 ** Programmer's Technical Reference for MSDOS and the IBM PC **

---------------------------¦ DOSREF (tm) +----------------------------

 USA copyright TXG 392-616 * ISBN 1-878830-00-7 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams * ALL RIGHTS RESERVED

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 /* This work is registered directly with the copyright offices of */

 /* the United States and of the United Kingdom, and indirectly */

 /* in many other nations via the conventions the above are */

 /* signatory to. */

 /* Generous licensing terms are available on inquiry. */

 I N T R O D U C T I O N

 This book is a technical reference. It is NOT a tutorial.

Hopefully, this book is what you'll reach for when you want find out

what Peter Norton or the "official" references glossed over.

 This manual is intended to replace the various (expensive)

references needed to program for the DOS environment, that stack of

magazines threatening to take over your work area, and those odd

tables and charts you can never find when you need them.

 The various Microsoft and IBM publications and references don't

always have the same information. This has caused some consternation

about the "undocumented" features to be found in DOS. In general, if

a call doesn't appear in the IBM DOS Technical Reference it is

considered "undocumented" although it may be documented by other OEMs

or by later Microsoft tech bulletins.

 The information here is valid for DOS 2.x through 5.x. Where there

are differences between the two versions there are notes in the text.

No great effort was expended on DOS 1.x.

 When I started writing this book, it was originally for my own

personal use. Then I began expanding it with the idea of getting it

published, since at that time there was *nothing* in print like it.

(late 1987) If I had managed to send it off to the publishers early

enough, I would have had it made. As it was I lost six months having

a nice steel rod put in my leg after being run over by a drug addict

in an uninsured car, and half a dozen similar books were published by

then, and nobody was interested in mine. Six months is a long time in

the PC world.

 That's why I'm uploading this file as "user-supported." It gives me

a chance to recoup a few bucks for the time I've been working on this

thing, and it gives some advantages that a printed book can't - first,

you can load it on your hard disk and use Vern Buerg's LIST or

SideKick to scan through text. You can grab a piece of something and

paste it into a document, etc. If you help support the Reference you

will always have the latest version available; you can't "upgrade"

books.

 A project this size takes a LOT of time and effort. I've tried to

verify as much of the information I've received as I could, but

there's just too much for absolute certainty. DOSREF has been in the

hands of some heavy-duty code jockeys for a couple of years now with

very few bug reports, though.

 If you find any typos, incorrect information, or want to see

something else, let me know. If you have any more detailed

information on something, PLEASE let me know!

 Dave Williams

 D I S C L A I M E R

<sigh>

 As is common these days, I have to make a "Notice of Disclaimer". I

take no responsibility for anything, and if anything you do with this

book ruins you for life or makes your dog bite you, or anything else,

that's just tough.

 I hope you find much use for this reference. It was a trip to

write, too.

 Dave Williams

 (C) Copyright 1987, 1994

/* note: the above disclaimer is being used as an example in the */

/* University of Texas' School of Law. Whether good or bad, */

/* my respondent didn't say... */

__

Copyrights and trademarks:

(3COM Corporation)

 3COM, Etherlink

(American Telephone and Telegraph)

 UNIX, AT&T

(Artisoft)

 LANtastic

(AST Corporation)

 AST, RAMpage!

(Atari Computer)

 Atari, ST, TOS

(Borland)

 Borland, Turbo C, Turbo Pascal, Turbo Lightning, Turbo Assembler,

 SideKick, Borland Pascal, Borland C++, OWL, Turbo Pascal for Windows

(Commodore Business Machines)

 Amiga 2000, Bridge Board

(Compaq Computer Corp.)

 Compaq, Deskpro

(Cordata Computer)

 Corona, Cordata

(Cove Software)

 CED, PCED

(Digital Equipment Company)

 DEC, Rainbow, DECMate, DOS

 (uh... yeah. DEC owns the trademark to 'DOS')

(Fox Research, Inc.)

 10-Net

(Graphic Software Systems)

 GSS, DGIS

(Hayes)

 Smartmodem

(Hercules Computer Technology)

 Hercules, HGC, Hercules Graphics Card Plus, InColor Card

(IBM Corp.)

 IBM, PC, PCjr, PC/XT, PC/AT, XT/286, PS/2, TopView, Micro Channel,

 3270 PC, RT PC, Token Ring, OS/2

(Intel Corp.)

 Intel, iAPX286, iAPX386, LIM EMS, Communicating Applications Standard

 (CAS)

(Logitech, Inc)

 Logitech, Logimouse

(Microsoft Corp.)

 Microsoft, MS, MS DOS, OS/2, Xenix, Windows, Windows/286,

 Windows/386, Microsoft Networks, LIM EMS, XMA, DPMI, Windows NT

(Mouse Systems Corp.)

 Mouse Systems, PCMouse

(Novell Development Corp.)

 Novell, NetWare

(Phar Lap)

 VCPI, Virtual Control Program Interface

(Qalitas)

 386-To-The-Max, 386MAX, Move'Em

(Quarterdeck Office Systems)

 DESQview, QEMM, QRAM, DESQview/X

(SEAware, Inc)

 ARC

(Softlogic)

 DoubleDOS

(Sunny Hill Software)

 TaskView, OmniView

(Tandy Corp.)

 Tandy, Radio Shack, DeskMate

(Texas Instruments)

 TI, TI Professional, Business Professional, TIGA (TI Graphics

 Interface)

(Zenith Radio Corporation)

 Zenith, Z-100, Z-248

(ZSoft Corporation)

 ShowPartner, Paintbrush

 "LIM 4.0" and "Expanded Memory Specification" are copyright Lotus

Development Corp, Intel Corp, and Microsoft Corp.

 "EEMS", "AQA 3.1" and "Enhanced Expanded Memory Specification" are

copyright by Ashton-Tate, Quadram, and AST

 "DPMI" and "DOS Protected Mode Interface" are copyright Lotus

Development Corp, Intel Corp, Microsoft Corp, and AST

Various other names are trademarks of their respective companies.

+--+

¦ DOSREF SWv3.4 ¦

¦ Programmer's Technical Reference for MSDOS and the IBM PC ¦

+--+

 This archive contains a demo version of DOSREF. It contains 95% of the

basic information you actually need to program a PC under DOS. You're

welcome to use this demo without obligation or payment, with my compliments.

 However, if you want MORE STUFF, you might want to register your copy of

DOSREF.

- -

 Why register DOSREF instead of relying on one of those public domain

 "interrupt lists"? Sheer size, for one. Even in LHarc format DOSREF

 bulks out to over two megabytes. Registered users also get support via:

 The Courts of Chaos BBS (DOSREF support board)

 internet

 CompuServe

 airmail

 You get the very latest edition of this manual on disk, with no worries

 about corrupted or tampered text. DOSREF is a quality product, in use

 by the US Navy, CalTech, Borland, NEC, Wang, General Motors, Citicorp,

 Rockwell, Honeywell, Digital Research, Central Point Software, 20th Century

 Fox, Associated Press, hospitals, universities, and government agencies

 around the world.

 The Registered User reference consists of over two megabytes of compressed

 technical reference, appendices, and sample source code. That's about four

 megabytes of raw data when uncompressed, or several times larger than the

 shareware version.

 The Registered User version contains information on device drivers, mouse

 programming, Virtual Control Program Interface, hard drives, hardware

 information, virus and Trojan programs, EMS 3.2, LIM 4.0, EEMS 3.2, CD-ROM,

 network programming, DOS 5.0, various multitasking and network APIs, and

 more.

 Registered users will be advised by mail of updates.

 Several people who have downloaded copies many years old have written

 to see if I was still supporting the Reference. The answer is yes. Not only

 that, but my book contract calls for keeping the information current. If

 you're concerned, just drop a postcard.

 For payment in British pounds, Canadian dollars or EuroCheques, see

 INVOICE.TRF and PAYMENT. I fully support foreign users! If you're having

 trouble arranging payment, write (or leave E-Mail) and I'll try to work

 something out.

 Do you live outside the US? If so, you're probably familiar with the

 hassles of keeping up with the latest information - the three to five month

 lead time for US publication, plus time for local book dealers to catalog

 new releases, plus problems in trying to order... plus the delays while your

 book comes in on special order, goes through Customs, the inevitable price

 hikes through all the middlemen, taxes... not only is DOSREF priced

 well below the price of good printed computer books in the US, it's probably

 far cheaper than you could expect to pay for US books locally. Plus your

 order will show up in your very own mailbox by air mail.

 Printed copies of the Tech Ref are available for £16.95 or US$35.10 from

Sigma Press, marketed by John Wiley & Sons UK. Address orders to:

 Programmer's Technical Reference

 by Dave Williams

 ISBN 185058-199-1

 John Wiley & Sons

 Baffins Lane

 Chichester

 West Sussex PO19 1UD

 England

 They accept checks, most credit cards, or purchase orders.

 The latest shareware version is always available on BIX the ibm.dos/listings

 area, the GEnie IBM file area, or:

 The Courts of Chaos, (501)985-0059, (support BBS)

 PCBoard, instant-on, no waiting.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 How to use this Reference

 This reference changes so often that any attempt to format it for

pagination would be a tremendous waste of time. Simply printing the

thing out and letting the pagebreaks fall where they may is how most

people do it. The neatest solution is Vern Buerg's LIST.COM or

SideKick's file view function.

 An efficient method of using the Reference is to concatenate all the

chapters together with the COPY command, ie COPY CONTENTS +

CHAPTER.001 + CHAPTER.002 + + CHAPTER.010 REF. (REF being the

new file name for the concatenated files.) With LIST.COM, the

backslash (\) or F9 key will search for strings. You can then dump

pieces of text to a disk file or your printer.

 If you work better with a printout than scanning with a file viewer,

try setting your printer to 132 columns. This allows a nice margin

for writing notes, and eliminates the problem some printers have when

printing 80 character wide text. Some of the text and charts in the

reference are a full 80 columns wide; unfortunately some printers wrap

automatically at 79 columns. Some printers don't handle a combination

of compressed print and graphics characters very well either. You may

have to use the PRTRFIX.COM program provided on Disk 1 to squelch the

graphics for printing.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 This version of DOSREF is a bit different from the older shareware

versions. As you may have noticed, I'm now promoting it as a "demo"

of the real thing. You're welcome to use this copy of DOSREF with

my compliments - no need to feel guilty. Hey, I'm a nice guy. <grin>

 This "demo" version has quite a bit more detail than the previous

2.3c version. You get nine chapters. In these chapters, you now get

95% of the stuff in the full super-whoopie paid-for version's equivalent

chapters. I left out some of the really esoteric or bulky stuff to keep

the file size down, but you have a majority of what you need to program

with, plus a ton of wierdo little facts that ought to keep you amused for

hours on end.

 Now, the object of this is to get you to buy the "real" DOSREF, of course.

If you look in the CONTENTS file, you'll see there's all sorts of other

stuff in the full version, as minutely detailed as what you just got.

 You get even more of the type of stuff you have in this archive, plus

over two megabytes of MORE stuff - XMS, EMS, VCPI, sound cards, APIs for

386 Multiware, Alloy NTNX, VMiX/386, Concurrent DOS/386 (most of which

applies to DR-Multiuser-DOS), Multi-DOS PLUS, NDIS networking, a complete

functioning TSR disk formatter with source to use as an example for writing

TSRs, or just yank for formatter code for your own programs. You get dozens

of appendices covering everything from sound board file formats to address

lists. Plus anything else I've added since this archive went out.

You can compare DOSREF against the stuff on the shelves at B.Dalton or

Waldenbooks, then look at what those Johnny-come-lately references COST.

Now, for only $25 you could get the full DOSREF and have as much info as

you could get from a whole shelf-full of books. How can you beat a deal

like that?

 Either way, please use and enjoy this demo copy of DOSREF.

 Regards,

 Dave Williams

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

-------------------------------¦ DOSREF (tm) +--------------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 The rest of the chapters aren't included in this shareware demonstration

package. Since the complete manual takes about 2000 Kb even compressed in

LHarc format, something had to give somewhere.

 Here's a sample of what you're missing:

 Appendices Mouse API Networking

 EMS XMS VCPI

 Video chip-level stuff 386 Multiware API

 MS TSR Specification Alloy NTNX API Concurrent DOS/386 API

 MultiDOS Plus API PC-MOS/386 API Sound Blaster programming

 NDIS network spec X-DOS 3.3 info VMiX/386 API

 working TSR samples VESA APIs

 MORE!

 TABLE OF CONTENTS

INTRO Introduction, credits, copyrights

CHAPTER 1 DOS and the PC

Some History ... 1**1

What is DOS? ... 1**2

Other Operating Systems .. 1**3

Specific Versions of MS/PC-DOS 1**4

The Operating System Heirarchy 1**5

DOS Structure .. 1**6

DOS Initialization ... 1**7

CHAPTER 2 Low Memory and Absolute Addresses

Introduction ... 2**1

System Memory Map .. 2**2

A Brief Guide to Current Memory Terminology 2**3

PC Port Assignment ... 2**4

Reserved Memory Locations .. 2**5

Absolute Addresses ... 2**6

The IBM PC System Interrupts (Overview) 2**7

Quick Chart of Interrupts 00h-0FFh 2**8

IRQ Usage Chart .. 2**9

The IBM-PC System Interrupts 00h-0Fh (in detail) 2**10

CHAPTER 3 ROM BIOS and Serice Interrupts

Calling the ROM BIOS ... 3**1

Interrupt 10h Video Services 3**2

Interrupt 11h Equipment Check 3**3

Interrupt 12h Memory Size 3**4

Interrupt 13h Disk Functions 3**5

Interrupt 14h Initialize and Access Serial Port 3**6

FOSSIL Drivers ... 3**7

Interrupt 15h Cassette I/O 3**8

Interrupt 16h Keyboard I/O 3**9

Interrupt 17h Printer ... 3**10

Interrupt 18h ROM BASIC ... 3**11

Interrupt 19h Bootstrap Loader 3**12

Interrupt 1Ah Time of Day 3**13

Interrupt 1Bh Control-Break 3**14

Interrupt 1Ch Timer Tick .. 3**15

Interrupt 1Dh Vector of Video Initialization Parameters 3**16

Interrupt 1Eh Vector of Diskette Controller Parameters 3**17

Interrupt 1Fh Ptr to Graphics Char Extensions (Graphics Set 2) .. 3**18

CHAPTER 4 DOS Function Requests

General Programming Guides 4**1

DOS Registers .. 4**2

DOS Stacks ... 4**3

DOS Interrupts ... 4**4

Interrupt 20h (Terminate) .. 4**5

DOS Services (quick list) .. 4**6

Calling the DOS Services ... 4**7

Version Specific Information 4**8

Compatibility Problems With DOS 4.0+ 4**9

PCjr Cartridge Support ... 4**10

eDOS 4.0 ... 4**11

DOS Services in Detail ... 4**12

CHAPTER 5 Interrupts 22h through 0FFh

Interrupt 22h Terminate Address 5**1

Interrupt 23h Ctrl-Break Exit Address 5**2

Interrupt 24h Critical Error Handler 5**3

Interrupt 25h Absolute Disk Read 5**4

Interrupt 26h Absolute Disk Write 5**5

Interrupt 27h Terminate And Stay Resident 5**6

Interrupt 28h (not documented by Microsoft) 5**7

Interrupt 29h (not documented by Microsoft) 5**8

Interrupt 2Ah Microsoft Networks - Session Layer Interrupt 5**9

Interrupt 2Bh Unknown .. 5**10

Interrupt 2Ch Unknown .. 5**11

Interrupt 2Dh Unknown .. 5**12

Interrupt 2Eh Alternate EXEC (DOS 2.0+) 5**13

Interrupt 2Fh Multiplex Interrupt 5**14

Interrupt 30h FAR jump instruction for CP/M-style calls 5**15

Interrupt 31h Unknown .. 5**16

Interrupt 32h Unknown .. 5**17

Interrupt 33h Used by Microsoft Mouse Driver Function Calls 5**18

Interrupt 34h Turbo C/Microsoft languages - Floating Point 5**19

Interrupt 35h Turbo C/Microsoft languages - Floating Point 5**20

Interrupt 36h Turbo C/Microsoft languages - Floating Point 5**21

Interrupt 37h Turbo C/Microsoft languages - Floating Point 5**22

Interrupt 38h Turbo C/Microsoft languages - Floating Point 5**23

Interrupt 39h Turbo C/Microsoft languages - Floating Point 5**24

Interrupt 3Ah Turbo C/Microsoft languages - Floating Point 5**25

Interrupt 3Bh Turbo C/Microsoft languages - Floating Point 5**26

Interrupt 3Ch Turbo C/Microsoft languages - Floating Point 5**27

Interrupt 3Dh Turbo C/Microsoft languages - Floating Point 5**28

Interrupt 3Eh Turbo C/Microsoft languages - Floating Point 5**29

Interrupt 3Fh Overlay Manager Interrupt (Microsoft LINK.EXE) ... 5**30

Interrupt 40h Hard Disk BIOS 5**31

Interrupt 41h Hard Disk Parameters 5**32

Interrupt 42h Pointer to screen BIOS entry 5**33

Interrupt 43h Pointer to EGA Graphics Character Table 5**34

Interrupt 44h Pointer to graphics character table 5**35

Interrupt 45h Reserved by IBM (not initialized) 5**36

Interrupt 46h Pointer to second hard disk parameter block 5**37

Interrupt 47h Reserved by IBM (not initialized) 5**38

Interrupt 48h Cordless Keyboard Translation 5**39

Interrupt 49h Non-kbd Scan Code Translation Table Addr (PCjr) .. 5**40

Interrupt 4Ah Real-Time Clock Alarm (Convertible, PS/2) 5**41

Interrupt 4Bh Reserved by IBM (not initialized) 5**42

Interrupt 4Ch Reserved by IBM (not initialized) 5**43

Interrupt 4Dh Reserved by IBM (not initialized) 5**44

Interrupt 4Eh Reserved by IBM (not initialized) 5**45

Interrupt 4Fh Reserved by IBM (not initialized) 5**46

Interrupt 50-57 IRQ0-IRQ7 Relocation 5**47

Interrupt 58h Reserved by IBM (not initialized) 5**48

Interrupt 59h Reserved by IBM (not initialized) 5**49

Interrupt 5Ah Reserved by IBM (not initialized) 5**50

Interrupt 5Bh Reserved by IBM (not initialized) 5**51

Interrupt 5Ah Cluster Adapter BIOS entry address 5**52

Interrupt 5Bh Reserved by IBM (not initialized) 5**53

Interrupt 5Ch NETBIOS interface entry port, TOPS 5**54

Interrupt 5Dh Reserved by IBM (not initialized) 5**55

Interrupt 5Eh Reserved by IBM (not initialized) 5**56

Interrupt 5Fh Reserved by IBM (not initialized) 5**57

Interrupt 60h-67h User Program Interrupts 5**58

Interrupt 60h Network OS Interface 5**59

Interrupt 67h Expanded Memory Board Driver Interrupt 5**60

Interrupt 68h Not Used (not initialized) 5**61

Interrupt 69h Not Used (not initialized) 5**62

Interrupt 6Ah Not Used (not initialized) 5**63

Interrupt 6Bh Not Used (not initialized) 5**64

Interrupt 6Ch System Resume Vector (Convertible) 5**65

Interrupt 6Dh Not Used (not initialized) 5**66

Interrupt 6Eh Not Used (not initialized) 5**67

Interrupt 6Fh 10-Net API.. 5**68

Interrupt 70h IRQ 8, Real Time Clock Int (AT, XT/286, PS/2) 5**69

Interrupt 71h IRQ 9, Redirected to IRQ 8 (AT, XT/286, PS/2) 5**70

Interrupt 72h IRQ 10 (AT, XT/286, PS/2) Reserved 5**71

Interrupt 73h IRQ 11 (AT, XT/286, PS/2) Reserved 5**72

Interrupt 74h IRQ 12 Mouse Interrupt (PS/2) 5**73

Interrupt 75h IRQ 13, Coprocessor Error (AT) 5**74

Interrupt 76h IRQ 14, Hard Disk Controller (AT, XT/286, PS/2) .. 5**75

Interrupt 77h IRQ 15 (AT, XT/286, PS/2) Reserved 5**76

Interrupt 78h Not Used ... 5**77

Interrupt 79h Not Used ... 5**78

Interrupt 7Ah Reserved ... 5**79

Interrupt 7Bh-7Eh Not Used by IBM 5**80

Interrupt 7Ch REXX-PC API 5**81

Interrupt 7Fh IBM 8514/A Graphics Adapter API 5**82

Interrupt 80h-85h Reserved by BASIC 5**83

Interrupt 86h Int 18 when relocated by NETBIOS 5**84

Interrupt 86h-0F0h Used by BASICA 5**85

Interrupt 0A4h Right Hand Man API 5**86

Interrupt 0D4h PC-MOS/386 API 5**87

Interrupt 0E0h Digital Research CP/M-86 function calls 5**88

Interrupt 0E1h PC Cluster Disk Server Information 5**89

Interrupt 0E2h PC Cluster Program 5**90

Interrupt 0E4h Logitech Modula-2 v2.0 Monitor Entry 5**91

Interrupt 0E5h Not Used ... 5**92

Interrupt 0E6h Not Used ... 5**93

Interrupt 0E7h Not Used ... 5**94

Interrupt 0E8h Not Used ... 5**95

Interrupt 0E9h Not Used ... 5**96

Interrupt 0EAh Not Used ... 5**97

Interrupt 0EBh Not Used ... 5**98

Interrupt 0ECh Not Used ... 5**99

Interrupt 0EDh Not Used ... 5**100

Interrupt 0EEh Not Used ... 5**101

Interrupt 0EFh GEM interface (Digital Research) 5**102

Interrupt 0F0h unknown .. 5**103

Interrupts 0F1h-0FFh (absolute addresses 3C4h-3FFh) 5**104

Interrupt 0F4h Not Used 5**105

Interrupt 0F5h Not Used 5**106

Interrupt 0F8h Set Shell Interrupt (OEM) 5**107

Interrupt 0F9h Reserved ... 5**108

Interrupt 0FAh USART ready (RS-232C) 5**109

Interrupt 0FBh USART RS ready (keyboard) 5**110

Interrupt 0FCh Unknown ...5**111

Interrupt 0FDh reserved for user interrupt 5**112

Interrupt 0FEh reserved by IBM 5**113

Interrupt 0FFh reserved by IBM 5**114

CHAPTER 6 DOS Control Blocks and Work Areas

DOS Address Space .. 6**1

Storage Blocks ... 6**2

Disk Transfer Area (DTA) ... 6**3

Program Segment Prefix ... 6**4

Memory Control Blocks .. 6**5

DOS Program Segment .. 6**6

CHAPTER 7 DOS File Information

File Management Functions .. 7**1

FCB Function Calls ... 7**2

Handle Function Calls .. 7**3

Special File Handles ... 7**4

Raw and Cooked File I/O .. 7**5

Number of Open Files Allowed 7**6

Restrictions on FCB Usage .. 7**7

Restrictions on Handle usage 7**8

Allocating Space to a File 7**9

MSDOS / PCDOS Differences .. 7**10

.COM File Structure .. 7**11

.EXE File Structure .. 7**12

The Relocation Table ... 7**13

"NEW" .EXE Format (Microsoft Windows and OS/2) 7**14

Standard File Control Block 7**15

Extended File Control Block 7**16

Disk Transfer Area ... 7**17

CHAPTER 8 DOS Disk Information

The DOS Area ... 8**1

The Boot Record .. 8**2

DOS File Allocation Table (FAT) 8**3

 Media Descriptor Byte 8**4

 12 Bit FATs .. 8**5

 16 Bit FATs .. 8**6

Cluster Size Information ... 8**7

DOS Disk Directory ... 8**8

The Data Area .. 8**9

Floppy Disk Types .. 8**10

Hard Disk Layout ... 8**11

System Initialization .. 8**12

Boot Record/Partition Table 8**13

Hard Disk Technical Information 8**14

Determining Hard Disk File Allocation 8**15

BIOS Disk Functions .. 8**16

CHAPTER 9 DOS Device Drivers

CHAPTER 10 EMS, EEMS, and VCPI Memory Specifications

History .. 10**1

Uses of Expanded Memory .. 10**2

DOS and Expanded Memory .. 10**3

Different Memory Types ... 10**4

AST/Quadram/Ashton-Tate Enhanced EMM 10**5

EMS Address Space Map .. 10**6

Writing Programs That Use Expanded Memory 10**7

Page Frames .. 10**8

Calling the Manager .. 10**9

Detecting EMS .. 10**10

Terminate and Stay Resident (TSR) Program Cooperation 10**11

Expanded Memory Services Quick List 10**12

Expanded Memory Services ... 10**13

 LIM 3.2 Specification 10**14

 LIM 4.0 Specification 10**15

 AQA EEMS 3.2 Specification 10**16

 VCPI API 1.0 ... 10**17

Expanded Memory Manager Error Codes 10**18

CHAPTER 11 Microsoft Extended Memory (XMS) Specification

CHAPTER 12 TSR Programming

CHAPTER 13 PC-MOS/386 Application Program Interface

Introduction ... 13**1

Programming For PC-MOS ... 13**2

Extended Services Interrupt 13**3

MOS Extended Services in Detail 13**4

ESI Error Codes .. 13**5

PC-MOS Data Structures ... 13**6

Terminal Device Interface .. 13**7

Serial Device Interface .. 13**8

NETBIOS Interface .. 13**9

Memory Manager Interface ... 13**10

INT 6 Handler .. 13**11

User's Overview .. 13**12

CHAPTER 14 Concurrent DOS/386 Application Program Interface

Introduction ... 14**1

General Programming Guides 14**2

Quick Function List .. 14**3

AUX Functions .. 14**4

CONSOLE Functions .. 14**5

DEVICE Functions ... 14**6

DRIVE Functions .. 14**7

FILE Functions ... 14**8

LST Functions .. 14**9

MEMORY Functions ... 14**10

PROCESS Functions .. 14**11

QUEUE Functions .. 14**12

SYSTEM Functions ... 14**13

TIME Functions ... 14**14

CHAPTER 15 Register-Level Programming

8255 Peripheral Interface .. 15**1

8259 Interrupt Controller .. 15**2

AT CMOS RAM Configuration .. 15**3

8250 Serial UART ... 15**4

8327 DMA Controller .. 15**5

8253 Triple Timer .. 15**6

NEC 765 Diskette Controller....................................... 15**7

CHAPTER 16 Video Programming

Quick List of BIOS Interrupt 10h Functions 16**1

PC Video Subsystems .. 16**2

BIOS Interrupt 10h Functions in Detail 16**3

CHAPTER 17 Multitasking Shells

Introduction ... 17**1

Programming Practices .. 17**2

TopView/DESQview API (interrupt 15h, "System Services" interface) 17**3

TopView/DESQview API (interrupt 16h, "BIOS Video" interface) 17**4

CHAPTER 18 Viruses and Trojan Horses

CHAPTER 19 Tips and Tricks

CHAPTER 20 Conversion Between Operating Systems

Overview ... 20**1

Special Considerations ... 20**2

Example Operating Systems .. 20**3

Atari ST ... 20**4

CP/M ... 20**5

MacOS .. 20**6

AmigaDOS ... 20**7

OS/2 ... 20**8

UNIX ... 20**9

CHAPTER 21 Microsoft Virtual DMA Specification 1.0

Introduction ... 21**1

VDS Function List .. 21**2

VDS Functions .. 21**3

DMA Descriptor Structure ... 21**4

DX Flag Bits ... 21**5

VDS Error Codes .. 21**6

CHAPTER 22 Mouse Programming

General Information .. 22**1

Register Usage ... 22**2

Interrupt 33h Function Requests 22**3

Interrupt 10h Function Requests 22**4

CHAPTER 23 Network APIs

FTP Driver - PC/TCP Packet Driver Specification 23**1

10-Net Network ... 23**2

LANtastic LANOS API .. 23**3

Novell NetWare 2.11 API .. 23**4

APPC/PC .. 23**5

CHAPTER 24 MultiDos Plus API

CHAPTER 25 VMiX 2.6x API

What is VMiX? .. 25**1

Assembler Interface .. 25**2

CHAPTER 26 X-DOS 3.3

MISCSTUF Miscellaneous Stuff

AFTERWRD Afterword

CREDITS Credits and Bibliography

 A P P E N D I C E S

APPENDIX 1 Keyboard scan code chart

APPENDIX 2 ASCII character chart

APPENDIX 3 IBM PC character set

APPENDIX 4 IBM PC error code listing

APPENDIX 5 Addresses of various manufacturers

APPENDIX 6 Hard disk information

APPENDIX 7 Floppy and Tape Devices

APPENDIX 8 Pinouts of various connectors on the IBM PC

APPENDIX 9 Sizes of various drivers installed in CONFIG.SYS

APPENDIX 10 Common modem instruction sets

APPENDIX 11 Glossary of computer terminology

APPENDIX 12 Various busses used in MSDOS machines

APPENDIX 13 Common filename extensions

APPENDIX 14 Clock speeds of various expansion cards

APPENDIX 15 Header formats used by various archive utilities

APPENDIX 16 Miscellaneous Hardware Information

APPENDIX 17 HP LaserJet Setup Codes

APPENDIX 18 ANSI.SYS Escape Sequences

APPENDIX 19 DEC VT100 Escape Sequences

APPENDIX 20 Various Paint Program Formats

APPENDIX 21 Some Commonly Used Hot-Keys

APPENDIX 22 Sound Blaster API

APPENDIX 23 French-Canadian accented character chart

APPENDIX 24 Compuserve Graphic Image Format '89a

APPENDIX 25 Hex Chart

APPENDIX 26 Microsoft TSR Specification 1.0

APPENDIX 27 Baud vs BPS Explained

APPENDIX 28 Borland BGI Stroked Font .CHR File Format

APPENDIX 29 Differences From DOS 4.0 In The OS/2 1.3 DOS Box

APPENDIX 30 IBM Interrupt Sharing Protocol

APPENDIX 31 CCITT v.XX Protocol Overview

APPENDIX 32 CCITT x.XX Protocol Overview

APPENDIX 33 Miscellaneous Switch Settings

APPENDIX 34 DOS BACKUP Format

APPENDIX 35 .WAV File Format

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R O N E

 DOS AND THE IBM PC

 C O N T E N T S

Some History ... 1**1

What is DOS? ... 1**2

Other Operating Systems .. 1**3

Specific Versions of MS/PC-DOS 1**4

The Operating System Heirarchy 1**5

DOS Structure .. 1**6

DOS Initialization ... 1**7

Some History ... 1**1

 Development of MSDOS/PCDOS began in October 1980, when IBM began

searching the market for an operating system for the yet-to-be-

introduced IBM PC.

 IBM had originally intended to use Digital Research's (actually,

they had the somewhat pretentious name of "Intergalactic Digital

Research" at the time) CP/M was then the industry standard operating

system - you either ran a BASIC with disk functions, someone's

proprietary OS, or CP/M.

 Folklore reports various stories about the rift between DRI and IBM.

The most popular story claims Gary Kildall or DRI snubbed the IBM

executives by flying his airplane when the meeting was scheduled.

Another story claims Kildall didn't want to release the source for

CP/M to IBM, which would be odd, since they released it to other

companies. One noted industry pundit claims Kildall's wife killed the

deal by insisting on various contract changes. I suspect the deal was

killed by the good ol' boy network. It's hard to imagine a couple of

junior IBM executives giving up when ordered to a task as simple as

licensing an operating system from a vendor. It wouldn't look good on

their performance reports. It would be interesting to hear IBM's

story...

 IBM then talked to a small company called Microsoft. Microsoft

was a language vendor. Bill Gates and Paul Allen had written

Microsoft BASIC and were selling it on punched tape or disk to early

PC hobbyists, which was probably a step up from the company's original

name and goal - they were Traf-O-Data before, making car counters for

highway departments.

 Microsoft had no 8086 real operating system to sell, but quickly made

a deal to license Seattle Computer Products' 86-DOS operating system,

which had been written by Tim Paterson earlier in 1980 for use on that

company's line of 8086, S100 bus micros. 86-DOS (also called QDOS, for

Quick and Dirty Operating System) had been written as more or less a

16-bit version of CP/M, since Digital Research was showing no hurry in

introducing CP/M-86. Paterson's DOS 1.0 was approximately 4000 lines of

assembler source.

 This code was quickly polished up and presented to IBM for

evaluation.

 IBM found itself left with Microsoft's offering of "Microsoft Disk

Operating System 1.0". An agreement was reached between the two, and

IBM agreed to accept 86-DOS as the main operating system for their new

PC. Microsoft purchased all rights to 86-DOS in July 1981, and "IBM

Personal Computer DOS 1.0" was ready for the introduction of the IBM

PC in October 1981. IBM subjected the operating system to an

extensive quality-assurance program, reportedly found well over 300

bugs, and decided to rewrite the programs. This is why PC-DOS is

copyrighted by both IBM and Microsoft.

 Some early OEM versions of DOS had different names, such as Compaq-

DOS, Z-DOS, Software Bus 86, etc. By version 2 Microsoft managed to

persuade everyone but IBM to refer to the product as "MS-DOS."

 It is sometimes amusing to reflect on the fact that the IBM PC was

not originally intended to run MS-DOS. The target operating system at

the end of the development was for a (not yet in existence) 8086

version of CP/M. On the other hand, when DOS was originally written

the IBM PC did not yet exist! Although PC-DOS was bundled with the

computer, Digital Research's CP/M-86 would probably have been the main

operating system for the PC except for two things - Digital Research

wanted $495 for CP/M-86 (considering PC-DOS was essentially free) and

many software developers found it easier to port existing CP/M

software to DOS than to the new version of CP/M.

 The IBM PC shipped without an operating system. IBM didn't start

bundling DOS until the second generation AT/339 came out. You could

order one of three operating systems for your PC, assuming you popped

for the optional disk drive and 64k RAM upgrade (base models had 16k

and a cassette player port). These operating systems were IBM

Personal Computer DOS 1.0, a version of the UCSD p-System, which was

an integrated Pascal operating system something like the souped-up

BASIC operating systems used by the Commodore 64 and others, or

Digital Research's CP/M-86, which was officially an option although

you couldn't buy it until later. Since IBM's $39.95 DOS was far

cheaper than anyone else's alternative, darned near everyone bought

DOS.

 The upgrade from DOS 3.3 to 4.0 was done in-house by IBM. DOS 4.0

was a completely IBM product, later licensed back to Microsoft. In

early 1990 IBM announced that it was ceasing development of DOS and

all further work would be done solely by Microsoft.

 Microsoft Press' "MSDOS Encyclopedia" shows a reproduction of a late

DOS 1.25 OEM brochure. Microsoft was touting future enhancements to

1.25 including Xenix-compatible pipes, process forks, and

multitasking, as well as "graphics and cursor positioning, kanji

support, multi-user and hard disk support, and networking." Microsoft

certainly thought big, but, alas, the forks, multitasking, and

multiuser support never came about, at least in US versions of DOS.

Oddly, the flyer claims:

 "MS-DOS has no practical limit on disk size. MS-DOS uses 4-byte XENIX

OS compatible pointers for file and disk capacity up to 4 gigabytes."

 Umm... yeah. One sort of gets the idea nobody at Microsoft had a

hard disk larger than 32 megabytes...

 For the record they actually delivered:

Xenix-compatible pipes:

 DOS 2.0 ("|" operator)

process forks, and multitasking:

 eDOS 4.0 (not delivered in the US)

multi-user:

 never delivered

graphics and cursor positioning:

 DOS 2.0 (ANSI.SYS)

kanji support:

 DOS 2.01, 2.25 (double-byte character set)

hard disk support:

 DOS 2.0 (subdirectories)

networking:

 DOS 3.1 (file locking support MS Networks)

 DOS 6.0 (bundled Interlink in with DOS)

 Early Microsoft ads pumped DOS' Xenix-like features and promised

Xenix functionality in future releases.

 We'll probably never know what the real story was behind eDOS/DOS 4/

DOS 5/286DOS/OS2. Microsoft had announced their intent to build a

multitasking, multiuser version of MSDOS as early as 1982. They

shipped betas of "DOS 4.0" in '86 and early '87, before 3.3 was even

announced. Microsoft UK announced they had licensed 4.0 to Apricot

Computer, and the French Postal Service was supposed to be running it.

I've never been able to find out if Apricot ever shipped any 4.0 to

end users.

 Despite Gordon Letwin's acid comments about problems with the 80286

processor, I doubt the '286 was the barrier between users and a

multitasking MS-DOS. I also doubt there was any shortage of

programming talent at Microsoft - Digital Research's Concurrent DOS

and Software Link's PC-MOS/386 were developed without undue trouble.

 MSDOS and PC-DOS have been run on more than just the IBM-PC and

clones. Some of the following have been done:

 Hardware PC Emulation:

 Apple II -> TransPC 8088 board

 Apple MacIntosh -> AST 80286 board

 Atari 400/800 -> Co-Power 88 board

 Atari ST -> PC-Ditto II cartridge

 Amiga 2000 -> 8088 or A2286D 80286 Bridge Board

 IBM PC/RT -> 80286 AT adapter

 Kaypro 2 -> Co-Power Plus board

 Software PC Emulation:

 Apple MacIntosh -> SoftPC

 Atari ST -> PC-Ditto I

 IBM RS/6000 -> DOS emulation

 DOS Emulation:

 AIX (IBM RS/6000) -> DOS emulation with "PCSIMulator"

 OS/2 1.x -> DOS emulation in "Compatibility Box"

 OS/2 2.x -> executes Virtual DOS Machine

 QNX -> DOS window

 SunOS -> DOS window

 Xenix -> DOS emulation with DOSMerge

What Is DOS?.. 1**2

 DOS exists as a high-level interface between an application program

and the computer. DOS stands for "Disk Operating System", which

reflects the fact that its main original purpose was to provide an

interface between the computer and its disk drives.

 DOS now lets your programs do simple memory management, I/O from the

system console, and assorted system tasks (time and date, etc) as well

as managing disk operations. Versions 3.1 and up also incorporate

basic networking functions.

 With the introduction of installable device drivers and TSR

(terminate but stay resident) programs in DOS 2.0, the basic DOS

functions may be expanded to cover virtually any scale of operations

required.

Other Operating Systems .. 1**3

 There are a number of compatible replacements for Microsoft's MSDOS.

Some are:

Alloy 386 Multiware (multitasking control prog,

 licensed DOS)

Consortium Technologies MultiDOS (multitasking, multiuser)

Digital Research Concurrent DOS (multitasking)

Digital Research Concurrent DOS 386 (for 80386 computers)

Digital Research Concurrent DOS XM (multitasking, multiuser)

Digital Research DR-DOS (PC-DOS clones)

Digital Research Multiuser DOS (multitasking, multiuser)

PC-MOS/386 (multitasking, multiuser)

Wendin-DOS (multitasking, multiuser)

VM/386 (multitasking)

X-DOS (DOS 3.31 compatible)

 Various other operating systems are available for the IBM PC. These

include:

Digital Research CP/M-86

Digital Research Concurrent CP/M-86 (multitasking)

Minix (multitasking UNIX workalike)

Pick (database-operating system)

QNX (multitasking, multiuser)

UCSD p-System (Pascal interpreter and operating system)

UNIX (various systems from IBM itself, Microsoft-SCO, Bell, and

 various UNIX clones, single and multi user, such as AIX,

 Xenix, AT&T System V, etc.)

 "Shell" programs exist which use DOS only for disk management while

they more or less comprise a new operating system. These include:

 DESQview Windows OmniView

 GEM TopView TaskView

 GeoWorks

 TopView and TaskView (later called OmniView) and Omniview are no

longer sold.

 Systems using the NEC V-series CPUs can execute Intel 8080/8085 8-bit

instructions as well as the 16-bit 8088-up instructions. They can run

standard Digital Research 8-bit CP/M and MP/M directly, as well as

other operating systems developed for that processor.

Specific Versions of MS/PC-DOS 1**4

 DOS 1.x is essentially 86-DOS. DOS 2.x kept the multiple file layout

(the two hidden files and COMMAND.COM) but for all practical purposes

is an entirely different operating system with backwards compatibility

with 1.x. I seriously doubt there has been much code from 1.x

retained in 2.x. DOS 3.x is merely an enhancement of 2.x; there seems

little justification for jumping a whole version number. The disk

handling routines were considerably extended in 3.1, allowing disk

access in a "virtual" fashion, independent of whether the drive was a

local or network device. DOS 4.0, originating as it did from outside

Microsoft, can justify a version jump. Unfortunately, 4.0 seemed to

have very little reason to justify its existence - virtually all of

its core features could be found in one version or another of DOS 3.x.

According to Microsoft's Gordon Letwin, DOS 5.0 was a complete rewrite

with the kernel done in hand optimized assembly language.

 DOS version nomenclature: major.minor.minor. The digit to the left

of the decimal point indicates a major DOS version change. 1.0 was

the first version. 2.0 added support for subdirectories, 3.0 added

support for networking, 4.0 added some minimal support for Lotus-

Intel-Microsoft EMS.

 The first minor version indicates customization for a major

application. For example, 2.1 for the PCjr, 3.3 for the PS/2s. The

second minor version does not seem to have any particular meaning.

 The main versions of DOS are:

 86-DOS February 1981 Paterson's Quick'n'Dirty DOS first runs

 on IBM's wirewrapped PC prototype

 PC-DOS 1.0 August 1981 original IBM release

 PC-DOS 1.05 -------- ---- fixes to BASIC interpreter

 PC-DOS 1.1 June 1982 bugfix, double sided drive support

 MS-DOS 1.25 July 1982 for early compatibles. This is the first

 non-IBM OEM version

 PC-DOS 2.0 March 1983 for PC/XT, Unix-type subdirectory support,

 installable device drivers, I/O

 redirection, subdirectories, hard disk

 support, handle calls

 PC-DOS 1.85 April 1983 internal IBM - extended 1.1 - not released

 I found a copy of this one on an old

 diskette. It added a whole host of

 features, including an enhanced COMMAND.COM

 with command line editing. Too bad none

 of the goodies made it into DOS 2.0!

 MS-DOS 2.01 -------- 1983 first support for individual country

 formats, Kanji

 PC-DOS 2.1 October 1983 for IBM PCjr, bugfixes for 2.0.

 No country support

 MS-DOS 2.11 December 1983 basically a cross of PC-DOS 2.1 and

 MS-DOS 2.01

 MS-DOS 2.12 -------- ---- special version for TI Professional

 (nonstandard video and keyboard)

 PC-DOS 3.0 August 1984 1.2 meg drive for PC/AT, some new system

 calls, new external programs, 16-bit FAT,

 specific support for IBM network

 MS-DOS 3.05 November 1984 first OEM version of 3.x

 PC-DOS 3.1 November 1984 bugfix for 3.0, implemented generic

 network support

 MS-DOS 2.25 October 1985 extended foreign language support

 PC-DOS 3.2 January 1986 720k 3.5 inch drive support, special

 support for laptops (IBM PC Convertible),

 XCOPY

 MS-DOS 4.0 April 1986 multitasking (Europe only) - withdrawn

 from market after a very short run

 PC-DOS 3.3 April 1987 for PS/2 series, 1.44 meg support,

 multiple DOS partition support, code page

 switching, improved foreign language

 support, some new function calls, support

 for the AT's CMOS clock.

 MS-DOS 3.31 November 1987 over-32 meg DOS partitions. Different

 versions from different OEMs (not

 Microsoft). Compaq and Wyse are most

 common.

 PC-DOS 3.4 -------- ---- internal IBM - not released (4.0

 development)

 MS-DOS 2.11R -------- 1988 bootable ROM DOS for Tandy machines

 PC-DOS 4.0 August 1988 32mb disk limit officially broken, minor

 EMS support, more new function calls,

 enhanced network support for external

 commands. PCjr support dropped.

 MS-DOS 4.01 January? 1989 Microsoft version with some bugfixes

 MS-DOS 3.21R September1989 DOS in ROM, Flash File System for laptops

 MS-DOS 3.3R -------- 1990 DOS in ROM, introduced for TI laptops

 MS-DOS 5.0 June 1991 high memory support, uses up to 8 hard

 disks, command line editor and aliasing,

 2.88 floppies, ROMable OEM kit available

 MS-DOS V February 1993 Japanese-market version of 5, with double

 byte Kanji character support

 MS-DOS 6.0 March 1993 disk compression (Doublespace), multiple

 configurations in CONFIG.SYS

 IBM's PC-DOS was long considered to be the "standard" version of DOS.

Now that MS 5.0 is a commercial product most developers will probably

write to it.

 Microsoft's policy was once to sell DOS only to OEMs. Despite this,

they sold small quantities of DOS 3.2, 3.3, and 4.0 without

insurmountable difficulties. DOS 5.0 was conceived from the beginning

as an over-the-counter retail product.

 Incidentally, IBM refers to its DOS as "The IBM Personal Computer

DOS." The term "PC-DOS" is a trademark of IBM's rival DEC.

 Some versions of MS-DOS varied from PC-DOS in the available external

commands. Some OEMs only licensed the basic operating system code (the

xxxDOS and xxxBIO programs, and COMMAND.COM) from Microsoft, and

either wrote the rest themselves or contracted them from outside

software houses like Phoenix. Most of the external programs for DOS

3.x and 4.x are written in "C" while the 1.x and 2.x utilities were

written in assembly language. Other OEMs required customized versions

of DOS for their specific hardware configurations, such as Sanyo 55x

and early Tandy computers, which were unable to exchange their DOS

with the IBM version.

 PC-DOS 3.0 was extremely buggy on release. It did not handle the DOS

environment correctly and there were numerous documented problems with

the batch file parser. The network support code was also

nonfunctional in that DOS version. It is recommended that users

upgrade to at least version 3.1.

 DEC MS-DOS versions 2.11 for the Rainbow had the ANSI.SYS device

driver built into the main code. The Rainbow also used a unique quad

density, single-sided floppy drive and its DOS had special support for

it.

 IBM had a version 1.85 of PC-DOS in April 1983, after the

introduction of DOS 2.0. It was evidently for internal use only,

supported multiple drive file searches (a primitive form of PATH),

built in MODE sommands for screen support, a /P parameter for TYPE for

paused screens, an editable command stack like the public domain

DOSEDIT.COM utility, and could be set up to remain completely resident

in RAM instead of a resident/transient part like normal DOS. It is a

pity some of the neat enhancements didn't make it into DOS 2.0. IBM

also had an "internal use only" version 3.4, evidently used while

developing DOS 4.0.

 Digital Research's DR-DOS is the first widely available DOS clone.

Version 3.4, released in June 1988, was the one first available to the

American public. It was somewhat buggy and its use is not recommended.

DR 3.41 is extremely compatible and its use should pose no problems on

any machine. DR-DOS 5.0 (released May, 1990) is functionally

equivalent to MS-DOS 5.0. For all practical purposes, MS 5.0 is a

clone of DR 5.0, since DR beat MS to market by over a year. According

to Greg Ewald, DRI's DR-DOS product manager, DR-DOS was developed from

Concurrent DOS 386 with the multiuser and multitasking code stripped

out. DR-DOS 6.0 was introduced in December 1991, and added disk

compression via bundling the third-party SuperStor program. Novell DOS

7.0 (DRI sold out to Novell) in March 1993, at the same time as MS-DOS

6.0. Novell one-upped Microsoft by tossing in their Netware Lite with

their DOS.

 Some versions of DOS used in compatibles do not maintain the 1.x,

2.x, ... numbering system. Columbia Data Products computers labeled

DOS 1.25 as DOS 2.0. Early Compaqs labeled DOS 2.0 as DOS 1.x. Other

versions incorporated special features - Compaq DOS 3.31 and Wyse DOS

3.21 both support >32mb disk partitions in the same fashion as DOS

4.x.

 AT&T DOS 3.1 differs from generic MS-DOS 3.10 in its use of cluster-

size and file allocation table structures. AT&T DOS appears to use

rules not from version 3, but rather those from version 2.

 Epson Equity III and ComputerLand 3.10 DOS's appear to use cluster

techniques that are a cross between versions 2 and 3. On type DOS

partitions, these DOS's use 3.x rules if the partition is larger than

32,680 sectors in total size. This implies 16 bit FAT entries as well.

On partitions below this size, they will use 2.x rules, including the

12 bit FAT entries.

 Zenith DOS 3.x and Wyse DOS 3.2 have a builtin internal device driver

to handle up to 4 32Mb DOS partitions on a single hard disk. Wyse DOS

3.31 will handle single partitions up to 512Mb with a 32-bit FAT.

 According to PC Week Magazine, July 4, 1988, Arabic versions of MS-

DOS are shipping with a hardware copy-protection system from Rainbow

Technologies. This is similar to the short-lived system used by

AutoCAD 2.52 and a very few other MS-DOS programs, where an adapter

block is plugged into the parallel port and software makes use of

coded bytes within the block. This type of copy protection has been

common on Commodore products for several years, where it is called a

"dongle."

 The AutoCAD dongle was defeated by a small program written within

weeks of version 2.52's debut. Version 2.62 was released 3 months

later, without the dongle. The DOS dongle will, however, prevent the

system from booting at all unless it is found.

 This makes the Arabic version of MSDOS the first copy-protected

operating system, a dubious distinction at best. The modifications to

the operating system to support the dongle are not known at this time.

Frankly, it would seem that burning the operating system into ROMs

would be cheaper and simpler.

 Versions of DOS sold in Great Britain are either newer than those

sold in the US or use a different numbering system. DOS 3.4, 4.0,

4.1, 4.2, and 4.3 had been released there between the US releases of

3.3 and 4.0.

 MSDOS 4.0 (eDOS) was introduced in mid-1987 in Europe (at SICOB in

Paris and sometime earlier by Apricot Computer in the UK). It offered

multitasking provided applications were specially written for it.

 David Fraser (Microsoft UK Managing Director) is on record saying

that "DOS 4.0 is unlikely to set the world alight and is of interest

only to specific OEMs who want its features for networking and

communications." Standard DOS applications will run under DOS 4.x as

a foreground task according to uncertain information. It differs from

earlier versions only in allowing background tasks to run. For

further information, see Chapter 4.

 Microsoft changed their OEM licensing agreements between DOS versions

2.x and 3.x. OEM versions of DOS 3.x must maintain certain data areas

and undocumented functions in order to provide compatibility with the

networking features of the operating system. For this reason, TSR

programs will be much more reliable when operating under DOS 3.x.

 Several versions of DOS have been modified to be run out of ROM. The

Sharp PC5000 had MSDOS 1.25 in ROM, and the Toshiba 1000 and some

Tandy 1000 models have MSDOS 2.11 in ROM. In mid-September 1989

Microsoft introduced 3.21R ROMs for laptops, and in early '90 Texas

Instruments laptops were the first to get the 3.3R ROMs. All versions

of Digital Research's DR-DOS are available in ROM version and Award

Software is marketing DR-DOS cards to OEMs as a plug-in to ISA-bus

machines.

 IBM's release of DOS 4.0 (and the immediate subsequent release of a

bugfix) was a dubious step "forward." DOS 4.0 was the first version

of DOS to come with a warranty; the catch is that IBM warranted it

only for a very slim list of IBM-packaged software. 4.0 had some

minor EMS support, support for large hard disks, and not much else.

With its voracious RAM requirements and lack of compatibility with

previous versions of DOS (many major software packages crashed under

DOS 4.0), plus the increase in price to a cool $150, there was no

great rush to go to that version of DOS.

 Microsoft undertook development of MSDOS 5.0 in early 1990,

soliciting input from Usenet, BIX, and Compuserve among others.

This was quite a surprise after Bill Gates had announced "DOS is dead"

at every opportunity, trying to build support for OS/2. Alas, most of

Microsoft's revenue came from DOS, not OS/2's few sales (at $325 per

copy) or applications. Apparently Microsoft realized they were

shooting themselves in the foot and that there was still plenty of

life left in DOS. They dropped OS/2 development shortly after

starting on DOS 5.0.

 5.0 is a functional clone of Digital Research's DR-DOS 5.0. 5.0's

compatibility was assured by what has been claimed as the largest

beta-test program in history -in his address to the Boston Computer

Society, Bill Gates announced over 7,500 testers were involved.

 There are many versions of MS-DOS 5.0. Microsoft's original

revision reported "Revision A" when you used the at-first-undocumented

VER/R command. There was a Revision B and C, which I have personally

seen right out of the shrinkwrap. Microsoft has denied (at least up

to late 1992) there ever was a B or C revision, and shortly afterward

new copies started reporting "Revision A" no matter what the

datestamps on the files were. IBM DOS 5.0 went through a number of

CSDs, all of which were available for free download from their BBS in

Atlanta (see Appendix 5) but most of the revisions related to IBM

specific hardware problems.

 MS-DOS 6.0 was introduced in March 1993. It bundles some third

party utilities and disk compression (developed from licensed code),

but other than boot control via new CONFIG.SYS options, it doesn't add

any new features. If it weren't for marketing reasons, it would

probably have been called DOS 5.1.

The Operating System Hierarchy 1**5

 The Disk Operating System (DOS) and the ROM BIOS serve as an

insulating layer between the application program and the machine, and

as a source of services to the application program.

 As the term 'system' might imply, DOS is not one program but a

collection of programs designed to work together to allow the user

access to programs and data. Thus, DOS consists of several layers of

"control" programs and a set of "utility" programs.

 The system hierarchy may be thought of as a tree, with the lowest

level being the actual hardware. The 8088 or V20 processor sees the

computer's address space as a ladder one byte wide and one million

bytes long. Parts of this ladder are in ROM, parts in RAM, and parts

are not assigned. There are also 65,536 "ports" that the processor

can use to control devices.

 The hardware is normally addressed by the ROM BIOS, which will always

know where everything is in its particular system. The chips may

usually also be written to directly, by telling the processor to write

to a specific address or port. This sometimes does not work as the

chips may not always be at the same addresses or have the same

functions from machine to machine.

DOS Structure .. 1**6

DOS consists of four components:

 * The boot record

 * The ROM BIOS interface (IBMBIO.COM, DRBIOS.SYS, or IO.SYS)

 * The DOS program file (IBMDOS.COM, DRBDOS.SYS, or MSDOS.SYS)

 * The command processor (COMMAND.COM or aftermarket replacement)

* The Boot Record

 The boot record begins on track 0, sector 1, side 0 of every diskette

prepared by the DOS FORMAT command. The boot record is placed on

diskettes to produce an error message if you try to start up the

system with a nonsystem diskette in drive A. For hard disks, the boot

record resides on the first sector of the DOS partition. All media

supported by DOS use one sector for the boot record.

* Read Only Memory (ROM) BIOS Interface and Extensions

 The file IBMBIO.COM or IO.SYS is the interface module to the ROM

BIOS. This file provides a low-level interface to the ROM BIOS device

routines and may contain extensions or changes to the system board

ROMs. Some compatibles do not have a ROM BIOS to extend, and load the

entire BIOS from disk. (Sanyo 55x, Viasyn machines). Some versions

of MSDOS, such as those from Compaq's MS-DOS and Digital Research's

DRDOS 5.0, are named IBMBIO.COM but are not IBM files.

 These low-level interface routines include the instructions for

performing operations such as displaying information on the screen,

reading the keyboard, sending data out to the printer, operating the

disk drives, and so on. It is the operating system's means of

controlling the hardware. IBMBIO.COM contains any modifications or

updates to the ROM BIOS that are needed to correct any bugs or add

support for other types of hardware such as new disk drives. By using

IBMBIO.COM to update the ROM BIOS on the fly when the user turns on

their computer, IBM does not need to replace the ROM BIOS chip itself,

but makes any corrections through the cheaper and easier method of

modifying the IBMBIO.COM file instead.

 IBMBIO.COM also keeps track of hardware operations on an internal

stack or "scratch pad" area for the operating system to save

information such as addresses it will need, etc. An example of the

use for this stack can be seen when running a program such as a word

processor. If you have told the word processor to save your letter,

it will write the data to your disk. During this time, if you start

typing some more information, the keyboard generates a hardware

interrupt. Since you don't want the process of writing the

information to the disk to be interrupted, DOS allocates a slot in the

stack for the keyboard's hardware interrupt and when it gets a chance,

(probably after the data has been written to the disk), it can process

that interrupt and pick up the characters you may have been typing.

The STACKS= command in DOS 3.2+'s CONFIG.SYS file controls the number

of stack frames available for this purpose.

 IBMBIO.COM also reads your CONFIG.SYS file and installs any device

drivers (i.e. DEVICE=ANSI.SYS) or configuration commands it may find

there.

* The DOS Program

 The actual DOS program is the file IBMDOS.COM or MSDOS.SYS. It

provides a high-level interface for user (application) programs. This

program consists of file management routines, data blocking/deblocking

for the disk routines, and a variety of built-in functions easily

accessible by user programs.

 When a user program calls these function routines, they accept high-

level information by way of register and control block contents. When

a user program calls DOS to perform an operation, these functions

translate the requirement into one or more calls to IBMBIO.COM,

MSDOS.SYS or system hardware to complete the request.

 This section is often referred to as the "kernel" by systems

programmers.

* The Command Interpreter

 The command interpreter, COMMAND.COM, is the part you interact with

on the command line. COMMAND.COM has three parts. IBM calls them the

"resident portion", the "initialization portion" and the "transient

portion".

 IBM's original documentation spoke of installing alternate command

interpreters (programs other than COMMAND.COM) with the SHELL=

statement in CONFIG.SYS. Unfortunately, IBM chose not to document

much of the interaction between IBMDOS.COM and IBMBIO.COM. By the

time much of the interaction was widely understood, many commercial

software programs had been written to use peculiarities of COMMAND.COM

itself.

 Several programs exist that perform as actual "shells" by completely

replacing COMMAND.COM and substituting their own command interpreter

to use with the hidden DOS files. Examples are Command Plus, a

commercial package, and the shareware 4DOS and FlexShell packages.

Both supply greatly enhanced batch language and editing capabilities.

NOTE: DOS 3.3+ checks for the presence of a hard disk, and will

 default to COMSPEC=C:\. Previous versions default to

 COMSPEC=A:\. Under some DOS versions, if COMMAND.COM is not

 immediately available for reloading (i.e., swapping to a floppy

 with COMMAND.COM on it) DOS may crash.

Resident Portion:

 The resident portion resides in memory immediately following

IBMDOS.COM and its data area. This portion contains routines to

process interrupts 22h (Terminate Address), 23h (Ctrl-Break Handler),

and 24h (Critical Error Handler), as well as a routine to reload the

transient portion if needed. For DOS 3.x, this portion also contains

a routine to load and execute external commands, such as files with

exensions of COM or EXE.

 When a program terminates, a checksum is used to determine if the

application program overlaid the transient portion of COMMAND.COM. If

so, the resident portion will reload the transient portion from the

area designated by COMSPEC= in the DOS environment. If COMMAND.COM

cannot be found, the system will halt.

 All standard DOS error handling is done within the resident portion

of COMMAND.COM. This includes displaying error messages and

interpreting the replies to the "Abort, Retry, Ignore, Fail?" message.

 Since the transient portion of COMMAND.COM is so large (containing

the internal commands and all those error messages), and it is not

needed when the user is running an application it can be overlaid that

program if that application needs the room. When the application is

through, the resident portion of COMMAND.COM brings the transient

portion back into memory to show the prompt. This is why you will

sometimes see the message "Insert disk with COMMAND.COM". It needs to

get the transient portion off the disk since it was overlaid with the

application program.

 The initialization portion of COMMAND.COM follows the resident

portion and is given control during the bootup procedure. This

section actually processes the AUTOEXEC.BAT file. It also decides

where to load the user's programs when they are executed. Since this

code is only needed during startup, it is overlaid by the first

program which COMMAND.COM loads.

 The transient portion is loaded at the high end of memory and it is

the command processor itself. It interprets whatever the user types

in at the keyboard, hence messages such as "Bad command or file name"

for when the user misspells a command. This portion contains all the

internal commands (i.e. COPY, DIR, RENAME, ERASE), the batch file

processor (to run .BAT files) and a routine to load and execute

external commands which are either .COM or .EXE files.

 The transient portion of COMMAND.COM produces the system prompt,

(C>), and reads what the user types in from the keyboard and tries to

do something with it. For any .COM or .EXE files, it builds a command

line and issues an EXEC function call to load the program and transfer

control to it.

DOS Initialization ... 1**7

 The system is initialized by a software reset (Ctrl-Alt-Del), a

hardware reset (reset button), or by turning the computer on. The

Intel 80x8x series processors always look for their first instruction

at the end of their address space (0FFFF0h) when powered up or reset.

This address contains a jump to the first instruction for the ROM

BIOS.

 Built-in ROM programs (Power-On Self-Test, or POST, in the IBM) check

machine status and run inspection programs of various sorts. Some

machines set up a reserved RAM area with bytes indicating installed

equipment (AT and PCjr).

 When the ROM BIOS finds a ROM on an adapter card, it lets that ROM

take control of the system so that it may perform any set up necessary

to use the hardware or software controlled by that ROM. The ROM BIOS

searches absolute addresses C8000h through E0000h in 2K increments in

search of a valid ROM. A valid ROM is determined by the first few

bytes in the ROM. The ROM will have the bytes 55h, AAh, a length

indicator and then the assembly language instruction to CALL FAR (to

bring in a "FAR" routine). A checksum is done on the ROM to verify

its integrity, then the BIOS performs the CALL FAR to bring in the

executible code. The adapter's ROM then performs its initialization

tasks and hopefully returns control of the computer back to the ROM

BIOS so it can continue with the booting process.

 The ROM BIOS routines then look for a disk drive at A: or an option

ROM (usually a hard disk) at absolute address C:800h. If no floppy

drive or option ROM is found, the BIOS calls int 19h (ROM BASIC if it

is an IBM) or displays an error message.

 If a bootable disk is found, the ROM BIOS loads the first sector of

information from the disk and then jumps into the RAM location holding

that code. This code normally is a routine to load the rest of the

code off the disk, or to "boot" the system.

 The following actions occur after a system initialization:

 1. The boot record is read into memory and given control.

 2. The boot record then checks the root directory to assure that the

 first two files are IBMBIO.COM and IBMDOS.COM or their OEM

 equivalents. These files must be in that order, with IBMBIO.COM

 first, with its sectors in contiguous order.

 note 1) IBMDOS.COM need not be contiguous in version 3.x+.

 2) DR-DOS versions 3.40 through 6.0 may have DRBIOS.SYS and

 DRDOS.SYS anywhere on the hard disk.

 3) PC-MOS/386' $$MOS.SYS file may be anywhere on the hard

 disk.

 3. The boot record loads IBMBIO.COM into memory.

 4. The initialization code in IBMBIO.COM loads IBMDOS.COM,

 determines equipment status, resets the disk system,

 initializes the attached devices, sets the system parameters

 and loads any installable device drivers according to the

 CONFIG.SYS file in the root directory (if present), sets the

 low-numbered interrupt vectors, relocates IBMDOS.COM downward,

 and calls the first byte of DOS.

 note 1) CONFIG.SYS may be a hidden file.

 5. DOS initializes its internal working tables, initializes the

 interrupt vectors for interrupts 20h through 27h, and builds

 a Program Segment Prefix for COMMAND.COM at the lowest

 available segment. For DOS versions 3.10 up, DOS also

 initializes the vectors for interrupts 0Fh through 3Fh. An

 initialization routine is included in the resident portion and

 assumes control during startup. This routine contains the

 AUTOEXEC.BAT file handler and determines the segment address

 where user application programs may be loaded. The

 initialization routine is then no longer needed and is overlaid

 by the first program COMMAND.COM loads.

 note 1) AUTOEXEC.BAT may be a hidden file.

 6. IBMDOS.COM uses the EXEC function call to load and start the top-

 level command processor. The default command processor is

 COMMAND.COM in the root directory of the boot drive. If

 COMMAND.COM is in a subdirectory or another command processor is

 to be used, it must be specified by a SHELL= statement in the

 CONFIG.SYS file. A transient portion is loaded at the high end

 of memory. This is the command processor itself, containing all

 of the internal command processors and the batch file processor.

 For DOS 2.x, this portion also contains a routine to load and

 execute external commands, such as files with extensions of COM

 or EXE. This portion of COMMAND.COM also produces the DOS prompt

 (such as "A>"), reads the command from the standard input device

 (usually the keyboard or a batch file), and executes the command.

 For external commands, it builds a command line and issues an EXEC

 function call to load and transfer control to the program.

note 1) COMMAND.COM may be a hidden file.

 2) For IBM DOS 2.x, the transient portion of the command

 processor contains the EXEC routine that loads and executes

 external commands. For MSDOS 2.x+ and IBM DOS 3.x+, the

 resident portion of the command processor contains the EXEC

 routine.

 3) IBMDOS only checks for a file named "COMMAND.COM". It will

 load any file of that name if no SHELL= command is used.

 That pretty much covers the bootup process. After the command

processor is loaded, it runs the AUTOEXEC.BAT file and then the user

gets their prompt to begin working.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R T W O

 CPU Port Assignments, System Memory Map, BIOS Data Area,

 Interrupts 00h to 09h

 C O N T E N T S

Introduction ... 2**1

System Memory Map .. 2**2

A Brief Guide to Current Memory Terminology 2**3

PC Port Assignment ... 2**4

Reserved Memory Locations 2**5

Absolute Addresses ... 2**6

The IBM PC System Interrupts (Overview) 2**7

Quick Chart of Interrupts 00h-0FFh 2**8

IRQ Usage Chart .. 2**9

The IBM-PC System Interrupts 00h-0Fh (in detail) 2**10

Introduction ... 2**1

 For consistency in this reference, all locations and offsets are in

hexadecimal unless otherwise specified. All hex numbers are prefaced

with a leading zero if they begin with an alphabetic character, and

are terminated with a lowercase H (h). The formats vary according to

common usage.

System Memory Map .. 2**2

 The IBM PC handles its address space in 64k segments, divided into

16k fractions and then further as necessary.

+---+

¦start ¦start¦end ¦ ¦

¦addr. ¦addr.¦addr.¦ usage ¦

¦(dec) ¦ (hex) ¦ ¦

+---¦

¦ *640k RAM Area* ¦

+---¦

¦ 0k ¦ ¦ start of RAM, first K is interrupt vector table ¦

¦ 16k ¦0000-03FF¦ PC-0 system board RAM ends ¦

¦ 32k ¦0400-07FF¦ ¦

¦ 48k ¦0800-0BFF¦ ¦

+------+---------+--¦

¦ 64k ¦1000-13FF¦ PC-1 system board RAM ends ¦

¦ 80k ¦1400-17FF¦ ¦

¦ 96k ¦1800-1BFF¦ ¦

¦ 112k ¦1C00-1FFF¦ ¦

+------+---------+--¦

¦ 128k ¦2000-23FF¦ ¦

¦ 144k ¦2400-27FF¦ ¦

¦ 160k ¦2800-2BFF¦ ¦

¦ 176k ¦2C00-2FFF¦ ¦

+------+---------+--¦

¦ 192k ¦3000-33FF¦ ¦

¦ 208k ¦3400-37FF¦ ¦

¦ 224k ¦3800-3BFF¦ ¦

¦ 240k ¦3C00-3FFF¦ ¦

+------+---------+--¦

¦ 256k ¦4000-43FF¦ PC-2 system board RAM ends ¦

¦ 272k ¦4400-47FF¦ ¦

¦ 288k ¦4800-4BFF¦ ¦

¦ 304k ¦4C00-4FFF¦ ¦

+------+---------+--¦

¦ 320k ¦5000-53FF¦ ¦

¦ 336k ¦5400-57FF¦ ¦

¦ 352k ¦5800-5BFF¦ ¦

¦ 368k ¦5C00-5FFF¦ ¦

+------+---------+--¦

¦ 384k ¦6000-63FF¦ ¦

¦ 400k ¦6400-67FF¦ ¦

¦ 416k ¦6800-6BFF¦ ¦

¦ 432k ¦6C00-6FFF¦ ¦

+------+---------+--¦

¦ 448k ¦7000-73FF¦ ¦

¦ 464k ¦7400-77FF¦ ¦

¦ 480k ¦7800-7BFF¦ ¦

¦ 496k ¦7C00-7FFF¦ ¦

+------+---------+--¦

¦ 512k ¦8000-83FF¦ ¦

¦ 528k ¦8400-87FF¦ ¦

¦ 544k ¦8800-8BFF¦ the original IBM PC-1 BIOS limited memory to ¦

¦ 560k ¦8C00-8FFF¦ 544k ¦

+------+---------+--¦

¦ 576k ¦9000-93FF¦ ¦

¦ 592k ¦9400-97FF¦ ¦

¦ 609k ¦9800-9BFF¦ ¦

¦ 624k ¦9C00-9FFF¦ to 640k (top of RAM address space) ¦

¦ 639k ¦ ¦ some RLL and SCSI hard disk adapters, some four ¦

¦ ¦ ¦ floppy controller cards, some AMI and PS/2 BIOS, ¦

¦ ¦ ¦ and assorted other cards sometimes try to use the¦

¦ ¦ ¦ last K for storing temporary data. This can ¦

¦ ¦ ¦ cause trouble with programs which assume they ¦

¦ ¦ ¦ have a full 640k, and will prevent backfilling ¦

¦ ¦ ¦ memory with some memory managers. Beware! ¦

+---¦

¦A0000 ***** 64k ***** EGA/VGA starting address ¦

¦A0000 ***** 64k ***** Toshiba 1000 DOS ROM (MS-DOS 2.11V) ¦

+---¦

¦ 640k ¦A0000-A95B0¦ MCGA 320x200 256 color video buffer ¦

¦ ¦ -AF8C0¦ MCGA 640x480 2 color video buffer ¦

¦ ¦ -A3FFF¦ ¦

¦ 656k ¦A4000-A7FFF¦ ¦

¦ 672k ¦A8000-ABFFF¦this 64k segment may be used for contiguous DOS ¦

¦ 688k ¦AC000-AFFFF¦RAM with appropriate hardware and software ¦

+---¦

¦B0000 ***** 64k ***** mono and CGA address ¦

+---¦

¦ 704k ¦B0000-B3FFF¦4k mono display | The PCjr and early Tandy 1000¦

¦ 720k ¦B4000-B7FFF¦ | BIOS revector direct write to¦

¦ 736k ¦B8000-BBFFF¦16k CGA | the B8 area to the Video Gate¦

¦ 756k ¦BC000-BFFFF¦ | Array and reserved system RAM¦

+---¦

¦C0000 ***** 64k *************** expansion ROM ¦

+---¦

¦ 768k ¦C0000-C3FFF¦16k EGA BIOS C000:001E EGA BIOS signature ¦

¦ ¦ ¦ (the letters 'IBM') ¦

¦ ¦C0000-C7FFF¦32k VGA BIOS extension (typical) ¦

¦ 784k ¦C4000-C5FFF¦ ¦

¦ ¦C6000-C63FF¦256 bytes IBM PGC video communications area ¦

¦ ¦C6400-C7FFF¦ ¦

¦ 800k ¦C8000-CBFFF¦16k hard disk controller BIOS, drive 0 default ¦

¦ ¦CA000 ¦ some 2nd floppy (HD) controller BIOSes ¦

¦ 816k ¦CC000-CDFFF¦ 8k IBM PC Network NETBIOS ¦

¦ ¦CE000-CFFFF¦ ¦

+---¦

¦D0000 ***** 64k ***** expansion ROM ¦

+---¦

¦ 832k ¦D0000-D7FFF¦32k IBM Cluster Adapter | PCjr first ROM cart. ¦

¦ ¦ DA000¦voice communications | address area. ¦

¦ 848k ¦D4000-D7FFF¦ | Common EMS board ¦

¦ 864k ¦D8000-DBFFF¦ | paging area. ¦

¦ ¦D8000-DBFFF¦ IBM Token Ring default Share RAM address ¦

¦ ¦DC000 ¦ IBM Token Ring default BIOS/MMIO address ¦

¦ 880k ¦DC000-DFFFF¦ | ¦

¦ ¦DE000 ¦4k TI Pro default video buffer ¦

+---¦

¦E0000 ***** 64k ***** expansion ROM ¦

¦ wired to ROM sockets in the original IBM AT ¦

¦ used by ABIOS extensions on some PS/2 models ¦

+---¦

¦ 896k ¦E0000-E3FFF¦ | PCjr second ROM cart.¦

¦ 912k ¦E4000-E7FFF¦ | address area ¦

¦ 928k ¦E8000-EBFFF¦ | ¦

¦ 944k ¦EC000-EFFFF¦ | spare ROM sockets on ¦

¦ ¦ ¦ | IBM AT (reserved in ¦

¦ ¦ ¦ | hardware) ¦

+---¦

¦F0000 ***** 64k ***** system ¦

+---¦

¦ 960k ¦F0000-F3FFF¦reserved by IBM | cartridge address ¦

¦ 976k ¦F4000- ¦ | area (PCjr cartridge ¦

¦ ¦F6000 ¦ROM BASIC Begins | BASIC) ¦

¦ 992k ¦F8000-FB000¦ | ¦

¦ 1008k¦FC000-FFFFF¦ROM BASIC and original | ¦

¦ ¦ ¦BIOS (Compatibility BIOS | ¦

¦ ¦ ¦in PS/2) | ¦

¦ 1024k¦ FFFFF¦end of memory (1024k) for 8088 machines ¦

+------+--¦

¦ 384k ¦100000-15FFFF¦ 80286/AT extended memory area, 1Mb mbd. ¦

¦ 15Mb ¦100000-FFFFFF¦ 80286/AT extended memory address space ¦

¦ 15Mb ¦160000-FDFFFF¦ Micro Channel RAM expansion (15Mb ext. mem) ¦

¦ 128k ¦FE0000-FFFFFF¦ system board ROM (PS/2 Advanced BIOS) ¦

+------+--¦

¦ 64k ¦C0000000-C000FFFF¦ Weitek "Abacus" math coprocessor ¦

¦ ¦ ¦ memory-mapped I/O ¦

+---+

1) Note that the ROM BIOS has a duplicated address space which causes

 it to "appear" both at the end of the 1 megabyte real mode space

 and at the end of the 16 megabyte protected mode space. The

 addresses from 0E0000 to 0FFFFF are equal to 0FE0000 to 0FFFFFF.

 This is necessary due to differences in the memory addressing

 between Real and Protected Modes.

2) Late IBM XTs and ATs with support for the 101-key keyboards ran out

 of ROM space at the top of their ROM blocks. These machines "wrap

 around" and jump to an address lower than their original entry

 point to store their code.

 +--------------------+

 1024k ¦ top of memory ¦

 +--------------------¦

 976k ¦ original BIOS area ¦ ----+

 +--------------------¦ ¦

 ¦ extended BIOS area ¦ <--+

 +--------------------¦

3) IBM PS/2s reserve the last K of memory before A000 for a scratch

 area for the ABIOS ROM routines. This limits PS/2 machines to

 639k. Apparently only 10 to 20 bytes of memory is actually used;

 though there was room for that much down in unused portions of

 the BIOS Data Area, IBM evidently decided to leave room to grow.

 Sometimes other stuff can use the last K. OMTI hard disk

 controllers' firmware wanted the last K, as do some XTs with ROM-

 based disk caches. These don't like to coexist at all.

 SpeedStor (disk management software) has a program called OMTIfix

 bundled to allow it to work with these controllers. A few

 extended-VGA ANSI drivers also grab the last K. QEMM, 386Max,

 and other memory managers can relocate this memory to give a

 complete 640k.

4) When running with a 286 and memory manager board or on a 386, PC-

 MOS/386 relocates its kernel to the 0C000-0F000 high memory area

 to leave more of the lower 640k for applications. 0A000-0BFFFF

 is reserved for swapping video RAM as it becomes active. MOS

 supports monochrome and CGA modes directly.

5) Most AT compatible machines use the entire Fxxx block for BIOS.

 PS/2 and PS/2 compatible machines take an entire 128k from E000-

 FFFF. Most real IBM machines also have the BASIC ROMs taking up

 some of the high address space.

A Brief Guide to Current Memory Terminology 2**3

LOW MEMORY - 0000h to around 0:5(something), comprising the 80x8x

 interrupt vector table, the BIOS Data Area, DOS Data

 Area, etc.

CONVENTIONAL MEMORY - from the end of low memory to the beginning of

 the "reserved by IBM" A000 segment (640k).

HIGH MEMORY - originally noncontiguous RAM stuffed into the "reserved

 for ROM expansion" areas, typically segments D000 and

 E000. DOS normally can't access this memory without a

 driver of some sort, but it's easy to put RAMdisks and

 stuff in there.

HIGH DOS MEMORY - same as above.

CONVENTIONAL MEMORY - extra RAM stuck at A000, assuming the machine

 already has 640k, appears as conventional memory accessible

 to DOS and applications. IBM clones can typically add 64k

 before bumping into a mono card or 96k before hitting a

 color card. This address is part of the EGA/VGA video RAM

 area and most EGA cards don't like system memory at A000.

 With semi-compatible machines like the IBM PCjr or Sanyo

 55x, it was possible to get as much as 960k of real, usable

 DOS conventional memory, since they used a different video

 system and had no hard disk ROM to break up the space

 between 640k and the beginning of the ROM BIOS.

EXPANDED MEMORY - LIM 3.2, LIM 4.0, or EEMS 3.2 bank switched memory.

 A RAM "window" allows an application to save a block of

 RAM to an expansion board. The window size and location

 varies according to the EMS standard being used.

EXTENDED MEMORY - this is the "native mode" address space of the 80286

 and later chips. The "real mode", or 8088 addressing

 scheme, sees RAM as a collection of segments and offsets

 with a limit on segment size. "Protected mode" addressing

 uses a flat linear addressing scheme. 8088 and 80188 chips

 do not have extended memory.

HIGH MEMORY - by fiddling a bit with the segment/offset stuff, you can

 get an extra block of addressable 8088-mode memory just

 over the 1 meg address space when using 80286 and later

 microprocessors. Microsoft issued their "HMA" (High Memory

 Area) standard to try to standardize use of this block.

 Though it really is "high" memory, "high" had for many years

 referred to memory between 640k and 1mb. This creates more

 confusion for new programmers.

EMS - this is expanded memory as described above

XMS - Microsoft is pushing an "Extended Memory Standard" which defines

 a page-switching scheme much like EMS. The only real difference

 is that XMS uses protected-mode RAM instead of a special paged

 RAM board.

XMS - some severely brain-damaged jerk at IBM issued documentation for

 some IBM *EMS* boards referring to the boards as *XMS*. This

 was a classic blunder, and now some IBM-followers are picking up

 the aberrant terminology. This is guaranteed to confuse some

 people. To make it simple, if it needs an expansion board, it is

 EMS no matter what the vendor calls it.

UMB - Upper Memory Blocks. These are defined in the Microsoft XMS

 Specification. Unfortunately, some people have begun using "UMB"

 to refer to the HMA and High DOS areas indiscriminately.

PC Port Assignment ... 2**4

 The Intel 80x86 processors have a 64K I/O memory space for

addressing external devices. The 8088 through 80286 processors can

divide their I/O space into either 8 bit or 16 bit ports. The 386 and

later can have 8, 16, or 32 bit ports.

 Some port addresses are mapped to the motherboard, others to the

slots. The XT's boundary was at 200h, while the AT and EISA is at

100h. Many cards avoid the 100h-200h zone for XT compatibility.

 These are functions common across the IBM range. The PCjr, PC-AT,

PC Convertible and PS/2 (both buses) have enhancements. In some

cases, the AT and PS/2 series ignore, duplicate, or reassign ports

arbitrarily. If your code incorporates specific port addresses for

video or system board control it would be wise to have your

application determine the machine type and video adapter and address

the ports as required.

 hex address Function Models

 PCjr|PC|XT|AT|CVT|M30|PS2

 0000-000F 8237 DMA controller PC------------------

 0000-001F 8237 DMA controller 1 -----AT---------PS2

 0020-0027 8259A interrupt controller -------------------

 0020-002F IOSGA interrupt function ----------------PS2

 0020-003F 8259A interrupt controller (AT) -------------------

 0020-0021 interrupt controller 1, 8259A PC----AT---------PS2

 0040-0043 programmable timer 8253 PC------------------

 0040-0047 programmable timers ----------------PS2

 0040-005F 8253-5 programmable timers -----AT------------

 note 1) 0041 was memory refresh in PCs. Not used in PS/2.

 2) A few early 80386 machines used static RAM and did

 not use refresh at all. The PCjr refreshes by the

 video vertical retrace signal.

 0040 8254 programmable interval timer 1 system clock (counter 0)

 0041 8254 timer 1 refresh request (counter 1)

 0042 8254 timer 1 speaker tone (counter 2) -------------------

 0043 8254 timer 1 command register -------------------

 0049 8254 timer 2 not used (counter 1) -------------------

 004A programmable interval timer 2 -------------------

 004B programmable interval timer 2 -------------------

 0060-0063 keyboard controller 8255A PC-----------------

 0060-006F 8042 keyboard controller -----AT------------

 0060 8042 data I/O register -------------------

 0060 IOSGA keyboard input port ----------------PS2

 0061 speaker PCjr PC-XT-AT-CVT--------

 0061 IOSGA speaker control ------------M30-PS2

 0061 On some clones, setting or clearing bit 2 controls

 Turbo mode

 0061 Toshiba 1000 - system command -------------------

 0062 IOSGA configuration control ------------M30-PS2

 0062 Toshiba 1000 - System Status, port C -------------------

 0063 SSGA, undocumented ----------------PS2

 0063 Toshiba 1000 - mode set -------------------

 0064 keyboard auxiliary device ----------------PS2

 0064 keyboard 8042 status register -----AT------------

 0065 AT&T 6300+ high/low chip select -------------------

 0065-006A SSGA, undocumented ----------------PS2

 0066 AT&T 6300+ system configuration switch 2

 0067 AT&T 6300+ system configuration switch 1

 0068 C&T chipsets, turbo mode -------------------

 006B SSGA, RAM enable/remap ----------------PS2

 006C-006F SSGA, undocumented ----------------PS2

 0070 AT CMOS write internal register -------------------

 0071 AT CMOS read internal register -------------------

 0070-0071 CMOS real-time clock, NMI mask ----------------PS2

 0070-007F CMOS real-time clock, NMI mask -----AT, AT&T 6300+

 0074-0076 reserved ----------------PS2

 0080-0083 AT&T 6300+ DMA page registers (8 bit) -------------------

 0080-008F SSGA DMA page registers ----------------PS2

 0080-009F DMA page registers, 74LS612 -----AT------------

 Channel 2 = 0081

 Channel 3 = 0082

 Channel 1 = 0083

 Channel 0 = 0087

 Channel 6 = 0089

 Channel 5 = 008B

 0090 central arbitration control port (Micro Channel)

 0091 card selected feedback (Micro Channel)

 0092 system control port A (Micro Channel)

 0092 Fast Gate A20, some C&T chipsets, Micronics motherboards

 0093 reserved (Micro Channel)

 0094 system board setup (Micro Channel)

 0096 POS "CD SETUP" selector (Micro Channel)

 00A0-00A1 Interrupt controller 2, 8259A -----AT---------PS2

 00A0-00A3 AT&T 6300+, NMI register -------------------

 00A0-00AF IOSGA NMI mask register ----------------PS2

 00B0-00BF realtime clock/calendar, (undocumented) --------------PS2

 00C0-00C3 AT&T 6300+, reserved -------------------

 00C0-00CF DOS ROM register, Toshiba 1000 -------------------

 00C0-00CF 8237A-5 word DMA controller

 00C0-00DF reserved PCjr PC XT AT CVT M30

 00D0-00D3 AT&T 6300+, reserved -------------------

 00D0-00EF "special" register, Toshiba 1000 -------------------

 00C0 0C1 key register, Toshiba 1000 -------------------

 00C1 keyboard transfer register, Toshiba 1000

 00C2 keyboard receive register, Toshiba 1000

 00C3 keyboard status register, Toshiba 1000-------------------

 00C8 DOS ROM page register, Toshiba 1000 -------------------

 00E0 CPU speed control, Toshiba 1000 -------------------

 00E1 keyboard status/0E2 key register, Toshiba 1000

 00E2 work register, Toshiba 1000 -------------------

 00E3 0E4 key register, Toshiba 1000 -------------------

 00E4 system control register 0, Toshiba 1000

 00E4 Weitek ABACUS NDP - bit 0=1, ABACUS is present

 00E5 0E6 key register, Toshiba 1000 -------------------

 00E6 system control register 1, Toshiba 1000

 00EE EMS unit index, Toshiba 1000 -------------------

 00EF EMS unit data, Toshiba 1000 -------------------

 00C0-00DF DMA controller 2, 8237A-5 -----AT---------PS2

 00E0-00EF realtime clock/calendar (undocumented)-----------M30 PS2

 00E0-00FF AT&T 6300+, 80287 -------------------

 00F0-00FF PS/2 math coprocessor I/O (Model 50+)

 (diskette IO on PCjr)

 00F0 clear math coprocessor busy -------------------

 00F1 reset math coprocessor -------------------

 00F8-00FF AT 80287/80387 coprocessor control -------------------

 0100-0101 PS/2 POS adapter ID response (Micro Channel)

 0100-010F Always IN-2000 alternate 2 -------------------

 0100-02F7 AT&T 6300+, reserved -------------------

 0102-0107 PS/2 POS adapter configuration response (Micro Channel)

 0110-011F Always IN-2000 alternate 2 -------------------

 0150 Geographics Drafting Board digitizer -------------------

 0180 Stargate Plus 8 multiport serial board-------------------

 01F0-01F8 hard disk -----AT---------PS2

 0200-0201 game-control adapter (joystick) -------------------

 0200-0207 Sound Blaster joystick port -------------------

 0200-020F game controller PC---AT------------

 0200-020F Always IN-2000 alternate 1

 0208-0209 Chips & Technology CS8221 chipset default EMS ports

 alternate addresses: 218h, 258h, 268h, 2A8h, 2B8h, 2E8h

 0208-020F Toshiba 1000 - EMS unit I/O #1 -------------------

 020C-020D reserved by IBM -------------------

 0210-0217 IBM expansion chassis (PC, XT) -------------------

 0218-021F Toshiba 1000 - EMS unit I/O #2 -------------------

 021F reserved by IBM -------------------

 0220 LANtastic 2mbps adapter optional -------------------

 0220 Sound Blaster 1-6 data port opt 1 -------------------

 0221 Sound Blaster 1-6 register port opt 1 -------------------

 0222 Sound Blaster 7-12 data port opt 1 -------------------

 0223 Sound Blaster 7-12 register port opt 1-------------------

 (opt 1:220h, opt 2:210h, opt 3:230h, opt 4: 240h, opt

 5:250h, opt 5:260h, FM music and DSP ports also adjustable)

 0220-022F Always IN-2000 SCSI adapter default addresses

 0220 IRMA 3270 terminal emulator command port

 0221 IRMA 3270 terminal emulator data port 1

 0222 IRMA 3270 terminal emulator data port 2

 0223 IRMA 3270 terminal emulator data port 3

 0224 IRMA 3270 terminal emulator reserved for future use

 0225 IRMA 3270 terminal emulator reserved for future use

 0226 IRMA 3270 terminal emulator Command Request flag

 0226 Sound Blaster DSP Reset -------------------

 0227 IRMA 3270 terminal emulator Attention Request flag

 0228 Sound Blaster FM music data/status port

 0229 Sound Blaster FM music register port -------------------

 022A Sound Blaster DSP (voice I/O and MIDI) Read Data

 022C Sound Blaster DSP Write Data or Command

 022C Sound Blaster DSP Write Buffer Status (bit 7)

 022C Marstek scanner adapter, optional -------------------

 022E Sound Blaster DSP Data Available (bit 7)

 0232-023E Microsoft bus & InPort mouse cards (default address)

 0238-023C Microsoft bus & InPort mouse cards (optional address)

 023C-023F Logitech bus mouse -------------------

 0240 LANtastic 2mbps adapter optional -------------------

 0240-0247 Corvus Omninet NIC opt 1 -------------------

 0248-024F Corvus Omninet NIC opt 2 -------------------

 0250-0257 Corvus Omninet NIC opt 3 -------------------

 0258-0259 LIM EMS 3.1 (not defined in 3.2+) -------------------

 0258-025F Corvus Omninet NIC opt 4 -------------------

 0258-025F Toshiba 1000 - EMS unit I/O #3 -------------------

 0260 LANtastic 2mbps adapter optional -------------------

 0268 CompuCom internal modem, COM20, COM21, COM22

 026C Marstek scanner adapter, optional -------------------

 0268-026F Toshiba 1000 - EMS unit I/O #4 -------------------

 0268-026F Copy II PC Option Board, default -------------------

 0278 CompuCom internal modem, COM6, COM8, COM13

 0278-027F parallel printer port 2 -----AT------------

 0278-027B parallel printer port 3 ----------------PS2

 0280-0281 Frecom FAX96 board default -------------------

 0280-0284 NetWorth Engineering vLAN V2.1 NIC opt 1

 0280 LANtastic 2mbps adapter optional -------------------

 0280 Logitech ScanMan, default -------------------

 0280 Needham Electronics PB-10 EPROM burner, optional

 0288-0289 Frecom FAX96 board alternate 1 -------------------

 0290 Needham Electronics PB-10 EPROM burner, optional

 02A0 Logitech ScanMan, option 1 -------------------

 02A0-02BF Gateway G-Net NIC opt 1 -------------------

 02A0 LANtastic 2mbps adapter optional -------------------

 02A2 clock chip in early Sperry PCs -------------------

 02A8-02AF Toshiba 1000 - EMS unit I/O #5 -------------------

 02AC Marstek scanner adapter, optional -------------------

 02B0-02DF EGA (alternate) PC---AT------------

 02B8-02BF Toshiba 1000 - EMS unit I/O #6 -------------------

 02B8-02B9 Novell Star Intelligent NIC opt 1 -------------------

 02B8-02BB Novell Standard NIC -------------------

 02BC-02BD Novell Star Intelligent NIC opt 2 -------------------

 02C0-02DF Toshiba 1000 - realtime clock -------------------

 02C0-02C7 AST SixPackPlus clock -------------------

 02E0-02EF Gateway G-Net NIC opt 2 -------------------

 02E0-02EF Allen-Bradley VistaLAN/PC adapter, optional address 1

 02E0-02EF Standard Microsystems ARCNET NIC opt 1-------------------

 02E0 Stac Electronics AT/16 compression board (Stacker)

 02E0 this is a common address for generic Arcnet cards

 02E1 GPIB (adapter 0) -----AT------------

 02E2-02E3 data acquisition (adapter 0) -----AT------------

 02E8 "industry standard" COM4 -------------------

 03E8 CompuCom internal modem, COM17, COM18, COM19

 02E8-02EF Toshiba 1000 - EMS unit I/O #7 -------------------

 02E8-02EF Copy II PC Option board, optional 1 -------------------

 02EC most Marstek scanner boards, default -------------------

 02F0-02FF Standard Microsystems ARCNET NIC opt 2-------------------

 02F8-02FF serial communications (COM2) PC---AT---------PS2

 0300 Periscope debugger card -------------------

 0300-0307 Pelican 5.5mb floppy adapter, default address

 0300-030F Standard Microsystems ARCNET NIC opt 3-------------------

 0300-030F 3Com EtherLink NIC opt 1 -------------------

 0300-031F Gateway G-Net NIC opt 3 -------------------

 0300-031F prototype card PC---AT------------

 0300-031F Leading Edge Model D clock -------------------

 0300 some Samsung XT clock/calendar on motherboard

 0300 Needham Electronics PB-10 EPROM burner, default

 0300-0303 Tecmar/Wangtek PC-36 tape controller board, default

 0300-0307 3Com 3C505 EtherLink Plus NIC opt 1 -------------------

 0300-0307 Proteon ProNET NIC w/checksum opt 1 -------------------

 0308-030F Proteon ProNET NIC w/checksum opt 2 -------------------

 0300-031F Torus Ethernet adapter, optional address 1

 0300-031F Micom-Interlan N15010 Ethernet NIC opt 1

 0300-031F Cabletron Ethernet E-1010 NIC -------------------

 0310-0317 3Com 3C505 EtherLink Plus NIC opt 1 -------------------

 0310-0317 Proteon ProNET NIC w/checksum opt 3 -------------------

 0310-0317 Pelican 5.5mb floppy adapter, optional address 1

 0310-031F 3Com EtherLink NIC opt 2 -------------------

 0320 LANtastic 2mbps adapter optional -------------------

 0320 Perstor HD controller, primary addr -------------------

 0320 many CD-ROM proprietary adapters, default address

 0320-0323 AT&T 6300+, hard disk controller -------------------

 0320-0327 3Com 3C505 EtherLink Plus NIC opt 1 -------------------

 0320-032F hard disk controller PC-----------------

 0320-033F Torus Ethernet adapter, optional address 2

 0320-033F Micom-Interlan N15010 Ethernet NIC opt 1

 0324 Perstor PS180 HD ctrlr, 2ndary addr -------------------

 0324-0327 C: common secondary hard disk controller address

 032C Marstek scanner adapter, optional -------------------

 0330 Logitech ScanMan, option 2 -------------------

 0338-033B Tecmar PC-36 tape controller board, option 1

 0340 LANtastic 2mbps adapter optional -------------------

 0340 Logitech ScanMan, option 3 -------------------

 0340 Sony CD-ROM adapters -------------------

 0340 Severn (Sony) CD-ROM adapters -------------------

 0340-0347 Proteon ProNET NIC w/checksum opt 4 -------------------

 0340-0347 Novell Disk Coprocessor #1 -------------------

 0348-034F Novell Disk Coprocessor #2 -------------------

 0348-0357 DCA 3278 emulator -------------------

 0358-0359 Novell Star Intelligent NIC opt 3 -------------------

 035C-035D Novell Star Intelligent NIC opt 4 -------------------

 0360 LANtastic 2mbps adapter optional -------------------

 0360-0367 PC Network (low address) -------------------

 0360-0367 AT&T StarLAN NIC opt 1 -------------------

 0360-0367 Ungermann-Bass Net/One Personal Connection NIC

 0368 CompuCom internal modem, COM7, COM11, COM12

 0368-036B Tecmar PC-36 tape controller board, option 2

 036C Marstek scanner adapter, optional

 0368-036F PC Network (high address) -----AT------------

 0368-036F AT&T StarLAN NIC opt 2 -------------------

 0368-036F Ungermann-Bass Net/One Personal Connection NIC

 0368-036F Torus Ethernet adapter, optional address 3

 0368-036F Copy II PC Option Board, optional 2 -------------------

 0370 Colorado Memory external tape backup control port -------

 Archive external tape backup control port ---------------

 0370-0377 some "second controller" floppy cards -------------------

 0372 Systen OmniBridge floppy card, alternate address 1

 0378 CompuCom internal modem, COM5, COM9, COM10

 0378-037F parallel printer port PC---AT------------

 0378-037B parallel printer port ----------------PS2

 0380-0387 PCNet NIC, Orchid, Santa Clara, AST -------------------

 0380-0387 Pelican 5.5mb floppy adapter, optional address 2 --------

 0380-0381 Frecom FAX96 board alternate 2 -------------------

 0380-0384 NetWorth Engineering vLAN V2.1 NIC opt 1

 0380-038F Eicon Technology Network Adapter (X.25) board (default)

 0380-038F SDLC, bi-synchronous 2 PC---AT------------

 0380-0389 BSC communications (alternate) PC-----------------

 0388-0389 Frecom FAX96 board alternate 3 -------------------

 0388-0389 Sound Blaster FM music, alternate 2 -------------------

 0390 Needham Electronics PB-10 EPROM burner, optional

 0390-0397 Pelican 5.5mb floppy adapter, optional address 3 --------

 0390-039F Eicon Technology Network Adapter (X.25) board (alternate)

 0390-0393 cluster (adapter 0) PC---AT------------

 0398-039B Tecmar PC-36 tape controller board, option 3

 03A0-03A9 BSC communications (primary) PC---AT------------

 03AC Marstek scanner adapter, optional -------------------

 03B0-03BF monochrome/parallel printer adapter PC---AT------------

 03B4-03B5 video subsystem ----------------PS2

 03B4-03BF Hercules Mono Card -------------------

 03BA video subsystem ----------------PS2

 03BC-03BF parallel printer port 1 ----------------PS2

 03C0-03CF Enhanced Graphics Adapter -------------------

 03C0-03DA video subsystem and DAC ----------------PS2

 03C8-03CB Tecmar PC-36 tape controller board, option 4

 03DA video status register AT&T 6300, Olivetti PC

 03D0-03DF CGA, MCGA, VGA adapter control -------------------

 03DE video mode selector register AT&T 6300, Olivetti PC

 03E0-03EF Allen-Bradley VistaLAN/PC adapter, optional address 1

 03E8h "industry standard" COM3 -------------------

 03E8 CompuCom internal modem, COM14, COM15, COM16

 03E8-03EF Copy II PC Option Board, optional 3 -------------------

 03F0-03F7 floppy disk controller PC---AT---------PS2

 03F0 Colorado Memory internal tape backup control port -------

 03F2 DTK high-density XT floppy controller (output only)

 03F2 Systen OmniBridge floppy card, alternate address 2

 03F5 DTK high-density XT floppy controller PC-XT--------------

 03FC Marstek scanner adapter, optional -------------------

 03F8-03FF serial communications (COM1) PC---AT---------PS2

 0400-3FFF AT&T 6300+, unused -------------------

 06E2-06E3 data acquisition (adapter 1) -----AT------------

 0790-0793 cluster (adapter 1) PC---AT------------

 0878 Compaq 386SX VGA BIOS relocation -----AT------------

 0920 C&T/Micronics Fast Gate A20 -------------------

 0A20-0A23 IBM Token Ring opt 1 -------------------

 0A24-0A27 IBM Token Ring opt 2 -------------------

 0AE2-0AE3 data acquisition (adapter 2) -----AT------------

 0B90-0B93 cluster (adapter 2) PC---AT------------

 OC80-0C83 EISA Product Identifier access port -------------------

 2 bytes 3 letters (compressed) abbreviated manufacturer ID.

 The letters "ISA" are reserved for old bus boards.

 1 byte 2-digit product number

 1 byte 2-digit revision number

 (mfr. abbreviations are assigned by BCPR Services, the

 group that distributes the EISA specification)

 0EE2-0EE3 data acquisition (adapter 3) -----AT------------

 1390-1393 cluster (adapter 3) PC---AT------------

 2160 IBM XGA adapter (not motherboard) (only 1 installed)

 22E1 GPIB (adapter 1) -------------------

 2390-2393 cluster (adapter 4) PC---AT------------

 3F00-3F1F AT&T 6300+, -RESET CS -------------------

 3F20-3F3F AT&T 6300+, -PROTECTEN -------------------

 3F40-3F5F AT&T 6300+, -TIME SLICEN -------------------

 3F60-3F7F AT&T 6300+, -TRAPCE -------------------

 3F80-3F9F AT&T 6300+, -VXLATEN -------------------

 3FA0-3FBF AT&T 6300+, -BITREAD -------------------

 3FC0-3FDF AT&T 6300+, -ADADV -------------------

 3FE0-3FFF AT&T 6300+, -CLear TRAP address -------------------

 4258 LIM EMS 3.1 (not defined in 3.2+) -------------------

 42E1 GPIB (adapter 2) -----AT------------

 62E1 GPIB (adapter 3) -----AT------------

 8258 LIM EMS 3.1 (not defined in 3.2+) -------------------

 82E1 GPIB (adapter 4) -----AT------------

 A2E1 GPIB (adapter 5) -----AT------------

 C258 LIM EMS 3.1 (not defined in 3.2+) -------------------

 C2E1 GPIB (adapter 6) -----AT------------

 E2E1 GPIB (adapter 7) -----AT------------

note 1) IOSGA = I/O Support Gate Array

 SSGA = System Support Gate Array

 2) I/O Addresses, hex 000 to 0FF, are reserved for the system

 board I/O. Hex 100 to 3FF are available on the I/O channel.

 3) These are the addresses decoded by the current set of adapter

 cards. IBM may use any of the unlisted addresses in the future.

 4) SDLC Communication and Secondary Binary Synchronous

 Communications cannot be used together because their port

 addresses overlap.

Reserved Memory Locations 2**5

+---

¦ 000-3FF - 1k DOS interrupt vector table, 4 byte vectors for

¦ interrupts 00h-0FFh.

¦ 30:00 - used as a stack area during POST and bootstrap routines.

¦to 3F:FF This stack area may be revectored by user applications

+---

¦ ** The BIOS Data Area ** addresses from 400h to 4FFh

+---

¦addr.¦ size ¦ description

+-----+-------+---

¦40:00¦ word ¦ COM1 port addr. | These addresses are zeroed out in the

¦40:02¦ word ¦ COM2 port addr. | OS/2 DOS Compatibility Box if any of

¦40:04¦ word ¦ COM3 port addr. | the OS/2 COMxx.SYS drivers are loaded.

¦40:06¦ word ¦ COM4 port addr. | | note: no value for COM2 was set in

¦40:08¦ word ¦ LPT1 port addr. | early IBM PS/2 Model 50Zs.

¦40:0A¦ word ¦ LPT2 port addr. | DESQview sets 40:00-40:02 to zero

¦40:0C¦ word ¦ LPT3 port addr. | if a program is swappable

¦40:0E¦ word ¦ LPT4 port addr. (not valid in PS/2 machines)

¦40:0E¦ word ¦ PS/2 pointer to 1k extended BIOS Data Area at top of

¦40:10¦ word ¦ RAM equipment flag (see int 11h)

+-------------¦ bits:

 ¦ 0 0 no floppy drive present

 ¦ 1 if floppy drive present (see bits 6&7)

 ¦ 1 0 no math coprocessor installed

 ¦ 1 if 80x87 installed (not valid in PCjr)

 ¦ 2,3 system board RAM (not used on AT or PS/2)

 ¦ 0,0 16k 0,1 32k

 ¦ 1,0 48k 1,1 64k

 ¦ 4,5 initial video mode

 ¦ 0,0 no video adapter

 ¦ 0,1 40 column color (PCjr default)

 ¦ 1,0 80 column color

 ¦ 1,1 MDA

 ¦ 6,7 number of diskette drives

 ¦ 0,0 1 drive 0,1 2 drives

 ¦ 1,0 3 drives 1,1 4 drives

 ¦ 8 0 DMA present

 ¦ 1 DMA not present (PCjr, Tandy 1400,

 ¦ Sanyo 55x)

 ¦ 9,A,B number of RS232 serial ports

 ¦ C game adapter (joystick)

 ¦ 0 no game adapter

 ¦ 1 if game adapter

 ¦ D serial printer (PCjr only)

 ¦ 0 no printer

 ¦ 1 serial printer present

 +------+ E,F number of parallel printers installed

 ¦note 1) The IBM PC and AT store the settings of the system board

 +---+ switches or CMOS RAM setup information (as obtained by

 ¦ the BIOS in the Power-On Self Test (POST)) at addresses

 ¦ 40:10h and 40:13h. 00000001b indicates "on", 00000000b

 ¦ is "off".

 ¦ 2) DOS only uses 40:10 when it's booting to find out how

 ¦ many drives it has. XT BIOSes use 40:10 to find out how

 ¦ many drives they support, but AT BIOSes don't seem to -

 ¦ they use the state bytes at 40:90/91 instead.

+-------------+

¦40:12¦ byte ¦ reserved (PC, AT)

+-------------¦ number of errors detected by infrared keyboard link

 ¦ (PCjr) manufacturer test (Phoenix BIOS)

 ¦ bits 7-1 reserved

 ¦ bit 0 0 non-test mode

 ¦ 1 manufacturing test mode

+-------------¦ POST status (Convertible)

¦40:13¦ word ¦ available memory size in Kbytes, less display RAM in

+-------------¦ PCjr, or Extended BIOS Data Area (40:0E) if used. This

+-------------¦ is the value returned by int 12h.

¦40:15¦ word ¦ reserved

¦40:17¦ byte ¦ keyboard flag byte 0 (see int 9h)

+-------------¦ bit 7 insert mode on 3 alt pressed

 ¦ 6 capslock on 2 ctrl pressed

 ¦ 5 numlock on 1 left shift pressed

+-------------¦ 4 scrollock on 0 right shift pressed

¦40:18¦ byte ¦ keyboard flag byte 1 (see int 9h) (IBM, old style)

+-------------¦ bits 0=not pressed, 1=pressed

 ¦ bit 7 insert pressed 3 ctrl-numlock (pause) toggled

 ¦ 6 capslock pressed 2 PCjr keyboard click active

 ¦ 5 numlock pressed 1 PCjr ctrl-alt-capslock held

 ¦ 4 scrollock pressed 0

 ¦

 ¦ keyboard flag byte 1 (see int 9h) (IBM, Phoenix, new style)

 ¦ bit 7 insert pressed 3 ctrl-numlock (pause) toggled

 ¦ 6 capslock pressed 2 SysReq pressed (enhanced kbd)

 ¦ 5 numlock pressed 1 Left alt pressed (enhanced kbd)

+-------------¦ 4 scrollock pressed 0 Right alt pressed (enhanced kbd)

¦40:19¦ byte ¦ storage for alternate keypad entry (not normally used)

¦ ¦ ¦ Phoenix says, "Work area for Alt key and numeric keypad

¦ ¦ ¦ input"

¦40:1A¦ word ¦ pointer to keyboard buffer head character

¦40:1C¦ word ¦ pointer to keyboard buffer tail character

¦40:1E¦32bytes¦ 16 2-byte entries for keyboard circular buffer, read by

¦ ¦ ¦ int 16h a maximum of 15 entries are used at one time

¦40:3E¦ byte ¦ drive seek status - if bit=0, next seek will recalibrate

+-------------¦ by repositioning to Track 0.

 ¦ bit 7 disk hdw int occured 5 not used

 ¦ 6 not used 4 not used

 ¦ 3 drive D bit 2 drive C

+-------------¦ 1 drive B 0 drive A

¦40:3F¦ byte ¦ diskette motor status (bit set to indicate condition)

+-------------¦ bit 7 0 current operation is a read or verify

 ¦ 1 current operation is a write or format

 ¦ 6 reserved

 ¦ 5,4 drive select states, where:

 ¦ 00 drive 0 selected

 ¦ 01 drive 1 selected

 ¦ 10 drive 2 selected

 ¦ 11 drive 3 selected

 ¦ 3 1 motor on (drive 3)

 ¦ 2 1 motor on (drive 2)

 ¦ 1 1 motor on (drive 1)

+-------------¦ 0 1 motor on (drive 0)

¦40:40¦ byte ¦ motor off counter

¦ ¦ ¦ starts at 37 and is decremented 1 by each system clock

¦ ¦ ¦ tick. Motor is shut off when count = 0.

¦40:41¦ byte ¦ status of last diskette operation where:

+-------------¦ (IBM XT)

 ¦ bit 7 timeout failure 3 DMA overrun

 ¦ 6 seek failure 2 sector not found

 ¦ 5 controller failure 1 address not found

 ¦ 4 CRC failure 0 bad command

 ¦ (Phoenix)

 ¦ bit 7 1 drive not ready

 ¦ 6 1 seek failure

 ¦ 5 1 controller failure

 ¦ 4,0 error codes in hex, where:

 ¦ 01h illegal function request

 ¦ 02h address mark not found

 ¦ 03h write protect error

 ¦ 04h sector not found

 ¦ 06h diskette change line active

 ¦ (AT & later)

 ¦ 08h DMA overrun

 ¦ 09h 64K DMA boundary error

 ¦ 0Ch media type not found

 ¦ 10h uncorrectable EEC or CRC error

 ¦ 20h general controller failure

 ¦ 40h seek operation failed

+-------------¦ 80h timeout

¦40:42¦7 bytes¦ NEC floppy controller chip status bytes (see Chapter 15)

¦40:49¦ byte ¦ Video Control Data Area 1

+-------------¦ current CRT mode (hex value)

 ¦ 00h 40x25 BW (CGA) 01h 40x25 color (CGA)

 ¦ 02h 80x25 BW (CGA) 03h 80x25 color (CGA)

 ¦ 04h 320x200 color (CGA) 05h 320x200 BW (CGA)

 ¦ 06h 640x200 BW (CGA) 07h monochrome (MDA)

 ¦extended video modes (EGA/MCGA/VGA or other)

 ¦ 08h lores,16 color 09h med res,16 color

 ¦ 0Ah hires,4 color 0Bh n/a

 ¦ 0Ch med res,16 color 0Dh hires,16 color

+-------------¦ 0Eh hires,4 color 0Fh hires,64 color

¦40:4A¦ word ¦ # of columns on screen, coded as hex number of columns

+-------------¦ 20 col = 14h (video mode 8, low res 160x200 CGA graphics)

 ¦ 40 col = 28h

+-------------¦ 80 col = 46h

¦40:4C¦ word ¦ screen buffer length in bytes

+-----+-------¦(# of bytes used per screen page, varies with video mode)

¦40:4E¦ word ¦ current screen buffer starting offset (active page)

¦40:50¦8 words¦ cursor position pages 1-8

+-------------¦ the first byte of each word gives the column (0-19, 39,

+-------------¦ or 79) The second byte gives the row (0-24)

¦40:60¦ byte ¦ end line for cursor (normally 1)

¦40:61¦ byte ¦ start line for cursor (normally 0)

¦40:62¦ byte ¦ current video page being displayed (0-7)

¦40:63¦ word ¦ base port address of 6845 CRT controller or equivalent

+-----+-------¦ for active display 3B4h=mono, 3D4h=color

¦40:65¦ byte ¦ current setting of the CRT mode register

¦40:66¦ byte ¦ current palette mask setting (CGA)

¦40:67¦5 bytes¦ temporary storage for SS:SP during shutdown (cassette

¦ ¦ ¦ interface)

¦40:67¦2 bytes¦ Phoenix BIOS, address offset of option ROM

¦40:6C¦ word ¦ timer counter low word

¦40:6E¦ word ¦ timer counter high word

¦40:69¦2 bytes¦ Phoenix BIOS, address segment of option ROM

¦40:69¦ byte ¦ HD_INSTALL (Columbia PCs) (not valid on most clones)

+-------------¦ bit 0 0 8 inch external floppy drives

 ¦ 1 5-1/4 external floppy drives

 ¦ 1,2 highest drive address which int 13 will

 ¦ accept (since the floppy drives are

 ¦ assigned 0-3, subtract 3 to obtain the number

 ¦ of hard disks installed)

 ¦ 4,5 # of hard disks connected to expansion

 ¦ controller

 ¦ 6,7 # of hard disks on motherboard controller

 ¦ (if bit 6 or 7 = 1, no A: floppy is present

 ¦ and the maximum number of floppies from int

+-------------¦ 11h is 3)

¦40:6B¦ byte ¦ last interrupt that occurred (used during POST only)

¦40:6C¦2 bytes¦ least significant timer count (ints 08h, 1Ah)

¦40:6E¦2 bytes¦ most significant timer count (ints 08h, 1Ah)

¦40:70¦ byte ¦ 24 hour timer overflow 1 if timer went past midnight

+-----+-------¦ it is reset to 0 each time it is read by int 1Ah

¦40:71¦ byte ¦ control-break flag (bit 7 = 1 means break key hit)

¦40:72¦ word ¦ reset flag

+-------------¦ PCjr keeps 1234h here for softboot when a cartridge is

 ¦ inserted

 ¦ bits 1234h = soft reset, memory check will be bypassed

 ¦ 4321h = preserve memory (PS/2, Phoenix BIOS)

 ¦ 5678h = system suspended (Convertible)

 ¦ 9ABCh = manufacturing test mode (Convertible)

 ¦ ABCDh = system POST loop mode (Convertible)

+-------------¦ 0064h = burn-in mode (Phoenix BIOS)

¦40:74¦ byte ¦ status of last hard disk operation ; PCjr special disk

¦ ¦ ¦ control (see Chapter 8 for codes)

¦40:75¦ byte ¦ # of hard disks attached (0-2) ; PCjr special disk

¦ ¦ ¦ ; control

¦40:76¦ byte ¦ HD control byte; temporary holding area for 6th

¦ ¦ ¦ parameter table entry

¦40:77¦ byte ¦ port offset to current hd adapter ; PCjr special disk

¦ ¦ ¦ ; control

¦40:78¦4 bytes¦ timeout value for LPT1, LPT2, LPT3, LPT4

¦40:7C¦4 bytes¦ timeout value for COM1, COM2, COM3, COM4 (0-0FFh secs,

¦ ¦ ¦ default 1)

¦40:80¦ word ¦ pointer to start of circular keyboard buffer,

¦ ¦ ¦ default 03:1E

¦40:82¦ word ¦ pointer to end of circular keyboard buffer,

¦ ¦ ¦ default 03:3E

+-------------¦ note: early Zenith Z183 BIOS set these pointers to

+-------------¦ zero and ignored them.

¦40:84¦ ¦ Video Control Data Area 2, 0040:0084 through 0040:008A

¦40:84¦ byte ¦ rows on the screen minus 1 (EGA only)

¦40:84¦ byte ¦ PCjr interrupt flag; timer channel 0 (used by POST)

¦40:84¦ byte ¦ early AT&T 6300 PCs put 35h here for some reason,

+-------------¦ messing up programs that check here for number of screen

+-------------¦ rows. Later versions of the 6300 put the screen rows here

¦40:85¦ word ¦ bytes per character (EGA only)

¦40:85¦2 bytes¦ (PCjr only) typamatic character to repeat

¦40:86¦2 bytes¦ (PCjr only) typamatic initial delay

¦40:87¦ byte ¦ mode options (EGA only)

+-------------¦ bit 0 0 cursor emulation in effect

 ¦ 1 no cursor emulation

 ¦ 1 0 EGA is connected to a color display

 ¦ 1 EGA is connected to monochrome TTL display

 ¦ 2 0 wait for vertical retrace (CGA active)

 ¦ 1 don't wait for vertical retrace

 ¦ (EGA or MDA active)

 ¦ 3 0 EGA is the active display,

 ¦ 1 "other" display is active.

 ¦ 4 reserved

 ¦ 5,6 EGA memory size

 ¦ 0,0 64k

 ¦ 0,1 128k

 ¦ 1,0 192k

 ¦ 1,1 256k

 ¦ 7 0 don't clear screen on mode changes

 ¦ 1 if the last "set mode" specified not to

 ¦ clear the video buffer

 ¦ mode combinations:

 ¦ bit3 bit1 Meaning

 ¦ 0 0 EGA is active display and is color

 ¦ 0 1 EGA is active display and is monochrome

 ¦ 1 0 EGA is not active, a mono card is active

+-------------¦ 1 1 EGA is not active, a CGA is active

¦40:87¦ byte ¦ (PCjr only) current Fn key code

+-----+-------¦ 80h bit indicates make/break key code?

¦40:88¦ byte ¦ feature bits and switches (EGA only) 0=on, 1=off

+-------------¦ bit 0 switch 1

 ¦ 1 switch 2

 ¦ 2 switch 3

 ¦ 3 switch 4

+-------------¦ 4-7 feature bits

¦40:88¦ byte ¦ (PCjr only) special keyboard status byte

+-------------¦ bit 7 function flag

 ¦ 6 Fn-B break

 ¦ 5 Fn pressed

 ¦ 4 Fn lock

 ¦ 3 typamatic (0=enable,1=disable)

 ¦ 2 typamatic speed (0=slow,1=fast)

 ¦ 1 extra delay bef.typamatic (0=enable)

+-------------¦ 0 write char, typamatic delay elapsed

¦40:89¦ byte ¦ (PCjr) current value of 6845 reg 2 (horiz. synch) used

+-------------¦ by ctrl-alt-cursor screen positioning routine in ROM

 ¦ (VGA)

 ¦ bit 0 reserved

 ¦ 1 video summing enabled

 ¦ 2 0 for color monitor attached

 ¦ 1 for mono monitor

 ¦ 3 0 for default palette loading enabled

 ¦ 4 0 for 8x8 text font

 ¦ 1 for 8x16 text font

+-------------¦ 5-7 reserved

¦40:8A¦ byte ¦ (PCjr) CRT/CPU Page Register Image, default 3Fh

+-------------¦ (VGA) Display Combination Code Index. This is the value

 ¦ set/returned by function 1Ah of the Video BIOS. This

 ¦ byte contains an index into the ROM BIOS Display

 ¦ Combination Code table, which is a list of byte pairs

 ¦ that specify valid combinations of one or two video

 ¦ subsystems. Video subsystems are designated by the

 ¦ following values:

 ¦ 00h no display

 ¦ 01h MDA with monochrome display

 ¦ 02h CGA with color display

 ¦ 03h reserved

 ¦ 04h EGA with color display

 ¦ 05h EGA with monochrome display

 ¦ 06h Professional Graphics Adapter

 ¦ 07h VGA with analog monochrome display

 ¦ 08h VGA with analog color display

 ¦ 09h reserved

 ¦ 0Ah MCGA with digital color display

 ¦ 0Bh MCGA with analog monochrome display

 ¦ 0Ch MCGA with analog color display

+-------------¦ 0FFh unrecognized video subsystem

¦40:8B¦ byte ¦ last diskette data rate selected

+-------------¦ bit 7,6 starting data transfer rate to use

 ¦ 0,0 500 kb/sec

 ¦ 0,1 300 kb/sec

 ¦ 1,0 250 kb/sec

 ¦ 1,1 reserved

 ¦ 5,4 last step rate selected

 ¦ 3 ending data transfer rate to use

 ¦ 2 reserved

 ¦ 1 reserved

 ¦ 0 1 combination floppy/fixed disk controller

 ¦ detected

 ¦ 0 XT floppy only controller (for 360kb drive)

 ¦ detected

 ¦ Data Transfer Rates

 ¦ Kbits/sec Media Drive Sectors/Track

 ¦ 250 360k 360k 9

 ¦ 300 360k 1.2M 9

 ¦ 500 1.2M 1.2M 15

 ¦ 250 720k 720k 9

 ¦ 250 720k 1.4M 9

+-------------¦ 500 1.4M 1.4M 18

¦40:8C¦ byte ¦ hard disk status returned by controller

¦40:8D¦ byte ¦ hard disk error returned by controller

¦40:8E¦ byte ¦ hard disk interrupt (bit 7 = working interrupt)

¦40:8F¦ byte ¦ combo_card - status of drives 0 and 1 (Tandy)

+-------------¦ bit 7 reserved

 ¦ 6 drive type determined for drive 1

 ¦ 5 drive multiple data rate capability for drive 1

 ¦ 0 no multiple data rate

 ¦ 1 multiple data rate

 ¦ 4 1 then drive 1 has 80 tracks

 ¦ 0 then drive 1 has 40 tracks

 ¦ 3 reserved

 ¦ 2 drive type determined for drive 0

 ¦ 1 drive multiple data rate capability for drive 0

 ¦ 0 no multiple data rate

 ¦ 1 multiple data rate

 ¦ 0 1 the drive 0 has 80 tracks

 ¦ 0 the drive 0 has 40 tracks

 ¦

 ¦ combo_card - status of drives 0 and 1 (Phoenix)

 ¦ bit 7 reserved

 ¦ 6 drive type determined for drive 1

 ¦ 5 drive multiple data rate capability for drive 1

 ¦ 0 no multiple data rate

 ¦ 1 multiple data rate

 ¦ 4 1 drive 1 supports change line

 ¦ 0 drive 1 does not support change line

 ¦ 3 reserved

 ¦ 2 drive type determined for drive 0

 ¦ 1 drive multiple data rate capability for drive 0

 ¦ 0 no multiple data rate

 ¦ 1 multiple data rate

 ¦ 0 1 drive 0 supports change line

+-------------¦ 0 drive 0 does not support change line

¦40:90¦2 bytes¦ media state drive 0, 1, 2, 3

+-------------¦ floppy_media_state

 ¦ bit 7,6 Data transfer rate

 ¦ 00 - 500 K/sec

 ¦ 01 - 300 K/sec

 ¦ 10 - 250 K/sec

 ¦ 11 - reserved

 ¦ 5 double stepping required

 ¦ 4 media/drive determined

 ¦ 3 reserved

 ¦ 2-0 present state

 ¦ 000 trying 360k in 360k drive (undetermined)

 ¦ 001 trying 360k in 1.2M drive (undetermined)

 ¦ 010 trying 1.2M in 1.2M drive (undetermined)

 ¦ 011 known 360k in 360k (determined)

 ¦ 100 known 360k in 1.2M (determined)

 ¦ 101 known 1.2M in 1.2M (determined)

 ¦ 110 reserved, not used

+-------------¦ 111 known 3.5" drive (determined)

¦40:92¦2 bytes¦ Diskette media work area. Each entry is first diskette

¦ ¦ ¦ media work area value tried. One byte per drive. Drive

¦ ¦ ¦ 0 at 92h, drive 1 at 93h.

¦40:94¦ byte ¦ current track number for drive 0

¦40:95¦ byte ¦ current track number for drive 1

¦40:96¦ byte ¦ keyboard flag byte 3 (see int 9h)

¦ ¦ ¦ bits 7 read ID in progress 3 right alt down

¦ ¦ ¦ 6 last code was first ID 2 left alt down

¦ ¦ ¦ 5 forced NumLock 1 last code was E0h

¦ ¦ ¦ 4 101/102 kbd used 0 last code was E1h

¦40:97¦ byte ¦ keyboard flag byte 2 (see int 9h)

¦ ¦ ¦ bits 7 keyboard error 3 reserved

¦ ¦ ¦ 6 LED update in progress 2 capslock LED status

¦ ¦ ¦ 5 kbd sent RESEND 1 numlock LED status

¦ ¦ ¦ 4 kbd sent ACK 0 scrollock LED status

¦40:98¦ word ¦ offset of user wait flag (int 08h, 15h, 1Ah)

¦40:9A¦ word ¦ segment of user wait flag (int 08h, 15h, 1Ah)

¦40:9C¦ word ¦ user wait timeout value in microseconds (low word)

¦40:9E¦ word ¦ user wait timeout value in microseconds (high word)

¦40:A0¦ byte ¦ real time clock wait function in use

+-------------¦ bits 7 wait time elapsed and posted flag

 ¦ 6-1 reserved

+-------------¦ 0 int 15h, function 86h (WAIT) has occurred

¦40:A1¦ byte ¦ LAN A DMA channel flags

¦40:A2¦2 bytes¦ status LAN A 0,1

¦40:A4¦ dword ¦ saved hard disk interrupt vector

¦40:A8¦ dword ¦ SAVE_PTR: EGA pointer to table of 7 parameters in

+-------------¦ segment:offset format. Format of table:

 ¦ D_1 dword pointer to 1,472 byte table of 64 video

 parameters

 ¦ D_2 dword reserved

 ¦ D_3 dword reserved

 ¦ D_4 dword reserved

 ¦ D_5 dword reserved for future use

 ¦ D_6 dword reserved for future use

+-------------¦ D_7 dword reserved for future use

¦40:B0¦2 words¦ international support (Tandy 1000 TX)

¦40:B4¦ byte ¦ keyboard NMI control flags (Convertible)

¦40:B4¦ byte ¦ monochrome monitor hookup detect (Tandy 1000 TX)

¦ ¦ ¦ 00h not present 0FFh present

¦40:B5¦ dword ¦ keyboard break pending flags (Convertible)

¦40:B5¦ byte ¦ extended equipment detect (5 bits) (Tandy 1000 TX)

+-------------¦ bit 0 = 0 drive A is 5¼

 ¦ 1 drive A is 3½

 ¦ 1 = 0 drive B is 5¼

 ¦ 1 drive B is 3½

 ¦ 2 = 0 Tandy 1000 keyboard layout

 ¦ 1 IBM keyboard layout

 ¦ 3 = 0 CPU slow mode

 ¦ 1 CPU fast mode

 ¦ 4 = 0 internal color video support enabled

 ¦ 1 internal color video support disabled,

 ¦ external video enabled (chg from mb'd

 ¦ to expansion card)

 ¦ 5 = 0 no external monochrome video installed

+-------------¦ 1 external monochrome video installed

¦40:B6¦ byte ¦ extended equipment detect (1 bit) (Tandy 1000 TX)

+-------------¦ bit 0 = 0 drive C is 5¼

+-------------¦ 1 drive C is 3½

¦40:B9¦ byte ¦ port 60 single byte queue (Convertible)

¦40:BA¦ byte ¦ scan code of last key (Convertible)

¦40:BB¦ byte ¦ pointer to NMI buffer head (Convertible)

¦40:BC¦ byte ¦ pointer to NMI buffer tail (Convertible)

¦40:BD¦16bytes¦ NMI scan code buffer (Convertible)

¦40:CE¦ word ¦ day counter (Convertible and after)

¦ to ¦ -04:CF¦ end of BIOS Data Area

+---

¦ ** End of BIOS Data Area **

¦ ** Beginning of "Extra Data Area" **

+---

¦40:D0¦-40:EF ¦ reserved by IBM

¦40:F0¦16bytes¦ Inter-Application Communications Area (for use by

¦40:FF¦ ¦ apps to transfer data or parameters to each other)

+-------------¦ 1) Used by Turbo Power's FMARK (mark memory for TSRs).

 ¦ 2) Used by Norton Utilities' TimeMark to store the time.

 ¦ 3) Used by BRIEF editor.

+-------------¦ 4) TopView saves this area during task switches

 5) Some 1992/1993 Phoenix BIOS used in Gateway 2000

 486 DX/2 motherboards are buggy and corrupt this

 area.

¦50:00¦ byte ¦ DOS print screen status flag

+-------------¦ 00h not active or successful completion

 ¦ 01h print screen in progress

+-------------¦ 0FFh error during print screen operation

¦50:01¦ ¦ Used by BASIC

¦50:02-03 ¦ PCjr POST and diagnostics work area

¦50:04¦ byte ¦ Single drive mode status byte - not used by AT&T DOS 2.11!

+-------------¦ 00 logical drive A was last active

 ¦ 01 logical drive B was last active

+-------------¦ 0FFh don't know (some DOS versions)

¦50:05-0E ¦ PCjr POST and diagnostics work area

¦50:0F¦ ¦ BASIC: SHELL flag (set to 02h if there is a current

 SHELL)

¦50:10¦ word ¦ BASIC: segment address storage (set with DEF SEG)

¦50:12¦4 bytes¦ BASIC: int 1Ch clock int vector segment:offset storage

¦50:16¦4 bytes¦ BASIC: int 23h ctrl-break int segment:offset storage

¦50:1A¦4 bytes¦ BASIC: int 24h disk error int vector segment:offset

¦50:1B-1F ¦ Used by BASIC for dynamic storage

¦50:20-21 ¦ Used by DOS for dynamic storage

+-------------¦ According to the IBM TopView programmer's reference,

 ¦ 50:10 through 50:21 are used by BASIC, BASICA, and

+-------------¦ programs compiled by the IBM BASIC Compiler.

¦50:22-2C ¦ Used by DOS for diskette parameter table. See int 1Eh

+-------------¦ listing for values. In DOS 1.0 this is located in the

 ¦ ROM BIOS, but in DOS 1.1 and later it is a part of DOS

 ¦ located at 05:22. The first byte (out of eleven) of

 ¦ the Disk Parameter Table contains the hexadecimal value

 ¦ CF in DOS 1.0 and DF in DOS 1.1 and later.

 ¦ DOS 1.0 24ms

+-------------¦ DOS 1.1 26ms

¦50:30-33 ¦ Used by MODE command

¦50:81¦ ¦ number of floppies installed in the system?

¦50:82¦ ¦ first hard disk drive?

¦50:83¦ ¦ last hard disk drive?

¦50:34-FF ¦ Unknown - Reserved for DOS

¦70:00 ¦ PC-MOS/386 loads into the lowest available memory,

¦ ¦ starting from this point.

+---

¦ ** End of "Extra Data Area" **

¦ ** Beginning of "Extended Data Area" ** (Phoenix specs)

¦ ("EDA" is segment address of top of memory)

+---

¦EDA:00¦ byte ¦ Size of EDA in Kb (usually 1)

¦EDA:22¦ word ¦ pointing device driver FAR call offset

¦EDA:24¦ word ¦ pointing device driver FAR call segment

¦EDA:26¦ byte ¦ pointing device flag (first byte)

¦ ¦ ¦ bits 7 = 1 command in progress

¦ ¦ ¦ 6 = 1 resend

¦ ¦ ¦ 5 = 1 acknowlege

¦ ¦ ¦ 4 = 1 error

¦ ¦ ¦ 3 = 0 reserved

¦ ¦ ¦ 2-0 index count

¦EDA:27¦ byte ¦ pointing device flag (second byte)

¦ ¦ ¦ bits 7 device driver FAR call flag

¦ ¦ ¦ 6-3 = 0 reserved

¦ ¦ ¦ 2-0 package size

¦EDA:28¦ byte ¦ \

¦ to ¦ ¦ pointing device data

¦EDA:2E¦ byte ¦ /

¦EDA:30¦ ¦ \

¦ to ¦ ¦ reserved

¦EDA:38¦ ¦ /

¦EDA:39¦ word ¦ initial count for fail-safe timer

+---

Absolute Addresses ... 2**6

0008:0047 IO.SYS or IBMBIO.COM IRET instruction. This is the dummy

 routine that interrupts 01h, 03h, and 0Fh are initialized to

 during POST.

C000:001E EGA BIOS signature (the letters IBM)

F000:FA6E table of characters 00h-7Fh used by int 10h video BIOS

 The first 128 characters are stored here and each occupies 8

 bytes. The high bit ones are somewhere on the video adapter

 card.

F000:FFFE PC model identification. Note: some early IBM XTs return

 the PC ID code. Clones can return anything. To identify

 the submodel you need to do an int 15h, AH=0C0h (Return

 System Configuration Parameters). This call is not supported

 in early XT and AT BIOSes.

FDFF:000E check this word value to identify GRiD machines:

 00h GRiDCase (Old [first release] GRiDCase)

 03h Tempest (Tempest GRiDCase)

 04h GRiDCase Plus

 14h GRiDLite

 0Ch GRiDCase Plus Minus

 34h GRiD 1520 (GRiD AT clone)

 74h GRiD 1530 (GRiD-386)

FE05B POST entry point (IBM standard addr.)

FE2C3 NMI handler entry point (IBM standard addr.)

FE3FE int 13h hard disk services entry point (IBM standard addr.)

FE401 hard disk parameter table (IBM standard addr.)

FE729 baud rate generator table (IBM standard addr.)

FE739 int 14h async services entry point (IBM standard addr.)

FE82E int 16h keyboard services entry point (IBM standard addr.)

FE987 int 09h keyboard services entry point (IBM standard addr.)

FEC59 int 13h diskette services entry point (IBM standard addr.)

FEF57 int 0Eh diskette hardware ISR entry point (IBM standard addr.)

FEFC7 diskette controller parameter table (IBM standard addr.)

FEFD2 int 17h printer services entry point (IBM standard addr.)

FF045 int 10h video services 0-Fh entry point (IBM standard addr.)

FF065 int 10h video services entry point (IBM standard addr.)

FF0A4 int 1Dh MDA/CGA video parameter table (IBM standard addr.)

FF841 int 12h memory size service entry point (IBM standard addr.)

FF84D int 11h equipment list service entry point(IBM standard addr.)

FF859 int 15h System Services entry point (IBM standard addr.)

FFA6E CGA font table (IBM standard addr.)

FFE6E int 1Ah clock services entry point (IBM standard addr.)

FFEA5 int 08h system timer ISR entry point (IBM standard addr.)

FFEF3 initial int vector offsets loaded by POST (IBM standard addr.)

FFF53 IRET opcode for dummy interrupt handler (IBM standard addr.)

FFF54 int 05h print screen service entry point (IBM standard addr.)

FFFF0 80x86 power-up entry point (part of the CPU)

FFFFE system ID byte: (IBM standard addr.)

+---+

¦ ROM BIOS + model byte ¦

¦ copyright ¦ + submodel byte machine ¦

¦ date ¦ ¦ + revision ¦

+----------+----+----+----+---¦

¦ ¦ 00 ¦ 00 ¦ 00 ¦ AT&T 6300, Olivetti PC ¦

¦ ¦ 2D ¦ -- ¦ -- ¦ Compaq PC (4.77mHz original) ¦

¦ ¦ 30 ¦ -- ¦ -- ¦ Sperry PC (built by Mitsubishi) ¦

¦ ¦ 86 ¦ -- ¦ -- ¦ HP-110 portable PC ¦

¦ ¦ 9A ¦ -- ¦ -- ¦ Compaq Plus (XT compatible) ¦

¦ 03/30/87 ¦ F8 ¦ 00 ¦ 00 ¦ PS/2 Model 80 8580-041 (16mhz) (-071?) ¦

¦ 08/28/87 ¦ F8 ¦ ?? ¦ ?? ¦ PS/2 Model 80-071 16mHz 8580 ¦

¦ 10/07/87 ¦ F8 ¦ 01 ¦ 00 ¦ PS/2 Model 80 8580-111/311 (20mhz) ¦

¦ 09/17/87 ¦ F8 ¦ 01 ¦ 01 ¦ PS/2 Model 80-111 20mHz 8580 ¦

¦ 11/21/89 ¦ ¦ ¦ ¦ PS/2 Model 80-Axx ¦

¦ 04/11/88 ¦ F8 ¦ 04 ¦ 02 ¦ PS/2 Model 70-121 8570-121, 8570-E61 ¦

¦ 04/11/88 ¦ F8 ¦ 09 ¦ 02 ¦ PS/2 Model 70 desktop ¦

¦ 01/18/89 ¦ F8 ¦ 0B ¦ 00 ¦ PS/2 Model 70 Portable ¦

¦ 01/18/89 ¦ ¦ ¦ ¦ PS/2 Model 73 ¦

¦ 01/29/88 ¦ ¦ ¦ ¦ PS/2 Model 70 ¦

¦ 03/17/89 ¦ ¦ ¦ ¦ PS/2 Model 70-061 ¦

¦ 03/17/89 ¦ ¦ ¦ ¦ PS/2 Model 70-121 ¦

¦ 02/20/89 ¦ ¦ ¦ ¦ PS/2 Model 70-A21 ¦

¦ 02/20/89 ¦ ¦ ¦ ¦ PS/2 Model 70-A61 ¦

¦ 10/02/89 ¦ ¦ ¦ ¦ PS/2 Model 70-B21 ¦

¦ 12/01/89 ¦ ¦ ¦ ¦ PS/2 Model 70-A61 --> B61 ¦

¦ 09/09/88 ¦ F8 ¦ 0B ¦ 01 ¦ PS/2 8573-??? ¦

¦ ? ¦ F8 ¦ 0C ¦ 00 ¦ PS/2 8555-031/061 ¦

¦ 02/20/89 ¦ F8 ¦ 0D ¦ ? ¦ PS/2 Model 70-A21 ¦

¦ 06/22/88 ¦ F8 ¦ 0D ¦ 00 ¦ PS/2 Model 70 8570-A21 ¦

¦ 09/13/85 ¦ F9 ¦ 00 ¦ 00 ¦ PC Convertible laptop ¦

¦ 09/02/86 ¦ FA ¦ 00 ¦ 00 ¦ PS/2 Model 30 8530-021 ¦

¦ 12/12/86 ¦ FA ¦ 00 ¦ 00 ¦ PS/2 Model 30 8530-021 ¦

¦ 02/05/87 ¦ ¦ ¦ ¦ PS/2 Model 30 8530-021 ¦

¦ 08/25/88 ¦ ¦ ¦ ¦ PS/2 Model 30 8530-E21 ¦

¦ 05/16/88 ¦ ¦ ¦ ¦ PS/2 Model 30 8530-E21 ¦

¦ 06/28/89 ¦ ¦ ¦ ¦ PS/2 Model 30 8530-Exx ¦

¦ 06/26/87 ¦ FA ¦ 01 ¦ 00 ¦ PS/2 Model 25 8525 ¦

¦ 01/10/86 ¦ FB ¦ 00 ¦ 00 ¦ XT-2 (early) ¦

¦ 01/10/86 ¦ FB ¦ 00 ¦ 01 ¦ XT Model 089 (101-key keyboard ¦

¦ 05/09/86 ¦ FB ¦ 01 ¦ 02 ¦ XT-2 (revised) (640k m'bd, 101 key k'bd ¦

¦ 01/10/84 ¦ FC ¦ -- ¦ -- ¦ AT Model 099 (original 6mHz) ¦

¦ 06/10/85 ¦ FC ¦ 00 ¦ 01 ¦ AT Model 5170-239 6mHz (6.6 max governor) ¦

¦ 11/15/85 ¦ FC ¦ 01 ¦ 00 ¦ AT Model 5170-339 8mHz (8.6 max governor) ¦

¦ ¦ FC ¦ 01 ¦ 00 ¦ Compaq 386/16 ¦

¦ ¦ FC ¦ 01 ¦ 03 ¦ some Phoenix 386 BIOS ¦

¦ ¦ FC ¦ 01 ¦ 81 ¦ some Phoenix 386 BIOS ¦

¦ 04/21/86 ¦ FC ¦ 02 ¦ 00 ¦ XT/286 ¦

¦ 02/13/87 ¦ FC ¦ 04 ¦ 00 ¦ PS/2 Model 50 8550-021 ¦

¦ 12/22/86 ¦ FC ¦ 05 ¦ 00 ¦ PS/2 Model 60 8560 ¦

¦ 02/13/87 ¦ FC ¦ 05 ¦ 00 ¦ PS/2 Model 60 8560 ¦

¦ ¦ FC ¦ 00 ¦ ¦ 7531/2 Industrial AT ¦

¦ ¦ FC ¦ 06 ¦ ¦ 7552 "Gearbox" ¦

¦ 04/18/88 ¦ FC ¦ 04 ¦ 03 ¦ PS/2 50Z 8550-031/061 ¦

¦ 01/24/90 ¦ FC ¦ 01 ¦ 00 ¦ Compaq Deskpro 80386/25e ¦

¦ 10/02/89 ¦ FC ¦ 02 ¦ 00 ¦ Compaq Deskpro 386s, 386SX, 16mHz ¦

¦ 08/25/88 ¦ FC ¦ 09 ¦ 00 ¦ 8530-Exx (286) ¦

¦ 06/01/83 ¦ FD ¦ -- ¦ -- ¦ PCjr ¦

¦ 11/08/82 ¦ FE ¦ -- ¦ -- ¦ XT, Portable PC, XT/370, 3270PC ¦

¦ 04/24/81 ¦ FF ¦ -- ¦ -- ¦ PC-0 (original)(16k motherboard) ¦

¦ 10/19/81 ¦ FF ¦ -- ¦ -- ¦ PC-1 (64k motherboard) ¦

¦ 08/16/82 ¦ FF ¦ -- ¦ -- ¦ PC, XT, XT/370 (256k motherboard) ¦

¦ 10/27/82 ¦ FF ¦ -- ¦ -- ¦ PC with HD/EGA BIOS upgrade chipset ¦

¦ 02/08/90 ¦ ¦ ¦ ¦ PS/2 Model 65 ¦

¦ 11/02/88 ¦ ¦ ¦ ¦ PS/2 Model 55SX ¦

¦ 02/07/89 ¦ ¦ ¦ ¦ PS/2 Model 73-031 ¦

+---+

The IBM PC System Interrupts (Overview) 2**7

 The interrupt table is stored in the very lowest location in memory,

starting at 0000:0000h. The locations are offset from segment 0, i.e.

location 0000h has the address for int 0, etc. The table is 1024

bytes in length and contains 256 four byte vectors from 00h to 0FFh.

Each address' location in memory can be found by multiplying the

interrupt number by 4. For example, int 7 could be found by (7x4=28)

or 1Bh (0000:001Bh).

 These interrupt vectors normally point to ROM tables or are taken

over by DOS when an application is run. Some applications revector

these interrupts to their own code to change the way the system

responds to the user. DOS provides int 21h function 25h to change

interrupts from a high level; altering the interrupt vector table

directly is not recommended, nor would it really get you anywhere.

Quick Chart of Interrupts 00h-0FFh 2**8

+--+

¦ Interrupt Address ¦ ¦

+---------------------+ Function ¦

¦ Number¦ (Hex) ¦ Type ¦

+-------+-------+--¦

¦ 0 ¦ 00-03 ¦ CPU ¦ Divide by Zero ¦

+-------+-------+-----+--¦

¦ 1 ¦ 04-07 ¦ CPU ¦ Single Step ¦

+-------+-------+-----+--¦

¦ 2 ¦ 08-0B ¦ CPU ¦ Nonmaskable ¦

+-------+-------+-----+--¦

¦ 3 ¦ 0C-0F ¦ CPU ¦ Breakpoint ¦

+-------+-------+-----+--¦

¦ 4 ¦ 10-13 ¦ CPU ¦ Overflow ¦

+-------+-------+-----+--¦

¦ 5 ¦ 14-17 ¦ BIOS¦ Print Screen ¦

+-------+-------+-----+--¦

¦ 6 ¦ 18-1B ¦ hdw ¦ Reserved ¦

+-------+-------+-----+--¦

¦ 7 ¦ 1C-1F ¦ hdw ¦ Reserved ¦

+-------+-------+-----+--¦

¦ 8 ¦ 20-23 ¦ hdw ¦ Time of Day ¦

+-------+-------+-----+--¦

¦ 9 ¦ 24-27 ¦ hdw ¦ Keyboard ¦

+-------+-------+-----+--¦

¦ A ¦ 28-2B ¦ hdw ¦ Reserved ¦

+-------+-------+-----+--¦

¦ B ¦ 2C-2F ¦ hdw ¦ Communications (8259) ¦

+-------+-------+-----+--¦

¦ C ¦ 30-33 ¦ hdw ¦ Communications ¦

+-------+-------+-----+--¦

¦ D ¦ 34-37 ¦ hdw ¦ Disk ¦

+-------+-------+-----+--¦

¦ E ¦ 38-3B ¦ hdw ¦ Diskette ¦

+-------+-------+-----+--¦

¦ F ¦ 3C-3F ¦ hdw ¦ Printer ¦

+-------+-------+-----+--¦

¦ 10 ¦ 40-43 ¦ BIOS¦ Video ¦

+-------+-------+-----+--¦

¦ 11 ¦ 44-47 ¦ BIOS¦ Equipment Check ¦

+-------+-------+-----+--¦

¦ 12 ¦ 48-4B ¦ BIOS¦ Memory ¦

+-------+-------+-----+--¦

¦ 13 ¦ 4C-4F ¦ BIOS¦ Diskette/Disk ¦

+-------+-------+-----+--¦

¦ 14 ¦ 50-53 ¦ BIOS¦ Serial Communications ¦

+-------+-------+-----+--¦

¦ 15 ¦ 54-57 ¦ BIOS¦ Cassette, System Services ¦

+-------+-------+-----+--¦

¦ 16 ¦ 58-5B ¦ BIOS¦ Keyboard ¦

+-------+-------+-----+--¦

¦ 17 ¦ 5C-5F ¦ BIOS¦ Parallel Printer ¦

+-------+-------+-----+--¦

¦ 18 ¦ 60-63 ¦ BIOS¦ ROM BASIC Loader ¦

+-------+-------+-----+--¦

¦ 19 ¦ 64-67 ¦ BIOS¦ Bootstrap Loader ¦

+-------+-------+-----+--¦

¦ 1A ¦ 68-6B ¦ BIOS¦ Time of Day ¦

+-------+-------+-----+--¦

¦ 1B ¦ 6C-6F ¦ BIOS¦ Keyboard Break ¦

+-------+-------+-----+--¦

¦ 1C ¦ 70-73 ¦ BIOS¦ Timer Tick ¦

+-------+-------+-----+--¦

¦ 1D ¦ 74-77 ¦ BIOS¦ Video Initialization ¦

+-------+-------+-----+--¦

¦ 1E ¦ 78-7B ¦ BIOS¦ Diskette Parameters ¦

+-------+-------+-----+--¦

¦ 1F ¦ 7C-7F ¦ BIOS¦ Video Graphics Characters, second set ¦

+-------+-------+-----+--¦

¦ 20 ¦ 80-83 ¦ DOS ¦ General Program Termination ¦

+-------+-------+-----+--¦

¦ 21 ¦ 84-87 ¦ DOS ¦ DOS Services Function Request ¦

+-------+-------+-----+--¦

¦ 22 ¦ 88-8B ¦ DOS ¦ Called Program Termination Address ¦

+-------+-------+-----+--¦

¦ 23 ¦ 8C-8F ¦ DOS ¦ Control Break Termination Address ¦

+-------+-------+-----+--¦

¦ 24 ¦ 90-93 ¦ DOS ¦ Critical Error Handler ¦

+-------+-------+-----+--¦

¦ 25 ¦ 94-97 ¦ DOS ¦ Absolute Disk Read ¦

+-------+-------+-----+--¦

¦ 26 ¦ 98-9B ¦ DOS ¦ Absolute Disk Write ¦

+-------+-------+-----+--¦

¦ 27 ¦ 9C-9F ¦ DOS ¦ Terminate and Stay Resident ¦

+-------+-------+-----+--¦

¦ 28-3F ¦ A0-FF ¦ DOS ¦ Reserved for DOS ¦

+---------------------+--¦

 ¦ *29h Fast Screen Write ¦

 ¦ *2Ah Microsoft Networks - Session Layer ¦

 ¦ Interrupt ¦

 ¦ 2Fh Multiplex Interrupt ¦

 ¦ *30h Far jump instruction for CP/M-style ¦

 ¦ calls ¦

 ¦ 33h Used by Microsoft Mouse Driver ¦

+---------------------+--¦

¦ 40-43 ¦100-115¦ BIOS¦ Reserved for BIOS ¦

+---------------------+--¦

 ¦ 40h Hard Disk BIOS ¦

 ¦ 41h Hard Disk Parameters (except PC1) ¦

 ¦ 42h Pointer to screen BIOS entry (EGA, VGA,¦

 ¦ PS/2) ¦

 ¦ 43h Pointer to EGA initialization parameter ¦

 ¦ table ¦

+---------------------+--¦

¦ 44 ¦116-119¦ BIOS¦ First 128 Graphics Characters ¦

+-------+-------+-----+--¦

¦ 45-47 ¦120-131¦ BIOS¦ Reserved for BIOS ¦

+---------------------+--¦

 ¦ 45h Reserved by IBM (not initialized) ¦

 ¦ 46h Pointer to hard disk 2 params (AT, PS/2)¦

 ¦ 47h Reserved by IBM (not initialized) ¦

+---------------------+--¦

¦ 48 ¦132-135¦ BIOS¦ PCjr Cordless Keyboard Translation ¦

+-------+-------+-----+--¦

¦ 49 ¦136-139¦ BIOS¦ PCjr Non-Keyboard Scancode Translation Table ¦

+---------------------+--¦

 ¦ 4Ah Real-Time Clock Alarm (Convertible, ¦

 ¦ PS/2) ¦

+---------------------+--¦

¦ 50-5F ¦140-17F¦ BIOS¦ Reserved for BIOS ¦

+---------------------+--¦

 ¦ 5Ah Cluster Adapter BIOS entry address ¦

 ¦ *5Bh IBM (cluster adapter?) ¦

 ¦ 5Ch NETBIOS interface entry port ¦

+--¦

¦ 60-67 ¦180-19F¦ User Program Interrupts (availible for general use) ¦

+--¦

 ¦ 60h 10-Net Network ¦

 ¦ 67h Used by LIM & AQA EMS, EEMS ¦

+--¦

¦ 68-7F ¦1A0-1FF¦ Reserved by IBM ¦

+--¦

 ¦ 6Ch System Resume Vector (Convertible) ¦

 ¦ 6Fh some Novell and 10-Net API functions ¦

 ¦ 70h IRQ 8, Real Time Clock Interrupt (AT, ¦

 ¦ PS/2) ¦

 ¦ 71h IRQ 9, LAN Adapter 1 ¦

 ¦ 72h IRQ 10 (AT, XT/286, PS/2) Reserved ¦

 ¦ 73h IRQ 11 (AT, XT/286, PS/2) Reserved ¦

 ¦ 74h IRQ 12 Mouse Interrupt (PS/2) ¦

 ¦ 75h IRQ 13, Coprocessor Error ¦

 ¦ 76h IRQ 14, Hard Disk Controller (AT, PS/2) ¦

 ¦ 77h IRQ 15 (AT, XT/286, PS/2) Reserved ¦

 ¦ 7Ch IBM REXX88PC command language ¦

+--¦

¦ 80-85 ¦200-217¦ ROM BASIC ¦

+-------+-------+--¦

¦ 86-F0 ¦218-3C3¦ Used by BASIC Interpreter When BASIC is running ¦

+-------+-------+--¦

¦ F1-FF ¦3C4-3FF¦ Reserved by IBM ¦

+--¦

 ¦ *0F8h Set Shell Interrupt (OEM) ¦

 ¦ *0F9h OEM SHELL service codes ¦

 +---+

IRQ Usage Chart .. 2**9

 The 8259-1 Programmable Interrupt Controller (PIC) has eight

interrupt request (IRQ) levels. Lower numbered IRQs have higher

priority. On AT and PS/2 machines, a second 8259 chip is cascaded off

the IRQ2 channel. Channels marked with an asterisk (*) are normally

available.

 (IRQ0) 55ms timer "tick" issued 18.2 times per second.

 (IRQ1) keyboard

*(IRQ2) for ATs, IRQ2 is used to support the second interrupt

 controller. In this case, int 71h (IRQ 9) is used to

 replace IRQ 2. Hardware calls to int 71h are redirected

 to this interrupt to maintain compatibility.

 IRQ 8 Real Time Clock Interrupt (AT, PS/2)

 * IRQ 9 LAN Adapter 1

 * IRQ 10 (AT, XT/286, PS/2) Reserved

 * IRQ 11 (AT, XT/286, PS/2) Reserved

 * IRQ 12 used by EISA machines, also PS/2 Mouse

 Interrupt

 IRQ 13 Coprocessor Error

 IRQ 14 Hard Disk Controller (AT, PS/2)

 * IRQ 15 (AT, XT/286, PS/2) Reserved

*(IRQ3) Serial Port 2 (COM2)

*(IRQ4) Serial Port 1 (COM1) or internal modem in PCjr or

 Convertible

*(IRQ5) XT hard disk, free on standard AT

 (IRQ6) floppy controller

 (IRQ7) LPT1, LPT2

 Two cards generally cannot share the same IRQ without conflict on

ISA bus machines. EISA and PS/2 machines can share IRQs, but require

specially designed cards to do so.

The IBM-PC System Interrupts (in detail) 2**10

+---+

¦Interrupt 00h Divide by Zero ¦

+---+

(0:0000h) (processor error). Automatically called at end of DIV or

 IDIV operation that results in error. Normally set by DOS to

 display an error message and abort the program.

note 1) On an 8086/8088, the return address points to the following

 instruction.

 2) On an 80286/80386, the return address points to the divide

 instruction.

 3) Trapped by PC-MOS/386 to provide a default handler for divide

 overflow conditions. If the application does not have its own

 handler, MOS will terminate the program with an appropriate

 message.

+---+

¦Interrupt 01h Single Step ¦

+---+

(0:0004h) Taken after every instruction when CPU Trap Flag indicates

 single-step mode (bit 8 of FLAGS is 1). This is what makes

 the "T" command of DEBUG work for single stepping. Is not

 generated after MOV to segment register or POP of segment

 register. (unless you have a very early 8088 with the

 microcode bug).

+---+

¦Interrupt 02h Non-Maskable Interrupt (NMI) ¦

+---+

(0:0008h) Vector not disabled via CLI. Generated by NMI signal in

 hardware. This function is called in the event of a memory

 parity error or may occur in the event of other hardware

 problems or failures depending on the specific

 manufacturer's hardware. Displays the appropriate error

 message and halts the processor.

 Some AT chip sets apparently use int 02h to signal I/O errors

 as well as parity errors.

 This signal has various uses:

 POST parity error: all except PCjr & Convertible

 80x87 coprocessor interrupt: all except PCjr & Convertible

 Keyboard interrupt: PCjr, Convertible

 I/O channel check: Convertible, PS/2 50+

 Disk controller power-on request: Convertible

 System suspend: Convertible

 Realtime clock: Convertible

 System watchdog timer: PS/2 50+

 Timeout interrupt: PS/2 50+

 DMA timer time-out interrupt: PS/2 50+

 Infrared keyboard link: PCjr

+---+

¦Interrupt 03h Breakpoint ¦

+---+

(0:000Ch) Taken when CPU executes the 1-byte int 3 (0CCh). Similar to

(internal) the 8080's RST instruction. Generally used to set

 breakpoints for DEBUG.

note 1) Also used by Turbo Pascal versions 1,2,3 when {$U+} specified.

 2) Int 3s are sometimes inserted by the Microsoft Linker in

 response to an unresolved symbol.

+---+

¦Interrupt 04h Divide overflow ¦

+---+

(0:0010h) Generated by INTO instruction if OF flag is set. If the

(internal) flag is not set, INTO is effectively a NOP. Used to trap

 any arithmetic errors when program is ready to handle them

 rather than immediately when they occur.

+---+

¦Interrupt 05h Print Screen ¦

+---+

(0:0014h) Service dumps the screen to the printer. Invoked by int 9

 for shifted key 55 (PrtSc). Automatically called by the

 keyboard scan when PrtSc key is pressed. Normally executes

 a routine to print the screen, but may call any routine that

 can safely be executed from inside the keyboard handler.

 Status and result bytes are at address 0050:0000.

(internal) BOUND Check Failed (80286+)

 Generated by BOUND instruction when the value to be tested

 is less than the indicated lower bound or greater than the

 indicated upper bound.

entry AH 05h

return absolute address 50:0

 00h print screen has not been called, or upon return

 from a call there were no errors

 01h print screen is already in progress

 0FFh error encountered during printing

note 1) Uses BIOS services to read the screen.

 2) Output is directed to LPT1.

 3) Revectored into GRAPHICS.COM if GRAPHICS.COM is loaded.

 4) On the Tandy 1000TX this interrupt can be enabled or disabled

 across the expansion slots via a DIP switch.

 5) With early versions of DOS 5.0, at PrtScr of a graphics

 display gets garbage when GRAPHICS.COM is loaded. This was

 fixed in one of the first updates.

+---+

¦Interrupt 06h Reserved by IBM ¦

+---+

(0:0018h) On the Tandy 1000TX this interrupt can be enabled or

 disabled across the expansion slots via a DIP switch.

 PC-MOS/386 in 386 mode uses this interrupt to signal memory

 allocation errors. The CS:IP of the offending instruction

 is placed on the stack.

(internal) Undefined Opcode (80286+)

+---+

¦Interrupt 07h Reserved by IBM ¦

+---+

(0:00C0h) On the Tandy 1000TX this interrupt can be enabled or

 disabled across the expansion slots via a DIP switch.

(internal) No Math Unit Available (80286+)

note The 80286 and later can be programmed to generate an int 7

 whenever an ESC instruction is encountered. This could be used

 to emulate an 80x87 series coprocessor in software and be

 transparent to the application software. It could also be used

 to make a non-Intel floating point processor emulate an 80x87.

+---+

¦Interrupt 08h Timer ¦

+---+

(0:0020h) 55ms timer "tick" issued 18.2 times per second.

 (IRQ0) 8259-1 Interrupt Controller

 Updates the system time at [0040:006C] (low word) and

 [0040:006E] (high word) and issues an int 1Ch (timer). (Int

 1Ch points to an IRET instruction unless changed by a

 resident program). The timer interrupt is given the highest

 maskable interrupt priority upon power up.

(internal) Double Fault (80286+ protected mode) Called when multiple

 exceptions occur on one instruction, or an exception occurs

 in an exception handler. If an exception occurs in the

 double fault handler, the CPU goes into SHUTDOWN mode (which

 circuitry in the PC/AT converts to a reset).

entry AH 08h

return absolute addresses:

 40:6C number of interrupts since power on (4 bytes)

 40:70 number of days since power on (1 byte)

 40:67 day counter on all products after AT

 40:40 motor control count - gets decremented and shuts off

 diskette motor if zero

note 1) IBM PC LAN 1.2 and PC/MOS-386 require this count be 18.2Hz

 and will report errors if the timer rate is reprogrammed.

 2) Some "turbo" XT clones were shipped with slower-than-18.2Hz

 timers so they would appear faster to benchmark software.

 Caveat emptor.

 3) Trapped by PC-MOS/386 to ensure task switching is performed.

 This interrupt should never be disabled when running PC-MOS.

 4) Trapped by Quarterdeck's DESQview.

+---+

¦Interrupt 09h Keyboard ¦

+---+

(0:0024h) Taken whenever a key is pressed or released. This is

 (IRQ1) normally a scan code, but may also be an ACK or NAK of a

 command on AT-type keyboards. The hardware provides the key

 pressed in a non-ASCII scan code format read at I/O port

 60h. The servicer acknowledges receipt of the key by

 toggling bit 7 of port 61h. (Port 61h should be read first,

 then bit 7 ORed on, output to port 61h, then ANDed off, and

 resent to port 61h).

 The read key is decoded to yield an ASCII character, special

 function key (such as F1) or a control function like Left

 Shift Key. The converted ASCII character is placed into the

 next available position in the circular keyboard queue. It

 is put in the position indicated by queue tail when it will

 not cause the loss of earlier entered data. The queue head

 points to the oldest key pressed in the buffer which has not

 been removed from the queue (the normal process uses int 16h

 to remove keys from the queue and return the key value to the

 int 16h caller).

 The 16 word queue holds up to 16 keys. If the queue head

 equals the queue tail, the queue is empty. Valid keys in

 the queue comprise the upper byte scan code and the lower

 byte ASCII character. If the key pressed has no ASCII

 equivalent (i.e F1 to F12), the lower byte is zero.

 Toggle and shift keys are not placed in the buffer, but

 appear in the two status bytes at absolute addresses

 0040:0017 and 0040:0018.

 Special key combinations will cause other events to occur:

 a) Ctrl-Alt-Del - Reboot computer

 b) Print screen - Call int 05h to print the current screen

 c) Ctrl-Break - Call int 1Bh control-break key

 processor (DOS)

(internal) Math Unit Protection Fault (80286+ protected mode)

entry AH 09h

return at absolute memory addresses:

 40:17 bit

 0 right shift key depressed

 1 left shift key depressed

 2 control key depressed

 3 alt key depressed

 4 ScrollLock state has been toggled

 5 NumLock state has been toggled

 6 CapsLock state has been toggled

 7 insert state is active

 40:18 bit

 0 left control key depressed

 1 left alt key depressed

 2 SysReq key depressed

 3 Pause key has been toggled

 4 ScrollLock key is depressed

 5 NumLock key is depressed

 6 CapsLock key is depressed

 7 Insert key is depressed

 40:96 bit

 0 last code was the E1h hidden code

 1 last code was the E0h hidden code

 2 right control key down

 3 right alt key down

 4 101 key Enhanced keyboard installed

 5 force NumLock if rd ID & kbx

 6 last character was first ID character

 7 doing a read ID (must be bit 0)

 40:97 bit

 0 ScrollLock indicator

 1 NumLock indicator

 2 CapsLock indicator

 3 circus system indicator

 4 ACK received

 5 resend received flag

 6 mode indicator update

 7 keyboard transmit error flag

 40:1E keyboard buffer (20h bytes)

 40:1C buffer tail pointer

 40:72 1234h if ctrl-alt-del pressed on keyboard

 AL scan code

note 1) Int 05h invoked if PrtSc key pressed.

 2) Int 1Bh invoked if Ctrl-Break key sequence pressed.

 3) Int 15h, AH=85h invoked on AT and after if SysReq key is pressed.

 4) Int 15h, AH=4Fh invoked on machines after AT.

 5) Int 16h, BIOS keyboard functions, uses this interrupt.

 6) PC-MOS/386 will issue this interrupt for keystrokes ocurring on

 remote serial terminals to simulate local access.

+---+

¦Interrupt 0Ah EGA Vertical Retrace ¦

+---+

(0:0028h) used by EGA vertical retrace

 (IRQ2) 8259-1 Interrupt Controller

note 1) The TOPS and PCnet adapters use this IRQ line by default.

 2) On systems equipped with 2 interrupt controller chips (8259),

 IRQ 2 is used to support the second interrupt controller. In

 this case, int 71h (IRQ 9) is used to replace IRQ 2. Hardware

 calls to int 71h are redirected to this interrupt to maintain

 compatibility.

 3) IRQ 2 is used for vertical retrace signal on PS/2s with VGA on

 the motherboard. Most aftermarket VGA boards to not use this

 interrupt.

 4) Some early Samsung machines routed IRQ2 to the onboard system

 clock and did not continue IRQ2 to the I/O bus.

 5) The Roland LAPC-1 board uses IRQ2.

 6) Elographics touchscreens use optionally use IRQ2.

(internal) Invalid Task State Segment (80286+ protected mode)

+---+

¦Interrupt 0Bh Communications Controller (serial port) hdw. entry ¦

+---+

(0:002Ch) Serial Port 2 (COM2) 8259-1

 (IRQ3)

note 1) IRQ 3 may be used by SDLC (synchronous data-link control) or

 bisynchronous communications cards instead of a serial port.

 2) The TOPS and PCnet adapters use this interrupt request line as

 an alternate.

 3) On PS/2s, COM2 through COM8 share this IRQ.

 4) For most serial boards, COM4 shares this IRQ.

 5) On the Commodore Amiga 2000 with the PC Bridge Board, this

 interrupt is used for communication between the Amiga system

 board and the Bridge Board. This was probably the lowest IRQ

 level they felt safe using, but limits the A2000's use of

 network cards, etc.

 6) This interrupt is used by part of the stack-switching code

 added to DOS 3.2 for use with Local Area Network adapters.

 7) The PS/2 puts COM3 through COM8 at port addresses above 3FFh

 (not properly decoded by older PCs) and has all of them sharing

 IRQ3.

 8) Toshiba 1600 laptop normally connects IRQ3 only to internal

 modem slot. You must run FORCE3.COM from Toshiba to enable

 IRQ3 for the expansion slot.

 9) The BIOS Data Area was not set up to point to COM2 on POST in

 some early IBM PS/2 Model 50Z machines.

 10) Marstek 105 scanner - optional IRQ.

 11) Elographics touchscreens use optionally use IRQ 3.

 12) Default for Stargate Plus 8 multiport serial board.

 13) Tecmar/Wangtek PC-36 tape controller board - default IRQ.

 14) Older versions of Microsoft BASICA pretty well booger the IRQ

 and port addresses for the serial ports when they exit.

(internal) Not Present (80286+ protected mode)

 Generated when loading a segment register if the segment

 descriptor indicates that the segment is not currently in

 memory. May be used to implement virtual memory.

+---+

¦Interrupt 0Ch COM1 Serial Port ¦

+---+

(0:0030h) Serial Port 1 (COM1) or internal modem in PCjr or Convertible

 (IRQ4) 8259-1

note 1) IRQ 4 may be used by SDLC (synchronous data-link control) or

 bisynchronous communications cards instead of a serial port.

 2) On some PCs, this interrupt is shared by COM3.

 3) Some Tandy computers use IRQ4 instead of IRQ5 for the hard disk

 interrupt.

 4) Best performance of mice sometimes happens when they are

 configured for IRQ4 instead of IRQ3, since some mouse drivers

 may lock system interrupts for long periods.

 5) Elographics touchscreens use optionally use IRQ 4.

 6) Older versions of Microsoft BASICA pretty well booger the IRQ

 and port addresses for the serial ports when they exit.

(internal) Stack Fault (80286+ protected mode)

 Generated on stack overflow/underflow. Note that the 80286

 will shut down in real mode if SP=1 before a push.

+---+

¦Interrupt 0Dh Hard Disk ¦

+---+

(0:0034h) Miscellaneous uses

 (IRQ5) 8259-1

note 1) Various Tandy 1000 models may use this line for the 60Hhz RAM

 refresh or as "optional bus interrupt."

 2) Used by hard disk on IBM XT and most compatibles.

 3) LPT2 on AT, XT/286, and PS/2

 4) Dummy CRT vertical retrace on PCjr

 5) Marstek 105 scanner - default IRQ.

 6) Elographics touchscreens use IRQ 5 (2,3,4 & 7 also selectable)

(internal) General Protection Violation (80286+)

 Called in real mode when an instruction attempts to access

 a word operand located at offset 0FFFFh or a PUSH MEM or POP

 MEM instruction contains an invalid bit code in the second

 byte, or when an instruction exceeds the maximum length

 allowed (10 bytes for 80286, 15 bytes for 80386)

+---+

¦Interrupt 0Eh Diskette Interrupt ¦

+---+

(0:0038h) Generated by floppy controller on completion of an operation

 (IRQ6) (sets bit 8 of 40:3E)

note Tecmar PC-36 tape controllers use this setting by default, as

 they are not intended to be used when floppies are to be

 accessed.

(internal) Page Fault (80386+ native mode)

+---+

¦Interrupt 0Fh Reserved by IBM ¦

+---+

(0:003Ch) IRQ7 used by 8259 PPI interrupt (LPT1, LPT2)

 (IRQ7)

note 1) Generated by the LPT1 printer adapter when printer becomes

 ready. Many printer adapters do not reliably generate this

 interrupt.

 2) This interrupt is normally avoided. If a bad interrupt occurs,

 it will vector to this spot (when caused by a misprogrammed

 8259 PIC)

 3) According to the Creative Labs Sound Blaster board docs, some

 Tandy 1000 models use this interrupt internally.

 4) Elographics touchscreens use optionally use IRQ 7.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R T H R E E

 R O M B I O S A N D S E R V I C E I N T E R R U P T S

 C O N T E N T S

Calling the ROM BIOS .. 3**1

Interrupt 10h Video Services 3**2

Interrupt 11h Equipment Check 3**3

Interrupt 12h Memory Size 3**4

Interrupt 13h Disk Functions 3**5

Interrupt 14h Initialize and Access Serial Port 3**6

 FOSSIL Drivers 3**7

Interrupt 15h Cassette I/O 3**8

Interrupt 16h Keyboard I/O 3**9

Interrupt 17h Printer .. 3**10

Interrupt 18h ROM BASIC .. 3**11

Interrupt 19h Bootstrap Loader 3**12

Interrupt 1Ah Time of Day 3**13

Interrupt 1Bh Control-Break 3**14

Interrupt 1Ch Timer Tick 3**15

Interrupt 1Dh Vector of Video Initialization Parameters 3**16

Interrupt 1Eh Vector of Diskette Controller Parameters 3**17

Interrupt 1Fh Ptr to Graphics Char Extensions (Graphics Set 2) . 3**18

 The ROM BIOS is the lowest level of software access. It contains

the following routines:

 (all)

 power-on self-test (POST)

 boostrap loader

 clock

 floppy disk I/O

 video I/O

 keyboard

 serial ports

 parallel ports

 print screen

 equipment check

 report memory size

 (AT)

 hard disk I/O

 report memory size (extended memory)

 extended memory block moves

 enhanced video and keyboard I/O

 high resolution timer

 alarm

 Machines such as the PC Convertible, PCjr, and non-IBM machines add

additional functions.

Calling the ROM BIOS .. 3**1

 The BIOS services are invoked by placing the number of the desired

function in register AH, subfunction in AL, setting the other

registers to any specific requirements of the function, and invoking

any of ints 10h through int 1Fh.

 The original IBM PC Technical Reference gave the absolute addresses

of the ROM routines. Some early software jumped directly to these

addresses, with mixed results on non-IBM BIOSes. This practice was

common on machines predating the PC, but there is no practical use for

it now. The OS/2 1.x Compatibility Box also does not support jumping

directly into the ROM.

 When the interrupt is called, all register and flag values are

pushed into the stack. The interrupt address contains a pointer into

an absolute address in the ROM BIOS chip address space. This location

may be further vectored into the IBMBIO.COM (or equivalent) file or

user file.

 At power-up, many BIOSes point unused interrupt vectors to zero.

Others point to an interrupt handler routine, usually just an IRET

instruction. Still others don't even make an attempt to initialize

unused vectors. A common programming mistake is to expect

uninitialized vectors will be zero.

 The address vector points to a particular BIOS command handler. The

handler pops the register values, compares them to its list of

functions, and executes the function if valid. When the function is

complete, it may pass values back to the command handler. The handler

will push the values into the stack and then return control to the

calling program.

 Most functions will return an error code; some return more

information. Details are contained in the listings for the individual

functions.

 Register settings listed are the ones used by the BIOS. Some

functions will return with garbage values in unused registers. Do not

test for values in unspecified registers; your program may exhibit odd

behavior.

 Three sets of BIOS routines are available: PC BIOS, AT BIOS (also

called CBIOS or "Old compatibility BIOS", and the PS/2 ABIOS "Advanced

BIOS".

 The Advanced BIOS is contained in PS/2 ROMs. It is primarily

intended for OS use rather than application use. OS/2 can take

advantage of ABIOS routines to reduce RAM use on PS/2 systems. The

ABIOS can be replaced by disk and RAM based ABIOS code if desired.

There is a new BIOS Data Area defined in high memory that occupies one

K of RAM. In OS/2 systems, parts of the ABIOS are replaced by OS/2

drivers.

 While the CBIOS must be addressed via pointers, the routines in the

ABIOS are fixed in absolute locations so they can be referenced

directly by OS/2.

 The ABIOS can run in protected mode, and is fully reentrant. It

supports three types of function requests - single staged, discrete

multistaged, or continuous multistaged. A single-staged request does

its job immediately and returns control to the caller. A discrete

multistaged request may happen in two or more stages with pauses

between the stages. The caller may regain control during the pauses.

A continuous multistaged request starts a staged operation that never

ends. (sometimes called a daemon).

 Unlike the CBIOS which is called with software interrupts, ABIOS is

accessed with FAR calls. ABIOS calls are completely reentrant in both

real and protected modes. To call an ABIOS function, the calling

program must pass pointers to two data structures - a request block

and a common data area. The request block specifies the desired

function number and the common data area is a table that contains

pointers to all the ABIOS' other tables and data areas. The common

data area's internal structure contains the function transfer tables

which have the addresses of the BIOS routines.

ABIOS stack frame and calling conventions:

 bytes stack contents

 2 common data area pointer (segment/selector only)

 required

 4 request block pointer - required

 4 function transfer table pointer - furnished by ABIOS

 or caller

 4 device block pointer - furnished by ABIOS or caller

 4 return address

 In ABIOS Transfer Convention, only the first two items are required.

ABIOS assigns the second two. In Operating System Transfer

Convention, the caller provides the second two. Since the parameters

are not removed from the stack on return to the caller, the operating

system may save the function transfer table and device addresses after

they have been furnished by the ABIOS by a call.

 ABIOS does no interrupt arbitration. It assumes all interrupts are

handled by the caller or the OS and it is called only for service. If

more than one device is sharing a hardware interrupt, the OS must

determine which interrupt is valid for the ABIOS.

 OS/2 may use the ABIOS if found, but otherwise duplicates the BIOS

calls for the DOS Compatibility Box by vectoring BIOS calls into its

own device drivers. This makes it rather difficult for DOS drivers

for mass storage, high resolution video boards, multitasking APIs

using int 15h, etc. If your software needs to manipulate hardware

directly you might want to check if your code is running under OS/2.

The simplest method is to check for DOS version 10 or higher.

note Some references list an "XT/2" machine, which was reputedly

 an 8mHz 8088 with 640k and a clock on the motherboard. IBM

 doesn't list such a machine, and I have a late '86 XT, one of

 the last made. It is pretty much like the older ones.

+---+

¦Interrupt 10h Video Services 3**2 ¦

+---+

(0:0040h) The BIOS Video Services may be found in Chapter 16.

(internal) Coprocessor Error (80286+)

 Generated by the CPU when the -ERROR pin is asserted by the

 coprocessor (usually 80x87, but may be any multimaster CPU or

 alternate NDP such as Weitek, etc.). ATs and clones usually

 wire the coprocessor to use IRQ13, but not all get it right.

+---+

¦Interrupt 11h Equipment Check 3**3 ¦

+---+

(0:0044h) Reads the BIOS Data Area and returns two bytes of setup

 information.

entry no parameters are required

return AX Equipment listing word. Bits are:

 0 number of floppy drives

 0 no drives

 1 bootable (IPL) diskette drive installed

 1 math chip

 0 no math coprocessor (80x87) present

 1 math coprocessor (80x87) present

 (PS/2) 2 0 mouse not installed

 1 mouse installed

 (PC) 2,3 system board RAM

 0,0 16k (PC-0, PC-1)

 0,1 32k

 1,0 48k

 1,1 64k (PC-2, XT)

 note 1) not commonly used. Set both bits to 1

 2) both bits always 1 in AT

 4,5 initial video mode

 0,0 no video installed

 (use with dumb terminal)

 0,1 40x25 color (CGA)

 1,0 80x25 color

 (CGA, EGA, PGA, MCGA, VGA)

 1,1 80x25 monochrome (MDA or Hercules,

 most super-hires mono systems)

 6,7 number of diskette drives (only if bit 0 is 1)

 0,0 1 drives

 0,1 2 drives

 1,0 3 drives

 1,1 4 drives

 8 0 DMA present

 1 no DMA (PCjr, some Tandy 1000s, 1400LT)

 9,A,B number of RS232 serial ports (0-3)

 0,0,0 none

 0,0,1 1

 0,1,0 2

 0,1,1 3

 1,0,0 4

 C 0 no game I/O attached

 1 game I/O attached (default for PCjr)

 D serial accessory installation

 0 no serial accessories installed

 1 Convertible - internal modem installed

 or PCjr - serial printer attached

 E,F number of parallel printers

 0,0 none

 0,1 one (LPT1, PRN)

 1,0 two (LPT2)

 1,1 three (LPT3)

 note Models before PS/2 would allow a fourth

 parallel printer. Remapping of the

 BIOS in the PS/2s does not allow the

 use of LPT4.

 (386 extended AX)

 23d 0 Weitek ABACUS - virtual '86 EMS page

 tables not correctly initialized

 1 Weitek ABACUS - virtual '86 EMS page

 tables OK

 24d 0 Weitek ABACUS NDP not present

 1 Weitek ABACUS NDP present

note Not all BIOSes properly return the presence of a game port.

 In my experience, most BIOSes require a joystick to actually

 be present even if the port is otherwise enabled.

+---+

¦Interrupt 12h Memory Size 3**4 ¦

+---+

(0:0048h) get amount of system memory

entry no parameters required

return AX number of contiguous 1K RAM blocks available for DOS

note 1) This is the same value stored in absolute address 04:13h.

 2) For some early PC models, the amount of memory returned by this

 call is determined by the settings of the DIP switches on the

 motherboard and may not reflect all the memory that is

 physically present.

 3) For the PC/AT, the value returned is the amount of functional

 memory found during the power-on self-test, regardless of the

 memory size configuration information stored in CMOS RAM.

 4) The value returned does not reflect any extended memory (above

 the 1 Mb boundary) that may be present on machines using 80286

 or later microprocessors.

+---+

¦Interrupt 13h Disk Functions 3**5 ¦

+---+

(0:0049h) The service calls for BIOS disk functions are located

 in Chapter 8.

+---+

¦Interrupt 14h Initialize and Access Serial Port For Int 14 3**6 ¦

+---+

Note 1) Some IBM PS/2 Model 50Z machines were delivered with serial

 ports that did not meet specification. Some cheap clone serial

 ports may also be troublesome.

 2) The standard IBM serial routines are unbuffered and not

 interrupt driven. They are fairly useless for anything other

 than serial printers. Most application software either

 programs the UARTs directly or use a driver with a high-level

 interface such as a FOSSIL.

 3) PC-MOS/386' $SERIAL.SYS driver is buffered, device-independent,

 and interrupt-driven. It supports COM1 through COM24.

(0:0050h) the following status is defined:

 serial status byte:

 bits 0 delta clear to send

 1 delta data set ready

 2 trailing edge ring detector

 3 delta receive line signal detect

 4 clear to send

 5 data set ready

 6 ring indicator

 7 receive line signal detect

 line status byte:

 bits 0 data ready

 1 overrun error

 2 parity error

 3 framing error

 4 break detect

 5 transmit holding register empty

 6 transmit shift register empty

 7 time out

 note: if bit 7 set then other bits are invalid

 Though present on the IBM PS/2s, COM3 and COM4 are not widely

 standardized across the industry. The most common definitions

 are:

 port addr. IRQ interrupt

 COM1 3F8 IRQ4 int 0Ch

 COM2 2F8 IRQ3 int 0Bh

 COM3 3E8 IRQ4 int 0Ch

 COM4 2E8 IRQ3 int 0Bh

 As you can see, COM1/COM3 and COM2/COM4 are siamesed. Since

 the ISA bus does not support shared interrupts, simultaneous

 access of two of a pair may cause conflict. For example, a

 mouse and a modem would not coexist well on paired ports.

 All routines have AH=function number and DX=RS232 card number (0

based). AL=character to send or received character on exit, unless

otherwise noted.

entry AH 00h Initialize and Access Serial Port

 bit pattern: BBBPPSLL

 BBB = baud rate: 110, 150, 300, 600, 1200,

 2400, 4800, 9600

 PP = parity: 01 = odd, 11 = even

 S = stop bits: 0 = 1, 1 = 2

 LL = word length: 10 = 7-bits, 11 = 8-bits

 AL parms for initialization:

 bit pattern:

 0 word length

 1 word length

 2 stop bits

 3 parity

 4 parity

 5 baud rate

 6 baud rate

 7 baud rate

 word length 10 7 bits

 11 8 bits

 stop bits 0 1 stop bit

 1 2 stop bits

 parity 00 none

 01 odd

 11 even

 baud rate 000 110 baud

 001 150 baud

 010 300 baud

 011 600 baud

 100 1200 baud

 101 2400 baud

 110 4800 baud

 111 9600 baud (4800 on PCjr)

 DX port number (0=COM1, 1=COM2, etc.)

return AH line status

 AL modem status

note To initialize the serial port to more than 9600 baud on PS/2

 machines, see functions 04h and 05h.

Function 01h Send Character in AL to Comm Port

entry AH 01h

 AL character

 DX port number (0 - 3)

return AH RS232 status code

 bit 0 data ready

 1 overrun error

 2 parity error

 3 framing error

 4 break detected

 5 transmission buffer register empty

 6 transmission shift register empty

 7 timeout

 AL modem status

 bit

 0 delta clear-to-send

 1 delta data-set-ready

 2 trailing edge ring detected

 3 change, receive line signal detected

 4 clear-to-send

 5 data-set-ready

 6 ring received

 7 receive line signal detected

Function 02h Wait For A Character From Comm Port DX

entry AH 02h

 DX port number (0-3)

return AL character received

 AH error code (see above)(00h for no error)

Function 03h Fetch the Status of Comm Port DX (0 or 1)

entry AH 03h

 DX port (0-3)

return AH set bits (01h) indicate comm-line status

 bit 7 timeout

 bit 6 empty transmit shift register

 bit 5 empty transmit holding register

 bit 4 break detected ("long-space")

 bit 3 framing error

 bit 2 parity error

 bit 1 overrun error

 bit 0 data ready

 AL set bits indicate modem status

 bit 7 received line signal detect

 bit 6 ring indicator

 bit 5 data set ready

 bit 4 clear to send

 bit 3 delta receive line signal detect

 bit 2 trailing edge ring detector

 bit 1 delta data set ready

 bit 0 delta clear to send

Function 04h Extended Initialize

 (Convertible, PS/2)

entry AH 04h

 AL break status

 01h if break

 00h if no break

 BH parity

 00h no parity

 01h odd parity

 02h even parity

 03h stick parity odd

 04h stick parity even

 BL number of stop bits

 00h one stop bit

 01h 2 stop bits (1½ if 5 bit word length)

 CH word length

 00h 5 bits

 01h 6 bits

 02h 7 bits

 03h 8 bits

 CL baud rate

 00h 110

 01h 150

 02h 300

 03h 600

 04h 1200

 05h 2400

 06h 4800

 07h 9600

 08h 19200

 DX comm port (0-3)

return AH line control status

 AL modem status

note Provides a superset of fn 00h capabilities for PS/2 machines.

Function 05h Extended Communication Port Control

 (Convertible, PS/2)

entry AH 05h

 AL 00h read modem control register

 01h write modem control register

 BL modem control register

 bits 0 DTR data terminal ready

 1 RTS request to send

 2 out1

 3 out2

 4 loop

 5,6,7 reserved

 DX port number (0=COM1, 1=COM2, etc.)

return AH port status (see 00h above)

 AL modem status (see 00h above)

 BL modem control register (see 01h above)

Function 80-97h PC-MOS/386 Serial Device Interface

 (see PCMOS xhapter)

FOSSIL Drivers .. 3**7

Interrupt 14h FOSSIL (Fido/Opus/Seadog Standard Interface Level)

 A FOSSIL is a device driver for handling the IBM PC

 serial communications ports in a standard fashion from

 an application (communications) program. A FOSSIL

 chains into the int 14h BIOS communications vector and

 replaces many functions with enhanced routines which

 may be easily accessed by an application.

 For all functions, all registers not specifically

 containing a function return value must be preserved

 across the call.

entry AH 00h FOSSIL: Set Baud Rate And Parameters

 AL byte

 bits 7,6,5 baudrate

 000 19200 baud

 001 38400 baud

 010 300 baud

 011 600 baud

 100 1200 baud

 101 2400 baud

 110 4800 baud

 111 9600 baud

 bits 4,3 parity

 00 none

 01 odd

 10 none

 11 even

 bit 2 stop bits

 0 1 stop bit

 1 2 stop bits

 bit 1 char length

 0 5 bits plus value

 other optional

 DX port number (NOP if DX=00FFh)

return AX status (see fn 03h)

note Low-order 5 bits are undefined by FOSSIL 1.0 spec.

entry AH 01h FOSSIL: Transmit Character With Wait

 AL ASCII value of character to be sent

 DX port number (NOP if DX=00FFh)

return AX status bits (see function 03h)

note Character is queued for transmission. If there is room in the

 transmitter buffer when this call is made, the character will

 be stored and control returned to caller. If the buffer is

 full, the driver will wait for room. Use this function with

 caution when flow control is enabled.

entry AH 02h FOSSIL: Receive A Character With Wait

 DX port number (0-3) (NOP if DX=00FFh)

return AH RS-232 status code (see AH=00h above)

 AL ASCII value of character received from serial port

note Will timeout if DSR is not asserted, even if function 03h

 returns data ready.

entry AH 03h FOSSIL: Request Status

 DX port number (NOP if DX=00FFh)

return AX status bit mask

 AH bit 0 set RDA input data is available

 in buffer

 1 set OVRN input buffer overrun

 2 N/A

 3 N/A

 4 N/A

 5 set THRE room is available in output

 buffer

 6 set TSRE output buffer is empty

 7 N/A

 AL bit 0 N/A

 1 N/A

 2 N/A

 3 set this bit is always set

 4 N/A

 5 N/A

 6 N/A

 7 set DCD carrier detect

note Bit 3 of AL is always returned set to enable programs to use

 it as a carrier detect bit on hardwired (null modem) links.

entry AH 04h FOSSIL: Initialize FOSSIL Driver

 BX 4F50h (optional)

 DX port number (DX=00FFh special)

 ES:CX pointer to ^C flag address (optional)

return AX 1954h if successful

 BL maximum function number supported (excluding 7Eh-0BFh)

 BH revision of FOSSIL supported

note 1) DTR is raised when FOSSIL inits.

 2) Existing baudrate is preserved.

 3) If BX contains 4F50h, the address specified in ES:CX is that

 of a ^C flag byte in the application program, to be

 incremented when ^C is detected in the keyboard service

 routines. This is an optional service and only need be

 supported on machines where the keyboard service can't (or

 won't) perform an int 1Bh or int 23h when a control-C is

 entered.

entry AH 05h FOSSIL: Deinitialize FOSSIL Driver

 DX port number (DX=00FFh special)

return none

note 1) DTR is not affected.

 2) Disengages driver from comm port. Should be done when

 operations on the port are complete.

 3) If DX=00FFh, the initialization that was performed when

 FOSSIL function 04h with DX=00FFh should be undone.

entry AH 06h FOSSIL: Raise/Lower DTR

 AL DTR state to be set

 00h lower DTR

 01h raise DTR

 DX comm port (NOP if DX=00FFh)

return none

entry AH 07h FOSSIL: Return Timer Tick Parameters

return AH ticks per second on interrupt number shown in AL

 AL timer tick interrupt number (not vector!)

 DX milliseconds per tick (approximate)

entry AH 08h FOSSIL: Flush Output Buffer

 DX port number (NOP if DX=00FFh)

return none

note Waits until all output is done.

entry AH 09h FOSSIL: Purge Output Buffer

 DX port number (NOP if DX=00FFh)

return none

note Returns to caller immediately.

entry AH 0Ah FOSSIL: Purge input buffer

 DX port number (NOP if DX=00FFh)

return none

note 1) If any flow control restraint has been employed (dropping

 RTS or transmitting XOFF) the port will be "released" by

 doing the reverse, raising RTS or sending XON.

 2) Returns to caller immediately.

entry AH 0Bh FOSSIL: Transmit No Wait

 AL ASCII character value to be sent

 DX port number (NOP if DX=00FFh)

return AX 0000h character not accepted

 0001h character accepted

note This is exactly the same as the "regular" transmit call

 except that if there is no space available in the output

 buffer a value of zero is returned in AX, if room is

 available a value 1 (one) is returned.

entry AH 0Ch FOSSIL: Nondestructive Read No Wait

 DX port number (NOP if DX=00FFh)

return AH character

 0FFFFh character not available

note 1) Reads async buffer.

 2) Does not remove keycode from buffer.

entry AH 0Dh FOSSIL: Keyboard Read No Wait

return AX IBM keyboard scan code or

 0FFFFh if no keyboard character available

note 1) Use IBM-style function key mapping in the high order byte.

 2) Scan codes for non function keys are not specifically

 required but may be included.

 3) Does not remove keycode from buffer.

entry AH 0Eh FOSSIL: Keyboard Input With Wait

return AX IBM keyboard scan code

note Returns the next character from the keyboard or waits if

 no character is available.

entry AH 0Fh FOSSIL: Toggle Flow Control

 AL bit mask describing requested flow control

 bits 0 XON/XOFF on transmit (watch for XOFF while

 sending)

 1 CTS/RTS (CTS on transmit/RTS on receive)

 2 reserved

 3 XON/XOFF on receive (send XOFF when buffer

 near full)

 4-7 not used, FOSSIL spec calls for setting to 1

 DX port number (NOP if DX=00FFh)

return none

note 1) Bit 2 is reserved for DSR/DTR, but is not currently

 supported in any implementation.

 2) TRANSMIT flow control allows the other end to restrain the

 transmitter when you are overrunning it. RECEIVE flow control

 tells the FOSSIL to attempt to do just that if it is being

 overwhelmed.

 3) Enabling transmit XON/XOFf will cause the FOSSIL to stop

 transmitting upon receiving an XOFf. The FOSSIL will resume

 transmitting when an XON is received.

 4) Enabling CTS/RTS will cause the FOSSIL to cease transmitting

 when CTS is lowered. Transmission will resume when CTS is

 raised. The FOSSIL will drop RTS when the receive buffer

 reaches a predetermined percentage full. The FOSSIL will

 raise RTS when the receive buffer empties below the

 predetermined percentage full. The point(s) at which this

 occurs is left to the individual FOSSIL implementor.

 5) Enabling receive Xon/Xoff will cause the FOSSIL to send an XOFF

 when the receive buffer reaches a pre-determined percentage

 full. An XON will be sent when the receive buffer empties

 below the predetermined percentage full. The point(s) at which

 this occurs is left to the individual FOSSIL implementor.

 6) Applications using this function should set all bits ON in the

 high nibble of AL as well. There is a compatible (but not

 identical) FOSSIL driver implementation that uses the high

 nibble as a control mask. If your application sets the high

 nibble to all ones, it will always work, regardless of the

 method used by any given driver.

entry AH 10h Extended Ctrl-C/Ctrl-K Checking

 And Transmit On/Off

 AL flags bit mask byte (bit set if activated)

 bits 0 enable/disable Ctrl-C/Ctrl-K checking

 1 disable/enable the transmitter

 2-7 not used

 DX port number (NOP if DX=00FFh)

return AX status byte

 0000h control-C/K has not been received

 0001h control-C/K has been received

note This is used primarily for programs that can't trust XON/XOFF

 at FOSSIL level (such as BBS software).

entry AH 11h FOSSIL: Set Current Cursor Location

 DH row (line) 0-24

 DL column 0-79

return none

note 1) This function looks exactly like the int 10h, fn 02h on the

 IBM PC. The cursor location is passed in DX: row in DH and

 column in DL. This function treats the screen as a coordinate

 system whose origin (0,0) is the upper left hand corner of the

 screen.

 2) Row and column start at 0.

entry AH 12h FOSSIL: Read Current Cursor Location

return DH row (line)

 DL column

note 1) Looks exactly like int 10h/fn 03h in the IBM PC BIOS. The

 current cursor location (same coordinate system as function

 16h) is passed back in DX.

 2) Row and column start at 0.

entry AH 13h FOSSIL: Single Character ANSI Write To Screen

 AL value of character to display

return none

note This call might not be reentrant since ANSI processing may be

 through DOS.

entry AH 14h FOSSIL: Toggle Watchdog Processing

 AL 00h to disable watchdog

 01h to enable watchdog

 DX port number (NOP if DX=00FFh)

return none

note 1) This call will cause the FOSSIL to reboot the system if Carrier

 Detect for the specified port drops while watchdog is turned

 on.

 2) The port need not be active for this function to work.

entry AH 15h FOSSIL: Write Character To Screen Using BIOS

 AL ASCII code of character to display

return none

note 1) This function is reentrant.

 2) ANSI processing may not be assumed.

entry AH 16h FOSSIL: Insert or Delete a Function From The

 Timer Tick Chain

 AL 00h to delete a function

 01h to add a function

 ES:DX address of function

return AX 0000h successful

 0FFFFh unsuccessful

entry AH 17h FOSSIL: Reboot System

 AL boot type

 00h cold boot

 01h warm boot

return none

entry AH 18h FOSSIL: Read Block

 CX maximum number of characters to transfer

 DX port number (NOP if DX=00FFh)

 ES:DI pointer to user buffer

return AX number of characters transferred

note 1) This function does not wait for more characters to become

 available if the value in CX exceeds the number of characters

 currently stored.

 2) ES:DI are left unchanged by the call; the count of bytes

 actually transferred will be returned in AX.

entry AH 19h FOSSIL: Write Block

 CX maximum number of characters to transfer

 DX port number (NOP if DX=00FFh)

 ES:DI pointer to user buffer

return AX number of characters transfered

note ES and DI are not modified by this call.

entry AH 1Ah FOSSIL: BREAK Signal Begin Or End

 AL 00h stop sending 'break'

 01h start sending 'break'

 DX port number (NOP if DX=00FFh)

return none

note 1) Resets all transmit flow control restraints such as an XOFF

 received from remote.

 2) Init (fn 04h) or UnInit (fn 05h) will stop an in-progress

 break.

 3) The application must determine the "length" of the break.

entry AH 1Bh FOSSIL: Return Driver Information

 CX size of user buffer in bytes

 DX port number (if DX=00FFh, port data will not be valid)

 ES:DI pointer to user buffer

return AX number of characters transferred

 ES:DI user buffer structure:

 00h word size of structure in bytes

 02h byte FOSSIL driver version

 03h byte revision level of this specific driver

 04h dword FAR pointer to ASCII ID string

 08h word size of the input buffer in bytes

 0Ah word number of bytes in input buffer

 0Ch word size of the output buffer in bytes

 0Eh word number of bytes in output buffer

 10h byte width of screen in characters

 11h byte screen height in characters

 12h byte actual baud rate, computer to modem

 (see mask in function 00h

note 1) The baud rate byte contains the bits that fn 00h would use to

 set the port to that speed.

 2) The fields related to a particular port (buffer size, space

 left in the buffer, baud rate) will be undefined if port=0FFh

 or an invalid port is contained in DX.

 3) Additional information will always be passed after these, so

 that the fields will never change with FOSSIL revision changes.

entry AH 7Eh FOSSIL: Install An External Application Function

 AL code assigned to external application

 ES:DX pointer to entry point

return AX 1954h FOSSIL driver present

 not 1954h FOSSIL driver not present

 BH 00h failed

 01h successful

 BL code assigned to application (same as input AL)

note 1) Application codes 80h-0BFh are supported. Codes 80h-83h are

 reserved.

 2) An error code of BH=00h with AX=1954h should mean that another

 external application has already been installed with the code

 specified in AL.

 3) Applications are entered via a FAR call and should make a FAR

 return.

entry AH 7Fh FOSSIL: Remove An External Application Function

 AL code assigned to external application

 ES:DX pointer to entry point

return AX 1954h

 BH 00h failed

 01h successful

 BL code assigned to application (same as input AL)

+---+

¦Interrupt 15h Cassette I/O 3**8 ¦

+---+

(0:0054h) 1) Renamed "System Services" on PS/2 line.

 2) Issuing int 15h on an XT may cause a system crash.

 On AT and after, interrupts are disabled with CLI when

 the interrupt service routine is called, but most ROM

 versions do not restore interrupts with STI.

 3) For the original IBM PC, int 15h returns AH=80h and CF

 set for all calls with AH not 0,1, or 2.

 4) For the PC/XT int 15h returns AH=86h, CF set if called

 at all. (the PC/XT ROM BIOS does not support int 15h)

 5) For the AT/339, int 15h returns AH=86h, CF set if

 called with an invalid function code.

Function 00h Turn Cassette Motor On

 (PC, PCjr only)

entry AH 00h

return CF set on error

 AH error code

 00h no errors

 01h CRC error

 02h bad tape signals

 no data transitions (PCjr)

 03h no data found on tape

 not used (PCjr)

 04h no data

 no leader (PCjr)

 80h invalid command

 86h no cassette present

 not valid in PCjr

note NOP for systems where cassette not supported.

Function 01h Turn Cassette Motor Off

 (PC, PCjr only)

entry AH 01h

return CF set on error

 AH error code (86h)

note NOP for systems where cassette not supported.

Function 02h Read Blocks From Cassette

 (PC, PCjr only)

entry AH 02h

 CX number of bytes to read

 ES:BX segment:offset + 1 of last byte read

return CF set on error

 AH error code (01h, 02h, 04h, 80h, 86h)

 DX count of bytes actually read

 ES:BX pointer past last byte written

note 1) NOP for systems where cassette not supported.

 2) Cassette operations normally read 256 byte blocks.

Function 03h Write Data Blocks to Cassette

 (PC, PCjr only)

entry AH 03h

 CX count of bytes to write

 ES:BX pointer to data buffer

return CF set on error

 AH error code (80h, 86h)

 CX 00h

 ES:BX pointer to last byte written+1

note 1) NOP for systems where cassette not supported.

 2) The last block is padded to 256 bytes with zeroes if needed.

 3) No errors are returned by this service.

Function 0Fh ESDI Format Unit Periodic Interrupt

 (PS/2 50+)

entry AH 0Fh

 AL phase code

 00h reserved

 01h surface analysis

 02h formatting

return CF clear if formatting should continue

 set if it should terminate

note 1) Called the BIOS on the ESDI Fixed Disk Drive Adapter/A during

 a format or surface analysis operation after each cylinder is

 completed.

 2) This function call can be captured by a program so that it

 will be notified as each cylinder is formatted or analyzed.

 The program can count interrupts for each phase to determine

 the current cylinder number.

 3) The BIOS default handler for this function returns with CF set.

Function 10h TopView API Function Calls (TopView)

 see Chapter 17

Function 20h PRINT.COM (DOS 3.1+ internal)

 (AT, XT/286, PS/2 50+)

entry AH 20h

 AL subfunction

 00h disable critical region flag

 01h set critical region flag

 ES:BX pointer to flag byte set while inside

 DOS calls

 10h set up SysReq routine

 11h completion of SysReq routine (software only)

Function 21h Read Power-On Self Test (POST) Error Log

 (PS/2 50+)

entry AH 21h

 AL 00h read POST log

 01h write POST log

 BH device ID

 BL device error code

return CF set on error

 AH status

 00h successful read

 BX number of POST error codes stored

 ES:DI pointer to error log

 01h list full

 80h invalid command

 86h function unsupported

note The log is a series of words, the first byte of which

 identifies the error code and the second is the device ID.

Function 40h Read/Modify Profiles

 (Convertible)

entry AH 40h

 AL 00h read system profile in CX,BX

 01h write system profile from CX, BX

 02h read internal modem profile in BX

 03h write internal modem profile from BX

 BX profile info

return BX internal modem profile (from 02h)

 CX,BX system profile (from 00h)

Function 41h Wait On External Event

 (Convertible)

entry AH 41h

 AL condition type

 bits 0-2 condition to wait for

 0,0,0 any external event

 0,0,1 compare and return if equal

 0,1,0 compare and return if not equal

 0,1,1 test and return if not zero

 1,0,0 test and return if zero

 3 reserved

 4 0 user byte

 1 port address

 5-7 reserved

 BH condition compare or mask value

 condition codes:

 00h any external event

 01h compare and return if equal

 02h compare and return if not equal

 03h test and return if not zero

 04h test and return if zero

 BL timeout value times 55 milliseconds

 00h if no time limit

 DX I/O port address (if AL bit 4=1)

 ES:DI pointer to user byte (if AL bit 4=0)

Function 42h Request System Power Off

 (Convertible)

entry AH 42h

 AL 00h to use system profile

 01h to force suspend regardless of profile

return unknown

note With early versions of DOS 5.0, the IBM L40SX would not

 Suspend/Resume if DOS=LOW was in CONFIG.SYS.

Function 43h Read System Status

 (Convertible)

entry AH 43h

return AL status byte

 bit 0 LCD detached

 1 reserved

 2 RS232/parallel powered on

 3 internal modem powered on

 4 power activated by alarm

 5 bad time

 6 external power in use

 7 battery low

Function 44h Toggle Internal Modem Power

 (Convertible)

entry AH 44h

 AL 00h to power off

 01h to power on

return unknown

Function 4Fh OS Hook - Keyboard Intercept

 (except PC, PCjr, and XT)

entry AH 4Fh

 AL scan code, CF set

return AL scan code

 CF set processing desired

 clear scan code should not be used

note 1) Called by int 9 handler for each keystroke to translate scan

 codes.

 2) An OS or a TSR can capture this function to filter the raw

 keyboard data stream. The new handler can substitute a new

 scan code, return the same scan code, or return the carry flag

 clear causing the keystroke to be discarded. The BIOS default

 routine simply returns the scan code unchanged.

 3) A program can call int 15h/fn0C0h to determine whether the host

 machine's BIOS supports keyboard intercept.

 4) Used internally by PC-MOS/386 v4.00+ for keyboard input.

 5) Some BIOSes do not properly support this call. Int 15h/fn 0C0h

 will tell if the BIOS is supposed to support this call.

 6) Some versions of KEYB.COM provide additional 4Fh support.

Function 70h EEROM handler

 (Tandy 1000HX)

entry AH 00h read from EEROM

 BL 00h

 01h write to EEROM

 BL word number to write (0-15)

 DX word value to write

return DX (AH=00h) word value

 CF set on error (system is not a Tandy 1000 HX)

Function 80h OS Hook - Device Open

 (AT, XT/286, PS/2)

entry AH 80h

 BX device ID

 CX process ID

return CF set on error

 AH status

 00h OK

note 1) Acquires ownership of a logical device for a process.

 2) This call, along with fns 81h and 82h, defines a simple

 protocol that can be used to arbitrate usage of devices by

 multiple processes. A multitasking program manager would be

 expected to capture int 15h and provide the appropriate

 service.

 3) The default BIOS routine for this function simply returns with

 CF clear and AH=00h.

Function 81h Device Close

 (AT, XT/286, PS/2)

entry AH 81h

 BX device ID

 CX process ID

return CF set on error

 AH status

 00h OK

note 1) Releases ownership of a logical device for a process.

 2) A multitasking program manager would be expected to capture

 int 15h and provide the appropriate service.

 3) The BIOS default routine for this function simply returns with

 the CF clear and AH=00h.

Function 82h Program Termination

 (AT, XT/286, PS/2)

 AH 82h

 BX device ID

return CF set on error

 AH status

 00h OK

note 1) Closes all logical devices opened with function 80h.

 2) A multitasking program manager would be expected to capture

 int 15h and provide the appropriate service.

 3) The BIOS default routine for this function simply returns with

 CF clear and AH=00h.

Function 83h Event Wait

 (AT, XT/286, Convertible, PS/2 50+)

entry AH 83h

 AL 00h to set interval

 01h to cancel (CX:DX and ES:BX not required)

 CX:DX number of microseconds to wait (granularity is 976

 microseconds)

 ES:BX pointer to semaphore flag (bit 7 is set when interval

 expires)

 (pointer is to caller's memory) (some sources list bit

 15 set)

return CF clear OK

 set function already busy

note 1) Requests setting of a semaphore after a specified interval or

 cancels a previous request.

 2) The calling program is responsible for clearing the semaphore

 before requesting this function.

 3) The actual duration of an event wait is always an integral

 multiple of 976 microseconds. The CMOS date/clock chip

 interrupts are used to implement this function.

 4) Use of this function allows programmed, hardware-independent

 delays at a finer resolution than can be obtained through use

 of the MS-DOS Get Time function (int 21h/fn 2Ch) which returns

 time in hundredths of a second.

 5) CX:DX is a four-byte integer.

 7) This function is called by int 70h and is not the normal int

 08h/1Ch clock tick. It is generated by the MC146818A Real Time

 Clock chip. This is the battery backed up CMOS clock chip.

Function 84h Read Joystick Input Settings

 (AT, XT/286, PS/2)

entry AH 84h

 DX 00h to read current switch settings

 (return in AL)

 01h to read resistive inputs

return CF set on error

 (fn 00h)

 AL switch settings (bits 7-4)

 (fn 01h)

 AX stick A (X) value

 BX stick A (Y) value

 CX stick B (X) value

 DX stick B (Y) value

note 1) An error is returned if DX does not contain a valid

 subfunction number.

 2) If no game adapter is installed, all returned values are 00h.

 3) Using a 250K Ohm joystick, the potentiometer values usually

 lie within the range 0-416 (0000h-01A0h).

 4) Not all BIOSes properly return the presence of a game port.

 In my experience, most BIOSes require a joystick to actually

 be present even if the port is otherwise enabled.

Function 85h System Request (SysReq) Key Pressed

 (except PC, PCjr, XT)

entry AH 85h

 AL 00h key pressed

 01h key released

return CF set on error

 AH error code

note 1) Called by BIOS keyboard decode routine when the SysReq key

 is detected.

 2) The BIOS handler for this call is a dummy routine that always

 returns a success status unless called with an invalid

 subfunction number in AL.

 3) A multitasking program manager would be expected to capture

 int 15h so that it can be notified when the user strikes the

 SysReq key.

Function 86h Wait

 (except PC, PCjr, XT)

 AH 86h

 CX:DX 4-byte integer, number of microseconds to wait

 CX high word, DX low word

return CF clear after wait elapses

 CF set immediately due to error

note 1) Suspends the calling program for a specified interval in

 microseconds.

 2) The actual duration of the wait is always an integral multiple

 of 976 microseconds.

 3) Use of this function allows programmed, hardware-independent

 delays at a finer resolution than can be obtained through use

 of the MS-DOS Get Time function (int 21h fn 2Ch) which returns

 time in hundredths of a second.

 4) This function calls int 70h and is not the normal Int 08h/1Ch

 clock tick. It is generated by the MC146818A Real Time Clock

 chip. This is the battery backed CMOS clock chip.

Function 87h Memory Block Move

 (2-3-486 machines only)

 AH 87h

 CX number of words to move

 ES:SI pointer to Global Descriptor Table (GDT)

 offset 00h-0Fh reserved, set to zero

 00h null descriptor

 08h uninitialized, will be made into GDT

 descriptor

 10h-11h source segment length in bytes

 (2*CX-1 or greater)

 12h-14h 24-bit linear source address

 15h access rights byte (always 93h)

 16h-17h reserved, set to zero

 18h-19h destination segment length in bytes

 (2*CX-1 or greater)

 1Ah-1Ch 24-bit linear destination address

 1Dh access rights byte (always 93h)

 1Eh-1Fh reserved, set to zero

 20h *uninitialized, used by BIOS

 28h *uninitialized, will be made into SS

 descriptor

 (*) some sources say initialized to zero

return CF set on error

 AH status

 00h success - source copied into destination

 01h RAM parity error

 02h exception interrupt error

 03h address line 20 gating failed

note 1) The GDT table is composed of six 8-byte descriptors to be

 used by the CPU in protected mode. The four descriptors in

 offsets 00h-0Fh and 20h-2Fh are filled in by the BIOS before

 the CPU mode switch.

 2) The addresses used in the descriptor table are linear

 (physical) 24-bit addresses in the range 000000h-0FFFFFFh -

 not segments and offsets - with the least significant byte at

 the lowest address and the most significant byte at the highest

 address.

 3) Interrupts are disabled during this call; use may interfere

 with the operation of comm programs, network drivers, or other

 software that relies on prompt servicing of hardware interrupts.

 4) This call is not valid in the OS/2 Compatibility Box.

 5) This call will move a memory block from any real or protected

 mode address to any other real or protected mode address.

 6) DESQview does not intercept function 87, but QEXT and QEMM do,

 thereby allowing function 87 to work correctly inside DV.

 VDISK, which uses function 87, works inside DV. If VDISK is

 sitting at the 1 MB mark, then the int 19h vector will have a

 VDISK signature in it. The normal way to check for VDISK

 presence is by checking for the string "VDISK" at offset 12h

 of the segment of the int 19h vector. If the string matches,

 then you can determine how much extended memory is reserved

 for VDISK by looking at offset 2Ch is the 3-byte address of the

 lowest extended memory address NOT in use by VDISK (i.e. if you

 see at 2Ch "00 00 14" then that means that VDISK is using

 memory up to 1 MB + 256K).

Function 88h Get Extended Memory Size

 (AT, XT/286, PS/2)

entry AH 88h

return AX number of contiguous 1K blocks of extended memory

 starting at address 0FFFFh (1024Kb)

note 1) This call will not work in the OS/2 Compatibility Box.

 2) Some BIOSes and software manipulate the Carry flag when this

 function is called. When tested on a vanilla 386 with AMI BIOS

 the machine returned with the Carry Flag set. When 386Max was

 loaded, the flag was not set.

 3) Used by IBM VDISK 4.0.

Function 89h Switch Processor to Protected Mode

 (AT, XT/286, PS/2)

entry AH 89h

 BH interrupt number for IRQ0, written to ICW2 of 8259

 PIC #1 (must be evenly divisible by 8, determines

 IRQ0-IRQ7)

 BL interrupt number for IRQ8, written to ICW2 of 8259

 PIC #2 (must be evenly divisible by 8, determines

 IRQ8-IRQ15)

 ES:SI pointer to 8-entry Global Descriptor Table for

 protected mode:

 offset 00h null descriptor, initialized to zero

 08h GDT descriptor

 10h IDT (Interrupt Descriptor Table)

 descriptor

 18h DS, user's data segment

 20h ES, user's extra segment

 28h SS, user's stack segment

 30h CS, user's code segment

 38h uninitialized, used to build descriptor

 for BIOS code segment

return CF set on error

 AH 0FFh error enabling address line 20

 CF clear function successful (CPU is in protected mode)

 AH 00h

 CS user-defined selector

 DS user-defined selector

 ES user-defined selector

 SS user-defined selector

note 1) The user must initialize the first seven descriptors; the

 eighth is filled in by the BIOS to provide addressability for

 its own execution. The calling program may modify and use the

 eighth descriptor for any purpose after return from this

 function call.

 2) Intercepted by Microsoft's HIMEM.SYS and Quarterdeck's

 QEMM.SYS.

Function 90h Device Busy Loop (except PC, PCjr, XT)

entry AH 90h

 AL predefined device type code:

 00h disk (may timeout)

 01h diskette (may timeout)

 02h keyboard (no timeout)

 03h PS/2 pointing device (may timeout)

 80h network

 (no timeout)

 0FCh hard disk reset (PS/2) (may timeout)

 0FDh diskette motor start (may timeout)

 0FEh printer (may timeout)

 ES:BX pointer to request block for type codes 80h through 0FFh

 (for network adapters, ES:BX is a pointer to network

 control block)

return CF set if wait time satisfied

 clear if driver must perform wait

 AH status

note 1) Used by NETBIOS, TOPS Network, Tom Wagner's CTASK multitasker,

 Hyperdisk disk cache.

 2) Generic type codes are allocated as follows:

 00h-7Fh non-reentrant devices; OS must arbitrate access

 serially reusable devices

 80h-0BFh reentrant devices; ES:BX points to a unique control

 block

 0C0h-0FFh wait-only calls, no complementary POST int 15/fn 91h

 call

 3) Invoked by the BIOS disk, printer, network, and keyboard

 handlers prior to performing a programmed wait for I/O

 completion.

 4) A multitasking program manager would be expected to capture

 int 15h/fn 90h so that it can dispatch other tasks while I/O

 is in progress.

 5) The default BIOS routine for this function simply returns with

 the CF clear and AH=00h.

 6) QEMM 6.0's "Stealth" mode suppresses this call. Quarterdeck

 claims very few programs properly handle the EMS page frame

 when using this call.

Function 91h Interrupt Completed

 (AT, XT/286, PS/2 50+)

entry AH 91h

 AL type code (see AH=90h above)

 00h-7Fh serially reusable devices

 80h-0BFh reentrant devices

 ES:BX pointer to request block for type codes 80h through

 0BFh

return AH 00h

note 1) Used by NETBIOS and TOPS network, Tom Wagner's CTASK

 multitasker, Hyperdisk disk cache.

 2) Invoked by the BIOS disk network, and keyboard handlers to

 signal that I/O is complete and/or the device is ready.

 3) Predefined device types that may use Device POST are:

 00H disk (may timeout)

 01H floppy disk (may timeout)

 02H keyboard (no timeout)

 03H PS/2 pointing device (may timeout)

 80H network (no timeout)

 4) The BIOS printer routine does not invoke this function because

 printer output is not interrupt driven.

 5) A multitasking program manager would be expected to capture

 int 15h/fn 91h so that it can be notified when I/O is

 completed and awaken the requesting task.

 6) The default BIOS routine for this function simply returns with

 the CF flag clear and AH=00h.

 7) QEMM 6.0's "Stealth" mode suppresses this call. Quarterdeck

 claims very few programs properly handle the EMS page frame

 when using this call.

Function 0C0h Get System Configuration

 (XT after 1/10/86, PC Convertible, XT/286, AT, PS/2)

entry AH 0C0h

return CF set if BIOS doesn't support call

 ES:BX pointer to ROM system descriptor table

 bytes 00h-01h number of bytes in the following table

 (normally 16 bytes)

 02h system ID byte; see Chapter 2 for

 interpretation

 03h secondary ID distingushes between AT and

 XT/286, etc.

 04h BIOS revision level, 0 for 1st release, 1 for

 2nd, etc.

 05h feature information byte

 bits 0 reserved

 1 Micro Channel bus (instead of ISA or

 EISA)

 2 extended BIOS area allocated at 640k

 3 wait for external event supported

 (int 15h/fn 41h), used on Convertible;

 reserved on PS/2 systems

 4 keyboard intercept: int 15h, fn 04Fh

 called upon int 09h

 5 realtime clock installed

 6 second 8259 installed (cascaded IRQ2)

 7 DMA channel 3 - used by hard disk

 BIOS

 06h unknown (set to 0) (reserved by IBM)

 07h unknown (set to 0) (reserved by IBM)

 08h unknown (set to 0)

 09h unknown (set to 0) (Award BIOS copyright here)

note 1) Int 15h is also used for the Multitask Hook on PS/2 machines.

 No register settings available yet.

 2) The 1/10/86 XT BIOS returns an incorrect value for the

 feature byte.

 3) Novell documents some versions of Netware prior to 2.2 as

 having problems on PS/2 machines due to a bug which did not

 return from the interrupt correctly.

 4) Some AMI BIOSes do not support this function, such as the

 ones in early Dell machines.

Function 0C1h Return Extended BIOS Data Area Segment Address

 (AT & later)

entry AH 0C1h

return CF set on error

 ES segment of XBIOS data area

note 1) The XBIOS Data Area is allocated at the high end of

 conventional memory during the POST sequence.

 2) The word at 0040:0013h (memory size) is updated to reflect the

 reduced amount of memory available for DOS and application

 programs.

 3) The first byte in the XBIOS Data Area is initialized to its

 length in Kb.

 4) A program can determine whether the XBIOS Data Area exists by

 using int 15h/fn 0C0h.

Function 0C2h Pointing Device BIOS Interface

 (DesQview 2.x) (PS/2)

entry AH 0C2h

 AL 00h Enable/Disable Pointing Device

 BH 00h disable

 01h enable

 01h Reset Pointing Device

 Resets the system's mouse or other pointing

 device, sets the sample rate, resolution, and

 other characteristics to their default values.

 return BH device ID (0=first)

 note 1) After a reset operation, the state of

 the pointing device is as follows:

 disabled;

 sample rate at 100 reports per second;

 resolution at 4 counts per millimeter;

 scaling at 1 to 1.

 2) The data package size is unchanged by

 this function.

 3) Apps can use the fn 0C2h subfunctions

 to initialize the pointing device to

 other parameters, then enable the

 device with fn 00h.

 4) BL is altered on return.

 02h Set Sampling Rate

 BH 00h 10/second

 01h 20/second

 02h 40/second

 03h 60/second

 04h 80/second

 05h 100/second (default)

 06h 200/second

 03h Set Pointing Device Resolution

 BH 00h one count per mm

 01h two counts per mm

 02h four counts per mm (default)

 03h eight counts per mm

 04h Get Pointing Device Type

 return BH ID code for the mouse or other

 pointing device

 05h Initialize Pointing Device Interface

 Sets the data package size for the system's

 mouse or other pointing device, and initializes

 the resolution, sampling rate, and scaling to

 their default values.

 BH data package size (1 - 8 bytes)

 note After this operation, the state of the

 pointing device is as follows:

 a) disabled;

 b) sample rate at 100 reports per

 second;

 c) resolution at 4 counts per

 millimeter;

 d) scaling set at 1 to 1.

 06h Get Status or Set Scaling Factor

 Returns the current status of the system's

 mouse or other pointing device or sets the

 device's scaling factor.

 BH 00h return device status

 return BL status byte

 bits 0 set if right button

 is pressed

 1 reserved

 2 set if left button

 is pressed

 3 reserved

 4 0 1:1 scaling

 1 2:1 scaling

 5 0 device disabled

 1 device enabled

 6 0 stream mode

 1 remote mode

 7 reserved

 CL resolution

 00h 1 count per mm

 01h 2 counts per mm

 02h 4 counts per mm

 03h 8 counts per mm

 DL sample rate (hex count)

 0Ah 10 reports/sec

 14h 20 reports/sec

 28h 40 reports/sec

 3Ch 60 reports/sec

 50h 80 reports/sec

 64h 100 reports/sec

 0C8h 200 reports/sec

 01h set scaling to 1:1

 02h set scaling to 2:1

 07h Set Pointing Device Handler Address

 Notifies BIOS pointing device driver of the

 address for a routine to be called each time

 pointing device data is available.

 ES:BX address of user device handler

 return AL 00h

return CF set on error

 AH status

 00h successful

 01h invalid function

 02h invalid input

 03h interface error

 04h need to resend

 05h no device handler installed

note 1) The values in BH for those functions that take it as input are

 stored in different locations for each subfunction.

 2) The user's handler for pointing device data is entered via a

 FAR call with four parameters on the stack:

 SS:SP+0Ah status

 SS:SP+08h x coordinate

 SS:SP+06h y coordinate

 SS:SP+04h z coordinate (always 0)

 The handler must exit via a far return without removing the

 parameters from the stack.

 3) The status parameter word passed to the user's handler is

 interpreted as follows:

 bits 0 left button pressed

 1 right button pressed

 2-3 reserved

 4 sign of x data is negative

 5 sign of y data is negative

 6 x data has overflowed

 7 y data has overflowed

 8-0Fh reserved

Function 0C3h Enable/Disable Watchdog Timeout

 (PS/2 50+, EISA)

entry AH 0C3h

 AL 00h disable watchdog

 01h enable watchdog

 BX timer counter

return CF set on error

note 1) The watchdog timer generates an NMI.

 2) This would be subject to protection with a real OS so temporary

 masters would not be able to seize the bus forever.

Function 0C3h Fail-Safe Timer Control

 (EISA)

entry AH 0C3h

 AL 00h disable fail-safe timer

 AL 01h enable fail-safe timer

 BX timer count value

return CF clear OK

 set invalid input

note 1) Fn 00h clears WDTIC in the Extended BIOS Data Area.

 2) Fn 01h puts the timer in Mode 0, enables the fail-safe timer

 NMI, places the value in BX in the WDTIC. When BX counts to

 zero a fail-safe timer NMI is generated.

Function 0C4h Programmable Option Select

 (PS/2 50+)

entry AH 0C4h

 AL 00h return base POS register address

 01h enable slot

 BL slot number

 02h enable adapter

return CF set on error

 DX base POS register address (if function 00h)

note 1) Fn 00h returns the base Programmable Option Select register

 address, enables a slot for setup, or enables an adapter.

 2) Valid on machines with Micro Channel Architecture (MCA) bus

 only.

 3) After a slot is enabled with fn 01h, specific information can

 be obtained for the adapter in that slot by performing port

 input operations:

 Port Function

 100h MCA ID (low byte)

 101h MCA ID (high byte)

 102h Option Select Byte 1

 bit 0 0 if disabled

 1 if enabled

 103h Option Select Byte 2

 104h Option Select Byte 3

 105h Option Select Byte 4

 bits 6-7 are channel check indicators

 106h Subaddress Extension (low byte)

 107h Subaddress Extension (high byte)

Function 0C5h Used by PS/2 Model 50+ and Olivetti MCA machines

 Used by Desqview 2.2

 Used by Lotus 123 Release 2.2

 Used by Microsoft Word 5.0

note Functions unknown. Reported by InfoWorld Nov 13 1989's Micro

 Channel 386 test as a conflict between the above software

 packages. InfoWorld said that Quarterdeck (DESQview) was

 working on a fix for their product. No other information.

Function 0D8h Access System Information

 (EISA)

entry AH 0D8h Read Slot Information

 AL 00h (CS specifies 16-bit addressing)

 AL 80h (CS specifies 32-bit addressing)

 CL slot number (0-63)

return AH status

 00h OK

 80h invalid slot number

 82h extended CMOS RAM corrupted

 83h specified slot is empty

 86h invalid BIOS call

 87h invalid system configuration

 AL miscellaneous vendor information byte

 bits 7 duplicate IDs exist

 6 product ID

 5,4 slot type

 0,0 expansion slot

 0,1 embedded device

 1,0 virtual device

 1,1 reserved by EISA

 3,0 duplicate ID number

 0,0,0,0 no duplicated IDs

 0,0,0,1 first duplicate ID

 1,1,1,1 15th duplicate ID

 BH configuration utility, major version number

 BL configuration utility, minor version number

 CH configuration file, MSD of checksum

 CL configuration file, LSD of checksum

 DH number of device functions

 DL combined function information

 SI:DI four byte compressed vendor ID

 CF clear OK

 set error

 AH will be nonzero if an error occurs

entry AH 0D8h Read Function Information

 AL 01h (CS specifies 16-bit addressing)

 AL 81h (CS specifies 32-bit addressing)

 CH function number (0-n-1)

 CL slot number (0-63)

 DS:SI address pointer for output data

return AH status

 00h OK

 80h invalid slot number

 82h extended CMOS RAM corrupted

 83h specified slot is empty

 86h invalid BIOS call

 87h invalid system configuration

 DS segment for return data buffer

 SI offset for return data buffer (16 bit)

 ESI offset for return data buffer (32 bit)

note 320-byte data buffer:

 offset size description

 00h 2 words compressed ID

 byte 0

 bits 7 reserved

 6-2 character 1

 1-0 character 2

 byte 1

 7-5 character 2

 4-0 character 3

 byte 2

 7-4 second digit of product number

 3-0 first digit of product number

 byte 3

 7-4 third digit of product number

 3-0 product revision number

 04h 1 word ID and slot information

 byte 0

 bits 7 0 no duplicate ID is present

 1 duplicate ID is present

 6 0 ID is readable

 1 ID is not readable

 5-4 slot type

 0,0 expansion slot

 0,1 embedded slot

 1,0 virtual slot

 1,1 reserved by EISA

 3,0 duplicate ID number

 0,0,0,0 no duplicated IDs

 0,0,0,1 first duplicate ID

 1,1,1,1 15th duplicate ID

 byte 1

 bits 7 0 configuration complete

 1 configuration not complete

 6-2 reserved by EISA

 1 0 EISA IOCHKERR not supported

 1 EISA IOCHKERR supported

 0 0 EISA ENABLE not supported

 1 EISA ENABLE supported

 06h 1 word configuration file extension revision level

 byte 0 minor revision level

 byte 1 major revision level

 07h 13words Selections

 byte 0 first selection

 byte 1 second selection

 ---- - ----------------

 byte 25 twenty-sixth selection

 022h 1 byte Function Information

 bits 7 0 function is enabled

 1 function is disabled

 6 configuration extension free-form data

 5 port initialization entries follow

 4 port range entries follow

 3 DMA entries follow

 2 interrupt entries follow

 1 memory entries follow

 0 type/subtype entries follow

 023h 80bytes Type and subtype ASCII string

 (strings less than 80 characters padded with

 zeroes)

 byte 0 first ASCII character

 byte 1 second ASCII character

 ---- -- ----------------------

 byte 79 eightieth ASCII character

 073h 205byts Free-Form Data Field

 If Function Information byte 6 IS set, the

 next 205 bytes (to the end of the 320-byte data

 block) is a free-form data field. Byte 0 is

 the length of the field in bytes, and data

 starts with byte 1.

 073h 63bytes Memory configuration information

 (if Function Information bit 6 NOT set)

 byte 0

 bits 7 0 last entry

 1 more entries follow

 6 reserved by EISA

 5 0 unshared memory

 1 shared memory

 4,3 memory type

 0,0 SYS (base or extended)

 0,1 EXP (expanded)

 1,0 VIR (virtual)

 1,1 OTH (other)

 2 reserved by EISA

 1 0 not cached

 1 cached

 0 0 read only (ROM)

 1 read/write (RAM)

 byte 1

 7-4 reserved by EISA

 3,2 decode size

 0,0 20

 0,1 24

 1,0 32

 1,1 reserved by EISA

 1,0 data size (access size)

 0,0 byte

 0,1 word

 1,0 doubleword

 1,1 reserved by EISA

 bytes 2-4 memory start address divided by 100h

 bytes 5-6 memory size divided by 400h

 Up to 8 more 7-byte entries may follow.

 0B2h 14bytes Interrupt Configuration

 (if Function Information bit 6 is NOT set)

 byte 0

 bits 7 0 last entry

 1 more entries follow

 6 0 not shared

 1 shared

 5 0 edge triggered

 1 level triggered

 4 reserved by EISA

 3-0 interrupt (0-F)

 byte 1 reserved by EISA

 Up to 6 more 2-byte entries may follow.

 0C0h 4 words DMA Channel Description

 (if Function Information bit 6 is NOT set)

 byte 0

 bits 7 0 last entry

 1 more entries follow

 6 0 not shared

 1 shared

 5-3 reserved by EISA

 2-0 DMA channel number (0-7)

 byte 1

 7,6 reserved by EISA

 5,4 data timing

 0,0 default (ISA competible)

 0,1 type A

 1,0 type B

 1,1 type C (burst mode)

 3,2 transfer size

 0,0 8-bit

 0,1 16-bit

 1,0 32-bit

 1,1 reserved by EISA

 1,0 reserved by EISA

 Up to 3 more 2-byte entries may follow

 0C8h 60bytes Port I/O Information

 byte 0

 bits 7 0 last entry

 1 more entries follow

 6 0 not shared

 1 shared

 5 reserved by EISA

 4-0 number of sequential ports, less 1

 bytes 1,2 I/O Port Address

 Up to 19 more 3-byte entries may follow

 104h 60bytes Initialization Data

 (If Function Information bit 6 is NOT set)

 byte 0 Initialization Type

 bits 7 0 last entry

 1 more entries follow

 6-3 reserved by EISA

 2 port value or mask value

 0 write to port without mask

 1 write to port with mask

 2,0 type of access

 0,0 byte addressable

 0,1 word addressable

 1,0 doubleword addressable

 1,1 reserved by EISA

 bytes 1,2 I/O Port address

 bytes 3-10 (Depends on value of byte 0, bit 2)

 if bit=0, bytes 3-6 will have the

 following values based on the access

 type specified by byte 0, bits 0-1:

 byte 0, bits 0-1:

 0,0 this byte 3 - port value

 0,1 this bytes 3,4 - port value

 1,0 this bytes 3-6 - port value

 1,1 reserved by EISA

 if bit=1, bytes 3-10 will have the

 following values based on the access

 type specified by byte 0, bits 0-1:

 byte 0, bits 0-1:

 0,0 this byte 3 - port value

 4 - port mask

 0,1 this bytes 3,4 - port value

 5,6 - port mask

 1,0 this bytes 3-6 - port value

 7-10 - port mask

 1,1 reserved by EISA

 Up to 7 more 4, 5, 7, or 11-byte entries

 may follow.

entry AH 0D8h Clear Configuration Storage

 AL 02h (CS specifies 16-bit addressing)

 AL 82h (CS specifies 32-bit addressing)

 BH configuration utility major revision level

 BL configuration utility minor revision level

return AH 00h OK

 84h error writing to extended CMOS RAM

 86h invalid BIOS call

 88h configuration utility not supported

entry AH 0D8h Write Function Information

 AL 03h (CS specifies 16-bit addressing)

 AL 83h (CS specifies 32-bit addressing)

 CX length of data structure (in bytes)

 DS segment of data buffer

 SI offset of data buffer (16-bit)

 ESI offset of data buffer (32-bit)

return AH 00h OK

 84h error writing to extended CMOS RAM

 85h CMOS RAM is full

 86h invalid BIOS call

note See Function 1 for data fields.

Function 0DEh DESQview Services (DESQview)

+---+

¦Interrupt 16h Keyboard I/O 3**9 ¦

+---+

(0:0058h) Access the keyboard. Scancodes are found in Appendix

 1. ASCII codes are found in Appendix 2.

 IBM's original keyboard layout is referred to as the

 84-key or "old style". It has the function keys on the

 left and an embedded cursor/numeric keypad on the

 right. The 101-key "new style" or "enhanced" keyboard

 (such as used on the PS/2s) adds several keys. The

 early BIOS will not detect the new scancodes and the

 new BIOS for some reason added new function calls for

 this purpose instead of enhancing the old ones. This

 causes some hassle when writing programs which need to

 support both keyboards fully. Most programs limit

 themselves to the 84-key functions in the interest of

 backward compatibility.

 The SWITCHES CONFIG.SYS command forces DOS 4.0 to use

 the standard int 16h requests for keyboard I/O rather

 than the extended int 16h requests.

 The DOS KEYB command does not hook into the BIOS. It

 is a total replacement for the BIOS int9 driver. The

 only good thing about this is that you can use 101-key

 keyboards on old ATs without support for enhanced

 keyboards. KEYB is very peculiar in its handling of

 the keyboard, causing some programs to break. It also

 tends to disable interrupts for a long time while

 processing each scan code.

 There are machines such as the Toshiba 5200 which have

 84-key layouts but "simulate" being 101-key, at least

 as far as int 16h goes. (always good for confusing

 your software...)

 IBM's TopView saved the state of the capslock,

 scrollock, and numlock keys during task switches.

 DESQview does not save the toggle states unless you

 change the default setup.

Function 00h Get Keyboard Input

 Read the next character in keyboard buffer, if no key

 is ready, then wait for one.

entry AH 00h

return AH scan code

 AL ASCII character

note 1) Removes keystroke from buffer (destructive read).

 2) Does not work with the extra keys on the 101-key "enhanced"

 keyboard.

Function 01h Check Keystroke Buffer - Do Not Clear

entry AH 01h

return ZF 0 (clear) if character in buffer

 1 (set) if no character in buffer

 AH scan code of character (if ZF=0)

 AL ASCII character if applicable

note 1) Keystroke is not removed from buffer. The same character and

 scan code will be returned by the next call to Int 16h/fn 00h.

 2) This call flushes the 101-key codes from the buffer if they

 precede an 84-key code.

Function 02h Shift Status

 Fetches bit flags indicating shift status.

entry AH 02h

return AL status byte (same as [0040:0017])

 bits 7 Insert on

 6 CapsLock on

 5 NumLock on

 4 ScrollLock on

 3 Alt key down

 2 Control key down

 1 Left shift (left caps-shift key) down

 0 Right shift (right caps-shift key) down

note The Keyboard Flags Byte is stored in the BIOS Data Area at

 0000:0417h.

Function 03h Keyboard - Set Repeat Rate

 (PCjr, AT, XT/286, PS/2)

entry AH 03h

 AL 00h reset typematic defaults (PCjr)

 01h increase initial delay (PCjr)

 02h decrease repeat rate by 1/2 (PCjr)

 03h increase both delays by 1/2 (PCjr)

 04h turn off typematic (PCjr)

 05h set typematic rate (AT, PS/2)

 BH 00h-03h for delays of 250ms, 500ms, 750ms, or 1 second

 0,0 250ms

 0,1 500ms

 1,0 750ms

 1,1 1 second

 BL 00h-1Fh for typematic rates of 30cps down to 2cps

 00000 30 01011 10.9 10101 4.5

 00001 26.7 01100 10 10110 4.3

 00010 24 01101 9.2 10111 4

 00011 21.8 01110 8.6 11000 3.7

 00100 20 01111 8 11001 3.3

 00101 18.5 10000 7.5 11010 3

 00110 17.1 10001 6.7 11011 2.7

 00111 16 10010 6 11100 2.5

 01000 15 10011 5.5 11101 2.3

 01001 13.3 10011 5.5 11110 2.1

 01010 12 10100 5 11111 2

return nothing

note 1) Subfunction 05h is available on ATs with ROM BIOS dated

 11/15/85 and later, the XT/286, and the PS/2.

 2) Subfunction 0 (Return to Default Keyboard State) restores the

 keyboard to its original state. An IBM AT's original state at

 power-on is typematic on, normal initial delay and normal

 typematic rate.

 3) Subfunction 1 (Increase Initial Delay) increases the delay

 between the first character typed and the burst of typematic

 characters.

 4) For Subfunctions 0 through 4, each time the typematic rate is

 changed, all previous states are removed.

 5) Some clone keyboards (Northgate Omnikey and Focus) and

 BIOSES (AMI) have much higher repeat rates for the same bit

 values.

Function 04h Keyboard Click Toggle

 (PCjr and Convertible)

entry AH 04h

 AL 00h for click off

 01h for click on

return nothing

Function 05h Load Keyboard Buffer

 (AT or PS/2 with enhanced kbd)

entry AH 05h

 CH scan code

 CL ASCII character

return CF set on error

 AL 00h success

 01h if buffer full

note Places a character and scan code at the end of the keyboard

 type-ahead buffer.

Function 06h Keyboard Buffer Write (Fansi-Console to 2.00)

entry AH 06h

 BX extended key value to place in typeahead buffer

return unknown

note This call may be dropped since it now duplicates function 05h.

Function 07h Change Shift Key Status (Fansi-Console to 2.00)

entry AH 07h

 AL shift key status value

return unknown

note Status byte is same as function 02h.

Function 10h Get Enhanced Keystroke And Read

 (XT/286, PS/2, AT with "Enhanced" keyboard)

entry AH 10h

return AH scan code

 AL ASCII character if applicable

note 1) Reads a character and scan code from the keyboard type-ahead

 buffer.

 2) Use this function for the enhanced keyboard instead of int 16h

 fn 00h. It allows applications to obtain the scan codes for

 the additional F11, F12, and cursor control keys.

 3) This is the enhanced version of function 00h.

Function 11h Check Enhanced Keystroke

 (XT/286, PS/2, AT with "Enhanced" keyboard)

entry AH 11h

return ZF 0 (clear) if key pressed

 AH scan code

 AL ASCII character if applicable

 1 if buffer is empty

note 1) Keystroke is not removed from buffer. The same char and scan

 code will be returned by the next call to Int 16h/fn 10h.

 2) Use this function for the enhanced keyboard instead of int

 16h/fn 00h. It allows applications to test for the additional

 F11, F12, and cursor control keys.

Function 12h Extended Get Shift Status (F11, F12 Enhanced keyboard)

entry AH 12h

return AX status word

 AL bit 0 right Shift key depressed

 1 left Shift key depressed

 2 Control key depressed

 3 Alt key depressed

 4 ScrollLock state active

 5 NumLock state active

 6 CapsLock state active

 7 insert state is active

 AH bit 0 left Control key pressed

 1 left Alt key depressed

 2 right Control key pressed

 3 right Alt key depressed

 4 Scroll Lock key depressed

 5 NumLock key depressed

 6 CapsLock key depressed

 7 SysReq key depressed

note Use this function for the enhanced keyboard instead of int

 16h/fn 02h.

Function 4fh Gerkey - German keyboard remapper from OVI-SYSTEM

entry AH 4Fh Gerkey function

 AL 56h installation check

return AX 0FFFFh installed, otherwise not present

 BH major version

 BL minor version

Function 70h, 71h, 72h Internal Functions (SEAware's FAKEY.COM)

note FAKEY.COM is a TSR keyboard utility distributed to registered

 users of SEAware products.

Function 75h Set Tick Count for Scanning (pcAnywhere 2.00)

entry AH 75h

 AL tick count

return none

note 1) Sets count of 55ms timer ticks between checks for new screen

 changes.

 2) pcAnywhere is a program that allows operation of a remote

 machine over a serial link.

Function 76h Set Error Checking Mode (pcAnywhere 2.00)

entry AH 76h

 AL error checking type

 00h none

 01h fast

 02h slow

return none

Function 77h reserved (pcAnywhere 2.00)

pcAnywhere API - reserved

Function 78h Log Off (pcAnywhere 2.00)

entry AL 00h wait for another call

 01h exit but remain TSR

 02h automatic mode - watches DTR

 0FFh leave in current operating mode (ver. 2.1)

return none

Function 79h Installation Check (pcAnywhere 2.00)

entry AH 79h

 AL 00h installation check

return AX 0FFFFh resident and active

 0FFFEh resident but not active

 0FFFDh resident TSR

 0FFFCh automatic mode

 any other value - not resident

Function 7Ah Cancel pcAnywhere Session (pcAnywhere 2.00)

entry AH 7Ah

return none

note Leaves pcAnywhere resident but unable to answer another call.

Function 7Bh Enable/Disable Operation (pcAnywhere 2.00)

entry AH 7Bh

 AL state

 00h disabled

 01h enabled

return none

note Remote screen is automatically refreshed when session is enabled.

Function 7Ch Get Port Configuration (pcAnywhere 2.00)

entry AH 7Ch

return AH port number in binary (0-15)

 AL baud rate

 00h 50

 01h 75

 02h 110

 03h 134.5

 04h 150

 05h 300

 06h 600

 07h 1200

 08h 1800

 09h 2000

 0Ah 2400

 0Bh 4800

 0Ch 7200

 0Dh 9600

 0Fh 19,200

Function 7Dh Get/Set Terminal Parameters (pcAnywhere 2.00)

entry AH 7Dh

 AL 00h set parameters

 01h get parameters

 02h get configuration header and terminal

 parameters

 CX:DS address of Terminal Parameter Block

return AL 00h nothing

 01h current Terminal Parameter Block in CX:DS

 02h configuration header and Terminal Parameter

 Block in CX:DS

note Terminal Parameter Block format: (1152 bytes) (decimal)

 384 bytes CRT Control Information

 bytes function

 1-8 cursor up

 9-16 cursor down

 17-24 cursor left

 25-32 cursor right

 33-40 cursor home

 41-48 clear screen

 49-56 clear to end of line

 57-64 clear to end of page

 65-72 insert line

 73-80 delete line

 81-88 insert character

 89-96 delete character

 97-104 cursor position lead in

 105-112 between row and column

 113-120 after cursor position

 121-128 CRT initialization

 256 bytes Character Translation Table

 translates ASCII characters from host. Normally

 changes IBM graphics characters to other displayable

 symbols

 512 bytes keyboard sequences

 641-644 cursor up

 645-648 cursor down

 649-652 cursor left

 653-656 cursor right

 657-660 home

 661-664 end

 665-668 PgUp

 669-672 PgDn

 673-676 insert

 677-680 delete

 681-684 control-home

 685-688 control-end

 689-692 control-PgUp

 693-696 control-PgDn

 697-700 escape

 701-740 F1...F10

 741-780 sF1...sF10

 781-820 ^F1...^F10

 821-860 aF1...aF10

 861-964 alt A-Z

 965-1004 alt 0-9

 1005-1008 alt =

 1009-1012 alt -

 1013-1016 print screen

 1017-1020 ctrl-left arrow

 1021-1024 ctrl-right arrow

 1025-1120 reserved

 1121-1124 begin conv. mode

 1125-1128 remote printing off

 1129-1132 remote printing on

 1133-1136 backspace

 1137-1140 refresh screen

 1141-1144 send next code

 1145-1148 display top 24 lines

 1149-1152 display bottom 24 lines

Function 7Eh Serial I/O Through pcAnywhere Port (pcAnywhere 2.00)

entry AH 7Eh

 AL I/O function

 01h get port input status

 02h get port input character

 03h output character

 04h hang up phone

 CX ASCII character to output (fn 03h)

return (if AL=01h)

 AX 00h no character ready

 01h character is available

 (if AL=02h)

 AL ASCII code received

Function 7Fh Set Keyboard/Screen Mode (pcAnywhere 2.00)

entry AH 7Fh

 AL parameters

 00h enable remote keyboard only |

 01h enable host keyboard only | keyboard group

 02h enable both keyboards |

 08h display top 24 lines | screen group

 09h display bottom 24 lines |

 10h Hayes modem |

 11h other modems | modem group

 12h direct connect |

Function 0A5h Central Point Software PC-Tools PC-CACHE 6.0 and later

entry AH 0A5h installation check

 AL 0FFh

 CX 1111h magic number

return CH 00h installed

note DOS Disk Reset call will also flush the cache from mid

 version 6 on.

Function 0AFh Central Point Software PC-Tools PC-CACHE 5.x

entry AH 0AFh flush cache

 AL 0FFh

 CX 0FFFFh magic number

return unknown

note This is safe, even if PC Cache in not installed.

Function 0EDh Borland Turbo Lightning API (partial)

entry AH 0EDh

 BH 0EDh

 BL function

 00h installation check

 02h pointer to Lightning internal data structure

 low byte

 03h pointer to Lightning internal data structure

 high byte

 04h load auxiliary dictionary

 06h autoproof mode

 0Fh get number of substitutions (segment)

 DS:DI pointer to string to be processed

return AX error code (unknown)

note I've made several attempts to get a copy of the Turbo

 Lightning API, which was originally supposed to be available

 for developers in 1985. In 1988 Borland sent me a letter

 saying they were still working on it. In late 1989 the Borland

 rep on BIX told me basically that there were no plans for

 releasing the API any more. The information here was dredged

 from Chris Dunford's LSPELL.PAS interface into Lighting.

Function 0F0h Set CPU speed (Compaq 386)

entry AH 0F0h set speed

 AL speed

 00h equivalent to 6 mHz 80286 (COMMON)

 01h equivalent to 8 mHz 80286 (FAST)

 02h full 16 mHz (HIGH)

 03h toggles between 8 MHz-equivalent and speed

 set by system board switch (AUTO or HIGH)

 04h-07h unknown

 08h full 16 MHz except 8 MHz-equivalent during

 floppy disk access

 09h specify speed directly

 CX speed value, 1 (slowest) to 50 (full),

 3 ~=8088

return none?

note 1) Used by Compaq DOS MODE command.

Function 0F1h Read Current CPU Speed (Compaq 386)

entry AH 0F1h

return AL speed code (see function 0F0h above)

 if AL=09h, CX=speed code

Function 0F2h Determine Attached Keyboard Type (Compaq 386)

entry AH 0F2h

return AL type

 00h if 11-bit AT keyboard is in use

 01h if 9-bit PC keyboard is in use

Function 0FFh PC-Tools API

entry AH 0FFh

 AL 0A5h detect PC-Cache disk cache (ver 5.0 & later)

 CH 11h

 CL 11h

return CH 00h cache is present

note PC-Tools is a Swiss-army-knife software package with an

 editor, DOS shell, cache, disk optimizer, and several other

 functions from Central Point Software.

Function 0FFh PC-Tools API

entry AH 0AFh

 AL 0AFh flush PC-Cache disk cache (from mid-version-6)

 CH 0FFh

 CL 0FFh

return none

note PC-Tools is a Swiss-army-knife software package with an

 editor, DOS shell, cache, disk optimizer, and several other

 functions from Central Point Software.

Function 0FFh 2-The-Max VGA-16 Board

entry AH 0FFh query zoom interrupt

return AL zoom interrupt number

 AL+1 old BIOS keyboard handler interrupt number

 BX hot key

Function 0FFh Programmer Interface to Carbon Copy Plus (5.0)

entry AH 0FFh

 AL 00h check connection between CC and CCHELP

return BL 00h Carbon Copy not connected to CCHELP

 01h Carbon Copy is connected to CCHELP

entry AL 01h disconnects and resets the line if the Host

 or CC side is connected to CCHELP

entry AL 02h return a pointer to the last phone number

 dialed by CC

return ES:DI dword pointer to ASCIIZ phone number string

+--+

¦Interrupt 17h Printer 3**10 ¦

+--+

(0:005Ch) Access the parallel printer(s)

 AH is changed. All other registers left alone.

 Printer ports vary widely in compatibility, since the

 original IBM MDA's parallel port did not match its own

 spec. Many parallel ports do not use IRQ7 at all.

 The parallel port on a monochrome adapter is at 3BCh.

 The port on a parallel printer adapter is at 378h or

 278h. At boot time, the BIOS looks at them in the

 order 3BCh, 378h, 278h, and assigns the first port it

 finds to LPT1, the second to LPT2, etc. If you have a

 monochrome adapter, LPT1 is probably 3BCh; otherwise,

 it is probably 378h.

Function 00h Print Character/send AL to printer DX (0, 1, or 2)

entry AH 00h

 AL ASCII character code

 DX printer to be used

 00h PRN or LPT1

 01h LPT2

 02h LPT3

return AH status byte

 bits 0 time out

 1 unused

 2 unused

 3 I/O error

 4 printer selected

 5 out of paper

 6 acknowledge

 7 not busy

Function 01h Initialize Printer

 Set init line low, send 0Ch to printer DX

entry AH 01h

 DX printer port to be initialized (0,1,2)

return status as below

Function 02h Printer Status

 Read status of printer DX into AH

entry AH 02h

 DX printer port to be used (0,1,2)

return AH status byte

 bits 7 0 busy/paused: the printer cannot

 immediately take more data because it

 is in the middle of accepting a

 character, printing a line, is

 offline, or it is in error status.

 1 ready

 6 ACKnowledge line toggled: reflects the state of

 the ACK line on the printer port at the moment the

 status was read. ACK is a strobe: it goes low for

 a very short time (12 microseconds on an Epson)

 when the printer is ready for another character.

 As far as printer status is concerned, this is

 useless; it's only useful for something like an

 interrupt-driven interface. Most of the time,

 you'll see ACK high (bit 6 on), but occasionally,

 if you check status just after sending a character,

 you might see it low. ACK is low when the printer

 is powered off.

 5 out-of-paper line toggled

 4 printer selected: printer is selected, ready,

 or, online. There is usually a button on the

 printer to control this.

 3 I/O error: offline, out of paper or other error

 condition such as out of ribbon.

 2 unused

 1 unused

 0 timeout error: printer failed to send ACK and

 drop busy after being sent a character.

note 1) You can expect to see these states in a properly functioning

 printer:

 Normal Offline Power off

 ====== ======= =========

 not busy/paused busy/paused busy/paused

 not out of paper not out of paper not out of paper

 selected/online not selected/online not selected/online

 not I/O error I/O error (usually) I/O error

 not timeout error not timeout error not timeout error

 2) Not all printers return the status codes properly. That's OK,

 not all clone BIOSes do it right either. If your program

 depends on the return codes, you might want to make the code

 easily patched or configured for nonstandard hardware.

Function 03h Versa-Spool print spooler

entry AH 03h Versa-Spool

 AL 00h Return Signature

 01h Toggle Pause

 02h Clear Buffer

 03h Request Pause Condition

 04h Request Free Buffer Space

 05h Request Total Buffer Size

 06h Redirect Output to LPT1

 07h Redirect Output to LPT2

 08h Redirect Output to LPT3

 09h Request Output Device

 0Ah Request Output Speed

 0Bh Request Device Spooled Status

return (AH=00h) AX 1234h if Versa-Spool is installed

 undefined if not installed

 (AH=01h) AX 0001h if paused

 0000h if resumed

 (AH=02h) AX 0302h not cleared

 0000h cleared

 (AH=03h) AX 0001h if paused

 0000h if resumed

 (AH=04h) AX remaining buffer space (in Kbytes)

 (AH=05h) AX total buffer space (in Kbytes)

 (AH=06h) AX nothing

 (AH=07h) AX nothing

 (AH=08h) AX nothing

 (AH=09h) AX printer output (0..2)

 (AH=0Ah) AX output speed in CPS

 (AH=0Bh) AX 0001h is spooled

 0000h otherwise

Function 03h Print String (PC-MOS/386)

 Print an entire string with one interrupt call

entry AH 03h

 CX number of characters in string

 DX printer port number

 DS:SI pointer to string

return AH status code (same as PC BIOS)

 CX number of characters printed

note 1) Any redirection set up with the MOS ROUTE command or

 SPOOL.COM will be in effect.

 2) Some serial terminals so not provide printer status feedback.

Function 0C0h PC Magazine PCSPOOL - get printer status

entry AH 0C0h

 DX printer port to be used (0,1,2)

return ES:BX address of printer control block

note PC Magazine, January 15, 1991. (Vol 10, Number 1)

Function 0C1h PC Magazine PCSPOOL - add pause to spool queue

entry AH 0C1h

 DX printer port to be used (0,1,2)

 DS:SI pointer to ASCIIZ string to display

return AH printer status

Function 0C2h PC Magazine PCSPOOL - flush queue record

entry AH 0C2h

 DX printer port to be used (0,1,2)

return AH printer status

Function 0C3h PC Magazine PCSPOOL - cancel printer queue

entry AH 0C3h

 DX printer port to be used (0,1,2)

return AH printer status

Function 0C4h PC Magazine PCSPOOL - determine of spooler is active

entry AH 0C4h

return DI 0B0BFh if PCSPOOL is loaded

 SI segment of the PSP of the active PCSPOOL

+---+

¦Interrupt 18h ROM BASIC 3**11 ¦

+---+

(0:0060h) Execute ROM BASIC at address 0F600h:0000h

entry no parameters used

return jumps into ROM BASIC on IBM systems

note 1) Often reboots a compatible.

 2) Used by Turbo C 1.5. 2.0 and later do not use it.

 3) On IBM systems, this interrupt is called if disk boot failure

 occurs.

 4) Video interrupt on DEC Rainbow.

 5) Digital Research's ROM-based implementation of DR-DOS uses int

 18h as the initial entry vector into the operating system code.

 Note that some clone BIOSes may not properly implement int 18h

 in the ROM and use of DR-DOS ROMs may not always work.

 6) Maxon 286/HD laptop: called by BIOS power management routines

 to communicate with applications.

+---+

¦Interrupt 19h Bootstrap Loader / Extended Memory VDISK ID 3**12 ¦

+---+

(0:0064h)

entry no parameters used

return none

note 1) Reads track 0, sector 1 into address 0000h:7C00h, then

 transfers control to that address. If no diskette drive is

 available, scans memory from C:000 to F:000 for a valid hard

 disk or other ROM. If none, transfers to ROM-BASIC via int 18h

 or displays loader error message.

 2) Causes reboot of disk system if invoked while running.

 (no memory test performed).

 3) If location 0000:0472h does not contain the value 1234h, a

 memory test (POST) will be performed before reading the boot

 sector.

 4) VDISK from DOS 3.0+ traps this vector to determine when the

 CPU has shifted from protected mode to real mode. A detailed

 discussion can be found by Ray Duncan in PC Magazine, May 30,

 1989.

 5) Reportedly, some versions of DOS 2.x and all versions of DOS

 3.x+ intercept int 19h in order to restore some interrupt

 vectors DOS takes over, in order to put the machine back to a

 cleaner state for the reboot, since the POST will not be run on

 the int 19h. These vectors are reported to be: 02h, 08h, 09h,

 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 70h, 72h, 73h, 74h, 75h, 76h, and 77h.

 After restoring these, it restores the original int 19h vector

 and calls int 19h.

 6) The system checks for installed ROMs by searching memory from

 0C000h to the beginning of the BIOS, in 2k chunks. ROM memory

 is identified if it starts with the word 0AA55h. It is

 followed a one byte field length of the ROM (divided by 512).

 If ROM is found, the BIOS will call the ROM at an offset of 3

 from the beginning. This feature was not supported in the

 earliest PC machines. The last task turns control over to the

 bootstrap loader (assuming the floppy controller is

 operational).

 7) 8255 port 60h bit 0 = 1 if booting from diskette.

 8) All IBM BIOSes and most clone BIOSes will try to boot from

 floppy A: if no other boot device is present. Some machines

 (notably mil-spec Zeniths) have a jumper to prohibit booting

 from floppy at all, for "security reasons". Many Tandy

 machines will try to boot from drive B: if the F2 key is held

 down during POST. With a CompatiCard floppy controller you

 can boot off ANY drive.

 9) Phoenix BIOSes with password protection enabled use this call

 for the password routine.

 10) With early versions of DOS 5.0, int 19h fails with EMM386.EXE

 loaded and and DOS=HIGH in CONFIG.SYS

+---+

¦Interrupt 1Ah Time of Day 3**13 ¦

+---+

(0:0068h) 1) Accesses the PC internal clock.

 2) This interrupt is not supported on some machines, such

 as the HP150 PC.

 3) Some "turbo" BIOSes run the clock slower than normal in

 order to throw off benchmark software, which usually

 uses int 1Ah for timekeeping.

 4) Counts occur at the rate of 1193180/65536 counts/sec

 (about 18.2 per second).

Function 00h Read System Timer Tick Counter (except PC)

entry AH 00h

return AL 00h if clock was read or written (via AH=0,1)

 within the current 24-hour period.

 <>0 midnight was passed since last read

 CX:DX 32-bit tick count (high 16 bits in CX)

note 1) The returned value is the cumulative number of clock ticks

 since midnight. There are 18.2 clock ticks per second, or one

 every 54.92ms. When the counter reaches 1,573,040, it is

 cleared to zero, and the rollover flag is set.

 2) The rollover flag is cleared by this function call, so the

 flag will only be returned nonzero once per day.

 3) Int 1Ah/fn 01h can be used to set the counter to an arbitrary

 32 bit value.

 4) This function does not return seconds/100 in DL. The best you

 can do is set it to zero (or any value <=99). This means that

 your DOS clock could be up to 1 second off from the BIOS

 clock, however the effect is not cumulative.

Function 01h Set Clock Tick Counter Value (except PC)

entry AH 01h

 CX:DX 32-bit high word/low word count of timer ticks

return none

note 1) The clock ticks are incremented by timer interrupt at 18.2065

 times per second or 54.9254 milliseconds/count. Therefore:

 counts per second 18 (12h)

 counts per minute 1092 (444h)

 counts per hour 65543 (10011h)

 counts per day 1573040 (1800B0h)

 2) The counter is zeroed when system is rebooted.

 3) Stores a 32-bit value in the clock tick counter.

 4) The rollover flag is cleared by this call.

Function 02h Read Real Time Clock Time

 (AT and after)

entry AH 02h

return CH hours in BCD

 CL minutes in BCD

 DH seconds in BCD

 DL 00h standard time

 01h daylight savings time

 CF 0 if clock running

 1 if clock not operating

note 1) Reads the current time from the CMOS time/date chip.

 2) Also for Leading Edge Model M.

 3) According to Phoenix this call will fail if the BIOS is

 "updating" its clock value. You should check the carry flag

 and retry if it is set following the call.

Function 03h Set Real Time Clock Time

 (AT and after)

entry AH 03h

 CH hours in BCD

 CL minutes in BCD

 DH seconds in BCD

 DL 0 (clear) if standard time

 1 (set) if daylight savings time option

return none

note 1) Sets the time in the CMOS time/date chip.

 2) Also for Leading Edge Model M.

Function 04h Read Real Time Clock Date

 (AT and after)

entry AH 04h

return CH century in BCD (19 or 20)

 CL year in BCD

 DH month in BCD

 DL day in BCD

 CF 0 (clear) if clock is running

 1 (set) if clock is not operating

note 1) Reads the current date from the CMOS time/date chip.

 2) Also for Leading Edge Model M.

Function 05h Set Real Time Clock Date

 (AT and after)

entry AH 05h

 CH century in BCD (19 or 20)

 CL year in BCD

 DH month in BCD

 DL day in BCD

return none

note 1) Sets the date in the CMOS time/date chip.

 2) Also for Leading Edge Model M with Leading Edge DOS 2.11.

Function 06h Set Real Time Clock Alarm

 (AT and after)

entry AH 06h

 CH hours in BCD

 CL minutes in BCD

 DH seconds in BCD

return CF set if alarm already set or clock inoperable

note 1) Sets alarm in the CMOS date/time chip. Int 4Ah occurs at the

 specified alarm time every 24hrs until reset with Int 1Ah

 function 07h.

 2) A side effect of this function is that the clock chip's

 interrupt level (IRQ8) is enabled.

 3) Only one alarm may be active at any given time.

 4) The program using this function must place the address of its

 interrupt handler for the alarm in the vector for Int 4Ah.

Function 07h Reset Real Time Clock Alarm

 (AT and after)

entry AH 07h

return none

note 1) Cancels any pending alarm request on the CMOS date/time chip.

 2) This function does not disable the clock chip's interrupt

 level (IRQ8).

Function 08h Set Real Time Clock Activated Power On Mode

 (Convertible)

entry AH 08h

 CH hours in BCD

 CL minutes in BCD

 DH seconds in BCD

Function 09h Read Real Time Clock Alarm Time and Status

 (Convertible and PS/2 Model 30)

entry AH 09h

return CH hours in BCD

 CL minutes in BCD

 DH seconds in BCD

 DL alarm status:

 00h if alarm not enabled

 01h if alarm enabled but will not power up system

 02h if alarm will power up system

Function 0Ah Read System-Timer Day Counter

 (PS/2)

entry AH 0Ah

return CF set on error

 CX count of days since Jan 1,1980

note Returns the contents of the system's day counter.

Function 0Bh Set System-Timer Day Counter

 (PS/2)

entry AH 0Bh

 CX count of days since Jan 1,1980

return CF set on error

note Stores an arbitrary value in the system's day counter.

Function 80h Set Up Sound Multiplexor

 (PCjr) (Tandy 1000?)

entry AH 80h

 AL sound source

 00h source is 8253 timer chip, channel 2

 01h source is cassette input

 02h source is I/O channel "audio in" line

 03h source is TI sound generator chip

return none

note Sets up the source for tones that will appear on the PCjr's

 Audio Out bus line or RF modulator.

Function 81h Get Sound status (Tandy 1000RL)

 parameters unknown

Function 82h Input Sound (from the microphone) (Tandy 1000RL)

 parameters unknown

Function 83h Output Sound (to the speaker) (Tandy 1000RL)

 parameters unknown

Function 84h Stop Sound input and output (Tandy 1000RL)

 parameters unknown

Function 1Ah Read Time and Date (AT&T 6300)

entry AH 0FEh

return BX days count (1=Jan 1, 1984)

 CH hours

 CL minutes

 DH seconds

 DL hundredths

note Day count in BX is unique to AT&T/Olivetti computers.

+---+

¦Interrupt 1Bh Control-Break 3**14 ¦

+---+

(0:006Ch) This interrupt is called when the keyboard handler

 detects Ctrl and Break pressed at the same time. DOS

 normally points this interrupt at its own Ctrl-Break

 handler.

note 1) If the break occurred while processing an interrupt, one or

 more end of interrupt commands must be send to the 8259

 Programmable Interrupt Controller.

 2) All I/O devices should be reset in case an operation was

 underway at the time.

 3) It is normally pointed to an IRET during system initialization

 so that it does nothing, but some programs change it to return

 a Ctrl-C scan code and thus invoke int 23h.

+---+

¦Interrupt 1Ch Timer Tick 3**15 ¦

+---+

(0:0070h)

note 1) Taken 18.2065 times per second by the int 08h interrupt.

 2) Normally vectors to dummy IRET unless PRINT.COM has been

 installed.

 3) If an application moves the interrupt pointer, it is the

 responsibility of that application to save and restore all

 registers that may be modified.

 4) returns values at absolute address 40:6x (BIOS Data Area);

 number of ticks since midnight

 40:6C word timer counter high word

 40:6E word timer counter low word

 5) Ventura Publisher 2.0 grabs this interrupt and does not pass

 subsequent vector reassignments along. This causes problems

 with some TSRs and network software.

 6) When installing a user interrupt for int 1Ch, the external

 interrupts must be disabled before the vector is altered. If a

 timer interrupt occurs between the setting of the offset and

 segment, an incorrect address will result.

+---+

¦Interrupt 1Dh Vector of Video Initialization Parameters 3**16 ¦

+---+

(0:0074h) This doubleword address points to 3 sets of 16 bytes

 containing data to initialize for video modes for video

 modes 0 & 1 (40 column), 2 & 3 (80 column), and 4, 5 &

 6 (graphics) on the Motorola 6845 CRT controller chip.

 6845 registers:

 R0 horizontal total (horizontal sync in characters)

 R1 horizontal displayed (characters per line)

 R2 horizontal sync position (move display left or right)

 R3 sync width (vertical and horizontal pulse: 4-bits each)

 R4 vertical total (total character lines)

 R5 vertical adjust (adjust for 50 or 60 Hz refresh)

 R6 vertical displayed (lines of chars displayed)

 R7 vertical sync position (lines shifted up or down)

 R8 interlace (bits 4 and 5) and skew (bits 6 and 7)

 R9 max scan line addr (scan lines per character row)

 R10 cursor start (starting scan line of cursor)

 R11 cursor stop (ending scan line of cursor)

 R12 video memory start address high byte (6 bits)

 R13 video memory start address low byte (8 bits)

 R14 cursor address high byte (6 bits)

 R15 cursor address low byte (8 bits)

 6845 Video Init Tables:

 table for modes 0 and 1 \

 table for modes 2 and 3 \ each table is 16 bytes long and

 table for modes 4,5, and 6 / contains values for 6845 registers

 table for mode 7 /

 4 words size of video RAM for modes 0/1, 2/3, 4/5, and 6/7

 8 bytes number of columns in each mode

 8 bytes video controller mode byte for each mode

note 1) There are four separate tables, and all four must be

 initialized if all video modes will be used.

 2) The power-on initialization code of the computer points this

 vector to the ROM BIOS video routines.

 3) IBM recommends that if this table needs to be modified, it

 should be copied into RAM and only the necessary changes made.

+---+

¦Interrupt 1Eh Vector of Diskette Controller Parameters 3**17 ¦

+---+

(0:0078h) Dword address points to data base table that is used by

 BIOS. Default location is at 0F000:0EFC7h. 11-byte

 table format:

 bytes:

 00h 4-bit step rate, 4-bit head unload time

 01h 7-bit head load time, 1-bit DMA flag

 02h 54.9254 ms ticks - delay til motor off (36-38

 typical)

 03h sector size:

 00h 128 bytes

 01h 256 bytes

 02h 512 bytes

 03h 1024 bytes

 04h last sector on track (8 or 9 typical)

 05h inter-sector gap on read/write (42 typical)

 06h data length for DMA transfers (0FFh typical)

 07h gap length between sectors for format (80 typ)

 08h sector fill byte for format (0F6h typical)

 09h head settle time (in milliseconds)

 (15 to 25 typical)

 DOS 1.0 0

 DOS 1.10 0

 DOS 2.10 15

 DOS 3.1 1

 0Ah motor start time (in 1/8 sec intervals)

 (2-4 typical)

 DOS 2.10 2

note 1) This vector is pointed to the ROM BIOS diskette tables on

 system initialization

 2) IBM recommends that if this table needs to be modified, it

 should be copied into RAM and only the necessary changes made.

 3) Some versions of DOS 3.2 may contain a bug. DOS 3.2 assumes

 that the dword at 0070:0F37 contains the address of the

 diskette parameter block and changes values in that block. The

 location does contain a copy of the value at 0:78 (int 1Eh,

 DISK_POINTER) if DOS is booted from diskette, but when booted

 from the hard disk, the location contains 0:0. This leads to

 strange things, especially when running under a debugger since

 DOS overwrites parts of the interrupt vectors for interrupts 1

 to 3. The solution to the problem is to either upgrade to DOS

 3.3 or to copy the disk parameter vector to 70:0F37 before

 running or at the start of your program.

+---+

¦Interrupt 1Fh Ptr to Graphic Char Extensions (Graphics Set 2) 3**18 ¦

+---+

(0:007Ch) This is the pointer to data used by the ROM video

 routines to display characters above ASCII 127 while in

 CGA medium and high res graphics modes.

note 1) Doubleword address points to 1K table composed of 28 8-byte

 character definition bit-patterns. First byte of each entry is

 top row, last byte is bottom row.

 2) The first 128 character patterns are located in system ROM.

 3) This vector is set to 000:0 at system initialization.

 4) Used by DOS' external GRAFTABL command.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R F O U R

 DOS INTERRUPTS AND FUNCTION CALLS

 C O N T E N T S

General Programming Guidelines 4**1

DOS Registers ... 4**2

DOS Stacks .. 4**3

DOS Interrupts .. 4**4

Interrupt 20h (Terminate) 4**5

DOS Services (quick list) 4**6

Calling the DOS Services .. 4**7

Version Specific Information 4**8

Compatibility Problems With DOS 4.0+ 4**9

PCjr Cartridge Support .. 4**10

eDOS 4.0 .. 4**11

DOS Services in Detail .. 4**12

General Programming Guidelines 4**1

 Microsoft recommends avoiding the "old style" DOS 1.0 (01h-0Ch and

26h) system calls wherever possible. Programmers are urged to use the

"new style" (DOS 2.0+) handle calls instead.

 Do not use "undocumented" functions unless they are critical to your

application and no other reasonable workaround can be found. Remember

that your programs may have to run under various versions of DOS, DOS

clones such as Digital's DR-DOS, the OS/2 Compatibility Box, or Unix

DOS Emulation Window. Such environments or OS simulations do not

always implement the undocumented calls.

 DOS 2.x and 3.x lack many of the enhancements found in later

versions. Your application should check the minimum required DOS

version when specific features are required. Do not test for a higher

version than necessary or you will cause problems for machines running

older versions of DOS, such as business machines which are seldom

upgraded, laptops with DOS in ROM, etc.

 Direct disk access via hardware or the BIOS should be avoided

unless your program will only be run on specific hardware or under

certain circumstances. Some versions of DOS 2.x treat their disks in

a manner much like 3.x. Some vendors added multiple DOS partitions or

oversize drive support prior to the "official" 3.3 release. Not all

these systems work in the same way! New-type SCSI or ESDI hard disk

controllers do not always emulate all the standard BIOS calls.

DOS Registers ... 4**2

 DOS uses the following registers, pointers, and flags when it executes

interrupts and function calls:

+---+

¦GENERAL REGISTERS ¦register¦ definition ¦

¦ +--------+---¦

¦ ¦ AX ¦ accumulator (16 bit) ¦

¦ ¦ AH ¦ accumulator high-order byte (8 bit) ¦

¦ ¦ AL ¦ accumulator low order byte (8 bit) ¦

¦ ¦ BX ¦ base (16 bit) ¦

¦ ¦ BH ¦ base high-order byte (8 bit) ¦

¦ ¦ BL ¦ base low-order byte (8 bit) ¦

¦ ¦ CX ¦ count (16 bit) ¦

¦ ¦ CH ¦ count high order byte (8 bit) ¦

¦ ¦ CL ¦ count low order byte (8 bit) ¦

¦ ¦ DX ¦ data (16 bit) ¦

¦ ¦ DH ¦ date high order byte (8 bit) ¦

¦ ¦ DL ¦ data low order byte (8 bit) ¦

+------------------+--------+---¦

¦SEGMENT REGISTERS ¦register¦ definition ¦

¦ +--------+---¦

¦ ¦ CS ¦ code segment (16 bit) ¦

¦ ¦ DS ¦ data segment (16 bit) ¦

¦ ¦ SS ¦ stack segment (16 bit) ¦

¦ ¦ ES ¦ extra segment (16 bit) ¦

+------------------+--------+---¦

¦INDEX REGISTERS ¦register¦ definition ¦

¦ +--------+---¦

¦ ¦ DI ¦ destination index (16 bit) ¦

¦ ¦ SI ¦ source index (16 bit) ¦

+------------------+--------+---¦

¦POINTERS ¦register¦ definition ¦

¦ +--------+---¦

¦ ¦ SP ¦ stack pointer (16 bit) ¦

¦ ¦ BP ¦ base pointer (16 bit) ¦

¦ ¦ IP ¦ instruction pointer (16 bit) ¦

+---¦

¦FLAGS AF, CF, DF, IF, OF, PF, SF, TF, ZF ¦

+---+

 These registers, pointers, and flags all work on the "lowest common

denominator" 8088-8086 CPU. DOS makes no attempt to use any of the

special or enhanced instructions available on the later CPUs which will

execute 8088 code, such as the 80186, 80286, 80386, or NEC V20, V30,

V40, or V50.

 User registers except AX are preserved unless information is passed

back to the register as indicated in specific function calls.

 For PC-MOS/386 on a 386 CPU, the task switching logic saves the

upper half of the 32-bit registers and the complete FS and GS

registers.

 The Intel 8088 processors supplied for the early IBM PCs were

defective and did not handle the stack register properly on an INT

instruction. DOS 2.1 added extra logic around interrupt calls for

stack handling; this is the major difference between 2.0 and 2.1.

DOS Stacks .. 4**3

 When DOS takes control after a function call, it switches to an

internal stack. Registers which are not used to return information

(other than AX) are preserved. The calling program's stack must be

large enough to accomodate the interrupt system - at least 128 bytes

in addition to other interrupts.

 DOS actually maintains three stacks -

stack 1: 384 bytes (in DOS 3.1)

 for functions 00h and for 0Dh and up, and for ints 25h and

 26h.

stack 2: 384 bytes (in DOS 3.1)

 for function calls 01h through 0Ch.

stack 3: 48 bytes (in DOS 3.1)

 for functions 0Dh and above. This stack is the initial stack

 used by the int 21h handler before it decides which of the

 other two to use. It is also used by function 59h (get

 extended error), and 01h to 0Ch if they are called during an

 int 24h (critical error) handler. Functions 33h (get/set

 break flag), 50h (set process ID), 51h (get process ID) and

 62h (get PSP address) do not use any DOS stack under DOS 3.x

 (under 2.x, 50h and 51h use stack number 2).

 IBM and Microsoft made a change back in DOS 3.0 or 3.1 to reduce the

size of DOS. They reduced the space allocated for scratch areas when

interrupts are being processed. The default seems to vary with the

DOS version and the machine, but 8 stack frames seems to be common.

That means that if you get more than 8 interrupts at the same time,

clock, disk, printer spooler, keyboard, com port, etc., the system will

crash. It usually seems to happen on a network.

 DOS 3.2 does some different stack switching than previous versions.

The interrupts which are switched are 02h, 08h, 09h, 0Ah, 0Bh, 0Ch,

0Dh, 0Eh, 70h, 72h, 73h, 74h, 75h, 76h, and 77h. DOS 3.2 has a

special check in the initialization code for a PCjr and don't enable

stack switching on that machine. DOS 3.3 was changed so that no stack

switching occurs on PC, PC-XT, or the PC Portable, and defaults to 9

stacks of 128 bytes in an AT.

 Additional stacks can be allocated when DOS loads by using the

STACKS= command in CONFIG.SYS. These stacks are in addition to the

3 internal DOS stacks. STACKS=16,256 means allow 16 interrupts to

interrupt each other and allow 256 bytes for each for scratch area.

DOS Interrupts .. 4**4

 Microsoft recommends that a program wishing to examine or set the

contents of any interrupt vector use the DOS function calls 35h and

25h provided for those purposes and avoid referencing the interrupt

vector locations directly.

 DOS reserves interrupt numbers 20h to 3Fh for its own use. This

means absolute memory locations 80h to 0FFh are reserved by DOS.

Interrupt 20h - Terminate Current Program 4**5

(0:0080h)

 Issue int 20h to exit from a program. This vector transfers to the

logic in DOS to restore the terminate address, the Ctrl-Break address,

and the critical error exit address to the values they had on entry to

the program. All the file buffers are flushed and all handles are

closed. You should close all files changed in length (see function

calls 10h and 3Eh) before issuing this interrupt. If the changed file

is not closed, its length, time, and date are not recorded correctly

in the directory.

 This call is intended for use with .COM programs only.

 For a program to pass a completion code or an error code when

terminating, it must use either function call 4Ch (Terminate a

Process) or 31h (Terminate Process and Stay Resident). These two

methods are preferred over using int 20h and the codes returned by

them can be interrogated in batch processing.

Important: Before you issue an interrupt 20h, your program must

 ensure that the CS register contains the segment of its

 Program Segment Prefix.

Interrupt 20h DOS - Terminate Program

entry no parameters

return The following vectors are restored from the Program Segment

 Prefix:

 PSP offset interrupt description

 0Ah 22h Program Terminate

 0Eh 23h Control-C

 12h 24h Critical Error

note 1) IBM and Microsoft recommend using int 21h Fn 4Ch. Using int

 20h is officially frowned upon since the introduction of DOS

 2.0.

 2) In DOS 3.2 at least, int 20h merely calls int 21h, fn 00h.

 3) Supported by PC-MOS/386.

DOS Services (quick list) 4**6

+--+

¦Interrupt 21h Function Call Request ¦

+--+

(0:0084h)

 DOS provides a wide variety of function calls for character device

I/O, file management, memory management, date and time functions,

execution of other programs, and more. They are grouped as follows:

 call description

 00h program terminate

 01h-0Ch character device I/O, CP/M compatibility format

 0Dh-24h file management, CP/M compatibility format

 25h-26h nondevice functions, CP/M compatibility format

 27h-29h file management, CP/M compatibility format

 2Ah-2Eh nondevice functions, CP/M compatibility format

 2Fh-38h extended functions

 39h-3Bh directory group

 3Ch-46h extended file management

 47h directory group

 48h-4Bh extended memory management

 54h-57h extended functions

 5Eh-5Fh networking

 60h-62h extended functions

 63h-66h enhanced foreign language support

List of DOS services: * = undocumented

 00h terminate program

 01h get keyboard input

 02h display character to STDIO

 03h get character from STDAUX

 04h output character to STDAUX

 05h output character to STDPRN

 06h direct console I/O - keyboard to screen

 07h get char from std I/O without echo

 08h get char from std I/O without echo, checks for ^C

 09h display a string to STDOUT

 0Ah buffered keyboard input

 0Bh check STDIN status

 0Ch clear keyboard buffer and invoke keyboard function

 o 0Dh flush all disk buffers

 o 0Eh select disk

 0Fh open file with File Control Block

 10h close file opened with File Control Block

 11h search for first matching file entry

 12h search for next matching file entry

 13h delete file specified by File Control Block

 14h sequential read from file specified by File Control

 Block

 15h sequential write to file specified by File Control

 Block

 16h find or create firectory entry for file

 17h rename file specified by file control block

 18h* unknown

 o 19h return current disk drive

 o 1Ah set disk transfer area (DTA)

 1Bh get current disk drive FAT

 1Ch get disk FAT for any drive

 1Dh* unknown

 1Eh* unknown

 1Fh read DOS disk block, default drive

 20h* unknown

 21h random read from file specified by FCB

 22h random write to file specified by FCB

 23h return number of records in file specified by FCB

 24h set relative file record size field for file specified

 by FCB

 o 25h set interrupt vector

 26h create new Program Segment Prefix (PSP)

 27h random file block read from file specified by FCB

 28h random file block write to file specified by FCB

 29h parse the command line for file name

 o 2Ah get the system date

 o 2Bh set the system date

 o 2Ch get the system time

 o 2Dh set the system time

 o 2Eh set/clear disk write VERIFY

 o 2Fh get the Disk Transfer Address (DTA)

 o 30h get DOS version number

 31h TSR, files opened remain open

 32h read DOS Disk Block

 o 33h get or set Ctrl-Break

 34h INDOS Critical Section Flag

 o 35h get segment and offset address for an interrupt

 o 36h get free disk space

 37h* get/set option marking character (SWITCHAR)

 o 38h return country-dependent information

 o 39h create subdirectory

 o 3Ah remove subdirectory

 o 3Bh change current directory

 o 3Ch create and return file handle

 o 3Dh open file and return file handle

 o 3Eh close file referenced by file handle

 o 3Fh read from file referenced by file handle

 o 40h write to file referenced by file handle

 o 41h delete file

 o 42h move file pointer (move read-write pointer for file)

 o 43h set/return file attributes

 o 44h device IOCTL (I/O control) info

 o 45h duplicate file handle

 o 46h force a duplicate file handle

 o 47h get current directory

 o 48h allocate memory

 o 49h release allocated memory

 o 4Ah modify allocated memory

 o 4Bh load or execute a program

 o 4Ch terminate prog and return to DOS

 o 4Dh get return code of subprocess created by 4Bh

 o 4Eh find first matching file

 o 4Fh find next matching file

 50h* set new current Program Segment Prefix (PSP)

 51h* puts current PSP into BX

 52h* pointer to the DOS list of lists

 53h* translates BPB (Bios Parameter Block, see below)

 o 54h get disk verification status (VERIFY)

 55h* create PSP: similar to function 26h

 o 56h rename a file

 o 57h get/set file date and time

 58h get/set allocation strategy (DOS 3.x)

 o 59h get extended error information

 o 5Ah create a unique filename

 o 5Bh create a DOS file

 o 5Ch lock/unlock file contents

 5Dh DOS internal functions

 5Eh* network printer

 5Fh* network redirection

 60h* parse pathname (TRUENAME)

 61h* unknown

 62h get program segment prefix (PSP)

 63h* get lead byte table (DOS 2.25)

 64h* unknown

 65h get extended country information (DOS 3.3)

 66h get/set global code page table (DOS 3.3)

 67h set handle count (DOS 3.3)

 68h commit file (DOS 3.3)

 69h disk serial number (DOS 4.0)

 6Ah unknown

 6Bh unknown

 6Ch extended open/create (DOS 4.0)

 Items marked with 'o' are explicitly supported in the OS/2 1.x DOS

Compatibility Box, according to Microsoft. Most everything is

supported in the OS/2 2.0 Virtual DOS Machine, according to IBM.

Calling the DOS Services .. 4**7

 The DOS services are invoked by placing the number of the desired

function in register AH, subfunction in AL, setting the other

registers to any specific requirements of the function, and invoking

int 21h.

 When the interrupt is called, all register and flag values are

pushed into the stack. Int 21h contains a pointer into an absolute

address in the IBMDOS.COM file. This address is the main loop for the

DOS command handler. The handler pops the register values, compares

them to its list of functions, and executes the function if valid.

When the function is complete, it may pass values back to the command

handler. The handler will push the values into the stack and then

return control to the calling program.

 Most functions will return an error code; some return more

information. Details are contained in the listings for the individual

functions. Extended error return codes for most functions may be

obtained by calling function 59h.

 Register settings listed are the ones used by DOS. Some functions

will return with garbage values in unused registers. Do not test for

values in unspecified registers; your program may exhibit odd behavior.

 DS:DX pointers are the data segment register (DS) indexed to the DH

and DL registers (DX). DX always contains the offset address, DS

contains the segment address.

 The File Control Block services (FCB services) were part of DOS 1.0.

Since the release of DOS 2.0, Microsoft has recommended that these

services not be used. A set of considerably more enhanced services

(handle services) were introduced with DOS 2.0. The handle services

provide support for wildcards and subdirectories, and enhanced error

detection via function 59h. The FCB calls also do not support the

sharing modes or file locking functions of the handle calls, making

them unsafe for use with networks or multitaskers.

 The data for the following calls was compiled from various Intel,

Microsoft, IBM, and other publications. There are many subtle

differences between MSDOS and PCDOS and between the individual

versions. Differences between the versions are noted as they occur.

 There are various ways of calling the DOS functions. For all

methods, the function number is loaded into register AH, subfunctions

and/or parameters are loaded into AL or other registers, and call int

21h by one of the following methods:

 A) call interrupt 21h directly (the recommended procedure)

 B) perform a long call to offset 50h in the program's PSP.

 1) This method will not work under DOS 1.x.

 2) Though recommended by Microsoft for DOS 2.0, this method takes

 more time and is no longer recommended.

 C) place the function number in CL and perform an intrasegment call

 to location 05h in the current code segment. This location

 contains a long call to the DOS function dispatcher.

 1) IBM recommends this method be used only when using existing

 programs written for different calling conventions. (such as

 converting CP/M programs). This method should be avoided

 unless you have some specific use for it.

 2) AX is always destroyed by this method.

 3) This method is valid only for functions 00h-24h.

 D) PC-MOS/386' virtualization scheme results in 200-400+ clocks per

 interrupt when run on an 80286 machine since it has to flip in and

 out of protected mode at CPU ring 0. TSL recommends the following

 procedure for apps that must run quickly on 286 machines:

 1) PUSHF

 2) CLI

 3) CALL DWORD PTR[vector-contents]

 This avoids flipping in and out of protected mode and the attendant

 overhead. However, TSL specifies this technique should not be used

 with native-mode MOS applications.

 There are also various ways of exiting from a program. (assuming it

is not intended to be a TSR). All methods except call 4Ch must ensure

that the segment register contains the segment address of the PSP.

 A) Interrupt 21h, function 4Ch (Terminate with Result Code). This is

 the "official" recommended method of returning to DOS.

 B) Interrupt 21h, function 00h (Exit Program). This is the early

 style int 21h function call. It simply calls int 20h.

 C) Interrupt 20h (Exit).

 D) A JMP instruction to offset 00h (int 20h vector) in the Program

 Segment Prefix. This is just a roundabout method to call int 20h.

 This method was set up in DOS 1.0 for ease of conversion for CP/M

 programs. It is no longer recommended for use.

 E) A JMP instruction to offset 05h (int 21 vector) in the Program

 Segment Prefix, with AH set to 00h or 4Ch. This is another CP/M

 type function.

Version Specific Information 4**8

* Function Calls:

 DOS 2.x supports function calls 00h to 57h.

 DOS 2.25 is the only version to support function 63h

 (foreign keyboard)

 DOS 3.x has more sophisticated error handling and detection

 function calls available than 2.x.

 DOS 3.0 supports function calls 00h to 5Ch and 62h, including

 new and changed function calls for version 3.0:

 3Dh Open File

 59h Get Extended Error

 5Ah Create Temporary File

 5Bh Create New File

 5Ch Lock/Unlock File Access

 62h Get Program Segment Prefix Address

 DOS 3.1 supports function calls 00h to 62h, including the

 new and changed function calls for DOS 3.1:

 5E00h Get Machine Name

 5E02h Set Printer Setup

 5E03h Get Printer Setup

 5F02h Get Redirection List Entry

 5F03h Redirect Device

 5F04h Cancel Redirection

 DOS 3.2 supports the following new functions:

 44h extended IOCTL functions

 DOS 3.3 supports the following new functions:

 44h extended IOCTL functions

 65h get extended country information (DOS 3.3)

 66h get/set global code page table (DOS 3.3)

 67h set handle count (DOS 3.3)

 68h commit file (DOS 3.3)

 DOS 4.0 supports the following new functions:

 44h extended IOCTL functions

 69h disk serial number

 6Ch extended open/create

 DOS 5.0 supports the following new int 21h functions:

 30h sub 00h Get OEM ID number

 sub 01h Get version flag

 33h sub 06h Return "real" DOS version number

 44h sub 0Dh/68h, Sense Media Type

 sub 10h Query IOCTL handle

 sub 11h Query IOCTL device

 4Bh sub 01h load but don't execute

 (formerly undocumented)

 sub 05h Enter EXEC State

 51h Get Program Segment Prefix

 (formerly undocumented)

 58h sub 02h Get UMB Link Status

 sub 03h Set UMB Link Status

 65h Get Extended Country Information

 sub 05h Get filename character table

 sub 20h Convert character

 sub 21h Convert string

 sub 22h Convert ASCIIZ string

 ...and the following other functions:

 2Fh sub 1680h MS-DOS Idle Call

 Task Switcher API

 DOS 6.0 supports the following new int 21h functions:

 44h sub 04h adds DoubleSpace flush

PCjr Cartridge Support .. 4**9

==========================

ibm.dos/secrets.2 #1337, from jswitzer, 525 chars, Sat Jul 29 08:48:15 1989

This is a comment to message 1334.

The PCJr ROM cartridges have a command table that lists the name of

each supported command and its vector in the ROM. It does the ROM

match first before the internal command match, actually, so it will

execute what it finds there. Now that I think about it, this means that

you could burn your own ROMs in the proper format and get your own

commands. Neat, I guess.

As to it being in command.com, my DOS 3.3 version has some of the code

about 1A4C. Do a search with debug for "55 AA" and you'll find the

main routine.

Read:comment

Comment to message number 1337. Enter text. End with '.<CR>'

> 55 AA, that's right. That's the ID for a valid ROM. I'll fire up

> symdeb and poke through COMMAND if I can find my little white cane...

==========================

ibm.dos/secrets.2 #1776, from jswitzer, 319 chars, Tue Sep 19 01:33:09 1989

This is a comment to message 1773.

Actually, you can NOP all of the PCJr code without problems -- AST and

Toshiba both have COMMAND.COM without it, and no major problems. The

interesting thing is that PC-DOS 4.0x still has it, and they explicity

say that DOS 4 is NOT supported on the PCJr (*they* meaning IBM, of

course).

What can you figure, huh?

Read:comment

Comment to message number 1776. Enter text. End with '.<CR>'

> I sold my PCjr this morning (I swear to Baud!) and therefore can't make

>a test to see what would happen with 4.0 on the Jr. If IBM still sells

>the PC/JX in Japan that might be the reason for continuing cartridge

>support, since the machine is PCjr-based (well, about the way a PS/2 is

>PC-based).

> I used to run Toshiba DOS 2.11V on the Jr since it was provably faster

>on screen updates and disk access than IBM 2.1 (with a Jr, it doesn't take

>much to make a noticable difference). The only cartridges I had were

>ColorPaint and BASIC, and I can't remember if I used 2.11 with them or

>not.

>

==========================

ibm.dos/secrets.2 #1777, from jswitzer, 251 chars, Tue Sep 19 01:34:24 1989

The PCJr code in COMMAND.COM is ONLY executed on the PCJr and the PCJr

doesn't support normal BIOS expansion ROMs, only the expansion cartridges.

So, no conflict. If you patch out the check for the PCJr machine ID,

though, good luck!

 John Switzer

Read:comment

Comment to message number 1777. Enter text. End with '.<CR>'

> Ummm..... lemme go back and look at the listing again. The way it looked

>the first time, it seemed like ALL commands went through the loop.

Compatibility Problems With DOS 4.0 4**10

 Compatibility problems with DOS 4.00 lie mainly in int 2Ah and int

2Fh. While 2Ah was always reserved, some network software uses this

interrupt. IBM and Microsoft documentation prior to 4.0 strongly

implies that int 2Fh functions not already used by PRINT.COM were open

for general use. DOS 4.00 grabs a number of these functions. The

difference in disk handling when >32mb partitions are used causes

problems with some older software.

 Most DOS 4.00 external programs (ASSIGN, SUBST, etc) check for files

being printed - including LABEL. This is part of the enhanced network

support. Almost all DOS 4.00 externals make checks for NETBIOS too.

 DOS 5.0 ditched most of this peculiar stuff, making for a much more

stable product.

eDOS 4.0 .. 4**11

 Microsoft had announced their intent to build a multitasking,

multiuser version of MSDOS as early as 1982. As mentioned in Chapter

1, the DOS 4.0 issued to selected OEMS in England and Europe in

'86/'87 is not the same code that was released here as DOS 4.0 in

1988. Microsoft shipped betas of "DOS 4.0" in the US during the same

time period, but the product was never release in the US. The

European DOS 4.0 (eDOS?) is a multitasking DOS written by Microsoft,

while the US DOS 4.0 is a single tasking DOS written by IBM. eDOS 4.0

was released in Europe after 3.1, but before 3.2.

(abstracted from a pre-release document):

 `Microsoft Multitasking MS-DOS Product Specification' dated April

28, 1986

 MS-DOS 4.0 is a multitasking operating system, developed from and

compatible with MS-DOS 3.1. It supports true multitasking which gives

the user the illusion of and benefits from many independent computers.

Further, MS-DOS 4.0 allows most existing MS-DOS 2.x and 3.x

applications to run without change in the MS-DOS 4.0 multitasking

environment.

(end of abstract).

 Gordon Letwin of Microsoft had this to say about eDOS:

(excerpted from "Turning Off The Car To Change Gears" Microsoft Systems

 Journal, volume 2, number 2. May 1987)

 "DOS 4 was the first product to result from Microsoft's multitasking

DOS effort. We began it even before IBM introduced the PC AT. It was

an ambitious project that was originally to include a protected mode

with mode switching capabilities so it could run on the 8086 or the

286.

 A general-purpose multitasking system needs to run in both modes:

the unprotected 8086 mode so that we can run existing DOS

applications, and the protected 286 mode so that we can multitask

arbitrary, unrelated applications. But the architecture of the 286

caused some delays. Although we knew the project would be difficult,

it was only after we'd gotten deeply into it that we realized just how

difficult it would be.

 As a result, DOS 4 became too complicated for our schedules.

Because of the pressure of customer demand as well as that of previous

commitments, we broke the project into two parts. DOS 4 runs only in

real mode and provides multitasking only for specialized applications.

DOS 5, which has now been released as OS/2, includes the protected

mode and other features. DOS 4 was delivered in the last half of 1986

and is being sold in special application environments, primarily in

Europe. It is a specialized product that can share the market with

OS/2, because it runs on 8086 hardware, while OS/2 requires a 286.

The move from DOS 4 to OS/2 was a gradual evolutionary process."

(end of excerpt)

 eDOS 4.0 consisted of one main program (DOS2/3 compatible) and

several multitasking (background) programs that had to be written

specially. The whole lot was constrained to fit in the single 640k

memory map.

int 21h functions: (some of these appeared in later versions of DOS)

AEXEC Identical to EXEC sub 4.

CREATMEM creates a named area of memory which may be accessed by

 other processes. (shared memory \SHAREMEM\...)

CRITENTER, CRITLEAVE (semaphore routines)

CRITERR (This is the one that should have been in DOS 3)

 Enables hard error processing or automatically fails hard

 errors.

CWAIT Waits for return code from asynchronous process. Returns

 when any child process terminates. Children may also be

 started as orphans in which case you cannot WAIT for them.

EXEC 4Bh (sub function 4) - Start async process.

FREEZE Stops a specified process running.

GETEXTENDEDERROR - As for DOS3 except it checks version number to

 specify the level of error handling - you may ask for a

 pointer to the hard error information packet for the latest

 hard error.

GETMEM obtains access to a shared memory area previously created.

GETPID Returns process ID and parents process ID.

GET/SET MEMORY PARTITION SIZE

 foreground memory is used for ordinary apps. Background

 memory is used for DOS 4 apps that don't use the screen (or

 only use it through popup functions). Background apps can

 also use foreground memory but not vice versa.

KILL Terminates a process.

PBLOCK Block a process until matching PRUN is given. A timeout

 is also specified. A memory location is passed which must

 be matched in the PRUN. (semaphore)

PIPE Create a pipe. Access it through READ/WRITE/CLOSE (but not

 LSEEK).

PRUN Release a blocked process. (semaphore)

RELEASEMEM Release access to shared memory. If the reference count

 hits zero then the memory is freed.

RESUME Thaws a frozen process.

SEND SIGNAL

 Signals were:

 SIGINTR, SIGTERM, SIGPIPE, SIGUSER1, SIGUSER2.

 Control C, End of program, Broken pipe, user def,

 user def.

 Actions were:

 Terminate process on receipt, ignore, accept,

 sender gets error or acknowledge received signal.

 The last one of these returns to the sender immediately -

 it is intended for use when processing the signal will take

 a long time.

SETFILETABLE (86h) Install a new file handle table. (more than 20

 files, as in DOS 3.3+?)

SETPRI Sets process priority (for this process or entire subtree).

SET SIGNAL HANDLER

SLEEP Suspends the current process for given number of

 milliseconds. MSC 4.0 had a demo which called 'DOS_sleep'

 int 21h/fn 89h - does not appear to be implemented in

 known DOS versions.

WAIT As for DOS 3.

int 2Fh functions:

CHECKPU check for popup package installation

POSTPU open/close a popup screen

SAVEPU save popup screen

RESTOREPU restore popup screen

Other useful features:

 eDOS 4.0 programs used the Windows .EXE format

 programs may share code segments

 improved device drivers

 the serial port had a full set of IOCTL calls (used through

 a new generic IOCTL call).

 device drivers could be multi-tasking. They had appropriate

 support routines to queue multiple requests (just like OS/2

 later provided)

 interrupt driven serial ports

 sorted disk buffers before writing

The following were listed as possible future enhancements:

 File system protection and (not yet available from MS,

 permissions though DRI has it)

 High performance file system (HPFS was delivered in OS/2 1.2)

 Installable file systems (IFS hook is present in US DOS

 4.0, deleted in DOS 5 according

 to Gordon Letwin of Microsoft)

 Symbolic links (they don't have these on OS/2

 even now do they?)

 Undelete (added with DOS 5.0)

 Long names, lowercase names, (OS/2 HPFS, NT NTFS)

 access/creation date/time, name

 of app creating file, revision

 number etc.

 According to bits of information picked up from BIX, Wang tested an

alpha version of eDOS 4.0 for use on a laptop project sometime in 1985

but gave up because the OS was unable to cope with "ill behaved"

programs in a reasonable fashion. I talked with one person who had

beta-tested it for MS, who commented "the only thing it would run was

COMMAND.COM." Microsoft has evidently either squashed eDOS completely

or (likely) incorporated it into OS/2. I've been unable to determine

if the French post office still uses eDOS, and to the best I can find

out Apricot Computer never did much with it.

 DOSREF user John Dallman contributed the following: (July 1992)

 "You put a few notes in DOSREF about the multi-tasking MS-DOS 4.0

that was released in Europe during 1986/87. Notably, you wondered if

it ever reached any customers. I'm sorry to tell you that the answer

is yes - briefly. It was withdrawn owing to serious reliability

problems: Apricot and ICL sold it in the UK, and I've had email from

someone who bought a retail copy in Hong Kong."

 Ray Duncan had this to say about eDOS' metamorphosis: (PC Magazine,

October 16, 1990 excerpted from Power Programming, page 464)

 "OS/2 as it exists today is a vastly different system than the

protected-mode successor to DOS first envisioned by Microsoft in 1984

and 1985. The earliest version, internally known as DOS 5.0 or

286DOS, was small and relatively fast - it could even be booted from a

floppy disk on a 1mb 80286 machine. The 286DOS application program

interface (API), which was a proper superset of the DOS Int 21h,

Microsoft Mouse Int 33h, and ROM BIOS video Int 10h and keyboard Int

16h interfaces, was small enough to be easily understood and allowed

the straightforward porting of any DOS application. 286DOS was not

burdened with a built-in graphical user interface; the original plan

was to make a protected-mode version of Microsoft Windows available as

a separate product that the user could run on top of 286DOS as an

option.

 But somewhere along the torturous path from the original,

experimental implementations of 286DOS to the retail product now known

as OS/2, things went badly awry..."

 Microsoft Press' "MSDOS Encyclopedia" shows a reproduction of a late

DOS 1.25 OEM brochure. Microsoft was touting future enhancements to

1.25 including Xenix-compatible pipes, process forks, and

multitasking, as well as "graphics and cursor positioning, kanji

support, multi-user and hard disk support, and networking." Microsoft

certainly thought big, but, alas, the forks, multitasking, and

multiuser support never came about, at least in US versions of DOS.

Oddly, the flyer claims that...

 "MS-DOS has no practical limit on disk size. MS-DOS uses 4-byte

XENIX OS compatible pointers for file and disk capacity up to 4

gigabytes."

 Umm... yeah. One sort of gets the idea nobody at Microsoft had a

hard disk larger than 32 megabytes...

 For the record they actually delivered:

Xenix-compatible pipes DOS 2.0 ("|" operator)

process forks, and multitasking eDOS 4.0 (not delivered in the US)

multi-user never delivered

graphics and cursor positioning DOS 2.0 (ANSI.SYS, more than likely)

kanji support DOS 2.01, 2.25 (double-byte char set)

hard disk support DOS 2.0 (subdirectories)

networking DOS 3.1 (file locking, MS Networks)

 Early Microsoft ads pumped DOS' Xenix-like features and promised

Xenix functionality in future releases.

 We'll probably never know what the real story was behind eDOS - DOS

4 - DOS 5 - 286DOS - OS/2. Despite Gordon Letwin's acid comments

about problems with the 80286 processor, I doubt the '286 was the

barrier between users and a multitasking MSDOS. I also doubt there

was any shortage of programming talent at Microsoft - Digital

Research's Concurrent DOS and Software Link's PC-MOS were developed

without undue trouble.

 Though it's highly unlikely anyone would ever need programming

information for eDOS, I find the entire subject fascinating. IBM had

not only promised the product, they ran ads for it in 1984-85. Who

axed the project? Why? We'll likely never find out.

DOS Services in Detail .. 4**12

INT 21H DOS services

 Function (hex)

* Indicates Functions not documented in the IBM DOS Technical

Reference.

 Note some functions have been documented in other Microsoft or

licensed OEM documentation.

Function 00h Terminate Program

 Ends program, updates, FAT, flushes buffers, restores registers

entry AH 00h

 CS segment address of PSP

return none

note 1) Program must place the segment address of the PSP control

 block in CS before calling this function.

 2) The terminate, ctrl-break,and critical error exit addresses

 (0Ah, 0Eh, 12h) are restored to the values they had on entry

 to the terminating program, from the values saved in the

 program segment prefix at locations PSP:000Ah, PSP:000Eh, and

 PSP:0012h.

 3) All file buffers are flushed and the handles opened by the

 process are closed.

 4) Any files that have changed in length and are not closed are

 not recorded properly in the directory.

 5) Control transfers to the terminate address.

 6) This call performs exactly the same function as int 20h.

 7) All memory used by the program is returned to DOS. DOS just

 goes up the chain of memory blocks and marks any that are

 owned by the PSP which is terminating as free.

 8) TOS: $00 TERM. Returns system control to the program from

 which it started. If EXECed from a program, returns to that

 program. If started from DeskTop, returns to DeskTop. This

 is important for chaining program segments.

 9) Files opened with FCBs are not automatically closed.

 10) Supported in PC-MOS/386 compatibility mode, but not available

 for native MOS 386-mode applications.

Function 01h Get Keyboard Input

 Waits for char at STDIN (if necessary), echoes to STDOUT

entry AH 01h

return AL ASCII character from STDIN (8 bits)

note 1) Checks char for Ctrl-C, if char is Ctrl-C, executes int 23h.

 2) For function call 06h, extended ASCII codes require two

 function calls. The first call returns 00h as an indicator

 that the next call will be an extended ASCII code.

 3) Input and output are redirectable. If redirected, there is

 no way to detect EOF.

 4) TOS: $1 CONIN. Char returns in D0. ASCII code of char in

 high byte, keyboard scan code in low byte. Will return

 scancode on keys which have no ASCII value.

Function 02h Display Output

 Outputs char in DL to STDOUT

entry AH 02h

 DL 8 bit data (usually ASCII character)

return none

note 1) If char is 08 (backspace) the cursor is moved 1 char to the

 left (nondestructive backspace).

 2) If Ctrl-C is detected after input, int 23h is executed.

 3) Input and output are redirectable. If redirected, there is no

 way to detect disk full.

 4) TOS: $2 CONOUT. Char must be placed on the stack as the first

 word. The ASCII value of the char goes in the low byte and

 the high byte is zero. Chars are output to DEVICE #2, normal

 console output. Control characters and escape sequences are

 interpreted normally.

 5) Under DOS 1.x, 02h sends a character to the active display.

 Under DOS 2.x and later, the char goes to STDOUT.

Function 03h Auxiliary Input

 Get (or wait until) character from STDAUX

entry AH 03h

return AL ASCII char from auxiliary device

note 1) AUX, COM1, COM2 is unbuffered and not interrupt driven.

 2) This function call does not return status or error codes.

 For greater control it is recommended that you use the ROM BIOS

 routines (int 14h) or write an AUX device driver and use IOCTL.

 3) At startup, PC-DOS initializes the first auxiliary port (COM1) to 2400 baud, no parity, one stop bit, and an 8-bit word.

 Versions of MSDOS may differ.

 4) If Ctrl-C is has been entered from STDIN, int 23h is executed.

 5) TOS: $03 AUXILIARY INPUT. Function returns when the character

 has been received. Char is returned in the low byte of D0.

 6) Under DOS 1.x, the character is read from COM1. Under DOS

 2.x and later, it is read from STDAUX.

Function 04h Auxiliary Output

 Write character to STDAUX

entry AH 04h

 DL ASCII char to send to AUX

return none

note 1) This function call does not return status or error codes.

 For greater control it is recommended that you use the ROM

 BIOS routine (int 14h) or write an AUX device driver and use

 IOCTL.

 2) If Ctrl-C is has been entered from STDIN, int 23h is executed.

 3) Default is COM1 unless redirected by DOS.

 4) If the device is busy, this function will wait until it is

 ready.

 5) TOS: $04 AUXILIARY OUTPUT. High byte should be zero, low byte

 is ASCII code.

 6) Under DOS 1.x, the character is sent to COM1. Under DOS 2.x

 and later, it goes to STDAUX.

Function 05h Printer Output

 Write character to STDPRN

entry AL 05h

 DL ASCII code for character to send

return none

note 1) If Ctrl-C is has been entered from STDIN, int 23h is executed.

 2) Default is PRN or LPT1 unless redirected with the MODE command.

 3) If the printer is busy, this function will wait until it is

 ready.

 5) TOS: $05 PRINTER OUTPUT. High byte of D0 is zero, low byte is

 character. Returns -1 if character is sent successfully.

 Times out after 30 seconds and resets D0 to zero.

 6) Under DOS 1.x, this function writes to LPT1. Under DOS 2.x

 and higher it writes to STDPRN.

Function 06h Direct Console I/O

 Get character from STDIN; echo character to STDOUT

entry AH 06h

 DL 0FFh for console input, or 00h-0FEh for console output

return ZF set no character available

 clear character recieved

 AL ASCII code for character

note 1) Extended ASCII codes require two function calls. The first

 call returns 00h to indicate the next call will return an

 extended code.

 2) If DL is not 0FFh, DL is assumed to have a valid character

 that is output to STDOUT.

 3) This function does not check for Ctrl-C or Ctrl-PrtSc.

 4) Does not echo input to screen.

 5) If I/O is redirected, EOF or disk full cannot be detected.

 6) TOS: $06 RAWCONIO. Get character from keyboard by calling

 with $FF in D0. ASCII and scan codes are returned as per

 CONIN. If a value other than $FF is used, it is printed to

 STDOUT at the current cursor position. This call interprets

 all control chars and escape sequences.

 7) Under DOS 1.x, this call handles the keyboard and display

 directly. Under DOS 2.x and later, calls are routed to the

 STDOUT driver.

Function 07h Direct Console Input Without Echo

 Get or wait for char at STDIN, returns char in AL

 (does not check BREAK)

entry AH 07h

return AL ASCII character from standard input device

note 1) Extended ASCII codes require two function calls. The first

 call returns 00h to indicate the next call will return an

 extended code.

 2) No checking for Ctrl-C or Ctrl-PrtSc is done.

 3) Input is redirectable.

 4) TOS: $07 DIRECT CONIN WITHOUT ECHO. Same as function 01h

 only does not echo character to screen.

 5) Under DOS 1.x the keyboard is read directly. Under DOS 2.x

 and later the STDIN is polled.

Function 08h Console Input Without Echo

 Get or Wait for char at STDIN, return char in AL

 (checks BREAK)

entry AH 08h

return AL char from standard input device

note 1) Char is checked for ctrl-C. If ctrl-C is detected, executes

 int 23h.

 2) For function call 08h, extended ASCII characters require two

 function calls. The first call returns 00h to signify an

 extended ASCII code. The next call returns the actual code.

 3) Input is redirectable. If redirected, there is no way to

 check EOF.

 4) TOS: $08 CONIN WITHOUT ECHO. Same as previous call. (no

 checking for control characters).

 5) Under DOS 1.x the keyboard is read directly. Under DOS 2.x

 and later the STDIN is polled.

Function 09h Print String

 Outputs Characters in the Print String to the STDOUT

entry AH 09h

 DS:DX pointer to the Character String to be displayed

return none

note 1) The character string in memory must be terminated by a $

 character. (ASCII 24h)

 2) The $ is not displayed but remains in AL forever unless popped.

 3) Output to STDOUT is the same as function call 02h.

 4) TOS: $09 PRINT LINE. The address of the ASCIIZ string is

 placed on the stack as a parameter and is printed at the

 current cursor position. There is no limit to the size of the

 string. D0 contains the number of characters to be printed.

 Control and escape codes are evaluated.

 5) Under DOS 1.x, this function writes to the screen. Under DOS

 2.x and higher it writes to STDOUT.

Function 0Ah Buffered Keyboard Input

 Reads characters from STDIN and places them in the buffer

 beginning at the third byte.

entry AH 0Ah

 DS:DX pointer to an input buffer

return none

note 1) Min buffer size = 1, max = 255.

 2) Char is checked for ctrl-C. If ctrl-C is detected, executes

 int 23h.

 3) Format of buffer DX:

 byte contents

 1 Maximum number of chars the buffer will take,

 including CR. Reading STDIN and filling the buffer

 continues until a carriage return (<Enter> or 0Dh) is

 read. If the buffer fills to one less than the maximum

 number the buffer can hold, each additional number read

 is ignored and ASCII 7 (BEL) is output to the display

 until a carriage return is read. (you must set this

 value)

 2 Actual number of characters received, excluding the

 carriage return, which is always the last character.

 (the function sets this value)

 3-n Characters received are placed into the buffer

 starting here. Buffer must be at least as long as the

 number in byte 1.

 n+1 Carriage return character (0Dh).

 4) Input is redirectable. If redirected, there is no way to

 check EOF.

 5) The string may be edited with the standard DOS editing

 commands as it is being entered.

 6) Extended ASCII characters are stored as 2 bytes, the first

 byte being zero.

 7) TOS: $0A READLINE. Fetches CR-terminated line from CONIN.

 The address of the buffer is passed as a parameter. Byte 1

 is the maximum length of the line, byte 2 is the number of

 characters entered, byte 3 is the first character. Escape

 codes are not interpreted, but the normal editing control

 characters are.

 8) Under DOS 1.x the keyboard is read directly. Under DOS 2.x

 and later the STDIN is polled.

Function 0Bh Check Standard Input (STDIN) status

 Checks for character available at STDIN

entry AH 0Bh

return AL 00h if no character is available from STDIN

 0FFh if a character is available from STDIN

note 1) Checks for Ctrl-C. If Ctrl-C is detected, int 23h is executed.

 2) Input can be redirected.

 3) Checks for character only, it is not read into the application.

 4) IBM reports that this call does not work properly under the

 DOSSHELL program in DOS 4.00 and 4.01. DOSSHELL will return

 all zeroes. This function works correctly from the command

 line or application.

 5) TOS: $0B CONSTAT. Checks 64-byte OS input buffer.

 6) Under DOS 1.x, the type-ahead buffer is checked. Under DOS

 2.x and later, the type-ahead buffer is checked unless STDIN

 has been redirected.

Function 0Ch Clear Keyboard Buffer & Invoke a Keyboard Function

 Dumps buffer, executes function in AL (FCB)

entry AH 0Ch

 AL function number (must be 01h, 06h, 07h, 08h, or 0Ah)

 note: the DOS 5.0 TR specifies 0Ah as reserved and

 "must not be used"

return AL 00h buffer was flushed, no other processing

 performed

 other any other value has no meaning

note 1) Forces system to wait until a character is typed.

 2) Flushes all typeahead input, then executes function specified

 by AL (by moving it to AH and repeating the int 21 call).

 3) If AL contains a value not in the list above, (such as 00h)

 the input buffer is flushed and no other action is taken. Note

 that this is the STDIN buffer, not the actual keyboard buffer.

 The keyboard buffer will not be flushed if input is redirected.

 4) Under DOS 1.x, the type-ahead buffer is emptied before the

 function in AL is performed.

Function 0Dh Disk Reset

 Flushes all currently open file buffers to disk

entry AH 0Dh

return none

note 1) Does not close files. Does not update directory entries;

 files changed in size but not closed are not properly

 recorded in the directory.

 2) Sets DTA address to DS:0080h

 3) Should be used before a disk change, Ctrl-C handlers, and to

 flush the buffers to disk.

 4) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 5) IBM TopView saves DTA information during task switches.

Function 0Eh Select Disk

 Sets the drive specified in DL (if valid) as the default drive

entry AL 0Eh

 DL new default drive number (0=A:,1=B:,2=C:,etc.)

return AL number of physical drives found unless LASTDRIVE= is

 included in CONFIG.SYS and specifies a higher number

 than that of the last physical drive.

note 1) For DOS 1.x and 2.x, the minimum value for AL is 2.

 2) For DOS 3.x and 4.x, the minimum value for AL is 5.

 3) The drive number returned is not necessarily a valid drive.

 4) For DOS 1.x: 16 logical drives are available, A-P. (0-0Fh)

 For DOS 2.x: 63 logical drives are available. (Letters are only

 used for the first 26 drives. If more than 26

 logical drives are used, further drive letters

 will be other ASCII characters, such as {,],

 etc. (0-3Fh)

 For DOS 3.x, +: 26 logical drives are available, A-Z. (0-19h)

 5) TOS: $0E SETDRV. A 16-bit parameter with drivespec is passed

 to TOS. On exit, D0 contains the number of the drive active

 before the call. (not the total number of drives)

 6) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 7) For DOS 3.3, LASTDRIVE= is not needed when accessing

 additional hard disk partitions past E:. I haven't done any

 further checking, but it seems that LASTDRIVE= may be fairly

 useless to most programs.

 6) IBM TopView saves DTA information during task switches.

Function 0Fh Open Disk File (FCB)

 Searches current directory for specified filename and places

 relevantinformation into the File Control Block.

entry AH 0Fh

 DS:DX pointer to an unopened FCB

return AL 00h if file found

 0FFh if file not not found

note 1) If the drive code was 0 (default drive) it is changed to the

 actual drive used (1=A:,2=B:,3=C:, etc). This allows changing

 the default drive without interfering with subsequent

 operations on this file.

 2) The current block field (FCB bytes C-D, offset 0Ch) is set to

 zero.

 3) The size of the record to be worked with (FCB bytes E-F, offset

 0Eh) is set to the system default of 80h. The size of the file

 (offset 10h) and the date (offset 14h) are set from information

 obtained in the root directory. You can change the default

 value for the record size (FCB bytes E-F) or set the random

 record size and/or current record field. Perform these actions

 after the open but before any disk operations.

 4) With DOS 3.x the file is opened in compatibility mode.

 (network)

 5) Microsoft recommends handle function call 3Dh be used instead.

 6) This call is also used by the APPEND command in DOS 3.2 and

 higher.

 7) Before performing a sequential disk operation on the file, you

 must set the Current Record field (offset 20h). Before

 performing a random disk operation on the file, you must set

 the Relative Record field (offset 21h). If the default record

 size of 128 bytes is incorrect, set it to the correct value.

Function 10h Close File (FCB)

 Closes a File After a File Write

entry AH 10h

 DS:DX pointer to an opened FCB

return AL 00h if the file is found and closed

 0FFh if the file is not found in the current

 directory

note 1) This function call must be done on open files that are no

 longer needed, and after file writes to insure all directory

 information is updated.

 2) If the file is not found in its correct position in the current

 directory, it is assumed that the diskette was changed and AL

 returns 0FFh. This error return is reportedly not completely

 reliable with DOS version 2.x.

 3) If found, the directory is updated to reflect the status in the

 FCB, the buffers to that file are flushed, and AL returns 00h.

 4) There is a subtle but dangerous quirk to this function. If a

 Close request is issued using a File Control Block that has

 not been previously activated by a successful Open command, the

 file's length will be truncated to zero and the clusters

 previously assigned to the file are left floating. (lost

 clusters)

 5) This function works for files in the current directory only.

 6) For DOS 3.1 and later, files opened with this call are set to

 compatibility mode and the access code is set to read/write.

 7) For DOS 3.0 and later, int 21h fn 59h (Get Extended Error

 Information) may be used to determine errors.

Function 11h Search For First Matching Entry (FCB)

 Searches current disk & directory for first matching filename

entry AH 11h

 DS:DX pointer to address of FCB

return AL 00h successful match

 0FFh no matching filename found

note 1) The FCB may contain the wildcard character ? under DOS 2.x,

 and ? or * under 3.x and later.

 2) The original FCB at DS:DX contains information to continue the

 search with function 12h, and should not be modified.

 3) If a matching filename is found, AL returns 00h and the

 locations at the Disk Transfer Address are set as follows:

 a) If the FCB provided for searching was an extended FCB, then

 the first byte at the disk transfer address is set to 0FFh

 followed by 5 bytes of zeroes, then the attribute byte from

 the search FCB, then the drive number used (1=A, 2=B, etc)

 then the 32 bytes of the directory entry. Thus, the disk

 transfer address contains a valid unopened FCB with the same

 search attributes as the search FCB.

 b) If the FCB provided for searching was a standard FCB, then

 the first byte is set to the drive number used (1=A, 2=b,

 etc), and the next 32 bytes contain the matching directory

 entry. Thus, the disk transfer address contains a valid

 unopened normal FCB.

 4) If an extended FCB is used, the following search pattern is

 used:

 a) If the FCB attribute byte is zero, only normal file entries

 are found. Entries for volume label, subdirectories, hidden

 or system files, are not returned.

 b) If the attribute byte is set for hidden or system files, or

 subdirectory entries, it is to be considered as an inclusive

 search. All normal file entries plus all entries matching

 the specified attributes are returned. To look at all

 directory entries except the volume label, the attribute byte

 may be set to hidden + system + directory (all 3 bits on).

 c) If the attribute field is set for the volume label, it is

 considered an exclusive search, and ONLY the volume label

 entry is returned.

 5) This call is also used by the APPEND command in DOS 3.2+

Function 12h Search For Next Entry Using FCB (FCB)

 Search for next matching filename

entry AH 12h

 DS:DX pointer to the unopened FCB specified from the previous

 Search

 First (11h) or Search Next (12h)

return AL 00h if matching filename found

 0FFh if matching filename was not found

note 1) After a matching filename has been found using function call

 11h, function 12h may be called to find the next match to an

 ambiguous request. For DOS 2.x, ?'s are allowed in the

 filename. For DOS 3.x and 4.x, global (*) filename characters

 are allowed.

 2) The DTA contains info from the previous Search First or Search

 Next.

 3) Do not perform any disk operations with this FCB between a

 previous function 11h or 12h call and this one. "Undocumented"

 fields in the FCB are used to keep information necessary for

 continuing the search, and some disk operations may overwrite

 these areas.

 4) If the file is found, an FCB is created at the DTA address and

 set up to open or delete it.

Function 13h Delete File Via FCB (FCB)

 Deletes file specified in FCB from current directory

entry AH 13h

 DS:DX pointer to address of FCB

return AL 00h file deleted

 0FFh if file not found or was read-only

note 1) All matching current directory entries are deleted. The global

 filename character "?" is allowed in the filename.

 2) Will not delete files with read-only attribute set.

 3) Close open files before deleting them.

 4) For DOS 3.1+, requires network Create rights to the sub-

 directory.

 5) This call supports wildcards and is very fast. The "new"

 handle call 41h is supposed to replace this one since it knows

 about subdirectories. Unfortunately, fn 41h doesn't know about

 wildcards.

Function 14h Sequential Disk File Read (FCB)

 Reads record sequentially from disk via FCB

entry AH 14h

 DS:DX pointer to an opened FCB

return AL 00h successful read

 01h end of file (no data read)

 02h Data Transfer Area too small for record size

 specified or segment overflow

 03h partial record read, EOF found

note 1) The record size is set to the value at offset 0Eh in the FCB.

 2) The record pointed to by the Current Block (offset 0Ch) and the

 Current Record (offset 20h) fields is loaded at the DTA, then

 the Current Block and Current Record fields are incremented.

 3) The record is read into memory at the current DTA address as

 specified by the most recent call to function 1Ah. If the size

 of the record and location of the DTA are such that a segment

 overflow or wraparound would occur, the error return is set to

 AL=02h.

 4) If a partial record is read at the end of the file, it is passed

 to the requested size with zeroes and the error return is set to

 AL=03h.

 5) For DOS 3.1+ networks, requires Read rights to the subdirectory.

Function 15h Sequential Disk Write (FCB)

 Writes record specified by FCB sequentially to disk

entry AH 15h

 DS:DX pointer to address of FCB

return AL 00h successful write

 01h diskette full, write canceled

 02h disk transfer area (DTA) too small or segment

 wrap

note 1) The data to write is obtained from the disk transfer area.

 2) The record size is set to the value at offset 0Eh in the FCB.

 3) This service cannot write to files set as read-only.

 4) The record pointed to by the Current Block (offset 0Ch) and the

 Current Record (offset 20h) fields is loaded at the DTA, then

 the Current Block and Current Record fields are incremented.

 5) If the record size is less than a sector, the data in the DTA

 is written to a buffer; the buffer is written to disk when it

 contains a full sector of data, the file is closed, or a Reset

 Disk (function 0Dh) is issued.

 6) The record is written to disk at the current DTA address as

 specified by the most recent call to function 1Ah. If the size

 of the record and location of the DTA are such that a segment

 overflow or wraparound would occur, the error return is set to

 AL=02h.

 5) For DOS 3.1+ networks, requires Write rights to the subdirectory.

Function 16h Create A Disk File (FCB)

 Search and open or create directory entry for file

entry AH 16h

 DS:DX pointer to an FCB

return AL 00h successful creation

 0FFh no room in directory

note 1) If a matching directory entry is found, the file is truncated

 to zero bytes.

 2) If there is no matching filename, a filename is created.

 3) This function calls function 0Fh (Open File) after creating or

 truncating a file.

 4) A hidden file can be created by using an extended FCB with the

 attribute byte (offset FCB-1) set to 2.

 5) The corresponding handle call is 3Ch.

 6) For DOS 3.1+ networks, requires Create rights to the sub-

 directory.

 7) For DOS 3.0 and later, int 21h function 59h (Get Extended Error

 Information) may be used to determine errors.

 8) Pathnames and wildcards are not supported.

Function 17h Rename File Specified by File Control Block (FCB)

 Renames file in current directory

entry AH 17h

 DS:DX pointer to an FCB (see note 4)

return AL 00h successfully renamed

 0FFh file not found or filename already exists

note 1) This service cannot rename read-only files.

 2) The "?" wildcard may be used.

 3) If the "?" wildcard is used in the second filename, the

 corresponding letters in the filename of the directory entry are

 not changed.

 4) A special modified FCB is used. It must have a drive number,

 filename, and extension in the usual position, and a second

 filename starting 6 bytes after the first, at offset 11h. This

 is normally a "reserved" area.

 Modified FCB format:

 bytes contents

 00h drive number

 01h-08h old filename (blank padded if required)

 09h-0Bh old file extension (blank padded if reqired)

 0Ch-10h zeroed out

 11h-18h new filename (blank padded if required)

 19h-1Bh new file extension (blank padded if required)

 1Ch-24h zeroed out

 5) The two filenames cannot have the same name.

 6) FCB contains new name starting at byte 17h.

 7) Under DOS 2.0+, subdirectories may be renamed with this call.

Function 18h Unknown - reportedly not used

entry AH 18h

return AL 00h

Function 19h Get Current Disk Drive

 Return designation of current default disk drive

entry AH 19h

return AL current default drive (0=A, 1=B,etc.)

note 1) Some other DOS functions use 0 for default, 1=A, 2=B, etc.

 2) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 3) TOS: $19 CURRENT DISK. D0 returns number of drive (0=A:)

Function 1Ah Set Disk Transfer Area Address (DTA)

 Sets DTA address to the address specified in DS:DX.

 Required for functions 4Eh and 4Fh.

entry AH 1Ah

 DS:DX pointer to DTA buffer

return none

note 1) The default DTA is 128 bytes at offset 80h in the PSP. You may

 set up your own DTA with any size and location. The DTA should

 be large enough to handle the largest record you intend to write.

 2) Registers are unchanged.

 3) No error codes are returned.

 4) Disk transfers cannot wrap around from the end of the segment

 to the beginning or overflow into another segment.

 5) DOS uses the DTA for file I/O. (see Chapter 6)

 6) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 7) TOS: $1A SET DISK TRANSFER ADDRESS. Sets up a 44-byte buffer for

 disk operations.

 8) PC-MOS/386: not supported for native 386 mode MOS applications.

Function 1Bh Get Current Drive File Allocation Table Information

 Returns information from the FAT on the current drive

entry AH 1Bh

return AL number of sectors per allocation unit (cluster)

 CX number of bytes per sector

 DS:BX address of the current drive's media descriptor byte

 DX number of allocation units (clusters) for default drive

note 1) Save DS before calling this function.

 2) This call returned a pointer to the FAT in DOS 1.x. Beginning

 with DOS 2.00, it returns a pointer only to the table's ID byte.

 3) IBM recommends programmers avoid this call and use int 25h

 instead.

 4) Offset DS:[BX-1] is the dirty byte for the table: 00=clean,

 01=dirty.

 5) DOS 2.x+ and above do not keep the FAT in RAM. Do not use this

 call to access the FAT. Function 36 is preferred.

 6) If unsuccessful, AL returns with 0FFh.

Function 1Ch Get File Allocation Table Information for Drive

 Returns information on specified drive

entry AH 1Ch

 DL drive number (1=A, 2=B, 3=C, etc)

return AL number of sectors per allocation unit (cluster)

 0FFh invalid drive specification

 DS:BX address of media descriptor byte for drive in DL

 CX sector size in bytes

 DX number of allocation units (clusters)

note 1) Set DL = 0 for default.

 2) Save DS before calling this function.

 3) Format of media-descriptor byte:

 bits: 0 0 (clear) not double sided

 1 (set) double sided

 1 0 (clear) not 8 sector

 1 (set) 8 sector

 2 0 (clear) nonremovable device

 1 (set) removable device

 3-7 always set (1)

 4) This call returned a pointer to the FAT in DOS 1.x. Beginning

 with DOS 2.00, it returns a pointer only to the table's ID byte.

 5) IBM recommends programmers avoid this call and use int 25h

 instead.

 6) This function reads the BPB only and is very fast.

 7) If unsuccessful, AL returns with 0FFh.

 8) PC-MOS/386: native mode should use DS:EBX instead of DS:BX.

Function 1Dh Not Documented by Microsoft

 * Unknown - reportedly not used

entry AH 1Dh

return AL 00h

Function 1Eh Not Documented by Microsoft

 * Unknown - reportedly not used

entry AH 1Eh

return AL 00h

note Apparently does nothing.

Function 1Fh Get Default Drive Parameter Block

 Same as function call 32h (below), except that the table is

 accessed from the default drive

entry AH 1Fh

 other registers unknown

return AL 00h no error

 0FFh error

 DS:BX pointer to DOS Disk Parameter Block for default drive.

note For DOS 2, 3, 4.x, this just invokes function 32h (Read DOS

 Disk Block) with DL=0.

Function 20h Unknown

 * Internal - does nothing?

entry AH 20h

return AL 00h

Function 21h Random Read from File Specified by File Control Block (FCB)

 Reads one record as specified in the FCB into the current DTA.

entry AH 21h

 DS:DX address of the opened FCB

return AL 00h successful read operation

 01h end of file (EOF), no data read

 02h DTA too small for the record size specified

 03h end of file (EOF), partial data read

note 1) The current block and current record fields are set to agree

 with the random record field. Then the record addressed by

 these fields is read into memory at the current Disk Transfer

 Address.

 2) The current file pointers are NOT incremented this function.

 3) If the DTA is larger than the file, the file is padded to the

 requested length with zeroes.

Function 22h Random Write to File Specified by FCB (FCB)

 Writes one record as specified in the FCB to the current DTA

entry AH 22h

 DS:DX address of the opened FCB

return AL 00h successful write operation

 01h disk full; no data written (write was canceled)

 02h DTA too small for the record size specified

 (write was canceled)

note 1) This service cannot write to read-only files.

 2) The record pointed to by the Current Block (offset 0Ch) and the

 Current Record (offset 20h) fields is loaded at the DTA, then

 the Current Block and Current Record fields are incremented.

 3) If the record size is less than a sector, the data in the DTA is

 written to a buffer; the buffer is written to disk when it

 contains a full sector of data, the file is closed, or a Reset

 Disk (function 0Dh) is issued.

 4) The current file pointers are NOT incremented this function.

 5) The record is written to disk at the current DTA address as

 specified by the most recent call to function 1Ah. If the size

 of the record and location of the DTA are such that a segment

 overflow or wraparound would occur, the error return is set to

 AL=02h.

 6) Under networks running DOS 3.1 or later, the user must have

 Write access rights to the subdirectory.

Function 23h Get File Size (FCB)

 Searches current subdir for matching file, returns size in FCB

entry AH 23h

 DS:DX address of an unopened FCB

return AL 00h file found

 0FFh file not found

note 1) Record size field (offset 0Eh) must be set before invoking this

 function.

 2) The disk directory is searched for the matching entry. If a

 matching entry is found, the random record field is set to the

 number of records in the file. If the value of the Record Size

 field is not an even divisor of the file size, the value set in

 the relative record field is rounded up. This gives a returned

 value larger than the actual file size.

 3) This call is used by the APPEND command in DOS 3.2+.

 4) Record numbers start with zero.

Function 24h Set Relative Record Field (FCB)

 Set random record field specified by an FCB

entry AH 24h

 DS:DX address of an opened FCB

return Random Record Field of FCB is set to be same as Current Block

 and Current Record.

note 1) You must invoke this function before performing random file

 access.

 2) The relative record field of FCB (offset 21h) is set to be same

 as the Current Block (offset 0Ch) and Current Record (offset

 20h).

 3) No error codes are returned.

 4) The FCB must already be opened.

Function 25h Set Interrupt Vector

entry AH 25h

 AL interrupt number to reassign the handler to

 DS:DX address of new interrupt vector

return none

note 1) Registers are unchanged.

 2) No error codes are returned.

 3) The interrupt vector table for the interrupt number specified

 in AL is set to the address contained in DS:DX. Use function

 35h (Get Vector) to get the contents of the interrupt vector

 and save it for later use.

 4) When you use function 25 to set an interrupt vector, DOS 3.2

 doesn't point the actual interrupt vector to what you requested.

 Instead, it sets the interrupt vector to point to a routine

 inside DOS, which does this:

 1. Save old stack pointer

 2. Switch to new stack pointer allocated from DOS's

 stack pool

 3. Call your routine

 4. Restore old stack pointer

 The purpose for this was to avoid possible stack overflows when

 there are a large number of active interrupts. IBM was

 concerned (this was an IBM change, not Microsoft) that on a

 Token Ring network there would be a lot of interrupts going on,

 and applications that hadn't allocated very much stack space

 would get clobbered.

 5) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 6) This call is used to access the Phar Lap DOS extender's

 protected mode functions. The Phar Lap function number is

 placed in AL.

Function 26h Create New Program Segment Prefix (PSP)

 This service copies the current program-segment prefix to a new

 memory location for the creation of a new program or overlay.

 Once the new PSP is in place, a DOS program can read a DOS .COM

 or overlay file into the memory location immediately following

 the new PSP and pass control to it.

entry AH 26h

 DX segment number for the new PSP

return Current PSP is copied to specified segment

note 1) Microsoft recommends you use the newer DOS service 4Bh (EXEC)

 instead.

 2) The entire 100h area at location 0 in the current PSP is copied

 into location 0 of the new PSP. The memory size information at

 location 6 in the new segment is updated and the current

 termination, ctrl-break, and critical error addresses from the

 interrupt vector table entries for ints 22h, 23h, and 24 are

 saved in the new program segment starting at 0Ah. They are

 restored from this area when the program terminates.

 3) The PSP structure is found in Chapter 6.

Function 27h Random Block Read From File Specified by FCB

 Similar to 21h (Random Read) except allows multiple files to be

 read.

entry AH 27h

 CX number of records to be read

 DS:DX address of an opened FCB

return AL 00h successful read

 01h end of file, no data read

 02h DTA too small for record size specified

 (read canceled)

 03h end of file

 CX actual number of records read (includes partial if

 AL=03h)

note 1) The record size is specified in the FCB. The service updates

 the Current Block (offset 0Ch) and Current Record (offset 20h)

 fields to the next record not read.

 2) If CX contained 0 on entry, this is a NOP.

 3) If the DTA is larger than the file, the file is padded to the

 requested length with zeroes.

 4) This function assumes that the FCB record size field (0Eh) is

 correctly set. If not set by the user, the default is 128

 bytes.

 5) The record is written to disk at the current DTA address as

 specified by the most recent call to function 1Ah. If the size

 of the record and location of the DTA are such that a segment

 overflow or wraparound would occur, the error return is set to

 AL=02h.

 6) Under networks running DOS 3.1 or later, the user must have

 Read access rights to the subdirectory.

Function 28h Random Block Write to File Specified in FCB

 Similar to 27h (Random Write)

entry AH 28h

 CX number of records to write

 DS:DX address of an opened FCB

return AL 00h successful write

 01h disk full, no data written

 02h DTA too small for record size specified

 (write canceled)

 CX number of records written

note 1) The record size is specified in the FCB.

 2) This service allocates disk clusters as required.

 3) This function assumes that the FCB Record Size field (offset

 0Eh) is correctly set. If not set by the user, the default is

 128 bytes.

 4) The record size is specified in the FCB. The service updates

 the Current Block (offset 0Ch) and Current Record (offset 20h)

 fields to the next record not read.

 5) The record is written to disk at the current DTA address as

 specified by the most recent call to function 1Ah. If the size

 of the record and location of the DTA are such that a segment

 overflow or wraparound would occur, the error return is set to

 AL=02h.

 6) If called with CX=0, no records are written, but the FCB's File

 Size entry (offset 1Ch) is set to the size specified by the

 FCB's Relative Record field (offset 21h).

 7) Under networks running DOS 3.1 or later, the user must have

 Write access rights to the subdirectory.

Function 29h Parse the Command Line for Filename

 Parses a text string into the fields of a File Control Block

entry AH 29h

 AL bit mask to control parsing

 bit 0 0 parsing stops if file seperator found

 1 causes service to scan past leading chars

 such as blanks. Otherwise assumes the

 filename begins in the first byte

 1 0 drive number in FCB set to default (0) if

 the string contains no drive number

 1 drive number in FCB not changed

 2 0 filename in FCB set to 8 blanks if no

 filename in string

 1 filename in FCB not changed if string does

 not contain a filename

 3 0 extension in FCB set to 3 blanks if no

 extension in string

 1 extension left unchanged

 4-7 must be zero

 DS:SI pointer to string to parse

 ES:DI pointer to memory buffer to fill with unopened FCB

return AL 00h no wildcards in name or extension

 01h wildcards appeared in name or extension

 0FFh invalid drive specifier

 DS:SI pointer to the first byte after the parsed string

 ES:DI pointer to a buffer filled with the unopened FCB

note 1) If the * wildcard characters are found in the command line, this

 service will replace all subsequent chars in the FCB with

 question marks.

 2) This service uses the characters as filename separators

 DOS 1 : ; . , + / [] = " TAB SPACE

 DOS 2,3,4 : ; . , + = TAB SPACE

 3) This service uses the characters

 : ; . , + < > | / \ [] = " TAB SPACE

 or any control characters as valid filename separators.

 4) A filename cannot contain a filename terminator. If one is

 encountered, all processing stops. The handle functions will

 allow use of some of these characters.

 5) If no valid filename was found on the command line, ES:DI +1

 points to a blank (ASCII 32).

 6) This call will not handle pathnames.

 7) Parsing is in the form D:FILENAME.EXT. If one is found, a

 corresponding unopened FCB is built at ES:DI.

Function 2Ah Get Date

 Returns day of the week, year, month, and date

entry AH 2Ah

return CX year (1980-2099)

 DH month (1-12)

 DL day (1-31)

 AL weekday 00h Sunday

 01h Monday

 02h Tuesday

 03h Wednesday

 04h Thursday

 05h Friday

 06h Saturday

note 1) Date is adjusted automatically if clock rolls over to the next

 day, and takes leap years and number of days in each month into

 account.

 2) Although DOS cannot set an invalid date, it can read one, such

 as 91/32/80, etc.

 3) DESQview's DOS subfunctions also accept CX = 4445h and DX =

 5351h, i.e. 'DESQ' as valid.

 4) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 5) DOS will accept CH=0 (midnight) as a valid time. Through DOS

 3.31, if a file's time is set to within 2 seconds of midnight

 the time will not be displayed by the DIR command. For DOS

 4.0+ and DR-DOS the creation time will always be displayed.

 6) TOS: $2A GET DATE.

Function 2Bh Set Date

 set current system date

entry AH 2Bh

 CX year (1980-2099)

 DH month (1-12)

 DL day (1-31)

return AL 00h no error (valid date)

 0FFh invalid date specified

note 1) On entry, CX:DX must have a valid date in the same format as

 returned by function call 2Ah.

 2) DOS 3.3+ also sets CMOS clock.

 3) Under the DESQview system shell, this is the DV_GET_VERSION

 check:

 entry AH 2Bh

 AL 01h DESQ call

 CX 4445h 'DE' (invalid date used

 DX 5351h 'SQ' for DesQview ID)

 return AH major version

 AL minor version

 AX 0FFh DESQ not installed (DOS error code)

 4) For DESQview 2.00+, installation check

 entry AH 2Bh

 AL subfunction (DV v2.00+)

 01h Get Version

 return BX version (BH = major, BL = minor)

 note Early copies of v2.00 return 0002h.

 02h Get Shadow Buffer Info, and Start

 Shadowing

 return BH rows in shadow buffer

 BL columns in shadow buffer

 DX segment of shadow buffer

 04h Get Shadow Buffer Info

 return BH rows in shadow buffer

 BL columns in shadow buffer

 DX segment of shadow buffer

 05h Stop Shadowing

 CX 4445h ('DE')

 DX 5351h ('SQ')

 return AL 0FFh if DESQview not installed

 note In DESQview v1.x, there were no subfunctions; this

 call only identified whether or not DESQview was loaded.

 5) PC-Tools PC-Cache 5.1 (Multisoft cache) installation check.

 entry CX 4358h ('CX')

 return AL 00h installed

 CX 6378h

 0FFh not installed

 6) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 7) TOS: GET DATE.

Function 2Ch Get Time

 Get current system time from CLOCK$ driver

entry AH 2Ch

return CH hours (0-23)

 CL minutes (0-59)

 DH seconds (0-59)

 DL hundredths of a second (0-99)

note 1) Time is updated every 5/100 second.

 2) The date and time are in binary format.

 3) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 4) TOS: GET TIME.

Function 2Dh Set Time

 Sets current system time

entry AH 2Dh

 CH hours (0-23)

 CL minutes (0-59)

 DH seconds (0-59)

 DL hundredths of seconds (0-99)

return AL 00h if no error

 0FFh if bad value sent to routine

note 1) DOS 3.3+ also sets CMOS clock.

 2) CX and DX must contain a valid time in binary.

 3) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 4) TOS: SET TIME.

Function 2Eh Set/Reset Verify Switch

 Set verify flag

entry AH 2Eh

 AL 00 to turn verify off (default)

 01 to turn verify on

 DL 00h (DOS 1.x and 2.x only, according to Microsoft's

 MS-DOS Encyclopedia. My IBM 2.0 and Intel 2.0

 manuals don't show DL being used)

return none

note 1) This is the call invoked by the DOS VERIFY command.

 2) The setting of the Verify switch can be obtained by calling

 function 54h.

 3) This call is not supported on network drives.

 4) DOS checks this flag each time it accesses a disk or block

 device.

 5) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

Function 2Fh Get Disk Transfer Address (DTA)

 Returns current DTA used by all DOS read/write operations

entry AH 2Fh

return ES:BX address of DTA

note 1) The DTA is set by function call 1Ah

 2) Default DTA address is a 128 byte buffer at offset 80h in that

 program's Program Segment Prefix.

 3) See Chapter 6 for a description of the DTA.

 4) This call is explicitly supported in the OS/2 1.x

 Compatibility Box.

 5) TOS: GET DTA. Returns segment address of current DTA in D0.

Function 30h Get DOS Version Number

 Return DOS version and/or user number

entry AH 30h

 (5.0+) AL 00h Get OEM ID number

 01h Get version flag

return AH minor version number (i.e., DOS 2.10 returns AX = 0A02h)

 (AH undefined for DOS 1.x)

 AL major version number (0 for DOS 1.x, 02h for 2.x, 05h

 for 5.x)

(DOS 2.0 through 4.01)

 BH OEM ID number

 00h IBM DOS

 16h DEC DOS

 0FFh MS-DOS (generic) (Also Toshiba DOS 5.0)

(DOS 5.0+ called with AL=00h)

 BH OEM ID number

 (see above)

(DOS 5.0+ called with AL=01h)

 BH version flag

 08h DOS 5.0 or higher running out of ROM

 (all other bits are reserved and set to zero)

 BL:CX 24-bit user serial number (optional, OEM dependent.

 If not used this field returns zeroes)

note 1) If AL returns a major version number of zero, the DOS version

 is below 1.28 for MSDOS and below 2.00 for PCDOS.

 2) IBM PC-DOS always returns 0000h in BX and CX, as does DR-DOS.

 3) Due to OS/2 returning version numbers over 10 and the fact

 that some European versions of DOS carried higher version

 numbers than IBM's DOS, utilities which check for a DOS version

 should not abort if a higher version than required is found

 unless some specific problems are known.

 4) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 5) TOS: $30 GET VERSION NUMBER. Returns GEMDOS version number

 in D0.

 6) Under PC-MOS/386, if AX=BX=CX=DX, the PC-MOS/386 version number

 is returned. If all registers to not hold the same value, an

 MSDOS equivalent version number is returned. The PC-MOS/386

 version number is always different from the MSDOS version number.

 7) DOS version equivalents:

 3.20 PC-MOS/386 v3.0

 3.31 Digital Research DR-DOS 3.40, 3.41, 5.0, 6.0

 10 OS/2 v1.0 Compatibility Box (major version number)

 8) DOS 5.0 adds the AL parameter to the command, but the ID number

 returned in BL has been available since MSDOS 2.0, as

 documented by Intel's DOS 2.0 Technical Reference.

 9) DOS 5.0's SETVER command can modify the value returned in AX.

 You must use int 21h/3306h to obtain the true version number.

 10) OS/2 1.0's Compatibility Box returns version 10. OS/2 1.1

 returns version 10.1, etc. OS/2 2.0 returns version 20.

 11) If running in a Microsoft Windows 3.0 or later DOS box, the

 string "windir" will be in the DOS environment. Note

 lowercase!

 12) It may sometimes be necessary to identify DOS-compatible

 operating systems or replacement command interpreters. This

 doesn't appear to be a simple task.

 COMMAND.COM replacements:

 1) 4DOS can be identified with int 2Fh, fn 44DDh.

 2) Command Plus (unknown)

 3) FlexShell (unknown)

 DOS replacements:

 1) DR-DOS 3.4x has no easy way to be identified, which is a

 pity. Though it has some MS4.0-like characteristics, it

 reports 3.31 with the DOS call, though VER will return

 whatever the DRDOS revision is.

 To identify DRDOS I've noted the following:

 The string "OS=" appears in the default

 environment (unless the user nulls it out)

 The OS= string is generated by COMMAND.COM and does not

 appear when the user is running 4DOS as a command

 interpreter.

 The internal DOS version call will report 3.31, but the

 string returned by VER is at minimum 3.4.

 For DRDOS 3.x:

 SHARE and FASTOPEN are always loaded.

 For DRDOS 5 and 6:

 SHARE and FASTOPEN are NOT always loaded.

 The DR-DOS Programmer's Reference doesn't show a call to

 identify DR-DOS specifically.

 2) PC-MOS/386: unknown. Fail an API call?

 3) Concurrent DOS: unknown. Fail an API call?

 4) DR Multiuser DOS inserts the string: OS=DRMDOS into the

 environment. Since DRMDOS doesn't allow

 replacement of the command interpreter via the

 SHELL= statement, OS= will be there unless nulled

 by the user.

Function 31h Terminate Process and Stay Resident (KEEP)

entry AH 31h

 AL exit code

 DX program memory requirement in 16 byte paragraphs

return AX return code (retrieveable by function 4Dh)

note 1) Files opened by the application are not closed when this call

 is made.

 2) Memory can be used more efficiently if the block containing the

 copy of the DOS environment is deallocated before terminating.

 This can be done by loading ES with the segment contained in 2Ch

 of the PSP and issuing function call 49h (Free Allocated Memory).

 3) Unlike int 27h, more than 64k may be made resident with this

 call.

 4) TOS: $31 KEEP PROCESS.

 5) Programs larger than 64k may be made resident with this call.

 6) For PC-MOS/386, tasks made resident with this call are subject

 to being swapped out of memory by the kernel for room to process

 other applications. If your code needs to poll the keyboard or

 a port, you need to use a device driver instead. PC-MOS does

 not swap device drivers.

Function 32h Read DOS Disk Parameter Block

 Retrieve the pointer to the drive parameter block for a drive

entry AH 32h

 DL drive (0=default, 1=A:, etc.).

return AL 0FFh if drive is not valid or other error

 00h if drive is valid and:

 DS:BX pointer to DOS Drive Parameter Table. Format of block:

 +--

 ¦ Bytes ¦ Type ¦ Value

 +--------+------+--

 ¦ 00h ¦ byte ¦ Drive: 0=A:, 1=B:, etc.

 ¦ 01h ¦ byte ¦ Unit within device driver (0, 1, 2, etc.)

 ¦ 02h-03h¦ word ¦ Bytes per sector

 ¦ 04h ¦ byte ¦ Sectors per cluster - 1

 ¦ 05h ¦ byte ¦ Sectors per cluster as powers of 2

 ¦ 06h-07h¦ word ¦ First sector containing FAT

 ¦ 08h ¦ byte ¦ Number of copies of the FAT

 ¦ 09h-0Ah¦ word ¦ Number of root directory entries

 ¦ 0Bh-0Ch¦ word ¦ First sector of first cluster

 ¦ 0Dh-0Eh¦ word ¦ Number of clusters on drive + 1

 +---------------+--

 ¦ DOS 2.x only ¦

 +---------------+--

 ¦ 0Fh ¦ byte ¦ Number of sectors for one copy of the FAT

 ¦ 10h-11h¦ word ¦ Number of first sector of root directory

 ¦ 12h-15h¦ dword¦ Address of device driver header for this

 ¦ ¦ ¦ drive (beginning of device driver)

 ¦ 16h ¦ byte ¦ Media Descriptor Byte for this drive

 ¦ 17h ¦ byte ¦ 0FFh indicates block must be rebuilt

 ¦ 18h-1Bh¦ dword¦ address of next DOS Disk Block (0FFFFh

 ¦ ¦ ¦ means last in chain)

 ¦ 1Ch ¦ word ¦ starting cluster of current dir (0 = root)

 ¦ 1Eh ¦64byts¦ ASCIIZ current directory path string

 +---------------+--

 ¦ DOS 3.x ¦

 +---------------+--

 ¦ 0Fh ¦ byte ¦ number of sectors in one FAT copy

 ¦ 10h ¦ word ¦ first sector of root directory

 ¦ 12h ¦dword ¦ address of device driver for this drive

 ¦ 16h ¦ byte ¦ media descriptor byte for medium

 ¦ 17h ¦ byte ¦ 0FFh = block must be rebuilt, 00h

 ¦ ¦ ¦ indicates block accessed

 ¦ 18h ¦dword ¦ address of next device block, offset

 ¦ ¦ ¦ = 0FFFFh indicates last

 ¦ 1Ch ¦ word ¦ cluster at which to start search for free

 ¦ ¦ ¦ space when writing

 ¦ 1Eh ¦ word ¦ number of free clusters on drive, 0FFFFh

 ¦ ¦ ¦ unknown?

 +---------------+--

 ¦ DOS 4.0, 5.0 ¦ (from MS 5.0 TR)

 +---------------+--

 ¦ 0Fh ¦ word ¦ number of sectors in one FAT copy

 ¦ 11h ¦ word ¦ first sector of containing directory

 ¦ 13h ¦dword ¦ address of device driver for this drive

 ¦ 17h ¦ byte ¦ media descriptor byte for drive

 ¦ 18h ¦ byte ¦ 0FFh = block must be rebuilt, 00h

 ¦ ¦ ¦ indicates block accessed

 ¦ 19h ¦dword ¦ address of next device block, offset

 ¦ ¦ ¦ = 0FFFFh indicates last

 ¦ 1Dh ¦ word ¦ last allocated cluster

 ¦ 1Fh ¦ word ¦ number of free clusters on drive

 +--

note 1) Use [BX+0Dh] to find no. of clusters (>1000h, 16-bit FAT; if

 not, 12-bit (exact dividing line is probably a little below

 1000h to allow for bad sectors, EOF markers, etc.)

 2) Short article by C.Petzold, PC Magazine Vol.5, no.8.

 3) Some information from the article "Finding Disk Parameters" in

 the May 1986 issue of PC Tech Journal.

 4) This call is mostly supported in OS/2 1.0's DOS Compatibility

 Box. The dword at 12h will not return the address of the next

 device driver when in the Compatibility Box.

 5) Used by CHKDSK.

Function 33h Control-Break Check

 Get or set control-break checking at CON

entry AH 33h

 AL 00h see if ^C checking is active

 01h to set break checking

 DL 00h to disable break checking

 01h to enable break checking

 02h internal, called by PRINT.COM (DOS 3.1)

 03h unknown

 04h unknown - DOS 4.0's CPSW command in CONFIG.SYS

 calls this function

 05h (DOS 4.0+) get boot drive

 06h (DOS 5.0+) return "real" DOS version number

 instead of number returned by SETVER/int 21h

 fn 30h.

return (if AL=00h) break setting

 DL 00h if break=off

 01h if break=on

 (if AL=05h) boot drive

 DL 01h A:

 02h B: (etc.)

 (if AL=06h) real DOS version

 BH major version (05h=DOS5)

 BL minor version (00h=.00)

 DH 0Bh DOS is in ROM

 10h DOS is in HMA

 DL DOS subversion number (0-7, VER/R reports as A-G)

 (all)

 AL 0FFh error

note 1) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 2) When ^C checking is on, DOS checks for ^C after each DOS call.

 When off, DOS only checks after each DOS character I/O function

 from 01h to 0Ch.

Function 34h Return INDOS Flag

 Returns ES:BX pointing to Critical Section Flag, byte indicating

 whether it is safe to interrupt DOS.

entry AH 34h

return ES:BX points to 1-byte DOS "critical section flag"

note 1) If this byte is 0, it is safe to interrupt DOS.

 2) Supported OS/2 1.x Compatibility Box.

 3) For PC-MOS/386, this flag indicates whether MOS is using its

 stack or a task's stack. If the flag is 0 it is safe to

 interrupt MOS.

Function 35h Get Interrupt Vector

 Get interrupt vector

entry AH 35h

 AL interrupt number (hexadecimal)

return ES:BX address of interrupt vector

note 1) Use function call 25h to set the interrupt vectors.

 2) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

Function 36h Get Disk Free Space

 get information on specified drive

entry AH 36h

 DL drive number (0=default, 1=A:, 2=B:, etc)

return AX number of sectors per cluster

 0FFFFh means drive specified in DL is invalid

 BX number of available clusters

 CX bytes per sector

 DX clusters per drive

note 1) Multiply AX * CX * BX for free space on disk.

 2) Multiply AX * CX * DX for total disk space.

 3) Function 36h returns an incorrect value after an ASSIGN command.

 Prior to ASSIGN, the DX register contains 0943h on return, which

 is the free space in clusters on the HC diskette. After ASSIGN,

 even with no parameters, 0901h is returned in the DX register;

 this is an incorrect value. Similar results occur with DD

 diskettes on a PC-XT or a PC-AT. This occurs only when the disk

 is not the default drive. Results are as expected when the

 drive is the default drive. Therefore, the circumvention is to

 make the desired drive the default drive prior to issuing this

 function call.

 4) This function supercedes functions 1Bh and 1Ch.

 5) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 6) TOS: $36 GET DISK FREE SPACE.

Function 37h SWITCHAR / AVAILDEV

 * Get/set option marking character (is usually "/"), and device type

entry AH 37h

 AL 00h read switch character (returns current character

 in DL)

 01h set character in DL as new switch character

 (DOS 2.x) 02h read device availability (as set by function

 AL=3) into DL. A 0 means devices that devices

 must be accessed in file I/O calls by /dev/device.

 A non-zero value means that devices are

 accessible at every level of the directory tree

 (e.g., PRN is the printer and not a file PRN).

 AL=2 to return flag in DL, AL=3 to set from DL

 (0 = set, 1 = not set).

 (DOS 2.x) 03h get device availability, where:

 DL 00h /dev/ must precede device names

 01h /dev/ need not precede device

 names

return DL switch character (if AL=0 or 1)

 device availability flag (if AL=2 or 3)

 AL 0FFh the value in AL was not in the range 0-3

note 1) Functions 2 & 3 appear not to be implemented for DOS 3.x.

 2) It is documented on page 4.324 of the MS-DOS (version 2)

 Programmer's Utility Pack (Microsoft - published by Zenith).

 3) Works on all versions of IBM PC-DOS from 2.0 through 3.3.1.

 4) The SWITCHAR is the character used for "switches" in DOS command

 arguments (defaults to '/', as in "DIR/P"). '-' is popular to

 make a system look more like UNIX; if the SWITCHAR is anything

 other than '/', then '/' may be used instead of '\' for

 pathnames.

 5) Ignored by XCOPY, PKARC, LIST, used by PKZIP, LHARC.

 6) SWITCHAR may not be set to any character used in a filename.

 Legal filename characters vary in DOS 1.x through 6.x.

 7) In DOS 3.x you can still read the "AVAILDEV" byte with

 subfunction 02h but it always returns 0FFh even if you try to

 change it to 0 with subfunction 03h.

 8) AVAILDEV=0 means that devices must be referenced in an

 imaginary subdirectory "\dev" (similar to UNIX's /dev/*); a

 filename "PRN.DAT" can be created on disk and manipulated like

 any other. If AVAILDEV != 0 then device names are recognized

 anywhere (this is the default): "PRN.DAT" is synonymous with

 "PRN:".

 9) These functions reportedly are not supported in the same

 fashion in various implementations of DOS.

 10) Used in DOS 3.3 by CHKDSK, BASIC, and DEBUG.

 11) SWITCHAR is not supported in the OS/2 1.x Compatibility Box.

 12) Not supported by the aftermarket 4DOS command interpreter in

 versions prior to 3.0.

 13) The MSDOS Encyclopedia reports: "XENIX used a forward slash as

 a separator, but versions 1.x of MS-DOS, borrowing from the

 tradition of DEC operating systems, already used the forward

 slash for switches on the command line, so Microsoft, at IBM's

 request, decided to use the backslash as the separator instead."

 14) SWITCHAR is not supported in MS-DOS 5.0.

Function 38h Return Country-Dependent Information

 (PCDOS 2.0, 2.1, MSDOS 2.00 only)

entry AH 38h

 AL function code (must be 0 in DOS 2.x)

 DS:DX pointer to 32 byte memory buffer for returned information

return CF set on error

 AX error code (02h)

 BX country code

 DS:DX pointer to buffer filled with country information:

 bytes 00h,01h date/time format

 0000h USA standard H:M:S M-D-Y

 0001h European standard H:M:S D/M/Y

 0002h Japanese standard H:M:S D:M:Y

 02h ASCIIZ string currency symbol

 03h byte of zeroes

 04h ASCIIZ string thousands separator

 05h byte of zeroes

 06h ASCIIZ string decimal separator

 07h byte of zeroes

 24 bytes 08h-1Fh reserved

Function 38h Get Country-Dependent Information

 (PCDOS 3.x+, MSDOS 2.01+)

entry AH 38h

 AL function code

 00h to get current country information

 01h-0FEh country code to get information for, for

 countries with codes less than 255

 0FFh to get country information for countries with

 a code greater than 255

 BX 16 bit country code if AL=0FFh

 DS:DX pointer to the memory buffer where the data will be

 returned

 DX 0FFFFh if setting country code rather than getting info

return CF 0 (clear) function completed

 1 (set) error

 AX error code

 02h invalid country code (no table

 for it)

 (if DX <> 0FFFFh)

 BX country code (usually international telephone code)

 DS:DX pointer to country data buffer

 bytes 0,1 date/time format

 0 USA standard H:M:S M/D/Y

 1 European standard H:M:S D/M/Y

 2 Japanese standard H:M:S D:M:Y

 bytes 02h-06h ASCIIZ currency symbol

 byte 07h ASCIIZ thousands separator

 byte 08h byte of zeroes

 byte 09h ASCIIZ decimal separator

 byte 0Ah byte of zeroes

 byte 0Bh ASCIIZ date separator

 byte 0Ch byte of zeroes

 byte 0Dh ASCIIZ time separator

 byte 0Eh byte of zeroes

 byte 0Fh currency format byte

 bit 0 0 if currency symbol precedes the value

 1 if currency symbol is after the value

 1 0 no spaces between value and currency

 symbol

 1 one space between value and currency

 symbol

 2 1 if currency symbol replaces decimal

 point

 3-7 not defined by Microsoft

 byte 10h number of significant decimal digits in currency

 (number of places to right of decimal point)

 byte 11h time format byte

 bit 0 0 12 hour clock

 1 24 hour clock

 1-7 unknown, probably not used

 bytes 12h-15h address of case map routine (FAR CALL, AL=char

 to map)

 entry AL ASCII code of character to be

 converted to uppercase

 return AL ASCII code of the uppercase input

 character

 byte 16h data-list separator character

 byte 17h zeroes

 bytes 18h-21h 5 words reserved

note 1) When an alternate keyboard handler is invoked, the keyboard

 routine is loaded into user memory starting at the lowest

 portion of available user memory. The BIOS interrupt vector

 that services the keyboard is redirected to the memory area

 where the new routine resides. Each new routine takes up about

 1.6K of memory and has lookup tables that return values unique

 to each language. (KEYBxx in the DOS book)

 Once the keyboard interrupt vector is changed by the DOS

 keyboard routine, the new routine services all calls unless the

 system is returned to the US format by the ctrl-alt-F1 keystroke

 combination. This does not change the interrupt vector back to

 the BIOS location; it merely passes the table lookup to the ROM

 locations.

 2) Ctrl-Alt-F1 will only change systems with US ROMS to the US

 layout. Some systems are delivered with non-US keyboard

 handler routines in ROM. (Amstrad machines)

 3) Case mapping call: the segment/offset of a FAR procedure that

 performs country-specific lower-to-upper case mapping on ASCII

 characters 80h to 0FFh. It is called with the character to be

 mapped in AL. If there is an uppercase code for the letter, it

 is returned in AL, if there is no code or the function was

 called with a value of less than 80h AL is returned unchanged.

 4) This call is fully implemented in MS-DOS version 2.01 and

 higher. It is in version 2.00 but not fully implemented

 (according to Microsoft).

 5) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 6) For PC-MOS/386 native mode apps, use DS:EDX instead of DS:DX.

Function 38h Set Country Dependent Information

entry AH 38h

 AL code country code to set information for, for

 countries with codes less than 255

 0FFh to set country information for countries with

 a code greater than 255

 BX 16 bit country code if AL=0FFh

 DX 0FFFFh

return CF clear successful

 set if error

 AX error code (02h)

note 1) Some country codes are:

 061 Australia ("International English" in DOS 5.0)

 032 Belgium

 055 Brazil (DOS 5.0)

 002 French-Canadian

 042 Czechoslovakia (DOS 5.0)

 045 Denmark

 358 Finland

 033 France

 049 Germany

 036 Hungary (DOS 5.0)

 972 Israel

 039 Italy

 081 Japan

 758 Middle East

 031 Netherlands

 047 Norway

 048 Poland (DOS 5.0)

 351 Portugal

 003 Latin America

 034 Spain

 046 Sweden

 041 Switzerland

 088 Taiwan (MS 4.0+, but not DRDOS 5 or 6)

 044 U.K.

 001 USA

 038 Yugoslavia (DOS 5.0)

 2) The country code is the same as the 3-digit international

 telephone code for that country.

 3) The documentation for COUNTRY= will tell you which codes are

 valid for your particular DOS version. Different OEM

 implementations of the same DOS version may not support the

 same countries.

 4) TSL offers support for developing special country code drivers

 for PC-MOS/386. Version 4.10 comes with:

 061 Australia

 032 Belgium

 002 French-Canadian

 045 Denmark

 358 Finland

 033 France

 049 Germany

 972 Israel

 039 Italy

 758 Middle East

 031 Netherlands

 047 Norway

 351 Portugal

 034 Spain

 046 Sweden

 041 Switzerland

 044 U.K.

 001 USA

 5) For PC-MOS/386 native mode apps, use DS:EDX instead of DS:DX.

Function 39h Create Subdirectory (MKDIR)

 Makes a subdirectory along the indicated path

entry AH 39h

 DS:DX address of ASCIIZ directory pathname string

return flag CF 0 successful

 1 error

 AX error code if any (03h, 05h)

 (DOS 5.0) (02h, 03h, 05h)

note 1) The ASCIIZ string contains the drive and subdirectory.

 2) Drive may be any valid drive (not necessarily current drive).

 3) The pathname cannot exceed 64 characters. (same with

 PC-MOS/386)

 4) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 5) The characters [,] , =, and " may not be used in subdirectory

 names.

 6) TOS: $39 MKDIR.

 7) For DOS 3.1+ networks, the user must have Create access to the

 subdirectory.

 8) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 3Ah Remove Subdirectory (RMDIR)

entry AH 3Ah

 DS:DX address of ASCIIZ pathname string

return CF clear successful

 set AX error code if any (03h, 05h, 10h)

note 1) The ASCIIZ string contains the drive and subdirectory.

 2) Drive may be any valid drive (not necessarily current drive).

 3) The pathname cannot exceed 64 characters.

 4) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 5) TOS: $3A RMDIR.

 7) For DOS 3.1+ networks, the user must have Delete access to the

 subdirectory.

 8) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 3Bh Change Current Directory (CHDIR)

entry AH 3Bh

 DS:DX address of ASCIIZ string

return flag CF 0 successful

 1 error

 AX error code if any (03h)

note 1) The pathname cannot exceed 64 characters including separators.

 2) The ASCIIZ string may contain drive and subdirectory.

 3) Drive may be any valid drive (not necessarily current drive).

 This call will not change the current logged drive.

 4) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 5) TOS: $3B CHDIR.

 6) The pathspec may not contain wildcards.

 7) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 3Ch Create A File (CREAT)

 Create a file with handle

entry AH 3Ch

 CX byte, attributes for file

 00h normal read/write

 01h read only

 02h hidden

 04h system

 08h volume label

 20h archive bit

 DS:DX address of ASCIIZ filename string

return CF 0 successful creation

 1 error

 AX 16 bit file handle

 or error code (03h, 04h, 05h)

note 1) The ASCIIZ string may contain drive and subdirectory.

 2) Drive may be any valid drive (not necessarily current drive).

 3) If the volume label or subdirectory bits are set in CX, they are

 ignored.

 4) The file is opened in read/write mode

 5) If the file does not exist, it is created. If one of the same

 name exists, it is truncated to a length of 0.

 6) Good practice is to attempt to open a file with fn 3Dh and jump

 to an error routine if successful, create file if 3Dh fails.

 That way an existing file will not be truncated and overwritten.

 7) If the application will run only on DOS 3.x or higher, fn 5Bh

 should be used as it automatically creates the file if it does

 not exist, preventing problems with networks or multitaskers.

 8) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 9) TOS: $3C CREAT.

 10) For DOS 3.1+ networks, the user must have Create access to the

 subdirectory.

 11) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 3Dh Open A File

 Open disk file with handle

entry AH 3Dh

 AL access code byte

(DOS 2.x) bits 0-2 file attribute

 000 read only

 001 write only

 010 read/write (default)

 3-7 reserved, should be set to zero

(DOS 3.x) bits 0-2 file attribute

 000 read only

 001 write only

 010 read/write (default)

 3 reserved, should be set to zero 4-6 sharing mode (network)

 000 compatibility mode (default)

 001 read/write access denied (exclusive)

 010 write access denied

 011 read access denied

 100 full access permitted

 7 inheritance flag

 0 file inherited by child process

 1 file private to child process

 DS:DX address of ASCIIZ drive/path/filename string

return CF set on error

 AX error code - MS-DOS (01h, 02h, 03h, 04h, 05h,

 0Ch)

 - DR-DOS (02h, 04h, 05h, 0Ch) and

 MS-DOS 5.0

 AX 16 bit DOS file handle

note 1) Opens any normal, system, or hidden file.

 2) Files that end in a colon are not opened.

 3) The read/write pointer is set at the first byte of the file and

 the record size of the file is 1 byte (the read/write pointer

 can be changed through function call 42h). The returned file

 handle must be used for all subsequent input and output to the

 file.

 4) If the file handle was inherited from a parent process or was

 duplicated by DUP or FORCEDUP, all sharing and access

 restrictions are also inherited.

 5) A file sharing error (error 01h) causes an int 24h to execute

 with an error code of 02h.

 6) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 7) TOS: $3D OPEN.

 8) If any process opens a file that denies a level of access, all

 subsequent requests to open the file at that level of access

 will fail.

 9) Any attempt to open a file with a sharing mode that is already

 breached by an existing process will always fail.

 10) Used by APPEND in DOS 3.2,+.

 11) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 3Eh Close A File Handle

 Close a file and release handle for reuse

entry AH 3Eh

 BX file handle (generated by 3Dh)

return flag CF clear successful close

 set error

 AX error code if error (06h)

note 1) When executed, the file is closed, the directory is updated,

 and all buffers for that file are flushed. If the file was

 changed, the time and date stamps are changed to reflect the

 current time.

 2) If called with the handle 00000h, it will close STDIN (normally

 the keyboard).

 3) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 4) TOS: $3E CLOSE.

 5) In most versions of DOS only 15 file handles are available for

 user processes. It is good practice to close a file handle

 when you are not using it.

 6) For DOS 3.1+ networks, all file locks must be removed before

 the file is closed. Closing a file with active locks is

 unpredictable.

 7) Although closing a file invalidates the corresponding handle,

 DOS may reuse the handle to identify a file that is subsequently

 opened or created. You can use int 21h/440Ah (Is File or Device

 Remote) to tell if a given handle is valid.

Function 3Fh Read From A File Or Device

 Read from file with handle

entry AH 3Fh

 BX file handle

 CX number of bytes to read

 DS:DX address of buffer

return flag CF clear successful read

 set error

 AX 00h pointer was already at end of file

 or number of bytes read

 or error code (05h, 06h)

note 1) This function attempts to transfer the number of bytes specified

 in CX to a buffer location. It is not guaranteed that all bytes

 will be read.

 2) If performed from STDIN (file handle 0000), the input can be

 redirected.

 3) If used to read the keyboard, it will only read to the first CR.

 4) The file pointer is incremented to the last byte read.

 5) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 6) TOS: $3F READ.

 7) If AX < CX a partial record was read.

 8) For DOS 3.1+ networks, the user must have Read access to the

 subdirectory.

 11) For PC-MOS/386 native mode, use DS:EDX and ECX instead of DS:DX

 and CX.

Function 40h Write To A File Or Device

 Write to file with handle

entry AH 40h

 BX file handle

 CX number of bytes to write

 DS:DX address of buffer

return CF clear successful write

 set error

 AX number of bytes written

 or error code (05h, 06h)

note 1) This call attempts to transfer the number of bytes indicated

 in CX from a buffer to a file. If CX and AX do not match after

 the write, an error has taken place; however no error code will

 be returned for this problem. This is usually caused by a full

 disk.

 2) If the write is performed to STDOUT (handle 0001), it may be

 redirected.

 3) To truncate the file at the current position of the file

 pointer, set the number of bytes in CX to zero before calling

 int 21h. The pointer can be moved to any desired position with

 function 42h.

 4) This function will not write to a file or device marked

 read-only.

 5) May also be used to display strings to CON instead of fn 09h.

 This function will write CX bytes and stop; fn 09h will

 continue to write until a '$' character is found.

 6) This is the call that DOS actually uses to write to the screen

 in DOS 2.x and above.

 7) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 8) TOS: $40 WRITE.

 9) For PC-MOS/386 native mode, use DS:EDX and ECX instead of DS:DX

 and CX.

Function 41h Delete A File From A Specified Subdirectory (UNLINK)

entry AH 41h

 DS:DX pointer to ASCIIZ filespec to delete

return CF clear successful

 set error

 AX error code if any (02h, 05h)

note 1) This function will not work on a file marked read-only.

 2) Wildcards are not accepted.

 3) For deleting multiple files, function 13h is faster.

 4) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 5) TOS: $41 UNLINK.

 6) For DOS 3.1+ networks, the user must have Delete access to the

 subdirectory.

 7) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 42h Move a File Read/Write Pointer (LSEEK)

entry AH 42h

 AL method code byte

 00h offset from beginning of file

 01h offset from present location

 02h offset from end of file

 BX file handle

 CX:DX offset into file (high/low word) in bytes

return AX:DX new file pointer (segment/offset)

 CF set error

 AX error code (01h, 06h)

 clear successful move

note 1) If pointer is at end of file, reflects file size in bytes.

 2) The value in DX:AX is the absolute 32 bit byte offset from the

 beginning of the file.

 3) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 4) TOS: $42 LSEEK.

 5) File most be open.

 6) For PC-MOS/386 native mode, use ECX instead of CX.

Function 43h Get/Set file attributes (CHMOD)

entry AH 43h

 AL 00h get file attributes

 01h set file attributes

 CX file attributes to set

 bit 0 read only

 1 hidden file

 2 system file

 3 volume label

 4 subdirectory

 5 written since backup (archive bit)

 6,7 not used

 8 shareable (Novell NetWare)

 9-F not used

 DS:DX segment/offset pointer to full ASCIIZ file name

return CF set if error

 AX error code - MSDOS (01h, 02h, 03h, 05h)

 DRDOS (02h, 03h, 05h)

 CX file attributes on get

 attributes:

 00h normal

 01h read only

 02h hidden

 04h system

 08h volume label

 10h file is subdirectory

 20h archive

note 1) This call will not change the volume label or directory bits.

 2) Any combination of file attributes may be used.

 3) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 4) TOS: $43 CHANGE MODE (CHMOD).

 5) For DOS 3.1+ networks, the user must have Create access to the

 subdirectory.

 6) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 44h I/O Control for Devices (IOCTL)

 provided with full version of DOSREF

Function 45h Duplicate a File Handle (DUP)

entry AH 45h

 BX file handle to duplicate

return CF clear AX duplicate handle

 set AX error code (04h, 06h)

note 1) If you move the pointer of one handle with 3Fh (Read), 40h

 (Write), or 42h (Move Pointer) the pointer of the other will

 also be moved.

 2) The handle in BX must be open.

 3) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 4) TOS: $45 DUP.

 5) This call can be used to update the directory entry of a file

 without the overhead of opening and closing it. For example,

 this call followed by fn 3Eh (Close File) with the duplicate

 file handle will cause DOS to flush its buffers and update the

 directory entry while the original file remains open in read/

 write mode.

Function 46h Force Duplicate of a Handle (FORCEDUP or CDUP)

 Forces handle in CX to refer to the same file at the

 same position as BX

entry AH 46h

 BX existing open file handle to duplicate

 CX new file handle

return CF clear both handles now refer to existing file

 set error

 AX error code (04h, 06h)

note 1) If CX was an open file, it is closed first.

 2) If you move the pointer of one handle with 3Fh (Read), 40h

 (Write), or 42h (Move Pointer) the pointer of the other will

 also be moved.

 3) The handle in BX must be open.

 4) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 5) TOS $46 FORCE.

 6) This call may be used for redirecting input and output.

Function 47h Get Current Directory

 Places full pathname of current directory/drive into

 a buffer

entry AH 47h

 DL drive (0=default, 1=A:, etc.)

 DS:SI segment/offset pointer to 64-byte buffer area

return CF clear DS:DI pointer to ASCIIZ pathname of the current

 directory

 set AX error code (0Fh)

note 1) String does not begin with a drive identifier or a backslash.

 2) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 3) TOS: $47 GETDIR.

 4) For PC-MOS/386 native mode, use DS:ESI instead of DS:SI.

Function 48h Allocate Memory (MALLOC)

 Allocates the requested number of 16-byte paragraphs

 of memory

entry AH 48h

 BX number of 16-byte paragraphs desired

return CF clear AX segment address of allocated space

 BX maximum number paragraphs available

 set AX error code (07h, 08h)

note 1) BX indicates maximum memory available only if allocation fails.

 2) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 3) TOS: $48 MALLOC.

 4) Native-mode PC-MOS/386 applications allocate memory via MOS'

 interrupt 0D4h API function 11h.

 5) When in TopView this call is checked to ensure none of the

 addresses are outside the application's memory partition.

Function 49h Free Allocated Memory

 Frees specified memory blocks

entry AH 49h

 ES segment address of area to be freed

return CF clear successful

 set AX error code (07h, 09h)

note 1) This call is only valid when freeing memory obtained by

 function 48h.

 2) A program should not try to release memory not belonging to it.

 3) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 4) TOS: $49 MFREE.

 5) Native-mode PC-MOS/386 applications allocate memory via MOS'

 interrupt 0D4h API function 12h.

 6) When in TopView this call is checked to ensure none of the

 addresses are outside the application's memory partition.

Function 4Ah Modify Allocated Memory Blocks (SETBLOCK)

 Expand or shrink memory for a program

entry AH 4Ah

 BX new size in 16 byte paragraphs

 ES segment address of block to change

return CF clear nothing

 set AX error code (07h, 08h, 09h)

 or BX maximum number of paragraphs available

note 1) Max number paragraphs available is returned only if the call

 fails.

 2) Memory can be expanded only if there is memory available.

 3) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 4) TOS: $4A SETBLOCK.

 5) Native-mode PC-MOS/386 applications allocate memory via MOS'

 interrupt 0D4h API function 12h.

 6) When in TopView this call is checked to ensure none of the

 addresses are outside the application's memory partition.

Function 4Bh Load or Execute a Program (EXEC)

entry AH 4Bh

 AL 00h load and execute program. A PSP is built for

 the program the ctrl-break and terminate

 addresses are set to the new PSP.

 (DOS 5.0) *01h load but don't execute (internal, DOS 3.x &

 DESQview) (see note 1)

 *02h load but do not execute (internal,

 DOS 2.x only)

 03h load overlay (do not create PSP, do not begin

 execution)

 *04h start async process (Euro-DOS 4.0 only)

 (see note 12)

 (DOS 5.0) 05h EnterExecState API (see note 17)

 DS:DX segment/offset pointer to the ASCIIZ string with the

 drive, path, and filename to be loaded

 ES:BX segment/offset pointer to a parameter block for the load

 (AL=00h) word segment address of environment string

 to be passed (0=use current)

 dword pointer to the command line to be

 placed at PSP+80h

 dword pointer to default FCB to be passed at

 PSP+5Ch

 dword pointer to default FCB to be passed at

 PSP+6Ch

 (*AL=01h) word segment of environment (0 = use current)

 dword pointer to command line

 dword pointer to FCB 1

 dword pointer to FCB 2

 (DOS 3.x+) dword will hold SS:SP on return

 (DOS 3.x+) dword will hold program entry point (CS:IP) on

 return

 (*AL=02h) word segment of environment (0 = use current)

 dword pointer to command line

 dword pointer to FCB 1

 dword pointer to FCB 2

 (AL=03h) word segment address where file will be

 loaded

 word relocation factor to be applied to the

 image

return CF set error

 AX error code (01h - 05h, 08h, 0Ah, 0Bh)

 CF clear if successful

 for fn 00h, process ID set to new program's PSP; get

 with function 62h

 for fn 01h and DOS 3.x+ or DESQview, process ID set

 to new program's PSP; get with function 62h

 for fn 01h and DOS 2.x, new program's initial stack

 and entry point returned in registers

 for fn 02h, new program's initial stack and entry point

 are returned in the registers

note 1) If you make this call with AL=1 the program will be loaded as

 if you made the call with AL=0 except that the program will not

 be executed. Additionally, with AL=1 the stack segment and

 pointer along with the program's CS:IP entry point are returned

 to the program which made the 4B01h call. These values are put

 in the four words at ES:BX+0Eh. On entry to the call ES:BX

 points to the environment address, the command line and the

 two default FCBs. This form of EXEC is used by DEBUG.COM.

 2) Application programs may invoke a secondary copy of the command

 processor (normally COMMAND.COM) by using the EXEC function.

 Your program may pass a DOS command as a parameter that the

 secondary command processor will execute as though it had been

 entered from the standard input device.

 The procedure is:

 A. Assure that adequate free memory (17k for 2.x and 3.0, 23k

 for 3.1) exists to contain the second copy of the command

 processor and the command it is to execute. This is

 accomplished by executing function call 4Ah to shrink memory

 allocated to that of your current requirements. Next,

 execute function call 48h with BX=0FFFFh. This returns the

 amount of memory available.

 B. Build a parameter string for the secondary command processor

 in the form:

 1 byte length of parameter string

 xx bytes parameter string

 1 byte 0Dh (carriage return)

 For example, the assembly language statement below would

 build the string to cause execution of the command FOO.EXE:

 DB 19,"/C C:FOO",13

 C. Use the EXEC function call (4Bh), function value 0 to cause

 execution of the secondary copy of the command processor.

 (The drive, directory, and name of the command processor can

 be obtained from the COMSPEC variable in the DOS environment

 passed to you at PSP+2Ch.)

 D. Remember to set offset 2 of the EXEC control block to point

 to the string built above.

 3) All open files of a process are duplicated in the newly created

 process after an EXEC, except for files originally opened with

 the inheritance bit set to 1.

 4) The environment is a copy of the original command processor's

 environment. Changes to the EXECed environment are not passed

 back to the original. The environment is followed by a copy of

 the DS:DX filename passed to the child process. A zero value

 will cause the child process to inherit the environment of the

 calling process. The segment address of the environment is

 placed at offset 2Ch of the PSP of the program being invoked.

 5) This function uses the same resident part of COMMAND.COM, but

 makes a duplicate of the transient part.

 6) How EXEC knows where to return to: Basically the vector for int

 22h holds the Terminate address for the current process. When

 a process gets started, the previous contents of int 22h get

 tucked away in the PSP for that process, then int 22h gets

 modified. So if Process A EXECs process B, while Process B is

 running, the vector for int 22h holds the address to return to

 in Process A, while the save location in Process B's PSP holds

 the address that process A will return to when *it* terminates.

 When Process B terminates by one of the usual legal means, the

 contents of int 22h are (surmising) shoved onto the stack, the

 old terminate vector contents are copied back to int 22h vector

 from Process B's PSP, then a RETF or equivalent is executed to

 return control to process A.

 7) To load an overlay file with 4B: first, don't de-allocate the

 memory that the overlay will load into. With the other 4Bh

 functions, the opposite is true - you have to free the memory

 first, with function 4Ah. Second, the "segment address where

 the file will be loaded" (first item in the parameter block for

 sub-function 03) should be a paragraph boundary within your

 currently-allocated memory. Third, if the procedures within

 the overlay are FAR procs (while they execute, CS will be

 equal to the segment address of the overlay area), the

 relocation factor should be set to zero. On the other hand,

 if the CS register will be different from the overlay area's

 segment address, the relocation factor should be set to

 represent the difference. You determine where in memory the

 overlay file will load by using the segment address mentioned

 above. Overlay files are .EXEs (containing header, relocation

 table, and memory image).

 8) When function 00h returns, all registers are changed,

 including the stack. You must resore SS, SP, and any other

 required registers.

 9) PCDOS EXEC function 3 (overlay) lives in the transient piece

 of COMMAND.COM and gets loaded when needed, thus the

 requirement for enough free space to load the EXEC loader

 (about 1.5k). Under MS-DOS the EXEC system call lives in

 the system space.

 10) If you try to overlay an .EXE file with the high/low switch set

 to load the in the upper end of memory nothing will happen.

 The high/low switch is only for process creation, not for

 overlays.

 11) DOS 2.x destroys all registers, including SS:SP.

 12) (AL=04h) This is DOS 4.0 as released in 1987 to various

 European OEMs. It is not related to US DOS 4.0.

 13) This call is explicitly supported by the OS/2 1.x DOS

 Compatibility Box.

 14) TOS: $4B EXEC.

 15) New with DOS 5.0. Sets up for EXEC, including setting the DOS

 version number returned by SETVER/int 21h,fn 30h. If DOS is

 installed in the HMA this function turns off the A20 line,

 making the HMA inaccessible. If your program needs the HMA

 you must turn it back on before EXECing. DOS normally turns

 the A20 line back on when called for normal system functions.

 Your program must call EXEC immediately after this subfunction.

 You may not call any DOS, BIOS, or system interrupts between

 this subfunction and loading your program.

 15) When in TopView this call is checked to ensure none of the

 addresses are outside the application's memory partition.

 16) This call is documented in the MS 5.0 TR, and in the PC-MOS/386

 TR.

 17) Some applications use their own EXEC scheme instead of calling

 this function. Since DOS 5 enhanced the EXEC functions these

 programs might not work, so Microsoft added a new set of

 functions called EnterExecState. If a self-EXECing program

 calls EnterExecState before EXECing, DOS 5 will do various

 internal fixups to keep things happy.

Function 4Ch Terminate a Process (EXIT)

 Quit with ERRORLEVEL exit code

entry AH 4Ch

 AL exit code in AL when called, if any, is passed to next

 process

return none

note 1) Control passes to DOS or calling program.

 2) Return code from AL can be retrieved by ERRORLEVEL or function

 4Dh.

 3) All files opened by this process are closed, buffers are

 flushed, memory is released, any network file region locks are

 released, and the disk directory is updated.

 4) Restores: Terminate vector from PSP:000Ah

 Ctrl-C vector from PSP:000Eh

 Critical Error vector from PSP:0012h

 5) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 6) TOS: $4C TERM. Returns 2-byte errorlevel to calling program

 7) Under DOS 3.1+ networks, all file locks should be removed

 before terminating the program.

Function 4Dh Get Return Code of a Subprocess (WAIT)

 Get return from functions 31h and 4Dh (ERRORLEVEL)

entry AH 4Dh

return AH circumstance which caused termination

 00h normal termination

 01h control-break or control-C

 02h critical device error

 03h terminate and stay resident (function 31h)

 AL exit code of subprogram (functions 31h or 4Ch)

note 1) The exit code is only returned once (the first time).

 2) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 3) Many programmers have wondered where DOS stores this

 information, so they might access it multiple times or set it

 directly. This is a version-dependent area that changes with

 every release of DOS.

Function 4Eh Find First Matching File (FIND FIRST)

entry AH 4Eh

 CX search attributes (see function 43h)

 DS:DX segment/offset pointer to ASCIIZ filename

 (with attributes)

return CF set AX error code (02h, 03h, 12h)

 clear data block written at current DTA

 format of block is: (info from BIX)

 documented by Micro- |00h 1 byte attribute byte of search

 soft as "reserved for |01h 1 byte drive letter for search

 DOS' use on subsquent |02h 11 bytes the search name used

 Find Next calls" |0Ch 2 bytes word value of last entry

 function 4Fh |0Fh 4 bytes dword pointer to this DTA

 |13h 2 bytes word directory start

 | PC-DOS 3.10 (from INTERRUP.ARC)

 |00h 1 byte drive letter

 |01h-0Bh 11 bytes search template

 |0Ch 1 byte search attributes

 | DOS 2.x (and DOS 3.x except 3.1?)

 (from INTERRUP.ARC)

 |00h 1 byte search attributes

 |01h 1 byte drive letter

 |02h-0Ch 11 bytes search template

 |0Dh-0Eh 2 bytes entry count within directory

 |0Fh-12h 4 bytes reserved

 |13h-14h 2 bytes cluster number of parent

 directory

 15h 1 byte file attribute

 16h 2 bytes file time, bit mask:

 0-4 half-seconds

 5-10 minute

 11-15 hour

 18h 2 bytes file date, bit mask:

 0-4 day

 5-8 month

 9-15 years since 1980

 1Ah 2 bytes low word of file size

 1Ch 2 bytes high word of file size

 1Eh 13 bytes name and extension of file

 found, plus 1 byte of 0s. All

 blanks are removed from the name

 and extension, and if an

 extension is present it is

 preceded by a period.

note 1) This function does not support network operations.

 2) Wildcards are allowed in the filespec.

 3) If the attribute is zero, only ordinary files are found. If the

 volume label bit is set, only volume labels will be found. Any

 other attribute will return that attribute and all normal files

 together.

 4) To look for everything except the volume label, set the hidden,

 system, and subdirectory bits all to 1.

 5) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 6) TOS: $4E SFIRST.

 7) There is a reported anomaly in MS-DOS 2.11. Odd things happen

 when you give it "C:\" as a file name. FindFirst reports it as

 a valid file and Open returns a handle. If you read it twice

 DOS reports an FAT error and aborts. You can demonstrate this

 by:

 FIND "whatever" c:\ [twice]

 Int 21h/AH=044 AL=0 returns the handle as a NUL device which

 makes a certain amount of sense since C:\ is a null terminated

 string. The programming solution is to trap 'C:\' before it's

 used.

 8) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX. ES:EBX

 is a pointer to a 43-byte data area used instead of the DTA.

 Format:

 0-20 reserved for MOS

 21 attribute

 22-23 time of last update

 24-25 date of last update

 26-29 file size in bytes

 30-42 found filename, followed by 00h

Function 4Fh Find Next Matching File (FIND NEXT)

 Find next ASCIIZ file

entry AH 4Fh

return CF clear data block written at current DTA

 set AX error code (02h, 12h)

note 1) If file found, DTA is formatted as in call 4Eh.

 2) Volume label searches using 4Eh/4Fh reportedly aren't 100%

 reliable under DOS 2.x. The calls sometime report there's a

 volume label and point to a garbage DTA, and if the volume

 label is the only item they sometimes won't find it. Most

 references recommend the use of the older FCB calls for dealing

 with the volume labels.

 3) This function does not support network operations.

 4) Use of this call assumes that the original filespec contained

 wildcards.

 5) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 6) TOS: $4F SNEXT.

 7) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX. ES:EBX

 is a pointer to a 43-byte data area used instead of the DTA.

 Format:

 0-20 reserved for MOS

 21 attribute

 22-23 time of last update

 24-25 date of last update

 26-29 file size in bytes

 30-42 found filename, followed by 00h

Function 50h "Used Internally by DOS" - Set PSP or SetPID

 * Set new Program Segment Prefix (current Process ID)

entry AH 50h

 BX segment address of new PSP

return none - swaps PSPs regarded as current by DOS

note 1) By putting the PSP segment value into BX and issuing call 50h

 DOS stores that value into a variable and uses that value

 whenever a file call is made.

 2) Note that in the PSP (or PDB) is a table of 20 (decimal) open

 file handles. The table starts at offset 18h into the PSP. If

 there is an 0FFh in a byte then that handle is not in use. A

 number in one of the bytes is an index into an internal FB

 table for that handle. For instance the byte at offset 18h is

 for handle 0, at offset 19h handle 1, etc. up to 13h. If the

 high bit is set then the file associated by the handle is not

 shared by child processes EXEC'd with call 4Bh.

 3) Function 50h is dangerous in background operations prior to DOS

 3.x as it uses the wrong stack for saving registers. (same as

 functions 0..0Ch in DOS 2.x). It doesn't use stack in 3.0+,

 so it is safe to use in later versions of DOS.

 4) Under DOS 2.x, this function cannot be invoked inside an int

 28h handler without setting the Critical Error flag.

 5) Open file information, etc. is stored in the PSP DOS views as

 current. If a program (eg. a resident program) creates a need

 for a second PSP, then the second PSP should be set as current

 to make sure DOS closes that as opposed to the first when the

 second application finishes.

 6) See PC Mag Vol.5, No 9, p.314 for discussion, also used in

 their BCOPY.ASM utility.

 7) Used by DOS 3.3 PRINT & DEBUG, DesQview 2.01, Windows 1.03,

 SYMDEB from MASM 4.0.

 8) This call is available in the OS/2 1.x DOS Compatibility Box.

 9) DOS stores the PID in one location, but the actual address is

 version dependent. The strategy is to find the PID and thereby

 find its address. If you have its address, you can swap PIDs

 from the TSR pop-up code by peeking and poking. In the

 initialization code, use function 51hto get the PID. You

 know that DOS lives between the interrupt vectors 0:0 - 0:100

 and that PID. Other programs might be in there, but DOS is

 too. Search that memory for a copy of the PID. When you find

 one, use this function to set a phony PID. If the location

 where you found the original PID changes to the phony PID,

 you have found the address of the PID. Don't forget to reset

 the PID with SetPID after each test. DOS 2.0 and 2.1 maintain

 the PID in two locations, not one.

Function 51h Get Program Segment Prefix (GetPID)

 Returns the PSP address of currently executing program

entry AH 51h

return BX address of currently executing program (process ID)

note format of PSP:

 offset size description

 00h 2 bytes program exit point

 02h word memory size in paragraphs

 04h byte unused (0)

 05h 5 bytes CP/M style entry point (far call to DOS)

 0Ah word terminate address (old int 22h)

 0Ch word terminate segment

 0Eh word break address (old int 23h)

 10h word break segment

 12h word error address (old int 24h)

 14h word error segment

 16h word parent PSP segment

 18h 20 bytes DOS 2.0+ open files, 0FFh = unused

 2Ch word DOS 2.0+ environment segment

 2Eh dword far pointer to process's SS:SP

 32h word DOS 3.x+ max open files

 34h DOS 3.x+ open file table address

 36h dword DOS 3.x+ open file table segment

 38h 24 bytes unused by DOS versions before 3.3

 50h 3 bytes DOS function dispatcher (FAR routine)

 53h 9 bytes unused

 55h FCB #1 extension

 5Ch 16 bytes FCB #1, filled in from first command

 line argument

 6Ch 20 bytes FCB #2, filled in from second command

 line argument

 80h128 bytes command tail / default DTA buffer

note 1) Used in DOS 2.x, 3.x uses 62h.

 2) Function 51h is dangerous in background operations prior to DOS

 3.x as it uses the wrong stack for saving registers. (same as

 functions 0..0Ch in DOS 2.x). Doesn't use any DOS stacks in

 DOS 3.0+.

 3) 50h and 51h might be used if you have more than one process in

 a PC. For instance if you have a resident program that needs

 to open a file you could first call 50h to get the current ID

 and then call 50h to set the ID to your PSP.

 4) Under DOS 2.x, this function cannot be invoked inside an int

 28h handler without setting the Critical Error flag.

 5) Formerly "undocumented", now described in MS 5.0 TR.

 6) This call is available in the OS/2 1.x DOS Compatibility Box.

FUNCTION 52h - see file 52h

 provided with full version of DOSREF

Function 53h "Used Internally by DOS" - Translate BPB

 * Translates BPB (BIOS Parameter Block, see below) into

 a DOS Disk Block (see function call 32h).

entry AH 53h

 DS:SI pointer to BPB (BIOS Parameter Block)

 ES:BP pointer to buffer area for DOS Disk Block

 Layout of BPB:

 offset size description

 00h-01h word bytes per sector, get from DDB bytes

 02h-03h.

 02h byte sectors per cluster, get from (DDB byte

 4) + 1

 03h-04h word reserved sectors, get from DDB bytes

 06h-07h

 05h byte number of FATs, get from DDB byte 08h

 06h-07h word # of root dir entries, get from DDB bytes

 09h-0Ah

 for DOS 3.x: 08h-09h word total number of sectors, get from:

 ((DDB bytes 0Dh-0Eh) - 1) * (sectors per

 cluster (BPB byte 2)) + (DDB bytes 0Bh-0Ch)

 for DOS 4.x: set to zero if partition is larger than

 32Mb, set dword at 15h to actual number

 of sectors

 0Ah word media descriptor byte, get from DDB byte

 16h

 0Bh-0Ch word number of sectors per FAT, get from DDB

 byte 0Fh

 for DOS 3.x: 0Dh word number of sectors per track

 0Fh word number of heads

 11h dword number of hidden sectors

 15h 11 bytes reserved

 for DOS 4.x: 15h dword total number of sectors if word at 08h

 contains zero

return unknown

note This function is documented as 'SetDPB' in the Zenith MS-DOS

 3.05 TRM.

Function 54h Get Verify Setting

 Get verify flag status

entry AH 54h

return AL 00h if flag off

 01h if flag on

note 1) Flag can be set with function 2Eh.

 2) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 3) The verify state is off by default.

Function 55h "Used Internally by DOS" - Create "Child" PSP

 * Create PSP: similar to function 26h (which creates a

 new Program Segment Prefix at segment in DX) except

 creates a "child" PSP rather than copying the existing

 one.

entry AH 55h

 DX segment number at which to create new PSP.

return unknown

note 1) This call is similar to call 26h which creates a PSP except that

 unlike call 26h the segment address of the parent process is

 obtained from the current process ID rather than from the CS

 value on the stack (from the INT 21h call). DX has the new PSP

 value and SI contains the value to be placed into PSP:2 (top of

 memory).

 2) Function 55 is merely a substitute for function 26h. It will

 copy the current PSP to the segment address DX with the

 addition that SI is assumed to hold the new memory top segment.

 This means that function 26h sets SI to the segment found in the

 current PSP and then calls function 55h.

Function 56h Rename a File

entry AH 56h

 DS:DX pointer to ASCIIZ old pathname

 ES:DI pointer to ASCIIZ new pathname

return CF clear successful rename

 set AX error code (02h, 03h, 05h, 11h)

note 1) Works with files in same logical drive only.

 2) Wildcard characters not allowed in filename.

 3) The name of a file is its full pathname. The file's full

 pathname can be changed while leaving the actual FILENAME.EXT

 unchanged. Changing the pathname allows the file to be

 "moved" from subdirectory to subdirectory on a logical drive

 without actually copying the file.

 4) DOS 3.x allows renaming of directories.

 5) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 6) TOS: $56 RENAME. Similar to MS-DOS 2.x.

 7) Under DOS 3.1+ networks, the user must have Read and Create

 access to the affected directories.

 8) For PC-MOS/386 native mode, use DS:EDX and ES:EDI instead of

 DS:DX and ES:DI.

Function 57h Get/Set a File's Date and Time

 Read or modify time and date stamp on a file's directory

 entry

entry AH 57h

 AL function code

 00h Get Date and Time

 01h Set Date and Time

 CX time to be set

 DX date to be set

 02h unknown (DOS 4.0+)

 03h unknown

 04h unknown (DOS 4.0+)

 BX file handle

return CF clear CX time of last write (if AL = 0)

 DX date of last write (if AL = 0)

 set AX error code (01h, 06h)

note 1) Date/time formats are:

 CX bits 0Bh-0Fh hours (0-23)

 05h-0Ah minutes (0-59)

 00h-04h #2 sec. incr. (0-29)

 DX bits 09h-0Fh year (relative to 1980)

 05h-08h month (0-12)

 00h-04h day of the month (0-31)

 2) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 3) TOS: $57 GSDTOF.

Function 58h Get/Set Allocation Strategy (DOS 3.0+)

entry AH 58h

 AL 00h Get Current Strategy (see 01h)

 Used to obtain the current allocation strategy.

 First Fit is the normal default.

 01h Set New Current Strategy

 BL new strategy

 00h First Fit - chooses the lowest block in

 memory which will fit (this is the

 default). (use first memory block large

 enough)

 01h Best Fit - chooses the smallest block

 which will fill the request.

 02h Last Fit - chooses the highest block

 which will fit.

 (DOS 5.0) 40h FIRST_FIT_HIGHONLY - search upper memory

 area for the lowest available block

 (DOS 5.0) 41h BEST_FIT_HIGHONLY - search upper memory

 area for the smallest block that fits

 the request

 (DOS 5.0) 42h LAST_FIT_HIGHONLY - search upper memory

 area for the highest available block

 (DOS 5.0) 80h FIRST_FIT_HIGH - search upper memory

 area for the lowest available block. If

 no block found, load in conventional

 memory

 (DOS 5.0) 81h BEST_FIT_HIGH - seach the upper memory

 area for the closest match to the

 requested size. If no match is found,

 load in convenional memory.

 (DOS 5.0) 82h LAST_FIT_HIGH - search the upper memory

 area for the available block at the

 highest address. If no block is found,

 load in conventional memory.

 02h Get UMB Link State

 Indicates if high DOS memory arenas are

 currently part of the conventional DOS memory

 arena.

 03h Set UMB Link State

 BX 00h Unlink High DOS memory blocks

 01h Link High DOS memory blocks

 note: Adds or removes high memory blocks from

 the DOS arena. Returns an error if no

 high arenas exist.

return CF clear successful

 (AL=00) AX strategy code (see 01h) For DOS 5.0+,

 (AL=02) AL 00h if upper memory area is not linked

 01h if the upper memory area is linked

 set error

 AX error code (01h)

 (AL=03) AX 0001h invalid function if DOS was

 loaded without DOS=UMB

 0007h memory arena trashed

note 1) A program that changes the allocation strategy or the high DOS

 link state should ALWAYS restore it to its original condition

 before exiting, or subsequent programs may fail.

 2) The set subfunction accepts any value in BL; 2 or greater means

 last fit. The get subfunction returns the last value set, so

 programs should check whether the value is greater than or equal

 to 2.

 3) For discussion of best fit vs. first fit allocation strategies,

 see Knuth, *Fundamental Algorithms.* Very briefly, Knuth finds

 that first fit methods are far superior to best fit, which

 increases both allocation overhead and memory fragmentation.

 The "last" fit that DOS offers is nothing other than a first

 fit, starting the search at the other end of the chain (the

 algorithm still takes the first fitting block that is

 encountered in the search).

 4) For DOS 5+, the default scheme is "allocate high first". This

 is actually a variant of the previous first/best/last

 allocation options. When enabled, the high-first strategy

 causes DOS to begin its free block search at the first UMB. If

 DOS can't find enough memory in the UMB, it searches from the

 beginning of conventional memory. As a result, high-first may

 result in a worse fit than best fit alone if there is a better

 fit low than high.

Function 59h Get Extended Error Code (DOS 3.0+)

 The Get Extended Error function call (59h) is intended to provide

 a common set of error codes and to supply more extensive

 information about the error to the application. The information

 returned from function call 59h, in addition to the error code,

 is the error class, the locus, and the recommended action. The

 error class provides information about the error type (hardware,

 internal, system, etc.). The locus provides information about

 the area involved in the failure (serial device, block device,

 network, or memory). The recommended action provides a default

 action for programs that do not understand the specific error code.

 Newly written programs should use the extended error support

 both from interrupt 24h hard error handlers and after any int

 21h function calls. FCB function calls report an error by

 returning 0FFh in AL. Handle function calls report an error by

 setting the carry flag and returning the error code in AX. Int

 21h handle function calls for DOS 2.x continue to return error

 codes 0-18. Int 24h handle function calls continue to return

 error codes 0-12. But the application can obtain any of the

 error codes used in the extended error codes table by issuing

 function call 59h. Handle function calls for DOS 3.x can return

 any of the error codes. However, it is recommended that the

 function call be followed by function call 59h to obtain the

 error class, the locus, and the recommended action.

 The Get Extended Error function (59h) can always be called,

 regardless of whether the previous DOS call was old style (error

 code in AL) or new style (carry bit). It can also be used inside

 an int 24h handler.

 You can either check AL or the carry bit to see if there was no

 error, and call function 59h only if there was an error, or take

 the simple approach of always calling 59h and letting it tell you

 if there was an error or not. When you call function 59h it will

 return with AX=0 if the previous DOS call was successful.

 Various versions of IBM's DOS, MSDOS, OEM customized versions

 of MSDOS, Digital's DRDOS, and other DOS emulating environments

 sometimes return different error codes for the same function.

 Be careful if you are testing for one specific error condition.

entry AH 59h

 BX version code (0000 for DOS 3.0 and 3.1)

return AX extended error code:

 01h Invalid function number 2.0+

 02h File not found 2.0+

 03h Path not found 2.0+

 04h Too many open files, no file handles left 2.0+

 05h Access denied 2.0+

 06h Invalid handle 2.0+

 07h Memory control blocks destroyed 2.0+

 08h Insufficient memory 2.0+

 09h Invalid memory block address 2.0+

 0Ah Invalid environment 2.0+

 0Bh Invalid format 2.0+

 0Ch Invalid access code 2.0+

 0Dh Invalid data 2.0+

 0Eh Reserved 2.0+

 0Fh Invalid drive was specified 2.0+

 10h Attempt to remove the current directory 2.0+

 11h Not same device 2.0+

 12h No more files 2.0+

 13h Tried to access write-protected diskette 2.0+

 14h Unknown unit 2.0+

 15h Drive not ready 2.0+

 16h Unknown command 2.0+

 17h Bad CRC check 2.0+

 18h Bad request structure length 2.0+

 19h Seek error 2.0+

 1Ah Unknown media type 2.0+

 1Bh Sector not found 2.0+

 1Ch Printer out of paper 2.0+

 1Dh Write fault 2.0+

 1Eh Read fault 2.0+

 1Fh General failure 2.0+

 20h Sharing violation 3.0+

 21h Lock violation 3.0+

 22h Invalid disk change 3.0+

 23h FCB unavailable 3.0+

 24h Sharing buffer overflow 3.3+

 25h Bad code page 4.0+

 26h Handle EOF 4.0+

 27h Handle disk full 4.0+

 28h Reserved

 29h "

 2Ah "

 2Bh "

 2Ch "

 2Dh "

 2Eh "

 2Fh "

 30h "

 31h Reserved

 32h Network: request not supported 3.1+

 33h Network: remote computer not listening 3.1+

 34h Network: duplicate name on network 3.3+

 35h Network: name not found 3.3+

 36h Network: busy 3.3+

 37h Network: device no longer exists 3.3+

 38h Network: NETBIOS command limit exceeded 3.3+

 39h Network: adapter hardware error 3.3+

 3Ah Network: incorrect response from network 3.3+

 3Bh Network: unexpected network error 3.3+

 3Ch Network: incompatible remote adapter 3.3+

 3Dh Network: print queue full 3.3+

 3Eh Network: not enough space for print file 3.3+

 3Fh Network: print file was deleted 3.3+

 40h Network: name was deleted 3.3+

 41h Network: access denied 3.3+

 42h Network: device type incorrect 3.3+

 43h Network: name not found 3.3+

 44h Network: name limit exceeded 3.3+

 45h Network: NETBIOS session limit exceeded 3.3+

 46h Network: sharing temporarily paused 3.3+

 47h Network: request not accepted 3.3+

 48h Network: print or disk redirection paused 3.1+

 49h Reserved

 4Ah "

 4Bh "

 4Ch "

 4Dh "

 4Eh "

 4Fh Reserved

 50h File exists 3.3+

 51h Reserved 3.3+

 52h Cannot make directory entry 4.0+

 53h Fail on interrupt 24h 3.3+

 54h Network: too many redirections 3.3+

 55h Network: duplicate redirection 3.3+

 56h Invalid password 3.3+

 57h Invalid parameter 3.3+

 58h Network: data fault (write error) 3.3+

 59h Reserved

 5Ah Comp not loaded 5.0+

 BH class of error: (DOS 5.0 name)

 01h Out of resource ERRCLASS_OUTRES

 (not enough disk space, etc)

 02h Temporary situation ERRCLASS_TEMPSIT

 (not an error, but a temporary situation that is

 expected to end, such as a locked region in a

 file)

 03h Authorization ERRCLASS_AUTH

 (denied access - sharing or network)

 04h Internal ERRCLASS_INTRN

 (DOS internal error)

 05h Hardware failure ERRCLASS_HRDFAIL

 (bad floppy or HD controller, etc.)

 06h System failure ERRCLASS_SYSFAIL

 (error not due to executing program, such as

 missing configuration or data files)

 07h Application program error ERRCLASS_APPERR

 (executing program bombed)

 08h Not found ERRCLASS_NOTFND

 (file or device not found)

 09h Bad format ERRCLASS_BADFMT

 (file or item invalid format or type)

 0Ah Locked ERRCLASS_LOCKED

 (network or SHARE lock)

 0Bh Media error ERRCLASS_MEDIA

 (wrong volume ID, disk failure)

 0Ch Already exists ERRCLASS_ALREADY

 (file or device already exists)

 0Dh Unknown ERRCLASS_UNK

 (Smurfs infesting system board)

 BL suggested action code:

 01h Retry ERRACT_RETRY

 02h Delayed retry ERRACT_DLYRET

 03h Prompt user ERRACT_USER

 04h Abort after cleanup ERRACT_ABORT

 05h Immediate abort ERRACT_PANIC

 06h Ignore ERRACT_IGNORE

 07h Retry after user intervention ERRACT_INTRET

 CH locus (where error occurred):

 01h Unknown or not appropriate ERRLOC_UNK

 02h Block device ERRLOC_DISK

 03h Network related ERRLOC_NET

 04h Serial device ERRLOC_SERDEV

 05h Memory related ERRLOC_MEM

note 1) Not all DOS functions use the carry flag to indicate an error.

 Carry should be tested only on those functions which are

 documented to use it.

 2) None of the DOS functions which existed before 2.0 use the

 carry indicator. Many of them use register AL as an error

 indication instead, usually by putting 0FFh in AL on an error.

 Most, but not all, the "new" (2.x, 3.x) functions do use carry,

 and most, but not all, of the "old" (1.x) functions use AL.

 3) On return, CL, DI, DS, DX, ES, BP, and SI are destroyed - save

 before calling this function if required.

 4) DOS 2.x Error Codes: If you are using function calls 38h-57h

 with DOS 2.x, to check if an error has occurred, check for the

 following error codes in the AX register:

 call| error code call| error code call| error code

 ----|-------------------|--------------------|----------------

 38h | 2 41h | 2,3,5 4Ah | 7,8,9

 39h | 3,5 42h | 1,6 4Bh | 1,2,3,5,8,10,11

 3Ah | 3,5,15 43h | 1,2,3,5 4Eh | 2,3,18

 3Bh | 3 44h | 1,3,5,6 4Fh | 18

 3Ch | 3,4,5 45h | 4,6 56h | 2,3,5,17

 3Dh | 2,3,4,5,12 46h | 4,6 57h | 1,6

 3Eh | 6 47h | 15

 3Fh | 5,6 48h | 7,8

 40h | 5,6 49h | 7,9

 5) Note that extended error codes 13h through 1Fh correspond to

 error codes 00h through 0Ch returned by int 24h.

 6) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

Function 5Ah Create Temporary File

 Create unique filename (for temporary use) (DOS 3.0+)

entry AH 5Ah

 DS:DX pointer to buffer containing an ASCIIZ directory

 pathname ending with a backslash (\). The buffer must

 have at least 13 bytes free following the backslash,

 as the file name and extension will be written there.

 CX file attribute (00h, 01h, 02h, 04h, 20h only)

return CF clear AX handle

 DS:DX new ASCIIZ pathname

 set AX error code (03h, 04h, 05h)

note 1) The file created is not truly "temporary". It must be removed

 by the user.

 2) If the filename created already exists in the current

 directory, this function will call itself again with another

 unique filename until a truly unique filename is found.

 3) The temporary filename usually consists of mixed letters and

 numbers. No file extension appears to be generated.

 4) DOS 3.0-4.01 used mixed letters and numbers. MS DOS 5.0 appears

 to use letters only. DR DOS 5.0 appears to use numbers only.

 5) Under DOS 3.1+ and NETBIOS compatible networks, DOS opens the

 file in compatibility mode.

 6) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 7) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 5Bh Create a New File (DOS 3.0+)

entry AH 5Bh

 DS:DX segment/offset pointer to an ASCIIZ pathname

 CX file attribute (00h, 01h, 02h, 04h, 20h only)

return CF clear AX file handle

 DS:DX new ASCIIZ pathname

 set AX error code (03h, 04h, 05h, 50h)

note 1) Unlike function 3Ch, function 5Bh will fail if the file already

 exists. This is useful on networks, since another application

 might create a file of the same name with 3Ch first, causing

 the first 3Ch to fail. Use of this call instead of 3Ch is good

 practice for code that will not need to run under DOS 2.x.

 2) Under DOS 3.1+ networks, DOS opens the file in read/write mode.

 This call will fail if the user does not have Create access.

 3) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 4) The MSDOS Encyclopedia suggests this call may be used to

 implement semaphores in LANs or multitasking environments. A

 zero-byte marker file could be created to indicate semaphore set.

 5) For PC-MOS/386 native mode, use DS:EDX instead of DS:DX.

Function 5Ch Lock/Unlock File Access (DOS 3.0+)

entry AH 5Ch

 AL 00h to lock file region

 01h to unlock file region

 BX file handle

 CX:DX 4-byte starting offset from beginning of file of region

 to lock

 SI:DI 4-byte integer, high/low size of region to lock

 (in bytes)

return CF clear successful

 set AX error code (01h, 06h, 21h, 24h)

note 1) Unlock all files before exiting or undefined results may occur.

 Programs using file locking should trap int 23h (Control-C

 Handler Address) and int 24h (Critical Error Handler Address)

 and unlock files before returning to the caller.

 2) Programs spawned with EXEC inherit all the parent's file

 handles but not the file locks.

 3) This call is explicitly supported in the OS/2 1.x DOS

 Compatibility Box.

 4) You may lock an entire file, any part of a file, or several

 parts of the same file. For example, it would be more

 efficient to lock an area in a database containing a single

 record than to lock the entire file. If two adjacent sections

 of a file are locked separately, they must be unlocked

 separately - you cannot change the lock pointers and use a

 single unlock call.

 5) You should lock only as much of a file as you need and keep

 the lock only for as long as necessary. Should a file need to

 be shared and updated often, continual locking and unlocking

 can slow file access detectably.

 6) This call returns error 01h if SHARE is not loaded.

 7) Locked files must be unlocked before the program terminates,

 or the result is undefined.

 8) A transaction-oriented algorithm for using locking is

 recommended. In effect, assert lock, read data, change data,

 remove lock. An application should release its lock when a

 transaction is complete.

 9) Locking past end-of-file does not cause an error.

 10) Locking a portion of a file with fn 5Ch denies all other

 processes both read and write access to the locked region.

 11) For PC-MOS/386 native mode, use ECX and EDX instead of CX:DX.

Function 5Dh Multifunction, DOS Internal - partial (DOS 3.x+)

entry AH 5Dh

 AL subfunction

 00h Indirect Function Call

 DS:DX pointer to buffer containing register

 values AX, BX, CX, DX, SI, DI, DS, ES

 for a call to int 21h

 return as appropriate for function being called

 note Does not check AH. Out of range values

 will crash the system.

 01h SYNC? (DOS 3.1+)

 parameters unknown

 note 1) Does something to each disk file in the

 system. File Table which has been

 written to.

 2) If remote file, calls int 2Fh/fn1107h.

 3) Seems to update the time stamp of all

 open files which have been written to.

 02h SHARE.EXE? (DOS 3.1+)

 note Error unless SHARE is loaded

 (calls fn 52h+4Ah)

 03h SHARE.EXE? (DOS 3.1+)

 note Error unless SHARE is loaded

 (calls fn 52h+4Ah)

 04h SHARE.EXE functions? (DOS 3.1+)

 note Error unless SHARE is loaded

 (calls fn 52h+4Ah)

 05h Network functions? (DOS 3.1+)

 DS:DX pointer to buffer (see AX=0Ah), only

 fields at offset 12h, 14h used

 note Error unless SHARE is loaded

 (calls fn 52h+5Ah)

 06h Get Address of Critical Error Flag

 DS:DX pointer to buffer (see 0Ah), only

 fields at offset 12h, 14h used

 return CX unknown value

 DX unknown value

 DS:SI pointer to critical error flag

 notes This call does a lot of other work in

 addition to returning the pointer.

 Setting the CritErr flag allows use of

 functions 50h/51h from int 28h under

 DOS 2.x by forcing use of correct stack.

 (LANtastic) 07h Return Redirected Printer mode

 return DL 00 output is combined

 01h output is separated

 note The current printer mode (either

 printer output combined or separated)

 is returned.

 (LANtastic) 08h Set Redirected Printer Mode

 DL 00h set redirected output to be

 combined

 01h set redirected output to be

 separated. (implicitly starts

 a new print job)

 return none

 note 1) The current printer mode (either printer

 output combined or separated) can be set.

 2) may be used by COMMAND.COM

 (LANtastic) 09h Flush Printer Output

 return none

 note 1) Printer output is flushed and a new

 print job is started. If no output

 exists to be flushed then this function

 has no effect.

 2) may be used by COMMAND.COM

 09h unknown - may be used by COMMAND.COM

(DOS 5, doc'd) 0Ah Set Extended Error Information

 DS:DX address of 11-word error information

 table:

 format of error information table:

 offset size description

 00h word value that next call to

 fn 59h will return in AX

 02h word value that next call to

 fn 59h will return in BX

 04h word CX

 06h word DX

 08h word SI

 0Ah word DI

 0Ch word DS

 0Eh word ES

 10h word reserved (set to 0)

 12h word user (computer) ID,

 0=local

 14h word program ID, 0=local

 program

 return none

return DS:SI (for 06h) pointer to critical error flag

note 1) Function 0Ah; DOS 3.1+.

 2) Function 06h; setting CritErr flag allows use of functions

 50h/51h from int 28h under DOS 2.x by forcing the use of the

 correct stack.

 3) Functions 07h, 08h, 09h are identical in DOS 3.1 and call int

 2Fh fn 1125h.

Function 5Eh Network Printer

 DOS 3.1+ with Networks software

 PC-MOS/386 through 4.1 has limited support for functions

 5Eh through 5F04h. The MOS NETBIOS driver must be

 loaded. A device name is returned for 5E00h and an

 "end of list" status is returned for other functions.

entry AH 5Eh

 AL 00h Get Machine Name

 DS:DX pointer to 16-byte buffer for ASCIIZ name

 return CH 00h if name not defined

 <>0 name is defined

 CL 00h name not set

 <>0 NetBIOS name number

 DS:DX pointer to ASCIIZ name if CH <>0

 CF set on error

 AX error code (01h)

 note 1) The ASCIIZ name is a 15 byte string

 padded to length with zeroes.

 2) The NETBIOS number in CL and name at

 DS:DX are valid only if the value

 returned in CH is <>0.

 01h Set Machine Name

 CH 00h undefine name

 <>0 define name

 CL name number

 DS:DX pointer to ASCIIZ name

 02h Set Printer Control String

 BX redirection list index

 CX length of setup string (max 64 bytes)

 DS:SI pointer to ASCIIZ setup string buffer

 return: CF set on error

 AX error code (01h)

 note 1) Set printer setup sets a setup string

 to be sent to the network printer

 whenever a file is queued to the

 printer.

 2) LANtastic LANOS does not process this

 request since printer setup strings are

 controlled by the system administrator

 using the NET_MGR program. The system

 call does not return an error, however.

 03h Get Printer Control String

 BX redirection list index

 ES:DI pointer to 64-byte string buffer

 return CX length of setup string

 (maximum 64 bytes)

 return: CF set on error

 AX error code (01h)

 note 1) This call will return the setup string

 set with fn 02h above.

 2) LANtastic LANOS does not process this

 request since printer setup strings are

 controlled by the system administer

 using the NET_MGR program. The system

 call does not return an error, however,

 and the length of the setup string (CX)

 is 0.

 04h DOS 3.1+ +Microsoft Networks - unknown

 note Calls int 2F/AX=111Fh with 5E04h on

 stack.

 05h DOS 3.1+ +Microsoft Networks - unknown

 note Calls int 2F/AX=111Fh with 5E05h on

 stack.

 06h DOS 3.1+ +Microsoft Networks - unknown

 note Calls int 2F/AX=111Fh with 5E06h on

 stack.

return CF clear successful

 set error

 AX error code (01h for all listed subfns)

note 1) Used in IBM's & Microsoft's Network programs.

 2) Partial documentation in Fall 1985 Byte, in Advanced MS-DOS,

 in MS-DOS Encyclopedia, LANtastic Programmer's Manual.

 3) These services require that the network software be installed.

 4) SHARE must be loaded or results can be unpredictable on 00h,

 or fail with 02h or 03h.

 5) The redirection entry index is an index into a table that

 identifies the printer as a device on the network.

Function 5Fh Network Redirection

 (DOS 3.1+ and Microsoft Networks)

entry AH 5Fh

 AL *00h Unknown

 *01h Unknown

 02h Get Redirection List Entry

 BX redirection entry index. Index 0

 specifies the first entry

 DS:SI pointer to 16 byte area which will

 receive the ASCIIZ local device name

 ES:DI pointer to 128 byte buffer for the

 ASCIIZ network device name

 return CF set on error

 AX error code (01h, 12h)

 BH device status flag

 (bit 0=0 if valid)

 (bit 0=1 if invalid)

 (bits 1-7 reserved)

 BL device type

 03 printer device

 04 drive device (file)

 CX value stored by fn 03h call.

 Should be 0 for compatiblity

 with LAN OS

 DS:SI pointer to 16 byte ASCIIZ local

 device name

 ES:DI pointer to 128 byte ASCIIZ

 network name

 note 1) DX and BP are destroyed by this call.

 2) This call returns information about a

 single redirected device (see fn 03h).

 This fn may be used to scan the list of

 redirected devices.

 03h Redirect Device - Make Assign List Entry

 Redirects a workstation drive or device to a

 server directory or device.

 AX error code if error

 BL device type

 03h printer device

 04h file device

 CX stored parameter value (0 for

 compatibility with IBM PC Network

 program and LANtastic)

 DS:SI pointer to 16-byte ASCIIZ source

 device name for printer: PRN, LPT1,

 LPT2, LPT3

 ES:DI pointer to destination 128-byte

 ASCIIZ network path and ASCIIZ

 password (e.g.,'\\machine_name\path',

 0,'password',0)

 return CF set on error

 AX error code (01h, 03h,

 05h, 08h, 0Fh, 12h)

 note 1) Redirect device allows you to connect

 local devices to network paths. For

 example you can connect your LPT1 to

 a printer on another node. References

 to LPT1 are routed to the network.

 2) If the password is omitted, the

 pathname must be followed by two null

 bytes.

 3) For printer redirection, MS-Network

 intercepts int 17h. When redirection

 is canceled, all printing is sent to

 the first local printer. (LPT1)

 04h Cancel Redirection Assignment

 DS:SI pointer to ASCIIZ device name or

 network path to be canceled

 return CF set on error

 AX error code (01h, 03h,

 05h, 08h, 0Fh, 12h)

 note 1) Cancel device redirection allows you

 to remove a device redirection so that

 the device is restored to its former

 state.

return CF clear successful

 set if error

 AX error code

 (fn 02h) 01h, 12h

 (fn 03h) 01h, 03h, 05h, 08h

 (fn 04h) 01h, 0Fh

note 1) Used in IBM's Network program and Microsoft MS-Networks.

 2) Partial documentation in Fall 1985 Byte, in Advanced MS-DOS,

 in the MS-DOS Encyclopedia, LANtastic Programmer's Manual.

 3) These services require that the network software be installed.

 4) SHARE must be loaded or the call will fail.

 5) The network device name requires a password.

 6) Only printer and disk devices are supported for redirection.

 STDAUX, STDIN, STDOUT, and STERR are not supported by the

 Microsoft/IBM specification. Other companies have managed

 to do this with various nonstandard additions to the API.

Function 60h Parse pathname (TRUENAME) (DOS 3.0+)

 * Perform name processing on a string (internal to DOS)

entry AH 60h

 DS:SI pointer to ASCIIZ source string (null terminated)

 ES:DI pointer to destination 80 byte ASCIIZ string buffer

return ES:DI buffer filled with qualified name in form (drive):(path)

 CF set error

 AX error code (02h, 03h)

 clear no error

note 1) Documented in Zenith 3.05 Technical Reference.

 2) All name processing is performed on the input string; string

 substitution is performed on the components, current drive/

 directories are prepended, . and .. are removed. Under most

 networking software, the drive letter is replaced with the node

 name, i.e. returns pathname like \\SERVER\UTILS\TEST.TXT

 instead of F:\UTILS\TEST.TXT.

 3) Example: If current drive/directory is C:\TEST, MYFILE.X is

 translated to C:\TEST\MYFILE.X; ..\SOURCE\SAMPLE.ASM is

 translated to C:\SOURCE\SAMPLE.ASM.

 4) It is the caller's responsibility to make sure DS:SI does not

 point to a null string. If it does, SI is incremented, a null

 byte is stored at ES:DI, and the routine returns.

 5) Used by CHKDSK, at least in DOS 3.3, and DOS 3.x.

 6) If path string is on a JOINed drive, the returned name is the

 one that would be needed if the drive were not JOINed;

 similarly for a SUBSTed drive letter. Because of this, it is

 possible to get a qualified name that is not legal with the

 current combination of SUBSTs and JOINs.

 7) Used by DOS 4.0 SHELLC.EXE.

 8) This call has been discovered in DOS versions as early as

 2.11.

 9) In Novell Netware 2.1x, this call is not supported when the

 8th bit (high ASCII) is set on any letter in the file or

 pathname, and when the file being inquired about is on a

 remote drive. This causes problems with machines using

 foreign code pages.

 10) You need DPMI services to use this call under MS Windows 3.x.

 There is an example in PC Magazine, 25 June 1991, p. 389

 called TRUENAME.C.

Function 61h undocumented - (DOS 3.0)

 * Internal to DOS - parameters not known

entry AH 61h

return AL 00h

note Supposedly documented in Zenith DOS 3.05 Technical Reference.

Function 62h Get Program Segment Prefix (PSP) (DOS 3.0+)

entry AH 62h

return BX segment address of PSP

note Under DOS 3.x+, this function does not use any of DOS' internal

 stacks and is thus fully reentrant.

Function 63h Get Lead Byte Table (MS-DOS 2.25 only)

 Added in DOS 2.25 for additional foreign character

 set support.

entry AH 63h

 AL subfunction

 00h get system lead byte table address

 01h set/clear interim console flag

 DL 0000h to clear interim console flag

 0001h to set interim console flag

 02h get interim console flag

return DS:SI pointer to lead byte table (AL = 00h)

 DL interim console flag (AL = 02h)

note 1) Function 63h destroys all registers except SS:SP on return.

 To avoid saving registers repeatedly, a process can copy the

 table or save the pointer for later use.

 2) Works ONLY in MS-DOS 2.25!

 3) Note fn 63h does not return errors in AL or CF.

 4) Original support was for Kanji (Japanese) and Hanegul (Korean)

 only.

 5) The lead byte table contains pairs of bytes that represent the

 inclusive boundary values for the lead bytes of the specified

 alphabet. Because of the way bytes are ordered by the 8086

 microprocessor family, the values must be read as byte values,

 not as word values.

 6) If the interim console flag is set (DL=0001h) by a program

 through a call to fn 63h, the following int 21h functions

 return interim character information on request: 07h, 08h,

 0Bh, 0Ch.

Function 64h Undocumented - Used internally by DOS

entry AH 64h

return unknown

note 1) DOS 3.2+ internal function of some type? May be a network

 function.

 2) In DOS 3.31 it seems that when you load AL with a nonzero

 number, int 28h will get called more often. AL=0 resets back

 to the default "boot up" state.

Function 65h Get Extended Country Information (DOS 3.3+)

 Returns information about the selected country

 formats, code pages, and conversion tables

entry AH 65h

 AL information ID code

 01h get general internationalization info

 02h get pointer to uppercase table (130 bytes max)

 (maps chars 80h-0FFh to their uppercase

 equivalents, if any; used mainly to map

 accented or other vowels to the corresponding

 plain vowels)

 03h unknown

 04h get pointer to filename uppercase table (130

 bytes max) (similar to table for AL = 02h)

 (DOS 5.0+) 05h get filename character table - specifies which

 chars must not be used in filenames.

 06h get pointer to collating sequence table (258

 bytes max) (maps uppercase, lower, and

 accented chars together for sorting)

 07h get pointer to double-byte character set table

 (DOS 5.0+) 20h convert character - converts character in DL to

 uppercase using the current uppercase table

 (DOS 5.0+) 21h convert string - converts string in DS:DX,

 length CX to uppercase using current uppercase

 table, returns in DS:DX

 (DOS 5.0+) 22h convert ASCIIZ string - converts string in

 DS:DX to uppercase using current uppercase

 table, returns in DS:DX

 BX code page (0FFFFh = current code page)

 CX amount of information to be returned (minimum 5)

 DX target country ID (0FFFFh = default current country)

 ES:DI segment/offset pointer to country information buffer

return CF set on error

 AX error code (02h)

 otherwise:

 CX size of country information returned

 ES:DI pointer to country information:

 offset length description

 00h 1 byte info ID (for all following buffers)

 If information ID code <> 1:

 01h dword pointer to information

 If information ID code = 1:

 01h word length of remainder of buffer (<= 38)

 03h word country ID

 05h word code page number

 07h 34 bytes same as for int 21h function 38h

 If information ID code = 2:

 01h word table size

 05h dword pointer to uppercase table

 128 bytes uppercase equivalents (if any) of chars 80h-0FFh

 If information ID code = 4:

 01h word table size

 05h dword pointer to collating table

 256 bytes values used to sort characters 00h-0FFh

 If information ID code = 6:

 01h word table size

 05h dword pointer to filename uppercase table.

 This table starts with a 2-byte length

 field, then 256 ASCII values placed in

 order

 128 bytes uppercase equivalents (if any) of chars

 80h-0FFh

 If information ID code = 7: (DOS 4.0)

 unknown

note 1) For AL=02h, 04h, or 06h, the first two bytes of the table

 give its length and then a 128 byte table of uppercase ASCII

 characters for 02h or 04h and a pointer to the collating

 sequence for 06h.

 2) The country code and code page must match. If not, error 02h

 is in AX.

 3) If more information is provided than was requested by CX, it

 is truncated without generating an error.

 4) Country information:

 bytes description

 01h value of AL (01h)

 02h,03h size (max = 38)

 04h,05h country code

 06h,07h code page

 08h,09h date format

 0Ah,0Eh currency symbol

 0Fh,10h thousands separator

 11h,12h decimal separator

 13h,14h date separator

 15h,16h time separator

 17h currency format flags

 18h digits in currency

 19h time format

 20h-22h monocase routine entry point

 23h-24h data list separator

 25h-29h zeros

Function 66h Get/Set Global Code Page Table (DOS 3.3+)

 Query/reset code page defaults

entry AH 66h

 AL 00h Get Global Code Page

 01h Set Global Page

 BX active code page

 DX system code page

 (active page at boot time)

return CF clear successful

 set AX error code (unknown)

 if 00h BX active code page

 DX system code page

 (active page at boot time)

note 1) BX = active code page: 437 = US, 860 = Portugal, 863 = Canada

 (French) 865 = Norway/Denmark, 850 =

 multilingual

 2) MS 5.0 TR shows fns as 01h and 02h.

Function 67h Set Handle Count (DOS 3.3+)

 Supports more than 20 open files per process

entry AH 67h

 BX desired number of handles (20 to 65,535)

return CF clear if OK

 set if error

 AX error code (unknown)

note 1) This function changes the 20-byte handle table pointer in the

 PSP to point to a new, larger handle table elsewhere in memory.

 2) The memory the 67h call allocates is taken from the normal

 DOS pool, and is reclaimed on process termination, so nothing

 is lost.

 3) When calling this function you must release enough memory for

 DOS to contain the extended handle list.

 4) If the requested number of handles is less than 20 nothing

 is done.

 5) Early versions of PC-MOS/386 v4.1 did not properly deallocate

 memory when the number of handles was reduced.

 6) The error value returned in AX is not documented in the IBM

 4.0 DOS Technical Reference, the MSDOS Encyclopedia or the MS

 5.0 TR.

 7) For PC-MOS/386 4.x, the only error code is 08h (insufficient

 memory).

Function 68h Commit File (DOS 3.3+)

 Write all buffered data to disk

entry AH 68h

 BX file handle of previously opened file

return CF clear successful

 set on error

 AX error code (unknown)

note 1) Faster and more secure method of closing a file in a network

 than current close commands.

 2) This is effectively the same as DUPing the handle for a file

 and then closing the new one, except that this call won't fail

 if the system is out of handles.

 3) The file's buffers are flushed and its directory and FAT

 entries are updated.

 4) The error value returned in AX is not documented in the IBM

 4.0 DOS Technical Reference, the MSDOS Encyclopedia or the MS

 5.0 TR.

 5) For PC-MOS/386 4.x, the error codes are 06h (invalid handle)

 and 22h (wrong disk).

Function 69h Disk Serial Number DOS 4.0+ (US versions)

 Handles "Volume Serial Number" on disks formatted with

 DOS 4.0+

entry AH 69h Get Volume Serial Number

 AL 00h get serial number

 01h set serial number

 BL drive (0=default, 1=A, etc)

 DS:DX pointer to disk information table

return CF set on error

 AX error code

 clear if successful

 AH destroyed

 AL (fn 00h) buffer filled with appropriate values

 from extended BPB

 (fn 01h) extended BPB on disk set to values

 from buffer

 DS:DX disk information table. Format:

 offset size description

 00h word unknown (zeroes on my system)

 02h dword disk serial number (binary)

 06h 11 bytes volume label or "NO NAME " if none

 11h 8 bytes FAT type - string "FAT12 " or

 "FAT16 "

note 1) The FAT type field refers to the number of bits per directory

 entry.

 2) Does not generate a critical error; all errors are returned

 in AX.

 3) Error 0005h given if no extended BPB on disk.

 4) Does not work on network drives (error 0001h).

 5) Buffer after first two bytes is exact copy of bytes 27h thru

 3Dh of extended BPB on disk.

 6) FORMAT (in DOS 5.0) does not call int 21h/fn 69h. (Get/Set

 Volume Serial Number) For floppy disks, it calls int 21h/fn

 440Dh, CH=08, CL=46 [Set Media ID], and passes the serial

 number. (from dsparks, BIX)

Function 6Ah Unknown (DOS 4.0?)

Function 6Bh Unknown (DOS 4.0?)

Function 6Ch Extended Open/Create DOS 4.0+ (US)

 Combines functions available with Open, Create, Create

 New, and Commit File

entry AH 6Ch

 AL 00h reserved [which means there might be other

 subfunctions?]

 BX mode format 0WF0 0000 ISSS 0AAA

 AAA is access code (read, write,

 read/write)

 SSS is sharing mode

 I 0 pass handle to child

 1 no inherit [interesting!]

 F 0 use int 24h for errors

 1 disable int 24h for all

 I/O on this handle; use

 own error routine

 W 0 no commit

 1 auto commit on all writes

 CX create attribute

 bits 0 read only

 1 hidden

 2 system

 3 volume label

 4 reserved

 5 archive

 6-15 reserved

 DH 00h (reserved)

 DL action if file exists/does not exists

 bits 0-3 action if file exists

 0000 fail

 0001 open

 0010 replace/open

 4-7 action if file does not exist

 0000 fail

 0001 create

 DS:SI pointer to ASCIIZ file name

return CF set on error

 AX error code (unknown)

 clear

 AX file handle

 CX action taken

 01h file opened

 02h file created/opened

 03h file replaced/opened

note When APPEND is installed, if DX=xx1x it looks only in current

 directory, if DX=xx0x it will search the full append path.

 DX is called the open flag and gives what action to take if

 the file exists or does not exist.

Function 89h undocumented - DOS_Sleep

 * Not documented by Microsoft

entry AH 89h

return unknown

note 1) Function included in Microsoft C 4.0 startup code MSDOS.INC.

 2) Debugging shows that the first instruction on entry to DOS

 compares AH with 64h (at least in DOS 3.2) and aborts the

 call if AH > 64.

 3) Possibly used in European MSDOS 4.0?

Aftermarket Application Installed Function Calls:

Novell Netware 2.11:

 Novell no longer recommends the int 21h method for invoking

 the Netware functions. Int 21h will be supported

 indefinitely, but the new net API calls for addressing the

 software through the Multiplex Interrupt (2Fh). You may

 address the API through int 2Fh in the same manner as int 21h;

 only the interrupt number is different.

 Novell API calls are referenced in Chapter 13. Most functions

 from 0B6h through 0F9h are preempted by NetWare; if your

 software uses any of these calls for another purpose it will

 likely not run under NetWare.

NOTE: Novell (and most others') network software and SoftLogic's

 DoubleDOS conflict on the following int 21h functions

 0EAh-0EEh. Netware must use int 2Fh functions instead of 21h

 functions if DoubleDOS will be used on the network.

Functions 0E0h - 0F6h: used by AI Architects/Ergo Computing

 DOS extender

Functions 0E4h - 0EEh: used by DoubleDOS task switcher

Function 0FEh Enable Reader v4.0 API

 Enable Reader is a speech synthesizer interface for

 the blind. It will save all registers except the

 flags, where the zero flag will be set if the call was

 not one of the available Enable Reader 4.0 functions.

entry AH 0FEh

 AL 01h Driver Output

 DL Character To Output

return none

note The Driver Output call will output the character in DL through

 the Enable Reader driver, without turning off the Help

 Functions. It will be filtered by the ASCII sort routine in

 the Enable Reader Driver, and if it is punctuation it will be

 sent according to the level of punctuation selected.

entry AH 0FEh

 AL 02h Direct Output

 DL ASCII character to output

return none

note The Direct Output call will send the byte in DL directly to

 the synthesizer, bypassing the Enable Reader driver and ASCII

 filter sort routine.

entry AH 0FEh

 AL 03h Message Output

 DL character to output

return none

note The Message Output call allows character filtration and

 punctuation, but turns off the Help functions in the driver.

entry AH 0FEh

 AL 41h (ASCII A) Auto

return none

note The AUTO call turns the Spell mode on or off.

entry AH 0FEh

 AL 4Eh (ASCII N) Punctuation Levels

return none

note This call selects one of five Punctuation Character Sets that

 can be accessed. The fifth level is "Output Punctuation",

 which allows all ASCII characters to be sent to the synthesizer

 without being filtered or translated into the Enable Reader 4.0

 Punctuation Words.

entry AH 0FEh

 AL 4Fh (ASCII O) Help Word Levels

return none

note The Help call selects one of four levels of help. By selecting

 "No Help" at the start of your program, you can use the other

 Help Functions without having them speak their prompts.

entry AH 0FEh

 AL 51h (ASCII Q) Quit

return none

note This call will stop the synthesizer from speaking.

entry AH 0FEh

 AL 5Ah (ASCII Z) Letter-to-Word Translator

return none

note This call turns the Letter-To-Word Translator on or off.

 For a discussion on the TRANSLATOR Function, read

entry AH 0FEh

 AL 54h (ASCII T) Upper Case Identification

return none

note This call toggles identification of uppercase letters.

entry AH 0FEh

 AL 56h (ASCII V) Video Output

return none

note The Video Output call toggles the output to the synthesizer

 from data that is printed on the video screen.

Function 0FFh CED (CJ Dunford's DOS macro and command-line editor)

 CED installable commands

entry AH 0FFh

 AL 00h Add Installable Command

 01h Remove Installable Command

 02h Reserved, may be used to test for CED

 installation

 BL mode byte

 bit 0 callable from DOS prompt

 1 callable from application

 2-7 not used in public domain CED

 DS:SI pointer to CR-terminated command name

 ES:DI pointer to far routine entry point

return CF set on error

 AX 01h invalid function

 02h command not found (subfunction 1 only)

 08h insufficient memory (subfunction 0 only)

 0Eh bad data (subfunction 0 only)

 AH 0FFh if CED not installed

note 1) When PCED returns, AX and the flags are changed. Other

 registers are preserved, except as noted.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R F I V E

 INTERRUPTS 22H THROUGH 0FFH

 C O N T E N T S

Interrupt 22h Terminate Address 5**1

Interrupt 23h Ctrl-Break Exit Address 5**2

Interrupt 24h Critical Error Handler 5**3

Interrupt 25h Absolute Disk Read 5**4

Interrupt 26h Absolute Disk Write 5**5

Interrupt 27h Terminate And Stay Resident 5**6

Interrupt 28h DOS Idle Interrupt 5**7

Interrupt 29h Fast Screen Write 5**8

Interrupt 2Ah Microsoft Networks - Session Layer Interrupt ... 5**9

Interrupt 2Bh Unknown .. 5**10

Interrupt 2Ch Unknown .. 5**11

Interrupt 2Dh Unknown .. 5**12

Interrupt 2Eh Alternate EXEC (DOS 2.0+) 5**13

Interrupt 2Fh Multiplex Interrupt 5**14

Interrupt 30h FAR jump instruction for CP/M-style calls 5**15

Interrupt 31h Unknown .. 5**16

Interrupt 32h Unknown .. 5**17

Interrupt 33h Used by Microsoft Mouse Driver Function Calls .. 5**18

Interrupt 34h Turbo/Microsoft langs - Floating Point emul. ... 5**19

Interrupt 35h Turbo/Microsoft langs - Floating Point emul. ... 5**20

Interrupt 36h Turbo/Microsoft langs - Floating Point emul. ... 5**21

Interrupt 37h Turbo/Microsoft langs - Floating Point emul. ... 5**22

Interrupt 38h Turbo/Microsoft langs - Floating Point emul. ... 5**23

Interrupt 39h Turbo/Microsoft langs - Floating Point emul. ... 5**24

Interrupt 3Ah Turbo/Microsoft langs - Floating Point emul. ... 5**25

Interrupt 3Bh Turbo/Microsoft langs - Floating Point emul. ... 5**26

Interrupt 3Ch Turbo/Microsoft langs - Floating Point emul. ... 5**27

Interrupt 3Dh Turbo/Microsoft langs - Floating Point emul. ... 5**28

Interrupt 3Eh Turbo/Microsoft langs - Floating Point emul. ... 5**29

Interrupt 3Fh Overlay Manager Interrupt (Microsoft LINK.EXE) . 5**30

Interrupt 40h Hard Disk BIOS 5**31

Interrupt 41h Hard Disk Parameters 5**32

Interrupt 42h Pointer to screen BIOS entry 5**33

Interrupt 43h Pointer to EGA Graphics Character Table 5**34

Interrupt 44h Pointer to graphics character table 5**35

Interrupt 45h Reserved by IBM (not initialized) 5**36

Interrupt 46h Pointer to second hard disk parameter block 5**37

Interrupt 47h Reserved by IBM (not initialized) 5**38

Interrupt 48h Cordless Keyboard Translation 5**39

Interrupt 49h Non-kbd Scan Code Translation Table Addr (PCjr) 5**40

Interrupt 4Ah Real-Time Clock Alarm (Convertible, PS/2) 5**41

Interrupt 4Bh Reserved by IBM (not initialized) 5**42

Interrupt 4Ch Reserved by IBM (not initialized) 5**43

Interrupt 4Dh Reserved by IBM (not initialized) 5**44

Interrupt 4Eh Reserved by IBM (not initialized) 5**45

Interrupt 4Fh Reserved by IBM (not initialized) 5**46

Interrupt 50-57 IRQ0-IRQ7 Relocation 5**47

Interrupt 58h Reserved by IBM (not initialized) 5**48

Interrupt 59h Reserved by IBM (not initialized) 5**49

Interrupt 5Ah Reserved by IBM (not initialized) 5**50

Interrupt 5Bh Reserved by IBM (not initialized) 5**51

Interrupt 5Ah Cluster Adapter BIOS entry address 5**52

Interrupt 5Bh Reserved by IBM (not initialized) 5**53

Interrupt 5Ch NETBIOS interface entry port, TOPS 5**54

Interrupt 5Dh Reserved by IBM (not initialized) 5**55

Interrupt 5Eh Reserved by IBM (not initialized) 5**56

Interrupt 5Fh Reserved by IBM (not initialized) 5**57

Interrupt 60h-67h User Program Interrupts 5**58

Interrupt 60h Network OS Interface 5**59

Interrupt 67h Expanded Memory Board Driver Interrupt 5**60

Interrupt 68h Not Used (not initialized) 5**61

Interrupt 69h Not Used (not initialized) 5**62

Interrupt 6Ah Not Used (not initialized) 5**63

Interrupt 6Bh Not Used (not initialized) 5**64

Interrupt 6Ch System Resume Vector (Convertible) 5**65

Interrupt 6Dh Not Used (not initialized) 5**66

Interrupt 6Eh Not Used (not initialized) 5**67

Interrupt 6Fh 10-Net API...................................... 5**68

Interrupt 70h IRQ 8, Real Time Clock Int (AT, XT/286, PS/2) .. 5**69

Interrupt 71h IRQ 9, Redirected to IRQ 8 (AT, XT/286, PS/2) .. 5**70

Interrupt 72h IRQ 10 (AT, XT/286, PS/2) Reserved 5**71

Interrupt 73h IRQ 11 (AT, XT/286, PS/2) Reserved 5**72

Interrupt 74h IRQ 12 Mouse Interrupt (PS/2) 5**73

Interrupt 75h IRQ 13, Coprocessor Error (AT) 5**74

Interrupt 76h IRQ 14, Hard Disk Controller (AT, XT/286, PS/2) 5**75

Interrupt 77h IRQ 15 (AT, XT/286, PS/2) Reserved 5**76

Interrupt 78h Not Used 5**77

Interrupt 79h Not Used 5**78

Interrupt 7Ah Reserved 5**79

Interrupt 7Bh-7Eh Not Used by IBM 5**80

Interrupt 7Ch REXX-PC API 5**81

Interrupt 7Fh IBM 8514/A Graphics Adapter API 5**82

Interrupt 80h-85h Reserved by BASIC 5**83

Interrupt 86h Int 18 when relocated by NETBIOS 5**84

Interrupt 86h-0F0h Used by BASIC when interpreter is running .. 5**85

Interrupt 0A4h Right Hand Man API 5**86

Interrupt 0D4h PC-MOS/386 API 5**87

Interrupt 0E0h Digital Research CP/M-86 function calls 5**88

Interrupt 0E1h PC Cluster Disk Server Information 5**89

Interrupt 0E2h PC Cluster Program 5**90

Interrupt 0E4h Logitech Modula-2 v2.0 Monitor Entry 5**91

Interrupt 0E5h Not Used 5**92

Interrupt 0E6h Not Used 5**93

Interrupt 0E7h Not Used 5**94

Interrupt 0E8h Not Used 5**95

Interrupt 0E9h Not Used 5**96

Interrupt 0EAh Not Used 5**97

Interrupt 0EBh Not Used 5**98

Interrupt 0ECh Not Used 5**99

Interrupt 0EDh Not Used 5**100

Interrupt 0EEh Not Used 5**101

Interrupt 0EFh GEM interface (Digital Research) 5**102

Interrupt 0F0h unknown .. 5**103

Interrupts 0F1h-0FFh (absolute addresses 3C4h-3FFh) 5**104

Interrupt 0F4h Not Used 5**105

Interrupt 0F5h Not Used 5**106

Interrupt 0F8h Set Shell Interrupt (OEM) 5**107

Interrupt 0F9h Reserved 5**108

Interrupt 0FAh USART ready (RS-232C) 5**109

Interrupt 0FBh USART RS ready (keyboard) 5**110

Interrupt 0FCh Unknown .. 5**111

Interrupt 0FDh reserved for user interrupt 5**112

Interrupt 0FEh reserved by IBM 5**113

Interrupt 0FFh reserved by IBM 5**114

+---+

¦Interrupt 22h Terminate Address 5**1 ¦

+---+

(0:0088h)

 This interrupt transfers control to the far (dword) address at this

interrupt location when an application program terminates. The default

address for this interrupt is 0:0088h through 0:008Bh. This address is

copied into the program's Program Segment Prefix at bytes 0Ah through

0Dh at the time the segment is created and is restored from the PSP

when the program terminates. The calling program is normally

COMMAND.COM or an application. Do not issue this interrupt directly,

as the EXEC function call does this for you. If an application spawns

a child process, it must set the Terminate Address prior to issuing

the EXEC function call, otherwise when the second program terminated

it would return to the calling program's Terminate Address rather than

its own. This address may be set with int 21, function 25h.

+---+

¦Interrupt 23h Ctrl-Break Exit Address 5**2 ¦

+---+

(0:008Ch)

 If the user enters a Ctrl-Break during STDIN, STDOUT, STDPRN, or

STDAUX, int 23h is executed. If BREAK is on, int 23h is checked on

MOST function calls (notably 06h). If the user written Ctrl-Break

routine saves all registers, it may end with a return-from-interrupt

instruction (IRET) to continue program execution. If the user-written

interrupt program returns with a long return, the carry flag is used

to determine whether the program will be aborted. If the carry flag is

set, the program is aborted, otherwise execution continues (as with a

return by IRET). If the user-written Ctrl-Break interrupt uses

function calls 09h or 0Ah, (Display String or Buffered Keyboard Input)

then a three-byte string of 03h-0Dh-0Ah (ETX/CR/LF) is sent to STDOUT.

If execution is continued with an IRET, I/O continues from the start

of the line. When the interrupt occurs, all registers are set to the

value they had when the original function call to DOS was made.

 There are no restrictions on what the Ctrl-Break handler is allowed

to do, including DOS function calls, as long as the registers are

unchanged if an IRET is used.

 If the program creates a new segment and loads a second program

which itself changes the Ctrl-Break address, the termination of the

second program and return to the first causes the Ctrl-Break address

to be restored from the PSP to the value it had before execution of

the second program.

 DOS can check for a Ctrl-C at a couple of different places. In at

least some cases, the value in the AX register on entry to the int 23h

handler is the same as it was on the original entry to int 21h.

 COMMAND.COM makes use of this fact in its int 23h handler. When

running a batch file, if you press Ctrl-C it prompts you with the

"Terminate batch job (Y/N)?" question. If you press Ctrl-C in

response to that question, the int 23h handler notices that it's being

called recursively (having set an internal flag), and uses the value

of AX to determine how far it had gotten on the previous pass. If you

have not responded to the query yet, it asks it again; otherwise it

just terminates the current program.

 This could cause a problem in a program which was catching int 23h

so that it could release EMS or other resources on exit, then pass it

on to the original handler. When called a second time, it would

correctly notice that it had already cleaned up and wouldn't do it

again, but by the time it got to the original handler, AX would be

trashed. The result would be the standard "Memory allocation

error/Cannot load COMMAND, system halted".

 Apparently, if you want to catch int 23h but also pass it on to the

original handler, you should either save and restore registers, or

restore the original vector on the first trap so you don't get invoked

again.

+---+

¦Interrupt 24h Critical Error Handler 5**3 ¦

+---+

(0:0090h)

 When an unrecoverable I/O error occurs, control is transferred to an

error handler in the resident part of COMMAND.COM with an int 24h.

This may be the standard DOS error handler (Abort, Retry, Ignore,

Fail?) or a user-written routine.

 On entry to the error handler, AH will have its bit 7=0 (high order

bit) if the error was a disk error (probably the most common error),

bit 7=1 if not.

 BP:SI contains the address of a Device Header Control Block from

which additional information can be retrieved (see below). The

register is set up for a retry operation and an error code is in the

lower half of the DI register with the upper half undefined.

 DOS places the following items on the user stack. The stack

contains the following from top to bottom:

 IP ¦ DOS registers from the issuing int 24h

 CS ¦

 flags ¦

 -------+---

 AX ¦ user registers at time of original int 21h request

 BX ¦

 CX ¦

 SI ¦

 DI ¦

 BP ¦

 DS ¦

 ES ¦

 -------+---

 IP ¦ original int 21h from the user to DOS

 CS ¦

 flags ¦

 To reroute the critical error handler to a user-written critical

error handler, the following should be done:

Before an int 24h occurs:

1) The user application initialization code should save the int 24h

 vector and replace the vector with one pointing to the user error

 routine.

When the int 24h occurs:

2) When the user error routine received control it should push the flag

 registers onto the stack and execute a far call to the original int

 24h vector saved in step 1.

3) DOS gives the appropriate prompt, and waits for user input (Abort,

 Retry, Ignore, Fail). After the user input, DOS returns control to

 the user error routine instruction following the far call.

4) The user error routine can now do any tasks necessary. To return

 to the original application at the point the error occurred, the

 error routine needs to execute an IRET instruction. Otherwise, the

 user error routine should remove the IP, CS, and flag registers from

 the stack. Control can then be passed to the desired routine.

 Int 24h provides the following values in registers on entry to the

interrupt handler:

entry AH status byte (bits)

 7 0 disk I/O hard error

 1 other error - if block device, bad FAT

 - if char device, code in DI

 6 unused

 5 0 if IGNORE is not allowed

 1 if IGNORE is allowed

 4 0 if RETRY is not allowed

 1 if RETRY is allowed

 3 0 if FAIL is not allowed

 1 if FAIL is allowed

 2 \ disk area of error 00 = DOS area 01 = FAT

 1 / 10 = root dir 11 = data area

 0 0 if read operation

 1 if write operation

 AL drive number if AH bit 7 = 1, otherwise undefined

 If it is a hard error on disk (AH bit 7=0), register AL

 contains the failing drive number (0=A:, 1=B:, etc.).

 BP:SI address of a Device Header Control Block for which error

 occurred. Block device if high bit of BP:SI+4 = 1

 DI (low byte) error code (note: high byte is undefined)

 error code description

 00h attempt to write on write-protected diskette

 01h unknown unit

 02h drive not ready

 03h unknown command

 04h data error (bad CRC)

 05h bad request structure length

 06h seek error

 07h unknown media type

 08h sector not found

 09h printer out of paper

 0Ah write fault

 0Bh read fault

 0Ch general failure

 0Fh invalid disk change (DOS 3.0+)

 10h FCB unavailable (DOS 3.0+)

 11h sharing buffer overflow (DOS 3.0+)

 note: Only codes 00h through 0Ch are defined in DR-DOS 3.32.

The handler must return this information:

 The registers are set such that if an IRET is executed, DOS responds

according to (AL) as follows:

AL 00h IGNORE the error

 01h RETRY the operation

 02h ABORT via int 22h (jump to terminate address)

 03h FAIL the system call that is in progress (DOS 3.0+)

note 1) Be careful when choosing to ignore a response because this

 causes DOS to think that an operation has completed

 successfully when it may not have.

 2) If the error was a character device, the contents of AL are

 invalid.

 3) Early PS/2 BIOSes did not perform a retry on disk errors until

 a disk had been read at least once after boot-up.

Other Errors

 If AH bit 7=1, the error occurred on a character device, or was the

result of a bad memory image of the FAT. The device header passed in

BP:SI can be examined to determine which case exists. If the

attribute byte high-order bit indicates a block device, then the error

was a bad FAT. Otherwise, the error is on a character device.

 If a character device is involved, the contents of AL are

unpredictable, and the error code is in DI as above.

note 1) Before giving this routine control for disk errors, DOS

 performs several retries. The number of retries varies

 according to the DOS version.

 2) For disk errors, this exit is taken only for errors occurring

 during an int 21h function call. It is not used for errors

 during an int 25h or 26h.

 3) This routine is entered in a disabled state.

 4) All registers must be preserved.

 5) This interrupt handler should refrain from using DOS function

 calls. If necessary, it may use calls 01h through 12h. Use

 of any other call destroys the DOS stack and leaves DOS in an

 unpredictable state.

 6) The interrupt handler must not change the contents of the

 device header.

 7) If the interrupt handler handles errors itself rather than

 returning to DOS, it should restore the application program's

 registers from the stack, remove all but the last three words

 on the stack, then issue an IRET. This will return to the

 program immediately after the int 21h that experienced the

 error. Note that if this is done DOS will be in an unstable

 state until a function call higher than 12h is issued,

 therefore not recommended.

 8) For DOS 3.x+, IGNORE requests (AL=0) are converted to FAIL for

 critical errors that occur on FAT or DIR sectors.

 9) For DOS 3.10 up, IGNORE requests (AL=0) are converted to FAIL

 requests for network critical errors (50-79).

 10) The device header pointed to by BP:SI is as follows:

 dword pointer to next device (0FFFFh if last device)

 word attributes:

 bit 15 1 if character device.

 If bit 15 is 1:

 bit 0 = 1 if current standard input

 bit 1 = 1 if current standard output

 bit 2 = 1 if current NULL device

 bit 3 = 1 if current CLOCK device

 0 if block device.

 bit 14 is the IOCTL bit

 word pointer to device driver strategy entry point

 word pointer to device driver interrupt entry point

 8 bytes character device named field for block devices. The

 first byte is the number of units.

 11) To tell if the error occurred on a block or character device,

 look at bit 15 in the attribute field (WORD at BP:SI+4).

 12) If the name of the character device is desired, look at the

 eight bytes starting at BP:SI+10.

Handling of Invalid Responses (DOS 3.0+)

 A) If IGNORE (AL=0) is specified by the user and IGNORE is not

 allowed (bit 5=0), make the response FAIL (AL=3).

 B) If RETRY (AL=1) is specified by the user and RETRY is not

 allowed (bit 4=0), make the response FAIL (AL=3).

 C) If FAIL (AL=3) is specified by the user and FAIL is not

 allowed (bit 3=0), make the response ABORT. (AL=2)

+---+

¦Interrupt 25h Absolute Disk Read 5**4 ¦

¦Interrupt 26h Absolute Disk Write 5**5 ¦

+---+

(0:0094h, 0:0098h)

 These transfer control directly to the disk device driver. On

return, the original flags are still on the stack (put there by the

INT instruction). This is necessary because return information is

passed back in the current flags. All registers except the segment

registers are destroyed by these calls.

 These interrupts should be avoided for software that is intended to

run on a network, as they may cause troubles in network environments.

 PC-MOS/386 provides these services only for compatibility with

existing DOS-mode apps. 25h/26h are not available for native mode

386-mode DOS apps.

 The number of sectors specified is transferred between the given

drive and the transfer address. Logical sector numbers are obtained

by numbering each sector sequentially starting from track 0, head 0,

sector 1 (logical sector 0) and continuing along the same head, then

to the next head until the last sector on the last head of the track

is counted. Thus, logical sector 1 is track 0, head 0, sector 2;

logical sector 2 is track 0, head 0, sector 3; and so on. Numbering

then continues wih sector 1 on head 0 of the next track. Note that

although the sectors are sequentially numbered (for example, sectors 2

and 3 on track 0 in the example above), they may not be physically

adjacent on disk, due to interleaving. Note that the mapping is

different from that used by DOS 1.10 for double-sided diskettes.

 The request is as follows:

int 25h for Absolute Disk Read, | except Compaq DOS 3.31 or DOS 4.0+

int 26h for Absolute Disk Write | over-32Mb partitions

entry AL drive number (0=A:, 1=B:, etc)

 CX number of sectors to read (int 25h) or write (int 26h)

 DS:BX segment/offset of disk transfer address buffer (DTA)

 DX first relative sector to read - beginning logical sector

 number

return CF set if error

 AL error code issued to int 24h in low half of DI

 AH 01h bad command

 02h bad address mark

 03h write-protected disk

 04h requested sector not found

 08h DMA failure

 10h data error (bad CRC)

 20h controller failed

 40h seek operation failed

 80h attachment failed to respond

note 1) DOS returns with a far ret which leave the original flags on

 the stack. Be sure to pop the stack to prevent uncontrolled

 growth.

 2) MSC 3.0's int86() was a straight interrupt call. MSC 4.0 and

 later make special provision for adjusting the stack on int

 25h and 26h. This probably won't hurt anything but you should

 be aware of it.

 3) Ints 25h and 26h will try rereading a disk if they get an

 error the first time.

 To address partition sizes greater than 32Mb an extended format is

provided in Compaq DOS 3.31, DOS 4.0, and DR-DOS. This format passes

a 32-bit address value by means of a parameter block. The extended

format may be used to address disks smaller than 32Mb as well as

larger.

 The request is as follows:

int 25h for Absolute Disk Read, | Compaq DOS 3.31 or DOS 4.0+

int 26h for Absolute Disk Write | over-32Mb partitions

entry AL drive number (0=A:, 1=B:, etc)

 CX 0FFFFh

 DS:BX address of parameter block. Block format:

 4 bytes sector number

 2 bytes number of sectors to read

 4 bytes FAR pointer to buffer

return CF set if error

 AL error code issued to int 24h in low half of DI

 AH 01h bad command

 02h bad address mark

 03h write-protected disk

 04h requested sector not found

 08h DMA failure

 10h data error (bad CRC)

 20h controller failed

 40h seek operation failed

 80h attachment failed to respond

note 1) DOS returns with a far ret which leave the original flags on

 the stack. Be sure to pop the stack to prevent uncontrolled

 growth.

 2) MSC 3.0's int86() was a straight interrupt call. MSC 4.0 and

 later make special provision for adjusting the stack on int

 25h and 26h. This probably won't hurt anything but you should

 be aware of it.

 3) Ints 25h and 26h will try rereading a disk if they get an

 error the first time.

 4) Partition is potentially >32M (and requires this form of the

 call) if bit 1 of device attribute word in device driver is

 set.

 5) In the IBM OS/2 Tech Ref Volume 1, page 7-33, under "DOS

 Environment Software Interrupt Support", it lists:

 25h direct read supported

 26h direct write an error is returned on requests for

 non-removable media

 Interrupts 25h and 26h can read logical sectors only. They cannot

read hidden sectors.

 Critical errors are not processed by ints 25h and 26h. Should one

happen, the interrupt routine will return an error value to the

program but will not itself call the critical error handler at int

24h.

 The Microsoft DOS 5.0 Technical Reference refers to this call as

"superceded" and directs you to int 21h, fn 440Dh, minor code 61h,

"Read Track on Logical Drive" and minor code 41h, "Write Track on

Logical Drive." See Chapter 4.

+---+

¦Interrupt 27h Terminate And Stay Resident 5**6 ¦

+---+

(0:009Ch) (obsolete)

 This vector is used by programs that are to remain resident when

COMMAND.COM regains control.

 After initializing itself, the program must set DX to its last

address plus one relative to the program's initial DS or ES value (the

offset at which other programs can be loaded), then execute interrupt

27h. DOS then considers the program as an extension of itself, so the

program is not overlaid when other programs are executed. This is

useful for loading programs such as utilities and interrupt handlers

that must remain resident.

entry CS current program segment

 DX last program byte + 1

return none

note 1) This interrupt must not be used by .EXE programs that are

 loaded into the high end of memory.

 2) This interrupt restores the interrupt 22h, 23h, and 24h

 vectors in the same manner as interrupt 20h. Therefore, it

 cannot be used to install permanently resident Ctrl-Break or

 critical error handler routines.

 3) The maximum size of memory that can be made resident by this

 method is 64K.

 4) Memory can be more efficiently used if the block containing a

 copy of the environment is deallocated before terminating.

 This can be done by loading ES with the segment contained in

 2Ch of the PSP, and issuing function call 49h (Free Allocated

 Memory).

 5) DOS function call 4Ch allows a program to pass a completion

 code to DOS, which can be interpreted with processing (see

 function call 31h).

 6) If int 27h is called by a program linked with the /HIGH

 switch, it will occupy the top of memory and prevent

 COMMAND.COM from reloading, which is probably not what you

 want.

 7) Int 21, function 31h is the preferred method to cause a

 program to remain resident because this allows return

 information to be passed and allows a program larger than 64K

 to remain resident.

 8) It is possible to make an EXE program resident with this call

 by putting a 27h in the second byte of the PSP and terminating

 with a RET FAR.

 9) Programs terminating with int 27h do not close files on exit.

 Your program must explicitly close any opened files before

 going resident.

 10) Int 27h does not work correctly when DX contains values from

 0FFF1h to 0FFFFh. In this case, DOS discards the high bit of

 the contents of DX, resulting in 32k less resident memory than

 was requested by the program.

 11) This interrupt will work with PC-MOS/386, but there are a

 number of MOS-specific advantages to using int 21h/31h

 instead. See Chapter 4 for further explanation.

+---+

¦Interrupt 28h (not documented by Microsoft) 5**7 ¦

+---+

 * DOS Idle Interrupt

 Int 28h has been provided by DOS since release 2.0. The int 28h

process is similar to the "Timer Tick" process provided by BIOS via

int 1Ch in that it is an "outbound" (from DOS) call which an

application can "hook onto" to get service at a particular entry

point. DOS normally only issues int 28h when it recieves a function

call (int 21h) from a foreground application with an argument in the

range of 0 thru 12 (0Ch) in the AH register, or when it is idling

waiting for keyboard input. In effect, when DOS issues int 28h, it is

saying to the background task "I'm not doing anything hot right now,

if you can use the time, go ahead." This means that a foreground

application which doesn't do many low-number DOS functions can preempt

CPU time easily.

 When int 28h is being issued it is usually safe to do DOS calls.

You won't get int 28hs if a program is running that doesn't do its

keyboard input through DOS. You should rely on the timer interrupt

for these. It is used primarily by the PRINT.COM routines, but any

number of other routines can be chained to it by saving the original

vector and calling it with a FAR call (or just JMPing to it) at the

end of the new routine.

 Int 28h is not called at all when any non-trivial foreground task is

running. As soon as a foreground program has a file open, int 28h no

longer gets called. Could make a good driver for for a background

program that works as long as there is nothing else going on in the

machine.

 DOS uses 3 separate internal stacks: one for calls 01h through 0Ch;

another for calls 0Dh and above; and a third for calls 01h through 0Ch

when a Critical Error is in progress. When int 28h is called, any

calls above 0Ch can be executed without destroying the internal stack

used by DOS at the time.

 The byte which is pushed on the stack before an int 28h just

indicates which stack area is being used by the current int 21h call.

In DOS 3.1, the code sequence that calls int 28h looks like this:

 PUSH SS:[0304]

 INT 28

 POP SS:[0304]

 The low-order byte of the word pushed contains 1 if the int 21h call

currently in progress is for services 1 through 0Ch, and 0 for service

0 and for 0Dh and up. Assuming that the last DOS call was not a

reentrant one, this tells you which set of DOS services should be safe

to call.

entry no parameters available

return none

note 1) The int 28h handler may invoke any int 21h function except

 functions 00h through 0Ch (and 50h/51h under DOS 2.x unless

 DOS CritErr flag is set).

 2) Apparently int 28h is also called during screen writes.

 3) Until some program installs its own routine, this interrupt

 vector simply points to an IRET opcode.

 4) Supported in OS/2 1.0's DOS Compatibility Box.

 5) It is possible, if you are careful, to enhance the background

 priority by providing more int 28h calls than DOS normally

 would issue.

 6) If the InDOS flag is zero on int 28h, then it was called by

 someone other than DOS, and the word on the stack should NOT

 be examined.

 7) From Quarterdeck Tech Support: "Turbo Pascal 4.0 uses int 28h

 as a convenience for its SideKick product users. Interrupt 28

 is the DOS busy flag which DESQview treats as a pause and

 gives up time... foreground gets little time and background

 gets a lot...reverse of normal."

 8) This interrupt is supported by PC-MOS/386 and MS Windows 3.0+.

+---+

¦Interrupt 29h (not documented by Microsoft) 5**8 ¦

+---+

 * Internal - Quick Screen Output

 This method is extremely fast (much faster than DOS 21h subfunctions

2 and 9, for example), and it is portable, even to "non-compatible"

MS-DOS computers.

entry AL ASCII value for character to output to screen

return unknown

note 1) Documented by Digital Equipment's DOS Reference as provided

 with the DEC Rainbow. Also documented by Digital Research in

 the DR-DOS manual.

 2) If ANSI.SYS is installed, character output is filtered through

 it.

 3) Works on the IBM PC and compatibles, Wang PC, HP-150 and

 Vectra, DEC Rainbow, NEC APC, Texas Instruments PC and others.

 4) This interrupt is called from the DOS's output routines if

 output is going to a device rather than a file, and the device

 driver's attribute word has bit 3 (04h) set to "1".

 5) This call has been tested with MSDOS 2.11, PCDOS 2.1, PCDOS

 3.1, PCDOS 3.2, PCDOS 3.3, PCDOS 4.01, and Compaq DOS 3.31.

 6) Used in IBMBIO.COM as a vector to int 10, function 0Eh (write

 TTY) followed by an IRET.

 7) Most of the fast ANSI device drivers use this interrupt -

 ZANSI.SYS, NANSI.SYS, and PCMag's ANSI.COM, Quarterdeck's

 DVANSI.SYS.

 8) When using int 29h to output characters the ASCII 7 (BELL)

 will suppress character output while the bell is sounding.

 9) When device drivers (or the SYSINIT module which loads the

 drivers) need to do console output, they use int 29h, to call

 the console device driver directly. For example, messages

 telling you about errors in your CONFIG.SYS file are printed

 using this service.

+---+

¦Interrupt 2Ah Microsoft Networks - Session Layer Interrupt .. 5**9 ¦

+---+

 1) This interrupt was not officially documented by Microsoft

 until the release of Windows 3.0, which has setup

 parameters for int 2Ah.

 2) LANtastic NetBIOS interface, original IBM PC LAN

 interface.

 3) NetBIOS alternate interface. The alternate interface

 (2Ah) was originally designed as a "higher" level

 interface to network communications rather than the "low"

 level interface (5Ch) provided by the NETBIOS. The 2Ah

 interface, however, does not support any higher level

 functions than does the 5Ch interface and therefore has

 not become a de facto standard as has the 5Ch interface.

 4) Most DOS 4.0 external programs (SHARE, etc) check this

 interrupt during installation.

entry AH 00h Check for Int 2Ah Network BIOS Installation

 return AH nonzero if installed

 01h Execute NETBIOS Request (no error retry)

 ES:BX pointer to NCB

return AL NETBIOS error code

 AH 00h if no error

 01h if error

 02h Set Net Printer Mode

 03h Get Shared-Device Direct I/O Status

 AL 00h

 DS:SI pointer to ASCIIZ disk device name

 return CF clear if allowed

 set if denied

 note 1) Direct I/O is through ints 13h, 25h, or

 26h.

 2) If the device is redirected (see int

 21h/5F02h) or this call returns with

 carry set, the program should not

 perform direct disk I/O.

 3) The device pointed to by DS:SI must

 include the colon in the drive:pathname.

 4) It may take some time for this call to

 return to the calling program. Do not

 use in time-sensitive applications.

 04h Execute NETBIOS

 AL 00h retry on error

 01h no retry on error

 ES:BX pointer to network control block

 return AX 0000h for no error

 AH 01h if error

 AL error code (unknown)

 note 1) IBM PC LAN says, "for adapter

 independence, use int 2Ah. No not use

 5Ch function provided by the network

 adapter."

 2) Error codes that are automatically

 retried are:

 09h no session resources available

 12h session open rejected

 21h interface busy

 05h Get Network Resource Information

 AL 00h

 return AX reserved

 BX # of network names (16 - names in

 use)

 CX number of available NCB commands

 DX number of sessions (max - pending)

 06h Network Print-Stream Control

 (IBM PC LAN)

 AL 01h Set spooled output to

 concatenation mode

 02h Set spooled output to

 truncation mode

 03h Trunate printer stream

 return CF clear no error

 set AX DOS error code

 (LANtastic)

 AL 01h Set spooled output to combined

 mode

 return none

 02h Set spooled output in separate

 mode

 return none

 note Printer output is not combined

 when multiple programs are run or

 when the printer is opened or

 closed. This cmd. implicitly

 starts a new print job.

 03h Flush printer output

 return none

 note 1) Printer output is flushed and a

 new print job is started. If no

 output exists to be flushed then

 this function has no affect.

 2) 03h is equivalent to

 Ctrl/Alt/keypad-*

 note NETBIOS 1.10

 07h-19h unknown

 20h unknown

 note AL=01h intercepted by DESQview 2.0.

 23h Receive Broadcast Datagram

 IBM PC LAN 1.2. Manual says "use is not allowed".

 80h Begin DOS Critical Section

 AL critical section number (1 to 6)

 note SHARE.EXE uses critical section number 01h.

 81h End DOS Critical Section

 AL critical section number (1 to 6)

 note SHARE.EXE uses critical section number 01h.

 82h Server Hook

 stack AX from call to int 21h

 return stack unchanged

 note Called by the int 21h function dispatcher

 in DOS 3.10+ for function 0 and functions

 greater than 0Ch except 59h.

 84h Keyboard Busy Loop

 note Same functionality as DOS's int 28h?

 87h Used by DOS PRINT to mark Critical Regions:

 AL 00h Begin Critical Region

 01h End Critical Region

 return CF set region already active

 0A3h Receive Broadcast Datagram

 IBM PC LAN 1.2. Manual says "use is not allowed".

+---+

¦Interrupt 2Bh (not documented by Microsoft) 5**10¦

+---+

 * Unknown - Internal Routine for DOS (IRET)

+---+

¦Interrupt 2Ch (not documented by Microsoft) 5**11¦

+---+

 * Unknown - Internal Routine for DOS (IRET)

+---+

¦Interrupt 2Dh (not documented by Microsoft) 5**12¦

+---+

 * Unknown - Internal Routine for DOS (IRET)

+---+

¦Interrupt 2Eh (undocumented by Microsoft) (DOS 2.0+) 5**13¦

+---+

 * Internal Routine for DOS (Alternate EXEC)

 This interrupt passes a command line addressed by DS:SI to

COMMAND.COM. The command line must be formatted just like the

unformatted parameter area of a Program Segment Prefix. That is, the

first byte must be a count of characters, and the second and

subsequent bytes must be a command line with parameters, terminated by

a carriage return character.

 When executed, int 2Eh will reload the transient part of the command

interpreter if it is not currently in memory. If called from a

program that was called from a batch file, it will abort the batch

file. If executed from a program which has been spawned by the EXEC

function, it will abort the whole chain and probably lock up the

computer. Int 2Eh also destroys all registers including the stack

pointer.

 Int 2Eh is called from the transient portion of the program to reset

the DOS PSP pointers using the above Functions #81 & #80, and then

reenters the resident program.

 When called with a valid command line, the command will be carried

out by COMMAND.COM just as though you had typed it in at the DOS

prompt. Note that the count does not include the carriage return.

This is an elegant way to perform a SET from an application program

against the master environment block for example.

entry DS:SI pointer to an ASCIIZ command line in the form:

 count byte

 ASCII string

 carriage return

 null byte

note 1) Destroys all registers including stack pointer.

 2) Seems to work OK in both DOS 2.x and 3.x.

 3) It is reportedly not used by DOS.

 4) As far as known, int 2Eh is not used by DOS 3.1, although it

 was called by COMMAND.COM of PCDOS 3.0, so it appears to be in

 3.1 only for the sake of compatibility.

 5) Not used by the aftermarket 4DOS command interpreter prior to

 version 3.0. 3.0 merely hooks this vector and does nothing

 with it. 3.02 and later provide a TSR to add 2Eh capability.

 6) Trapped by PC-MOS/386 to prevent illegal entry into the

 command processor.

+---+

¦Interrupt 2Fh Multiplex Interrupt 5**14¦

+---+

 Interrupt 2Fh is the multiplex interrupt. A general interface is

defined between two processes. It is up to the specific application

using interrupt 2Fh to define specific functions and parameters.

 This interrupt is becoming more commonly used as the available

interrupt 21 functions are getting to be in short supply. Int 2Fh

doesn't require any support from DOS itself for it to be used in

application programs. It's not handled by DOS, but by the programs

themselves.

 Every multiplex interrupt handler is assigned a specific multiplex

number. The multiplex number is specified in the AH register; the AH

value tells which program your request is directed toward. The

specific function that the handler is to perform is placed in the AL

register. Other parameters are places in the other registers as

needed. The handlers are chained into the 2Fh interrupt vector and

the multiplex number is checked to see if any other application is

using the same multiplex number. There is no predefined method for

assigning a multiplex number to a handler. You must just pick one.

To avoid a conflict if two applications choose the same multiplex

number, the multiplex numbers used by an application should be

patchable. In order to check for a previous installation of the

current application, you can search memory for a unique string

included in your program. If the value you wanted in AH is taken but

you don't find the string, then another application has grabbed that

location.

 Int 2Fh was not documented under DOS 2.x. There is no reason not to

use int 2Fh as the multiplex interrupt in DOS 2.x. The only problem

is that DOS 2.x does not initialize the int 2Fh vector, so when you

try to chain to it like you are supposed to, it will crash. If your

program checks the vector for being zero and initializes it itself or

doesn't chain in that case, it will work for you n 2.x just the same

as 3.x.

 DOS 3.2 itself contains some int 2Fh handlers - it uses values of

08h, 13h, and 0F8h. There may be more. NLSFUNC from DOS 3.3 up uses

part of int 2Fh and so does GRAFTABL.

 For int 2Fh calls, register AH identifies which program is to handle

the interrupt. AH values 00h-7Fh are reserved for DOS, not that

anyone cares much. Values 0C0h-0FFh are reserved for applications.

Register AL contains the subfunction code if used.

 IBM has reported that PC-DOS 4.0 will sometimes hang when

substituting int 2Fh for int 67h for network calls. Most of DOS 4.0's

external commands check the 2Fh PRINT and other statuses while

operating for enhanced network support. DOS 4.0 SHARE.EXE traps the

2Fh interrupt. IBM and Microsoft DOS programming information for

versions prior to 4.0 strongly imply that 2Fh functions not used by

PRINT.COM are open for general use. DOS 4.0 uses quite a few 2Fh

functions and this may be a cause of incompatibility with some

software.

 LANtastic NOS SERVER.EXE v2.49s and earlier will not run under DOS

4.x due to int 2Fh conflicts. This conflict also occurs under DR-DOS

versions 3.40 and 3.41. DR-DOS is internally similar to DOS 4.0.

Function 01h PRINT.COM

 PC-DOS 3.3's PRINT.COM hooks the following interrupt vectors:

 05h PrintScreen Interrupt

 13h BIOS Disk Interrupt

 14h BIOS Serial Communications Interrupt

 15h BIOS "System Services" Interrupt

 17h BIOS Printer Interrupt

 19h Bootstrap Loader Interrupt

 1Ch Timer Tick

 23h Control-C Terminate Address

 24h Critical Error Handler Address

 28h DOS Idle Interrupt (undocumented)

 2Fh Multiplex Interrupt

entry AH 01h

 AL 00h PRINT Get Installed State

 This call must be defined by all int 2Fh

 handlers. It is used by the caller of the

 handler to determine if the handler is present.

 On entry, AL=0. On return, AL contains the

 installed state as follows:

 return AL 0FFh installed

 01h not installed, not OK to install

 00h not installed, OK to install

 01h PRINT Submit File

 DS:DX pointer to submit packet

 format byte level

 dword pointer to ASCIIZ filename

 return CF set if error

 AX error code

 note 1) A submit packet contains the level (BYTE) and a

 pointer to the ASCIIZ string (DWORD in

 offset:segment form). The ASCIIZ string must

 contain the drive, path, and filename of the

 file you want to print. The filename cannot

 contain global filename characters.

 return CF set if error

 AX error code

 02h PRINT Cancel File

 On entry, AL=2 and DS:DX points to the ASCIIZ

 string for the print file you want to cancel.

 Global filename characters are allowed in the

 filename.

 DS:DX pointer to ASCIIZ file name to cancel (wildcards

 OK)

 return CF set if error

 AX error code

 03h PRINT Remove All Files

 return CF set if error

 AX error code

 04h PRINT Hold Queue/Get Status

 This call holds the jobs in the print queue so

 that you can scan the queue. Issuing any other

 code releases the jobs. On entry, AL=4. On

 return, DX contains the error count. DS:SI

 points to the print queue. The print queue

 consists of a series of filename entries. Each

 entry is 64 bytes long. The first entry in the

 queue is the file currently being printed. The

 end of the queue is marked by the entry having a

 null as the first character.

 return DX error count

 DS:SI pointer to print queue (null-string

 terminated list of 64-byte ASCIIZ

 filenames)

 CF set if error

 AX error code

 01h function invalid

 02h file not found

 03h path not found

 04h too many open files

 05h access denied

 08h queue full

 09h spooler busy

 0Ch name too long

 0Fh drive invalid

 05h PRINT release print jobs

 return none

 note 1) This call has no parameters.

 2) Restarts the print queue. This call must be

 called to restart the current print job or after

 calling function 04h to pause the print job.

 06h PRINT get printer device (DOS 3.3+)

 return CF clear OK

 AX 0000h

 CF set

 AX 0008h (ERROR_QUEUE_FULL)

 DS:SI pointer to printer device header

 struc.

 note 1) This call has no parameters.

 2)

Function 02h PC LAN Program

entry AH 02h

other parameters unknown

Function 05h DOS 3.0+ Critical Error Handler

entry AH 05h

 AL 00h Installation Check

 return AL 00h not installed, OK to install

 01h not installed, not OK to install

 0FFh installed

 note This set of functions allows a user program to

 partially or completely override the default

 critical error handler in COMMAND.COM.

 AL xxh Handle Error - nonzero error code in AL

 (xxh indicates nonzero extended error code)

 return CF clear

 ES:DI pointer to ASCIIZ error message

 AL (?)

 CF set use default error handler

for LANtastic LANOS:

entry AH 05h

 AL 00h for installation check

 # for error code (in pre DOS 4.00)

 1 or 2 for error code in DOS 4.00

 BX in Error code

return CF clear if error code converted to text

 set if error code can't be converted

 ES:DI pointer to ASCIIZ text buffer containing error text.

 This is a read-only text buffer and you must not alter

 the text in this buffer.

Function 06h ASSIGN

entry AH 06h

 AL 00h Installation Check

 01h Get Memory Segment

return (AH=00h) AL (to 4.01) nonzero if ASSIGN is installed

 (5.0) 0FFh if ASSIGN is installed

 (AH=01h) ES segment of ASSIGN work area

note 1) Many references report the return value in AH, but this call

 appears to return its information in AL.

 2) Microsoft Press' "Advanced MSDOS Programming" (Second Edition)

 documents int 2Fh, AX=2000 to check for ASSIGN, but according

 to Ray Duncan (the author) this is a typo.

Function 08h DRIVER.SYS

entry AH 08h

 AL 00h Installation Check

 return AL 00h not installed, OK to install

 01h not installed, not OK to install

 0FFh installed

 01h Add New Block Device

 DS:DI pointer to device driver header

 note Moves down list of drivers, copying and

 modifying word at offset 29h. Device driver

 appended to driver chain.

 02h Execute Device Driver Request

 ES:BX pointer to device driver request header

 return Request header updated as per requested

 operation.

Function 10h SHARE (DOS 3.0+)

entry AH 10h

 AL 00h Installation Check

return AL 00h not installed, OK to install

 01h not installed, not OK to install

 0FFh installed

note 1) Values of AL other than 00h appear to put DOS 3.3 SHARE into

 an infinite loop.

 2) PC-MOS/386 will always report SHARE.EXE as being present, as

 its functions are duplicated within the PC-MOS/386 kernel.

 3) If DOS 4.0's SHARE is loaded manually, either in the CONFIG or

 AUTOEXEC file, it can't access the NUL device if 4DOS 3.x is

 installed. If SHARE.EXE is in the root, the problem doesn't

 usually occur. It's been reported that 4DOS is not the only

 program that has problems with SHARE.EXE and the NUL device,

 so it's more likely to be an MS-DOS problem than a 4DOS

 problem. (dgh on BIX)

 4) MS Windows intercepts this call and always returns nonzero

 regardless of SHARE's presence. If your program uses file

 sharing you should try locking and reading a file and watch

 for the error codes returned by int 21h/5Ch. (Lock/Unlock

 File)

 5) SHARE function is built into DR-DOS 3.4x, but was removed to a

 separate TSR module in 5.0 and 6.0.

Function 11h Multiplex - Network Redirection

note In DOS 4.0+, the 11xx calls are all in IFSFUNC.EXE, not in the

 PC LAN Program redirector.

entry AH 11h

 AL 00h Installation Check

 return AL 00h not installed, OK to

 install

 01h not installed, not OK to

 install

 0FFh installed

 06h Close Remote File

 08h Read From Remote File

 09h Write to Remote File

 0Ah Lock Region of File

 BX file handle

 CX:DX starting offset

 SI high word of size

 stack word low word of size

 return CF set on error

 AL DOS error code

 stack unchanged

 0Bh Unlock a File Region

 BX file handle

 CX:DX starting offset

 SI high word of size

 stack word low word of size

 return CF set on error

 AL DOS error code

 stack unchanged

 0Ch Get Disk Space

 return AL sectors per cluster

 BX total clusters

 CX bytes per sector

 DX number of available clusters

 0Dh unknown

 0Eh Set Remote File's Attributes

 0Fh Get Remote File's Attributes

 10h unknown

 11h Rename Remote File

 12h unknown

 13h Delete Remote File?

 14h unknown

 15h unknown

 16h Open Existing Remote File?

 17h unknown

 18h unknown

 19h CHDIR?

 1Ah unknown

 1Bh Find First?

 1Ch Find Next?

 1Dh Close All Remote Files for Process?

 1Eh Do Redirection

 stack word function to execute

 5F02h get redirection list entry

 BX redirection list index

 DS:SI pointer to 16-byte local

 device name buffer

 ES:DI pointer to 128-byte

 network name buffer

 5F03h redirect device

 BL device type (see

 21h/5F03h)

 CX stored parameter value

 DS:SI pointer to ASCIIZ source

 device name

 ES:DI pointer to destination

 ASCIIZ network path +

 ASCIIZ password

 5F04h cancel redirection

 DS:SI pointer to ASCIIZ device

 name or network path

 return CF set on error

 1Fh Printer Setup

 stack word function

 5E02h set printer setup

 5E03h get printer setup

 return CF set on error

 20h Reset Disks and Flush Buffers?

 21h Seek on Remote File?

 return CF set on error

 clear if successful

 DX:AX new file position?

 22h Process Termination Hook?

 23h-26h unknown

Function 12h Multiplex, DOS 3.0+ Internal Services

Function 13h DOS 3.3+(?) Monitor Int 19h

entry AH 13h

 DS:DX pointer to the int13h vector to be restored when doing

 an int19h call

 ES:BX pointer to the int13h vector to be used when DOS

 passes the int13h call along

return DS:DX the original int13h vector used by int19h

 ES:BX the original int13h vector to which DOS passed the

 calls along

note Usually, the original vectors will be the same thing, either

 F000:EC59 for floppy disk systems, or maybe F000:A343 for hard

 disk systems, but these guys could vary, especially if you're

 using a non-standard controller.

Function 14h NLSFUNC.COM

entry AH 14h

 AL 00h installation check

 return AL 00h not installed, OK to install

 01h not installed, not OK to install

 0FFh installed

 01h unknown

 note Calls int 2Fh/1227h under certain circumstances.

 02h unknown

 note Calls int 2Fh/1227h under certain circumstances.

 03h unknown

 note In DOS 3.3, appears to be identical to

 subfunction 01h.

other parameters unknown

Function 15h CD-ROM extensions

 Microsoft CD-ROM driver versions 1.0 through 2.0 will

 work only up to DOS 3.31. DOS 4.0 and up require 2.1

 drivers. MSCDEX abandons INT 13; and redirection

 within DOS to do its work. Some LAN software, such as

 LANtastic, uses the same mechanism to implement

 network drives. MSCDEX provides IFS functionality in

 any version of DOS back to 3.0.

entry AH 15h CD-ROM services

 AL subfunctions

 00h Get Number of CD-ROM Drives (Installation Check)

 BX 00h

 return BX number of CD-ROM drive letters used

 0000h MSCDEX not installed

 CX starting drive letter (0=A:, 1=B:, etc)

 note This installation check does not follow the

 format used by other software.

 01h Get Drive Device List

 ES:BX pointer to buffer to hold drive letter list

 (5 bytes per drive letter)

 return buffer filled, for each drive letter:

 byte subunit number in driver

 dword address of device driver header

 02h Get Copyright File Name

 CX drive number (0=A:)

 ES:BX pointer to 38-byte buffer for name of copyright

 file

 return CF set if drive is not a CD-ROM drive

 AX error code (15h)

 03h Get Abstract File Name

 ES:BX pointer to 38-byte buffer for name of abstract

 file

 CX drive number (0=A:)

 return CF set if drive is not a CD-ROM drive

 AX error code (15h)

 04h Get Bibliographic Doc File Name

 CX drive number (0=A:)

 ES:BX pointer to 38-byte buffer for name of

 bibliographic documentation file

 return CF set if drive is not a CD-ROM drive

 AX error code (15h)

 05h Read VTOC (Volume Table of Contents)

 CX drive number (0=A:)

 DX sector index (0=first volume descriptor,

 1=second,...)

 ES:BX pointer to 2048-byte buffer

 return CF set on error

 AX error code (15h, 21h)

 CF clear if successful

 AX volume descriptor type

 00h other

 01h standard

 0FFh terminator

 06h Turn Debugging On

 BX debugging function to enable

 note Reserved for development.

 07h Turn Debugging Off

 BX debugging function to disable

 note Reserved for development.

 08h Absolute Disk Read

 CX drive number (0=A:)

 DX number of sectors to read

 ES:BX pointer to buffer

 SI:DI starting sector number

 return CF set on error

 AL error code (15h, 21h)

 09h Absolute Disk Write

 CX drive number (0=A:)

 DX number of sectors to write

 ES:BX pointer to buffer

 SI:DI starting sector number

 note Corresponds to int 26h and is currently reserved

 and nonfunctional.

 0Ah Reserved by Microsoft

 0Bh CD-ROM 2.00 - Drive Check

 CX drive number (0=A:)

 return BX 0ADADh if MSCDEX.EXE installed

 AX 0000h if drive not supported

 <>0 if supported

 0Ch CD-ROM 2.00 - Get MSCDEX.EXE Version

 return BH major version

 BL minor version

 note MSCDEX.EXE versions prior to 1.02 return BX=0.

 0Dh CD-ROM 2.00 - Get CD-ROM Drive Letters

 ES:BX pointer to buffer for drive letter list

 (1 byte per drive)

 return Buffer filled with drive numbers (0=A:). Each

 byte corresponds to the drive in the same

 position for function 1501h.

 0Eh CDROM 2.00 - Get/Set Volume Descriptor

 Preference

 BX subfunction

 00h Get Preference

 DX 0000h

 return DX preference settings

 01h Set Preference

 DH volume descriptor preference

 01h primary volume descriptor

 02h supplementary volume descriptor

 DL Supplementary Volume Descriptor

 Preference

 01h shift-Kanji

 CX drive number (0=A:)

 return CF set on error

 AX error code (01h, 15h)

 0Fh CD-ROM 2.00 - Get Directory Entry

 CX drive number (0=A:)

 ES:BX pointer to ASCIIZ pathname

 SI:DI pointer to 255-byte buffer for directory entry

 return CF set on error

 AX error code

 CF clear if succesful

 AX disk format (0=High Sierra,

 1=ISO 9660)

 note Directory entry format:

 byte length of directory entry

 byte length of XAR in LBN's

 dword LBN of data, Intel (little-Endian) format

 dword LBN of data, Motorola (big-Endian) format

 dword length of file, Intel format

 dword length of file, Motorola format

 ---High Sierra---

 6 bytes date and time

 byte bit flags

 byte reserved

 ---ISO 9660---

 7 bytes data and time

 byte bit flags

 ---both formats---

 byte interleave size

 byte interleave skip factor

 word volume set sequence number, Intel format

 word volume set sequence number, Motorola

 format

 byte length of file name

 n bytes file name

 byte (optional) padding if filename is odd

 length

 n bytes system data

 Error codes:

 01h invalid function

 15h invalid drive

 21h not ready

Function 16h MS-DOS Idle Call (DOS 5.0+, OS/2 2.0, Windows 3.0+)

entry AH 16h idle call

 AL 80h

return AL 00h idle call is supported

 nonzero idle call is not supported

note 1) When your program is waiting for user input or otherwise not

 doing useful work, you can call this function in a loop.

 Properly written background programs can monitor this call to

 determine if it is safe to do processing. This call

 originated in Windows 3.0, then the OS/2 2.0 DOS box, and

 finally in DOS 5, where DOSSHELL uses it so processes can tell

 the shell when it is safe to swap tasks. It's also used by

 the Microsoft Laptop Power Management API.

 2) The MS 5.0 Technical Reference recommends making sure the int

 2Fh vector is nonzero before calling this function. This

 would be to ensure you are running a DOS version that has 2Fh

 support.

 3) This call is nonblocking, that is, the system does not suspend

 the program unless another program is ready to run. Usually

 the call returns immediately and the program continues

 running.

 4) Windows apps should NOT issue this interrupt.

Function 17h MS Windows Clipboard API (3.0+)

no registers known

note This is the interface to the Clipboard. You can open the

 Clipboard, determine the size of the data in the Clipboard,

 read the Clipboard, write the Clipboard, clear the Clipboard,

 and close the Clipboard.

Function 19h SHELLB.COM (DOS 4.0+)

entry AH 00h SHELLB.COM - Installation Check

 return AL 00h not installed

 0FFh installed

 01h SHELLC.EXE Interface

 BL 00h if SHELLC transient

 01h if SHELLC resident

 DS:DX pointer to far call entry point for

 resident SHELLC.EXE

 return ES:DI ptr to SHELLC.EXE workspace within

 SHELLB.COM

 note SHELLB.COM and SHELLC.EXE are parts of the DOS

 4.x shell

 02h SHELLB.COM - COMMAND.COM Interface

 ES:DI pointer to ASCIIZ full filename of

 current batch file, with at least the

 final filename element uppercased

 DS:DX pointer to buffer for results

 return AL 00h failed, either

 (a) final filename element

 quoted at ES:DI does not

 match identity of shell

 batch file quoted as parm of

 most recent call of SHELLB

 command,

 or

 (b) no more Program Start

 Commands

 available.

 0FFh success, then:

 memory at DS:[DX+1] onwards

 filled as:

 DX+1: byte count of bytes of

 PSC

 DX+2: n bytes Program Start

 Command text

 byte 0Dh terminator

 note COMMAND.COM executes the result of this call

 in preference to reading a command from a

 batch file. Thus the batch file does not

 advance in execution for so long as SHELLB

 provides PSCs from its workspace. The PSCs are

 planted in SHELLB workspace by SHELLC, the

 user menu interface. The final PSC of a

 sequence is finished with a GOTO COMMON, which

 causes a loop back in the batch file which

 called SHELLC so as to execute SHELLC again.

 The check on batch file name permits PSCs to

 CALL nested batch files while PSCs are still

 stacked up for subsequent execution.

 03h SHELLB.COM - COMMAND.COM Interface

 ES:DI pointer to ASCIIZ batch file name as

 for fn 02h

 return AL 00h quoted batch files does not

 match last SHELLB parameter

 0FFh quoted batch file name matches

 last SHELLB parameter

 04h SHELLB.COM - SHELLB.COM transient to TSR

 interface

 return ES:DI pointer to name of current shell batch

 file:

 word number of bytes of name

 following

 bytes (8 max) uppercase name of

 shell batch file

Function 1Ah ANSI.SYS (DOS 4.0+)

entry AH 00h Installation Check

 return AL 00h not installed

 0FFh if installed

 01h Get/Set Display Information

 CL 5Fh set information

 7Fh get information

 DS:DX pointer to parameter block as

 for int 21h, AX=440Ch, CX=037Fh/

 035Fh respectively

 return CF set on error

 AX error code (unknown)

 clear if successful

 note 1) AX is destroyed.

 2) May be the DOS IOCTL interface to ANSI.SYS.

Function 1Bh XMA2EMS.SYS (DOS 4.0+)

entry AH 00h Installation Check

 return AL 0FFh if installed

 01h Get Hidden Frame Information

 DI hidden physical page number

 return AX 0000h if successful

 ES segment of page frame

 DI physical page number

 0FFFFh if failed (no such hidden page)

note 1) XMA2EMS.SYS extension is only installed if DOS has page frames

 to hide. This extension hooks onto int 67h fn 58h and returns

 from that call data which excludes the physical pages being

 used by DOS.

 2) Function 02h corresponds to the data edited out of the int

 67h/fn 58h call.

Function 43h Microsoft Extended Memory Specification (XMS)

 The XMS version 2.00 for MS-DOS allows DOS programs

 to utilize additional memory found in 80286 and 80386

 machines. With some restrictions, XMS adds about 64K

 to the 640K which DOS programs can access directly.

 XMS also provides DOS programs with a standard method

 for storing data in extended memory.

 See Chapter 10 for API.

Function 48h DOSKEY.COM (DOS 5.0+)

entry AH 48h DOSKEY.COM

 AL 00h Get Installed State

return AL 00h not installed

 0FFh installed

 AL 10h Read Command Line

 DS:DX pointer to buffer to take the command line

 buffer:

 offset description

 00h buffer size (max 128 bytes)

 01h the number of characters, minus 1. The

 final CR is copied to the buffer but

 not included in the byte count.

 02h the first byte of the input line.

return AX 0000h

 DS:DX filled with command line

note AX=0 if the user types a macro name, and the buffer is not

 filled. Your program must call the function a second time to

 expand the macro and copy the macro text to the buffer.

Function 4Ah DOS 5.0 HMA Services (undocumented)

entry AH 4Ah

 AL 01h Get Size

return BX number of bytes (possibly 0) of available HMA

 ES:DI start of the available HMA

Function 4Bh Microsoft Task Switcher API (DOS 5.0+)

entry AH 4Bh

entry AL 01h Build_Callout_Chain

 ES:BX 0:0

 CX:DX switcher call-in address

return ES:BX address of the app's Switch_Call_Back_Info data

 structure

note All other registers must be preserved.

entry AL 02h Detect Switcher

entry AL 03h Allocate Switcher ID

entry AL 04h Free Switcher ID

entry AL 05h Identify Instance Data

Function 64h SCRNSAV2

entry AH 64h

 AL 00h installation check

return AL 00h not installed

 0FFh installed

note SCRNSAV2.COM is a screen blanker for PS/2s with VGA by Alan

 Ballard.

Function 7Ah Novell NetWare

entry AH 7Ah

 AL 00h installation check

return AL 00h not installed

 0FFh installed

 ES:DI pointer to FAR entry point for routines otherwise

 accessed through int 21h

note 1) Returns address of entry point for IPX and SPX.

 2) Parameters are listed in Chapter 13.

Function 87h APPEND

entry AH 87h

 AL 00h APPEND installation check

 return AH <> 0 if installed

 01h APPEND - unknown

 02h APPEND - version check

return unknown

Function 88h Microsoft Networks

entry AH 88h

 AL 00h network program installation check

 return AH <> 0 if installed

 BX installed component flags

 (test in this order!)

 bits 2 messenger

 3 redirector

 6 server

 7 receiver

 other bits not used, do not test

 01h unknown

 02h unknown

 03h get current POST address

 return ES:BX POST address

 04h set new POST address

 ES:BX new POST address

 09h network version check

Function 89h WHOA! (slows system down for games)

entry AH 89h

 AL 00h installation check

 return AL 00h not installed

 0FFh installed

 01h uninstall

 return AL 0FDh successful

 0FEh error

 02h set delay count

 BX = delay count (larger values slow system down more)

 return AL 0FDh successful

 0FEh error

note WHOA!.COM is copyright COMPUTE! Publications and Brad Crandall.

Function 0AAh VIDCLOCK.COM

entry AH 0AAh

 AL 00h installation check

return AL 00h not installed

 0FFh installed

note VIDCLOCK.COM is a memory-resident clock by Thomas G. Hanlin III.

Function 0ADh KEYB.COM (DOS 3.3+)

entry AH 0ADh

 AL 80h Get KEYB.COM Version Number

return

 BX 00h not installed

 nonzero installed

 BH major version number

 BL minor version number

 AL 81h Set KEYB.COM Active Code Page

 BX code page ID

 437 USA

 850 Multilingual (Latin I)

 852 Multilingual (Latin II)

 860 Portuguese

 863 French-Canadian

 865 Nordic

return CF clear successful

 set

 AX 0001h if code page is not valid

 AL 82h Set KEYB.COM Country Flag

 BL 00h domestic (USA) keyboard

 0FFh not USA keyboard

return CF clear successful

 set invalid value was passed in BL

 AL 83h Get KEYB.COM Country Flag

return BL current country flag value (should be 00h or 0FFh)

note Some of these functions are available in DOS 3.3 and 4.0, but

 were not documented. These descriptions are for DOS 5.0.

Function 0AEh DOS Installable Command (DOS 3.3+)

entry AH 0AEh

 AL 00h installation check

 DX 0FFFFh

 DS:BX pointer to command line

 return AL 00h execute command normally

 0FFh command is TSR extension to

 COMMAND.COM

 01h execute installed command

 DX 0FFFFh

 DS:SI pointer to ?

 return DS:SI unknown

note 1) This apparently provides a mechanism for TSRs to install

 permanent extensions to COMMAND.COM. It seems that

 COMMAND.COM makes this call before executing the current

 command line, and does not execute the command itself if the

 return is 0FFh.

 2) Fn 01h apparently requests execution of a previous command

 which a call to fn 01h indicated was resident.

 3) Format of command line:

 offset size description

 00h byte max length of command line?

 01h byte count of bytes to follow

 03h n bytes command line text, terminated by 0Dh

Function 0B0h GRAFTABL.COM (DOS 3.3+)

entry AH 0B0h

 AL 00h installation check

 return AL 00h not installed, OK to install

 0FFh installed

note 1) Also used by DISPLAY.SYS.

Function 0B7h APPEND.EXE (DOS 3.3+)

entry AH 0B7h

 AL 00h installation check

 return AH 00h not installed

 nonzero installed (3.3-4.0)

 0FFh installed (5.0)

 01h unknown

 02h version check

 return AH minor version number, otherwise

 AL major version number

 note The MS 5.0 TR reports AX should be 0FFFFh for

 versions compatible with DOS 5.0. However,

 DOS 4.0 returns the same value.

 03h unknown

 04h get APPEND directory list address (DOS 4.0+)

 return ES:DI pointer to active APPEND path (128

 bytes max) in ASCIIZ format

 05h unknown

 06h get APPEND modes flag (DOS 4.0+)

 return BX APPEND state

 bits 0 set if APPEND enabled

 1-B reserved, must be zero

 C appends dirs to file requests

 that already specify a drive

 D applies dirs to file requests

 that already specify a PATH.

 Set if /PATH flag active

 E stores the appended dirs in the

 APPEND environment variable.

 Set if /E flag active

 F applies dirs to functions like

 EXEC (21h/4B00h) or FIND FIRST

 (21h/4Eh). Set if /X flag

 active.

 note Returns the current operation modes for APPEND.

 07h set APPEND modes flag (DOS 4.0+)

 BX APPEND state bits (see 06h)

 return none

 08h unknown

 09h unknown

 0Ah unknown

 10h unknown

 11h set TRUENAME flag (DOS 4.0+)

 note 1) This call has no parameters.

 2) If the next int 21h call is function 3Dh, 43h,

 4Eh or 6Ch, the fully qualified filename is

 written over top of the filename passed to the

 int 21h call. The application must provide a

 sufficiently large buffer. This state is reset

 after APPEND processes the call.

note 1) (4.0+) The full path name can be retrieved by doing a int 2Fh

 fn 0B711h before an open (int 21h 3Dh or 6Ch). The full path

 is put in your ASCIIZ string when you do the open, so be sure

 it is long enough.

 2) The APPEND command apparently covers parts of int 21h/6Ch even

 though Microsoft's 4.01 User's Reference says it covers only

 0Fh, 23h, 2Dh, 11h, 4Eh & 4Bh, some of those do require

 special switches. For 6Ch, it may be a function of the DX

 register. If DX=xx1x it looks only in the current directory,

 if DX=xx0x it will search the full append path. DX is called

 the open flag and gives what action to take if the file exits

 or does not exist.

Function 0BFh PC-LAN Network

entry AH 0BFh

 AL 00h installation check (REDIREFS.EXE)

 return AL 0FFh if installed

 AL 80h set REDIRIFS entry point (REDIR.SYS)

 ES:DI pointer to FAR entry point to IFS handler in

 REDIRIFS

 return AL 0FFh if installed

 ES:DI pointer to internal workspace

note All future IFS calls to REDIR.SYS are passed to the ES:DI entry

 point.

Function 0C7h Artisoft LANtastic AI-LANBIOS

note This is the default entry point for the LANtastic NOS serial

 and parallel port drivers.

Function 0D44Dh 4DOS v3.01,+ Command Interpreter (COMMAND.COM replacement)

entry AX 0D44Dh 4DOS installation check

return If 4DOS is present in memory the following values will be

 returned:

 AX 44DDh

 BH minor 4DOS version number

 BL major 4DOS version number (same format as DOS int

 21h/fn 30h)

 CX 4DOS PSP segment address

 DL 4DOS shell number (0 for the first shell, 1 for the

 second, etc.; incremented each time a new copy of 4DOS

 is loaded over a root copy, either in a different

 multitasker window or via nested shells)

note 1) (excerpted from 4DOS 3.01 manual) 4DOS now generates two

 different INT 2F calls to allow TSRs to tell when 4DOS is back

 at the prompt. These calls have AX = D44Eh. The first occurs

 immediately before displaying the prompt, with BX = 0; the

 second occurs after displaying the prompt and immediately

 before accepting keyboard input, with BX = 1. Any routine

 intercepting these calls should preserve at least the SI, DI,

 BP, SP, DS, ES, and SS registers.

 2) This function (440Dh) is only available in swapping mode. It

 tells you if 4DOS is loaded in memory, but not whether it is

 the parent process of your program. You can determine if 4DOS

 is the parent process by comparing the PSP value returned in

 CX to the PSP chain pointer at offset 16h in your program's

 PSP.

Function 0E3h AnarKey (keyboard command stack and alias program)

entry AH 0E3h

 AL 00h installation check

 return AL 00h not installed

 0FFh installed

note (excerpted from the AnarKey documentation)

 Upon installation, ANARKEY hooks into two interrupts:

 1) Interrupt used to install program signature

 -DOS versions before 3.1 use one interrupt between 60h-67h

 -DOS 3.1 and later use interrupt 2Fh

 2) Interrupt 21h, function 0Ah

 Upon initial program execution, a program "signature" is

 installed which is used by ANARKEY to prevent itself from

 being installed more than once. Depending upon the DOS

 version, a different method of signature installation is

 performed.

 Under DOS 2.x thru 3.0, ANARKEY scans interrupt vectors 60h

 thru 67h searching for an unused vector (signified by a null

 value). If an unused vector is found, ANARKEY takes it and

 installs its program signature there. If all the vectors are

 in use, ANARKEY does not install a program signature.

 Running DOS 3.1 and later, ANARKEY chains into interrupt 2Fh.

 By default, ANARKEY appropriates process number 0E3h.

Function 0F7h AUTOPARK.COM (PD TSR hard disk parking utility)

entry AH 0F7h

 AL 00h installation check

 return AL 00h not installed

 0FFh installed

 01h set parking delay

 BX:CX 32 bit count of 55ms timer ticks

note AUTOPARK is a TSR HD parker by Alan D. Jones.

Function Intel Communicating Applications Standard (CAS 1.01A)

entry AH (default; CAS multiplex number can be user-adjusted)

 AL 00h Get Installed State

 return AL 00h not installed

 01h not installed, not

 OK to install

 0FFh installed

 note No errors are returned.

 01h Submit a Task

 DS:DX ptr to ASCIIZ path and name of Task

 Control File

 return AX positive event handle or neg.

 error code

 note Files associated with a task must stay

 in existence until the task is complete

 or an error will result.

 02h Abort the Current Event

 return AX event handle of aborted event or

 negative error code

 note Terminating an event is not

 instantaneous. It might take up to 30

 seconds.

 03h reserved

 04h reserved

 05h Find First Entry in Queue

 CX Status of the event you are seeking.

 This value is compared with the field

 at offset 2 of the Control File

 0 - event has successfully completed

 1 - event is waiting to be processed

 2 - number has been dialed

 3 - connection has been made (sending)

 4 - connection has been made (receiving)

 5 - event was aborted

 -1 - chooses an event without regard to

 status This value will probably be

 used most often

 Other negative values match error codes

 in Control File.

 DH direction:

 0 - Search forward chronologically

 (from the first to the last

 occurring event)

 1 - Search backward chronologically

 (from the last to the first

 occurring event)

 DL queue to search:

 0 - Find first control file in Task

 Queue

 1 - Find first control file in Receive

 Queue

 2 - Find first control file in Log

 Queue

 return AX 0 if successful, or negative

 error code

 BX event handle for this file

 06h Find Next Entry in Queue

 DL queue to search:

 0 - Find next control file in Task

 Queue

 1 - Find next control file in Receive

 Queue

 2 - Find next control file in Log Queue

 return AX 0 if successful, or negative

 error code

 BX event handle for this file

 07h Open a File

 BX event handle

 CX receive file number

 0 - the Receive Control File

 1 - first received file

 2 - second received file

 3 - third received file

 n - nth received file

 DL queue:

 0 - open control file in Task Queue

 1 - open control file in Receive Queue

 or the received data

 file specified in the CX register.

 2 - Open control file in Log Queue.

 return AX 0 if successful, or negative

 error code

 BX DOS file handle for the requested

 file

 08h Delete a File

 BX event handle

 CX receive file number

 0 - delete all files associated with a

 specific Receive Control File

 (including the RCF)

 1 - delete first received file

 associated with the event handle

 2 - delete the second received file

 associated with the event handle.

 n - delete the nth received file

 associated with the event handle

 DL queue:

 0 - delete control file in Task Queue

 1 - delete a file or files associated

 with an event in the Receive Queue.

 2 - delete control file in Log Queue

 note It is strongly recommended

 that this function NOT be used to

 delete individual Log Control Files

 to maintain the integrity of the

 log.

 return AX 0 if successful, or negative

 error code

 09h Delete All Files (in a queue)

 DL queue:

 0 - delete all control files in the

 Task Queue

 1 - delete all control files in the

 Receive Queue and all received

 files

 2 - delete all control files in the Log

 Queue

 return AX 0 if successful or negative

 error code

 0Ah Get Event Date

 BX event handle of event whose date you

 want to get

 DL queue:

 0 - task queue

 1 - receive queue

 2 - log queue

 return AX 0 if successful or negative

 error code

 CX year (1980-2099)

 DH month (1-12)

 DL day (1-31)

 0Bh Set Task Date

 BX event handle

 CX year (1980-2099)

 DH month (1-12)

 DL day (1-31)

 return AX 0 if successful or negative

 error code

 0CH Get Event Time

 BX event handle

 DL queue:

 0 - task queue

 1 - receive queue

 2 - log queue

 return AX 0 if successful or negative

 error code

 CH hour (0-23)

 CL minutes (0-59)

 DH seconds (0-59)

 DL 0

 0DH Set Task Time

 BX event handle

 CH hour (0-23)

 CL minutes (0-59)

 DH seconds (0-59)

 DL unused

 return AX 0 if successful or negative

 error code

 0EH Get External Data Block

 DS:DX points to a 256-byte EDB area

 return AX 0 if successful or negative

 error code

 note EDB area is filled with the External

 Data Block

 block format: (values in decimal)

 Offset Length Description

 0 1 CAS major version number

 1 1 CAS minor version number

 2 68 ASCIIZ path to directory

 containing Resident Manager

 and CAS software. The path

 must end with a backslash

 70 13 ASCIIZ name of current

 phonebook (the CAS

 subdirectory is assumed)

 83 13 AZCIIZ name of current logo

 file (the CAS subdirectory is

 assumed)

 96 32 ASCIIZ default sender name

 128 21 ASCIIZ CSID (CCITT fax device

 ID)

 149 107 Reserved

 0Fh Get/Set Autoreceive State

 DL function code:

 0 - get current autoreceive state

 1 - set current state to value in DH

 DH # rings before answer or 0 to

 disable

 return AX current state or negative error

 code

 0 - Autoreceive disabled

 positive # - # rings before hdw

 answers

 10h Get Current Event Status

 DS:DX pointer to a 444 byte status area

 return AX 0 if successful or negative

 error code

 BX number of the current event (AX=0)

 11h Get Queue Status

 DL queue:

 0 - find status of Task Queue

 1 - find status of Receive Queue

 2 - find status of Log Queue

 return AX # changes to queue since

 Resident Manager started or

 negative error code If changes

 exceeds 7FFFH, the count begins

 again at 0.

 BX current # of Control Files in

 queue

 CX current # of received files

 12h Get Hardware Status

 DS:DX pointer to a 128-byte status area

 return AX 0 if successful, negative if not

 DS:DX pointer to filled 128-byte status area

 13h Run Diagnostics

 DL Mode

 0 - report progress of diagnostics

 1 - start running diagnostics

 return if DL=1, AX=0 or a negative error code.

 if DL=0, AX=40h or positive number

 indicating diagnostics passed. A

 negative value indicates failure and

 contains the error code

 14h Move Received File

 BX event handle

 CX receive file number

 (must be nonzero to specify a received

 file)

 1 - first received file

 2 - second received file

 3 - third received file

 n - nth received file

 DS:DX pointer to new ASCIIZ pathname and

 filename. This file must not exist

 already

 return AX 0 if successful or negative

 error code

 note The path to the new directory must

 exist. This function cannot create

 directories.

 15h Submit a Single File to Send

 DS:DX pointer to variable-length data area

 return AX positive event handle or

 negative error code

 note 1) variable-length data area format:

 Offset Length Description

 0 1 Transfer type:

 0 - 200x200 dpi, facsimile mode

 1 - 100x200 dpi, facsimile mode

 2 - file transfer mode

 3-127 - Reserved.

 1 1 Text size (if ASCII file, fax

 mode)

 0 - 80-column

 1 - 132-column

 2-127 - reserved

 2 2 time to send, in DOS file time

 format

 4 2 date to send, in DOS file time

 format note: Setting both the

 time and date fields to 0

 schedules the file to be sent

 immediately

 6 32 ASCIIZ Destination Name (To:

 field)

 38 80 ASCIIZ pathname of the file to

 send

 118 47 ASCIIZ phone number to call

 165 64 ASCIIZ application-specific

 tag field

 229 1 reserved; set to zero

 230 1 cover page flag:

 0 - don't send cover page

 1 - send cover page

 2-127 - Reserved

 231 23 reserved; set to zero

 254 var ASCIIZ cover text (if offset

 230=1)

 2) The individual fields have the same

 meaning as in a Task Control File

 3) You must set all fields, except for the

 Appli-cation-Specific Tag field, before

 calling this function. However, you can

 set the Destination Name and Cover Text

 fields to an empty string

 16h-80h Reserved by Intel for future expansion

DOS 2Fh functions 01h (PRINT), 02h (ASSIGN), 10h (SHARE):

return AX Error

 Codes Description

 01h invalid function number

 02h file not found

 03h path not found

 04h too many open files

 05h access denied

 06h invalid handle

 08h queue full

 09h busy

 0Ch name too long

 0Fh invalid drive was specified

 CF clear (0) if OK

 set (1) if error - error returned in AX

note 1) The multiplex numbers AH=0h through AH=7Fh are reserved for

 DOS. Applications should use multiplex numbers 80h through

 0FFh.

 2) When in the chain for int 2Fh, if your code calls DOS or if

 you execute with interrupts enabled, your code must be

 reentrant or recursive.

 3) Important! In versions of DOS prior to 3.0, the int 2Fh

 vector was initialized to zero rather than being pointed into

 the DOS service area. You must initialize this vector

 manually under DOS 2.x.

+---+

¦ Miscellaneous Interrupts - in numeric order ¦

+---+

+---+

¦Interrupt 30h FAR jump instruction for CP/M-style calls 5**15¦

+---+

note 1) The CALL 5 entry point does a FAR jump to here (not a vector!)

 2) PC-Tools PC-Cache 5.1 hooks this vector on XTs but not on ATs.

+---+

¦Interrupt 31h Unknown 5**16¦

+---+

note PC-Tools PC-Cache 5.1 hooks this vector on ATs but not on XTs.

+---+

¦Interrupt 32h Unknown 5**17¦

+---+

+---+

¦Interrupt 33h Used by Microsoft Mouse Driver Function Calls . 5**18¦

+---+

note See Chapter 14 for mouse programming.

+---+

¦Interrupt 34h Turbo/Microsoft langs - Floating Point emul. .. 5**19¦

+---+

note This interrupt emulates opcode 0D8h.

+---+

¦Interrupt 35h Turbo/Microsoft langs - Floating Point emul. .. 5**20¦

+---+

note This interrupt emulates opcode 0D9h.

+---+

¦Interrupt 36h Turbo/Microsoft langs - Floating Point emul. .. 5**21¦

+---+

note This interrupt emulates opcode 0DAh.

+---+

¦Interrupt 37h Turbo/Microsoft langs - Floating Point emul. .. 5**22¦

+---+

note This interrupt emulates opcode 0DBh.

+---+

¦Interrupt 38h Turbo/Microsoft langs - Floating Point emul. .. 5**23¦

+---+

note 1) This interrupt emulates opcode 0DCh.

 2) PC-MOS/386 versions prior to 4.00 use this interrupt to

 interface with the PC-MOS API. Version 4.00 and later use int

 0D4h for the API. See the Chapter 13 for the PC-MOS API.

+---+

¦Interrupt 39h Turbo/Microsoft langs - Floating Point emul. .. 5**24¦

+---+

note This interrupt emulates opcode 0DDh.

+---+

¦Interrupt 3Ah Turbo/Microsoft langs - Floating Point emul. .. 5**25¦

+---+

note This interrupt emulates opcode 0DEh.

+---+

¦Interrupt 3Bh Turbo/Microsoft langs - Floating Point emul. .. 5**26¦

+---+

note This interrupt emulates opcode 0DFh.

+---+

¦Interrupt 3Ch Turbo/Microsoft langs - Floating Point emul. .. 5**27¦

+---+

note This interrupt emulates instructions with an ES segment

 override.

+---+

¦Interrupt 3Dh Turbo/Microsoft langs - Floating Point emul. .. 5**28¦

+---+

note This interrupt emulates a standalone FWAIT instruction

+---+

¦Interrupt 3Eh Turbo/Microsoft langs - Floating Point emul. .. 5**29¦

+---+

note Unknown.

+---+

¦Interrupt 3Fh Overlay Manager Interrupt (Microsoft LINK.EXE) 5**30¦

+---+

note 1) Default overlay manager interrupt; may be changed with LINK

 command line switch. (Microsoft/IBM LINK.EXE)

 2) The Microsoft Dynamic Link Library manager uses this

 interrupt.

+---+

¦Interrupt 40h Hard Disk BIOS 5**31¦

+---+

 Pointer to disk BIOS entry when a hard disk controller

 is installed. The BIOS routines use int 30h to

 revector the diskette handler (original int 13h) here

 so int 40h may be used for hard disk control.

note 1) Keyboard interrupt for DEC Rainbow.

+---+

¦Interrupt 41h Hard Disk Parameters 5**32¦

+---+

 Pointer to first Hard Disk Parameter Block, normally

 located in the controller card's ROM. This table may

 be copied to RAM and changed, and this pointer

 revectored to the new table.

note 1) XT, AT,XT/2, XT/286, PS/2 except ESDI disks

 2) format of parameter table is:

 word cylinders

 byte heads

 word starting reduced write current cylinder

 (XT only, 0 for others)

 word starting write pre-comp cylinder

 byte maximum ECC burst length

 byte control byte

 bits 0-2 drive option (XT only, 0 for others)

 3 set if more than 8 heads

 4 always 0

 5 set if manufacturer's defect map on

 max cylinder+1

 6 disable ECC retries

 7 disable access retries

 byte standard timeout (XT only, 0 for others)

 byte formatting timeout (XT only, 0 for others)

 byte timeout for checking drive (XT only, 0 for others)

 word landing zone (AT, PS/2)

 byte sectors/track (AT, PS/2)

 byte 0 (zeroes)

 3) normally vectored to ROM table when system is initialized.

+---+

¦Interrupt 42h Pointer to screen BIOS entry 5**33¦

+---+

 Used by EGA, VGA, PS/2.

 Relocated (by EGA, etc.) video handler (original int 10h).

 Revectors int 10 (BIOS video) calls to EGA BIOS.

 Also used by Zenith Z-100.

 MCT (Modular Circuit Technology, Taiwan) 4-drive floppy

 controller revectors int 13h to here.

+---+

¦Interrupt 43h Pointer to EGA Graphics Character Table 5**34¦

+---+

note 1) The POST initializes this vector pointing to the default table

 located in the EGA ROM BIOS. (PC-2 and up). Not initialized

 if EGA is not present.

 2) This vector was referred to (mistakenly) as the Video

 Parameters table in the original EGA BIOS listings.

+---+

¦Interrupt 44h Pointer to graphics character table 5**35¦

+---+

(0:0110h) This table contains the dot patterns for the first 128

 characters in video modes 4,5, and 6, and all 256

 characters in all additional graphics modes. Not

 initialized if EGA is not present.

note 1) EGA/VGA/CONV/PS - EGA/PCjr fonts, characters 00h to 7Fh.

 2) Novell NetWare - High-Level Language API.

 3) Also used by Zenith Z-100.

+---+

¦Interrupt 45h Reserved by IBM (not initialized) 5**36¦

+---+

note Also used by Zenith Z-100, purpose unknown.

+---+

¦Interrupt 46h Pointer to second hard disk parameter block ... 5**37¦

+---+

note 1) AT, XT/286, PS/2.

 2) (see int 41h) (except ESDI hard disks) (not initialized unless

 specific user software calls for it)

 3) Also used by Zenith Z-100.

+---+

¦Interrupt 47h Reserved by IBM (not initialized) 5**38¦

+---+

+---+

¦Interrupt 48h Cordless Keyboard Translation 5**39¦

+---+

(0:0120h)

This vector points to code to translate the cordless keyboard

scancodes into normal 83-key values. The translated scancodes are

then passed to int 9. (not initialized on PC or AT) This is valid on

the IBM PCjr only. IBM built a number of prototype XT/2 machines with

infrared keyboards which were later sold through salvage outlets, but

this was never a production option.

+---+

¦Interrupt 49h Non-kbd Scan Code Translation Table Addr (PCjr) 5**40¦

+---+

(0:0124h) PCjr translate table, TI Pro video

 1) This interrupt is used for operation of non-keyboard devices

 on the PCjr, such as the Keytronic Numeric Keypad. This

 interrupt has the address of a table used to translate non-

 keyboard scancodes (greater than 85 excepting 255). This

 interrupt can be revectored by a user application. IBM

 recommends that the default table be stored at the beginning

 of an application that required revectoring this interrupt,

 and that the default table be restored when the application

 terminates. (not initialized on PC or AT)

 The PCjr BIOS can interpret scancodes other than those

 generated by the keyboard to allow for expansion. The keyboard

 generates scancodes from 01h to 055h, including 0FFh. Any

 scancodes above 55h (56h through 7Eh for make codes and 0D6h

 through 0FEh for break codes) are processed in the following

 manner:

 1) if the incoming make code falls within the range of the

 translate table whose address is pointed to by int 49h,

 it is translated into the corresponding scancode. Any

 incoming break codes above 0D5h are ignored.

 2) if the new translated scancode is less than 56h, it is

 processed by the BIOS as a keyboard scancode and the same

 data is placed in the BIOS keyboard buffer.

 3) if the translated scancode is higher than 55h or the

 incoming scancode is outside the range of the translate

 table, 40h is added creating a new extended scancode. The

 extended scancode is placed in the BIOS keyboard buffer

 with the character code of 00h (NUL). This utilitizes the

 range of 96h through 0BEh for scancodes 56h through 7Eh.

 The default translate-table maps scancodes 56h through

 6Ah to existing keyboard values. Codes 6Bh theough 0BEh

 are mapped (by adding 40h) to extended codes 0ABh through

 0FEh since they are outside the range of the default

 translate table.

 The format of the translate table is:

 0 length - the number of nonkeyboard scancodes that

 are mapped within the table (from 1 to n).

 1 to n word high byte 00h (NUL) byte scancode with low

 order byte representing the scancode mapped

 values relative to their input values within the

 range of 56h through 7Eh.

 With this layout, all keyboard scancodes can be intercepted

 through int 9h and and nonkeyboard scancodes can be

 intercepted through int 48h.

 2) On the TI Professional, this interrupt is used for some video

 services.

 entry AH 17h Get Display Offset

 return ES:DI segment/offset of current display buffer

 note The TI Pro has only 2048 bytes of character RAM, but it

 is followed by another 2048 bytes of "phantom" RAM

 (i.e. the same 2048 bytes are available at two

 different addresses) so that wraparound checks need not

 be made when writing to the screen. The attribute RAM

 is "shadowed" behind the character RAM through the

 attribute register.

 3) Most of the TI Pro functions are identical to the IBM int 16h

 functions, particularly 0 through 0Eh, although 6 and 7

 (scroll) are quite different and all cursor addressing has the

 rows and columns flipped (i.e. IBM uses DH for row, but TI

 uses DH for column).

+---+

¦Interrupt 4Ah Real-Time Clock Alarm (Convertible, PS/2, EISA) 5**41¦

+---+

1) Not initialized on PC or AT.

2) Invoked by PS/2 and Convertible BIOS when real-time clock alarm

 occurs.

3) Used by TI Professional PC for keyboard DSR interface (keyboard

 BIOS interrupt) Functions for AH=0, 1, 2 and 5 are identical to

 IBM's int 16h.

+---+

¦Interrupt 4Bh Reserved by IBM (not initialized) 5**42¦

+---+

note 1) Used by IBM Micro Channel SCSI hard disk controllers.

 2) Used by Virtual DMA Services Specification (see Chapter 21 for

 VDS programming information)

+---+

¦Interrupt 4Ch Reserved by IBM (not initialized) 5**43¦

+---+

+---+

¦Interrupt 4Dh Reserved by IBM (not initialized) 5**44¦

+---+

+---+

¦Interrupt 4Eh Reserved by IBM (not initialized) 5**45¦

+---+

note Used instead of int 13h for disk I/O on TI Professional PC.

+---+

¦Interrupt 4Fh Reserved by IBM (not initialized) 5**46¦

+---+

+---+

¦Interrupt 50-57 IRQ0-IRQ7 Relocation 5**47¦

+---+

note 1) Normally not initialized.

 2) IRQ0-IRQ7 relocated by DesQview.

 3) IRQ0-IRQ7 relocated by IBM 3278 Emulation Control Program.

+---+

¦Interrupt 58h Reserved by IBM (not initialized) 5**48¦

+---+

+---+

¦Interrupt 59h Reserved by IBM (not initialized) 5**49¦

+---+

 GSS Computer Graphics Interface (GSS*CGI)

entry DS:DX pointer to block of 5 array pointers

return CF clear

 AX return code

 CF set

 AX error code

note 1) Int 59h is the means by which GSS*CGI language bindings

 communicate with GSS*CGI device drivers and the GSS*CGI device

 driver controller.

 2) Also used by the IBM Graphic Development Toolkit.

+---+

¦Interrupt 5Ah Reserved by IBM (not initialized) 5**50¦

+---+

note IBM Cluster Adapter BIOS entry address.

+---+

¦Interrupt 5Bh Reserved by IBM (not initialized) 5**51¦

+---+

note Used by IBM Cluster Adapter.

+---+

¦Interrupt 5Ah Cluster Adapter BIOS entry address 5**52¦

+---+

note Normally not initialized.

+---+

¦Interrupt 5Bh Reserved by IBM (not initialized) 5**53¦

+---+

note Used by cluster adapter?

+---+

¦Interrupt 5Ch NETBIOS interface entry port, TOPS 5**54¦

+---+

note 1) See Chapter 13 for information on network programming.

 2) The Texas Instruments Professional PC (TI Pro) uses 5Ch for

 the Pause key on the keyboard. The TI BIOS allows any user

 routine to execute from the Pause interrupt as long as it

 eventually returns.

 3) Used by Windows/386 by Virtual Machine routines.

 4) Used by Novell Netware 2.0.

+---+

¦Interrupt 5Dh Reserved by IBM (not initialized) 5**55¦

+---+

note The Texas Instruments Professional PC (TI Pro) uses 5Ch for the

 keyboard services.

+---+

¦Interrupt 5Eh Reserved by IBM (not initialized) 5**56¦

+---+

note TI Professional PC - Program Break.

+---+

¦Interrupt 5Fh Reserved by IBM (not initialized) 5**57¦

+---+

note TI Professional PC - Keyboard queueing.

+---+

¦Interrupt 60h-67h User Program Interrupts 5**58¦

+---+

note 1) Available for general use.

 2) Some Adaptec hard disk controllers used these interrupts.

 Models and usages unknown.

 3) Various major programs make standardized use of this group of

 interrupts. Details of common use follows:

+---+

¦Interrupt 60h User Program Interrupt 5**59¦

+---+

note 1) Used by 10-Net Network OS Interface.

 2) Used by FTP Driver - PC/TCP Packet Driver Specification.

 3) See Chapter 13 for network programming calls.

 4) Used by TOPS netork (TTALK.EXE).

 5) The 2-The-Max VGA-16 board TSR zoom utility uses this

 interrupt by default. (see int 61h for details)

 6) Versa-Spool print spooler revectors int 17h to here when

 installing its own 17h handler. (see int 61h also)

 7) Some older OMTI and Adaptec hard disk controllers used the

 interrupts from 60h to 63h as 16 bytes of scratch RAM.

 8) Used by GDOSMEM Windows TSR skeleton.

 entry AX GTSR Identification #

 BX 00h GTSR Installation Check

 return BX GTSR Identification #

 entry AX GTSR Identification #

 BX 01h GTSR Increment WORD in CX:DX

 CX Segment => WORD

 DX Offset => WORD

 return none

 9) Used by TDOSMEM Windows TSR skeleton.

 entry AX TTSR Identification #

 BX 00h GTSR Installation Check

 return BX GTSR Identification #

 CX Segment => local WORD

 DX Offset => local WORD

 entry AX TTSR Identification #

 BX 01h GTSR Increment WORD in CX:DX

 return none

+---+

¦Interrupt 61h User Interrupt 5** ¦

+---+

 1) Default interrupt used by Chris Dunford's PCED 2.0 API.

 2) Used by Mike Geary's DENYNONE.ASM SHARE.EXE controller.

 Function 00h Get Current Mode Value

 entry AH 00h

 return AL current mode value

 Function 01h Set New Open-Mode Value

 entry AH 01h

 AL new value to set

 return none

 3) The 2-The-Max VGA-16 board TSR zoom utility uses this interrupt

 by default.

 Function 00h Zoom

 entry AX 0000h

 BX zoom factor (0-7x)

 return none

 Function 01h Center Zoomed Window

 entry AX 0001h

 BX x coordinate to center

 CX y coordinate to center

 return none

 note 'x' and 'y' will be positioned as close to the center of

 the display as possible.

 Function 02h End Zoom

 entry AX 0002h

 return none

 note Restores screen to original state.

 Function 03h Report Zoom

 entry AX 0003h

 return AX zoom factor (0-7)

 Function 04h Enter Specify Mode

 entry AX 0004h

 return none

 note This mode is entered whenever the predefined hotkey is

 pressed.

 Function 05h Query Zoom Window

 entry AX 0005h

 BX segment address of return argument array

 CX offset address of return argument array

 return BX:CX 14 byte array

 offset[0] x start of zoom window

 [1] y start of zoom window

 [2] x end of zoom window

 [3] y end of zoom window

 [4] current zoom factor

 [5] zoom offset start x

 [6] zoom offset start y

 Function 06h Set Zoom Window

 entry AX 0006h

 BX segment address of window coordinate array

 CX offset address of window coordinate array

 return BX:CX array

 offset[0] x start of zoom window

 [1] y start of zoom window

 [2] x end of zoom window

 [3] y end of zoom window

 4) Versa-Spool print spooler revectors int 1Ch to here when

 installing its own 1Ch handler.

+---+

¦Interrupt 63h User Program Interrupt ¦

+---+

This interrupt is used by Novell NetWare v2.0.

+---+

¦Interrupt 64h User Program Interrupt ¦

+---+

This interrupt is used by Novell NetWare IPX versions 1.02-2.0 TBMI.

+---+

¦Interrupt 65h User Program Interrupt ¦

+---+

This interrupt is used by Novell NetWare v2.0.

+---+

¦Interrupt 67h User Program Interrupt 5**60¦

+---+

note 1) Used by Lotus-Intel-Microsoft Expanded Memory Specification

 3.1 and higher. (EMS and LIM)

 2) Used by Ashton-Tate/Quadram/AST Enhanced Expanded Memory

 Specification 3.1 and higher. (EEMS)

 3) Used by Phar Lap/Quarterdeck VCPI v1.0.

 4) See Chapter 10 for EMS/EEMS programming information.

 5) The Advanced Digital PC Slave board (also marketed by Alloy)

 contains its own 8mHz 8086, up to 768K of on-card memory and a

 built-in monochrome monitor adapter, communicating with an

 RS232 terminal at 19.2KBaud. Their operating system is an

 adaptation of MSDOS 2.11 called RTNX or ATNX. ?TNX uses

 interrupt 67h for record locking, using an "interrupt 67h

 semaphore" system in which a data record access must be

 preceded by a call to int 67h with a string that contains a

 filename and a record number to lock.

 6) Some Adaptec hard disk controllers have problems related to

 their use of int 67h. Supposedly the Adaptec can be made to

 use a driver instead of ROM. The driver is generated by

 running the ROM program at C800:5 and this fixes the problem.

 Apparently this driver is called ADAPTEC.DRV. Check with

 Adaptec if you suspect a problem.

 7) IBM issued a known bug report listing a fault in DOS 4.0's

 network handling within IBMBIO.COM. The exact wording of the

 report is:

 IR79404 WAIT IBMBIO INT 2FH for INT 67H causes hang

 8) Used by PC-Net semaphore calls.

+---+

¦Interrupt 68h Not Used (not initialized) 5**61¦

+---+

note 1) APPC/PC Network Interface. See Chapter 13.

 2) Some Toshiba laptop hard disk controllers use this interrupt.

 3) Used by HDTest to communicate with BIOS entry point.

 4) Used by Mike Geary's EGA720.ASM (forces EGA into 720x348 mode)

+---+

¦Interrupt 69h Not Used (not initialized) 5**62¦

+---+

+---+

¦Interrupt 6Ah Not Used (not initialized) 5**63¦

+---+

note Used by SLR System's OPTHELP.COM, a TSR help system for their

 OPTASM assembler. OPTHELP may be configured to interrupts

 from 60h to 7Fh.

+---+

¦Interrupt 6Bh Not Used (not initialized) 5**64¦

+---+

+---+

¦Interrupt 6Ch System Resume Vector (Convertible) 5**65¦

+---+

note 1) This vector is not initialized on the PC, XT, or PCJr.

 2) DOS 3.2 Realtime Clock update uses this interrupt.

+---+

¦Interrupt 6Dh Not Used (not initialized) 5**66¦

+---+

note Used internally by VGA adapter - IBM, Paradise, Video 7, NCR

+---+

¦Interrupt 6Eh Not Used (not initialized) 5**67¦

+---+

+---+

¦Interrupt 6Fh 10-Net API..................................... 5**68¦

+---+

note 1) See Chapter 13 for information on the 10-Net API.

 2) HP ES-12 Extended BIOS

 a) Read CMOS Memory

 entry AH 22h

 BL address of CMOS byte to read

 BP 0012h

 return AH status

 AL byte read

 BP, DS destroyed

 b) Write CMOS Memory

 entry AH 24h

 AL new value

 BL address of CMOS byte to write

 BP 0012h

 return AH status

 BP, DS destroyed

 3) Novell NetWare - PCOX API (3270 PC terminal interface).

+---+

¦Interrupt 70h IRQ 8, Real Time Clock Int (AT, XT/286, PS/2) . 5**69¦

+---+

 This interrupt services the real-time clock hardware. The

 hardware supports 2 modes of operation, an interrupt at a

 specific 24 hour interval (i.e 9:42 am), or repeatedly every

 0.976 ms (1,024 kHz). Both modes can operate at the same time

 if needed.

 In the 24 hour alarm mode, the interrupt is vectored here by

 hardware and interrupt 4Ah is called to alert the application

 program of the alarm. Int 4Ah is not handled by the BIOS

 other than to return, and is normally revectored by a

 particular application using the alarm.

 When repeating interrupt mode is active, the 32-bit

 microsecond counter consisting of timer_clk_low and

 timer_clk_hi is decremented by 976 us on every interrupt.

 When the timer reaches zero, the byte pointed to by the offset

 @timer_wait_off and and segment @timer_wait_seg is set to 80h

 (this pointer is set by an application program through int 1Ah

 function ah=6).

 The Motorola MC146818A real time clock chip, or its

 equivalent, can be programmed to generate the real time clock

 interrupt (int 70h) approximately 1024 times per second. The

 BIOS Real Time Clock ISR is invoked on each real time clock

 interrupt. Only AT BIOSs support the Real Time Clock ISR.

 The BIOS initializes the int 70h vector to address F000:5124h.

 Three AT BIOS functions interface with the int 70h Real Time

 Clock ISR. These are:

 int 15h, AH 83h Event Wait Interval

 int 15h, AH 86h Wait

 int 1Ah, AH 06h Set User Alarm

+---+

¦Interrupt 71h IRQ 9, Redirected to IRQ 8 (AT, XT/286, PS/2) . 5**70¦

+---+

note LAN Adapter 1 (rerouted to int 0Ah [IRQ2] by BIOS).

+---+

¦Interrupt 72h IRQ 10 (AT, XT/286, PS/2) Reserved 5**71¦

+---+

note Hardware servicer (called by hardware 8259-2, IRQ 10).

+---+

¦Interrupt 73h IRQ 11 (AT, XT/286, PS/2) Reserved 5**72¦

+---+

note Hardware servicer (called by hardware 8259-2, IRQ 11).

+---+

¦Interrupt 74h IRQ 12 Mouse Interrupt (PS/2) 5**73¦

+---+

note Hardware servicer (called by hardware 8259-2, IRQ 12).

+---+

¦Interrupt 75h IRQ 13, Coprocessor Error (AT) 5**74¦

+---+

note 1) BIOS redirects math coprocessor errors to int 2 (NMI).

 2) The math co-processor 80287 invokes this interrupt. Int 75h

 calls the non-maskable interrupt int 2 to halt the system.

 (80287 is not used if this vector is left pointing here).

 Programs which use the 80287 must re-vector this interrupt to

 use the 80287.

 3) Under DOS 3.2, this interrupt is routed through the DOS

 interrupt stack pool like device interrupts. However,

 coprocessor exceptions generally do not resume via IRET and

 this fill the interrupt pool (stacks allocated and never

 deallocated) on exceptions. Microsoft has a patch available

 for DOS 3.2.

 4) Weitek ABACUS x167 math coprocessor exception handler shares

 this interrupt with Intel 80x87 if present.

+---+

¦Interrupt 76h IRQ 14, Hard Disk Controller (AT, XT/286, PS/2) 5**75¦

+---+

note 1) Called by hardware 8259-2 IRQ 14.

 2) When the hard disk controller has completed its task, it

 signals completion though hardware activation of int 76h. The

 status in hdsk_int_flags is set to "done", a value of 0FFh.

 Int 15/fn91h may also be called to signal the interrupt is

 done.

+---+

¦Interrupt 77h IRQ 15 (AT, XT/286, PS/2) Reserved 5**76¦

+---+

note Future services (called by hardware 8259-2 IRQ 15).

+---+

¦Interrupt 78h Not Used 5**77¦

+---+

note 1) Used by Novell Netware 2.0 - non-dedicated shell.

 2) DESQview uses ints 78h-7Fh for itself to revector the 8259

 interrupt controllers.

+---+

¦Interrupt 79h Not Used 5**78¦

+---+

note 1) Used by LAN:Datacore runtimes for BASIC and C by Lanquest

 Group in releases after late '86.

 2) Used by AutoCAD 2.5/2.6 ADI Digitizer interface (default).

+---+

¦Interrupt 7Ah Reserved 5**79¦

+---+

note 1) Novell NetWare - Low-Level API APX, versions 2.0a+. See

 Chapter 13.

 2) AutoCAD Device Interface, used by various video boards.

 3) IBM 3270 Emulator program.

 4) Also used by early versions of "File Access Utility" by

 Automated Insurance Resource Systems. AIRS changed to a

 different interrupt in late '86 to eliminate conflict with

 Novell.

 5) Used by LAN:Datacore runtimes for BASIC and C by Lanquest

 Group in versions 2.5 and higher before late '86. Lanquest

 changed to int 79h to prevent Novell conflict.

+---+

¦Interrupt 7Bh-7Eh Not Used by IBM 5**80¦

+---+

 Btrieve API

entry register unknown

 functions:

 00h open

 01h close

 02h insert

 03h update

 04h delete

 05h get_equal

 06h get_next

 07h get_prev

 08h get_greater

 09h get_gr_eql

 0Ah get_less

 0Bh get_less_eq

 0Ch get_first

 0Dh get_last

 0Eh create

 0Fh stat

 10h extend

 11h set_dir: set directory information

 12h get_dir: get directory information

 13h begin_trans

 14h end_trans

 15h abort_trans

 16h get_pos: get record position number

 17h get_direct: get data by sending record position

 18h step_direct

 19h stop

 1Ah version

 1Bh unlock

 1Ch reset

return unknown

note Btrieve sets low byte of vector to 33h; this serves as the

 installation check.

+---+

¦Interrupt 7Bh Novell .. 5** ¦

+---+

note 1) BTRIEVE from Softcraft, Inc.

 2) IPX on Proteon networks with ANW 2.0 or greater.

 3) Air File by Automated Insurance Resource Systems.

+---+

¦Interrupt 7Ch REXX-PC API 5**81¦

+---+

 IBM REXX-PC macro language

entry AX 0000h Initialize

 DS:SI pointer to null terminated name of program to be

 executed

 EB:BX pointer to null terminated argument string to be passed

 to the program

 DX:DI pointer to an environment control block in the format:

 dword offset in segment to signature string The

 segment is that contained in DX and the

 signature is the uppercase ASCIIZ string

 "REXX".

 dword offset in DX to environment name ASCIIZ string

 note: The environment name will be truncated if

 longer than 32 characters.

 dword offset in DX to the file extension ASCIIZ

 string

 dword path search - word value of 0 or non-zero. This

 controls the searching of the path for commands

 that might be REXX programs. 0 means no search

 made, non-zero means search first.

 dword x'AAAA'

 This is a signature that allows REXXPC88 to

 call your own defined routine when a command

 expression needs to be processed.

 DD Segment:offset (standard INTEL format) of

 environment work buffer, the first double word

 of the buffer MUST be the entry point address

 of the environment service routine to be

 called. The rest of the buffer may be used in

 any way you choose and will NOT be examined or

 modified by REXXPC88.

return none

note 1) The only way to tell if the program exists and can be executed

 is by examining a value returned by the program in the next

 call described below. If the program returns an end of

 program indication and a string was expected instead, it means

 that the program was not found or could not be executed for

 some reason.

 2) All registers except SS and SP are destroyed. The caller must

 save any other registers of interest.

Function 01h Interpret REXX Command

 This call tells REXXPC88 to interpret the REXXPC88 program

 until a value is produced.

entry AX 0001h

return DS:DX points to a result string, terminated by a CR + LF +

 NULL. The final result string (which marks the end of

 the program) consists of nothing but EOF + NULL.

 REXXPC88 will continue to return this "end of program"

 string until reinitialized via an AX=01h call as

 described above.

note All registers except SS and SP are destroyed. The caller must

 save any other registers of interest.

Function 02h Termination

 This call allows resident REXXPC88 extensions to terminate

 execution of a REXXPC88 program, typically after detecting an

 error.

entry AX 0002h

 DS:SI points to null terminated string to be displayed as an

 error message before terminating the REXXPC88 program.

return none

note Terminates the REXXPC88 program and returns control to DOS.

Function 03h Load

 This call tells REXXPC88 to look up a program variable and

 return its current value (if any).

entry AX 0003h

 DS:SI points to null terminated name of REXXPC88 program

 variable.

 DS:DX points to the null terminated string value of the

 program variable. DX is zero if the program variable is

 currently undefined. This string is in REXXPC88's data

 area and must be treated as read-only.

return none

note 1) All registers except SS and SP are destroyed. The caller must

 save any other registers of interest.

Function 04h Store

 This call tells REXXPC88 to store a null terminated string as

 the value of a program variable.

entry AX 0004h

 DS:SI points to null terminated name of REXXPC88 program

 variable

 ES:BX points to null terminated string to be assigned to the

 variable

return none

note 1) The string is copied into REXXPC88's data dictionary. If

 there is insufficient storage to store the string, REXXPC88

 terminates execution of the program with an error message and

 returns to DOS.

 2) Registers: all registers except SS and SP are destroyed. The

 caller must save any other registers of interest.

Function 05h User-Written Extensions

entry AX 0005h

 SS:BP points to a C stack frame containing a two-byte pointer

 to the null terminated function name, a two-byte integer

 specifying the number of arguments, and a two-byte

 pointer to an array of pointers (each two bytes) to the

 arguments (each argument is a null terminated string).

return DS:SI must point to a null terminated result string. A pointer

 of NIL (DS = 0, SI = 0) is reserved by REXXPC88 and

 indicates that "no REXXPC88 extensions answered the

 function".

note 1) Registers: all registers except SS, SP, and BP are available

 for use.

 2) Stack: Since the amount of REXXPC88 stack space remaining for

 growth can't be ascertained by the user extension program, the

 user may wish to switch to a local stack if he requires more

 than about 128 bytes of stack growth.

Function 06h Queue

 This call tells REXXPC88 to place data on the data or external

 interrupt queue either FIFO or LIFO.

entry AX 06h

 BH 00h Internal data queue accessible via PULL and

 PARSE PULL

 01h External interrupt queue accessible via

 LINEIN(EXQUE)

 BL 00h Queue data FIFO on selected queue

 01h Queue data LIFO on selected queue

 DS:SI points to null terminated string to be queued.

return AX 0000h Message queued successfully.

 0001h No REXXPC88 program running at current time.

 Message not queued.

 0002h Not enough storage available for message.

 Message not queued.

 0003h Either BH (queue number) or BL (FIFO/LIFO flag)

 out of range. Message not queued.

note 1) For the Internal data queue a string may not exceed 127

 characters.

 2) For the External int. queue a string may not exceed available

 storage.

 3) Registers: all registers except SS and SP are destroyed. The

 caller must save any other registers of interest.

Function 07h Check for Loaded Extension

 This call provides a way for a REXXPC88 extension to find out

 if a copy is already loaded, and to exchange information with

 a resident version.

entry AX 0007h

 SS:BP points to a C stack frame containing a two-byte pointer

 to the null terminated name of the REXXPC88 extension.

return If the extension is already loaded, then DS:SI points to an

 ASCIIZ string '1', and other registers are used as desired by

 the extension to communicate with its non-resident copy.

 (Generally, this involves pointing ES:BX to the resident

 portion's entry point). If the extension is not yet resident,

 then DS:SI points to an ASCIIZ '0'.

note Registers: all registers except SS, SP and BP are available

 for use.

Function 08h Reserved

 This call is reserved for communication between REXXSYS.SYS

 and REXXIBMR.

entry AX 0008h

return none

Function 09h Check for REXX Installed

 This call provides external applications a way to determine if

 REXXIBMR is installed.

entry AX 09h

return AX 0FFFFh REXXIBMR is not installed

 AX 0AAAAh REXXIBMR is installed

note It is assumed that your application will inspect the value of

 the 7Ch interrupt vector prior to issuing this interrupt. If

 the vector is 0000:0000 then REXXIBMR is not installed and

 this function will cause the system to crash.

Function 0Ah Uninstall resident version of REXX

 This call is used to uninstall a resident version

entry AX 000Ah

 BX 0AAAAh

return AX 0000h Resident version uninstalled

 0001h Resident version cannot uninstall, as one

 interrupt vector has been modified by some

 other program in a non-conforming manner.

 0FFFFh The installed resident version does NOT support

 the uninstall request code (i.e., it is pre

 0.55 level).

+---+

¦Interrupt 7Fh IBM 8514/A Graphics Adapter API 5**82¦

+---+

note 1) 59 8514/A API functions available (HDILOAD.EXE) parameters

 unknown.

 2) Used by second copy of COMMAND set with SHELL=.

 3) Not used by COMMAND /C at DOS prompt.

 4) The IBM RTIC (Real Time Interface Coprocessor) Multiport (and

 Multiport/2) use int 7Fh as a method of communication between

 the system-unit resident interrupt handler and the RTIC card's

 operating system. There is a convention for using it in which

 register AX contains the signature of the handler that should

 handle the interrupt. Some signatures are:

 AX 0200h is a call to the current task dispatcher

 (from the BTRIEVE application

 interface).

 AX 0101h is a call from an application to the

 RTIC function request mechanism.

 AX 0FEEDh is a call from the ICAINTH.SYS interrupt

 handler.

 5) MultiLink Advanced (a custom version of PC-MOS/386), versions

 3.03 and higher, from The Software Link, Inc.

 Function 02h Invoke user interface (multitasking DOS shell)

 entry AH 02h

 AL 00h

 return unknown

 Function 0Dh Set new spooler parameters

 entry AH 0Dh

 AL ASCII code for disposition (D,S,H,N)

 BH ASCII code for priority (0-9)

 BL ASCII code for class (A-Z)

 return AL Error

 00h OK

 01h no spooler installed

 02h invalid request

 Function 0Eh Get spooler parameters

 entry AH 0Eh

 return AL 01h if no spooler installed, otherwise:

 AL ASCII code for disposition (D,S,H,N)

 BH ASCII code for priority (0-9)

 BL ASCII code for class (A-Z)

 6) There have been mentions of assorted other little-known

 programs using this interrupt. In view of its use by DOS and

 the increasingly-popular 8514/A adapter, it would probably be

 wise to avoid int 7Fh for aftermarket application software.

 7) Also used by IBM HLLAPI.

 8) Used internally by later versions of Tom Mack's RBBS-PC BBS

 system.

 9) Used by Novell Netware 2.0+ to switch non-dedicated shell to

 console mode.

+---+

¦Interrupt 80h-85h Reserved by BASIC 5**83¦

+---+

note Interrupts 80h through 0ECh are apparently unused and not

 initialized in most clone systems. Not known if GWBASIC or

 MBASIC use any of these interrupts.

+---+

¦Interrupt 80h Novell Netware 2.0 5** ¦

+---+

+---+

¦Interrupt 81h Novell Netware 2.0 5** ¦

+---+

+---+

¦Interrupt 82h Reserved by BASIC 5** ¦

+---+

note 1) Used in some early versions of NEC Multispeed laptop for ROM

 application management.

 2) Used by Pecan Software's Pascal compiler (P-system).

+---+

¦Interrupt 81h Used by Proteon Network 5** ¦

+---+

+---+

¦Interrupt 86h Int 18 when relocated by NETBIOS 5**84¦

+---+

+---+

¦Interrupt 86h-0F0h Used by BASIC when interpreter is running . 5**85¦

+---+

+---+

¦Interrupt 0A0h-0D0h TI Professional - free interrupt pool 5** ¦

+---+

+---+

¦Interrupt 0A4h Right Hand Man API 5**86¦

+---+

entry AH RHM function (unknown)

return unknown

note Right-Hand Man is a shareware TSR desktop utility similar

 to SideKick.

+---+

¦Interrupt 0D4h PC-MOS/386 API 5**87¦

+---+

note This interrupt is used for access to the PC-MOS/386 4.x

 operating system's user API. Previous versions of the OS

 used interrupt 38h. See Chapter 13 for MOS API programming

 information.

+---+

¦Interrupt 0E0h Digital Research CP/M-86 function calls 5**88¦

+---+

note 1) Lotus 123 Release 2 reportedly alters the int 0E0h vector

 during operation and leaves it pointing somewhere in the TPA

 on exit. Perhaps used by the mysterious Lotus add-on program

 hook?

 2) Used by Digital Research CP/M-86, Concurrent CP/M and

 Concurrent DOS API entry points. Values are typically passed

 in the DX register and returned in the AX register.

 3) Used by Larry Himes' PD TBACK background timeslicer for DOS.

 (very old)

 4) Used by American Data Technology SmartFAX products.

entry AH 20h Send FAX

 AL 02h for FAX format file

 03h for ASCII format file

 CH number of redials (0-9). Defaults to 9 if input out of

 range.

 CL backoff time (1-99). 1 unit is 15 sec, value is set to

 99 if out of range

 DS:DX input filename (ASCII). 20 bytes max.

 DX:BX dial number. Speed dial number is allowed

return AL (if bit 7 set) number of files transmitted

 (bit 7 not set) 0FFh file not found

 0FEh no dial tone

 0FDh line busy or non-FAX tone

 0FCh other error

entry AH 21h reserved

entry AH 22h Auto/Manual Transmission Toggle

 AL 00h switch to Auto mode (default)

 01h switch to Manual mode

return none

entry AH 23h Set Manual Receive Mode

 AL 00h switch to Auto mode (default)

 01h switch to Manual mode. SmartFAX will not

 answer phone

return none

entry AH 24h Send FAX Handshake to Remote

note No other parameters are necessary. No returns.

entry AH 25h Enable/Disable Background Task for Spooling

 AL 00h enabled background operation. Program will put

 the received data in the 80188 to spool.

 01h disables background operation. Does not spool

 data. Data can be recovered by fns 26h and 27h.

return none

entry AH 26h Check 80188 Buffer

 AX data length

 BL 00h some data of the same page appears in the next

 buffer

 01h end of page, more to follow

 02h end of page, last page

entry AH 27h Get Data from 80188 Buffer

 DS:DX pointer to buffer to be saved, minimum size 12Kb.

return AX data length

 BL 00h some data of the same page appears in the next

 buffer

 01h end of page, more to follow

 02h end of page, last page

entry AH 28h Reset After Receive

note Resets SmartFAX for next call. No other parameters.

entry AH 29h Enable/Disable Communication Function

 AL 00h enable communication

 01h disable communication

note In disable mode, SmartFAX will not send or receive.

+---+

¦Interrupt 0E1h PC Cluster Program 5**89¦

+---+

note This is a pointer to the disk server data table.

+---+

¦Interrupt 0E2h PC Cluster Program 5**90¦

+---+

note Interrupt 1Ch is revectored to here.

+---+

¦Interrupt 0E4h Logitech Modula-2 v2.0 Monitor Entry 5**91¦

+---+

entry AX 05h monitor entry

 06h monitor exit

 BX priority

return unknown

+---+

¦Interrupt 0E5h Not Used 5**92¦

+---+

+---+

¦Interrupt 0E6h Not Used 5**93¦

+---+

note Used by PKzip file compressor.

+---+

¦Interrupt 0E7h Not Used 5**94¦

+---+

+---+

¦Interrupt 0E8h Not Used 5**95¦

+---+

+---+

¦Interrupt 0E9h Not Used 5**96¦

+---+

+---+

¦Interrupt 0EAh Not Used 5**97¦

+---+

+---+

¦Interrupt 0EBh Not Used 5**98¦

+---+

+---+

¦Interrupt 0ECh Not Used 5**99¦

+---+

+---+

¦Interrupt 0EDh Not Used 5**100¦

+---+

+---+

¦Interrupt 0EEh Not Used 5**101¦

+---+

+---+

¦Interrupt 0EFh GEM interface (Digital Research) 5**102¦

+---+

entry CX 0473h

 DS:DX pointer to GEM parameter block

note no other parameters are known

+---+

¦Interrupt 0F0h unknown 5**103¦

+---+

note 1) Used by secondary copy of COMMAND when SHELL= set.

 2) Not used by COMMAND /C at DOS prompt.

 3) Used by BASIC while in interpreter.

+---+

¦Interrupts 0F1h-0FFh (absolute addresses 3C4h-3FFh) 5**104¦

+---+

note Location of Interprocess Communications Area.

+---+

¦Interrupt 0F4h Not Used 5**105¦

+---+

+---+

¦Interrupt 0F5h Not Used 5**106¦

+---+

+---+

¦Interrupt 0F8h Set Shell Interrupt (OEM) 5**107¦

+---+

 Set OEM handler for int 21h calls from 0F9h through 0FFh

entry AH 0F8h

 DS:DX pointer to handler for Functions 0F9h thru 0FFh

note 1) To reset these calls, pass DS and DX with 0FFFFh. DOS is set

 up to allow ONE handler for all 7 of these calls. Any call to

 these handlers will result in the carry bit being set and AX

 will contain 1 if they are not initialized. The handling

 routine is passed all registers just as the user set them.

 The OEM handler routine should be exited through an IRET.

 2) 10 ms interval timer (Tandy?)

+---+

¦Interrupt 0F9h Reserved 5**108¦

+---+

note First of 8 SHELL service codes, reserved for OEM shell

 (WINDOW); use like HP Vectra user interface?

+---+

¦Interrupt 0FAh USART ready (RS-232C) 5**109¦

+---+

+---+

¦Interrupt 0FBh USART RS ready (keyboard) 5**110¦

+---+

+---+

¦Interrupt 0FCh Unknown5**111¦

+---+

+---+

¦Interrupt 0FDh reserved for user interrupt 5**112¦

+---+

+---+

¦Interrupt 0FEh reserved by IBM 5**113¦

+---+

note AT/XT286/PS50+ - vector destroyed by return from protected

 mode.

+---+

¦Interrupt 0FFh reserved by IBM 5**114¦

+---+

note 1) AT/XT286/PS50+ - vector destroyed by return from protected

 mode.

 2) Zenith Z-100 (S-100 bus MSDOS) warm boot.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R S I X

 DOS CONTROL BLOCKS AND WORK AREAS

 Contrary to popular belief, DOS is not limited to 640k of work space. This

constraint is enforced by the mapping of ROM and video RAM into the default 1

megabyte CPU address space. Some MSDOS compatible machines, such as the Sanyo

55x series, can have as much as 768k of contiguous DOS workspace with the

appropriate option boards. Since DOS has no real memory management, it cannot

deal with a fragmented workspace. Fragmented RAM (such as RAM mapped into the

option ROM address space) can be dealt with as a RAMdisk or other storage area

by using a device driver or other software.

 The 80386 CPU and appropriate control software can create a DOS workspace of

more than one megabyte. Certain add-on boards can also add more than a

megabyte of workspace, but only for specially written software. Since these

are all proprietary schemes, little information is availible at present.

 When DOS loads a program, it first sets aside a section of memory for the

program called the program segment, or code segment. Then it constructs a

control block called the program segment prefix, or PSP, in the first 256

(100h) bytes. Usually, the program is loaded directly after the PSP at 100h.

 The PSP contains various information used by DOS to help run the program.

The PSP is always located at offset 0 within the code segment. When a program

recieves control certain registers are set to point to the PSP. For a COM

file, all registers are set to point to the beginning of the PSP and the

program begins at 100h. For the more complex EXE file structures, only DS and

ES registers are set to point to the PSP. The linker passes the settings for

the DS, IP, SS, and SP registers and may set the starting location in CS:IP to

a location other than 100h.

 IBMBIO provides an IRET instruction at absolute address 847h for use as a

dummy routine for interrupts that are not used by DOS. This lets the interrupts

do nothing until their vectors are rerouted to their appropriate handlers.

 A storage block is used by DOS to record the amount and location of allocated

memory within the machine's address space.

 A storage block, a Program Segment Prefix, and an environment area are built

by DOS for each program currently resident in the address space. The storage

block is used by DOS to record the address range of memory allocated to a

program. It is used by DOS to find the next availible area to load a program

and to determine if there is enough memory to run that porogram. When a

memory area is in use, it is said to be allocated. Then the program ends, or

releases memory, it is said to be deallocated.

 A storage block contains a pointer to the Program Segment Prefix associated

with each program. This control block is constructed by IBMDOS for the purpose

of providing standardized areas for DOS/program communication. Within the

PSP are areas which are used to save interrupt vectors, pass parameters to

the program, record disk directory information, and to buffer disk reads and

writes. This control block is 100h bytes in length and is followed by the

program module loaded by DOS.

 The PSP contains a pointer to the environment area for that program. This

area contains a copy of the current DOS SET, PROMPT, COMSPEC, and PATH values

as well as any user-set variables. The program may examine and modify this

information as desired.

 Each storage block is 10h bytes long, although only 5 bytes are currently

used by DOS. The first byte contains 4Dh (a capital M) to indicate that it

contains a pointer to the next storage block. A 5Ah (a capital Z) in the

first byte of a storage block indicatres there are no more storage blocks

following this one (it is the end of the chain). The identifier byte is

followed by a 2 byte segment number for the associated PSP for that program.

The next 2 bytes contain the number of segments what are allocated to the

program. If this is not the last storage block, then another storage block

follows the allocated memory area.

 When the storage block contains zero for the number of allocated segments,

then no storage is allocated to this block and the next storage block

immediately follows this one. This can happen when memory is allocated and

then deallocated repeatedly.

 IBMDOS constructs a storage block and PSP before loading the command

interpreter (default is COMMAND.COM).

 If the copy of COMMAND.COM is a secondary copy, it will lack an environment

address at PSP+2Ch.

THE DISK TRANSFER AREA (DTA)+--

 DOS uses an area in memory to contain the data for all file reads and writes

that are performed with FCB function calls. This are is known as the disk

transfer area. This disk transfer area (DTA) is sometimes called a buffer.

It can be located anywhere in the data area of your application program and

should be set by your program.

 Only one DTA can be in effect at a time, so your program must tell DOS what

memory location to use before using any disk read or write functions. Use

function call 1Ah (Set Disk Transfer Address) to set the disk transfer address.

Use function call 2Fh (Get Disk Transfer Address) to get the disk transfer

address. Once set, DOS continues to use that area for all disk operations until

another function call 1Ah is issued to define a new DTA. When a program is given

control by COMMAND.COM, a default DTA large enough to hold 128 bytes is

established at 80h into the program's Program Segment Prefix.

 For file reads and writes that are performed with the extended function calls,

there is no need to set a DTA address. Instead, specify a buffer address when

you issue the read or write call.

DOS PROGRAM SEGMENT+---

 When you enter an external command or call a program through the EXEC function

call, DOS determines the lowest availible address space to use as the start of

available memory for the program being started. This area is called the Program

Segment.

 At offset 0 within the program segment, DOS builds the Program Segment Prefix

control block. EXEC loads the program after the Program Segment Prefix (at

offset 100h) and gives it control.

 The program returns from EXEC by a jump to offset 0 in the Program Segment

Prefix, by issuing an int 20h, or by issuing an int 21h with register AH=00h or

4Ch, or by calling location 50h in the PSP with AH=00h or 4Ch.

 It is the responsibility of all programs to ensure that the CS register

contains the segment address of the Program Segment Prefix when terminating by

any of these methods except call 4Ch.

 All of these methods result in returning to the program that issued the EXEC.

During this returning process, interrupt vectors 22h, 23h, and 24h (Terminate,

Ctrl-Break, and Critical Error Exit addresses) are restored from the values

saved in the PSP of the terminating program. Control is then given to the

terminate address.

When a program receives control, the following conditions are in effect:

For all programs:

1) The segment address of the passed environment is contained at offset 2Ch in

 the Program Segment Prefix.

2) The environment is a series of ASCII strings totalling less than 32k bytes

 in the form: NAME=value The default environment is 160 bytes.

 Each string is a maximum of 127 bytes terminated by a byte of zeroes for a

 total of 128 bytes, and the entire set of strings is terminated by another

 byte of zeroes. Following the byte of zeroes that terminates the set of

 environment string is a set of initial arguments passed to a program that

 contains a word count followed by an ASCIIZ string. The ASCIIZ string

 contains the drive, path, and filename.ext of the executable program.

 Programs may use this area to determine where the program was loaded from.

 The environment built by the command processor (and passed to all programs

 it invokes) contains a COMSPEC=string at a minimum (the parameter on COMSPEC

 is the path used by DOS to locate COMMAND.COM on disk). The last PATH and

 PROMPT commands issued will also be in the environment, along with any

 environment strings entered through the SET command.

 The environment that you are passed is actually a copy of the invoking

 process's environment. If your application terminates and stays resident

 through int 27h, you should be aware that the copy of the environment passed

 to you is static. That is, it will not change even if subsequent PATH,

 PROMPT, or SET commands are issued.

 The size of the environment may be changed from its default of 160 bytes

 by using the SHELL= command in the config.sys from in DOS version 3.1 up,

 or COMMAND.COM may be patched in earlier versions.

 The environment can be used to transfer information between processes or to

 store strings for later use by application programs. The environment is

 always located on a paragraph boundary. This is its format:

 byte ASCIIZ string 1

 byte ASCIIZ string 2

 byte ASCIIZ string n

 byte of zeros (0)

 Typically the environment strings have the form:

 NAME = VALUE

 The length of NAME or VALUE can be anything desired as long as it still fits

 into the 123 byte space (4 bytes are used by "SET ").

 Following the byte of zeros in the environment, a WORD indicates the number

 of other strings following.

 If the environment is part of an EXECed command interpreter, it is followed

 by a copy of the DS:DX filename passed to the child process. A zero value

 causes the newly created process to inherit the parent's environment.

3) Offset 80h in the PSP contains code to invoke the DOS function dispatcher.

 Thus, by placing the desired function number in AH, a program can issue a

 long call to PSP+50h to invoke a DOS function rather than issuing an int 21h.

4) The disk transfer address (DTA) is set to 80h (default DTA in PSP).

5) File Control Blocks 5Ch and 6Ch are formatted from the first two parameters

 entered when the command was invoked. Note that if either parameter contained

 a path name, then the corresponding FCB will contain only a valid drive

 number. The filename field will not be valid.

6) An unformatted parameter area at 81h contains all the characters entered

 after the command name (including leading and imbedded delimiters), with 80h

 set to the number of characters. If the <, >, or | parameters were entered

 on the command line, they (and the filenames associated with them) will not

 appear in this area, because redirection of standard input and output is

 transparent to applications.

(For EXE files only)

7) DS and ES registers are set to point to the PSP.

8) CS, IP, SS, and SP registers are set to the values passed by the linker.

(For COM files only)

9) For COM files, offset 6 (one word) contains the number of bytes availible in

 the segment.

10) Register AX reflects the validity of drive specifiers entered with the

 first two parameters as follows:

 AL=0FFh is the first parameter contained an invalid drive specifier,

 otherwise AL=00h.

 AL=0FFh if the second parameter contained an invalid drive specifier,

 otherwise AL=00h.

11) All four segment registers contain the segment address of the inital

 allocation block, that starts within the PSP control block. All of user

 memory is allocated to the program. If the program needs to invoke another

 program through the EXEC function call (4Bh), it must first free some memory

 through the SETBLOCK function call to provide space for the program being

 invoked.

12) The Instruction Pointer (IP) is set to 100h.

13) The SP register is set to the end of the program's segment. The segment size

 at offset 6 is rounded down to the paragraph size.

14) A word of zeroes is placed on top of the stack.

 The PSP (with offsets in hexadecimal) is formatted as follows:

 (* = undocumented)

+--+

¦ P R O G R A M S E G M E N T P R E F I X ¦

+--¦

¦ offset¦ size ¦ C O N T E N T S ¦

+-------+----------+---¦

¦ 0000h ¦ 2 bytes ¦ int 20h ¦

+-------+----------+---¦

¦ 0002h ¦ 2 bytes ¦ segment address, end of allocation block ¦

+-------+----------+---¦

¦ 0004h ¦ 1 byte ¦ reserved, normally 0 ¦

+-------+----------+---¦

¦ 0005h ¦ 5 bytes ¦ FAR call to MSDOS function dispatcher (int 21h) ¦

+-------+----------+---¦

¦ 000Ah ¦ 4 bytes ¦ previous termination handler interrupt vector (int 22h) ¦

+-------+----------+---¦

¦ 000Eh ¦ 4 bytes ¦ previous contents of ctrl-C interrupt vector (int 23h) ¦

+-------+----------+---¦

¦ 0012h ¦ 4 bytes ¦ prev. critical error handler interrupt vector (int 24h) ¦

+-------+----------+---¦

¦ 0016h ¦ 22 bytes ¦ reserved for DOS ¦

+-------+----------+---¦

 * ¦ 2 bytes ¦ (16) parent process' PSP ¦

 * ¦ 20 bytes ¦ (18) "handle table" used for redirection of files ¦

+-------+----------+---¦

¦ 002Ch ¦ 2 bytes ¦ segment address of the program's environment block ¦

+-------+----------+---¦

¦ 002Eh ¦ 34 bytes ¦ reserved, DOS work area ¦

+-------+----------+---¦

 * ¦ 4 bytes ¦ (2E) stores the calling process's stack pointer when ¦

 ¦ ¦ switching to DOS's internal stack. ¦

 * ¦ ¦ (32) DOS 3.x max open files ¦

 * ¦ 2 bytes ¦ (3A) size of handle table |these functions are in here ¦

 * ¦ 4 bytes ¦ (3C) handle table address |but reported addresses vary ¦

+-------+----------+---¦

¦ 0050h ¦ 3 bytes ¦ int 21h, RETF instruction ¦

+-------+----------+---¦

¦ 0053h ¦ 2 bytes ¦ reserved - unused? ¦

+-------+----------+---¦

¦ 0055h ¦ 7 bytes ¦ reserved, or FCB#1 extension ¦

+-------+----------+---¦

¦ 005Ch ¦ 16 bytes ¦ default unopened File Control Block #1 ¦

+-------+----------+---¦

¦ 006Ch ¦ 16 bytes ¦ default unopened FCB #2 (overlaid if FCB #1 opened) ¦

+-------+----------+---¦

¦ 0080h ¦ 1 byte ¦ parameter length (number of chars entered after filename) ¦

+-------+----------+---¦

¦ 0081h ¦ ... ¦ parameters ¦

+-------+----------+---¦

¦ 00FFh ¦ 128 bytes¦ command tail and default Disk Transfer Area (DTA) ¦

+--+

1. The first segment of availible memory is in segment (paragraph) form. For

 example, 1000h would respresent 64k.

2. Offset 2Ch contains the segment address of the environment.

3. Programs must not alter any part of the PSP below offset 5Ch.

PSP (comments):

offset 00h contains hex bytes CD 20, the int 20h opcode. A program can end

 by making a jump to this location when the CS points to the PSP.

 For normal cases, int 21, function 4Ch should be used.

offset 02h contains the segment-paragraph address of the end of memory as

 reported by DOS. (which may not be the same as the real end of RAM).

 Multiply this number by 10h or 16 to get the amount of memory

 availible. ex. 1000h would be 64k.

offset 04h "reserved or used by DOS" according to Microsoft

offset 05h contains a long call to the DOS function dispatcher. Programs may

 jump to this address instead of calling int 21 if they wish.

 Used by Basic and other CPM object-code translated programs. It is

 slower than standard int 21h.

offset 0Ah, 0Eh, 12h

 vectors (IP, CS)

offset 16h PSP:16h is the segment address of the invoking program's PSP, which

 * will most often be COMMAND.COM but perhaps may be a secondary

 non-permanent COMMAND or a multitasking shell, etc. At any rate,

 the resident shell version of COMMAND.COM has PSP:16H = PSP, which

 indicates "don't look any lower in memory" for the command

 interpreter. To find the beginning of the allocation chain, look

 backwards through the PSP link addresses until the link address is

 equal to the PSP segment address that it resides in. This should

 be COMMAND.COM. To find COMMAND.COM's environment, look at the word

 stored at offset 0BD3h (PC-DOS 3.1 only). This is a segment

 address, so look there at offset 0.

 18h handle alias table (networking). Also you can make PRN go to CON,

 * CON go to PRN, ERR go to PRN, etc. 0FFh = availible.

offset 2Ch is the segment:offset address of the environment for the program

 using this particular PSP. This pointer does not point to

 COMMAND.COM's environment unless it is a second copy of COMMAND.

offset 2Eh the DWORD at PSP+2Eh is used by DOS to store the calling process's

 * stack pointer when switching to DOS's own private stack - at the end

 of a DOS function call, SS:SP is restored from this address.

 32h, 34h

 * table of number of file handles (to 64k of handles!)

offset 40h 2 byte field points to the segment address of COMMAND.COM's PSP in

 * "weird" EXE files produced by Digital Research RASMPC/LINKPC.

 EXE files created with these tools can cause all sorts of problems

 with standard MSDOS debugging tools.

offset 50h contains a long call to the DOS int 21 function dispatcher.

offset 5Ch, 65h, 6Ch

 contain FCB information for use with FCB function calls. The first

 FCB may overlay the second if it is an extended call; your program

 should revector these areas to a safe place if you intend to use

 them.

offset 5Ch 16 bytes first command-line argument (formatted as uppercase 11

 character filename)

offset 6Ch 16 bytes second command-line argument (formatted as uppercase 11

 character filename)

offset 7Ch-7Fh

 "reserved or used by DOS"

offset 80h 1 byte number of bytes in command line argument

offset 80h, 81h

 contain the length and value of parameters passed on the command

 line.

offset 81h 97 bytes unformatted command line and/or default DTA

offset 0FFh contains the DTA

 The PSP is created by DOS for all programs and contains most of the information

you need to know about a program running. You can change the environment for

the current process, however, but for the parent process, DOS in this case, you

need to literally backtrack to DOS or COMMAND.COM's PSP. In order to get there

you must look at the current PSP. At offset 16h of the current PSP segment,

there a 2 byte segment address to the parent or previous process PSP.

 From there you can manipulate the enviroment by looking at offset 2Ch. As you

know, at offset 2Ch, there is 2 byte segment address to the environment block.

Try this under debug and explore the addresses located at these offsets;

 offset length description

 --

 16h 2 segment address of parent process PSP

 2Ch 2 segment address of environment block.

Remember under debug you will have to backtrack two times.

 Programs Parent

 command.com none

 debug.com command.com

 program debug.com

MEMORY CONTROL BLOCKS+---

 DOS keeps track of allocated and availible memory blocks, and provides four

function calls for application programs to communicate their memory needs to

DOS. These calls are:

 48h --- allocate memory (MALLOC)

 49h --- free allocated memory

 4Ah --- modify allocated memory blocks (SETBLOCK)

 4Bh --- load or execute program (EXEC)

DOS manages memory as follows:

 DOS build a control block for each block of memory, whether free or allocated.

For example, if a program issues an "allocate" (48h), DOS locates a block of

free memory that satisfies the request, and then "carves" the requested memory

out of that block. The requesting program is passed the location of the first

byte of the block that was allocated for it - a memory management control block,

describing the allocated block, has been built for the allocated block and a

second memory management control block describes the amount of space left in the

original free block of memory. When you do a SETBLOCK to shrink an allocated

block, DOS builds a memory management control block for the area being freed and

adds it to the chain of control blocks. Thus, any program that changed memory

that is not allocated to it stands a chance of destroying a DOS memory

management control block. This causes unpredictable results that don't show up

until an activity is performed where DOS uses its chain of control blocks. The

normal result is a memory allocation error, which means a system reset will be

required.

 When a program (command or application program) is to be loaded, DOS uses the

EXEC function call 4Bh to perform the loading.

 This is the same function call that is availible to applications programs for

loading other programs. This function call has two options:

 Function 00h, to load and execute a program (this is what the command

 processor uses to load and execute external commands)

 Function 03h, to load an overlay (program) without executing it.

 Although both functions perform their loading in the same way (relocation is

performed for EXE files) their handling of memory management is different.

FUNCTION 0: For function 0 to load and execute a program, EXEC first allocates

the largest availible block of memory (the new program's PSP will be at offset

0 in that block). Then EXEC loads the program. Thus, in most cases, the new

program owns all the memory from its PSP to the end of memory, including memory

occupied by the transient parent of COMMAND.COM. If the program were to issue

its own EXEC function call to load and execute another program, the request

would fail because no availible memory exists to load the new program into.

NOTE: For EXE programs, the amount of memory allocated is the size of the

 program's memory image plus the value in the MAX_ALLOC field of the file's

 header (offset 0Ch, if that much memory is availible. If not, EXEC

 allocates the size of the program's memory image plus the value in the

 MIN_ALLOC field in the header (offset 0Ah). These fields are set by the

 Linker).

 A well-behaved program uses the SETBLOCK function call when it receives

control, to shrink its allocated memory block down to the size it really needs.

A COM program should remember to set up its own stack before doing the SETBLOCK,

since it is likely that the default stack supplied by DOS lies in the area of

memory being used. This frees unneeded memory, which can be used for loading

other programs.

 If the program requires additional memory during processing, it can obtain

the memory using the allocate function call and later free it using the free

memory function call.

 When a program is loaded using EXEC function call 00h exits, its initial

allocation block (the block beginning with its PSP) is automatically freed

before the calling program regains control. It is the responsibility of all

programs to free any memory they allocate before exiting to the calling

program.

 FUNCTION 3: For function 3, to load an overlay, no PSP is built and EXEC

assumes the calling program has already allocated memory to load the new program

into - it will NOT allocate memory for it. Thus the calling program should

either allow for the loading of overlays when it determines the amount of memory

to keep when issuing the SETBLOCK call, or should initially free as much memory

as possible. The calling program should then allocate a block (based on the size

of the program to be loaded) to hold the program that will be loaded using the

"load overlay" call. Note that "load overlay" does not check to see if the

calling program actually owns the memory block it has been instructed to load

into - it assumes the calling program has followed the rules. If the calling

program does not own the memory into which the overlay is being loaded, there is

a chance the program being loaded will overlay one of the control blocks that

DOS uses to keep track of memory blocks.

 Programs loaded using function 3 should not issue any SETBLOCK calls since

they don't own the memory they are operating in. (This memory is owned by the

calling program)

 Because programs loaded using function 3 are given control directly by (and

return contrrol directly to) the calling program, no memory is automatically

freed when the called program exits. It is up to the calling program to

determine the disposition of the memory that had been occupied by the exiting

program. Note that if the exiting program had itself allocated any memory, it

is responsible for freeing that memory before exiting.

 Memory control blocks, sometimes called "arena headers" after their UNIX

counterpart, are 16 bytes long. Only the first 5 bytes are used. 16 bytes are

used for the memory control block, which always starts at a paragraph boundary.

When DOS call 48h is made to allocate "x" many paragraphs of memory, the amount

used up is actually one more than the figure in the BX register to provide

space for the associated memory control block. The location of the memory

control block is at the paragraph immediately before the segment value returned

in AX by the DOS function 48h call i.e. ((AX-1):0).

+--+

¦ M E M O R Y C O N T R O L B L O C K ¦

+--¦

¦ Bytes ¦ Function ¦

+-------+--¦

¦ 0 ¦ ASCII M or Z ¦

+-------+--¦

¦ 1-2 ¦ PSP segment address of the program that owns this block of memory ¦

+-------+--¦

¦ 3-4 ¦ Size of next MCB in 16-byte paragraphs ¦

+-------+--¦

¦ 5-F ¦ unused ¦

+--+

byte 1 will always have the value of 4Dh or 5Ah. The value 5Ah (Z) indicates

 the block is the last in a chain, all memory above it is unused. 4Dh

 (M) means that the block is intermediate in a chain, the memory above

 it belongs to the next program or to DOS.

byte 2,3 hold the PSP segment address of the program that owns the

 corresponding block of memory. A value of 0 means the block is free

 to be claimed, any other value represents a segment address.

byte 3, 4 indicate the size in paragraphs of the memory block. If you know the

 address of the first block, you can find the next block by adding the

 length of the memory block plus 1 to the segment address of the

 control block. Finding the first block can be difficult, as this

 varies according to the DOS version and the configuration.

 The remaining 11 bytes are not currently used by DOS, and may contain "trash"

characters left in memory from previous applications.

 If DOS determines that the allocation chain of memory control blocks has been

corrupted, it will halt the system and display the message "Memory Allocation

Error", and the system will halt, requiring a reboot.

 Each memory block consists of a signature byte (4Dh or 5Ah) then a word which

is the PSP value of the owner of the block (which allocated it), followed by a

word which is the size in paragraphs of the block. The last block has a

signature of 5Ah. All others have 4Dh. If the owner is 0000 then the block is

free.

 Once a memory control block has been created it should only be manipulated

with the appropriate DOS function calls. Accidentally writing over any of the

first 5 bytes of a memory control block can cause a memory allocation error

and cause the system to lock up. If the first byte is overwritten with

something other than an 'M' or a 'Z' then DOS will complain with an error

return code of 7 signifying "Memory Control Blocks destroyed". However, should

you change the ownership or block size bytes, you've had it.

 When a .COM program is first loaded by DOS and given control, the memory

control block immediately preceding the Program Segment Prefix contains the

following data:

 ID = 'Z'

 Owner = segment address of PSP (= CS register of .COM program)

 Size = number of available paragraphs in DOS memory pool

 An .EXE file will have the following data in the memory control block for

the program (just prior to the PSP):

 ID = 'M'

 Owner = segment address of PSP (= DS register of program)

 Size = the number of paragraphs allocated to the program according

 to the information in the .EXE program header

 In the case of an .EXE program file the amount of memory allocated depends

on the contents of the program header which informs the DOS loader how much to

allocate for each of the segments in the program. With an .EXE program file

there will always be a 'Z' memory control block created in memory immediately

after the end of the space allocated to the program itself.

 One important fact to remember about DOS memory allocation is that blocks of

RAM allocated by different calls to DOS function 48H will NOT be contiguous. At

the very best, they will be separated by the 16 bytes of the memory control

block, and at worst they could be anywhere in RAM that DOS manages to find a

existing memory control block of sufficient size to accomodate the memory

request.

 DOS treats the memory control blocks as a kind of linked list (term used

loosely). It uses the earlier MCBs to find the later ones by calculating the

location of the next one from the size of the prior one. As such, erasing any

of the MCB data in the chain of MCBs will upset DOS severely, as each call for

a new memory allocation causes DOS to scan the whole chain of MCBs looking for

a free one that is large enough to fulfill the request.

 A separate MCB is created for the DOS environment strings at each program

load, so there will be many copies of the environment strewn through memory

when you have a lot of memory resident programs loaded. The memory control

blocks for the DOS environment strings are not returned to the DOS memory pool

if the program goes resident, as DOS will need to copy this enviroment for the

next program loaded.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R S E V E N

 DOS FILE STRUCTURE

 C O N T E N T S

File Management Functions 7**1

FCB Function Calls .. 7**2

Handle Function Calls ... 7**3

Special File Handles .. 7**4

Raw and Cooked File I/O ... 7**5

Number of Open Files Allowed 7**6

Restrictions on FCB Usage 7**7

Restrictions on Handle usage 7**8

Allocating Space to a File 7**9

MSDOS / PCDOS Differences 7**10

.COM File Structure ... 7**11

.EXE File Structure ... 7**12

The Relocation Table .. 7**13

"NEW" .EXE Format (Microsoft Windows and OS/2) 7**14

Standard File Control Block 7**15

Extended File Control Block 7**16

Disk Transfer Area .. 7**17

File Management Functions 7**1

 Use DOS function calls to create, open, close, read, write, rename,

find, and erase files. There are two sets of function calls that DOS

provides for support of file management. They are:

 * File Control Block function calls (0Fh-24h)

 * Handle function calls (39h-69h)

 Handle function calls are easier to use and are more powerful than

FCB calls. Microsoft recommends that the handle function calls be used

when writing new programs. DOS 3.0 up have been curtailing use of FCB

function calls; it is possible that future versions of DOS may not

support FCB function calls.

 The following table compares the use of FCB calls to Handle function

calls:

+---+

¦ FCB Calls ¦ Handle Calls ¦

+-----------------------------+---¦

¦ Access files in current ¦ Access files in ANY directory ¦

¦ directory only. ¦ ¦

¦ ¦ ¦

¦ Requires the application ¦ Does not require use of an FCB. ¦

¦ program to maintain a file ¦ Requires a string with the drive, ¦

¦ control block to open, ¦ path, and filename to open, create, ¦

¦ create, rename or delete ¦ rename, or delete a file. For file ¦

¦ a file. For I/O requests, ¦ I/O requests, the application program ¦

¦ the application program ¦ must maintain a 16 bit file handle ¦

¦ also needs an FCB ¦ that is supplied by DOS. ¦

+---+

 The only reason an application should use FCB function calls is to

maintain the ability to run under DOS 1.x. To to this, the program

may use only function calls 00h-2Eh. Though the FCB function calls

are frowned upon, many of the introductory assembly language

programming texts use the FCB calls as examples.

 PC-MOS/386 supports the FCB calls but recommends using the handle

calls.

FCB Function Calls .. 7**2

 FCB function calls require the use of one File Control Block per

open file, which is maintained by the application program and DOS.

The application program supplies a pointer to the FCB and fills in the

appropriate fields required by the specific function call. An FCB

function call can perform file management on any valid drive, but only

in the current logged directory. By using the current block, current

record, and record length fields of the FCB, you can perform

sequential I/O by using the sequential read or write function calls.

Random I/O can be performed by filling in the random record and record

length fields.

 Several possible uses of FCB type calls are considered programming

errors and should not be done under any circumstances to avoid

problems with file sharing and compatibility with later versions of

DOS.

 Some errors are:

1) If program uses the same FCB structure to access more than one open

 file. By opening a file using an FCB, doing I/O, and then replacing

 the filename field in the file control block with a new filename, a

 program can open a second file using the same FCB. This is invalid

 because DOS writes control information about the file into the

 reserved fields of the FCB. If the program replaces the filename

 field with the original filename and then tries to perform I/O on

 this file, DOS may become confused because the control information

 has been changed. An FCB should never be used to open a second file

 without closing the one that is currently open. If more than one

 File Control Block is to be open concurrently, separate FCBs should

 be used.

2) A program should never try to use the reserved fields in the FCB,

 as the function of the fields may change with different versions of

 DOS.

3) A delete or a rename on a file that is currently open is considered

 an error and should not be attempted by an application program.

 It is also good programming practice to close all files when I/O is

done. This avoids potential file sharing problems that require a limit

on the number of files concurrently open using FCB function calls.

Handle Function Calls ... 7**3

 The recommended method of file management is by using the extended

"handle" set of function calls. These calls are not restricted to the

current directory. Also, the handle calls allow the application

program to define the type of access that other processes can have

concurrently with the same file if the file is being shared.

 To create or open a file, the application supplies a pointer to an

ASCIIZ string giving the name and location of the file. The ASCIIZ

string contains an optional drive letter, optional path, mandatory

file specification, and a terminal byte of 00h. The following is an

example of an ASCIIZ string:

 format: [drive][path] FILENAME.EXT,0

 in MASM: db "A:\PATH\FILENAME.EXT",0

 If the file is being created, the application program also supplies

the attribute of the file. This is a set of values that defines the

file read-only, hidden, system, directory, or volume label.

 If the file is being opened, the program can define the sharing and

access modes that the file is opened in. The access mode informs DOS

what operations your program will perform on this file (read-only,

write-only, or read/write). The sharing mode controls the type of

operations other processes may perform concurrently on the file. A

program can also control if a child process inherits the open files of

the parent. The sharing mode has meaning only if file sharing is

loaded when the file is opened.

 To rename or delete a file, the appplication program simply needs to

provide a pointer to the ASCIIZ string containing the name and

location of the file and another string with the new name if the file

is being renamed.

 The open or create function calls return a 16-bit value referred to

as the file handle. To do any I/O to a file, the program uses the

handle to reference the file. Once a file is opened, a program no

longer needs to maintain the ASCIIZ string pointing to the file, nor

is there any need to stay in the same directory. DOS keeps track of

the location of the file regardless of what directory is current.

 Sequential I/O can be performed using the handle read (3Fh) or write

(40h) function calls. The offset in the file that I/O is performed to

is automatically moved to the end of what was just read or written.

If random I/O is desired, the LSEEK (42h) function call can be used to

set the offset into the file where I/O is to be performed.

Special File Handles .. 7**4

 DOS reserves five special file handles for use by itself and

applications programs. They are:

+---+

¦ 0000h ¦ STDIN ¦ standard input device (input can be redirected) ¦

¦ 0001h ¦ STDOUT ¦ standard output device (output can be redirected) ¦

¦ 0002h ¦ STDERR ¦ standard error output device (output cannot be ¦

¦ ¦ ¦ redirected) ¦

¦ ¦ ¦ NOTE: DOS opens STDERR for both writing and reading. ¦

¦ ¦ ¦ Since STDIN can be redirected, using STDERR to read ¦

¦ ¦ ¦ the keyboard is a reliable way to ensure that your ¦

¦ ¦ ¦ program is actually ¦

¦ ¦ ¦ reading the keyboard, if that's what you want to do. ¦

¦ 0004h ¦ STDAUX ¦ standard auxiliary device ¦

¦ 0005h ¦ STDPRN ¦ standard printer device (PRN, normally LPT1) ¦

+---+

 These handles are predefined by DOS and can be used by an

application program. They do not need to be opened by a program,

although a program can close these handles. STDIN should be treated

as a read-only file, and STDOUT and STDERR should be treated as write-

only files. STDIN and STDOUT can be redirected. All handles

inherited by a process can be redirected, but not at the command line.

 These handles are very useful for doing I/O to and from the console

device. For example, you could read input from the keyboard using the

read (3Fh) function call and file handle 0000h (STDIN), and write

output to the console screen with the write function call (40h) and

file handle 0001h (STDOUT). If you wanted an output that could not be

redirected, you could output it using file handle 0002h (STDERR).

This is very useful for error messages that must be seen by a user.

 File handles 0003h (STDAUX) and 0004h (STDPRN) can be both read from

and written to. STDAUX is typically a serial device and STDPRN is

usually a parallel device.

 DOS 2.0 through 3.21 were limited to 20 file handles. This limited

application programs to 15 simultaneous handles. DOS 3.3 and higher

added the int 21h/ Set Handle Count function to give up to 65,535 file

handles per application. PC-MOS/386 can have more than 65,535

handles.

Raw and Cooked File I/O ... 7**5

 Raw and cooked modes originated in the Unix world and were provided

with DOS 2.x+. They apply only to character I/O (including the

keyboard, screen, printer and serial ports - but not block devices

like disk drives), and only to the "new" 2.x file handle I/O functions

(not the old FCB file I/O functions). Raw mode is called "binary"

mode in DOS 3.x+, and cooked mode is called "ASCII." The common raw-

cooked convention is from DOS 2.x and other operating systems.

 The five predefined DOS file handles are all devices, so the mode

can be changed from raw to cooked via IOCTL. These handles are in

cooked mode when initialized by DOS. Regular file handles that are

not devices are always in raw mode and cannot be changed to cooked

mode.

 The predefined file handles STDIN (0000h) and STDOUT (0001h) and

STDERR (0002h) are all duplicate handles. If the IOCTL function call

is used to change the mode of any of these three handles, the mode of

all three handles is changed. For example, if IOCTL was used to

change STDOUT to raw, then STDIN and STDERR would also be changed to

raw mode.

 In the default cooked mode, DOS examines the character I/O data

stream for certain special control characters, and takes specific

actions if they are found. For example, Ctrl-C is treated as a Break

interrupt, Ctrl-S pauses the screen display, and Ctrl-Z is treated as

end-of-file. (If you try to send Ctrl-Z to a printer through a DOS

file handle in cooked mode, DOS closes the printer file!) Also, input

is buffered within DOS until a CR is detected - so you can't process

each key as it is pressed.

 In raw mode, DOS ignores special characters, passing them through

without any special processing, and does not buffer input lines. So

to use file handle I/O to send bit-mapped graphics to a printer

through DOS, or process individual keystrokes immediately, or bypass

Ctrl-C checking, you need to switch the file handle to raw mode. Raw

mode is not automatically reset to cooked mode by DOS when a program

terminates, so it is a good idea to reset the file into cooked mode

before your program exits if the system was in cooked mode to begin

with. I/O to files is done in raw mode.

 To set a file handle into raw mode or back into cooked mode, use DOS

IOCTL (int 21h Fn 44h, Chapter 4):

 1. Get the current mode bits (Subfunction 0).

 2. Check that the file is a character file. (If not, exit.)

 3. Switch the cooked mode bit to raw or vice versa.

 4. Set the mode bits (Subfunction 1).

 Microsoft C v4 and later do NOT set raw mode for binary files. When

running with the CON driver set to raw mode (to enhance display speed)

programs compiled in MSC will crash the computer. A letter to

Microsoft reporting this odd behavior got the somewhat bizarre reply

that "Microsoft does not support the use of any TSRs" from their

techs. Raw mode is clearly documented by both IBM and Microsoft, and

their own tools should take it into account.

FILE I/O IN BINARY (RAW) MODE

The following is true when a file is read in binary mode:

1) The characters ^S (scroll lock), ^P (print screen), ^C (control

 break) are not checked for during the read. Therefore, no printer

 echo occurs if ^S or ^P are read.

2) There is no echo to STDOUT (0001h).

3) Read the number of specified bytes and returns immediately when the

 last byte is received or the end of file reached.

4) Allows no editing of the input using the function keys if the input

 is from STDIN (0000h).

The following is true when a file is written to in binary mode:

1) The characters ^S (scroll lock), ^P (print screen), ^C (control

 break) are not checked for during the write. Therefore, no printer

 echo occurs.

2) There is no echo to STDOUT (0001h).

3) The exact number of bytes specified are written.

4) Does not caret (^) control characters. For example, Ctrl-D is sent

 out as byte 04h instead of the two bytes ^ and D.

5) Does not expand tabs into spaces.

FILE I/O IN ASCII (COOKED) MODE

The following is true when a file is read in ASCII mode:

1) Checks for the characters ^C,^S, and ^P.

2) Returns as many characters as there are in the device input buffer,

 or the number of characters requested, whichever is less. If the

 number of characters requested was less than the number of

 characters in the device buffer, then the next read will address

 the remaining characters in the buffer.

3) If there are no more bytes remaining in the device input buffer,

 read a line (terminated by a CR) into the buffer. This line may

 be edited with the function keys. The characters return terminated

 with a sequence of 0Dh, 0Ah (CR, LF) if the number of characters

 requested is sufficient to include them. For example, if 5

 characters were requested, and only 3 were entered before the

 carriage return (0Dh or ^M) was presented to DOS from the console

 device, then the 3 characters entered and 0Dh and 0Ah would be

 returned. However, if 5 characters were requested and 7 were

 entered before the carriage return, only the first 5 characters

 would be returned. No 0Dh, 0Ah sequence would be returned in this

 case. If less than the number of characters requested are entered

 when the carriage return is received, the characters received and

 0Dh, 0Ah would be returned. The reason the 0Ah (linefeed or ^J)

 is added to the returned characters is to make the devices look

 like text files.

4) If a 1Ah (^Z) is found, the input is terminated at that point.

 No 0Dh, 0Ah (CR,LF) sequence is added to the string.

5) Echoing is performed.

6) Tabs are expanded.

The following is true when a file is written to in ASCII mode:

1) The characters ^S,^P,and ^C are checked for during the write

 operation.

2) Expands tabs to 8-character boundaries and fills with spaces

 (20h).

3) Carets indicate control chars, for example, ^D is written as

 two bytes, '^' and 'D'.

4) Bytes are output until the number specified is output or a ^Z is

 encountered. The number actually output is returned to the user.

Number of Open Files Allowed 7**6

 The number of files that can be open concurrently is restricted by

DOS. This number is determined by how the file is opened or created

(FCB or handle function call) and the number specified by the FCBS and

FILES commands in the CONFIG.SYS file. The number of files allowed

open by FCB function calls and the number of files that can be opened

by handle type calls are independent of one another.

Restrictions on FCB Usage 7**7

 If file sharing is not loaded using the SHARE command, there is no

restriction on the number of files concurrently open using FCB

function calls.

 However, when file sharing is loaded, the maximum number of FCBs

open is set by the the FCBS command in the CONFIG.SYS file.

 The FCBS command has two values you can specify, 'm' and 'n'. The

value for 'm' specifies the number of files that can be opened by

FCBs, and the value 'n' specifies the number of FCBs that are

protected from being closed.

 When the maximum number of FCB opens is exceeded, DOS automatically

closes the least recently used file. Any attempt to access this file

results in an int 24h critical error message "FCB not available". If

this occurs while an application program is running, the value

specified for 'm' in the FCBS command should be increased.

 When DOS determines the least recently used file to close, it does

not include the first 'n' files opened, therefore the first 'n' files

are protected from being closed.

Restrictions on Handle usage 7**8

 The number of files that can be open simultaneously by all processes

is determined by the FILES command in the CONFIG.SYS file. The number

of files a single process can open depends on the value specified for

the FILES command. If FILES is greater than or equal to 20, a single

process can open 20 files. If FILES is less than 20, the process can

open less than 20 files. This value includes the three predefined

handles STDIN, STDOUT, and STDERR. This means only 17 additional

handles can be added. DOS 3.3+ includes a function to use more than 20

files per application.

Allocating Space to a File 7**9

 Files are not necessarily written sequentially on a disk. Space is

allocated as needed and the next location available on the disk is

allocated as space for the next file being written. Therefore, if

considerable file generation has taken place, newly created files will

not be written in sequential sectors. However, due to the mapping

(chaining) of file space via the File Allocation Table (FAT) and the

function calls available, any file may be used in either a sequential

or random manner.

 Space is allocated in increments called clusters. Cluster size

varies according to the media type. An application program should not

concern itself with the way that DOS allocates space to a file. The

size of a cluster is only important in that it determines the smallest

amount of space that can be allocated to a file. A disk is considered

full when all clusters have been allocated to files.

 A DOS file can be up to (2^32)-1 (4,294,967,295) bytes long. This

is the maximum value that can be put in the dword in the FAT which

holds the file size information, less one byte for the end of file

marker.

MSDOS / PCDOS Differences 7**10

 There is a problem of compatibility between MS-DOS and IBM PC-DOS

having to do with FCB Open and Create. The IBM 1.0, 1.1, and 2.0

documentation of OPEN (call 0Fh) contains the following statement:

 "The current block field (FCB bytes C-D) is set to zero [when an FCB

is opened]."

 This statement is NOT true of MS-DOS 1.25 or MS-DOS 2.00. The

difference is intentional, and the reason is CP/M 1.4 compatibility.

Zeroing that field is not CP/M compatible. Some CP/M programs will

not run when machine translated if that field is zeroed. The reason

it is zeroed in the IBM versions is that IBM specifically requested

that it be zeroed. This was the reason for the complaints from some

vendors about the fact that IBM MultiPlan would not run under MS-DOS.

It is probably the reason that some other very old IBM programs didn't

run under MS-DOS.

NOTE: Do what all MS/PC-DOS systems programs do: Set every single FCB

field you want to use regardless of what the documentation says is

initialized.

.COM File Structure ... 7**11

 The COM file structure was designed for DOS 1.0 and maximum

compatibility with programs ported from the CP/M operating system.

COM files normally comprise one segment only. A COM file is loaded as

a memory image of the disk file and the Instruction Pointer is set to

offset 100h within the program.

 The BIN files generated by EXE2BIN are COM files.

.EXE File Structure ... 7**12

 The EXE file is the native mode for DOS. EXE files may make use of

multiple segments for code, stack, and data. The design of the EXE

file reflects the segmented design of the Intel 80x86 CPU

architecture. EXE files may be as large as available memory and may

make references to specific segment addresses.

 The EXE files produced by the Microsoft linker program consist of

two parts, control and relocation information and the load module

itself.

 The control and relocation information, which is described below, is

at the beginning of the file in an area known as the header. The load

module immediately follows the header. The load module begins in the

memory image of the module contructed by the Microsoft linker.

 When you are loading a file with the name *.EXE, DOS does NOT assume

that it is an EXE format file. It looks at the first two bytes for a

signature (the letters MZ) telling it that it is an EXE file. If it

has the proper signature, then the load proceeds. Otherwise, it

presumes the file to be a .COM format file.

 If the file has the EXE signature, then the internal consistency is

checked. Pre-2.0 versions of MSDOS did not check the signature byte

for EXE files.

 The .EXE format can support programs larger than 64K. It does this

by allowing separate segments to be defined for code, data, and the

stack, each of which can be up to 64K long. Programs in EXE format

may contain explicit references to segment addresses. A header in the

EXE file has information for DOS to resolve these references.

 EXE file size does not reflect the amount of RAM an EXE file might

use, since stack space or extra RAM may be allocated by the EXE loader

at init. Some programs may also store their overlay files in the main

EXE file.

 EXE files produced by the Microsoft linker are considered to be

standard EXEs. Digital Research's RASM86 linker produces quite

different EXE files, as do the linkers from SLR Systems and Phoenix.

Intel's original linker for their 8086 compiler is much more

sophisticated than the Microsoft linker, which originally was a simple

subset of the Intel linker. Unfortunately the new fields added by

OS/2, Windows, and CodeView make the newer Microsoft linkers somewhat

different from the original Intel linker.

+---+

¦ E X E F I L E H E A D E R ¦

+---¦

¦ Offset ¦ Size ¦ C O N T E N T S ¦

+---------+------+--¦

¦ 00h ¦ BYTE ¦ 4Dh ¦ The Linker's signature to mark the file as a ¦

+---------+------+-----¦ valid .EXE file (ASCII letters M and Z, for ¦

¦ 01h ¦ BYTE ¦ 5Ah ¦ Mark Zbikowski, one of the major DOS ¦

¦ ¦ ¦ ¦ programmers at Microsoft) ¦

+---------+------+--¦

¦ 02h-03h ¦ WORD ¦ Length of the image mod 512 (remainder after dividing¦

¦ ¦ ¦ the load module image size by 512) (including header)¦

+---------+------+--¦

¦ 04h-05h ¦ WORD ¦ Size of the file in 512 byte pages including the ¦

¦ ¦ ¦ header. ¦

+---------+------+--¦

¦ 06h-07h ¦ WORD ¦ Number of relocation table items following the header¦

+---------+------+--¦

¦ 08h-09h ¦ WORD ¦ Size of the header in 16 byte (paragraphs). This is ¦

¦ ¦ ¦ used to locate the beginning of the load module in ¦

¦ ¦ ¦ the file. Although the DOS loader will allow the ¦

¦ ¦ ¦ actual program to begin at any location specified by ¦

¦ ¦ ¦ this value some debuggers, including Microsoft's, ¦

¦ ¦ ¦ need the program to be aligned on a 512-byte boundary¦

¦ ¦ ¦ in the .EXE file. ¦

+---------+------+--¦

¦ 0Ah-0Bh ¦ WORD ¦ Minimum number of 16 byte paragraphs required above ¦

¦ ¦ ¦ the end of the loaded program. ¦

+---------+------+--¦

¦ 0Ch-0Dh ¦ WORD ¦ Max number of 16 byte paragraphs required above the ¦

¦ ¦ ¦ end of the loaded program. If the minimum and maximum¦

¦ ¦ ¦ number of paragraphs are both zero, the program will ¦

¦ ¦ ¦ be loaded as high in memory as possible. ¦

+---------+------+--¦

¦ 0Eh-0Fh ¦ WORD ¦ Displacement in paragraphs of stack segment within ¦

¦ ¦ ¦ load module. This size must be adjusted by ¦

¦ ¦ ¦ relocation. ¦

+---------+------+--¦

¦ 10h-11h ¦ WORD ¦Offset to be in SP register when the module is given ¦

¦ ¦ ¦ control (stack offset) ¦

+---------+------+--¦

¦ 12h-13h ¦ WORD ¦ Checksum - 16-bit negative sum of all the words in ¦

¦ ¦ ¦ the file, ignoring overflow. ¦

+---------+------+--¦

¦ 14h-15h ¦ WORD ¦ Offset for the IP register when the module is given ¦

¦ ¦ ¦ control (initial instruction pointer) ¦

+---------+------+--¦

¦ 16h-17h ¦ WORD ¦ Offset in paragraphs of code segment (CS) within load¦

¦ ¦ ¦ module. This size must be adjusted by relocation. ¦

+---------+------+--¦

¦ 18h-19h ¦ WORD ¦ Offset in bytes of the relocation pointer table. ¦

+---------+------+--¦

¦ 1Ah-1Bh ¦ WORD ¦ Overlay number (0 for the resident part of the ¦

¦ ¦ ¦ program) ¦

+---------+------+--¦

¦ 1Ch ¦ BYTE ¦ (undocumented) Microsoft compilers put 01h here, ¦

¦ ¦ ¦ which may indicate the version of .EXE header ¦

¦ ¦ ¦ structure for later changes. Normally the relocation¦

¦ ¦ ¦ table begins at 1Eh, but that can be changed to a ¦

¦ ¦ ¦ different location if the word at 18-19h is adjusted ¦

¦ ¦ ¦ to match. ¦

+---+

The Relocation Table .. 7**13

 The word at 18h locates the first entry in the relocation table.

The relocation table is made up of a variable number of relocation

items. The number of items is contained at offset 06h. The

relocation item contains two fields - a 2 byte offset value, followed

by a 2 byte segment value. These two fields represent the

displacement into the load module before the module is given control.

The process is called relocation and is accomplished as follows:

1. The formatted part of the header is read into memory. Its size

 is 1Bh.

2. A portion of memory is allocated depending on the size of the load

 module and the allocation numbers in offsets 0Ah and 0Ch. DOS

 always tries to allocate 0FFFFh paragraphs. Since this call will

 always fail, the function returns the amount of free memory. If

 this block is larger than the minimum specified at offset 0Ah and

 the loaded program size, DOS will allocate the size specified at

 offset 0Ch or the largest free memory space, whichever is less.

3. A Program Segment Prefix is built following the resident portion of

 the program that is performing the load operation.

4. The formatted part of the header is read into memory (its size is

 at offset 08h)

5. The load module size is determined by subtracting the header size

 from the file size. Offsets 04h and 08h can be used for this

 calculation. The actual size is downward adjusted based on the

 contents of offset 02h. Note that all files created by the Linker

 programs prior to version 1.10 always placed a value of 4 at this

 location, regardless of the actual program size. Therefore,

 Microsoft recommends that this field be ignored if it contains a

 value of 4. Based on the setting of the high/low loader switch, an

 appropriate segment is determined for loading the load module. This

 segment is called the start segment.

6. The load module is read into memory beginning at the start segment.

 The relocation table is an ordered list of relocation items. The

 first relocation item is the one that has the lowest offset in the

 file.

7. The relocation table items are read into a work area one or more at

 a time.

8. Each relocation table item segment value is added to the start

 segment value. The calculated segment, in conjunction with the

 relocation item offset value, points to a word in the load module

 to which is added the start segment value. The result is placed

 back into the word in the load module.

9. Once all the relocation items have been processed, the SS and SP

 registers are set from the values in the header and the start

 segment value is added to SS. The ES and DS registers are set to

 the segment address of the program segment prefix. The start

 segment value is added to the header CS register value. The result,

 along with the header IP value, is used to give the module control.

"NEW" .EXE Format (Microsoft Windows and OS/2) 7**14

 The "old" EXE format is documented here. The "new" EXE format puts

more information into the header section and is currently used in

applications that run under Microsoft Windows. The linker that

creates these files comes with the Microsoft Windows Software

Development Kit and is called LINK4. If you try to run a Windows-

linked program under DOS, you will get the error message "This program

requires Microsoft Windows". The OS/2 1.x file format is essentially

the same as the Windows format.

 Windows executables have dynamic linking and all of the code/data

inside an EXE file is not necessarily loaded at run time.

 Offset 3Ch dword: offset of new .EXE header (for Microsoft Windows &

OS/2)

Standard File Control Block 7**15

 The standard file control block is defined as follows, with offsets

in hex:

+---+

¦ F I L E C O N T R O L B L O C K ¦

+---¦

¦offset ¦ size ¦ Function ¦

+-------+---------+---¦

¦ 0 ¦ 1 byte ¦ Drive number. For example: ¦

¦ +---¦

¦ ¦ Before open: 00h = default drive ¦

¦ ¦ 01h = drive A: ¦

¦ ¦ 02h = drive B: etc. ¦

¦ ¦ After open: 00h = drive C: ¦

¦ ¦ 01h = drive A: ¦

¦ ¦ 02h = drive B: etc. ¦

¦ ¦ A zero is replaced by the actual drive number during opening. ¦

+-------+---¦

¦ 1-8 ¦ 8 bytes ¦ Filename, left justified with blanks. ¦

¦ +---¦

¦ ¦ If a reserved device name is placed here (such as PRN) do not ¦

¦ ¦ include the optional colon. ¦

+-------+---¦

¦ 9-B ¦ 3 bytes ¦ Filename extension, left justified with trailing ¦

¦ ¦ ¦ blanks. ¦

+-------+---------+---¦

¦ C-D ¦ 2 bytes ¦ Current block # relative to start of file, starting ¦

¦ ¦ ¦ with 0 ¦

¦ +---¦¦ ¦ (set to 0 by the OPEN function call). A block consists of ¦

¦ ¦ 128 records, each of the size specified in the logical record ¦

¦ ¦ size field. The current block number is used with the current¦

¦ ¦ record field (below) for sequential reads and writes. ¦

+-------+---¦

¦ E-F ¦ 2 bytes ¦ Logical record size in bytes. ¦

¦ +---¦

¦ ¦ Set to 80h by OPEN function. If this is not correct, you ¦

¦ ¦ must set the value because DOS uses it to determine the ¦

¦ ¦ proper locations in the file for all disk reads and writes. ¦

+-------+---¦

¦ 10-13 ¦ 4 bytes ¦ File size in bytes. ¦

¦ +---¦

¦ ¦ In this field, the first word is the low-order part of the ¦

¦ ¦ size. ¦

+-------+---¦

¦ 14-15 ¦ 2 bytes ¦Date file was created or last updated. ¦

¦ +---¦

¦ ¦ MM/DD/YY are mapped as follows: ¦

¦ ¦ 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ¦

¦ ¦ y y y y y y y m m m m d d d d d ¦

¦ ¦ where: mm is 1-12 ¦

¦ ¦ dd is 1-31 ¦

¦ ¦ yy is 0-119 (1980-2099) ¦

+-------+---¦

¦ 16-17 ¦ 2 bytes¦ Time file was created or last updated. ¦

+-------+---¦

¦ ¦ These bytes contain the time when the file was created or ¦

¦ ¦ last updated. The time is mapped in the bits as follows: ¦

¦ +---¦

¦ ¦ B Y T E 16h ¦ B Y T E 17h ¦

¦ +-------------------------------+-------------------------------¦

¦ ¦ F E D C B A 9 8 ¦ 7 6 5 4 3 2 1 0 ¦

¦ +---¦

¦ ¦ H H H H H ¦ M M M M M M ¦ D D D D D ¦

¦ +-------------------+-----------------------+-------------------¦

¦ ¦ binary # hrs 0-23 ¦ binary # minutes 0-59 ¦ bin. # 2-sec incr ¦

¦ +---¦

¦ ¦ note: The time is stored with the least significant byte first¦

+-------+---¦

¦ 18-19 ¦ 2 bytes¦ Reserved for DOS. ¦

+-------+--------+--¦

¦ 20 ¦ 1 byte ¦ Current relative record number. ¦

¦ +---¦

¦ ¦ (0-127) within the current block. This field and the Current ¦

¦ ¦ Block field at offset 0Ch make up the record pointer. This ¦

¦ ¦ field is not initialized by the OPEN (0Fh) function call. ¦

¦ ¦ You must set this field before doing sequential read-write ¦

¦ ¦ operations to the diskette. To read the first record of a ¦

¦ ¦ file, set this value to zero. ¦

+-------+---¦

¦ 21-25 ¦ 4 bytes ¦ Relative Record. ¦

¦ +---¦

¦ ¦ Points to the currently selected record, counting from the ¦

¦ ¦ beginning of the file starting with 0. This field is not ¦

¦ ¦ initialized by the OPEN system call. You must set this field ¦

¦ ¦ before doing a random read or write to the file. ¦

¦ ¦ If the record size is less than 64 bytes, both words are ¦

¦ ¦ used. Otherwise, only the first 3 bytes are used. Note that ¦

¦ ¦ if you use the File Control Block at 5Ch in the program ¦

¦ ¦ segment, the last byte of the FCB overlaps the first byte of ¦

¦ ¦ the unformatted parameter area. ¦

+---+

note 1) An unopened FCB consists of the FCB prefix (if used), drive

 number, and filename.ext properly filled in. An open FCB is

 one in which the remaining fields have been filled in by the

 CREAT or OPEN function calls.

 2) Bytes 0-5 and 32-36 must be set by the user program. Bytes 16-

 31 are set by DOS and must not be changed by user programs.

 3) All word fields are stored with the least significant byte

 first. For example, a record length of 128 is stored as 80h at

 offset 14, and 00h at offset 15.

 Oddly, when Microsoft added the handle calls to DOS they still left

the old FCB calls with a few advantages. Handle calls still can't

read volume labels or directory files and don't support wild card

deletions. Microsoft has always claimed that they would eventually

fix these weaknesses, but we're up to DOS 6.0 and it isn't soup yet.

 Microsoft has always hinted that they would eventually drop FCB

support from DOS. Since many compiler runtime libraries depend on FCB

calls since they are the only ones portable across all DOS versions, a

lot of existing (expensive) commercial software would no longer run.

Also note that even the OS/2 Compatibility Box supports FCB calls.

 Many of the handle calls are simply "front ends" for the existing

FCB code anyway. It's unlikely the FCB calls will ever vanish from

DOS.

Extended File Control Block 7**16

 The extended file control block is used to create or search for

files in the disk directory that have special attributes.

 It adds a 7 byte prefix to the FCB, formatted as follows:

+--+

¦ E X T E N D E D F I L E C O N T R O L B L O C K ¦

+--¦

¦Offset ¦ Size ¦ Function ¦

+-------+---------+--¦

¦ 00h ¦ 1 byte ¦ Flag byte containing 0FFh to indicate an extended FCB¦

+-------+---------+--¦

¦ 01h ¦ 4 bytes ¦ Reserved by Microsoft ¦

+-------+---------+--¦

¦ 06h ¦ 2 bytes ¦ Attribute byte ¦

¦ +---------+--¦

¦ ¦ hex ¦bit¦ meaning ¦

¦ +-----+---+--¦

¦ ¦ 00h ¦ ¦ (no bits set) normal; can be read or written without ¦

¦ ¦ ¦ ¦ restriction ¦

¦ ¦ 01h ¦ 0 ¦ file is marked read-only. An attempt to open the ¦

¦ ¦ ¦ ¦ file for output using int 21h/fn 3Dh will fail and ¦

¦ ¦ ¦ ¦ an error code will be returned. This value can be ¦

¦ ¦ ¦ ¦ used with other values below. ¦

¦ ¦ 02h ¦ 1 ¦ indicates a hidden file. The file is excluded from ¦

¦ ¦ ¦ ¦ normal directory searches. ¦

¦ ¦ 04h ¦ 2 ¦ indicates a system file. The file is excluded from ¦

¦ ¦ ¦ ¦ normal directory searches. ¦

¦ ¦ 08h ¦ 3 ¦ indicates that the entry contains the volume label ¦

¦ ¦ ¦ ¦ in the first 11 bytes. The entry has no other ¦

¦ ¦ ¦ ¦ usable information and may exist only in the root ¦

¦ ¦ ¦ ¦ directory. ¦

¦ ¦ 10h ¦ 4 ¦ indicates that the file is a subdirectory ¦

¦ ¦ 20h ¦ 5 ¦ indicates an archive bit. This bit is set to on ¦

¦ ¦ ¦ ¦ whenever the file is written to and closed. Used by ¦

¦ ¦ ¦ ¦ BACKUP and RESTORE. ¦

¦ ¦ ¦ 6 ¦ reserved, set to 0 ¦

¦ ¦ ¦ 7 ¦ reserved, set to 0 ¦

¦ +--¦

¦ ¦ note 1) Bits 6 and 7 may be used in OS/2. ¦

¦ ¦ note 2) Attributes 08h and 10h cannot be changed using ¦

¦ ¦ int21/43h. ¦ ¦

¦ ¦ note 3) The system files IBMBIO.COM and IBMDOS.COM (or ¦

¦ ¦ customized equivalent) are marked as read-only, hidden,¦

¦ ¦ and system files. Files can be marked hidden when ¦

¦ ¦ they are created. ¦

¦ ¦ note 4) Read-only, hidden, system and archive attributes may ¦

¦ ¦ be changed with int21h/fn43h. ¦

¦ ¦ ¦

¦ ¦ Refer to int 21h/fn11h (Search First) for details on using the ¦

¦ ¦ attribute bits during directory searches. This function is ¦

¦ ¦ present to allow applications to define their own files as ¦

¦ ¦ hidden (and thereby excluded from normal directory searches) ¦

¦ ¦ and to allow selective directory searches ¦

+--+

 Any reference in the DOS function calls to an FCB, whether opened or

unopened, may use either a normal or extended FCB. If you are using

an extended FCB, the appropriate register should be set to the first

byte of the prefix, rather than the drive-number field.

 Common practice is to refer to the extended FCB as a negative offset

from the first byte of a standard File Control Block.

Disk Transfer Area .. 7**17

 The old-style (DOS 1.x compatible) FCB-oriented function calls use a

buffer called the Disk Transfer Area (DTA) for disk access. Use of

the DTA is documented in Chapter 6, "DOS Memory Control Blocks and

Work Areas."

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R E I G H T

 DOS DISK INFORMATION

 C O N T E N T S

The DOS Area .. 8**1

The Boot Record ... 8**2

DOS File Allocation Table (FAT) 8**3

 Media Descriptor Byte ... 8**4

 12 Bit FATs ... 8**5

 16 Bit FATs ... 8**6

DOS Disk Directory .. 8**8

The Data Area ... 8**9

Floppy Disk Types ... 8**10

Hard Disk Layout .. 8**11

System Initialization ... 8**12

Boot Record/Partition Table ... 8**13

Hard Disk Technical Information 8**14

Determining Hard Disk File Allocation 8**15

BIOS Disk Functions ... 8**16

 00h Reset

 01h Get Status

 02h Read Sectors

 03h Write Sectors

 04h Verify

 05h Format Track (floppy disk)

 06h Hard Disk - format track

 07h Hard Disk - format drive

 08h Read Drive Parameters

 09h Initialize Two Fixed Disk Base Tables

 0Ah Read Long (Hard disk)

 0Bh Write Long (Hard disk)

 0Ch Seek To Cylinder

 0Dh Alternate Hard Disk Reset

 0Eh Read Sector Buffer

 0Fh Write sector buffer

 10h Test For Drive Ready

 11h Recalibrate Drive

 12h Controller RAM Diagnostic

 13h Controller Drive Diagnostic

 14h Controller Internal Diagnostic

 15h Get Disk Type

 16h Get Disk Change Status (diskette)

 17h Set Disk Type for Format (diskette)

 18h Set Media Type For Format (diskette)

 19h Park Hard Disk Heads

 1Ah ESDI Hard Disk - Low Level Format

 1Bh ESDI Hard Disk - Get Manufacturing Header

 1Ch ESDI Hard Disk - Get Configuration

THE DOS AREA+-- 8**1

 All disks and diskettes formatted by DOS are created with a sector size of 512

bytes. The DOS area (entire area for a diskette, DOS partition for hard disks)

is formatted as follows:

 +--+

 ¦ D O S A R E A ¦

 +--¦

 ¦ partition table - variable size (hard disk only) ¦

 ¦ boot record - 1 sector ¦

 ¦ first copy of the FAT - variable size ¦

 ¦ second copy of the FAT - same size as first copy ¦

 ¦ root directory - variable size ¦

 ¦ data area - variable depending on disk size ¦

 +--+

The following sections describe each of the allocated areas:

THE BOOT RECORD+--- 8**2

 The boot record resides on track 0, sector 1, side 0 of every diskette

formatted by the DOS FORMAT program. For hard disks the boot record resides on

the first sector of the DOS partition. It is put on all disks to provide an

error message if you try to start up with a nonsystem disk in drive A:. If the

disk is a system disk, the boot record contains a JMP instruction pointing to

the first byte of the operating system.

 If the device is IBM compatible the first sector of the first FAT must be

located at the same sector for all disk types. This is because the FAT sector

is read before the disk type is actually determined.

 The information relating to the BPB for a particular media is kept in the

disk's boot sector. The format of the boot sector is:

+--+

¦ D O S B O O T R E C O R D ¦

+--¦

¦00h¦3 bytes¦ JMP to executable code. For DOS 2.x, 3 byte near jump (0E9h). ¦

¦ ¦ ¦ For DOS 3.x, 2 byte near jump (0EBh) followed by a NOP (90h) ¦

+---+-------+--¦

¦03h¦8 bytes¦ optional OEM name and version (such as IBM 2.1) ¦

+---+-------+--¦

¦0Bh¦2 bytes¦ bytes per sector ¦

+---+-------+--¦

¦0Dh¦ byte ¦ ¦ sectors per allocation unit (must be a power of 2) ¦

+---+-------¦ +--¦

¦0Eh¦2 bytes¦ B ¦ reserved sectors (starting at logical sector 0) ¦

¦ ¦ ¦ ¦ 01 for 1.x-3.31, 02 for 4.0+ ¦

+---+-------¦ +--¦

¦10h¦ byte ¦ ¦ number of FATs ¦

+---+-------¦ +--¦

¦11h¦2 bytes¦ ¦ maximum number of root directory entries ¦

+---+-------¦ P +--¦

¦13h¦2 bytes¦ ¦ number of sectors in logical image (total number of ¦

¦ ¦ ¦ ¦ sectors in media, including boot sector directories, etc.)¦

¦ ¦ ¦ ¦ If logical disk size is geater than 32Mb, this value is 0 ¦

¦ ¦ ¦ ¦ and the actual size is reported at offset 26h (DOS 4.0+) ¦

+---+-------¦ +--¦

¦15h¦ byte ¦ B ¦ media descriptor byte ¦

+---+-------¦ +--¦

¦16h¦2 bytes¦ ¦ number of sectors occupied by a single FAT ¦

+---+-------+--¦

¦18h¦2 bytes¦ sectors per track ¦

+---+-------+--¦

¦1Ah¦2 bytes¦ number of heads ¦

+---+-------+--¦

¦1Ch¦2 bytes¦ # of hidden sectors (sectors before this volume) (1st part) ¦

+-----------+--¦

 ¦ EXTENDED BOOT RECORD (DOS 4.0+) ¦

+-----------+--¦

¦1Eh¦2 bytes¦ # of hidden sectors (sectors before this volume) (2nd part) ¦

+---+-------+--¦

¦20h¦4 bytes¦ # sectors in this disk (see offset 13h, if 0) ¦

+---+-------+--¦

¦24h¦2 bytes¦ physical drive number (max 2 for DOS 4, max 8 for DOS 5) ¦

+---+-------+--¦

¦26h¦ byte ¦ extended boot record signature (29h) ¦

+---+-------+--¦

¦27h¦4 bytes¦ volume serial number (assigned with a random function) ¦

+---+-------+--¦

¦2Bh¦11 byte¦ volume label ¦

+---+-------+--¦

¦36h¦7 bytes¦ file system ID (FAT12), (FAT16) etc. ("reserved") ¦

+--+

 The three words at the end return information about the media. The number of

heads is useful for supporting different multihead drives that have the same

storage capacity but a different number of surfaces. The number of hidden

sectors is useful for drive partitioning schemes.

 DOS 3.2 uses a table called the BIOS Parameter Block (BPB) to determine if a

disk has a valid File Allocation Table. The BPB is located in the first sector

of a floppy disk. Although the BPB is supposed to be on every formatted floppy

disk, some earlier versions of DOS did not create a BPB and instead assumed that

the FAT begins at the second sector of the disk and that the first FAT byte

(Media Descriptor Byte) describes the disk format.

 DOS 3.2 reads in the whole of the BPB and tries to use it - although strangely

enough, it seems as if DOS is prepared to cope with a BPB that is more or less

totally blank (it seems to ignore the descriptor byte and treat it as a DSDD

9-sector disk).

 DOS 3.2 determines if a disk has a valid boot sector by examining the first

byte of logical sector 0. If that byte it a jump instruction 0E9h, DOS 3.2

assumes the rest of the sector is a valid boot sector with a BPB. If the first

byte is not 0E9h DOS 3.2 behaves like previous versions, assumes the boot sector

is invalid and uses the first byte of the FAT to determine the media type.

 If the first byte on the disk happens to be 0E9h, but the disk does not have a

BPB, DOS 3.2 will return a disk error message.

 The real problems occur if some of the BPB data is valid and some isn't.

Apparently some OEMs have assumed that DOS would continue to ignore the

formatting data on the disk, and have failed to write much there during FORMAT

except the media descriptor byte (or, worse, have allowed random junk to be

written there). While this error is understandable, and perhaps even

forgiveable, it remains their problem, not IBM's, since the BPB area has always

been documented as containing the format information that IBM DOS 3.2 now

requires to be there.

 When the BPB problems first became evident with DOS 3.2 a number of reports

circulated claiming DOS looked for the letters "IBM" in the OEM ID field. This

was incorrect. IBM DOS 4.0 *did* check for the letters "IBM" and would refuse

to recognize hard drives formatted under MSDOS 4.0. IBM corrected this with

their 4.01 revision.

THE DOS FILE ALLOCATION TABLE (FAT)+----------------------------------- 8**3

 The File Allocation Table, or FAT, has three main purposes:

 1) to mark bad sectors on the media

 2) to determine which sectors are free for use

 3) to determine the physical location(s) of a file on the media.

 DOS uses one of two schemes for defining the File Allocation Table:

 1) a 12-bit FAT, for DOS 1.x, 2.x, all floppies, and small hard disks

 2) a 16-bit FAT, for DOS 3.x+ hard disks from 16.8 to 32Mb

 This section explains how DOS uses the FAT to convert the clusters of a file

into logical sector numbers. It is recommended that system utilities use the

DOS handle calls rather than interpreting the FAT, particularly since

aftermarket disk partitioning or formatting software may have been used.

 The FAT is used by DOS to allocate disk space for files, one cluster at a time.

In DOS 4.0, clusters are referred to as "allocation units." It means the same

things; the smallest logical portion of a drive.

 The FAT consists of a 12 bit entry (1.5 bytes) for each cluster on the disk or

a 16 bit (2 bytes) entry when a hard disk has more than 20740 sectors as is the

case with fixed disks larger than 10Mb.

 The first two FAT entries map a portion of the directory; these FAT entries

contain indicators of the size and format of the disk. The FAT can be in a 12

or 16 bit format. DOS determines whether a disk has a 12 or 16 bit FAT by

looking at the total number of allocation units on a disk. For all diskettes

and hard disks with DOS partitions less than 20,740 sectors, the FAT uses a 12

bit value to map a cluster. For larger partitions, DOS uses a 16 bit value.

 The second, third, and fourth bit applicable for 16 bit FAT bytes always

contains 0FFFFh. The first byte is used as follows:

Media Descriptor Byte ... 8**4

+--+

¦ M E D I A D E S C R I P T O R B Y T E ¦

+--¦

¦hex value ¦ meaning ¦ normally used ¦

+----------+----------------------------------+--------------------------------¦

¦ 00 ¦ hard disk ¦ 3.3+ extended DOS partition ¦

+----------+----------------------------------+--------------------------------¦

¦ ED ¦ double sided 9 sector 80 track ¦ Tandy 2000 720k (5¼) ¦

+----------+----------------------------------+--------------------------------¦

¦ F0 ¦ double sided 18 sector diskette ¦ PS/2 1.44 meg DSHD ¦

+----------+----------------------------------+--------------------------------¦

¦ F8 ¦ hard disk ¦ bootable hard disk at C:800 ¦

+----------+----------------------------------+--------------------------------¦

¦ F8 ¦ 720k floppy, 9 sector 80 track ¦ Sanyo 55x, DS-DOS 2.11 (5¼) ¦

+----------+----------------------------------+--------------------------------¦

¦ F9 ¦ double sided 15 sector diskette ¦ AT 1.2 meg DSHD ¦

¦ ¦ double sided 9 sector diskette ¦ Convertible 720k DSQD ¦

+----------+----------------------------------+--------------------------------¦

¦ FA ¦ IBM Displaywriter System disk ¦ 287k ¦

¦ ¦ Kodak "4 meg" (Pelican) ¦ 4.4 meg (5¼) ¦

+----------+----------------------------------+--------------------------------¦

¦ FB ¦ IBM Displaywriter System disk ¦ 1 meg (5¼) ¦

¦ ¦ Kodak "6 meg" (Pelican) ¦ 5.5 meg (5¼) ¦

+----------+----------------------------------+--------------------------------¦

¦ FC ¦ single sided 9 sector diskette ¦ DOS 2.0, 180k SSDD (5¼) ¦

+----------+----------------------------------+--------------------------------¦

¦ FD ¦ double sided 9 sector diskette ¦ DOS 2.0, 360k DSDD (5¼) ¦

+----------+----------------------------------+--------------------------------¦

¦ FF ¦ double sided 36 sector diskette ¦ Practidisk 2.88mb DSED (3½) ¦

¦ ¦ single sided 8 sector diskette ¦ DOS 1.0, 160k SSDD (5¼) ¦

¦ ¦ double sided 8 sector diskette ¦ DOS 1.1, 320k SSDD (5¼) ¦

¦ ¦ hard disk ¦ Sanyo 55x with DS-DOS 2.11 ¦

+--+

¦for 8 inch diskettes: ¦

+--+

¦ FD ¦ double sided 26 sector diskette ¦ IBM 3740 format DSSD ¦

+----------+----------------------------------+--------------------------------¦

¦ FE ¦ single sided 26 sector diskette ¦ IBM 3740 format SSSD ¦

¦ +----------------------------------+--------------------------------¦

¦ ¦ double sided 8 sector diskette ¦ IBM 3740 format DSDD ¦

+--+

The third FAT entry begins mapping the data area (cluster 002).

NOTE: These values are provided as a reference. Therefore, programs should not

 make use of these values.

 Each entry contains three hexadecimal characters for 12-bit FATs or four for

16-bit FATs.

The possible entries are:

 12-bit | 16-bit

 |

 000h | 0000h if the cluster is unused and available

 0FF7h | 0FFF7h bad cluster (if not part of the allocation chain)

 |

0FF0h-0FF7h | 0FFF0h-0FFF7h to indicate reserved clusters

 |

0FF8h-0FFFh | 0FFF8h-0FFFFh to indicate the last cluster of a file (EOF)

 |

 xxxH | xxxxH any other hexadecimal numbers are the cluster

 | number of the next cluster in the file. The

 | cluster number is the first cluster in the file

 | that is kept in the file's directory entry.

 The file allocation table always occupies the sector or sectors immediately

following the boot record. If the FAT is larger than 1 sector, the sectors

occupy consecutive sector numbers. Two copies of the FAT are written, one

following the other, for integrity. The FAT is read into one of the DOS buffers

whenever needed (open, allocate more space, etc).

12 Bit File Allocation Table .. 8**5

Obtain the starting cluster of the file from the directory entry.

Now, to locate each subsequent sector of the file:

1. Multiply the cluster number just used by 1.5 (each FAT entry is 1.5

 bytes long).

2. The whole part of the product is offset into the FAT, pointing to the entry

 that maps the cluster just used. That entry contains the cluster number of

 the next cluster in the file.

3. Use a MOV instruction to move the word at the calculated FAT into a register.

4. If the last cluster used was an even number, keep the low order 12 bits of

 the register, otherwise, keep the high order 12 bits.

5. If the resultant 12 bits are (0FF8h-0FFFh) no more clusters are in the file.

 Otherwise, the next 12 bits contain the cluster number of the next cluster in

 the file.

 To convert the cluster to a logical sector number (relative sector, such as

that used by int 25h and 26h and DEBUG):

1. Subtract 2 from the cluster number

2. Multiply the result by the number of sectors per cluster.

3. Add the logical sector number of the beginning of the data area.

12-bit FAT if DOS partition is smaller than 32,680 sectors (16.340 MB).

16 Bit File Allocation Table .. 8**6

 Obtain the starting cluster of the file from the directory entry. Now to

locate each subsequent cluster of the file:

1. Multiply the cluster number used by 2 (each FAT entry is 2 bytes long).

2. Use the MOV word instruction to move the word at the calculated FAT offset

 into a register.

3. If the resultant 16 bits are (0FF8h-0FFFFh) no more clusters are in the

 file. Otherwise, the 16 bits contain the cluster number of the next cluster

 in the file.

DOS Disk Directory .. 8**8

 The FORMAT command initially builds the root directory for all disks. Its

location (logical sector number) and the maximum number of entries are

available through the device driver interfaces.

 Since directories other than the root directory are actually files, there is

no limit to the number of entries that they may contain.

 All directory entries are 32 bytes long, and are in the following format:

+--

¦offset ¦ size ¦ DISK DIRECTORY ENTRY

+-------+---------+--

¦ 00h ¦ 8 bytes ¦ Filename

¦ +--

¦ ¦ The first byte of the filename indicates the file status.

¦ ¦ The file status byte may contain the following values:

¦ +--

¦ ¦ 00h ¦ Directory entry has never been used. This is used to limit

¦ ¦ ¦ the length of directory searches, for performance reasons.

¦ ¦ 05h ¦ Indicates that the first character of the filename actually

¦ ¦ ¦ has an 0EDh character.

¦ ¦ 0E5h ¦ Filename has been used but the file has been erased.

¦ ¦ 2Eh ¦ This entry is for a directory. If the second byte is also

¦ ¦ ¦ 2Eh, the cluster field contains the cluster number of this

¦ ¦ ¦ directory's parent directory. (0000h if the parent directory

¦ ¦ ¦ is the root directory). Otherwise, bytes 00h-0Ah are all

¦ ¦ ¦ spaces and the cluster field contains the cluster number of

¦ ¦ ¦ the directory.

¦ +--

¦ ¦ Any other character is the first character of a filename. Filenames

¦ ¦ are left-aligned and if necessary padded with blanks.

+-------+--

¦ 08h ¦ 3 bytes ¦ Filename extension if any

¦ +--

¦ ¦ Three characters, left-aligned and padded with blanks if necessary.

¦ ¦ If there is no file extension, this field contains all blanks

+-------+--

¦ 0Bh ¦ 1 byte ¦ File attributes

¦ +--

¦ ¦ The attribute byte is mapped as follows:

¦ +--

¦ ¦ hex ¦bit¦ meaning

¦ +-----+---+--

¦ ¦ 00h ¦ ¦ (no bits set) normal; can be read or written without

¦ ¦ ¦ ¦ restriction

¦ ¦ 01h ¦ 0 ¦ file is marked read-only. An attempt to open the file for

¦ ¦ ¦ ¦ output using int 21h/fn 3Dh will fail and an error code

¦ ¦ ¦ ¦ will be returned. This value can be used with other values

¦ ¦ ¦ ¦ below.

¦ ¦ 02h ¦ 1 ¦ indicates a hidden file. The file is excluded from normal

¦ ¦ ¦ ¦ directory searches.

¦ ¦ 04h ¦ 2 ¦ indicates a system file. The file is excluded from normal

¦ ¦ ¦ ¦ directory searches.

¦ ¦ 08h ¦ 3 ¦ indicates that the entry contains the volume label in the

¦ ¦ ¦ ¦ first 11 bytes. The entry has no other usable information

¦ ¦ ¦ ¦ and may exist only in the root directory.

¦ ¦ 10h ¦ 4 ¦ indicates that the file is a subdirectory

¦ ¦ 20h ¦ 5 ¦ indicates an archive bit. This bit is set to on whenever

¦ ¦ ¦ ¦ the file is written to and closed. Used by BACKUP and

¦ ¦ ¦ ¦ RESTORE.

¦ ¦ ¦ 6 ¦ reserved, set to 0

¦ ¦ ¦ 7 ¦ reserved, set to 0

¦ +--

¦ ¦ note 1) Bits 6 and 7 may be used in OS/2.

¦ ¦ note 2) Attributes 08h and 10h cannot be changed using int21/43h.

¦ ¦ note 3) The system files IBMBIO.COM and IBMDOS.COM (or customized

¦ ¦ equivalent) are marked as read-only, hidden, and system

¦ ¦ files. Files can be marked hidden when they are created.

¦ ¦ note 4) Read-only, hidden, system and archive attributes may be

¦ ¦ changed with int21h/fn43h.

+-------+--

¦ 0Ch ¦ 10 bytes¦ Reserved by DOS; value unknown

+-------+---------+--

¦ 16h ¦ 2 bytes ¦ File timestamp

¦ +--

¦ ¦ These bytes contain the time when the file was created or last

¦ ¦ updated. The time is mapped in the bits as follows:

¦ +---+

¦ ¦ B Y T E 16h ¦ B Y T E 17h ¦

¦ +-------------------------------+-------------------------------¦

¦ ¦ F E D C B A 9 8 ¦ 7 6 5 4 3 2 1 0 ¦

¦ +---¦

¦ ¦ H H H H H ¦ M M M M M M ¦ D D D D D ¦

¦ +-------------------+-----------------------+-------------------¦

¦ ¦ binary # hrs 0-23 ¦ binary # minutes 0-59 ¦ bin. # 2-sec incr ¦

¦ +---+

¦ ¦ note: The time is stored with the least significant byte first.

+-------+--

¦ 18h ¦ 2 bytes ¦ File datestamp

¦ +--

¦ ¦ This area contains the date when the file was created or last

¦ ¦ updated. The mm/dd/yy are mapped in the bits as follows:

¦ +---+

¦ ¦ B Y T E 18h ¦ B Y T E 19h ¦

¦ +-------------------------------+-------------------------------¦

¦ ¦ F E D C B A 9 8 ¦ 7 6 5 4 3 2 1 0 ¦

¦ +---¦

¦ ¦ Y Y Y Y Y Y Y ¦ M M M M ¦ D D D D D ¦

¦ +---------------------------+---------------+-------------------¦

¦ ¦ 0-119 (1980-2099) ¦ 1-12 ¦ 1-31 ¦

¦ +---+

¦ ¦ note: The date is stored with the least significant byte first.

+-------+--

¦ 1Ah ¦ 2 bytes ¦ First file cluster number

¦ +--

¦ ¦ * (reserved in DOS 2, documented in DOS 3+)

¦ ¦ This area contains the starting cluster number of the first cluster

¦ ¦ in the file. The first cluster for data space on all fixed disks and

¦ ¦ floppy disks is always cluster 002. The cluster number is stored

¦ ¦ with the least significant byte first.

+-------+--

¦ 1Ch ¦ 4 bytes ¦ File size

¦ +--

¦ ¦ This area contains the file size in bytes. The first word contains

¦ ¦ the low order part of the size. Both words are stored with the least

¦ ¦ significant byte first.

+--

The Data Area ... 8**9

 Allocation of space for a file (in the data area) is done only when needed

(it is not preallocated). The space is allocated one cluser (unit allocation)

at a time. A cluster is always one or more consecutive sector numbers, and all

of the clusters in a file are "chained" together in the FAT.

 The clusters are arranged on disk to minimize head movement for multisided

media. All of the space on a track (or cylinder) is allocated before moving

on to the next track. This is accomplished by using the sequential sector

numbers on the lowest-numbered head, then all the sector numbers on the next

head, and so on until all sectors of all heads of the track are used. Then the

next sector used will be sector 1 of head 0 on the next track.

 An interesting innovation that was introduced in MS-DOS 3.0: disk space that

is freed by erasing a file is not re-used immediately, unlike earlier versions

of DOS. Instead, free space is obtained from the area not yet used during the

current session, until all of it is used up. Only then will space that is freed

during the current session be re-used.

 This feature minimizes fragmentation of files, since never-before-used space

is always contiguous. However, once any space has been freed by deleting a file,

that advantage vanishes at the next system boot. The feature also greatly

simplifies un-erasing files, provided that the need to do an un-erase is found

during the same session and also provided that the file occupies contiguous

clusters.

 However, when one is using programs which make extensive use of temporary

files, each of which may be created and erased many times during a session,

the feature becomes a nuisance; it forces the permanent files to move farther

and farther into the inner tracks of the disk, thus increasing rather than

decreasing the amount of fragmentation which occurs.

 The feature is implemented in DOS by means of a single 16-bit "last cluster

used" (LCU) pointer for each physical disk drive; this pointer is a part of

the physical drive table maintained by DOS. At boot time, the LCU pointer is

zeroed. Each time another cluster is obtained from the free-space pool (the

FAT), its number is written into the LCU pointer. Each time a fresh cluster

is required, the FAT is searched to locate a free one; in older versions of

DOS this search always began at Cluster 0000, but in 3.x it begins at the

cluster pointed to by the LCU pointer.

 For hard disks, the size of the file allocation table and directory are

determined when FORMAT initializes it and are based on the size of the DOS

partition.

Floppy Disk Types ... 8**10

The following tables give the specifications for floppy disk formats:

IBM PC-DOS disk formats:

 # of FAT size DIR total

 sides (sectors)(entries) sectors

 ¦ sectors ¦ DIR ¦ sectors¦

 ¦ /track ¦sectors¦/cluster¦

 ¦ ¦ ¦ ¦ ¦ ¦ ¦

+--

¦ 160k¦5¼¦DOS 1.0¦ 1 ¦ 8 (40)¦ 1 ¦ 4 ¦ 64¦ 1 ¦ 320¦Original PC-0, 16k mbd

¦ 320k¦5¼¦DOS 1.1¦ 2 ¦ 8 (40)¦ 1 ¦ 7 ¦112¦ 2 ¦ 360¦PC-1, 64k mbd

¦ 180k¦5¼¦DOS 2.0¦ 1 ¦ 9 (40)¦ 2 ¦ 4 ¦ 64¦ 1 ¦ 640¦PC-2, 256k mbd

¦ 360k¦5¼¦DOS 2.0¦ 2 ¦ 9 (40)¦ 2 ¦ 7 ¦112¦ 2 ¦ 720¦PC/XT

¦ 1.2M¦5¼¦DOS 3.0¦ 2 ¦15 (80)¦ 7 ¦14 ¦224¦ 1 ¦2400¦PC/AT, PC/RT, XT/286

¦ 720k¦3½¦DOS 3.2¦ 2 ¦ 9 (80)¦ 3 ¦ 7 ¦112¦ 2 ¦1440¦Convertible, PS/2 25+

¦1.44M¦3½¦DOS 3.3¦ 2 ¦18 (80)¦ 9 ¦14 ¦224¦ 1 ¦2880¦PS/2 50+

+--

various MS-DOS disk formats:

+--

¦ 200k¦5¼¦ * ¦ 1 ¦10 (40)¦ ¦ ¦ ¦ ¦ ¦

¦ 400k¦5¼¦ * ** ¦ 2 ¦10 (40)¦ ¦ ¦ ¦ ¦ ¦

¦ 800k¦5¼¦ * ¦ 2 ¦10 (80)¦ ¦ ¦ ¦ ¦ ¦

¦ 720k¦2 ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦Zenith SuperSport 2-inch

¦ 720k¦5¼¦DOS2.11¦ 2 ¦ 9 (80)¦ 3 ¦ 7 ¦112¦ 2 ¦1440¦Tandy 2000 (discontinued)

¦2.88M¦3½¦ ¦ 2 ¦36 (80)¦ ¦ ¦ ¦ ¦5760¦Practidisk 2.88mb floppy

¦2720k¦5¼¦ *** ¦ 2 ¦17(192)¦ 8 ¦ ¦272¦ 4 ¦5440¦Pelican (Kodak 3.3Mb)(disc.)

¦5570k¦5¼¦ *** ¦ 2 ¦17(384)¦ 8 ¦ ¦272¦ 4 ¦10880Pelican (Kodak 6.6Mb)(disc.)

+--

* Michtron DS-DOS 2.11 Plus and one version of MS-DOS 3.11 (vendor unknown)

** TallTree JFormat program

*** Pelican driver source calls for 2 sectors/cluster, Norton Utils reports 4.

+--

¦ 400k¦5¼¦DOS2.11¦ 1 ¦10 (80)¦ ¦ ¦ ¦ ¦ 800¦DEC Rainbow SS/HD (disc.)

¦ 720k¦5¼¦DOS2.11¦ 2 ¦variable number of sectors ¦Victor 9000 PC (discont'd)

+--------------------¦per track, more sectors on +----------------------------

 ¦outer tracks than inner ¦

 ¦tracks. Special DSDD drive. ¦

 +----------------------------+

 Some oddball DOS versions specify "zero" heads in their data area. HP's

single-sided disk format (16 256-byte sectors/track, model unknown) uses a

zero-based parameter for the number of heads. Without special device driver

software to "fix" this, these disks are basically unusable by normal DOS.

 A couple of people have reported that the IBM "Gearbox" industrial PC uses

an 800k 3.5 inch floppy with 10 sectors and 80 tracks. I've been unable to

confirm this.

 Files in the data area are not necessarily written sequentially. The data area

space is allocated one cluster at a time, skipping over clusters already

allocated. The first free cluster found is the next cluster allocated,

regardless of its physical location on the disk. This permits the most efficient

utilization of disk space because clusters freed by erasing files can be

allocated for new files. Refer back to the description of the DOS FAT in this

chapter for more information.

 SSDD single sided, double density (160-180k) 5¼

 DSDD double sided, double density (320-360k) 5¼

 DSQD double sided, quad density (720k) 5¼, 3½, 2

 DSHD double sided, high density (1.2-1.44M) 5¼, 3½

 DSED double sided, extra high density (2.88M) 3½

 Much of the trouble with AT 1.2 meg drives has been through the inadverdent

use of quad density disks in the high density drives. The high density disks

use a higher-coercivity media than the quads, and quads are not completely

reliable as 1.2Mb. Make sure you have the correct disk for your application.

ROTATION SPEEDS:

 720k, 3½" (unknown) note: Zenith has discontinued 2" floppies

 720k, 3½" 300 RPM

 1.44Mb, 3½" 300 RPM

 360k, 5¼" 300 RPM

 720k, 5¼" 300 RPM

 1.2mb, 5¼" 360 RPM (even when reading 360k diskettes)

 all 8" 360 RPM

 The Victor 9000's 5¼" floppies could vary their rotational speed as required.

This allowed them to put 720k on a standard 360k floppy, using a constant

density throughout.

 The Central Point CopyIIPC Option Board emulates the Macintosh GCR recording

format by varying the data rate instead of the rotational speed.

HARD DISK LAYOUT .. 8**11

 The DOS hard disk routines perform the following services:

1) Allow multiple operating systems to be installed on the hard disk at the

 same time.

2) Allow a user-selected operating system to be started from the hard disk.

 I) In order to share the hard disk among operating systems, the disk may be

 logically divided into 1 to 4 partitions. The space within a given

 partition is contiguous, and can be dedicated to a specific operating

 system. Each operating system may "own" only one partition in DOS versions

 2.0 through 3.2. DOS 3.3 introduced the "Extended DOS Partition" which

 allows multiple DOS partitions on the same hard disk. FDISK (or a

 similar program from other DOS vendors) utility allows the user to select

 the number, type, and size of each partition. The partition information is

 kept in a partition table that is embedded in the master hard disk boot

 record on the first sector of the disk. The format of this table varies

 from version to version of DOS.

 II) An operating system must consider its partition to be the entire disk,

 and must ensure that its functions and utilities do not access other

 partitions on the disk.

 III) Each partition may contain a boot record on its first sector, and any

 other programs or data that you choose, including a different operating

 system. For example, the DOS FORMAT command may be used to format and

 place a copy of DOS in the DOS partition in the same manner that a

 diskette is formatted. You can use FDISK to designate a partition as

 "active" (bootable). The master hard disk boot record causes that

 partition's boot record to receive control when the system is

 initialized. Additional disk partitions could be FORTH, UNIX, Pick,

 CP/M-86, OS/2 HPFS, Concurrent DOS, Xenix, or the UCSD p-System.

SYSTEM INITIALIZATION ... 8**12

The boot sequence is as follows:

1. System initialization first attempts to load an operating system from

 diskette drive A. If the drive is not ready or a read error occurs, it then

 attempts to read a master hard disk boot record on the first sector of the

 first hard disk in the system. If unsuccessful, or if no hard disk is

 present, it invokes ROM BASIC in an IBM PC or displays a disk error

 message on most compatibles.

2. If initialization is successful, the master hard disk boot record is given

 control and it examines the partition table embedded within it. If one of

 the entries indicates an active (bootable) partition, its boot record is

 read from the partition's first sector and given control.

3. If none of the partitions is bootable, ROM BASIC is invoked on an IBM PC or

 a disk error on most compatibles.

4. If any of the boot indicators are invalid, or if more than one indicator is

 marked as bootable, the message "INVALID PARTITION TABLE "is displayed and

 the system stops.

5. If the partition's boot record cannot be successfully read within five

 retries due to read errors, the message "ERROR LOADING OPERATING SYSTEM"

 appears and the system stops.

6. If the partition's boot record does not contain a valid "signature", the

 message "MISSING OPERATING SYSTEM" appears, and the system stops.

NOTE: When changing the size or location of any partition, you must ensure that

 all existing data on the disk has been backed up. The partitioning program

 will destroy the data on the disk.

 System programmers designing a utility to initialize/manage a hard disk must

provide the following functions at a minimum:

1. Write the master disk boot record/partition table to the disk's first

 sector to initialize it.

2. Perform partitioning of the disk - that is, create or update the partition

 table information (all fields for the partition) when the user wishes

 to create a partition. This may be limited to creating a partition for only

 one type of operating system, but must allow repartitoning the entire disk,

 or adding a partition without interfering with existing partitions (user's

 choice).

3. Provide a means for marking a user-specified partition as bootable and

 resetting the bootable indicator bytes for all other partitions at the same

 time.

4. Such utilities should not change or move any partition information that

 belongs to another operating system.

BOOT RECORD/PARTITION TABLE ... 8**13

 A boot record must be written on the first sector of all hard disks, and

must contain the following:

1. Code to load and give control to the boot record for one of four possible

 operating systems.

2. A partition table at the end of the boot record. Each table entry is 16

 bytes long, and contains the starting and ending cylinder, sector, and head

 for each of four possible partitions, as well as the number of sectors

 preceding the partition and the number of sectors occupied by the partition.

 The "boot indicator" byte is used by the boot record to determine if one of

 the partitions contains a loadable operating system. FDISK initialization

 utilities mark a user-selected partition as "bootable" by placing a value

 of 80h in the corresponding partition's boot indicator (setting all other

 partitions' indicators to 0 at the same time). The presence of the 80h tells

 the standard boot routine to load the sector whose location is contained in

 the following three bytes. That sector is the actual boot record for the

 selected operating system, and it is responsible for the remainder of the

 system's loading process (as it is from the diskette). All boot records are

 loaded at absolute address 0:7C00.

The partition table with its offsets into the boot record is:

+--

¦ Offset ¦ Offset ¦ Offset ¦ ¦

¦from Start¦from Start¦from Start¦ Size ¦ Description

¦ of Disk ¦ of Entry ¦ of Disk ¦ ¦

+----------+----------+----------+--------+------------------------------------

¦ ¦ 00h ¦ 0BEh ¦ 1 byte ¦ boot indicator

¦ ¦ 01h ¦ 0BFh ¦ 1 byte ¦ beginning head

¦ 1BEh ¦ 02h ¦ 0C0h ¦ 1 byte ¦ beginning sector

¦ (part 1) ¦ 03h ¦ 0C1h ¦ 1 byte ¦ beginning cylinder

¦ 16 bytes ¦ 04h ¦ 0C2h ¦ 1 byte ¦ system indicator

¦ ¦ 05h ¦ 0C3h ¦ 1 byte ¦ ending head

¦ ¦ 06h ¦ 0C4h ¦ 1 byte ¦ ending sector

¦ ¦ 07h ¦ 0C5h ¦ 1 byte ¦ ending cylinder

¦ ¦ 08h ¦ 0C6h ¦ 4 bytes¦ relative (starting) sector

¦ ¦ 0Ch ¦ 0DAh ¦ 4 bytes¦ number of sectors

+----------+----------+----------+--------+------------------------------------

¦ ¦ 00h ¦ 0DEh ¦ 1 byte ¦ boot indicator

¦ ¦ 01h ¦ 0DFh ¦ 1 byte ¦ beginning head

¦ 1CEh ¦ 02h ¦ 0E0h ¦ 1 byte ¦ beginning sector

¦ (part 2) ¦ 03h ¦ 0E1h ¦ 1 byte ¦ beginning cylinder

¦ 16 bytes ¦ 04h ¦ 0E2h ¦ 1 byte ¦ system indicator

¦ ¦ 05h ¦ 0E3h ¦ 1 byte ¦ ending head

¦ ¦ 06h ¦ 0E4h ¦ 1 byte ¦ ending sector

¦ ¦ 07h ¦ 0E5h ¦ 1 byte ¦ ending cylinder

¦ ¦ 08h ¦ 0E6h ¦ 4 bytes¦ relative (starting) sector

¦ ¦ 0Ch ¦ 0EAh ¦ 4 bytes¦ number of sectors

+----------+----------+----------+--------+------------------------------------

¦ ¦ 00h ¦ 0FEh ¦ 1 byte ¦ boot indicator

¦ ¦ 01h ¦ 0FFh ¦ 1 byte ¦ beginning head

¦ 1DEh ¦ 02h ¦ 0100h ¦ 1 byte ¦ beginning sector

¦ (part 3) ¦ 03h ¦ 0101h ¦ 1 byte ¦ beginning cylinder

¦ 16 bytes ¦ 04h ¦ 0102h ¦ 1 byte ¦ system indicator

¦ ¦ 05h ¦ 0103h ¦ 1 byte ¦ ending head

¦ ¦ 06h ¦ 0104h ¦ 1 byte ¦ ending sector

¦ ¦ 07h ¦ 0105h ¦ 1 byte ¦ ending cylinder

¦ ¦ 08h ¦ 0106h ¦ 4 bytes¦ relative (starting) sector

¦ ¦ 0Ch ¦ 010Ah ¦ 4 bytes¦ number of sectors

+----------+----------+----------+--------+------------------------------------

¦ ¦ 00h ¦ 010Eh ¦ 1 byte ¦ boot indicator

¦ ¦ 01h ¦ 011Fh ¦ 1 byte ¦ beginning head

¦ 1EEh ¦ 02h ¦ 0110h ¦ 1 byte ¦ beginning sector

¦ (part 4) ¦ 03h ¦ 0111h ¦ 1 byte ¦ beginning cylinder

¦ 16 bytes ¦ 04h ¦ 0112h ¦ 1 byte ¦ system indicator

¦ ¦ 05h ¦ 0113h ¦ 1 byte ¦ ending head

¦ ¦ 06h ¦ 0114h ¦ 1 byte ¦ ending sector

¦ ¦ 07h ¦ 0115h ¦ 1 byte ¦ ending cylinder

¦ ¦ 08h ¦ 0116h ¦ 4 bytes¦ relative (starting) sector

¦ ¦ 0Ch ¦ 011Ah ¦ 4 bytes¦ number of sectors

+----------+---------------------+--------+------------------------------------

¦ 1FEh ¦ ¦ 2 bytes¦ 055AAh signature

+--

 Boot indicator (boot ind): The boot indicator byte must contain 0 for a non-

bootable partition or 80h for a bootable partition. Only one partition can be

marked as bootable at a time.

 System Indicator (sys ind): The sys ind field contains an indicator of the

operating system that "owns" the partition. IBM PC-DOS can only "own" one

partition, though some versions of MSDOS allow all four partitions to be used

by DOS.

 The system indicators are:

 +---+

 ¦ System Indicator (sys ind) ¦

 +---¦

 ¦ 00h ¦ unknown or no partition defined ¦

 +-------+---¦

 ¦ 01h ¦ DOS 12 bit FAT (DOS 2.x all and 3.x+ under 16 Mb) ¦

 ¦ ¦ less than 4086 clusters ¦

 +-------+---¦

 ¦ 02h ¦ Xenix ¦

 +-------+---¦

 ¦ 03h ¦ Xenix ¦

 +-------+---¦

 ¦ 04h ¦ DOS 16 bit FAT (DOS 3.0+. Not recognized by 2.x) ¦

 ¦ ¦ less than 65,536 sectors ¦

 +-------+---¦

 ¦ 05h ¦ extended DOS partition, some 3.2 and all 3.3+ ¦

 ¦ ¦ (pointer to further partition table) ¦

 +-------+---¦

 ¦ 06h ¦ Compaq DOS 3.31, DOS 4.0+ partitions over 32 megs ¦

 ¦ ¦ Digital Research DRDOS 3.4, 3.41 over 32 megs ¦

 +-------+---¦

 ¦ 06h ¦ PC-MOS/386 partitions over 32 megs (NOT compatible ¦

 ¦ ¦ with the DR, Compaq, and MSDOS big partitions! ¦

 +-------+---¦

 ¦ 07h ¦ OS/2 High Performance File System ¦

 +-------+---¦

 ¦ 051h ¦ Ontrack Disk Manager "read/write" partitions ¦

 +-------+---¦

 ¦ 0DBh ¦ DRI Concurrent DOS (>32mb partitions?)¦

 ¦ ¦ DRI Concurrent CP/M? ¦

 +-------+---¦

 ¦ 0E4h ¦ Speedstor, small partitions (?) (under 1024cyl?) ¦

 +-------+---¦

 ¦ 0F2h ¦ 2nd DOS partition, some OEM customized DOS 3.2 ¦

 +-------+---¦

 ¦ 0F4h ¦ Speedstor, large partitions (?) ¦

 +-------+---¦

 ¦ 0FEh ¦ Speedstor, partitions >1024 cylinders ¦

 +---+

 There are ID bytes for proprietary formatting schemes. Some manufacturers

(such as Zenith, Wyse, and Tandon) diddle with these system bytes to implement

more than one DOS partition per disk.

note 1) Xenix doesn't like extended DOS partitions a'la DOS 3.3, limiting you

 to a DOS partition of 32Mb. Xenix doesn't recognize DOS 4.0x at all,

 so to use it you need to boot from a floppy. Early versions of OS/2

 also have this problem.

 2) I have found one source listing Minix partitions as "40" and some

 Unix partitions as "63". I don't know if these are decimal or

 hexadecimal figures.

 Cylinder (CYL) and Sector (S): The 1 byte fields labelled CYL contain the low

order 8 bits of the cylinder number - the high order 2 bits are in the high

order 2 bits of the sector (S) field. This corresponds with the ROM BIOS

interrupt 13h (disk I/O) requirements, to allow for a 10 bit cylinder number.

 The fields are ordered in such a manner that only two MOV instructions are

required to properly set up the DX and CX registers for a ROM BIOS call to

load the appropriate boot record (hard disk booting is only possible from the

first hard disk in the system, where a BIOS drive number of 80h corresponds

to the boot indicator byte).

 All partitions are allocated in cylinder multiples and begin on sector 1,

head 0, with the exception that the partition that is allocated at the beginning

of the disk starts at sector 2, to account for the hard disk's master boot

record.

 Relative (starting) Sector: The number of sectors preceding each partition

on the disk is kept in this 4 byte field. This value is determined by counting

the sectors beginning with cylinder 0, sector 1, head 0 of the disk, and

incrementing the sector, head, and then track values up to the beginning of

the partition. This, if the disk has 17 sectors per track and 4 heads, and the

second partition begins at cylinder 1, sector 1, head 0, then the partition's

starting relative sector is 68 (decimal) - there were 17 sectors on each of 4

heads on 1 track allocated ahead of it. The field is stored with the least

significant word first.

 Number of sectors (#sects): The number of sectors allocated to the partition

is kept in the "# of sects" field. This is a 4 byte field stored least

significant word first.

 Signature: The last 2 bytes of the boot record (55AAh) are used as a signature

to identify a valid boot record. Both this record and the partition boot record

are required to contain the signature at offset 1FEh.

HARD DISK TECHNICAL INFORMATION 8**14

 Western Digital's hard disk installation manuals make the claim that MSDOS

can support only 2 hard drives. This is entirely false, and their purpose for

making the claim is unclear. DOS merely performs a function call pointed at

the hard disk driver, which is normally in one of three locations; a ROM at

absolute address C:800, the main BIOS ROM if the machine is an AT, or a device

driver installed through the CONFIG.SYS file. Two hard disk controller cards

can normally not reside in the same machine due to lack of interrupt

arbitration. Perstor's ARLL controller and some cards marketed by Novell can

coexist with other controllers. Perstor's technical department has had four

controllers and eight hard disks in the same IBM XT functioning concurrently.

 A valid hard disk has a boot record arranged in the following manner:

 db drive ; 0 or 80h (80h marks a bootable, active

 partition)

 db head1 ; starting head

 dw trksec1 ; starting track/sector (CX value for INT 13)

 db system ; SYS IND ID from table above

 db head2 ; ending head

 dw trksec2 ; ending track/sector

 dd sector1 ; absolute # of starting sector

 dd sector2 ; absolute # of last sector

 The master disk boot record invokes ROM BASIC if no indicator byte reflects a

bootable system.

 When a partition's boot record is given control, it is passed its partition

table entry address in the DS:SI registers.

DETERMINING HARD DISK ALLOCATION 8**15

DOS determines disk allocation using the following formula:

 D * BPD

 TS - RS - -----------

 BPS

 SPF = ------------------------------

 BPS * SPC

 CF + --------------

 BPC

where:

 TS Total number of sectors on the disk

 RS The number of sectors at the beginning of the disk that are

 reserved for the boot record. DOS normally reserves 1 sector.

 D The number of directory entries in the root directory.

 BPD The number of bytes per directory entry. This is always 32.

 BPS The number of bytes per logical sector. Typically 512, but you can

 specify a different number with VDISK.

 CF The number of FATS per disk. Usually 2. VDISK is 1.

 SPF The number of sectors per FAT. Maximum 64.

 SPC The number of sectors per allocation unit (cluster).

 BPC The number of bytes per FAT entry. BPC is 1.5 for 12 bit FATs.

 2 for 16 bit FATS.

To calculate the minimum partition size that will force a 16-bit FAT:

 CYL = (max clusters * 8)/(HEADS * SPT)

where:

 CYL number of cylinders on the disk

 max clusters 4092 (maximum number of clusters for a 12 bit FAT)

 HEADS number of heads on the hard disk

 SPT sectors per track (normally 17 on MFM)

 DOS 2.0 through 3.3 limit partition sizes to 32 megabytes. The limit arises

from the fact that DOS does things by sector number, and each sector is stored

as a word. So the largest sector number DOS can count to is 64k. As each

sector is 512 bytes long, 64k * .5k = 32Mb. The easiest way for an aftermarket

disk handler to break the 32Mb barrier is probably to increase the sector size

- with 2k sectors, maximum partiton size increases to 128Mb. However, the BIOS

boot routines and IBMBIO.COM are hardwired for 512 byte sectors, so you won't

be able to boot from a drive with oversize sectors. That's why Disk Manager

formats a small boot partition by default.

 DOS 2.x uses a "first fit" algorithm when allocating file space on the hard

disk. Each time an application requests disk space, it will scan from the

beginning of the FAT until it finds a contiguous peice of storage large enough

for the file.

 DOS 3.x+ keeps a pointer into the disk space, and begins its search from the

point it last left off. This pointer is lost when the system is rebooted.

This is called the "next fit" algorithm. It is faster than the first fit and

helps minimize fragmentation.

 In either case, if the FCB function calls are used instead of the handle

function calls, the file will be broken into pieces starting with the first

available space on the disk.

BIOS Disk Routines .. 8**16

+---+

¦Interrupt 13h Disk I/O - access the disk drives (floppy and hard disk) ¦

+---+

(0:004Ch) 1) These calls do not try rereading disk if an error is returned.

 2) In the IBM OS/2 Tech Ref Volume 1, page 7-33, under "DOS

 Environment Software Interrupt Support", it lists:

 13h disk/diskette for non-removable media only, these

 functions are supported:

 01h read status

 02h read sectors

 0Ah read long

 15h read DASD (disk) type

 3) On hard disk systems these calls may be vectored through the

 int 40h hard disk BIOS.

Function 00h Reset - reset the disk controller chip

entry AH 00h

 DL drive (if bit 7 is set both hard disks and floppy disks reset)

 00h-7Fh floppy disk

 80h-0FFh hard disk

return AH status (see 01h below)

note 1) Forces controller chip to recalibrate read/write heads.

 2) Some systems (Sanyo 55x, Columbia MPC) this resets all drives.

 3) This function should be called after a failed floppy disk Read, Write,

 Verify, or Format request before retrying the operation.

 4) If called with DL >= 80h (i.e., selecting a hard drive), the floppy

 controller and then the hard disk controller are reset.

 5) Function 0Dh allows the hard disk controller to be reset without

 affecting the floppy controller.

Function 01h Get Status of Disk System

entry AH 01h

 DL drive (hard disk if bit 7 set)

 00h-7Fh floppy disk

 80h-0FFh hard disk

return AH 00h

 AL status of most recent disk operation

 00h successful completion, no errors

 01h bad command

 02h address mark not found

 03h tried to write on write-protected disk (floppy only)

 04h sector not found

 05h reset failed (hard disk)

 06h diskette removed or changed (floppy only)

 07h bad parameter table (hard disk)

 08h DMA overrun (floppy only)

 09h attempt to DMA across 64K boundary

 0Ah bad sector detected (hard disk)

 0Bh bad track detected (hard disk)

 0Ch unsupported track or media type not found (floppy disk)

 0Dh invalid number of sectors on format (hard disk)

 0Eh control data address mark detected (hard disk)

 0Fh DMA arbitration level out of range (hard disk)

 10h uncorrectable CRC/EEC on read

 11h ECC corrected data error (hard disk)

 20h controller failure

 40h seek failed

 80h timeout

 0AAh drive not ready (hard disk)

 0BBh undefined error (hard disk)

 0CCh write fault (hard disk)

 0E0h status error (hard disk)

 0FFh sense operation failed (hard disk)

note 1) For hard disks, error code 11h (ECC data error) indicates that a

 recoverable error was detected during a preceding int 13h fn 02h

 (Read Sector) call.

Function 02h Read Sectors - read one or more sectors from diskette

entry AH 02h

 AL number of sectors to read

 BX address of buffer (ES=segment)

 CH track (cylinder) number (0-39 or 0-79 for floppies)

 (for hard disk, bits 8,9 in high bits of CL)

 CL sector number (1 to 18, not value checked)

 DH head number (0 or 1)

 DL drive (0=A, 1=B, etc.) (bit 7=0) (drive 0-7)

 00h-7Fh floppy disk

 80h-FF0h hard disk

 ES:BX address to store/fetch data (buffer to fill)

 [0000:0078] dword pointer to diskette parameters

return CF clear successful

 AL number of sectors transferred

 set error

 AH status (00h, 02h, 03h, 04h, 08h, 09h, 10h,

 0Ah, 20h, 40h, 80h)

note 1) Number of sectors begins with 1, not 0.

 2) Trying to read zero sectors is considered a programming error; results

 are not defined.

 3) For hard disks, the upper 2 bits of the 10-bit cylinder number are

 placed in the upper 2 bits of register CL.

 4) For hard disks, error code 11h indicates that a read error occurred

 that was corrected by the ECC algorithm; in this case, AL contains the

 burst length. The data read is good within the limits of the ECC code.

 If a multisector transfer was requested, the operation was terminated

 after the sector containing the read error.

 5) For floppy drives, an error may result from the drive motor being off

 at the time of the request. The BIOS does not automatically wait for

 the drive to come up to speed before attempting the read operation. The

 calling program should reset the floppy disk system with function 00h

 and retry the operation three times before assuming that the error

 results from some other cause.

Function 03h Write Sectors - write from memory to disk

entry AH 03h

 AL number of sectors to write (1-8)

 CH track number (for hard disk, bits 8,9 in high bits of CL)

 CL beginning sector number

 (if hard disk, high two bits are high bits of track #)

 DH head number (head 0=0)

 DL drive number (0-7)

 00h-7Fh floppy disk

 80h-FF0h hard disk

 ES:BX address of buffer for data

return CF clear success

 AL number of sectors written

 set error

 AH status (see 01h above)

note 1) Number of sectors begins with 1, not 0.

 2) Trying to write zero sectors is considered a programming error; results

 are not defined.

 3) For hard disks, the upper 2 bits of the 10-bit cylinder number are

 placed in the upper 2 bits of register CL.

 4) For floppy drives, an error may result from the drive motor being off

 at the time of the request. The BIOS does not automatically wait for

 the drive to come up to speed before attempting the read operation. The

 calling program should reset the floppy disk system with function 00h

 and retry the operation three times before assuming that the error

 results from some other cause.

Function 04h Verify - verify that a write operation was successful

entry AH 04h

 AL number of sectors to verify (1-8)

 CH track number (for hard disk, bits 8,9 in high bits of CL)

 CL beginning sector number

 DH head number

 DL drive number (0-7)

 DL drive number (0-7)

 00h-7Fh floppy disk

 80h-FF0h hard disk

 ES:BX address of buffer for data

return CF set on error

 AH status (see 01h above)

 AL number of sectors verified

note 1) With IBM PC, XT, and AT with ROM BIOS earlier than 11/15/85, ES:BX

 should point to a valid buffer.

 2) For hard disks, the upper 2 bits of the 10-bit cylinder number are

 placed in the upper 2 bits of register CL.

 3) This function can be used to test whether a readable media is in a

 floppy drive. An error may result from the drive motor being off at the

 time of the request since the BIOS does not automatically wait for the

 drive to come up to speed before attempting the verify operation. The

 requesting program should reset the floppy disk system with function

 00h and retry the operation three times before assuming that a readable

 disk is not present.

Function 05h Format Track - write sector ID bytes for 1 track (floppy disk)

entry AH 05h

 AL number of sectors to create on this track

 interleave (for XT hard disk only)

 CH track (or cylinder) number (bits 8,9 in high bits of CL)

 CL sector number

 DH head number (0, 1)

 DL drive number (0-3)

 00h-7Fh floppy disk

 80h-0FFh hard disk

 ES:BX pointer to 4-byte address field (C-H-R-N) (except XT hard disk)

 byte 1 = (C) cylinder or track

 byte 2 = (H) head

 byte 3 = (R) sector

 byte 4 = (N) bytes/sector (0 = 128, 1 = 256, 2 = 512, 3 = 1024)

return CF set if error occurred

 AH status code (see 01h above)

note 1) Not valid for ESDI hard disks on PS/2.

 2) For floppy disks, the number of sectors per track is taken from the

 BIOS floppy disk parameter table whose address is stored in the vector

 for int 1Eh.

 3) When this function is used for floppies on ATs or the PS/2, it should

 be preceded by a call to int 13h/fn 17h to select the type of media to

 format.

 4) For hard disks, the upper 2 bits of the 10-bit cylinder number are

 placed in the upper 2 bits of CL.

 5) On the XT/286, AT, and PS/2 hard disks, ES:BX points to a 512-byte

 buffer containing byte pairs for each physical disk sector as follows:

 Byte Contents

 0 00h good sector

 80h bad sector

 1 sector number

 For example, to format a track with 17 sectors and an interleave of

 two, ES:BX would point to the following 34-byte array at the beginning

 of a 512-byte buffer:

 db 00h, 01h, 00h, 0Ah, 00h, 02h, 00h, 0Bh, 00h, 03h, 00h, 0Ch

 db 00h, 04h, 00h, 0Dh, 00h, 05h, 00h, 0Eh, 00h, 06h, 00h, 0Fh

 db 00h, 07h, 00h, 10h, 00h, 08h, 00h, 11h, 00h, 09h

Function 06h Hard Disk - format track and set bad sector flags

 (PC2, PC-XT, and Portable)

entry AH 06h

 AL interleave value (XT only)

 CH cylinder number (bits 8,9 in high bits of CL)

 CL sector number

 DH head

 DL drive (80h-0FFh for hard disk)

 ES:BX 512 byte format buffer

 the first 2*(sectors/track) bytes contain f,n for each sector

 f 00h good sector

 80h bad sector

 n sector number

return CF error

 AH status code (see 01h above)

Function 07h Hard Disk - format the drive starting at the desired track

 (PC2, PC-XT and Portable)

entry AH 07h

 AL interleave value (XT only) (01h-10h)

 CH cylinder number (bits 8,9 in high bits of CL) (00h-03FFh)

 CL sector number

 DH head number (0-7)

 DL drive number (80h-0FFh, 80h=C, 81h=D,...)

 ES:BX format buffer, size = 512 bytes

 the first 2*(sectors/track) bytes contain f,n for each sector

 f 00h good sector

 80h bad sector

 n sector number

return CF set on error

 AH status code (see 01h above)

note Award AT BIOS routines are extended to handle more than 1024 cylinders.

 AL number of sectors

 CH cylinder numberm low 8 bits

 CL sector number bits 0-5, bits 6-7 are high 2 cylinder bits

 DH head number (bits 0-5) bits 6-7 are extended high cyls (>1024)

 DL drive number (0-1 for diskette, 80h-81h for hard disk)

 ES:BX transfer address

Function 08h Read Drive Parameters (except PC, Jr)

entry AH 08h

 DL drive number

 00h-7Fh floppy disk

 80h-0FFh hard disk

return CF set on error

 AH status code (see above)

 BL drive type (AT/PS2 floppies only)

 01h if 360 Kb, 40 track, 5¼"

 02h if 1.2 Mb, 80 track, 5¼"

 03h if 720 Kb, 80 track, 3½"

 04h if 1.44 Mb, 80 track, 3½"

 CH low 8 bits of maximum useable value for cylinder number

 CL bits 6-7 high-order 2 bits of maximum cylinder number

 0-5 maximum sector number

 DH maximum usable value for head number

 DL number of consecutive acknowledging drives (0-2)

 ES:DI pointer to drive parameter table

note 1) On the PC and PC/XT, this function is supported on hard disks only.

 2) The Columbia MPC supports functions 6-14 for its hard disk. It returns

 drive information, same as int 13 function 8, except that the BL and

 ES:DI values are omitted and AL <- burst length.

Function 09h Initialize Two Fixed Disk Base Tables (XT, AT, XT/286, PS/2)

 (install nonstandard drive)

entry AH 09h

 DL 80h-0FFh hard disk number

return CF set on error

 AH status code (see 01h above)

 For PC, XT hard disks, the disk parameter block format is:

 00h-01h maximum number of cylinders

 02h maximum number of heads

 03h-04h starting reduced write current cylinder

 05h-06h starting write precompensation cylinder

 07h maximum ECC burst length

 08h drive options

 bits 7 1 disable disk access retries

 6 1 disable ECC retries

 3-5 set to 0

 0-2 drive option

 09h standard timeout value

 0Ah timeout value for format drive

 0Bh timeout value for check drive

 0Ch-0Fh reserved

 For AT and PS/2 hard disks:

 00h-01h maximum number of cylinders

 02h maximum number of heads

 03h-04h reserved

 05h-06h starting write precompensation cylinder

 07h maximum ECC burst length

 08h drive options byte

 bits 6-7 nonzero (10, 01, or 11) if retries disabled

 5 1 if manufacturer's defect map present at

 maximum cylinder + 1

 4 not used

 3 1 if more than 8 heads

 0-2 not used

 09h-0Bh reserved

 0Ch-0Dh landing zone cylinder

 0Eh sectors per track

 0Fh reserved

note 1) For the XT, int 41h must point to the Disk Parameter Block.

 2) For the AT and PS/2, int 41h points to table for drive 0 and int 46h

 points to table for drive 1.

 3) Initializes the hard disk controller for subsequent I/O operations

 using the values found in the BIOS disk parameter block(s).

 4) This function is supported on hard disks only.

Function 0Ah Read Long (Hard disk) (XT, AT, XT/286, PS/2)

entry AH 0Ah

 CH cylinder number (bits 8,9 in high bits of CL)

 CL sector number (upper 2 bits of cyl # in upper 2 bits of CL)

 DH head number

 DL drive ID (80h-0FFh hard disk)

 ES:BX pointer to buffer to fill

return CF set on error

 AH status code (see 01h above)

 AL number of sectors actually transferred

note 1) A "long" sector includes a 4 byte EEC (Extended Error Correction) code.

 2) Used for diagnostics only on PS/2 systems.

 3) This function is supported on fixed disks only.

 4) Unlike the normal Read Sector (02h) function, ECC errors are not

 automatically corrected. Multisector transfers are terminated after any

 sector with a read error.

Function 0Bh Write Long (XT, AT, XT/286, PS/2)

entry AH 0Bh

 AL number of sectors

 CH cylinder (bits 8,9 in high bits of CL)

 CL sector number

 DH head number

 DL drive ID (80h-0FFh hard disk)

 ES:BX pointer to buffer containing data

return CF set on error

 AH status code (see 01h above)

 AL number of sectors actually transferred

note 1) A "long" sector includes a 4 byte EEC (Extended Error Correction) code.

 2) Used for diagnostics only on PS/2 systems.

 3) Valid for hard disks only.

Function 0Ch Seek To Cylinder (except PC, PCjr)

entry AH 0Ch

 CH lower 8 bits of cylinder

 CL upper 2 bits of cylinder in bits 6-7

 DH head number

 DL drive number (0 or 1) (80h-0FFh for hard disk)

return CF set on error

 AH status code (see 01h above)

note 1) Positions heads over a particular cylinder, but does not move any data.

 2) This function is supported on hard disks only.

 3) The upper 2 bits of the 10-bit cylinder number are placed in the upper

 2 bits of CL.

 4) The Read Sector, Read Sector Long, Write Sector, and Write Sector Long

 functions include an implied seek operation and need not be preceded by

 an explicit call to this function.

Function 0Dh Alternate Hard Disk Reset (except PC, PCjr)

entry AH 0Dh

 DL hard drive number (80h-0FFh hard disk)

return CF set on error

 AH status code (see 01h above)

note 1) Not for PS/2 ESDI hard disks.

 2) Resets the hard disk controller, recalibrates attached drives (moves

 the read/write arm to cylinder 0), and prepares for subsequent disk I/O.

 3) This function is for hard disks only. It differs from fn 00h by not

 resetting the floppy disk controller.

Function 0Eh Read Sector Buffer (XT, Portable, PS/2)

entry AH 0Eh

 ES:BX pointer to buffer

return CF set on error

 AH status code (see 01h above)

 AL number of sectors actually transferred

note 1) Transfers controller's sector buffer. No data is read from the drive.

 2) Used for diagnostics only on PS/2 systems.

 3) This fn is supported by the XT's hard disk adapter only. It is "not

 defined" for hard disk adapters on the AT or PS/2.

Function 0Fh Write sector buffer (XT, Portable)

entry AH 0Fh

 ES:BX pointer to buffer

return CF set if error

 AH status code (see 01h above)

 AL number of sectors actually transferred

note 1) Should be called before formatting to initialize the controller's

 sector buffer.

 2) Used for diagnostics only on PS/2 systems.

 3) Transfers data from system RAM to the hard disk adapter's internal

 sector buffer.

 4) No data is written to the physical disk drive.

 5) This fn is for the XT hard disk controller only. It is "not defined"

 for AT or PS/2 controllers.

Function 10h Test For Drive Ready (XT, AT, XT/286, PS/2)

entry AH 10h

 DL hard drive number 0 or 1 (80h-0FFh)

return CF set on error

 AH status code (see 01h above)

note 1) Tests whether the specified hard disk drive is operational and returns

 the drive's status.

 2) This function is supported on hard disks only.

 3) Perstor and Novell controllers allow more than one controller. Does

 not work for multiple Perstor controllers. (reports first two drives

 only).

 4) Does not work with network drives.

Function 11h Recalibrate Drive (XT, AT, XT/286, PS/2)

entry AH 11h

 DL hard drive number (80h-0FFh hard disk)

return CF set on error

 AH status code (see 01h above)

note 1) Causes the HD controller to recalibrate itself for the specified drive,

 positioning the read/arm to cylinder 0, and returns the drive's status.

 2) This function is for hard disks only.

Function 12h Controller RAM Diagnostics (XT, Portable, PS/2)

entry AH 12h

return CF set on error

 AH status code (see fn 01h above)

note 1) Used for diagnostics only on PS/2 systems.

 2) Makes the hard disk controller carry out a built-in diagnostic test on

 its internal sector buffer.

Function 13h Controller Drive Diagnostic (XT, Portable, PS/2)

entry AH 13h

return CF set on error

 AH status code (see 01h above)

note 1) Used for diagnostics only on PS/2 systems.

 2) Causes HD controller to run internal diagnostic tests of the attached

 drive, indicating whether the test was passed by the returned status.

 3) This function is supported on XT HDs only.

Function 14h Controller Internal Diagnostic (AT, XT/286)

entry AH 14h

return CF set on error

 AH status code (see 01h above)

note 1) OEM is Western Digital 1003-WA2 hard/floppy combination controller

 in AT and XT/286.

 2) Used for diagnostics only in PS/2 systems.

 3) Causes HD controller to do a built-in diagnostic self-test, indicating

 whether the test was passed by the returned status.

 4) This function is supported on hard disks only.

Function 15h Get Disk Type (except PC and XT)

entry AH 15h

 DL drive ID

 00h-7Fh floppy disk

 80h-0FFh fixed disk

return CF set on error

 AH error code (see 01h above)

 AH disk type

 00h no drive is present

 01h diskette, no change detection present

 02h diskette, change detection present

 03h hard disk

 CX:DX number of 512-byte sectors

note 1) Returns a code indicating the type of disk referenced by the specified

 drive code.

 2) This function is not supported on the PC or XT.

Function 16h Get Disk Change Status (diskette) (except PC, XT, & Jr)

entry AH 16h

 DL drive to check

return CF set on error

 AH disk change status

 00h no disk change

 01h disk changed

 DL drive that had disk change (00h-07Fh floppy disk)

note Returns the status of the change line, indicating whether the disk in

 the drive may have been replaced since the last disk access. If this

 function returns with CF set, the disk has not necessarily been

 changed; the change line can be activated by simply unlocking and

 relocking the disk drive door without removing the floppy disk.

Function 17h Set Disk Type for Format (diskette) (except PC and XT)

entry AH 17h

 AL 00h not used

 01h 160, 180, 320, or 360Kb diskette in 360kb drive

 02h 360Kb diskette in 1.2Mb drive

 03h 1.2Mb diskette in 1.2Mb drive

 04h 720Kb diskette in 720Kb drive

 DL drive number (0-7)

return CF set on error

 AH status of operation (see 01h above)

note 1) This function is probably enhanced for the PS/2 series to detect

 1.44 in 1.44 and 720k in 1.44.

 2) This function is not supported for floppy disks on the PC or XT.

 3) If the change line is active for the specified drive, it is reset.

 4) The BIOS sets the data rate for the specified drive and media type.

 The rate is 250k/sec for double-density media and 500k/sec for high

 density media. The proper hardware is required.

Function 18h Set Media Type For Format (diskette) (AT, XT2, XT/286, PS/2)

entry AH 18h

 CH lower 8 bits of number of tracks

 CL high 2 bits of number of tracks (6,7) sectors per track

 (bits 0-5)

 DL drive number (0-7)

return CF clear no errors

 AH 00h if requested combination supported

 01h if function not available

 0Ch if not suppported or drive type unknown

 80h if there is no media in the drive

 ES:DI pointer to 11-byte disk parameter table for media type

 CF set error code (see 01h above)

note 1) A floppy disk must be present in the drive.

 2) This function should be called prior to formatting a disk with Int 13h

 Fn 05h so the BIOS can set the correct data rate for the media.

 3) If the change line is active for the specified drive, it is reset.

Function 19h Park Hard Disk Heads (PS/2)

entry AH 19h

 DL drive number (80h-0FFh)

return CF set on error

 AH error code (see fn 01h)

note This function is defined for PS/2 fixed disks only.

Function 1Ah ESDI Hard Disk - Low Level Format (PS/2)

entry AH 1Ah

 AL Relative Block Address (RBA) defect table count

 00h no errors on disk

 01h+ number of disk errors

 CL format modifiers byte

 bits 0 ignore primary defect map

 1 ignore secondary defect map

 2 update secondary defect map

 3 perform extended surface analysis

 4 generate periodic interrupt after each cylinder format

 5 reserved - must be 0

 6 reserved - must be 0

 7 reserved - must be 0

 DL drive (80h-0FFh)

 ES:BX pointer to RBA defect table

return CF set on error

 AH error code (see fn 01h above)

note 1) Initializes disk sector and track address fields on a drive attached

 to the IBM "ESDI Fixed Disk Drive Adapter/A."

 2) If periodic interrupt selected, int 15h/fn 0Fh is called after each

 cylinder is formatted

 3) If bit 4 of CL is set, Int 15h, AH=0Fh, AL=phase code after each

 cylinder is formatted or analyzed. The phase code is defined as:

 0 reserved

 1 surface analysis

 2 formatting

 4) If bit 2 of CL is set, the drive's secondary defect map is updated to

 reflect errors found during surface analysis. If both bit 2 and bit 1

 are set, the secondary defect map is replaced.

 5) For an extended surface analysis, the disk should first be formatted by

 calling this function with bit 3 cleared and then analyzed by calling

 this function with bit 3 set.

Function 1Bh ESDI Hard Disk - Get Manufacturing Header (PS/2)

entry AH 1Bh

 AL number of record

 DL drive

 ES:BX pointer to buffer for manufacturing header (defect list)

return CF set on error

 AH status

note Manufacturing header format (Defect Map Record format) can be found

 in the "IBM 70Mb, 115Mb Fixed Disk Drives Technical Reference."

Function 1Ch ESDI Hard Disk - Get Configuration (PS/2)

entry AH 1Ch

 AL 0Ah Get Device Configuration

 DL drive

 ES:BX pointer to buffer for device configuration

 (drive physical parameter)

 0Bh Get Adapter Configuration

 ES:BX pointer to buffer for adapter configuration

 0Ch Get POS Information

 ES:BX pointer to POS information

 0Dh unknown

 0Eh Translate RBA to ABA

 CH low 8 bits of cylinder number

 CL sector number, high two bits of cylinder number

 in bits 6 and 7

 DH head number

 DL drive number

 ES:BX pointer to ABA number

return CF set on error

 AH status (see 01h)

note 1) Device configuration format can be found in IBM ESDI Fixed Disk Drive

 Adapter/A Technical Reference.

 2) ABA (absolute block address) format can be found in IBM ESDI Adapter

 Technical Reference by using its Device Configuration Status Block.

Function 1Dh IBMCACHE.SYS (PS/2 50+)

entry AH 1Dh

other parameters unknown

note IBMCACHE.SYS comes on the setup disk for MCA-bus PS/2 machines.

Function 20h Western Digital HD SuperBIOS

entry AH 20h

other parameters unknown

note SuperBIOS may be purchased separately from Western Digital and added

 to standard HD controllers. SuperBIOS contains additional setup

 tables and parameters.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C H A P T E R N I N E

 INSTALLABLE DEVICE DRIVERS

 C O N T E N T S

Device Driver Format .. 9**

Types of Devices .. 9**

 Character Devices ... 9**

 Block Devices ... 9**

Device Header ... 9**

 Pointer to Next Device Header Field 9**

 Attribute Field ... 9**

 Bits 0 and 1 .. 9**

 Bit 2 ... 9**

 Bit 3 ... 9**

 Bit 13 .. 9**

 Bit 14 .. 9**

 Bit 15 .. 9**

 Pointer to Strategy and Interrupt Routines 9**

 Name/Unit Field ... 9**

Creating a Device Driver .. 9**

Installing Device Drivers ... 9**

 Installing Character Devices 9**

 Installing Block Devices .. 9**

Request Header .. 9**

 Unit Code Field ... 9**

 Command Code Field .. 9**

 Status Field .. 9**

Device Driver Functions ... 9**

 INIT .. 9**

 MEDIA CHECK ... 9**

 Media Descriptor Byte ... 9**

 BUILD BPB (BIOS Parameter Block) 9**

 INPUT OR OUTPUT ... 9**

 NONDESTRUCTIVE INPUT NO WAIT 9**

 STATUS .. 9**

 FLUSH ... 9**

 OPEN or CLOSE (DOS 3.0+) .. 9**

 REMOVEABLE MEDIA (DOS 3.0+) 9**

The CLOCK$ Device ... 9**

DEVICE DRIVER FORMAT+--

 A device driver is a handler for communication between the system software

and hardware devices. The motherboard ROM and IBMBIO.COM or IO.SYS files

contain the basic drivers for allowing DOS to talk to the console, disk drives,

serial and parallel ports, clock, and other resources.

 DOS has five builtin drivers, STDIN, STDOUT, STERR, STDPRN, or STDAUX. An

"installable" driver may be loaded in the CONFIG.SYS file, and either replace

one of the builtin drivers or define a new resource, such as a mouse or

expanded memory driver.

 The device driver is a COM (memory image) file that contains all of the code

needed to control an add-in device. An EXE file should not be used since the

EXE loader in some DOS 2.x versions is part of COMMAND.COM, which is not

present when the device driver is being loaded by IBMBIO.COM or IO.SYS. EXE

format drivers could be used in DOS 3.x+, but there is generally no reason to

do so. The COM file must not load at the usual ORG 100h. Since the driver does

not use the Program Segment Prefix, it is simply loaded without offset,

therefore the driver file must have an origin of 0. Most references advise

"ORG 0 or no ORG statement", however with the advent of many new assemblers on

the market, some of which default to .COM files, specifically stating "ORG 0"

may eliminate problems. Driver files should not have a declared stack segment.

 DOS can install the device driver anywhere in memory, so care must be taken

in any FAR memory references. You should not expect that your driver will be

loaded in the same place every time.

TYPES OF DEVICES+--

 There are two types of devices: Character devices and Block devices. Their

attributes are as follows:

 Character devices are designed to do serial I/O in a byte-by-byte manner.

These devices have names like CON, AUX, or PRN, and you can open channels

(handles or FCBs) to do I/O much like a disk file. I/O may be in either cooked

or raw mode. (see Chapter 7 for discussion of cooked and raw modes). Because

character devices have only one name, they can only support one device.

 Block devices are normally implemented as disk drives. They can do random I/O

in pieces called blocks, which are usually the physical sector size of the disk.

These devices are not named as character devices are, and cannot be opened

directly. Instead they are accessed by using drive letters such as A, B, C,

etc. Block devices can have units within them. In this way, a single block

driver can be responsible for one or more disk drives. For example, the first

block device driver can be responsible for drives A, B, C, and D. This means it

has four units defined and therefore takes up four drive letters. The position

of the driver in the chain of all drives determines the way in which the drive

letters correspond, i.e, if a second block device driver defines three units,

then those units are E, F, and G.

 DOS 1.x allows 16 block devices. DOS 2.x allows 63, and DOS 3.x allows 26. It

is recommended that drivers limit themselves to 26 devices for compatibility

with DOS 3.x and 4.x. When DOS 2.x passes the Z: drivespec, the drivespecs get

a little wierd, such as ^, [, or #. DOS 3.x+ will return an error message.

CREATING A DEVICE DRIVER+--

 To create a device driver that DOS can install, you must do the following:

1) Create a memory image (COM) file with a device header at the start of the

 file.

2) Originate the code (including the device header) at 0, instead of 100h.

3) Set the next device header field. Refer to "Pointer to Next Device Header

 Attribute Field" for more information.

4) Set the attribute field of the device header. Refer to "Attribute Field" for

 more information.

5) Set the entry points for the interrupt and strategy routines.

6) Fill in the name/unit field with the name of the character device or the

 unit number of the block device.

 DOS always processes installable character device drivers before handling the

default devices. So to install a new CON device, simply name the device CON.

Be sure to set the standard input device and standard output device bits in

the attribute field of a new CON device. The scan of the device list stops on

the first match so the installable device driver takes precedence. For

instance, installing ANSI.SYS replaces the builtin CON driver.

 DOS doesn't care about the position of installed character devices versus

block devices.

STRUCTURE OF A DEVICE DRIVER+--

 A device driver consists of three major parts:

 a device header

 a strategy routine

 an interrupt routine

DEVICE HEADER

 The driver has a special header to identify it as a device and to define the

strategy and interrupt entry points and its various attributes. This header is

located at the beginning of the file. It contains a pointer to the next driver

in the chain, the attributes of the device, offsets into the strategy and

interrupt routines, and the device ID.

 This is the format of the device header:

+--+

¦ D E V I C E H E A D E R ¦

+--¦

¦Offset ¦ Length ¦ Description ¦

+-------+--------+---¦

¦ 00h ¦ word ¦ Pointer to next device header field, offset value ¦

+-------+--------+---¦

¦ 02h ¦ word ¦ Pointer to next device header field, segment value ¦

+-------+--------+---¦

¦ 04h ¦ word ¦ Attribute ¦

+-------+--------+---¦

¦ 06h ¦ word ¦ Pointer to device strategy routine (offset only) ¦

+-------+--------+---¦

¦ 08h ¦ word ¦ Pointer to device interrupt routine (offset only) ¦

+-------+--------+---¦

¦ 0Ah ¦8 bytes ¦ Name/Unit field ¦

+--+

POINTER TO NEXT DEVICE HEADER FIELD

 The device header field is a pointer to the device header of the next device

driver. It is a doubleword field that is set by DOS at the time the device

driver is loaded. The first word is the offset and the second word is the

segment.

 If you are loading only one device driver, set the device header field to -1

before loading the device. If you are loading more than one device driver, set

the first word of the device driver header to the offset of the next device

driver's header. Set the device driver header field of the last device driver

to -1.

ATTRIBUTE FIELD

 The attribute field is a word field used to identify the type of device this

driver is responsible for. This field distinguishes between block and

character devices and determines is selected devices are given special

treatment. The attributes are:

+--+

¦ A T T R I B U T E F I E L D ¦

+--¦

¦ word ¦ attr. ¦ ¦

+----------+-------¦ description ¦

¦ bits ¦ set ¦ ¦

+----------+-------+---¦

¦ 0 ¦ 0 ¦ not current standard input device ¦

¦ ¦ 1 ¦ current standard input device ¦

+----------+-------+---¦

¦ 1 ¦ 0 ¦ not current standard output device ¦

¦ ¦ 1 ¦ current standard output device ¦

+----------+-------+---¦

¦ 2 ¦ 0 ¦ not current NUL device ¦

¦ ¦ 1 ¦ current NUL device ¦

+----------+-------+---¦

¦ 3 ¦ 0 ¦ not current CLOCK device ¦

¦ ¦ 1 ¦ current CLOCK device ¦

+----------+-------+---¦

¦ 4 ¦ 0 ¦ standard CON I/O routines should be used ¦

¦ ¦ 1 ¦ fast screen I/O (int 29h) should be used ¦

+----------+---¦

¦ 5 - 10 ¦ "reserved for DOS" - unknown - should be set to 0 ¦

+----------+---¦

¦ 11 ¦ 0 ¦ doesn't support removeable media (default for DOS 2.x) ¦

¦ ¦ 1 ¦ supports removeable media (DOS 3.0+ only) ¦

+----------+---¦

¦ 12 ¦ "reserved for DOS" - unknown - should be set to 0 ¦

+----------+---¦

¦ 13 ¦ 0 ¦ IBM format (block devices) ¦

¦ ¦ 1 ¦ non-IBM format (block devices) ¦

¦ ¦ 1 ¦ output till busy (character devices) ¦

+----------+-------+---¦

¦ 14 ¦ 0 ¦ doesn't support IOCTL ¦

¦ ¦ 1 ¦ supports IOCTL ¦

+----------+-------+---¦

¦ 15 ¦ 0 ¦ block device ¦

¦ ¦ 1 ¦ character device ¦

+--+

note 1) If a bit in the attribute word is defined only for one type of device,

 a driver for the other type of device must set that bit to 0.

 2) For DOS 2.0 bits 4-12 must be off.

BIT 1 is the standard input and output bit. It is used for character devices

 only. Use this bit to tell DOS if your character device driver is the

 new standard input device or standard output device.

BIT 2 is the NUL attribute bit. It is used for character devices only. Use it

 to tell DOS if your character device driver is a NUL device. Although

 there is a NUL device attribute bit, you cannot reassign the NUL

 device or replace it with your own routine. This attribute exists for

 DOS so that DOS can tell if the NUL device is being used.

BIT 3 is the clock device bit. It is used for character devices only. Default

 is 0. You can use it to tell DOS if your character device driver is the

 new CLOCK device.

BIT 4 is the "fast video output" bit. The default is 0, which uses the BIOS

 for writing to the screen. When set, this bit uses int 29h for much

 faster screen updates.

BITS 5-10 reserved for DOS, unknown. Should be set to 0.

BIT 11 is the open/close removeable media bit. Use it to tell DOS if the

 device driver can handle removeable media. This bit is valid for DOS

 3.0+ only. This bit was reserved in DOS 2.x. Since DOS 2.x does not

 look at this bit, its use is backward compatible.

BIT 12 reserved for DOS, unknown. Should be set to 0.

BIT 13 is the non-IBM format bit. When used for block devices it affects the

 operation of the BUILD BPB (BIOS parameter block) device call. For

 character devices it indicates that the devices implements the OUTPUT

 UNTIL BUSY device call.

BIT 14 is the IOCTL bit. It is used for both character and block devices. Use

 it to tell DOS whether the device driver can handle control strings

 through the IOCTL function call 44h.

 If a device driver cannot process control strings, it should set bit

 14 to 0. This way DOS can return an error if an attempt is made through

 the IOCTL function call to send or receive control strings to the

 device. If a device can process control strings, it should set bit 14

 to 1. This way, DOS makes calls to the IOCTL input and output device

 function to send and receive IOCTL strings.

 The IOCTL functions allow data to be sent to and from the device

 without actually doing a normal read or write. In this way, the device

 driver can use the data for its own use, (for example, setting a baud

 rate or stop bits, changing form lengths, etc.) It is up to the device

 to interpret the information that is passed to it, but the information

 must not be treated as a normal I/O request.

BIT 15 is the device type bit. Use it to tell the system the that driver is a

 block or character device.

POINTER TO STRATEGY ROUTINE

 This field contains a pointer to "device strategy" function in the driver.

This function is called whenever a request is made to the driver, and must

store the location of the request header from DOS. This pointer is a word

value, and so must be in the same segment as the device header.

POINTER TO INTERRUPT ROUTINE

 This field contains a pointer to the function which activates driver routines

to perform the command in the current request header. This is called by DOS

after the call to the strategy function, and should reset to the request header

address stored by "strategy", to allow for the possibility of interrupts

between the two calls. This pointer is a word value, and so must be in the same

segment as the device header.

NAME/UNIT FIELD

 This is an 8-byte field that contains the name of a character device or the

number of units in a block device. For the character names, the name is

left-justified and the space is filled to 8 bytes. For block devices, the

number of units can be placed in the first byte. This is optional because DOS

fills in this location with the value returned by the driver's INIT code. The

other 7 bytes of the block device ID are reserved and should not be used.

INSTALLING DEVICE DRIVERS+---

 DOS installs new device drivers dynamically at boot time by reading and

processing the DEVICE command in the CONFIG.SYS file. For example, if you have

written a device driver called RAMDISK, to install it put this command in the

CONFIG.SYS file:

 DEVICE=[drive][path] RAMDISK [parameters]

 DOS makes a FAR call to the device driver at its strategy entry point first,

using the request header to pass information describing what DOS wants the

device driver to do.

 This strategy routine does not perform the request but rather queues the

request or saves a pointer to the request header. The second entry point is

the interrupt routine and is called by DOS immediately after the strategy

routine returns. The interrupt routine is called with no parameters. Its

function is to perform the operation based on the queued request and set up

any return infromation.

 DOS passes the pointer to the request header in ES:BX. This structure consists

of a fixed length header (Request Header) followed by data pertinent to the

operation to be performed.

NOTE: It is the responsibility of the device driver to preserve the machine

 state. For example, save all registers on entry and restore them on exit.

 The stack used by DOS has enough room on it to save all the registers. If more

stack space is needed, it is the device driver's responsibility to allocate and

maintain another stack.

 All calls to execute device drivers are FAR calls. FAR returns should be

executed to return to DOS.

INSTALLING CHARACTER DEVICES

 One of the functions defined for each device is INIT. This routine is called

only once when the device is installed and never again. The INIT routine returns

the following:

A) A location to the first free byte of memory after the device driver, like a

 TSR that is stored in the terminating address field. This way, the

 initialization code can be used once and then thrown away to save space.

B) After setting the address field, a character device driver can set the status

 word and return.

INSTALLING BLOCK DEVICES

 Block devices are installed in the same way as character devices. The

difference is that block devices return additional information. Block devices

must also return:

A) The number of units in the block device. This number determines the logical

 names the devices will have. For example, if the current logical device

 letter is F at the time of the install call, and the block device driver INIT

 routine returns three logical units, the letters G, H, and I are assigned to

 the units. The mapping is determined by the position of the driver in the

 device list and the number of units in the device. The number of units

 returned by INIT overrides the value in the name/unit field of the device

 header.

B) A pointer to a BPB (BIOS Parameter Block) pointer array. This is a pointer

 to an array of "N" word pointers there "N" is the number of units defined.

 These word pointers point to BPBs. This way, if all of the units are the

 same, the entire array can point to the same BPB to save space.

 The BPB contains information pertinent to the devices such as the sector

 size, number of sectors per allocation unit, and so forth. The sector size of

 the BPB cannot be greater than the maximum allotted size set at DOS

 initialization time. This array must be protected below the free pointer set

 by the return.

C) The media descriptor byte. This byte is passed to devices so that they know

 what parameters DOS is currently using for a particular drive unit.

 Block devices can take several approaches. They can be "dumb" or "smart". A

dumb device would define a unit (and therefore a BPB) for each possible media

drive combination. Unit 0=drive 0;single side, unit 1=drive 0;double side, etc.

For this approach, the media descriptor bytes would mean nothing. A smart

device would allow multiple media per unit. In this case, the BPB table

returned at INIT must define space large enough to acommodate the largest

possible medias supported (sector size in BPB must be as large as maximum

sector size DOS is currently using). Smart drivers will use the media

descriptor byte to pass information about what media is currently in a unit.

REQUEST HEADER+--

 The request header passes the information describing what DOS wants the

device driver to do.

 When a valid device driver command code or function is called by your

application program, DOS develops a data structure called the "Request Header"

in ES:BX and passes it to the strategy entry point. This structure consists of

a 13-byte defined header which may be followed by other data bytes depending on

the function requested.

 It is the device driver's responsibility to preserve the machine state, for

example, saving all registers including flags on entry and restoring them on

exit. There is enough room on the stack when strategy or interrupt is called

to do about 20 pushes. If more stack is needed, the driver should set aside

its own stack space.

 The fixed ("static") part of the request header is as follows:

+--+

¦ R E Q U E S T H E A D E R ¦

+--¦

¦Offset ¦Length ¦ F i e l d ¦

+-------+-------+--¦

¦ 00h ¦ byte ¦ Length in bytes of the request header plus any data at end ¦

+-------+-------+--¦

¦ 01h ¦ byte ¦ Unit code. Determines subunit to use in block devices ¦

¦ ¦ ¦ (minor device) Has no meaning for character devices ¦

+-------+-------+--¦

¦ 02h ¦ byte ¦ Command code ¦

+-------+-------+--¦

¦ 03h ¦ word ¦ Status ¦

+-------+-------+--¦

¦ 05h ¦8 bytes¦ Reserved for DOS ¦

+-------+-------+--¦

¦ 0Ch ¦varies ¦ Data appropriate for the operation ¦

+--+

REQUEST HEADER LENGTH FIELD

 The length in bytes of the total request header (0-255) plus any data at the

end of the header.

UNIT CODE FIELD

 The unit code field identifies which unit in a block device driver the request

is for. For example, if a block device driver has three units defined, then the

possible values of the unit code field would be 0, 1, and 2. This field is not

valid for character devices.

COMMAND CODE FIELD

 The command code invokes a specific device driver function. Functions 0

through 12 are supported in all device drivers. Functions 13-15 are available

only in DOS 3.0 or higher. Some functions are relevant for either character or

block devices but not both; nonetheless all functions must have an executable

routine present even if it does nothing but set the done flag in the return

status word in the request header.

 The command code field in the request header can have the following values:

+--+

¦ code ¦ name ¦ function ¦

+------+------------------+--¦

¦ 0 ¦ INIT ¦ initialize driver for later use (used once only) ¦

¦ 1 ¦ MEDIA CHECK ¦ block devices only, NOP for character devices ¦

¦ 2 ¦ BUILD BPB ¦ block devices only, NOP for character devices ¦

¦ 3 ¦ IOCTL input ¦ called only if device has IOCTL bit set ¦

¦ 4 ¦ INPUT ¦ read data ¦

¦ 5 ¦ NONDESTRUCTIVE INPUT NO WAIT character devices only ¦

¦ 6 ¦ INPUT STATUS ¦ character devices only ¦

¦ 7 ¦ INPUT FLUSH ¦ character devices only ¦

¦ 8 ¦ OUTPUT ¦ write data ¦

¦ 9 ¦ OUTPUT ¦ write data with verify ¦

¦ 10 ¦ OUTPUT STATUS ¦ character devices only ¦

¦ 11 ¦ OUTPUT FLUSH ¦ character devices only ¦

¦ 12 ¦ IOCTL OUTPUT ¦ called only if device has IOCTL bit is set ¦

¦ 13 ¦ DEVICE OPEN ¦ called only if OPEN/CLOSE/RM bit is set ¦

¦ 14 ¦ DEVICE CLOSE ¦ called only if OPEN/CLOSE/RM bit is set ¦

¦ 15 ¦ REMOVEABLE MEDIA ¦ only if OPEN/CLOSE/RM bit set & device is block ¦

¦ 16 ¦ OUTPUT UNTIL BUSY¦ only called if bit 13 is set & device is character ¦

+--+

 The individual command codes are described later in this chapter.

STATUS FIELD

 The status word field is zero on entry and is set by the driver interrupt

routine on return.

The status field in the request header contains:

+---+

¦ D E V I C E D R I V E R S T A T U S F I E L D ¦

+---¦

¦ size ¦bit¦ definition ¦

+-------+---+---¦

¦ byte ¦ 0 ¦ ¦

¦ ¦ 1 ¦ ¦

¦ ¦ 2 ¦ ¦

¦ ¦ 3 ¦ Error message return code ¦

¦ ¦ 4 ¦ (with bit 15=1) ¦

¦ ¦ 5 ¦ ¦

¦ ¦ 6 ¦ ¦

¦ ¦ 7 ¦ ¦

+-------+---+---¦

¦ byte ¦ 8 ¦ DONE ¦

¦ +---+---¦

¦ ¦ 9 ¦ BUSY ¦

¦ +---+---¦

¦ ¦ A ¦ Reserved by DOS, unknown ¦

¦ ¦ B ¦ ¦

¦ ¦ C ¦ ¦

¦ ¦ D ¦ ¦

¦ ¦ E ¦ ¦

¦ +---+---¦

¦ ¦ F ¦ Error ¦

+---+

 The low 8 bits of the status word define an error message if bit 15 is set.

These errors are:

 00h write protect violation 01h unknown unit

 02h device not ready 03h unknown command

 04h CRC error 05h bad drive request structure length

 06h seek error 07h unknown media

 08h sector not found 09h printer out of paper

 0Ah write fault 0Bh read fault

 0Ch general failure 0Dh reserved

 0Eh reserved 0Fh invalid disk change

BIT 8 is the done bit. If it is set, it means the operation is complete. The

 driver sets the bit to 1 when it exits.

BIT 9 is the busy bit. It is only set by status calls and the removable media

 call.

BITS 10-14 are reserved.

BIT 15 is the error bit. If this bit is set, the low 8 bits of the status word

 (7-0) indicate the error code.

RESERVED FOR DOS

 Official sources label this area as "reserved for DOS". Another source

indicates that this consists of two double-word (4-byte) pointers to be used

to maintain a linked list of request headers for this device and a list of all

current device requests being processed by DOS. This was apparently to be used

for the undelivered multitasking version of DOS.

DEVICE DRIVER FUNCTIONS+---

 All strategy routines are called with ES:BX pointing to the request header.

The interrupt routines get the pointers to the request header from the queue

the strategy routines stores them in. The command code in the request header

tells the driver which function to perform.

NOTE: All DWORD pointers are stored offset first, then segment.

 ############################

INIT

Command code = 0 (all devices)

 Performs all initialization required at DOS boot time to install the

 driver and set local driver variables. This function is called only

 once, when the driver is loaded.

 ES:BX pointer to 26-byte request header and data structure

 Format of structure:

 offset length field

 00h 13 bytes request header

 0Dh byte number of units (not set by character devices)

 11h dword ending address of the driver's resident code

 15h dword pointer to BPB array (not set by character devices)

 /pointer to remainder of arguments

 19h byte drive number (DOS 3.0+ only)

 When INIT is called, the driver must do the following:

 A) set the number of units (block devices only)

 B) set up the pointer to the BPB array (block devices only)

 C) perform any initialization code (to modems, printers, etc)

 D) set the ending address of the resident program code

 E) set the status word in the request header

 To obtain information obtained from CONFIG.SYS to a device driver at INIT

time, the BPB pointer field points to a buffer containing the information

passed from CONFIG.SYS following the =. The buffer that DOS passes to the

driver at INIT after the file specification contains an ASCII string for the

file OPEN. The ASCII string (ending in 0h) is terminated by a carriage return

(0Dh) and linefeed (0Ah). If there is no parameter information after the file

specification, the file specification is immediately followed by a linefeed

(0Ah).

 NOTE: This information is read-only and only system calls 01h-0Ch and 30h can

 be issued by the INIT code of the driver.

 The last byte parameter contains the drive letter for the first unit of a

block driver. For example, 0=A, 1=B etc.

 If an INIT routine determines that it cannot set up the device and wants to

abort without using any memory, follow this procedure:

 A) set the number of units to 0

 B) set the ending offset address at 0

 C) set the ending offsret segment address to the code segment (CS)

NOTE: If there are multiple device drivers in a single memory image file, the

 ending address returned by the last INIT called is the one DOS uses. It is

 recommended that all device drivers in a single memory image file return

 the same ending address.

 ############################

MEDIA CHECK

command code = 1 (block devices only)

 Checks to see if disk had been changed since last access.

 ES:BX pointer to 19-byte request header and data structure

 Format of structure:

 offset length field

 00h 13 bytes request header

 0Dh byte media descriptor from BPB

 0Eh byte returned

 0Fh dword returns a pointer to the previous volume ID (if bit

 11=1 and disk change is returned) (DOS 3.0+)

 When the command code field is 1, DOS calls MEDIA CHECK for a drive unit and

passes its current media descriptor byte. See "Media Descriptor Byte" later in

this chapter for more information about the byte. MEDIA CHECK returns one of

the following:

 A) media not changed C) not sure

 B) media changed D) error code

The driver must perform the following:

 A) set the status word in the request header

 B) set the return byte

 00h don't know if media has been changed

 01h media has not been changed

 -1 media has been changed

 DOS 3.0+: If the driver has set the removable media bit 11 of the device header

attribute word to 1 and the driver returns -1 (media changed), the driver must

set the DWORD pointer to the previous volume identification field. If DOS

determines that the media changed is an error, DOS generates an error 0Fh

(invalid disk change) on behalf of the device. If the driver does not implement

volume identification support, but has bit 11 set to 1, the driver should set a

pointer to the string "NO NAME",0.

MEDIA DESCRIPTOR

 Currently the media descriptor byte has been defined for a few media types.

This byte should be identical to the media byte if the device has the non-IBM

format bit off. These predetermined values are:

media descriptor byte => 1 1 1 1 1 0 0 0

 (numeric order) 7 6 5 4 3 2 1 0

 BIT MEANING

 0 0 not double sided

 1 double sided

 1 0 not 8 sector

 1 8 sector

 2 0 nonremoveable

 1 removeable

 3-7 must be set to 1

 ############################

BUILD BPB (BIOS Parameter Block)

command code = 2 (block devices only)

 ES:BX pointer to 22-byte request header and data structure

 Format of structure:

 offset length field

 00h 13 bytes request header

 0Dh byte media descriptor from DOS

 0Eh dword transfer address (buffer address)

 12h dword pointer to BPB table

DOS calls BUILD BPB under the following two conditions:

A) If "media changed" is returned.

B) If "not sure" is returned. If so, there are no used buffers. Used buffers

 are buffers with changed data that have not yet been written to the disk.

The driver must do the following:

A) set the pointer to the BPB.

B) set the status word in the request header.

 The driver must determine the correct media type currently in the unit to

return the pointer to the BPB table. The way the buffer is used (pointer

passed by DOS) is determined by the non-IBM format bit in the attribute field

of the device header. If bit 13=0 (device is IBM compatible), the buffer

contains the first sector of the FAT (most importantly the FAT ID byte). The

driver must not alter this buffer in this case. If bit 13=1 the buffer is a

one sector scratch area which can be used for anything.

 For drivers that support volume identification and disk change, the call

should cause a new volume identification to be read off the disk. This call

indicates that the disk has been legally changed.

 If the device is IBM compatible, it must be true that the first sector of the

first FAT is located at the same sector for all possible media. This is

because the FAT sector is read before the media is actually determined.

 The information relating to the BPB for a particular media is kept in the boot

sector for the media. In particular, the format of the boot sector is:

+--+

¦ For DOS 2.x, 3 byte near jump (0E9h) For DOS 3.x+, 2 byte near jump (0EBh) ¦

¦ followed by a NOP (90h) ¦

+--¦

¦ 8 bytes ¦ OEM name and version ¦

+----------+---¦

¦ BYTE ¦ ¦ sectors per allocation unit (must be a power of 2) ¦

+----------¦ +---¦

¦ WORD ¦ B ¦ reserved sectors (strarting at logical sector 0) ¦

+----------¦ +---¦

¦ BYTE ¦ ¦ number of FATs ¦

+----------¦ +---¦

¦ WORD ¦ P ¦ max number of root directory entries ¦

+----------¦ +---¦

¦ WORD ¦ ¦ number of sectors in logical image (total number of ¦

¦ ¦ ¦ sectors in media, including boot sector directories, etc.) ¦

+----------¦ B +---¦

¦ BYTE ¦ ¦ media descriptor ¦

+----------¦ +---¦

¦ WORD ¦ ¦ number of sectors occupied by a single FAT ¦

+----------+---¦

¦ WORD ¦ sectors per track ¦

+----------+---¦

¦ WORD ¦ number of heads ¦

+----------+---¦

¦ WORD ¦ number of hidden sectors ¦

+--+

 The three words at the end return information about the media. The number of

heads is useful for supporting different multihead drives that have the same

storage capacity but a different number of surfaces. The number of hidden

sectors is useful for drive partitioning schemes.

 ############################

INPUT / OUTPUT (IOCTL)

command code = 3 IOCTL Read

 4 Read (block or character devices)

 8 Write (block or character devices)

 9 Write With Verify

 12 IOCTL Write

 16 Output Until Busy (character devices only)

 ES:BX pointer to 24-byte request header and data structure

 Format of structure:

 offset length field

 00h 13 bytes request header

 0Dh byte media descriptor byte from BPB

 0Eh dword transfer address (buffer address)

 12h word byte/sector count

 14h word starting sector number (block devices)

 [no meaning on character devices]

 16h dword (DOS 3.0+) pointer to the volume ID if error code

 0Fh is returned

The driver must perform the following:

 A) set the status word in the request header

 B) perform the requested function

 C) set the actual number of sectors or bytes tranferred

 No error checking is performed on an IOCTL I/O call. However, the driver must

set the return sector or byte count to the actual number of bytes transferred.

 Under certain circumstances a block device driver may be asked to do a write

operation of 64k bytes that seems to be a "wrap around" of the transfer address

in the BIOS I/O packet. This arises due to an optimization added to write code

in DOS. It will only happen in writes that are within a sector size of 64k on

files that are being extended past the current end of file. It is allowable for

the device driver to ignore the balance of the write that wraps around, if it

so chooses. For example, a write of 10000h bytes worth of sectors with a

transfer address of XXX:1 ignores the last two bytes. A user program can never

request an I/O of more than 0FFFFh bytes and cannot wrap around (even to 0) in

the transfer segment, so in that case the last two bytes can be ignored.

 A program that uses DOS function calls can never request an input or output

function of more than 0FFFFh bytes, therefore, a wrap around in the transfer

(buffer) segment can never occur. It is for this reason you can ignore bytes

that would have wrapped around in the tranfer segment.

 If the driver returns an error code of 0Fh (invalid disk change) it must put

a DWORD pointer to an ASCIIZ string which is the correct volume ID to ask the

user to reinsert the disk.

DOS 3.0+:

 The reference count of open files on the field (maintained by the OPEN and

CLOSE calls) allows the driver to determine when to return error 0Fh. If there

are no open files (reference count=0) and the disk has been changed, the I/O

is all right, and error 0Fh is not returned. If there are open files

(reference count > 0) and the disk has been changed, an error 0Fh condition

may exist.

 ############################

NONDESTRUCTIVE INPUT NO WAIT

command code = 5 (character devices only)

 Reads a character from input stream but does not remove it from the

 buffer

 ES:BX pointer to 14-byte request header and data structure

 Format of structure:

 offset length field

 00h 13 bytes request header

 0Dh byte read from device

The driver must do the following:

 A) return a byte from the device

 B) set the status word in the request header.

 If the character device returns busy bit=0 (characters in the buffer), then

the next character that would be read is returned. This character is not removed

form the buffer (hence the term nondestructive input). This call allows DOS to

look ahead one character.

 ############################

STATUS

command codes = 6 Input Status (character devices only)

 10 Output Status (character devices only)

 Check for characters waiting in input buffer

 ES:BX pointer to 13-byte request header

This driver must perform the following:

 A) perform the requested function

 B) set the busy bit

 C) set the status word in the request header.

The busy bit is set as follows:

 For input on unbuffered character devices: if the busy bit (bit 9) is 1 on

return, a write request would wait for completion of a current request. If the

busy bit is 0, there is no current request. Therefore, a write request would

start immediately.

For input on buffered character devices: if the busy bit is 1 on return, a

read request does to the physical device. If the busy bit is 0, there are

characters in the device buffer and a read returns quickly. It also indicates

that a user has typed something. DOS assumes all character devices have a type-

ahead input buffer. Devices that do not have this buffer should always return

busy=0 so that DOS does not hang waiting for information to be put in a buffer

that does not exist.

 ############################

FLUSH INPUT BUFFERS

command code = 7 (character devices only)

 Forces all data in buffers to specified device.

 ES:BX pointer to 13-byte request header

 This call tells the driver to flush (terminate) all pending requests that it

has knowledge of. Its primary use is to flush the input queue on character

devices.

 The driver must set the status word in the request header upon return.

 ############################

FLUSH OUTPUT BUFFERS

command code 11 (character devices only)

 Forces all data in buffers to specified device.

 ES:BX pointer to 13-byte request header

 This call tells the driver to flush all output buffers and discards any

pending requests. Its primary use is to flush the output queue on character

devices.

 The driver must set the status word in the request header upon return.

 ############################

OPEN or CLOSE (DOS 3.0+)

command code = 13 Open (block or character devices)

 14 Close (block or character devices)

 ES:BX pointer to 13-byte static request header

 These calls are designed to give the device information about the current file

activity on the device if bit 11 of the attribute word is set. On block

devices, these calls can be used to manage local buffering. The device can keep

a reference count. Every OPEN causes the device to increment the reference

count. Every CLOSE causes the device to decrement the reference count. When the

reference count is 0, if means there are no open files in the device. Therefore,

the device should flush buffers inside the device it has written to because now

the user can change the media on a removeable media drive. If the media had been

changed, it is advisable to reset the reference count to 0 without flushing the

buffers. This can be thought of as "last close causes flush". These calls are

more useful on character devices. The OPEN call can be used to send a device

initialization string. On a printer, this could cause a string to be sent to set

the font, page size, etc. so that the printer would always be in a known state

in the I/O stream. Similarly, a CLOSE call can be used to send a post string

(like a form feed) at the end of an I/O stream. Using IOCTL to set these pre and

post strings provides a flexible mechanism of serial I/O device stream control.

 Since all processes have access to STDIN, STDOUT, STDERR, STDAUX, and STDPRN

(handles 0, 1, 2, 3, and 4) the CON, AUX, and PRN devices are always open.

 ############################

REMOVABLE MEDIA (DOS 3.0+)

command code = 15 (block devices only)

 This call identifies the media type as removable or nonremovable.

 ES:BX pointer to 13-byte static request header

 To use this call, set bit 11 (removable media) of the attribute field to 1.

Block devices can only use this call through a subfunction of the IOCTL

function call (int 21h fn44h).

 This call is useful because it allows a utility to know whether it is dealing

with a nonremovable media drive or with a removable media drive. For example,

the FORMAT utility needs to know whether a drive is removable or nonremovable

because it prints different versions of some prompts.

note No error checking is performed. It is assumed that this call always

 succeeds.

THE CLOCK$ DEVICE+---

 To allow a clock board to be integrated into the system for TIME and DATE,

the CLOCK$ device is used. This device defines and performs functions like any

other character device (most functions will be reset done bit, reset error bit,

and return). When a read or write to this device occurs, 6 bytes are

transferred. The first 2 bytes are a word, which is the count of days since

01-01-80. The third byte is minutes, the fourth is hours, the fifth is

hundredths of a second, and the sixth is seconds.

 Reading the CLOCK$ device gets the date and time, writing to it sets the date

and time. CLOCK$ is normally called only when the system is initializing or if

the system time and date are set (DOS 3.3+). DOS carries the system time and

date internally after receiving it from the CLOCK$ driver.

 ** Programmer's Technical Reference for MSDOS and the IBM PC **

 USA copyright TXG 392-616 ALL RIGHTS RESERVED

 --------------------------¦ DOSREF (tm) +---------------------------

 ISBN 1-878830-02-3 (disk-based text)

 Copyright (c) 1987, 1994 Dave Williams

 +-----------------------------+

 ¦ Shareware Version, 11/24/94 ¦

 ¦ Please Register Your Copy ¦

 +-----------------------------+

 C R E D I T S

 The information presented here was gathered from megabytes of files

found on BBS systems, conversations on a dozen different BBS systems,

correspondence, and every reference book I could get my hands on. On

occasion, a number of prestigious references didn't agree with each

other. Where this has happened, I have used the latest references.

There is too much information here for me to verify every fact

personally. I have used my own judgement as to the reliability of the

sources.

 I've been selling copies of the Reference since October 1987. The

original basis for the Reference came from Peter Norton's

"Programmer's Guide to the IBM PC" and the original Janet Jack

interrupt list circa sometime 1986, as updated by Ross Greenberg, plus

a copy of the IBM DOS 3.1 Technical Reference. It's grown a bit, eh?

Anyway, I've prepared a list of the sources I've used for the

Reference to clear up any curiosity as to where the material came

from.

Tools used in preparing this book:

Microsoft SymDeb, the final gasp of venerable DEBUG.COM and a fine

program.

Microsoft CodeView, huge and awkward though it may be.

V Communications Sourcer, the only effective disassembler I've found.

References used in preparing this book:

An Introduction to the DOS Protected Mode Interface

 Software Focus Group

 Intel Corp, March 1991 order # 240787-002

AST EEMS Technical Reference Manual v3.2

 documents 020022-001B and 000408-001B

 provided by AST Corporation, 1987

AT&T 6300 Plus Hardware Reference Manual

 p/n 999-300-194IS

 from AT&T Corp, 1985 (before the Death Star logo, yet...)

Calculus EZ-FAX Developer's Toolkit

 copy 1990, Calculus

Creative Labs Sound Blaster User Reference Manual

 copr. 1989

Data General Programmer's Reference for MS-DOS, Rev.3

 Data General Corporation (covers through DOS 3.0)

 p/n 069-100157 rev 00 May 1986

Digital Research DR-DOS System and Programmer's Guide v3.32

 Digital Research Corporation 1988

 comment: This manual does not cover the extended disk partition

 access, file password protection, or any of the other

 goodies provided in DR-DOS. In fact, it not only

 doesn't cover the extended features, it doesn't

 completely cover DOS calls documented by IBM. It does

 have an extensive section on customizing DR-DOS for

 use from ROM.

Digital Research DR-DOS User's Guide v3.32

 Digital Research Corporation 1988

Digital Research DR-DOS Reference Guide v3.32 Digital Research Corporation 1988

Digital Research DR-DOS Users and Reference Guide v3.40

 Digital Research Corporation, January 1989

Digital Research DR Multiuser DOS Users and Reference Guide v5.0

 Digital Research Corporation, 1991

Digital Research DR-DOS Users and Reference Guide v5.0

 Digital Research Corporation, 1991

DPMI 0.9 Specification

 Intel Corp, 1990

DPMI 1.0 Specification

 Intel Corp, 1991

G-Host S3 Enhanced Video Graphic Adapter User's Manual

 G-Host, 1992

IBM DOS Operations Manual Version 2.00

 IBM Corp, 1983

IBM DOS Operations Manual Version 2.10

 IBM Corp, 1983

IBM DOS Operations Manual Version 3.1

 IBM Corp, November 1984

IBM DOS Operations Manual Version 3.3

 IBM Corp, April 1987

IBM DOS Technical Reference, Version 4.0

 IBM Corp, 1988

IBM DOS Command Reference, Version 4.0

 p/n 6280254

 IBM Corp, 1988

IBM PC 3270 Emulation Program Entry Level Version 1.10

User's Guide

 pn 84X0280

 IBM Corp, 1986

IBM PC 3270 Emulation Program Entry Level Version 1.10

HLLAPI Programmer's Guide

 pn 84X0301

 IBM Corp, 1986

IBM PC Local Area Network Program Version 1.20

 IBM Corp, April 1987

IBM Technical Reference

 Options and Adapters - Enhanced Graphics Adapter

 p/n 6280131 IBM Publications Aug 1984

IBM Technical Reference

 Personal Computer

 p/n 6322507 IBM Publications

IBM Technical Reference

 Personal Computer - PCjr

 p/n 1502293 IBM Publications

LANtastic Programmer's Information Package, 2/21/89

Logitech Mouse Programmer's Toolkit

 Logitech Corp. 1986

Lotus-Intel-Microsoft Expanded Memory Specification Version 3.20

 part number 300275-003

 provided by Intel Corp. September, 1985

Lotus-Intel-Microsoft Expanded Memory Specification 4.0

 document 300275-005

 provided by Intel Corp. October 1987

Lotus-Intel-Microsoft Expanded Memory Specification 4.0

EMS Toolkit for C Developers

 document 302243-001

 provided by Intel Corp, February 1990

Microsoft - various documents provided to MS 5.0 beta testers

Microsoft Extended Memory Specification v2.00

 provided by Microsoft Corporation, 1988

Microsoft Mouse Technical Reference

 Microsoft Press, 1989

Microsoft Virtual DMA Specification 1.0

 Microsoft Part # 098-10869 May 1, 1990

Mouse Systems Programmer's Toolkit

 p/n 302449-001 Rev A, 1989

 p/n 302375-100, 1989

 p/n 302446-100, 1989

MS-DOS Programmer's Reference (covers through DOS 2.00)

 by Microsoft

 p/n 135555-001 Intel Corp. 1984

MS-DOS 5.0 Programmer's Reference (covers DOS 5.0 only)

 by Microsoft

 Microsoft Press 1991, ISBN 1-55615-329-5

Novell Netware 2.19 SFT/Advanced manual set

 by Novell, Incorporated

 Novell, 1988

Phar Lap Virtual Control Program Interface (VCPI) Specification v1.0

 Phar Lap Software 1989

Phoenix System BIOS for PC/XT/AT and Compatibles

 Addison Wesley, 1987

Phoenix System BIOS for PC/XT/AT and Compatibles (Second edition)

 Addison Wesley, 1991

Tandy 1000 TX Technical Reference Manual

 Tandy Corp.

 p/n 25-1514 Tandy Corp 1987

The Software Link

 PC-MOS 4.1 Programmer's Reference (1990)

Toshiba 1000 Technical Reference Manual

 Toshiba Corp. of America 1987

Tseng Labs EVA Chipset Programming Guide

 Tseng Labs, 1986

X3.4-1977: American National Standard Code for Information Interchange

 by American National Standards Institute (ANSI)

 New York, NY 1977

Weitek ABACUS Software Designer's Guide, Doc 8967

 September 1989

Wendin-DOS Programmer's Reference

 Wendin, Inc, 1987

ATI EGA Wonder Operation Manual

 ATI Technologies, 1987

Everex EV-650 EGA Reference Guide, Version 1.00

 Everex Computer, 1986

FastCard IV User Manual

 Peripheral Marketing Inc.

 p/n 0527 Jan 1987

Hercules Graphics Card User's Manual

 Hercules Computer Technology

 1983

Hercules Graphics Card Plus Owner's Manual

 Hercules Computer Technology

 Model GB112 1987

JDR B-3101 FLoppy Disk Drive Card User's Guide

 470.03002 version 1.00 1988

LANtastic 2.46 Installation Guide

 Artisoft, 1988

LANtastic 3.01 Installation Guide

 Artisoft, 1990

LANtastic 4.0 beta Installation Guide

 Artisoft, 1991

LapLink Release 2 User's Manual

 Traveling Software, 1987

LapLink Release 3 User's Manual

 Traveling Software, 1989

Logitech EGA Reference Manual, EGA+Mouse Board

Mirage Super VGA TVGA-8900 User's Manual

MPC Operations Guide, Manual #1023

 Columbia Data Products, Inc.

 CDP 1983

Microcomputer Products - 1987 Data Book

 NEC Electronics, Inc.

 p/n 500105 Aug 1987

NEC uPD70108/70116 Microprocessor User's Manual

 p/n 500350 October 1986

 provided by NEC Electronics, Inc.

Novell Advanced Netware System Manager's Reference

pcAnywhere User's Guide v2.00

 Dynamic Microprocessor Associates, Inc 1986

S-286 User Manual, version 2

 Link Computer, 1988

STB VGA Extra/EM

 EM-16 BIOS Features

 STB Corp.

TesSeRact v1.0 documentation

TCXL 5.1 documentation

Toshiba ND352/356 3.5" Diskette Drive Installation Notes

 document number 87019 March 1988

 Toshiba America Corporation

Tseng Labs

 EVA, EVA/480 BIOS Guide

 November 10, 1988

VESA Toolkit v2.0

 summer 1991

VideoTrax Installation Guide

 Alpha Micro, 1987

Advanced MSDOS

 Ray Duncan

 Microsoft Press 1986

Assembly Language Programming for the (written by one of the)

IBM Personal Computer (IBM PC's original)

 David J. Bradley (developers - and one of)

 Prentice-Hall 1984 (the few good 8087 refs)

Assembly Language Subroutines for MSDOS Computers

 Leo J. Scanlon

 TAB Books 1986

Atari ST Internals

 Gerits, English, & Bruckmann

 Abacus Software 1985

Compute!'s Guide to Assembly Language Programming on the IBM PC

 COMPUTE! Publications

Compute!'s Mapping the IBM PC and PCjr

 Russ Davis

 COMPUTE! Publications

DOS Power Tools

 Paul Somerson

 Bantam Books 1988

DOS: The Complete Reference

 Kris Jamsa

 Osborne/McGraw-Hill 1987

Exploring the IBM PCjr

 Peter Norton

 Microsoft Press 1984

Discovering the IBM PCjr

 Peter Norton

 Microsoft Press 1984

DOS 5: A Developer's Guide

 Al Williams

 M&T Books, 1991

IBM Video Subsystems

 Richard Wilton

 Microsoft Press 1988

Inside the IBM PC

 Peter Norton

Mapping the IBM PC

 Russ Davies/Compute! Magazine

 Compute! Books 1986

Memory Resident Utilities, Interrupts, and

Disk Management With MS & PC DOS

 Michael Hyman

 MIS Press 1987

Microcomputer Interfacing

 Bruce A. Artwick

 Prentice Hall 1980

Microsoft Systems Journal - March 1987

 "Expanded Memory: Writing Programs that Break the 640k Barrier"

 Marion Hansen, Bill Krueger, Nick Stuecklen

MS-DOS Encyclopedia

 Ray Duncan

 Microsoft Press 1988 (first edition)

Modern Operating Systems (this is an updated and revised)

 Arthur S. Tanenbaum (version of the OSD&I book below)

 Prentice Hall 1991

Network Programming in C (excellent resource for IPX)

 Barry Nance (barryn on BIX) (and NETBIOS API info)

 Que, 1990

Operating Systems Design and Implementation (this is one of your)

 Arthur S. Tanenbaum (OS design references)

 Prentice Hall 1987

Programmer's Guide to the IBM PC

 Peter Norton

 Microsoft Press 1985

Programmer's Problem Solver for the IBM PC, XT, & AT

 Robert Jourdain

 Prentice Hall 1986

Programming Windows

 Charles Petzold

 Microsoft Press, 1987

Programming Windows, Second Edition

 Charles Petzold

 Microsoft Press, 1990

Running MS-DOS

 Van Wolverton

 Microsoft Press

Supercharging MS-DOS

 Van Volverton

 Microsoft Press 1986

The 8080a Bugbook

 Tony-Larsen-Titus

 Howard W. Sams 1977

The 8086 Book (strange - though it's been)

 Russell Rector and George Alexy (through a couple of releases)

 Osborne/McGraw-Hill 1980 (it's basically just a bunch)

 (of old Intel data sheets)

 (stamped "PRELIMINARY")

The IBM Personal Computer from the Inside Out

 Murray Sargent III and Richard L. Shoemaker

 Addison-Wesley 1984

The IBM ROM BIOS

 Ray Duncan

 Microsoft Press 1988

The Serious Assembler (prehistoric stuff, but)

 Charles A. Crayne and Dian Gerard (some tricks you don't see)

 Baen Books 1985 (any more)

Tricks of the MS-DOS Masters

 Waite Group

 Howard W. Sams 1987

Turbo Pascal Express (lots of ASM routine for TP3)

 Robert Jourdain

 Brady Books, 1987

Writing DOS Device Drivers in C (this one is a real turkey)

 Adams/Tondo

 Prentice Hall, 1990

Microsoft Macro Assembler 4.0, 5.1 documentation

Microsoft C 4.0, 5.0, 5.1, 6.0, 7.0 documentation

Borland Turbo Pascal 3.02a and 6.0, Borland Pascal 7.0, TPW 1.0 and

1.1, Turbo C 2.0 documentation

Novell SFT System Administrator's Reference

 Western Digital, Rodime, Miniscribe, Microscience, Adaptec, Storage

Technologies, and Connor Peripherals were kind enough to send spec

sheets on most of their products which helped to expand and verify the

hard drive information in Appendix 6.

 A large amount of miscellaneous information came from various

computer magazines. Documenting what came from where would be an

experience all its own. A great deal of information came from

articles by Michael Mefford, Jim Prosise, and Charles Petzold of PC

Magazine, and Neil Rubenking, Jeff Duntemann, and Ray Duncan, who get

around a lot.

 Byte

 (Byte's kinda weird. They have some really neat, well-

 researched stuff interspersed with mindless drivel. Still,

 they print some stuff you absolutely, positively won't find

 anywhere else.)

 C Users Journal

 (Despite the name, it's mainly about programming DOS machines)

 C'T (Computer Technik)

 (If you read German, this one is sorta like PC Magazine was

 in its heyday.)

 Computer Language

 (I never decided if I liked CL or not. Maybe I'm not the

 sort of programmer they're writing for...) (04/93 - just

 got word CL is dead. Maybe nobody else knew who they were

 writing for either)

 Computer Shopper

 (Though primarily advertising, some information sneaks in

 from time to time.)

 Dr. Dobb's Journal

 (I always thought the old title, "Doctor Dobbs' Journal of

 Computer Calisthenics and Orthodontia - Running Light

 Without Overbyte" was a killer name, but nobody asked me.)

 InfoWorld

 (I never really figured out how a weekly magazine could so

 often be both late *and* wrong with their stories, but IW

 tries hard. Still, you often hear about rumblings you'd

 never find out about in the slicks. The National Enquirer

 of the computer world?)

 Micro Cornucopia

 (R.I.P - it was great while it lasted.)

 Microsoft Systems Journal

 (Hideously expensive and mostly oriented to Windows, the

 early issues had some really good stuff)

 Midnight Engineering

 (This one's hard to classify. It's hardcore computer with a

 dash of entrepreneurship, bizarre as the combination may

 sound. I like it when I can find it.)

 PC Magazine

 (Despite their new "management format" in mid '89, PC Mag

 still has some good techie stuff from time to time. I guess

 the bean counters thought managers were more important than

 programmers.)

 PC Resource

 (There was rarely anything of interest in PC Resource, but

 every now and then I found something. Now defunct.)

 PC Tech Journal

 ("Tell 'em what you're going to say, tell 'em what you're

 saying, tell 'em what you just said." - and don't send us

 no steenking submissions unless they're in WordPerfect

 format! Despite their fascist policies, every now and then

 they printed something useful. The Little Rock Wild Bunch

 referred to it as "PC Tech Urinal," an apt monicker. Now

 defunct.)

 PC Techniques

 (This is the magazine PC Tech Journal tried to advertise

 itself as. Pure programming, written by programmers for

 programmers, without too many "journalists" pissing in the

 text. Try it!)

 PC Week

 (This one used to be a clone of InfoWorld, but since their

 takeover by PC Magazine they've become a sort of mutant

 cross between IW and PCMag.)

 Programmer's Journal

 (This is a nice magazine, though expensive. - now defunct)

 Tech Specialist (now Windows/DOS Developer's Journal)

 (One of the few really good magazines for bit-twiddlers.

 Haven't seen a GUI phone-dialer shootout yet!)

 Windows Tech Journal

 (This one is sort of neat even if you don't like Windows. It's

 another "by programmers, for programmers" rag, lots of code

 with a dash of humor.)

various computer bulletin board systems, including

Byte Information Exchange (BIX)

 (check out ibm.dos/old.secrets.2 and ibm.dos/secrets.3)

 Effusive thanks to the gang in the ibm.exchange - these guys are

sharp. In alphabetic order:

barryn, billn, bkep, bscherry, bstrauss, daiken, dgh, dmick, dnanian,

dondumitru, drifkind, geary, glass, gmussar, greenber, hfishman,

j_vanderbilt, jfleming, jndunlap, jlussmeyer, johnf, jsloman, jsprowl,

jswitzer, jrichards, karenk, killer1, kquirk, mabrash, matt.trask,

mcowley, mfsargent, mike123, mheller, mlavelle, rbabcock, rbrukardt,

rduncan, roedy, ronlepine, sbc, sjgrant, skluger, tanj, terjem,

twagner, wardc, wcowley, and all the guys whose names I forgot...

<grin>

Compuserve's Microsoft beta forums

FIDOnet international network (various technical echos)

GEnie IBM RT and Borland RT

NorthAmericaNet (NaNet) programming echos

Canada Remote Systems (Toronto, Canada)

RIME PCRelay international network (IBM, Technical, Programming echos)

TelePath (M&T Publishing)

usenet ibm*.* groups

...plus I hit the various Wildnet, and GT-Net echos from time to time!

 The following text files were of use. Bear in mind that some of

them may be seen under several different names. The author's name is

given as it appears in the documentation (if any). As you can see,

this stuff predated the ARC-vs-ZIP wars...

10H-BUG ASM 4680 29/01/87 bug in 2.x int 21h/fn10h Ray Duncan

1PT4MB INF 5120 3/10/87 1.44Mb drives Clyde Washburn 70305,1211

2_JOYSTK.ZIP 723 17/4/89 dual joystick adapter pinout <no name>

2EH ASM 2969 3/03/87 info on undoc'd int 2Eh David Gwillim

386BUG ARC 9216 15/10/87 bug in early 80386 chips Compaq Corp.

8086 3 10572 5/12/88 dump of Fidonet?? 8086 conf?? <no name>

8259 ARC 2826 15/03/88 info on 8259 chip <no name>

ASM-ADRS ARC 6144 20/12/87 low memory vectors Malcolm McCorquodale

ATCMDS ARC 3072 20/03/88 Hayes 1200 baud command set <no name>

BACKDOOR UPL 26115 11/12/89 "back door" through PSP John Switzer

BIOSDOC ARC 34816 3/11/87 very good function list David E. Powell

BIXDOS1 ARC 155648 14/12/87 BIX "MSDOS Secrets" #1 <no name>

BUG40DOS ARC 3200 18/08/88 bugs in DOS 4.0 "Doug"

CAS ARC 33792 27/10/88 Communicating Applications Standard 1.0A

 DCA, Intel Corp

CCPM86 ARC 68238 14/10/89 list of Concurrent CP/M calls <no name>

CDOS ARC 35584 18/07/89 list of Concurrent DOS calls Guy Scharf

CDOS2_ ARC 227200 18/07/89 list of Concurrent DOS calls J.F. Jankura

CDOSCALL ARC 19968 18/07/89 list of Concurrent DOS calls J.F. Jankura

CNBDOC ZIP 32012 9/02/91 CBIS Net Bios Programmer's Ref.

 Tom Thompson

CUFEXT ARC 13228 13/03/90 common file extensions J.W. Rider

DEBUGTUT ARC 15655 23/04/88 DEBUG tutorial <no name>

 possibly David Whitman?

DIAGNOSE ARC 14336 1/01/86 memory errcodes

 Jerry Schneider, Arnold Kischi

DISK144 ARC 23086 16/10/88 info on 1.44Mb diskettes <no name>

DISKTYPE ARC 5073 14/04/88 IBM floppy formats <no name>

DOOM ARC 9216 29/09/88 hard drive information <no name>

DOS-SIZE ARC 787 27/03/88 size of DOS files 1.1-3.1 <no name>

DOS3TXT ARX 9168 31/07/85 list of DOS/BIOS ints, data areas

 Dan Rollins

DOS32 ARC 17408 31/05/88 command list for DOS 3.2 <no name>

DOS3BUGS ARC 5639 15/10/87 acknowledged bugs in DOS 3.0-3.2 IBM Corp.

DOS40 ARC 15625 22/07/88 IBM announcement of DOS 4.0 IBM Corp.

DOS401 ARC 18178 19/10/88 errors in DOS 4.0 IBM Corp.

DOS40B ARC 27008 26/08/88 Compuserve thread on DOS 4.0 <no name>

DOS40FAT ARC 1510 11/09/88 DOS 4.0 File Allocation Table Mike Austin

DOS40FUN ZOO 3410 31/12/99 DOS 4.0 int 24, 25, etc Pat Myrto

DOS40HLP ARC 53376 28/08/88 DOS 4.0 command set <no name>

DOS40TXT ARC 46169 16/10/88 DOS 4.0 problems & info <no name>

DOS4TIPS ARC 1735 19/09/88 problems with DOS 4.0 IBM Corp.

DOSBUG TXT 1024 15/10/87 info on 2.0 volume label <no name>

DOSGUIDE ARC 21344 21/02/88 DOS tutorial Carrington B. Dixon

DOSINT ARC 4201 15/03/88 list of DOS 2.0 function calls John Chapman

DOSNOTES ARC 5052 15/03/88 info on DOS undoc fns. <no name>

DOSREF ARC 9216 21/01/87 partial list of PC BIOS calls <no name>

DOSREF ARC 62052 23/08/86 device driver info "Cracker"

DOSTIPS ARC 28926 15/03/88 info on DOS John Chapman

DOSTIPS1 ARC 159657 25/11/85 various DOS info Dean R. Wood

DOSTIPS3 ARC 59264 25/01/88 various DOS tips (different) Dean R. Wood

DOSUNDOC ARC 3840 03/05/86 one of the very first interrupt lists

 Spyros Sakellariadis

DRIVPARM ARC 11264 7/01/88 info on DRIVPARM parameters Joan Friendman

EGATEK ARC 8704 15/03/88 IBM EGA registers Bill Frantz

EMS40BIX ARC 3802 21/09/87 BIX announcement of EMS 4.0 BIX

ENVIRONM ARC 4255 18/09/88 info on DOS environment Jan Fagerholm

ESC_CODE ARC 3072 3/10/88 Laserjet setup codes S. Noh

FILEIO ARC 8192 24/07/88 TSRs and INDOS flag <no name>

FLOPPIES ARC 9216 2/11/87 info on floppy media Ted Jensen

FOSSIL ARC 9031 15/07/87 list of FOSSIL functions Vincent Periello

FXN4BH ASM 4503 1/01/80 odd 4Bh behavior Ray Duncan

HAYESET2 ARC 6479 4/09/86 modem commands Ruth Lubow, Fowler Brown

HD-DATA ARC 4096 19/07/87 list of hard drives & specs <no name>

 I've seen many similar files. I believe the

 original may have been a file or bulletin on

 Sparta BBS

HDINFO ARC 11264 19/11/87 updated version of above, evidently by

 someone else <no name>

HDNOISE ARC 4159 11/11/87 hard disk information Clancy Malloy

HDTIPS ARC 9660 11/10/87 hard disk information Barry Gordon

IBMTAB ARC 7882 15/03/88 general IBM PC tech info John S. Lou

IBMTECH ARC 136064 4/11/88 error codes, other info IBM Corp.

INT-MDOS ARC 20682 31/07/85 one of the original INT lists

 Ross Greenberg

INTER189 LZH 156368 25/06/89 interrupt list Ralf Brown

INTERRUP ARC 157440 19/09/88 interrupt vector list Ralf Brown

INTERRPT ARC 42632 4/04/88 interrupt vector list Marshall Presnell

 this is a very nice list and some programming

 information. If I'd come across it way back

 then it would have saved a ton of typing <sigh>

JARGON ARC 49274 16/07/88 dictionary of computer terms <no name>

LE_MCLCK.ASM 3489 3/27/86 undoc'd Leading Edge BIOS fns

 Bob Plouffe

LIM-40 ARC 21504 15/10/87 info on LIM 4.0 Stephen Satchell

LISTINTS ARC 6144 3/12/87 small interrupt list <no name>

MCB ARC 5120 24/07/88 info on DOS Memory Control Blocks

 David Gwillim

MIDIBOOK ZIP 1338 09/08/89 MIDI book bibliography Chris Bosshardt

MNP-TEXT ARC 6144 30/09/88 MNP modem info Mike Focke

MOUSENG ARC 10240 13/08/88 Norton Guide file for mouse programming,

 with C examples <no name>

MSLOOKUP ARC 58368 25/12/87 interrupt and function listing

 Frank Bonita

MS-OS2 ARC 25600 15/10/87 MS press release on OS/2 Microsoft Corp.

MSINT125 ARC 48128 12/01/88 interrupt vector listing Ralf Brown

MDOSDOC EXE 47104 4/21/91 MultiDos Plus 4.00 Prog. Ref.

 Nanosoft Inc.

NETBIOS ARC 17280 29/10/88 NetBIOS tutorial & summary Tom Thompson

NOVELINT ARC 4531 18/10/88 NetBIOS calls Marc Guyot

OCOM_520 ARC 53632 19/08/88 FOSSIL tutorial and functions Rick Moore

ODDITY ARC 3072 24/07/88 int 2Eh description Daniel Briggs

PINS ARC 3072 18/01/88 pinouts of various connectors <no name>

PORTDIAG ZIP 2261 27/05/89 pinouts of various connectors <no name>

PRNBIOS ZIP 7519 29/10/89 programming info on printer Michael Day

QUES40 ARC 9081 1/09/88 info on DOS 4.0 IBM Corp.

RAW_COOK ARC 2048 15/10/87 info on DOS raw and cooked modes

 <no name>

RESETSWT TXT 3584 23/01/86 add a reset switch to a PC Don Jenkins

RLLHINTS ARC 12288 17/10/87 RLL controller info Steve Sneed

RLLMISC ARC 5120 17/10/87 info on RLL controllers Richard Driggers

RLLSTORY ARC 9718 31/07/88 good info on RLL coding Pete Holzmann

SEAGATE ARC 2048 3/03/88 specs for many Seagate drives Jim McKown

SECRETS2 ARC 179625 17/04/88 BIX "MS-DOS Secrets" #2 <no name>

SERCBL2 ARC 4372 16/10/88 serial cable pinouts Lee Zeis

SERIAL TXT 1091 07/04/87 PCjr serial cable pinout Don Watkins

SM2400 ARC 2296 9/08/86 Hayes 2400 baud command set <no name>

SPOOL DOC 29704 03/28/89 Versa-Spool API Jeff Newbro

SSTEP ARC 2300 11/07/89 explanation of CPU single-step

 Ed Burnette

ST225 ARC 11264 7/10/87 optimizing ST225 and WD cont. Neil Erbe

TANDON ARC 3612 21/02/88 info on Tandon drives David Welcher

TECH ARC 27827 8/05/88 misc tech info - Fidonet? <no name>

TOOLS C 14032 8/10/89 Grid laptop special functions

 Fredrick Coffman

TOS 938 24/03/88 TOS function calls Mike Crawford

TOSHTEAC ZIP 624 9/07/89 pinout for ext. drive on T1100 "Dave"

TRYST ARC 29312 29/10/88 DOS and hard disk info Amy Goebel

UNDOCINT 21H 7168 14/04/87 undocumented DOS calls Peter Holzmann

VESA TXT 41269 01/17/90 VESA standard VESA

VGAKIT DOC 7634 05/04/90 VGA programming kit John Bridges

VGAPIN ARC 1252 24/10/88 VGA pinout "Mike"

WD-27X ARC 6144 10/10/87 WD 27X HD controller setup Steve Shelton

WDCONFIG ARC 5504 11/10/87 WD-1002 WXS setup Richard Driggers

WDCONT ARC 11264 25/12/87 info on WD hard disk controllers

 Peter Fales

XEB1210 ARC 7947 18/07/87 Xebec HD controller setup

 Richard Driggers

XEBEC ARC 1036 30/04/88 setup for Xebec HD controller

 Richard Driggers

XEBECTEC ARC 1834 30/04/88 setup for Xebec 1210 <no name>

XGADEMO LZH 23552 01/27/91 IBM XGA programming info v.50 Bert Tyler

XMS ARC 75776 1/08/88 Microsoft Extended Memory

 Specification 1.0 Microsoft Corporation

XTCHARTS ARC 12416 4/11/88 ports, charts <no name>

4DOS.DOC Tom Rawson 4DOS int 2Eh, 2Fh calls, SHELL= bug

APARDOS4.TXT IBM Corp. bug reports for DOS 4.0

APARDOS5.TXT IBM Corp. bug reports for DOS 5.0

BOOKS.TXT Chriss Bosshardt bibliography of MIDI references

BMP.HDR Jim Kent MS .BMP format

CED10D Chris Dunford CED interrupt calls

DESQ10.ASM James H. LeMay DESQview API calls

GLOSSARY.ARC no author name computer terms

LANTSTIC.DOC LANtastic adware peer-to-peer LAN calls

NBRCV.C Paul McGinnis NetBIOS API calls

NETTUT.DOC Charles L. Hedrick TCP/IP network

 DOSREF isn't a tutorial, and sometimes you need a tutorial.

Microsoft has finally written a half-decent one - The MS-DOS

Programmer's Reference, Microsoft Press, 1991, ISBN 1-55615-329-5.

This is the DOS 5.0 Tech Ref. It covers data structures and DOS

programming concepts clearly. However, it has no information on other

DOS versions, nor does it (of course) cover undocumented calls.

 Nothing gets written in a vacuum, and I'd like to express my thanks

to all the people who have been good enough to furnish information and

support:

 (in alphabetical order)

Tommy Apple, Mike Crawford, Herman Diagostino, Joe Felix, Ron Melson,

Denis Murphy, & Ben Sansing,

 who all loaned me documentation and reference material for

 so long that some of them have forgotten to ask for their

 stuff back

 And those people who were kind enough to help out:

Mike Blaszczak, MA:

BIX: blaszczak

 who went rampaging through work and client's sites to find and

 document various model ID bytes, plus plenty of information on

 MS OBJ file formats

Carl Bretteville, Drammen Norway:

 who sent me a complete Concurrent DOS Programmer's Reference,

 considerably enriching the Norwegian postal service thereby

William Cravener

CIS: 72230,1306

 who allowed me to include his PORT-IN.OUT file

John Dallman

jgd@cix.clink.co.uk

 more information on eDOS 4.0

Herman Diagostino, Manassas VA: who worked up the TECHMENU menu file

 and provided a copy of the rare IBM DOS 4.0 Technical

 Reference and a copy of the original MSDOS Encyclopedia from

 Microsoft, info on the Pelican 5.5mb floppy drive, IBM DOS 4.0

 command reference, many hard drive specs, OS/2 DOS Box

 differences

James Drenter, Davenport IA:

 additional info on int 1Ch

David Dorling, Buderim, Australia:

 found one embarrassing error in the device driver info and

 provided many expansions and clarifications

Chris Dunford, Columbia MD:

CIS: 76703,2002

 who sent me a copy of the PCED 2.0 API and let me use his

 INTPROTO.TXT

Sean Goggin

sean@u36.kwnet.on.ca

 several partition table ID bytes from his usenet ID byte list

Steve Grant, Jersey City NJ:

BIX: sjgrant

 who granted permission to include his excellent SYSID program

 with my distribution disks, furnished several model IDs

Roedy Green, Vancouver BC Canada:

BIX: roedy

 many names and addresses for Appendix 5, serial and parallel

 port details and cabling, granted permission to include some

 of his very educational essays with my distribution disks,

 plus many details on DOS disk I/O

David Holm

BIX: dgh

 Reported minor error in int 15h/4Fh and some TI Pro oddities

Brad Kepley

BIX: bkep

 furnished copy of Davis' DESQview Programming book

Michael Koepke, Wood Dale IL:

 pinouts on EGA feature connector, PS/2 keyboard connector, DR-

 DOS programming information, much info on Digital's DR-DOS,

 and the loan of some of his books

Tom Jeffries, Oakland CA:

BIX: tjeffries

 furnished a copy of the Sound Blaster SDK

Curt Lankford, Little Rock, AR:

 loaned his copy of the AT&T 6300 Plus Hardware Technical

 Reference

Ron Lepine

BIX: ronlepine

 much TI Professional keyboard/video programming info

Alan R. Levinstone, Garland TX:

 80286 LOADALL instruction

 BIOS Data Area floppy control parameters 40:8B, 40:8F, 40:90

Brian Long, Twyford UK:

 provided a copy of the then-nearly-unavailable DPMI 0.9

 specification, plus port and address info

John Man, Brighton UK:

JHL14@phx.cam.ac.uk

 Consensys V4 partition ID byte

Keith Meade, Rochester MN:

BIX: keithm

 who provided a Microsoft Windows 2.11 SDK, copy of IBM TopView

Feico Nater, Hengelo, Netherlands:

 additions to FCB calls, several pages of expansions and

 clarifications

Bruce Nevins, Tucson AZ:

BIX: bnevins

 Irwin low-level tape drive info, DEC PC info

Patrick O'Riva, San Jose CA:

 info on what happens to the interleave when the BIOS is

 finished, and for his interesting online assembly-language

 magazine

Klaus Overhage, Stuttgart Germany:

 FANSI-CONSOLE system calls, and translating the TechRef into

 German

August C. Quint, Germany:

CIS: 100023,1545

 bug reports on 8250 information, disassembly of DOS 3.1, and

 many useful comments

Tom Rawson, MD:

BIX: trawson

 DOS device driver loading information

Peter Rejto, Minneapolis MN:

rejto@math.umn.edu

 many C.A.R.E. packages of documentation and data sheets -

 hardly a month goes by without something from Peter!

John Richards, England:

BIX: jrichards

 European DOS 4.0 information

Chris Rutkowski, Botswana:

 Chris donated the list of Epson printer codes that appear in

 Appendix 36

Ben Sansing, Little Rock AR:

ben.sansing@chaos.lrk.ar.us

 ANSI.SYS information, documentation for the NEC V20/30 chips,

 reported error in register chart in Chapter 4, loaned his copy

 of PC-MOS/386 for testing

Mike Sargent, Canada:

BIX: mfsargent

 sent a copy of the IBM AT Technical Reference with BIOS

 listings

Hans Schleichert, Marburg Germany:

 information on int 2Fh, fn OAEh (internal DOS commands). Good

 thing I took some German in high school... <grin>

Paul Slootman, Borne, Netherlands

 RealTek VGA board video modes

John Switzer, CA:

BIX: jswitzer

 who allowed me to include his discoveries on alternate DOS

 entries and file mysteries. (see BACKDOOR.ZIP on BIX, or Oct

 1990 Dr. Dobbs')

Fred Thompson, Rapid City SD:

 loaned his Sound Blaster manual, provided much info on

 graphics programming

Matt Trask:

BIX: matt.trask

 who provided a complete copy of the TopView Programmer's

 Reference and some OS/2 programming information

Richard Vogh, Marietta GA:

 found several embarrassing errors in the boot sector chart in

 Chapter 8. The shame! The shame! <sigh>

Jim Wenzel, North Little Rock AR:

jim.wenzel@grapevne.lrk.ar.us

 more PC model ID codes, loaned his copy of the Windows 3.0 SDK

...and these companies:

Alloy Computer Products, Marlborough MA:

 Joe Souza and Frank Gladu, who provided detailed information

 on the APIs for NTNX, ANSK, and 386 Multiware.

Artisoft, Tucson AZ:

 Eileen, Sherri, and the beta support people

Digital Research, Monterey CA:

 provided review copies of DR-DOS 5.0 and DRMDOS

H&R Block / Compuserve

CIS: 70003,4100

 Michael Finney, who gave permission to reproduce the GIF89a

 standard

Microsoft Corporation, Redmond WA:

 for beta-test versions of DOS 5.0, Windows 3.1, other

 products, information on DOS 5 and the DOSSHELL API

NanoSoft, Natick MA:

 Jack van Schouwen, allowed the use of their API materials

 verbatim

The Software Link, Atlanta GA:

 provided a review copy of PC/MOS-386 and the programming guide

Qualitas, Bethesda MD:

 Bill, Andy, and all the gang

Quarterdeck, Santa Monica CA:

 Russ, Bob, Michael, and the guys in beta and tech support

 Special thanks to Chris Dunford, who donated his "CED" program to

the public domain. If it wasn't for CED, I would likely have

abandoned MSDOS machines entirely and bought a Macin...uh... something

else; and to Haruyasu Yoshizaki for allowing unrestricted use of his

LHarc program used to compress the files on these diskettes.

 Dave Williams

 Jacksonville, AR

 ============================== I N V O I C E =================SWv3.4=======

 mail invoice to: SHIP TO:

 Dave Williams +--

 DOSREF |

 PO Box 181 |

 Jacksonville, AR |

 72078-0181 USA |

 |

 Order #: |

 Date : |

 PO # : |

 +--

===

 item | description |unit pr| qty |total price

===

 Programmer's Technical Reference _______ _____ _____ _____

 USA: $20

 Canada: $24 CDN (checks)

 $20 US (postal money orders)

 United Kingdom: £14 check one:

 EuroCheques: £14 UK

 | | (2) 1.44 Mb disks

 Cash, checks, or money orders are acceptable. | | (2) 1.2 Mb disks

 see the PAYMENT file if you need help

===

 Orders from other countries, please make payment DOSREF _$20.00__

 in one of the currencies listed above.

 packing and postage _$1.75___

 $5.00 extra charge for 6 x 360K [] or 4 x 720K [] diskettes _________

 total _________

Where did you hear about DOSREF? __

Would you like a copy of the latest shareware version to upload or pass out

to friends or associates?

 YES___ NO___

 THANK YOU!

 -------------------- QUICK MAILER ----------------------

 Please support quality shareware by your registration.

 Thank you for your support!

 DOSREF 3.4 Registration Form

make check or money order to: Dave Williams

 PO Box 181 (DOSREF)

see INVOICE.TRF for foreign orders Jacksonville AR 72078-0181 USA

 unit price

 Programmer's Technical Reference $20

 shipping and handling $1.75

 Total $___________________

------------fold------------ INSTANT REGISTRATION ---------here------------

 check disk type | | (2) 5-1/4 inch, 1.2 Mb

 | | (2) 3-1/2 inch, 1.44 Mb

Where did you hear about DOSREF? __

 __

Use Address on envelope () check () or:

Name ___

Address ___

E-MAIL: ___

 Copy this file to the printer. After the first page prints, you will have

to turn it over and print the back side for the address.

 Fold at the page break below with the printing facing out. Then fold letter

style, putting this side in and the address side out. If necessary, staple

the check to the mailer, then staple or tape the sides and top.

 Check here if you would like a copy of the latest shareware version to

pass around or upload to a local BBS: _____

 THANK YOU!

_________________________________ | |

 | |

_________________________________ | Stamp |

 | |

_________________________________ | |

 Dave Williams

 PO Box 181 (DOSREF 3.4)

 Jacksonville, AR 72078-0181

 USA

DOSREF SWv3.4

