguistic extensions, new file filters, database drivers. You can even write complete
applications, such as a groupware client.

UNO components, as Java Beans, integrate with Java IDEs (Integrated Development Environment)
to give easy access to OpenOffice.org. Currently, a set of such components is under development
that will allow editing OpenOffice.org documents in Java Frames.

29

30

OpenOffice.org Basic cooperates with UNO, so that UNO programs can be directly written in
OpenOffice.org. With this method, you supply your own office solutions and wizards based on an
event-driven dialog environment.

The OpenOffice.org database engine and the data aware forms open another wide area of opportu-
nities for database driven solutions.

2.3 Getting Started

A number of files and installation sets are required before beginning with the OpenOffice.org API.

2.3.1 Required Files

These files are required for any of the languages you use.

OpenOffice.org Installation
Install a copy of OpenOffice.org. The current version is OpenOffice.org 1.1.0.

You can download OpenOffice.org from www.openoffice.org. StarOffice can be obtained from
Sun Microsystems or through your distributors.

Note: This book focuses on the current version.

API Reference
The OpenOffice.org API reference is part of the Software Development Kit and provides
detailed information about OpenOffice.org objects. The latest version can be downloaded from
the documents section at api.openoffice.org.

2.3.2 Installation Sets

The following installation sets are necessary to develop OpenOffice.org APl applications with Java.
This chapter describes how to set up a Java IDE for the OpenOffice.org API.

JDK 1.3.1
Java applications for OpenOffice.org 1.1.0 require the Java Development Kit 1.3.1 or later.
Download and install a JDK from java.sun.com. To get all features Java 1.4.1 01 is required.

Java IDE
Download an Integrated Development Environment (IDE), such as NetBeans from
www.netbeans.org or Forte for Java from Sun Microsystems. Other IDEs can be used, but
NetBeans/Forte offers the best integration. The integration of OpenOffice.org with IDEs such as
NetBeans is an ongoing effort. Check the files section ofapi.openoffice.org for the latest informa-
tion about NetBeans and other IDEs.

OpenOffice.org Software Development Kit (SDK)
Obtain the OpenOffice.org Software Development Kit (SDK) from www.openoffice.org. It
contains the build environment for the examples mentioned in this manual and reference docu-
mentation for the OpenOffice.org API, for the Java UNO runtime, and the C++ API. It also
offers more example sources. By means of the SDK you can use GNU make to build and run the
examples we mention here.

OpenOffice.org 1.1 Developer's Guide « January 2004

Unpack the SDK somewhere in your file system. The file index.html gives an overview of the
SDK. For detailed instructions which compilers to use and how to set up your development
environment, please refer to the SDK installation guide.

2.3.3 Configuration

Enable Java in OpenOffice.org

OpenOffice.org uses a Java Virtual Machine to instantiate components written in Java. You can
easily tell the office which JVM to use: launch the jvmsetup executable from the programs folder
under the OpenOffice.org, select an installed JRE or JDK and click OK. Close the OpenOffice.org
including the Quickstarter in the taskbar and restart OpenOffice.org. Furthermore, open the Tools
- Options dialog in OpenOffice.org, select the section OpenOffice.org - Security and make sure
that the Java enable option is checked.

Use Java UNO class files

Next, the OpenOffice.org class files must be made known to the Java IDE. For NetBeans these Java
UNO jar files must be mounted to a project. The following steps show how to create a new project
and mount class files in NetBeans from version 3.4.1.

1. From the Project menu, select Project Manager. Click the New ... button in the Project Manager
window to create a new project. NetBeans uses your new project as the current project.

2. Activate the NetBeans Explorer window—it should contain a Filesystems item (to display the
NetBeans Explorer window, click View - Explorer). Open its context menu and select Mount —
Archive Files, navigate to the folder <OfficePath>/program/classes, choose all jar files in that
directory and click Finish to mount the OpenOffice.org jars in your project. As an alternative,
you can also mount files using File - Mount Filesystem.

3. Finally you need a folder for the source files of your project. Choose Mount — Local Directory
from the context menu of the Filesystems icon and use the file manager dialog to create a new
folder somewhere in your file system. Select it without opening it and click Finish to add it to
your project.

Make the office listen

Java uses a TCP/IP socket to talk to the office. For Java clients, OpenOffice.org must be told to
listen for TCP/IP connections using a special connection url parameter. There are two ways to
achieve this, you can make the office listen always or just once.

To make the office listen whenever it is started, open the file

<OfficePath>/share/registry/data/org/openoffice/Setup.xcu in an editor, and look for the element

<node oor:name="Office"/>

This element contains <prop/> elements. Insert the following <prop/> element on the same

level as the existing elements:

<prop oor:name="ooSetupConnectionURL" oor:type="xs:string">
<value>socket,host=localhost,port=2083;urp;</value>

</prop>

This setting configures OpenOffice.org to provide a socket on port 8100, where it will serve

connections through the UNO remote protocol (urp). If port 8100 is already in use on your

machine, it may be necessary to adjust the port number. Block port 8100 for connections from

Chapter 2 First Steps 31

32

outside your network in your firewall. If you have a OpenOffice.org network installation, this
setting will affect all users. To make only a particular user installation listen for connections
create a file <OfficePath>/user/registry/data/org/openoffice/Setup.xcu with the same structure as the
file above and add the element <prop ocor:name="ooSetupConnectionURL"/> as shown
above.

An alternative is to launch the office in listening mode using command- line options. To do this,

start it from the command- line:
<OfficePath>/program/soffice “-accept=socket,port=2083;urp;”

When you use this command- line option, the office will only listen during the current session,
and running instances are affected as well.

w

Choose the procedure that suits your requirements and launch OpenOffice.org in listening mode
now. Check if it is listening by calling nefstat -a or -na on the command- line. An output similar to
the following shows that the office is listening:

TCP <Hostname>:8100 <Fully qualified hostname>: 0 Listening

If you use the -n option, netstat displays addresses and port numbers in numerical form. This is
sometimes useful on UNIX systems where it is possible to assign logical names to ports.

If the office is not listening, it probably was not started with the proper connection URL parameter.
Check the Setup.xcu file or your command- line for typing errors and try again.

Note: In versions before OpenOffice.org 1.1.0, there are several differences.

The configuration setting that makes the office listen everytime is located elsewhere. Open the file<Office-
Path>/share/config/registry/instance/org/openoffice/Setup.xml in an editor, and look for the element:

<ooSetupConnectionURL cfg:type="string"/>
Extend it with the following code:
<ooSetupConnectionURL cfg:type="string">
socket,port=2083;urp;

</ooSetupConnectionURL>

The commandline option -accept is ignored when there is a running instance of the office, including the
quick starter and the online help. If you use it, make sure that no soffice process runs on your system.

Add the API Reference to your IDE

We recommend to add the API and the Java UNO reference to your Java IDE to get online help for
the OpenOffice.org API and the Java UNO runtime. In NetBeans 3.4.1, follow these steps:

Open your project and choose the Tools — Javadoc Manager menu. With the button Add
Folder... add the folders docs/common/refand docs/java/refof your SDK installation to use the API
and the Java UNO reference in your project.

You can now use Alt + F1 to view online help while the cursor is on a OpenOffice.org API or
Java UNO identifier in the source editor window.

OpenOffice.org 1.1 Developer's Guide « January 2004

2.3.4 First Connection

Getting Connected

The following demonstrates how to write a small program that connects to the office and tells you
if it was able to establish the connection or not. Start the Java IDE or source editor, and enter the
following source code for the FirstConnection class.

To create and run the class in the NetBeans 3.4.1 IDE, use the following steps:

1. Add a main class to the project. In the NetBeans Explorer window, click the Project
<project_name> tab, right click the Project item, select Add New... to display the New Wizard,
open the Java Classes folder, highlight the template Main, and hit Next.

2. In the Name field, enter 'FirstConnection' as classname for the Main class and select the folder
that contains your project files. The FirstConnection is added to the default package of your
project. Click Finish to create the class.

3. Enter the source code shown below (FirstSteps/FirstConnection.java). Then select Build -
Execute to test your first connection. Observe the Output window where NetBeans displays the
result of your attempt to connect to the office.

import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.uno.UnoRuntime;

import com.sun.star.uno.XComponentContext;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.beans.XPropertySet;

public class FirstConnection extends java.lang.Object {

private XComponentContext xRemoteContext = null;
private XMultiComponentFactory xRemoteServiceManager = null;

public static void main(String[] args) {
FirstConnection firstConnectionl = new FirstConnection();
try {
firstConnectionl.useConnection () ;
}
catch (java.lang.Exception e) {
e.printStackTrace () ;
}
finally {
System.exit (0) ;
}
}

protected void useConnection () throws java.lang.Exception {
try {
xRemoteServiceManager = this.getRemoteServiceManager (
"uno:socket, host=localhost,port=2083;urp;StarOffice.ServiceManager") ;

String available = (null != xRemoteServiceManager ? "available" : "not available");
System.out.println ("remote ServiceManager is " + available);

//

// do something with the service manager...

//

}
catch (com.sun.star.connection.NoConnectException e) {
System.err.println("No process listening on the resource");
e.printStackTrace () ;
throw e;
}
catch (com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

}

protected XMultiComponentFactory getRemoteServiceManager (String unoUrl) throws java.lang.Exception {
if (xRemoteContext == null) ({
// First step: create local component context, get local servicemanager and
// ask it to create a UnoUrlResolver object with an XUnoUrlResolver interface
XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

Chapter 2 First Steps 33

XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext);

// query XUnoUrlResolver interface from urlResolver object

XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface (
XUnoUrlResolver.class, urlResolver);

// Second step: use xUrlResolver interface to import the remote StarOffice.ServiceManager,
// retrieve its property DefaultContext and get the remote servicemanager
Object initialObject = xUnoUrlResolver.resolve (unoUrl) ;
XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, initialObject) ;
Object context = xPropertySet.getPropertyValue ("DefaultContext") ;
xRemoteContext = (XComponentContext)UnoRuntime.queryInterface (
XComponentContext.class, context);

}
return xRemoteContext.getServiceManager () ;

}

For an example that connects to the office with C++, see chapter 3.4.2 Professional UNO - UNO
Language Bindings - UNO C++ Binding. Accessing the office with OpenOffice.org Basic is described
in 11.1 OpenOffice.org Basic and Dialogs - First Steps with OpenOffice.org Basic.

The next section describes what happens during the connection between a Java program and
OpenOffice.org.

Service Managers

UNO introduces the concept of service managers, which can be considered as “factories” that create
services. For now, it is sufficient to see services as UNO objects that can be used to perform specific
tasks. Later on we will give a more precise definition for the term service.

For example, the following services are available:

com.sun.star.frame.Desktop
maintains loaded documents: is used to load documents, to get the current document, and
access all loaded documents

com.sun.star.configuration. ConfigurationProvider
yields access to the OpenOffice.org configuration, for instance the settings in the Tools -
Options dialog

com.sun.star.sdb.DatabaseContext
holds databases registered with OpenOffice.org

com.sun.star.system.SystemShellExecute
executes system commands or documents registered for an application on the current platform

com.sun.star.text. GlobalSettings
manages global view and print settings for text documents

34 OpenOffice.org 1.1 Developer's Guide « January 2004

Service
Manager

<E---
<E___

<E-_-
<E_________.

<5_________.

Service Service Service

Service Service

Hllustration 2.1: Service manager

A service always exists in a component context, which consists of the service manager that created
the service and other data to be used by the service.

The FirstConnection class above is considered a client of the OpenOffice.org process,
OpenOffice.org is the server in this respect. Both, client and server, have their own component
context and their own service manager. The client service manager creates UNO objects in the
client process and the server service manager does the same in the server process. This is necessary
because only UNO objects created by a service manager can talk to each other across process
boundaries. Now, to work with data located on the server side, the client needs to get the server's
service manager.

The method getRemoteServiceManager () of our FirstConnection class uses two steps to
achieve this:

First, it gets a local UNO component context from the class
com.sun.star.comp.helper.Bootstrap. This local component context contains a small service
manager that knows how to create the services that are necessary to talk to other component
contexts. One such service is a com.sun.star.bridge.UnoUrlResolver, so it asks the local service
manager to create this service.

Next, it uses the UnoUr1lResolver object to get the component context together with the service
manager from the server-side. At this stage you should not worry about the queryInterface ()
calls—they will be explained later. Now the client holds a reference to the remote service manager.

Chapter 2 First Steps 35

36

Service Service

Manager — Manager

resolve
initial
object

<___-

UnoUrlResolver

Hlustration 2.2: UnoUrlResolver gets Remote ServiceManager

For a thorough description of the objects used here, refer to the chapter 3.3.1 Professional UNO -
UNO Concepts - UNO Interprocess Connections.

Failed Connections
A remote connection can fail under certain conditions:

Client programs should be able to detect errors. For instance, sometimes the bridge might
become unavailable. Simple clients that connect to the office, perform a certain task and exit
afterwards should stop their work and inform the user if an error occurred.

Clients that are supposed to run over a long period of time should not assume that a reference
to an initial object will be valid over the whole runtime of the client. The client should resume
even if the connection goes down for some reason and comes back later on. When the connec-
tion fails, a robust, long running client should stop the current work, inform the user that the
connection is not available and release the references to the remote process. When the user tries
to repeat the last action, the client should try to rebuild the connection. Do not force the user to
restart your program just because the connection was temporarily unavailable.

When the bridge has become unavailable and access is tried, it throws a
com.sun.star.lang.DisposedException. Whenever you access remote references in your
program, catch this Exception in such a way that you set your remote references to null and inform
the user accordingly. If your client is designed to run for a longer period of time, be prepared to
get new remote references when you find that they are currently null.

Another way is to register a listener at the remote bridgethat underlies the UnoUrlResolver.
OpenOffice.org allows to listen for a "bridge disposed" event at the remote bridge so that you can
release invalid references—inform the user what has happened or throw a suitable exception if
necessary. To do this, you must manually create a bridge and register a listener at the bridge. A
connection created by UnoUrlResolver simply throws a java.lang.RuntimeException whenever
you try to use a reference that no longer works because of a connection failure. The chapter 3.3.1
Professional UNO - UNO Concepts - UNO Interprocess Connections shows how to write such a connec-
tion aware client.

OpenOffice.org 1.1 Developer's Guide « January 2004

2.4 How to get Objects in OpenOffice.org

An object in our context is an instance of an implemented class that has methods you can call.
Objects are required to do something with OpenOffice.org. But where do you obtain them?

New objects
In general, new objects or objects which are necessary for a first access are created by service
managers in OpenOffice.org. In the FirstConnection example, the local service manager
created a UnoUrlResolver object:

Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext);

The remote service manager works exactly like the local service manager. The remote service
manager creates the remote Desktop object, which handles application windows and loaded
documents in OpenOffice.org:

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

Document objects
Document objects represent the files that are opened with OpenOffice.org. They are created by
the Desktop object, which has a 1oadComponentFromURL () method for this purpose.

Objects that are provided by other objects
Objects can hand out other objects. There are two cases:

Features which are designed to be an integral part of the object that provides the feature can
be obtained by get methods in the OpenOffice.org API. It is common to get an object from a
get method. For instance, getSheets () is required for every Calc document, getText () is
essential for every Writer Document and getDrawpages () is an essential part of every Draw
document. After loading a document, these methods are used to get the Sheets, Text and
Drawpages object of the corresponding document. Object-specific get methods are an impor-
tant technique to get objects.

Features which are not considered integral for the architecture of an object are accessible
through a set of universal methods. In the OpenOffice.org API, these features are called
properties, and generic methods are used, such as getPropertyValue (String property-
Name) to access them. In some cases such a non-integral feature is provided as an object,
therefore the method getPropertyvalue () can be another source for objects. For instance,
page styles for spreadsheets have the properties "RightPageHeaderContent" and "Left-
PageHeaderContent", that contain objects for the page header sections of a spreadsheet
document. The generic getPropertyValue () method can sometimes provide an object you
need.

Sets of objects
Objects can be elements in a set of similar objects. In sets, to access an object you need to know
how to get a particular element from the set. The OpenOffice.org API allows four ways to
provide an element in a set. The first three ways are objects with element access methods that
allow access by name, index, or enumeration. The fourth way is a sequence of elements which
has no access methods but can be used as an array directly. How these sets of elements are used
will be discussed later.

The designer of an object decides which of those opportunities to offer, based on special condi-
tions of the object, such as how it performs remotely or which access methods best work with
implementation.

Chapter 2 First Steps 37

38

2.5 Working with Objects

Working with OpenOffice.org API objects involves the following:

First we will learn why UNO describes objects as services, consisting of interfaces and proper-
ties and we will get acquainted with UNQO's way to use interfaces and properties.

After that, we will work with a OpenOffice.org document for the first time, and give some hints
for the usage of the most common types in OpenOffice.org API.

Finally we will introduce the common interfaces that allow you to work with text, tables and
drawings across all OpenOffice.org document types.

2.5.1 Services

In the OpenOffice.org API, objects are called services. However, objects and services are not the
same thing. Services are abstract specifications for objects. All UNO objects have to follow a service
specification and have to support at least one service. A UNO objectis called a service, because it
fulfills a service specification.

A service describes an object by combining interfaces and properties into an abstract object specifica-
tion. Do not get confused by the meanings the word service has in other contexts. In UNO, a
service is precisely this: a composition of interfaces and properties.

An interfaceis a set of methods that together define one single aspect of a service. For instance, the
com.sun.star.view.XPrintable interface prescribes the methods print (), getPrinter () and
setPrinter ().

A property is a feature of a service which is not considered an integral or structural part of the
service and therefore is handled through generic getPropertyValue () /setPropertyValue ()
methods instead of specialized get methods, such as getPrinter (). An object containing proper-
ties only has to support the com.sun.star.beans.xPropertySet interface to be prepared to
handle all kinds of properties. Typical examples are properties for character or paragraph format-
ting. With properties, you can set multiple features of an object through a single call to setProper-
tyValues (), which greatly improves the remote performance. For instance, paragraphs support
the setPropertyValues () method through their com.sun.star.beans.xMultiPropertySet
interface.

The concept of services was introduced for the following reasons:

Services separate specification from implementation
The specification of a service is abstract, that is, it does not define how objects supporting a
certain functionality do this infernally. Through the abstract specification of the OpenOffice.org
API, it is possible to pull the implementation out from under the API and install a different
implementation if required.

Service names allow to create instances by specification name, not by class names
In Java or C++ you use the new operator to create a class instance. This approach is restricted:
the class you get is hard-coded. You cannot later on exchange it by another class without
editing the code. The concept of services solves this. The central object factory in
OpenOffice.org, the global service manager, is asked to create an object that can be used for a
certain purpose without defining its internal implementation. This is possible, because a service
can be ordered from the factory by its service name and the factory decides which service imple-
mentation it returns. Which implementation you get makes no difference, you only use the
well-defined interfaces and properties of the service.

OpenOffice.org 1.1 Developer's Guide « January 2004

Services make fine-grained interfaces manageable
Abstract interfaces are more reusable, if they are fine-grained, i.e. if they are small and describe
only one aspect of an object, not several aspects. But then you need many of them to describe a
useful object. Services allow to have fine-grained interfaces on the one hand and to manage
them easily by forging them into a service. Since it is quite probable that objects in an office
environment will share many aspects, this fine granularity allows the interfaces to be reused
and thus to get objects that behave consistently. For instance, it was possible to realize a unified
way to handle text, no matter if you are dealing with body text, text frames, header or footer
text, footnotes, table cells or text in drawing shapes. It was not necessary to define separate
interfaces for all of these purposes.

Services handle a large number of non-structural properties
If you have only interfaces to specify objects, you need many get and set methods to handle all
the qualities of office documents. Moreover, once you define them, they become a hard part of
the structure of an object, which makes it difficult to reuse the specification elsewhere. With
properties, a multitude of qualities can be specified that are no structural parts of the objects,
and instead of calling many get and set methods, properties in a UNO service can be manipu-
lated at once by a single method call, if necessary.

Let us consider the service com.sun.star.text.TextDocument in UML notation. The UML chart
shown in Illustration 2.3 depicts the mandatory interfaces of a TextDocument service. These inter-
faces express the basic aspects of a text document in OpenOffice.org. It contains text, it is
searchable and refreshable. It is a model with URL and controller, and it is modifiable, printable
and storable. The UML chart shows how this is specified in the APIL.

Chapter 2 First Steps 39

com.sun.star.view.XPrintable

getPrinter
setPrinter
print

com.sun.star.frame.XStorable

hasLocation
getLocation
isReadOnly
store
storeAsUrl

storeToUrl
com.sun.star.document.

OfficeDocument O com.sun.star.frame.XModel

<<service>>

attachResource
getURL

getArgs
connectController
disconnectController
lockControllers
unlockControllers
hasControllersLocked
setCurrentController
getCurrentController

O com.sun.star.util. XModifiable

isModified
setModified

O com.sun.star.text.XTextDocument

getText
reformat

O com.sun.star.util.XSearchable

com.sun.star.text.
TextDocument createSearchDescriptor
<<service>> findAll
findFirst
findNext

O com.sun.star.util.XRefreshable

refresh
addRefreshListener
removeRefreshListener

Illustration 2.3: Text Document

On the left of Illustration 2.3, the services com.sun.star.text.TextDocument and
com.sun.star.document.OfficeDocument are shown. Every TextDocument must include these
services by definition.

On the right of Illustration 2.3, you find the interfaces, that the services must export. Their method
compartments list the methods contained in the various interfaces. In the OpenOffice.org API, all
interface names have to start with an Xto be distinguishable from other object names.

Every TextDocument must support three interfaces: XTextDocument, XSearchable, and
XRefreshable. In addition, because a TextDocument is always an Of ficeDocument, it must also
export the interfaces XPrintable, XStorable, XModifiable and XModel. The methods contained
in these interfaces cover these aspects: printing, storing, modification and model handling.

40 OpenOffice.org 1.1 Developer's Guide « January 2004

Note that the interfaces shown in Illustration 2.2 are only the mandatory interfaces of a TextDocu-
ment. A TextDocument has optional properties and interfaces, among them the properties Charac-
terCount, ParagraphCount and WordCount and the XPropertySet interface which must be
supported if properties are present at all. The current implementation of the TextDocument service
in OpenOffice.org does not only support these interfaces, but all optional interfaces as well. The
usage of a TextDocument is described thoroughly in 7 Text Documents.

Using Interfaces

The fact that every UNO object must be accessed through its interfaces and properties has an effect
in languages like Java and C++, where the compiler needs the correct type of an object reference
before you can call a method from it. In Java or C++, you normally just cast an object before you
access an interface it implements. When working with UNO objects this is different: You must ask
the UNO environment to get the appropriate reference for you whenever you want to access
methods of an interface which your object supports, but your compiler does not yet know about.
Only then you can cast it safely.

The Java UNO environment has a method queryInterface () for this purpose. It looks compli-
cated at first sight, but once you understand that queryInterface () is about safe casting of UNO
types across process boundaries, you will soon get used to it. Remember how we created a
UnoUrlResolver and afterwards had to call queryInterface () in our FirstConnection class:

Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext);

// query XUnoUrlResolver interface from urlResolver object
XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface (

XUnoUrlResolver.class, urlResolver);
We asked the local service manager to create a com.sun.star.bridge.UnoUrlResolver using its
factory method createInstanceWithContext (). This method is defined to return a Java Object
type, which should not surprise you—after all the factory must be able to return any type:

java.lang.Object createlInstanceWithContext (String serviceName, XComponentContext context)
The object we receive is a com.sun.star.bridge.UnoUrlResolver service. Below you find its

specification in UML notation. The service UnoUrlResolver has no properties and it supports one
interface com.sun.star.bridge.XUnoUrlResolver with one method, namely resolve():

com.sun.star.bridge. com.sun.star.bridge.XUnoUrlResolver
UnoUrlResolver

<<service>>

com.sun.star.uno.XInterface resolve
(String unoUrl)

Illustration 2.4: UnoUrlResolver

The point is, while we know that the object we ordered at the factory is a UnoUrlResolver and
exports the interface XUnoUrlResolver, the compiler does not. Therefore, we have to use the UNO
runtime environment to ask or query for the interface XUnoUrlResolver, since we want to use the
resolve () method on this interface. The method queryInterface () makes sure we get a refer-
ence that can be cast to the needed interface type, no matter if the target object is a local or a remote
object. There are two queryInterface definitions in the Java UNO language binding:

java.lang.Object UnoRuntime.queryInterface (java.lang.Class targetInterface, Object sourceObject)
java.lang.Object UnoRuntime.queryInterface (com.sun.star.uno.Type targetInterface, Object sourceObject)
Since UnoRuntime.querylInterface () is specified to return a java.lang.Object just like the factory
method createInstanceWithContext (), we still must explicitly cast our interface reference to the
needed type. The difference is that after queryInterface () we can safely cast the object to our
interface type and, most important, that the reference will now work even with an object in another
process. Here is the queryInterface () call, explained step by step:

Chapter 2 First Steps 41

42

XUnoUrlResolver xUnoUrlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface (
XUnoUrlResolver.class, urlResolver);

XUnoUrlResolver is the interface we want to use, so we define a XUnoUrlResolver variable

named xUnoUrlResolver (lower x) to store the interface we expect from queryInterface.

Then we query our urlResolver object for the XUnoUrlResolver interface, passing in
XUnoUrlResolver.class as target interface and urlResolver as source object. Finally we cast the
outcome to XUnoUrlResolver and assign the resulting reference to our variable xUnoUrlResolver.

If the source object does not support the interface we are querying for, queryInterface () will
return null.

In Java, this call to queryInterface () is necessary whenever you have a reference to an object
which is known to support an interface that you need, but you do not have the proper reference
type yet. Fortunately, you are not only allowed to queryInterface () from java.lang.Object
source types, but you may also query an interface from another interface reference, like this:

// loading a blank spreadsheet document gives us its XComponent interface:
XComponent xComponent = xComponentLoader.loadComponentFromURL (
"private:factory/scalc", " blank", 0, loadProps);

// now we query the interface XSpreadsheetDocument from xComponent

XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface (
XSpreadsheetDocument.class, xComponent) ;

Furthermore, if a method is defined in such a way that it already returns an interface type, you do

not need to query the interface, but you can use its methods right away. In the snippet above, the

method loadComponentFromURL is specified to return an com.sun.star.lang.XComponent inter-

face, so you may call the XComponent methods addEventListener () and removeEventListener

() directly at the xComponent variable, if you want to be notified that the document is being

closed.

It is possible that future versions of the Java UNO language binding will no longer need explicit queries for
interfaces.

The corresponding step in C++ is done by a Reference<> template that takes the source instance
as parameter:

// instantiate a sample service with the servicemanager.
Reference< XInterface > rInstance =
rServiceManager->createInstanceWithContext (
OUString: :createFromAscii ("com.sun.star.bridge.UnoUrlResolver"),
rComponentContext);

// Query for the XUnoUrlResolver interface

Reference< XUnoUrlResolver > rResolver(rInstance, UNO QUERY);

In OpenOffice.org Basic, querying for interfaces is not necessary, the Basic runtime engine takes
care about that internally.

Using Properties

A service must offer its properties through interfaces that allow you to work with properties. The
most basic form of these interfaces is the interface com.sun.star.beans.XPropertySet. There are
other interfaces for properties, such as com.sun.star.beans.xMultiPropertySet, that gets and
sets a multitude of properties with a single method call. The XPropertySet is always supported
when properties are present in a service.

In xPropertySet, two methods carry out the property access, which are defined in Java as follows:

void setPropertyValue (String propertyName, Object propertyValue)
Object getPropertyValue (String propertyName)

In the FirstConnection example, the xPropertySet interface was used to get the remote compo-
nent context from the initial object. The initial object was a StarOffice.ServiceManager and

OpenOffice.org 1.1 Developer's Guide « January 2004

therefore had a property DefaultContext which contained the remote component context. The
following code explains how this property was retrieved and queried its
com.sun.star.uno.XComponentContext interface:

// query the XPropertySet interface from the initial object, which is a StarOffice.ServiceManager
XPropertySet xPropertySet = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, initialObject);

// get the property DefaultContext
Object context = xPropertySet.getPropertyValue ("DefaultContext");

// query XComponentContext from the context object, we want to call XComponentContext.getServiceManager
xRemoteContext = (XComponentContext)UnoRuntime.queryInterface (
XComponentContext.class, context);

You are now ready to start working with a OpenOffice.org document.

2.5.2 Example: Working with a Spreadsheet Document

In this example, we will ask the remote service manager to give us the remote Desktop object and
use its loadComponentFromUrl () method to create a new spreadsheet document. From the docu-
ment we get its sheets container where we insert and access a new sheet by name. In the new sheet,
we enter values into Al and A2 and summarize them in A3. The cell style of the summarizing cell
gets the cell style Result, so that it appears in italics, bold and underlined. Finally, we make our
new sheet the active sheet, so that the user can see it.

Add these import lines to the FirstConnection example above:
(FirstSteps/FirstLoadComponent.java)

import com.sun.star.beans.PropertyValue;

import com.sun.star.lang.XComponent;

import com.sun.star.sheet.XSpreadsheetDocument;
import com.sun.star.sheet.XSpreadsheets;

import com.sun.star.sheet.XSpreadsheet;

import com.sun.star.sheet.XSpreadsheetView;
import com.sun.star.table.XCell;

import com.sun.star.frame.XModel;

import com.sun.star.frame.XController;

import com.sun.star.frame.XComponentLoader;

Edit the useConnection method as follows:

protected void useConnection() throws java.lang.Exception ({
try {

xRemoteServiceManager = this.getRemoteServiceManager (
"uno:socket,host=localhost,port=2083;urp; StarOffice.ServiceManager") ;

// get the Desktop, we need its XComponentLoader interface to load a new document
Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

// query the XComponentLoader interface from the desktop
XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface (
XComponentLoader.class, desktop);

// create empty array of PropertyValue structs, needed for loadComponentFromURL
PropertyValue[] loadProps = new PropertyValue[O0];

// load new calc file
XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL (
"private:factory/scalc", " blank", 0, loadProps);

// query its XSpreadsheetDocument interface, we want to use getSheets|()
XSpreadsheetDocument xSpreadsheetDocument = (XSpreadsheetDocument)UnoRuntime.queryInterface (
XSpreadsheetDocument.class, xSpreadsheetComponent) ;

// use getSheets to get spreadsheets container
XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets () ;

//insert new sheet at position 0 and get it by name, then query its XSpreadsheet interface
xSpreadsheets.insertNewByName ("MySheet", (short)0);

Object sheet = xSpreadsheets.getByName ("MySheet") ;

XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface (

Chapter 2 First Steps 43

XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 21 as value
XCell xCell = xSpreadsheet.getCellByPosition (0, 0);
xCell.setValue (21);

// enter another value into the cell A2 at position 0,1
xCell = xSpreadsheet.getCellByPosition (0, 1);
xCell.setValue (21) ;

// sum up the two cells
xCell = xSpreadsheet.getCellByPosition (0, 2);
xCell.setFormula ("=sum(Al1:A2)");

// we want to access the cell property CellStyle, so query the cell's XPropertySet interface
XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCell);

// assign the cell style "Result" to our formula, which is available out of the box
xCellProps.setPropertyValue ("CellStyle", "Result");

// we want to make our new sheet the current sheet, so we need to ask the model
// for the controller: first query the XModel interface from our spreadsheet component
XModel xSpreadsheetModel = (XModel)UnoRuntime.queryInterface (

XModel.class, xSpreadsheetComponent) ;

// then get the current controller from the model
XController xSpreadsheetController = xSpreadsheetModel.getCurrentController () ;

// get the XSpreadsheetView interface from the controller, we want to call its method

// setActiveSheet

XSpreadsheetView xSpreadsheetView = (XSpreadsheetView)UnoRuntime.queryInterface (
XSpreadsheetView.class, xSpreadsheetController) ;

// make our newly inserted sheet the active sheet using setActiveSheet
xSpreadsheetView.setActiveSheet (xSpreadsheet) ;
}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

}

Alternatively, you can add FirstLoadComponent.java from the samples directory to your current
project, it contains the changes shown above.

2.5.3 Common Types

Until now, literals and common Java types for method parameters and return values have been
used as if the OpenOffice.org API was made for Java. However, it is important to understand that
the OpenOffice.org API is designed to be language independent and therefore has its own internal
types which have to be mapped to the proper types for your language environment. The type
mappings are briefly described in this section.Refer to 3 Professional UNO for detailed information
about type mappings.

Simple Types

Simple types occur in structs, method return values or parameters. The following table shows the
simple types in UNO and, if available, their exact mappings to Java, C++, OpenOffice.org and
Basic types.

UNO Type description Java C++ Basic
char g;zuunmodechmacwr char sal Unicode -

boolean type; true and

boolean
false

boolean sal Bool Boolean

44 OpenOffice.org 1.1 Developer's Guide « January 2004

UNO Type description Java C++ Basic

byte 8-bit ordinal type byte sal_Int8 Integer
short signed 16-bit ordinal type short sal Intlé6 Integer
unsigned unsigned 16-bit ordinal _ sal uIntle B

short type —

long signed 32-bit ordinal type int sal Int32 Long
unsigned . . B _

long unsigned 32-bit type sal uInt32

hyper signed 64-bit ordinal type long sal Int64 -
unsigned unsigned 64-bit ordinal _ sal uInté4 _

hyper type -

float processor dependent float float float (IEEE float) Single
double processor dependent double double (IEEE double) Double

double

There are special conditions for types that do not have an exact mapping in this table. Check for
details about these types in the corresponding sections about type mappings in 3.4 Professional
UNO - UNO Language Bindings.

Strings

UNO considers strings to be simple types, but since they need special treatment in some environ-
ments, we discuss them separately here.

UNO Description Java C++ Basic

string of 16-bit unicode

strin
8 characters

java.lang.String ::rtl::OUString String

In Java, use UNO strings as if they were native java.lang.String objects.

In C++, strings must be converted to UNO unicode strings by means of SAL conversion functions,
usually the function createFromaAscii () in the :rtl::OUString class:

//C++
static OUString createFromAscii(const sal Char * value) throw();

In Basic, Basic strings are mapped to UNO strings transparently.

Enum Types and Groups of Constants

The OpenOffice.org API uses many enumeration types (called enums) and groups of constants
(called constant groups). Enums are used to list every plausible value in a certain context. The
constant groups define possible values for properties, parameters, return values and struct
members.

For example, there is an enum com.sun.star.table.CellVertJustify that describes the possible
values for the vertical adjustment of table cell content. The vertical adjustment of table cells is
determined by their property com.sun.star.table.CellProperties:VertJustify. The possible
values for this property are, according to CellvVertJustify, the values STANDARD, TOP, CENTER and
BOTTOM.

// adjust a cell content to the upper cell border
// The service com.sun.star.table.Cell includes the service com.sun.star.table.CellProperties

Chapter 2 First Steps 45

// and therefore has a property VertJustify that controls the vertical cell adjustment
// we have to use the XPropertySet interface of our Cell to set it

xCellProps.setPropertyValue ("VertJustify", com.sun.star.table.CellVertJustify.TOP) ;
OpenOffice.org Basic understands enumeration types and constant groups. Their usage is straight-
forward:

'OpenOffice.org Basic
oCellProps.VertJustify = com.sun.star.table.CellVertJustify.TOP

In C++ enums and constant groups are used with the scope operator ::
//C++

rCellProps->setPropertyValue (OUString: :createFromAscii ("VertJustify"),
::com::sun::star::table::CellVertJustify.TOP) ;

2.5.4 Struct

Structs in the OpenOffice.org API are used to create compounds of every other UNO type. They
correspond to C structs or Java classes consisting of public member variables only.

While structs do not encapsulate data, they are easier to transport as a whole, instead of marshal
ling get () and set () calls back and forth. In particular, this has advantages for remote communi-
cation.

You gain access to struct members through the . (dot) operator as in
aProperty.Name = "ReadOnly";
In Java, C++ und OpenOffice.org Basic, the keyword new instantiates structs. In OLE automation,

use com.sun.star.reflection.CoreReflection to get a UNO struct. Do not use the service
manager to create structs.

//In Java:
com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue();

'In StarBasic
Dim aProperty as new com.sun.star.beans.PropertyValue

2.5.5 Any

The OpenOffice.org API frequently uses an any type, which is the counterpart of the variant type
known from other environments. The any type holds one arbitrary UNO type. The any type is
especially used in generic UNO interfaces.

Examples for the occurrence of any are the method parameters and return values of the following,
frequently used methods:

Interface returning an any type taking an any type

XPropertySet any getPropertyValue (string void setPropertyValue (any value)

propertyName)

XNameContainer any getByName (string name) void replaceByName void insertByName
(string name, any (string name, any
element) element)

XIndexContainer any getByIndex (long index) void replaceByIndex void insertByIndex
(long index, any (long index, any
element) element)

XEnumeration any nextElement () -

Furthermore, the any type occurs in the com.sun.star.beans.PropertyValue struct.

46 OpenOffice.org 1.1 Developer's Guide « January 2004

com.sun.star.beans.
PropertyValue

<<struct>>

string Name
any Value

Illustration 2.5:
PropertyValue

This struct has two member variables, Name and Value, and is ubiquitous in sets of Property-
Value structs, where every PropertyValue is a name-value pair that describes a property by name
and value. If you need to set the value of such a PropertyVvalue struct, you must assign an any
type, and you must be able to interpret the contained any, if you are reading from a Property-
Value. It depends on your language how this is done.

In Java, the any type is wrapped in a java.lang.Object. There are two simple rules to follow:

When you are supposed to pass in an any type, always pass in a java.lang.Object or a Java
UNO object.

For instance, if you use setPropertyValue () to set a property that has a fundamental type in the
target object, you must pass in a java.lang.Object for the new value. If the new value is a funda-
mental type in Java, create the corresponding Object type for the fundamental type:

xCellProps.setPropertyValue ("CharWWeight", new Double (200.0)) ;

Another example would be a PropertyValue struct you want to use for 1oadComponentFromURL:

com.sun.star.beans.PropertyValue aProperty = new com.sun.star.beans.PropertyValue () ;
aProperty.Name = "ReadOnly";
aProperty.Value = new Boolean (true) ;

When you receive an any type, there are three different ways to evaluate it, depending on the UNO
type you expect. If the incoming object has interfaces, use queryInterface () against it. If the
incoming object is a struct, cast the incoming object to a Java UNO struct. If the incoming object is a
simple type, use the com.sun.star.uno.AnyConverter.

The following is an example of a cast:

// the com.sun.star.table.TableBorder property that can be found in tables is a struct
// simply cast the property to the correct UNO struct type
com.sun.star.table.TableBorder bord = (TableBorder)xTableProps.getPropertyValue ("TableBorder") ;

// now you can access the struct member fields
com.sun.star.table.BorderLine theLine = bord.TopLine;
int col = theLine.Color;

System.out.println(col) ;

The AnyConverter requires a closer look. For instance, if you want to get a property which
contains a fundamental type, you must be aware that getPropertyvalue () returns a
java.lang.Object containing your fundamental type wrapped in an any type. The
com.sun.star.uno.AnyConverter is a converter for such objects. Actually it can do more than
just conversion, you can find its specification in the Java UNO reference. The following list sums
up the conversion functions in the AnyConverter:

static java.lang.Object toArray(java.lang.Object object)

static boolean toBoolean (java.lang.Object object)

static byte toByte(java.lang.Object object)

static char toChar(java.lang.Object object)

static double toDouble(java.lang.Object object)

static float toFloat(java.lang.Object object)

static int toInt(java.lang.Object object)

static long toLong(java.lang.Object object)

static java.lang.Object toObject(Class clazz, java.lang.Object object)
static java.lang.Object toObject (Type type, java.lang.Object object)
static short toShort(java.lang.Object object)

static java.lang.String toString(java.lang.Object object)

Chapter 2 First Steps 47

48

static Type toType (java.lang.Object object)

static int toUnsignedInt (java.lang.Object object)
static long toUnsignedLong (java.lang.Object object)
static short toUnsignedShort(java.lang.Object object)

Its usage is straightforward:

import com.sun.star.uno.AnyConverter;
long cellColor = AnyConverter.tolLong (xCellProps.getPropertyValue ("CharColor")) ;

In OpenOffice.org Basic, an any type becomes a Variant:

'OpenOffice.org Basic
Dim cellColor as Variant
cellColor = oCellProps.CharColor

In C++, there are special operators for the any type:

//C++ has >>= and <<= for Any (the pointed brackets are always left)
sal_Int32 cellColor;

Any any;

any = rCellProps->getPropertyValue (OUString: :createFromAscii("CharColor"));
// extract the value from any

any >>= cellColor;

2.5.6 Sequence

A sequence is a set of UNO types with a variable number of elements that can be accessed directly
without element access methods. Sequences map to arrays in most current language bindings.
Although these sets in UNO are often implemented as objects with element access methods, there
is also the sequence type, to be used where remote performance matters. Sequences are always
written with pointed brackets in the API reference:

// a sequence of strings is notated as follows in the API reference

sequence < string > aStringSequence;

In Java, you treat sequences as arrays. Empty arrays are created using new and assigning a length
of null. Furthermore, keep in mind that you only create an array of references when creating an
array of Java objects, the actual objects are not allocated. Therefore, you must use new to create the
array itself, then you must again use new for every single object and assign the new objects to the
array.

An empty sequence of PropertyValue structs is frequently needed for loadcomponentFromURL:

// create an empty array of PropertyValue structs for loadComponentFromURL

PropertyValue[] emptyProps = new PropertyValue[O0];

A sequence of PropertyValue structs is needed to use loading parameters with loadComponent-
FromURL () . The possible parameter values for loadComponentFromURL () and the
com.sun.star.frame.XStorable interface can be found in the service
com.sun.star.document.MediaDescriptor.

// create an array with one PropertyValue struct for loadComponentFromURL, it contains references only
PropertyValue[] loadProps = new PropertyValue[l];

// instantiate PropertyValue struct and set its member fields
PropertyValue asTemplate = new PropertyValue();
asTemplate.Name = "AsTemplate";

asTemplate.Value = new Boolean (true);

// assign PropertyValue struct to first element in our array of references to PropertyValue structs
loadProps[0] = asTemplate;

// load calc file as template

XComponent xSpreadsheetComponent = xComponentLoader.loadComponentFromURL (
"file:///X:/Office60/share/samples/english/spreadsheets/OfficeSharingAssoc.sxc",
" blank", 0, loadProps);

In OpenOffice.org Basic, a simple Dim creates an empty array.

'OpenOffice.org Basic
Dim loadProps () 'empty array

OpenOffice.org 1.1 Developer's Guide « January 2004

A sequence of structs is created using new together with Dim.

'OpenOffice.org Basic

Dim loadProps (0) as new com.sun.star.beans.PropertyValue 'one PropertyValue

In C++, there is a template for sequences. An empty sequence can be created by omitting the
number of elements required.

//C++
Sequence < ::com::sun::star::beans::PropertyValue > loadProperties; // empty sequence

If you pass a number of elements, you get an array of the required type.

//CH++

Sequence< ::com::sun::star::beans::PropertyValue > loadProps(1);
// the structs are default constructed

loadProps[0] .Name = OUString::createFromAscii("AsTemplate");
loadProps[0] .Handle <<= true;

Reference < XComponent > rComponent = rComponentLoader->loadComponentFromURL (
OUString: :createFromAscii ("private:factory/swriter"),
OUString::createFromAscii ("_blank"),

0,
loadProps) ;

2.5.7 Element Access

We have already seen in section 2.4 First Steps - How to get Objects in OpenOlffice.orgthat sets of
objects can also be provided through element access methods. The three most important kinds of
element access interfaces are com.sun.star.container.xXNameContainer,
[com.sun.star.container.XIndexContainer] and com.sun.star.container.XEnumeration

The three element access interfaces are examples of how the fine-grained interfaces of the
OpenOffice.org API allow consistent object design.

All three interfaces inherit from XElementAccess, i.e. they include the methods:

type getElementType ()

boolean hasElements ()
to find out basic information about the set of elements. The method hasElements () answers the
question if a set contains elements at all, and which type a set contains. In Java and C++, you can
get information about a UNO type through com.sun.star.uno.Type, cf. the Java UNO and the
C++ UNO reference.

Chapter 2 First Steps 49

The com.sun.star.container.xXIndexContainer and
com.sun.star.container.XNameContainer interface have a parallel design. Consider both inter-
faces in UML notation.

com.sun.star.container. com.sun.star.container.
XElementAccess XElementAccess
<<interface>> <<interface>>
type getElementType () type getElementType ()
boolean hasElements () boolean hasElements ()
com.sun.star.container. com.sun.star.container.
XIndexAccess XNameAccess
<<interface>> <<interface>>
any getBylIndex (long index) any getByName (string name)
long getCount () sequence <sting> getElementNames ()

boolean hasByName (string name)

com.sun.star.container. com.sun.star.container.
XIndexReplace XNameReplace
<<interface>> <<interface>>
void replaceByIndex void replaceBysName
(long index, any element) (string name, any element)
com.sun.star.container. com.sun.star.container.
XindexContainer XNameContainer
<<interface>> <<interface>>
void insertByIndex void insertByName
(long index, any element) (string name, any element)
void removeBylndex (long index) void removeByName (string name)

Illustration 2.6. Indexed and Named Container

The xIndexAccess/XNameAccess interfaces are about getting an element. The
XIndexReplace/XNameReplace interfaces allow you to replace existing elements without changing
the number of elements in the set, whereas the XIndexContainer/XNameContainer interfaces
allow you to increase and decrease the number of elements by inserting and removing elements.

Many sets of named or indexed objects do not support the whole inheritance hierarchy ofxIndex-
Container or XNameContainer, because the capabilities added by every subclass are not always
logical for any set of elements.

The xEumerationAccess interface works differently from named and indexed containers below
the XElementAccess interface. XEnumerationAccess does not provide single elements like
XNameAccess and XIndexAccess, but it creates an enumeration of objects which has methods to go
to the next element as long as there are more elements.

50 OpenOffice.org 1.1 Developer's Guide « January 2004

com.sun.star.container.
XElementAccess

<<interface>>

type getElementType ()
boolean hasElements ()

com.sun.star.container.
XEnumerationAccess
<<interface>>

com.sun.star.container.XEnumeration
createEnumeration ()

|
: createEnumeration()
\/
com.sun.star.container.
XEnumeration

<<interface>>

boolean hasMoreElements ()
any nextElement ()

Illustration 2.7: Enumerated
Container

Sets of objects sometimes support all element access methods, some also support only name, index,
or enumeration access. Always look up the various types in the API reference to see which access
methods are available.

For instance, the method getSheets () at the interface
com.sun.star.sheet.XSpreadsheetDocument is specified to return a
com.sun.star.sheet.XSpreadsheets interface inherited from xNameContainer. In addition, the
API reference tells you that the provided object supports a com.sun.star.sheet.Spreadsheets
service, which defines additional element access interfaces besides xSpreadsheets.

Examples that show how to work with xNameAccess, XIndexAccess, and XEnumerationAccess
are provided below.

Name Access

The basic interface which hands out elements by name is the
com.sun.star.container.XNameAccess interface. It has three methods:

any getByName([in] string name)

sequence < string > getElementNames ()

boolean hasByName ([in] string name)
In the FirstLoadComponent example above, the method getSheets () returned a
com.sun.star.sheet.XSpreadsheets interface, which inherits from xNameAccess. Therefore,
you could use getByName () to obtain the sheet "MySheet" by name from the xSpreadsheets
container:

Chapter 2 First Steps 51

XSpreadsheets xSpreadsheets = xSpreadsheetDocument.getSheets() ;

Object sheet = xSpreadsheets.getByName ("MySheet") ;

XSpreadsheet xSpreadsheet = (XSpreadsheet)UnoRuntime.queryInterface (
XSpreadsheet.class, sheet);

// use XSpreadsheet interface to get the cell Al at position 0,0 and enter 42 as value
XCell xCell = xSpreadsheet.getCellByPosition (0, 0);

Since getByName () returns an any, you have to use queryInterface () before you can call
methods at the spreadsheet object.

Index Access

The interface which hands out elements by index is the com.sun.star.container.XIndexAccess
interface. It has two methods:

any getByIndex([in] long index)
long getCount ()

The FirstLoadComponent example allows to demonstrate xIndexAccess. The API reference tells
us that the service returned by getSheets () isa com.sun.star.sheet.Spreadsheet service and
supports not only the interface com.sun.star.sheet.XSpreadsheets, but XIndexAccess as well.
Therefore, the sheets could have been accessed by index and not just by name by performing a
query for the XIndexAccess interface from our xSpreadsheets variable:

XIndexAccess xSheetIndexAccess = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, xSpreadsheets);

Object sheet = XSheetIndexAccess.getByIndex (0) ;

Enumeration Access

The interface com.sun.star.container.XEnumerationAccess creates enumerations that allow
traveling across a set of objects. It has one method:

com.sun.star.container.XEnumeration createEnumeration ()
The enumeration object gained from createEnumeration () supports the interface

com.sun.star.container.XEnumeration. With this interface we can keep pulling elements out of
the enumeration as long as it has more elements. xEnumeration supplies the methods:

boolean hasMoreElements (
any nextElement ()

which are meant to build loops such as:
while (xCells.hasMoreElements()) {
Object cell = xCells.nextElement () ;

// do something with cell
}

For example, in spreadsheets you have the opportunity to find out which cells contain formulas.
The resulting set of cells is provided as XEnumerationAccess.

The interface that queries for cells with formulas is com.sun.star.sheet.xCellRangesQuery, it
defines (among others) a method

XSheetCellRanges queryContentCells (short cellFlags)

which queries for cells having content as defined in the constants group
com.sun.star.sheet.CellFlags. One of these cell flags is FORMULA. From queryContentCells () we
receive an object with an com.sun.star.sheet.XSheetCellRanges interface, which has these
methods:

XEnumerationAccess getCells ()

52 OpenOffice.org 1.1 Developer's Guide « January 2004

String getRangeAddressesAsString ()

sequence< com.sun.star.table.CellRangeAddress > getRangeAddresses (
The method getCells () can be used to list all formula cells and the containing formulas in the
spreadsheet document from our FirstLoadComponent example, utilizing XEnumerationAccess.
(FirstSteps/FirstLoadComponent.java)

XCellRangesQuery xCellQuery = (XCellRangesQuery)UnoRuntime.queryInterface (
XCellRangesQuery.class, sheet);

XSheetCellRanges xFormulaCells = xCellQuery.queryContentCells (
(short)com.sun.star.sheet.CellFlags.FORMULA) ;

XEnumerationAccess xFormulas = xFormulaCells.getCells() ;
XEnumeration xFormulaEnum = xFormulas.createEnumeration() ;

while (xFormulaEnum.hasMoreElements()) {
Object formulaCell = xFormulaEnum.nextElement () ;

// do something with formulaCell

xCell = (XCell)UnoRuntime.queryInterface (XCell.class, formulaCell);

XCellAddressable xCellAddress = (XCellAddressable)UnoRuntime.queryInterface (
XCellAddressable.class, xCell);

System.out.print ("Formula cell in column " + xCellAddress.getCellAddress () .Column
+ ", row " + xCellAddress.getCellAddress () .Row
+ " contains " + xCell.getFormula()) ;

2.6 How do I know Which Type I Have?

A common problem is deciding what capabilities an object really has, after you receive it from a
method.

By observing the code completion in Java IDE, you can discover the base interface of an object
returned from a method. You will notice that 1oadComponentFromURL () returns a
com.sun.star.lang.XComponent.

By pressing Alt + F1 in the NetBeans IDE you can read specifications about the interfaces and serv-
ices you are using.

However, methods can only be specified to return one interface type. The interface you get from a
method very often supports more interfaces than the one that is returned by the method. Further-
more, the interface does not tell anything about the properties the object contains.

Therefore you should uses this manual to get an idea how things work. Then start writing code,
using the code completion and the API reference.

In addition, you can try the Instancelnspector, a Java tool which is part of the OpenOffice.org SDK
examples. It is a Java component that can be registered with the office and shows interfaces and
properties of the object you are currently working with.

In OpenOffice.org Basic, you can inspect objects using the following Basic properties.

sub main

oDocument = thiscomponent

msgBox (oDocument .dbg_methods)

msgBox (oDocument .dbg properties)

msgBox (oDocument .dbg_supportedInterfaces)
end sub

2.7 Example: Hello Text, Hello Table, Hello Shape

The goal of this section is to give a brief overview of those mechanisms in the OpenOffice.org API,
which are common to all document types. The three main application areas of OpenOffice.org are
text, tables and drawing shapes. The point is: texts, tables and drawing shapes can occur in all

Chapter 2 First Steps 53

three document types, no matter if you are dealing with a Writer, Calc or Draw/Impress file, but
they are treated in the same manner everywhere. When you master the common mechanisms, you
will be able to insert and use texts, tables and drawings in all document types.

2.7.1 Common Mechanisms for Text, Tables and Drawings

We want to stress the common ground, therefore we start with the common interfaces and proper-
ties that allow to manipulate existing texts, tables and drawings. Afterwards we will demonstrate
the different techniques to create text, table and drawings in each document type.

The key interfaces and properties to work with existing texts, tables and drawings are the
following:

For text the interface com.sun.star.text.XText contains the methods that change the actual text
and other text contents (examples for text contents besides conventional text paragraphs are text
tables, text fields, graphic objects and similar things, but such contents are not available in all
contexts). When we talk about text here, we mean any text - text in text documents, text frames,
page headers and footers, table cells or in drawing shapes. xText is the key for text everywhere in
OpenOffice.org.

com.sun.star.text.XTextRange
<<interface>>

void setString (string text)

string getString ()
com.sun.star.textXTextRange getStart ()
com.sun.star.textXTextRange getEnd ()
com.sun.star.textXText getText ()

com.sun.star.text.XSimpleText
<<interface>>

com.sun.star.textXTextCursor createTextCursor ()
com.sun.star.textXTextCursor createTextCursorByRange
(com.sun.star.text.XTextRange textRange)
void insertString
(com.sun.star.text.XTextRange textRange, string text, boolean absorb)
void insertControlCharacter
(com.sun.star.text.XTextRange textRange, short controlCharacter,
boolean absorb)

com.sun.star.text. XText
<<interface>>

void insertTextContent
(com.sun.star.text.XTextRange textRange,
com.sun.star.text.XTextContent content, boolean absorb)
void removeTextContent (com.sun.star.text.XTextContent content)

Hlustration 2.8: XTextRange

The interface com.sun.star.text.XText has the ability to set or get the text as a single string, and
to locate the beginning and the end of a text. Furthermore, xText can insert strings at an arbitrary

54 OpenOffice.org 1.1 Developer's Guide « January 2004

position in the text and create text cursors to select and format text. Finally, xText handles text
contents through the methods insertTextContent and removeTextContent, although not all
texts accept text contents other than conventional text. In fact, XText covers all this by inheriting
from com.sun.star.text.xXxSimpleText that is inherited from com.sun.star.text.XTextRange

Text formatting happens through the properties which are described in the services
com.sun.star.style.ParagraphPropertiesand com.sun.star.style.CharacterProperties.

The following example method manipulateText () adds text, then it uses a text cursor to select
and format a few words using CharacterProperties, afterwards it inserts more text. The method
manipulateText () only contains the most basic methods of xText so that it works with every text
object. In particular, it avoids insertTextContent (), since there are no text contents except for
conventional text that can be inserted in all text objects.(FirstSteps/HelloTextTableShape.java)

protected void manipulateText (XText xText) throws com.sun.star.uno.Exception {
// simply set whole text as one string
xText.setString ("He lay flat on the brown, pine-needled floor of the forest, "
+ "his chin on his folded arms, and high overhead the wind blew in the tops "
+ "of the pine trees.");

// create text cursor for selecting and formatting

XTextCursor xTextCursor = xText.createTextCursor (),

XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xTextCursor);

// use cursor to select "He lay" and apply bold italic
xTextCursor.gotoStart (false) ;
xTextCursor.goRight ((short) 6, true);
// from CharacterProperties
xCursorProps.setPropertyValue ("CharPosture",
com.sun.star.awt.FontSlant.ITALIC) ;
xCursorProps.setPropertyValue ("CharWeight",
new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// add more text at the end of the text using insertString
xTextCursor.gotoEnd (false) ;
xText.insertString (xTextCursor, " The mountainside sloped gently where he lay; "

+ "but below it was steep and he could see the dark of the oiled road "

+ "winding through the pass. There was a stream alongside the road "

+ "and far down the pass he saw a mill beside the stream and the falling water "

+ "of the dam, white in the summer sunlight.", false);
// after insertString the cursor is behind the inserted text, insert more text
xText.insertString (xTextCursor, "\n \"Is that the mill?\" he asked.", false);

}

In tables and table cells, the interface com.sun.star.table.XCellRange allows you to retrieve
single cells and subranges of cells. Once you have a cell, you can work with its formula or numeric
value through the interface com.sun.star.table.XCell.

Chapter 2 First Steps 55

com.sun.star.table.XCellRange
<<interface>>

com.sun.star.tableXCell getCellByPosition

(long nColumn, long nRow)
com.sun.star.tableXCellRange getCellRangeByPosition

(long nLeft, long nTop, long nRight, long nBottom)
com.sun.star.tableXCellRange getCellRangeByName

(string aRange)

com.sun.star.table.XCell
<<interface>>

string getFormula ()

void setFormula (string aFormula)

double getValue ()

void setValue (double nValue)
com.sun.star.table.CellContentType getType ()
long getEror ()

Hllustration 2.9: Cell and Cell Range

Table formatting is partially different in text tables and spreadsheet tables. Text tables use the
properties specified in com.sun.star.text.TextTable, whereas spreadsheet tables use
com.sun.star.table.CellProperties. Furthermore there are table cursors that allow to select
and format cell ranges and the contained text. But since a com.sun.star.text.TextTableCursor
works quite differently from a com.sun.star.sheet.SheetCellCursor, we will discuss them in
the chapters about text and spreadsheet documents.(FirstSteps/HelloTextTableShape.java)

protected void manipulateTable (XCellRange xCellRange) throws com.sun.star.uno.Exception ({

String backColorPropertyName = "";
XPropertySet xTableProps = null;

// enter column titles and a cell value

// Enter "Quotation" in Al, "Year" in Bl. We use setString because we want to change the whole
// cell text at once

XCell xCell = xCellRange.getCellByPosition (0,0) ;

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);
xCellText.setString ("Quotation") ;

xCell = xCellRange.getCellByPosition (1,0);
xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);
xCellText.setString ("Year") ;

// cell value
xCell = xCellRange.getCellByPosition(1,1);
xCell.setValue (1940) ;

// select the table headers and get the cell properties

XCellRange xSelectedCells = xCellRange.getCellRangeByName ("Al:B1");

XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xSelectedCells):;

// format the color of the table headers and table borders

// we need to distinguish text and spreadsheet tables:

// - the property name for cell colors is different in text and sheet cells

// - the common property for table borders is com.sun.star.table.TableBorder, but
// we must apply the property TableBorder to the whole text table,

// whereas we only want borders for spreadsheet cells with content.

// XServicelInfo allows to distinguish text tables from spreadsheets
XServiceInfo xServicelInfo = (XServicelInfo)UnoRuntime.queryInterface (
XServiceInfo.class, xCellRange);

// determine the correct property name for background color and the XPropertySet interface
// for the cells that should get colored border lines
if (xServicelInfo.supportsService ("com.sun.star.sheet.Spreadsheet")) {
backColorPropertyName = "CellBackColor";
// select cells
xSelectedCells = xCellRange.getCellRangeByName ("A1:B2") ;
// table properties only for selected cells
xTableProps = (XPropertySet)UnoRuntime.queryInterface (

56 OpenOffice.org 1.1 Developer's Guide « January 2004

XPropertySet.class, xSelectedCells);
}
else if (xServiceInfo.supportsService ("com.sun.star.text.TextTable")) {
backColorPropertyName = "BackColor";
// table properties for whole table
xTableProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCellRange);
}
// set cell background color
xCellProps.setPropertyValue (backColorPropertyName, new Integer (0x99CCFF)) ;

// set table borders
// create description for blue line, width 10
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in O0xAARRGGBB
BorderLine thelLine = new BorderLine();
theLine.Color = 0x000099;
theline.OuterLineWidth = 10;
// apply line description to all border lines and make them valid
TableBorder bord = new TableBorder () ;
bord.VerticalLine bord.HorizontalLine =
bord.LeftLine bord.RightLine =
bord.TopLine = bord.BottomLine
theLine;
bord.IsVerticallLineValid = bord.IsHorizontalLineValid =
bord.IsLeftLineValid = bord.IsRightLineValid =
bord.IsTopLineValid = bord.IsBottomLineValid =
true;

Qo

xTableProps.setPropertyValue ("TableBorder", bord);
}

On drawing shapes, the interface com.sun.star.drawing.XShape is used to determine the position
and size of a shape.

com.sun.star.drawing.XShape

<<interface>>

string getShapeType ()

com.sun.star.awt.Point getPosition ()

void setPosition (com.sun.star.awt.Point aPosition)
com.sun.star.awt.Size getSize () invoke

void setSize (com.sun.star.awt.Size aSize)

Hlustration 2.10: XShape

Everything else is a matter of property-based formatting and there is a multitude of properties to
use. OpenOffice.org comes with eleven different shapes that are the basis for the drawing tools in
the GUI (graphical user interface). Six of the shapes have individual properties that reflect their
characteristics. The six shapes are:

com.sun.star.drawing.EllipseShape for circles and ellipses.
com.sun.star.drawing.RectangleShape for boxes.
com.sun.star.drawing.TextShape for text boxes.
com.sun.star.drawing.CaptionShape for labeling.
com.sun.star.drawing.MeasureShape for metering.

- com.sun.star.drawing.ConnectorShape for lines that can be "glued" to other shapes to draw
connecting lines between them.

Five shapes have no individual properties, rather they share the properties defined in the service
com.sun.star.drawing.PolyPolygonBezierDescriptor:

. com.sun.star.drawing.LineShape is for lines and arrows.
. com.sun.star.drawing.PolyLineShape is for open shapes formed by straight lines.

. com.sun.star.drawing.PolyPolygonShape is for shapes formed by one or more polygons.

Chapter 2 First Steps 57

58

. com.sun.star.drawing.ClosedBezierShape is for closed bezier shapes.

- com.sun.star.drawing.PolyPolygonBezierShape is for combinations of multiple polygon
and Bezier shapes.

All of these eleven shapes use the properties from the following services:

. com.sun.star.drawing.Shape describes basic properties of all shapes such as the layer a
shape belongs to, protection from moving and sizing, style name, 3D transformation and name.

. com.sun.star.drawing.LineProperties determines how the lines of a shape look
- com.sun.star.drawing.Text has no properties of its own, but includes:

- com.sun.star.drawing.TextProperties that affects numbering, shape growth and text
alignment in the cell, text animation and writing direction.

. com.sun.star.style.ParagraphProperties is concerned with paragraph formatting.
. com.sun.star.style.CharacterProperties formats characters

- com.sun.star.drawing.ShadowProperties deals with the shadow of a shape.

. com.sun.star.drawing.RotationDescriptor sets rotation and shearing of a shape.

. com.sun.star.drawing.FillProperties is only for closed shapes and describes how the
shape is filled.

. com.sun.star.presentation.Shape adds presentation effects to shapes in presentation docu-
ments.

Consider the following example showing how these properties work:
(FirstSteps/HelloTextTableShape.java)

protected void manipulateShape (XShape xShape) throws com.sun.star.uno.Exception {
// for usage of setSize and setPosition in interface XShape see method useDraw() below
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (XPropertySet.class, xShape);
// colors are given in ARGB, comprised of four bytes for alpha-red-green-blue as in 0xAARRGGBB
xShapeProps.setPropertyValue ("FillColor", new Integer (0x99CCFF)) ;
xShapeProps.setPropertyValue ("LineColor", new Integer (0x000099));
// angles are given in hundredth degrees, rotate by 30 degrees
xShapeProps.setPropertyValue ("RotateAngle", new Integer (3000));

2.7.2 Creating Text, Tables and Drawing Shapes

The three manipulatexxX methods above took text, table and shape objects as parameters and
altered them. The following methods show how to create such objects in the various document
types. Note that all documents have their own service factory to create objects to be inserted into
the document. Aside from that it depends very much on the document type how you proceed. This
section only demonstrates the different procedures, the explanation can be found in the chapters
about Text, Spreadsheet and Drawing Documents.

First, a small convenience method is used to create new documents.
(FirstSteps/HelloTextTableShape.java)

protected XComponent newDocComponent (String docType) throws java.lang.Exception {

String loadUrl = "private:factory/" + docType;

xRemoteServiceManager = this.getRemoteServiceManager (unoUrl) ;

Object desktop = xRemoteServiceManager.createInstanceWithContext (
"com.sun.star.frame.Desktop", xRemoteContext) ;

XComponentLoader xComponentLoader = (XComponentLoader)UnoRuntime.queryInterface (
XComponentLoader.class, desktop);

PropertyValue[] loadProps = new PropertyValue[0];

return xComponentLoader.loadComponentFromURL (loadUrl, " _blank", 0, loadProps) ;

OpenOffice.org 1.1 Developer's Guide « January 2004

Text, Tables and Drawings in Writer

The method useWriter creates a writer document and manipulates its text, then uses the docu-
ment's internal service manager to instantiate a text table and a shape, inserts them and manipu-

lates the table and shape (FirstSteps/HelloTextTableShape.java). Refer to 7 Text Documents for

more detailed information.

protected void useWriter () throws java.lang.Exception {
try {

// create new writer document and get text, then manipulate text

XComponent xWriterComponent = newDocComponent ("swriter");

XTextDocument xTextDocument = (XTextDocument)UnoRuntime.queryInterface (

XTextDocument.class, xWriterComponent) ;
XText xText = xTextDocument.getText ();

manipulateText (xText) ;

// get internal service factory of the document

XMultiServiceFactory xWriterFactory = (XMultiServiceFactory)UnoRuntime.queryInterface (

XMultiServiceFactory.class, xWriterComponent) ;

// insert TextTable and get cell text, then manipulate text in cell
Object table = xWriterFactory.createInstance ("com.sun.star.text.TextTable");
XTextContent xTextContentTable = (XTextContent)UnoRuntime.queryInterface (

XTextContent.class, table);

xText.insertTextContent (xText.getEnd (), xTextContentTable,

false);

XCellRange xCellRange = (XCellRange)UnoRuntime.queryInterface (

XCellRange.class, table);
XCell xCell = xCellRange.getCellByPosition (0, 1);

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

manipulateText (xCellText) ;
manipulateTable (xCellRange) ;

// insert RectangleShape and get shape text, then manipulate text

Object writerShape = xWriterFactory.createInstance (
"com.sun.star.drawing.RectangleShape") ;
XShape xWriterShape = (XShape)UnoRuntime.queryInterface (

XShape.class, writerShape);
xWriterShape.setSize (new Size (10000, 10000));

XTextContent xTextContentShape = (XTextContent)UnoRuntime.queryInterface (

XTextContent.class, writerShape);

xText.insertTextContent (xText.getEnd (), xTextContentShape,

false);

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (

XPropertySet.class, writerShape);
// wrap text inside shape

xShapeProps.setPropertyValue ("TextContourFrame", new Boolean (true));

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, writerShape) ;

manipulateText (xShapeText) ;
manipulateShape (xWriterShape) ;
}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1

xRemoteContext = null;
throw e;

Text, Tables and Drawings in Calc

The method useCalc creates a calc document, uses its document factory to create a shape and
manipulates the cell text, table and shape. The chapter & Spreadsheet Documents treats all aspects of

spreadsheets. (FirstSteps/HelloTextTableShape.java)

protected void useCalc() throws java.lang.Exception {
try {
// create new calc document and manipulate cell text
XComponent xCalcComponent = newDocComponent ("scalc");
XSpreadsheetDocument xSpreadsheetDocument =
(XSpreadsheetDocument) UnoRuntime.queryInterface (
XSpreadsheetDocument .class, xCalcComponent) ;
Object sheets = xSpreadsheetDocument.getSheets();

Chapter 2 First Steps

59

XIndexAccess xIndexedSheets = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, sheets);
Object sheet = xIndexedSheets.getByIndex(0);

//get cell A2 in first sheet

XCellRange xSpreadsheetCells = (XCellRange)UnoRuntime.queryInterface (
XCellRange.class, sheet);

XCell xCell = xSpreadsheetCells.getCellByPosition(0,1) ;

XPropertySet xCellProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, xCell);

xCellProps.setPropertyValue ("IsTextWrapped", new Boolean (true));

XText xCellText = (XText)UnoRuntime.queryInterface (XText.class, xCell);

manipulateText (xCellText) ;
manipulateTable (xSpreadsheetCells) ;

// get internal service factory of the document
XMultiServiceFactory xCalcFactory = (XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xCalcComponent) ;
// get Drawpage
XDrawPageSupplier xDrawPageSupplier =
(XDrawPageSupplier)UnoRuntime.queryInterface (XDrawPageSupplier.class, sheet);
XDrawPage xDrawPage = xDrawPageSupplier.getDrawPage () ;

// create and insert RectangleShape and get shape text, then manipulate text
Object calcShape = xCalcFactory.createInstance (
"com.sun.star.drawing.RectangleShape") ;
XShape xCalcShape = (XShape)UnoRuntime.queryInterface (
XShape.class, calcShape);
xCalcShape.setSize (new Size (10000, 10000));
xCalcShape.setPosition (new Point (7000, 3000));

xDrawPage.add (xCalcShape) ;

XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, calcShape);

// wrap text inside shape

xShapeProps.setPropertyValue ("TextContourFrame", new Boolean(true));

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, calcShape);

manipulateText (xShapeText) ;
manipulateShape (xCalcShape) ;

}

catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

Drawings and Text in Draw

The method useDraw creates a draw document and uses its document factory to instantiate and
add a shape, then it manipulates the shape. The chapter 9 Drawing casts more light on drawings
and presentations. (FirstSteps/HelloTextTableShape.java)

protected void useDraw () throws java.lang.Exception ({
try {
//create new draw document and insert ractangle shape
XComponent xDrawComponent = newDocComponent ("sdraw") ;
XDrawPagesSupplier xDrawPagesSupplier =
(XDrawPagesSupplier)UnoRuntime.queryInterface (
XDrawPagesSupplier.class, xDrawComponent) ;

Object drawPages = xDrawPagesSupplier.getDrawPages () ;

XIndexAccess xIndexedDrawPages = (XIndexAccess)UnoRuntime.queryInterface (
XIndexAccess.class, drawPages);

Object drawPage = xIndexedDrawPages.getByIndex(0) ;

XDrawPage xDrawPage = (XDrawPage)UnoRuntime.queryInterface (XDrawPage.class, drawPage);

// get internal service factory of the document
XMultiServiceFactory xDrawFactory =
(XMultiServiceFactory)UnoRuntime.queryInterface (
XMultiServiceFactory.class, xDrawComponent) ;

Object drawShape = xDrawFactory.createInstance (

"com.sun.star.drawing.RectangleShape") ;
XShape xDrawShape = (XShape)UnoRuntime.queryInterface (XShape.class, drawShape);

60 OpenOffice.org 1.1 Developer's Guide « January 2004

xDrawShape.setSize (new Size (10000, 20000)) ;
xDrawShape.setPosition (new Point (5000, 5000)) ;
xDrawPage.add (xDrawShape) ;

XText xShapeText = (XText)UnoRuntime.queryInterface (XText.class, drawShape);
XPropertySet xShapeProps = (XPropertySet)UnoRuntime.queryInterface (
XPropertySet.class, drawShape);

// wrap text inside shape
xShapeProps.setPropertyValue ("TextContourFrame", new Boolean(true));

manipulateText (xShapeText) ;
manipulateShape (xDrawShape) ;
}
catch(com.sun.star.lang.DisposedException e) { //works from Patch 1
xRemoteContext = null;
throw e;

Chapter 2 First Steps 61

Professional UNO

This chapter provides in-depth information about UNO and the use of UNO in various program-
ming languages. There are four sections:

The 3.1 Professional UNO - Introduction gives an outline of the UNO architecture.

The section 3.2 Professional UNO - API Concepts supplies background information on the API
reference.

The section 3.3 Professional UNO - UNO Concepts describes the mechanics of UNO, i.e. it shows
how UNO objects connect and communicate with each other.

The section 3.4 Professional UNO - UNO Language Bindings elaborates on the use of UNO from
Java, C++, OpenOffice.org Basic and COM automation.

3.1 Introduction

The goal of UNO (Universal Network Objects) is to provide an environment for network objects
across programming language and platform boundaries. UNO objects run and communicate
everywhere. UNO reaches this goal by providing the following fundamental framework:

UNO objects are specified in an abstract meta language, called UNO IDL (UNO Interface Defi-
nition Language), which is similar to CORBA IDL or MIDL. From UNO IDL specifications,
language dependent header files and libraries can be generated to implement UNO objects in
the target language. UNO objects in the form of compiled and bound libraries are called compo-
nents. Components must support certain base interfaces to be able to run in the UNO environ-
ment.

To instantiate components in a target environment UNO uses a factory concept. This factory is
called the service manager. It maintains a database of registered components which are known
by their name and can be created by name. The service manager might ask Linux to load and
instantiate a shared object written in C++ or it might call upon the local Java VM to instantiate a
Java class. This is transparent for the developer, there is no need to care about a component's
implementation language. Communication takes place exclusively over interface calls as speci
fied in UNO IDL.

UNO provides bridgesto send method calls and receive return values between processes and
between objects written in different implementation languages. The bridges use a special UNO
remote protocol (urp) for this purpose which is supported for sockets and pipes. Both ends of
the bridge must be UNO environments, therefore a language-specific UNO runtime environ-
ment to connect to another UNO process in any of the supported languages is required. These
runtime environments are provided as language bindings.

63

Most objects of OpenOffice.org are able to communicate in a UNO environment. The specifica
tion for the programmable features of OpenOffice.org is called the OpenOffice.org API.

3.2 API Concepts

The OpenOffice.org API is a language independent approach to specify the functionality of
OpenOffice.org. Its main goals are to provide an API to access the functionality of OpenOffice.org,
to enable users to extend the functionality by their own solutions and new features, and to make
the internal implementation of OpenOffice.org exchangeable.

A long term target on the OpenOffice.org roadmap is to split the existing OpenOffice.org into
small components which are combined to provide the complete OpenOffice.org functionality. Such
components are manageable, they interact with each other to provide high level features and they
are exchangeable with other implementations providing the same functionality, even if these new
implementations are implemented in a different programming language. When this target will be
reached, the API, the components and the fundamental concepts will provide a construction Kkit,
which makes OpenOffice.org adaptable to a wide range of specialized solutions and not only an
office suite with a predefined and static functionality.

This section provides you with a thorough understanding of the concepts behind the
OpenOffice.org API. In the API reference there are UNO IDL data types which are unknown
outside of the API. The reference provides abstract specifications which sometimes can make you
wonder how they map to implementations you can actually use.

The data types of the API reference are explained in 3.2.1 Professional UNO - API Concepts - Data
Types. The relationship between API specifications and OpenOffice.org implementations is treated
in 3.2.2 Professional UNO - API Concepts - Understanding the API Reference.

3.2.1 Data Types

The data types in the API reference are UNO IDL types which have to be mapped to the types of
any programming language that can be used with the OpenOffice.org API. In the chapter 2 First
Steps the most important UNO types were introduced. However, there is much more to be said
about simple types, interfaces, properties and services in UNO. There are special flags, conditions
and relationships between these types which you will want to know if you are working with UNO
on a professional level.

This section explains the types of the API reference from the perspective of a developer who wants
to use the OpenOffice.org API. If you are interested in writing your own components, and you
must define new interfaces and types, please refer to the chapter 4 Writing UNO Components,
which describes how to write your own UNO IDL specifications and how to create UNO compo-
nents.

Simple Types

UNO IDL provides a set of predefined and fundamental base types which are listed in the
following table:

UNO IDL Type Description
bool ean Can be trueor false.

64 OpenOffice.org 1.1 Developer's Guide « January 2004

UNO IDL Type
byt e

Description

One-byte type representing a type that is not modified by the UNO runtime during
transport (marshaling) over a UNO bridge.

char Represents a unicode character. When this type is mapped to a programming
language, the representation depends on the respective hardware or software
architecture.

doubl e Processor dependent double.

fl oat Processor dependent float.

hyper 64-bit integer type.

| ong 32-bit integer type.

short 16-bit integer type.

string Unicode string type.

type Meta type that describes any other UNO IDL types.

voi d Empty return value, only possible as return value.

unsi gned hyper

unsi gned | ong

Deprecated. Unsigned 64-bit integer value.

Deprecated. Unsigned 32-bit integer value.

unsi gned short | Deprecated. Unsigned 16-bit integer value.

The chapters about language bindings 3.4.1 Professional UNO - UNO Language Bindings - Java
Language Binding, 3.4.2 Professional UNO - UNO Language Bindings - UNO C++ Binding, 3.4.3 Profes-
sional UNO - UNO Language Bindings - OpenOlffice.org Basicand 3.4.4 Professional UNO - UNO
Language Bindings - Automation Bridge describe how these types are mapped to the types of your
target language.

The Any Type

The special type any can represent all other known and defined UNO IDL types. In the target
languages, the any type requires special treatment. There is an AnyConverter in Java and special
operators in C++. For details, see the section 3.4 Professional UNO - UNO Language Bindings about
language bindings.

Interfaces

Communication between UNO objects is based on object interfaces. Interfaces can be seen from the
outside or the inside of an object.

From the outside of an object, an interface provides a functionality or special aspect of the object.
Interfaces provide access to objects by publishing a set of operations that cover a certain aspect of
an object without telling anything about its internals.

The concept of interfaces is quite natural and frequently used in everyday life. Interfaces allow the
creation of things that fit in with each other without knowing internal details about them. A power
plug that fits into a standard socket or a one-size-fits-all working glove are simple examples. They
all work by standardizing the minimal conditions that must be met to make things work together.

A more advanced example would be the "remote control aspect” of a simple TV system. One
possible feature of a TV system is a remote control. The remote control functions can be described
by an xPower and an xChannel interface. The illustration below shows aRemoteControl object
with these interfaces:

Chapter 3 Professional UNO 65

XPower
O=————

turnOn ()
RemoteControl turnOff ()

<<service>>

XChannel

select (short sChannel)
next ()
previous ()

Illustration 3.1: RemoteControl service

The xPower interface has the functions turnon () and turnOff () to control the power and the
XChannel interface has the functions select (), next (), previous () to control the current
channel. The user of these interfaces does not care if he uses an original remote control that came
with a TV set or a universal remote control as long as it carries out these functions. The user is only
dissatisfied if some of the functions promised by the interface do not work with a remote control.

From the inside of an object, or from the perspective of someone who implements a UNO object,
interfaces are abstract specifications. The abstract specification of all the interfaces in the
OpenOffice.org API has the advantage that user and implementer can enter into a contract,
agreeing to adhere to the interface specification. A program that strictly uses the OpenOffice.org
API according to the specification will always work, while an implementer can do whatever he
wants with his objects, as long as he serves the contract.

UNO uses the interface type to describe such aspects of UNO objects. All interface names start
with the letter X to distinguish them from other types. All interface types must inherit the
com.sun.star.uno.XInterface interface for basic object communication, either directly or in the
inheritance hierarchy. XInterface is explained in 3.3.3 Professional UNO - UNO Concepts - Using
UNO Interfaces. The interface types define operations to provide access to the specified UNO
objects.

Interface operations allow access to the data inside an object through dedicated methods (member
functions) which encapsulate the data of the object. Interfaces only consist of operations. The
operations always have a parameter list and a return value, and they may define exceptions for
smart error handling.

The exception concept in the OpenOffice.org API is comparable with the exception concepts
known from Java or C++. All operations can raise com.sun.star.uno.RuntimeExceptions
without explicit specification, but all other exceptions must be specified. UNO exceptions are
explained in the section 3.3.6 Professional UNO - UNO Concepts - Exception Handling below.

Consider the following two examples for interface definitions in UNO IDL notation. UNO IDL
interfaces resemble Java interfaces, and operations look similar to Java method signatures.
However, note the flags in square brackets in the following example:

// base interface for all UNO interfaces

interface XInterface

{
any queryInterface([in] type aType);
[oneway] void acquire() ;
[oneway] void release();

}i
// fragment of the Interface com.sun.star.io.XInputStream

interface XInputStream: com::sun::star::uno::XInterface
{
long readBytes([out] sequence<byte> aData,
[in] long nBytesToRead
raises(com::sun::star::io::NotConnectedException,
com: :sun::star::io::BufferSizeExceededException,
com: :sun::star::io::I0OException) ;

66 OpenOffice.org 1.1 Developer's Guide « January 2004

The [oneway] flag indicates that an operation will be executed asynchronously. For instance, the
method acquire () in the interface com.sun.star.uno.XInterface is defined to be oneway.

There are also parameter flags. Each parameter definition begins with one of the direction flags in,
out, or inout to specify the use of the parameter:

in specifies that the parameter will be used as an input parameter only
out specifies that the parameter will be used as an output parameter only
inout specifies that the parameter will be used as an input and output parameter

These parameter flags do not appear in the API reference. The fact that a parameter is an [out] or
[inout] parameter is explained in the method details.

Interfaces consisting of operations form the basis for service specifications.

Services

We have seen that an interface describes only one aspect of an object. However, it is quite common
that objects have more than one aspect. UNO uses services to specify complete objects which can
have many aspects.

A service comprises a set of interfaces and properties that are needed to support a certain function-
ality. It can include other services as well. Services are abstract specifications which have to be
implemented.

From the perspective of a user of a UNO object, the object offers one or sometimes even several
services described in the API reference. The services are utilized through method calls grouped in
interfaces, and through properties, which are handled through special interfaces as well. Because
the access to the functionality is provided by interfaces only, the implementation is irrelevant to a
user who wants to use a service.

From the perspective of an implementer of a UNO object, services are used to define a functionality
independently of a programming language and without giving instructions about the internal
implementation of the service. Implementing a service means that the component must implement
all specified interfaces and properties. It is possible that a UNO object implements more than one
service. Sometimes it is useful to implement two or more services because they have related func-
tionality or the services support different views to the component.

Mlustration 3.1 shows the relationship between interfaces, services and components. The language
independent specification of a service with several interfaces is used to implement a UNO compo-
nent that fulfills the specification.

Chapter 3 Professional UNO 67

68

Interfaces

Service Specification
<<service>>

b

-

Service Implementation
<<component>>

Hlustration 3.2: Interfaces, services and implementation

The functionality of a TV system with a TV set and a remote control can be described in terms of
service specifications. The interfaces xPower and XChannel described above would be part of a
service specification RemoteControl. The new service TvSet consists of the three interfaces
XPower, XChannel and XStandby to control the power, the channel selection, the additional power
function standby () and a timer () function.

XPower XPower
turnOn () turnOn ()
turnOff () turnOff ()
XStandby Remote
TVSgt g Control XChannel
<<service>> standby () <<services> —O —
setTimer (short sMinutes) select (short sChannel)
next ()
XChannel previous ()
select (short sChannel)

next ()
previous ()

Hlustration 3.3: TV System Specification

Referencing Interfaces

References to interfaces in a service definition mean that an implementation of this service must
offer the specified interfaces. However, optional interfaces are possible. If a service contains an
optional interface, the service may or may not export this interface. If you utilize an optional inter-
face of a UNO object, always check if the result of queryInterface () is equal to null and react
accordingly—otherwise your code will not be compatible with implementations without the
optional interface and you might end up with null pointer exceptions. The following UNO IDL
snippet shows a fragment of the specification for the com.sun.star.text.TextDocument service
in the OpenOffice.org API. Note the flag optional in square brackets, which makes the interfaces
XFootnotesSupplier and XEndnotesSupplier non-mandatory.

OpenOffice.org 1.1 Developer's Guide « January 2004

// com.sun.star.text.TextDocument
service TextDocument

{

interface com::sun::star::text::XTextDocument;

interface com::sun::star::util::XSearchable;

interface com::sun::star::util::XRefreshable;

[optional] interface com::sun::star::text::XFootnotesSupplier;
[optional] interface com::sun::star::text::XEndnotesSupplier;

Including Properties

When the structure of the OpenOffice.org API was founded, the designers discovered that the
objects in an office environment would have huge numbers of qualities that did not appear to be
part of the structure of the objects, rather they seemed to be superficial changes to the underlying
objects. It was also clear that not all qualities would be present in each object of a certain kind.
Therefore, instead of defining a complicated pedigree of optional and non-optional interfaces for
each and every quality, the concept of properties was introduced. Properties are data in an object
that are provided by name over a generic interface for property access, that contains getProper-
tyValue () and setPropertyValue () access methods. The concept of properties has other advan-
tages, and there is more to know about properties. Please refer to 3.3.4 Professional UNO - UNO
Concepts - Properties for further information about properties.

Properties are added to a service in its UNO IDL specification. Aproperty defines a member vari-
able with a specific type that is accessible at the implementing component by a specific name. It is
possible to add further restrictions to a property through additional flags. The following service
references one interface and three optional properties. All known API types can be valid property
types:

// com.sun.star.text.TextContent
service TextContent
{
interface com::sun::star::text::XTextContent;
[optional, property] com::sun::star::text::TextContentAnchorType AnchorType;
[optional, readonly, property] sequence<com::sun::star::text::TextContentAnchorType> AnchorTypes;
[optional, property] com::sun::star::text::WrapTextMode TextWrap;

}i
Possible property flags are:

optional
The property does not have to be supported by the implementing component.

readonly
The value of the property cannot be changed using com.sun.star.beans.XPropertySet.

bound

Changes of property values are broadcast to
com.sun.star.beans.XPropertyChangelListeners, if any were registered through
com.sun.star.beans.XPropertySet

constrained
The property broadcasts an event before its value changes. Listeners have the right to veto the
change.

maybeambiguous
Possibly the property value cannot be determined in some cases, for example, in multiple selec-
tions with different values.

maybedefault
The value might be stored in a style sheet or in the environment instead of the object itself.

Chapter 3 Professional UNO 69

maybevoid

In addition to the range of the property type, the value can be void. It is similar to a null value
in databases.

removable
The property is removable, this is used for dynamic properties.

transient

The property will not be stored if the object is serialized

Referencing other Services

Services can include other services. Such references may be optional. That a service is included by
another service has nothing to do with implementation inheritance, only the specifications are
combined. It is up to the implementer if he inherits or delegates the necessary functionality, or if he
implements it from scratch.

The service com.sun.star.text.Paragraph in the following UNO IDL example includes one
mandatory service com.sun.star.text.TextContent and five optional services. Every pPara-
graph must be a TextContent. It can be a TextTable and it is used to support formatting proper-
ties for paragraphs and characters:

// com.sun.star.text.Paragraph

service Paragraph

{
service com::sun::star::text::TextContent;
[optional] service com::sun::star::text::TextTable;
[optional] service com::sun::star::style::ParagraphProperties;
[optional] service com::sun::star::style::CharacterProperties;
[optional] service com::sun::star::style::CharacterPropertiesAsian;
[optional] service com::sun::star::style::CharacterPropertiesComplex;

Service Implementations in Components

A component is a shared library or Java archive containing implementations of one or more services
in one of the target programming languages supported by UNO. Such a component must meet
basic requirements, mostly different for the different target language, and it must support the
specification of the implemented services. That means all specified interfaces and properties must
be implemented. Components must be registered in the UNO runtime system. After the registra-
tion all implemented services can be used by ordering an instance of the service at the appropriate
service factory and accessing the functionality over interfaces.

Based on our example specifications for a Tvset and a RemoteControl service, a component Remo-
teTVImpl could simulate a remote TV system:

RemoteTV
<<component>>

v v
XPower O— —O XPower

Remote

XStandbyO— «2,53:» Control —O XChannel

<<service>>

Hllustration 3.4: RemoteTVImpl Component

70 OpenOffice.org 1.1 Developer's Guide « January 2004

Such a RemoteTV component could be a jar file or a shared library. It would contain two service
implementations, TVSet and RemoteControl. Once the RemoteTV component is registered with
the global service manager, users can call the factory method of the service manager and ask for a
TVSet or a RemoteControl service. Then they could use their functionality over the interfaces
XPower, XChannel and XStandby. When a new implementation of these services with better
performance or new features is available later on, the old component can be replaced without
breaking existing code, provided that the new features are introduced by adding interfaces.

Structs

A struct type defines several elements in a record. The elements of astruct are UNO IDL types
with a unique name within the struct. Structs have the disadvantage not to encapsulate data, but
the absence of get () and set () methods can help to avoid the overhead of method calls over a
UNO bridge. UNO IDL supports single inheritance for struct types. A derived struct recur-

sively inherits all elements of the parent and its parents.

// com.sun.star.lang.EventObject

/** specifies the base for all event objects and identifies the
source of the event.

*/

struct EventObject

{
/** refers to the object that fired the event.
x/

com: :sun::star::uno::XInterface Source;
}i

// com.sun.star.beans.PropertyChangeEvent
struct PropertyChangeEvent : com::sun::star::lang::EventObject ({
string PropertyName;
boolean Further;
long PropertyHandle;
any Oldvalue;
any NewValue;

Predefined Values

The API offers many predefined values, that are used as method parameters, or returned by
methods. In UNO IDL there are two different data types for predefined values: constants and
enumerations.

const

A const defines a named value of a valid UNO IDL type. The value depends on the specified type
and can be a literal (integer number, floating point number or a character), an identifier of another
const type or an arithmetic term using the operators:+, -, *, /, ~, &, |, %, ~, <<, >>.

Since a wide selection of types and values is possible in a const, const is occasionally used to build
bit vectors which encode combined values.
const short ID = 23;

const boolean ERROR = true;
const double PI = 3.1415;

Usually const definitions are part of a constants group.

Chapter 3 Professional UNO 71

72

constants

The constants type defines a named group of const values. A const in a constants group is
denoted by the group name and the const name. In the UNO IDL example below,
ImageAlign.RIGHT refers to the value 2:

constants ImageAlign {
const short LEFT = 0;
const short TOP = 1;
const short RIGHT = 2;
const short BOTTOM = 3;

enum

An enumtype is equivalent to an enumeration type in C++. It contains an ordered list of one or
more identifiers representing long values of the enum type. By default, the values are numbered
sequentially, beginning with 0 and adding 1 for each new value. If an enum value has been
assigned a value, all following enum values without a predefined value get a value starting from
this assigned value.

// com.sun.star.uno.TypeClass
enum TypeClass {

VOID,

CHAR,

BOOLEAN,

BYTE,

SHORT,

}i

enum Error {
SYSTEM = 10, // value 10

RUNTIME, // value 11
FATAL, // value 12
USER = 30, // value 30
SOFT // value 31

}i

If enums are used during debugging, you should be able to derive the numeric value of an enum
by counting its position in the API reference. However, never use literal numeric values instead of
enums in your programs.

Once an enum type has been specified and published, you can trust that it is not extended later on, for that
would break existing code. However, new const vaues may be added to a constant group.

Sequences

A sequence type is a set of elements of the same type, that has a variable number of elements. In
UNO IDL, the used element always references an existing and known type or another sequence
type. A sequence can occur as a normal type in all other type definitions.

sequence< com::sun::star::uno::XInterface >
sequence< string > getNamesOfIndex (sequence< long > indexes);

Modules

Modules are namespaces, similar to namespaces in C++ or packages in Java. They group services,
interfaces, structs, exceptions, enums, typedefs, constant groups and submodules with related
functional content or behavior. They are utilized to specify coherent blocks in the API, this allows
for a well-structured API. For example, the module com.sun.star.text contains interfaces and
other types for text handling. Some other typical modules are com.sun.star.uno,
com.sun.star.drawing, com.sun.star.sheet and com.sun.star.table. Identifiers inside a

OpenOffice.org 1.1 Developer's Guide « January 2004

module do not clash with identifiers in other modules, therefore it is possible for the same name to
occur more than once. The global index of the API reference shows that this does happen.

Although it may seem that the modules correspond with the various parts of OpenOffice.org, there
is no direct relationship between the API modules and the OpenOffice.org applications Writer,
Calc and Draw. Interfaces from the module com.sun.star.text are used in Calc and Draw.
Modules like com.sun.star.style Or com.sun.star.document provide generic services and
interfaces that are not specific to any one part of OpenOffice.org.

The modules you see in the API reference were defined by nesting UNO IDL types in module
instructions. For example, the module com.sun.star.uno contains the interface xInterface:

module com {
module sun {
module star {
module uno {
interface XInterface {

Exceptions

An exception type indicates an error to the caller of a function. The type of an exception gives a
basic description of the kind of error that occurred. In addition, the UNO IDL exception types
contain elements which allow for an exact specification and a detailed description of the error. The
exception type supports inheritance, this is freqzuently used to define a hierarchy of errors.
Exceptions are only used to raise errors, not as method parameters or return types.

UNO IDL requires that all exceptions must inherit from com.sun.star.uno.Exception. This is a
precondition for the UNO runtime.

// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {

string Message;

Xinterface Context;
}i

// com.sun.star.uno.RuntimeException is the base exception for serious problems
// occuring at runtime, usually programming errors or problems in the runtime environment
exception RuntimeException : com::sun::star::uno::Exception {

}i

// com.sun.star.uno.SecurityException is a more specific RuntimeException

exception SecurityException : com::sun::star::uno::RuntimeException {

i

Exceptions may only be thrown by operations which were specified to do so. In contrast,
com.sun.star.uno.RuntimeExceptions can always occur.

The methods acquire() and release of the UNO base interface com.sun.star.uno.XInterface are an
exception to the above rule. They are the only operations that may not even throw runtime exceptions. But
in Java and C++ programs, you do not use these methods directly, they are handled by the respective
language binding.

Singletons

Singletons are used to specify named objects where exactly one instance can exist in the life of a
UNO component context. A singleton references one service and specifies that the only existing
instance of this service can be reached over the component context using the name of the singleton.
If no instance of the service exists, the component context will instantiate a new one.

Chapter 3 Professional UNO 73

singleton theServiceManager {
service com::sun::star::lang::ServiceManager

}i

3.2.2 Understanding the API Reference

Specification, Implementation and Instances

The API specifications you find in the API reference are abstract. The service descriptions of the
API reference are not about classes that previously exist somewhere. The specifications are first,
then the UNO implementation is created according to the specification. That holds true even for
legacy implementations that had to be adapted to UNO.

Moreover, since a component developer is free to implement services and interfaces as required,
there is not necessarily a one-to-one relationship between a certain service specification and a real
object. The real object can be capable of more things than specified in a service definition. For
example, if you order a service at the factory or receive an object from a getter or getProperty-
value () method, the specified features will be present, but there may be additional features. For
instance, the text document model has a few interfaces which are not included in the specification
for the com.sun.star.text.TextDocument.

Because of the optional interfaces and properties, it is impossible to comprehend fully from the
API reference what a given instance of an object in OpenOffice.org is capable of. The optional
interfaces and properties are correct for an abstract specification, but it means that when you leave
the scope of mandatory interfaces and properties, the reference only defines how things are
allowed to work, not how they actually work.

Another important point is the fact that there are several entry points where service implementa-
tions are actually available. You cannot instantiate every service that can be found in the API refer
ence by means of the global service manager. The reasons are:

Some services need a certain context. For instance, it does not make sense to instantiate a
com.sun.star.text.TextFrame independently from an existing text document or any other
surrounding where it could be of any use. Such services are usually not created by the global
service manager, but by document factories which have the necessary knowledge to create
objects that work in a certain surrounding. That does not mean you will never be able to get a
text frame from the global service manager to insert. So, if you wish to use a service in the API
reference, ask yourself where you can get an instance that supports this service, and consider
the context in which you want to use it. If the context is a document, it is quite possible that the
document factory will be able to create the object.

Services are not only used to specify possible class implementations. Sometimes they are used
to specify nothing but groups of properties that can be referenced by other service implementa-
tions. That is, there are services with no interfaces at all. You cannot create such a service at the
service manager.

A few services need special treatment. For example, you cannot ask the service manager to
create an instance of a com.sun.star.text.TextDocument. You must load it using the method
loadComponentFromUrl () at the desktop's com.sun.star.frame.XComponentLoader inter-
face.

Consequently, it is sometimes confusing to look up a needed functionality in the API reference, for
you need a basic understanding how a functionality works, which services are involved, where
they are available etc., before you can really utilize the reference. This manual aims at giving you

74 OpenOffice.org 1.1 Developer's Guide « January 2004

this understanding about the OpenOffice.org document models, the database integration and the
application itself.

Object Composition

Interfaces only support single inheritance and they are all based on
com.sun.star.uno.XInterface. In the API reference, this is mirrored in the Base Hierarchy section
of any interface specification. If you look up an interface, always check the base hierarchy section
to understand the full range of supported methods. For instance, if you look up
com.sun.star.text.XText, you see two methods, insertTextContent () and removeTextCon-
tent (), but there are nine more methods provided by the inherited interfaces. The same applies to
exceptions and sometimes also to structs, which support single inheritance as well.

The service specifications in the API reference can contain a section Included Services, which is
similar to the above in that a single included service might encompass a whole world of services.
However, the fact that a service is included has nothing to do with class inheritance. In which
manner a service implementation technically includes other services, by inheriting from base
implementations, by aggregation, some other kind of delegation or simply by reimplementing
everything is by no means defined. And it is uninteresting for an API user — he can absolutely rely
on the availability of the described functionality, but he must never rely on inner details of the
implementation, which classes provide the functionality, where they inherit from and what they
delegate to other classes.

3.3 UNO Concepts

Now that you have an advanced understanding of OpenOffice.org API concepts and you under-
stand the specification of UNO objects , we are ready to explore UNO, i.e. to see how UNO objects
connect and communicate with each other.

3.3.1 UNO Interprocess Connections

UNO objects in different environments connect via the interprocess bridge. You can execute calls
on UNO object instances, that are located in a different process. This is done by converting the
method name and the arguments into a byte stream representation, and sending this package to
the remote process, for example, through a socket connection. Most of the examples in this manual
use the interprocess bridge to communicate with the OpenOffice.org.

This section deals with the creation of UNO interprocess connections using the UNO API.

Starting OpenOffice.org in Listening Mode

Most examples in this developers guide connect to a running OpenOffice.org and perform API
calls, which are then executed in OpenOffice.org. By default, the office does not listen on a
resource for security reasons. This makes it necessary to make OpenOffice.org listen on an inter-
process connection resource, for example, a socket. Currently this can be done in two ways:

Start the office with an additional parameter:
soffice -accept=socket,host=0,port=2083;urp;
This string has to be quoted on unix shells, because the semicolon ';' is interpreted by the shells

Chapter 3 Professional UNO 75

76

Place the same string without '-accept='into a configuration file. You can edit the file

<OfficePath>/share/registry/data/org/openoffice/Setup.xcu

and replace the tag

<prop oor:name="ooSetupConnectionURL"/>

with

<prop oor:name="ooSetupConnectionURL">
<value>socket,host=localhost,port=2083;urp; StarOffice.ServiceManager
</value>

</prop>

If the tag is not present, add it within the tag

<node oor:name="Office"/>

This change affects the whole installation. If you want to configure it for a certain user in a

network installation, add the same tag within the node <node ocor:name="0ffice/> to the file

Setup.xcu in the user dependent configuration directory

<OfficePath>/user/registry/data/org/openolffice/

The various parts of the connection URL will be discussed in the next section.

Importing a UNO Object

The most common use case of interprocess connections is to import a reference to a UNO object
from an exporting server. For instance, most of the Java examples described in this manual retrieve
a reference to the OpenOffice.org ComponentContext. The correct way to do this is using the
com.sun.star.bridge.UnoUrlResolver service. Its main interface
com.sun.star.bridge.XUnoUrlResolver is defined in the following way:

interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
/** resolves an object on the UNO URL */
com: :sun::star::uno: :XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection::NoConnectException,
com: :sun: :star::connection: :ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;

}i

The string passed to the resolve () method is called a UNO URL. It must have the following
format:

UNO-Url

uno:connection-type,params;protocol-name,params;0bjectName

|
I I ln IV

An example URL could be uno:socket,host=Ilocalhost,port=2083; urp, StarOffice.ServiceManager. The
parts of this URL are:

I. The URL schema uno:. This identifies the URL as UNO URL and distinguishes it from others,
such as http: or ftp: URLs.

II. A string which characterizes the type of connection to be used to access the other process. Option-
ally, directly after this string, a comma separated list of name-value pairs can follow, where
name and value are separated by a '='. The currently supported connection types are described
in 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.
The connection type specifies the transport mechanism used to transfer a byte stream, for
example, TCP/IP sockets or named pipes.

OpenOffice.org 1.1 Developer's Guide « January 2004

III. A string which characterizes the type of protocolused to communicate over the established byte
stream connection. The string can be followed by a comma separated list of name-value pairs,
which can be used to customize the protocol to specific needs. The suggested protocol is urp
(UNO Remote Protocol). Some useful parameters are explained below. Refer to the document
named UNO-URL at udk.openoffice.org. for the complete specification.

IV. A process must explicitly export a certain object by a distinct name. It is not possible to access
an arbitrary UNO object (which would be possible with IOR in CORBA, for instance).

The following example demonstrates how to import an object using the UnoUrlResolver:
(ProfUNO/InterprocessConn/UrlResolver.java):

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

// create a URL resolver
Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext) ;

// query for the XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver =
(XUnoUrlResolver) UnoRuntime.queryInterface (XUnoUrlResolver.class, urlResolver);

// Import the object
Object rInitialObject = xUrlResolver.resolve (
“uno:socket,host=localhost, port=2083;urp;StarOffice.ServiceManager”) ;

// XComponentContext

if (null != rInitialObject) {
System.out.println("initial object successfully retrieved");
I elser |

System.out.println("given initial-object name unknown at server side");

}
The usage of the UnoUrlResolver has certain disadvantages. You cannot:
be notified when the bridge terminates for whatever reasons
- close the underlying interprocess connection
. offer a local object as an initial object to the remote process

These issues are addressed by the underlying API, which is explained below. in 3.3.1 Professional
UNO - UNO Concepts - UNO Interprocess Connections - Opening a Connection.

Characteristics of the Interprocess Bridge

The whole bridge is threadsafeand allows multiple threads to execute remote calls. The dispatcher
thread inside the bridge cannot block because it never executes calls. It instead passes the requests
to worker threads.

- A synchronous call sends the request through the connection and lets the requesting thread wait
for the reply. All calls that have a return value, an out parameter, or throw an exceptions other
than a RuntimeException must be synchronous.

An asynchronous (or oneway) call sends the request through the connection and immediately
returns without waiting for a reply. It is currently specified at the IDL interface if a request is
synchronous or asynchronous by using the [oneway] modifier.

For synchronous requests, thread identity is guaranteed. When process A calls process B, and
process B calls process A, the same thread waiting in process A will take over the new request.
This avoids deadlocks when the same mutex is locked again. For asynchronous requests, this is not
possible because there is no thread waiting in process A. Such requests are executed in a new

Chapter 3 Professional UNO 77

78

thread. The series of calls between two processes is guaranteed. If two asynchronous requests from
process A are sent to process B, the second request waits until the first request is finished.

The remote bridge can be started in a mode that disables the oneway feature and thus executes
every call as a synchronous call. To do this, the protocol part of the UNO URL on the server and
client must be extended by ', Negotiate=0, forceSynchronous=1'. For example:

soffice -accept=socket,host=0,port=2083;urp,Negotiate=0, forceSynchronous=1;
for starting the office and

"uno:socket,host=localhost,port=2083;urp,Negotiate=0, forceSynchronous=1;StarOffic
e.ServiceManager"

as UNO URL for connecting to it. This can be useful to avoid deadlocks within OpenOffice.org.

Do not activate this mode unless you experience such problems.

Opening a Connection

The method to import a UNO object using the UnoUrlResolver has drawbacks as described in the
previous chapter. The layer below the UnoUrlResolver offers full flexibility in interprocess
connection handling.

UNO interprocess bridges are established on the com.sun.star.connection.XConnection inter-
face, which encapsulates a reliable bidirectional byte stream connection (such as a TCP/IP connec
tion).

interface XConnection: com::sun::star::uno::XInterface
{
long read([out] sequence < byte > aReadBytes , [in] long nBytesToRead
raises(com::sun::star::io::IOException);
void write([in] sequence < byte > aData
raises(com::sun::star::io::IOException);
void flush() raises(com::sun::star::io::IOException)
void close() raises(com::sun::star::io::IOException)
string getDescription();

;
;
}i

There are different mechanisms to establish an interprocess connection. Most of these mechanisms
follow a similar pattern. One process listens on a resource and waits for one or more processes to
connect to this resource.

This pattern has been abstracted by the services com.sun.star.connection.Acceptor that
exports the com.sun.star.connection.xXAcceptor interface and
com.sun.star.connection.Connector that exports the com.sun.star.connection.XConnector
interface.

interface XAcceptor: com::sun::star::uno::XInterface
{
XConnection accept([in] string sConnectionDescription
raises(AlreadyAcceptingException,
ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;

void stopAccepting() ;
}i

interface XConnector: com::sun::star::uno::XInterface
{
XConnection connect([in] string sConnectionDescription)
raises (NoConnectException,ConnectionSetupException) ;

}i

The acceptor service is used in the listening process while the connector service is used in the
actively connecting service. The methods accept () and connect () get the connection string as a
parameter. This is the connection part of the UNO URL (between uno: and ;urp).

OpenOffice.org 1.1 Developer's Guide « January 2004

The connection string consists of a connection type followed by a comma separated list of name-
value pairs. The following table shows the connection types that are supported by default.

Connection
type
socket Reliable TCP/IP socket connection
Parameter Description
host Hostname or IP number of the resource to listen on/connect. May be
localhost. In an acceptor string, this may be 0 (‘host=0'), which means,
that it accepts on all available network interfaces.
port TCP/IP port number to listen on/connect to.
tcpNoDelay Corresponds to the socket option tcpNoDelay. For a UNO connection,
this parameter should be set to 1 (this is NOT the default —it must be
added explicitly). If the default is used (0), it may come to 200 ms
delays at certain call combinations.
pipe A named pipe (uses shared memory). This type of interprocess connection is marginally

faster than socket connections and works only if both processes are located on the same
machine. It does not work on Java by default, because Java does not support named pipes

directly
Parameter Description
name Name of the named pipe. Can only accept one process on name on one

machine at a time.

You can add more kinds of interprocess connections by implementing connector and acceptor services, and
choosing the service name by the scheme com.sun.star.connection.Connector.<connection-
type>, where <connection-type> is the name of the new connection type.

If you implemented the service com.sun.star.connection.Connector.mytype, use the UnoUrlRe-
solver with the URL 'uno:mytype,paraml=foo;urp;StarOffice.ServiceManager' to establish the interprocess
connection to the office.

Chapter 3 Professional UNO 79

80

Creating the Bridge

XAcceptor XConnector
Acceptor _— Connector _

accept connect

stopAccepting stopAccepting

accept () connect () :

- - ———— - - =]

<

. XConnection Instance XinstanceProvider
Connection _O —_— Provider -
write () XInterface getinstance ()
read ()
close () T
|
|
| getInstance ()
|
Q \4
XBridge
Xlnterface getInstance () Stub
Bridge (for a local
XComponent object)
addEventListener ()
| removeEventListener ()
: : dispose ()
: : getinstance ()
: createBridge () v
. XBridgeFactory Proxy
FBar(I:g(?e _ (for a 'remote
b createBridge object)
(name, protocol,
connection, instanceProv)

getBridge (name)

Hlustration 3.5: The interaction of services that are needed to initiate a UNO interprocess bridge. The
interfaces have been simplified.

The xConnection instance can now be used to establish a UNO interprocess bridge on top of the
connection, regardless if the connection was established with aConnector or Acceptor service (or
another method). To do this, you must instantiate the service
com.sun.star.bridge.BridgeFactory. It supports the com.sun.star.bridge.XBridgeFactory
interface.

interface XBridgeFactory: com::sun::star::uno::XInterface
{
XBridge createBridge (
[in] string sName,
[in] string sProtocol ,
[in] com::sun::star::connection::XConnection aConnection ,
[in] XInstanceProvider anInstanceProvider)
raises (BridgeExistsException , com::sun::star::lang::IllegalArgumentException);
XBridge getBridge([in] string sName);
sequence < XBridge > getExistingBridges();
}i

The BridgeFactory service administrates all UNO interprocess connections. The createBridge ()
method creates a new bridge:

OpenOffice.org 1.1 Developer's Guide « January 2004

You can give the bridge a distinct name with the sName argument. Later the bridge can be
retrieved by using the getBridge () method with this name. This allows two independent code
pieces to share the same interprocess bridge. If you call createBridge () with the name of an
already working interprocess bridge, a BridgeExistsException is thrown. When you pass an
empty string, you always create a new anonymous bridge, which can never be retrieved by
getBridge () and which never throws a BridgeExistsException.

The second parameter specifies the protocol to be used on the connection. Currently, only the
'urp' protocol is supported. In the UNO URL, this string is separated by two ';'. The urp string
may be followed by a comma separated list of name-value pairs describing properties for the
bridge protocol. The urp specification can be found on udk.openoffice.org.

The third parameter is the xConnection interface as it was retrieved by Connector/Acceptor
service.

The fourth parameter is a UNO object, which supports the
com.sun.star.bridge.XInstanceProvider interface. This parameter may be a null reference
if you do not want to export a local object to the remote process.

interface XInstanceProvider: com::sun::star::uno::XInterface
{
com: :sun::star::uno::XInterface getInstance([in] string sInstanceName)
raises (com::sun::star::container::NoSuchElementException);

}i

The BridgeFactory returns a com.sun.star.bridge.XBridge interface.

interface XBridge: com::sun::star::uno::XInterface
{

XInterface getlInstance([in] string sInstanceName) ;

string getName () ;

string getDescription () ;
+i
The xBridge.getInstance () method retrieves an initial object from the remote counterpart. The
local xBridge.getInstance () call arrives in the remote process as an
XInstanceProvider.getInstance () call. The object returned can be controlled by the string
sInstanceName. It completely depends on the implementation of XInstanceProvider, which

object it returns.

The xBridge interface can be queried for a com.sun.star.lang.XComponent interface, that adds a
com.sun.star.lang.XEventListener to the bridge. This listener will be terminated when the
underlying connection closes (see above). You can also calldispose () on the XComponent interface
explicitly, which closes the underlying connection and initiates the bridge shutdown procedure.

Closing a Connection
The closure of an interprocess connection can occur for the following reasons:

The bridge is not used anymore. The interprocess bridge will close the connection when all the
proxies to remote objects and all stubs to local objects have been released. This is the normal
way for a remote bridge to destroy itself. The user of the interprocess bridge does not need to
close the interprocess connection directly—it is done automatically. When one of the communi-
cating processes is implemented in Java, the closure of a bridge is delayed to that point in time
when the VM finalizes the last proxies/stubs. Therefore it is unspecified when the interprocess
bridge will be closed.

The interprocess bridge is directly disposed by calling its dispose () method.
The remote counterpart process crashes.

The connection fails. For example, failure may be due to a dialup internet connection going
down.

Chapter 3 Professional UNO 81

82

- An error in marshalling/unmarshalling occurs due to a bug in the interprocess bridge imple-
mentation, or an IDL type is not available in one of the processes.

Except for the first reason, all other connection closures initiate an interprocess bridge shutdown
procedure. All pending synchronous requests abort with a
com.sun.star.lang.DisposedException, which is derived from the
com.sun.star.uno.RuntimeException. Every call that is initiated on a disposed proxy throws a
DisposedException. After all threads have left the bridge (there may be a synchronous call from
the former remote counterpart in the process), the bridge explicitly releases all stubs to the original
objects in the local process, which were previously held by the former remote counterpart. The
bridge then notifies all registered listeners about the disposed state using
com.sun.star.lang.XEventListener. The example code for a connection-aware client below
shows how to use this mechanism. The bridge itself is destroyed, after the last proxy has been
released.

Unfortunately, the various listed error conditions are not distinguishable.

Example: A Connection Aware Client

The following example shows an advanced client which can be informed about the status of the
remote bridge. A complete example for a simple client is given in the chapter 2 First Steps.

The following Java example opens a small awt window containing the buttons new writer and
new calc that opens a new document and a status label. It connects to a running office when a
button is clicked for the first time. Therefore it uses the connector/bridge factory combination, and
registers itself as an event listener at the interprocess bridge.

When the office is terminated, the disposing event is terminated, and the Java program sets the text
in the status label to 'disconnected' and clears the office desktop reference. The next time a button
is pressed, the program knows that it has to re-establish the connection.

The method getComponentLoader () retrieves the XComponentLoader reference on demand:

(ProfUNO/InterprocessConn/ConnectionAwareClient.java)
XComponentLoader _officeComponentLoader = null;

// local component context
XComponentContext _ctx;

protected com.sun.star.frame.XComponentLoader getComponentLoader ()
throws com.sun.star.uno.Exception {

XComponentLoader officeComponentLoader = officeComponentLoader;
if (officeComponentlLoader == null) {
// instantiate connector service
Object x = ctx.getServiceManager ().createInstanceWithContext (
"com.sun.star.connection.Connector", ctx);
XConnector xConnector = (XConnector) UnoRuntime.queryInterface (XConnector.class, Xx);

// helper function to parse the UNO URL into a string array
String a[] = parseUnoUrl(_url);
if (null == a) {
throw new com.sun.star.uno.Exception ("Couldn't parse UNO URL "+ _url);

}

// connect using the connection string part of the UNO URL only.
XConnection connection = xConnector.connect (a[0]);

X = _ctx.getServiceManager().createlnstanceWithContext(
"com.sun.star.bridge.BridgeFactory", _ctx);
XBridgeFactory xBridgeFactory = (XBridgeFactory) UnoRuntime.queryInterface (

XBridgeFactory.class , x);

// create a nameless bridge with no instance provider
// using the middle part of the UNO URL
XBridge bridge = xBridgeFactory.createBridge("" , a[l] , connection , null);

OpenOffice.org 1.1 Developer's Guide « January 2004

// query for the XComponent interface and add this as event listener

XComponent xComponent = (XComponent) UnoRuntime.queryInterface (
XComponent.class, bridge);

xComponent .addEventListener (this) ;

// get the remote instance
x = bridge.getInstance(al[2]);

// Did the remote server export this object ?
if (null == x) {
throw new com.sun.star.uno.Exception (
"Server didn't provide an instance for" + a[2], null);

}

// Query the initial object for its main factory interface
XMultiComponentFactory xOfficeMultiComponentFactory = (XMultiComponentFactory)
UnoRuntime.queryInterface (XMultiComponentFactory.class, x);

// retrieve the component context (it's not yet exported from the office)
// Query for the XPropertySet interface.
XPropertySet xProperySet = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, xOfficeMultiComponentFactory) ;

// Get the default context from the office server.
Object oDefaultContext =
xProperySet.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext =
(XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, oDefaultContext);

// now create the desktop service

// NOTE: use the office component context here !

Object oDesktop = xOfficeMultiComponentFactory.createInstanceWithContext (
"com.sun.star.frame.Desktop", xOfficeComponentContext) ;

officeComponentLoader = (XComponentLoader)
UnoRuntime.queryInterface (XComponentLoader.class, oDesktop);

if (officeComponentLoader == null) {
throw new com.sun.star.uno.Exception (
"Couldn't instantiate com.sun.star.frame.Desktop" , null);
}
_officeComponentLoader = officeComponentLoader;
}
return officeComponentLoader;

}

This is the button event handler:

public void actionPerformed (ActionEvent event) ({
try {

String sUrl;

if (event.getSource() == btnWriter) {
sUrl = "private:factory/swriter";

b elee {
sUrl = "private:factory/scalc";

}

getComponentLoader () . loadComponentFromURL (
sUrl, " blank", 0,new com.sun.star.beans.PropertyValue[0])

_txtLabel.setText ("connected") ;

} catch (com.sun.star.connection.NoConnectException exc) {
_txtLabel.setText (exc.getMessage());

} catch (com.sun.star.uno.Exception exc) {
_txtLabel.setText (exc.getMessage()) ;
exc.printStackTrace () ;
throw new java.lang.RuntimeException (exc.getMessage()) ;

}

And the disposing handler clears the officeComponentLoader reference:

public void disposing(com.sun.star.lang.EventObject event) ({
// remote bridge has gone down, because the office crashed or was terminated.
_officeComponentLoader = null;
_txtLabel.setText ("disconnected") ;

Chapter 3 Professional UNO

3.3.2 Service Manager and Component Context

This chapter discusses the root object for connections to OpenOffice.org (and to any UNO applica-
tion) — the service manager. The root object serves as the entry point for every UNO application
and is passed to every UNO component during instantiation.

Two different concepts to get the root object currently exist. StarOffice6.0 and OpenOffice.orgl.0
use the previous concept. Newer versions or product patches use the the newer concept and
provide the previous concept for compatibility issues only. First we will look at the previous
concept, the service manager as it is used in the main parts of the underlying OpenOffice.org imple-
mentation of this guide. Second, we will introduce the component context—which is the newer
concept and explain the migration path.

Service Manager

The com.sun.star.lang.ServiceManager is the main facfory in every UNO application. It instan-
tiates services by their service name, to enumerate all implementations of a certain service, and to
add or remove factories for a certain service at runtime. The service manager is passed to every
UNO component during instantiation.

XMultiServiceFactory Interface

The main interface of the service manager is the com.sun.star.lang.xXMultiServiceFactory
interface. It offers three methods: createInstance (), createInstanceWithArguments () and
getAvailableServiceNames ().

interface XMultiServiceFactory: com::sun::star::uno::XInterface

{
com: :sun::star::uno::XInterface createlnstance([in] string aServiceSpecifier
raises(com::sun::star::uno::Exception);

com: :sun::star::uno::XInterface createInstanceWithArguments (
[in] string ServiceSpecifier,
[in] sequence<any> Arguments)
raises(com::sun::star::uno::Exception);

sequence<string> getAvailableServiceNames () ;

createInstance () returns a default constructed service instance. The returned service is guar-
anteed to support at least all interfaces, which were specified for the requested servicename.
The returned XInterface reference can now be queried for the interfaces specified at the
service description.

When using the service name, the caller does not have any influence on which concrete imple-
mentation is instantiated. If multiple implementations for a service exist, the service manager is
free to decide which one to employ. This in general does not make a difference to the caller
because every implementation does fulfill the service contract. Performance or other details
may make a difference. So it is also possible to pass the implementation name instead of the
service name, but it is not advised to do so as the implementation name may change.

In case the service manager does not provide an implementation for a request, a null reference
is returned, so it is mandatory to check. Every UNO exception may be thrown during instantia-
tion. Some may be described in the specification of the service that is to be instantiated, for
instance, because of a misconfiguration of the concrete implementation. Another reason may be
the lack of a certain bridge, for instance the Java-C++ bridge, in case a Java component shall be
instantiated from C++ code.

createInstanceWithArguments () instantiates the service with additional parameters. A
service signals that it expects parameters during instantiation by supporting the

84 OpenOffice.org 1.1 Developer's Guide « January 2004

com.sun.star.lang.XInitialization interface. The service definition should describe the
meaning of each element of the sequence. There maybe services which can only be instantiated
with parameters.

- getAvailableServiceNames () returns every servicename the service manager does support.

XContentEnumerationAccess Interface

The com.sun.star.container.XContentEnumerationAccess interface allows the creation of an
enumeration of all implementations of a concrete servicename.

interface XContentEnumerationAccess: com::sun::star::uno::XInterface

{

com: :sun::star::container::XEnumeration createContentEnumeration([in] string aServiceName) ;
sequence<string> getAvailableServiceNames () ;
Yi

The createContentEnumeration () method returns a com.sun.star.container.XEnumeration
interface. Note that it may return an empty reference in case the enumeration is empty.

interface XEnumeration: com::sun::star::uno::XInterface
{

boolean hasMoreElements () ;

any nextElement ()
raises(com::sun::star::container::NoSuchElementException,
com: :sun::star::lang: :WrappedTargetException) ;

}i

In the above case, the returned any of the method Xenumeration.nextElement () contains a
com.sun.star.lang.XSingleServiceFactory interface for each implementation of this specific
service. You can, for instance, iterate over all implementations of a certain service and check each
one for additional implemented services. The XSingleServiceFactory interface provides such a
method. With this method, you can instantiate a feature rich implementation of a service.

XSet Interface

The com.sun.star.container.XSet interface allows the insertion or removal of
com.sun.star.lang.XSingleServiceFactory Or
com.sun.star.lang.XSingleComponentFactory implementations to the service manager at
runtime without making the changes permanent. When the office application terminates, all the
changes are lost. The object must also support the com.sun.star.lang.XServicelInfo interface
that provides information about the implementation name and supported services of the compo-
nent implementation.

This feature may be of particular interest during the development phase. For instance, you can
connect to a running office, insert a new factory into the service manager and directly instantiate
the new service without having it registered before.

The chapter 4.9.6 Writing UNO Components - Deployment Options for Components - Special Service
Manager Configurations shows an example that demonstrates how a factory is inserted into the
service manager.

Component Context

The service manager was described above as the main factory that is passed to every new instanti-
ated component. Often a component needs more functionality or information that must be
exchangeable after deployment of an application. In this context, the service manager approach is
limited.

Chapter 3 Professional UNO 85

86

Therefore, the concept of the component context was created. In future, it will be the central object in
every UNO application. It is basically a read-only container offering named values. One of the
named values is the service manager. The component context is passed to a component during its
instantiation. This can be understood as an environment where components live (the relationship is
similar to shell environment variables and an executable program).

XComponentContext
ComponentContext
getValueByName ()
getServiceManager ()
_other Service XMultiComponentFactory
Singletons Manager
<<singleton>> <<singleton>> createlnstanceWithContext ()

Hlustration 3.6: ComponentContext and the ServiceManager

ComponentContext API

The component context only supports the com.sun.star.uno.XComponentContext interface.

// module com::sun::star::uno
interface XComponentContext : XInterface

{

any getValueByName ([in] string Name) ;

com: :sun::star::lang: :XMultiComponentFactory getServiceManager () ;
}i
The getvalueByName () method returns a named value. The getServiceManager () isa conven-
ient way to retrieve the value named /singleton/com.sun.star.lang.theServiceManager. It
returns the ServiceManager singleton, because most components need to access the service

manager. The component context offers at least three kinds of named values:

Singletons (/singletons/...)
The singleton concept was introduced in 3.2.1 Professional UNO - API Concepts - Data Types. In
OpenOffice.org 1.0.2 there is only the ServiceManager singleton. From OpenOffice.org 1.1.0, a
singleton /singletons/com.sun.star.util.theMacroExpander has been added, which can
be used to expand macros in configuration files. Other possible singletons can be found in the
IDL reference.

Implementation properties (not yet defined)
These properties customize a certain implementation and are specified in the module descrip-
tion of each component. A module description is an xml-based description of a module (DLL or
jar file) which contains the formal description of one or more components.

Service properties (not yet defined)
These properties can customize a certain service independent from the implementation and are
specified in the IDL specification of a service.
Note that service context properties are different from service properties. Service context prop-
erties are not subject to change and are the same for every instance of the service that shares the
same component context. Service properties are different for each instance and can be changed
at runtime through the xPropertyset interface.

OpenOffice.org 1.1 Developer's Guide « January 2004

Note, that in the scheme above, the ComponentContext has a reference to the service manager, but
not conversely.

Besides the interfaces discussed above, the ServiceManager supports the
com.sun.star.lang.xXMultiComponentFactory interface.

interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
com: :sun::star::uno: :XInterface createInstanceWithContext (
[in] string aServiceSpecifier,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

com: :sun::star::uno: :XInterface createlInstanceWithArgumentsAndContext (
[in] string ServiceSpecifier,
[in] sequence<any> Arguments,
[in] com::sun::star::uno::XComponentContext Context)
raises (com::sun::star::uno::Exception);

sequence< string > getAvailableServiceNames () ;
}i
It replaces the xMultiServiceFactory interface. It has an additional XComponentContext
parameter for the two object creation methods. This parameter enables the caller to define the
component context that the new instance of the component receives. Most components use their
initial component context to instantiate new components. This allows for context propagation.

createlnstanceWithContext
(C1)

createlnstanceWithContext
(C1)

Instance B
Ctx C1

getsContext ()
> (1

Instance D
Ctx C1

creates a new Context
(ontop of C1)
> (2

Instance A
Ctx C2

createlnstanceWithContext
(C2)

createlnstanceWithContext
(C2)

Hlustration 3.7: Context propagation.

The illustration above shows the context propagation. A user might want a special component to
get a customized context. Therefore, the user creates a new context by simply wrapping an existing
one. The user overrides the desired values and delegates the properties that he is not interested
into the original C1 context.The user defines which context Instance A and B receive. Instance A
and B propagate their context to every new object that they create. Thus, the user has established
two instance trees, the first tree completely uses the context Ctx C1, while the second tree uses Ctx
C2.

Chapter 3 Professional UNO 87

88

Availability

The final API for the component context is available in StarOffice 6.0 and OpenOffice 1.0. Use this
API instead of the API explained in the service manager section. Currently the component context
does not have a persistent storage, so named values can not be added to the context of a deployed
OpenOffice.org. Presently, there is no additional benefit from the new API until there is a future
release.

Compatibility Issues and Migration Path

XComponentContext
ComponentContext O P

getValueByName ()
getServiceManager ()

ServiceManager —O XMultiServiceFactroy

DefaultContext —O XMultiComponentFactroy

Hllustration 3.8Compromise between service-manger-only und component context
concept

As discussed previously, both concepts are currently used within the office. The ServiceManager
supports the interfaces com.sun.star.lang.XMultiServiceFactory and
com.sun.star.lang.XMultiComponentFactory. Calls to the XxMultiServiceFactory interface
are delegated to the XMultiComponentFactory interface. The service manager uses its own XCom-
ponentContext reference to fill the missing parameter. The component context of the Service-
Manager can be retrieved through the xPropertySet interface as 'DefaultContext'.

// Query for the XPropertySet interface.
// Note xOfficeServiceManager is the object retrieved by the
// UNO URL resolver
XPropertySet xPropertySet = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, xOfficeServiceManager) ;

// Get the default context from the office server.
Object oDefaultContext = xpropertysetMultiComponentFactory.getPropertyValue ("DefaultContext") ;

// Query for the interface XComponentContext.
xComponentContext = (XComponentContext) UnoRuntime.queryInterface (

XComponentContext.class, objectDefaultContext);
This solution allows the use of the same service manager instance, regardless if it uses the old or
new style API In future, the whole OpenOffice.org code will only use the new API. However, the
old API will still remain to ensure compatibility.

The described compromise has a drawback. The service manager now knows the component context, that
was not necessary in the original design. Thus, every component that uses the old API (plaincreateIn-
stance ()) breaks the context propagation (see Illustration 3.4). Therefore, it is recommended to use the
new API in every new piece of code that is written.

3.3.3 Using UNO Interfaces

Every UNO object must inherit from the interface com.sun.star.uno.XInterface. Before using
an object, know how to use it and how long it will function. By prescribing xInterface to be the

OpenOffice.org 1.1 Developer's Guide « January 2004

base interface for each and every UNO interface, UNO lays the groundwork for object communica-
tion.
// module com::sun::star::uno

interface XInterface

{

any queryInterface([in] type aType);

[oneway] void acquire();

[oneway] void release() ;
bi
The methods acquire () and release () handle the lifetime of the UNO object by reference
counting. Detailed information about Reference counting is discussed in chapter 3.3.7 Professional
UNO - UNO Concepts - Lifetime of UNO Objects. All current language bindings take care ofacquire

() and release () internally whenever there is a reference to a UNO object.

The queryInterface () method obtains other interfaces exported by the object. The caller asks the
implementation of the object if it supports the interface specified by the type argument. The type
parameter is an UNO IDL base type, and generally stores the name of a type and its
com.sun.star.uno.TypeClass. The call may return with an interface reference of the requested
type or with a void any. In C++ or Java simply test if the result is not equal null.

Unknowingly, we encountered XInterface when the service manager was asked to create a
service instance:

XComponentContext xLocalContext =
com.sun.star.comp.helper.Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xLocalContext.getServiceManager () ;

// create a urlresolver
Object urlResolver = xLocalServiceManager.createInstanceWithContext (
"com.sun.star.bridge.UnoUrlResolver", xLocalContext) ;

The IDL specification of XmultiComponentFactory shows:

// module com::sun::star::lang
interface XMultiComponentFactory : com::sun::star::uno::XInterface
{
com: :sun::star::uno: :XInterface createInstanceWithContext (
[in] string aServiceSpecifier,
[in] com::sun::star::uno: :XComponentContext Context)
raises (com::sun::star::uno::Exception) ;

}

The above code shows that createInstanceWithContext () provides an instance of the given
service, but it only returns a com.sun.star.uno.xInterface. This is mapped to java.lang.Object
by the Java UNO binding afterwards.

In order to access a service, you need to know which interfaces the service exports. This informa-
tion is available in the IDL reference. For instance, for the
com.sun.star.bridge.UnoUrlResolver service, you learn:

// module com::sun::star::bridge
service UnoUrlResolver
{
interface com::sun::star::bridge::XUnoUrlResolver;
}i

This means the service you ordered at the service manager must support
com.sun.star.bridge.XUnoUrlResolver. Next query the returned object for this interface:

// query urlResolver for its com.sun.star.bridge.XUnoUrlResolver interface
XUnoUrlResolver xUrlResolver = (XUnoUrlResolver)
UnoRuntime.queryInterface (UnoUrlResolver.class, urlResolver);

// test if the interface was available
if (null == xUrlResolver) ({
throw new java.lang.Exception (
“Error: UrlResolver service does not export XUnoUrlResolver interface”);
}
// use the interface
Object remoteObject = xUrlResolver.resolve (

Chapter 3 Professional UNO 89

90

“uno:socket,host=0,port=2083;urp; StarOffice.ServiceManager”) ;

The object decides whether or not it returns the interface. You have encountered a bug if the object
does not return an interface that is specified to be mandatory in a service. When the interface refer
ence is retrieved, invoke a call on the reference according to the interface specification. You can
follow this strategy with every service you instantiate at a service manager, leading to success.

With this method, you may not only get UNO objects through the service manager, but also by
normal interface calls:

// Module com::sun::star::text
interface XTextRange: com::sun::star::uno::XInterface
{

XText getText ();

XTextRange getStart();

}i

The returned interface types are specified in the operations, so that calls can be invoked directly on
the returned interface. Often, an object implementing multiple interfaces are returned, instead of
an object implementing one certain interface.

You can then query the returned object for the other interfaces specified in the given service, here
com.sun.star.drawing.Text.

UNO has a number of generic interfaces. For example, the interface
com.sun.star.frame.XComponentLoader:

// module com::sun::star::frame
interface XComponentLoader: com::sun::star::uno::XInterface
{
com: :sun::star::lang: :XComponent loadComponentFromURL([in] string aURL,
[in] string aTargetFrameName,
[in] long nSearchFlags,
[in] sequence<com::sun::star::beans::PropertyValue> aArgs)
raises(com::sun::star::io::IOException,
com: :sun::star::lang::IllegalArgumentException);
bi
It becomes difficult to find which interfaces are supported beside XComponent, because the kind of

returned document (text, calc, draw, etc.) depends on the incoming URL.
These dependencies are described in the appropriate chapters of this manual.

Tools such as the InstanceInspector component is a quick method to find out which interfaces a
certain object supports. The InstanceInspector component comes with the OpenOffice.org SDK
that allows the inspection of a certain object at runtime. Do not rely on implementation details of
certain objects. If an object supports more interfaces than specified in the service description, query
the interface and perform calls. The code may only work for this distinct office version and not
work with an update of the office!

Unfortunately, there may still be bugs in the service specifications. Please provide feedback about missing
interfaces to openoffice.orgto ensure that the specification is fixed and that you can rely on the support of this
interface.

There are certain specifications a queryInterface () implementation must not violate:

- IfqueryInterface () on a specific object returned a valid interface reference for a given type, it
must return a valid reference for any successive queryInterface () calls on this object for the
same type.

. IfqueryInterface () on a specific object returned a null reference for a given type, it must
always return a null reference for the same type.

. IfqueryInterface () on reference A returns reference B, queryInterface () on B for Type A
must return interface reference A or calls made on the returned reference must be equivalent to
calls made on reference A.

OpenOffice.org 1.1 Developer's Guide « January 2004

. IfqueryInterface () on areference A returns reference B, queryInterface () on A and B for
Xlnterface must return the same interface reference (object identity).

These specifications must not be violated because a UNO runtime environment may choose to
cache queryInterface () calls. The rules are basically identical to the rules of QueryInterface in
MS COM.

3.3.4 Properties

Properties are name-value pairs belonging to a service and determine the characteristics of an
object in a service instance. Usually, properties are used for non-structural attributes, such as font,
size or color of objects, whereas get and set methods are used for structural attributes like a parent
or sub-object.

In almost all cases, com.sun.star.beans.XPropertySet is used to access properties by name.
Other interfaces, for example, are com.sun.star.beans.XPropertyAccess which is used to set
and retrieve all properties at once or com.sun.star.beans.xMultiPropertySet which is used to
access several specified properties at once. This is useful on remote connections. Additionally,
there are interfaces to access properties by numeric ID, such as
com.sun.star.beans.XFastPropertySet.

The following example demonstrates how to query and change the properties of a given text docu-
ment cursor using its XxPropertySet interface:

// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet)
UnoRuntime.queryInterface (XPropertySet.class, mxDocCursor) ;

// get the character weight property

Object aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
float fCharWeight = AnyConverter.toFloat (aCharWeight) ;
System.out.println ("before: CharWeight=" + fCharWeight) ;

// set the character weight property to BOLD
xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// get the character weight property again

aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
fCharWeight = AnyConverter.toFloat (aCharWeight) ;
System.out.println ("after: CharWeight=" + fCharWeight) ;

A possible output of this code could be:

before: CharWeight=100.0
after: CharWeight=150.0

The sequence of property names must be sorted.

The following example deals with multiple properties at once:

// get an XMultiPropertySet, here the one of the first paragraph

XEnumerationAccess xEnumAcc = (XEnumerationAccess) UnoRuntime.queryInterface (
XEnumerationAccess.class, mxDocText) ;

XEnumeration xEnum = xEnumAcc.createEnumeration () ;

Object aPara = xEnum.nextElement () ;

XMultiPropertySet xParaProps = (XMultiPropertySet) UnoRuntime.queryInterface (
XMultiPropertySet.class, aPara);

// get three property values with a single UNO call

String[] aNames = new String[3];

aNames [0] = "CharColor";

aNames[1l] = "CharFontName";

aNames[2] = "CharWeight";

Object[] aValues = xParaProps.getPropertyValues (aNames) ;

// print the three values
System.out.println("CharColor=" + AnyConverter.tolong(aValues[0]));
System.out.println ("CharFontName=" + AnyConverter.toString(aValues[1l]))

Chapter 3 Professional UNO 91

System.out.println ("CharWeight=" + AnyConverter.toFloat (aValues[2]));

Properties can be assigned flags to determine a specific behavior of the property, such as read-
only, bound, constrained or void. Possible flags are specified in
com.sun.star.beans.PropertyAttribute. Read-only properties cannot be set. Bound properties
broadcast changes of their value to registered listeners and constrained properties veto changes to
these listeners.

Properties might have a status specifying where the value comes from. See
com.sun.star.beans.XPropertyState. The value determines if the value comes from the object,
a style sheet or if it cannot be determined at all. For example, in a multi-selection with multiple
values within this selection.

The following example shows how to find out status information about property values:

// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet) UnoRuntime.queryInterface (
XPropertySet.class, mxDocCursor) ;

// insert “first” in NORMAL character weight
mxDocText.insertString (mxDocCursor, "first ", true);
xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.NORMAL)) ;

// append “second” in BODL characer weight

mxDocCursor.collapseToEnd () ;

mxDocText.insertString (mxDocCursor, "second", true);

xCursorProps.setPropertyValue ("CharWeight", new Float (com.sun.star.awt.FontWeight.BOLD)) ;

// try to get the character weight property of BOTH words
mxDocCursor.gotoStart (true) ;
try {
Object aCharWeight = xCursorProps.getPropertyValue ("CharWeight") ;
float fCharWeight = AnyConverter.toFloat (aCharWeight);
System.out.println ("CharWeight=" + fCharWeight) ;
} catch (NullPointerException e) {
System.out.println ("CharWeight property is NULL") ;
}

// query the XPropertState interface of the cursor properties
XPropertyState xCursorPropsState = (XPropertyState) UnoRuntime.queryInterface (
XPropertyState.class, xCursorProps);

// get the status of the character weight property
PropertyState eCharWeightState = xCursorPropsState.getPropertyState ("CharWeight") ;
System.out.print ("CharWeight property state has ");
if (eCharWeightState == PropertyState.AMBIGUOUS VALUE)
System.out.println("an ambiguous value");
else
System.out.println("a clear value");

The property state of character weight is queried for a string like this:
first second

And the output is:

CharWeight property is NULL
CharWeight property state has an ambiguous value

The description of properties available for a certain object is given by
com.sun.star.beans.XPropertySetInfo. Multiple objects can share the same property informa-
tion for their description. This makes it easier for introspective caches that are used in scripting
languages where the properties are accessed directly, without directly calling the methods of the
interfaces mentioned above.

This example shows how to find out which properties an object provides using
com.sun.star.beans.XPropertySetInfo:

try {
// get an XPropertySet, here the one of a text cursor
XPropertySet xCursorProps = (XPropertySet)UnoRuntime.queryInterface (

XPropertySet.class, mxDocCursor) ;

// get the property info interface of this XPropertySet
XPropertySetInfo xCursorPropsInfo = xCursorProps.getPropertySetInfo() ;

OpenOffice.org 1.1 Developer's Guide « January 2004

// get all properties (NOT the values) from XPropertySetInfo
Property[] aProps = xCursorPropsInfo.getProperties();
int i;
for (i = 0; i < aProps.length; ++i) {
// number of property within this info object
System.out.print ("Property #" + 1);

// name of property
System.out.print (": Name<" + aProps[i].Name) ;

// handle of property (only for XFastPropertySet)
System.out.print ("> Handle<" + aProps[i].Handle);

// type of property
System.out.print ("> " + aProps[i].Type.toString());

// attributes (flags)
System.out.print (" Attributes<");
short nAttribs = aProps[i].Attributes;

if ((nAttribs & PropertyAttribute.MAYBEVOID) != 0)
System.out.print ("MAYBEVOID|") ;

if ((nAttribs & PropertyAttribute.BOUND) != 0)

System.out.print ("BOUND|") ;

if ((nAttribs & PropertyAttribute.CONSTRAINED) != 0)
System.out.print ("CONSTRAINED|") ;

if ((nAttribs & PropertyAttribute.READONLY) != 0)
System.out.print ("READONLY |") ;

if ((nAttribs & PropertyAttribute.TRANSIENT) != 0)
System.out.print ("TRANSIENT|") ;

if ((nAttribs & PropertyAttribute.MAYBEAMBIGUOUS) != 0)
System.out.print ("MAYBEAMBIGUOUS|") ;

if ((nAttribs & PropertyAttribute.MAYBEDEFAULT) != 0)
System.out.print ("MAYBEDEFAULT|") ;

if ((nAttribs & PropertyAttribute.REMOVEABLE) != 0)

System.out.print ("REMOVEABLE |") ;
System.out.println ("0>") ;
}
} catch (Exception e) {
// If anything goes wrong, give the user a stack trace
e.printStackTrace (System.out) ;

}

The following is an example output for the code above. The output shows the names of the text
cursor properties, and their handle, type and property attributes. The handle is not unique, since
the specific object does not implement com.sun.star.beans.XFastPropertySet, so proper handles are
not needed here.

Using default connect string: socket,host=localhost,port=2083

Opening an empty Writer document

Property #0: Name<BorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O>

Property #1: Name<BottomBorder> Handle<93> Type<com.sun.star.table.BorderLine> Attributes<MAYBEVOID| 0>

Property #2: Name<BottomBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O0>
Property #3: Name<BreakType> Handle<81> Type<com.sun.star.style.BreakType> Attributes<MAYBEVOID|O0>

Property #133: Name<TopBorderDistance> Handle<93> Type<long> Attributes<MAYBEVOID|O>
Property #134: Name<UnvisitedCharStyleName> Handle<38> =Type<string> Attributes<MAYBEVOID|0>
Property #135: Name<VisitedCharStyleName> Handle<38> Type<string> Attributes<MAYBEVOID| 0>

In some cases properties are used to specify the options in a sequence of
com.sun.star.beans.PropertyValue. See com.sun.star.view.PrintOptions or
com.sun.star.document .MediaDescriptor for examples properties in sequences. These are not
accessed by the methods mentioned above, but by accessing the sequence specified in the language
binding.

This example illustrates how to deal with sequences of property values:

// create a sequence of PropertyValue
PropertyValue[] aArgs = new PropertyValue[2];

// set name/value pairs (other fields are irrelevant here)

aArgs[0] = new PropertyValue() ;
aArgs[0] .Name = "FilterName";
aArgs[0].Value = "HTML (StarWriter)";
aArgs[l] = new PropertyValue();
aArgs[l] .Name = "Overwrite";

aArgs[l].Value = Boolean.TRUE;
// use this sequence of PropertyValue as an argument

// where a service with properties but witouth any interfaces is specified
com.sun.star.frame.XStorable xStorable = (com.sun.star.frame.XStorable) UnoRuntime.queryInterface (

Chapter 3 Professional UNO 93

com.sun.star.frame.XStorable.class, mxDoc) ;
xStorable.storeAsURL ("file:///tmp/devmanual-test.html", aArgs);
Usually the properties supported by an object, as well as their type and flags are fixed over the life
time of the object. There may be exceptions. If the properties can be added and removed externally,
the interface com.sun.star.beans.XPropertyContainer has to be used. In this case, the fixed
com.sun.star.beans.XPropertySetInfo changes its supplied information over the lifetime of
the object. Listeners for such changes can register at
com.sun.star.beans.XPropertyChangeListener.

If you use a component from other processes or remotely, try to adhere to the rule to use
com.sun.star.beans.XPropertyAccess and com.sun.star.beans.XMultiPropertySet instead
of having a separate call for each single property.

@

The following diagram shows the relationship between the property-related interfaces.

<<struct>>

XPropertyChangelistener
Application .
s e e e e mplementationss XPropertyStateChangelistener
: XPropertySetinfoChangelListener
|

L :
|
Property |
Setinfo [
ChangeEvent :
|

/N

P——

== Property —() XPropertySetinfo
':ZEE:? ’ Setinfo
<<service>> XPropertySetinfoChangeNotifier

<

—O XPropertySet
PropertyState Property
ChangeEvent ChangeEvent XFastPropertySet
<<struct>> <<struct>> Property
Set XMultiPropertySet
<<service>>
/l\ /l\ XPropertyAccess
I |
FeTTssssTs tEsssT XPropertyState

Hllustration 3.9: Properties

3.3.5 Collections and Containers

Collections and containers are concepts for objects that contain multiple sub-objects where the
number of sub-objects is usually not predetermined. While the term collection is used when the sub-
objects are implicitly determined by the collection itself, the term container is used when it is
possible to add new sub-objects and remove existing sub-objects explicitly. Thus, containers add
methods like insert () and remove () to the collection interfaces.

94 OpenOffice.org 1.1 Developer's Guide « January 2004

ContainerEvent
<<struct>>

Y

-->

_Appllcathn —Q XContainerlListener
<<implementation>>
]
[}
]
]

P ecccccccaca=—y

-------------- % XContainer
XindexContainer XNameContainer iXHierarchicalNameContainer
XindexReplace XNameReplace XHierarchicalNameReplace O XEnumeration
N\
]
1
XindexAccess XNameAccess ? XHierarchicalNameAccess XEnumerationAccess

O XElementAccess

Hllustration 3.10: Interfaces in com. sun.star.container

In general, the OpenOffice.org API collection and container interfaces contain any type that can be
represented by the UNO type any. However, many container instances can be bound to a specific
type or subtypes of this type. This is a runtime and specification agreement, and cannot be checked
at runtime.

The base interface for collections is com.sun.star.container.xElementAccess that determines
the types of the sub-object, if they are determined by the collection, and the number of contained
sub-objects. Based on xElementAccess, there are three main types of collection interfaces:

com.sun.star.container.XIndexAccess
Offers direct access to the sub-objects by a subsequent numeric index beginning with 0.

com.sun.star.container.XNameAccess
Offers direct access to the sub-objects by a unique name for each sub object.

com.sun.star.container.XEnumerationAccess
Creates uni-directional iterators that enumerate all sub-objects in an undefined order.

com.sun.star.container.XIndexAccess is extended by
com.sun.star.container.XIndexReplace to replace existing sub-objects by index, and
com.sun.star.container.XIndexContainer to insert and remove sub-objects. You can find the
same similarity for com.sun.star.container.xNameAccess and other specific collection types.

Chapter 3 Professional UNO 95

96

All containers support com.sun.star.container.XContainer that has interfaces to register
com.sun.star.container.XContainerListener interfaces. This way it is possible for an applica-
tion to learn about insertion and removal of sub-objects in and from the container.

The com.sun.star.container.XIndexAccess is appealing to programmers because in most cases, it is
easy to implement. But this interface should only be implemented if the collection really is indexed.

Refer to the module com.sun.star.container in the API reference for details about collection
and container interfaces.

The following examples demonstrate the usage of the three main collection interfaces. First, we
iterate through an indexed collection. The index always starts with 0 and is continuous:

// get an XIndexAccess interface from the collection

XIndexAccess xIndexAccess = (XIndexAccess) UnoRuntime.queryInterface (

XIndexAccess.class, mxCollection);

// iterate through the collection by index

int i;

for (i = 0; i < xIndexAccess.getCount (); ++i) {
Object aSheet = xIndexAccess.getByIndex (i) ;
Named xSheetNamed = (XNamed) oRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet #" + i + " is named '" + xSheetNamed.getName() + "'");

}

Our next example iterates through a collection with named objects. The element names are unique
within the collection and case sensitive.

// get an XNameAccess interface from the collection
XNameAccess xNameAccess = (XNameAccess) UnoRuntime.queryInterface (XNameAccess.class, mxCollection) ;

// get the list of names
String[] aNames = xNameAccess.getElementNames () ;

// iterate through the collection by name
int i;
for (i = 0; i < aNames.length; ++i) {
// get the i-th object as a UNO Any
Object aSheet = xNameAccess.getByName (aNames[i]);

// get the name of the sheet from its XNamed interface
XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet '" + aNames[i] + "' is #" + 1i);
}
The next example shows how we iterate through a collection using an enumerator. The order of the
enumeration is undefined. It is only defined that all elements are enumerated. The behavior is

undefined, if the collection is modified after creation of the enumerator.
// get an XEnumerationAccess interface from the collection
XEnumerationAccess xEnumerationAccess = (XEnumerationAccess) UnoRuntime.queryInterface (

XEnumerationAccess.class, mxCollection);

// create an enumerator
XEnumeration xEnum = xEnumerationAccess.createEnumeration();

// iterate through the collection by name

while (xEnum.hasMoreElements()) {
// get the next element as a UNO Any
Object aSheet = xEnum.nextElement () ;

// get the name of the sheet from its XNamed interface
XNamed xSheetNamed = (XNamed) UnoRuntime.queryInterface (XNamed.class, aSheet);
System.out.println("sheet '" + xSheetNamed.getName() + "'");

}

For an example showing the use of containers, see 7.4.1 Text Documents - Overall Document Features
- Styles where a new style is added into the style family ParagraphStyles.

OpenOffice.org 1.1 Developer's Guide « January 2004

3.3.6 Event Model

Events are a well known concept in graphical user interface (GUI) models, although they can be
used in many contexts. The purpose of events is to notify an application about changes in the
components used by the application. In a GUI environment, for example, an event might be the
click on a button. Your application might be registered to this button and thus be able to execute
certain code when this button is clicked.

The OpenOffice.org event model is similar to the JavaBeans event model. Events in OpenOffice.org
are, for example, the creation or activation of a document, as well as the change of the current
selection within a view. Applications interested in these events can register handlers (istener inter-
faces) that are called when the event occurs. Usually these listeners are registered at the object
container where the event occurs or to the object itself. These listener interfaces are named
X...Listener.

Listener —O XEventListener

<<implementation>>
X...Listener

Special
EventObject _D EventObject

<<struct>> <<struct>>

/N /N

|
' O s

...Br ster
L Broadcaster oadcaste

P -—-

<<implementation>>
XComponent

Illustration 3.11

Event listeners are subclasses of com.sun.star.lang.XEventListener that receives one event by
itself, the deletion of the object to which the listener is registered. On this event, the listener has to
unregister from the object, otherwise it would keep it alive with its interface reference counter.

Important! Implement the method disposing () to unregister at the object you are listening to and release
all other references to this object.

Many event listeners can handle several events. If the events are generic, usually a single callback
method is used. Otherwise, multiple callback methods are used. These methods are called with at
least one argument: com.sun.star.lang.EventObject. This argument specifies the source of the
event, therefore, making it possible to register a single event listener to multiple objects and still
know where an event is coming from. Advanced listeners might get an extended version of this
event descriptor struct.

3.3.7 Exception Handling
UNO uses exceptions as a mechanism to propagate errors from the called method to the caller. This

error mechanism is preferred instead of error codes (as in MS COM) to allow a better separation of
the error handling code from the code logic. Furthermore, Java, C++ and other high-level program-

Chapter 3 Professional UNO 97

98

ming languages provide an exception handling mechanism, so that this can be mapped easily into
these languages.

In IDL, an exception is a structured container for data, comparable to IDL structs. Exceptions
cannot be passed as a return value or method argument, because the IDL compiler does not allow
this. They can be specified in raise clauses and transported in an any. There are two kinds of
exceptions, user-defined exceptions and runtime exceptions.

User-Defined Exceptions

The designer of an interface should declare exceptions for every possible error condition that might
occur. Different exceptions can be declared for different conditions to distinguish between
different error conditions.

The implementation may throw the specified exceptions and exceptions derived from the specified
exceptions. The implementation must not throw unspecified exceptions, that is, the implementa-
tion must not throw an exception if no exception is specified. This applies to all exceptions except
for RuntimeExceptions, described later.

When a user-defined exception is thrown, the object should be left in the state it was in before the
call. If this cannot be guaranteed, then the exception specification must describe the state of the
object. Note that this is not recommended.

Every UNO IDL exception must be derived from com.sun.star.uno.Exception, whether directly
or indirectly. Its UNO IDL specification looks like this:

module com { module sun { module star { module uno {
exception Exception
{

string Message;

com: :sun: :star::uno: :XInterface Context;

}i
ik b
The exception has two members:

- The message should contain a detailed readable description of the error (in English), which is
useful for debugging purposes, though it cannot be evaluated at runtime. There is currently no
concept of having localized error messages.

- The Context member should contain the object that initially threw the exception.

The following .IDL file snippet shows a method with a proper exception specification and proper
documentation.

module com { module sun { module star { module beans {

interface XPropertySet: com::sun::star::uno::XInterface

{

/** @returns
the value of the property with the specified name.

@param PropertyName
This parameter specifies the name of the property.

@throws UnknownPropertyException
if the property does not exist.

@throws com::sun::star::uno::lang::WrappedTargetException
if the implementation has an internal reason for the
exception. In this case the original exception
is wrapped into that WrappedTargetException.

*/
any getPropertyValue([in] string PropertyName)

raises(com::sun::star::beans::UnknownPropertyException,

com: :sun::star::lang: :WrappedTargetException) ;

OpenOffice.org 1.1 Developer's Guide « January 2004

I A A

Runtime Exceptions

Throwing a runtime exception signals an exceptional state. Runtime exceptions and exceptions
derived from runtime exceptions cannot be specified in the raise clause of interface methods in
IDL.

These are a few reasons for throwing a runtime exception are:
The connection of an underlying interprocess bridge has broken down during the call.

An already disposed object is called (see com.sun.star.lang.XComponent and the called
object cannot fulfill its specification because of its disposed state.

A method parameter was passed in an explicitly forbidden manner. For instance, a null inter-
face reference was passed as a method argument where the specification of the interface explic
itly forbids this.

Every UNO call may throw a com.sun.star.uno.RuntimeException, except acquire and release.
This is independent of how many calls have been completed successfully. Every caller should
ensure that its own object is kept in a consistent state even if a call to another object replied with a
runtime exception. The caller should also ensure that no resource leaks occur in these cases. For
example, allocated memory, file descriptors, etc.

If a runtime exception occurs, the caller does not know if the call has been completed successfully
or not. The com.sun.star.uno.RuntimeException is derived from
com.sun.star.uno.Exception. Note, that in the Java UNO binding, the
com.sun.star.uno.Exception is derived from java.lang.Exception, while the
com.sun.star.uno.RuntimeException is directly derived from java.lang.RuntimeException.

A common misuse of the runtime exception is to reuse it for an exception that was forgotten
during interface specification. This should be avoided under all circumstances. Consider, defining
a new interface.

An exception should not be misused as a new kind of programming flow mechanism. It should
always be possible that during a session of a program, no exception is thrown. If this is not the
case, the interface design should be reviewed.

Good Exception Handling

This section provides tips on exception handling strategies. Under certain circumstances, the code
snippets we call bad below might make sense, but often they do not.

Do not throw exceptions with empty messages

Often, especially in C++ code where you generally do not have a stack trace, the message within
the exception is the only method that informs the caller about the reason and origin of the excep-
tion. The message is important, especially when the exception comes from a generic interface
where all kinds of UNO exceptions can be thrown.

When writing exceptions, put descriptive text into them. To transfer the text to another exception,
make sure to copy the text.

Do not catch exceptions without handling them

Many people write helper functions to simplify recurring coding tasks. However, often code will
be written like the following:

Chapter 3 Professional UNO 99

100

// Bad example for exception handling
public static void insertIntoCell (XPropertySet xPropertySet) ({

looaol

try {

xPropertySet.setPropertyValue ("CharColor",new Integer (0));

} catch (Exception e) {

}
}
This code is ineffective, because the error is hidden. The caller will never know that an error has
occurred. This is fine as long as test programs are written or to try out certain aspects of the API
(although even test programs should be written correctly). Exceptions must be addressed because

the compiler can not perform correctly. In real applications, handle the exception.

The appropriate solution depends on the appropriate handling of exceptions. The following is the
minimum each programmer should do:

// During early development phase, this should be at least used instead
public static void insertIntoCell (XPropertySet xPropertySet) {
foooll
try {
xPropertySet.setPropertyValue ("CharColor",new Integer(0));
} catch (Exception e) ({
e.dumpStackTrace () ;
}
}
The code above dumps the exception and its stack trace, so that a message about the occurrence of
the exception is received on stderr. This is acceptable during development phase, but it is insuffi-

cient for deployed code. Your customer does not watch the stderr window.

The level where the error can be handled must be determined. Sometimes, it would be better not to
catch the exception locally, but further up the exception chain. The user can then be informed of
the error through dialog boxes. Note that you can even specify exceptions on themain () function:

// this is how the final solution could look like
public static void insertIntoCell (XPropertySet xPropertySet) throws UnknownPropertyException,
PropertyVetoException, IllegalArgumentException, WrappedTargetException {

[...
xPropertySet.setPropertyValue ("CharColor",new Integer (0));

}
As a general rule, if you cannot recover from an exception in a helper function, let the caller deter-
mine the outcome. Note that you can even throw exceptions at themain () method.

3.3.8 Lifetime of UNO Objects

The UNO component model has a strong impact on the lifetime of UNO objects, in contrast to
CORBA, where object lifetime is completely unspecified. UNO uses the same mechanism as Micro-
soft COM by handling the lifetime of objects by reference counting.

Each UNO runtime environment defines its own specification on lifetime management. While in
C++ UNO, each object maintains its own reference count. Java UNO uses the normal Java garbage
collector mechanism. The UNO core of each runtime environment needs to ensure that it upholds
the semantics of reference counting towards other UNO environments.

The last paragraph of this chapter explains the differences between the lifetime of Java and C++
objects in detail.

acquire() and release()

Every UNO interface is derived from com.sun.star.uno.XInterface:

// module com::sun::star::uno
interface XInterface

{

OpenOffice.org 1.1 Developer's Guide « January 2004

any queryInterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

}i

UNO objects must maintain an internal reference counter. Calling acquire () on a UNO interface
increases the reference count by one. Calling release () on UNO interfaces decreases the refer-
ence count by one. If the reference count drops to zero, the UNO object may be destroyed. Destruc-
tion of an object is sometimes called death of an object or that the object dies. The reference count of
an object must always be non-negative.

Once acquire () is called on the UNO object, there is a reference or a hard referenceto the object, as
opposed to a weak reference. Calling release () on the object is often called releasing or clearing
the reference.

The UNO object does not export the state of the reference count, that is,acquire () and release ()
do not have return values. Generally, the UNO object should not make any assumptions on the
concrete value of the reference count, except for the transition from one to zero.

The invocation of a method is allowed first when acquire () has been called before. For every call
to acquire () , there must be a corresponding release call, otherwise the object leaks.

Note: The UNO Java binding encapsulates acquire () and release () in the
UnoRuntime.queryInterface () call. The same applies to the Reference<> template in C++. As long
as the interface references are obtained through these mechanisms, acquire () and release () do not
have to be called in your programs.

The XComponent Interface

A central problem of reference counting systems is cyclic references. Assume Object A keeps a
reference on object Band B keeps a direct or indirect reference on object A. Even if all the external
references to A and B are released, the objects are not destroyed, which results in a resource leak.

o_
A : B

Hllustration 3.12: Cyclic Reference

In general, a Java developer does not have to be concerned about this kind of issue, as the garbage collector
algorithm detects ring references. However, in the UNO world one never knows, whether object A and
object Breally live in the same Java virtual machine. If they do, the ring reference is really garbage collected.
If they do not, the object leaks, because the Java VM is not able to inspect the object outside of the VM for its
references.

In UNO, the developer must explicitly decide when to the break cyclic references. To support this
concept, the interface com.sun.star.lang.XComponent exists. When an XComponent is disposed
of, it can inform other objects that have expressed interest to be notified.

// within the module com::sun::star::lang
// when dispose() is called, previously added XEventListeners are notified
interface XComponent: com::sun::star::uno::XInterface
{
void dispose() ;
void addEventListener([in] XEventListener xListener);
void removeEventListener([in] XEventListener alistener);

}i

Chapter 3 Professional UNO 101

102

// An XEventListener is notified by calling its disposing() method
interface XEventListener: com::sun::star::uno::XInterface
{

void disposing([in] com::sun::star::lang::EventObject Source);
}i

Other objects can add themselves as com.sun.star.lang.XEventListener to an XComponent.
When the dispose () method is called, the object notifies all XEventListeners through the
disposing () method and releases all interface references, thus breaking the cyclic reference.

o_

A —)

—O XComponent

B
[
C

Hlustration 3.13: Object C calls dispose() on XComponent of Object B

A disposed object is unable to comply with its specification, so it is necessary to ensure that an
object is not disposed of before calling it. UNO uses an owner/user concept for this purpose. Only
the owner of an object is allowed to call dispose and there can only be one owner per object. The
owner is always free to dispose of the object. The user of an object knows that the object may be
disposed of at anytime. The user adds an event listener to discover when an object is being
disposed. When the user is notified, the user releases the interface reference to the object. In this
case, the user should not call removeEventListener (), because the disposed object releases the
reference to the user.

One major problem of the owner/user concept is that there always must be someone who callsdispose ().
This must be considered at the design time of the services and interfaces, and be specified explicitly.

This solves the problem described above. However, there are a few conditions which still have to
be met.

OpenOffice.org 1.1 Developer's Guide « January 2004

C

Hllustration 3.14: B releases all interface references, which leads to destruction of Object A, which then
releases its reference to B, thus the cyclic reference is broken.

If an object is called while it is disposed of, it should behave passively. For instance, ifremoveLis-
tener () is called, the call should be ignored. If methods are called while the object is no longer
able to comply with its interface specification, it should throw a
com.sun.star.lang.DisposedException, derived from com.sun.star.uno.RuntimeException.
This is one of the rare situations in which an implementation should throw aRuntimeException.
The situation described above can always occur in a multithreaded environment, even if the caller
has added an event listener to avoid calling objects which were disposed of by the owner.

The owner/user concept may not always be appropriate, especially when there is more than one
possible owner. In these cases, there should be no owner but only users. In a multithreaded
scenario, dispose () might be called several times. The implementation of an object should be able
to cope with such a situation.

The xComponent implementation should always notify the disposing () listeners that the object is
being destroyed, not only when dispose () is called, but when the object is deleted. When the
object is deleted, the reference count of the object drops to zero. This may happen when the
listeners do not hold a reference on the broadcaster object.

The XComponent does not have to be implemented when there is only one owner and no further
users.

Children of the XEventListener Interface

The com.sun.star.lang.XEventListener interface is the base for all listener interfaces . This
means that not only XxEventListeners, but every listener must implement disposing (), and
every broadcaster object that allows any kind of listener to register, must call disposing () on the
listeners as soon as it dies. However, not every broadcaster is forced to implement the XComponent
interface with the dispose() method, because it may define its own condition when it is disposed.

In a chain of broadcaster objects where every element is a listener of its predecessor and only the
root object is an XComponent that is being disposed, all the other chain links must handle the
disposing () call coming from their predecessor and call disposing () on their registered
listeners.

Chapter 3 Professional UNO 103

Weak Objects and References

A strategy to avoid cyclic references is to use weak references. Having a weak reference to an object
means that you can reestablish a hard reference to the object again if the object still exists, and
there is another hard reference to it.

In the cyclic reference shown in illustration 3.2: Interfaces, services and implementation, object B could
be specified to hold a hard reference on object A, but object A only keeps a weak reference to B. If
object A needs to invoke a method on B, it temporarily tries to make the reference hard. If this
succeeds, it invokes the method and releases the hard reference afterwards.

To be able to create a weak reference on an object, the object needs to support it explicitly by
exporting the com.sun.star.uno.XWeak interface. The illustration 3.3: TV System Specification
depicts the UNO mechanism for weak references.

When an object is assigned to a weak reference, the weak reference calls queryAdapter () at the
original object and adds itself (with the com.sun.star.uno.XReference interface) as reference to
the adapter.

XWeak .
e Object

queryAdapter ()

queryAdapter ()

<

XAdapter O— Weak XReference
O_ Adapter Reference _O —_—

queryAdapted () _O dispose ()

addReference ()
releaseReference ()

Hllustration 3.15: The UNO weak reference mechanism

When a hard reference is established from the weak reference, it calls the queryAdapted ()
method at the com.sun.star.uno.XaAdapter interface of the adapter object. When the original
object is still alive, it gets a reference for it, otherwise a null reference is returned.

The adapter notifies the destruction of the original object to all weak references which breaks the
cyclic reference between the adapter and weak reference.

4 Writing UNO Components describes the helper classes in C++ and Java that implement a Xweak
interface and a weak reference..

Differences Between the Lifetime of C++ and Java Objects

Note: It is recommended that you read 3.4.2 Professional UNO - UNO Language Bindings - UNO C++
Binding and 3.4.1 Professional UNO - UNO Language Bindings - Java Language Binding for informa-
tion on language bindings, and 4.6 Writing UNO Components - C++ Component and 4.5.6 Writing
UNO Components - Simple Component in Java - Storing the Service Manager for Further Useabout
component implementation before beginning this section.

104 OpenOffice.org 1.1 Developer's Guide * January 2004

The implementation of the reference count specification is different in Java UNO and C++ UNO. In
C++ UNO, every object maintains its own reference counter. When you implement a C++ UNO
object, instantiate it, acquire it and afterwards release it, the destructor of the object is called imme-
diately. The following example uses the standard helper class : : cppu: : OleakObject and prints a
message when the destructor is called. [SOURCE:ProfUNO/Lifetime/object lifetime.cxx]

class MyOWeakObject : public ::cppu::OWeakObject
{

public:
MyOWeakObject () { fprintf(stdout, "constructed\n"); }
~MyOWeakObject () { fprintf(stdout, "destroyed\n"); }

}i

The following method creates a new MyOWeakObject, acquires it and releases it for demonstration
purposes. The call to release () immediately leads to the destruction ofMyOweakObject. If the
Reference<> template is used, you do not need to care about acquire () and release ().

void simple object creation and destruction ()

{

// create the UNO object
com: :sun::star::uno::XInterface * p = new MyOWeakObject () ;

// acquire it
p->acquire () ;

// releast it
fprintf (stdout, "before release\n");
p->release () ;
fprintf (stdout, "after release\n");

}
This piece of code produces the following output:

constructed
before release
destroyed
after release

Java UNO objects behave differently, because they are finalized by the garbage collector at a time
of its choosing. com.sun.star.uno.XInterface has no methods in the Java UNO language
binding, therefore no methods need to be implemented, although MyUnoObject implements
XInterface: [SOURCE:ProfUNO/Lifetime/MyUnoObject.java]

class MyUnoObject implements com.sun.star.uno.XInterface {

public MyUnoObject () {
}

void finalize() {
System.out.println("finalizer called");

}

static void main (String args[]) throws java.lang.InterruptedException ({
com.sun.star.uno.XInterface a = new MyUnoObject () ;
a = null;

// ask the garbage collector politely

System.gc () ;

System.runFinalization () ;

System.out.println("leaving");

// It is java VM dependent, whether or not the finalizer was called

}

The output of this code depends on the Java VM implementation. The output “finalizer called” is
not a usual result. Be aware of the side effects when UNO brings Java and C++ together.

When a UNO C++ object is mapped to Java, a Java proxy object is created that keeps a hard UNO
reference to the C++ object. The UNO core takes care of this. The Java proxy only clears the refer-
ence when it enters the finalize () method, thus the destruction of the C++ object is delayed until
the Java VM collects some garbage.

Chapter 3 Professional UNO 105

When a UNO Java object is mapped to C++, a C++ proxy object is created that keeps a hard UNO
reference to the Java object. Internally, the Java UNO bridge keeps a Java reference to the original
Java object. When the C++ proxy is no longer used, it is destroyed immediately. The Java UNO
bridge is notified and immediately frees the Java reference to the original Java object. When the
Java object is finalized is dependent on the garbage collector.

When a Java program is connected to a running OpenOffice.org, the UNO objects in the office
process are not destroyed until the garbage collector finalizes the Java proxies or until the inter-
process connection is closed (see 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connec-
tions).

3.3.9 Object Identity

UNO guarantees if two object references are identical, that a check is performed and it always
leads to a correct result, whether it be true or false. This is different from CORBA, where a return
of false does not necessarily mean that the objects are different.

Every UNO runtime environment defines how this check should be performed. In Java UNO, there
is a static areSame () function at the com.sun.star.uno.UnoRuntime class. In C++, the check is
performed with the Reference<>::operator == () function that queries both references for

XInterface and compares the resulting xInterface pointers.
This has a direct effect in the API design. For instance, look atcom.sun.star.lang.XComponent:
interface XComponent: com::sun::star::uno::XInterface
{
void dispose() ;
void addEventListener([in] XEventListener xListener);
void removeEventListener([in] XEventListener alListener);

}i

The method removeEventListener () that takes a listener reference, is logical if the implementa-
tion can check for object identity, otherwise it could not identify the listener that has to be
removed. CORBA interfaces are not designed in this manner. They need an object ID, because
object identity is not guaranteed.

3.4 UNO Language Bindings

This chapter documents the mapping of UNO to various programming languages or component
models. These language bindings are sometimes called UNO Runtime Environment (URE). Each
URE needs to fulfill the specifications given in the earlier chapters. The use of UNO services and
interfaces are also explained in this chapter. Refer to4 Writing UNO Components for information

about the implementation of UNO objects.

Each chapter provides detail information for the following topics:

- Mapping of all UNO types to the programming language types.

- Mapping of the UNO exception handling to the programming language.

- Mapping of the XInterface features (querying interfaces, object lifetime, object identity).
- Bootstrapping of a service manager.

Other programming language specific material (like core libraries in C++ UNO).

106 OpenOffice.org 1.1 Developer's Guide * January 2004

C++, Java, OpenOffice.org Basic and all languages supporting MS OLE automation on the win32
platform are currently supported. In future, the UNO component model may extend the number of
supported language bindings.

3.4.1 Java Language Binding

The Java language binding gives developers the choice of using Java or UNO components for client
programs. A Java program can access components written in other languages and built with a
different compiler, as well as remote objects, because of the seamless interaction of UNO bridges.

Java delivers a rich set of classes that can be used within client programs or component implemen-
tations. However, when it comes to interaction with other UNO objects, use UNO interfaces,
because only those are known to the bridge and can be mapped into other environments.

To control the office from a client program, the client needs a Java 1.3 installation, a free socket
port, and the following jar files jurt.jar, jut.jar, javaunohelper.jar, ridl jar, classes.jar and sandbox.jar. A
Java installation on the server-side is not necessary. A step-by-step description is given in the
chapter 2 First Steps

When using Java components, the office is installed with Java support. Also make sure that Java is
enabled: there is a switch that can be set to achieve this in the Tools - Options - OpenOffice.org -
Security dialog. All necessary jar files should have been installed during the OpenOffice.org setup.
A detailed explanation can be found in the chapter 4.5.6 Writing UNO Components - Simple Compo-
nent in Java - Storing the Service Manager for Further Use.

The Java UNO Runtime is documented in the Java UNO Reference which can be found in the
OpenOffice.org Software development Kit (SDK) or on udk.openoffice.org.

Getting a Service Manager

Office objects that provide the desired functionality are required when writing a client application
that accesses the office. The root of all these objects is the service manager component, therefore
clients need to instantiate it. Service manager runs in the office process, therefore office must be
running first when you use Java components that are instantiated by the office. In a client-server
scenario, the office has to be launched directly. The interprocess communication uses a remote
protocol that can be provided as a command- line argument to the office:

soffice -accept=socket,host=localhost,port=2083;urp;

The client obtains a reference to the global service manager of the office (the server) using a local
com.sun.star.bridge.UnoUrlResolver. The global service manager of the office is used to get
objects from the other side of the bridge. In this case, an instance of the
com.sun.star.frame.Desktop is acquired:

import com.sun.star.uno.XComponentContext;
import com.sun.star.comp.helper.Bootstrap;
import com.sun.star.lang.XMultiComponentFactory;
import com.sun.star.bridge.XUnoUrlResolver;
import com.sun.star.beans.XPropertySet

import com.sun.star.uno.UnoRuntime;

XComponentContext xcomponentcontext = Bootstrap.createInitialComponentContext (null) ;

// initial serviceManager
XMultiComponentFactory xLocalServiceManager = xcomponentcontext.getServiceManager () ;

// create a connector, so that it can contact the office
Object xUrlResolver = xLocalServiceManager.createInstanceWithContext (

"com.sun.star.bridge.UnoUrlResolver", xcomponentcontext) ;

XUnoUrlResolver urlResolver = (XUnoUrlResolver) UnoRuntime.queryInterface (

Chapter 3 Professional UNO 107

XUnoUrlResolver.class, xUrlResolver);

Object initialObject = urlResolver.resolve (
"uno:socket,host=localhost,port=2083;urp; StarOffice.ServiceManager") ;

XMultiComponentFactory xOfficeFactory = (XMultiComponentFactory) UnoRuntime.queryInterface(
XMultiComponentFactory.class, initialObject) ;

// retrieve the component context as property (it is not yet exported from the office)

// Query for the XPropertySet interface.

XPropertySet xProperySet = (XPropertySet) UnoRuntime.queryInterface (
XPropertySet.class, xOfficeFactory);

// Get the default context from the office server.
Object oDefaultContext = xProperySet.getPropertyValue ("DefaultContext");

// Query for the interface XComponentContext.
XComponentContext xOfficeComponentContext = (XComponentContext) UnoRuntime.queryInterface (
XComponentContext.class, oDefaultContext);

// now create the desktop service
// NOTE: use the office component context here!
Object oDesktop = xOfficeFactory.createInstanceWithContext (

“com.sun.star.frame.Desktop", xOfficeComponentContext) ;
As the example shows, a local service manager is created through the
com.sun.star.comp.helper.Bootstrap class (a Java UNO runtime class). Its implementation
provides a service manager that is limited in the number of services it can create. The names of
these services are:

com.sun.star.lang.ServiceManager
com.sun.star.lang.MultiServiceFactory
com.sun.star.loader.Java
com.sun.star.loader.Java2
com.sun.star.bridge.UnoUrlResolver
com.sun.star.bridge.BridgeFactory
com.sun.star.connection.Connector
com.sun.star.connection.Acceptor

They are sufficient to establish a remote connection and obtain the fully featured service manager
provided by the office.

The local service manager could create other components, but this is only possible if the service manager is
= provided with the respective factories during runtime. An example that shows how this works can be found
in the implementation of the Bootstrap class in the project javaunohelper.

There is also a service manager that uses a registry database to locate services. It is implemented by the class
com.sun.star.comp.helper.RegistryServiceFactory in the project javaunohelper. However, the implementa-
tion uses a native registry service manager instead of providing a pure Java implementation.

Handling Interfaces

The service manager is created in the server process and the Java UNO remote bridge ensures that
its XxInterface is transported back to the client. A Java proxy object is constructed that can be used
by the client code. This object is called the initial object , because it is the first object created by the
bridge. When another object is obtained through this object, then the bridge creates a new proxy.
For instance, if a function is called that returns an interface. That is, the original object is actually
running in the server process (the office) and calls to the proxy are forwarded by the bridge. Not
only interfaces are converted, but function arguments, return values and exceptions.

The Java bridge maps objects on a per-interface basis, that is, in the first step only the interface is
converted that is returned by a function described in the API reference. For example, if you have
the service manager and use it to create another component, you initially get a
com.sun.star.uno.XInterface:

XInterface xint= (XInterface) serviceManager.createInstance (“com.sun.star.bridge.OleObjectFactory”) ;

108 OpenOffice.org 1.1 Developer's Guide * January 2004

You know from the service description that the OleObjectFactory implements a
com.sun.star.lang.XMultiServiceFactory interface. However, you cannot cast the object or
call the interface function on the object, since the object is only a proxy for just one interface,
XInterface. Therefore, you have to use a mechanism that is provided with the Java bridge that
generates proxy objects on demand. For example:

XMultiServiceFactory xfac = (XMultiServiceFactory) UnoRuntime.queryInterface (
XMultiServiceFactory.class, xint);

If xint is a proxy, then queryInterface () hands out another proxy for XMultiServiceFactory

provided that the original object implements it. Interface proxies can be used as arguments in func-

tion calls on other proxy objects. For example:

// client side
// obj is a proxy interface and returns another interface through its func() method
XSomething ret = obj.func();

// anotherObject is a proxy interface, too. Its method func(XSomething arg)
// takes the interface ret obtained from obj
anotherObject. func (ret) ;

In the server process, the objobject would receive the original ret object as a function argument.

It is also possible to have Java components on the client side. As well, they can be used as function
arguments, then the bridge would set up proxies for them in the server process.

Not all language elements of UNO IDL have a corresponding language element in Java. For
example, there are no structs and all-purpose out parameters. Refer to 3.4.1 Professional UNO -
UNO Language Bindings - Java Language Binding - Type Mappings for how those elements are
mapped.

Interface handling normally involves the ability of com.sun.star.uno.XInterface to acquire and
release objects by reference counting. In Java, the programmer does not bother with acquire ()
and release (), since the Java UNO runtime automatically acquires objects on the server side
when com.sun.star.uno.UnoRuntime.queryInterface () is used. Conversely, when the Java
garbage collector deletes your references, the Java UNO runtime releases the corresponding office
objects. If a UNO object is written in Java, no reference counting is used to control its lifetime. The
garbage collector takes that responsibility.

Sometimes it is necessary to find out if two interfaces belong to the same object. In Java, you would
compare the references with the equality operator '==". This works as long as the interfaces refer to
a local Java object. Often the interfaces are proxies and the real objects reside in a remote process.
There can be several proxies that belong to the same object, because objects are bridged on a per-
interface basis. Those proxies are Java objects and comparing their references would not establish
them as parts of the same object. To determine if interfaces are part of the same object, use the
method areSame () at the com.sun.star.uno.UnoRuntime class:

static public boolean areSame (Object objectl, Object object2)

Type Mappings

Mapping of Simple Types
The following table shows the mapping of IDL basic types to the corresponding Java types.

Users should be careful when using unsigned types in Java, since there is no support for unsigned
types in the Java language. A user is responsible for the conversion of large unsigned IDL type
values as signed values in Java.

Chapter 3 Professional UNO 109

110

IDL Java

boolean boolean

short short

unsigned short short

long int

usigned long int

hyper long

unsigned hyper long

float float

double double

char char

byte byte

string java.lang.String

any java.lang.Object/com.sun.star.uno.Any
type com.sun.star.uno.Type
void void

Mapping of Any

There is a dedicated com.sun.star.uno.Any type, but it is not always used. An any in the API
reference is represented by a java.lang.Object in Java UNO. An Object reference can be used to
refer to all possible Java objects. This does not work with primitive types, but if you need to use
them as an any, there are Java wrapper classes available that allow primitive types to be used as
objects. Also, a Java Object always brings along its type information by means of an instance of
java.lang.Class. Therefore a variable declared as :

Object ref;

can be used with all objects and its type information is available by calling:

ref.getClass () ;

Those qualities of Object are sufficient to replace the Any in most cases. Even Java interfaces
generated from IDL interfaces do not contain Anys, instead Object references are used in place of
aAnys. Cases where an explicit Any is needed to not loose information contain unsigned integral
types, all interface types except the basic XInterface, and the void type.

However, implementations of those interfaces must be able to deal with real Anys that can also be passed by
means of Object references.

To facilitate the handling of the Any type, use the com.sun.star.uno.AnyConverter class. It is
documented in the Java UNO reference. The following list sums up its methods:

static boolean isArray(java.lang.Object object)
static boolean isBoolean (java.lang.Object object)
static boolean isByte(java.lang.Object object)
static boolean isChar (java.lang.Object object)
static boolean isDouble (java.lang.Object object)
static boolean isFloat(java.lang.Object object)
static boolean isInt(java.lang.Object object)
static boolean isLong(java.lang.Object object)
static boolean isObject(java.lang.Object object)
static boolean isShort(java.lang.Object object)
static boolean isString(java.lang.Object object)
static boolean isType (java.lang.Object object)
static boolean isVoid(java.lang.Object object)
static java.lang.Object toArray(java.lang.Object object)
static boolean toBoolean (java.lang.Object object)
static byte toByte(java.lang.Object object)
static char toChar(java.lang.Object object)
static double toDouble (java.lang.Object object)

OpenOffice.org 1.1 Developer's Guide « January 2004

static float toFloat(java.lang.Object object)

static int toInt(java.lang.Object object)

static long toLong(java.lang.Object object)

static java.lang.Object toObject (Type type, java.lang.Object object)

static short toShort(java.lang.Object object)

static java.lang.String toString(java.lang.Object object)

static Type toType(java.lang.Object object)
The Java com.sun.star.uno.Any is needed in situations when the type needs to be specified
explicitly. Assume there is a C++ component with an interface function which is declared in UNO

IDL as:

//UNO IDL
void foo(any arg);

The corresponding C++ implementation could be:

void foo(const Any& arg)

{
const Type& t = any.getValueType();
if (t == getCppuType ((const Reference<XReference>*) 0)
{

Reference<XReference> myref = *reinterpret_cast<const Reference<XReference>*> (any.getValue()) ;

}

In the example, the any is checked if it contains the expected interface. If is does, it is assigned
accordingly. If the any contained a different interface, a query would be performed for the
expected interface. If the function is called from Java, then an interface has to be supplied that is an
object. That object could implement several interfaces and the bridge would use the basic xInter-
face. If this is not the interface that is expected, then the C++ implementation has to call queryIn-
terface to obtain the desired interface. In a remote scenario, those queryInterface () calls could
lead to a noticeable performance loss. If you use a Java Any as a parameter for foo (), the intended
interface is sent across the bridge.

Preserving UNO Type Information for Complex Types

In C++ UNO, all necessary type information is described by the type Type. In Java, type informa-
tion is mapped to the Java type Class, but some information described in IDL is lost. The Java
mapping for the complex types (interface, struct, exception) creates an additional public static final
member array of type com.sun.star.lib.uno.typelib.TypeInfo named UNOTYPEINFO to
describe this information. This array can be filled with objects of the following types:

MethodTypeInfo
To describe the attributes of a method, is it oneway, or const and if the return type is unsigned.

ParameterTypeInfo
To describe if the parameter type is unsigned, and if the direction is inout or out.

AttributeTypelInfo
To describe if the type is unsigned and if the attribute is readonly.

MemberTypeInfo
To describe if the type is unsigned

Note Only these definitions are maintained in UNOTYPEINFO. This additional type information
and the information from Class is used by the Java UNO runtime to handle the type during trans-
port over a remote connection or conversion to another object model.

All generated types (interface, struct, enum, exception) have another public static member of type
Object UNORUNTIMEDATA. This member is reserved for internal use by the UNO runtime.

Chapter 3 Professional UNO 111

112

Mapping of Sequence

Sequence types are mapped to a Java array of the Java type that corresponds to the element types
of the original IDL sequence.

An IDL sequence<long> is mapped to int[]

An IDL sequence< sequence <long> > is mapped to int[][]

Mapping of Module

An IDL module is mapped to a Java package with the same name. All IDL type declarations within
the module are mapped to corresponding Java class or interface declarations within the generated
package. IDL declarations not enclosed in any modules are mapped into the Java global scope.

Example:

An IDL module org {...} is mapped to package org; ...

Mapping of Interface

An IDL interface is mapped to a Java interface with the same name as the IDL interface type. If an
IDL interface inherits another interface, the Java interface extends the appropriate Java interface.

Mapping of Method Parameters

In Java there are special conditions concerning the value null for parameters and return values,
and concerning out and inout parameters. It is common for Java that arguments or return values
which are objects can be null. Since UNO interfaces, sequences, structs and strings are mapped to
Java objects (sequence is mapped to an array which is a special kind of object), the respective
method arguments or return values could be null. But UNO allows only interface values to be
passed as null values. Ifa UNO interface function has parameters, in, inout or out parameters,
or a return value of type sequence, struct or string, then the respective values of the Java method
must not be null. The example below uses a struct FooStruct in an interface xFoo to show how to
use empty parameters and return values, and how to use out and inout parameters.

//UNO IDL
struct FooStruct
{
long nval;
string strval;
}i

interface XFoo: com.sun.star.uno.XInterface

{
string funcOne([in] string value) ;
FooStruct funcTwo([inout] FooStruct value);
sequence<byte> funcThree ([out] sequence <byte> value);

bi

IDL in parameters that call-by-value semantics are mapped to normal Java actual parameters. The
result of IDL operations is returned as the result of the corresponding Java method. IDLout and
inout parameters that implement call-by-reference semantics are mapped to arrays of the appro-
priate types. The type is determined according to the mappings defined in this document. The

arrays contain one element, that is, the length of the array is 1. Therefore, the Java interface for the
IDL interface XFoo would look:

// Java

public interface XFoo extends com.sun.star.uno.XInterface {
public String funcOne (String value);
public FooStruct funcTwo (FooStruct[] wvalue);
public byte[] funcThree (byte[][] value);

OpenOffice.org 1.1 Developer's Guide « January 2004

This is how FooStruct would be mapped to Java:

// Java

public class FooStruct ({
public int nval;
public String strval;

// default constructor
public FooStruct() {
strval="";

}

public FooStruct(int nval, String strval) {
nval = nval;
strval = strval;

}

// extra type information
: .
When providing a value as an inout parameter, the caller has to write the input value into the
element at index 0 of the array. When the function returns, the value at index 0 reflects the output

value, which may be a new value, modified input value, or unmodified input value. The object ob
implements XFoo:

// calling the interface in Java

obj.funcOne (null) ; // error

obj.funcOne (%) ; // OK

FooStruct[] inoutstruct= new FooStruct[1l];

obj.funcTwo (inoutstruct) ; //error, inoutstruct[0] = null
inoutstruct[0]= new FooStruct (); // now we initialise inoutstruct[0]
obj.funcTwo (inoutstruct) ; // inoutstruct[0] is valid now

When a method receives an argument that is an out parameter, it has to provide a value that has to
be put at index null of the array.

// method implementations of interface XFoo
public String funcOne (String value) {
// param value always != null otherwise it is a bug of the caller!
return null; //error
// instead
// return “7;

}

public FooStruct funcTwo (FooStruct[] value) {

value[0] = null; //error
// instead
// value[0] = new FooStruct();

return null; // error
// instead
// return new FooStruct () ;

}

public byte[] funcThree (byte[][] value) {
value[0]= null; //error
// instead

// value[0]= new byte[0];
return null; //error
// instead
// return new byte[0];
}

Exceptions specified in UNO IDL are mapped to normal Java throws statements. Any method may
throw a com.sun.star.uno.RuntimeException, therefore a RuntimeException never has to be
specified explicitly in UNO IDL.

module com { module sun { module star { module registry ({

interface XImplementationRegistration: com::sun::star::uno::XInterface
{
void registerImplementation (
[in] string aImplementationLoader,
[in] string aLocation,
[in] com::sun::star::registry::XSimpleRegistry xReg)
raises(com::sun::star::registry::CannotRegisterImplementationException) ;

boolean revokeImplementation (
[in] string alocation,

Chapter 3 Professional UNO 113

[in] com::sun::star::registry::XSimpleRegistry xReg);

sequence getImplementations (
[in] string aImplementationLoader,
[in] string aLocation);

sequence checkInstantiation([in] string implementationName);
bi

is mapped to:
package com.sun.star.registry;

public interface XImplementationRegistration extends com.sun.star.uno.XInterface {
// Methods
public void registerImplementation (/*IN*/String aImplementationLoader,
/*IN*/String alocation, /*IN*/XSimpleRegistry xReg)
throws CannotRegisterImplementationException, com.sun.star.uno.RuntimeException;
public boolean revokeImplementation (/*IN*/String aLocation, /*IN*/XSimpleRegistry xRegq)
throws com.sun.star.uno.RuntimeException;
public String[] getImplementations (/*IN*/String almplementationLoader, /*IN*/String aLocation)
throws com.sun.star.uno.RuntimeException;
public String[] checkInstantiation (/*IN*/String implementationName)
throws com.sun.star.uno.RuntimeException;

// static Member

public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = {
new com.sun.star.lib.uno.typeinfo.MethodTypeInfo ("registerImplementation", 0, 0),
new com.sun.star.lib.uno.typeinfo.ParameterTypeInfo ("xReg", "registerImplementation", 2,

com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE),
new com.sun.star.lib.uno.typeinfo.MethodTypeInfo ("revokeImplementation”, 1, 0),
new com.sun.star.lib.uno.typeinfo.ParameterTypelInfo ("xReg", "revokeImplementation", 1,
com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE) ,
new com.sun.star.lib.uno.typeinfo.MethodTypeInfo ("getImplementations", 2, 0)
new com.sun.star.lib.uno.typeinfo.MethodTypeInfo ("checkInstantiation”, 3, 0)
bi

public static Object UNORUNTIMEDATA = null;

Mapping of Structs

An IDL struct is mapped to a Java class with the same name as the struct type. Each member of the
IDL struct is mapped to a public instance variable with the same type and name. The class also
provides a default constructor which initializes all members with default values, and a constructor
which takes values for all struct members. If a struct inherits from another struct, the generated
class extends the class of the inherited struct. The default constructor only initializes the complex
type members. The member constructor has all fields of the extended class and its own fields as
parameters.

module com { module sun { module star { module chart {

struct ChartDataChangeEvent: com::sun::star::lang::EventObject
{

com: :sun: :star::chart::ChartDataChangeType Type;

short StartColumn;

short EndColumn;

short StartRow;

short EndRow;

is mapped to:
package com.sun.star.chart;

public class ChartDataChangeEvent extends com.sun.star.lang.EventObject ({
//instance variables
public ChartDataChangeType Type;
public short StartColumn;
public short EndColumn;
public short StartRow;
public short EndRow;

//constructors
public ChartDataChangeEvent () {

Type = com.sun.star.chart.ChartDataChangeType.getDefault ()
}

114 OpenOffice.org 1.1 Developer's Guide * January 2004

public ChartDataChangeEvent (java.lang.Object _Source, ChartDataChangeType _Type,
short _StartColumn, short _EndColumn, short _StartRow, short _EndRow) {
super (_Source);
Type = _Type;
StartColumn = _StartColumn;
EndColumn = _EndColumn;
StartRow = _StartRow;
EndRow = _EndRow;
}

public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = ({
new com.sun.star.lib.uno.typeinfo.MemberTypeInfo ("Type", 0, 0),
new com.sun.star.lib.uno.typeinfo.MemberTypeInfo ("StartColumn", 1, 0),
new com.sun.star.lib.uno.typeinfo.MemberTypelInfo ("EndColumn", 2, 0),
new com.sun.star.lib.uno.typeinfo.MemberTypeInfo ("StartRow", 3, 0),
new com.sun.star.lib.uno.typeinfo.MemberTypeInfo ("EndRow", 4, 0)

7

Mapping of Exceptions
An IDL exception is mapped to a Java class with the same name as the exception type.

There are two UNO exceptions that are the base for all other exceptions. These are the
com.sun.star.uno.Exceptionand com.sun.star.uno.RuntimeException that are inherited by
all other exceptions. The corresponding exceptions in Java inherit from Java exceptions:

//UNO IDL
module com { module sun { module star { module uno {
exception Exception
{
string Message;
com: :sun::star::uno::XInterface Context;

}i
Yooy i ks

module com { module sun { module star { module uno ({
exception RuntimeException
{

string Message;

com: :sun::star::uno::XInterface Context;

The com.sun.star.uno.Exception in Java:
package com.sun.star.uno;

public class Exception extends java.lang.Exception {
// instance variables
public java.lang.Object Context;

// constructors
public Exception() {
}

public Exception(String Message) {
super (_Message);

}

public Exception(String Message, java.lang.Object Context) {
super (_Message);
Context = Context;

}

public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = {
new com.sun.star.lib.uno.typeinfo.MemberTypeInfo ("Context", O,
com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE)
}i

Chapter 3 Professional UNO 115

116

The com.sun.star.uno.RuntimeException in Java:
package com.sun.star.uno;

public class RuntimeException extends java.lang.RuntimeException {
// instance variables
public java.lang.Object Context;

// constructors
public RuntimeException () {

}

public RuntimeException (String Message) {
super (Message);

}

public RuntimeException(String Message, java.lang.Object Context) {
super (_Message);
Context = _Context;

}

public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = {
new com.sun.star.lib.uno.typeinfo.MemberTypeInfo ("Context", O,
com.sun.star.lib.uno.typeinfo.TypeInfo.INTERFACE)

}i
}
As shown, the Message member has no direct counterpart in the respective Java class. Instead, the
constructor argument Message is used to initialize the base class which is a Java exception. The
message is accessible through the inherited getMessage () method. All other members of the IDL
exceptions are mapped to public instance variables with the same type and name. A generated
Java exception class always has a default constructor that initializes all members with default

values, and a constructor which takes values for all instance variables.

If an exception inherits from another exception, the generated class extends the class of the inher-
ited exception, and the constructor takes the arguments for all fields of the class and the base
classes.

Mapping of Enums and Constants

An IDL enum is mapped to a Java final class with the same name as the enum type, derived
from the class com.sun.star.uno.Enum. This base class declares a protected member to store the
actual value, a protected constructor to initialize the value and a publicgetvalue () method to get
the actual value. The generated final class has a protected constructor and a public method getDe-
fault () that returns an enum with the value of the first enum label as a default. For each IDL
enum label, the class declares a public static member of the same type as the enum and is initiak
ized with the defined value in IDL. The Java class for the enum has an additional public method
fromInt () that which returns the enum with the specified value. The following IDL definition for
com.sun.star.uno.TypeClass:

module com { module sun { star { module uno {
enum TypeClass
{
INTERFACE,
SERVICE,
IMPLEMENTATION,
STRUCT,
TYPEDEF,

}i
I S A

is mapped to:
package com.sun.star.uno;

final public class TypeClass extends com.sun.star.uno.Enum {
private TypeClass (int value) ({
super (value);

}

public static TypeClass getDefault () {
return INTERFACE;
}

OpenOffice.org 1.1 Developer's Guide « January 2004

final
final
final
final
final

static
static
static
static
static

public
public
public
public
public

TypeClass
TypeClass
TypeClass
TypeClass
TypeClass

INTERFACE = new TypeClass (0);
SERVICE = new TypeClass(1l);
IMPLEMENTATION = new TypeClass (2);
STRUCT = new TypeClass(3);

TYPEDEF = new TypeClass (4);

public static TypeClass fromInt (int value) {
switch (value) {

case 0:
return INTERFACE;

case 1:
return

case 2:
return

case 3:
return

case 4:
return

SERVICE;
IMPLEMENTATION;
STRUCT;

TYPEDEF;

}

public static Object UNORUNTIMEDATA = null;
}
An IDL const named USERFLAG:
module example {
const long USERFLAG = 1;
bi
is mapped to:
package example;
public interface USERFLAG ({
public static final int value = (int)1L;

}

IDL constants groups are mapped to a public interface with the

face with type and name of the const that holds the value.

An IDL constants

module example {
constants User
{
FLAGL
FLAG2
FLAG3

const
const
const

long
long
long

[(|
w N =

}i
}i

is mapped to:
package example;

public interface User ({

public static final int FLAGl = (int)1L;
public static final int FLAG2 = (int)2L;
public static final int FLAG3 = (int)3L;

34.2 UNO C++ Binding

same name as the constants
group. All const defined in this constant group are mapped to public static members of the inter-

group User containing three const values FLAG1, FLAG2 and FLAG3:

This chapter describes the UNO C++ language binding. It provides an experienced C++
programmer the first steps in UNO to establish UNO interprocess connections to a remote

OpenOffice.org and to use its UNO objects.

Chapter 3

Professional UNO 117

118

Library Overview

Hllustration 3.6: ComponentContext and the ServiceManager gives an overview about the core libraries
of the UNO component model.

C++ Components

v

cppuhelper (C++)

v

msci_uno.dll (C) l Jl[inked
o

libsunpros_uno.so (C)

cppu (C)

libgcc2_uno.so (C)

L1111

sal (C) salhelper (C++) Compiler

Operating system

Hlustration 3.16: Shared Libraries for C++ UNO

These shared libraries can be found in the <officedir>/program folder of your OpenOffice.org instal-
lation. The label (c) in the illustration above means C-linkage and (C++) means C++ linkage. For all
libraries, a C++ compiler to build is required.

The basis for all UNO libraries is the sal library. It contains the system abstraction layer (sal) and
additional runtime library functionality, but does not contain any UNO-specific information. The
commonly used C-functions of the sal library can be accessed through C++ inline wrapper classes.
This allows functions to be called from any other programming language, because most program-
ming languages have some mechanism to call a C function.

The salhelper library is a small C++ library which offers additional runtime library functionality,
that could not be implemented inline.

The cppu (C++ UNO) library is the core UNO library. It offers methods to access the UNO type
library, and allows the creation, copying and comparing values of UNO data types in a generic
manner. Moreover, all UNO bridges (= mappings + environments) are administered in this library.

OpenOffice.org 1.1 Developer's Guide « January 2004

The examples msci_uno.dll, libsunpro5 uno.so and libgcc2 _uno.so are only examples for language
binding libraries for certain C++ compilers.

The cppuhelper library is a C++ library that contains important base classes for UNO objects and
functions to bootstrap the UNO core. C++ Components and UNO programs have to link the
cppuhelper library.

All the libraries shown above will be kept compatible in all future releases of UNO. You will be
able to build and link your application and component once, and run it with the current and later
versions of OpenOffice.org.

System Abstraction Layer

C++ UNO client programs and C++ UNO components use the system abstraction layer (sal) for
types, files, threads, interprocess communication, and string handling. The sal library offers oper-
ating system dependent functionality as C-functions. The aim is to minimize or to eliminate oper-
ating system dependent #ifdef in libraries above sal. Sal offers high performance access because
sal is a thin layer above the API offered by each operating system.

In OpenOffice.org GUI APIs are encapsulated in the vcl library.

Sal exports only C-symbols. The inline C++ wrapper exists for convenience. Refer to the UNO C++
reference that is part of the OpenOffice.org SDK or in the References section of udk.openoffice.orgto
gain a full overview of the features provided by the sal library. In the following sections, the C++
wrapper classes will be discussed. The sal types used for UNO IDL types are discussed in section
3.4.2 Professional UNO - UNO Language Bindings - UNO C++ Binding - Type Mappings. If you want to
use them, look up the names of the appropriate include files in the C++ reference.

File Access

The classes listed below manage platform independent file access. They are C++ classes that call
corresponding C functions internally.

osl::FileBase
osl::Volumelnfo
osl::FileStatus
osl::File
osl::Directoryltem
osl::Directory

An unfamiliar concept is the use of absolute filenames throughout the whole API. In a multi-
threaded program, the current working directory cannot be relied on, thus relative paths must be
explicitly made absolute by the caller.

Threadsafe Reference Counting

The functions osl_incrementInterlockedCount () and osl decrementInterlockedCount () in
the global C++ namespace increase and decrease a 4-byte counter in a threadsafe manner. This is
needed for reference counted objects. Many UNO APIs control object lifetime through refcounting.

Chapter 3 Professional UNO 119

120

Since concurrent incrementing the same counter does not increase the reference count reliably,
these functions should be used. This is faster than using a mutex on most platforms.

Threads and Thread Synchronization

The class osl::Thread is meant to be used as a base class for your own threads. Overwrite the run ()
method.

The following classes are commonly used synchronization primitives:
osl::Mutex

- osl::Condition

- osl:Semaphore

Socket and Pipe

The following classes allow you to use interprocess communication in a platform independent
manner:

- osl::Socket
. osl::Pipe
Strings

The classes rtl::OString (8-bit, encoded) and rtl::OUString (16-bit, UTF16) are the base-string classes
for UNO programs. The strings store their data in a heap memory block. The string is refcounted
and incapable of changing, thus it makes copying faster and creation is an expensive operation. An
OUString can be created using the static function OUString: :createFromASCII () or it can be
constructed from an 8-bit string with encoding using this constructor:

OUString(const sal Char * value,
sal Int32 length,
rtl TextEncoding encoding,
sal_ulInt32 convertFlags = OSTRING TO_OUSTRING CVTFLAGS) ;
It can be converted into an 8-bit string, for example, for printf () using the rtl::0UStringTo0S-

tring () function that takes an encoding, such as RTL TEXTENCODING ASCII US).

For fast string concatenation, the classes rtl::OStringBuffer and rtl::OUStringBuffer should be used,
because they offer methods to concatenate strings and numbers. After preparing a new string
buffer, use the makeStringAndClear () method to create the new OUString or OString. The
following example illustrates this :

sal Int32 =
double pi = 3.

=]

42;

14159;

// create a buffer with a suitable size, rough guess is sufficient
// stringbuffer extends if necessary

OUStringBuffer buf(128);

// append an ascii string
buf.appendAscii("pi (here ");

// numbers can be simply appended

buf.append(pi);

// RTL_CONSTASCII STRINGPARAM ()

// lets the compiler count the stringlength, so this is more efficient than
// the above appendAscii call, where the length of the string must be calculated at
// runtime

buf.appendAscii(RTL CONSTASCII STRINGPARAM (") multiplied with "));
buf.append(n);

buf.appendAscii (RTL CONSTASCII STRINGPARAM(" gives "));

buf.append((double) (n * pi));

buf.appendAscii (RTL CONSTASCII STRINGPARAM("."));

// now transfer the buffer into the string.
// afterwards buffer is empty and may be reused again !

OpenOffice.org 1.1 Developer's Guide « January 2004

OUString string = buf.makeStringAndClear () ;

// You could of course use the OStringBuffer directly to get an OString
OString oString = rtl::0UStringToOString(string , RTL_TEXTENCODING_ASCII US);

// just to print something
printf("%s\n" ,oString.getStr());

Establishing Interprocess Connections

Any language binding supported by UNO establishes interprocess connections using a local

service manager to create the services necessary to connect to the office. Refer to chapter 3.3.7

Professional UNO - UNO Concepts - UNO Interprocess Connections for additional information. The
following client program connects to a running office and retrieves the
com.sun.star.lang.XMultiServiceFactoryin C++:

(ProfUNO/CppBinding/office connect.cxx)

#include <stdio.h>

#include <cppuhelper/bootstrap.hxx>
#include <com/sun/star/bridge/XUnoUrlResolver.hpp>
#include <com/sun/star/lang/XMultiServiceFactory.hpp>

using namespace com::sun::star::uno;
using namespace com::sun::star::lang;
using namespace com::sun::star::bridge;
using namespace rtl;

using namespace cppu;

int main()

{

// create the initial component context
Reference< XComponentContext > rComponentContext =
defaultBootstrap_InitialComponentContext () ;

// retrieve the service manager from the context
Reference< XMultiComponentFactory > rServiceManager =
rComponentContext->getServiceManager () ;

// instantiate a sample service with the service manager.
Reference< XInterface > rlInstance =
rServiceManager->createInstanceWithContext (
OUString::createFromAscii ("com.sun.star.bridge.UnoUrlResolver"),
rComponentContext);

// Query for the XUnoUrlResolver interface
Reference< XUnoUrlResolver > rResolver(rInstance, UNO QUERY);

if(! rResolver.is())

{
printf("Error: Couldn't instantiate com.sun.star.bridge.UnoUrlResolver service\n");
return 1;

// resolve the uno-URL
rInstance = rResolver->resolve(OUString::createFromAscii (
"uno:socket, host=localhost,port=2083;urp;StarOffice.ServiceManager"));

if(! rInstance.is())

{
printf("StarOffice.ServiceManager is not exported from remote process\n");
return 1;

}

// query for the simpler XMultiServiceFactory interface, sufficient for scripting
Reference< XMultiServiceFactory > rOfficeServiceManager (rInstance, UNO_QUERY) ;

1f(! rOfficeServiceManager.is())

{
printf("XMultiServiceFactory interface is not exported\n");
return 1;

}

printf("Connected sucessfully to the office\n");

}

catch(Exception &e)

{
0String o = 0OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
printf("Error: %$s\n", o.pData->buffer);

Chapter 3 Professional UNO

121

return 1;
}

return 0;

Type Mappings

Mapping of Simple Types
The following table provides a summary of the mappings from IDL types to C++ UNO types.
IDL type Size [byte] C++ type Description
void - void void
byte 1 sal Int8 Signed 8-bit integer
short 2 sal_Intlé6 Signed 16-bit integer
unsigned 2 sal ulntlé Unsigned 16-bit integer
short
signed long |4 sal Int32 Signed 32-bit integer
unsigned 4 sal uInt32 Unsigned 32-bit integer
long
hyper 8 sal_Int64 Signed 64-bit integer
unsigned 8 sal_ulInté64 Unsigned 64-bit integer
hyper
float sizeof float processor dependent: Intel,
(float) Sparc = IEEE float
double sizeof double processor dependent: Intel,
(double) Sparc = IEEE double
boolean 1 sal_Bool { 0, 1 } 8-bit unsigned char
char 2 sal_Unicode 16-bit unicode char
string 4 rtl::0UString Unicode string
type 4 com::sun::star::uno::Type Type descriptor

The basic integer types are all mapped to sal _x types, where x describes the bit length and sign of
the simple type. The sal prefix is used to avoid name clashes with other libraries or applications.

A string is mapped to an rtl::OUString that is a reference counted, non-changing UTF-16 string.
There are no 8-bit strings in UNO.

Mapping of Any
IDL type Size [byte] C++ type Description
any sizeof com: :sun::star::uno::Any universal type
(uno_Any)

The IDL any is mapped to com::sun::star::uno::Any. It holds an instance of an arbitrary UNO type.
Only UNO types can be stored within the any, because the data from the type library are required
for any handling.

122 OpenOffice.org 1.1 Developer's Guide * January 2004

A default constructed Any contains the void type and no value. You can assign a value to the Any
using the operator <<= and retrieve a value using the operator >>=.

// default construct an any
Any any;

sal_Int32 n = 3;

// Store the value into the any
any <<= n;

// extract the value again
sal Int32 n2;

any >>= n2;

assert(n2 == n);

assert(3 == n2);

The extraction operator >>= carries out widening conversions when no loss of data can occur, but
data cannot be directed downward. Ifthe extraction was successful, the operator returns
sal True, otherwise sal False.

Any any;
sal _Intl6 n = 3;
any <<= nj;

sal_Int8 aByte = 0;
sal _Intl6 aShort = 0;

sal _Int32 along = 0;

// this will succeed, conversion from intl6 to int32 is OK.
assert(any >>= along);

assert(3 == along);

// this will succeed, conversion from intl6 to intl6é is OK
assert (any >>= aShort);
assert(3 == aShort

// the following two assertions will FAIL, because conversion
// from intl6 to int8 may involve loss of data..

// Even if a downcast is possible for a certain value, the operator refuses to work
assert (any >>= aByte);
assert(3 == aByte);

Instead of using the operator for extracting, you can also get a pointer to the data within the Any.
This may be faster, but it is more complicated to use. With the pointer, care has to be used during
casting and proper type handling, and the lifetime of the Any must exceed the pointer usage.

Any a = ...;

if (a.getTypeClass () == TypeClass LONG && 3 == *(sal Int32 *)a.getValue())
{

}

You can also construct an Any from a pointer to a C++ UNO type that can be useful. For instance:

Any foo ()
{
sal _Int32 i = 3;
if(...)
i=..;
return Any(&i, getCppuType(&i));

Mapping of Interface
IDL type Size C++ type Description
[byte]
Interface |4 com::sun::star::uno::Reference< interfacetype > Pointer to a

refcounted inter-
face

An IDL interface reference is mapped to the template class:

template< class t >
com: :sun::star::uno: :Reference< t >

Chapter 3 Professional UNO 123

The template is used to get a type safe interface reference, because only a correctly typed interface
pointer can be assigned to the reference. The example below assigns an instance of the desktop
service to the rDesktop reference:

// the xSMgr reference gets constructed somehow

{

// construct a deskop object and acquire it
Reference< XInterface > rDesktop = xSMgr->createlnstance (
OUString::createFromAscii ("com.sun.star.frame.Desktop"”)) ;

}}'reference goes out of scope now, release is called on the interface
}
The constructor of Reference calls acquire () on the interface and the destructor calls release ()
on the interface. These references are often called smart pointers. Always use the Reference
template consistently to avoid reference counting bugs.

The Reference class makes it simple to invoke queryInterface () for a certain type:

// construct a deskop object and acquire it
Reference< XInterface > rDesktop = xSMgr->createlnstance (
OUString::createFromAscii ("com.sun.star.frame.Desktop")) ;

// query it for the XFramelLoader interface
Reference< XFrameLoader > rLoader(rDesktop , UNO_QUERY) ;

// check, if the frameloader interface is supported
if(rLoader.is())
{

// now do something with the frame loader
}
The UNO_QUERY is a dummy parameter that tells the constructor to query the first constructor argu-
ment for the xFrameLoader interface. If the queryInterface () returns successfully, it is assigned
to the rLoader reference. You can check if querying was successful by calling is () on the new
reference.

Methods on interfaces can be invoked using the operator ->:

xSMgr->createlnstance(...);

The operator () -> () returns the interface pointer without acquiring it, that is, without incre-
menting the refcount.

If you need the direct pointer to an interface for some purpose, you can also callget () at the reference class.

W

You can explicitly release the interface reference by calling clear () at the reference or by assigning
a default constructed reference.

You can check if two interface references belong to the same object using the operator ==.

Mapping of Sequence

An IDL sequenceis mapped to:

template< class t >
com: :sun::star::uno::Sequence< t >

The sequence class is a reference to a reference counted handle that is allocated on the heap.

The sequence follows a copy-on-modify strategy. If a sequence is about to be modified, it is
checked if the reference count of the sequence is 1. If this is the case, it gets modified directly,
otherwise a copy of the sequence is created that has a reference count of 1.

A sequence can be created with an arbitrary UNO type as element type, but do not use a non-UNO
type. The full reflection data provided by the type library are needed for construction, destruction
and comparison.

124 OpenOffice.org 1.1 Developer's Guide * January 2004

You can construct a sequence with an initial number of elements. Each element is default

constructed.

{

// create an integer sequence with 3 elements,
// elements default to zero.
Sequence< sal_Int32 > seqInt(3);

// get a read/write array pointer (this method checks for
// the refcount and does a copy on demand) .
sal Int32 *pArray = seqlnt.getArray();

// if you know, that the refocunt is one

// as in this case, where the sequence has just been
// constructed, you could avoid the check,

// which is a C-call overhead,

// by writing sal Int32 *pArray = (sal Int32*) seglnt.getConstArray();

// modify the members
pArray[0] = 4;

pArray([1l]
pArray[2]

7

w u

7

}

You can also initialize a sequence from an array of the same type by using a different constructor.
The new sequence is allocated on the heap and all elements are copied from the source.

{
sal_Int32 sourceArray([3] = {3,5,3};

// result is the same as above, but we initialize from a buffer.
Sequence< sal_ Int32 > seqInt(sourceArray , 3);

}

Complex UNO types like structs can be stored within sequences, too:

{
// construct a sequence of Property structs,
// the structs are default constructed
Sequence< Property > segProperty(2);

seqProperty[0] .Name = OUString::createFromAscii("A");
seqgProperty[0] .Handle = 0;
segProperty[l] .Name = OUString::createFromAscii("B");

seqgProperty[l] .Handle = 1;

// copy construct the sequence (The refcount is raised)
Sequence< Property > segProperty2 = seqgProperty;

// access a sequence
for(sal Int32 i = 0 ; i < segProperty.getLength() ; i ++
{
// Please NOTE : seqgProperty.getArray() would also work, but

// it is more expensive, because a
// unnessecary copy construction
// of the sequence takes place.

printf("%d\n" , segProperty.getConstArray() [i].Handle);

}

The size of sequences can be changed using the realloc () method, which takes the new number

of elements as a parameter. For instance:

// construct an empty sequence
Sequence < Any > anySequence;

// get your enumeration from somewhere
Reference< XEnumeration > rEnum = ...;

// iterate over the enumeration

while (rEnum->hasMoreElements ())

{
anySequence.realloc(anySequence.getLength() + 1);
anySequence [anySequence.getLength () -1] = rEnum->nextElement () ;

}

The above code shows an enumeration is transformed into a sequence,using an inefficient method.
The realloc () default constructs a new element at the end of the sequence. If the sequence is

shrunk by realloc, the elements at the end are destroyed.

Chapter 3

Professional UNO 125

126

The sequence is meant as a transportation container only, therefore it lacks methods for efficient
insertion and removal of elements. Use a C++ Standard Template Library vector as an interme-
diate container to manipulate a list of elements and finally copy the elements into the sequence.

Sequences of a specific type are a fully supported UNO type. There can also be a sequence of
sequences. This is similar to a multidimensional array with the exception that each row may vary
in length. For instance:

{

sal_Int32 a[] = { 1,2,3 }, b[] = {4,5,6}, c[] = {7,8,9,10};
Sequence< Sequence< sal Int32 > > aaSeq (3);

aaSeq[0] = Sequence< safilntBZ >(a, 3);

aaSeq[l] = Sequence< sal Int32 >(b , 3);

aaSeq[2] = Sequence< sal:Int32 >(c, 4);

}

is a valid sequence of sequence< sal Int32>.

Mapping of Type

A type is mapped to com: :sun::star::uno::Type. It holds the name of a type and the
com.sun.star.uno.TypeClass. The type allows you to obtain a com: :sun::star::uno::Type-
Description that contains all the information defined in the IDL. A UNO type object for a specific
type using the overloaded cppu: :getCppuType () function can be constructed:

// get the type of sal Int32
Type intType = getCppuType((sal_Int32 *) 0);

// get the type of a string
Type stringType = getCppuType((OUString *) 0);

// get the type of the XEnumeration interface

Type xenumerationType = getCppuType((Reference<XEnumeration>*) 0);

The above code is useful to write template functions. Some getCppuType () functions would be
ambiguous. There are specialized functions: getVoidCppuType (), getBooleanCppuType (),
getCharCppuType ()to handle the ambiguous functions.

The functions are implemented inline and introduced by headers that have been generated from
the type library.

Using Weak References

The C++ binding offers a method to hold UNO objects weakly, that is, not holding a hard reference
to it. A hard reference prevents an object from being destroyed, whereas an object that is held
weakly can be deleted anytime. The advantage of weak references is used to avoid cyclic refer-
ences between objects.

An object must actively support weak references by supporting the com.sun.star.uno.XWeak
interface. The concept is explained in detail in chapter 3.3.7 Professional UNO - UNO Concepts - Life-
time of UNO Objects.

Weak references are often used for caching. For instance, if you want to reuse an existing object,
but do not want to hold it forever to avoid cyclic references.
Weak references are implemented as a template class:

template< class t >
class com::sun::star::uno::WeakReference<t>

You can simply assign weak references to hard references and conversely. The following examples
stress this:

// forward declaration of a function that
Reference< XFoo > getFool();

OpenOffice.org 1.1 Developer's Guide « January 2004

int main()
{
// default construct a weak reference.
// this reference is empty
WeakReference < XFoo > weakFoo;
{
// obtain a hard reference to an XFoo object
Reference< XFoo > hardFoo = getFoo();
assert (hardFoo.is ());

// assign the hard reference to weak referencecount
weakFoo = hardFoo;

// the hardFoo reference goes out of scope. The object itself
// is now destroyed, if no one else keeps a reference to it.
// Nothing happens, if someone else still keeps a reference to it

}

// now make the reference hard again
Reference< XFoo > hardFoo2 = weakFoo;

// check, if this was successful

if (hardFoo2.is ())

{
// the object is still alive, you can invoke calls on it again
hardFoo2->foo () ;

}

else
// the objects has died, you can't do anything with it anymore.

}

A call on a weak reference can not be invoked directly. Make the weak reference hard and check
whether it succeeded or not. You never know if you will get the reference, therefore always handle
both cases properly.

It is more expensive to use weak references instead of hard references. When assigning a weak
reference to a hard reference, a mutex gets locked and some heap allocation may occur. When the
object is located in a different process, at least one remote call takes place, meaning an overhead of
approximately a millisecond.

The XWeak mechanism does not support notification at object destruction. For this purpose,
objects must export XComponent and add com.sun.star.lang.xXEventListener.

Exception Handling in C++

For throwing and catching of UNO exceptions, use the normal C++ exception handling mecha-
nisms. Calls to UNO interfaces may only throw the com: :sun::star::uno::Exception or
derived exceptions. The following example catches every possible exception:

try
{
Reference< XInterface > rInitialObject =
xUnoUrlResolver->resolve (OUString::createFromAsci (
“uno:socket,host=localhost, port=2083;urp; StarOffice.ServiceManager”));
}
catch(com::sun::star::uno::Exception &e)
{
0String o = OUStringToOString(e.Message, RTL_ TEXTENCODING ASCII_US);
printf("An error occurred: $%s\n", o.pData->buffer);

}
If you want to react differently for each possible exception type, look up the exceptions that may be
thrown by a certain method. For instance the resolve () method in
com.sun.star.bridge.XUnoUrlResolver is allowed to throw three kinds of exceptions. Catch
each exception type separately:
try
{

Reference< XInterface > rInitialObject =

xUnoUrlResolver->resolve (OUString::createFromAsci (
“uno:socket,host=localhost,port=2083;urp; StarOffice.ServiceManager”));

Chapter 3 Professional UNO 127

128

catch(ConnectionSetupException &e
{
0String o = 0OUStringToOString(e.Message, RTL_TEXTENCODING ASCII_US);
printf("%s\n", o.pData->buffer);
printf("couldn't access local resource (possible security resons)\n");
}
catch(NoConnectException &e)
{
OString o = OUStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("%s\n", o.pData->buffer);
printf("no server listening on the resource\n");
}
catch(IllegalArgumentException &e)
{
0String o = 0UStringToOString(e.Message, RTL TEXTENCODING ASCII US);
printf("%s\n", o.pData->buffer);
printf("uno URL invalid\n");
}
catch(RuntimeException & e)
{
0String o = OUStringToOString(e.Message, RTL_TEXTENCODING_ASCII_US);
printf("%$s\n", o.pData->buffer);
printf ("an unknown error has occurred\n");

}

When implementing your own UNO objects (see 4.6 Writing UNO Components - C++ Component),
throw exceptions using the normal C++ throw statement:

void MyUnoObject::initialize(const Sequence< Any > & args.getlLength()) throw(Exception)
{
// we expect 2 elements in this sequence
if(2 !'= args.getLength())
{
// create an error message
OUStringBuffer buf;

buf.appendAscii (“MyUnoObject::initialize, expected 2 args, got ”);
buf.append(args.getLength());
buf.append(“.”);

// throw the exception
throw Exception(buf.makeStringAndClear() , *this);

}

Note that only exceptions derived from com: :sun::star::uno::Exception may be thrown at
UNO interface methods. Other exceptions (for instance the C++ std::exception) cannot be bridged
by the UNO runtime if the caller and called object are not within the same UNO Runtime Environ-
ment. Moreover, most current Unix C++ compilers, for instance gcc 3.0.x, do not compile code.
During compilation, exception specifications are loosen in derived classes by throwing exceptions
other than the exceptions specified in the interface that it is derived. Throwing unspecified excep-
tions leads to a std::unexpected exception and causes the program to abort on Unix systems.

3.4.3 OpenOffice.org Basic

OpenOffice.org Basic provides access to the OpenOffice.org API from within the office application.
It hides the complexity of interfaces and simplifies the use of properties by making UNO objects
look like Basic objects. It offers convenient Runtime Library (RTL) functions and special Basic
properties for UNO. Furthermore, Basic procedures can be easily hooked up to GUI elements, such
as menus, toolbar icons and GUI event handlers.

This chapter describes how to access UNO using the OpenOffice.org Basic scripting language. In
the following sections, OpenOffice.org Basic is referred to as Basic.

OpenOffice.org 1.1 Developer's Guide « January 2004

Handling UNO Objects

Accessing UNO Services

UNO objects are used through their interface methods and properties. Basic simplifies this by
mapping UNO interfaces and properties to Basic object methods and properties.

First, in Basic it is not necessary to distinguish between the different interfaces an object supports
when calling a method. The following illustration shows an example of an UNO service that
supports three interfaces:

XFoo1

double getMore (void)
double getlLess (void)
void doNothing (void)

Example

XFoo2
<<service>> < ’

void doSomething (void)
void doSomethingeElse (int nElse)

XFoo3

int getlt ()
void setlt (int nlt)

Hllustration 3.17: Basic Hides Interfaces

In Java and C++, it is necessary to obtain a reference to each interface before calling one of its
methods. In Basic, every method of every supported interface can be called directly at the object
without querying for the appropriate interface in advance. The '." operator is used:

' Basic

oExample = getExampleObjectFromSomewhere ()

oExample.doNothing () ' Calls method doNothing of XFool
oExample.doSomething () ' Calls method doSomething of XFoo2
oExample.doSomethingElse (42) ' Calls method doSomethingElse of XFoo2

Additionally, OpenOffice.org Basic interprets pairs of get and set methods at UNO objects as Basic
object properties if they follow this pattern:

SomeType getSomeProperty ()
void setSomeProperty (SomeType aValue)

In this pattern, OpenOffice.org Basic offers a property of type SomeType named SomeProperty.
This functionality is based on the com.sun.star.beans.Introspection service. For additional
details, see 5.2.3 Advanced UNO - Language Bindings - UNO Reflection API

The get and set methods can always be used directly. In our example service above, the methods
getIt() and setIt(), orread and write a Basic property It are used:

Dim x as Integer
x = oExample.getIt () ' Calls getIt method of XFoo3

' is the same as

x = oExample.It ' Read property It represented by XFoo3
oExample.setIt(x) ' Calls setIt method of XFoo3

'

is the same as

oExample.It = x ' Modify property It represented by XFoo3

If there is only a get method, but no associated set method, the property is considered to be read
only.

Chapter 3 Professional UNO 129

Dim x as Integer, y as Integer
x = oExample.getMore () ' Calls getMore method of XFool
y = oExample.getLess () ' Calls getLess method of XFool

' is the same as

X = oExample.More ' Read property More represented by XFool
y = oExample.Less ' Read property Less represented by XFool
' but

Runtime error “Property is read only”
Runtime error “Property is read only”

oExample.More = x
oExample.Less = y

Properties an object provides through com.sun.star.beans.xPropertySet are available through
the . operator. The methods of com.sun.star.beans.XPropertySet can be used also. The object
oExample2 in the following example has three integer properties Valuel, Value2 and Value3:

Dim x as Integer, y as Integer, z as Integer
x = oExample2.Valuel
y oExample?2.Value?2
z oExample2.Value3

' is the same as

x = oExample2.getPropertyValue(“Valuel”)

y = oExample2.getPropertyValue(“Value2”)
z = oExample2.getPropertyValue (“Value3”)
' and

oExample2.Valuel
oExample2.Value2
oExample2.Value3

I
NX

' is the same as

oExample?2.setPropertyValue (“Valuel”, x)
oExample?2.setPropertyValue (“Value2”, y)
oExample?2.setPropertyValue (“Value3”, z)

Basic uses com.sun.star.container.xNameAccess to provide named elements in a collection
through the . operator. However, xNameAccess only provides read access. If a collection offers
write access through com.sun.star.container.xNameReplace Or

com.sun.star.container.XNameContainer, use the appropriate methods explicitly:
' oNameAccessible is an object that supports XNameAccess
' including the names “Valuel”, “Value2”

x = oNameAccessible.Valuel
y = oNameAccessible.Value?2

' is the same as

x = oNameAccessible.getByName (“Valuel”)
y = oNameAccessible.getByName (“Value2”)

' but
oNameAccessible.Valuel = x ' Runtime Error, Valuel cannot be changed
oNameAccessible.Value2 = y ' Runtime Error, Value2 cannot be changed

' oNameReplace is an object that supports XNameReplace
' replaceByName () sets the element Valuel to 42
oNameReplace.replaceByName ("Valuel", 42)

Instantiating UNO Services

In Basic, instantiate services using the Basic Runtime Library (RTL) function createUnoService ().
This function expects a fully qualified service name and returns an object supporting this service, if
it is available:

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

This call instantiates the com.sun.star.ucb.SimpleFileAccess service. To ensure that the func-
tion was successful, the returned object can be checked with the TsNu11 function:

130 OpenOffice.org 1.1 Developer's Guide * January 2004

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

bError = IsNull(oSimpleFileAccess) ' bError is set to False
oNoService = CreateUnoService("com.sun.star.nowhere.ThisServiceDoesNotExist")
bError = IsNull(oNoService) ' bError is set to True

Instead of using CreateUnoService () to instantiate a service, it is also possible to get the global
UNO com.sun.star.lang.ServiceManager of the OpenOffice.org process by calling
GetProcessServiceManager (). Once obtained, use createInstance () directly:

oServiceMgr = GetProcessServiceManager ()
oSimpleFileAccess = oServiceMgr.createlInstance("com.sun.star.ucb.SimpleFileAccess")

' is the same as

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

The advantage of GetProcessServiceManager () is that additional information and pass in argu-
ments is received when services are instantiated using the service manager. For instance, to
initialize a service with arguments, the createInstanceWithArguments () method of
com.sun.star.lang.XMultiServiceFactory has to be used at the service manager, because there
is no appropriate Basic RTL function to do that. Example:

args (0) 'Important information"
args (1) "Even more important information"
oService = oServiceMgr.createInstanceWithArguments _
("com.sun.star.nowhere.ServiceThatNeedsInitialization", args())

Dim args (1)

The object returned by GetProcessServiceManager () is a normal Basic UNO object supporting
com.sun.star.lang.ServiceManager. Its properties and methods are accessed as described
above.

In addition, the Basic RTL provides special properties as API entry points. They are described in
more detail in 11.3 OpenOlffice.org Basic and Dialogs - Features of OpenOlffice.org Basic.

OpenOffice.org Basic RTL Property Description

ThisComponent Only exists in Basic code which is embedded in a Writer,
Calc, Draw or Impress document. It contains the document
model the Basic code is embedded in.

StarDesktop The com.sun.star.frame.Desktop singleton of the
office application. It loads document components and
handles the document windows. For instance, the document
in the top window can be retrieved using
oDoc = StarDesktop.CurrentComponent

Getting Information about UNO Objects

The Basic RTL retrieves information about UNO objects. There are functions to evaluate objects
during runtime and object properties used to inspect objects during debugging.

Checking for interfaces during runtime
Although Basic does not support the queryInterface concept like C++ and Java, it can be
useful to know if a certain interface is supported by a UNO Basic object or not. The function
HasUnoInterfaces () detects this.

The first parameter HasUnoInterfaces () expects the object that should be tested. Parameter(s)
of one or more fully qualified interface names can be passed to the function next. The function
returns True if all these interfaces are supported by the object, otherwise False.

Sub Main
Dim oSimpleFileAccess
oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

Dim bSuccess
Dim IfaceNamel$, IfaceName2$, IfaceName3$

Chapter 3 Professional UNO 131

IfaceNamel$ "com.sun.star.uno.XInterface"
IfaceName2$ "com.sun.star.ucb.XSimpleFileAccess2"
IfaceName3$ = "com.sun.star.container.XPropertySet"

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$)

MsgBox bSuccess ' Displays True because XInterface is supported
bSuccess = HasUnolInterfaces(oSimpleFileAccess, IfaceNamel$, IfaceName2$)
MsgBox bSuccess ' Displays True because XInterface

' and XSimpleFileAccess2 are supported

bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceName3$)

MsgBox bSuccess ' Displays False because XPropertySet is NOT supported
bSuccess = HasUnoInterfaces(oSimpleFileAccess, IfaceNamel$, IfaceName2$, IfaceName3$)
MsgBox bSuccess ' Displays False because XPropertySet is NOT supported

End Sub

Testing if an object is a struct during runtime
As described in the section 3.4.3 Professional UNO - UNO Language Bindings - OpenOlffice.org
Basic - Type Mappings - Structs above, structs are handled differently from objects, because they
are treated as values. Use the IsUnoStruct () function to check it the UNO Basic object repre-
sents an object or a struct. This function expects one parameter and returns True if this
parameter is a UNO struct, otherwise False. Example:
Sub Main

Dim bIsStruct

' Instantiate a service
Dim oSimpleFileAccess

oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
bIsStruct = IsUnoStruct(oSimpleFileAccess)
MsgBox bIsStruct ' Displays False because oSimpleFileAccess is NO struct

' Instantiate a Property struct
Dim aProperty As New com.sun.star.beans.Property
bIsStruct = IsUnoStruct (aProperty

MsgBox bIsStruct ' Displays True because aProperty is a struct
bIsStruct = IsUnoStruct(42
MsgBox bIsStruct ' Displays False because 42 is NO struct

End Sub

Testing objects for identity during runtime
To find out if two UNO OpenOffice.org Basic objects refer to the same UNO object instance, use
the function EqualUnoObjects (). Basic is not able to apply the comparison operator = to argu-
ments of type object, for example, If Objl = Obj2 Then which leads to a runtime error.

Sub Main

Dim bIdentical
Dim oSimpleFileAccess, oSimpleFileAccess2, oSimpleFileAccess3
' Instantiate a service
oSimpleFileAccess = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")

oSimpleFileAccess2 = oSimpleFileAccess ' Copy the object reference
bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess2)
MsgBox bIdentical ' Displays True because the objects are identical

' Instantiate the service a second time
oSimpleFileAccess3 = CreateUnoService("com.sun.star.ucb.SimpleFileAccess")
bIdentical = EqualUnoObjects(oSimpleFileAccess, oSimpleFileAccess3)
MsgBox bIdentical ' Displays False, oSimpleFileAccess3 is another instance

bIdentical = EqualUnoObjects(oSimpleFileAccess, 42

MsgBox bIdentical ' Displays False, 42 is not even an object
' Instantiate a Property struct

Dim aProperty As New com.sun.star.beans.Property

Dim aProperty2

aProperty2 = aProperty ' Copy the struct
bIdentical = EqualUnoObjects(aProperty, aProperty?2
MsgBox bIdentical ' Displays False because structs are values

' and so aProperty2 is a copy of aProperty
End Sub

Basic hides interfaces behind OpenOffice.org Basic objects that could lead to problems when devel
opers are using API structures. It can be difficult to understand the API reference and find the
correct method of accessing an object to reach a certain goal.

To assist during development and debugging, every UNO object in OpenOffice.org Basic has
special properties that provide information about the object structure. These properties are all

132 OpenOffice.org 1.1 Developer's Guide * January 2004

prefixed with Dbg to emphasize their use for development and debugging purposes. The type of
these properties is String. To display the properties use the MsgBox function.

Inspecting interfaces during debugging
The Dbg SupportedInterfaces lists all interfaces supported by the object. In the following
example, the object returned by the function GetProcessServiceManager () described in the
previous section is taken as an example object.

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg SupportedInterfaces

This call displays a message box:

soffice

Supported interfaces by object

"ProcessServiceManager”;
comsun.star lang Ehulti Service Factory
com.zun.star lang XhultiComponent Factory
com.sunstarlang.Xoervicelnfo
cam.zur.star lang Xinitialization
com.zun.star lang XUnoTunnel
comsun star container X5et

com.zun.star.container KEnumerationAccess
com.zun.star.container XElement Access

com.zun.star.container XContent EnumerationAccess
com.zun.star beans XProperty Set
connsun.star lang XType Provider
Cam.zun.star.uno. veak
com.zun.ztarlang. X Component

Hlustration 3.18: Dbg_SupportedInterfaces

Property

The list contains all interfaces supported by the object. For interfaces that are derived from
other interfaces, the super interfaces are indented as shown above for
com.sun.star.container.XSet, which is derived from
com.sun.star.container.XEnumerationAccess based upon
com.sun.star.container.XElementAccess.

If the text “(ERROR: Not really supported!)” is printed behind an interface name, the implementation of the
object usually has a bug, because the object pretends to support this interface (per
com.sun.star.lang.XTypeProvider, but a query for it fails. For details, see 5.2.3 Advanced UNO -
Language Bindings - UNO Reflection API).

Inspecting properties during debugging
The Dbg Properties lists all properties supported by the object through
com.sun.star.beans.XPropertySet and through get and set methods that could be mapped
to Basic object properties:

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg Properties

This code produces a message box like this:

Chapter 3 Professional UNO 133

soffice E|

Properties of object
"ProcessServiceManager "
SbxOBJECT Default Context:
SbxOBJECT Registry:

SbxARRAY AvailableService Mames;
SbxSTRIMG ImplermentationMame:;
SbxARRAY SupportedServiceMames;
SbxOBJECT ElernentType:
SbxOBJECT PropertySetinfo;
SbxARRAY Types:

ShxARRAY Implementationld;
SbxSTRIMG Dbg_Supportedinterfaces;
Sk STRIMG Dbg_ Properties:
SbxSTRIMG Obg_ hMethods

Hlustration 3.19: Dbg Properties

Inspecting Methods During Debugging
The Dbg Methods lists all methods supported by an object. Example:

oServiceManager = GetProcessServiceManager ()
MsgBox oServiceManager.Dbg Methods

This code displays:

soffice EJ

Methods of object

"Process Service Manager '

SbxEMPTY querylnterface ¢ SbxOBJECT 3 ; SbxOBJECT createlnstance € SbxSTRIMNG)
5bxOBJECT createlhstancewithArguments (SbxSTRIMNG, SbxARRAY 1 ShxARRAY
getAvailable ServiceMames wvoid 1 ;

SbxOBJECT createlnstancewith Context ¢ Sbx3TRING, SbxOBJECT 3 ; Sbx OEJECT
createlnstanceWwith ArgumentsAndContext SbxSTRIMG, ShxARRAY. SbxOBJECT) ;
SbxARFAY getdwvailableServiceMames o woid 1 SbxSTRIMG getimplementationMame ©woid 3 ;
3bxBEOOL supports dervice [SbxSTRIMG 1 ; SbxARRAY getiuppor ted ZerviceMames (woid 3 ;
3bx%010 initialize 3bxARRAY 3 . Unknown Sbx-Type! getiomething © SbxARRAY I

bz OBJECT getElementType ¢ waid) ; 3bxBEOOL hazElements {waoid 3 ;

Sbx OBJECT createEnumeration ¢ woid 3 ; SbxBOOL has ¢ ShxARLAMT 3 ;

b OID insert © 3beWARIAMT 3 Sbecy' 01D remove © SheARLAMNT 2 ;

3bxOBJECT createContentEnumeration ¢ Sbx3TRIMG) ; SbxARRAY getAvailableServiceMames
(void) ;

SbxOBJECT getPropertySetinfo (void 1 ; SbxOI0 setPropertyyialue © SbxaTRIMG,
ShARIANT 2 ;

SbxEMPTY getProperty™alue SbxSTRIMG O ; b 0ID addProperty Change Listensr

{ SbxaTRIMG, SbexOBECT O ;

Sbx 010 remove Property Change listener CSbxSTRIMG, SbxOBJECT 3 ShxOID
addvetoable Changelistener (SbxSTRIMG, SbxOBJECT) ;

Sbxy 010 removeyetoable Changelistener ¢ SbxSTRIMG, SExOBJECT 1 ShxARRAY getTypes
{woid)

SbxARRAY getimplementationld ¢ woid) ; SbxOBJECT query Adapter (yoid)

SbeOI0 dispose (woid) ; Sbe010 addEventlistensr © SbxOBECT) ;

by 010 remove Eventlistensr ¢ SbxOBJECT 2

Hllustration 3.20: Dbg Methods

The notations used in Dbg Properties and Dbg Methods refer to internal implementation type
names in Basic. The sbx prefix can be ignored. The remaining names correspond with the normal
Basic type notation. The SbxEMPTY is the same type as Variant. Additional information about
Basic types is available in the next chapter.

134 OpenOffice.org 1.1 Developer's Guide * January 2004

Basic uses the com.sun.star.lang.XTypeProvider interface to detect which interfaces an object
supports. Therefore, it is important to support this interface when implementing a component that should be
accessible from Basic. For details, see 4 Writing UNO Components.

Mapping of UNO and Basic Types

Basic and UNO use different type systems. While OpenOffice.orgBasic is compatible to Visual
Basic and its type system, UNO types correspond to the IDL specification (see 3.2.1 Professional
UNO - API Concepts - Data Types), therefore it is necessary to map these two type systems. This
chapter describes which Basic types have to be used for the different UNO types.

Mapping of Simple Types

In general, the OpenOffice.orgBasic type system is not rigid. Unlike C++ and Java,
OpenOffice.orgBasic does not require the declaration of variables, unless the Option Explicit
command is used that forces the declaration. To declare variables, the Dim command is used. Also,
a OpenOffice.orgBasic type can be optionally specified through the Dim command. The general
syntax is:

Dim VarName [As Typel [, VarName [As Typel]...

All variables declared without a specific type have the type variant. Variables of type variant
can be assigned values of arbitrary Basic types. Undeclared variables are variant unless type
postfixes are used with their names. Postfixes can be used in Dim commands as well. The following
table contains a complete list of types supported by Basic and their corresponding postfixes:

Type Postfix Range

Boolean Trueor False

Integer % -327681t0 32767

Long & -21474836481t0 2147483647
Single ! Floating point number

negative: -3.402823E381t0 -1.401298E-45
positive: 1.401298E-451t0 3.402823E38

Double # Double precision floating point number
negative: -1.79769313486232E308 to -4.94065645841247E-324
positive: 4.94065645841247E-3241t01.79769313486232E308

Currency @ Fixed point number with four decimal places
-922,337,203,685,477.5808t0 922,337,203,685,477.5807

Date 01/01/100to 12/31/9999
Object Basic Object

String $ Character string

Any arbitrary Basic type

Consider the following Dim examples.

Dim a, b ' Type of a and b is Variant
Dim c as Variant ' Type of c is Variant
Dim d as Integer ' Type of d is Integer (16 bit!)

' The type only refers to the preceding variable
Dim e, f as Double ' ATTENTION! Type of e is Variant!
! Only the type of f is Double

Dim g as String ' Type of g is String

Chapter 3 Professional UNO 135

136

Dim i as Date ' Type of g is Date
' Usage of Postfixes

Dim i% ' is the same as
Dim i as Integer

Dim d# ' is the same as
Dim d as Double

Dim s$ ' is the same as
Dim s as String

The correlation below is used to map types from UNO to Basic and vice versa.

Uno type Basic type

long Long

hyper Not yet supported

short Integer

float Single

double Double

char Char (only used internally)
byte Integer

any Variant

string String

boolean Boolean

void Void (only used internally)
type com.sun.star.reflection.XIdlClass

The simple UNO type type is mapped to the com.sun.star.reflection.XIdlClass interface to
retrieve type specific information. For further details, refer to 5.2.3 Advanced UNO - Language Bind-
ings - UNO Reflection API.

When UNO methods or properties are accessed, and the target UNO type is known, Basic auto-

matically chooses the appropriate types:
' The UNO object oExamplel has a property “Count” of type short
a% = 42
oExamplel.Count = a% ' a% has the right type (Integer)

pi = 3,141593

oExamplel.Count = pi ' pi will be converted to short, so Count will become 3
s = “1117
oExamplel.Count = s$ ' s$ will be converted to short, so Count will become 111

Occasionally, OpenOffice.orgBasic does not know the required target type, especially ifa
parameter of an interface method or a property has the type any. In this situation,
OpenOffice.orgBasic mechanically converts the OpenOffice.orgBasic type into the UNO type
shown in the table above, although a different type may be expected. The only mechanism
provided by OpenOffice.orgBasic is an automatic downcast of numeric values:

Long and Integer values are always converted to the shortest possible integer type:
. tobyteif-128 <= value <= -127
- to shortif -32768 <= Value <= 32767

The single/Double values are converted to integers in the same manner if they have no decimal
places.

This mechanism is used, because some internal C++ tools used to implement UNO functionality in
OpenOffice.org provide an automatic upcast but no downcast. Therefore, it can be successful to
pass a byte value to an interface expecting a 1ong value, but not vice versa.

OpenOffice.org 1.1 Developer's Guide « January 2004

In the following example, oNameCont is an object that supports
com.sun.star.container.XNameContainer and contains elements of type short. Assume
Firstvalue is a valid entry.

a% = 42
oNameCount.replaceByName (“FirstvValue”, a$%) ' Ok, a% is downcasted to type byte

b% = 123456

oNameCount.replaceByName (“FirstValue”, b%) ' Fails, b% is outside the short range
The method call fails, therefore the implementation should throw the appropriate exception that is
converted to a OpenOffice.orgBasic error by the OpenOffice.orgBasic RTL. It may happen that an
implementation also accepts unsuitable types and does not throw an exception. Ensure that the
values used are suitable for their UNO target by using numeric values that do not exceed the target
range or converting them to the correct Basic type before applying them to UNO.

Always use the type Variant to declare variables for UNO Basic objects, not the type Object. The
OpenOffice.orgBasic type Object is tailored for pure OpenOffice.orgBasic objects and not for UNO
OpenOffice.orgBasic objects. The variant variables are best for UNO Basic objects to avoid prob-
lems that can result from the OpenOffice.orgBasic specific behavior of the type Object:

Dim oServicel ' Ok

oServicel = CreateUnoService("com.sun.star.anywhere.Something")

Dim oService2 as Object ' NOT recommended

oService2 = CreateUnoService("com.sun.star.anywhere.SomethingElse")

Mapping of Sequences and Arrays

Many UNO interfaces use sequences, as well as simple types. The OpenOffice.orgBasic counterpart
for sequences are arrays. Arrays are standard elements of the Basic language. The example below
shows how they are declared:

Dim al(100) ' Variant array, index range: 0-100 -> 101 elements

Dim a2%(5) ' Integer array, index range: 0-5 -> 6 elements

Dim a3$(0) ' String array, index range: 0-0 -> 1 element

Dim a4&(9, 19) ' Long array, index range: (0-9) x (0-19) -> 200 elements

Basic does not have a special index operator like [] in C++ and Java. Array elements are accessed
using normal parentheses ():

Dim i%, a%(10)

for i$ = 0 to 10 ' this loop initializes the array
a% (i%) = 1i%

next i%

dim s$

for 1% = 0 to 10 ' this loop adds all array elements to a string
s$ =sS + " " + a%(i%)

next i%

msgbox s$ ' Displays the string containing all array elements

Dim b(2, 3)

b(2, 3) =23

b(0, 0) =0

b(2, 4) =24 ' Error ”Subscript out of range”

As the examples show, the indices in Dim commands differ from C++ and Java array declarations.
They do not describe the number of elements, but the largest allowed index. There is one more
array element than the given index. This is important for the mapping of OpenOffice.orgBasic
arrays to UNO sequences, because UNO sequences follow the C++/Java array semantic.

When the UNO API requires a sequence, the Basic programmer uses an appropriate array. In the
following example, oSequenceContainer is an object that has a property TheSequence of type
sequence<short>. To assign a sequence of length 10 with the values 0, 1, 2, ... 9 to this property,
the following code can be used:

Dim i%, a%(9) ' Maximum index 9 -> 10 elements

Chapter 3 Professional UNO 137

for 1% = 0 to 9 ' this loop initializes the array
a%(i%) = i%

next i%

oSequenceContainer.TheSequence = a% ()

' If “TheSequence” is based on XPropertySet alternatively
oSequenceContainer.setPropertyValue (“TheSequence”, a%())

The Basic programmer must be aware of the different index semantics during programming. In the
following example, the programmer passed a sequence with one element, but actually passed two

elements:
' Pass a sequence of length 1 to the TheSequence property:
Dim a%(1) ' WRONG: The array has 2 elements, not only 1!
as(0) =3 ' Only Element O is initialized,

' Element 1 remains 0 as initialized by Dim
' Now a sequence with two values (3,0) is passed what

' may result in an error or an unexpected behavior!
oSequenceContainer.setPropertyValue (“TheSequence”, a%())

When using Basic arrays as a whole for parameters or for property access, they should always be followed
by ' ()'in the Basic code, otherwise errors may occur in some situations.

It can be useful to use a OpenOffice.orgBasic RTL function called Array () to create, initialize and
assign it to a variant variable in a single step, especially for small sequences:

Dim a ' should be declared as Variant
a = Array(1, 2, 3)

' is the same as

2

@]

m a
1
2
3

im a(
(0)
(1)
(2)
Sometimes it is necessary to pass an empty sequence to a UNO interface. In Basic, empty sequences
can be declared by omitting the index from the Dim command:

Dim a% () ' empty array/sequence of type Integer

Dim bS$ () ' empty array/sequence of String

Sequences returned by UNO are also represented in Basic as arrays, but these arrays do not have to
be declared as arrays beforehand. Variables used to accept a sequence should be declared as
variant. To access an array returned by UNO, it is necessary to get information about the number
of elements it contains with the Basic RTL functions LBound () and UBound ().

The function LBound () returns the lower index and UBound () returns the upper index. The
following code shows a loop going through all elements of a returned sequence:

Dim aResultArray ' should be declared as Variant
aResultArray = oSequenceContainer.TheSequence

dim i%, iFrom%, iTo%

iFrom$% LBound (aResultArray ())

iTo% UBound (aResultArray())

for 1% = iFrom% to iTo% ' this loop displays all array elements
msgbox aResultArray (i%)

next 1%

The function LBound () is a standard Basic function and is not specific in a UNO context. Basic
arrays do not necessarily start with index 0, because it is possible to write something similar to:

Dim a (3 to 5)
This causes the array to have a lower index of 3. However, sequences returned by UNO always
have the start index 0. Usually only UBound () is used and the example above can be simplified to:

Dim aResultArray ' should be declared as Variant
aResultArray = oSequenceContainer.TheSequence

Dim i%, iTo%
iTo% UBound (aResultArray())
For i% 0 To iTo% ' this loop displays all array elements

138 OpenOffice.org 1.1 Developer's Guide * January 2004

MsgBox aResultArray (i%)
Next 1%

The element count of a sequence/array can be calculated easily:

u% = UBound(aResultArray ())

ElementCount% = u% + 1
For empty arrays/sequences UBound returns -1. This way the semantic of UBound stays consistent
as the element count is then calculated correctly as:

ElementCount$% = u% + 1 '=-1+1=0

The mapping between UNO sequences and Basic arrays depends on the fact that both use a zero-based
index system. To avoid problems, the syntax

Dim a (IndexMin to IndexMin)

or the Basic command Option Base 1 should not be used. Both cause all Basic arrays to start with an
index other than 0.

UNO also supports sequences of sequences. In Basic, this corresponds with arrays of arrays. Do not
mix up sequences of sequences with multidimensional arrays. In multidimensional arrays, all sub
arrays always have the same number of elements, whereas in sequences of sequences every
element sequence can have a different size. Example:

Dim aArrayOfArrays ' should be declared as Variant
aArrayOfArrays = oExample.ShortSequences ' returns a sequence of sequences of short

Dim i%, NumberOfSequences$
Dim j%, NumberOfElements$%
Dim aElementArray

NumberOfSequences$ = UBound(aArrayOfArrays()) + 1
For i% = 0 to NumberOfSequences$% - 1 ' loop over all sequences
aElementArray = aArrayOfArrays(i%
NumberOfElements% = UBound(aElementArray()) + 1
For j% = 0 to NumberOfElements% - 1 ' loop over all elements
MsgBox aElementArray(j%)
Next j%
Next 1%

To create an array of arrays in Basic, sub arrays are used as elements of a master array:

' Declare master array
Dim aArrayOfArrays(2)

' Declare sub arrays
Dim aArrayO(3)
Dim aArrayl(2)
Dim aArray2(0)

' Initialise sub arrays

aArray0(0) =0

aArray0(1) =1

aArray0(2) = 2

aArray0(3) = 3

aArrayl(0) = 42

aArrayl(1) =0

aArrayl(2) = -42

aArray2(0) =1

' Assign sub arrays to the master array
aArrayOfArrays(0) = aArray0 ()
aArrayOfArrays(1) = aArrayl ()
aArrayOfArrays(2) = aArray2()

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays ()

In this situation, the runtime function Array () is useful. The example code can then be written
much shorter:

' Declare master array
Dim aArrayOfArrays(2)

' Create and assign sub arrays
aArrayOfArrays(0) = Array(0, 1, 2, 3

Chapter 3 Professional UNO 139

140

aArrayOfArrays(1) = Array(42, 0, -42
aArrayOfArrays(2) = Array(1

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays ()

If you nest Array (), more compact code can be written, but it becomes difficult to understand the
resulting arrays:

' Declare master array variable as variant
Dim aArrayOfArrays

' Create and assign master array and sub arrays
aArrayOfArrays = Array(Array(0, 1, 2, 3), Array(42, 0, -42), Array(1))

' Assign the master array to the array property
oExample.ShortSequences = aArrayOfArrays ()

Sequences of higher order can be handled accordingly.

Mapping of Structs

UNO struct types can be instantiated with the Dim As New command as a single instance and
array.

' Instantiate a Property struct
Dim aProperty As New com.sun.star.beans.Property

' Instantiate an array of Locale structs
Dim Locales(10) As New com.sun.star.lang.Locale

UNO struct instances are handled like UNO objects. Struct members are accessed using the .
operator. The Dbg Properties property is supported. The properties Dbg SupportedInterfaces
and Dbg Methods are not supported because they do not apply to structs.:

' Instantiate a Locale struct
Dim alocale As New com.sun.star.lang.Locale

' Display properties
MsgBox alLocale.Dbg Properties

' Access “Language” property
alocale.Language = "en"

Objects and structs are different. Objects are handled as references and structs as values. When
structs are assigned to variables, the structs are copied. This is important when modifying an object
property that is a struct, because a struct property has to be reassigned to the object after reading
and modifying it.
In the following example, oExample is an object that has the properties MyObject and MyStruct.
. The object provided by MyObject supports a string property ObjectName.
- The struct provided by MyStruct supports a string property StructName.
Both oExample.MyObject.ObjectName and oExample.MyStruct.StructName should be modi-
fied. The following code shows how this is done for an object:

' Accessing the object

Dim oObject

oObject = oExample.MyObject
oObject.ObjectName = “Tim” ' Ok!
'

or shorter

oExample.MyObject.ObjectName = “Tim” ' Ok!

The following code shows how it is done correctly for the struct (and possible mistakes):

' Accessing the struct

Dim aStruct

aStruct = oExample.MyStruct ' aStruct is a copy of oExample.MyStruct!
aStruct.StructName = “Tim” ' Affects only the property of the copy!

' If the code ended here, oExample.MyStruct wouldn't be modified!

OpenOffice.org 1.1 Developer's Guide « January 2004

oExample.MyStruct = aStruct ' Copy back the complete struct! Now it's ok!

' Here the other variant does NOT work at all, because
' only a temporary copy of the struct is modified!
oExample.MyStruct.StructName = “Tim” ' WRONG! oExample.MyStruct is not modified!

Mapping of Enums and Constant Groups

Use the fully qualified names to address the values of an enum type by their names. The following
examples assume that oExample and oExample2 support com.sun.star.beans.XPropertySet
with a property Status of the enum type com.sun.star.beans.PropertyState:

Dim EnumValue
EnumValue = com.sun.star.beans.PropertyState.DEFAULT VALUE
MsgBox EnumValue ' displays 1

eExample.Status = com.sun.star.beans.PropertyState.DEFAULT VALUE

Basic does not support Enum types. In Basic, enum values coming from UNO are converted to
Long values. As long as Basic knows if a property or an interface method parameter expects an
enum type, then the Long value is internally converted to the right enum type. Problems appear
with Basic when interface access methods expect an Any:

Dim EnumValue
EnumValue = oExample.Status ' EnumValue is of type Long

' Accessing the property implicitly
oExample2.Status = EnumValue ' Ok! EnumValue is converted to the right enum type

' Accessing the property explicitly using XPropertySet methods

oExample?2.setPropertyValue (“Status”, EnumValue) ' WRONG! Will probably fail!
The explicit access could fail, because Enumvalue is passed as parameter of type Any to setProp-
ertyValue (), therefore Basic does not know that a value of type PropertyState is expected. There
is still a problem, because the Basic type for com.sun.star.beans.PropertyState is Long. This
problem is solved in the implementation of the com.sun.star.beans.xPropertySet interface. For
enum types, the implicit property access using the Basic property syntax Object.Property is
preferred to calling generic methods using the type Any. In situations where only a generic inter-
face method that expects an enum for an Any, there is no solution for Basic.

Constant groups are used to specify a set of constant values in IDL. In Basic, these constants can be
accessed using their fully qualified names. The following code displays some constants from
com.sun.star.beans.PropertyConcept:

MsgBox com.sun.star.beans.PropertyConcept.DANGEROUS ' Displays 1
MsgBox com.sun.star.beans.PropertyConcept.PROPERTYSET ' Displays 2

A constant group or enum can be assigned to an object. This method is used to shorten code if
more than one enum or constant value has to be accessed:

Dim oPropConcept

oPropConcept = com.sun.star.beans.PropertyConcept
msgbox oPropConcept.DANGEROUS ' Displays 1
msgbox oPropConcept.PROPERTYSET ' Displays 2

Case Sensitivity

Generally Basic is case insensitive. However, this does not always apply to the communication
between UNO and Basic. To avoid problems with case sensitivity write the UNO related code as if
Basic was case sensitive. This facilitates the translation of a Basic program to another language, and
Basic code becomes easier to read and understand. The following discusses problems that might
occur.

Identifiers that differ in case are considered to be identical when they are used with UNO object
properties, methods and struct members.

Chapter 3 Professional UNO 141

Dim ALocale As New com.sun.star.lang.Locale

alocale.language = "en" ' Ok

MsgBox alLocale.Language ' Ok
The exceptions to this is if a Basic property is obtained through
com.sun.star.container.xXNameAccess as described above, its name has to be written exactly as
it is in the API reference. Basic uses the name as a string parameter that is not interpreted when
accessing com.sun.star.container.XNameAccess using its methods.

"oNameAccessible is an object that supports XNameAccess

' including the names “Valuel”, “Walue2”
x = oNameAccessible.Valuel ' Ok
y = oNameAccessible.VaLUe2 ' Runtime Error, Value2 is not written correctly
' is the same as
x = oNameAccessible.getByName (“Valuel”) ' Ok
y = oNameAccessible.getByName (“ValLUe2”) ' Runtime Error, Value2 is not written correctly

Exception Handling

Unlike UNO, Basic does not support exceptions. All exceptions thrown by UNO are caught by the
Basic runtime system and transformed to a Basic error. Executing the following code results in a
Basic error that interrupts the code execution and displays an error message:

Sub Main

Dim oLib

oLib = BasicLibraries.getByName ("InvalidLibraryName")
End Sub

The BasicLibraries object used in the example contains all the available Basic libraries in a
running office instance. The Basic libraries contained inBasicLibraries is accessed using
com.sun.star.container.XNameAccess. An exception was provoked by trying to obtain a non-
existing library. The BasicLibraries object is explained in more detail in 11.4 OpenOlffice.org Basic
and Dialogs - Advanced Library Organization.

The call to getByName () results in this error box:

OpenOffice.org 1.1.0 @|

EASIC runtime errat.

An exception occurred

Type: com.zun.star.container. MoSuchElement Exception
Mezzage: .

Hllustration 3.21: Unhandled UNO Exception

However, the Basic runtime system is not always able to recognize the Exception type. Sometimes
only the exception message can be displayed that has to be provided by the object implementation.

Exceptions transformed to Basic errors can be handled just like any Basic error using theOn Error
GoTo command:

Sub Main
On Error Goto ErrorHandler ' Enables error handling
Dim oLib
oLib = BasicLibraries.getByName("InvalidLibraryName")
MsgBox "After the Error"
Exit Sub
' Label
ErrorHandler:
MsgBox "Error code: " + Err + Chr$(13) + Error$
Resume Next ' Continues execution at the command following the error command
End Sub

142 OpenOffice.org 1.1 Developer's Guide * January 2004

When the exception occurs, the execution continues at the ErrorHandler label. In the error
handler, some properties are used to get information about the error. The Err is the error code that
is 1 for UNO exceptions. The Error$ contains the text of the error message. Executing the program
results in the following output:

soffice ['E

Errar code: 1

An exception occurred

Type: com.sun.star.container. Mo SuchElement Exception
Message:

Hlustration 3.22: Handled UNO Exception

Another message box “After the Error” is displayed after the above dialog box, because Resume
Next goes to the code line below the line where the exception was thrown. TheExit Sub
command is required so that the error handler code would be executed again.

Listeners

Many interfaces in UNO are used to register listener objects implementing special listener inter-
faces, so that a listener gets feedback when its appropriate listener methods are called.
OpenOffice.org Basic does not support the concept of object implementation, therefore a special
RTL function named CreateUnoListener () has been introduced. It uses a prefix for method
names that can be called back from UNO. The CreateUnoListener () expects a method name
prefix and the type name of the desired listener interface. It returns an object that supports this
interface that can be used to register the listener.

The following example instantiates an com.sun.star.container.XContainerListener. Note the
prefix ContListener :

Dim oListener
oListener = CreateUnoListener("ContListener ", "com.sun.star.container.XContainerListener")

The next step is to implement the listener methods. In this example, the listener interface has the
following methods:
Methods of com.sun.star.container.XContainerListener

disposing () Method of the listener base interface com.sun.star.lang.XEventListener,
contained in every listener interface, because all listener interfaces must be
derived from this base interface. Takes acom.sun.star.lang.EventObject

elementInserted() Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

elementRemoved () Method of interface com.sun.star.container.XContainerListener.
Takes a com.sun.star.container.ContainerEvent.

elementReplaced () Method of interface com.sun.star.container.xContainerListener.
Takes a com.sun.star.container.ContainerEvent.
In the example, ContListener is specified as a name prefix, therefore the following subs have to
be implemented in Basic.
ContListener disposing
- ContListener elementInserted

+ ContListener elementRemoved

Chapter 3 Professional UNO 143

- ContListener elementReplaced

Every listener type has a corresponding Event struct type that contains information about the
event. When a listener method is called, an instance of this Event type is passed as a parameter. In
the Basic listener methods these Event objects can be evaluated by adding an appropriate variant
parameter to the procedure header. The following code shows how the listener methods in the
example could be implemented:

Sub ContListener disposing(oEvent
MsgBox "disposing"
MsgBox oEvent.Dbg Properties
End Sub

Sub ContListener elementInserted(oEvent)
MsgBox "elementInserted"
MsgBox oEvent.Dbg Properties

End Sub

Sub ContListener elementRemoved(oEvent)
MsgBox "elementRemoved"
MsgBox oEvent.Dbg Properties

End Sub

Sub ContListener elementReplaced(oEvent)
MsgBox "elementReplaced"
MsgBox oEvent.Dbg Properties
End Sub
It is necessary to implement all listener methods, including the listener methods of the parent inter-
faces of a listener. Basic runtime errors will occur whenever an event occurs and no corresponding
Basic sub is found, especially with disposing (), because the broadcaster might be destroyed a
long time after the Basic program was ran. In this situation, Basic shows a "Method not found"
message. There is no indication of which method cannot be found or why Basic is looking for a
method.

We are listening for events at the basic library container. Our simple implementation for events
triggered by user actions in the Tools - Macro - Organizer dialog displays a message box with the
corresponding listener method name and a message box with the Dbg Properties of the event
struct. For the disposing () method, the type of the event object is
com.sun.star.lang.EventObject. All other methods belong to
com.sun.star.container.XContainerListener, therefore the type of the event object is
com.sun.star.container.ContainerEvent. This type is derived from
com.sun.star.lang.EventObject and contains additional container related information.

If the event object is not needed, the parameter could be left out of the implementation. For
example, the disposing () method could be:

' Minimal implementation of Sub disposing

Sub ContListener disposing

End Sub
The event objects passed to the listener methods can be accessed like other struct objects. The
following code shows an enhanced implementation of the elementRemoved () method that evalu-
ates the com.sun.star.container.ContainerEvent to display the name of the module removed
from Libraryl and the module source code:

sub ContListener ElementRemoved(oEvent)

MsgBox "Element " + oEvent.Accessor + " removed"
MsgBox "Source =" + Chr$(13) + Chr$(13) + oEvent.Element
End Sub

When the user removes Modulel, the following message boxes are displayed by
ContListener ElementRemoved():

144 OpenOffice.org 1.1 Developer's Guide * January 2004

: SOuECce =
soffice

Element Modulel remowved REM Basll

Sub hdain

End Sub

Hllustration 3.23: ContListener ElementRemoved Event Callback

When all necessary listener methods are implemented, add the listener to the broadcaster object by
calling the appropriate add method. To register an XContainerListener, the corresponding regis-
tration method at our container is addContainerListener ():

Dim oLib
oLib = BasicLibraries.Libraryl ' Libraryl must exist!
oLib.addContainerListener (oListener) ' Register the listener

The naming scheme XSomeEventListener <> addSomeEventListener () isused throughout the
OpenOffice.org APIL

The listener for container events is now registered permanently. When a container event occurs,
the container calls the appropriate method of the
com.sun.star.container.XContainerListener interface in our Basic code.

3.4.4 Automation Bridge

Introduction

The OpenOffice.org software supports Microsoft's Automation technology. This offers program-
mers the possibility to control the office from external programs. There is a range of efficient IDEs
and tools available for developers to choose from.

Automation is language independent. The respective compilers or interpreters must, however,
support Automation. The compilers transform the source code into Automation compatible
computing instructions. For example, the string and array types of your language can be used
without caring about their internal representation in Automation, which isBSTR and SAFEARRAY. A
client program that controls OpenOffice.org can be represented by an executable (Visual Basic,
C++) or a script (JScript, VB Script). The latter requires an additional program to run the scripts,
such as Windows Scripting Host (WSH) or Internet Explorer.

UNO was not designed to be compatible with Automation and COM, although there are similari-
ties. OpenOffice.org deploys a bridging mechanism provided by the Automation Bridge to make
UNO and Automation work together. The bridge consists of UNO services, however, it is not
necessary to have a special knowledge about them to write Automation clients for OpenOffice.org.
For additional information, refer to (see 3.4.4 Professional UNO - UNO Language Bindings - Automa-
tion Bridge - The Bridge Services).

Different languages have different capabilities. There are differences in the manner that the same
task is handled, depending on the language used. Examples in Visual Basic, VB Script and JScript
are provided. They will show when a language requires special handling or has a quality to be
aware of. Although Automation is supposed to work across languages, there are subtleties that

Chapter 3 Professional UNO 145

146

require a particular treatment by the bridge or a style of coding. For example, JScript does not
know out parameters, therefore Array objects have to be used. Currently, the bridge has been
tested with C++, JScript, VBScript and Visual Basic, although other languages can be used as well.

The name Automation Bridge implies the use of the Automation technology. Automation is part of
the collection of technologies commonly referred to as ActiveX or OLE, therefore the term OLE
Bridge is misleading and should be avoided. Sometimes the bridge is called COM bridge, which is
also wrong, since the only interfaces which are processed by the bridge are IlUnknown and IDis
patch.

Requirements

The Automation technology can only be used with OpenOffice.org on a Windows platform
(Windows 95, 98, NT4, ME, 2000, XP). There are COM implementations on Macintosh OS and
UNIX, but there has been no effort to support Automation on these platforms.

Using Automation involves creating objects in a COM-like fashion, that is, using functions like
CreateObject () in VB or CoCreatelInstance () in C. This requires the OpenOffice.org automa-
tion objects to be registered with the Windows system registry. This registration is carried out
whenever an office is installed on the system. If the registration did not take place, for example
because the binaries were just copied to a certain location, then Automation clients will not work
correctly or not at all. Refer to 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge -
The Service Manager Component for additional information.

A Quick Tour

The following example shows how to access OpenOffice.org functionality through Automation.
Note the inline comments. The only automation specific call isWScript.CreateObject () in the
first line, the remaining are OpenOffice.org API calls. The helper functions createStruct () and
insertIntoCell () are shown at the end of the listing

'This is a VBScript example

'The service manager is always the starting point

'If there is no office running then an office is started up

Set objServiceManager= WScript.CreateObject("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createlnstance ("com.sun.star.reflection.CoreReflection")

'Create the Desktop
Set objDesktop= objServiceManager.createlnstance ("com.sun.star.frame.Desktop")

'Open a new empty writer document
Dim args ()
Set objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args)

'Create a text object
Set objText= objDocument.getText

'Create a cursor object
Set objCursor= objText.createTextCursor

'Inserting some Text
objText.insertString objCursor, "The first line in the newly created text document." & vbLf, false

'Inserting a second line
objText.insertString objCursor, "Now we're in the second line", false

'Create instance of a text table with 4 columns and 4 rows
Set objTable= objDocument.createInstance("com.sun.star.text.TextTable")
objTable.initialize 4, 4

'Insert the table
objText.insertTextContent objCursor, objTable, false

'Get first row
Set objRows= objTable.getRows

OpenOffice.org 1.1 Developer's Guide « January 2004

Set objRow= objRows.getByIndex(0)

'Set the table background color

objTable.setPropertyValue "BackTransparent",
objTable.setPropertyValue "BackColor",

false
13421823

'Set a different background color for the first row

objRow.setPropertyValue "BackTransparent",
objRow.setPropertyValue "BackColor",

'Fill the first table row

false
6710932

insertIntoCell "Al","FirstColumn", objTable // insertIntoCell is a helper function, see below
insertIntoCell "B1l", "SecondColumn", objTable
insertIntoCell "C1","ThirdColumn", objTable
insertIntoCell "D1","SUM", objTable
objTable.getCellByName ("A2") .setValue 22.5
objTable.getCellByName ("B2") .setValue 5615.3
objTable.getCellByName ("C2") .setValue -2315.7
objTable.getCellByName ("D2") .setFormula"sum "
objTable.getCellByName ("A3") .setValue 21.5
objTable.getCellByName ("B3") .setValue 615.3
objTable.getCellByName ("C3") .setValue -315.7
objTable.getCellByName ("D3") .setFormula "sum "
objTable.getCellByName ("A4") .setValue 121.5
objTable.getCellByName ("B4") .setValue -615.3
objTable.getCellByName ("C4") .setValue 415.7
objTable.getCellByName ("D4") .setFormula "sum "
'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 255

objCursor.setPropertyValue "CharShadowed", true

'Create a paragraph break

'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH BREAK constant
objText.insertControlCharacter objCursor, 0 , false

'Inserting colored Text.

objText.insertString objCursor, " This is a colored Text - blue with shadow" & vbLf, false
'Create a paragraph break (ControlCharacter::PARAGRAPH BREAK) .

objText.insertControlCharacter objCursor, 0, false

'Create a TextFrame.
Set objTextFrame= objDocument.createlnstance ("com.sun.star.text.TextFrame")

'Create a Size struct.

Set objSize= createStruct ("com.sun.star.awt.Size"
objSize.Width= 15000

objSize.Height= 400

objTextFrame.setSize (objSize)

// helper function, see below

' TextContentAnchorType.AS CHARACTER = 1
objTextFrame.setPropertyValue "AnchorType", 1

'insert the frame

objText.insertTextContent objCursor, objTextFrame, false
'Get the text object of the frame

Set objFrameText= objTextFrame.getText

'Create a cursor object
Set objFrameTextCursor= objFrameText.createTextCursor

'Inserting some Text
objFrameText.insertString objFrameTextCursor,
false

objFrameText.insertString objFrameTextCursor, _
vbLf & "With this second line the height of the frame raises.", false

"The first line in the newly created text frame.",

'Create a paragraph break
'The second argument is a com::sun::star::text::ControlCharacter::PARAGRAPH BREAK constant
objFrameText.insertControlCharacter objCursor, 0 , false

'Change the CharColor and add a Shadow
objCursor.setPropertyValue "CharColor", 65536
objCursor.setPropertyValue "CharShadowed", false

'Insert another string

objText.insertString objCursor, " That's all for now false

fin
iy
On Error Resume Next

If Err Then

MsgBox "An error occurred"
End If

Chapter 3 Professional UNO 147

148

Sub insertIntoCell(strCellName, strText, objTable)
Set objCellText= objTable.getCellByName (strCellName)
Set objCellCursor= objCellText.createTextCursor
objCellCursor.setPropertyValue "CharColor",16777215
objCellText.insertString objCellCursor, strText, false
End Sub

Function createStruct(strTypeName)

Set classSize= objCoreReflection.forName (strTypeName)

Dim aStruct

classSize.createObject aStruct

Set createStruct= aStruct
End Function
This script created a new document and started the office, if necessary. The script also wrote text,
created and populated a table, used different background and pen colors. Only one object is
created as an ActiveX component called com.sun.star.ServiceManager. The service manager is
then used to create additional objects which in turn provided other objects. All those objects
provide functionality that can be used by invoking the appropriate functions and properties. A
developer must learn which objects provide the desired functionality and how to obtain them. The
chapter 2 First Steps introduces the main OpenOffice.org objects available to the programmer.

The Service Manager Component

Instantiation

The service manager is the starting point for all Automation clients. The service manager requires

to be created before obtaining any UNO object. Since the service manager is a COM component, it

has a cLsID and a programmatic identifier which iscom.sun.star.ServiceManager. It is instanti-
ated like any ActiveX component, depending on the language used:

//C++

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420,0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

hr= CoCreatelInstance(clsFactory, NULL, CLSCTX ALL, _ uuidof (IDispatch), (void**)s&pdispFactory):;
In Visual C++, use classes which facilitate the usage of COM pointers. If you use the Active

Template Library (ATL), then the following example looks like this:

CComPtr<IDispatch> spDisp;
if (SUCCEEDED(spDisp.CoCreateInstance ("com.sun.star.ServiceManager")))
{
// do something
}

JScript:

var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;

Visual Basic:

Dim objManager As Object
Set objManager= CreateObject ("com.sun.star.ServiceManager")

VBScript with WSH.:

Set objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager")

JScript with WSH:

var objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager") ;

The service manager can also be created remotely, that is. on a different machine, taking the secu-
rity aspects into account. For example, set up launch and access rights for the service manager in
the system registry (see “DCOM?™).

OpenOffice.org 1.1 Developer's Guide « January 2004

The code for the service manager resides in the office executable soffice.exe. COM starts up the
executible whenever a client tries to obtain the class factory for the service manager, so that the
client can use it.

Registry Entries

For the instantiation to succeed, the service manager must be properly registered with the system
registry. The keys and values shown in the tables below are all written during setup. It is not
necessary to edit them to use the Automation capability of the office. Automation works immedi-
ately after installation. There are three different keys under HKEY CLASSES ROOT that have the
following values and subkeys:

Key Value
CLSID\{82154420-0FBF-11d4-8313-005004526AB4} "StarOffice Service Manager (Ver 1.0)"
Sub Keys

LocalServer32 "<OfficePath>\program\soffice.exe”
NotInsertable

ProgIDcom.sun.star.ServiceManager.1l "com.sun.star.ServiceManager.1l"
Programmable

VersionIndependentProgID "com.sun.star.ServiceManager"

Key Value

com.sun.star.ServiceManager "StarOffice Service Manager"

Sub Keys

CLSID "{82154420-0FBF-11d4-8313-0050045260AB4}"
CurVer "com.sun.star.ServiceManager.1l"

Key Value

com.sun.star.ServiceManager.1l "StarOffice Service Manager (Ver 1.0)"
Sub Keys

CLSID "{82154420-0FBF-11d4-8313-005004526AB4}"

The value of the key CLSID\{82154420-0FBF-11d4-8313-005004526AB4}\LocalServer32
reflects the path of the office executable.

All keys have duplicates under HKEY LOCAL MACHINE\SOFTWARE\Classes\.

The service manager is an ActiveX component, but does not support self-registration. That is, the
office does not support the command line arguments -RegServer or -UnregServer.

The service manager, as well as all the objects that it creates and that originate from it indirectly as
return values of function calls are proper automation objects. They can also be accessed remotely
through DCOM.

From UNO Objects to Automation Objects

The service manager is based on the UNO service manager and similar to all other UNO compo-
nents, is not compatible with Automation. The service manager can be accessed through the COM
API, because the service manager is an Active X component contained in an executable that is the
OpenOffice.org. When a client creates the service manager, for example by calling CreateObject

Chapter 3 Professional UNO 149

150

(), and the office is not running, it is started up by the COM system. The office then creates a class
factory for the service manager and registers it with COM. At that point, COM uses the factory to
instantiate the service manager and return it to the client.

When the function IClassFactory: :CreatelInstance is called, the UNO service manager is
converted into an Automation object. The actual conversion is carried out by the UNO service
com.sun.star.bridge.0OleBridgeSupplier2 (see 3.4.4 Professional UNO - UNO Language Bind-
ings - Automation Bridge - The Bridge Services). The resulting Automation object contains the UNO
object and translates calls to IDispatch: : Invoke into calls to the respective UNO interface func-
tion. The supplied function arguments, as well as the return values of the UNO function are
converted according to the defined mappings (see 3.4.4 Professional UNO - UNO Language Bindings
- Automation Bridge - Type Mappings). Returned objects are converted into Automation objects, so
that all objects obtained are always proper Automation objects.

Using UNO from Automation

With the IDL descriptions and documentation, start writing code that uses an interface. This
requires knowledge about the programming language, especially how UNO interfaces can be
accessed in that language and how function calls work.

In some languages, such as C++, the use of interfaces and their functions is simple, because the IDL
descriptions map well with the respective C++ counterparts. For example, the syntax of functions
are similar, and interfaces and out parameters can also be realized. The C++ language is not the
best choice for Automation, because all interface calls have to use IDispatch, which is difficult to
use in C++. In other languages, such as VB and Jscript, the 1Dispatch interface is hidden behind

an object syntax that leads to shorter and more understandable code.

Different interfaces can have functions with the same name. There is no way to call a function
which belongs to a particular interface, because interfaces can not be requested in Automation . Ifa
UNO object provides two functions with the same name, it is undefined which function will be
called. A solution for this issue is planned for the future.

Not all languages treat method parameters in the same manner, especially when it comes to input
parameters that are reused as output parameters. From the perspective of a VB programmer anout
parameter does not look different from an in parameter. However, to realize out parameters in
Jscript, use an Array or Value Object that is a special construct provided by the Automation
bridge. JScript does not support out parameters through calls by reference.

Calling Functions and Accessing Properties

The essence of Automation objects is the IDispatch interface. All function calls, including the
access to properties, ultimately require a call to IDispatch: : Invoke. When using C++, the use of

IDispatch is rather cumbersome. For example, the following code calls createInstance
("com.sun.star.reflection.CoreReflection") :

OLECHAR* funcname = L”createlnstance”;

DISPID id;

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420,0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

HRESULT hr= CoCreateInstance(clsFactory, NULL, CLSCTX ALL, _ uuidof (IDispatch), (void**)&pdispFactory):

if (SUCCEEDED (pdispFactory->GetIDsOfNames (IID NULL, &funcName, 1, LOCALE USER _DEFAULT, &id))
{

VARIANT paraml;

VariantInit (¶ml);

paraml.vt= VT BSTR;

paraml.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection");

DISPPARAMS dispparams= { ¶ml, 0, 1, 0};

VARIANT result;

OpenOffice.org 1.1 Developer's Guide « January 2004

VariantInit (&result);
hr= pdispFactory->Invoke (id, IID NULL, LOCALEiUSERiDEFAULT, DISPATCHiMETHOD,
&dispparams, &result, NULL, 0);
}
First the COM ID for the method name createInstance () isretrieved from GetIdsOfNames, then

the ID is used to invoke () the method createInstance ().

Before calling a certain function on the IDispatch interface, get the DISPID by calling GetIDsOf-
Names. The DISPIDs are generated by the bridge, as required. There is no fixed mapping from
member names to DISPIDs, that is, the DISPID for the same function of a second instance of an
object might be different. Once a DISPID is created for a function or property name, it remains the
same during the lifetime of this object.

Helper classes can make it easier. The next example shows the same callrealized with helper
classes from the Active Template Library:

CComDispatchDriver spDisp(pdispFactory);

CComVariant param(L“com.sun.star.reflection.CoreReflection");
CComVariant result;
hr= spUnk.Invokel (L“createInstance"“,param, result);

Some frameworks allow the inclusion of COM type libraries that is an easier interface to Automa-
tion objects during development. These helpers cannot be used with UNO, because the SDK does
not provide COM type libraries for UNO components. While COM offers various methods to
invoke functions on COM objects, UNO supports IDispatch only.

Programming of Automation objects is simpler with VB or JScript, because the IDispatch interface
is hidden and functions can be called directly. Also, there is no need to wrap the arguments into
VARIANTS.

//VB
Dim objRefl As Object
Set objRefl= dispFactory.createlInstance (“com.sun.star.reflection.CoreReflection”)

//JScript
var objRefl= dispFactory.createInstance (“com.sun.star.reflection.CoreReflection”) ;

Pairs of get/set functions following the pattern

SomeType getSomeProperty ()
void setSomeProperty (SomeType aValue)

are handled as COM object properties.

Accessing such a property in C++ is similar to calling a method. First, obtain aDISPID, then call
IDispatch::Invoke with the proper arguments.

DISPID dwDispID;
VARIANT value;
VariantInit (&value) ;
OLECHAR* name= L“AttrByte"“;
HRESULT hr = pDisp->GetIDsOfNames (IID NULL, &name, 1, LOCALE USER DEFAULT, &dwDispID) ;
if (SUCCEEDED (hr))
{
// Get the property
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
pDisp->Invoke (dwDispID, IID NULL, LOCALE_USER DEFAULT, DISPATCH_ PROPERTYGET,
&dispparamsNoArgs, &value, NULL, NULL) ;
// The VARIANT value contains the value of the property

// Sset the property
VARIANT value2;
VariantInit (value?2);
value2.vt= VT_UIl;
value2.bval= 10;

DISPPARAMS disparams;

dispparams.rgvarg = &value2;

DISPID dispidPut = DISPID_ PROPERTYPUT;
dispparams.rgdispidNamedArgs = &dispidPut;

pDisp->Invoke (dwDispID, IID NULL, LOCALE_USER DEFAULT, DISPATCH_ PROPERTYPUT,
&dispparams, NULL, NULL, NULL);

Chapter 3 Professional UNO 151

When the property is an IUnknown*IDispatch* or SAFEARRAY* the flag DISPATCH PROPERTYPU-
TREF must be used. This is also the case when a value is passed by reference (VARIANT.vt =
VT BYREF | ...).

The following example shows using the ATL helper it looks simple:

CComVariant prop;

CComDispatchDriver spDisp(pDisp);

// get the property

spDisp.GetPropertyByName (L“AttrByte"“, &prop) ;
//set the property

CComVariant newVal((BYTE) 10);
spDisp.PutPropertyByName (L“AttrByte"“, &énewVal) ;

The following example using VB and JScript it is simpler:

//VB
Dim prop As Byte
prop= obj.AttrByte

Dim newProp As Byte
newProp= 10
obj.AttrByte= newProp
'or

obj.AttrByte= 10

//JScript

var prop= obj.AttrByte;
obj.AttrByte= 10;

Service properties are not mapped to COM object properties. Use interfaces, such as
com.sun.star.beans.XPropertySet to work with service properties.

Return Values

There are three possible ways to return values in UNO:
- function return values

- inout parameters

- out parameters

Return values are commonplace in most languages, whereas inout and out parameters are not
necessarily supported. For example, in JScript.

To receive a return value in C++ provide a VARIANT argument to IDispatch:: Invoke:

//UNO IDL
long func();

//

DISPPARAMS dispparams= { NULL, 0, 0, 0};

VARIANT result;

VariantInit(&result);

hr= pdisp->Invoke(dispid, IID NULL, LOCALE USER DEFAULT, DISPATCH_ METHOD,
&dispparams, &result, NULL, 0);

The following example shows using VB and JScript this is simple:
//VB
Dim result As Long

result= obj.func

//JScript
var result= obj.func

When a function has inout parameters then provide arguments by reference in C++:

//UNO IDL
void func([inout] long val);

//C++

long longOut= 10;
VARIANT var;

152 OpenOffice.org 1.1 Developer's Guide * January 2004

VariantInit (&var) ;
var.vt= VT_BYREF | VT T4;
var.plval= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, NULL, NULL, O0);

//The value of longOut will be modified by UNO function.

The above VB code is written like this, because VB uses call by reference by default. After the call
to func (), value contains the function output:

Dim value As Long
value= 10
obj.func value

The type of argument corresponds to the UNO type according to the default mapping, cf.3.4.4
Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings. If in doubt, use
VARIANTS.

Dim value As Variant
value= 10;
obj.func value

However, there is one exception. If a function takes a character (char) as an argument and is called
from VB, use an Integer, because there is no character type in VB. For convenience, the COM
bridge also accepts a String as inout and out parameter:

//VB

Dim value As String

// string must contain only one character
value= "A"

Dim ret As String

obj.func value

JScript does not have inout or out parameters. As a workaround, the bridge accepts JScript Array
objects. Index 0 contains the value.

// Jscript

var inout= new Array();
inout[0]=123;

obj.func(inout);

var value= inout[O0];

Out parameters are similar to inout parameters in that the argument does not need to be initial-
ized.

//C++

long longOut;

VARIANT var;

VariantInit (&var);
var.vt= VT _BYREF | VT_I4;
var.plVal= &longOut;

DISPPARAMS dispparams= { &var, 0, 1, 0};
hr= pdisp->Invoke(dispid, IID_NULL, LOCALE USER_DEFAULT, DISPATCH_METHOD,
&dispparams, NULL, NULL, O0);

//VB
Dim value As Long
obj.func value

//JScript

var out= new Array();
obj.func (out) ;

var value= out[0];

Chapter 3 Professional UNO 153

Usage of Types

Interfaces

Many UNO interface functions take interfaces as arguments. If this is the case, there are three
possibilities to get an instance that supports the needed interface:

Ask the service manager to create a service that implements that interface.
Call a function on a UNO object that returns that particular interface.

Provide an interface implementation if a listener object is required. Refer to 3.4.4 Professional
UNO - UNO Language Bindings - Automation Bridge - Automation Objects with UNO Interfacesfor
additional information.

If createInstance () is called on the service manager or another UNO function that returns an
interface, the returned object is wrapped, so that it appears to be a COM dispatch object. When it is
passed into a call to a UNO function then the original UNO object is extracted from the wrapper
and the bridge makes sure that the proper interface is passed to the function. If UNO objects are
used, UNO interfaces do not have to be dealt with. Ensure that the object obtained from a call to a
UNO object implements the proper interface before it is passed back into another UNO call.

Structs

Automation does not know about structs as they exist in other languages, for example, in C++.
Instead, it uses Automation objects that contain a set of properties similar to the fields of a C++
struct. Setting or reading a member ultimately requires a call to IDispatch: : Invoke. However in
languages, such as VB, VBScript, and JScript, the interface call is obscured by the programming
language. Accessing the properties is as easy as with C++ structs.

// VB. obj is an object that implements a UNO struct

obj.Width= 100

obj.Height= 100

Whenever a UNO function requires a struct as an argument, the struct must be obtained from the
UNO environment. It is not possible to declare a struct. For example, assume there is an office
function setSize () that takes a struct of type Size. The struct is declared as follows:

// UNO IDL
struct Size
{
long Width;
long Height;
}

// the interface function, that will be called from script
void XShape::setSize(Size aSize)

You cannot write code similar to the following example (VBScript):

Class Size
Dim Width
Dim Height
End Class

'obtain object that implements Xshape

'now set the size
call objXShape.setSize(new Size) // wrong

The com.sun.star.reflection.CoreReflection service or the Bridge GetStruct function that
is called on any UNO object can be used to create the struct. The following example uses theCore-
Reflection service

'VBScript in Windows Scripting Host
Set objServiceManager= Wscript.CreateObject ("com.sun.star.ServiceManager")

'Create the CoreReflection service that is later used to create structs
Set objCoreReflection= objServiceManager.createlInstance ("com.sun.star.reflection.CoreReflection")

154 OpenOffice.org 1.1 Developer's Guide * January 2004

'get a type description class for Size

Set classSize= objCoreReflection.forName ("com.sun.star.awt.Size")
'create the actual object

Dim aSize

classSize.createObject aSize

'use aSize

aSize.Width= 100

aSize.Height= 12

'pass the struct into the function
objXShape.setSize aSize

The next example shows how Bridge GetStruct is used.

Set objServiceManager= Wscript.CreateObject ("com.sun.star.ServiceManager")
Set aSize= objServiceManager.Bridge GetStruct ("com.sun.star.awt.Size")
'use aSize

aSize.Width= 100

aSize.Height= 12

objXShape.setSize aSize
The Bridge GetStruct function can be called on any UNO object, as well as the service manager.

The corresponding C++ examples look complicated, but ultimately the same steps are necessary.
The method forName () on the CoreReflection service is called and returns a
com.sun.star.reflection.XIdlClass which can be asked to create an instance using createOb-
ject ():

// create the service manager of OpenOffice

IDispatch* pdispFactory= NULL;

CLSID clsFactory= {0x82154420,0x0FBF,0x11d4, {0x83, 0x13,0x00,0x50,0x04,0x52,0x6A,0xB4}};

hr= CoCreateInstance(clsFactory, NULL, CLSCTX ALL, _ uuidof (IDispatch), (void**)s&pdispFactory);

// create the CoreReflection service

OLECHAR* funcName= L"createlInstance";

DISPID id;

pdispFactory->GetIDsOfNames (IID NULL, &funcName, 1, LOCALE USER DEFAULT, &id);

VARIANT paraml;

VariantInit (¶ml) ;

paraml.vt= VT BSTR;

paraml.bstrVal= SysAllocString(L"com.sun.star.reflection.CoreReflection") ;

DISPPARAMS dispparams= { ¶ml, 0, 1, O0};

VARIANT result;

VariantInit (&result);

hr= pdispFactory->Invoke(id, IID_NULL, LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, &result, NULL, 0);

IDispatch* pdispCoreReflection= result.pdispVal;

pdispCoreReflection->AddRef () ;

VariantClear (&result);

// create the struct's idl class object
OLECHAR* strforName= L"forName";
hr= pdispCoreReflection->GetIDsOfNames (IID NULL, &strforName, 1, LOCALE USER _DEFAULT, &id);
VariantClear(¶ml) ;
paraml.vt= VT_BSTR;
paraml.bstrVal= SysAllocString(L"com.sun.star.beans.PropertyValue");
hr= pdispCoreReflection->Invoke(id, IID NULL, LOCALE USER_DEFAULT,
DISPATCH METHOD, &dispparams, &result, NULL, O0);

IDispatch* pdispClass= result.pdispVal;
pdispClass->AddRef () ;
VariantClear (&result);

// create the struct
OLECHAR* strcreateObject= L"createObject";
hr= pdispClass->GetIDsOfNames (IID NULL, &éstrcreateObject, 1, LOCALE USER DEFAULT, &id)

IDispatch* pdispPropertyValue= NULL;

VariantClear (¶ml) ;

paraml.vt= VT DISPATCH | VT_BYREF;

paraml .ppdispVal= &pdispPropertyValue;

hr= pdispClass->Invoke(id, IID NULL, LOCALE USER DEFAULT,
DISPATCH METHOD, &dispparams, NULL, NULL, 0);

// do something with the struct pdispPropertyValue contained in dispparams

//

pdispPropertyValue->Release () ;
pdispClass->Release () ;
pdispCoreReflection->Release () ;
pdispFactory->Release () ;

Chapter 3 Professional UNO 155

156

The Bridge GetStruct example.

// object be some UNO object in a COM environment
OLECHAR* strstructFunc= L"Bridge GetStruct";
hr= object->GetIDsOfNames (IID NULL, &strstructFunc, 1, LOCALE USER DEFAULT, &id);

VariantClear (&result);

VariantClear (¶ml) ;

paraml.vt= VT_BSTR;

paraml.bstrVal= SysAllocString(

L"com.sun.star.beans.PropertyValue") ;

hr= object->Invoke(id, IID NULL,LOCALE USER DEFAULT, DISPATCH METHOD,
&dispparams, &result, NULL, O0);

IDispatch* pdispPropertyValue= result.pdispVal;
pdispPropertyValue->AddRef () ;

// do something with the struct pdispPropertyValue

JScript:

// struct creation via CoreReflection
var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager");
var objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection") ;

var classSize= objCoreReflection.forName ("com.sun.star.awt.Size");

var outParam= new Array();

classSize.createObject(outParam) ;

var size= outParam[0];

//use the struct

size.Width=111;

size.Height=112;
e

// struct creation by bridge function

var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager") ;
var size= objServiceManager.Bridge_GetStruct("com.sun.star.awt.Size");
size.Width=111;

size.Height=112;

Type Mappings

Mapping of Simple Types

Whenever a UNO interface function requires a value of a simple type, such as float, double,
byte, short, long or char, it is provided by declaring a variable of that type (or a constant or
temporary variable) in the programming language used and passes it as an argument. This is the
customary way of programming. UNO simple types are the same as Automation types and the
bridge has a method of converting them.

In some languages, the set of available types does not match those of UNO types. For instance, in
Visual Basic, a character can not be declared, and a string is used instead. This does not concern a
VB programmer, but if C++ is used, then you would typically provide a short value (‘A') which is
totally different from the BSTR string that is used when you write "A" in VB.

Other examples for languages with a different set of simple types (compared to UNQ) are the
scripting languages VBScript and JScript. They are considered to be type-less languages, because
they do not allow variables of specific types to be declared. At a basic level they use Automation
types as well. They may not use the whole range (this is an implementation detail and might differ
between scripting engines). For example, they use a double for every floating point value and a
signed long for all integer values. This does not pose a problem, because the bridge converts
those values into the expected floating point or integer types. The programmer has to be aware of
this fact to prevent unexpected results caused by providing a value that exceeds the range of the
expected UNO type. For example, ifyou pass an integer value of 65536 where the UNO type is a
byte (-128 to 127), the converted value is different then the one provided. Also the conversion of
double to float or vice versa often results in slightly different values.

OpenOffice.org 1.1 Developer's Guide « January 2004

Automatic Type Conversion

Every UNO object obtained directly or indirectly from the service manager is an Automation object
that contains the actual UNO object. The wrapper contains code that implements the IDispatch
interface. During a call to IDispatch::Invoke, the wrapper-code converts the arguments to UNO
values, and the respective UNO function of the contained object is called with those values as
arguments.

The IDispatch interface reveals that all arguments and return values are actually VARIANTs. This
is similar to the XInvocation interface where arguments and return values are of the any type.
Both types carry values of a specific type. A VARIANT can contain all Automation types and an any
can contain all UNO types. Therefore, it would be suitable to say that VARIANT values are
converted into any values and vice versa. The contained values still have to be converted. When
working with VARIANTs and anys, extract the contained values for further processing. Before
calling those interfaces, put the values into VARIANTs or anys. This process is sometimes hidden by
the programming language you use. For example:

//UNO IDL

string func([in] long value);

//VB

Dim value As Long

value= 100

Dim ret As String

ret= obj.func(value)

Since VARIANT and any are helper types that allow writing code when the specific types are not yet
known, we need to focus on the mapping of the specific types. The VARIANTS or anys are only

mentioned if there is reason to look beyond the mapping of the contained types.

The bridge converts arguments according to well-defined mappings. The default mappings are
sufficient in most cases. The bridge also accepts arguments for flexibility whose types do not
exactly match the default mappings, but are similar enough to be converted (3.4.4 Professional UNO
- UNO Language Bindings - Automation Bridge - Type Mappings). In some situations, it may be neces-
sary for an Automation client to specify how an argument should be treated. This can be the case
in scripting languages, where the language does not provide specific types. Refer to 3.4.4 Profes-
sional UNO - UNO Language Bindings - Automation Bridge - Type Mappings. When Automation
objects are used from UNO, there is no construct such as avalue Object. The bridge always uses
type information provided by the automation object to determine the parameter types and
converts then uno values accordingly.

Default Mappings from Automation Types to UNO

This mapping applies in two situations. First, whenever you call a UNO function from an Automa-
tion environment, for example, from VB, the arguments flagged as in or inout parameters in the
corresponding UNO IDL description are converted according to the following default mappings.
Second, when Automation objects are called from a UNO environment and return a value, the
return values are converted to the corresponding UNO types.

Automation IDL Types UNO IDL Types

(source) (target)
boolean boolean
unsigned char byte
double double
float float
short short
long long
BSTR string

Chapter 3 Professional UNO 157

Automation IDL Types
(source)

short
long
IDispatch*

SAFEARRAY or
IDispatch* in JScript

UNO IDL Types
(target)
char

enum

The IDispatch* is mapped to the expected interface if it is actually a UNO
object implementing that interface, or an Automation implementation of
that interface (see 3.4.4 Professional UNO - UNO Language Bindings - Automa-
tion Bridge - Usage of Types).

If the IDispatch* is a return value or out parameter, then it is mapped to
XInvocation.

If the Automation object is a struct, UNO receives a struct (see 3.4.4 Profes-
sional UNO - UNO Language Bindings - Automation Bridge - Usage of Types).

sequence< type >.A two-dimensional SAFEARRAY is converted to
sequence< sequence<type>>,a three-dimensional SAFEARRAY is
converted to sequence<sequence<sequence<type>>>, and so forth. In
JScript one would provide an Array object that contains other Array
objects.

Default Mappings from UNO Types to Automation

If an Automation client calls a function on a UNO object and the function returns values such as
out parameters or the return value, then the mapping from UNO to Automation types applies. For

example:

//UNO IDL

long func([out] long value);

//call from VB

Dim value As Long
Dim ret As Long
ret= obj.func (value)

The returned value is a UNO long that is converted into an Automation long, which fits the
declaration of the variable ret. When the UNO function returns, then the bridge converts the out
parameter according to the mapping and writes the value back into the variable value.

In some situations, the client code performs a conversion on its own (this behavior is covered in “Client-Side

Conversions”).

This mapping is also used when you pass arguments to functions on an Automation object from a

UNO environment.

UNO IDL Types

Automation IDL Types

(source) (target)
boolean boolean

char short

byte unsigned byte
double double

float float

short, unsigned short short

long, unsigned long long

string BSTR
interface,struct IDispatch*

sequence

SAFEARRAY (VARIANT)

OpenOffice.org 1.1 Developer's Guide « January 2004

If a UNO function returns interfaces or structs, they are converted into Automation objects. For
example:

//UNO IDL
void func([out]com.sun.star.lang.XEventListener alnterface, [out]com.sun.star.lang.EventObject aStruct);

//VB

Dim objEventListener As Object

Dim objStruct As Object

func objEventListener, objStruct

A sequence returned by a UNO function is converted into a SAFEARRAY that contains VARIANTSs. If
a sequence contains nested sequences, the VARIANTS contain SAFEARRAYS. The OleObjectFactory
creates Automation objects and provides an com.sun.star.script.XInvocation interface which
can be used from the UNO environment. These objects might expect multi-dimensional SAFEAR-
RAYs as arguments. In this is the case, provide an appropriate sequence, for example
sequence<sequence<long>> for a two-dimensional array of longs. The contained sequences
should have the same length, otherwise the bridge uses the longest sequence to stipulate the size of
the respective dimension. If a sequence is shorter, then the remaining values are filled with null
values.

For example, assume a sequence with two elements which are also sequences. The elements of the
two sequences are long types and the first sequence could be mapped to an array, which is
expressed in C (for convenience):

long ar([2][10];

Further assume that the second of the two contained sequences only contains five elements. The C
array would still look the same. With the difference, that ar[0] [0] through ar[0] [4] contain the
elements of that sequence, and ar[0] [4] through ar[0] [9] contain null values.

Sequences are mapped to SAFEARRAYs and not C arrays.

Conversion Mappings

As shown in the previous section, Automation types have a UNO counterpart according to the
mapping tables. Ifa UNO function expects a particular type as an argument, then supply the corre-
sponding Automation type. This is not always necessary as the bridge also accepts similar types.
For example:

//UNO IDL

void func(long value);
// VB

Dim value As Byte
value = 2

obj.func vallong

The following table shows the various Automation types, and how they are converted to UNO IDL
types if the expected UNO IDL type has not been passed.

Automation IDL Types UNO IDL
(source) Types (target)
boolean (true, false) boolean
unsigned char, short, long, float, double: 0 = false, > 0 = true

string: "true" = true, "false" = false

boolean, unsigned char, short, long, float, double, string byte
double, boolean, unsigned char, short, long, float, string double
float, boolean, unsigned char, short, string float
short, unsigned char, long, float, double, string short
long, unsigned char, long, float, double, string long
BSTR, boolean, unsigned char, short, long, float, double string

Chapter 3 Professional UNO 159

160

Automation IDL Types UNO IDL
(source) Types (target)
short, boolean, unsigned char, long, float, double, string (1 character char

long)

long, boolean, unsigned char, short, float, double, string enum

When you use a string for a numeric value, it must contain an appropriate string representation of
that value.

Floating point values are rounded if they are used for integer values.

Be careful using types that have a greater value space than the UNO type. Do not provide an argu-
ment that exceeds the value space which would result in an error. For example:

// UNO IDL
void func([in] byte value);

// VB

Dim value as Integer

value= 1000

obj.func value 'causes an error

The conversion mappings only work with in parameters, that is, during calls from an Automation
environment to a UNO function, as far as the UNO function takes in parameters.

Client-Side Conversions

The UNO IDL description and the defined mappings indicate what to expect as a return value
when a particular UNO function is called. However, the language used might apply yet another
conversion after a value came over the bridge.

// UNO IDL
float func():;

// VB
Dim ret As Single
ret= obj.func() 'no conversion by VB

Dim ret2 As String
ret2= obj.func() 'VB converts float to string

When the function returns, VB converts the float value into a string and assigns it to ret2. Such
a conversion comes in useful when functions return a character, and a string is preferred instead of
a VB Integer value.

// UNO IDL
char func();

// VB

Dim ret As String

ret= obj.func () 'VB converts the returned short into a string

Be aware of the different value spaces if taking advantage of these conversions. That is, if the value
space of a variable that receives a return value is smaller than the UNO type, a runtime error might
occur if the value does not fit into the provided variable. Refer to the documentation of your
language for client-side conversions.

Client-side conversions only work with return values and not with out orinout parameters. The
current bridge implementation is unable to transport an out or inout parameter back to Automa-
tion if it does not have the expected type according to the default mapping.

OpenOffice.org 1.1 Developer's Guide « January 2004

Another kind of conversion is done implicitly. The user has no influence on the kind of conversion.
For example, the scripting engine used with the Windows Scripting Host or Internet Explorer uses
double values for all floating point values. Therefore, when a UNO function returns afloat value,
then it is converted into a double which may cause a slightly different value. For example:

// UNO IDL
float func(); //returns 3.14

// JScript
var ret= obj.func(); // implicit conversion from float to double, ret= 3.14000010490417

Mapping of Any

The any type is similar to VARIANT in coM. That is, it can contain values of different types. It is not
necessary to provide VARIANT arguments when the corresponding UNO argument is an any.
Instead, the values can be passed directly without wrapping them by a VARIANT. For example:

// UNO IDL
interface XSomething: XInterface

{
void func([in] any value);
}i

// Visual Basic
Dim param As Long
param= 10

// obj is the object that implements XSomething

obj.func param

In C++, set the value directly in the VARIANT that is put into the DISPPARAMS. rgvarg array. That is,
there is no need to provide a VARIANT with the type VT _VARIANT | VT BYREF.

When a UNO function takes an any as argument then it can contain values of all possible UNO
types. An implementation of that function may, however, expect a particular type.An example is
the com.sun.star.beans.XPropertySet interface with its function:

// UNO IDL
void setPropertyValue([in] string aPropertyName,

[in] any aValue) raises ...
As the name suggests, the function is used to set a value for a particular property. Usually the
properties have a distinct type and are not anys. Lets assume that there is a property Propa of type
float. Then a Singlein VBor a float in C++ has to be provided. In JScript or VBScript, the
scripting engine will probably pass a double to the function which would not be converted by the
bridge. That is, setPropertyValue () would receive an any containing a double. If the
programmer of the XPropertySet implementation was not careful converting the any into the type
that is expected then the code will throw an exception. There is no rule about how tolerant the
implementation has to be. The bridge does not know that the property is a float and hence it
needs to be told. This it is done by providing a value Object as argument. A Value Object is an
Automation object that is provided by the bridge. It carries a value and the name of the type that it

is supposed to be. For example:
// VBScript with Windows Scripting Host (WSH)
Set objServiceManager= WScript.CreateObject ("com.sun.star.ServiceManager")

Set aFloat= objServiceManager.Bridge GetValueObject ()
aFloat.Set "float", 3.14

// obj is the implementation of XSomething
obj.setPropertyValue "PropA", aFloat

Value Objects are covered in depth in chapter 3.4.4 Professional UNO - UNO Language Bindings -
Automation Bridge - Type Mappings.

In many cases it is sufficient to provide an automation type that maps to a UNO type that is
expected by the implementation. So if an any needs to contain a float then one would provide a

Chapter 3 Professional UNO 161

162

Single in VB. According to the default mapping, the Single will be converted into the expected
float. Of course, the language must be capable of explicitely declareing oleautomation types.

If a method call fails and the method takes any(s) as arguments then it is always a good idea to try
Value Objects. This ensures that the any contains exactly the type as defined in the client code.
Under some circumstances it is necessary to provide Value Objects as the following scenarios
show.

A UNO sequence is mapped to an Array object in JScript. Since an Array object is in fact an ordi-
nare object there is an ambiguity with other objects. This can be solved if the UNO method being
called, contains a parameter of type sequence. The bridge knows the type signature and hence can
treat the Array object accordingly. For example:

// UNO IDL
void func(XSomething obj) ;
void func2(sequence<long> ar);

Now let us assume the function takes an any containing a sequence. // uno 1pL

void func(any val);

// JScript

// obj is an automation object

unoobject.func(obj);

Then the bridge cannot resort to UNO type information, because it does not cover the types
contained in the any paramter. The JScript Array object would be converted into an UNO object,
which is not what the implementation expects. In this case one can resort to a Value Object. Then
the bridge can be told what exactly the provided object is supposed to be.

//JScript
var any = unoobject.Bridge_ GetValueObject ();
any.Set (“[]long”, arrayobject);

unoobject. func (any) ;

Another case where Value Objects are important is when an any containing a sequence is obtained
from a UNO object and then passed unchanged as argument to a UNO call. This can happen if one
accesses the same property, which is a sequence, through the XPropertySet interface. The call
XPropertySet::getPropertyValue returns an any. And XPropertySet::setPropertyValue takes an any
as arguments. So a user might expect this to work:

'Visual Basic

Dim sequence As VARIANT

sequence = unoobject.getPropertyValue (“PropertyName”)

unoobject.setPropertyValue (“"PropertyName”, sequence)

If the implementation of setPropertyValue does not convert the value into the expected type then
setPropertyValue will most certainly fail. This is because the returned any from getPropertyValue
is converted into a VARIANT containing a SAFEARRAY of VARIANTS. In setPropertyValue the

SAFEARRAY is converted into a sequence of anys according to the default mapping. If the prop-

erty is a sequence of long then setPropertyValue receives a sequence of anys.

Mapping of String

A string is a data structure that is common in programming languages. Although the idea of a
string is the same, the implementations and their creation can be quite different. For example, a
C++ programmer has a range of possibilities to choose from (for example, char*, char[1,
wchar t*,wchar t[], std::string, CString, BSTR), where a JScript programmer only knows
one kind of string. To use Automation across languages, it is necessary to use a string type that is
common to all those languages that has the same binary representation. This particular string is
declared as BSTR in COM. The name can be different depending on the language. For example, in
C++ there is a BSTR type, in VBt is called String and in JScript every string defined is a BSTR.

OpenOffice.org 1.1 Developer's Guide « January 2004

W

Refer to the documentation covering the BSTR's equivalent if using an Automation capable
language not covered by this document.

Mapping of Sequence

The discussion about strings applies for arrays as well. The difference is the array type used by
Automation is named SAFEARRAY in COM. The SAFEARRAY array is to be used when a UNO func-
tion takes a sequence as an argument. To create a SAFEARRAY in C++, use Windows API functions.
The C++ name is also SAFEARRAY, but in other languages it might be named different. In VB for
example, the type does not even exist, because it is mapped to an ordinary VB array:

Dim myarr (9) as String

JScript is different. It does not have a method to create a SAFEARRAY. Instead, JScript features an
Array object that can be used as a common array in terms of indexing and accessing its values. It is
represented by a dispatch object internally. JScript offers a VBArray object that converts a
SAFEARRAY into an Array object. Therefore, it is possible to call functions on Automation objects
which return SAFEARRAYS.

When a SAFEARRY is provided and a function is expecting a UNO sequence, the bridge accepts
JScript Array objects and converts them into a UNO sequence.

If a SAFEARRAY is obtained in JScript as a result of a call to an ActiveX component or a VB Script function
(for example, the Internet Explorer allows JScript and VBS code on the same page), then it can also be used
as an argument of a UNO function without converting it to an Array object.

If a UNO function returns a sequence, a SAFEARRAY is returned in JScript. Use the VBArray object to
convert the SAFEARRAY into a JScript Array to process the array.

Value Objects

A Value Object is an Automation object which can be obtained from the bridge. It can hold a value
and a type description, hence it resembles a UNO any or a VARIANT. A Value Object can stand in
for all kinds of arguments in a call to a UNO method from a automation language. A Value Object
is used when the bridge needs additional information for the parameter conversion. This is the
case when a UNO method takes an any as argument. In many cases, however, one can do without
a Value Object if one provides an argument which maps exactly to the expected UNO type
according to the default mapping. For example, a UNO method takes an any as argument which is
expected to contain a short. Then it would be sufficient to provide a Long in Visual Basic. But in
JScript there are no types and implicitly a 4byte integer would be passed to the call. Then the any
would not contain a short and the call may fail. In that case the Value Object would guarantee the
proper conversion.

A Value Object also enables in/out and out parameter in languages which only know in-parame-
ters in functions. JScript is a particular cases because one can use Array objects as well as Value
Objects for those parameters.
A value Object exposes four functions that can be accessed through 1Dispatch. These are:
void Set ([in]VARIANT type, [in]VARIANT value);
Assigns a type and a value.
void Get ([out,retval] VARIANT* val);
Returns the value contained in the object. Get is used when the value Object was used as
inout or out parameter.
void InitOutParam() ;

Tells the object that it is used as out parameter.

void InitInOutParam([in]VARIANT type, [in]VARIANT value);

Chapter 3 Professional UNO 163

Tells the object that it is used as inout parameter and passes the value for the in parameter,
as well as the type.

When the value Object is used as in or inout parameter then specify the type of the value. The
names of types correspond to the names used in UNO IDL, except for the “object” name. The

following table shows what types can be specified.

Name (used with Value Object) UNO IDL
char char

boolean boolean

byte byte

unsigned unsigned byte
short short

unsigned short
long

unsigned long

unsigned short
long

unsigned long

string string

float float

double double

any any

object some UNO interface

To show that the value is a sequence, put brackets before the names, for example:

[lchar - sequence<char>
[1[]lchar - sequence < sequence <char > >
[1[][lchar - sequence < sequence < sequence < char > > >

The value Objects are provided by the bridge and can be obtained from UNO objects. Call the
function Bridge GetValueObject:

// object is some UNO wrapper object
var valueObject= object.Bridge GetValueObject();

To use a Value Object as in parameter, specify the type and pass the value to the object:

// UNO IDL
void doSomething([in] sequence< short > ar);

// JScript

var value= object.Bridge_GetValueObject () ;
var array= new Array(1l,2,3);
value.Set (" []short",array);
object.doSomething (value) ;

In the previous example, the value Object was defined to be a sequence of short values. The
array could also contain value Objects again:

var valuel= object.Bridge_ GetValueObject () ;
var value2= object.Bridge GetValueObject ();
valuel.Set ("short“, 100);

value2.Set ("short", 111);

var array= new Array();

array[0]= valuel;

array[l]= value2;

var allValue= object.Bridge GetValueObject ()
allValue.Set (" []short™, array);
object.doSomething(allValue) ;

If a function takes an out parameter, tell the value Object like this:

// UNO IDL
void doSomething([out] long);

// JScript
var value= object.Bridge_GetValueObject () ;

164 OpenOffice.org 1.1 Developer's Guide * January 2004

value.InitOutParam() ;
object.doSomething (value) ;
var out= value.Get () ;

When the value Object is an inout parameter, it needs to know the type and value as well:

//UNO IDL
void doSomething([inout] long);

//JScript

var value= object.Bridge GetValueObject () ;
value.InitInOutParam("lng", 123);
object.doSomething (value) ;

var out= value.Get();

Exceptions and Errorcodes

UNO interface functions may throw exceptions to communicate an error. Automation objects
provide a different error mechanism. First, the IDispatch interface describes a number of error
codes (HRESULTs) that are returned under certain conditions. Second, the Invoke function takes an
argument that can be used by the object to provide descriptive error information. The argument is
a structure of type EXCEPINFO and is used by the bridge to convey exceptions being thrown by the
called UNO interface function. In case the UNO method throws an exception the bridge fills
EXCEPINFO with these values:

EXCEPINFO: :wCode = 1001
EXCEPINFO: :bstrSource = “automation bridge”

EXCEPINFO: :bstrDescription = type name of the exceptions + the message of the exception
(com::sun::star::uno::Exception::message)

Also the returned error code will be DISP_ E EXCEPTION.

Since the automation bridge processes the Invoke call and calls the respective UNO method in the
end, there can be other errors which are not caused by the UNO method itself. The following table
shows what these errors are and how they are caused.

Chapter 3 Professional UNO 165

HRESULT

DISP_E EXCEPTION

DISP_E NONAMEDARGS

DISP_E BADVARTYPE

Reason

UNO interface function or property access function threw
an exception and the caller did not provide an
EXCEPINFO argument.

Bridge error. A ValueObject could not be created when the
client called Bridge GetValueObject.

Bridge error. A struct could not be created when the client
called Bridge GetStruct

Bridge error. The automation object contains a UNO object
that does not support the XInvocation interface. Could
be a failure of com.sun.star.script.Invocation
service.

In JScript was an Array object passed asinout param and
the bridge could not retrieve the property “0”.

A conversion of a VARIANTARG (DISPPARAMS structure)
failed for some reason.

Parameter count does not tally with the count provided by
UNO type information (only when one DISPPARAMS
contains VT _DISPATCH). This is a bug.

DISP_E BADPARAMCOUNT should be returned.

The caller provided “named arguments” for a call to a
UNO function.

Conversion of VARIANTARGsS failed.

Bridge error: Caller provided a ValueObject and the
attempt to retrieve the value failed. This is possibly a bug.
DISP_E EXCEPTION should be returned.

A member with the current name does not exist according
to type information. This is a bug. DISP E MEMBERNOT-
FOUND should be returned.

DISP_E BADPARAMCOUNT

DISP_E MEMBERNOTFOUND

A property was assigned a value and the caller provided
null or more than one arguments.

The caller did not provide the number of arguments as
required by the UNO interface function.

Invoke was called with a DISPID that was not issued by
GetIDsOfName (OleBridgeSupplier?2)

There is no interface function (also property access func-
tion) with the name for which Invoke is currently being
called.

DISP_E TYPEMISMATCH

The called provided an argument of a false type.

DISP_E OVERFLOW

An argument could not be coerced to the expected type.
Internal call to XInvocation: :invoke resulted in a
CannotConvertException being thrown. The field
reason has the value OUT OF RANGE which means that a
given value did not fit in the range of the destination type.

166 OpenOffice.org 1.1 Developer's Guide * January 2004

HRESULT

E_UNEXPECTED

Reason

[2]results from
com.sun.star.script.CannotConvertException of
XInvocation: :invoke with FailReason: : UNKNOWN.
Internal call to XInvocation: : invoke resulted in a
com.sun.star.script.CannotConvertException
being thrown. The field reason has the value UNKNOWN, which
signifies some unknown error condition.

E_POINTER

S_OK

Bridge GetValueObject or Bridge GetStruct called
and no argument for return value provided.

Ok.

Return values of IDispatch::GetIDsOfNames:

HRESULT
E_POINTER

DISP_E_ UNKNOWNNAME

S_OK

Reason
Caller provided no argument that receives the DISPID.

There is no function or property with the given name.

OleBridgeSupplierVarl: The name has been determined
not to exist by a previous call to IDispatch::Invoke

Ok.

The functions IDispatch: :GetTypeInfo and GetTypeInfoCount return E NOTIMPL.

When a call from UNO to an Automation object (OleObjectFactory) is performed, then the
following HRESULT values are converted to exceptions. Keep in mind that it is determined what
exceptions the functions of xInvocation are allowed to throw.

Exceptions thrown by XInvocation::invoke () and their HRESULT counterparts:

HRESULT

DISP E BADPARAMCOUNT
DISP_E_BADVARTYPE
DISP_E_EXCEPTION

DISP_ E MEMBERNOTFOUND
DISP E NONAMEDARGS
DISP_E_OVERFLOW

DISP_E PARAMNOTFOUND
DISP E TYPEMISMATCH

DISP_E_UNKNOWNINTERFACE
DISP_E UNKNOWNLCID

Exception
com.sun.star.lang.IllegalArgumentException
com.sun.star.uno.RuntimeException

com.sun.star.reflection.InvocationTargetExcept
ion
com.sun.star.lang.IllegalArgumentException

com.sun.star.lang.IllegalArgumentException

com.sun.star.script.CannotConvertException,
reason= FailReason::0UT OF RANGE

com.sun.star.lang.IllegalArgumentException

com.sun.star.script.CannotConvertException,
reason= FailReason: : UNKNOWN

com.sun.star.uno.RuntimeException

com.sun.star.uno.RuntimeException

DISP_E_ PARAMNOTOPTIONAL

com.sun.star.script.CannotConvertException,
reason= FailReason::NO DEFAULT AVAILABLE

XInvocation::setValue () throws the same as invoke () except for:

Chapter 3 Professional UNO 167

168

HRESULT Exception

DISP_E BADPARAMCOUNT com.sun.star.uno.RuntimeException
DISP_E MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_E NONAMEDARGS com.sun.star.uno.RuntimeException

XInvocation::getValue () throws the same as invoke () except for:

HRESULT Exception

DISP_E BADPARAMCOUNT com.sun.star.uno.RuntimeException
DISP_E_EXCEPTION com.sun.star.uno.RuntimeException

DISP_ E MEMBERNOTFOUND com.sun.star.beans.UnknownPropertyException
DISP_ E NONAMEDARGS com.sun.star.uno.RuntimeException

DISP_E OVERFLOW com.sun.star.uno.RuntimeException

DISP E PARAMNOTFOUND com.sun.star.uno.RuntimeException

DISP_E TYPEMISMATCH com.sun.star.uno.RuntimeException

DISP_ E PARAMNOTOPTIONAL com.sun.star.uno.RuntimeException

Automation Objects with UNO Interfaces

It is common that UNO functions take interfaces as arguments. As discussed in section 3.4.4 Profes-
sional UNO - UNO Language Bindings - Automation Bridge - Usage of Types those objects are usually
obtained as return values of UNO functions. With the Automation bridge, it is possible to imple-
ment those objects even as Automation objects and use them as arguments, just like UNO objects.

Although Automation objects can act as UNO objects, they are still not fully functional UNO
components. That is, they cannot be created by means of the service manager. Also, there is no
mapping of UNO exceptions defined. That is, an UNO object implmented as automation object
cannot make use of exceptions nor can it convey them in any other way.

One use case for such objects are listeners. For example, if a client wants to know when a writer
document is being closed, it can register the listener object with the document, so that it will be
notified when the document is closing.

Requirements

Automation objects implement the IDispatch interface, and all function calls and property opera-
tions go through this interface. We imply that all interface functions are accessed through the
dispatch interface when there is mention of an Automation object implementing UNO interfaces.
That is, the Automation object still implements IDispatch only.

Basically, all UNO interfaces can be implemented as long as the data types used with the functions
can be mapped to Automation types. The bridge needs to know what UNO interfaces are
supported by an Automation object, so that it can create a UNO object that implements all those
interfaces. This is done by requiring the Automation objects to support the property

Bridge implementedInterfaces, which is an array of strings. Each of the strings is a fully quali-
fied name of an implemented interface. If an Automation object only implements one UNO inter-
face, then it does not need to support that property.

OpenOffice.org 1.1 Developer's Guide « January 2004

You never implement com. sun.star.script.XInvocationand com.sun.star.uno.XInterface.
XInvocation cannot be implemented, because the bridge already maps IDispatch to XInvocation
internally. Imagine a function that takes an XInvocation:

// UNO IDL
void func([in] com.sun.star.script.XInvocation obj) ;

In this case, use any Automation object as argument. When an interface has this function,

void func([in] com.sun.star.XSomething obj)

the automation object must implement the functions of XSomething, so that they can be called through
IDispatch::Invoke.

Examples

The following example shows how a UNO interface is implemented in VB. It is about a listener
that gets notified when a writer document is being closed.

To rebuild the project use the wizard for an ActiveX dll and put this code in the class module. The
component implements the com.sun.star.lang.XEventListener interface.

Option Explicit
Private interfaces(0) As String

Public Property Get Bridge ImplementedInterfaces() As Variant
Bridge ImplementedInterfaces = interfaces
End Property

Private Sub Class_Initialize()
interfaces (0) = "com.sun.star.lang.XEventListener"
End Sub

Private Sub Class_Terminate ()

On Error Resume Next

Debug.Print "Terminate VBEventListener"
End Sub

Public Sub disposing (ByVal source As Object)
MsgBox "disposing called"
End Sub

You can use these components in VB like this:

Dim objServiceManager As Object
Dim objDesktop As Object

Dim objDocument As Object

Dim objEventListener As Object

Set objServiceManager= CreateObject ("com.sun.star.ServiceManager")
Set objDesktop= objServiceManager.createlInstance ("com.sun.star.frame.Desktop")

'Open a new empty writer document

Dim args ()

Set objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args)
'create the event listener ActiveX component

Set objEventListener= CreateObject ("VBasicEventListener.VBEventListener")

'register the listener with the document

objDocument.addEventListener objEventlistener

The next example shows a JScript implementation of a UNO interface and its usage from JScript.
To use JScript with UNO, a method had to be determined to realize arrays and out parameters.
Presently, if a UNO object makes a call to a JScript object, the bridge must be aware that it has to
convert arguments according to the JScript requirements. Therefore, the bridge must know that
one calls a JScript component, but the bridge is not capable of finding out what language was used.
The programmer has to provide hints, by implementing a property with the name “ environ-
ment”that has the value "JScript".

// UNO IDL: the interface to be implemented

interface XSimple : public com.sun.star.uno.XInterface

{
void funcl([in] long val, [out] long outVal);
long func2([in] sequence< long > val, [out] sequence< long > outVal) ;
void func3([inout]long);

Chapter 3 Professional UNO 169

170

}i

// JScript: implementation of XSimple

function XSimplImpl ()

{
this. environment= "JScript";
this.Bridge_implementedInterfaces= new Array("XSimple");

// the interface functions
this.funcl= funcl impl;
this.func2= func2 impl;
this.func3= func3_ impl;

}

function funcl impl(inval, outval)
{
//outval is an array
outval[0]= 10;

}

function func2_ impl (inArray, outArray)
{

outArray[0]= inArray;

// or

outArray[0]= new Array(1l,2,3);

return 10;

}

function func3_impl (inoutval)
{
var val= inoutval[O0];
inoutval[0]= val+1l;

Assume there is a UNO object that implements the following interface function:

//UNO IDL
void doSomething([in] XSimple) ;

Now, call this function in JScript and provide a JScript implementation ofXSimple:
<script language="JScript">

var factory= new ActiveXObject ("com.sun.star.ServiceManager") ;

// create the UNO component that implements an interface with the doSomething function
var oletest= factory.createInstance ("oletest.OleTest");

oletest.doSomething (new XSimpleImpl());

To build a component with C++, write the component from scratch or use a kind of framework,
such as the Active Template Library (ATL). When a dual interface is used with ATL, the imple-
mentation of IDispatch is completely hidden and the functions must be implemented as if they
were an ordinary custom interface, that is, use specific types as arguments instead of VARIANTs. Ifa
UNO function has a return value, then it has to be specified as the first argument which is flagged
as “retval”.

</script>
// UNO IDL
interface XSimple : public com.sun.star.uno.XInterface
{
void funcl([in] long val, [out] long outVal);
long func2([in] sequence< long > val, [out] sequence< long > outVal);
}i

//IDL of ATL component
[
object,
uuld (XXXXXXKXK—XXKXX~XXXX~XXKX-XXXXXXXXKXXXX) ,
dual,
helpstring ("ISimple Interface"),
pointer default (unique)
]
interface ISimple : IDispatch
{
[id (1), helpstring("method funcl")]
HRESULT funcl([in] long val, [out] long* outVal);
[id(2), helpstring("method func2")]
HRESULT func2 ([out,retval] long ret, [in] SAFEARRAY (VARIANT) val,
[out] SAFEARRAY (VARIANT) * outVal);

OpenOffice.org 1.1 Developer's Guide « January 2004

[propget, id(4), helpstring("property implementedInterfaces")]
HRESULT Bridge_implementedlnterfaces ([out, retval] SAFEARRAY (BSTR) *pVal);

DCOM

The Automation bridge maps all UNO objects to automation objects. That is, all those objects
implement the IDispatch interface. To access a remote interface, the client and server must be able
to marshal that interface. The marshaling for IDispatch is already provided by Windows, there-
fore all objects which originate from the bridge can be used remotely.

To make DCOM work, apply proper security settings for client and server. This can be done by
setting the appropriate registry entries or programmatically by calling functions of the security API
within the programs. The office does not deal with the security, hence the security settings can only
be determined by the registry settings which are not completely set by the office's setup. The AppID
key under which the security settings are recorded is not set. This poses no problem because the
dcomcnfg.exe configuration tools sets it automatically.

To access the service manager remotely, the client must have launch and access permission. Those
permissions appear as sub-keys of the AppID and have binary values. The values can be edited
with dcomcnfg. Also the identity of the service manager must be set to “Interactive User”. When
the office is started as a result of a remote activation of the service manager, it runs under the
account of the currently logged-on user (the interactive user).

In case of callbacks (office calls into the client), the client must adjust its security settings so that
incoming calls from the office are accepted. This happens when listener objects that are imple-
mented as Automation objects (not UNO components) are passed as parameters to UNO objects,
which in turn calls on those objects. Callbacks can also originate from the automation bridge, for
example, when JScript Array objects are used. Then, the bridge modifies the Array object by its
IDispatchEx interface. To get the interface, the bridge has to call QueryInterface with a call back
to the client.

To avoid these callbacks, VBArray objects and Value Objects could be used.

To set security properties on a client, use the security API within a client program or make use of
dcomcnfg again. The API can be difficult to use. Modifying the registry is the easiest method,
simplified by dcomcnfg. This also adds more flexibility, because administrators can easily change
the settings without editing source code and rebuilding the client. However, dcomcnfg only works
with COM servers and not with ordinary executables. To use dcomcnfg, put the client code into a
server that can be registered on the client machine. This not only works with exe servers, but also
with in-process servers, namely dlls. Those can have an AppID entry when they are remote, that is,
they have the D11Surrogate subkey set. To activate them an additional executable which instanti-
ates the in-process server is required. At the first call on an interface of the server DCOM initializes
security by using the values from the registry, but it only works if the executable has not called
CoInitializeSecurity beforehand.

To run JScript or VBScript programs, an additional program, a script controller that runs the script
is required, for example, the Windows Scripting Host (WSH). The problem with these controllers is
that they might impose their own security settings by calling CoInitializeSecurity on their own
behalf. In that case, the security settings that were previously set for the controller in the registry
are not being used. Also, the controller does not have to be configurable by dcomcnfg, because it
might not be a COM server. This is the case with WSH (not WSH remote).

To overcome these restrictions write a script controller that applies the security settings before a
scripting engine has been created. This is time consuming and requires some knowledge about the
engine, along with good programming skills. The Windows Script Components (WSC) is easier to
use. A WSC is made of a file that contains XML, and existing JScript and VBS scripts can be put

Chapter 3 Professional UNO 171

172

into the respective XML Element. A wizard generates it for you. The WSC must be registered,
which can be done with regsvr32.exe or directly through the context menu in the file explorer. To
have an AppID entry, declare the component as remotely accessible. This is done by inserting the
remotable attribute into the registration element in the wsc file:

<registration
description="writerdemo script component"
progid="dcomtest.writerdemo.WSC”
version="1.00"
classid="{90c5cala-5e38-4c6d-9634-b0c740c569%ad}"
remotable="true">

When the WSC is registered, there will be an appropriate AppID key in the registry. Use dcomcnfg
to apply the desired security settings on this component. To run the script. An executable is
required. For example:

Option Explicit

Sub main ()
Dim obj As Object
Set obj = CreateObject ("dcomtest.writerdemo.wsc”)
obj.run

End Sub

In this example, the script code is contained in the run function. This is how the wsc file appears:

<?xml version="1.0"7?>
<component>
<?component error="true" debug="true"?>
<registration
description="writerdemo script component"
progid="dcomtest.writerdemo.WSC”
version="1.00"
classid="{90c5cala-5e38-4c6d-9634-b0c740c56%ad}"
remotable="true">
</registration>
<public>
<method name="run">
</method>
</public>
<script language="JScript">
<! [CDATA[
var description = new jscripttest;
function jscripttest ()
{
this.run = run;
}
function run ()
{
var objServiceManager= new ActiveXObject ("com.sun.star.ServiceManager”,"\\j1l-1036");
var objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection") ;
var objDesktop= objServiceManager.createlInstance ("com.sun.star.frame.Desktop") ;
var objCoreReflection= objServiceManager.createInstance ("com.sun.star.reflection.CoreReflection") ;
var args= new Array();
var objDocument= objDesktop.loadComponentFromURL ("private:factory/swriter", " blank", 0, args);
var objText= objDocument.getText () ;
var objCursor= objText.createTextCursor () ;
objText.insertString(objCursor, "The first line in the newly created text document.\n", false);
objText.insertString(objCursor, "Now we're in the second line", false);
var objTable= objDocument.createInstance("com.sun.star.text.TextTable");objTable.initialize(4, 4);
objText.insertTextContent (objCursor, objTable, false);
var objRows= objTable.getRows () ;
var objRow= objRows.getByIndex(0) ;
objTable.setPropertyValue ("BackTransparent", false);
objTable.setPropertyValue ("BackColor", 13421823);
objRow.setPropertyValue ("BackTransparent", false);
objRow.setPropertyValue ("BackColor", 6710932);
insertIntoCell("Al","FirstColumn", objTable);
insertIntoCell("B1","SecondColumn", objTable) ;
insertIntoCell("C1","ThirdColumn", objTable);
insertIntoCell("D1","SUM", objTable);
objTable.getCellByName ("A2") .setValue(22.5);
objTable.getCellByName ("B2") .setValue(5615.3) ;

)
objTable.getCellByName ("C2") .setValue(-2315.7);
objTable.getCellByName ("D2") .setFormula ("sum <A2:C2>") ;objTable.getCellByName ("A3") .setValue(21.5);
objTable.getCellByName ("B3") .setValue(615.3);
objTable.getCellByName ("C3") .setValue (-315.7);
objTable.getCellByName ("D3") .setFormula ("sum <A3:C3>");objTable.getCellByName ("A4") .setValue(121.5);
objTable.getCellByName ("B4") .setValue(-615.3);
objTable.getCellByName ("C4") .setValue (415.7);
)

objTable.getCellByName ("D4") .setFormula ("sum <A4:C4>");
objCursor.setPropertyValue ("CharColor", 255);
objCursor.setPropertyValue ("CharShadowed", true);
objText.insertControlCharacter(objCursor, 0 , false);

OpenOffice.org 1.1 Developer's Guide « January 2004

objText.insertString(objCursor, " This is a colored Text - blue with shadow\n", false);
objText.insertControlCharacter(objCursor, 0, false);
var objTextFrame= objDocument.createInstance ("com.sun.star.text.TextFrame”) ;
var objSize= createStruct ("com.sun.star.awt.Size");
objSize.Width= 15000;
objSize.Height= 400;
objTextFrame.setSize (objSize);
objTextFrame.setPropertyValue ("AnchorType", 1);
objText.insertTextContent (objCursor, objTextFrame, false);
var objFrameText= objTextFrame.getText () ;
var objFrameTextCursor= objFrameText.createTextCursor () ;
objFrameText.insertString(objFrameTextCursor, "The first line in the newly created text frame.",
false);
objFrameText.insertString (objFrameTextCursor,
"With this second line the height of the frame raises.", false);
objFrameText.insertControlCharacter(objCursor, 0 , false);
objCursor.setPropertyValue ("CharColor", 65536);
objCursor.setPropertyValue ("CharShadowed", false);
objText.insertString(objCursor, " That's all for now !!", false);

function insertIntoCell(strCellName, strText, objTable)

{
var objCellText= objTable.getCellByName (strCellName) ;
var objCellCursor= objCellText.createTextCursor () ;
objCellCursor.setPropertyValue("CharColor",16777215) ;
objCellText.insertString(objCellCursor, strText, false);

}

function createStruct (strTypeName)
{
var classSize= objCoreReflection.forName (strTypeName) ;
var aStruct= new Array();
classSize.createObject (aStruct);
return aStruct[0];

}
}
11>

</script>
</component>

This WSC contains the WriterDemo example written in JScript.

The Bridge Services

Service: com.sun.star.bridge.OleBridgeSupplier2

The component implements the com.sun.star.bridge.XBridgeSupplier2 interface and converts
Automation values to UNO values. The mapping of types occurs according to the mappings
defined in 3.4.4 Professional UNO - UNO Language Bindings - Automation Bridge - Type Mappings.

Usually you do not use this service unless you must convert a type manually.

A programmer uses the com.sun.star.ServiceManager ActiveX component to access the office.
The COM class factory for com.sun.star.ServiceManager uses OleBridgeSupplier?2 internally
to convert the UNO service manager into an Automation object. Another use case for the OleB-
ridgeSupplier2 might be to use the SDK without an office installation. For example, if there is a
UNO component from COM, write code which converts the UNO component without the need of
an office. That code could be placed into an ActiveX object that offers a function, such as getUNO-
Component ().

The interface is declared as follows:
module com { module sun { module star { module bridge {

interface XBridgeSupplier2: com::sun::star::uno::XInterface
{

any createBridge([in] any aModelDepObject,
[in] sequence< byte > aProcessId,
[in] short nSourceModelType,
[in] short nDestModelType)
u

Chapter 3 Professional UNO 173

The value that is to be converted and the converted value itself are contained inanys. The any is
similar to the VARIANT type in that it can contain all possible types of its type system, but that type
system only comprises UNO types and not Automation types. However, it is necessary that the
function is able to receive as well as to return Automation values. In C++, void pointers could have
been used, but pointers are not used with UNO IDL. Therefore, the any can contain a pointer to a
VARIANT and that the type should be an unsigned long.

To provide the any, write this C++ code:

Any automObject;
// pVariant is a VARIANT* and contains the value that is going to be converted
automObject.setValue ((void*) &pVariant, getCppuType((sal uInt32%*)0));

Whether the argument aModelDepObject or the return value carries a VARIANT depends on the
mode in which the function is used. The mode is determined by supplying constant values as the
nSourceModelType and nDestModelType arguments. Those constant are defined as follows:

module com { module sun { module star { module bridge ({
constants ModelDependent
{
const short UNO ig
const short OLE 238
const short JAVA = 3;
const short CORBA = 4;

}i
JE N S A

The table shows the two possible modes:

nSourceModelType nDestModelType aModelDepObject Return Value
UNO OLE contains UNO value contains VARIANT*
OLE UNO contains VARIANT* contains UNO value

When the function returns a VARIANT*, that is, a UNO value is converted to an Automation value,
then the caller has to free the memory of the VARIANT:

sal_ulInt8 arId[16];
rtl getGlobalProcessId(arId);
Sequence<sal Int8> procId((sal_Int8*)arId, 16);
Any anyDisp= xSupplier->createBridge (anySource, procId, UNO, OLE) ;
IDispatch* pDisp;
if (anyDisp.getValueTypeClass() == TypeClass UNSIGNED LONG)
{
VARIANT* pvar= * (VARIANT**)anyDisp.getValue();
if (pvar->vt == VTiDISPATCH)
{
pDisp= pvar->pdispVal;
pDisp->AddRef () ;
}
VariantClear (pvar);
CoTaskMemFree (pvar) ;
}
The function also takes a process ID as an argument. The implementation compares the ID with the
ID of the process the component is running in. Only if the IDs are identical a conversion is

performed. Consider the following scenario:

There are two processes. One process, the server process, runs the 0leBridgeSupplier?2
service. The second, the client process, has obtained the XxBridgeSupplier?2 interface by means
of the UNO remote bridge. In the client process an Automation object is to be converted and the
function xBridgeSupplier2::createBridge is called. The interface is actually a UNO inter-
face proxy and the remote bridge will ensure that the arguments are marshaled, sent to the
server process and that the original interface is being called. The argument aModelDepObject
contains an IDispatch*and must be marshaled as COM interface, but the remote bridge only
sees an any that contains an unsigned long and marshals it accordingly. When it arrives in the
server process, the IDispatch*has become invalid and calls on it might crash the application.

174 OpenOffice.org 1.1 Developer's Guide * January 2004

Service: com.sun.star.bridge.OleBridgeSupplierVarl

This service is a variation of the 0leBridgeSupplier?2 service. The functionality is the same, but
the implementation is optimized for a deployment scenario where remote UNO objects are
converted into Automation objects. The UNO object is only a proxy and the actual object resides in
a different process or on a different machine. To get a proxy of a remote object, establish a connec
tion to another process which can run on another machine by means of the respective UNO mecha-
nisms. Refer to 3.3.1 Professional UNO - UNO Concepts - UNO Interprocess Connections for additional
information. Calls on the proxy object result in an interprocess call that may take a long time.

To call a function of an Automation object, a DISPID must be obtained first. The ID is obtained by
calling IDispatch: :GetIDsOfNames. The Get IDsOfName takes a function or property name as an
argument and returns a DISPID that is used in the Invoke call. Automation objects created by
OleBridgeSupplier2 verify in their Get IDsOfName implementation if the function or property
with the specified name exists, involving one or two calls to the UNO object the first time the
object's GetIDsOfName function is called. 0OleBridgeSuppliervarl handles that differently. The
first time an object is being asked for a DISPID, the ID is generated and returned without verifying
if there is a member of that name. When Invoke is called with that DISPID and the call fails, the
bridge repeats the call with a verified name. Also, Invoke is often called with a combination of the
flag b1spAaTCH METHOD and one of the property flag, signifying that the DISPID represents a certain
function or property. In that case, the bridge first presumes that the ID represents a function and
performs the call accordingly. If that fails, it tries to access a property with that name. When the
call eventually succeeds, the acquired information (for example, the verified name of the member,
property or function) is cached in case the call is repeated.

The OleBridgeSupplier2 and OleBridgeSupplierVarl services use the
com.sun.star.script.Invocation service to convert UNO objects to UNO objects that imple-
ment com.sun.star.script.Invocation. Then the XInvocation objects are converted into IDispatch
objects. OleBridgeSupplierVarl can be passed a service manager as an argument during instan-
tiation (com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments ()). It will
then use that service manager to create the invocation service. If the service manager happens to be
the remote service manager (provided by the server, for example, a remote office), the Invocation
service is created on the server-side. Hence, all conversions of UNO objects to XInvocation objects
occur remotely on the server and do not cause excessive network traffic.

Service: com.sun.star.bridge.OleApplicationRegistration

This service registers a COM class factory when the service is being instantiated and deregisters it
when the service is being destroyed. The class factory creates a service manager as an Automation
object. All UNO objects created by the service manager are then automatically converted into
Automation objects.

Service: com.sun.star.bridge.OleObjectFactory

This service creates ActiveX components and makes them available as UNO objects which imple-
ment XxInvocation. For the purpose of component instantiation, the OleClient implements the
com.sun.star.lang.XMultiServiceFactory interface. The COM component is specified by its
programmatic identifier (Progld).

Although any ActiveX component with a Progld can be created, a component can only be used if it
supports IDispatch and provides type information through IDispatch::GetTypeInfo.

Chapter 3 Professional UNO 175

Unsupported COM Features

The Automation objects provided by the bridge do not provide type information. That is, IDis-
patch::GetTypeInfoCount and IDispatch::GetTypeInfo return E NOTIMPL. Also, there are no
COM type libraries available and the objects do not implement the TProvideClassInfo[2] inter-
face.

GetIDsOfName processes only one name at a time. If an array of names is passed, then aDISPID is
returned for the first name.

IDispatch::Invoke does not support named arguments and the pExcepInfo and puArgErr
parameter.

176 OpenOffice.org 1.1 Developer's Guide * January 2004

Writing UNO Components

OpenOffice.org can be extended by UNO components. UNO components are shared libraries or jar
files with the ability to instantiate objects that can integrate themselves into the UNO environment.
A UNO component can access existing features of OpenOffice.org, and it can be used from within

OpenOffice.org through the object communication mechanisms provided by UNO.

OpenOffice.org provides many entry points for these extensions.

Arbitrary objects written in Java or C++ can be called from the user interface, display their own
GUI, and work with the entire application.

Calc Add-Ins can be used to create new formula sets that are presented in the formula
autopilot.

Chart Add-Ins can insert new Chart types into the charting tool.
New database drivers can be installed into the office to extend data access.
Entire application modules are exchangeable, for instance the linguistics module.

It is possible to create new document types and add them to the office. For instance, a personal
information manager could add message, calendar, task and journal document components, or
a project manager could support a new project document.

Developers can leverage the OpenOffice.org XML file format to read and write new file formats
through components.

From OpenOffice.org 1.1.0 there is comprehensive support for component extensions. The entire
product cycle of a component is now covered:

The design and development of components has been made easier by adding wizards for compo-
nents to the NetBeans IDE. They are described in the directory docs/DevStudioWizard of the SDK.
There are wizards for general components, for Calc AddIns and for IDL files.

Components can integrate themselves into the user interface, using simple configuration files. You
can add new menus, toolbar items, and help items for a component simply by editing XML
configuration files.

Component deployment is performed by a package installer, which inserts new components and
their user interface extensions into networked and single installations of OpenOffice.org. During
the production phase the package installer makes it simple to maintain components, to introduce
bug fixes and new versions of a component. When a packaged component is no longer needed, it
can easily be removed. This way, OpenOffice.org keeps the promise of being open for modular
extensions.

Last but not least, this is not the only way to add features to the office. Learning how to write
components and how to use the OpenOffice.org API at the same time teaches you the techniques
used in the OpenOffice.org code base, thus enabling you to work with the existing OpenOffice.org
source code, extend it or introduce bug fixes.

177

178

Components are the basis for all of these extensions. This chapter teaches you how to write UNO
components. It assumes that you have at least read the chapter 2 First Steps and—depending on
your target language—the section about the Java or C++ language binding in 3 Professional UNO.

4.1 Required Files

OpenOlffice.org Software Development Kit (SDK)
The SDK provides a build environment for your projects, separate from the OpenOffice.org
build environment. It contains the necessary tools for UNO development, C and C++ libraries
and include files, Java packages, UNO type definitions and example code. But most of the
necessary libraries and Java UNO packages are shared with an existing OpenOffice.org installa-
tion which is a prerequisite for a SDK.

The SDK development tools (executables) contained in the SDK are used in the following
chapter. Become familiar with the following table that lists the executables from the SDK. These
executables are found in the platform specific bin folder of the SDK installation. In Windows,
they are in the folder <SDK>\windows\bin, on Linux they are stored in <SDK>/linux/bin and on
Solaris in <SDK>/solaris/bin.

Executable Description

idlc The UNOIDL compiler that creates binary type description files with the extension .
urd for registry database files.

idlcpp The idlc preprocessor used by idlc.

cppumaker The C++ UNO maker that generates headers with UNO types mapped from binary
type descriptions to C++ from binary type descriptions.

Jjavamaker Java maker that generates interface and class definitions for UNO types mapped
from binary type descriptions to Java from binary type descriptions.

xml2c¢mp XML to Component that can extract type names from XML object descriptions for
use with cppumaker and javamaker, creates functions.

regmerge The registry merge that merges binary type descriptions into registry files.

regcomp The register component that tells a registry database file that there is a new compo-
nent and where it can be found.

pkgchk The package check that installs components into an installed OpenOffice.org.

regview The registry view that outputs the content of a registry database file in readable
format.

autodoc The automatic documentation tool that evaluates Javadoc style comments in idl files
and generates documentation from them.

rdbmaker The registry database maker that creates registry files with selected types and their
dependencies.

uno The UNO executable. It is a standalone UNO environment which is able to run UNO
components supporting the com.sun.star.lang.XMain interface, one possible
use is:
$uno -s ServiceName -r MyRegistry.rdb -- MyMainClass argl

GNU Make

The makefiles in the SDK assume that the GNU make is used. Documentation for GNU make
command line options and syntax are available at www.gnu.org. In Windows, not every GNU
make seems stable, notably some versions of Cygwin make were reported to have problems
with the SDK makefiles. Other GNU make binaries, such as the one from unixutils.sourceforge.net

OpenOffice.org 1.1 Developer's Guide « January 2004

work well even on the Windows command line. The package UnxUtils comes with azsh shell
and numerous utilities, such as find, sed. To install UnxUtils, download and unpack the archive,
and add <UnxUtils>\usr\local\wbin to the PATH environment variable. Now launch sh.exe
from <UnxUtils>\bin and issue the command make from within zsh or use the Windows
command line to run make. For further information about zsh, go to zsh.sunsite.dk.

4.2 Using UNOIDL to Specify New Components

Component development does not necessarily start with the declaration of new interfaces or new
types. Try to use the interfaces and types already defined in the OpenOffice.org API. If existing
interfaces cover your requirements and you need to know how to implement them in your own
component, go to section 4.3 Writing UNO Components - Component Architecture. The following
describes how to declare your own interfaces and other types you might need.

UNO uses its own meta language UNOIDL (UNO Interface Definition Language) to specify types.
Using a meta language for this purpose enables you to generate language specific code, such as
header files and class definitions, to implement objects in any target language supported by UNO.
UNOIDL keeps the foundations of UNO language independent and takes the burden of mechanic
language adaptation from the developer's shoulders when implementing UNO objects.

To define a new interface, service or other compound type, write its specification in UNOIDL, then
compile it with the UNOIDL compiler idic. After compilation, merge the resulting binary type
description into a registry database that is used by cppumaker and javamaker during the make
process to create necessary header and class files, and used by UNO during runtime to provide
runtime type information. The chapter 3 Professional UNO provides the various type mappings
used by cppumaker and javamaker in the language binding sections. Refer to the section 4.9.2
Writing UNO Components - Deployment Options for Components - Background: UNO Registries - UNO
Type Library for details about type information in the registry database..

When writing your own specifications, please consult the chapter A IDL Design Guide which treats design
principles and conventions used in API specifications. Follow the rules for universality, orthogonality,
inheritance and uniformity of the API as described in the Design Guide.

4.2.1 Writing the Specification

There are similarities between C++, CORBA IDL and UNOIDL, especially concerning the syntax
and the general usage of the compiler. If you are familiar with reading C++ or CORBA IDL, you
will be able to understand much of UNOIDL, as well.

As a first example, consider the IDL specification for the
com.sun.star.bridge.XUnoUrlResolver interface. An idl file usually starts with a number of
preprocessor directives, followed by module instructions and a type definition:

#ifndef = com sun star bridge XUnoUrlResolver idl
#define _ com sun_star bridge_ XUnoUrlResolver_ idl

#include <com/sun/star/uno/XInterface.idl>

#include <com/sun/star/lang/IllegalArgumentException.idl>
#include <com/sun/star/connection/ConnectionSetupException.idl>
#include <com/sun/star/connection/NoConnectException.idl>

module com { module sun { module star { module bridge {

/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>
implements this interface.
*/

Chapter 4 Writing UNO Components 179

180

interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
// method com::sun::star::bridge: :XUnoUrlResolver: :resolve
/** resolves an object, on the UNO URL.
@y
com: :sun::star::uno::XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection::NoConnectException,
com: :sun::star::connection: :ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;

#endif

We will discuss this idl file step by step below, and we will write our own UNOIDL specification
as soon as possible. The file specifying com.sun.star.bridge.XUnoUrlResolver is located in the
idl folder of your SDK installation, <SDK>/idl/com/sun/star/bridge/XUno UrlResolver.idl.

UNOIDL definition file names have the extension .id/ by convention. The descriptions must use the
US ASCII character set without special characters and separate symbols by whitespace, i.e. blanks,
tabs or linefeeds.

Preprocessing

Just like a C++ compiler, the UNOIDL compiler idlc can only use types it already knows. The idlc
knows 15 fundamental types such as boolean, int or string (they are summarized below). When-
ever a type other than a fundamental type is used in the idl file, its declaration has to be included
first. For instance, to derive an interface from the interface xInterface, include the corresponding
file XInterface.idl. Including means telling the preprocessor to read a given file and execute
the instructions found in it.

#include <com/sun/star/uno/XInterface.idl> // searched in include path given in -I parameter

#include "com/sun/star/uno/XInterface.idl" // searched in current path, then in include path

There are two ways to include idl files. A file name inangled brackets is searched on the include
path passed to idlc using its -I option. File names in double quotes are first searched on the current
path and then on the include path.

The XUnoUrlResolver definition above includes com.sun.star.uno.XxInterface and the three
exceptions thrown by the method resolve (), com.sun.star.lang.IllegalArgumentException,
com.sun.star.connection.ConnectionSetupException and
com.sun.star.connection.NoConnectException.

Furthermore, to avoid warnings about redefinition of already included types, use #ifndef and
#define as shown above. Note how the entire definition for XUnoUrlResolver is enclosed
between #ifndef and #endif. The first thing the preprocessor does is to check if the flag
__com_sun_star bridge XUnoUrlResolver idl has already been defined. If not, the flag is
defined and idlc continues with the definition of XUnoUrlResolver.

Adhere to the naming scheme for include flags used by the OpenOffice.org developers: Use the file
name of the IDL file that is to be included, add double underscores at the beginning and end of the
macro, and replace all slashes and dots by underscores.

For other preprocessing instructions supported by idic refer to Bjarne Stroustrup: The C++
Programming Language.

Grouping Definitions in Modules

To avoid name clashes and allow for a better API structure, UNOIDL supports naming scopes. The
corresponding instruction is module:

OpenOffice.org 1.1 Developer's Guide « January 2004

module mymodule {

}i

Instructions are only known inside the module mymodule for every type defined within the pair of
braces of this module {}. Within each module, the type identifiers are unique. This makes an
UNOIDL module similar to a Java package or a C++ namespace.

Modules may be nested. The following code shows the interface xXUnoUrlResolver contained in
the module bridge that is contained in the module star, which is in turn contained in the module
sun of the module com.

module com { module sun { module star { module bridge {

// interface XUnoUrlResolver in module com::sun::star::bridge

IR PN ¥

It is customary to write module names in lower case letters. Use your own module hierarchy for
your IDL types. To contribute code to OpenOffice.org, use the org: :openoffice namespace or
com: :sun: :star. Discuss the name choice with the leader of the API project on www.openoffice.org
to add to the latter modules. The com: :sun: :star namespace mirrors the historical roots of
OpenOffice.org in StarOffice and will probably be kept for compatibility purposes.

Types defined in UNOIDL modules have to be referenced using full-type or scoped names, that is,
you must enter all modules your type is contained in and separate the modules by the scope
operator ::. For instance, to reference xUnoUrlResolver in another idl definition file, write
com::sun: :star::bridge: :XUnoUrlResolver.

Besides, modules have an advantage when it comes to generating language specific files. The tools
cppumaker and javamaker automatically create subdirectories for every referenced module, if
required. Headers and class definitions are kept in their own folders without any further effort.

Fundamental Types

Before we can go about defining our first interface, you need to know the fundamental types you
may use in your interface definition. You should already be familiar with the fundamental UNO
types from the chapters 2 First Steps and 3 Professional UNO . Since we have to use them in idl defi-
nition files, we repeat the type keywords and their meaning here.

Chapter 4 Writing UNO Components 181

Fundamental UNO type

Type description

char 16-bit unicode character type
boolean boolean type; true and false
byte 8-bit ordinal integer type

short signed 16-bit ordinal integer type

unsigned short

unsigned 16-bit ordinal integer type

long
unsigned long
hyper

unsigned hyper

signed 32-bit ordinal integer type
unsigned 32-bit integer type
signed 64-bit ordinal integer type

unsigned 64-bit ordinal integer type

float processor dependent float

double processor dependent double

string string of 16-bit unicode characters

any u.ni\./ersal type., tak.es every fun.damental or corr}pognd UNO type,
similar to Variant in other environments or Object in Java

void Indicates that a method does not provide a return value

Defining an Interface

Interfaces describe aspects of objects. To specify a new behavior for the component, start with an
interface definition that comprises the methods offering the new behavior. Define a pair of plain
get and set methods in a single step using the attribute instruction. Alternatively, choose to
define your own operations with arbitrary arguments and exceptions by writing the operation
signature, and the exceptions the operation throws. We will first write a small interface definition
with attribute instructions, then consider the resolve () operation in XUNoUrlResolver.

Let us assume we want to contribute an ImageShrink component to OpenOffice.org to create
thumbnail images for use in OpenOffice.org tables. There is already a
com.sun.star.document.xXFilter Interface offering methods supporting file conversion. In addi-
tion, a method is required to get and set the source and target directories, and the size of the
thumbnails to create. It is common practice that a service and its prime interface have corre-
sponding names, so our component shall have an org: :openoffice: :test::XImageShrink inter-
face with methods to do so through get and set methods.

Attributes

The attribute instruction creates these methods for the experimental interface definition:

Look at the specification for our xITmageShrink interface®:
(Components/Thumbs/org/openoffice/test/XImageShrink.idl)

#ifndef _ org openoffice test XImageShrink idl
#define org openoffice test XImageShrink idl
#include <com/sun/star/uno/XInterface.idl> T
#include <com/sun/star/awt/Size.idl>

1 Perhaps in real life it would be better to define a more universal XBatchConverter interface for the source and target
directories and derive XImageShrink from it. There are other options as well, but we want to keep things simple.

182 OpenOffice.org 1.1 Developer's Guide * January 2004

module org { module openoffice { module test ({

interface XImageShrink : com::sun::star::uno::XInterface

{
[attribute] string SourceDirectory;
[attribute] string DestinationDirectory;
[attribute] com::sun::star::awt::Size Dimension;

#endif

OpenOffice.org API interfaces do not use attributes anymore, because it entices programmers into ignoring
exceptions. They are confusing, because attributes are mapped as prefixed get/set methods in an implemen-
tation language like Java or C++. It is sometimes difficult to match these methods with the original attribute
declaration. Also note, that attribute definitions in UNOIDL interfaces do not declare any data fields, just the
access methods.

We protect the interface from being redefined using #ifndef, then added #include
com.sun.star.uno.XInterface and the struct com.sun.star.awt.Size. These were found in the
API reference using its global index. Our interface will be known in the org: :openoffice: :test
module, so it is nested in the corresponding module instructions.

Define an interface using the interface instruction. It opens with the keyword interface, gives
an interface name and derives the new interface from a parent interface (also called super inter-
face). It then defines the interface body in braces. The interface instruction concludes with a
semicolon.

In this case, the introduced interface is XImageShrink. By convention, all interface identifiers start
with an X. Every interface must inherit from the base interface for all UNO interfaces xInterface
or from one of its derived interfaces. UNO supports single inheritance, so you may only inherit
from one interface. Inheritance is expressed by a colon : followed by the fully qualified name of the
parent type. The fully qualified name of a UNOIDL type is its identifier, including all containing
modules separated by the scope operator : :. Here we derive from
com::sun::star::uno::XInterface directly.

UNOIDL allows forward declaration of interfaces used as parameters, return values or struct members.
However, an interface you want to derive from must be a fully defined interface.

After the super interface the interface body begins. It may contain attribute instructions or opera-
tions. Consider the interface body of xImageShrink. It contains three attributes and no operation.
The operations are discussed below.

An attribute instruction opens with the keyword attribute in square brackets, then it gives a
known type and an identifier for the attribute, and concludes with a semicolon.

In our example, the string attributes named SourceDirectoryand DestinationDirectory and
a com::sun::star::awt::Size attribute known as Dimension were defined:

[attribute] string SourceDirectory;

[attribute] string DestinationDirectory;

[attribute] com::sun::star::awt::Size Dimension;
During code generation, the attribute instruction leads to pairs of get and set methods. For
instance, the Java interface generated by javamaker from this type description contains the
following six methods. Note that no exceptions can be specified for attribute methods:

// from attribute SourceDir

public String getSourceDirectory () ;
public void setSourceDirectory(String sourcedir);

// from attribute DestinationDir
public String getDestinationDirectory () ;
public void setDestinationDirectory (String destinationdir);

// from attribute Dimension
public com.sun.star.awt.Size getDimension();

Chapter 4 Writing UNO Components 183

public void setDimension (com.sun.star.awt.Size dimension);

As an option, define that an attribute cannot be changed from the outside using areadonly flag.
To set this flag, write [attribute, readonly]. The effect is that only a get () method is created
during code generation, but not a set () method.

Operations

When writing a real component, define the operations by providing their signature and the excep-
tions they throw in the idl file. Our xUnoUrlResolver example above features a resolve () opera-
tion taking a UNO URL and throwing three exceptions.

interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
com: :sun::star::uno::XInterface resolve([in] string sUnoUrl)
raises (com::sun::star::connection::NoConnectException,
com: :sun::star::connection: :ConnectionSetupException,
com: :sun::star::lang::IllegalArgumentException) ;
Vi
The basic structure of an operation is similar to C++ functions or Java methods. The operation is
defined giving a known return type, the operation name, an argument list in brackets () and if
necessary, a list of the exceptions the operation may throw. The argument list, the exception clause

raises () and an optional [oneway] flag preceding the operation are special in UNOIDL.

Each argument in the argument list must commence with one of the direction flags [in], [out]
or [inout] before a known type and identifier for the argument is given. The direction flag
specifies how the operation may use the argument:

Direction Flags Description
for Operations

in Specifies that the operation shall evaluate the argument as input
parameter, but it cannot change it.

out Specifies that the argument does not parameterize the operation, instead
the operation uses the argument as output parameter.

inout Specifies that the operation is parameterized by the argument and that the
operation uses the argument as output parameter as well.

Avoid the [inout] and [out] qualifier. OpenOffice.org API interfaces do not use this qualifier.

Exceptions are given through an optional raises () clause containing a comma-separated list of
known exceptions given by their full name. The presence of a raises () clause means that only
the listed exceptions, com.sun.star.uno.RuntimeException and their descendants may be
thrown by the implementation. By specifying exceptions for operations, the implementer of
your interface can return information to the caller, thus avoiding possible error conditions.

Ifyou prepend a [oneway] flag to an operation, the operation must perform its task asynchro-
nously, that is, it should spawn a thread and return immediately. The argument list may be
empty. Multiple arguments must be separated by commas. A oneway operation can not have a
return value, or out or inout parameters.

’ You may not override an attribute or an operation inherited from a parent interface, that would not make
sense in an abstract specification anyway. Furthermore, overloading is not possible. The qualified interface
identifier in conjunction with the name of the method creates a unique method name.

184 OpenOffice.org 1.1 Developer's Guide * January 2004

Defining a Service

UNOIDL Services combine interfaces and properties to specify a certain functionality. In addition,
services can include other services. For these purposes, the instructions interface, property and
service are used within service specifications. Usually services are the basis for an object imple-
mentation, although there are services in the OpenOffice.org API that only serve as foundation or
addition to other services, but are not meant to be implemented by themselves.

We are ready to assemble our ImageShrink service. Our service will read image files from a source
directory and write shrinked versions of the found images to a destination directory. Our xImage-
Shrink interface offers the needed capabilities, together with the interface
com.sun.star.document.XFilter that supports two methods:

boolean filter([in] sequence< com::sun::star::beans::PropertyValue > aDescriptor
void cancel ()
The following code shows the ImageShrink service specification:
(Components/Thumbs/org/openoffice/test/ImageShrink.idl)
#ifndef org openoffice test ImageShrink idl

#define org openoffice test ImageShrink idl
#include <org/openoffice/test/XImageShrink.idl>

module org { module openoffice { module test ({

service ImageShrink

{
interface org::openoffice::test::XImageShrink;
interface com::sun::star::document::XFilter;

#endif

Define a service using the service instruction. It opens with the keyword service, followed by a
service name and the service body in braces. The service instruction concludes with a semicolon.
Here we defined a service Imageshrink. The first letter of a service name should be an upper-case
letter. The body of a service can reference interfaces and services using interface and service
instructions, and it can identify properties supported by the service through [property] instruc-
tions.

- interface instructions followed by interface names in a service body indicates that the service
supports these interfaces. By default, the interface forces the developer to implement this
interface. To suggest an interface for a certain service, prepend an [optional] flag in front of
the keyword interface. This weakens the specification to a permission. An optional interface
can be implemented. Use one interface instruction for each supported interface or give a
comma-separated list of interfaces to be exported by a service. You must terminate the inter-
face instruction using a semicolon.

service instructions in a service body include other services. The effect is that all interface and
property definitions of the other services become part of the current service. A service reference
can be optional using the [optional] flag in front of the service keyword. Use one instruction
per service or a comma-separated list for the services to reference. The service instruction
ends with a semicolon.

2 The services com.sun.star.text.BaseFrame Or com.sun.star.style.CharacterProperties are part of other
services, but are not implemented as such anywhere.

Chapter 4 Writing UNO Components 185

186

[property] instructions describe qualities of a service that can be reached from the outside
under a particular name and type. As opposed to interface attributes, these qualities are not
considered to be a structural part of a service. Refer to the section 3.3.4 Professional UNO - UNO
Concepts - Properties in the chapter 3 Professional UNO to determine when to use interface attrib-
utes and when to introduce properties in a service . The property instruction must be enclosed
in square brackets, and continue with a known type and a property identifier. Just like a service
and an interface, make a property non-mandatory writing [property, optionall]. Besides
optional,there is a number of other flags to use with properties. The following table shows all
flags that can be used with [property]:

Property Flags Description
optional Property is non-mandatory.
readonly The value of the property cannot be changed using the setter methods for prop-

erties, such as setPropertyValue (string name) .

bound Changes of values are broadcast to
com.sun.star.beans.XPropertyChangeListeners registered with the
component.

constrained The component must broadcast an event before a value changes, listeners can
veto.

maybeambiguous The value cannot be determined in some cases, for example, in multiple selec-
tions.

maybedefault The value might come from a style or the application environment instead of

from the object itself.

maybevoid The property type determines the range of possible values, but sometimes there
may be situations where there is no information available. Instead of defining
special values for each type denoting that there are no meaningful values, the
UNO type void can be used. Its meaning is comparable to null in relational
databases.

removable The property is removable. If a property is made removable, you must check
for the existence of a property using hasPropertyByName () at the interface
com.sun.star.beans.XPropertySetInfo and consider providing the
capability to add or remove properties using
com.sun.star.beans.XPropertyContainer.

transient The property will not be stored if the object is serialized (made persistent).

Several properties of the same type can be listed in one property instruction. Remember to add
a semicolon at the end of the instruction. Implement the interface
com.sun.star.beans.XPropertySet when putting properties in your service, otherwise the
properties specified will not work for others using the component.

Some services, which specify no interfaces at all, only properties, are used as a sequence of
com.sun.star.beans.PropertyValue in OpenOffice.org, for example,
com.sun.star.document.MediaDescriptor.

The following UNOIDL snippet shows the service, the interfaces and the properties supported by
the service com.sun.star.text.TextDocument as defined in UNOIDL. Note the optional inter-
faces and the optional and read-only properties.

service TextDocument

{

service com::sun::star::document::0fficeDocument;

interface com::sun::star::text::XTextDocument;
interface com::sun::star::util::XSearchable;

interface com::sun::star::util::XRefreshable;

interface com::sun::star::util::XNumberFormatsSupplier;

OpenOffice.org 1.1 Developer's Guide « January 2004

[optional] interface com::sun::star::text::XFootnotesSupplier;
[optional] interface com::sun::star::text::XEndnotesSupplier;
[optional] interface com::sun::star::util::XReplaceable;

[optional] interface com::sun::star::text::XPagePrintable;

[optional] interface com::sun::star::text::XReferenceMarksSupplier;
[optional] interface com::sun::star::text::XLineNumberingSupplier;
[optional] interface com::sun::star::text::XChapterNumberingSupplier;
[optional] interface com::sun::star::beans: :XPropertySet;

[optional] interface com::sun::star::text::XTextGraphicObjectsSupplier;
[optional] interface com::sun::star::text::XTextEmbeddedObjectsSupplier;
[optional] interface com::sun::star::text::XTextTablesSupplier;
[optional] interface com::sun::star::style::XStyleFamiliesSupplier;

[optional, property] com::sun::star::lang::Locale CharLocale;
[optional, property] string WordSeparator;

[optional, readonly, property] long CharacterCount;
[optional, readonly, property] long ParagraphCount;
[optional, readonly, property] long WordCount;

}i

You might encounter two more instructions in service bodies. The instruction observes can stand in front
of interface references and means that the given interfaces must be "observed". Since theobserves instruc-
tion is disapproved of, no further explanation is provided.

If a service references another service using the keyword needs in front of the reference, then this service
depends on the availability of the needed service at runtime. Newly specified services should not useneeds
as it is considered too implementation specific.

Defining a Sequence

A sequence in UNOIDL is an array containing a variable number of elements of the same UNOIDL
type. The following is an example of a sequence term:

// this term could occur in a UNOIDL definition block somewhere
sequence< com::sun::star::uno::XInterface >

It starts with the keyword sequence and gives the element type enclosed in angle brackets <>. The
element type must be a known type. A sequence type can be used as parameter, return value,
property or struct member just like any other type. Sequences can also be nested, if necessary.

// this could be a nested sequence definition
sequence< sequence< long > >

// this could be an operation using sequences in some interface definition
sequence< string > getNamesOfIndex (sequence< long > indexes);

Defining a Struct

A struct isa compound type which puts together arbitrary UNOIDL types to form a new data
type. Its member data are not encapsulated, rather they are publicly available. Structs are
frequently used to handle related data easily, and the event structs broadcast to event listeners.

A struct instruction opens with the keyword struct, gives an identifier for the new struct type and
has a struct body in braces. It is terminated by a semicolon. The struct body contains a list of struct
member declarations that are defined by a known type and an identifier for the struct member.
The member declarations must end with a semicolon, as well.

#ifndef _ com sun_star reflection ParamInfo idl
#define _ com sun_star reflection ParamInfo_ idl

#include <com/sun/star/reflection/ParamMode.idl>

module com { module sun { module star { module reflection {
interface XIdlClass; // forward interface declaration

struct ParamInfo

{

string aName;

Chapter 4 Writing UNO Components 187

188

ParamMode aMode;
XIdlClass aType;

#endif

UNOIDL supports inheritance of struct types. Inheritance is expressed by a colon : followed by
the full name of the parent type. A struct type recursively inherits all members of the parent struct
and their parents. For instance, derive from the struct com.sun.star.lang.EventObject to put
additional information about new events into customized event objects to send to event listeners.

// com.sun.star.beans.PropertyChangeEvent inherits from com.sun.star.lang.EventObject
// and adds property-related information to the event object
struct PropertyChangeEvent : com::sun::star::lang::EventObject
{
string PropertyName;
boolean Further;
long PropertyHandle;
any OldValue;
any NewValue;

Defining an Exception

An exception type is a type that contains information about anerror. If an operation detects an
error that halts the normal process flow, it must raise an exception and send information about the
error back to the caller through an exception object. This causes the caller to interrupt its normal
program flow as well and react according to the information received in the exception object. For
details about exceptions and their implementation, refer to the chapters 3.4 Professional UNO -
UNO Language Bindings and 3.3.6 Professional UNO - UNO Concepts - Exception Handling.

There are a number of exceptions to use. The exceptions should be sufficient in many cases,
because a message string can be sent back to the caller. When defining an exception, do it in such a
way that other developers could reuse it in their contexts.

An exception instruction opens with the keyword exception, gives an identifier for the new
exception type and has an exception body in braces. It is terminated by a semicolon. The exception
body contains a list of exception member declarations that are defined by a known type and an
identifier for the exception member. The member declarations must end with a semicolon, as well.

Exceptions must be based on com.sun.star.uno.Exception or
com.sun.star.uno.RuntimeException, directly or indirectly through derived exceptions of these
two exceptions. com.sun.star.uno.Exceptions can only be thrown in operations specified to
raise them while com.sun.star.uno.RuntimeExceptions can always occur. Inheritance is
expressed by a colon :, followed by the full name of the parent type.

// com.sun.star.uno.Exception is the base exception for all exceptions
exception Exception {

string Message;

XInterface Context;
}i

// com.sun.star.lang.IllegalArgumentException tells the caller which
// argument caused trouble
exception IllegalArgumentException: com::sun::star::uno::Exception
{
/** identifies the position of the illegal argument.
<p>This field is -1 if the position is not known.</p>
*/

short ArgumentPosition;
bi
// com.sun.star.uno.RuntimeException is the base exception for serious errors
// usually caused by programming errors or problems with the runtime environment

exception RuntimeException : com::sun::star::uno::Exception ({

}i

// com.sun.star.uno.SecurityException is a more specific RuntimeException

OpenOffice.org 1.1 Developer's Guide « January 2004

exception SecurityException : com::sun::star::uno::RuntimeException {

}i

Predefining Values

Predefined values can be provided, so that implementers do not have to use cryptic numbers or
other literal values. There are two kinds of predefined values, constants and enums. Constants can
contain values of any fundamental UNOIDL type, except string. The enums are automatically
numbered long values.

Const and Constants

The constants type is a container for const types. A constants instruction opens with the
keyword constants, gives an identifier for the new group of const values and has the body in
braces. It terminates with a semicolon. The constants body contains a list of const definitions that
define the values of the members starting with the keyword const followed by a known type
name and the identifier for the const in uppercase letters. Each const definition must assign a
value to the const using an equals sign. The value must match the given type and can be an
integer or floating point number, or a character, or a suitable const value or an arithmetic term
based on the operators in the table below. The const definitions must end with a semicolon, as
well.

#ifndef com sun star awt FontWeight idl
#define _ com sun_star_ awt_ FontWeight_ idl_

module com { module sun { module star { module awt {

constants FontWeight

{
const float DONTKNOW = 0.000000;
const float THIN = 50.000000;
const float ULTRALIGHT = 60.000000;
const float LIGHT = 75.000000;
const float SEMILIGHT = 90.000000;
const float NORMAL = 100.000000;
const float SEMIBOLD = 110.000000;
const float BOLD = 150.000000;
const float ULTRABOLD = 175.000000;
const float BLACK = 200.000000;

Operators Allowed in const Meaning

+ addition

- subtraction

* multiplication

/ division

% modulo division

negative sign
+ positive sign
\ bitwise or
bitwise xor

& bitwise and
~ bitwise not

>> << bitwise shift right, shift left

Chapter 4 Writing UNO Components 189

W

190

Use constants to group const types. In the Java language, binding a constants group leads to one class
for all const members, whereas a single const is mapped to an entire class.

Enum

An enum type holds a group of predefined long values and maps them to meaningful symbols. It is
equivalent to the enumeration type in C++. An enum instruction opens with the keyword enum,
gives an identifier for the new group of enum values and has an enum body in braces. It terminates
with a semicolon. The enum body contains a comma-separated list of symbols in uppercase letters
that are automatically mapped to long values counting from zero, by default.

#ifndef com sun star style ParagraphAdjust idl
#define com sun star style ParagraphAdjust idl

module com { module sun { module star { module style ({

enum ParagraphAdjust
{
LEFT,
RIGHT,
BLOCK,
CENTER,
STRETCH
}i
Yok i)
#endif

In this example, com.sun.star.style.ParagraphAdjust:LEFT corresponds to 0,
ParagraphAdjust.RIGHT corresponds to 1 and so forth.

An enum member can also be set to a long value using the equals sign. All the following enum
values are then incremented starting from this value. If there is another assignment later in the
code, the counting starts with that assignment:

enum Error {
SYSTEM = 10, // value 10

RUNTIME, // value 11
FATAL, // value 12
USER = 30, // value 30
SOFT // value 31

}i

The explicit use of enum values is deprecated and should not be used. It is a historical characteristic of the
enum type but it makes not really sense and makes, for example language bindings unnecessarily compli
cated.

Using Comments

Comments are code sections ignored by idlc. In UNOIDL, use C++ style comments. A double slash
// marks the rest of the line as comment. Text enclosed between /* and */ is a comment that may
span over multiple lines.

service ImageShrink

{
// the following lines define interfaces:
interface org::openoffice::test::XImageShrink; // our home-grown interface
interface com::sun::star::document::XFilter;

/* we could reference other interfaces, services and properties here.
However, the keywords uses and needs are deprecated
*/
}i
Based on the above, there are documentation comments that are extracted when idl files are proc-
essed with autodoc, the UNOIDL documentation generator. Instead of writing /* or //to mark a

plain comment, write /** or /// to create a documentation comment.

OpenOffice.org 1.1 Developer's Guide « January 2004

/** Don't repeat asterisks within multiple line comments,
* <- as shown here
K
/// Don't write multiple line documentation comments using triple slashes,

/// since only this last line will make it into the documentation

Our XUnoUrlResolver sample idl file contains plain comments and documentation comments.

/** service <type scope="com::sun::star::bridge">UnoUrlResolver</type>
implements this interface.
x/
interface XUnoUrlResolver: com::sun::star::uno::XInterface
{
// method com::sun::star::bridge: :XUnoUrlResolver: :resolve
/** resolves an object, on the UNO URL.
x/

}

Note the additional <type/> tag in the documentation comment pointing out that the service
UnoUrlResolver implements the interface xUnoUrlResolver. This tag becomes a hyperlink in
HTML documentation generated from this file. The chapter B IDL Documentation Guide provides a
comprehensive description for UNOIDL documentation comments.

Singleton

A singleton instruction defines a global name for a service instance and determines that there can
only be one instance of this service that must be reachable under this name. In the future, there
will be the capability of retrieving the singleton instance from the component context using the
name of the singleton. If the singleton has not been instantiated yet, the component context
creates it. A singleton instruction looks like this:

singleton theServiceManager {
service com::sun::star::lang::ServiceManager;

}i

Reserved Types

There are types in UNOIDL which are reserved for future use. The idlc will refuse to compile the
specifications if they are tried.

Array

The keyword array is reserved, but it cannot be used in UNOIDL. There will be sets containing a
fixed number of elements, as opposed to sequences, that can have an arbitrary number of elements.

Union

There is also a reserved keyword for union types that cannot be used in UNOIDL. A union will
look at a variable value from more than one perspective. For instance, a union for a long value is
defined and this same value is accessed as a whole, or accessed by its high and low part separately
through a union.

Chapter 4 Writing UNO Components 191

192

4.2.2 Generating Source Code from UNOIDL Definitions

The type description provided in .idl files is used in the subsequent process to create type informa-
tion for the service manager and to generate header and class files. Processing the UNOIDL defini-
tions is a three-step process.

1. Compile the .id! files using idlc. The result are .urd files (UNO reflection data) containing binary
type descriptions.

2. Merge the .urd files into a registry database using regmerge. The registry database files have the
extension .rdb (registry database). They contain binary data describing types in a tree-like struc-
ture starting with / as the root. The default key for type descriptions is the /UCR key (UNO
core reflection).

3. Generate sources from registry files using javamaker or cppumaker. The tools javamaker and cppu-
maker map UNOIDL types to Java and C++ as described in the chapter 3.4 Professional UNO -
UNO Language Bindings. The registries used by these tools must contain all types to map to the
programming language used, including all types referenced in the type descriptions. Therefore,
javamaker and cppumaker need the registry that was merged, but the entire office registry as
well. OpenOffice.org comes with a complete registry database providing all types used by UNO
at runtime. The SDK uses the database (type library) of an existing OpenOffice.org installation.

The following shows the necessary commands to create Java class files and C++ headers from .id/
files in a simple setup under Linux. We assume the jars from <OFFICE PROGRAM PATH>/classes
have been added to your CLASSPATH, the SDK is installed in /home/sdk, and /home/sdk/linux/bin is
in the PATH environment variable, so that the UNO tools can be run directly. The project folder is
/home/sdk/Thumbs and it contains the above .idl file XImageShrink.idl.

make project folder the current directory
cd /home/sdk/Thumbs

compile XImageShrink.idl using idlc

usage: idlc [-options] file 1.idl ... file n.idl

-C adds complete type information including services

-I includepath tells idlc where to look for include files

#

idlc writes the resulting urds to the current folder by default
idle -C -I../idl XImageShrink.idl

create registry database (.rdb) file from UNO registry data (.urd) using regmerge

usage: regmerge mergefile.rdb mergeKey regfile l.urd ... regfile n.urd

mergeKey entry in the tree-like rdb structure where types from .urd should be recorded, the tree
starts with the root / and UCR is the default key for type descriptions

#

regmerge writes the rdb to the current folder by default

regmerge thumbs.rdb /UCR XImageShrink.urd

generate Java source files for new types from rdb

-B base node to look for types, in this case UCR

-T type to generate Java files for

-nD do not generate sources for dependent types, they are available in the Java UNO jar files
#

javamaker creates a directory tree for the output files according to
the modules the given types were placed in. The tree is created in the current folder by default
javamaker -BUCR -Torg.openoffice.test.XImageShrink -nD <OFFICE PROGRAM PATH>/applicat.rdb thumbs.rdb

generate C++ header files (hpp and hdl) for new types and their dependencies from rdb
-B base node to look for types, in this case UCR
-T type to generate Java files for

cppumaker creates a directory tree for the output files according to
the modules the given types were placed in. The tree is created in the current folder by default
cppumaker -BUCR -Torg.openoffice.test.XImageShrink <OFFICE PROGRAM PATH>/applicat.rdb thumbs.rdb

#
#
#
#
#

compile Java class for new type
javac -g org/openoffice/test/XImageShrink.java

After issuing these commands you have a registry database thumbs.rdb and a Java class file
XImageShrink.class. You can run regview against thumbs.rdb to see what regmerge has accomplished.

regview thumbs.rdb

OpenOffice.org 1.1 Developer's Guide « January 2004

The result for our interface XImageShrink looks like this:

Registry "file:///home/sdk/Thumbs/thumbs.rdb":

/
/ UCR
/ org
/ openoffice
/ test
/ XImageShrink

Value: Type

Size

Data

RG_VALUETYPE_ BINARY

316

minor version: 0

major version: 1

type: 'interface'

uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }

name: 'org/openoffice/test/XImageShrink'
super name: 'com/sun/star/uno/XInterface'
Doku: ""
IDL source file: "/home/sdk/Thumbs/XImageShrink.idl"
number of fields: 3
field #0:
name='SourceDirectory'
type='string'
access=READWRITE

Doku: ""
IDL source file: ""

field #1:
name='DestinationDirectory'’
type='string'
access=READWRITE

Doku: ""
IDL source file: ""

field #2:
name='Dimension'
type='com/sun/star/awt/Size'
access=READWRITE

Doku: ""

IDL source file: ""
number of methods: 0
number of references: 0

Source generation can be fully automated with makefiles. For details, see the sections 4.5.9 Writing
UNO Components - Simple Component in Java - Running and Debugging Java Components and 4.6.10
Writing UNO Components - C++ Component - Building and Testing C++ Components below. You are
now ready to implement your own types and interfaces in a UNO component. The next section
discusses the UNO core interfaces to implement in UNO components.

4.3 Component Architecture

UNO components are archive files or dynamic link libraries with the ability to instantiate objects
which can integrate themselves into the UNO environment. For this purpose, components must
contain certain static methods (Java) or export functions (C++) to be called by a UNO service
manager. In the following, these methods are called component operations.

There must be a method to supply single-service factories for each object implemented in the
component. Through this method, the service manager can get a single factory for a specific object
and ask the factory to create the object contained in the component. Furthermore, there has to be a
method which writes registration information about the component, which is used when a compo-
nent is registered with the service manager. In C++, an additional function is necessary that
informs the component loader about the compiler used to build the component.

The component operations are always necessary in components and they are language specific.
Later, when Java and C++ are discussed, we will show how to write them.

Chapter 4 Writing UNO Components 193

UNO components Objects implement

* provide component operations to be called by « core UNO interfaces

the service manager and the component loader « one or more senvices exporting

« implement one or several UNO objects additional interfaces

UNO component

Java Archive (jar) for srvi

__getServiceFactory () instantiates
__writeRegistryServicelnfo ()

SingleServiceFactory >

C++ Dynamic Link Library

component_getFactory ()
component_writelnfo () . .
component_getimplementionEnvironment () SingleServiceFactory >

for srv2

m o

forsrv3_g
instantiates

Service3

Serviceq

0000 b

Lllustration 4.1: A Component implementing three UNO objects

The illustration shows a component which contains three implemented objects. Two of them, srvl
and srv2 implement a single service specification (Servicel and Service2), whereas srv3 4 supports
two services at once (Service3 and Service4).

The objects implemented in a component must support a number of core UNO interfaces to be
fully usable from all parts of the OpenOffice.org application. These core interfaces are discussed in
the next section. The individual functionality of the objects is covered by the additional interfaces
they export. Usually these interfaces are enclosed in a service specification.

4.4 Core Interfaces to Implement

It is important to know where the interfaces to implement are located. The interfaces here are
located at the object implementations in the component. When writing UNO components, the
desired methods have to be implemented into the application and also, the core interfaces used to
enable communication with the UNO environment. Some of them are mandatory, but there are
others to choose from.

Interface Required Should be Optional Special Cases Helper class
implemented available for
C++ and Java

Xlnterface o ®

194 OpenOffice.org 1.1 Developer's Guide * January 2004

Interface Required Should be Optional Special Cases Helper class
implemented available for
C++ and Java

XTypeProvider ° °
XServicelnfo J

XWeak ° L4
XComponent o L
Xlnitialization *

XMain °

XAggregation °

XUnoTunnel °

The interfaces listed in the table above have been characterized here briefly. More descriptions of
each interface are provided later, as well as if helpers are available and which conditions apply.

com.sun.star.uno.XInterface
The component will not work without it. The base interface xInterface gives access to higher
interfaces of the service and allows other objects to tell the service when it is no longer needed,
so that it can destroy itself.

// com::sun::star::uno::XInterface

any queryInterface([in] type aType);

[oneway] void acquire(); // increase reference counter in your service implementation

[oneway] void release(); // decrease reference counter, delete object when counter becomes zero
Usually developers do not call acquire () explicitly, because it is called automatically by the
language bindings when a reference to a component is retrieved through
UnoRuntime.queryInterface () or Reference<destInterface> (sourcelnterface,
UNO_QUERY) . The counterpart release () is called automatically when the reference goes out of
scope in C++ or when the Java garbage collector throws away the object holding the reference.

com.sun.star.lang.XTypeProvider
This interface is used by scripting languages such as OpenOffice.org Basic to get type informa-
tion. OpenOffice.org Basic cannot use the component without it.

// com::sun::star::lang::XTypeProvider

sequence<type> getTypes|() ;
sequence<byte> getImplementationId();
com.sun.star.lang.XServiceInfo
This interface is used by other objects to get information about the service implementation.

// com::sun::star::lang::XServicelInfo

string getImplementationName () ;
boolean supportsService([in] string ServiceName) ;
sequence<string> getSupportedServiceNames () ;

com.sun.star.uno.XWeak
This interface allows clients to keep a weak reference to the object. A weak reference does not
prevent the object from being destroyed if another client keeps a hard reference to it, therefore
it allows a hard reference to be retrieved again. The technique is used to avoid cyclic references.
Even if the interface is not required by you, it could be implemented for a client that may want
to establish a weak reference to an instance of your object.

// com.sun.star.uno.XWeak

com: :sun::star::uno: :XAdapter queryAdapter(); // creates Adapter

Chapter 4 Writing UNO Components 195

196

com.sun.star.lang.XComponent
This interface is used if cyclic references can occur in the component holding another object and
the other object is holding a reference to that component. It can be specified in the service
description who shall destroy the object.

// com::sun::star::lang: :XComponent

void dispose(); //an object owning your component may order it to delete itself using dispose ()
void addEventListener (com::sun::star::lang::XEventListener xListener); // add dispose listeners
void removeEventListener (com::sun::star::lang::XEventListener alistener); // remove them

com.sun.star.lang.XInitialization
This interface is used to allow other objects to use createInstanceWithArguments () or
createlnstanceWithArgumentsAndContext () with the component. It should be implemented
and the arguments processed in initialize():

// com::sun::star::lang::XInitialization
void initialize (sequence< any > aArguments) raises (com::sun::star::uno::Exception);

com.sun.star.lang.XMain
This interface is for use with the uno executable to instantiate the component independently
from the OpenOffice.org service manager.

// com.sun.star.lang.XMain

long run (sequence< string > aArguments);

com.sun.star.uno.XAggregation
This interfaces makes the implementation cooperate in an aggregation. If implemented, other
objects can aggregate to the implementation. Aggregated objects behave as if they were one. If
another object aggregates the component, it holds the component and delegates calls to it, so
that the component seems to be one with the aggregating object.

// com.sun.star.uno.XAggregation

void setDelegator (com.sun.star.uno.XInterface pDelegator) ;
any queryAggregation (type aType) ;

com.sun.star.lang.XUnoTunnel
This interface provides a pointer to the component to another component in the same process.
This can be achieved with xUnoTunnel. XUnoTunnel should not be used by new components,
because it is to be used for integration of existing implementations, if all else fails.

By now you should be able to decide which interfaces are interesting in your case. Sometimes the
decision for or against an interface depends on the necessary effort as well. The following section
discusses for each of the above interfaces how you can take advantage of pre-implemented helper
classes in Java or C++, and what must happen in a possible implementation, no matter which
language is used.

4.4.1 XlInterface

All service implementations must implement com.sun.star.uno.XInterface. Ifa Java compo-
nent is derived from a Java helper class that comes with the SDK, it supports xInterface auto-
matically. Otherwise, it is sufficient to add XInterface or any other UNO interface to the imple-
ments list. The Java UNO runtime takes care of xInterface. In C++, there are helper classes to
inherit that already implement XInterface. However, if XInterface is to be implemented manu-
ally, consider the code below.

The IDL specification for com.sun.star.uno.XInterface looks like this:
// module com::sun::star::uno

interface XInterface

{

OpenOffice.org 1.1 Developer's Guide « January 2004

any queryInterface([in] type aType);
[oneway] void acquire();
[oneway] void release();

}i

Requirements for queryInterface()

When queryInterface () is called, the caller asks the implementation if it supports the interface
specified by the type argument. The UNOIDL base type stores the name of a type and its
com.sun.star.uno.TypeClass. The call must return an interface reference of the requested type if
it is available or a void any if it is not. There are certain conditions a queryInterface () imple-
mentation must meet:

Constant Behaviour
If queryInterface () on a specific object has oncereturned a valid interface reference for a
given type, it must always return a valid reference for any subsequent queryInterface () call
for the same type on this object. A query for XInterface must always return the same reference.

If queryInterface () on a specific object has oncereturned a void any for a given type, it must
always return a void any for the same type.

Symmetry
If queryInterface () for XBar on a reference xFoo returns a reference xBar, then queryInter-
face () on reference xBar for type XFoo must return xFoo or calls made on the returned refer-
ence must be equivalent to calls to xFoo.

Object Identity
In C++, two objects are the same if their XInterface are the same. The queryInterface () for
XInterface will have to be called on both. In Java, check for the identity by calling the runtime
function com.sun.star.uni.UnoRuntime.areSame ().

The reason for this specifications is that a UNO runtime environment may choose to cache query-
Interface () calls. The rules are identical to the rules of the function QueryInterface () in MS
COM.

If you want to implement queryInterface () in Java, for example, you want to export less interfaces than
you implement, your class must implement the Java interface com.sun.star.uno.IQueryInterface.

Reference Counting

The methods acquire () and release () handle the lifetime of the UNO object. This is discussed in
detail in chapter 3.3.7 Professional UNO - UNO Concepts - Lifetime of UNO Objects. Acquire and
release must be implemented in a thread-safe fashion. This is demonstrated in C++ in the section
about C++ components below.

4.4.2 XTypeProvider

Every UNO object should implement the com.sun.star.lang.XTypeProvider interface.

Some applications need to know which interfaces an UNO object supports, for example, the
OpenOffice.org Basic engine or debugging tools, such as the Instancelnspector. The
com.sun.star.lang.XTypeProvider interface was introduced to avoid going through all known
interfaces calling queryInterface () repetitively. The XTypeProvider interface is implemented by

Chapter 4 Writing UNO Components 197

198

Java and C++ helper classes. If the XTypeProvider must be implemented manually, use the
following methods:

// module com::sun::star::lang
interface XTypeProvider: com::sun::star::uno::XInterface

{
sequence<type> getTypes|();
sequence<byte> getImplementationId() ;
bi
The sections about Java and C++ components below show examples of XTypeProvider implemen-
tations.

Provided Types

The com.sun.star.lang.XTypeProvider:getTypes () method must return a list of types for all
interfaces that queryInterface () provides. The OpenOffice.org Basic engine depends on this
information to establish a list of method signatures that can be used with an object.

ImplementationID

For caching purposes, the get ImplementationId () method has been introduced. The method
must return a byte array containing an identifier for the implemented set of interfaces in this
implementation class. It is important that one ID maps to one set of interfaces, but one set of inter-
faces can be known under multiple IDs. Every implementation class should generate a static ID.

4.4.3 XServicelnfo

Every service implementation should export the com.sun.star.lang.xServiceInfo interface.
XServiceInfo must be implemented manually, because only the programmer knows what serv-
ices the implementation supports. The sections about Java and C++ components below show
examples for XxServiceInfo implementations.

This is how the IDL specification for xServiceInfo looks like:

// module com::sun::star::lang
interface XServiceInfo: com::sun::star::uno::XInterface
{
string getImplementationName () ;
boolean supportsService([in] string ServiceName) ;
sequence<string> getSupportedServiceNames () ;

Implementation Name

The method getImplementationName () provides access to the implementation name of a service
implementation. The implementation name uniquely identifies one implementation of service
specifications in a UNO object. The name can be chosen freely by the implementation alone,
because it does not appear in IDL. However, the implementation should adhere to the following
naming conventions:

OpenOffice.org 1.1 Developer's Guide « January 2004

company dot "comp" dot modul [dot unique object implemented service(s)

prefix e name in module
name
com.sun.star . comp . forms . ODataBaseForm com.sun.star. forms. DataBaseForm
org.openoffi . comp . test . OThumbs org.openoffice.test.ImageShrink
ce org.openoffice.test. Thumbnaillnsert

If an object implements one single service, it can use the service name to derive an implementation
name. Implementations of several services should use a name that describes the entire object.

Ifa createlInstance () is called at the service manager using an implementation name, an instance

of exactly that implementation is received. An implementation name is equivalent to a class name
in Java. A Java component simply returns the fully qualified class name in getImplementation-

Name ().

It is good practice to program against the specification and not against the implementation, otherwise, your
application could break with future versions. OpenOffice.orgs API implementation is not supposed to be
compatible, only the specification is.

Supported Service Names

The methods getSupportedServiceNames () and supportsService () deal with the availability
of services in an implemented object. Note that the supported services are the services imple-
mented in one class that supports these services, not the services of all implementations contained
in the component file. If the illustration 4.1: A Component implementing three UNO objects,
XServicelInfo is exported by the implemented objects in a component, not by the component. That
means, srv3 4 must support XServiceInfo and return "Service3" and "Service4" as supported
service names.

The service name identifies a service as it was specified in IDL. If an object is instantiated at the
service manager using the service name, an object that complies to the service specification is
returned.

The single service factories returned by components that are used to create instances of an implementation
through their interfaces com. sun.star.lang.XSingleComponentFactory or
com.sun.star.lang.XSingleServiceFactory must support XServicelnfo. The single factories
support this interface to allow UNO to inspect the capabilities of a certain implementation before instanti-
ating it. You can take advantage of this feature through the
com.sun.star.container.XContentEnumerationAccess interface of a service manager.

4.4.4 XWeak

A component supporting xWeak offers other objects to hold a reference on itself without preventing
it from being destroyed when it is no longer needed. Thus, cyclic references can be avoided easily.
The chapter 3.3.7 Professional UNO - UNO Concepts - Lifetime of UNO Objects discusses this in detail.
In Java, derive from the Java helper class com.sun.star.lib.uno.helper.WeakBase to support
XWeak. Ifa C++ component is derived from one of the : : cppu: :Weak...ImplHelperNN template
classes as proposed in the section 4.6 Writing UNO Components - C++ Component, a XWeak support
is obtained, virtually for free. For the sake of completeness, this is the xweak specification:

// module com::sun::star::uno::XWeak

interface XWeak: com::sun::star::uno::XInterface

Chapter 4 Writing UNO Components 199

200

com: :sun::star::uno: :XAdapter queryAdapter();

4.4.5 XComponent

If the implementation holds a reference to another UNO object internally, there may be a problem
of cyclic references that might prevent your component and the other object from being destroyed
forever. If it is probable that the other object may hold a reference to your component, implement
com.sun.star.lang.XComponent that contains a method dispose (). Chapter 3.3.7 Professional
UNO - UNO Concepts - Lifetime of UNO Objects discusses the intricacies of this issue.

Supporting xComponent in a C++ or Java component is simple, because there are helper classes to
derive from that implement xComponent. The following code is an example if you must implement
XComponent manually.

The interface xComponent specifies these operations:
// module com::sun::star::lang

interface XComponent: com::sun::star::uno::XInterface
{
void dispose () ;
void addEventListener([in] XEventListener xListener);
void removeEventListener([in] XEventListener alListener);
}i

XComponent uses the interface com.sun.star.lang.XEventListener:

// module com::sun::star::lang
interface XEventListener: com::sun::star::uno::XInterface

{
void disposing([in] com::sun::star::lang::EventObject Source);

}i

Disposing of an XComponent

The idea behind XComponent is that the object is instantiated by a third object that makes the third
object the owner of first object. The owner is allowed to call dispose (). When the owner calls
dispose () at your object, it must do three things:

Release all references it holds.

Inform registered XEventListeners that it is being disposed of by calling their method
disposing() .

Behave as passive as possible afterwards. If the implementation is called after being disposed,
throw a com.sun.star.lang.DisposedException if you cannot fulfill the method specifica-
tion.

That way the owner of xComponent objects can dissolve a possible cyclic reference.

4 .4.6 Xlnitialization

The interface com.sun.star.lang.XxInitialization is usually implemented manually, because

only the programmer knows how to initialize the object with arguments received from the service
manager through createlInstanceWithArguments () Or createInstanceWithArgumentsAndCon-
text ().In Java, XInitialization is used as well, but know that the Java factory helper provides
a shortcut that uses arguments without implementing XInitialization directly. The Java factory
helper can pass arguments to the class constructor under certain conditions. Refer to the section

OpenOffice.org 1.1 Developer's Guide « January 2004

4.5.7 Writing UNO Components - Simple Component in Java - Create Instance With Arguments for more
information.

The specification for XInitialization looks like this:
// module com::sun::star::lang

interface XInitialization : com::sun::star::uno::XInterface
{
void initialize (sequence< any > aArguments) raises (com::sun::star::uno::Exception);
Yi
Specify in the idl service specification which arguments and in which order are expected within the
any sequence.

4.4.7 XMain

The implementation of com.sun.star.lang.XMain is used for special cases. Its run () operation is
called by the uno executable. The section 4.70 Writing UNO Components - The UNO Executablebelow
discusses the use of XMain and the uno executable in detail.

// module com::sun::star::lang

interface XMain: com::sun::star::uno::XInterface
{
long run([in] sequence< string > aArguments);

}i

4.4.8 XAggregation

A concept called aggregation is commonly used to plug multiple objects together to form one single
object at runtime. The main interface in this context iScom.sun.star.uno.xXAggregation. After
plugging the objects together, the reference count and the queryInterface () method is delegated
from multiple slave objects to one master object.

It is a precondition that at the moment of aggregation, the slave object has a reference count of
exactly one, which is the reference count of the master. Additionally, it does not work on proxy
objects, because in Java, multiple proxy objects of the same interface of the same slave object might
exist.

While aggregation allows more code reuse than implementation inheritance, the facts mentioned
above, coupled with the implementation of independent objects makes programming prone to
errors. Therefore the use of this concept is discourage and not explained here. For further informa-
tion visit http.//udk.openoffice.org/common/man/concept/unointro. html#aggregation.

4.4.9 XUnoTunnel

The com.sun.star.lang.XUnoTunnel interface allows access to the this pointer of an object. This
interface is used to cast a UNO interface that is coming back to its implementation class through a
UNO method. Using this interface is a result of an unsatisfactory interface design, because it indi
cates that some functionality only works when non-UNO functions are used. In general, these
objects cannot be replaced by a different implementation, because they undermine the general
UNO interface concept. This interface can be understood as admittance to an already existing code
that cannot be split into UNO components easily. If designing new services, do not use this inter-
face.

interface XUnoTunnel: com::sun::star::uno::XInterface

{

Chapter 4 Writing UNO Components 201

202

hyper getSomething([in] sequence< byte > aldentifier);
}i
The byte sequence contains an identifier that both the caller and implementer must know. The
implementer returns the this pointer of the object if the byte sequence is equal to the byte
sequence previously stored in a static variable. The byte sequence is usually generated once per
process per implementation.

Note that the previously mentioned 'per process' is important because the this pointer of a class you know
is useless, if the instance lives in a different process.

4.5 Simple Component in Java

This section shows how to write Java components. The examples in this chapter are in the samples
folder that was provided with the programmer's manual.

A Java component is a library of Java classes (a jar) containing objects that implement arbitrary
UNO services. For a service implementation in Java, implement the necessary UNO core interfaces
and the interfaces needed for your purpose. These could be existing interfaces or interfaces defined
by using UNOIDL.

Besides these service implementations, Java components need two methods to instantiate the serv-
ices they implement in a UNO environment: one to get single factories for each service implemen-
tation in the jar, and another one to write registration information into a registry database. These
methods are called static component operations in the following:

The method that provides single factories for the service implementations in a component is
__getServiceFactory():

public static XSingleServiceFactory _ getServiceFactory (String implName,

XMultiServiceFactory multiFactory,

XRegistryKey regKey)
In theory, a client obtains a single factory from a component by calling getServiceFactory ()
on the component implementation directly. This is rarely done because in most cases service
manager is used to get an instance of the service implementation. The service manager uses
__getServiceFactory () at the component to get a factory for the requested service from the
component, then asks this factory to create an instance of the one object the factory supports.

To find a requested service implementation, the service manager searches its registry database for
the location of the component jar that contains this implementation. For this purpose, the compo-
nent must have been registered beforehand. UNO components are able to write the necessary
information on their own through a function that performs the registration and which can be called
by the registration tool regcomp. The function has this signature:

public static boolean _ writeRegistryServiceInfo (XRegistryKey regKey)

These two methods work together to make the implementations in a component available to a
service manager. The method writeRegistryServiceInfo () tells the service manager where to
find an implementation while getServiceFactory() enables the service manager to instantiate
a service implementation, once found.

The necessary steps to write a component are:
1. Define service implementation classes.

2. Implement UNO core interfaces.

3. Implement your own interfaces.
4

. Provide static component operations to make your component available to a service manager.

OpenOffice.org 1.1 Developer's Guide « January 2004

4.5.1 Class Definition with Helper Classes

XlInterface, XTypeProvider and XWeak

The OpenOffice.org Java UNO environment contains Java helper classes that implement the
majority of the core interfaces that are implemented by UNO components. There are two helper
classes:

The helper com.sun.star.lib.uno.helper.WeakBase is the minimal base class and implements
XInterface, XTypeProvider and Xweak.

- The helper com.sun.star.lib.uno.helper.ComponentBase that extends WeakBase and implements
XComponent.

The com.sun.star.lang.xXServicelInfo is the only interface that should be implemented, but it is
not part of the helpers.

Use the naming conventions described in section 4.4.3 Writing UNO Components - Core Interfaces to
Implement - XServicelnfo for the service implementation. Following the rules, a service
org.openoffice.test.ImageShrink should be implemented in
org.openoffice.comp.test.ImageShrink.

A possible class definition that uses ComponentBase could look like this:
(Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

package org.openoffice.comp.test;

public class ImageShrink extends com.sun.star.lib.uno.helper.ComponentBase
implements com.sun.star.lang.XServiceInfo,
org.openoffice.test.XImageShrink,
com.sun.star.document.XFilter {

com.sun.star.uno.XComponentContext xComponentContext = null;

/** Creates a new instance of ImageShrink */
public ImageShrink (com.sun.star.uno.XComponentContext XComponentContext xContext) {
this.xComponentContext = xContext;

}

XServicelnfo

If the implementation only supports one service, use the following code to implement XServ-
icelnfo: (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

//XServiceInfo implementation

// hold the service name in a private static member variable of the class
protected static final String _ serviceName = "org.openoffice.test.ImageShrink";

public String getImplementationName() {
return getClass () .getName () ;

}

public boolean supportsService (String serviceName) {
if (serviceName.equals(_ serviceName))
return true;
return false;

}

public String[] getSupportedServiceNames() {
String[] retValue= new String[0];
retValue[0]= _ serviceName;
return retValue;

Chapter 4 Writing UNO Components 203

An implementation of more than one service in one UNO object is more complex. It has to return
all supported service names in getSupportedServiceNames (), furthermore it must check all
supported service names in supportsService (). Note that several services packaged in one
component file are not discussed here, but objects supporting more than one service. Refer to4.1: A
Component implementing three UNO objects for the implementation of srv3 4.

4.5.2 Implementing your own Interfaces

The functionality of a component is accessible only by its interfaces. When writing a component,
choose one of the available API interfaces or define an interface. IDL types are used as method
arguments to other UNO objects. Java does not support unsigned data types, so their use is
discouraged. In the chapter 4.2 Writing UNO Components - Using UNOIDL to Specify new Compo-
nents, the org.openoffice.test.XImageShrink interface specification was written and an inter-
face class file was created. Its implementation is straightforward, you create a class that imple-
ments your interfaces: (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

package org.openoffice.comp.test;

public class ImageShrink extends com.sun.star.lib.uno.helper.ComponentBase
implements com.sun.star.lang.XServicelInfo,
org.openoffice.test.XImageShrink,
com.sun.star.document .XFilter {

String destDir = "";

String sourceDir = "";

boolean cancel = false;

com.sun.star.awt.Size dimension = new com.sun.star.awt.Size();

// XFilter implementation

public void cancel () {
cancel = true;

public boolean filter (com.sun.star.beans.PropertyValue[] propertyValue) ({
// while cancel = false,
// scale images found in sourceDir according to dimension and
// write them to destDir, using the image file format given in
// [lpropertyValue
// (implementation omitted)
cancel = false;
return true;

}
// XIMageShrink implementation

public String getDestinationDirectory () {
return destDir;

}

public com.sun.star.awt.Size getDimension() {
return dimension;

}

public String getSourceDirectory () {
return sourceDir;

}

public void setDestinationDirectory (String str) {
destDir = str;

}

public void setDimension (com.sun.star.awt.Size size) {
dimension = size;

}
public void setSourceDirectory (String str) ({

sourceDir = str;

}

204 OpenOffice.org 1.1 Developer's Guide « January 2004

}

For the component to run, the new interface class file must be accessible to the Java Virtual
Machine. That is, it has to be in its CLASSPATH. All commonly used interfaces are contained in
ridl.jar and unoil.jar that are always in the CLASSPATH because of the OpenOffice.org setup
program.

The recommended method is to deliver the interface together with the component in the same jar
file, or to have the interface in a separate jar or class file. In both cases, put the corresponding class
with the interface into the CLASSPATH. This is achieved by editing the file java(.ini|rc) in <office-
path>\user\config or through the options dialog. The java(.ini|rc) contains a SystemClasspath
entry that you append the path pointing to the class or jar file. In the Options dialog, expand the
OpenOffice.org node in the tree on the left-hand side and choose Security. One the right-hand
side, there is a field User Classpath to add the jar or class file containing the interface.

It is also important that the binary type library of the new interfaces are provided together with the compo-
nent, otherwise the component is not accessible from OpenOffice.org Basic. Basic uses the UNO core reflec-
tion service to get type information at runtime. The core reflection is based on the binary type library.

4.5.3 Providing a Single Factory Using Helper Method

The component must be able to create single factories for each service implementation it contains
and return them in the static component operation getServiceFactory (). The OpenOffice.org
Java UNO environment provides a Java class com.sun.star.comp.loader.FactoryHelper that
creates a default implementation of a single factory through its method getServiceFactory ().
The following example could be written:
(Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

package org.openoffice.comp.test;

import com.sun.star.lang.XSingleServiceFactory;
import com.sun.star.lang.XMultiServiceFactory;
import com.sun.star.registry.XRegistryKey;
import com.sun.star.comp.loader.FactoryHelper;

public class ImageShrink ... {

// static _ getServiceFactory() implementation
// static member serviceName was introduced above for XServiceInfo implementation
public static XSingleServiceFactory _ getServiceFactory (String implName,
XMultiServiceFactory multiFactory,
com.sun.star.registry.XRegistryKey regKey) {

com.sun.star.lang.XSingleServiceFactory xSingleServiceFactory = null;
if (implName.equals(ImageShrink.class.getName()))
xSingleServiceFactory = FactoryHelper.getServiceFactory (ImageShrink.class,
ImageShrink._ serviceName, multiFactory, regKey);

return xSingleServiceFactory;

}

The FactoryHelper is contained in the jurt jar file. The getServiceFactory () method takes as a
first argument a Class object. When createlInstance () is called on the default factory, it creates
an instance of that Class using newInstance () on it and retrieves the implementation name
through getName (). The second argument is the service name. ThemultiFactory and regKey
arguments were received in __getServiceFactory () and are passed to the FactoryHelper.

Chapter 4 Writing UNO Components 205

206

In this case, the implementation name, which the default factory finds through Class.getName () is
org.openoffice.comp.test.ImageShrink and the service name is
org.openoffice.test.ImageShrink. The implementation name and the service name are used for the
separate XServicelnfo implementation within the default factory. Not only do you support the XServicelnfo
interface in your service implementation, but the single factory must implement this interface as well.

The default factory created by the FactoryHelper expects a public constructor in the implementa-
tion class of the service and calls it when it instantiates the service implementation. The constructor
can be a default constructor, or it can take a com.sun.star.uno.XComponentContext Or a
com.sun.star.lang.XMultiServiceFactory as an argument. Refer to 4.5.7 Writing UNO Compo-
nents - Simple Component in Java - Create Instance With Arguments for other arguments that are
possible.

Java components are housed in jar files. When a component has been registered, the registry
contains the name of the jar file, so that the service manager can find it. However, because a jar file
can contain several class files, the service manager must be told which one contains the
__getServiceFactory () method. That information has to be put into the jar's Manifest file, for
example:

RegistrationClassName: org.openoffice.comp.test.ImageShrink

4.5.4 Write Registration Info Using Helper Method

UNO components have to be registered with the registry database of a service manager. In an
office installation, this is the file applicat.rdb for all predefined services. A service manager can use
this database to find the implementations for a service. For instance, if an instance of your compo-
nent is created using the following call.

Object imageShrink = xRemoteServiceManager.createInstance ("org.openoffice.test.ImageShrink") ;

Using the given service or implementation name, the service manager looks up the location of the
corresponding jar file in the registry and instantiates the component.

If you want to use the service manager of the Java UNO runtime,
com.sun.star.comp.servicemanager.ServiceManager (jurt.jar), to instantiate your service implementation,
then you would have to create the service manager and add the factory for
“org.openoffice.test.ImageShrink” programmatically, because the Java service manager does not use the
registry.

Alternatively, you can use com.sun.star.comp.helper.RegistryServiceFactory from juh.jar which is registry-
based. Its drawback is that it delegates to a C++ implementation of the service manager through the java-
bridge.

During the registration, a component writes the necessary information into the registry. The
process to write the information is triggered externally when a client calls the writeRegistry-
ServiceInfo () method at the component.

public static boolean _ writeRegistryServiceInfo (XRegistryKey regKey)
The caller passes an com.sun.star.registry.xXRegistryKey interface that is used by the method

to write the registry entries. Again, the FactoryHelper class offers a way to implement the method:
(Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

// static writeRegistryServiceInfo implementation
public static boolean _ writeRegistryServiceInfo (XRegistryKey regKey) {

return FactoryHelper.writeRegistryServiceInfo(ImageShrink.class.getName(),
__serviceName, regKey) ;

OpenOffice.org 1.1 Developer's Guide « January 2004

The writeRegistryServicelnfo method takes three arguments:
implementation name
service name
XRegistryKey

Use tools, such as regcomp or the Java application com.sun.star.tools.uno.RegComp to register a
component. These tools take the path to the jar file containing the component as an argument.
Since the jar can contain several classes, the class that implements the writeRegistryServ-
iceInfo () method must be pointed out by means of the manifest. Again, the Registration-
ClassName entry determines the correct class. For example:

RegistrationClassName: org.openoffice.comp.test.ImageShrink

The above entry is also necessary to locate the class that provides getServiceFactory (), there-
fore the functions writeRegistryServiceInfo() and _ getServiceFactory () have to be in
the same class.

4.5.5 Implementing without Helpers

Xlnterface

As soon as the component implements any UNO interface, com.sun.star.uno.XInterface is
included automatically. The Java interface definition generated by javamaker for
com.sun.star.uno.XInterface contains a TypeInfo member used by Java UNO internally to
store certain IDL type information (Refer to 3.4.1 Professional UNO - UNO Language Bindings - Java
Language Binding):

// source file com/sun/star/uno/XInterface.java generated by javamaker

package com.sun.star.uno;

public interface XInterface

{
// static Member
public static final com.sun.star.lib.uno.typeinfo.TypeInfo UNOTYPEINFO[] = null;
}
Note that xInterface does not have any methods, in contrast to its IDL description. That means, if
implements com.sun.star.uno.XInterface is added to a class definition, there is nothing to

implement.

The method queryInterface () is unnecessary in a service implementation, because the Java UNO
runtime environment obtains interface references without being helped by the components. Within
Java, the method UnoRuntime.queryInterface () is used to obtain interfaces instead of calling
com.sun.star.uno.XInterface:queryInterface (), and the Java UNO language binding hands
out interfaces for services to other processes on its own as well.

The methods acquire () and release () are used for reference counting and control the lifetime of
an object, because the Java garbage collector does this, there is no reference counting in Java
components.

XTypeProvider

Helper classes with default com.sun.star.lang.XTypeProvider implementations are still under
development for Java. Meanwhile, every Java UNO object implementation can implement the

Chapter 4 Writing UNO Components 207

XTypeProvider interface as shown in the following code. In your implementation, adjust
getTypes () : (Components/Thumbs/org/openoffice/comp/test/ImageShrink.java)

// XTypeProvider implementation

// maintain a static implementation id for all instances of ImageShrink
// initialized by the first call to getImplementationId()

protected static byte[] _implementationId;

public com.sun.star.uno.Type[] getTypes() {
com.sun.star.uno.Type[] retValue = new com.sun.star.uno.Type[4];

// instantiate Type instances for each interface you support and add them to Type[] array

// this object implements XServiceInfo, XTypeProvider and XImageShrink
retValue[0]= new com.sun.star.uno.Type(com.sun.star.lang.XServiceInfo.class);

retValue[l]= new com.sun.star.uno.Type(com.sun.star.lang.XTypeProvider.class);
retValue[3]= new com.sun.star.uno.Type(com.sun.star.document.XFilter);
retValue[2]= new com.sun.star.uno.Type(org.openoffice.test.XImageShrink.class);

// inherited interfaces, like XInterface, are recognized implicitely

return retValue;

}

synchronized public byte[] getImplementationId() ({

if (implementationId == null) {
:implementationld: new byte[1l6];
int hash = hashCode(); // hashCode of this object
_implementationId[0] = (byte) (hash & 0xff);
implementationId[1l] = (byte) ((hash >>> 8) & Oxff);
:implementationId[Z] = (byte) ((hash >>> 16) & 0xff);
_implementationId[3] = (byte) ((hash >>>24) & Oxff);

}

return implementationId;

The suggested implementation of the getImplementationId () method is not optimal, it uses the
hashCode () of the first instance that initializes the static field. The future UNO helper class will
improve this.

XComponent

XComponent is an optional interface that is useful when other objects hold references to the compo-
nent. The notification mechanism of xComponent enables listener objects to learn when the compo-
nent stops to provide its services, so that the objects drop their references to the component. This
enables the component to delete itself when its reference count drops to zero. From section4.4
Writing UNO Components - Core Interfaces to Implement, there must be three things done when
dispose () is called at an XComponent:

- Inform registered XEventListeners that the object is being disposed of by calling their method
disposing().

- Release all references the object holds, including all XEvenListener objects.

- On further calls to the component, throw an com.sun.star.lang.DisposedException in case
the required task can not be fulfilled anymore, because the component was disposed.

In Java, the object cannot be deleted, but the garbage collector will do this. It is sufficient to release
all references that are currently being held to break the cyclic reference, and to calldisposing ()
on all com.sun.star.lang.XEventListeners.

The registration and removal of listener interfaces is a standard procedure in Java. Some IDEs even
create the necessary methods automatically. The following example could be written: (Compo-
nents/Thumbs/org/openoffice/comp/test/ImageShrink.java)

208 OpenOffice.org 1.1 Developer's Guide « January 2004

//XComponent implementation

// hold a Vector of eventListeners in the class
private transient Vector eventListeners;

void dispose {
fireDisposing (new com.sun.star.lang.EventObject (this))
releaseReferences () ;

}

public synchronized void addEventListener (XEventListener listener) {

if (eventListeners == 0)
eventListeners = new Vector(2);
if (!'eventListeners.contains(listener))

eventListeners.addElement (listener) ;

}
public synchronized void removeEventListener (XEventListener listener) {

if (eventListeners != 0)
eventListeners.removeElement (1istener) ;

protected void fireDisposing(com.sun.star.lang.EventObject e) {
if (eventListeners != null) {
Vector listeners = eventListeners ;
int count = listeners.size();
for (int 1 = 0; 1 < count; i++) {
((XEventListener) listeners.elementAt (1)) .disposing/(e);

}
}

protected void releaseReferences() {
xComponentContext = null;
//

4.5.6 Storing the Service Manager for Further Use

A component usually runs in the office process. There is no need to create an interprocess channel
explicitly. A component does not have to create a service manager, because it is provided to the
single factory of an implementation by the service manager during a call to createInstance () or
createInstanceWithContext (). The single factory receives an xComponentContext or an
XMultiServiceFactory, and passes it to the corresponding constructor of the service implemen-
tation. From the component context, the implementation gets the service manager using getServ-
iceManager () atthe com.sun.star.uno.XComponentContext interface.

4.5.7 Create Instance with Arguments

A factory can create an instance of components and pass additional arguments. To do that, a client
calls the createInstanceWithArguments () function of the
com.sun.star.lang.XSingleServiceFactory interface or the createInstanceWithArgument-
sAndContext () of the com.sun.star.lang.xSingleComponentFactory interface.

//javamaker generated interface

//XSingleServiceFactory interface

public java.lang.Object createInstanceWithArguments (java.lang.Object[] aArguments
throws com.sun.star.uno.Exception;

//XSingleComponentFactory
public java.lang.Object createInstanceWithArgumentsAndContext (java.lang.Object[] Arguments,
com.sun.star.uno.XComponentContext Context)
throws com.sun.star.uno.Exception;

Chapter 4 Writing UNO Components 209

Both functions take an array of values as an argument. A component implements the
com.sun.star.lang.XInitialization interface to receive the values. A factory passes the array
on to the single method initialize () supported by Xlnitialization.

public void initialize(java.lang.Object[] aArguments) throws com.sun.star.uno.Exception;

Alternatively, a component may also receive these arguments in its constructor. If a factory is
written, determine exactly which arguments are provided by the factory when it instantiates the
component. When using the FactoryHelper, implement the constructors with the following argu-
ments:

First Argument Second Argument Third Argument

com.sun.star.uno.XComponentContext com.sun.star.registry.XRegistryKey java.lang.Object[]

com.sun.star.uno.XComponentContext | com.sun.star.registry.XRegistryKey
com.sun.star.uno.XComponentContext | java.lang.Object[]
com.sun.star.uno.XComponentContext

java.lang.Object[]

The FactoryHelper automatically passes the array of arguments it received from the createIn-
stanceWithArguments [AndContext] () call to the appropriate constructor. Therefore, it is not
always necessary to implement xInitialization to use arguments.

4.5.8 Possible Structures for Java Components

The implementation of a component depends on the needs of the implementer. The following
examples show some possible ways to assemble a component. There can be one implemented
object or several implemented objects per component file.

One Implementation per Component File
There are additional options if implementing one service per component file:

Use a flat structure with the static component operations added to the service implementation
class directly.

Reserve the class with the implementation name for the static component operation and use an
inner class to implement the service.

Implementation Class with Component Operations

An implementation class contains the static component operations. The following sample imple-
ments an interface com.sun.star.test.XSomething in an implementation class
JavaComp.TestComponent:

// UNOIDL: interface example specification
module com { module sun { module star { module test {

interface XSomething: com::sun::star::uno::XInterface

{
string methodOne ([in]string val) ;

bi

Fioki i b

A component that implements only one service supporting XSomething can be assembled in one
class as follows:

package JavaComp;

210 OpenOffice.org 1.1 Developer's Guide « January 2004

public class TestComponent implements XSomething, XTypeProvider, XServiceInfo {
public static final String __ serviceName="com.sun.star.test.JavaTestComponent";

public static XSingleServiceFactory _ getServiceFactory(String implName,
XMultiServiceFactory multiFactory, XRegistryKey regKey) {
XSingleServiceFactory xSingleServiceFactory = null;

if (implName.equals(TestComponent.class.getName()))
xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponent.class,
TestComponent. serviceName, multiFactory, regKey);
return xSingleServiceFactory;

}

public static boolean writeRegistryServicelInfo (XRegistryKey regKey) {
return FactoryHelper.writeRegistryServiceInfo(TestComponent.class.getName (),
TestComponent. serviceName, regKey);

}

// XSomething
string methodOne (String val) {
return val;

}
//XTypeProvider
public com.sun.star.uno.Type[] getTypes() {

}
// XTypeProvider
public byte[] getImplementationId() {

}
//%XServicelInfo
public String getImplementationName() {

}
// XServicelInfo
public boolean supportsService(/*IN*/String serviceName) {

}
//XServiceInfo
public String[] getSupportedServiceNames() {

}
}
The class implements the XSomething interface. The IDL description and documentation provides
information about its functionality. The class also contains the functions for factory creation and
registration, therefore the manifest entry must read as follows:

RegistrationClassName: JavaComp.TestComponent

Implementation Class with Component Operations and Inner Implementation Class

To implement the component as inner class of the one that provides the service factory through
__getServiceFactory (), it must be a static inner class, otherwise the factory provided by the
FactoryHelper cannot create the component. An example for an inner implementation class is
located in the sample com.sun.star.comp.demo.DemoComponent.java provided with the SDK. The
implementation of getServiceFactory() and writeRegistryServiceInfo () is omitted
here, because they act the same as in the implementation class with component operations above.
package com.sun.star.comp.demo;
public class DemoComponent {

}).static inner class implements service com.sun.star.demo.DemoComponent

static public class _Implementation implements XTypeProvider,

XServiceInfo, XInitialization, XWindowListener,

XActionListener, XTopWindowListener ({

static private final String _ serviceName = "com.sun.star.demo.DemoComponent";
private XMultiServiceFactory xMultiServiceFactory;

// Constructor

public Implementation (XMultiServiceFactory xMultiServiceFactory) {

}

Chapter 4 Writing UNO Components 211

212

// static method to get a single factory creating the given service from the factory helper
public static XSingleServiceFactory _ getServiceFactory(String implName,
XMultiServiceFactory multiFactory,
XRegistryKey regKey) {

}

// static method to write the service information into the given registry key
public static boolean _ writeRegistryServicelInfo (XRegistryKey regKey) {

}
}

The manifest entry for this implementation structure again has to point to the class with the static
component operations:

RegistrationClassName: com.sun.star.comp.demo.DemoComponent

Multiple Implementations per Component File

To assemble several service implementations in one component file, implement each service in its
own class and add a separate class containing the static component operations. The following code
sample features two services: TestComponentA and TestComponentB implementing the interfaces
XSomethingA and XSomethingB with a separate static class TestServiceProvider containing the
component operations.

The following are the UNOIDL specifications for XSomethinga and XSomethingB:

module com { module sun { module star { module test {
interface XSomethingA: com::sun::star::uno::XInterface
{

string methodOne ([in]string value) ;
}i
Yiooli o}

module com { module sun { module star { module test {
interface XSomethingB: com::sun::star::uno::XInterface
{

string methodTwo ([in]string value) ;
;i Yoot bi
TestComponentA implements XxSomethingA:
(Components/JavaComponent/TestComponentA.java):
package JavaComp;

public class TestComponentA implements XTypeProvider, XServiceInfo, XSomethingA {
static final String _ serviceName= "JavaTestComponentA";

static byte[] _implementationId;

public TestComponentA () {
}

// XSomethingA
public String methodOne (String val) {
return val;

}

//XTypeProvider

public com.sun.star.uno.Type[] getTypes() {
Type[] retValue= new Type[3];
retValue[0]= new Type(XServicelInfo.class);
retValue[l]= new Type(XTypeProvider.class);

retValue[2]= new Type(XSomethingA.class);
return retValue;

}

//XTypeProvider
synchronized public byte[] getImplementationId() {
if (_implementationId == null) {

_implementationId= new byte[16];
int hash = hashCode () ;
_implementationId[0]
_implementationId[1]

(byte) (hash & Oxff);
(byte) ((hash >>> 8) & 0xff);

OpenOffice.org 1.1 Developer's Guide « January 2004

_implementationId[2]

_implementationId[3] =

}

return _implementationId;

}

//%XServicelInfo

(byte) ((hash >>> 16)
(byte) ((hash >>>24)

public String getImplementationName (
return getClass () .getName () ;

}

// XServicelnfo

)

{

& Oxff);
& Oxff);

public boolean supportsService(/*IN*/String serviceName) {
if (serviceName.equals(_ serviceName))

return true;
return false;

}

//XServiceInfo

public String[] getSupportedServiceNames() {
String[] retValue= new String[0];

retValue[0]= _ serviceName;

return retValue;

TestComponentB implements XSomethingB. Note that it receives the component context and
initialization arguments in its constructor. (Components/JavaComponent/TestComponentB.java)

package JavaComp;

public class TestComponentB implements XTypeProvider,

XServicelInfo,

static final String __ serviceName= "JavaTestComponentB";

static byte[] implementationId;
private XComponentContext context;

private Object[] args;

public TestComponentB (XComponentContext context,

this.context= context;
this.args= args;
}

// XSomethingB

public String methodTwo (String val)

if (args.length > 0 && args[0]

return (String) args[0];

return val;

}

//XTypeProvider
public com.sun.star.uno.Type[

return retValue;

}

//XTypeProvider

1

{

getTypes() {
Type[] retValue= new Typel[3];
retValue[0]= new Type(XServicelInfo.class);
retValue[l]= new Type(XTypeProvider.class);
retValue[2]= new Type (XSomethingB.class) ;

synchronized public byte[] getImplementationId()
if (_implementationId == null) {
_implementationId= new byte[16];

int hash = hashCode ()
_implementationId[0]
_implementationId[1]
_implementationId[2]
_implementationId[3]
}
return _implementationId;

}

//XServiceInfo

7

(
(
(
(

byte
byte
byte
byte

public String getImplementationName (
return getClass () .getName () ;

}

// XServicelInfo

(
(
(
(

hash & Oxff);

(
(
(

)

hash >>> 8)
hash >>> 16)
hash >>>24)

{

Object[] args) {

instanceof String

{

& Oxff);
& Oxff);
& Oxff);

public boolean supportsService(/*IN*/String serviceName) {
if (serviceName.equals(_ serviceName))

return true;
return false;
}

//XServicelInfo

public String[] getSupportedServiceNames() {

Chapter 4

XSomethingB {

Writing UNO Components 213

String[] retValue= new String[0];
retValue[0]= _ serviceName;
return retValue;

TestServiceProvider implements getServiceFactory() and _writeRegistryServiceInfo
(): (Components/JavaComponent/TestServiceProvider.java)

package JavaComp;

public class TestServiceProvider
{
public static XSingleServiceFactory _ getServiceFactory (String implName,
XMultiServiceFactory multiFactory,
XRegistryKey regKey) {
XSingleServiceFactory xSingleServiceFactory = null;

if (implName.equals(TestComponentA.class.getName()))
xSingleServiceFactory = FactoryHelper.getServiceFactory(TestComponentA.class,
TestComponentA. serviceName, multiFactory, regKey);
else if (implName.equals (TestComponentB.class.getName ()))
xSingleServiceFactory= FactoryHelper.getServiceFactory(TestComponentB.class,
TestComponentB.__serviceName, multiFactory, regKey);
return xSingleServiceFactory;

}

public static boolean __ writeRegistryServiceInfo (XRegistryKey regKey) {
boolean bregA= FactoryHelper.writeRegistryServicelInfo(TestComponentA.class.getName (),
TestComponentA. serviceName, regKey);
boolean bregB= FactoryHelper.writeRegistryServicelInfo(TestComponentB.class.getName (),
TestComponentB. serviceName, regKey);
return bregA && bregB;

}

The corresponding manifest entry must point to the static class with the component operations, in
this case JavaComp.TestServiceProvider:

RegistrationClassName: JavaComp.TestServiceProvider

4.5.9 Running and Debugging Java Components

Registration

In order to run a Java component within an office, it needs to be registered first. During the process
of registration, the location of the component, its service name and implementation name, are
written into a registry database —the services.rdb.

! As of OpenOffice.orgl.1.0 the registration database (applicat.rdb) was split into the services.rdb and the
@ types.rdb. As the names suggest, the services.rdb contains information about services (location, names, ect),
whereas the types.rdb holds type descriptions (interfaces,enumerations, etc.)

Formerly the regcomp tool was used for registering components. However, it was superceded by
pkgchk, which will be delivered along with OpenOffice.orgl.1.0. For more details about pkgchk
refer to chapter 4.9.1 Writing UNO Components - Deployment Options for Components - UNO Package
Installation.

By using regcomp you have the option of registering components so that the information is kept in a
separate database (other then the services.rdb). This might come in handy if you do not want to
clutter up the services.rdb while developing components. Then, however, the office needs to be
told to use that .rdb, which is done by modifying the uno(.ini|rc).

214 OpenOffice.org 1.1 Developer's Guide * January 2004

If the component uses new types, then they must be made available to the office by merging the
type information into the services.rdb. Again, you have the option of using a different database as
long as the uno.(ini|rc) is modified accordingly. This step can be omitted ifpkgchk is being used.

The following is a step by step description of the registration process using regcomp:

Note, if errors are encountered, refer to the troubleshooting section at the end of this chapter.

Register Component File
This step creates a registry file that contains the location of the component file and all the neces
sary type information. To register, place a few files to the proper locations:

Copy the regcomp tool from the SDK distribution to <OfficePath>/program.
Copy the component jar to <OfficePath>/program/classes.

Copy the .rdb file containing the new types created to <OfficePath>/program. If new types
were not defined, dismiss this step. In this case, regcomp automatically creates a new rdb file
with registration information.

On the command prompt, change to <OfficePath>/program, then run regcomp with the following
options. Line breaks were applied to improve readability, but the command must be entered in
a single line:
$ regcomp -register -r <your registry>.rdb

-br services.rdb

-br types.rdb

-1 com.sun.star.loader.Java
-c file:///<OfficePath>/program/classes/<your_component>.Jjar

For the org.openoffice.test.ImageShrink service whose type description was merged into
thumbs.rdb , which is implemented in thumbs.jar, the corresponding command would be:

$ regcomp -register -r thumbs.rdb
-br services.rdb
-br types.rdb
-1 com.sun.star.loader.Java
-c file:///i:/StarOffice6.0/program/classes/thumbs.jar

Instead of regcomp, there is also a Java tool to register components, however, it can only write to
the same registry it reads from. It cannot be used to create a separate registry database. For
details, see the section 4.9 Writing UNO Components - Deployment Options for Components.

Make Registration available to OpenOffice.org
OpenOffice.org must be told to use the registry. Close all OpenOffice.org parts, including the
Quickstarter that runs in the Windows task bar. Edit the file uno(.ini|rc) in <OfficePath>/program
as follows:
[Bootstrap]

UNO_TYPES=$SYSBINDIR/types.rdb $SYSBINDIR/<your registry>.rdb
UNO_SERVICES=$SYSBINDIR/services.rdb $SYSBINDIR/<your registry>.rdb

For details about the syntax of uno(.ini|rc) and alternative registration procedures, refer to the
section 4.9 Writing UNO Components - Deployment Options for Components. If OpenOffice.org is
restarted, the component should be available.

Test the Registration
A short OpenOffice.org Basic program indicates if the program runs went smoothly, by
selecting Tools — Macro and entering a new macro name on the left, such as TestImageShrink
and click New to create a new procedure. In the procedure, enter the appropriate code of the
component. The test routine for ImageShrink would be:

Sub TestImageShrink
oTestComp = createUnoService ("org.openoffice.test.ImageShrink")

Chapter 4 Writing UNO Components 215

W

216

MsgBox oTestComp.dbg_methods

MsgBox oTestComp.dbg properties

MsgBox oTestComp.dbg_supportedInterfaces
end sub

The result should be three dialogs showing the methods, properties and interfaces supported
by the implementation. Note that the interface attributes do not appear as get/set methods, but
as properties in Basic. If the dialogs do not show what is expected, refer to the section 4.5.9
Writing UNO Components - Simple Component in Java - Testing and Debugging Java Components -
Troubleshooting.

Debugging

To increase turnaround cycles and source level debugging, configure the IDE to use GNU make-
files for code generation and prepare OpenOffice.org for Java debugging. If NetBeans are used, the
following steps are necessary:

Support for GNU make
A NetBeans extension, available on makefile.netbeans.org, that adds basic support for GNU
makefiles. When it is enabled, edit the makefile in the IDE and use the makefile to build. To
install and enable this module, select Tools — Setup Wizard and click Next to go to the Module
installation page. Find the module Makefiles and change the corresponding entry to True in
the Enabled column. Finish using the setup wizard. If the module is not available in the instal-
lation, use Tools — Update Center to get the module from www.netbeans.org. A new entry,
Makefile Support, appears in the online help when Help — Contents is selected. Makefile
Support provides further configuration options. The settings Run a Makefile and Test a Make-
file can be found in Tools — Options — Uncategorized — Compiler Types and — Execution
Types.

Put the makefile into the project source folder that was mounted when the project was created.
To build the project using the makefile, highlight the makefile in the Explorer and press F11.

Documentation for GNU make command- line options and syntax are available at www.gnu.org.
The sample Thumbs in the samples folder along with this manual contains a makefile that with a
few adjustments is useful for Java components.

Component Debugging
If NetBeans or Forte for Java is used, the Java Virtual Machine (JVM) that is launched by
OpenOffice.org can be attached. Configure the JVM used by OpenOffice.org to listen for
debugger connections. First close any open OpenOffice.org windows including the Quick-
starter, then edit the section [JAVA] of the file java(.ini|rc) in <OfficePath>/user/config by adding:

-Xdebug
-Xrunjdwp:transport=dt_socket, server=y,address=8000, suspend=n

The additional entries correspond exactly to the options you would use when running the java executable
from the command line in debug mode. For more information refer to the Java SDK documentation.

The last line causes the JVM to listen for a debugger on port 8000. The JVM starts listening as
soon as it runs and does not wait until a debugger connects to the JVM. Launch the office and
instantiate the Java component, so that the office invokes the JVM in listening mode.

Once a Java component is instantiated, the JVM keeps listening even if the component goes out
of scope. Open the appropriate source file in the NetBeans editor and set breakpoints as
needed. Choose Debug - Attach, select Java Platform Debugger Architecture (JPDA) as
debugger type and SocketAttach (Attaches by socket to other VMs) as the connector. The

OpenOffice.org 1.1 Developer's Guide « January 2004

Host should be localhost and the Port must be 8000. Click OK to connect the Java Debugger to
the JVM the office has started previously step.

Once the debugger connects to the running JVM, NetBeans switches to debug mode, the output
windows shows a message that a connection on port 8000 is established and threads are visible,
as if the debugging was local. If necessary, start your component once again. As soon as the
component reaches a breakpoint in the source code, the source editor window opens with the
breakpoint highlighted by a green arrow.

The Java Environment in OpenOffice.org

When UNO components written in Java are to be used within the office, it has to be configured
appropriately. During OpenOffice.org installation, the Java setup is run. It gives the user the
opportunity to choose a Java installation. The setup only offers Java versions which are certain to
work with the office. The user can also choose to have an appropriate Java Runtime Environment
installed. When the office has been installed, a user can still change the used Java installation by
running the jvmsetup program that is located in the program directory of the installation directory.
For example:

d:\program files\<office-installation-dir>\program\jvmsetup.exe

When the office starts Java, it uses configuration data that are kept in the java(.ini|rc) file, as well as
in dedicated configuration files.

The java(.ini|rc) actually is an implementation detail. Unfortunately, it needs to be modified under some
rare circumstances, for example for debugging purposes. You must not rely on the existence of the file
nor should you make assumptions about its contents.

The java(.ini|rc) is located in the <officepath>\user\config directory. A client can use that file to pass
additional properties to the Java Virtual Machine, which are then available as system properties.
For example, to pass the property MyAge, invoke Java like this:

java -DMyAge=30 RunClass

If you want to have that system property accessible by your Java component you can put that
property into java(.ini|rc) within the [Java] section. For example:

[Java]
Home=file:///C:/Program%$20Files/Java/j2rel.4.2

VMType=JRE
Version=1.4.2
RuntimeLib=file:///C:/Program$20Files/Java/j2rel.4.2/bin/client/jvm.dll

Java=1

JavaScript=1

Applets=1

MyAge=27

To debug a Java component, it is necessary to start the JVM with additional parameters. The
parameters can be put in the java.ini the same way as they would appear on the command- line. For
example , add those lines to the [Java] section:

—-Xdebug
-Xrunjdwp:transport=dt_socket, server=y,address=8000

More about debugging can be found in the JDK documentation and in the OpenOffice.org Soft-
ware Development Kit.

Chapter 4 Writing UNO Components 217

218

Java components are also affected by the following configuration settings. They can be changed in
the Tools - Options dialog. In the dialog, expand the OpenOffice.org node on the left-hand side
and choose Security. This brings up a new pane on the right-hand side that allows Java specific

settings:

Java Setting Description

Enable If checked, Java is used with the office. This affects Java components, as well as
applets.

Security checks If checked, the security manager restricts resource access of applets.

Net access Determines where an applet can connect.

ClassPath Additional jar files and directories where the JVM should search for classes. Also
known as user classpath.

Applets If checked, applets are executed.

Troubleshooting

If the component encounters problems, review the following checklist to check if the component is
configured correctly.

Check Registry Keys

To check if the registry database is correctly set up, run regview against the three keys that make
up a registration in the /UCR, /SERVICES and /IMPLEMENTATIONS branch of a registry
database. The following examples show how to read the appropriate keys and how a proper
configuration should look. In our example, service ImageShrink, and the key /
UCR/org/openoffice/test/XImageShrink contain the type information specified in UNOIDL:

dump XImageShrink type information
$ regview thumbs.rdb /UCR/org/openoffice/test/XImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/UCR/org/openoffice/test/XImageShrink
Value: Type = RG_VALUETYPE BINARY
Size 364
Data minor version: 0
major version: 1
type: 'interface'
uik: { 0x00000000-0x0000-0x0000-0x00000000-0x00000000 }
name: 'org/openoffice/test/XImageShrink'
super name: 'com/sun/star/uno/XInterface'
Doku: ""
IDL source file: "X:\SO\sdk\examples\java\Thumbs\org\openoffice\test\XImageShrink.idl"
number of fields: 3
field #0:
name='SourceDirectory’
type='string'
access=READWRITE
Doku: ""
IDL source file: ""
field #1:
name='DestinationDirectory'
type="string'
access=READWRITE
Doku: ""
IDL source file: ""
field #2:
name='Dimension’'
type='com/sun/star/awt/Size’
access=READWRITE
Doku: ""
IDL source file: ""
number of methods: 0
number of references: 0

The /SERVICES/org.openoffice.test.ImageShrink key must point to the implementation name
org.openoffice.comp.test.ImageShrink that was chosen for this service:

OpenOffice.org 1.1 Developer's Guide « January 2004

dump service name registration
$ regview thumbs.rdb /SERVICES/org.openoffice.test.ImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":

/SERVICES/org.openoffice.test.ImageShrink
Value: Type RG_VALUETYPE STRINGLIST

Size = 45
Len =1
Data = 0 = "org.openoffice.comp.test.ImageShrink"

Finally, the /IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink key must contain
the loader and the location of the component jar:
dump implementation name registration
$ regview thumbs.rdb /IMPLEMENTATIONS/org.openoffice.comp.test.ImageShrink
Registry "file:///X:/office60eng/program/thumbs.rdb":
/iMPLEMENTATIONS/org.openoffice.comp.test.lmageshrink

UNO

/ ACTIVATOR

Value: Type RG_VALUETYPE_STRING
2
v

Size = 26
Data = "com.sun.star.loader.Java2"
/ SERVICES
/ org.openoffice.test.ImageShrink
/ LOCATION
Value: Type = RG_VALUETYPE STRING
Size = 50
Data = "file:///X:/office60eng/program/classes/thumbs.jar"

If the UCR key is missing, the problem is with regmerge. The most probable cause are missing .
urd files. Be careful when writing the makefile. If .urd files are missing when regmerge is
launched by the makefile, regmerge continues and creates a barebone rdb file, sometimes
without any type info.

If regview can not find the /SERVICES and /IMPLEMENTATIONS keys or they have the
wrong content, the problem occurred when regcomp was run. This can be caused by wrong path
names in the regcomp arguments.

Also, a wrong SystemClasspath setup in java(.ini|rc) could be the cause of regcomp error
messages about missing classes. Check what the SystemClasspath entry in java(.ini|rc) speci-
fies for the Java UNO runtime jars.

Ensure that regcomp is being run from the current directory when registering Java components.
In addition, ensure <OfficePath>/program is the current folder when regcomp is run. Verify that
regcomp is in the current folder.

Check the Java VM settings
Whenever the VM service is instantiated by OpenOffice.org, it uses the Java configuration
settings in OpenOffice.org. This happens during the registration of Java components, therefore
make sure that Java is enabled. Choose Tools-Options in OpenOffice.org, so that the dialog
appears. Expand the OpenOffice.org node and select Security. Select the Enable checkbox in
the Java section and click OK.

Check the Manifest
Make sure the manifest file contains the correct entry for the registration class name. The file
must contain the following line:

RegistrationClassName: <full name of package and class>

The registration class name must be the one that implements the writeRegistryServ-
iceInfo() and _ getServiceFactory () methods. The RegistrationClassName to be entered
in the manifest for our example is org.openoffice.comp.test.ImageShrink.

Chapter 4 Writing UNO Components 219

Adjust CLASSPATH for Additional Classes
OpenOffice.org maintains its own system classpath and a user classpath when it starts the Java
VM for Java components. The jar file that contains the service implementation is not required in
the system or user classpath. Ifa component depends on jar files or classes that are not part of
the Java UNO runtime jars, then they must be put on the classpath. This can be achieved by
editing the classpath in the options dialog (Tools — Options — OpenOffice.org — Security) .

Disable Debug Options
If the debug options (-Xdebug, -Xrunjdwp) are in the java(.ini|rc) file, disable them by putting
semicolons at the beginning of the respective lines. The regcomp or pkgchk tool may hang,
because the JVM is waiting for a debugger to be attached.

4.6 C++ Component

In this section, a sample component containing two service implementations with helpers and
without helpers implemented are presented. The complete source code and the gnu makefile are in
samples/simple_cpp_component.

The first step for the C++ component is to define a language-independent interface, so that the
UNO object can communicate with others. The IDL specification for the component defines one
interface my module.XSomething and two services implementing this interface. In addition, the
second service called my module.MyService2 implements the
com.sun.star.lang.XInitialization interface, so that MyService2 can be instantiated with
arguments passed to it during runtime.

#include <com/sun/star/uno/XInterface.idl>
#include <com/sun/star/lang/XInitialization.idl>

module my module

{

interface XSomething : com::sun::star::uno::XInterface
{

string methodOne([in] string val);
}i

service MyServicel
{

interface XSomething;
}i

service MyService2
{
interface XSomething;
interface com::sun::star::lang::XInitialization;

bi
bi
This IDL is compiled to produce a binary type library file (urd file), by executing the following

commands. The types are compiled and merged into a registry simple _component.rdb, that will be
linked into the OpenOffice.org installation later.

$ idlc -I<SDK>/idl some.idl
$ regmerge simple_ component.rdb /UCR some.urd

The cppumaker tool must be used to map IDL to C++:
$ cppumaker -BUCR -Tmy module.XSomething <SDK>/bin/applicat.rdb simple component rdb

For each given type, a pair of header files is generated, a .kdl and a .hpp file. To avoid conflicts, all
C++ declarations of the type are in the .Adl and all definitions, such as constructors, are in the .ipp
file. The .hpp is the one to include for any type used in C++.

220 OpenOffice.org 1.1 Developer's Guide « January 2004

The next step is to implement the core interfaces, and the implementation of the component opera-
tions component getFactory (), component writeInfo () and component getImplementa-
tionEnvironment () with or without helper methods.

4.6.1 Class Definition with Helper Template Classes

XlInterface, XTypeProvider and XWeak

The SDK offers helpers for ease of developing. There are implementation helper template classes
that deal with the implementation of com.sun.star.uno.XInterface and
com.sun.star.lang.XTypeProvider, as well as com.sun.star.uno.XWeak. These classes let you
focus on the interfaces you want to implement.

The implementation of my module.MyService2 uses the ::cppu::WeakImplHelper3<> helper.
The “3” stands for the number of interfaces to implement. The class declaration inherits from this
template class which takes the interfaces to implement as template parameters.
(Components/CppComponent/service2_impl.cxx)

#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServiceInfo.hpp>

#include <com/sun/star/lang/XInitialization.hpp>

#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

namespace my_sc_impl {

class MyService2Impl : public ::cppu::WeakImplHelper3< ::my module::XSomething,
lang: :XServiceInfo,
lang: :XInitialization >
{

bi

}

The next section focusses on coding com.sun.star.lang.xServiceInfo,
com.sun.star.lang.XInitialization and the sample interface my module.XSomething.

The cppuhelper shared library provides additional implementation helper classes, for example,
supporting com.sun.star.lang.xXComponent. Browse the ::cppu namespace in the C++ reference
of the SDK or on udk.openoffice.org.

XServicelnfo

An UNO service implementation supports com.sun.star.lang.XServiceInfo providing infor-
mation about its implementation name and supported services. The implementation name is a
unique name referencing the specific implementation. In this case,

my module.my sc_impl.MyServicel and my module.my sc_impl.MyService2 respectively. The
implementation name is used later when registering the implementation into the

simple _component.rdb registry used for OpenOffice.org. It links a service name entry to one imple-
mentation, because there may be more than one implementation. Multiple implementations of the
same service may have different characteristics, such as runtime behavior and memory footprint.

Chapter 4 Writing UNO Components 221

222

Our service instance has to support the com.sun.star.lang.XServiceInfo interface. This inter-
face has three methods, and can be coded for one supported service as follows:
(Components/CppComponent/service2_impl.cxx)

// XServicelInfo implementation
OUString MyService2Impl::getImplementationName ()
throw (RuntimeException)
{
// unique implementation name
return OUString(RTL_CONSTASCII USTRINGPARAM ("my module.my sc_impl.MyService2"));
}
sal Bool MyService2Impl::supportsService(OUString const & serviceName)
throw (RuntimeException)
{
// this object only supports one service, so the test is simple
return serviceName.equalsAsciil(RTL CONSTASCII_ STRINGPARAM ("my module.MyService2"));
}
Sequence< OUString > MyService2Impl::getSupportedServiceNames (
throw (RuntimeException)
{
return getSupportedServiceNames MyService2Impl () ;

}

4.6.2 Implementing your own Interfaces

For the my module.XSomething interface, add a string to be returned that informs the caller when
methodOne () was called successfully . (Components/CppComponent/service2 impl.cxx)

OUString MyService2Impl::methodOne (OUString const & str
throw (RuntimeException)
{
return OUString(RTL_CONSTASCII_USTRINGPARAM (
"called methodOne () of MyService2 implementation: ")) + str;

4.6.3 Providing a Single Factory Using a Helper Method

C++ component libraries must export an external "C" function called component getFactory ()
that supplies a factory object for the given implementation. Use : : cppu: : component getFacto-
ryHelper () to create this function. The declarations for it are included through
cppuhelper/implementationentry.hxx.

The component getFactory () method appears at the end of the following listing. This method
assumes that the component includes a static : :cppu: : ImplementationEntry array s_compo-
nent_entries[], which contains a number of function pointers. The listing shows how to write
the component, so that the function pointers for all services of a multi-service component are
correctly initialized. (Components/CppComponent/service2 impl.cxx)

#include <cppuhelper/implbase3.hxx> // "3" implementing three interfaces
#include <cppuhelper/factory.hxx>
#include <cppuhelper/implementationentry.hxx>

#include <com/sun/star/lang/XServiceInfo.hpp>

#include <com/sun/star/lang/XInitialization.hpp>

#include <com/sun/star/lang/IllegalArgumentException.hpp>
#include <my module/XSomething.hpp>

using namespace ::rtl; // for OUString
using namespace ::com::sun::star; // for sdk interfaces
using namespace ::com::sun::star::uno; // for basic types

namespace my sc_impl

{

class MyService2Impl : public ::cppu::WeakImplHelper3<
::my_module: :XSomething, lang::XServicelInfo, lang::XInitialization >
{
OUString m_arg;

OpenOffice.org 1.1 Developer's Guide « January 2004

public:
// focus on three given interfaces,
// no need to implement XInterface, XTypeProvider, XWeak

// XInitialization will be called upon createInstanceWithArguments[AndContext] ()
virtual void SAL_CALL initialize(Sequence< Any > const & args)
throw (Exception);
// XSomething
virtual OUString SAL_CALL methodOne(OUString const & str
throw (RuntimeException);
// XServiceInfo
virtual OUString SAL CALL getImplementationName ()
throw (RuntimeException);
virtual sal Bool SAL_CALL supportsService(OUString const & serviceName)
throw (RuntimeException);
virtual Sequence< OUString > SAL CALL getSupportedServiceNames ()
throw (RuntimeException);

}i

// Implementation of XSomething, XServiceInfo and XInitilization omitted here:

// component operations from servicel impl.cxx
extern Sequence< OUString > SAL CALL getSupportedServiceNames MyServicelImpl () ;
extern OUString SAL_ CALL getImplementationName MyServicelImpl () ;
extern Reference< XInterface > SAL_CALL create MyServicelImpl (
Reference< XComponentContext > const & xContext)
SAL_THROW(());
// component operations for MyService2Impl
static Sequence< OUString > getSupportedServiceNames MyService2Impl ()
{
static Sequence < OUString > *pNames = 0;
1f(! pNames
{
if(!pNames)
{
static Sequence< OUString > seqgNames (1) ;
segNames.getArray () [0] = OUString (RTL CONSTASCII USTRINGPARAM ("my module.MyService2"));
pNames = &segNames;
}
}
return *pNames;

}

static OUString getImplementationName MyService2Impl ()
{
static OUString *pImplName = 0;
if(! pImplName)
{
if(! pImplName)
{
static OUString implName (
RTL_CONSTASCII_USTRINGPARAM ("my module.my sc_implementation.MyService2"));
pImplName = &implName;
}
}

return *pImplName;

Reference< XInterface > SAL_CALL create_ MyService2Impl (
Reference< XComponentContext > const & xContext)
SAL_THROW(())

return static_cast< lang::XTypeProvider * >(new MyService2Impl());

/* shared lib exports implemented with helpers */
static struct ::cppu::ImplementationEntry s_component entries [] =
{
{
create_MyServicelImpl, getImplementationName MyServicelImpl,
getSupportedServiceNames MyServicelImpl, ::cppu::createSingleComponentFactory,

0, 0

create MyService2Impl, getImplementationName MyService2Impl,
getSupportedServiceNames MyService2Impl, ::cppu::createSingleComponentFactory,
0, 0

Chapter 4 Writing UNO Components 223

extern "C"

{

void * SAL_CALL component_getFactory (
sal Char const * implName, lang::XMultiServiceFactory * xMgr,
registry::XRegistryKey * xRegistry

return ::cppu::component getFactoryHelper (
implName, xMgr, xRegistry, ::my _sc impl::s component entries);

}
// getImplementationEnvironment and component writeInfo are described later, we omit them here

i..

The static variable s component entries defines a null-terminated array of entries concerning the
service implementations of the shared library. A service implementation entry consists of function
pointers for

- object creation: create MyServiceXImpl ()

- implementation name: getImplementationName MyServiceXImpl ()

. supported service names: getSupportedServiceNames MyServiceXImpl ()
. factory helper to be used: : :cppu::createComponentFactory ()

The last two values are reserved for future use and therefore can be 0.

4.6.4 Write Registration Info Using Helper Method

Use ::cppu: :component writeInfoHelper () to implement component writeInfo (): This func-
tion is called by regcomp during the registration process.
[SCOURCE:Components/simple cpp_component/service2 impl.cxx]
extern "C" sal_Bool SAL_CALL component writeInfo (
lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry
{

return ::cppu::component writeInfoHelper (
xMgr, xRegistry, ::my sc_impl::s_component entries);

Note that component writeInfoHelper () uses the same array of : :cppu: : Implementa-
tionEntry structs as componentigetFactory(),that is, s_component entries.

4.6.5 Provide Implementation Environment

The function called component getImplementationEnvironment () tells the shared library
component loader which compiler was used to build the library. This information is required if
different components have been compiled with different compilers. A specific C++-compiler is
called an environment. If different compilers were used, the loader has to bridge interfaces from
one compiler environment to another, building the infrastructure of communication between those
objects. It is mandatory to have the appropriate C++ bridges installed into the UNO runtime. In
most cases, the function mentioned above can be implemented this way: (Components/CppCom-
ponent/service2 impl.cxx)

extern "C" void SAL CALL component getImplementationEnvironment (
sal Char const ** ppEnvTypeName, uno Environment ** ppEnv)
{
*ppEnvTypeName = CPPU_CURRENT_ LANGUAGE_ BINDING_NAME;
}

The macro CPPU_CURRENT LANGUAGE BINDING NAME is a C string defined by the compiling envi-
ronment, if you use the SDK compiling environment. For example, when compiling with the

224 OpenOffice.org 1.1 Developer's Guide « January 2004

Microsoft Visual C++ compiler, it defines to "msci", but when compiling with the GNU gcc 3, it
defines to "gcc3".

4.6.6 Implementing without Helpers

In the following section, possible implementations without helpers are presented. This is useful if
more interfaces are to be implemented than planned by the helper templates. The helper templates
only allow up to ten interfaces. Also included in this section is how the core interfaces work.

XInterface Implementation

Object lifetime is controlled through the common base interface com.sun.star.uno.XInterface
methods acquire () and release (). These are implemented using reference-counting, that is,
upon each acquire (), the counter is incremented and upon each release (), it is decreased. On
last decrement, the object dies. Programming in a thread-safe manner, the modification of this
counter member variable is commonly performed by a pair of sal library functions called
osl_incrementInterlockedcount () and osl decrementInterlockedcount () (include
osl/interlck.h). (Components/CppComponent/servicel impl.cxx)

Be aware of symbol conflicts when writing code. It is common practice to wrap code into a separate
namespace, such as "my_ sc_impl". The problem is that symbols may clash during runtime on Unix when
your shared library is loaded.

namespace my_sc_impl
{

class MyServicelImpl

{
oslInterlockedCount m_refcount;
public:
inline MyServicelImpl () throw ()
: m_refcount(0)

(1

// XInterface

virtual Any SAL CALL queryInterface(Type const & type)
throw (RuntimeException);

virtual void SAL CALL acquire ()
throw ();

virtual void SAL CALL release ()
throw ();

}i
void MyServicelImpl::acquire ()
throw ()
{
// thread-safe incrementation of reference count
::osl_incrementInterlockedCount(&m_refcount);
}
void MyServicelImpl::release ()
throw ()
{
// thread-safe decrementation of reference count
if (0 == ::o0sl_decrementInterlockedCount(&m_refcount))
{
delete this; // shutdown this object

}
}
In the queryInterface () method, interface pointers have to be provided to the interfaces of the
object. That means, cast this to the respective pure virtual C++ class generated by the cppumaker
tool for the interfaces. All supported interfaces must be returned, including inherited interfaces like
XInterface. (Components/CppComponent/servicel impl.cxx)

Any MyServicelImpl::queryInterface(Type const & type)
throw (RuntimeException)
{
if (type.equals(::getCppuType((Reference< XInterface > const *)0)))

Chapter 4 Writing UNO Components 225

// return XInterface interface (resolve ambiguity caused by multiple inheritance from
// XInterface subclasses by casting to lang::XTypeProvider)
Reference< XInterface > x(static_cast< lang::XTypeProvider * >(this));
return makeAny(x);
}
if (type.equals(::getCppuType((Reference< lang::XTypeProvider > const *)0)))
{

// return XInterface interface
Reference< XInterface > x(static cast< lang::XTypeProvider * >(this));
return makeAny(x);
}
if (type.equals(::getCppuType((Reference< lang::XServiceInfo > const *)0)))
{

// return XServicelInfo interface
Reference< lang::XServiceInfo > x(static_cast< lang::XServiceInfo * >(this));
return makeAny(x);
}
if (type.equals(::getCppuType((Reference< ::my module::XSomething > const *)0)))
{

// return sample interface
Reference< ::my module::XSomething > x(static_cast< ::my module::XSomething * >(this));
return makeAny(x);

}

// querying for unsupported type

return Any ()

XTypeProvider Implementation

When implementing the com.sun.star.lang.XTypeProvider interface, two methods have to be
coded. The first one, getTypes () provides all implemented types of the implementation,
excluding base types, such as com.sun.star.uno.XInterface. The second one, get Implementa-
tionId() provides a unique ID for this set of interfaces. A thread-safe implementation of the
above mentioned looks like the following example:
(Components/CppComponent/servicel impl.cxx)

Sequence< Type > MyServicelImpl::getTypes (
throw (RuntimeException)

{

;

Sequence< Type > seq(3

)
seq[0] = ::getCppuType((Reference< lang::XTypeProvider > const *)0);
seq[1] = ::getCppuType((Reference< lang::XServiceInfo > const *)0);
seq[2] = ::getCppuType((Reference< ::my module::XSomething > const *)0);

return seq;
}
Sequence< sal Int8 > MyServicelImpl::getImplementationId ()
throw (RuntimeException)
{
static Sequence< sal Int8 > * s pId = 0;
if (! s_pId)
{
// create unique id
Sequence< sal Int8 > id(16);
::rtl createUuid((sal ulInt8 *)id.getArray(), 0, sal True);
// guard initialization with some mutex
::0sl::MutexGuard guard(::osl::Mutex::getGlobalMutex());
if (! s_pId)
{
static Sequence< sal Int8 > s id(id);
s _plId = &s_id;
}
}

return *s pId;

226 OpenOffice.org 1.1 Developer's Guide « January 2004

Take a look at the thread-safe initialization of the implementation ID. A common pattern is to test a static
pointer that is modified by one atom write. Using the same pattern, you can do a static initialization of the
types sequence. This has been omitted for simplicity.

In general, do not acquire () mutexes when calling alien code if you do not know what the called code is
doing. You never know what mutexes the alien code is acquiring which can lead to deadlocks. This is the
reason, why the latter value (uuid) is created before the initialization mutex is acquired. After the mutex is
successfully acquired, the value of s_pID is checked again and assigned if it has not been assigned before.
This is the design pattern double check lock.

Providing a Single Factory

The function component getFactory () provides a single object factory for the requested imple-
mentation, that is, it provides a factory that creates object instances of one of the service implemen-
tations. Using a helper from cppuhelper/factory.hxx, this is implemented quickly in the following
code: (Components/CppComponent/servicel impl.cxx)

#include <cppuhelper/factory.hxx>

namespace my sc_impl

{

static Reference< XInterface > SAL CALL create MyServicelImpl (
Reference< XComponentContext > const & xContext
SAL_THROW(())
{
return static_cast< lang::XTypeProvider * >(new MyServicelImpl());
}
static Reference< XInterface > SAL CALL create MyService2Impl (
Reference< XComponentContext > const & xContext
SAL THROW(())
{
return static cast< lang::XTypeProvider * >(new MyService2Impl());
}
}

extern "C" void * SAL CALL component getFactory(
sal Char const * implName, lang::XMultiServiceFactory * xMgr, void *)
{
Reference< lang::XSingleComponentFactory > xFactory;
if (0 == ::rtl_str compare(implName, "my module.my sc_impl.MyServicel"))
{
// create component factory for MyServicel implementation
OUString serviceName (RTL CONSTASCII USTRINGPARAM ("my module.MyServicel"));

xFactory = ::cppu::createSingleComponentFactory (
::my_sc_impl::create_ MyServicellImpl,
OUString (RTL_CONSTASCII_USTRINGPARAM ("my module.my sc_impl.MyServicel"”)),

Sequence< OUString >(&serviceName, 1));
}
else if (0 == ::rtl_str compare(implName, "my module.my_sc_impl.MyService2"))
{
// create component factory for MyServicel2 implementation
OUString serviceName (RTL CONSTASCII_USTRINGPARAM ("my module.MyService2"));

xFactory = ::cppu::createSingleComponentFactory (
::my_sc_impl::create MyService2Impl,
OUString (RTL_CONSTASCII_USTRINGPARAM ("my module.my sc_impl.MyService2")),

Sequence< OUString >(&serviceName, 1));
}
if (xFactory.is())
xFactory->acquire () ;

return xFactory.get(); // return acquired interface pointer or null
}
In the example above, note the function ::my sc_impl::create MyServicelImpl () that is called
by the factory object when it needs to instantiate the class. A component context
com.sun.star.uno.XComponentContext is provided to the function, which may be passed to the

constructor of MyServicelImpl.

Chapter 4 Writing UNO Components 227

228

Write Registration Info

The function component writeInfo () is called by the shared library component loader upon
registering the component into a registry database file (.rdb). The component writes information
about objects it can instantiate into the registry when it is called by regcomp.
(Components/CppComponent/servicel impl.cxx)

extern "C" sal Bool SAL CALL component writeInfo (
lang::XMultiServiceFactory * xMgr, registry::XRegistryKey * xRegistry
{
if (xRegistry)
{

try
{
// implementation of MyServicelA
Reference< registry::XRegistryKey > xKey (
xRegistry->createKey(OUString(RTL_CONSTASCII_USTRINGPARAM (
"my module.my_sc_impl.MyServicel/UNO/SERVICES"))));
// subkeys denote implemented services of implementation
xKey->createKey (OUString (RTL_CONSTASCII_USTRINGPARAM (
"my module.MyServicel")));
// implementation of MyServicelB
xKey = xRegistry->createKey(OUString(RTL_CONSTASCII_ USTRINGPARAM (
"my module.my sc_impl.MyService2/UNO/SERVICES")));
// subkeys denote implemented services of implementation
xKey->createKey (OUString(RTL_CONSTASCII_USTRINGPARAM (
"my module.MyService2")));
return sal True; // success
}
catch (registry::InvalidRegistryException &)
{
// function fails if exception caught
}
}

return sal False;

4.6.7 Storing the Service Manager for Further Use

The single factories expect a static create <ImplementationClass>() function. For instance,
create MyServicelImpl ()takes a reference to the component context and instantiates the imple-
mentation class using new ImplementationClass (). A constructor can be written for <Implemen-
tationClass> that expects a reference to an com.sun.star.uno.XComponentContext and stores
the reference in the instance for further use.

static Reference< XInterface > SAL CALL create MyService2Impl (
Reference< XComponentContext > const & xContext)
SAL_THROW(())

// passing the component context to the constructor of MyService2Impl
return static_cast< lang::XTypeProvider * >(new MyService2Impl (xContext));

4.6.8 Create Instance with Arguments

If the service should be raised passing arguments through
com.sun.star.lang.XMultiComponentFactory:createInstanceWithArgumentsAndContext ()
and com.sun.star.lang.XMultiServiceFactory:createInstanceWithArguments (), it has to
implement the interface com.sun.star.lang.XInitialization. The second service

my module.MyService2 implements it, expecting a single string as an argument.
(Components/CppComponent/service2_impl.cxx)

// XInitialization implementation

void MyService2Impl::initialize(Sequence< Any > const & args
throw (Exception)

{
if (1 != args.getLength()
{

OpenOffice.org 1.1 Developer's Guide « January 2004

W

throw lang::IllegalArgumentException (
OUString (RTL_CONSTASCII_USTRINGPARAM("give a string instanciating this component!")),
(::cppu::OWeakObject *)this, // resolve to XInterface reference
0); // argument pos

}
if (! (args[0] >>= m_arqg)

throw lang::IllegalArgumentException (
OUString (RTL_CONSTASCII USTRINGPARAM("no string given as argument!")),
(::cppu::0OWeakObject *)this, // resolve to XInterface reference
0); // argument pos

4.6.9 Multiple Components in One Dynamic Link Library

The construction of C++ components allows putting as many service implementations into a
component file as desired. Ensure that the component operations are implemented in such a way
that component _writeInfo () and component getFactory () handle all services correctly. Refer
to the sample component simple component to see an example on how to implement two services
in one link library.

4.6.10 Building and Testing C++ Components

Build Process

For details about building component code, see the gnu makefile. It uses a number of platform
dependent variables used in the SDK that are included from <SDK>/settings/settings.mk. For
simplicity, details are omitted here, and the build process is just sketched in eight steps:

1. The UNOIDL compiler compiles the .idl file some.idl into an urd file.
2. The resulting binary .urd files are merged into a new simple component.rdb.

3. The tool xml2cmp parses the xml component description simple component.xml for types needed
for compiling. This file describes the service implementation(s) for deployment, such as the
purpose of the implementation(s) and used types. Visit
http://udk.openoffice.org/common/man/module description.html for details about the
syntax of these XML files.

4. The types parsed in step 3 are passed to cppumaker, which generates the appropriate header
pairs into the output include directory using simple _component.rdb and the OpenOffice.org type
library applicat.rdb that is stored in the program directory of your OpenOffice.org installation.

For your own component you can simplify step 3 and 4, and pass the types used by your component to
cppumaker using the -T option.

5. The source files servicel impl.cxx and service2 impl.cxx are compiled.

6. The shared library is linked out of object files, linking dynamically to the UNO base libraries
sal, cppu and cppuhelper. The shared library's name is libsimple component.so on Unix and
simple_component.dll on Windows.

In general, the shared library component should limit its exports to only the above mentioned functions

(prefixed with component) to avoid symbol clashes on Unix. In addition, for the gnu gcc3 C++ compiler, it
is necessary to export the RTTI symbols of exceptions, too.

Chapter 4 Writing UNO Components 229

7. The shared library component is registered into simple _component.rdb. This can also be done
manually running

$ regcomp -register -r simple component.rdb -c simple component.dll

Test Registration and Use

The component's registry simple component.rdb has entries for the registered service implementa-
tions. If the library is registered successfully, run:

$ regview simple_ component.rdb
The result should look similar to the following:

/
/ UCR
/ my_module
/ XSomething

. interface information ...

/ IMPLEMENTATIONS
/ my module.my sc impl.MyService2
/ UNO
/ ACTIVATOR

Value: Type RG_VALUETYPE_STRING

Size = 34
Data = "com.sun.star.loader.SharedLibrary"
/ SERVICES
/ my_module.MyService2
/ LOCATION
Value: Type = RG_VALUETYPE_ STRING
Size = 21
Data = "simple component.dll"

/ my module.my_sc_impl.MyServicel
/ UNO
/ ACTIVATOR

Value: Type RG_VALUETYPE STRING

Size = 34
Data = "com.sun.star.loader.SharedLibrary"
/ SERVICES

/ my module.MyServicel

/ LOCATION
Value: Type
Size
Data

RG_VALUETYPE STRING
21
"simple component.dll"

/ SERVICES
/ my_module.MyServicel
Value: Type RGivALUETYPEisTRINGLIST

Size = 40
Len =1
Data = 0 = "my module.my_ sc_impl.MyServicel"

/ my_module.MyService2
Value: Type RG_VALUETYPE_ STRINGLIST

Size = 40
Len =1
Data = 0 = "my module.my sc_impl.MyService2"

OpenOffice.org recognizes registry files being inserted into the unorc file (on Unix, uno.ini on
Windows) in the program directory of your OpenOffice.org installation. Extend the types and serv-
ices in that file by simple_component.rdb. The given file has to be an absolute file URL, but if the rdb
is copied to the OpenOffice.org program directory, a $SYSBINDIR macro can be used, as shown in
the following unorc file:

[Bootstrap]

UNO_TYPES=$SYSBINDIR/applicat.rdb $SYSBINDIR/simple component.rdb
UNO_SERVICES=$SYSBINDIR/applicat.rdb $SYSBINDIR/simple component.rdb

Second, when running OpenOffice.org, extend the PATH (Windows) or LD LIBRARY PATH
(Unix), including the output path of the build, so that the loader finds the component. If the shared

230 OpenOffice.org 1.1 Developer's Guide « January 2004

library is copied to the program directory or a link is created inside the program directory (Unix
only), do not extend the path.

Launching the test component inside a OpenOffice.org Basic script is simple to do, as shown in the
following code:

Sub Main

REM calling servicel impl

mgr = getProcessServiceManager ()

o = mgr.createInstance ("my module.MyServicel”
MsgBox o.methodOne ("foo") -

MsgBox o.dbg supportedInterfaces

REM calling service2 impl

dim args(0)

args(0) = "foo"

0 = mgr.createInstanceWithArguments ("my module.MyService2", args()
MsgBox o.methodOne ("bar"

MsgBox o.dbg supportedInterfaces

End Sub

This procedure instantiates the service implementations and performs calls on their interfaces. The
return value of the methodone () call is brought up in message boxes. The Basic object property
dbg supportedInterfaces retrieves its information through the
com.sun.star.lang.XTypeProvider interfaces of the objects.

4.7 Integrating Components into OpenOffice.org

If a component needs to be called from the OpenOffice.org user interface, it must be able to take
part in the communication between the Ul layer and the application objects. OpenOffice.org uses
command URLs for this purpose. When a user chooses an item in the user interface, a command
URL is dispatched to the application framework and processed in a chain of responsibility until an
object accepts the command and executes it, thus consuming the command URL. This mechanism
is known as the dispatch framework, it is covered in detail in chapter 6.1.6 Office Development -
OpenOffice.org Application Environment - Using the Dispatch Framework

From version 1.1.0, OpenOffice.org provides user interface support for custom components by two
basic mechanisms:

Components can be enabled to process command URLs. There are two ways to accomplish this.
You can either make them a protocol handler for command URLs or integrate them into the job
execution environment of OpenOffice.org. The protocol handler technique is simple, but it can
only be used with command URLs in the dispatch framework. A component for the job execu-
tion environment can be used with or without command URLs, and has comprehensive support
when it comes to configuration, job environment, and lifetime issues.

The user interface can be adjusted to new components. On the one hand, you can add new
menus and toolbar items and configure them to send the command URLs needed for your
component. On the other hand, it is possible to disable existing commands. All this is possible
by adding certain files to the UNO package distribution. When users of your component deploy
the package into an individual or a network OpenOffice.org installation, the GUI is adjusted
automatically.

The left side of [llustration 4.2 shows the two possibilities for processing command URLs: either
custom protocol handlers or the specialized job protocol. On the right, you see the job execution
environment, which is used by the job protocol, but can also be used without command URLs from
any source code.

Chapter 4 Writing UNO Components 231

232

User Interface

Source code

- Saren

queryDispatch/

dispatch (URL) trigger (EventName)

Frame JobExecutor
registered at
runtime
Disabling
6 Commands

Frame.close() Desktop.terminate()

Interceptor 1 ¢

Interception :; ?
Interceptor n ¢

[

configured

Document
Controller

Protocol

>

Handler 1

Wrapper

¢ Env/CFG CFG
Protocol , Protocol) * T L

Handler 1 Handler n
ot Confi ti
¢ bind special onfiguration
protocol
Content to jobs Job
Handler ’ Dispatch —>

¢ Wrapper

Loader > Job n —

Hlustration 4.2: Processing command URLs and the job execution environment

This section describes how to use these mechanisms. It discusses protocol handlers and jobs, then
describes how to customize the OpenOffice.org user interface for components.

4.7.1 Protocol Handler

The dispatch framework binds user interface controls, such as menu or toolbar items, to the func-
tionality of OpenOffice.org. Every function that is reachable in the user interface is described by a
command URL and corresponding parameters.

The protocol handler mechanism is an API that enables programmers to add arbitrary URL
schemas to the existing set of command URLs by writing additional protocol handlers for them.

OpenOffice.org 1.1 Developer's Guide « January 2004

Such a protocol handler must be implemented as a UNO component and registered in the
OpenOffice.org configuration for the new URL schema.

Overview

To issue a command URL, the first step is to locate a dispatch object that is responsible for the
URL. Start with the frame that contains the document for which the command is meant. Its inter-
face method com.sun.star.frame.XDispatchProvider:queryDispatch ()is called with a URL
and special search parameters to locate the correct target. This request is passed through the
following instances:

disabling commands Checks if command is on the list of disabled commands, described in4.7.4
Writing UNO Components - Integrating Components into OpenOlffice.org -
Disable Commands

interception Intercepts command and re-routes it, described in 6.1.6 Office Development -
OpenOlffice.org Application Environment - Using the Dispatch Framework -
Dispatch Interception

targeting Determines target frame for command, described in 6.1.5 Office Develop-

ment - OpenOffice.org Application Environment - Handling Documents -
Loading Documents - Target Frame

controller Lets the controller of the frame try to handle the command, described in
6.1.6 Office Development - OpenOlffice.org Application Environment - Using the
Dispatch Framework - Processing Chain

protocol handler Determines if there is a custom handler for the command, described in this
section

interpret as loadable content Loads content from file, described in 6.1.5 Office Development -
OpenOlffice.org Application Environment - Handling Documents - Loading
Documents - URL Parameter. Generally contents are loaded into a frame by a
com.sun.star.frame.FramelLoader, but ifa content (e.g. a sound)
needs no frame, a com.sun.star.frame.ContentHandler service is
used, which needs no target frame for its operation.

The list shows that the protocol handler will only be used if the URL has not been called before.
Because targeting has already been done, it is clear that the command will run in the located target
frame environment, which is usually " self".

The target " blank" cannot be used for a protocol handler. Since " blank" leads to the creation of a new
frame for a component, there would be no component yet for the protocol handler to work with.

A protocol handler decides by itself if it returns a valid dispatch object, that is, it is asked to agree
with the given request by the dispatch framework. If a dispatch object is returned, the requester
can use it to dispatch the URL by calling its dispatch () method.

Implementation

A protocol handler implementation must follow the service definition
com.sun.star.frame.ProtocolHandler. At least the interface
com.sun.star.frame.XDispatchProvider must be supported.

Chapter 4 Writing UNO Components 233

com.sun.star.frame. —O com.sun.star.frame.XDispatchProvider

ProtocolHandler
<<service>> com.sun.star.lang.XInitialization

Hllustration 4.3: Protocol handler

The interface XDispatchProvider supports two methods:

XDispatch queryDispatch([in] ::com::sun::star::util::URL URL,
[in] string TargetFrameName,
[in] long SearchFlags
sequence< XDispatch > queryDispatches([in] sequence< DispatchDescriptor > Requests

The protocol handler is asked for its agreement to execute a given URL by a call to the interface
method com.sun.star.frame.XDispatchProvider:queryDispatch (). The incoming URL
should be parsed and validated. If the URL is valid and the protocol handler is able to handle it, it
should return a dispatch object, thus indicating that it acce