agena > >

a programming language

primer and reference

for version 2.36.1
by alexander walz

January 29, 2023

agena Copyright 2006 to 2023 by alexander walz, rhineland.
All rights reserved. Portions Copyright 1994-2007, 2020 Lua.org, All rights reserved.

None of the Agena project members or anyone else connected with this
documentation, in any way whatsoever, can be responsible for your use of the
information contained in or linked from it.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as frademarks. Where those designations appear in this
manual, and the author was aware of a trademark claim, the designations have
been printed in inifial caps or all caps.

The latest release of Agena can be found at http://sourceforge.net/projects/agena.

This manual has been created with Lotus Word Pro 98 running on Sun Microsystems
VirtualBox with Microsoft Windows 2000, yWorks YEd Graph Editor, and PDF Creator.

agena >> 3

Credits

The Sources
Agena has been developed on the ANSI C sources of Lua 5.1, written by
Roberto lerusalimschy, Luiz Henrigue de Figueiredo, and Waldemar Celes. Used
by their kind permission back in 2006.

Chapter 7: Standard Library documentation
A substantial portion of Chapter 8 has been taken from the Lua 5.1 Reference
Manual wriffen by Roberto lerusalimschy, Luiz Henrique de Figueiredo, and
Waldemar Celes. Used by kind permission.

environ.anames
environ.anames has been invented by Joe Riel, put 1o the Maple community
back in the early nineties.

case of statement
The original code has been written by Andreas Falkenhahn and posted to the
Lua mailing list on September 01, 2004. In Agena, the functionality has been
extended to check multiple values in the of branches.

skip statement
The skip functionality for loops has been written by Wolfgang Oertl and posted to
the Lua Mailing List on Septemiber 12, 2005.

environ.globals base library function
The original Lua and C code for environ.globals has been written by David
Manura for Lua 5.1 in 2008 and published on www.lua.org. The C source has
been changed so that in Agena, C functions are no longer checked.

mkdir, chdir, and rmdir functions in the os library
These functions are based on code taken from the “lposix.c” file of the POSIX

library written by Luiz Henrique de Figueiredo for Lua 5.0. These functions are
themselves based on the original ones written by Claudio Terra for Lua 3.X.

4 Contents

No automatic auto-conversion of strings to numbers
was inspired by Thomas Reuben's no auto conversion.patch available at
lua.org.

Kilobyte/Megabyte Number Suffix ('k', 'm')

taken from Eric Tetz's k-m-number-suffix.patch available at lua.org.

Binary and octal numbers ('0b', '00')

taken from John Hind's Lua 5.1.4 patch available at lua.org.

Integer division

taken from Thierry Grellier's newluaoperators.patch available at lua.org.

math.fraction

was originally written in ANSI C by Robert J. Craig, AT&T Bell Laboratories.

The math library functions eps, epsilon, exponent, issubnormal, mantissq,
math.frexp, math.nextafter, math.wrap, modf, round, zerosubnormal, cis,
math.sincos, arctan, arctan2, sin, cos, +++ and --- operators

use a modified versions of C functions that have originally been published by
Sun Microsystems with the fdliom IEEE 754 floating-point C library. See Appendix
B3 for the licence.

calc.diff

based on Conte and de Boor's " Coefficients of Newton form of polynomial of
degree 3.

Advanced precision algorithm used in for/to loops, sumup, calc.fsum,
linalg.trace, stats.amean, factory.count, stats.cumsum, and stats.sumdata.

The method to prevent round-off errors in iterations with non-integral step sizes
has been developed by Wiliom Kahan and published in his paper " Further
remarks on reducing truncation errors® as of January 1965. Agena in some
cases uses a modified version of the Kahan algorithm developed by Kazufumi
Ozawa, published in his paper “Analysis and Improvement of Kahan's

agena >> 5

Summation Algorithm™. Especially the statistics function use the Kahan-Babuska
variant described by Andreas Klein in his study A generdlized
Kahan-Babuska-Summation-Algorithm ™.

calc.minimum, calc.maximum
use the subroutine cale.fminbr originally written by Dr. Oleg Keselyov in ANSI C
which implements an algorithm published by G. Forsythe, M. Malcolm, and C.
Moler, "Computer methods for mathematical computations™, M., Mir, 1980,
page 202 of the Russian edition.

bernoulli, besselj, bessely,euler, lambda
are completely or largely based on the functions originally written in FORTRAN by
Shanjie Zhang and Jianming Jin, Computation of Special Functions, Copyright
1996 by John Wiley & Sons, Inc. Used by Jianming Jin's kind permission.

Graphics
The graphical capabilities of Agena in the Solaris, Linux, Mac, and Windows
versions have been made possible through a Lua binding of Alexandre Erwin
lttner to the g2 graphical library which has been written by Ljubomir Milanovic
and Horst Wagner.

ADS package
The core ANSI C functions to create, insert, delete and close the database have
been written by Dr. F. H. Toor.

MAPM binding

Mike's Arbitrary Precision Math Library has been written by Michael C. Ring. See
Appendix B6 for the licence.

The MAPM Agena binding is an adaptation of the Lua binding written by Luiz
Henrigue de Figueiredo, put fo the public domain.
Year 2038 fix for 32-bit machines

was written by Michael G. Schwern, and has been published under the MIT
licence at http://github.com/schwerm/y2038.

6 Contents

gzip package
and its description of the binding has originally been written and published
under the MIT licence by Tiago Dionizio for Lua 5.0.

Internal string concatenation
Some intemnal initialisation routines use a C function written by Solar Designer

placed in the public domain.

Functions arctan, expx2, gamma, Ingamma, calc.Ai, calc.Bi, calc.dawson,
calc.dilog, calc.Ci, calc.Chi, calc.En, calc.fresnelc, calc.fresnels, calc.ibeta,
calc.igamma, calc.igammc, calc.invibeta, calc.polylog, calc.Psi, calc.Si,
calc.Shi, calc.Ssi, calc.zeta, stats.gammad, stats.gammadc, and
stats.invnormald

use algorithms written in ANSI C by Stephen L. Moshier for the Cephes Math
Library Release 2.8 as of June, 2000. Copyright by Stephen L. Moshier.

erf, erfc, inverf, inverfc, calc.intde, calc.intdei, calc.intdeo
These functions use procedures originally written in C by Takuya Ooura, Kyoto,
Copyright(C) 1996 Takuya OOURA: "You may use, copy, modify this code for any
purpose and without fee."

math.random
The algorithm used to compute random numibers has been written by George
Marsaglia and published on en.wikipedia.org.

io.anykey
The Linux version uses code written by Johnathon in 2008 which was published
under the MIT licence.

XBASE file support
The xbase package is a binding to XBASE functions written by Frank Warmerdam

in ANSI C for the Shapelib 1.2.10 and 1.3.0 libraries. The Shapelib library has
been published under the MIT licence.

agena >> 7

The net package

Most of the functions are based on Jurgen Wolf's C examples published in his
ook "C von A bis Z*, 3rd Edition, Galileo Computing, Bonn, 2009.

"Beej's Guide to Network Programming, Using Intemet Sockets ", written by Brian
"Beej Jorgensen” Hall, was of great help. Some of the net functions use part of
Mr. Hall's public domain code published in his tutorial. Copyright © 2009 Brian
"Beej Jorgensen” Hall.

Studying the code of the LuaSocket 2.0.2 package, Copyright © 2004-2007 by
Diego Nehab, and published under the MIT licence, was very worthwhile.

strings.dleven

The implementation of Damerau-Levenshtein Distance is a blend of C code
written by Lorenz and Anders Sewerin Johansen.

utils.readxml

The original version of the core XML parser has been wriffen in Lua 5.1 by
Roberto lerusalimschy, published on LuaWiki.

utfils.decodebé4 and utils.encodeb64

The Baseb4 functions have been originally written in pure ANSI C by Bob Trower,
Copyright (c) 2001, published under the MIT licence.

printf

was taken from the compat.lua file shipped with the Lua 5.1 sources published
under the MIT licence.

.. operator and {} indexing

are based on code written by Sven Olsen, published in Lua Wiki/Power Patches.

copy

The deep copying mechanism has originally been written by Kurt Jung and by
Aaron Brown for Lua, and published in their book 'Beginning Lua Programming',
Wiley Publishing, Indianapolis, Indiana, 2007, page 151.

8 Contents

os.getenv, os.setenv, os.environ

have been writften by Mark Edgar, Copyright 2007, published under the MIT
licence, and were taken from http://lua-ex-api.googlecode.com/svn.

bags package

The idea and its core implementation - ported to C - has been taken from the

book “Programming in Lua® by Roberto lerusalimschy, 2nd Edition, Lua.org, p.
102.

xml package

The xml package actually is the LuaExpat binding to the expat library with some
few Agena-specific non-OOP modifications. LuaExpat 1.0 was designed by
Roberto lerusalimschy, André Carregal and Tomds Guisasola as part of the
Kepler Project which holds ifs copyright. The implementation was coded by
Roberto lerusalimschy, based on a previous design by Jay Carlson.

LuaExpat development was sponsored by Fabrica Digital and FINEP.

bintersect, bminus, bisequal, stats.obcount

The algorithm for binary comparison has been taken from Niklaus Wirth's book,
*Algorithmen und Datenstrukturen mit Modula-2°, 4th ed., 1986, p. 58.

linalg.mulrow, linalg.mulrowadd, stats.deltalist, stats.cumsum, stats.colnorm,
stats.rownorm, stats.sumdata

These functions have been inspired by the deltalist, cumulativeSum, centralDiff,
colNorm, rowNorm, mrow, and mrowdd functions available on the TI-Nspire™
CX CAS.

linalg.scale, stats.scale

is a port of function REASCL, included in the ALGOL 60 NUMAL package
published by The Stichting Centrum Wiskunde & Informatica (Stichting CWI) (legall
successor of Stichting Mathematisch Centrum) at Amsterdam. Original authors:
T. J. Dekker, W. Hoffmann; contributors: W. Hoffrnann, S. P. N. van Kampen.

agena >> 9

0Ss.Nnow

uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

Functions calc.clampedspline, calc.clampedsplinecoeffs, calc.interp,
calc.neville, calc.newtoncoeffs, calc.nokspline, calc.noksplinecoeffs

use C++ routines (ported to C) provided or written by Professor Brian Bradie,
Department of Mathematics, Christopher Newport University, VA, to the course
"An Infroduction to Numerical Analysis with Applications to the Physical, Natural
and Social Sciences’. There have been no copyright remarks, so at least
Agena's MIT licence is not applicable to the source files ‘interp.c™ and
‘interp.h .

stats.smallest
is based on N. Devillard's C implementation of an algorithm published in various
books written by Niklaus Wirth, published for example in Algorithmen und
Datenstrukturen mit Modula-2 . Mr. Devillard put his code in the public domain.
strings.isiso* and strings.iso* functions
use ISO 8859/1 Latin-1 bit vector tables taken from the entropy utility ENT written
by John Walker, January 28th, 2008, Fourmilab, put in the public domain.
astro.moonriseset
Uses C functions Copyright © 2010 Guido Trentalancia IZ6RDB. This program is
freeware - however, it is provided as is, without any warranty.
astro.phase

Uses C functions taken from: http://www.voidware.com/moon_phase.htm. There
have not been any copyright remarks.

astro.sunriseset

Uses C functions written as DAYLEN.C, 1989-08-16. Modified to SUNRISET.C,
1992-12-01, (c) Paul Schiyter, 1989, 1992. Released to the public domain by
Paul Schliyter, December 1992,

10 Contents

astro.cdate & astro.jdate
uses C routines of the IAU Standards of Fundamental Astronomy (SOFA) Libraries,
See Appendix B5 for the licence.

strings.utf8size
of the core C code procedure has been written by mpez0O, published at
StackOverflow.

strings.isutf8
of the core C code procedure has been written by written by Christoph,
published on StackOverflow.

strings.isotolatin & strings.isotoutf8
of the core C code procedures have been written by Nominal Animal published
on StackOverflow.

strings.glob

uses C code wiritten by Arjan Kenter, Copyright 1995, Arjan Kenter.

stats.sorted
uses an iterative Quicksort algorithm written by Nicolas Devillard in 1998, put to
the public domain.
%y *%, +%, -%, %% operators, math.dd, math.dms, math.splitdms, polar,
stats.cdf, stats.numbcomb, stats.numbperm, and stats.pdf
have been inspired by the TI™-30 ECO RS, TI™-30X Pro, Sharp™ EL-W531XG and
HP 35s pocket calculators.
E, Exp

as a constant, defines the former Maple V Release 3 implementation of E =
exp(1) = 2.71828182845904523536.

agena >> 11

Complex arithmetic
for various mathematical functions and operators has been implemented by
primarily using Maple V Release 3, Maple V Release 4, and Maple 7.

io.getclip and io.putclip

are based on C code written by banders7, published on Daniweb.

try/catch statement
has been invented and written by Hu Qiwei for Lua 5.1 back in 2008, and has
been extended for Agena.

debug.getinfo

the 'a‘/arity extension has been written by Rob Hoelz in 2012.

calc.polyfit & calc.linterp

uses C code published by Harika in 2013 at http://programbank4u.blogspot.de.

Review of the Agena interpreter at the Web

Many thanks o softpedia.com for the very kind critique and fine ranking.

linalg.det & linalg.inverse
are based on C functions written by Edward Popko published on Paul Bourke's
website at http://paulbourke.net/miscellaneous.

redo & relaunch

have been inspired by the Ruby programming language.

linalg.gsolve

is based on C functions written by Edward Popko and Alexander Evans; for the
former see the link above, and for the latter the following address:
http://www.dailyfreecode.com/code/basic-gauss-elimination-method-gauss-29
49.aspx.

12 Contents

calc.simaptive and linalg.ludecomp
ae based on C functions written by RLH, available at
http://www.mymathlib.com, Copyright © 2004 RLH. All rights reserved.

~=, ~<>, approx, gmdev

use methods developed by Donald Knuth.

calc.Ei

uses a combination of C algorithms written by Stephen L. Moshier and RLH.

linalg.rref

is based on a C# function published at http://rosettacode.org.

linalg.forsub
is based on an algorithm explained by Timothy Vismor found on his site
http://vismor.com.

cordic package
is based on a C package wiitten by John Burkardf, taken from
http://people.sc.fsu.edu/~jourkardt/c_src/cordic/cordic.c, with modifications
using Maple V Release 4 and TI-Nspire CX CAS. Sources provided separately.

libusb binding

is based on lualibusb1 - Lua binding for libusb 1.0, written by Tom N Harris. See:
http://lualibusb1.googlecode.com.

stats.extrema

is the Agena port of the "peakdet” function written by Eli Billauer for MATLAB.

mdf, xdf

have been inspired by the Sharp PC-1403H pocket computer.,

agena >> 13

os.cpuload, os.drivestat, os.getenv, os.realpath & os.setenv
are based mainly on procedures taken from Nodir Temirkhodjoev's LuaSys
package.

utils.readini
uses modified C sources writften by Nicolas Devillard for his iniparser 3.1
package.

Various OS/2 operating system functions

have been made possible by the website hitp://www.edm2.com/o0s2api.

llist and heaps packages

The C implementation of singly and doubly-linked lists and AVL trees has been
accomplished by reading Michal Kottman's tip at nabble.com on how to code
new data structures using Lud's userdata and how to anchor values into the
reqgistry. The algorithms themselves have originally been written in C by Martin
Broadhurst.

stats.dbscan & stats.neighbours
The dbscan algorithm has been invented by Martin Ester, Hans-Peter Kriegel,
Jorg Sander, and Xiaowei Xu, published at University of Munich. The Agena port
is based on a Matlab implementation written by Peter Kovesi, Centre for
Exploration Targeting, The University of Western Australia, with stats.neighbours a
C-based split-off,

hashes package
uses code published by RSA Data Security, Inc. Copyright (C) 1990. All rights
reserved. For further credits, please see the hashes.c file in the Agena sources.

math.ceilpow2 and math.ilog10

use code presented by Sean Eron Anderson at his "Bit Twiddling Hacks®
webpage http://graphics.stanford.edu/~seander/bithacks.html.

14 Contents

os.cdrom, os.ismounted, os.isremovable, os.isvaliddrive
The Windows versions are based on code published at MSDN, page
http://support.microsoft.com/kio/165721#. The Linux version of os.cdrom is
based on Jurgen Wolf's C book “C von A bis Z*, 3rd Edition, Galileo Computing,
Bonn, 2009. The OS/2 version of os.cdrom is based on code found on the OS/2
Hobbes FTP server at NMSU, left without any copyright remarks.

os.terminate

The OS/2 version is largely based on Mark Kimes' public domain implementation.

os.monitor
The Linux version is based on Dave Drager+'s recommendation published at his
blog.

hypot2 and antilog, operators

have been inspired by the Sinclair Scientific Programmaible pocket calculator.

math.eps, stats.isall, stats.isany, and linalg.reshape functions

have been inspired by Matlab.

stats.gmean

uses an algorithm taken from the COLT sources published by CERN, Geneva.

gdi.plotfn

has been improved by Slobodan from Serbia.

oftype metamethod

to check structures at function invocation has been proposed by Slobodan from
Serbia.

agena >> 15

stats.durbinwatson, stats.standardise, and stats.sumdataln

have been inspired by the COLT package published by CERN, Geneva.

<<<< and >>>> operators, bytes.arshift32, bytes.extract32, bytes.replace32
have been implemented using Lua 6.2 and 5.3 code and Rupert Tombs'
arithmetic right-shift implementation.

Chapter 6.24

is based on examples published at http://www.lua.org/pil/T16.html.

Exit and restart handling

via environ.onexit has been inspired by MuPAD 2.5.

with and related statements
are based on a Lua 5.1 power patch written by Peter Shook (*Unpack Tables by
Name).

math.dms

uses an algorithms proposed by user807566 on StackOverflow.,

case of boolean condition variant

has been inspired by the Go programming language.

Numeric ranges in case/of clauses

have been inspired by the Fortran 90 programming language.

math.fma

for those platforms that do not provide a built-in fma C function, is based on a
method proposed by Z boson on StackOverflow.

16 Contents

math.signbit
for those platforms that do not provide a built-in signbit C function, is based on a
Sun Microsystems implementation.

math.signbit
Its original version has been witten by Jacob Rus for Lua, taken from:
https://gist.github.com/jrus/3197011.

math.wrap
Is based on Tim Cas' answer #4633177 on StackOverflow and the restrictsymm
function of the Julia programming language.

Sinclair ZX Spectrum package
clones Spectrum ROM Z80 assembler routines disassembled by Dr. lan Logan
and Dr. Frank O’Hara.

math.eps
optionally uses a formula suggested by trashgod on StackOverflow to compute
a small epsilon value that is suited for mathematical C double operations.

dBASE version numbers
printed in the description of xbase.attrib have been taken from:
http://stackoverflow.com/questions/3391525, answered by Les Paul.

round, mdf, and xdf
use an underlying C routine posted by Lary | Smith, see:
https://bytes.com/topic/c/answers/521405-rounding-nearest-nth-digits.

math.cld, math.fld, math.flipsign, math.isqrt, math.Infact, and math.powmod

have been ported from or have been inspired by the corresponding functions
written in the Julia programming language, published under the MIT licence.

agena >> 17

strings.appendmissing, strings.between, strings.chop, strings.chomp, strings.con-
tains, strings.uncapitalise, strings.iswrapped, strings.wrap, and
strings.wrapmissing

are ports of StringUtils functions part of the Apache Commons Lang 3.5 API.

astro.hdate and os.date (*sdn' format)

use C functions written by Scoftt E. Lee, see http://www.rosettacalendar.com.

hashes.mix64 and hashes.mix64t032

use Thomas Wang's C procedures, taken from gist.githubb/badiboy/6267743.

times

is based on the corresponding Haskell function iterate.

for/until loops

have been inspired by COBOL.

math.sincos
uses Elliot Saba's sincos implementation.
math.accu

uses Julia Language's Kahan-Babuska-Neumaier compensated summation.,

hashes.droot, hashes.parity, hashes.reflect

use Henry S. Warren's code published with his book “Hacker's Delight .

hashes.pjw, hashes.rs, hashes.bp

are based on C functions written by Arash Partow.

18 Contents

map/@ extension 1o support function composition & reduce
have been inspired by Slobodan's feedback and an excellent infroduction to
functional programming written by Mary Rose Cook.

bloom filter plus package

is based on C code created by Simon Howard, see Appendix B? for ISC licence.

factory plus package

has been inspired by the “functools™ package in Python 3.

strings.a64 and hashes.sha512

use C code from the musl-1.1.19 library, MIT licence.

? statement, prepend, linalg.iszero, linalg.isallones, thus indirectly satisfy

have been inspired by the Axiomn Computer Algebra System.

getorset
has been inspired by the “getOrElseUpdate” operator in the Scala
programming language.

if is operator and compound assignments, +:=, -:=, etc.
have been inspired by Algol 68.

bytes.pack, bytes.packsize, bytes.unpack, tables.move, and the utf8 package
have been taken from Lua 5.3.5 or Lua 5.4.0 RC 4 (utf8, move).

GMP 6.1.2 port for OS/2
compiled by KO Myung-Hun has been used to compile the mp binding.

dual package
uses definitions primarily found at blog.demofox.org and adl.stanford.edu.

agena >> 19

os.iterate
has been derived from listing published in “Programming in Lua™ 2nd Ed.,
pp 271f., by Roberto lerusalimschy.

com package
is largely based on the LuaSys package v1.8, written by Nodir Temirkhodjaev.

assignments in conditions of while loops, if and case of statements
were inspired by Icon and C.

duplicate parser warnings for duplicate local variable declaration
have originally been designed by Domingo Alvarez Duarte for Lua 5.1.

shift
has been written by StackOverflow user ryanpattison for Lua.

type anything and more or less constants
have been inspired by Maple.

erfcx, calc.scaleddawson, calc.w
use code written by Steven G. Johnson, October 2012, MIT licence.

os.netuse, os.netsend & os.netdomain
use code written by Antonio Escano Scuri for the NTLua 3.0 package,
MIT licence.

rings package
has been designed by Roberto lerusalimschy and Tomds Guisasola for Lua 5
as part of the Kepler Project. The implementation was originally coded by
Tomds Guisasola. Rings development was sponsored by Fabrica Digital.
MIT licence.

utils.decodeb85 and utils.encodeb85

The Base85 functions have been originally written in C by Rafa Garcia, Copyright
(c) 2016-2018, published under the MIT licence.

20 Contents

utils.decodea85 and utils.encodea85

The ASCII85 conversion functions have been written in C by Luiz Henrigue de
Figueiredo, placed in the public domain.

strings.pack, strings.packsize and strings.unpack

have been taken from Lua 5.4.4, Lua.org, PUC-Rio, MIT licence.

bimaps package
has originally been written by Pierre 'catwell' Chapuis for Lua.
Copyright (C) 2013-2015 by Pierre Chapuis. MIT licence.

heaps package
is based on a Lua package written by Geoff Leyland, New Zealand.
Copyright (c) 2008-2011 Incremental IP Limited. MIT licence.

aconv package
is based on the Lua-iconv 7 package for Lua 5.1, 2005 - 2011, MIT licence,
written by Alexandre Erwin lttner.

Finally, due to very kind help and feedback, in chronological order

Many thanks to the Lua team at PUC-Rio, Brazil, and to Agena users in Israel, Italy,
Australia, Palestine, Poland, Serbia, the OS/2 community, and to users of other
nations.

agena >> 21

Table of Contents

1INt OAUCTION L 33
T A T OCT o 33
L2 FEOtUIES i 33
1.3 N D Al i 34
T HIS Oy ottt 35
1D O gINS ot 36
2 Installing and RUNNING AQENA ... 47
2.1 SUN SOIANS TO ottt 41
2.2 LINUX ot 41
2.3 Wi OW S ittt e 42
2.4 OS/2 Warp 4, eComStation and ArcaOS 43
2.0 DS i 44
26 Mac OS X 10.5 AN ADOVE ... 44
2.7 AQena INHAlSAHON .. 45
2.8 Installing Library UpAates ... i 46
S SUMIMIAIY e 49
3.1 Input Conventions in the Console Edition ... 49
3.3 Geting FamMIlIAr ... 49
3.4 UsefUl STAtemMENTS ..o 50
3.5 Assignment and UNaSSIgNMIENT ... 51
3.6 AN MG C L 51
3.7 SIS ottt 51
3.8 BOOIEANS . 52
3. TADIES . 52
S0 StS o 53
3.l] S OUENCES ittt 54
T 2 o 1 54
3. 13 CONAIIONS et 54
K T 17 T 1T 55
3. 10 PrOCEAUIES .t 57
3.6 MM NS it 58
3.17 Writing, Saving, and RUNNING ProgrammMesooviiiiiiiieiiiaaees 58
3. T8 USING PACKAGES ..ot 59
4 DAt & OPEIatONS . 63
4.1 Names, Keywords, AN TOKENS ... ov vt e 64
(@]] T o 65
4, 3 ENUNMIEIO ON Lot 67
4.4 Deletion and the null CoNStaNt ... e 67
4.5 PIECEABNCE ..t 69
4.6 AT NNET C i 69
4,6, 1T NUMDEIS o i i 69

4.6.2 AthmetiC OEIatONS o\ttt e 71

22 Contents

4.6.3 Increment, Decrement, Multiplication, Division ... i 73
4.6.4 Mathematical CoNSIANTS ...t e 75
4.6.5 CompPlex MOt o 75
4.6.6 CompPanNg VAIUES ... v 76
4.6.7 RANGE Of VAIUES ..ottt 77
4.6.8 Adapting Basic Arithmetic Operatorsoovvvvr i 78
A 1 (]8T T 80
4.7, 1 REPIESENTION ON ittt i 80
4.7 .2 SUDSITINGS ittt 80
4.7.3 ESCOPE SEAUENCES 1\ttt ittt ittt 81
4. 7.4 CONCAIENAION Lttt 82
4.7.5 String Operators and FUNCHONS ... 83
4.7.6 ComMPANNG SHNGS .+ttt 85
4.7.7 Pafterns AN COptUIES ..ttt 86
4.8 BOOIEAN EXIESSIONS + ot vttt vttt ettt ettt e Q1
B Lo |1 @3
R I £ (@ 1Y P 94
4,9, 2 DI ONAIES .+ttt 98
4.9.3 Table, Set and Sequence OPEIatOrS ...ttt e 100
4,9.4 TADIE FUNCHONS o\ 102
4,9.5 TADIE REIEIENCES .. i 104
4.9.6 Unpacking Tables by NOME ... 105
4.9.7 Defining Multiple Constants EQSIly ... 106
4,10 GBS L 106
A, T] SEOUENCES .\ttt ittt 109
4,12 STACK PrOGIOmMIMING .« vttt 114
4,13 More on the create Statemento i 116
I @ 1 P 116
. REQIST OIS ittt 119
4.16 Exploring the Infernals of Structures ... 123
O A 1 TS G 1Y/ = 123
O CON Ol 127
T B O e [107 0 P 127
T I I] (@ 1= 1) | P 127
5.1.2 if Operator, VerSiON ONe ...t i e 130
5.1.3 if Operator, VEISION TWO ..\ttt e 131
5.1.4 Short-cut Condition with 2 and ?-TOKens ... 131
B.1.5 CaSE StAtEMIENT L 132
5.1.6 Case Of StatemMENt . 133
D2 L0 S ittt 134
5.2, 1 WhIlE OO ittt 134
5.2, 2 fONH0 LOOIS ottt ittt 137
5.2.3 fOr/AOWNTIO LOOIS .\ ittt ittt ittt e 139
5.2.4 for/in LOOPS OVEI TADIES ..\ttt e 139
5.2.5 for/in Loops over Sequences and Registerscoviiiiiiiiii i, 141
5.2.6 fOr/in LOOPS OV SHINGS v\ttt et 141

5.2.7 fOr/iN LOOPS OVEL SETS ittt e 141

agena >> 23

5.2.8 for/in LOOPS OVEI PTOCEAUIES ...\ttt ittt it e e 142
5.2.9 for/while and for/until LOOPS ..t vt i 144
5.2.10 for/as & for/Until LOOPS .+ ..ttt 145
5.2.11T LOOP JUMP CONITOl 1ttt 146
5.2.12 SCOPE |: SCOPE ANA EPOCS vttt ittt ittt e 148
5.2.13 Scope Il: with Statemento i 148
5.2.14 with Statement for DICTIONANESo e 149
5.2.15 Alternative 10 Closing KEYWOIASo 150
O PrOgIOMIMING i 153
.1 PrOCEAUIES ottt 153
6.2 LOCAl VaNODIES .. i 155
6.3 Global VaNADIES .. i 156
6.4 Changing Parameter VAIUES 157
6.5 OPtioNAl ATQUMIENTS Lttt 157
6.6 Passing Options in ANy Order ... 160
6.7 TYPE CNECKING vt 160
6.8 ENMOr HANAING oot 162
6.8.T The EIrOr FUNCHON L. i e 162
6.8.2 Type Checks in Procedure Parameter Lists ... 162
6.8.3 Checking the Type of Return of Procedurescocvviviiiiiiinnn, 164
6.8.4 The ASSUME FUNCHON L. i s 165
6.8.5 Trapping Errors with protect/lasternor ... 165
6.8.6 Trapping Errors with the try/catch Statement ..., 166
6.8.7 Trapping Errors with pre and post Clauses ... 167
6.9 MURIDIE RETUINS Lt e e 168
6.10 Procedures that Return ProCeaUres ... 169
6.11 Shortcut Procedure Definitiono 170
6.12 User-Defined ProCeaUIE TYPES v vttt ittt ittt e 171
6.13 SCOPING RUIES ..\t 172
6.14 Access to Loop Control Variables within Procedures ... 174
6. 18 SANADOXES vttt 174
6.16 Alfering the Environment at Run-TiMe ... e 175
.17 POCKOQES ..t 177
6.17.1 WrHing A NewW PACKAQE e 177
6.17.2 The initialise FUNCHON ... i e e 178
6. 18 ReMEMDEr TADIES ...\ i 180
6.18.1 Standard Remember TabIESot 180
6.18.2 Read-Only Remember TAbIES ...t e 182
6.18.3 Functions for Remember Table Administrationcoooviiiiiinn 184
6.19 Overloading Operators with Metamethods ..., 184
6.20 Memory Management, Garbage Collection, and Weak Structures 192
6.21 Extending Built-in FUNCHONS ... oot 194
6.22 Closures: Procedures that Remember their State ... 195
6.23 Self-defined Binary OperaiOrs ... uuuit i 198
6.24 OOP-style Methods ON TADIES ... v e 198
6.25 Assigning TAbIes tO ProCedureso.vvir e 199

6.26 SUMIMANY ON PrOCEAUIES 1.ttt e 201

24 Contents

0. 27 1 i 20T
6.27.1 Reading Text Fileso 201
6.27. 2 WHHNG TeXt FileS ... 202
6.27.3 Keyboard INteraCtioN . v 203
6.27.4 Default Input, Output, and Error Streams ..o 204
6.27.5 LOCKING FIlES o\t 204
6.27.6 Interaction with ApPlICANiONS ... v 204
6.26.7 CSV FIES ottt i 205
6.27 8 XML IS o\ttt 205
6.27.9 ABASE Hl/IV FllES .\ttt 205
6. 27 O NI RIS i 205
6. 28 LINKEA LISt o\ttt 206
6.2 NUMIEIC € ATy S ottt ittt ettt e e 209
6.30 Userdata and Ligthuserdata ... 209
6.31 TNE REQISITY ot 209
7 The LIoranies .. o 215
B BASICS L it 219
O SIS 267
Q.1 BaSIC StHNG FUNCHONS ..o s 267
9.1.1 Operators aNd FUNCHONS ..t e 268
@.1.2The stiNgs Lirary ... 273
O 1.3 PO EINS o 302
@.1.4 Format Strings for Pack and UnNpackvvvviiiiiiiiiiiiii e 304
@.2 memfile - Memory File for StiNgs ... 306
Q.3 U8 - UTF-8 HEIDEIS o\ ittt i e 317
9.4 aconv - Internationalization ... 319
@.5 NASNES - HASNES .\ttt 321
Q.6 bloomM - BIOOM FIter .o 337
TO SHTUCTUIES o 343
T0. T OIS ot 343
10.7.1 Operators and FUNCHIONS ...t e 343
10T, 2 1ADIES LIOrAry vt 351
10,2 SEES ot ti 356
10,3 SEOUENCES vttt ittt 361
LR TR B 7T (@1] £ 361
10,4 REQIS OIS ittt e 371
LR B B 7 (@1] £ 371
10.4.2 registers LIOraryo 378
T0. 8 PaIIS 381
10.6 NUMAITAY - NUMEHC C AITOYS ottt ittt ettt e 383
T0.6.T INTrOAUCHON ot 383
10,6, 2 FUNCHONS ottt ettt e 384

10.6.3 MeTOMEINOAS .\ttt e 395

agena >> 25

TO.7 llist - LINKeA LiStS ottt 396
10.7.1 Infroduction and an EXOMPle ... 396
10,7, 2 FUNCHONS ittt et e 397
10.7.3 Unrolled Singly-Linked ListS ... 400
10.7.4 DOUBIY-LINKEd LISTS o\ 'ttt 403
T0.8 bAQS - MUITSETS L 406
10.9 bimaps - Bi-direCtional MOS ..ot e 409
10.T0 heaps - Priority QUEUES ...\ttt 411
10.710.7 Introduction ANA EXOMIPIES . vt 411
TO.10.2 MetamEtnOAS ..ot 412
10.10.3 BINAry HEQPD FUNCHONS v vttt 412
TO.10.4 AVL Tree FUNCHIONS ittt et 413
10.70.5 Skew HEQP FUNCHIONS .\t 415
T0.1T bfield - Bit Fields ... e 417
T NUMIDEIS L 423
11.1 Mathematical FUNCHIONS ... v s 423
11.7.1 Operators and FUNCHONS . vt e 426
11T, 2 MAth L Orany v 452
T1.1.3 fastmMatn LIOrary . 475
T 2 YIS LTy it 478
11.3 mapm - Arbitrary Precision LIbrary ... 495
11.4 mp - GNU Multiple Precision Arithmetic Libraryccooviiiiii 500
11.4.1 Creation of Signed and Unsigned Integers ccovvviiiiiiiiininn, 500
11.4.2 Signed and Unsigned Integer Arithmetic ..o, 501
11.4.3 Number Theoretic FUNCHONS i 502
T1.4.4 BitWISE OPEIOONS vttt 504
TT1.4.5 MISCEIANEOUS .\ttt e 505
11.5 mpf - GNU Multiple Precision Floating-Point Reliable Library 507
11.6 divs - Library t0 ProCess FIOCHONS ..ot 511
T1.7 dudl - DU NUMIDEIS o e 515
11.8 ClOCK - CIOCK PACKAQE .. it 518
11.9 astro - AStronomMy FUNCHONS .t 521
11.10 cordic - Numerical CORDIC Librany ... i 526
11.71 zx - Sinclair ZX Spectrum FUNCHONS ... v e 528
11.12 calc - CAlCUIUS POCKAGE ...ttt 534
11.13 linalg - Linear Algebra Package ... 559
1114 Stats - STANSHCS Lot 572
11.15 long - 80-Bit Floating-Point Arithmetic ..., 608
T2 INPUt & OUIDUL . 627
12.7 10 - Input and Output FOCIITIES ... e 627
12.2 binio - Binary File PACKAQEo 642
12.3 xbase - Library to Read and Write xBase Filesooviiiiiiin e, 652
12.4 ads - Agena DAtalbase SyStem ... 667
T 2.5 XNl - XML P OIS T Lt 676
1 2.6 1A - UN DX HOr o 683

12.7 gzip - Library to Read and Write UNIX gzip Compressed Files 685

26 Contents

13 ComMmMUNICATION .. 691
13.1 net - NetWOrK LIrarny ..o 691
13.1.1 Infroduction and EXAmMPIES ... oo 691
T3, 1 2 FUNCHONS ot e 696
13.2 Usb - lIIPUSD BINAING ..o 705
13.3 com - Serial RS-232 Communication through COM Ports 707
14 System & ENVItONMIENT ... 713
14.1 0s - Access to the Operating System ... 713
14.2 environ - Access to the Agena Environment ..., 752
14.3 package - MOAUIES i 764
14.4 rtable - Remember TADIES 765
14.5 registry - Access tothe Registry ... 768
14.6 stack - Built-In Numiber and Character Stacksooovvviiiiiiiinnn, 769
14.7 sema - Unique ldentifiers ... e 787
14,8 COrOUNINES ot 790
14.9 debug - DebUGQING ..ot 791
18 GIOPNICS . 799
15.1 gdi - Graphic Device Inferface package ..., 799
15.1.1 Opening A File Or WINAOWot e 799
15.1.2 PIOtiNG FUNCHIONS ..ot 799
18.1.3 ColOUIS, PAM T o 800
15.1.4 Closing @ File O WINAOW ... vt 800
15.1.5 SUPPOEd File TYPES ... it 800
15.1.6 Plotting Graphs of Univariate Functions ..., 801
15.1.7 Plotting Geometric ObjeCts Easily ... 801
18.1.8 COlOUIS, PO 2 802
15.1.9 Gl FUNCHONS ot 802
15.2 fractals - Library to Create Fractals ... 815
1O UTTES o 823
TO. T ULIS - UHIHES i 823
16.2 skycrane - Auxiliary FUNCHONS ...t 835
16.3 fACTOrY - HEIOtOrS . 843
17 C AP FUNCHIONS .. 849
A ENAIX A o 907
F N IO 7= (@ 1 0] @07
A2 MetamMEINOAS ..t 208
A3 MathematiCal CoNSTANTSo 210
Al SYSTEmM VaNODIES .. i 211
A5 Command-Line Usage & SCripiingvv v 913
AS. 1T UsiNg The —e OptiON .. . i e 913
A5.2 Using the Internal args Table and Exit Status ... 213

A5.3 Running a Script and then Entering Interactive Mode 215

agena >> 27

A5.4 Running Scripts in UNIX and Mac OS X ... 215
A5.5 Command Line SWITCNES i 216
A6 Define Your Own Printing RUIES fOr TYPES ..o 216
A7 The Agena Initialisation File 218
A8 ESCOPE SEQUENCES .\ttt 920
AQ Backward Compatibility ... 921
A10 Some Few TeChniCAl NOTES ... i e @21
ARRENAIX B o 922
Bl AQENA LiCENCE .ttt 922
B2 GNU GPL V2 LiCENCE o\ ittt e s @22
B3 Sun Microsystems Licence for the fdliom IEEE 754 Style Arithmetic Library 929
B4 GNU Lesser General PUDIIC LICENCE ... i 929
B5 SOFA SOfWAIE LICENCE .\ttt s @38
B6 MAPM Copyright Remark (Mike's Arbitrary Precision Math Library) 940
B7 RSA SECUNTY/MDS LIiCENCE ottt e e e 940
B8 David Schultz's Openlibm LICENCE ...t e e 941
B IS LICBNCE ottt i 941
B10 Other Copyright REMAIKS\t e 942
ARPENAIX C 943
Cl FURNEr REAAING vttt 943

28

Contents

agena >>

29

Part One

Primer

30

1 Agena

agena >>

31

Chapter One

Intfroduction

32

1 Agena

agena >> 33

1 Introduction

1.1 Abstract

Agena is a procedural programming language designed to be used in scientific,
educational, linguistic, and many other applications, including scripting.

Agena provides real and complex arithmetic, graphics, efficient text processing,
flexible data structures, intelligent procedures, package management, plus various
multi-user configuration facilities.

Its syntax looks like very simpilified Algol 68 with elements taken primarily from Maple,
Lua and SQL. It has been implemented on the ANSI C sources of Lua 5.1 created
by Roberto lerusalimschy, Luiz Henrigue de Figueiredo, and Waldemar Celes.

Agena binaries are available for Solaris, Linux, Windows, OS/2, Mac OS X, Raspberry
Pi, and DOS.

You may download Agena, its sources, and its manual from

http://sourceforge.net/projects/agena.

1.2 Features

Agena combines features of Lua 5, Maple, Algol 60, Algol 68, ABC, SQL, ANSI C and
BASIC.

Agena provides all the common functionality found in imperative languages:

statements,
loops,
conditions,
procedures.

It also has extended programming features described later in this manual, such as:

high-speed processing of extended data structures,

fast sting and mathematical operators,

extended conditionals,

abridged and extended syntax for loops,

special variable increment, decrement and deletion statements,
efficient recursion techniques,

arbitrary precision mathematical libraries,

a network package to exchange data over the Internet and LANS,
easy-to-use package handling,

and much more.

Like Lua, Agena is untyped and includes the following basic data structures:
numbers, strings, booleans, tables, and procedures. In addition fo these types, it

34 1 Agena

also supports Cantor sets, sequences, registers, pairs, complex numbers, linked lists,
and multisets. With all of these types, you can build applications easily.

1.3 In Detail

Agena offers various flow control facilities such as

if/elif/else conditions,

case of/else conditions similar to C's switch/case statements,

if operator to return alternative values,

numerical for/from/to/downto/by loops with optional start, stop and step values,
and automatic round-off error correction of iteration variables,

combined for/while and for/until loops,

for/in loops over strings and complex data structures,

while and do/as loops similar to Modula's while and repeat/until iterators,

do/od loops equal to the ones in Maple,

a skip statfement to prematurely frigger the next iteration of a loop,

a break statement 1o prematurely leave a loop,

a do nothing statement which does not do anything,

fast and easy data type validation with the optional double colon facility in
parameter lists.

Data types provided are:

rational and complex numbers with extensions such as infinity and undefined,

strings,

booleans such as true, false, and fail,

the null value depicting the albbsence of a value,

multipurpose tables implemented as associative arrays to hold any kind of data,

taken from Luq,

e Cantor sets as collections of unique items,

* sequences and registers, i.e. vectors, 1o internally store items in strict sequential
order,

e pairs to hold two values or pass options to procedures,

* threads, userdata, and lightuserdata inherited from Lua.

For performance, most basic operations on these types have been built intfo the
Agena kermnel.

Procedures with full lexical scoping are supported, as well, and provide the following
extensions:

the << (args) -> expression >> syntax to easily define simple functions,
user-defined types for procedures to allow individual handling,
uder-defined types for tables, sets, sequences, registers and pairs,

a facility to return predefined results,

rememiber tables for high-speed recursion,

closures which let functions remember their state, taken from Lua,

agena >> 35

* the nargs system variable which holds the number of arguments actually
passed to a procedure,

* metamethods to define operations for tables, sets, sequences, registers and
pairs, inherited from Luag,

e OOP-style methods for tables,

* self-defined binary operators.

Some other features are:

* graphics in the Solaris, Mac, 32-bit Linux, Raspberry Pi, and Windows editions,
provided by the gdi package,

IPv4 networking with the Internet and LANS,

functions to support fast text processing,

configuration of user's environment via the Agena initialisation file,

an easy-fo-use package system also providing a means to both load a library
and define short names for all package procedures at a stroke,

the binio package to easily write and read files in binary mode,

facility to store any data to a file and read it back later,

undergraduate Calculus, Linear Algebra, and Statistics packages,

enumeration and multiple assignment,

transfer of the last iteration value of a numeric for loop to its surrounding block,
scope control via the scope/epocs keywords,

efficient stack programming facilities,

bitwise operators,

direct access 1o the file system,

arbitrary precision mathematical libraries,

dBASE, XML, CSV, INI, GZIP and TAR file support.

Agena includes all the packages that are part of Lua 5.1. Some of the very basic
Lua library functions have been transformed to Agena operators to speed up
execution of programmes. The Lua mathematical and string handling packages
have been tuned and extended with new features.

Agena code is not compatible to Lua. Its C API, however, has been left unchanged
and many new APl functions have been added. As such, you can integrate any C
package you have already written for Lua by just replacing the Lua- specific header
files, see Chapter 17.

1.4 History

| have been dreaming of creating my own programming language for the last 35
years, with my first rather unsuccessful attempt on a Sinclair ZX Spectrum in the early
1980s.

Plans became concrete in 2005 when | learned Lua to write procedures for
phonetic analysis and also learned ANSI C to transfer them into a C package. In
autumn 2006 the first modifications of the Lua parser started with extensive
modifications and extensions of the lexer, parser and the Lua Virtual Machine in
summer 2007. Most of Agena's basic functionality had been completed in March

36 1 Agena

2008, followed by the first new data structure, Cantor sets, one month later, some
more data structures, and a lot of fine-tuning and testing thereafter. Finally, in
January 2009, the first release of Agena was published at Sourceforge.

Study of many books and websites on various programming languages such as
Algol 68, Maple, Algol 60, and ABC, and my various ideas on the “perfect’
language helped to conceive a completely new Algol 68-syntax based
language with high-speed functionality for arithmetic and text processing.

You may find that at least the goal of designing a perfect language has not been
met. For example, the syntax is not always consistent: you will find Algol
68-style elements in most cases, but also ABC/SQL-like syntax for basic operations
with structures. The primary reason for this is that sometimes natural language
statements are better to reminisce. | have stopped bothering about this
inconsistency issue.

After almost four years of development, Agena 1.0 has been released in August
2010.

1.5 Origins

Most of all functionality stems from Lua, Maple and C. Some of my favourite
additions to the Lua C sources include:

Maple V Release 3 and later

« if/elif/else/fi, for/while, map, remove, select, selectremove, subs, with, readlib,
package management, library.agn, agena.ini, read, save, substrings, Cantor
sets and its operators, sequences, remember tables, in, nargs, op(s), restart,
tables.indices, the linalg package, maybe all the pretty printers, argument type
checks, :: type checks, and mulliple :: type parameter checks, surely all
mathematical functions and complex arithmetic, and much, much more.

The Maple language has been designed by Michael B. Monagan, Keith O.
Geddes, K. M. Heal, George Labahn, and S. M. Vorkoetter for Waterloo Maple
Inc./Maplesoft, Waterloo, Ontario. It is loosely based on Algol 68.

This is also why Agena looks a lot like Maple, and thus somewhat like:

agena >>

37

Algol 68

has many times been called the queen of all programming languages and

Agenda's
e case/of/esac control

has originally been infroduced with Algol 68.

Algol 60
¢ enfier.

Algol 60 is the parent of Algol 68.

Modula-2

* jnc and dec.

C

e printf, and most of Lua's system functions,
e compound operators such like c++, etc.

C actually is a descendent of Algol 68.

COBOL

e for/until loops.

Sinclair ZX Spectrum BASIC

e clear, cls, int.

SQL and ABC

e insert/into and thus indirectly create, delete/from, and pop/from.

PL/l and REXX

* Some of the strings library functions have been taken from PL/I and REXX.

38 1 Agena

Eiffel

* Checking the retun type of procedures with the proc(---) :: <typename>
statement has been taken from this language.

Ada

* inspired the skip when and break when statements.

agena >>

39

Chapter Two

Installing & Running Agena

40

2 Installing and Running Agena

agena >> 41

2 Installing and Running Agena

2.1 Sun Solaris 10

In Sun Solaris, and some of its forks, e.g. OpenSolaris, put the Qzipped Agena
package info any directory. Assuming you want fo install the Sparc version,
uncompress the package by entering:

> gzip -d agena-x.y.z-sollO-sparc-local.gz
Then install it with the Solaris package manager:
> pkgadd -d agena-x.y.z-sollO-sparc-local

This installs the executable into the /usr/1ocal/bin folder and the rest of all files into
/usr/agena. The /usr/agena/1ib directory is called the “main Agena library folder .

Make sure you have the expat, fonfconfig, freetype, libg2, libgmp-10, jpeg, libgcc,
libga, libiconv, libintl, libncurses, libmpfr-6, libpng, readline, (lib)xom, and zlib
libraries installed. From the command line, type agena and press RETURN.

= Terminal

Window Edit Options ﬂelp|

AGENA »: 2,0, 020 2005-2013 http: /fagena. sourceforge, net,

e |

Image 1: Start-up message in Solaris

The procedure for OpenSolaris and Solaris for x86 CPUs is the same. The package
always installs as sMcagena.

2.2 Linux
On Debian based x86 distributions, install the 32-bit Stretch deb installer by typing:

> sudo dpkg -1 —--force-all agena-x.y.z-raspi.stretch.i386.deb
On Red Hat systems, install the rom distribution by typing as rooft:
> rpm -ihv --nodeps agena-x.y.z-linux-i386.rpm

This installs the executable into the /usr/10cal/bin folder and the rest of dll files intfo
/usr/agena. IN€ /usr/agena/lib directory is called the ‘main Agena library folder”.

42 2 Installing and Running Agena

Note that you must have the expaf, fonfconfig, freetype, libg2, libgmp-10,
libjoeg62, libgce, libgd (version 2.0.36 or earlier), libiconv, libintl, librmpfr-6,
libncurses, libpng12, libreadlineé6, (libjxom, x11profo-xext-dev and zlib libraries
installed before.

If you have no jpeg library installed on your system, also install libjoegé2. Warning:
overinstalling libjpeg*turbo with libjoegé2 may totally corrupt your system, as
happened on a Raspberry Pi.

From the command line, type agena and press RETURN.

The name of the Linux package is agena.

2.3 Windows

Just execute the Windows binary installer, and choose the components you want to
install.

Make sure you either let the installer automatically set the AGENAPATH environment
variable containing the path to the main Agena library folder (the default) or set it
later manually in the Windows Control Panel, via the " System™ menu.

—IEix

Choose Components

A g enagd »» Choose which Features of Agena wou wank to install,

heck the components wou wank to install and uncheck the components wou don't wank to
inskall, Click Mext o continue,

Selzeting ipe o ekl ~
irkces: tthe Dpti':.'nlflt - [#] Aigena Core Files (required) -
components you wish ko _
inskall: &genaEdit

i v Dicurnentation

Set Environment Yariable AGEMAPATH
Append path ko Agena binary ko PATH
' Desktop Shortouk LI

R R
— Descripkion

Space required: 5. 7ME Position Your mouse over & companent ba see its
descrpkion,

Iullsaft Install Svskem ve 46

< Back I Mext = I Zancel

Image 2: Leave the framed settings checked

agena >> 43

WARNING: If your system environment variable PATH already consists of 8,000 or
more characters, do NOT select the 'Append path to Agena binary to PATH' option,
as this might corrupt the PATH setting.

You may start Agena either via the Start Menu, or by typing agena in a shell.

5 NT Shell - agena O] x|

=
INAgENA

GENA >> 2.6.8 (C> 20862815 http:--agena.sourceforge.net
Y - _J

Image 3: Start-up message in Windows

If you do not have administrative rights to start the installer, or want to use the
interpreter on a removable stick, download the portable version of Agena available
at Sourceforge.net and study the readme. w32 file.

For the portable version:

In a NT shell, create a folder called '‘agena’ anywhere on your drive, change into
this directory and decompress the archive into this folder preserving the
subdirectory structure of the ZIP file.

Only if you use Windows 2000 or earlier: Now set the environment variable
AGENAPATH, refering to the main Agena library “agena.lib” file. For example, if you
install Agena info the folder c:\agena, the library files will reside in the c:\agenallib
subfolder, so enter the following statement:

set AGENAPATH=c:/agena/lib

Note the forward slashes in the path and the system variable name in capital
lefters.

In XP and later, Agena determines the path to the main Agena library
automatically, provided you do not alter the subbdirectory structure of the portable
distribution.

2.4 OS/2 Warp 4, eComStation and ArcaO$

The WarpIN installer allows you to choose a proper directory for the interpreter, and
then installs all files into it.

The dependencies are: WarpIN & kLIBC & ncurses; install using YUM:

yum install libc readline ncurses gmp

44 2 Installing and Running Agena

Make sure you either let the installer automatically set the environment variable
called AGENAPATH containing the path to the main Agena library folder (the WarpIN
default) by leaving the "Modify CONFIG.SYS" entry in the System Configuration
window checked, or set it later by manually editing config.sys.

Just enter agena in @ shell to run the interpreter, or double-click the Agena icon in
the programme folder. Agena may require EMX runtime 0.9d fix 4 or higher in O§/2.

2.5 DOS

In DOS, create a folder called agena anywhere on your drive, change into this
directory and decompress the agena.zip file into this folder preserving the
subdirectory structure of the ZIP file.

Now set the environment variable acGeNaAPATH iN the autoexec.bat file. Use a text
editor for this. For example, if you installed Agena into the folder c:\agena, and the
library.agn file is in the 1ip subfolder, enter the following line info the autoexec.bat
file:

set AGENAPATH=c:/agena/lib
Note the forward slash in the path and the variable name in capital letters.

Also append the path to the agena folder to the PATH system variable using
backslashes, so that the entry looks something like this:

PATH C:\;C:\NWDOS;C:\AGENA\BIN

Although it is not necessary in FreeDOS 1.1 or later, af least with Novell DOS 7, you
must install cwspemI.exe delivered with the DJPGG edition of GCC as a TSR
programme before staring Agena. The binary can be found in the DJGPP
distribution.

In order to always load this TSR when booting your computer, open the
autoexec.bat file with a text editor. Assuming the cwsppmI.exE file is in the c:\tools
folder, add the following line:

loadhigh c:\tools\cwsdpmi.exe -p

Novell DOS's command line history works correctly on the Agena prompt.

2.6 Mac OS X 10.5 and above

Simply double-click the agena-x.y.z-mac.pkg installer in the file manager and follow
the instructions. Do not choose an alternative destination for the package.

agena >> 45

The Agena executable is copied into the /usr/1ocal/pin folder, supporting files into
/usr/agena, and the documentation 10 /Library/Documentation/Agena. Ihe
/usr/agena/1ib directory is called the “main Agena library folder .

Note that you may have 1o install the readline library before.

From the command ling, type agena and press RETURN.

2.7 Agena Initialisation

When you start Agena, the following actions are faken:

1.

The standard packages are initialised so that they become available 1o the user
immediately.

All global values are copied from the _G table to itfs copy _origG, so that the
restart function can restore the original environment if invoked.

The system variables liboname and mainlibname pointing to the main Agena
library folder and optionally to other folders is set by either querying the
environment variable AGENAPATH or - if not set - checking whether the current
working directory contains the string /agena or any other eligible folder name,
building the path accordingly.

The main Agena library folder contains library files with file suffix agn written in the
Agena language, or binary files with the file suffix so or a11 originally written in
ANS| C.

In UNIX, Mac OS X, and Windows, if the path could not be determined as
described before, libname and mainliboname are by default set to
/usr/agena/lib N UNIX and Mac OS X, and spProgramFiles3%\agena\lib in
Windows, if these directories exist and if the user has at least read permissions for
the respective folder. The libname variable is used extensively by the import
and readlib functions that initialise packages. If it could not be sef, many
package functions will not be available.

Searching all paths in libname from left to right, Agena tries to find the standard
Agena library 1ibrary.agn and if successful, loads and runs it. The 1ibrary.agn
file includes functions written in Agena that complement the C libraries. If the
standard Agena library could not be found, a warning message, but no error, is
issued. If there are multiple 1ibrary.agn files in your path, only the first one found
is initialised.

The global Agena initialisation file - if present - with fle name agena.ini is
searched by traversing all paths in libname from left to right. As with
library.agn, This file contains code written in Agena that an administrator may
customise with pre-set variables, auxiliary procedures, etfc. If the initialisation file
does not exist, no error will be issued. If there are multiple Agena initialisation files

46 2 Installing and Running Agena

in your libname path, only the first one found is processed.

In UNIX based systems, the name of the initialisation file may also be .agenainit.
If both an .agenainit and an agena.ini file exist, then . agenainit is read first.

6. The wusers personal Agena initidlisation file called agena.ini (Optionally
.agenainit iN UNIX) - if present - is searched in the user's home folder and run. If
this initialisation file does not exist, no error will be issued. After that the Agena
session begins. See Appendix Aé for further details.

In UNIX based systems, if both the .agenainit ANd agena.ini files exist, then
.agenainit is read first.

7. The path to the current user's home directory is assigned to the environ.homedir
environment variable.

2.8 Installing Library Updates

Sometimes, library updates are provided at Sourceforge if library functions written in
the Agena language have been patched or also if new functions written in the
language have been developed.

For instructions on how to easily install such an update, have a look at the
libupdate.readme file residing on the root of the agena-x.y.z-updaten.zip archive
which can be downloaded from the Binaries Agena Sourceforge folder.

In general, the updates can be installed by just unpacking the respective ZIP
archive into the main Agena folder.

A library update can be installed on every supported operating system, but you
mMay need administrative rights.

agena >>

47

Chapter Three

Overview

48

3 Overview

agena >> 49

3 Summary

Let us start by just entering some commands that will be described later in this
manual so that you can get acquainted with Agena as fast as possible. In this
chapter, you will also learn about some of the basic data types available.

On UNIX-based systems or DOS, type agena in a shell to start the interpreter. On OS/2
and Windows, either click the Agena icon in the programme folder or type agena in
a shell.

3.1 Input Conventions in the Console Edition

Any valid Agena code can be entered at the console with or without a frailing
colon or semicolon:

* If an expression is finished with a colon, it is evaluated and its value is printed at
the console.

* If the expression ends with a semicolon or neither with a colon nor a semicolon,
it is evaluated, but nothing is printed on screen.

You may optionally insert one or more white spaces between operands in your
statements.

e To display results in the output window, pass the respective expression to the
print function, e.g.:

print (exp(2*Pi*I)) Ofa := 1; print(a);

You may optionally insert one or more white spaces between operands in your
statements.

3.3 Getting Familiar

Assume you would like Agena to add the numbers 1 and 2 and show the result.
Then type:

> print (1+2)
3

If you want to store a value to a variable, type:
> c := 25;

Now the value 25 has been stored to the name ¢, and you can refer 1o this numiber
by the name c in subsequent calculations.

Assume that c is 25° Celsius. If you want to convert it to Fahrenheit, enter:

50 3 Overview

> print(1.8*c + 32);
77

There are many functions available in the kernel and in various libraries. To compute
the inverse sine, use the arcsin operator:

> print (arcsin(l));
1.5707963267949

The root function determines the n-th root of a value:

> print(root(2, 3));
1.2599210498949

3.4 Useful Statements

Instead of using print, you may also oufput results by entering an expression and
completing it with a colon:

> root (2, 3):
1.2599210498949

The global variable ans always holds the result of the last statement you completed
with a colon.

> 1In(2*Pi) :
1.8378770664093

> ans:
1.8378770664093

The console screen can be cleared by just entering the keyword cls:

> cls

The restart statement resets Agena to its inifial state, i.e. clears all variables you
defined in a session.

> restart
The bye statement quits a session - you can also press CTRL+C, alternatively.
> bye

If you would like to automatically run a procedure before restarting or quitting
Agenaq, just assign this procedure to the name environ.onexit. See the description
of the bye statement in Chapter 8 for more details.

If you prefer another Agena prompt instead of the predefined one, assign for
example:

agena >> 51

> _PROMPT := 'Agena$ '
Agena$ _

You may put this statement info the initialisation file in the Agena library or your
home folder, if you do not want to change the prompt manually every time you
start Agena. See Appendix A6 for further detail.

Agena$ restart;

3.5 Assignment and Unassignment

As we have already seen, to assign a number, say 1, to a variable called q, type:

> a :=1;

Variables can be deleted by assigning null or using the clear statement. The latter
also immediately performs a garbage collection.

> a := null:
null

> clear aj;

> a:

null

3.6 Arithmetic

Agena supports both real and complex arithmetic with the + (addition), -
(subtraction), * (multiplication), / (division) and ~ (exponentiation) operators:

> 1+2:
3

Complex numbers can be entered using the | constant or the | operator:

> exp(l+2*I):
-1.1312043837568+2.4717266720048*1I

> exp(l!'2):
-1.1312043837568+2.4717266720048*1I

3.7 Strings

A text can be put in single or double quoftes:

> str := 'a string':
a string

Substrings are extracted by passing an index or index range:

> str[3], str[3 to 6]:
s stri

52 3 Overview

Concatenation, search, and replacement:

> str := str & ' and another one, too':

a string and another one, too

> instr (str, 'another'):
14
> replace(str, 'and', '&'"'):

a string & another one, too

There are various other string operators and functions available.

3.8 Booleans

Agena features the true, false, and fail constants to represent Boolean values. fail
may e used to indicate a failed computation. The operators <, >, =, <>, <=,
and >= compare values and return either true or false. The operators and, or,
not, nand, nor, xor and xnor combine Boolean values.

> 1 < 2:
true

> true or false:
true

You can also do arithmetic with numbers and Booleans where true depicts 1 and
false, fail or null 0. Also, applying the unary minus operator to Booleans will convert
them to either the numbers O or -1.

3.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

tbl

1 ~

>
> 7.711,
> 2~

>

>

7.701,
7.59]

[
[]]
[]]
[|l]

a
b
c

~ N 0~

3~
17

To get the subtable ('a', 7.711 indexed with key 1, and the second value 7.71 in
this first subtable, input:

> tbl[1]:
[a, 7.71]

> tbl[1, 2]:
7.71

The insert statement adds further values intfo a table.

> insert ['d', 8.01] into tbl

agena >> 53

> tbl:
(la, 7.711, [b, 7.71, [c, 7.59], I[d, 8.01]]

Alternatively, values may be added by indexing:

> tbl[5] := ['e', 8.04];

> tbl:
(la, 7.711, [b, 7.71, [c, 7.59], [d, 8.01], [e, 8.04]]

Of course, values can be replaced:

> tbl[3] := ['z', -5];

> tbl:
(la, 7.711, [b, 7.71, [z, =51, [d, 8.01], [e, 8.04]]

Another form of a table is the dictionary, with indices that can be any kind of data -
not only positive integers. Key-value pairs are entered with tildes.

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'l];

> dic['donald']:
duck

3.10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Any item is stored only once and in random order.

> s := {'donald', 'mickey', 'donald'}:
{donald, mickey}

If you want to check whether 'donald' is part of the seft, just index it or use the in
operator;

> s['donald']:
true

> s['daisy']:
false

> 'donald' in s:
true

The insert statement adds new values 1o a set, the delete statement deletes them.

> insert 'daisy' into s;
> delete 'donald' from s;

> s
{daisy, mickey}

Three operators exist 10 conduct Cantor set operations: minus, intersect, and
union.

54 3 Overview

3.11 Sequences

Sequences can hold any numiber of items except null. All elements are indexed
with infegers starting with number 1. Compared to tables, sequences are twice as
fast when adding values to them. The insert, delete, indexing, and assignment
statements as well as the operators described above can be applied to
sequences, 100.

> s := seq(l, 1, 'donald', true):
seq(l, 1, donald, true)

> insert [1, 2, 2] into s;

> s
seq(l, 1, donald, {1, 2}, [1, 2, 21)

3.12 Pairs

Pairs hold exactly two values of any type, including null and other pairs. Values can
be retrieved by indexing them or using the left and right operators. Values may be
exchanged by using assignments to indexed names.

> p = 10:11;

> left(p), right(p), p[l], p[2]:
10 11 10 11

> p[l] := -10;

3.13 Conditions

Conditions can be checked with the if statement. The elif and else clauses are
optional. The closing fi is obligatory.

if 1 < 2 then
print ('valid'")
elif 1 = 2 then
print ('invalid')
else
print ('invalid, too')
fi;

valid

VVVYVYVYVYV

The case statement facilitates comparing values and executing corresponding
statements.

There are two flavours: The first checks an expression for certain values.

> c := 'agena';

agena >> 55

>

> of 'agena' then

> print ('Agena!')

> of '"lua' then

> print('Lua!"')

> else

> print ('Another programming language !'")

The second one works exactly like the if statement but may improve code
readability.

> v o= 1;

> case

> of v > 0 then print (1)
> of v = 0 then print(0)
> else print(-1)

> esac;

1

3.14 Loops

A for loop iterates over one or more statements. It starts with an initial numeric value
(from clause), and proceeds up to and including a given numeric value (to
clause). The step size can also be given (step clause). The od keyword indicates the
end of the loop body.

The from and step clauses are opftional. If the from clause is omitted, the loop starts
with the initial value 1. If the step clause is omitted, the step size is 1.

The current iteratfion value is stored to a control variable (i in this example) which
can be used in the loop body.

> for 1 from 1 to 3 by 1 do
> print (i, 172, i~"3)

> od;

1 1 1

2 4 8

3 9 27

A while loop first checks a condition and if this condition is true or any other value
except false, fail or null, it iterates the loop body again and again as long as the
condition remains true. The following statements calculate the largest Fibonacci
numiber less than 1000.

> a := 0; b :=1;

while b < 1000 do
c :=Db; b :=a + b; a :=c

VvV Vv

> od;

> c:
987

56 3 Overview

A variation of while is the do/as loop which checks a condition at the end of the
iteration. Thus the loop body will always be executed at least once.

> c := 0;
> do
> inc c¢

All flavours of for loops can be combined with a while condition. As long as the
while condition is satisfied, i.e. is tfrue, the for loop iterates.

> for x to 10 while 1ln(x) <= 1 do

> print (x, 1n(x))
> od;

1 0

2 0.69314718055995

The skip statement starts another iteration of the loop immediately, thus skipping all
of the following loop statements after the skip keyword for the current iteration.

The break statement quits execution of the loop and proceeds with the next
statement right after the end of the loop. Thus the above loop could also be written
as:

for x to 10 do
if 1In(x) > 1 then break fi;
print(x, 1n(x))

0

>
>
>
> od;
1
2 0.69314718055995

which of course is equivalent 1o

> for x to 10 while 1ln(x) <= 1 do

> print (x, 1n(x))

> od

1 0

2 0.69314718055995

for loops can also be combined with a closing as or until condition. In this case,
the loop body is always executed at least once. The loop is iterated as long as the
as condition remains true or the until condition evaluates 1o false.

for x to 10 do
print(x, 1n(x))
as In(x) <=1
0
0.69314718055995
1.0986122886681

WN RV VYV

for x to 10 do
print (x, 1n(x))
> until 1In(x) > 1

VvV Vv

agena >> 57

1 0
2 0.69314718055995
3 1.0986122886681

3.15 Procedures

Procedures cluster a sequence of statements into abstract units which then can be
run repeatedly.

Local variables are accessible 1o their procedure only and can be declared with
the local statement.

The return statfement passes the result of a computation.

fact := proc(n) is
local result;
result := 1;
for 1 from 1 to n do
result := result * i
od;
return result

>
>
>
>
>
>
>
> end;

> fact (10) :
3628800

A procedure can call itself.

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if, for, insert, etc.

> deg := << (x) -> x * 180 / Pi >>;

To compute the value of the function at 7, just input:

> deg(Pi/4):
45

Alternatively, you may use the def or the define statement, e.g. a function with two
arguments can be defined as follows:

> define sum(x, y) —-> X + V;

> sum(l, 2):
3

The -> assignment token is optional. Alternatively, you can also use an = or := sign
or the is keyword.

58 3 Overview

3.16 Comments

You should always document your code so that you and others will understand its
purpose if reviewed later.

A single line comment starts with a single hash. Agena ignores all characters
following the hash up to the end of the current line.

> # this is a single-line comment
> a := 1; # a contains a number

A multi-line comment, also called “long comment’, starts with the token sequence
#/ and ends with the closing / # token sequence’.

> #/ this is a long comment,
> split over two lines /#

Alternatively, C comments are supported, as well:

> /* this 1s a one-line comment */

> /* this is a long comment,

> split over two lines */

3.17 Writing, Saving, and Running Programmes

While short statements can be entered directly at the Agena prompt, it is quite
useful to write larger programmes in a text editor and save them fo a text file so that
they can be reused in future sessions.

Note that Agena comes with language scheme files for some common text editors.
Look into the share/schemes subdirectory of your Agena installation.

Let us assume that a programme has been saved to a file called myprog.agn in the
directory /home/alex in UNIX, Or c:\Users\alex in OS/2, DOS or Windows. Then in
UNIX, you can run it at the Agena prompt by typing:

> run '/home/alex/myprog.agn'
or in DOS-based systems:

> run 'c:/users/alex/myprog.agn' Of

> run 'c:\\users\\alex\\myprog.agn'

in DOS-based systemes.

' Multi-ine comments cannot begin in the very first line of a programme file. Use a single comment,
i.e. #, instead.

agena >> 59

If you both want to start an Agena session and also run a programme from a shell,
then enter:

$ agena —-i /home/alex/myprog.agn
in UNIX or
C:\>agena -i c:\users\alex\myprog.agn

in Windows. See Appendix A4 for further switches.

3.18 Using Packages

Many functions are included in additional packages which must at first be initialised
so that the package functions can be used. Part Il of this document indicates which
packages are automatically initialised at Agena start-up and which packages have
to be imported manually by the user.

For example, all statistics functions are included in the stats package which can be
invoked with the import statement:

> import stats;

> stats.amean([1, 2, 3, 41):
2.5

Shortcuts 1o the package functions can be defined by passing the alias option to
the import statement.

> amean([1, 2, 3, 471):
Error in stdin, at line 1:
attempt to call global “amean (a null value)

> import stats alias
Warning: iqr, sorted have been reassigned.

> amean([1, 2, 3, 471):
2.5

If you want to define shortcuts to specific package functions only, pass their names
right affer the alias option:

> import stats alias amean, smm;

If you pass the as clause instead, it assigns an alias to a library name:

> import hashes as h;

> a := h.crc32('agena');

You may also have a look at the readlib and initialise functions described in
Chapter 8.

60

3 Overview

agena >>

61

Chapter Four

Data & Operations

62

4 Data

agena >>

63

4 Data & Operations

Agena features a set of data types and operations on them that are suited for both
general and specialised needs. While providing all the general types inherited from
Lua - numbers, strings, booleans, nulls, tables, and procedures - it also has four
additional data types that allow very fast operations: sets, sequences, reqisters,
pairs, and complex numbers.

Type Description
number any integral or rational number, plus undefined and infinity
string any text
pboolean booleans (e.g. true, false, and fail)
null a value representing the absence of a value
table a multipurpose structure storing numbers, strings, booleans,
tables, and any other data type
procedure a predefined collection of one or more Agena statements
the classical Cantor set storing numbers, strings, booleans, and
set :
all other data types available
sequence a dynamically-sized vector storing numbers, strings, booleans,
and all other data types except null in sequential order
. a fixed-size vector storing any value including null and featfuring
reqister y . .
a top position pointer to prevent access 1o elements above it
pair a pair of two values of any type
a complex number consisting of a real and an imaginary
complex
numiber
part of systern memory containing user-defined data; userdata
userdata objects can only be created by changing the ANSI C sources of
the interpreter
. a value representing a C pointer; available only if you modify the
lightuserdata ANSI C sources of the interpreter
thread a non-preemptive multithread object (a coroutine)

Table 1: Available types

Tables, sets, sequences, registers, and pairs are also called sfructfures in this

manudal.

You can determine the type of a value with the type operator which returns a string:

> type(0):

number

> type('a text'):

string

There is also a structure derived from both tables and sefts: bags, see Chapter 10.8;
also have a look on linked lists, see Chapter 10.7.

64 4 Data

4.1 Names, Keywords, and Tokens

In Chapter 3, we have already assigned data - such as numbers and procedures -
to names, also called "variables . These names refer to the respective values and
can be used conveniently as a reference to the actual data.

A name always begins with an upper-case or lower-case leffer or an underscore,
followed by one or more upper-case or lower-case letters, underscores, single
quotes or numbers in any order.

Since Agena is a dynamically typed language, no declarations of variable names
are needed.

Valid names Invalid names
var lvar

_var 1
varl
_varln
1

ValueOne
valueTwo

Value'One

Table 2: Examples for valid and invalid names

The following keywords are reserved and cannot be used as names:

abs alias and antilo2 antiloglO arccos arcsec arcsin arctan as assigned
atendof bea bottom break by bye case catch char cis clear cls conjugate
constant cos cosh cosxx create dec def define delete dict div do downto
duplicate elif else empty end entier enum esac esle even exchange exp
fail false feature fi filled first finite flip float for from global if
imag import in inc infinite infinity inrange insert int intdiv integral
intersect into invsgrt is keys last left 1n lngamma local lower minus
mod mul muladd mulup nan nand nargs negate nonzero nor not notin numeric
od odd of onsuccess or pop proc procname gmdev gsumup real redo reg
relaunch reminisce restart return right rotate seqg sign signum sin sinc
sinh size skip split sqrt square squareadd store subset sumup tan tanh
then to top trim true try type typeof unassigned undefined union until
upper when while with xnor xor xsubset yrt zero

anything boolean complex lightuserdata listing null number pair register

procedure sequence set string table thread userdata
integer nonnegative nonnegint posint positive

The following symbols denote other tokens:

- KRR /xS /S 4% -5\ & && |~ v S 8% N M = <> <= >= <> =
== ~= ~<> KKK D> <<<< >>>> () (Y [1 ; troi— —> @ @@ $ s$S ., . ?
2= 4+ = 4+ ——— // NN (/\) | = 4= —i= K= [i= \i= %= &= &+ &— &%

&/ &\

agena >> 65

4.2 Assignment

Values can be assigned to names in the following fashions:

[constant] name .= value
[constant] name,, - - -, [constant] name, = value,, - - -, valuey
[constant] name,, - - -, [constant] name, -> value

In the first form, one value is stored in one variable, whereas in the second form,
called "multiple assignment statement’, name; is set to value,, name; is assigned
value,, etc. In the third form, called the “short-cut multiple assignment statement”,
a single value is set to each name to the left of the —> token.

First steps:
> a = 1;
> a:

An assignment statement can be finished with a colon to both conduct the
assignment and print the right-hand side value at the console.

> a := 1:
1

> a = exp(a):
2.718281828459

Multiple assignments:

>a, b =1, 2

> a:

If the left-hand side contains more names than the number of values on the
right-nand side, then the excess names are setf to null.

> c, d =1

66 4 Data

If the right-hand side of a multiple assignment contains extra values, they are simply
ignored.

The multiple assignment statement can also be used to swap or shiff values in
names without using temporary variables.

>a, b =1, 2;
> a, b :=Db, a
2 1

A short-cut multiple assignment statement:

> x, y —> exp(l);

> x:
2.718281828459

>y
2.718281828459

You can declare constants by putting the constant keyword in front of a variable
name in an assignment. If you try to assign a new value to the constant later on in a
session, the interpreter will issue an error;

> constant a := 1;
> a 1= 2;

Error at line 1: attempt to assign to constant “a’ near ~:=

You can declare multiple constants at a fime;

> constant b, constant ¢ := 2, 3;

> Db := 0;
Error at line 1: attempt to assign to constant “b’ near " :="

> c = 0;
Error at line 1: attempt to assign to constant ‘¢’ near ~:="

You can mix ordinary and constant declarations:
> a, constant b := 1, 2;

You should assign a value to a constant in one and the same declaration,
otherwise you cannoft use it

> a, constant b := 1; # assign 1 to name “a’, and no value to constant Db’
> Db =0
Error at line 1: attempt to assign to constant "b’, near " :="

You can switch off this feature completely with the following statement:

agena >> 67

> environ.kernel (constants = false);

On the interactive level, if you define one and the same constant multiple times in
a body, for example a then or do body, Agena will just print a one-time warning
message but will change this constant. When executing a script file, however,
Agena will exit with a proper error message. This is due to the way the parser
evaluates bodies on the command-line. Also, in closures (see Chapter 6.22)
constants cannot be recognised, so if you try to change them, no error will be
issued.

4.3 Enumeration

Enumeration with step size 1 is supported with the enum statement:

enum name; [, namey, - - -]
enum name; [, hame,, - - -] from value

All these values are constants, you cannot change them later on.

In the first form, name,, name,, etc. are enumerated starting with the numeric
value 1.

> enum ONE, TWO;

> ONE:

> TWO:

In the second form, enumeration starts with the numeric value passed right after the
from keyword.

> enum THREE, FOUR from 3

> THREE:
3

> FOUR:
4

4.4 Deletion and the null Constant

You may delete the contents of one or more variables with one of the following
methods: Either use the clear commmand,

clear name, [, name,, - - -, namex|

68 4 Data

> clear aj;

> a:
null

which also performs a garbage collection useful if large structures shall be
immediately removed from memory, or set the variable to be deleted to null:

> b 1= 1;
> b := null:
null

The null value represents the absence of a value. All names that are unassigned
evaluate to null. Assigning names to null quickly clears their values, but does not
garbage collect them immediately.

The null constant has its own type: 'null’,

> type(null):
null

If you want to test whether a value is of type 'null, contrary to all other types, you
have to put the type name in brackets:

> type(null) = 'null':

true

In all cases - whether using the clear statement or assigning fo null - the memory
freed is not given back to the operating system but can be used by Agena for
values yet to be created.

There are two operators that quickly check whether a value is assigned or not:
assigned and unassigned.

> assigned(v):
false

> unassigned(v) :
true

agena >> 69

4.5 Precedence

Operator precedence in Agena follows the table below, from lower to higher
priority:

Or XOY nor Xnor
and nand

< > <= >= = == ~= ~<> <> 1 - |

in notin subset xsubset union minus intersect atendof |-
& : @ S s$

+ — || * split &+ &- inc dec

* /% symmod roll \ && *% /% %% +% —% %% <<< >>> <K<K >>>> &* &/ &\
squareadd mul div intdiv mod

not - (UNnAry Minus) +++ ——-

Nk k

' and all self-defined binary operators and unary operators including ~~

As usual, you can use parentheses to change the precedence of an expression.
The concatenation (&), exponentiation (~, =+), pair (:), Mapping (¢), and selection (s)
operators are right associative, e.g. x~y~z = x™(y” z). All other binary operators
are left associative.

> 1+3%4:
13

> (1+3)*4:
16

4.6 Arithmetic

4.6.1 Numbers

In the ‘real” domain, Agena internally only knows floating point numbers which can
represent integral or rational numeric values. All numbers are of type number.

An integral value consists of one or more numbers, with an optional sign in front of .

e 1

. 20
. 0
. +4

A rational value consists of one or more numbers, an obligatory decimal point at
any position and an optional sign in front of it:

e -1.12
0.1
e .1

Negative integral or rational values must always be entered with a minus sign, but
positive numbers do not need to have a preceding plus sign.

70 4 Data

You may optionally include one or more single quotes or underscores within a
numiber to group digits:

> 10'000'000:
10000000

You can alternatively enter numbers in scientific notatfion using the e symbol.

> led:
10000

> —-le—-4:
-0.0001

If a number ends in the letter x, v, ¢, T or b, then the number is multiplied by 1,024,
1,048,576 (= 1,024%), 1,073,741,824 (= 1,024%, 1,099,511,627,776 (= 1,024%, or
12, respectively. If a number ends in the letter k, m, g, £t or d, then the number is
multiplied by 1,000, 1,000,000, 1,000,000,000, 1,000,000,000,000, or 12
respectively. If a number is appended by p, it is converted 1o percentage.

> 2k:
2000

> 1M:
1048576

> 12D:
144

Besides decimal numbers, Agena supports binary, octal, and hexadecimal
numbers which may include “thousands® separators. They are represented by the
first two letters ob Or 0B, 00 OF 00, 0x O 0%, respectively:

System Syntax Examples (to decimal)
: 0b<bi ber> Or _
binary OB<binary numbers 0b10 = 2
Oo<octal number> Of _
octal 0O<octal number> 0010 = 8
hexadecimall Ox<hexadecimal number> Of 0 =10
[Wﬂegen 0X<hexadecimal number> xa
0x0.1 = 0.0625
. Ox<int>.<frac> Of 0x0.1E = 0.0625
[-;E)g;je(umo' OX<%nt>.<J?rac>E or OXO23D'4 = 162.1875
pxeintopeint OF 0X1.921FB54442D18P+1 =
x<int>.<frac>P<int>
3.1415926535898

If you use only real numbers in your programmes, then Agena will calculate only in
the real domain. If you use at least one complex value (see Chapter 4.6.5), then
Agena will calculate in the complex domain.

agena >> 71

Since Agena internally stores numlbers in double or complex double precision, you
will sometimes encounter round-off errors. For example, some values such as /2 or
% cannot be accurately represented on a machine.

The mapm package can be used in such situations as it provides arbitrary precision
arithmetic. See Chapter 11.3 for more information.

Agena knows two representation for zero: 0 and -0, where -0 means something like
zero but “approached from™ —w. In relations, 0 and -0 are always the same, e.g. 0
= -0 = true, and 0 < -0 = false. In arithmetic, for example -1 * -0 = -0. To test for
-0, use math.isminuszero.

4.6.2 Arithmetic Operations

Agena has the following arithmetical operators:

Operator | Operation Details / Example

+ Addition 1+ 2»3
- Subtraction 3-2»1
* Multiplication 2 % 3 » 6
/ Division 4/ 2 » 2
» Exponentiation with rational power 2~ 3 » 8
*x Exponentiation with integer power 2 ** 3 » 8
5 Modulus 5% 2 » 1
\ Integer division 5\ 2 » 2
*% Percents, percentage 100 *% 2 » 2
/% Percents, ratio 100 /% 2 » 5k
+5% Percents, add-on (premium) 100 +% 2 » 102
-5 Percents, discount 100 -% 2 » 98
@ Conditional mulfiplication a @ b, returning a if 2 @0 » 2

b = 0, and a*b otherwise 2@3»6

Table 3. Arithmetic operators

The modulus operator is defined as a % b = a - entier(a/b)*b, the integer division as
a\ b = sign(a) * sign(b) * entier(abs(a/b)).

Agena has a lot of mathematical functions both built info the kermel and also

available in the math, stats, linalg, and calc libraries. Table 4 lists some of the most
common.

The mathematical procedures that reside in packages must always be entered by
passing the name of the package followed by a dot and the name of the
procedure. Use the import statement to activate the package before using these
functions, e.qQ. to initialise the statistics package called stafs, type:

> import stats;

72

4 Data

Unary operators? like In, exp, etc. can be entered with or without simple brackets.

Procedure Operation Library | Example and result
sin(X) Sine (x in radians) Kermel | sin 0 » 0
cos(x) Cosine (x in radians) Kermnel | cos(0) » 1
tan(x) Tangent (x in radians) Kernel | tan(l) » 1.557407..
arcsin(x) Inverse sine (x in radians) | Kemel | arcsin(0) » 0
arccos(x) Arc cosine (x in radians) Kemel | arccos(0) » 1.570796..
arctan(x) Arc tangent (x in radians) | Kemnel | arctan(Pi) » 1.262627..
sinh(x) Hyperbolic sine Kernel | sinh(0) » 0
cosh(x) Hyperbolic cosine Kemel | cosh(0) » 1
tanh(x) Hyperbolic tangent Kernel | tanh(0) » 0
abs(x) Absolute value of x Kermel |abs(-1) » 1
. Rounds x downwards to entier(2.9) » 2
entier(x) . Kernel .
the nearest integer entier(-2.9) » -3
even(x) Checks whether xis even | Kemel | even(2) » true
exp(x) Exponentiation e* Kermnel |exp(0) » 1
Ingamma(x) |InI X Kemel | exp(lngamma(3+1)) » 6
. Rounds x fo the nearest int (2.9) » 2
int(x) . Kernel | .
infeger towards zero int (-2.9) » -2
In(X) Natural logarithm Kermnel | 1In(1) » 0
log(x, D) It_)%%grghm ofxtofhe Kernel | log(8, 2) » 3
round(x, d Rounds Thg .reol value x to Base round (
! the d-th digit sqrt(2), 2) » 1.41
sign(x) Sign of x Kemnel |sign(-1) » -1
sqri(x) Square root of x Kemel | sqrt(2) » 1.414213..
sumup([---]) | Sum Kemel | sumup([1, 2, 31) » 6
mean([- - -]) Arithmetic mean stats stats.mean([1, 2, 3]) » 2
median([- - -]) | Median stats T T

Table 4: Common mathematical functions

In addition, Agena can conduct bitwise operations on numbers.

Operator | Operation Details / Example
&& Bitwise "and’ 7 && 2 » 2
| | Bitwise "or’ 111 2»3
~n Bitwise "exclusive-or™ | 7 ** 2 » 5
s Bitwise complement |
(bitwise "not)
<<<, - : << < conducts a left-shiftf (multiplication with
S>> | Ditwise shiff 2), >>> a right-shiff (division by 2).
<<<<, o . <<<< and >>>> rotate bits left- and
Bitwise rotation .
>>>> rightwards.
nand bitwise complement | Equivalent to ~~(a && b).

2 See Appendix Al for a list of all unary operators.

agena >> 73
Operator | Operation Details / Example
‘and’
nor k\)(l)’r\r/\\nse complement Equivalentto ~~(a | | b)
xnor melse. com plemenf Equivalentto ~~(@a ™ ™ b)
exclusive- or
getbit . . ,
getbits returns stored bit(s) getbit(, 1), getbits(3)
setbit . , .
setbits sets bit(s) setbit(z, 1) » 1, setbits(s, reg(1, 0, 0)) » 12

Table 5: Bitwise operators and functions

By default, the operators internally calculate with unsigned infegers. You can

change this behaviour to signed integers with environ.kernel:
> environ.kernel (signedbits = true);
The default is restored as follows:

> environ.kernel (signedbits = false);

Note that in order to return useful results ~~, nand, nor and xnor should be used in

signed mode only, regardiess of the environ.kernel/signedbits setting.

4.6.3 Increment, Decrement, Multiplication, Division

Instead of incrementing or decrementing a value, say

you can use the inc and dec commands® which are also around 10% faster:

inc name [, valuey;
dec name [, valuej;

If value is omitted, name is increased or decreased by 1.
> inc a;

> a:
3

® Finishing an inc or dec statement with a colon instead of a semicolon is refusec.

74 4 Data

Vo
(o}
()

Q

4]
w

Likewise, the mul and div statements multiply or divide their argument by a scalar,
mod takes the modulus, and intdiv conducts an integer division, their defaults also
being 1. negate flips a Boolean; with numbers, it converts O to 1, and non-zero to O.

It is advised that all inc, dec, mul, div, intdiv and mod statements are terminated
by a semicolon unless the next token in the code is a keyword, so that the parser
can discern them from the corresponding operators, see Chapter 4.6.8.

Alternatively, you may use mutate operators to express compound assignment:

Operator | Operation Equivalent

ti= addition inc statement
= subtraction dec statement
*i= multiplication mul statement
/= division div statement
\:= integer division intdiv statfement
%= modulus mod statement
&= string concatenation n/a
@:= conditional multiplication | n/a

> a +:= 3; # equals to "a :=a + 3 or ‘inc a, 3°

> a

4

The suffix ++ and -- operators return the current value of a variable and

subsequently increase or decrease the variable by one. Likewise, the prefix ++ and
—-— operators first increase or decrease a variable by one and then return the
updates value. The operators work on indexed names, as well.

> c := 03

> a 1= Cc++; # used as an expression
> print(a, c); # returns 0, 1

> C++; # used as a statement

\%

print (c)

agena >> 75

4.6.4 Mathematical Constants
Agena features arithmetic constants mentioned in Appendix A9. All mathematical
constants are protected and cannot be changed.

All mathematical functions and operators return the constant undefined instead of
issuing an error if they are not defined at a given point:

> 1In(0):
undefined

With values of type number, the finite function can determine whether a value is
neither tinfinity nor undefined.

> finite(fact (1000)), finite(sqgrt(-1)):
false false

The float function checks whether a value is a float and not an integer.

> float (1) :
false

> float(1.1):
true

4.6.5 Complex Math

Complex numbers can be defined in two ways: by using the 1 constructor or the
imaginary unit represented by the capital letter 1. Most of Agena's mathematical
operators and functions know how to handle complex numbers and will always
return a result that is in the complex domain. Complex values are of type complex.

> a

I
=
=

~

> b :

Il
N
+
w

*
H

~.

> a+b:
3+4*1T

> a*b:
—145*1

The following operators work on rational numbers as well as complex values: +, -, *,
/., ~, **, =, <>, abs, arccos, arcsec, arcsin, arctan, conjugate, cos, cosh, entier,
exp, flip, invsqgrt, lngamma, 1ln, log, sign, sin, sinh, sqrt, tan, tanh, and unary
minus. With these operators, you can also mix numbers and complex numibers in
expressions. You will find that most mathematical functions are also applicable to
complex values.

> c := 1In(-1+I) + 1In(0.5):
-0.34657359027997+2.3561944901923*1

76 4 Data

The real and imaginary parts of a complex value can be extracted with the real
and imag operators.

> real(c), imag(c):
-0.34657359027997 2.3561944901923

Three further functions may also be of interest: abs returns the absolute value of a
complex number, argument retuns its phase angle in radians, and conjugate
computes the complex conjugate.

Note that the ' operator has the same precedence as unary operators like -, sin,
cos, €fc. This means that -112 = -1+2+1, but Also that sin 112 = (sin 1)!2. Thus, it
is advised that you use brackets when applying unary operators on complex values.

The seﬁing environ.kernel (zeroedcomplex = true) MAkes Ageno print complex
values that are close to zero as just o in the output region of the console. Internally,
however, complex values are not rounded by this or any other sefting.

4.6.6 Comparing Values

Relational operators can compare both numeric and complex values. Whereas all
relational operators work on numbers, complex numibers can only be compared for
equality or inequadlity.

Operator | Description Complex values supported
< less than no
> greater than no
<= less than or equals no
>= greater than or equals no
= equals yes
<> not equals yes
in in range no

> 1 < 2:
true
> 1 = 1:
true
> 1 <> 1:
false

The result true indicates that a comparison is valid, and false indicates that it is
invalid. See Chapter 4.8 for more information.

Most computer architectures cannot accurately store numiber values unless they
can be expressed as halves, quarters, eighths, and so on. For example, 0.5 is
represented accurately, but 0.1 or 0.2 are not.

agena >> 77

Since Agena is not a computer algebra system, you will sometimes encounter
round-off errors in computations with numibers and complex numbers:

> 0.2 + 0.2 + 0.2 =0.6:
false

In such cases, the ~= operator or the approx function might be of some help
since they compare values approximately.

> 0.2 + 0.2 + 0.2 ~= 0.6:
true

> 0.2!0.2 + 0.2!0.2 + 0.2!'0.2 = 0.6!0.6:
false

> approx(0.2!0.2 + 0.2!'0.2 + 0.2'0.2, 0.6!0.6):
true

To determine whether a number is part of a closed inferval, use the in or inrange
operators:

> 2 in 0 : 10:
true

You can use the +++ and --- operators 1o define open borders:

> inrange(l, +++1, —---10):

false

The unary zero operator checks whether a number or complex number is O or
0+1*0; nonzero checks whether it is non-zero. The two operators are around 10 %
faster than the binary = and <> operators.

4.6.7 Range of Values

The following ranges apply fo Agena numbers and complex numbers:

Characteristic Value

smalllest representable number -1.797 693 134 862 315 x 10°%®
largest representable number +1.797 693 134 862 315 x 10°*®
largest positive infeger without loss of

precision 9.007199254741 x 10'°

smallest subnormal (negative) positive | (-)4.9406564584124654e-324
number
largest subnormal (negative) positive (-)2.2250738585072009e-308
number

78 4 Data

4.6.8 Adapting Basic Arithmetic Operators

There are six arithmetic binary operators that detect potential numeric overflow,
underflow and division by zero and allow the user 1o invoke proper self-written
functions that handle them: inc for addition, dec for subfraction, mul for
mulfiplication, div for division and intdiv for integer division, plus mod for modulus.

These operators after checking possible exceptions call user-defined handlers that
take the two operands plus the information on the kind of exception:

* qaddition: inc calls math.add,

* subtraction: dec calls math.subtract,

e multiplication: mul calls math.multiply,

» division: div calls math.divide,

* infeger division: intdiv calls math.intdivide and

* modulus: mod calls math.modulo (not math.modulus !).

Examples:

Division: the handler might look like this - math.intdivide and math.modulo may
look similar, since the values for parameter xinda are the same:

> math.divide := proc(n, d, kind) is

> case kind

> # kind 0b0000 means no exception

> of 0b0000 then return n/d

> # kind O0b0001 means denominator is zero

> of 0b0001 then error('division by zero')

> # kind 0b0010 means very large value to be divided by wvalue
> # close to O

> of 0b0010 then error ('underflow')

> # kind 0b1000 indicates both operands are close to 0
> of 0b1000 then return n/d

> esac

> end;

> 1 div 0:

division by zero

A multiplication handler:

math.multiply := proc(a, b, kind) is
case kind
of 0b0000 then return a*b # kind 0b00O indicates no exception
kind 0b0010: very large value to be multiplied by value close
to zero
of 0b0010 then error ('underflow')
kind 0b0100: very large value to be multiplied by
very large value
of 0b0100 then error('overflow')
kind 0b1000: both operands are close to zero
of 0b1000 then return a*b
esac
end;

VVVVVVYVYVYVYVYVYVYV

agena >> 79

> 1e308 mul 1e308:

overflow

Addition - and subtraction if this should make any sense, the possible values for xind
are the same - could be handled like this (for subtraction redefine math.subtract):

> math.add := proc(a, b, kind) is

> case kind

> of 0b0000 then return a + b # no exception

> # very large value to be added to (subtracted) wvalue close to 0:
> of 0b0010 then return a + b

> # very large values to be added (or subtracted):
> of 0b0100 then error('overflow')

> # both operands are close to zero:

> of 0b1l000 then return a + b

>

>

Agena is shipped with six default functions math.add, math.subtract,
math.multiply, math.divide, math.intdivide and math.modulo that just conduct
the requested operation and return the result, without issuing any error. You may
overwrite them with alternatives of your choice.

The threshold that defines whether a value is "close to zero™ can be set with
environ.kernel/closetozero, which by default is DoubleEps, e.g.:

> environ.kernel (closetozero = 1e-20);

The type of numerical exception that occurred the last time one the six operators
has been invoked can also be queried by calling environ.arithstate which returns
the type of exception as a bit field, see all the case/of clauses above:

> 1e308 inc 1e308:
overflow

> environ.arithstate():

1

The description of environ.arithstate in Chapter 14.2 includes a complete list of all
the numeric exceptions the six binary operators might encounter.

80 4 Data

4.7 Strings

4.7.1 Representation

Any text can be represented by including it in single or double quotes:

> 'This is a string':
This is a string

Of course, strings - like numbers - can be assigned to variables.

> str := "I am a string.";

> str:
I am a string.

Strings - regardless whether included in single or double gquotes - are all of type
string,

> type(str):
string

and can be of amost unlimited length. Strings can be concatenated, characters
or sequences of characters can be replaced by other ones, and there are various
ofher functions to work on strings.

Multiline-strings can be entered by just pressing the RETURN key at the end of each
line:

> str := 'Two
lines';

which prints as

> str:
Two
lines

A string may contain no text at all - called an emplty string -, represented by two
consecutive single quotes with no spaces or characters in between:

>".

4.7.2 Substrings

You may obtain a specific character by passing its position in square brackets right
after the string name. If you use a negative index n, then the |n|-th character from
the right end of the string will be returned.

> str := 'T am a string.';

agena >> 81

> str[l];
I

In general, parts of a string consisting of one or more consecutive characters can
e obtained with the notation:

string[start [to enA]]

You must at least pass the start position of the substring. If only start is given then the
single character at position start will be returned. If end is given too, then the
substring starting af position sfart up to and including position end will be returned.

> str := 'string'

> str[3]:
r

> str[3 to 5]:
rin
> str[3 to 3]:

r

You may also pass negative values for starf and/or end. In these cases, the
positions are determined with respect to the right end of the string.

> str[3 to -117:
ring

> str[3 to -21]:
rin

> str[-3 to -2]:
in

> str[-3]:
i

4.7.3 Escape Sequences

In Agena, a text can include any escape sequences* known from ANSI C, e.g.:

\n: inserts a new line,
\t: inserts a tabulator
\b: puts the cursor one position 1o the left but does not delete any characters.

> 'T am a string.\nMe too.':
I am a string.
Me too.

> 'These are numbers: 1\t2\t3':
These are numbers: 1 2 3

4 See also Appendix A7.

82 4 Data

> 'Example with backspaces:\b but without the colon.
Example with backspaces but without the colon.

If you want to put a single or double quote into a string, put a backslash right in front
of it:

> 'A quote: \'':
A quote: !

> "A quote: \"":
A quote: "

However, if a string is delimited by single quotes and you want to include a double
quote (or vice versq), a backslash is not obligatory, e.g. "'agena' " is a valid string.

Likewise, a backslash is represented by typing it twice.

4.7.4 Concatenation

Two or more strings can be concatenated with the & operator:

> 'First string, ' & 'second string, ' & 'third string':
First string, second string, third string

Numbers (but not complex ones) are supported, as well, so you do not need to
convert them with the tostring function before applying &:

> 1 & ' duck':
1 duck

Furthermore, the compound &:= concatenation operator appends a string to the
contents of a string variable:

> a := "In';
> a &:= 'Sight';
> a:

InSight

agena >>

83

4.7.5 String Operators and Functions

Agena has basic operators useful for text processing:

Operator

Return

Function

sint

number or null

Checks whether a substring s is included in
sting 1. If true, the position of the first
occurrence of s in t will be returned; otherwise
null will be returned.

s atendof t

number or null

Checks whether a string t ends in a substring s.
If true, the position of the position of s in t will
be retuned; otherwise null will be retuned.

replace(s, p. 1)

string

Replaces all patterns p in string s with substring
r. If pis not in s, then s wil be retuned
unchanged. p might also be the position (a
positive integer) of the character to be
replaced.

sequence of

Splits a string into its words with d as the

s split d SIiNGS delimiting character(s). The items are returned
9 as a seguence of strings.
size(s) nuMber Rgtums ’rhg length of string s. If s is the empty
string, O will be returned.
Returns the numeric ASCII code of character
abs(s) number s
char(n) strin Returns the character corresponding to the
9 given numeric ASCIl code n.
, Converts a sting to lowercase. Westermn
lower(s) string o .
European diacritics are recognised.
upper(s| Sfrin Converts a string to uppercase. Westermn
PP 9 European diacritics are recognised.
number or Converts a sfring info a number or complex
tonumber(s)
complex value | number.
Converts a number to one string. If a complex
tostring(n) string value is passed, the real and imaginary parts
are retuned separately as two strings.
. , Deletes leading and trailing spaces as well as
trim(s) string

excess embedded spaces.

Some examples:

> str

Table 7: String operators

:= 'a string';

The character s is at the third position:

> 's' in str:

3

Let us split a string into its components that are separated by white spaces:

84

4 Data

> str split '
seq(a, string)

str IS eight characters long:

> size(str):
8

The ASCIl code

> abs(str[1l]):
97

of the first character in str, a, is:

franslated back to

> char (ans) :
a

Put all characters in str 10 uppercase:

> upper (str) :
A STRING

And now the reverse:

> lower (ans) :
a string

The following functions can e used to find and replace characters in a string:

Function

Functionality

Example

in

Returns the first position of a substring (left
operand) in a string (right operand); if the
substring cannot be found, it retumns null.

'tr' in

'string' » 2

instr

Looks for the first match of a pattemn
(second argument) in a sting (first
argument). If it finds a match, then instr
returns its position; otherwise, it returns null.
An optional numerical argument specifies
where to start the search. The function
supports paffern matching, almost similar
to regular expressions. The function is more
than twice as fast as strings.find. If true is
given as a fourth argument, pattem
matching is switched off to speed up the
search.

If the opftion 'reverse' is given, then starting
from the right end and always running fo
its left beginning, the function looks for the

instr(
'agena',
'laAlg’,
1) » 1

instr('agena',
'reverse')

lal,
» 5

agena >> 85
Function Functionality Example
first match of the substring and returns the
position where the pattern starts with
respect to its left beginning. When
searching from right to left, pattem
matching is not supported.
Checks whether a sfiing (right operand) | 'ing' atendof
atendof ends in a substing (left operand). If true, |, « 0
the position will be returned; otherwise null
will be returned.
Retumns the first match of a substing | strings.find(
(second argument) in a sting (fist , , S5 0 0 T
argument) and returns the positions where
the pattem starts and ends. An optional | ¥ 109 ii;{‘d(,tr,
third argument specifies the position | 3 ’ ’
where to start the search. If it does not find | » null
strings.find | a pattem, the function returns nuill. strings.find(
'string', 't.'")
The function supports patftern matching | » 2, 3
facilities described in Chapter 9.1.3.
See also: strings.mfind. which returns all
occurrences.
In a sting (fist argument) replaces all | replace(str, '
occurences of a substing (second |, poop o TEEEY)
argument) with another one (third
argument) and retuns a new string.
Pattern matching faciliies are not
replace supported.

A sequence of replacement pairs can be
passed to the function, too.

See also strings.gsub.

replace('string',
seq('s':'S",
ltl:lTl))

» STring

Table 8: Search and replace functions and operators

For more information on these functions, check Chapter 9.1. See also the
descriptions of strings.match and strings.gmatch.

The replace function can be used to find and replace characters in a string.

4.7.6 Comparing Strings

Like numbers, single or multiple character strings can be compared with the familiar
relational operators based on their soring order which is determined by your current

locale.

> 'a' < 'b'.

86 4 Data

true
> 'aa' > 'bb':
false

If the sizes of two strings differ, the missing character is considered less than an
existing character.

> 'ba' > 'b':
true

4.7.7 Patterns and Captures

Sometimes it my not suffice to just look for a fixed paftern, e.g. a simple substring, in
a string. You may want to search for a pattern of different kinds of characters - e.g.
both numbers and letters, or either lefters or numbers, or a subset of them -, or of
variable number of characters, or both of them.

Agena provides both character classes and modifiers to accomplish this. While
common Regular Expressions are not supported, Agena offers quite similar facilities,
all taken from Lua.

For performance reasons, you may use the following rule of thumb?:

* If you would like to determine the start position of the very first match of a fixed
pattern only, use the in operator, for in is the fastest.

* If you want to look as fast as possible only for the start position of the very first
match of a “variable™ pattern, using character classes and/or modifiers, or
would like to give the position where to start the quickest search, use instr.

* If both the start and end position is needed, prefer strings.find. The instr function
can also return the start and end position, with or without variable patterns, but
may be slower than strings.find in most situations.

Character classes represent certain sets of fokens, e.g. the class $d represents one
digit, and %a represents one upper-case or lower-case letter. Assume we would like
to determine the position of the hour 00: 00: 00 in the following date/time string:

> date := '23.05.1949 00:00:00"

We could use the instr function to determine the start position of the hour,

> instr(date, '%d%d:%d%d:%d%d'):
12

or strings.find to get the start and end position of it.

> strings.find(date, '%d%d:%d%d:%d%d'):
12 19

° Different kinds of paftern matching facilities have been infroduced in Agena deliberately, for the
kind of search can significantly influence performance when processing a large number of strings. If
you want to parse a large number of files and know where 1o look, io.skiplines may boost
performance on slow drives, as well.

agena >> 87

strings.match extracts the hour.

> strings.match(date, '%d%d:%d%d:%d%d'):
00:00:00

For a complete list of all supported classes, please have a look at the end of this
chapter or Chapter 9.1.3.

Character sefs denote user-defined classes comprising any character class and/or
single tokens, put in square brackets. For example, [01] may represent a binary,
and [%1 -] any lower-case lefter, white space or hyphen. A range of characters is
represented by a hyphen, thus [A-Ca-c] represents one of the first three upper
and lower case letters in the alphabet.

> instr('binary: 10', '[01l]'"):
9

A caret in front of a class indicates that a string should begin with this class, and a
dollar trailing a class denotes that it should end in the given class.

o\

> instr ('l is a number', '7[%1]'):

null

[)

> instr ('l is a number', '1'):
13

Patterns also support modifiers for repetition or optional parts. The plus sign indicates
one or more repetitions of a class, the asterisk denotes zero or more repetitions, and
the question mark zero or one occurrence.

> date := '23.05.1949 00:00:00"'

> strings.find(date, '%d+.%d+.%d+'): # find the date 23.05.1949

1 10

> date := '23.05. 00:00:00"

> strings.find(date, '%d+.%d+.%d*'): # find 23.05., optionally the year
1 6

The single doft represents any occurrence of any character in a string, regardless
whether the character is a cipher, a lefter or special character. If you would like to
search for one of the special characters =, +, -, 2, ., [, 1, efc. in a string, just
escape it with the percentage sign.

> instr(date, '%.'): # find the first dot in the date string
3

instr and strings.find also allow to switch off pattern matching by passing true as
the last argument:

> instr (date, '.', true):
3

88 4 Data

If a pattern is put in parentheses, one or more portions of a string Matching this
pattern are extracted from a string, to be optionally assigned to names. This feature
is also called a capture. Two examples:

> strings.match('<id>1234</id>"', '<id>(.*)</id>"):

1234

> date := 'May 23, 1949 12:15:00"';

> strings.find(date, '(Sw+) (%d+), ?2(%d+)'):

1 12 May 23 1949

> year, day, month := strings.match(date, '(Sw+) (&%d+), ?2(%d+)"'):
May 23 1949

> year, month, day:
May 1949 23

Another useful function is strings.gmatch which returns a function that iterates over
all occurrences of a patterm in a string:

> f := strings.gmatch ('l 10', '(%d+)"'):
procedure (008E1278)

> f£():
1

> f£():
10

You may also use the wrapper function strings.gmatches which retuns a sequence
of all the substrings matching a given pattem.

> strings.gmatches ('l 10', '(&%d+)'):
seqg(l, 10)

There is a small difference between the ~ and - modifiers for matching zero or
more occurrences which may influence execution time significantly: while = looks
for the longest match, - does for the shortest:

> strings.match ('<p>a</p><p>2</p>', '<p>(.-)</p>'): # - shortest
a

> strings.match ('<p>a</p><p>b</p>', '<p>(.*)</p>'): # * longest
a</p><p>b

With captures, and with captures only, strings.find not only returns the start and end
position of the match, but also the match itself as a third return.

> strings.find('<p>a</p><p>b</p>', '<p>(.-)</p>"):
1 8 a

agena >> 89

To check whether one of the characters is in a given set, use square brackets. In the
next example, we check whether the first character in a pattern is either '1', '2' or '3',
and the rest of the pattern is 'abc'.

> strings.match('2abc', '[123]abc'):
2abc

The pattemn in the above example, e.qg. its second argument, in general matches a
substring in a string. If you would like to make sure that a pattern matches an entire
string, put a caret in front of the pattern and a dollar sign at its end:

> strings.match('2abc', '~[123]abc$'):
2abc

Thus, since the string to be searched is longer,
> strings.match('y2abcy', '~[123]abc$'):
returns:

null

To recognise one or more ligatures and umlauts, along with one or more Latin
letters, also just use square brackets and combine them with a modifier, here sa:

> strings.match('Eckernférde, Schleswig-Holstein', ' ([&6URAOU%al*)"):
Eckernforde

Refrieve a value either residing in a conventional XML tag or its worst-case (though
here invalid) SOAP variant:

> pattern := '<.*Data.*>(%a+)</.*Data>"';

> str := strings.match(

> '<soap:Data attr=\'foo\'>value</soap:Data>",

> pattern);

> str:

value

> str := strings.match('<Data>value</Data>"', pattern);
> str:

value

90

4 Data

Summary? of character classes and pattern modifiers:

Claosses

Modifiers

o\
W)

o\
'_l

o\
~

o\
=

o° o°

Z B

* +

any character

leftersatozorAto Z

anything not matching the letters a to z or Afo Z

control characters

anything not matching control characters

digits 0 to @

anything not matching digits O to 9

an integer, consisting of one or more characters, optionally
including a sign

upper and lower-case consonants (y is considered a vowel)
anything not matching upper and lower-case consonants
lower-case letters

anything not matching lower-case letters

a number, consisting of one or more characters, optionally
including a preceding sign, a fractional part and a scientific
E-notation suffix; a number may also just start with a sign and a
fractional part. Optional decimal separator is always the dot
with $n, and a comma with %$N.

lefters a o z or A to Z including diacritics and ligatures
(provided Latin-1 codepage is active)

anything not matching the lefters a to z or A fo Z including
diacrifics and ligatures (provided Latin-1 codepage is active)
special characters, e.Q., .., -+ *~2?21# ()[1{}"'
anything not representing special characters

spaces including \t, \n, and \r

anything not matching spaces including \t, \n, and \r
upper-case letters

anything not representing upper-case letters

upper and lower-case vowels including y and Y

anything not representing upper and lower-case vowels
includingy and Y

alphanumeric charactersatoz, AtoZ, and 0 to 9@

anything not matching the class sw

hexadecimal digits 0 to 9, Ato F, and a to f

anything not matching the class sx

an embedded zero, i.e. \0.

anything not matching an emibedded zero

one or more occurrence

Zero or more occurrence, returning the largest match
zero or more occurrence, refurning the smallest match
zZero or one occurrence

Table 9: Character classes and modifiers

® Based on: Programming in Lua”, 2nd edition, by Roberto lerusalimschy, lua.org, pages 180f.

agena >>

4.8 Boolean Expressions

Agena supports the logical values true and false, also called "booleans . Any
condition, e.g. a < b, results fo one of these logical values. They are often used fo
tell a programme which stafements to execute and thus which statements not to

execute,

Boolean expressions mostly result to the Boolean values true or false. Boolean

expressions are created by:

e relational operators (>, <, =, ==, ~=, ~<>, <=, >=, <>),
* logical names: true, false, fail, and null,
* in, subset, xsubset, and various functions.

Agena supports the following relational operators:

Operator | Description Example
less than 1 <2
greater than 2 > 1

<= less than or equals 1 <=2

>= greater than or equals 2 >= 1

= equals 1 =1

—— strict equality for structures’ 1[1]:T [

o approximate equality/inequality for Lo

~<’> real and complex numbers, and (1] ~<> [1]
structures

<> not equals 1 <> 2

The logical operators and, or, nand, nor, xor, and xnor behave a little bit differently:
They consider anything except false, fail, and null as true, and false otherwise. They
return either the first or second operand, which can be any data - not just true or

Table 10: Relational operators

false - subject to the following rules:

Operator | Description Examples
Returns its first operand if it is or evaluates Erlie anddll» 1f .
. . . alse an » alse
and to false, fail or null, otherwise retums its | L .. . 4 false » false
second operand. false and true » false
Retumns its first operand if it is not or does Erue or Erlie » tiue
. rue oOr alse » rue
or not eyolgcn‘e ’ro.false, fail, or null, | ;" = ‘o5 2
otherwise it returns its second operand. null or 2 » 2
With booleans: Retumns the first operand | true xor false» true
if the second one evaluates or is false, | true xor true » false
Xor false xor true » true

fail, or null. It retuns the second
operand if the first operand evaluates 1o

1 xor null » 1
1l xor 2 » 2

7 See Chapfter 4.9.3.

Q2 4 Data

Operator | Description Examples
false, fail, or null and if the second
operand is neither false, fail nor null,

With non-booleans: retuns the first
operand if the second operand
evaluates to null, otherwise the second
operand will be returned.

) . not true » false
Tumns a true expression 1o false and vice | not false » true

nOt versa. not 1 » false
not null » true
nand Returns true if at least one operand is | true nand false » true
false, otherwise retumns false. 1 nand null » true
Returns true if both operands are false,
nor false nor false » true

and false otherwise.

Returns true if both Boolean operands
xnor are the same (where false and fail are | false xnor false » true
considered equal), and false otherwise.
Returns false if the first operand is true
implies and the second is false; otherwise
returns true.

false implies false
» true

Table 11: Logical operators

As expected, you can assign Boolean expressions to names

> cond := 1 < 2:
true
> cond :=1 < 2 o0or 1 > 2 and 1 = 1:

true
or use them in if statements, described in Chapter 5.
In many situations, the null value can be used synonymously for false.

The additional Boolean constant fail can e used to denote an error. With Boolean
operators (and, or, not), fail behaves like the false constant, e.g. nof(fail) = true,
but remember that fail is always unlike false, i.e. the expression fail = false results to
false.

true, false, and fail are of type boolean. null, however, has its own type: the string
'null'.

The and as well as or operators only evaluate their second argument if necessary,
called short-circuit evaluation. Thus, the following statement does noft issue an error:

> a := null

> if a :: number and a > 0 then print(ln(a)) fi

agena >> 93

They are also handy to define defaults for unassigned names:

> a := null
> a :=a or 0
> a

You can add, subfract, multiply, divide and exponentiate numbers with true or
false, where true in this context represents number 1 and false or fail number O.
Thus, for example, the expressions abs (x > 0)*x and (x > 0)*x Are equivalent
expressions. You can even apply the four basic arithmetic operations on two
booleans if deemed necessary.

4.9 Tables

Tables are used to represent more complex data structures. Tables consist of zero,
one or more key-value pairs: the key referencing to the position of the value in the
table, and the value the data itself.

Keys and values can be numbers, strings, and any other data type except null.
Here is a first example: Suppose you want to create a table with the following

meteorological data recorded by Viking Lander 1 which touched down on Mars in
1976:

Sol Pressure in mb | Temperature in °C
1.02 | 7.71 -78.28
1.06 |7.70 -81.10
1.10 | 7.70 -82.96
> VL1 := [
> 1.02 ~ [7.71, -78.28],
> 1.06 ~ [7.70, =-81.10],
> 1.10 ~ [7.70, -82.96]
> 1;

To get the data of Sol 1.02 (the Martion day #1.2) input:

> VL1[1.02]:
[7.71, -78.28]

Tables may be empty, or include other tables - even nested ones.

You can control how tables are printed af the console in two ways: If the setting
environ.kernel ('longtable') IS true (e.g. by entering the statement
environ.kernel (longtable = true), then each key~value pair is printed at a
separate line. If the setting environ.kernel ('longtable') is false, all key~value
pairs will be printed in one consecutive line, as in the example above. Also, you
can define your own printing function that fells the interpreter how to print a table (or

Q4 4 Data

other structures). See Appendix A5 for further information on how to do this and
other settings.

Stripped down versions of tables are sets, sequences and registers which are
described later. Most operations on tables introduced in this chapter are also
applicable to them.

4.9.1 Arrays

Agena features two types of tables, the simplest one being the array. Arrays are
created by putting their values in square brackets:

[[value, [, value,, ---111]

The table values are 4, 5, and 6; the numbers 1, 2, and 3 are the corresponding
keys or indices of table a, with key 1 referencing value 4, key 2 referencing value 5,
etc. With arrays, the indices always start with T and count upwards sequentially. The
keys are always integral, so a in this example is an array whereas table vi.1 in the last
chapter is not.

To determine a table value, enter the name of the table followed by the respective
index in square brackets:

fablenamelkey]

> A[l]:
4

Instead of using constants to index a table, you may also compute an index both in
table assignments or queries. The following selects the middle element of a:

> 1, r := 1, size A:
1 3

> A[(l+r)\2]:
5

If a table contains other tables, you may get their values by passing the respective
keys in consecutive order. The two forms are equivalent:

fablenamelkeyi]key:][- - -1
fablenamelkey, key,, - - -]

agena >> 95

The following call refers o the complete inner table which is af index 1 of the outer
table:

To get the number 6, enter the position of the inner table (5, (611 as the first index,
the position of the inner table (6] as the second index, and the position of the
desired entry as the third index:

With tables that contain other tables, you might get an error if you use an index that
does not refer to one of these tables:

> A[1][07]:
Error in stdin, at line 1:
attempt to index field " ?° (a number value)

Here a11] returns the number 4, so the subsequent indexing attempt with 407 is an
invalid expression. You may use the getentry function to avoid error messages:

> getentry (A, 1, 0):
null

Similarly, the .. operator allows 1o index tables even if its left-hand side operand
evaluates to null. In this case, null will be returned, as well, with no error issued. It is
twice as fast as getentry.

> create table A;

> A.b:
null

> A.b.c:
Error in stdin, at line 1:
attempt to index field b (a null value)

> A..b..c:
null

96 4 Data

A generalisation of the .. table field separator are curly braces.

> create table A;

> A[l]:
null
> A[l, 21:
Error in stdin, at line 1:
attempt to index field “?° (a null value)
> A{l, 2}:
null

Sublists of table arrays can be determined with the following syntax:

tfablename[m to n]

Agena retumns all values from and including index position m to n, with m and n
negative or positive integers or 0. If there are no values between m and n, an
empty list will be returned. Table values with non-integral keys are ignored.

> A := [10, 20, 30, 40]

> A[2 to 3]:
[2 ~ 20, 3 ~ 30]

Tables can contain no values at all. In this case they are called empty fables with
values to be inserted later in a session. There are two forms to create empty tables.

create table name, [, table name,, - - -]

name; =[]

> create table Bj;
creates the empty table B,
> B = [1;

does exactly the same.

You may add a value to a table by assigning the value to an indexed table name:

agena >> 97

Alternatively, the insert statement always appends values to the end of a table?:

insert value, |, value,, - - -] info name

> insert 'b' into B;

> B:
[a, DI

To delete a specific key~value pair, assign null o the indexed table name:

> B[1l] := null;
> B:

(2 ~ Db]

The delete “statement works a little bit differently and removes all occurrences of a
value from a table.

delete value, |, value,, - - -] from name

> insert 'b' into B;
> delete 'b' from B;

> B:
[]

In both cases, deletion of values leaves "holes™ in a table, which are null values
between other non-null values:

> delete 2 from B

(1 ~1, 4 ~ 3]

There exists a special sizihng option with the create table statement which besides
creating an empty table also sets the default numiber of entries. Thus you may gain
some speed if you perform a large number of subsequent table insertions, since
with each inserfion, Agena checks whether there is enough space to
accommodate further elements and allocates more space if necessary, which
creates some overhead. The sizing opftion reserves memory for the given numlber of
elements in advance, so there is no need for Agena to subsequently enlarge the
table until the given default size has been exceeded.

® The insert statement cannot be applied on weak tables. See Chapter 6 for further information on
this variant,

7 dito.

98 4 Data

Arrays with a predefined number of entries are created according to the following
syntax:

create table name;(size,) [, table name(size,), - - -]

When assigning entries to the table, you will save af least 1/3 of computation time if
you know the size of the table in advance and inifialise the table accordingly. If you
want to insert more values later, then this will be no problem. Agena automatically
enlarges the table beyond its initial size if needed.

> create table a(5);

> create table a, table b(5);

4.9.2 Dictionaries
Another form of a table is the dicfionary with any kind of data - not only positive
infegers - as indices:

Dictionaries are created by explicitly passing key-value pairs with the respective keys
and values separated by tildes, which is the difference to arrays:

[[key: ~ value, [, key, ~ value,, ---]]]

= [1 ~4, 2 ~ 5, 3 ~ 6]:
1 ~4, 2 ~5, 3 ~ 6]

[abs('p') ~ 'th']:

Here is another example with strings as keys:

> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'];

> dic:
[mickey ~ mouse, donald ~ duck]

As you see in this example, Agena internally stores the key-value pairs of a
dictionary in an arbitrary order.

As with arrays, indexed names are used to access the corresponding values stored
to dictionaries.

> dic['donald']:
duck

If you use strings as keys, a short form is:

agena >> 99

> dic.donald:
duck

Further entries can bbe added with assignments such as:
> dic['minney'] := 'mouse';

which is the equivalent to

> dic.minney := 'mouse';

With string indices, an alternative to putting keys in quotes with the tilde syntax is:

[[name, = value, [, name, = value,, ---]]]
Hence,
> dic := ['donald' ~ 'duck', 'mickey' ~ 'mouse'l];
and
> dic := [donald = 'duck', mickey = 'mouse'];

are equal. You can also mix filde (~) and equals (=) assignments:
> dic := [donald = 'duck', mickey ~ 'mouse'];

If you want to enter the result of a Boolean equality check into a table, use the ==
token instead of the = sign:

> value := 1

> [value == 1, value <> 1]:
[true, false]

Dictionaries with an initial number of entries are declared like this:

create dict name(size4) [, dict namey(size,), - - -]

You may mix declarations for arrays and dictionaries, so the general syntax is:

create {table | dict} name[(size,)] [, {table | dict} nhame;[(size,)], - - -]

Technically, tables consist of an array and a hash part. The array part usually stores
all the elements in an array, the hash part the values of a dictionary. You can both
pre-allocate the array and hash part of a table aft once:

100

4 Data

create table name,(arraysize,, hashsize,) [, - - -]

4.9.3 Table, Set and Sequence Operators

Agena features some built-in table, set and sequence operators which are
described below. A “structure in this context is a table, set or sequence.

Name Return Function
. Checks whether the structure A contains the given
cinA Boolean
value C.
. Determines whether a structure contains at least one
filled A Boolean .
value. If so, it returns true, else false.
empty A Boolean | Checks whether a structure is empty.
Checks whether two structures A, B contain the same
A—B Boolean values regardless of the numiber of their occurrence
and order; if B is a reference to A, then the result is also
true.
Checks whether two structures A, B do not contain the
same values regardless of the number of their
A<>8B Boolean e
occurrence or order; if B is a reference to A, then the
result is false.
Checks whether two structures A, B contain the same
number of elements and whether all key~value pairs
A==B Boolean |in tables A, B or entries in the sets, sequences or
reqisters are the same; if B is a reference to A, then the
result is true.
not(A == B) Boolean | The negation of A == B.
Like ==, but checks the respective elements for
A~=B Boolean | approximate equality. Use environ.kernel/eps to
change the setting for the accuracy threshold.
not(A ~= B) Boolean | The negation of A ~= B.
Checks whether the values in structure A are also
A subset B Boolean |values in B regardless of the number of their
occurrence. The operator also returns true if A = B.
Checks whether the values in structure A are also
A xsubset B Boolean | values in B. Contrary to subset, the operator returns
false if A = B.
Concatenates two tables, or two sets, or two
table, seguences or registers A, B simply by copying all its
A union B set, seq, | elements - even if they occur multiple times - to a new
reg structure. With sets, all items in the resulting set will be
unigue, i.e. they will not appear multiple fimes.
table, Retuns all values in two structures A, B that are
Aintersect B | sef, seq, | included both in A and in B and returns them in a new

reg

structure.

agena >> 101
Name Return Function
. fable, Returns all the values in A that are not in B as a new
A minus B set, seq,
structure.
reg
table, Creates a deep copy of structure A, i.e. if A includes
copy A set, seq, | other tables, sefts, pairs, sequences or registers, copies
reg of these structures are created, too.
. . Concatenates all strings in the table, sequence or
join A string .
register A.
Returns the size of a table A, i.e. the actual number of
size A number | key~value pairs in A, With setfs, sequences and
registers, the number of items will be returned.
This function sors table, sequence or register A in
ascending order. It directly operates on A, so it is
destructive. With tables, the function has no effect on
sort(A) table, values that have non-integer keys. Note that sort is not
seq, reg | an operator, sO you must put the argument in
brackets. Please also see Chapter 7 for its derivatives:
sorted, skycrane.sorted, stats.issorted, and
stats.sorted.
Removes multiple occurrences of the same value and
retfurns the result in a new structure. With tables, also
. table, N . : :
unique A removes all holes (missing keys) by reshuffling ifs
seq, reg .) . .
elements. This operator is not applicable to sets, since
they are already unique.
Sums up all numeric table, sequence or register
sumup A number | values. If the structure is empty or contains no numeric
values, null will be returned. Sets are not supported.
Raises each value in a table, sequence or register to
the power of 2 and sums up these powers. If the
gsumup A numiber .))
structure is empty or contains no numeric values, null
will be returned. Sets are not supported.
table,
f@A seq, set, | Maps a function f on all elements of structure A.
reg
table, .
Selects all elements of a structure A that satisfy a
fSA set, seq, " . .
reg condition given by function f.
Checks whether at least one element in A satisfies the
fSS A Boolean

condition checked by function f.

Table 12; Table, set, and sequence operators

Here are some examples - fry them with sets, sequences and reqisters, as well:

The union operator concatenates two tables simply by copying all itfs elements -
even if they occur multiple fimes.

102 4 Data

> ['a', 'b', 'c¢'] union ['a', 'd']:
[a, b, ¢, a, d]

intersect returns all values that are part of both tables as a new table.

> ['a', 'b', 'c'] intersect ['a', 'd']:

If a value appears multiple times in the structure at the left hand side of the
operator, it is written the same number of times to the resulting structure.

minus returns all the elements that appear in the table on the left hand side of this
operator that are not members of the right side table.

> ['a', '"b', '¢'] minus ['a', 'd']:

(b, c]

If a value appears multiple times in the structure at the left hand side of the
operator, it is written the same number of times to the resulting structure.

The unique function

e removes all holes (" missing keys ") in a table,
e removes multiple occurrences of the same value.

and retumns the result in a new table. The original table is nof overwritten. In the
following example, there is a hole at index 2 and the value 'a' appears twice.

> unique [1 ~ 'a', 3 ~ 'a', 4 ~ 'b']:
[b, al

You can search a table for a specific value with the in operator. It returns true if the
value has been found, or false, if the element is not part of the table. Examples:

> 'a!' in [vav, 'b', ICIJ:
returns frue.
> 1 in ['a', 'b', 'c']:

returns false. Remember that in only checks the values of a table, not its keys.

4.9.4 Table Functions

Agena has a number of functions that work on tables (and sequences and
reqisters), for instance:

agena >> 103
Function Description Further detail
Maps a function f onto all
f may be an anonymous
map(f, O) elements of structure o, or . .
, function, as well. See also zip
map(’. Q) produces the function | .
" in Chapter 8.
composition f @ g.
Removes index kev and its All elements to the right are
purge(o, key) Y shiffed down, so that no holes

corresponding value from o.

are created.

put(o, key, value)

Inserts a key ~ value pair into
structure o.

The original element at
position key and all other
elements are shifted up one

place.

f may be also an anonymous
function. The remove
function conducts the
opposite operation.

Retuns all the elements that
satisfy the Boolean condition
given by function f.

select(f, 0)

Substitutes all occurrences of

subs(o, x:v . .
() value x in o with value v.

With large tables, the function
is much faster than the in
operator.

Performs a binary search in a

binsearch(o, i) table

Table 13: Basic table library procedures

The map function is quite handy to apply a function with one or more arguments to
all elements of a structure in one stroke:

> map (<< x —> x"2 >>, [1, 2,
(1, 4, 9]

3]):

The @ operator also maps a function on all elements of a structure. Contrary to
map, it accepts univariate functions only, but is faster:

> << x —> X2 >> @ [1, 2, 3]:
(1, 4, 9]

Likewise, the faster § operator selects all the elements of a structure that satisfy a
condition checked by a univariate function.

> << x > x >1 > $ [1, 2, 31:
(2, 3]

Suppose we want to add a new entry 10 at position 3 of table c¢';

10 put and purge have to shiftf elements up or down, drawing performance. You may use the llist
package to conduct these kinds of operations much faster in case of a large numiber of insertions
or deletions.

104 4 Data

Now we remove this new entry 10 at position 3 again:

> purge(C, 3)

Determine all elements in ¢ that are even:

> select (<< x —-> even(x) >>, C):
(2 ~ 2, 4 ~ 4]

Or return all elements not even:

> remove (<< x —-> even(x) >>, C):
[1 ~ 1, 3 ~ 3]

Note that remove and select do not alter the original structure passed as the
second argument.

zip zips together two tables by applying a function to each of its respective
elements.

> zip (<< (x, y) -> x + y >>, C, [10, 20, 30, 40]):
(11, 22, 33, 44]

For other functions, have a look at Part Il of this manual and the Agena Quick
Reference Excel sheet.

4.9.5 Table References

If you assign a table to a variable, only a reference to the table is stored in the
variable. This means that if we have a table

> A := [1, 2]1;
assigning
> B 1= A;

does not copy the contents of A to B, but only the address of the same memory
area which holds table (1, 21, hence:

> insert 3 into A;

agena >> 105

Use copy to create a true copy of the contents of a table. If the table contains
other structures, copies of these structures are also made (so-called "deep
copies). Thus copy returns a new table without any reference to the original one.

> B := copy(A);

> insert 4 into A;

With structures such as tables, sets, pairs, sequences or registers, all names to the
left of an -> token will point fo the very same structure to its right.

> A, B —> []
> A[l] :=1
> B:
[1]

Tables can also directly or indirectly contain themselves, in which case they are also
called "cycles’ . Just some few examples:

> A = []

> A := [A, A]

> A

(11, [11

> A.A := A

> A

(1 ~ [1, 2 ~ [], A ~ circum_table(0236A460)]

4.9.6 Unpacking Tables by Name

There is syntactic sugar for the assignment statfement to unpack named values, i.e.
datfa indexed with string keys, from tables using the in keyword:

key, [, key,, ---]intablename

is equal to

106 4 Data

key, [, key,, ---].= fablename.key, [, tablename.key,, - - -]

A short example may suffice:

> zips := [duedo = 40210:40629,
> bonn = 53111:53229,
> cologne = 50667:51149];

> duedo, bonn in zips

> duedo, bonn, cologne:
40210:40629 53111:53229 null

The local statement, see Chapter 6.2, supports this sugar, as well. Read also
Chapter 5.2.12 for a variant implemented available in the with statement.,

4.9.7 Defining Multiple Constants Easily

The // ... \\ constructor allows to define a table of constant numbers and/or strings
the simple way: items may not be separated by commas, and strings do not need
fo be put in quotes as long as they satisfy the criteria for valid variable names:
names starting with a hyphen or letter, including diacritics - and keywords such like
while, sqrt, etc. do not have to be passed in quotes. Records are supported as
well. Expressions like “sin(0)" etc. are nof parsed and rejected. Example:

>a :=// 0~0 1 2 3 zero one two three '2and3' sqrt ~ while \\:
(0O ~0, 1L ~1, 2 ~2, 3 ~3, 4 ~ zero, 5 ~ one, 6 ~ two, 7 ~ three,
8 ~ 2and3, sgrt ~ while]

4.10 Sets

Sets are collections of unique items: numbers, strings, and any other data except
null. Their syntax is:

{[item, [, item,, ---]1]}

Thus, they are equivalent to Cantor sets: An item is stored only once.

Besides being commonly used in mathematical applications, they are also useful
to hold word lists where it only matters to see whether an element is part of a list or
noft:

> colours := {'red', 'green', 'blue'};

agena >> 107

If you want 1o check whether the colour red is part of the set colours, just index it as
follows:

setnamelitem]

If an element is stored to a set, Agena returns true:

> colours(['red']:
true

If an item is not in the given set, the return is false. Note that we can use the same
short form for indexing values (without quotes) as can be done with tables.

> colours.yellow:
false

If you want to add or delete items to or from a set, use the insert and delete

statements. The standard assignment statement setname[key] := value IS QlSO
supported.
insert item;, [, ifem,, - - -] intfo name
delete item;, |, item,, - - -] from name

> insert 'yellow' into colours;

The in operator checks whether an item is part of a set - it is an alternative to the
indexing method explained above, and returns true or false, foo.

> 'yellow' in colours:
true

The data type of a set is set.

> type(colours) :
set

You may predefine sets with a given number of entries according fo the following
syntax:

create set name; [(sizes) | [, set name, [(sizez)], - - -]

When assigning items later, you will save at least 90 % of computation fime if you
know the size of the set in advance and initialise it with the maximum numiber of
future entries as explained above. More items than stated at initialisation can be

108 4 Data

entered anytime, since Agena automatically enlarges the respective set
accordingly and will also reserves space for additional entries.

Sets are useful in situations where the number of occurrence of a specific item or its
position does not concern. Compared to tables, sets consume around 40 % less
memory, and operations with them are 10 % to 33 % faster than the corresponding
table operations.

Specifically, the more items you want to store, the faster operations wil be
compared to tables.

Nofte that if you assign a set to a variable, only a reference to the set is stored in the
variable. Thus in a statement like 2 := {}; B := A, A and B point to the same set.
Use the copy function if you want to create "independent” sets.

Sets can also include themselves, just an example:

> A = {}

> A := {A, A}:
{{}}

If you want to know the numiber of occurrence of a unigue element in a distrioution,
the bags package might be of interest, see Chapter 10.8.

The following operators operate on sets:

Name Return Function

cinA Boolean | Checks whether the set A contains the given value cC.

. Determines whether a set contains atf least one value.
filled A Boolean

If so, it returns true, else false.

empty A Boolean | Checks whether a set is empty.

Checks whether two sets A, B contain the same values;
if B is a reference 1o A, then the result is also true.
Checks whether two sets A, B do not contain the same
values; if B is a reference to A, then the result is false.
A==8B Boolean | Same as =.

Checks whether the values in set A are also values in B.
The operator also returns true if A = B.

Checks whether the values in set A are also values in B.
Contrary to subset, the operator returns false if A = B.
Concatenates two sets A, B simply by copying all its
A union B set elements to a new set. All items in the resulting set will
e unique, i.e. they will not appear multiple times.
Returns all values in two sets A, B that are included
both in A and in B as a new set.

Returns all the values in A that are not in B as a new
set.

A=B Boolean

A<>B Boolean

A subset B Boolean

A xsubset B Boolean

A intersect B | set

A minus B set

agena >> 109

Name Return Function
Creates a deep copy of the set A, i.e. if A includes
copy A set other tables, sets, pairs, sequences or registers, copies

of these structures are built, too.

Returns the size of a set A, i.e. the actual number of

elements in A.

f@A set Maps a function f on all elements of a set A.

FSA set Selects all elements in A that satisfy a given condition
checked by function f.

85 A Boolean Chgcks the e!gmen’rs in A whether qT least one satisfies
a given condition checked by function f.

size A number

Table 14: Set operators

4.11 Sequences

Besides storing values in fables or sets, Agena also features the sequence, an
object which can hold any number of items except null. You may sequentially add
items and delete items from it. Compared 1o tables, inserion and deletion are
twice as fast with sequences. Contrary to all other data structures, Agena
automatically frees the memory occupied by a sequence if you remove values
from it''.

Sequences store items in sequential order. As with tables, an item may be included
multiple times. Sequences are usually indexed with positive integers in the same
fashion as table arrays are, starfing at index 1. If you pass a negative index n, then
the |n|-th value from the right end, i.e. the top of the sequence is determined.
Non-integral indices are not allowed. As with tables, you can compute the index in
assignments or queries.

Suppose we want to define a sequence of two values. You may create it using the
seq operator.

seq([ifem, [, itemy, ---11)

> a := seq(0, 1, 2, 3);

> a:
seq(0, 1, 2, 3)

You can access the items the usual way:

segnamelindex]

> al[l]:
0

”YOU can turn off this feature by issuing: environ.kernel (seqautoshrink = false).

110 4 Data

> al[2]:
1

If the index is larger than the current size of the sequence, an error will be returned'?.

> al[b]:
Error, line 1: index out of range

Sublists of sequences can be determined with the following syntax:

seqgname[m to n]

Agena returns all values from and including index position m to n, with m and n
positive or negative integers. In case of a non-existing key, an error will be issued.

> al[2 to 31]:
seq(l, 2)

The way Agena outputs sequences can be changed by using the settype function.

In general, the settype function allows you to set a user-defined subtype for a
seguence, set, table or pair.

> a := seq(0, 1);
> settype(a, 'duo');

> a:
duo (0, 1)

The gettype function returns the new type you defined above as a string:

> gettype(a):
duo

If no user-defined type has been set, gettype returns null.

Once the type of a sequence has been set, the typeof operator also returns this
user-defined sequence type and will not return ' sequence'.

> typeof (a), gettype(a):
duo duo

This allows you to programme special operations only applicable to certain types of
seguences.

The :: and :- operators can check user-defined types. Just pass the name of your
type as a string:

12 The error message can be avoided by defining an appropriate metamethod.

agena >> 111

> a :: 'duo':
true
> a :— 'duo':
false

Note that if a user defined-type has been given, the check for a basic type with the
:: and :- operators will return also return true or false.

> a :: sequence:
true
> a :— sequence:
false

A user-defined type can be deleted by passing null as a second argument to
settype.

> settype(a, null);

> typeof (a):
sequence

The create sequence statement creates an empty sequence and optionally allows
to allocate enough memory in advance to hold a given number of elements
(which can be inserted later). Agena automatically will extend the sequence, if the
predetermined numioer of items is exceeded. The sequence and seq keywords are
synonyms.

create sequence name; [, seq name,, - - -]
create sequence name(sizes) [, seq name(sizes), - - -]

[tems can be added only sequentially. You may use the insert statement for this or
the conventional indexing method.

> create sequence a(4);

> insert 1 into aj;

> a:
seq(l, 2)

Note that if the index is larger than the number of items stored to it plus 1, Agena
retfurns an error in assignment statements, since "holes’ in a sequence are not
allowed. The next free position in a is at index 3, however a larger index is chosen in
the next example.

> al[4] := 4
Error, line 1: index out of range

112 4 Data

ltems can be deleted by setting their index position to null, or by applying delete,
i.e. stating which items - not index positions - shall be removed. Note that all items
to the right of the value deleted are shifted fo the left, thus their indices will change.

> al[l] := null

> a:
seqg (2, 3)
> delete 2, 3 from a

> a:
seq()

Thus concerning the insert and delete statements, we have the following familiar
syntax:

insert ifem, [, itemy, - - -] into name

delete item, |, item,, - - -] from name

If you assign a sequence to a variable, only a reference to the sequence is stored
in the variable. Thus sequences behave the same way as tables and sets do, i.e. in
a statement like o := seq(); B := A, A and B point 0 the same sequence in
memory. Use the copy function if you want to create “independent” sequences.

> A := seq()
> B = A

> A[l] := 10
> B:

seq(10)

As with tables and sets, sequences can also reference to themselves:

> A := seq()

> A[l] := A

> A[2] := A

> A:

seq(circum_sequence (01E647D8), circum_sequence (01E647D8))

The following operators, functions, and statements operate on sequences:

Name Description Example
= Equality check the Cantor way a =>b
== Strict equality check a ==b
~= approximate equality check a ~=D>»
<> Inequality check the Cantor way a <>b
a :: sequence
Type check operator - usertype'

agena >> 113
Name Description Example

- Negation of type check operation 2 i_ Tnsertype’

@ Maps a function on all elements of a faa
seguence.

S Selects all elements of A that satisfy a given
condition.

88 Checks whether at least one element in A £ 85 a
satisfies a condition,

insert Inserts one or more elements. insert 1 into a

delete Deletes one or more elements. deliiimo . !

bottom Returns the item with key 1. bottom a

top Returns the item with the largest key. top a
as an operator works like top but also removes

pop - pop a
the item from the sequence
Creates an exact copy of a sequence; deep

copy copying is supported so that structures inside | copy a
sequences are properly treated.

filled Qhecks whether a sequence has at least one filled a
item.

empty Checks whether a sequence is empty. empty a
Returns enfries without issuing an error if a

getentry) : : getentry(a, 1, 3)
given index does not exist.
Checks whether an element is stored in the

in sequence, and returns true or false. See also | 0 in seq(l, 0)
binsearch.

. Concatenates all strings in a sequence in| . .

join . join(a)
sequential order.
o Pops the first or the last element fromm Q| pop bottom from a
p p Se(quen(:eI Pop top from a
size Returns the current number of items. size a
Sorts a sequence in place. Please also see
Chapter 7 for its derivatives: sorted,

sort . sort (a)
skycrane.sorted, stats.issorted, and
stats.sorted.
Returns the general e of a sequence, i.e.
sequence.
Returns the user-defined type of a segquence,

typeof or the basic type if no special type has been | typeof a
defined.

. Reduces multiple occurrences of an item in a .

unique . unique a
seguence to just one.

unpack gnpocks a sequence. See unpack in Chapter unpack (2)

nseq Creates a new sequence and fills it with values | "°S2 (<7 * > *
Maps a function on all elements of Q| map(<< x —> x*2

map >>, seq(l, 2, 3))

sequence.

114 4 Data
Name Description Example
,) zip (<< x, y —>
zip Zips together two sequences by applying a X+ y >>,
function to each of its respective elements. squ, i ; /
seq (3,
Searches all values in one sequence that are | seq(1, 2)
intersect also values in the other sequence and returns | intersect
them in a new sequence. seq(z, 3)
Searches all values in one sequence that are 42
minus not values in the other sequence and retums | 51 0" o2l (2, 3
them as a new segquence.
subset Checks whether all values in a sequence are | seq(1)
included in the other sequence. subset seq(l, 2)
. Concatenates two sequences smply by | seq(1, 2)
union .) ;
copying all its elements. union seq(2, 3)
settype Sets a user-defined type for a sequence. settype(a, 'duo')
gettype Returns a user-defined type for a sequence. gettype(a)
setmeta- Assi tatable t setmetatable
table ssigns a metatable to a sequence. (2, mtbl)
etmeta-
’rgable Returns the metatable stored to a sequence. | getmetatable(a)

Table 15 Basic sequence operators and functions

For more functions, consult the Agena Quick Reference Excel sheet. Also, you may
have a look at the llist linked list package presented in Chapter 6.27, if you have to

conduct a lot of insertions and/or deletions in a data structure.

The (/ ... \) constructor allows fo define a sequence of constant numbers and/or
strings the simple way: items may not be separated by commas, and strings do not
need to be put in quotes as long as they satisfy the criteria for valid variable
names(name starting with a hyphen or lefter, including diacritics) or if they are
keywords. Expressions like “sin(0)" etfc. are rejected.

Example:
>a := (/ 01 2 3 zero one two three '2and3' while \):
seq(0, 1, 3, zero, one, two, three, 2and3), while]

4.12 Stack Programming

Sequences and sometimes table arrays can e used to implement stacks, and
besides the insert/info statement to put an element to the top, an efficient
statement is available to remove an item from the bottom or from the top of the

stack:

agena >> 115

pop bottom from name

pop top from name

Both variants work on tables even if their integer keys are not distributed
consecutively.

The bottom and top operators retun the element at the bottom of the stack and
the top of the stack, respectively. They both do not delete the element returned
from the stack.

> stack := seq();
> insert 10, 11, 12 into stack;

> bottom(stack) :
10

> top(stack):
12

> pop bottom from stack;
> pop top from stack;

> stack:
seq(1ll)

The rotate statement moves each element in a sequence or the array part of a
table one position to the bottom (downwards) or to the top (upwards):

rotate bottom name

rotate top name

The element at the bottom or the top is moved to the top or the bottom,
respectively.

> s := seq(l, 2, 3);
> rotate bottom s;

> St
seq(2, 3, 1)

> s := seq(l, 2, 3):
seq(l, 2, 3)

> rotate top s;

> St
seq (3, 1, 2)

116 4 Data

The pop operator - contrary to top - both returns the top element of a sequence or
reqgister and then removes it from the structure. With tables, it returns the value
indexed by the largest integer key and then also removes it.

> pop(s):
2

> s:
seq (3, 1)

There are two other statements that work on sequences and registers only: The
exchange statement swaps the two topmost elements, and the duplicate
statement adds a copy of the current fopmost element to the end of the structure.

> exchange s

> s:
seq(l, 3)

> duplicate s

> st
seq(l, 3, 3)

You may try to use the put function to insert new values in the interior of a stack,
shifting up other values to open space, and purge to delete values in the interior of
a stack.

See also Chapter 14.6 for the six built-in number and character stacks.

4.13 More on the create Statement

You cannot only initialise any table arrays with the create statement, but also
dictionaries, sets, and sequences with only one call and in random order, so the
following statement is valid:

> create table a, dict b(10), set ¢, sequence d(100), table e(10);

> a, b, ¢, d, e:

[] [] {} seq() []

4.14 Pairs

The structure which holds exactly two values of any type (including null and other
pairs) is the pair. A pair cannot hold less or more values, but its values can be
changed. Conceived originally to allow passing options in a more flexible way to
functions, it is defined with the colon operator:

itemy @ item,

agena >> 117

> p:
1:2

The left and right operators provide read access to its left and right operands; the
standard indexing method using indexed names is supported, as well:

left [(] pair)]
right [(] pair)]

\%

left(p), pll]:
1 1

\%

right p, pl2]:
2 2

An operand of an existing pair can be changed by assigning a new value to an
indexed name, where the left operand is indexed with number 1, and the right
operand with number 2:

> pl[l] := 2;

> pl[2] := 3;

You can compute the index as long as the result evaluates to the integers 1 or 2, as
well.

As with sequences, you may define user-defined types for pairs with the settype
function which also changes the way pairs are output.

> typeof (p) :
pair

> settype(p, 'duo');

> p:

duo (2, 3)

> typeof (p) :
duo

> gettype(p):

duo
> p :: pair:
true
> p :: 'duo':
true

The only other operators besides left and right that work on pairs are equality (=, ==,
~=), inequality (<>, ~<>), i1, :-, type, typeof, and in.

> p = 3:2:
false

118 4 Data

With pairs consisting of numbers, the in operator checks whether a left-hand
argument number is part of a closed numeric interval given by the given right-hand
argument pair.

> 2 in 0:10:
true

> 's' in 0:10:

fail

As with all other structures, if you assign a pair to a variable, only a reference to the
pair is stored in the variable. Thus in a statement like o := a:b; B := A, Aand B
point to the same pair. Use the copy function if you want to create "independent
pAirs.

Summary:
Name Description Example
=, ==, —= Equality checks (mostly same functionality) | a = b
<> Inequality check a <>b
Type check operator 2 i Tndeftype’
- Negation of type check operation 2 i_ Tndeftype’
@ Maps a function on each operand. fea
Creates an exact copy of a pair, deep
copy copying is supported so that structures | copy a
inside pairs are properly freated.
If the left operand x is a number and if the
left and right hand side of the pair a:b are
numbers, then the operator checks
in whether x lies in the closed interval [a, b] | 1.5 in 1:2
and returns true or false. If at least one
value x, a, b is not a number, the operator
retuns fail.
left Returns the left operand of a pair. left(a)
right Returns the right operand of a pair. right (a)
type With pairs, always returns 'pair'. type (a)
Returns either the user-defined type of the
typeof pair, or the basic type ('pair') if NO | typeof(a)
special type was defined for the pair.
settype Sets a user-defined type for a pair. settype(a, 'duo')
gettype Returns the user-defined type of a pair. gettype (a)
setmetatable | Sets a metatable o a pair. SerpL e
getmetatable | Returns the metatable stored to a pair. getmetatable (p)

Table 16. Operators and functions applicable to pairs

agena >> 119

4.15 Registers

Registers are memory-efficient, fixed-size Agena “sequences’ that also store null's.
They are not automatically extended if more values have to be added, but can be
manually resized.

Registers allow to hide data: by changing the pointer to the top of a register using
registers.settop, any values stored above (the position of) this pointer can neither
be read nor changed by any of Agend's functions and operators. Reqisters are
supported by most of the existing statements, operators and functions. Please also
refer to Chapter 6.15 “Sandoboxes .

The concept of the fixed size and the top pointer is key to understanding and
working with registers.

By default, the top pointer always refers 1o the very last element in a register - it is
automatically changed only if an element is removed with the pop top or pop
bottom statements, the pop operator or the purge function.

In general, registers can save memory if you know the precise number of values to
be stored, or to be added or removed later, in advance. As such, they behave like
C arrays storing any value without provoking faults. With respect to sequences, there
usually are no performance gains with most operations - but since registers do not
automatically shift elements, they are eight fimes faster when deleting items.

Let us first create a register with eight items:

> a := reg(l, 2, 3, 4, 5, 6, 7, 8):
reg(1l, 2, 3, 4, 5, 6, 7, 8)

Read the first element:

> al[l]:
1

Set the first entfry to null - contrary to other data structures, the size of register is not
reduced, and no values are shifted.

> al[l] := null;

> a:
reg(null, 2, 3, 4, 5, 6, 7, 8)

Now reset the pointer to the top of the reqister to the fourth element:

> registers.settop(a, 4);

> size(a):
4

> a:
reg(null, 2, 3, 4)

120 4 Data

> al[b]:
In stdin at line 1:
Error: register index 5 out of current range.

Stack traceback:
stdin, at line 1 in main chunk

By changing the position of the top pointer beyond 4, we can read and change
the values again:

> registers.settop(a, 8);

reg(null, 2, 3, 4, 5, 6, 7, 8)

When passing no elements to the reg operator, by default a register with sixteen
slots is created.

> reg():
reg(null, null, null, null, null, null, null, null, null, null, null, null,
null, null, null, null)

But you can change this default to another value:
> environ.kernel (regsize = 8);

> reg() :
reg(null, null, null, null, null, null, null, null)

Registers containing null's may issue errors with some functions or operators.

Changing the size of a register af runtime is easy:

> b := reg('a', 'b', 'c'):
reg(a, b, c)

register.extend enlarges a register to the given number of elements.

> registers.extend (b, 8);
> b:
reg(a, b, ¢, null, null, null, null, null)

register.reduce shrinks a register to the given number of elements.

> registers.reduce (b, 4);
> b:

reg(a, b, ¢, null)

Registers support metamethods and user-defined types. To hide the current size of
the reqgister as defined above, we could assign:

> size a:
38

agena >>

121

vV V V V V

\%

mt := [

' size'!

~ proc(x) is

return 0

end

]

setmetatable(a, mt);

> size a:
0
Name Description Example
= Equality check the Cantor way a=>b
== Strict equality check a ==b
~= Approximate equality check a ~=Db
<> Inequality check the Cantor way a <> b
Type check operator a :: register
- Negation of type check operation a :— register
@ Maps a function on all elements of aregister. | £ @ a
S Selects all elements of a that safisfy a given | . S a
condition.
88 Checks whether atf least one element satisfies £ 85 a
a given condition.
insert Inserts an element at the first position that insert 0, 1
holds a null value. into a
delete Deletes one or more elements and replaces | delete 0, 1
them with null. from a
bottom Returns the item with key 1. bottom a
top Returns the item with the largest key. top a
as an operator works like top but also removes
pop . . pop a
the item from the reqister.
Creates an exact copy of a register; deep
copy copying is supported so that structures inside | copy a
register are properly freated.
filled Qhecks whg’rher a re'gils’rer has atf least one filled a
item, including null. This is always true.
Returns enfries without issuing an error if a
getentry . . . getentry(a, 1, 3)
given index does not exist.
in Chgcks whether an element is stored in the 0 in reg(l, 0)
register, returns true or false.
pop Pops the first or the last element from a
bottom/ regis’rer,lshiﬁing ofther elements to F:Iose the | pop bottom from a
top space, if necessary. Reduces the size of the | pop top from a
register by one.
size Returns the numiber of "visible™ elements. size a
sort Sorts a regqister in place. Please also see sort (a)
sorted.

122

4 Data

Name Description Example
Returns the general e of a register, i.e.
fype) g Typ g type a
reqister.
. Reduces multiple occurrences of an item in @ .
unique . . unique a
register 1o just one.
unpack Unpacks a register. See unpack in Chapter 8. | unpack (a)
duplicates | Finds duplicate elements. duplicates(a)
M functi Il el ts of ister, | TAP(ES x 2 %02
map aps a function on all elements of aregister. | .7 o1, 2, 3))
Removes the value at the given position and
purge shifts all elements to close the space. Also
reduces the size of the register by one.
, .) zip (<< x, y —>
2ip Zips together two reqisters by applying a X+ y >>,
function to each of its respective elements. reg g i ; /
reg(3,
Searches all values in one register that are | .41, 2)
intersect also values in another register and returns | intersect
them in a new register. reg(2, 3)
Searches all values in one register that are not a2
.) \ reg(l,
minus values in gno’rher register and retums them as | ;5 15" req (2, 3)
a new reqister.
Checks whether all values in a register are | reg(1)
subset . . : bsot (1, 2)
included in another register. subset regii,
xsubset Checks whether all values in a reqister are | reg(1)
included in another register. xsubset reg(l, 2)
union Concatenates two registers simply by copying | reg(1, 2)
all its elements. union reg(2, 3)
setmeta- ASSi tatable t ist setmetatable
table ssigns a metatable to a reqister. (a, mtbl)
etmeta- ,
tgqble Returns the metatable stored to a reqister. getmetatable(a)
registers. Resefts the top pointer 1o the given position, an
settop integer.
registers. , . , ,
9 Shrinks the size of a reqister to the given value.
reduce
registers. Enlarges the size of a register to the given
extend value.
environ. . .
kernel/ Sets the default size of newly created registers
. the given value, a non-posint.
regsize

Table 17: Some operators and functions applicable to registers

agena >> 123

4.16 Exploring the Internals of Structures

If you would like o know how a table, set, sequence, register or pair is represented
internally, please have a look at the environ.attrib function explained in Chapter
14.2. It might help when debugging code.

The function returns the estimated number of bytes used by a structure, how many
slots have been pre-allocated and how many are actually occupied, whether a
user-defined type has been set, how many elements have been allocated to the
array and hash parts of a table, etc.

4.17 Other Types

For threads, userdata, and lightuserdata please refer to the Lua 5.1 documentation
and Chapter 6.30.

Agena supports the following metamethods with userdata: =, ==, ~=, size, in,
union, intersect, minus, sumup, and gsumup. '_ index', '_ writeindex', '__gc',
and '__tostring' Are supported, as well.

124 4 Data

agena >> 125

Chapter Five

Control

126 5 Control

agena >>

127

5 Control

5.1 Conditions

Depending on a given condition, Agena can dalternafively execute certain
statements with either the if or case statement.

5.1.1 if Statement

The if statement checks a condition and selects one statement from many listed. Its

syntax is as follows:

if condifion, then
statements;,

[elif condition, then
statements;]

[onsuccess
statements;]

[else
statements,)

fi

The condition may always evaluate 1o one of the Boolean values true, false or fail,

then
if @ frue—> Block1
fdse
then
elif @ rie—> Block2
fdse
\ 4
else B lock3
i onsucces s
fi 3 Blockd [«

or to any other value.

The elif, else, and onsuccess
clauses are optional. While
more than one elif clause
can be given, only one else
and one onsuccess clause is
accepted.

If an if or elif condition results
to true or any other value
except false, fail or null, its
corresponding then clause is
executed. If all conditions
result to false, fail or null, the
else clause is executed if
present - otherwise Agena
proceeds with the next
statement following the fi
keyword.

If an onsuccess clause is given, and an if or elif condition results o true, the
statements in this onsuccess branch are executed. This allows t0 move code
common to all then clauses into one single branch, reducing code size. When

128 5 Control

using both onsuccess and else clauses, the onsuccess clause must be put given
before the else snippet.

Examples:

The condition true is always true, so the string 'yes' is printed.

> if true then

> print ('yes')
> fi;

yes

The next example demonstrates the behaviour if the condition is neither a Boolean
nor null:

> if 1 then

> print ('One')
> fi;

One

In the following statement, the condition evaluates to false, so nothing is printed:

> if 1 <> 1 then
> print ('this will never be printed')
> fi;

An if statement with an else clause:

> if false then

> print ('this will never be printed')
> else

> print ('this will always be printed')
> fi;

this will always be printed

An if statement with an elif clause:

if 1 = 2 then

print ('this will never be printed')
elif 1 < 2 then

print ('this will always be printed')
fi;
this will always be printed

vV V V VYV

An if statement with elif and else clauses:

> if 1 = 2 then

> print ('this will never be printed')

> elif 1 < 2 then

> print ('this will always be printed')
> else

> print ('neither will this be printed')
> fi;

this will always be printed

agena >> 129

Sometimes certain conditions may just be skipped with an empty statement,
denoted by do nothing, to make the code more readable:

if 1 = 2 then

do nothing
elif 1 < 2 then

print ('this will always be printed')
else

print ('neither will this be printed')
fi;

this will always be printed

VVVYVYVYVYV

One last example, this time demonstrating the optional onsuccess clause. As
shown, both then statements include the same f1ag := true Statement.

> if 1 = 2 then

> print ('this will never be printed');
> flag := true

> elif 1 = 1 then

> print ('this will always be printed');
> flag := true

> else

> flag := false

> fi;

this will always be printed

> flag:
true

So the two assignment statements may be moved into one onsuccess clause.

> if 1 = 2 then

> print ('this will never be printed');
> elif 1 = 1 then

> print ('this will always be printed');
> onsuccess

> flag := true

> else

> flag := false

> fi;

this will always be printed

> flag:

true

if and elif statements also support simple assignments in the conditions, as well.

> if flag := true then
> print ('Output: ' & flag)
> fi;

Output: true

Only if the right-hand side of the assignment does neither result to false, fail nor null,
will the corresponding then clause be executed.

You can also combine an assignment and a condition in the if clause:

130 5 Control

if ¢ := 0, ¢ >= 0 do
print (c)
od;

oV VvV VvV

5.1.2 if Operator, Version One

The if operator checks a condition and returns the respective expression.

[with name;, - - - := expn, - - - [->]]
if condition, then expr, [elif condition, then expr,, - - -] else expry fi

The result is expression expr; if condition, is true or any other value except false, fail
or null; and expr, otherwise. You can also optionally add one or more elif clauses.

Example:
> x := 1if 1 = 1 then true else false fi:
true

which is the same as:

> if 1 =1 then
> x := true
> else

> x := false
> fi;

The if operator only evaluates the expression that it will retun. Thus the other
expression which will not be retuned will never be checked for semantic
correctness, e.g. out-of-range indices, etc. You may nest if operators.

An optional preceding with clause allows to define one or more auxiliary variables
that are local to this operator only:

> X 1= Pi;

> a := with n := 2*x —> if x < 0 then n else 2*n fi;

which is syntactic sugar for:

> xXx = Pi;

> scope

> local n := 2*x;

> a := if x < 0 then n else 2*n fi
> epocs;

The arrow token is optional. Multiple auxiliary variables are defined as follows:

> a := with m, n := x, 2*x —> if x < 0 then m else n fi;

agena >> 131

The if operator cannot return multiple values, only one.

5.1.3 if Operator, Version Two

There is a second operator form, reminiscent to the if statement; for example:

sgn:

> a := 10;

> sgn := if is a < 0 then # determines sign of "a'
> print ('I am negative');
> [further statements ...]
> return -1

> elif a = 0 then

> print ('I am zero');

> return 0

> else

> return 1

> fi;

>

1

You may omit the elif and else clauses. Each clause may contain zero, one ore
more statements, but it must always finish with the return expression which defines
the resulting value (-1, 0 or 1 in the example above). In procedures, this special
return expression does not cause a procedure 1o quit. Note that if the else clause is
omitted, the operator returns null if no condition is met.

The operator returns exactly one value.

5.1.4 Short-cut Condition with ? and ?- Tokens

The question mark ? expresses a short-cut "if -like statement: if any condition
preceding ? evaluates to frue, exactly one statement right behind the foken is
executed, otherwise the statement is simply skipped. Likewise, the ?- token checks
an expression and executes a one-line statement if it evaluates to false, fail or null.

> x = 0;

>x =07 x :=1;

> x:

1

> x := 0;

> x <> 0 ?- x = 1;

132 5 Control

5.1.5 case Statement

The case statement facilitates comparing values and executing corresponding
statements. There exist two variants, the first one is:

case name
[of value,, [, values,, - - -] then stafements,
[of value,, to value,, then stafements,]
[of...]
[onsuccess - - -]
[else statements, [esle]]
esac
> a := 'k';
> case a
> Of vav, vev, 'i', 'O', 'U', vyv then
> result := 'vowel'
> else
> result := 'consonant'
> esle
> esac;
> result:
consonant

You can add as many of/then statements as you like. Fall through is not supported.
This means that if one then clause is executed, Agena will not evaluate the
following of clauses and will proceed with the statement right after the closing esac
keyword. An else clause may be terminated by the esle token, but this is optional.

Instead of passing one or more individual values, you can also check whether a
numiber x or the first character of a - non-empty - string x is part of a range a fo b,
.e.a<x<b.One torange is accepted per of clause.

> a := 0;

> case a

> of -1 then result := -1

> of 0 to 10 then result := 10

> of 'a' to 'c¢' then result := 0
> esac;

As with the if statement, if an onsuccess clause is given, and in case one of the
conditions results fo true, the statements in the onsuccess branch are executed.
This allows to move code common to all then clauses into one single branch,
reducing the code size.

If none of the of conditions is satisfied, and if an else clause is given, then the
respective else statements are processed, otherwise Agena executes the code
following the esac token.

agena >> 133
The second variant is
exactly equal to the if
statement but may

cse improve the readability
of programme code.
With both variants,
instead of the then
of Block]l
keyword the -> token
can be used.
no
5.1.6 case of Statement
of @ Block2 A flavour of the if
statement is the case of
no control. It may improve
v the readability of code.
else B lock3 ,)
ONS UCCES S There iS Nno func’nongl
l difference between if
esac < B lockd and case of statements.

Example:

> x = 0; := false;

> case

> of x < 0 then r :=

> of x 0 then r :=

> onsuccess flag :=

> else r : 1 esle

> esac

> r, flag:

0 true

case

esac

of condition, then statements,
[of condition, then statements;]
[of - -]

[onsuccess - - -]

[else statements, [esle]]

case of statements also support simple assignments in the case of clause, and

their optional of clauses, as well.

134 5 Control
> case of flag := io.read() then
> print ('Output: ' & flag)
> esac;

Loop Header while Agena

<G>

frue

rext ¥
teration Block

Y

Loop End

se

1

B

5.2.1 while Loops

od

quit
loop
iterafion

Output: Agena

Only if the right-nand side of the
assignment does neither result to
false, fail nor null will the then clause
be executed.

5.2 Loops

Agena has three basic forms of
control-flow statements that perform
looping: while and for, each with
different variations.

A while loop first checks a condition and if this condition is true or any other value
except false, fail or null, it iterates the loop body again and again as long as the

condition remains true.

If the condition is false, fail or null, no further iteration is done and control returns to
the statement following right after the loop body.

If the condition is false, fail or null right from the star, the loop is not executed at all.

while condition do
statements
od

The programme flow is as shown in the diagram above.

The following statements calculate the largest Fibonacci number less than 1000.

>a :=0; b :=1;

> while b < 1000 do
> c := b;

> b := a + b;

> a :=c¢

> od;

> C

987

agena >> 135

The following loop will never be executed since the condition is false:

> while false do
> print ('never printed')
> od;

You can also conduct a simple assignment in the while condition. If an assignment
is given in the while clause, its right-nand side is evaluated and stored to the
left-hand side name. The result of the evaluation is then checked and either the
loop body is executed - the result of the evaluation is neither false, fail nor null - or
not.

This allows for shorter code: Instead of

flag := true;
while flag do

flag := io.read();

if flag = 'Z' then break fi
od

vV V V V V

you can now simply write (N0 need 1o assign £1ag before):

> while flag := io.read() do
> if flag = 'Z' then break fi
> od

The variable assigned in the while clause is not local to the loop body but can be
accessed later on the level that surrounds the loop. You may explicitly declare the
variable local before.

You can also combine an assignment and a condition in the while clause. In this
case, the assignment will be done only once and the condition will always be
checked:

> while ¢ := 0, ¢ < 3 do
> print (c++)

> od;

0

1

2

> C

Variations of while are the do/as and do/until loops which check a condition at the
end of the iteration, and thus will always be executed at least once.

In the do/as variant, as long as the condition evaluates o true, the loop body is
executed.

136 5 Control

> c := 05

do
> do statements
> inc cC s
> as ¢ < 10; as condition
> C:
10

do/until loops are iterated until the given condition is met.

> c = 0;

> do do

> inc ¢ statements
> until ¢ > 10; until condition
> C:

11

do/as and do/until support simple assignments in the respective condition.

Another flavour of the while loop is the infinite do/od loop which executes
statements infinitely and can be interrupted with the break or return statements.
See Chapter 5.2.10 for further information on the break statement. It is syntactic
sugar for the while true do/od construct.

do
statements

od

> 1 := 0;

> do

> inc 1i;

> if 1 > 3 then break fij;

> print (i)

> od;

1

2

3

for loops are used if the numibber of iterations is known in advance. There are for/to
loops for numeric progressions, and for/in loops for table and string iterations.

agena >>

137

5.2.2 for/to Loops

Let us first consider numeric for/to loops which use numeric values for control:

WNREV VYV

WNREV VYV

[by step] do
statements
od

for name [from stfart] [to stop]

—t

Loop Header

v

name : = start

ame > stop
quit
loop

false

A 4

next Block

iteration
¢ tue

name :=
name + step

v

Loop End od

<«

for i from 1 to 3 by 1 do
print (i, 172, i~"3)
od;
1 1
4 8
9 27
for i to 3 do
print (i, 172, i”"3)
od;
1 1
4 8
9 27

numeric for

iteration

name, start, stop, and step are all
numeric values or must evaluate to
numeric values.

The statement at first sets the
variable nhame 1o the value of sfart.
name is called the confrol or loop
variable. If start is not given, the start
value by default is +1.

When omiffing the to clause, the
loop iterates until the largest numiber
representable on your platform has
been reached. If left out, the sfep
sizeis +1.

The for loop then checks whether
start < sftop. If so, it executes
statements and retumns to the top of
the loop, increments name by step
and then checks whether the new
value is less or equal stop. If so,

stafements are executed again.

The control variable of a loop is always accessible to its surrounding block, so you

may use

its value

in subsequent statements. This

rule applies only to

for/from/to-loops with or without a while, as or until extension, but not to for/in loops

138 5 Control

described below. Note that within procedures, the loop control variable is
automatically declared local, while on the interactive level it is global.

> for i while fact(i) < 1k do od

> i
5

The following rules apply to the value of the control variable after leaving the loop:

1. If the loop terminates normally, i.e. if it iterates until the stop value has been
reached, then the value of the control variable is its stop value plus the step size.

2. If the loop is left prematurely by executing a break statement'® within the loop,
or if a for/while loop is terminated because the while condition evaluated to
false (see Chapter 5.2.8), then the contfrol variable is set o the loop's last
iteration value before quitting the loop. There will be no increment with the loop's
step size. The same applies to for/as and for/until loops (see Chapter 5.2.9).

Loops can count backwards if the step size is negative (see also the next chapter):

> for 1 from 2 to 1 by -1 do
> print (i)

> od

2

1

A special form is the to/do loop which does not feature a control variable and
iterates exactly n times.

> to 2 do

> print ('iterating')
> od

iterating

iterating

Agena automatically uses an advanced precision algorithm based on Neumaier
summation if the step size is non-integral, e.g. 0.1, -0.01. This mostly prevents
round-off errors, thus avoids that the loop stops before the last iteration value - the
limit - has been reached and that iterafion values with round-off errors are returned.
You may switch Agena into Kahan-Ozawa or Kahan-Babuska summation mode to
use extended round-off prevention by issuing the statement in a session:

> environ.kernel (kahanozawa = true);
or

> environ.kernel (kahanbabuska = true);

1% See Chapter 5.2.8 for more information in the break statement.

agena >> 139

As a further measure to prevent a loop stopping before the stop limit has been
reached, numeric for loops with fractional step sizes automatically increase the
stop limit by the value of the constant hEps. If a you pass a step size that is equals
or less then hEps, Agena now issues an eror. You can entirely switch off this
math.Eps 10 zero, but only by calling environ.kernel:

> environ.kernel (hEps = 0);

Kahan-Babuska summation may be more accurate than Kahan-Ozawa
summation. The speed loss with both algorithms compared to Neumaier is around
20 percent or more.

If the step size is an integer, e.g. 1000, 1, -1.0, then Agena does not use advanced
precision to ensure maximum speed.

5.2.3 for/downto Loops

count from a start value down to a stop value, with a default countdown step size
of (implicit minus) one. To count down, the optional step size should be positive.

for name from start downto sfop [by sfep] do
statfements
od

5.2.4 for/in Loops over Tables

are used fo fraverse tables, stings, sets, and sequences, and also iterate over
functions.

If null is passed after the in keyword, or if the value evaluates to null, then Agena
does not execute the loop and continues with the statement following it.

Let us first concentrate on table iteration.

for key, value in tbl do
statements
od

140 5 Control

The loop iterates over all key~value pairs in table bl and with each iteration assigns
the respective key to key, and its value to value.

> a := [4, 5, 6]
> for i, j in a do
> print (i, J)
od

4

5

6

w N -V

There are two variations: When putting the token keys in front of the confrol variable,
the loop iterates only over the keys of a table:

for keys key in tbl do
statements
od

Example:

> for keys i in a do
> print (i)
od

>
1
2
3

The other variation iterates on the values of a table only:

for value in bl do
statements
od

> for i in a do
> print (i)
od

>
4
5
6

The control variables in for/in loops are always local to the body of the loop (as
opposed to numeric for loops). You may assign their values to other variables if you
need them later.

You should never change the value of the control variables in the body of a loop -
the result would be undefined. Use the copy function to safely tfraverse any structure
if you want to change, add, or delete its entries.

Because of the implementation of tables, please note that the keys in a table are
not necessarily fraversed in ascending order. You may want fo iterate sequences or

agena >> 141

linked lists (see Chapter 6.27).

5.2.5 for/in Loops over Sequences and Registers

All of the features explained in the last subchapter are applicable to sequences
and registers, as well.

5.2.6 for/in Loops over Strings

If you want to iterate over a string character by character from its left to its right, you
may use a for/in loop as well. All of the variations are supported.

for key, value in string do sfatements od
for value in string do sfatements od

for keys value in string do statements od

The following code converts a word 1o a sequence of abstract vowel, ligafure, and
consonant place holders and also counts their respective occurrence:

> str := 'efter';

> result := '';

\%

c, v, 1 —> 0;

for 1 in str do
case 1

of 'a', 'e', 'i', 'o', '"u' then
result &:= 'V';
inc v

of 'a', 'a&', 'w
result &:= "'
inc 1

else
result &:= 'C'
inc ¢

', '0' then
L';

esac
od;

VVVVVVVVVVYVYVYV

> print (result, v & ' vowels', 1 & ' ligatures', c & ' consonants');
LCcvC 1 vowels 1 ligatures 3 consonants

5.2.7 for/in Loops over Sets

All for loop variations support sets, as well. The only useful one, however, is the
following:

> sister := {'swistar', 'sweastor', 'svasar', 'sister'}

> for 1 in sister do print (i) od;

142 5 Control

svasar
swistar
sweastor
sister

You may tfry the other loop alternatives to see what happens.

5.2.8 for/in Loops over Procedures

The following procedure, called an iterator, returns a sequence of values multiplied
by two. If state = n, then the procedure retumns null, quitting the for/in iteration.
Note that the iterator in its first result n returns the next value of the loop control
variable i. We use state t0 hold the number of iterations we wish to perform. See
Chapter 6 which describes procedures in detail.

> double := proc(state, n) is
> if state > n then

> inc n;

> return n, 2*n

> else

> return null

> fi

> end;

In the following loop, 5 denoftes the state and 0 the initial value.

for i, j in double, 5, 0 do
print (i, J)

g WNhEV VYV
o
Q.

= o Oy N

Another means to iterate over procedures are closures, see Chapter 6.22. So far,
here is just an example that you can use as a template for further experiments:

> iterate := proc(obj) is

> local n := 0; # with each call, counts up by one
> return proc() is

> inc n;

> if n <= size obj then

> return n, obj[n]

> else

> return null # quit iteration

> fi
> end

> end;

> f := iterate(seqg(Pi, 2*Pi, 3*Pi));
> for i, j in f do

> print (i, J)
> od;

agena >> 143

1 3.1415926535898
2 6.2831853071796
3 9.4247779607694

You might also use the generic ipairs and pairs functions with for/in loops:

ipairs iterates table arrays, sequences, registers, strings and userdata that have an
'__index' Metamethod, in a standard way:

for i, j in ipairs(s) do
print (i, J)
od;
3.1415926535898
6.2831853071796
9.4247779607694

WNREV VYV

> import numarray

> d := numarray.double(3)

> for i to 3 do d[i] := i*Pi od
> for i, j in ipairs(d) do

> print (i, J)

> od

1 3.1415926535898

2 6.2831853071796

3 9.4247779607694

To check whether a userdata features an '__index' entry in its associated
metatable, just enter:

> getmetatable(d)._ _index:
procedure (01CE6DDO)

pairs allows to iterate all the keys and corresponding values of a dictionary, but as
the following example shows, not surprisingly in a “random ™ fashion:

>t := [a =Pi, b = 2*Pi, ¢ = 3*Pi]
> for i, j in pairs(t) do

> print (i, J)

> od

a 3.1415926535898

c 9.4247779607694

b 6.2831853071796

Take in mind that ipairs and pairs are much slower than iterating structures directly.

144

5 Control

—t

Loop Header

v

name : = start

fdse

numerc
for/while

quit
loop
teration

Condition

frue

_hed Block
iteration

name :=
name + step

v

Loop End
N—
<

fdse

od

5.2.9 for/while and for/until Loops

All flavours of for loops can be
combined with a while condition.
As long as the while condition is
satisfied, the for loop iterates. To
e more precise, before Agena
starts the first iteration of a loop or
continues with the next iteration, it
checks the while condition to be
true or any other value except
false, fail or null. An example:

for x to 10
while 1ln(x) <= 1 do
print(x, 1n(x))

>

>

>

> od
1 0

2 0.69314718055995

Regardless of the value of the
while condition, the loop control
variables are always initiated with
the start values: in the summary
frame below, with for/to loops, a is
assigned to i (or 1 if the from
clause is not given); key and/or
value are assigned with the first

item in the table, set or sequence sfruct or the first character in string sfring. Likewise,

the until condition quits a loop until it is satisfied.

for / [from Q] [to D] [by step] (while | until) condition do stafements od
for [key,] value in struct (while |until) condition do statements od
for keys key in sfruct (while | until) condifion do staterments od
for [key,] value in string (while | until) condition do statements od
for keys key in sfring (while | until) condition do statfements od

The optional while and until clauses accept a simple assignment. In such a case,
the right-hand side of the assignment is evaluated and stored to the left-hand side
non-local name. The result of the evaluation is then checked and either the loop

body is executed or not, Example:

evaluates to null,
the loop quits with i = 3.

> a := [10, 20, 4 ~ 30] # the table has no index 3
> for 1 to 4 while t := a[i] do # since al[3]

> # which is equal to false in this context,

> print(al[i], t)

> od

10 10

20 20

agena >>

145

5.2.10 for/as & for/until Loops

As with the optional while
clause, all flavours of for loops
can be combined with an as
or an until condition.

In these cases, a loop is
always iterated at least once,
and after the first iteration is
completed, Agena checks
the given conditon and
decides whether to start the
next iteration or to leave the
loop.

In the following example, the
for/as loop starts with /=0 and
since the first check to the as
condition results to true, the
next iteration with =1 s
conducted. The next check to
the as condition results to
false, thus the loop quits.

> for i from 0 do

> print (i, 1071i)
> as 1071 < 10

0 1

1 10

next
iteration

—

Loop Header

v

name : =start

fdse

4

Block

name :=
name +step

frue

Condition

Loop End

numeric
for/as /until

quit

iteration

os: fdse

until;

1

frue
od

The next loop iterates three times, until i=2, since only then the until condition

becomes tfrue.

for i from 0 do
print (i, 1071)
until 107i > 10
1
10
100

NP OV VYV

146 5 Control

5.2.11 Loop Jump Control

Agena features statements to manipulate loop execution. skip and break are
applicable to all loop types, whereas redo and relaunch work in for loops only.

The skip statement causes another iterafion of the loop to begin at once, thus
skipping all of the loop statements following it.

The break statement quits the execution of the loop entirely and proceeds with the
next statement right after the end of the loop.

for i to 5 do

>

> if i = 3 then skip fi;
> print (i)
> if i = 4 then break fi;
> Loop Header |« > od

inttiate 1

next 2

iteration 4

skip
ot This is equivalent to the following
iteration statement:
break
> for 1 to 5 while i < 5 do
> if i = 3 then skip fi;
ouit > print (i)
loop > od;

Loop End immediately 1

2

4

<«

> a := 0;

> while true do

> inc a;

> if a > 5 then break fi;
> if a < 3 then skip fi;
> print (a)

> od;

3

4

5

There exists syntactical sugar for both the skip and the break statements: instead of
pufting these statements into if clauses, just add the when token along with a
condition to the respective keyword.

> a := 0;

> while true do

> inc a;

> break when a > 5;
> skip when a < 3;
> print (a)

> od;

agena >>

147

[ISNNON]

In for/to and for/in loops, the
redo statement is similar to
skip: it jumps back to the
beginning of the loop but does
not change the loop control
variable in for/to loops or the
index/value control variables in
for/in loops. Thus, it restarts the
current iteration. At restart, it
checks an optional while
condition, if present.

> flag := true;

> for j in [10, 11, 12] do
> print (j, flag);

> if flag and j = 11 then
> clear flag;

> print (j, flag,

> 'jump back')

> redo

> fi;

> until § > 12;

10 true

11 true

11 false jump back
11 false

12 false

next
iteration

/

for Header
< restart
current
redo iteration
initiate
next
iteration
skip
restart loop
relaunch
break
Quit
loop
for End i jctely
<«

The relaunch statement completely restarts a for/to and for/in loop from its very
beginning, i.e. resets the current control variable to its start value (from clause or first

element, respectively).

> flag := true;

> for j in [10, 11, 12] do
> print (j, flag);

> if flag and j = 11 then
> clear flag;

> print (j, flag,

> 'restart')

> relaunch

> fi;

> until §j > 12;

10 true

11 true

11 null restart

10 null

11 null

12 null

148 5 Control

5.2.12 Scope I: scope and epocs

You can define the scope of local variables with the scope/epocs statement. Any
variable declared local between the scope and epocs keywords exists only in this
block, and they are not available outside of it:

scope
declarations and statements
epocCs
An example:
> a = 2;
> scope
> local b := 3; # b is local to the scope only
> c := a*b # ¢ is available outside the block
> epocs;
> print(a, b, c);
2 null 6

5.2.13 Scope II: with Statement

The with statement allows to define a scope and assign one or more local variables
in only one stroke. It is syntactic sugar to the scope statement only. The following
example refers to the example in the preceding sulbbchapter:

with name,, --- := expry, --- do
declarations and statements
od
> a := 2;
> with b := 3 do # b is local, a and c are global
> c := a*b
> od;

\%

print(a, b, c);
2 null 6

Assign multiple local variables, in this case two variables:

\
=
.
o+
j=p
o
Q
Il
w
I

do

\%
(o}
Il
()]
*
O e
*
Q

\%

print(a, b, ¢, d);
2 null 6 24

agena >> 149

5.2.14 with Statement for Dictionaries

The with statement can also unpack table values, indexed by string keys, declare
them local and then access them in the respective block. After leaving the block,
all the values listed right between the with and in tokens are automatically written
back to the table:

with key, [, key,,, - - -] in fablename do
statements
od

> zips := ['duedo' ~ 40210:40629,
> bonn = 53111:53229,
> cologne = 50667:51149];

with duedo, cologne in zips do # bonn has not been given here
print (duedo, bonn, cologne);
cologne := null; # cologne entry will be deleted from table zips
duedo := 40210:51149 # duedo entry in zips will be changed
bonn entry will not be changed since not listed in the header
bonn := null

> print (bonn, cologne, duedo)

> od;

40210:40629 null 50667:51149

null null 40210:51149

VvV V VYV VYV

> zips:
[bonn ~ 53111:53229, duedo ~ 40210:51149]

Another flavour of the with statement has the following syntax:

with fablename do
statements
od

Within the body of this variant, the table tablename can be referenced by just an
underscore. It also allows to actively change values in fablename. Example:

> zips := [duedo = 4000, bonn = 5300]

> with zips do

> print (_.bonn);
> _.bonn := 53111
> od

5300

> zips:
[bonn ~ 53111, duedo ~ 4000]

150 5 Control

5.2.15 Alternative to Closing Keywords

You can use the end token instead of the closing fi, od, esac, yrt and epocs
keywords, or mix both.

Example:

> if os.system()[1l] in {'SunOS', 'Windows', 'Linux', 'Darwin'} then
> if environ.kernel().1is32bit then

> readlib('fractals');

> readlib('gdi");

> readlib('gzip');

> a, b := gzip.deflate('agena programming language');

> if [gzip.inflate(a, b)] <> ['agena programming language', 26] then
> print ('error in gzip.in\\deflate')

> end;

> try # provoke segfaults

> for i from 0 to 100 do

> gzip.inflate(a, i)

> od

> end

> end;

> to 100 do readlib('net') end # try crashing Agena at exit

> fi;

agena >> 151

Chapter Six

Programming

152 6 Programming

agena >> 153

6 Programming

Writing effective code in a minimum amount of time is one of the key featfures of
Agena. Programmes are usually represented by procedures. The words
‘procedure” and “function™ are used synonymously in this text.

6.1 Procedures

In general, procedures conflate a sequence of statements into abstract unifs which
then can be repeatedly invoked.

Writing procedures in Agena is quite simple:

procname = proc([par; [::iypeq] [, par:[::fypes], ---1]) [:: returntype] is
[local name; [, namey, - - -]];
statements

end

All the values that a procedure shall process are given as parameters par,, etc. A
function may have no, one or more parameters. A parameter may be succeeded
by the name of a type (see Chapter 6.8.2), or a set of up to four types, that an
argument must satisfy when the procedure is called.

If a type is given right after the parameter list, Agena checks whether the retumn of
the procedure is of the given refurntype, which may also be a user-defined type.
The is keyword is obligatory.

A procedure usually uses local variables which are private to the procedure and
cannot be accessed by other procedures or on the Agena interactive level.

Global variables are supported in Agena, as well. All values assigned on the
interactive level are global, and you can also create global variables within a
procedure. The values of global variables can be accessed on the interactive level
and within any procedure.

A procedure may call other functions or itself. A procedure may even include
definitions of further local or global procedures.

The result of a procedure will be returned through the return keyword which may be
put anywhere in the procedure body, and which also immediately terminates
execution of the procedure.

return [value [, value,, - - -]]

As you can see, you may not only return a single result, but also multiple ones, or
none at all.

154 6 Programming

Furthermore, a procedure will not return anything - not even the null value -

* if no return statement is given at all,
* if no values are given in the return statfement.

The following procedure computes the factorial of an integer':

> restart;

fact := proc(n) is
computes the factorial of an integer n
if n < 0 then return fail
elif n = 0 then return 1
else return fact(n-1)*n
fi
end;

V VYV YVYVYVYV

It is invoked using the syntax:

funcname([arg: [, arge. - - -1)

> fact(4):
24

where the first parameter is replaced by the first argument arg,, the second
parameter is substituted with arg,, etc.

When calling a function recursively, instead of writing out its real name, you may
use the procname keyword, which in runtime is substituted by the name with which
the procedure was invoked:

fact := proc(n) is
computes the factorial of an integer n
if n < 0 then return fail
elif n = 0 then return 1
else return procname(n-1)*n
fi
end;

V VYV YVYVYVYV

A when clause can be added to a return statement that does not pass back any
value including null. In this case, the execution of a function is being finished if the
Boolean when condition has been satisfied, €.9. return when x <> 0. return can
e combined with both a when and with clause - for example

> return when x <> 0 with true;

is syntactic sugar for

> if x <> 0 then
> return true

> fi;

"“The library function fact is much faster.

agena >> 155

Last of all, procedures can alternatively be defined as follows:

[local] proc procname([par; [::typeq] [, par: [::fypes], ---1]) [:: returntype] is
[local [constant] name; [, [constant] name,, - - -]];
statements

end

Instead of the proc keyword, you can use the prochame token. Thus, the factorial
function can also be entered as follows:

> proc fact(n) is

> if n < 0 then return fail

> elif n = 0 then return 1

> else return procname(n-1)*n
> fi

>

end;

6.2 Local Variables

The function above does not need local variables as it calls itself recursively.
However, with large values for n, the large number of unevaluated recursive
function calls will ultimately cause stack overflows. SO we should use an iterative
algorithm to compute the factorial and store intermediate results in a local variable.

A local variable is known only to the respective procedure and the block where it
has been declared. It cannot be used in other procedures, the interactive Agena
level, or outside the block where the local variable has been declared.

A local variable can be declared explicitly anywhere in the procedure body, but at
least before its first usage. If you do not declare a variable as local and assign
values later to this variable, then it is global. Note that control variables in for loops
are always implicitly declared local to either their surrounding (for/to loops) or inner
block (for/in loops), so we do not need to explicitly declare them.

Local declarations come in different flavours:

local name, [, name,, - - -]
local [constant] name; [, [constant] name;, - - -] := value, [, value,, - - -]
local [constant] name; [, [constant] name,, - - -] -> value
local enum name; [, name,, - - -] [from value]
local key, [, key., - - -]in fablename

In the first form, name;, etc. are declared local.

In the second and third form, name,, etc. are declared local and, as opposed 1o
the first form, followed by initial assignments of values to these names.

156 6 Programming

In the fourth form, name;,, etc. are declared local and subsequently enumerated,
i.e. assigned integers in ascending order, by default starting from 1, or the integer
given in the optional from clause.

In the last form, table values are unpacked, equivalent to the assignment
statement key,, key,, etc. .= tablename.key,, tablename.key., etc., with key,, key.,
etc. being automatically declared local.

By passing the constant keyword in front of a variable name, a variable will
become a constant that cannot be changed Iater in a session. This feature works in
procedures only, not on the interactive level.

Let us write a procedure to compute the factorial using a for loop. To avoid
unnecessary loop iterations when the intermediate result has become so large that
it cannot be represented as a finite numiber, we also add a clause to quit loop
iteration in such a case.

> fact := proc(n) is

> if n < 0 then return fail fi;

> local result := 1;

> for i from 1 to n do

> result := result * i

> if not finite(result) then break fi
> od;
> return result
> end;

> fact (10):
3628800

Since result has been declared local it does not exist on the interactive level:

> result:
null

There is a shortcut to create local structures - tables, sets, and sequences:

create local <sfructure> name; [, <structure> name,, - - -]

where <sfructure> might be the keyword table, set or sequence. You can declare
different local structures with one create local statement.

A useful function is environ.globals which determines global variable assignments
inside procedures and helps to find those positions where a local declaration has
been forgotten.

6.3 Global Variables

Global variables are visible to all procedures and the interactive level, such that
their values can be queried and altered everywhere in your code.

agena >> 157

Using global variables is not recommended. However, they are quite useful in order
to have more control on the behaviour of procedures. For example, you may want
fo define a global variable _envMoreinfo that is checked in your procedures in
order to print or not to print information to the user.

Global variables can be depicted with the global statement. It checks whether the
given variable or variables have not been declared local before its executfion and
issues an error otherwise.

fact := proc(n) is
if n < 0 then return fail fi;
local result := 1;
global _EnvMoreInfo;
for i from 1 to n do
result := result * i
if result = infinity then
if _EnvMoreInfo then print ('Overflow !') fi;
break
fi
od;
return result
end;

VVVVVVYVYVYVYVYVYVYV

We should assign _envMoreInfo any value different from null, fail or false in order to
get a warning message at runtime.

> _EnvMoreInfo := true;

> fact (10000) :

Overflow !

infinity

6.4 Changing Parameter Values

You can change the values of procedure parameters within a procedure. Thus, an
alternative to the abs operator might be:

> myAbs := proc(x) is
> if x < 0 then

> X 1= —-X

> fi;

> return x

> end;

> myAbs(-1) :

1

6.5 Optional Arguments

A function does not have 1o be called with exactly the number of parameters given
at procedure definition. You may also pass less or more values. If no value is
passed for a parameter, then it is automatically set to null at function invocation. If
you pass more arguments than there are actual parameters, excess arguments are
ignored.

158 6 Programming

For example, we can control whether a warning message is printed during function
execution by passing an optional argument:

> fact := proc(n, warning) 1is

> if n < 0 then return fail fi;
> local result := 1;

> for i from 1 to n do

> result := result * i

> if result = infinity then
> if warning then print ('Overflow !') fi;
> break

> fi

> od;

> return result

> end;

> fact (10000) :
infinity

In this example, the option must be any value other than null, false or fail to get the
effect.

> fact (10000, true):
Overflow !
infinity

A variable numiber of arguments can be passed by indicating them with a question
mark in the parameter list and then querying them with the varargs system table in
the procedure body. The ? token can be used within in the procedure body as a
shortcut to the varargs table.

> varadd := proc(?) is
> local result := 0;
> for i to size ? do
> inc result, ?[i]
> od;

> return result

> end;

> varadd(l, 2, 3, 4, 5):
15

You may determine the numiber of arguments actfually passed in a procedure call
by querying the system variable nargs inside the respective procedure. A variant of
the above procedure might thus be:

> varadd := proc(?) is
> local result := 0;
> for i to nargs do
> inc result, ?[i]
> od;

> return result

> end;

agena >> 159

Note: With OOP-style methods, nargs will also count the method itself.

Let us build an extended square root function that either computes in the real or
complex domain. By default, i.e. if only one argument is given, the real domain is
taken, otherwise you may explicitly set the domain using a pair as a second
argument.

> xsgrt := proc(x, mode) is
> if nargs = 1 or mode = 'domain':'real' then
> return sqgrt (x)
> elif mode = 'domain':'complex' then
> return sqrt(x + 0*I)
> else

> return fail

> fi

> end;

> xsqgrt(-2):

undefined

> xsqgrt (-2, 'domain':'real'):
undefined

If the left-hand value of the pair in a function call shall denote a string, you can
spare the single quotes around the string by using the = token which converts the
left-hand name to a string'.

> xsqgrt (-2, domain = 'complex'):
1.4142135623731*1I

You can mix optional arguments and the variable-arguments feature in parameter
lists, with the question mark always the last item in the list:

> xsqgrt := proc(x, mode, ?) is
>
> end;

Finally, if you would like to define defaults for missing arguments, just use the binary
or operator as shown below as it retuns the first operand if it is non-null, and it
returns the second operand if the first is null:

> £ := proc(x) is
> x := x or 0;
> return x

> end;

> f£():

0

19 you need a Boolean equality check in a function call, such like £ (a=b), use the isequal function or
the == operator, like £ (isequal(a, b)) Of f(a == b).

160 6 Programming

6.6 Passing Options in any Order

We can use variable arguments along with pairs in order to pass one or more
optional arguments in any order.

H

:= proc(?) is
local bailout, iterations := 2, 128; # default wvalues
for i to nargs do
case left (?[i])
of 'bailout' then
bailout := right(2[i]);
of 'iterations' then
iterations := right(?2[1i]);
else
print 'unknown option'
esle
esac
od;
print ('bailout = ' & bailout, 'iterations = ' & iterations)
end;

VVVVVVVYVVYVYVYVYVYVYV

> £();
bailout = 2 iterations = 128

> f('bailout':10);
bailout = 10 iterations = 128
> f('iterations':32, 'bailout':10);

bailout = 10 iterations = 32

Again, the quotes around the option name (the left-hand side of the pair) can be
spared by giving the = token which converts the name to a string.

> f(bailout = 10, iterations = 32);
bailout = 10 iterations = 32

Sometimes, implementing checks on options may take a substantial amount of
programming time, so please have a look af the checkoptions, copyadd and the
opt* functions which may save up 1o 20 % of code. You might consult Chapter 8
for further details.

6.7 Type Checking

Although Agena is untyped, in many situations you may want to check the type of a
certain value passed to a function. Agena has four facilities for this:

the type operator determines the basic type of its argument;

the typeof operator retumns a basic or user-defined type;

the :: operator checks for a basic or user-defined type;

the :- operator checks whether a value is not of a given basic or user-defined

type;

o~

Basic or user-defined types can optionally be specified in the parameter list of a
procedure by means of the preceding :: token so that they will be checked at

agena >> 161

procedure invocation, see Chapter 6.8.2. Furthermore, the type or types of return of
a procedure may be given right after the parameter list, see Chapter 6.8.3.

The following basic types are available in Agena:

boolean, complex, lightuserdata, null, number, pair, procedure,
register, sequence, set, string, table, thread, userdata.

These names are reserved keywords, but with the exception of the null constant
evaluate to stings so that they can be compared with the result of the type
operator.

type(value)

> type(l):

number

> type(l) = number:
true

If you want to check for the null type, put the null foken in quotes:

> a := null;
> type(a) = 'null':
true

The :: and :- operators check whether their arguments are or are not of a specific
type - or user-defined type - and return true or false. They are speed-optimised and
around 20 % faster than comparing the retun of the type operator with a type
name.

value :: typename
value :- fypename

Examples:

> 1 :: number:
true

> 'l'" :— number:
true

In case of user-defined types, the type name must always be a string, in quotes.
See Chapter 6.12 for more information. The :: and :- operators can also isolate
numbers further by possing the tokens integer, posint, nonnegint, positive,
negative, Of nonnegative, s&€ Chapter 6.8.2 for further information.

> -1 :: nonnegative:
false

162 6 Programming

6.8 Error Handling

6.8.1 The error Function

The error function immediately terminates procedure execution, and prints an error
message if given.

error(‘error string')
> fact := proc(n) 1is
> if n :- number then
> error ('Error: number expected')
> fi;
> if n < 0 then return null
> elif n = 0 then return 1
> else return fact(n - 1)*n
> fi
> end;
> fact('10'):

Error: number expected

Stack traceback:
stdin, at line 3, at line 1

6.8.2 Type Checks in Procedure Parameter Lists

You may specify permitted types in the parameter list of a procedure by using
double colons:

> fact := proc(n :: number) is
> if n < 0 then return null
> elif n = 0 then return 1
> else return fact(n - 1)*n
> fi

> end;

> fact('10'):

Error in stdin:
invalid type for argument #1: expected number, got string.

This form of type checking is more than twice as fast as the if/type/error
combination. If the argument is of the corect type, Agena executes the
procedure, otherwise it will issue an error. Agena will also throw an error if the
argument is not given:

> fact ()
Error in stdin:
missing argument #1 (type number expected).

Finally, argerror is a litffle bit ssnarter than error for it automatically indicates the type
of an argument actually passed to a procedure in its error message.

agena >> 163

> if a :- string then

> argerror (a, 'myproc', 'expected a string')

> fi

Error in "myproc’ : expected a string, got number.

Furthermore, you may specify a set of one 1o five permissible basic types for any
parameter with the set notation:

> sec := proc(x :: {number, complex}) is
> return 1/cos(x)
> end;

Besides the basic types number, complex, string, table, set, pair, sequence and
register, you can also pass the following keywords to further isolate numbers:

Keyword Check for

integer a number that represents a signed integer

posint a number that represents a positive integer
nonnegint a number that represents a non-negative integer
positive checks for a positive number (float or integer)
negative checks for a negative number (float or integer)
nonnegative | checks for a non-negative number (float or integer)

Note that in Agena there is only one type that represents floats and integers: type
number. The above mentioned five numeric “types are only supported in
parameter lists and by the :: and :- operators.

Finally, there are three pseudo-types:

* anything Stands for any type, including 'nui1'. If given in a parameter list, then
Agena checks whether the corresponding argument of any type, even 'nui1’,
has been passed in a function call - if not, an eror will be issued. The
pseudo-type can also be passed as the right operand to the :: and :- operators;

* 1listing identifies a table, sequence or register in the parameter list of @
procedure. The type can be passed as the right operand to :: and :-, as well.

* nasic Identifies a number, sfring, Boolean or null, and is recognised in
parameter lists and the :: and :- operators.

Examples that summarise these special types:

Vv

proc f(x :: anything) :: listing is
> return x
> end;

> £()
Error in stdin:
missing argument #1 (of type anything).

Stack traceback:
stdin, in " f°
stdin, at line 1 in main chunk

164 6 Programming

> f£(1)
Error in stdin at line 2:
Error in “return : result of type listing expected, got number.

Stack traceback:
stdin, at line 2 in " f°

stdin, at line 1 in main chunk

> £([1]):
[1]

6.8.3 Checking the Type of Return of Procedures

Agena can check whether all returns of a procedure are of one given type by
specifying this return type right after its parameter list.

> fact := proc(n :: number) :: number is
> if n < 0 then return undefined

> elif n = 0 then return 1

> else return fact(n-1)*n

> fi

> end;

> fact (10) :

3628800

If one of the returns is not of the return type, the procedure issues an error.

> fact := proc(n :: number) :: number is
> if n < 0 then return undefined

> elif n = 0 then return 1

> else return 'don\'t know'

> fi

> end;

> fact (10):

Error in stdin, at line 5:
‘return® value must be of type number, got string.

Stack traceback:
stdin, at line 5, at line 1

The \ﬂﬁUOr1ypeSinteger,posint,nonnegint,positive,negative(Hanonnegative
can also be queried, see previous sulbbchapfer.

You can define up to five basic types that are allowed to be returned by putting
them in curly brackets, just like in parameter lists:

> f := proc(x) :: {number, complex} is return 'a' end
> £()
In stdin at line 1:

Error in “return : unexpected type string in return.

If you would like to automatically check structures for proper content at function
invocation, please have a look at the end of Chapter 6.19.

agena >> 165

There are further functions for error handling:

6.8.4 The assume Function

assume checks a Boolean relation. If the relation is valid, it returns true and
continues execution of the procedure. In case of an invalid relation, it bails out of
the procedure and prints an error message. The second argument to assume is
optional; if not given, the text "assumption failed™ is printed, and 'error string'
otherwise.

assume(relation [, 'error string' |)

> assume(l = 1, 'l is not 1'"):
true 1 is not 1

> assume(l <> 1, 'l is 1"'):
Error in “assume : 1 is 1.

Stack traceback: in “assume’
stdin, at line 1 in main chunk

6.8.5 Trapping Errors with protect/lasterror

protect fraps any error that might occur, but does not terminate a function call. In
case of no errors, it returns all results of the call. But if there was an error, it returns the
eror message as a string and also sets the global variable lasterror to this error
message. In case of a successful call, lasterror will always be null.

protect takes the name of the function to be executed as its first argument, and all
its arguments g, b, etc. as optional arguments:

protect(f[, a[, b,---1])

Thus, if a function has no arguments, simply pass the expression protect (£).

> iszero := proc(x) is

> if x <> 0 then

> error ('argument must be zero')
> else

> return true

> fi

> end;

Now call iszero in protected mode:

> protect(iszero, 0):
true

166 6 Programming

> lasterror:
null

> protect(iszero, 1):
argument must be zero

> lasterror:
argument must be zero

To conveniently check whether an error occurred you might enter:.

> protect(iszero, 0) = lasterror:
false

lasterror:

> protect(iszero, 1)
true

6.8.6 Trapping Errors with the try/catch Statement

Instead of intercepting errors with protect and lasterror, you may use the try/catch
statement:

try
statements,
[catch [errvar then]
statements]

yrt

Any statements stafements, - one or more - are put right after the try keyword. If an
error occurs in one of these statements, Agena immediately will jump to the catch
clause if present, ignoring any subsequent statements in statfements,. If there is no
catch clause, execution willimmediately continue with the statement right after the
yrt token, regardless of whether an eror occurred or notf, also ignoring all
subsegquent commands in sfatements,.

If a eatch clause is given, then in case of an error the error message is stored to the
local variable errvar, and after that all the statements stafements, following the
then keyword are processed. errvar does not need 1o be declared, it is implicitly
local to the catch clause only. You may also do without specification of an error
variable - in this case the error message is automatically stored to the local lasterror
variable, and the then keyword must be left out.

Examples:

> try

> error ('Oops !'");

> print ('Invalid index !")
> yrt;

agena >> 167

As shown above, due to the immediate jump out of the try body, the print function
is not called. In the next example, the eror message is stored to the variable
message, ANd in the catch clause it is then printed at the console.

> try

> error ('Oops !'"');
> print ('Invalid index !'")
> catch message then

> print ('The error was: '
> yrt;

The error was: Oops !

& message) ;

> message:
null

Now we do not specify an error variable in the catch clause:

> try

> error ('Oops !'');

> print ('Invalid index !'")
> catch

> print ('The error was: '
> yrt;

The error was: Oops !

& lasterror);

6.8.7 Trapping Errors with pre and post clauses
Instead of wiiting long special error freatment code when checking arguments or
the return of a function, you may use the pre and post clauses:

The pre clause, placed right before the is keyword, checks a condition and issues
an error if it is not met:

> golden := proc(n :: number) # approximation of golden ratio

> pre isint(n) and n > -1 is # if n < 0 or float, quit with an error
> if n = 0 then return 1 fi;

> return 1.0 + 1.0/procname(n — 1);

> end;

> golden(-1):
In stdin at line 2:

Error in pre-condition: posture not satisfied.
It is faster than checking arguments with calls to the assume function.

The post clause in return statements checks a condition and issues an error if it is
not met:

> proc(x :: number) is

> [...]

> # issue an error if x <> 1, and return x otherwise
> return post x <> 1 with x

> end;

A function can include both pre and post conditions.

168 6 Programming

6.9 Multiple Returns

As stated before, a procedure can return no, one, or more values. Just specify the
values to be returned:

> f := proc() is
> a := 2;

> return 1, a
> end;

> f£():

1 2

There are two ways to refer to these multiple returns in sulbsequent statements. If you
assign the return to only one variable, e.Q.

>m = £():
1

the second return is lost, so enter:

>m, n := £();

A function may return a variable number of values, so it might be useful to put them
in a sequence, register or table:

> seq(f()):
seq(l, 2)

Sometimes a procedure shall return the first result of a computation only. In this
case, put the call that results into multiple returns into brackets. math.fraction
retuns three values: the numerator, the denominator, and the accuracy, in this
order. Let us write a numerator function that only retuns the first result of
math.fraction.

> numerator := proc(x :: number) is
> return (math.fraction(x))

> end;

> numerator (0.1) :

1

The ops function refumns all its arguments after argument number index, an integer.

ops(index, arg; [, arga, - - -1)

The following statement determines the denominator and the accuracy.

agena >> 169

> ops (2, math.fraction(0.1)):
10 0

To return only the first result, the denominator, put the call to ops in brackets.

> denominator := proc(x :: number) is
> return (ops (2, math.fraction(x)))
> end;

> denominator (0.1):
10

unpack returns all elements in a table or sequence:

> squared := proc(t :: table) is

> local result := << x —> x*2 >> Q@ t;
> return unpack (result)

> end;

> squared([1, 2, 3, 4]):
1 4 9 16

Alternatively, unpack accepts the positions of the first to the last element to be
returned as its second and third argument. If only the second argument is given, all
elements in a structure from the given position up o the end are passed back.

unpack(structure [, beginning [, end]])

> squared := proc(t :: table, ?) 1is

> local result := << x —> x"2 >> @ t;
> return unpack (result, unpack(?))

> end;

\%

squared([1l, 2, 3, 41, 2):
9 16

I

> squared([1l, 2, 3, 41, 2, 3):
4 9

6.10 Procedures that Return Procedures

Besides refurning numbers, sfrings, tables, etc., procedures can also retumn
procedures. As an example, the function polygen

> polygen := proc(?) is

> local s := seqg(unpack(?));

> return proc(x) 1is

> local r := bottom(s);

> for i from 2 to size s do
> r := r*x + s[i]

> od;

> return r

> end

> end;

170 6 Programming

returns a procedure that evaluates a polynomial of degree n from the given
coefficients c., c..., «+ -, o cut

<< (x) —> cn*xn-] + cn,l*xn-2 4+ oo+ c*x o+ ooy >>
In the following example, polygen Creates the polynomial 3x? — 4x+1as a procedure.

> f := polygen(3, -4, 1)

> £(2):
5

6.11 Shortcut Procedure Definition

If your procedure consists of exactly one expression, then you may use an abridged
syntax if the procedure does not include statements such as if/then, for, insert, etc.

<< [([oar; [:: typed] [, par: [i: types]. ---11 D] -> expr [, expra, - -] >>

<< |[(Ilears [:: ype] [par: [:: fype2], - - 1]]
[withvarl [, ---]:=vall [, ---]]->expr [, expry, ---] >>

As you see, optional basic and user-defined types can be specified in the
parameter section.

Let us define a simple factorial function.

> fact := << (x :: number) -> exp(lngamma(x + 1)) >>;

> fact(4):
24

Brackets around parameters are optional if at least one parameter is given, even if
you specify types.

> isInteger := << x —> int(x) = x >>;

> isInteger (1) :
true

> isInteger (1.5):
false

> one := << () -> 1 >>; # with no parameters, use empty bracket pair
Optional arguments and the ? notation are supported.

One or more local variables can be defined by the with clause put in front of the
expression that computes the result:

agena >> 171

> fact := << (x :: number)

> with n := 1

> -> exp(lngamma(x + n)) >>;
> fact(4):

24

Short-cut procedures can return multiple results:

> f 1= << x —> x, x+1, x+2 >>
> £(0)
0 1 2

6.12 User-Defined Procedure Types

The settype function allows to group procedures proc,, proc,, - - -, by giving them a
specific type (passed as a string) just as it does with sequences, tables, sets, and
pAirs.

settype(proc, [, proc,, - - -1, 'your_proctype')

User-defined procedures can be queried with the typeof operator which returns a
string.

> f 1= << x > 1 >>;

> settype(f, 'constant');

> typeof (f):

constant

> type(f): # only returns the basic type
procedure

The :: and :- operators can also validate a user-defined procedure type. Pass the
name of the user- defined type as a string:

proc, :: 'your_proctype'
proc, :- 'your_proctype'

> f :: 'constant':
true
> f :— 'constant':
false

Note that the type operator only checks for basic types.

An alternative 1o typeof is the gettype function. If a user-defined type has set for a
value, then it returns its name as a string, otherwise, it returns null.

172 6 Programming

If you want to check whether user-defined types have been passed to a
procedure, use the double colon notation in the parameter list.

Suppose you have defined a type called triple:

>t = [1, 2, 3]
> settype(t, 'triple')

> sum := proc(x :: triple) is
> return sumup (x)
> end

> sum(t) :

6.13 Scoping Rules

In Agena, variables live in blocks or “scopes . A block may contain one or more
other blocks. A local variable is visible only to the block in which it has been
declared and to all blocks that are part of this block. Thus, variables declared local
in inner blocks are not accessible to the outer blocks or outside the procedure in
which they are hosted.

Procedures, if- and case-statements, while-, do- and for-loops create blocks, or
more precisely, a block resides between:

then and elif, else or fi keywords - in if statements;

then and of, else or esac keywords - in case statements;

do and as - in do/as l0ops;

do and od - in for and while and do/od loops;

is and end - in procedures;

scope and epocs - in scope blocks (including the with statement; see below).

ok~

As an example, variables declared as local in the then clauses of an if-statement
live only in the respective then part. The same applies to variables declared locally
in else clauses.

f := proc(x) is
if x > 0 then
local i := 1; print('inner', 1)
else
local i := 0; print('inner', 1)
fi;
print ('outer', 1) # 1 is not visible
> end;
> £(1);
inner 1
outer null

V VYV YVYVYVYV

Variables declared as local in for- or while-loops are only accessible in the bodies
of these loops. The loop control variables of for/to-loops are automatically declared
local to their surrounding block, while control variables of for/in-loops are implicitly
declared local to the respective loop bodies.

agena >> 173

> f := proc(x) is

> while x < 2 do

> local 1 := x

> inc x

> print ('inner', 1)
> od;

> print ('outer', i) # i is not visible
> end;

> f£(1);

inner 1

outer null

A special scope can be declared with the scope and epocs statements:

scope
declarations & statements
epocs

The next example demonstrates how it works:

h

:= proc() 1is
local a := 1;
scope
local a := 2;
writeline('inner a: ', a);
epocs;
writeline('outer a: ', a);
end;

VVVVVYVYVYV

> £()
inner a: 2
outer a: 1

The scope statement can also be used on the interactive level to execute a
sequence of statements as one unit, Compare

> print(1l);
1

> print(2);
2

> print (3);
3

with

scope
print (1) ;
print (2);
print (3)

>
>
>
>
> epocs;
1
2
3

174 6 Programming

6.14 Access to Loop Control Variables within Procedures

As adlready mentioned, the control variable of a for/to loop is always local to the
bbody surrounding the loop.

> mandelbrot := proc(x, y, iter, radius) is

> local i, ¢, z;

> z = x'y;

> c = z;

> for 1 from 0 to iter while abs(z) < radius do
> z := z squareadd ¢ # = z"2 + cC

> od;

> return i # return the last iteration value

> end;

The procedure counts and returmns the number of iterations a complex value z takes
fo escape a given radius by applying it to the formula z = z™ 2+c.

> mandelbrot (0, 0, 128, 2):
129

The following example demonstrates that local variables are bound to the block in
which they have been declared.

H

:= proc() 1is

local 1i;

for i to 3 do
local j;
for j to 3 do od;
print (i, J)

od;

print (i, J)

end;

VVVYVYVYVYVYVYV

S W N -V
I

6.15 Sandboxes

By default, every procedure has access to the full Agena environment, i.e. to all of
Agena's functions, packages, and all the other values. You might want to limit this
access, for example if one of your procedures offers services on the Internet, or you
want a procedure maintain its own environment,

Here, the environ.setfenv function comes into play. It initialises the environment a
function can use.

Example 1: Give access to all functions except the os package.

First copy Agena's environment represented by the system tfable _G to a new table
so that altering this new table will not effect Agena's normal environment:

agena >> 175

> _newG := copy(_G); # copy can also duplicate cycles like _G

Delete the os package from this new environment:

> delete os from _newG;

Define a function that tries to determine the current working directory:

> curdir := proc() is
> return os.chdir ()
> end;

Set the environment excluding the os package:

> environ.setfenv (curdir, _newG);
> curdir () :
Error in stdin, at line 2:

attempt to index global “os (a null value) with a string value

Stack traceback:
stdin, at line 2, at line 1

Example 2: Give access only the specific functions.

Let us redefine curdir: it will only access a redefined print function and all of the
functions of the os package. curdir cannot call any other function.

> curdir := proc() 1is
> print (os.chdir())
> end;

> environ.setfenv (curdir,
> ['print' ~ << x —> print('cwd is ' & x) >>, 'os' ~ os])

> curdir () :
cwd is C:/agena/src

To determine the current environment used by a function, use environ.getfenv:

> environ.getfenv (curdir) :
[os ~ (---), print ~ procedure(01D4BA18)]

Please see Chapter 14.2 (environ.getfenv, environ.setfenv, environ.isselfref) for
further features.

To hide data in a sandbox, please have a look at registers - explained in Chapter
415,

6.16 Altering the Environment at Run-Time

Besides using a special environment (see preceding subbchapter), a procedure can
also create new variables and put them into Agenad's stfandard environment.

176 6 Programming

Why should one do so ? Consider the utils.decodexml function. It converts an XML
string info a table consisting of key-value pairs, the keys being the XML tags, and the
values the corresponding data. XML allows to use name spaces, so that tags might
look like <soap:body>, etc.

So, XML data like

> str := '<soap:body>
> <orderid>123</orderid>
> </soap:body>"'

is converted to

> order := utils.decodexml (str):
[soap_body ~ [orderid ~ 123]]

To read the order number, one might just enter:

> order.soap_body.orderid:
123

Unfortunately, especially the SOAP standard allows one to define ones own name
space, so that the following is also equivalent and valid XML data:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>"'

> order := utils.decodexml (str):
[s_body ~ [orderid ~ 123]]

In this case you would have to write a new statement to get the order ID since
fetching it with

> order.soap_body.orderid:
Error in stdin, at line 1:
attempt to index field " soap_body (a null value)

will not work. Fortunately, Agena stores all values in the _G system table, with its keys
being strings representing the variable names, and the entries the values of the
these variables. So flexible code to read data from XML code featuring different
name spaces might ook like this:

> str := '<s:body>
> <orderid>123</orderid>
> </s:body>"'

> order := utils.decodexml (str):
[s_body ~ [orderid ~ 123]]

> tag := tables.indices(order) [1]:
s_body

> prefix := tag[l to ('_' in tag) - 11]:

S

agena >> 177

> _G['order'] [prefix & '_body'].orderid:
123

Likewise, defining new variables within code can be done like this:
> _G['jpl'] := ['Jet Propulsion Laboratory']
> jpl:

[Jet Propulsion Laboratory]

6.17 Packages

6.17.1 Writing a New Package

Let us write a small utilities package called neipers including only one main and
one auxiliary function. The main function shall return the number of digits of an
infeger.

Package procedures are usually stored to a table, so we first create a table called
helpers. After that, we assign the procedure ndigits and the auxiliary
aux.isInteger function to this table.

> create table helpers, helpers.aux;

> helpers.aux.isInteger := << x —> int(x) = x >>; # aux function
> helpers.ndigits := proc(n :: number) is

> if not helpers.aux.isInteger (n) then

> error ('Error, argument is not an integer')

> fi;

> return if n = 0 then 1 else entier(ln(abs(n))/In(10) + 1) fi
> end;

Now we can use our new package.

> helpers.ndigits(0):
1

> helpers.ndigits(-10):
2

> helpers.ndigits(.1):
Error, argument is not an integer

Stack traceback: in “error’
stdin, at line 3, at line 1

To save us a lot of typing, we can assign a short name to this table procedure.

> ndigits := helpers.ndigits;
> ndigits(999):
3

Save the code listed above to a file called nelpers.agn in @ subfolder called
helpers in the Agena main directory. In order to use the package again after you

178 6 Programming

have restarted Agena, use the run function and specify the full path.

> restart;
> run 'd:/agena/helpers/helpers.agn’

> helpers.ndigits(10):
2

You may print the contents of the package table at any fime:

> helpers:
[aux ~ [isInteger ~ procedure(0044A6E0)], ndigits ~ procedure (0044A850)]

6.17.2 The initialise Function

The initialise function, besides loading the package in a convenient way,
automatically assigns short names to all package procedures so that you may use
the shortcuts instead of the fully written function names.

In order to do this, you must first prepend or append the location of the directory
containing your new package to the libname system variable, or execute Agena in
the directory containing your package. You may do this by adding the following line
to your personal Agena initialisation file (see Chapter A6), assuming that the
helpers.agn file has been stored 1o the folder d:/agena/helpers.

libname &:= ';d:/agena/helpers’;

Alternatively, you may save the helpers.agn file into the 1ib folder of your Agena
distrioution if you do not want to modify libname.

Now in the interactive level, type:

> restart;

libname and some few other system variables are not reset by the restart
statement because restart deliberately does not touch the contents of these
specific system variables.

> initialise 'helpers'
ndigits

> ndigits(1l); # same as helpers.ndigits (1)

You may also want with to print a starf-up nofice at every package invocation by
assigning a string to the table field " packagename.initstring . Put the following line
into the nelpers.agn file after the create table statement, save the file and restart
Agena:

> helpers.initstring := 'helpers v1.0 as of June 11, 2013\n\n';

agena >> 179

> restart;

> initialise 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

Since you may not want that short names are set for certain, especially auxiliary
functions, their procedure names should be defined as follows:
‘packagename.aux.procedurename , €.g. helpers.aux.isInteger.

The contents of the nelpers.agn file should finally look like this:

create table helpers, table helpers.aux;

helpers.initstring := 'helpers v1.0 as of June 11, 2013\n\n';
helpers.aux.isInteger := << x —> int(x) = x >>; # aux function
helpers.ndigits := proc(n :: number) is

if not helpers.aux.isInteger (n) then
error ('argument is not an integer')
fi;
if n = 0 then
return 1
else
return entier (ln(abs(n))/1In(10) + 1);
fi;
end;

Save the file again and restart Agena.

> restart;

> initialise 'helpers'
helpers v1.0 as of June 11, 2013

ndigits

You can also define a package initialisation routine. It will automatically be run by
the initialise statement after the package has been found and initialised
successfully. The name of the inifidlisation routine must e of the form
‘packagename.aux.init’, e.g.:

> helpers.aux.init := proc() is
> writeline('I am being run')
> end;

Of course, you must create a "packagename.aux table before defining the
initialisation function.

Instead of using initialise fo load a package, you may use the import/alias
statement - see Chapter 3.18 - sO

> initialise 'helpers';

180 6 Programming

is equivalent to

> import helpers alias;

6.18 Remember Tables

Agena features rememlber tables which store the results of previous calls to Agena
or C library procedures or contain a list of predefined results, or both. If a function is
called again with the same argument(s), then the corresponding result will be
returned from the table, and the procedure body is not executed, resulting in
significantly better execution times. Remember tables are called rfables or rofables
for short.

All functions to create, modify, query, and delete remmember tables are available in
the rtable package.

There are two types of remember tables:

e Standard Remember Tables, called "rables’, that can be automatically
updated by a call to the respective function; they may e initialised with a list of
precomputed results (but do not need 10).

* Read-only Remember Tables, called "rotables’, that cannot be updated by a
call to the respective function. Rotables should e inifialised with a list of
precomputed results.

6.18.1 Standard Remember Tables

A standard rememlber table is suited especially for recursively defined functions. It
may slow down functions, however, if they have remember tables but do not rely
much on previously computed results.

By default, no procedure contains a remember table. It must explicitly be created
either by including the feature reminisce statement as the very first line in a
procedure body, or by calling the rtable.init function right after the procedure has
been defined. A rememiber table may optionally be filled with default values with
the rtable.put function. Since those functions are very basic, a more convenient
facility is the rtable.remember function which will exclusively be used in this
chapter.

In order for an rtable to be automatically updated, the respective function must
return ifs result with the return statement (which may sound profane). If a function is
called with arguments that are not already known to the remember table, then the
return stafement adds these arguments and the corresponding result or results to
the rfable.

agena >> 181

Let us first fry the feature reminisce variant, which may suffice in most cases. Just
add this statement right after the is token in a procedure that computes Fibonacci
numbers:

> fib := proc(n) is

> feature reminisce; # creates a read-write remember table
> if n =0 or n = 1 then return n fi; # exit conditions

> return procname(n - 2) + procname(n - 1)

> end;

> fib(50):

20365011074

Now let us use the functions of the rable package to administer remember tables.
Two examples: We want to define a function f(x) = x with f(0) = undefined.

First a new function is defined without using the feature reminisce phrase:

> f := proc(x) is return x end;

Only after the function has been created in such a way, the remember table can
be set up. The rtable.remember function can e used to initialise rtables, explicitly
set predefined values into them, and add further values later in a session.

> import rtable alias;

> remember (£, [0 ~ undefined]);

The rtable has now been created and a default entry add to it so that calling f with
argument O returns undefined and not O.

> f£(1):
1

> £(0):
undefined

If the function is redefineq, its remnember table is destroyed, so you may have 1o
initialise it again.

Fibonacci numbers, as already shown above, can be implemented recursively and
run with astonishing speed using rtables.

fib := proc(n) is

assume(n >= 0);

return procname(n - 2) + procname(n - 1)
end;

vV V V V

The call to assume assures that n is always non-negative and serves as an
“emergency brake” in case the remember table has not been set up propertly.

182 6 Programming

The rtable is being created with two default values:

> remember (fib, [0~0, 1~11]);

If we now call the function,

> fib(50):
20365011074

the contents of the rtable will be:

> remember (fib) :

[[22] ~ [28657], [39] ~ [102334155]1, [17] ~ [2584], [5] ~ [81, [27] ~
[317811], [50] ~ [203650110741, [3] ~ [31, [0] ~ [11, [46] ~ [2971215073],
[41] ~ [2679142961, [1]1 ~ [1], etc.]

If a function has more than one parameter or has more than one return, remember
requires a different syntax: The arguments and the returns are still passed as
key~value pairs. However, the arguments are passed in one table, and the returns
are passed in another table.

> £ := proc(x, y) is

> return x, y

> end;

> remember (£, [[1, 2] ~ [0, O0]]);
> a, b := £(1, 2);

> a:

0

> b:

0

Please check Chapter 14.4 for more details on their use.

6.18.2 Read-Only Remember Tables

If you do not want a function updating its remember table each time it is called
with new arguments and results, you may use a read-only remember table, called
‘rotable” for short. Rotables are initialised with a list of precomputed results.

The function itself cannot implicitly enter new entries 1o its rememier table via the
return statement; it can only do so via a call to the rtable.put function or a utility
that is based on rtable.put, called rtable.defaults. This gives you full control on the
contents and the amount of data stored in a rememier table - and thus on the
speed of your procedure.

Assume you want to define a procedure that computes factorials n!, and that does
not compute the results forn < 11, but retrieves the results from an rotable instead.

agena >> 183

A function might look like this:

> fact := proc(x :: number) is

> if x :: nonnegint then # is x an integer and non-negative ?
> return exp(lngamma(x + 1))

> else

> return undefined

> fi

> end;

The defaults function can set up the rotable and enter precomputed values into it.

> # set precompiled results for 0! to 10! to fact

Vv

defaults (fact, [
o~1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
1)

VvV Vv

The factorial function is significantly faster when called with arguments that are in
the rotable than if there would be no such value cache, because it would have to
re-compute the results instead of just reading them.

Let us look into the remember table:

defaults (fact):
21 ~ [2], [11 ~ [1] [8] ~ [40320]1, [9] ~ [362880]1, [10] ~ [3628800],

>
([’
(01 ~ [11, [4] ~ [24], [5] ~ [120], [e] ~ [720], [3] ~ [6], [7] ~ [5040]]

You can also easily add further argument ~ result pairs with the rtable.defaults
function:

> defaults(fact, [11 ~ 39916800]);

> defaults(fact):

(21 ~ 21, 111 ~ (11, [8] ~ [40320], [9] ~ [362880], [10] ~ [3628800], [O]
~ [1], [11] ~ [39916800], [4] ~ [24], [7] ~ [5040], [6] ~ [720], [3] ~ [6],
[5] ~ [120]]

A read-only remember table can be deleted by passing null as a second
argument 1o defaults.

Please note that in a function featuring a remember table, the respective return
statements should not include calls to other functions than the function itself.
Instead, use auxiliary variables and use them in the return statements.

184 6 Programming

6.18.3 Functions for Remember Table Administration

For completeness, here is a list of all the functions to administer remember tables:

Procedure Details

rtable.forget(f) Empties the remember table of function £ but does
not delete the table so that it will continue collecting
results with the next call to f. Read-only remember
tables cannot be emptied. The memory previously
occupied by cached function arguments and results
can be reused for other purposes

rtable.get(f) Returns the remember table of function r.

rtable.inif(f) Initialises a standard remember table for the function
f.

rtable.roinif(f) Initialises a read-only remember table for the function
f.

rtable.puf(Adds function argument(s) and the corresponding

f, [arguments], [retumns]) | return(s) to the remember table of procedure £.
rtable.purge(f) Deletes the remember table of function £ entirely.

The function empties the remember table before
deleting it. It also enforces an immediate garbage
collection. If you want to use a new remember table
with the function, you have to initialise it with
rtable.init or rtable.roint again.

rfable.mode(f) Returns the string 'mtable’ if a function £ has a standard
remember table, 'rotable' if it has a read-only
remember table, and 'none' if it has no rememiber
table at all.

Table 18: Functions for administering remnemltoer tables

6.19 Overloading Operators with Metamethods

One of the many useful functions inherited from Lua 5.1 are metamethods which
provide a means to use existing operators to tables, sets, sequences, registers,
pairs, and userdata.

For example, complex arithmetic could be entirely implemented with
metamethods so that you can use already existing symbols and keywords such as
+ or abs with complex values and do not have to leam names of new functions'®.
This method of defining additional functionality to existing operators is also known as
“overloading .

Adding such functionality to existing operators is very easy. As an example, we will
define a constructor to produce complex values and three metamethods for
adding complex values with the + foken, determining their absolute value with the
standard abs operator, and prefty printing them at the console.

'¢ For performance reasons, complex arithmetic has been built directly info the Agena kemel.,

agena >> 185

At first, let's store a complex value z = x + yi to a sequence of size 2. The real part is
saved as the first value, and the imaginary part as the second.

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);

> insert a, b into r;

> return r

> end;

To define a complex value, say z = 0 + J, just call the constructor:

> cmplx (0, 1):
seq (0, 1)

The output is not that nice, so we would like Agena to print cmpix (0, 1) instead of
seq (0, 1).This can be easily done with the settype function:

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);

> insert a, b into r;

> settype(r, 'cmplx');

> return r

> end;

> cmplx (0, 1):
cmplx (0, 1)

Adding two complex values does not work yet, for we have not yet defined a
proper metamethod.

> cmplx (0, 1) + cmplx(l, 0):
Error in stdin, at line 1:
attempt to perform arithmetic on a sequence value

Metamethods are defined using dictionaries, called “metatables”. Their keys, which
are always strings, denote the operators to be overloaded, the corresponding
values are the procedures to be called when the operators are applied to tables,
sets, sequences (which are used in this example), registers or pairs. See Appendix
A2 for a list of all available method names. To overload the plus operator use the
'__add' string.

Assign this metamethod to any name, cmpix_mt in this example.

>
> ' __add' ~ proc(a, b) is

> return cmplx(al[l]l+b[1l], al2]+b[2])
> end

>

Next, we must attach this metatable cmp1x_mt to the sequence storing the real and
imaginary parts with the setmetatable function. We have to extend the constructor
by one line, the call to setmetatable:

186 6 Programming

> cmplx := proc(a :: number, b :: number) is
> create local sequence r(2);

> insert a, b into r;

> settype(r, 'cmplx');

> setmetatable(r, cmplx_mt);

> return r
> end;

Try it:

> cmplx (0, 1) + cmplx(0, 1):
cmplx (0, 2)

Add a new method to calculate the absolute value of complex numbers by
overloading the abs operator.

> cmplx_mt._ _abs := << (a) -> hypot(alll, al2]) >>;

The metatable now contains two methods.

> cmplx_mt:
[__add ~ procedure(004A64D0), _ abs ~ procedure(004D2D30)]

> z := cmplx(1l, 1);
> abs(z):

1.4142135623731

It would be quite fine if complex values would be output the usual way using the
standard x + yi notation. This can be done with the '_ tostring' method which
must return a string.

> cmplx_mt._ tostring := proc(z) is

> return 1if z[2]<0 then z[l]&z[2]&'1"' else z[l]&'+'&z[2]&"'1"' fi
> end;

> z:

1+11

To avoid using the cmplx constructor in calculations, we want o define the
imaginary unit | = 0+i and use it in sulbsequent operations. Before assigning the
imaginary unit, we have to add a metamethod for multiplying a number by a
complex number.

proc(a, b) is

'cmplx' and typeof (b)
1,
)

> cmplx_mt._ mul

> if typeof (a)

> return cmplx(al[l]l*b[l]-al[2]*b[2
> elif type(a) = number and typeof (b
>
>
>

= 'cmplx' then
al[ll*b[2]+al2]*b[1])
= 'cmplx' then
return cmplx(a*b[1l], a*b[2])
fi
end;

and also extend the metamethod for complex addition.

agena >> 187

> cmplx_mt._ _add := proc(a, b) is

> if typeof(a) = 'cmplx' and typeof(b) = 'cmplx' then
> return cmplx(al[ll+b[l], al2]+b[2])

> elif type(a) = number and typeof(b) = 'cmplx' then
> return cmplx(a+b[1l], b[2])

> fi;

> end;

> i = cmplx (0, 1);

> a = 1+2*1i:

1+21

Until now, the real and imaginary parts can only be accessed using indexed
names, say z[1] for the real part and z(2; for the imaginary part. A more
convenient - albeit not that performant - way to use a notation like z.re and z.im in
both read and write operations is provided by the '__index' and '__writeindex'
metamethods, respectively.

The index metamethod for reading values from a structure obj works as follows:

* If the structure is a table, then Agena will automatically call the metamethod if
the lookup objkey] results 1o null.

* If the structure is a set, then Agena will automatically call the metamethod if the
lookup objlkey] results to false.

* If the structure is a sequence or reqister, then the metamethod is called if the
lookup objlkey] would result to an index-out-of-range error.

The '__writeindex' metamethod for writing values to a structure works as follows:

e |f the structure is a table, sequence or pair, then the metamethod is always
called.
* The metamethod is also supported by the insert statement,

The procedures assigned to the ' __index' and '__writeindex' keys of a metatable
should not include calls to indexed names, for in some cases this would lead to
stack overflows due to recursion (the respective metamethod is called again and
again). Instead, use the rawget function to directly read values from a structure,
and the rawset function to add values into a structure.

Let us first define a global mapping table for symbolic names to intfeger keys:

> cmplx_indexing := [re ~ 1, im ~ 2];

Now let us define the two new metamethods. Both will accept expressions like a.re
and a117. In the following read procedure the argument x represents the complex
value, and the argument y is assigned either the sting 're' oOr 'im'. Thus,
cmplx_indexing['re'] WIill evaluate 1o the index 1, and cmplx_indexing['im'] 1O
index 2.

188 6 Programming

> cmplx_mt._ index := proc(x, y) is # read operation

> if type(y) = string then # for calls like “a.re’ or "a.im’
> return rawget (x, cmplx_indexingl[y])

> else

> return rawget (x, y) # for calls like “a[l]® or “al2]"
> fi

> end;

In the write procedure, argument x will hold the complex value, y will be either 're:
or 'im', ANd z is assigned the component - a rational number -, i.e. x.re := z Or

X.im := z.

> cmplx_mt._ writeindex := proc(x, y, z) is # write operation
> if type(y) = string then

> rawset (x, cmplx_indexingl[y], z)

> else

> rawset (x, y, z) # for assignments like “a[l] := value’
> fi

> end;

You can now use the new methods.

Note that while arithmetic metamethods can be applied on mixed types, for
example the above defined complex number and a simple Agena number,
relational operators cannot compare values of different types. Instead, Agena in
this case just returns false with the equality operators =, ==, and ~=; and issues an
error with relational operators that compare for order.

Using the ' writeindex' metamethod, it is quite easy to write-protect structures. In
the following example, we wil create a procedure that accepts a table,
write-protects it and returns it. The metamethod:

> readonly_mt := [

> ' writeindex' ~

> proc(t, k, v) is error ('Error, structure is read-only.') end
>]

A constructor that simplifies creating read-only structures:

> readonly := proc(t :: table) is

> setmetatable(t, readonly_mt);

> return t

> end;

\

moons := readonly(['Phobos', 'Deimos']);

agena >> 189

Adding further values to the table, or changing an existing one, now will not work.

> insert 'Mars' into moons;
Error, structure is read-only.

Stack traceback: in “error’

> moons:

[Phobos, Deimos]

Using one and the same global table to define metamethods for various variables
may be appropriate to save memory, but maodification of the metatable itself may
have unwanted effects.

> readonly_mt.__writeindex := proc(t, k, v) is rawset(t, k, v) end;
> insert 'Mars' into moons;

> moons:
[1 ~ Phobos, 2 ~ Deimos, Mars ~ Mars]

Finally, to protect values already assigned to a table, we could define:

readonly_mt := [
__writeindex =
proc(t, k, v) is
if rawget(t, k) <> null then
error ('Error, structure is read-only.')
else
rawset (t, k, v)
fi
end

VVVYVYVYVYVYVYVYV

]

Vv

create table t;
> setmetatable(t, readonly_mt)
> t[1l] =0

> t[1l] =1
Error, structure is read-only.

To profect metatables from tampering, use the __metatable method and seft it to
any value except null.

> readonly_mt := [

> _ _metatable = false,

> __writeindex =

> proc(t, k, v) is error('Error, table is read-only') end
> 1;

> readonly := proc(t :: table) is

> setmetatable(t, readonly_mt);

> return t

> end;

Vv

moons := readonly(['Phobos', 'Deimos']);

190 6 Programming

> setmetatable (moons, [

> __writeindex =

> proc(t, k, v) is error ('Error, table is read-only') end
> 1

>)

Error in "~ setmetatable’ : cannot change a protected metatable.

Stack traceback: in "~ setmetatable’
stdin, at line 1 in main chunk

A structure with a '__ca11' key in its metatable can also be called like a function.

> readonly := proc(t :: table) is

> setmetatable (t, [

> __call = proc(t) is

> for i, j in t do print(i, j) od
> end]) ;

> return t

> end;

> moons := readonly (['Phobos', 'Deimos']);

\%

moons () ;
Phobos
2 Deimos

=

To close this chapter, metamethods can also be used to automatically check the
contents of structure passed at function invocation, and also to extend the :: and :-
operators.

Let us assume we would like to write a procedure that sums up all numbers in a set:
> s := {1, 2, 3, 4, 5};
We create a metatable first,

> create table mt;

and then assign a proper evaluation procedure to the _ oftype metamethod that
makes sure that the set consists of numlbers only.

> mt.__oftype := proc(x) is

> if type x = set then

> for i in x do

> if 1 :- number then return false fi
> od;

> return true

> else

> return false

> fi

> end

We assign the metatable to the set,

> setmetatable(s, mt);

agena >> 191

and first try out the extended :: and :- operators.

> s :: set:
true

If an invalid memiber is inserted into the set,
> insert 'a' into s;

the type check fails:

> s :: set:
false
> s :— set:
true

Now we use the type evaluator in a procedure call;

> sum := proc(x :: set) is

> local s := 0; for 1 in x do inc s, 1 od; return s
> end;

> sum(s) :

In stdin:

argument #1 does not satisfy type check metamethod

The '__oftype' metamethod works as follows: it first checks whether the structure (a
table, set, sequence, reqister, pair) or userdata at the left-hand side matches the
basic or user-defined type given at the right-hand side. If true, then Agena checks
whether the structure has an attached ' oftype' metamethod and then runs it.
The validator function must either return true if the criteria have all been met, or
false, fail or null otherwise.

Nofe that in the validator mt. oftype definition given above, we use the type
operator instead of the :: operator in the first if statement since otherwise Agena
would issue a stack overflow error.

The _ oftype metamethods also work if a return type has been specified.

In some packages, for example llist and numarray, metamethods are included in
the binary C library file and can be accessed through the so-called registry, via the
debug.getregistry function. You may want to use this function to add further
self-defined metamethods written in the Agena language.

For example, the in metamethod of the numarray package is defined in the
Agena source file lio/numarray.agn, and not in the C library file.

> numarray.aux.mt := [

> __in = proc(x, a) is

> return numarray.whereis(x, a, 1, Eps) <> null
> end

>

]

192 6 Programming

The metatable stored to the registry can be read by a call to registry.get. Just insert
all of your own metamethod procedures by individually adding them, but do not
directly assign your metamethod table to the result of registry.get('numarray’).

scope
protect against sandboxing (prevent errors at initialisation)
if registry.get :: procedure then
get the internal registry metatable for numarrays
local _mt := registry.get('numarray');
if _mt :: table then
include each metamethod function step-by-step
for i, j in numarray.aux.mt do
_mt[i] := 3
od
fi
fi
epocs;

VVVVVVVYVYVYVYVYVYV

Never modify or delete existing metamethods, as this will lead to undefined
ehaviour.

Note: The delete statement supports metamethods: it passes the data to be
delefed as its key and null as the value to the _ writeindex metamethod. To protect
values stored to structures you might define:

> readonly_mt._ _writeindex := proc(t, k, Vv) is

> if unassigned v or assigned rawget(t, k) then
> error ('cannot delete or modify wvalue')

> else

> rawset (t, k, V)

> fi

> end;

The pop, rotate, duplicate, and exchange statements issue an error if a given
structure features a _ writeindex metamethod. This prevents read-only sfructures
from lbeing modified.

6.20 Memory Management, Garbage Collection, and Weak Structures

Agena includes a garbage collector that sweeps all structures, procedures,
userdata, and threads (called "objects™ in this subchapter) that no longer have
valid references in your programme - i.e. are inaccessible. Agena can then use the
space for new objects. Numbers, complex numbers, strings and booleans are
never collected.

Consider the following code: Let us assign a table to a name.

> s = []

Now s refers to a memory address so that Agena can access the table.

agena >> 193

> environ.pointer(s):
008FOF38

If we reassign s, a different empty table is assigned to it.

> s 1= []

This newly created table is stored 1o another part of the memory.

> environ.pointer(s):
00824188

Since the first table at memory position 008FOF38 can no longer be accessed, it
unnecessarily occupies space. The garbage collector regularly looks for
unreferenced objects and removes them.

Besides automatic garbage collection, the user can also invoke it manually, if
deemed necessary, or even stop and restart it by calling environ.gc.

Sometimes it may be necessary to immediately clear values occupying a large
amount of space. In this case assign null to it, so that the next automatic collection
cycle can free it. If necessary call environ.gc for immediate collection. As a
shorfcut, you could also use the clear statement which conducts both nulling a
value and collecting it.

If a table, set, sequence, procedure, userdata or thread is included in another
table or sequence, the garbage collector does not collect it if its reference should
have become invalid.

> restart

> t 1= []
> v := [1l]; insert v into t
> v := [2]; insert v into t

> environ.gc ()

[1] is still part of the table.
>t
[[1

(11, [2]]

If you do not want this fo happen, declare the table or sequence "weak™ by using
the '_ _weak' metamethod. With tables, you can either declare its keys weak by
passing the string 'x', or its values weak with the string 'v', or both with 'xvr. With
sequences, simply use use the string 'v'.

If the collector meets a weak key that has become inaccessible, it removes the
key-value pair. If the collector meets a weak value that has become inaccessible, it
removes the key-value pair.

194 6 Programming

>t o= []

> setmetatable(t, ['_weak' ~ 'v'])
> v := [1]; insert v into t

> v := [2]; insert v into t

> environ.gc ()

Do not change the '__weak' field after it has been assigned to an object, as the
behaviour would be undefined. The insert and delete statements will reject
manipulation of weak tables and sequences.

6.21 Extending Built-in Functions

You may redefine existing built-in functions if you want to change their behaviour or
extend its features. You can either write a completely new replacement from
scratch or use the original function in your modified version. Your new procedure
can then be called with the same name as the original one.

Note that only Agena functions written in C or in the language itself can be
redefined, and that operators cannot,

In Agena, each mathematical function f works as follows: if a number x, which by
definition represents a value in the real domain, is passed to them, then the result
f(x) will also be in the real domain. If x is a complex value, then the result will be in
the complex domain.

Suppose that you want to automatically switch to the complex domain if a function
value in the real domain could not be determined, i.e. if f(x) = undefined. An
example is:

> root (-2, 2):
undefined

On the interactive level enclose the new procedure definition with the scope and
epocs keywords. This is necessary because on the interactive level, each statement
entered at the prompt has its own scope and thus local variables cannot be
accessed in the statements thereafter.

The new function definition might be:

scope

>
>
> # save the original function in a "hidden’ variable
> local oldroot := root;

>

agena >> 195

> # define the substitute

> root := proc(x, n) is # new definition

> local result := oldroot(x, n);

> if result = undefined then # switch to complex domain
> result := oldroot (x+0*I, n)

> fi;

> return result

> end;

>

> epocs;

The original function root is stored to the local oldroot variable so that the user can
no longer directly access it.

> root (-2, 2):
8.6592745707194e-017+1.4142135623731*1I

If you wish to permanently use your redefined functions, just put them into the
initialisation file, located either in the 1ib folder of your Agena installation, or your
home directory. See Appendix 6 for further information.

Since files have their own "scope’, the scope and epocs keywords are no longer
needed (but can be left in the file).

6.22 Closures: Procedures that Remember their State

A procedure can remember its state. This state is represented by the function's local
variables which survive and retain their values even after the call to the procedure
has finished. Such procedures are also called "closures .

So with successive calls, the procedure can access these values again and re-use
them.

Let us define an iterator function that returns an element of a table one after the
other:

> traverse := proc(o :: table) is
> local count := 0;

> return proc() is

> inc count;

> return o[count]
> end
> end;

The traverse procedure is called a factory™ for it creates and returns the closure
which we assign to the name iterator!

> tbl :=['a', 'b', 'c'];

> iterator := traverse(tbl);

The iterator function remembers its state and can be called like "normal
functions:

196 6 Programming

> iterator():
a

What happened ? The call to traverse wWith the table tb1 = [ra', 'b', 'c'] GSits
only argument initialised the variable count and assigned it fo o. The fable you
passed is also stored o the closure's internal state since technically, parameters are
local variables. With the first call tO iterate, count Was incremented from o 10 1, SO
that the first element of the table, i.e. tb1 1], could be returned thereafter.

> iterator():
b

> iterator():
c

Since the table now has no more elements left (count = 4), the iterator now returns
null, since tob114] = null.

> iterator():
null

You can define more than one closure with a factory at the same time, each being
completely independent from the others:

> iterator2 := traverse(['a', 'b', 'c'l);

> iterator2():
a

> iterator2():

> iterator3 := traverse ([

> iterator3():

In Chapter 5, we have dlready introduced for/in loops that can iterate over
functions. There are various ways to accomplish this.

In general, one or two loop control variables are given to the left of the in keyword,
followed by the function and up to two further variables to its right.

Example 1: With function next, iterate table to1 and pass null as the initialiser to get
its first entry. The respective values in tpr1 are assigned o loop control variable i:

> tbl := [10, 20, 30, 'a' ~ 40];

> for 1 in next, tbl, null do # equivalent to "for 1 in tbl do’
> print (i)

> od;

10

20

30

40

agena >> 197

Example 2: Same as Example 1 but with two control variables x, v storing the
respective table key and value, in this order.

for k, v in next, tbl, null do
print (k, wv)
od;
10
20
30
40

QO WNHV VYV

Example 3: Retrieve only the table keys.

> for keys k in next, tbl, null do
> print (k)

> od;

1
2
3
a

for/in loops iterate over factories, as well. Just some examples:

> gmatch := proc(s) is

> local ¢, p := 0, strings.gmatch(s, '%a+'); # p is assigned a factory
> return proc() is

> local word := p();

> return when word = null with null;

> inc c¢;

> return ¢, word # return position and word
> end

> end;

> s := 'hello world from Agena';

> £ := gmatch(s);

> for i in f do

> print (i)

> od;

hello

world

from

Agena

> £ := gmatch(s);
> for k, v in f do
> print (k, v)
> od;

1 hello

2 world

3 from

4 Agena

> £ := gmatch(s);

for keys k in £ do
print (k)
od;

NEHEV VYV

198 6 Programming

w

6.23 Self-defined Binary Operators
A procedure £ of two arguments x, y

> plus := proc(x, y) is return x + y end;

can be called like a binary operator through the syntax x £ y:

> 1 plus 2:
3

When using a function as a binary operator, it has always the highest precedence.

6.24 OOP-style Methods on Tables

Agena supports OOP-style methods. For a table object representing a bank
account,

> account := ['balance' ~ 0];

define the following method (please note the two e tokens):

proc account@@deposit(x) is
inc self.balance, x;
return self.balance

end;

>
>
>
>
The name self always refers to the table object, here account. Call the method
using two e characters:

> account@@deposit (100)

Query the object.

> account:
[balance ~ 100, deposit ~ procedure(016D6820)]

Let us define a method for withdrawing an amount of money. Instead of the proc
statement, we will now use the standard := assignment:

> account@@withdraw := proc(x) is

> if x < 0 then error('Error, value must be non-negative.') fi;
> dec self.balance, Xx;

> return self.balance

> end;

To set up new accounts that inherit the methods and characteristics associated with
the account Object, assign the metatable of the account Object to the freshly
creafted account using the setmetatable function, and force Agena to search for
the methods or its balance stored t0 account by proper indexing (i.e. self._ index

agena >> 199

:= self). Thus, we use the account Object as a prototype inherited by individual
accounts. To explore the metatable of an object, call getmetatable.

> proc account@@new (o) is

> o := o0 or []; # if not given, create object with its initial
> # balance taken from the current state of “account’
> setmetatable (o, self); # assign metatable of “account’ object

> # (i.e. “self’) to new table

> self._ _index := self; # inherit methods from " account’ object

> return o

> end;

> a := account@@new() ;

> a.balance:
100

Set up a new account with its initial balance set 1o zero:

> b := account@@new(['balance' ~ 0]);

Pay into the bank 200 currency units.

> b@@deposit (200) :
200

If you want to create a different class of accounts, e.g. accounts on credit that own
all the features of account but do not allow any overdraft, just assign An account
object to it by calling the new method (do not just assign account 1O creditaccount):

> creditaccount := account@@new();

and overwrite the withdraw Mmethod:

> proc creditaccount@@withdraw(x :: number) is

> if x < 0 then error('Error, value must be non-negative.') fi;

> if x > self.balance then error('Error, not enough credit.') fi;
> dec self.balance, Xx;

> return self.balance

> end;

> ¢ := creditaccount@@new () ;

> c@@withdraw (1000) :
Error, not enough credit.

Since b is an unlimited account, we can withdraw money as much as we want, as
its withdraw Mmetamethod has not been replaced.

> b@Rwithdraw (1000) :
-800

6.25 Assigning Tables to Procedures

As an alternative to storing values into the reqistry (see Chapter 6.31) or using
closures (Chapter 6.22), you can assign a table to a procedure with the store

200 6 Programming

feature. The table will remain active during the entire Agena session and you can
read from or write values to it in sulbbsequent calls to the function.

This feature is thrice as fast as interacting with the registry, but only half as fast as
closures. The table can be accessed through the store keyword which can also be
indexed:

> f := proc() is

> feature store;

> store[l] := Pi;

> store.count := (store.count or 0) + 1;
> return store, store[l], store.count

> end;

> f£()

[3.1415926535898, 1] 3.1415926535898 1

To get access to the internal store, call debug.getstore which returns its reference.
You can both inspect this table as well as inject values into the store. In the following
example we define a sine function with precomputed coefficients:

> zxsine := proc(x :: number) is # ZX Spectrum SIN emulation

> feature store; # activate the internal store

> local w, z;

> x *:= 0.5/P1;

> x —:= entier(x + 0.5);

> w = 4*x;

> if w > 1 then

> W o= 2 — W

> elif w < -1 then

> W o= —-w — 2

> fi;

> z 1= 2*w*w — 1;

> return w* (store[l] + z*(store[2] + z*(store[3] + z*(store[4] +
> z*(store[5] + z*store[6])))))

> end;

> _coeffs := // 1.267162131 -0.284851843 0.18226552e-1 -0.546208e-3
> 0.9480e-5 -0.112e-6 \\;

To get a reference to the store, execute:
> _store := debug.getstore(zxsine);

Insert coefficients to the store,

> for i in _coeffs do
> insert 1 into _store
> od;

and do some cleanup thereafter:

> _store, _coeffs —-> null;

Voila:

agena >> 201

> zxsine (Pi/4):
0.70710678125

Of course, you can mix store tables with remember tables. For another example,
see Chapter 6.31.

6.26 Summary on Procedures

The following diagram tries to summarise all features of a procedure.

Input Type Checks

Procedure
No Parameters Arguments
Parameters Return
proc(viitype, ?) :: type is L= |Variable Parameters g
local r;
global _Eps;
Eoéiivin varargs do (
inc r, i + _Eps Oufpuf
od; Remember Table]
return r
end No Return
One Retum Read/Write Table
\ Multiple Retums Read-Only Table
\ N]
State (Closure) Standard Agena Type Multi-Line Procedures
Storage Table User-Defined Type One-Line Functions
Scope b g s
Environment

6.27 1/0

Agena features various functions 1o deal with files, to read lines and write values to
them. Keyboard interaction is supported, too, as is interaction with other
applications. Most of the functions have been taken from Lua. All the functions for
input/output are included in the io and the binio packages.

Read and write access to files usually is conducted through file handles. At first, a
file is opened for read or write operations with the io.open function. Then you apply
the respective read or write functions and finally close the file again by calling
io.close.

6.27.1 Reading Text Files

Open a file and store the file handle to the name th:

> fh := io.open('d:/agena/src/change.log'):
file (7803A6F0)

202 6 Programming

Read the first ten characters:

> io.read(fh, 10):
Change Log

Read the next ten characters:

> io.read(fh, 10):
for Agena

Close the file:

> jio.close(fh):
true

Besides file handles, many |/O functions also accept file names. For example, the
io.lines procedure reads in a text file line by line. It is usually used in for loops. The
respective line read is stored to the loop key, the loop value is always null. The
function opens and closes the file automatically.

> for i1, j in io.lines('d:/agena/lib/agena.ini') do
> print (i, J)

> od

execute := os.execute; null

getmeta := getmetatable; null

setmeta := setmetatable; null

6.27.2 Writing Text Files

To write numbers or strings info a file, we must first create the file with the io.open
function. The second argument 'w' fells Agena to open it in “write” mode.

> fh := io.open('d:/file.txt', 'w');

As mentioned above, io.open returns a file handle to be used in subsequent /O
operations.

> jo.write(fh, 'I am a text.');
If you would like to include a newline, pass the '\n" string,
> io.write(fh, 'Me ', 'too.', '\n');

or use the io.writeline function which automatically adds a newline to the end of
the input. The next statement writes the numiber = to the file.

> jio.writeline(fh, Pi);

After all values have been written, the file must be closed with io.close.

agena >> 203

> io.close(fh);

The statements presented above produce the file contents:

I am a text.Me too.
3.1415926535898

We can append text 1o a file we have already created. In order to append - and
not to overwrite existing - text, use the 'ar switch in the call to io.open'’. Using the
'w' Switch would replace the text already existing with the new one. See Chapter
12.1 for further options accepted by io.open.

Tables, sets or sequences cannot be written directly to files, they must be iterated
using loops so that their keys and values - which must be numbers, booleans or
strings - can be stored separately to the file thereafter. The same applies to pairs:
use the left and right operators to write their components.

The following statements write all keys and values of a table to a file. The keys and
values are separated by a pipe '|', and a newline is inserted right after each
key~value pair. Note that you can mix numbers and strings.

> a := [10, 20, 301;

> file := io.open('d:/table.text', 'w');

> for i, j in a do

> io.write(file, i, '|', 3, '"\n")

> od;

> io.close(file);

Hint: To create UNIX text files on DOS-like systems, such as DOS, OS/2, Windows, just

open the text file in binary mode, e.g. io.open('d:/table.text', 'wb'). This Qvoids
carriage return control codes to be added to the file with each line break.

See Chapter 12.1 for a description of all io package functions.

If you have trouble with character encoding, the converters strings.tolatin,
strings.toutf8, strings.diamap or the aconv package might help you.

6.27.3 Keyboard Interaction

The io.read function allows to enter values interactively via the keyboard when
called with no argument. Use the RETURN key to complete the input. The value
returned by io.read is a string. If you would like to enter and process numbers
thereafter, use the tonumber function fo transform the string info a number.

> a := io.read();
10

17 See Chapter 12.1 for further options accepted by io.open.

204 6 Programming

> a:
10

> type(a):
string

> tonumber (a)"2:
100

All available keyboard functions are:

Procedure | Details

io.anykey | Checks whether a key has been pressed and returns true or false.
Waits until a key is pressed and returns its ASCII value. This function is
not available on all platforms.

If called with no arguments, reads one or more characters from the
keyboard until the RETURN key is being pressed. The refurn is a string.

io.getkey

io.read

Table 19: Functions to read the keyboard

6.27.4 Default Input, Output, and Error Streams

Agena provides aliases to the standard input, output, and error channels known
from C:

* jo.stdin, the standard input stream, used to input data, usually the keyboard,

e jo.stdout, the standard output stream, used to output data, usually the console,

* jo.stderr, the standard error stream, used for ermror messages and diagnostics,
usually the console.

Examples:

> io.writeline(io.stdout, 'Okay');
Okay

> io.writeline(io.stderr, 'Not okay');
not okay

6.27.5 Locking Files

Agena allows files to be locked so that only the current process can read or write
data to them. This feature prevents corruption to files during write operations or
reading invalid data when other programmes fry to access them. See io.lock and
io.unlock in Chapter 12.1 for further information.

6.27.6 Interaction with Applications

You can call another application, pass data to it and receive data from the
application with the io.popen function. The function returns a file handle, so that
you can receive the information returned (from the stdout channel of the called
programme) for further processing.

agena >> 205

To get a listing of all files in the current directory, enter:

> p := io.popen('ls'):
£file (77602960)

> io.readlines (p) :
[ads.c, agena.c, etc.]

Finally, close the connection.

> io.close(p)

If you pass the 'w' opfion fo io.popen as a second argument, you can send further
data to the external programme:

> p := io.popen('cat', 'w')
> io.write(p, 'Hello ')
> io.write(p, 'World\n')

> io.close(p)
Hello World

If you want to receive data from the stderr channel, or suppress output at the
Agena console, include the respective redirection instruction, which may vary
among operating systems, in the first argument to io.popen.

6.26.7 CSV Files

Comma-separated value files can be read and written conveniently by
utils.readcsv and utils.writecsv. This function provides various options to further
process the data being read. See Chapter 16.1 for further details.

6.27.8 XML Files

XML files are imported and converted to Agena data structures with utils.readxml or
xml.readxml. XML files can be created with utils.encodexml and io.write. Chapter
16.1 and 12.5 offers further information on how to do this.

6.27.9 dBASE lll/IV Files

The xbase package can read and write dBASE Il/IV-compatible files. See Chapter
12.3 for details.

6.27.10 INI Files

The utils.readini and utils.writeini functions deal with traditional INI initialisation files.

206 6 Programming

6.28 Linked Lists

With large tables, sometimes it may be very costly to insert or delete an element
with the put and purge functions because all elements after the insert or deletion
position must either e shifted up- or downwards. This is also frue with sequences
and registers.

In addition, iterating a table with the for/in statement does not ensure that the keys
are traversed in ascending order'®,

In these cases you may use the llist package implementing linked lists which store
elements in a sequential order and where each value also links fo its successor (and
predecessor). Just take a look at the examples at the end of this subchapter.

The benefit of using linked list in these sitfuations is a speed increase of at least 600
%, but may be very much larger.

To see how a linked list works, let us create one manually. First, establish a root
which indicates the end of the list.

> list := null;

Now we insert the numbers -2, -1 and 0 into this list, so that it contains the elements
0, -1, -2, in this order.

> list := ['data' ~ -2, 'next' ~ list];
> list := ['data' ~ -1, 'next' ~ list];
> list := ['data' ~ 0, 'next' ~ list];

To fraverse the list, we use a new reference so that the original list is not changed:

> 1 := list;

> while 1 do

> print (l.data)
> 1 := 1l.next
> od;

0

-1
-2

To insert an element somewhere in the list, we enter:

> 1 := list;

> while 1 do

> if 1l.data = -1 then

> l.next := ['data' ~ -1.5, 'next' ~ l.next];
> break

> fi;

> 1 := l.next

> od;

18 See skycrane.iterate.

agena >> 207

> 1 := list;

> while 1 do

> print(l.data)
> 1 := 1l.next
> od;

0

-1

-1.5

-2

It may often be useful to add further information to a linked list to save unnecessary
fraversal, e.qg. the position of the element or the predecessor.

Instead of implementing singly- or doubly-linked lists yourself, use the llist package.
First inifialise it,

> import 1llist

and create an empty list.

> L := 1llist.list():
1list ()

Now add O to it

> 1llist.append(L, 0);

and also put -2 to ifs beginning.

> llist.prepend(L, -2);
> L
1llist (-2, 0)

Insert -1 at position 2. As you see, the original element at this position is not deleted
but shiffed to open space.

> 1llist.put(L, 2, -1):

> L
llist (-2, -1, 0)

To delete an element at a position, enter:

> 1llist.purge (L, 2):

> L
1llist (-2, 0)

The size operator determines the number of all elements in a linked list.

> size L:
2

208 6 Programming

To determine a specific element, index it as usual:

> L[1]
-2

Passing an index that does not exist, simply results to null.

Finally, to replace an element, use a usual assignment statfement.

> L
llist (-2, -1)

You may have a look at unrolled singly-linked lists, which are also provided by the
llist package for high-speed processing. The ulist functions have the same name as
those for llists, and almost the same syntax, so here is just a small example:

> import 1llist # _not_ “import ulist’

> a := ulist.list (64) # 64 slots per node

> for 1 to 11 do ulist.append(a, i) od # fill ulist with numbers 1 to 11
> ulist.put(a, 5, 100); # insert 100 at position 5

> a := ulist.dump(a); # convert ulist into a sequence and dump it
> # from memory

> print(a)
segq(l, 2, 3, 4, 100, 6, 7, 8, 9, 10, 11)

Finally, functions to work on doubly-linked lists are available in table dlist. Read and
write access to elements in doubly-linked lists is around twice as fast as for
singly-linked lists:

> 1 := dlist.list('Algol 68', 'Maple', 'Lua', 'SQL'");

> dlist.append(l, 'Agena'); # add new entry to the end of the list

> 1[-1]:
Agena

> dlist.prepend(l, 'Agena'); # add new entry to the start of the list

> 1[1]:
Agena

> dlist.purge(l, 1); # delete first entry

> 1[1]:
Algol 68

> dlist.purge(l, -1); # delete last entry

> 1[-1]:
SQL

agena >> 209

Vv

insert a new value into the middle of the list, shifting elements into
open space
dlist.put(l, 3, 'Agena');

VARV

> dlist.toseq(l):
seq(Algol 68, Maple, Agena, Lua, SQL)

> f := dlist.iterate(l); # iterate through the list
> f£():

Algol 68

(etc.)

6.29 Numeric C Arrays

Agena numbers can alternatively be processed using numeric C arrays. The
numarray package supports C doubles, signed 4-byte integers (int32 1), and
unsigned chars. See Chapter 10.6 for further details.

While C numeric arrays consume less memory than Agenda's built-in structures,
operations are slower.

6.30 Userdata and Ligthuserdata

Some Agena packages such as linked lists and numarrays implement data
structures by so-called userdatq, i.e. C structures that are garbage-collected by the
interpreter provided that a '__gc' metamethod exists.

Likewise, lightuserdata are pointers to any C objects but programmers writing C
libraries have 1o implement their own garbage collection procedures.

To the ordinary programmer wiiting code exclusively in the Agena language,
userdata and lightuserdata are irrelevant as this kind of data can only be accessed
through functions written in C.

6.31 The Registry

The registry is an interface between Agena and its C virtual machine which mainly
stores values needed by userdata, metatables of libraries written in C, open files,
and loaded libraries. It can also be used to exchange data between the C
environment and Agena, or between Agena functions in general. See Chapter 6.25
for a faster alternative if you know that a function does not need to exchange data
with other functions.

debug.getregistry gives full access to the registry but should be used carefully. It is
recommended to revert to the functions of the registry package to read, add or
delete registry data or to modify C library metatables, and to exclude the debug
library from sandboxes (see Chapters 6.15, 7.40 and 7.53).

210 6 Programming

Registry entries indexed by integral keys refer to data occupied by userdata objects,
which for example are used by the llist and numarray libraries. The registry liorary,
however, does not expose these values 1o Agena.

Following is an example how you can use this feature:

> watch := proc(x) is

> local id, t, wval;

> t = time();

> # create light userdata as registry key

> id := 'baselib_watch';

> unassigned registry.get(id) ? registry.anchor (id, 0);

> if x then # any argument given ? -> initialise / reset the clock
> registry.anchor (id, 0);

> return

> fi;

> val := registry.get(id); # get old time (in seconds)

> if val = 0 then # start clock

> registry.anchor (id, t); # assign a new value to registry
> t =0

> else # return elapsed time and set clock to current time

> t —-:= val;

> registry.anchor (id, time())

> fi;

> return t

>

end;

In comparison, an implementation using an internal store table would be:

watch := proc(x) is
feature store;
local id, t, wval;
val := store[l]; # get old time (in seconds)
unassigned val ? store[l] := 0; # initialise with the first call
t = time();
if x then # reset the clock but do not turn it on again
store[l] := 0;
return
fi;
if val =
store |
t =0
else # return elapsed time and set clock to current time
t —-:= val;
store[l] := time()
fi;
return t
end;

then # start clock

0
11 := t;

VVVVVVVVVVVVVVVYVYVVYV

agena >> 211

Part Two

Reference

212 7 The Libraries

agena >> 213

Chapter Seven

The Libraries

214 7 The Libraries

agena >> 215

7 The Libraries

The standard libraries taken from the Lua 5. 1distribution provide useful functions that
are implemented directly through the C APl. Some of these functions provide
essential services to the language (e.g.. next and getmetatable; others provide
access fo “outside’ senvices (e.g.. 1/O); and others could be implemented in
Agena itself, but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., sort) .

The following text is based on Chapter 5 of the Lua 5.1 manual and includes all the
new operators, functions, and packages provided by Agena.

Lua functions which were deleted from the code are not described. References to
Lua were not deleted from the original text. If an explanation mentions Lua, then the
description also applies to Agena.

All libraries are implemented through the official C APl and are provided as
separate C modules. Currently, Agena has the following standard libraries:

the basic library,

package library,

string library,

table library,

mathematical library,

two input and output libraries,
operating system library,
environmental libraries,
debug facilities.

Except for the basic and the package libraries, each library provides all its functions
as fields of a global table or as methods of its objects. Agena operators have been
built into the kernel (the Virtual Machine), so they are not part of any library.

216 8 Bassic Functions

agena >> 217

Chapter Eight

Basics

218 8 Bassic Functions

agena >> 219

8 Bassics

The basic library provides some core functions to Agena. If you do not include this
library in your application, you should check carefully whether you need 1o provide
implementations for some of its facilities.

For logical operators, please see Chapter 4.8.

Summary of functions:

Checks

$$, abs, alternate, assigned, assume, binsearch, filled, has, isequal,
rawequal, recurse, satisfy, whereis.

Extraction

$. bottom, columns, descend, duplicates, getentry, left, max, min, next,
ops, rawget, recurse, right, top, unique, unpack, values.

Types
checkoptions, checktype, float, gettype, isboolean, iscomplex, isint,
isnegative, isnegint, isnonnegint, isnonposint, isnumber, isnumeric, ispair,
isposint, ispositive, isseq, isstring, isstructure, istable, nan, nonneg,
optboolean, optcomplex, optint, opthonnegative, opthonnegint,
optnumber, optposint, optpositive, optstring, settype, type, typeof.

Counting
countitems, size.

Data Manipulation
@, augment, getbit, map, move, prepend, purge, put, rawset, reduce,
remove, select, selectremove, setbit, sort, sorted, subs, toreg, toseq, toset,
totable, zip.

Data Generation
iterate, tables.new, sequences.new, registers.new.

Error Handling

argerror, error, protect, xpcall.

220

8 Bassic Functions

Libraries
readlib, with.
Files
read, save.
Output
print, printf, write, writeline.
Parsing

load, loadfile, loadstring.

Cantor Operations
bintersect, bisequal, bminus.

Metatables

getmetatable, setmetatable.

Miscellaneous

bye, clear, restart, time.

f @ obj
fQeg

In the first form, the operator maps a function £ to all the values in table, set,
sequence, register, string or pair obj. £ should be a univariate function and retun
only one value. The type of return is the same as of ob5. If obj has metamethods or

user-defined types, the return will also have them.

If o5 is a string, £ is applied on all of its characters from the left to right. The retumn is

a sequence of function values.

Examples:

> << x —> X2 >> @ [1, 2, 3]:
(1, 4, 9]

> << x > x > 1 > @ [1, 2, 31:
[false, true, true]

agena >> 221

In the second form, the function creates the composition of two functions £ @ g =
f(g(X)) and returns it is @ new function (f @ g)(x). £ and g may be univariate or
multivariate and also return multiple results.

Example:

> # first take root, then negate
> h 1= << x => -x >> @ << x —> sqgrt x >>

> h(2):
-1.4142135623731

See also: @ and $$ operators, map, reduce, remove, select, subs, times, zip.

£ $ obj

Returns all values in table, set, sequence or register ooy that satfisfy a condition
determined by function £. £ should be a univariate function and return at least one
value. In the multivariate case, all results but the first are ignored.

> << x > x >1 > $ [1, 2, 31:
(2, 3]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

Please note that if ob5 is a table, the refurn might include holes. With ob5 a reqister,
all values up to the current top pointer are evaluated, and the size of the returned
register is equal to the number of the elements in the retumn.

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

f $$ obj

Checks whether af least one element in table, set, sequence or reqister oo satisfies
the condition defined by function £ and returns true or false. £ should be a
univariate function and return at least one value. In the multivariate case, all results
but the first are ignored.

> << x —=> x < 1 > $$ [1, 2, 31:
false

Please note that if ob5 is a table, the return might include holes. With ob5 a register,
all values up 1o the current top pointer are evaluated.

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

222 8 Bassic Functions

abs (x)

If x is a number, the abs operator will return the absolute value of x. With complex
numbers, the magnitude /real(x)? +imag(x)? is evaluated (see also: cabs).

If x is a Boolean, it will return 1 for true, O for false, and -1 for fail.
If x is null, abs will return -2,

If x is a string of only one character, abs will return the ASCII value of the character
as a number. If x is the empty string or longer than length 1, the function retumns fail.

alternate (x, y)

Retumns x if y evaluates 1o null, else returns y. This is equivalent to if y = null then x
else y fi, which is not equal to y or x.

See also: or operator.

argerror (x, procname, message)

Receives any value x, the name of procedure procname (A string) where x did not
satisfy anything, the error message text message, and appends the user-defined
type or if not defined the basic type of x. Thus it returns the error message: 'Error in
procname. message, goT <type of x>.",

The function is written in Agena and included in the lib/library.agn file.

See also: error.

assigned (obj)

This Boolean operator checks whether any value different from null is assigned to
the expression obj. If obj is dlready a constant, i.e. a number, boolean including
fail, or a string, the operator always returns true. If obj evaluates 1o a constant, the
operator also returns true. See also: unassigned.

assume (obj [, message])

Issues an error when the value of its argument on5 is false (i.e., null or false);
otherwise, returns all its arguments. message IS AN ernror message; when absent, it
defaults to 'assumption failed'.

augment (objl, obj2 [, ---])

Joins two or more tables, sequences or reqisters ob51, obj2 together horizontally. The
arguments must either be tables, sequences or registers only. All structures must be
of the same size. The type of return is determined my the type of the arguments.

agena >> 223

The function is writfen in Agena and included in the lib/library.agn file.

See also: columns, linalg.augment.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return

may be a number or complex value, even if x and y are numibers. The Beta
IxxI'y

function is defined as: Betq(x, y) =ToHy) with special treatment if x and y are

integers.

binsearch (o, x [m [, 1 [, rlll)

Performs a binary search for x in the sorfed table, sequence or reqister o. You may
optionally specify the leff border 1 and the right border r in o where to search for x,
by default 1 is 1 and r is size o. The very first element in o to be checked is given by
m which by defaultis (1 +)\ 2.

The function returns true on success or false otherwise. The second return is the
index position of the last element checked before the function returns.

You may have to sort o before invoking the function, otherwise the result would be
incorrect.

See also: in operator,

bintersect (objl, obj2 [, option])

Returns all values of table, sequence or register obj1 that are also values in table or
sequence obij2. objl AN obj2 Must be of the same type. The function performs a
binary search in obj2 for each value in obj1. If NO opfion is given, obj2 is sorted
before starting the search. If you pass an option of any value then obj2 should
dlready have been sorted, for no correct results would be returned otherwise.

With larger structures, this function is much faster than the intersect operator.
The function is writfen in Agena and included in the lib/library.agn file.

See also: bisequal, bminus.

bisequal (objl, obj2 [, option])

Determines whether the tables, sequences or registers obj1 and obj2 contain the
same values. The function performs a binary searches. If no opfion is given (any
value), obj1 and obj2 are Sorted before staring the search. If you pass an option of
any type then obj1 and obj2 should already have been sorted, for no correct
results would e returned otherwise.

224 8 Bassic Functions

With larger structures, this function is much faster than the = operator.
The function is writfen in Agena and included in the lib/library.agn file.

See also: bintersect, bminus.

bminus (objl, obj2 [, option])

Returns all values of table, sequence or register obj1 that are not values in table,
seqguence or register obj2. obj1 AN obj2 Must be of the same type. The function
performs a binary search in obj2 for each value in obj1. If NO option is given, obj2
is sorted before starfing the search. If you pass the option then obj2 should already
have been sorted, for no correct results would be returned otherwise.

With larger structures, this function is much faster than the minus operator.
The function is writfen in Agena and included in the lib/library.agn file.

See also: bintersect, bisequal.

bottom (obj)

With the table array, sequence or register ob4, the operator refurns the element af
index 1. If obj is empty, it returns null.

See also: top.

bye

Quits the Agena session. No arguments or brackets are needed. If a procedure has
been assigned o the name environ.onexit, then this procedure is automatically run
before exiting the interpreter. The function also conducts a final garbage collection
fully closes the state of the inferpreter before leaving. An example:

> environ.onexit := proc() is print('Tschi !') end
> bye

Tschil !

checkoptions (procname, obj, option [, ---]1 [, true])

Checks opftions passed to a given procedure, saving many lines of code in
procedures.

Since an option such like de1imiter=";' in a function call is actually passed as the
pair 'delimiter':'; ' you have to make sure that ‘real’ pairs containing data (but
not options) are not included in the call to checkoptions. See Chapter 6.6.

agena >> 225

Its first argument procname - A string, not the function reference - is the name of the
procedure in which the check takes place.

Its second argument obj - A table - represents the arguments to be checked.

The third to last arguments are pairs. The respective left operand (a string) will be
checked whether one of the right operands of the pairs in ob5 is of the type passed
as the right operand (a string or a basic type). See examples below.

The evaluation of obj works as follows: If an entry in obj is not a pair, it is not
evaluated, ignored and not returned in the resulting table. But if the entry is a pair, it
checks whether the left-hand side is a string, i.e. the name of an option. It then
checks whether its right hand side is of the given type in anything passed 10 option
or further options of type pair. By default, If an option in obj cannot be found in
option Or further options of type pair, an eror will be issued. But if the very last
argument is the Boolean value true, no eror will be issued and the "unknown'
option is part of the resulting table.

If successful, the return is a table where the respective left-hand side in ob5 is the
key and the respective right-hand side in ob5 is the respective entry. Please play
around with this new function, or have a look af the lib/skycrane.agn file in your local
Agena installation, function skycrane.scribe. User-defined types are properly
handled.

Thus:

> checkoptions ('myproc', [1, 'neil':'armstrong'], neil=string):
> # 'neil' must be a string, number 1 will be skipped as not being a pair
[neil ~ armstrong]

> checkoptions ('myproc', ['neil':'armstrong'], neil=boolean):
Error in “myproc : boolean expected for neil option, got string.

> checkoptions ('myproc', ['neil':'armstrong', 'james':'lovell'],
> neil=string, true):
[james ~ lovell, neil ~ armstrong]

checktype (obj, main, sub)

Checks whether the structure on5 is a table, set, pair, sequence or register, and
whether it is of the type given by main (a string), and whether all its elements are of
type sub (a string). It returns true or false. User-defined types are supported.

The function is writfen in Agena and included in the lib/library.agn file.

See also: type.

226 8 Bassic Functions

cleanse (t)

Empties a table, set or reqister and returns the emptied structure. With a reqister,
sets all its places to null and retuns the modified register. With tables, sets and
seguences, the memory previously occupied can be reused by the interpreter.

clear v1 [, v2, ---]

Deletes the values in variables vi, v2, ---, and performs a garbage collection
thereafter in order to clear the memory occupied by these values.

columns (obj, p [, ---]1 [, 'structure'l])

Extracts the given columns p (efc.) from the two-dimensional table, sequence or
reqgister onj. The type of return is determined by the type of opj and is either a
structure of structures if the option 'structure' is given, or a mulfiple return of
structures.

The function is writfen in Agena and included in the lib/library.agn file.

See also: ops, select, unpack, values, linalg.column, utils.readscv.

copy (obj [, option])

The function copies the entire contents of a table, set, pair or sequence ob; iNfo a
new structure. If obj contains structures itself, those structures are also copied (by a
"deep copying® method). Structures included more than once are properly
aggregated to one single reference to save memory space. Metatables and
user-defined types are copied, 100.

With tables, if the 'array' opfion is given, then the function returns just the array part
of obj. Likewise, the 'hash' option only extracts the hash part of ob.

If the option is 'nometa', then metatables and user-defined types will not be copied
regardless of the data type of obj.

The type of return is determined by the type of obj.

The function also treats cycles (structures that directly or indirectly reference to
themselves), correctly.

See also: copyadd.

copyadd (obj [, ---1)

Copies all elements in table, set, sequence or register ob5 and any further optional
arguments into a new structure and returns it. The result is of the same type as ob5.

agena >> 227

With tables, the array and hash parts are copied 1:1, i.e. the elements in the array
part of obj are copied to the array part with the same keys, and the elements in the
hash part of obj are copied 1o the hash part of the new table, with the same keys,
too.

For performance reasons, substructures are not deep-copied.

The function may be used when in an expression there is a call to unpack or any
other function retuming multiple values, which is followed by one or more
subsequent values, as in this situation multiple values returned by any function get
truncated to the first value if it's not the last trailing expression.

Compare for example:

> f := proc(x, y) is
> return math.sincos(x), y
> end;
> £(0, E):
0 2.718281828459
versus
> f := proc(x, y) is
return unpack (copyadd([math.sincos(x)], Vv))
end;
£(0, E):
0 1 2.718281828459

The function is writfen in Agena and included in the lib/library.agn file.

See also: copy, tables.include, insert statement.

countitems (item, obj)
countitems (£, obj [, ---1)

In the first form, counts the number of occurrences of an item in the structure (tfable,
set, sequence or register) ob 7.

In the second form, by passing a function £ with a Boolean relation as the first
argument, all elements in the structure obj that satisfy the given relation are
counted. If the function has more than one argument, then all arguments except
the first are passed right after the name of the object obj.

The return is a number. The function may invoke metamethods.

See also: select, bags package.

228 8 Bassic Functions

descend (£, obj, [, ---] [, option])

Retuns all elements in the structure onj (O table, set, sequence or register) that
satisfy a given condition expressed by function £. The function can be multivariate
and must return either true or false. The optional second and all further arguments
of £ may be passed as the third, etc. argument.

With tables, all the entries and keys are scanned.
With sequences and registers, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sets, reqisters or
sequences in obj sO that it can find elements in deeply nested structures. Pairs,
however, are ignored.

If ob is a table and the option skiphash=true has been passed, then the function
ignores all non-numeric keys and their corresponding values, i.e. ignores the hash
part of a table.

The function returns a structure with its type depending on the type of obj with all the
hits in no more than two levels, an example:

> s = SeCI(lr 2, 3, [1, 2, 31, Seq(ll 2, 2, 4, {2, 4, 35}));

> descend (<< X —> x = 2 >>, 8):
seq(2, [2], seq(2, 2), {2})

> # return all elements greater or equal 3

ge := proc(x, y) is # x greater or equal y ?
try
return x >=y
catch # avoid comparisons of numbers with other data types
return false
yrt
end;

V VYV YVYVYVYV

> descend(ge, s, 3):
seq(3, [3], seq(4), {4, 5})

descend issues an error if ob5 is unassigned.

See also: has, recurse, satisfy, select.

duplicates (obj [, option])

Returns all the values that are stored more than once to the given table, sequence
or reqister obj, and returns them in a new tfable, sequence or register. Each
duplicate will be returned only once. If option is not given, the structure is sorted
before evaluation since this is needed to determine all duplicates. The original
structure is left untouched, however.

agena >> 229

If a value of any type is given for option, the function assumes that the structure has
been already sorted. The values in obj should either be strings or numbers if no
option IS given, otherwise the function will fail.

The function is writfen in Agena and included in the lib/library.agn file.

empty (obj)

This Boolean operator checks whether a table, set, reqister, sequence or string obj
does not contain any item and returns true if so; otherwise it returns false.

See also: filled.

error (message [, level])

Terminates the last protected function called and returns message Qs the error
message. error never retums.

Usually, error adds some information about the error position af the beginning of
the message. The 1evel argument specifies how to get the error position. With level
1 (the default), the error position is where the error function was called. Level 2
points the error to where the function that called error was called; and so on.
Passing a level 0 avoids the addition of error position information to the message.

See also: argerror.

eval (---)

Just returns the value represented by its arguments. See also: identity.

everyth (n, k)
everyth (obj, k)

In the first form, returns the Agena equivalent n % x = 0, a Boolean.

In the second form, retumns every given x-th element in the table, sequence or
register ooj iN @ new structure. The type of return is determined by the type of the
first argument. With tables, only the array part is traversed.

G

A global variable (not a function) that holds the global environment (thatis, _c._c =
_G) . Agena itself does not use this variable; changing ifs value does not affect any
environment, nor vice-versa. (Use setfenv to change environments.)

230 8 Bassic Functions

filled (obj)

This Boolean operator checks whether a table, set, reqister, sequence or string obj
contains af least one item and returns true if so; otherwise it returns false.

See also: empty.

getbit (x, pos)

Checks for the bit at position pos € [1, 32] in the integer x, and either returns true or
false.

See also: getbits, getnbits, setbit, setbits, setnbits, bytes.tobytes, numarray.getbit.

getbits (x [, any])

Returns all 32 bits in the integer x, and returns a reqister of size 32 with values true or
false. If any second argument is given, the register is filled with zeroes or ones
instead of booleans.

See also: getbit, getnbits, setbit, setbits, setnbits, numarray.getbit.

getnbits (x, pos, nbits)

From the 32-bit integer x, starting from bit position pos from the right, retrieves noits
bits and returns a decimal value. pos should be in [1, 32].

getentry (obj [, ki, :--, kil)

Returns the entry objx,, ---, k.1 from the table, sequence or register obj without
issuing an error if one of the given indices k. (second to last argument) does not
exist. It conducts a raw access and thus does not invoke any metamethods.

If obj k., ---, k.1 does not exist, null will be returned. If only ok is given, it is simply
returned.

See also: .. operator, {} indexing, getorset.

getmetatable (obj)

If ob5 does not have a metatable, returns null. Otherwise, if the ob5's metatable has
a '__metatable' field, returns the associated value. Otherwise, returns the
metatable of the given ob5.

See also: setmetatable.

agena >> 231

getorset (obj, ki, -, ki, V)

Returns the non-null element at index obi[k,, k., ..., k., where obj is a table,
sequence or register. If any index position is invalid, the function returns null.

If obi[k., k2, ..., ko] = NUIl, then the function assigns obij[x., kz ..., k.] := v and returns

V.

See also: getentry.

gettype (obj)

Returns the type - set with settype - of a function, sequence, set, pair or userdata
obj Qs a string. If no user-defined type has been set, or any other data type has
been passed, null will be returned.

See also: settype, typeof.

has (obj, x)

Checks whether the structure onj (a table, set, sequence, register or pair) contains
element x. If obj and x are strings, checks whether at least one character in obj
matches one of the characters in x.

With tables, all the entries are scanned. If x is not a number then the indices of the
fable are searched, too.

With sequences and registers, only the entries (not the keys) are scanned. With pairs,
both the left and the right item is scanned. The function performs a deep scan so
that it can find elements in deeply nested structures.

The function return true if x could e found in obj, and false otherwise. If ob§ <> x
and if obj is @ number, boolean, complex number, string, procedure, thread,
userdata or lightuserdata, has returns fail.

See also: descend, in, recurse, satisfy.

identity (---)
Returns its arguments. See also: eval, unpack.

initialise (packagename [, false])

initialise (packagename , keyl, key2, --- [, false])

Assigns shortf names to package procedures such that:

name := packagename.name

232 8 Bassic Functions

The function works as follows:

e In both forms, initialise first tries to load and run the respective Agena
package. The package may reside in a text file with file suffix .agn, orin a C
dynamic link library with file suffix .so in UNIX and .411 in Windows, or both in
a text file and in a dynamic link library. The function first tries to find the
package in the current working directory and if it failed, in the path pointed
to by mainlibname; if this fails, too, it fraverses all paths in libname from left
to right until it finds af least the C DLL or the Agena fext file, or both. If a
package consists of both the C DLL and an Agena text file, then they both
must reside in the same folder.

¢ If the function does not find the package, an error will be returned.

¢ Next, initialise fries to find a package inifialisation procedure. If a procedure
named "packagename.init” is present in your package then it is executed if the
package has been found successfully.

e In the first form, if only the string packagename is given, short names to all
functions residing in the global table packagename are created.

If you do not want initialise to assign short names for certain functions, their
names should be in the format packagename.QUX.procedurename, e.g.
mMath.aux.errormessage.

Note that if packagename.name is NOT Of type procedure, a short name is not
created for this object.

e If you would lke to display a welcome message, put it into the string
packagename.initstring. It is displayed with an empty line before and after the
text. An example:

agenapackage.initstring := 'agenapackage v0.1 for Agena as of \
May 23, 1949\n"';

¢ In the second form, you may specify which short names are to be assigned
by passing them as further arguments in the form of strings. Contrary o the
first form, short names are also created for tables stored to table

packagename.

As opposed to the first version, initialise does not print any short names or
welcome messages on screen.

e Further information regarding both forms:
The function returns a table of all short names assigned.

If the global environment variable environ.withverbose is set to false, no

agena >> 233

messages are displayed on screen except in case of errors. If it is set to any
other value or null, a list of all the short names loaded and a welcome
message is printed.

If a short name has already been assigned, a waming message is printed. If
a short name is protected (see table environ.withprotected), it cannot be
overwritften by initialise and a proper message is displayed on screen. You
can control which names are protected by modifying the contents of
environ.withprotected.

For information on which folders are checked and how to add new
directories to be searched by initialise, see readlib.

Note that initialise executes any statements (and thus also any assignment)
included in the file packagename.Agn.

The function is writfen in Agena and included in the lib/library.agn file.

If the last argument is the Boolean false, initialise does not print the assigned
shortcuts af the console.

Note: the import/alias statement is an interface to the initialise function but does
not require package names to be put into quotes. For example,

> initialise 'stats';
is equivalent to

> import stats alias;

See also: readlib, run, register, and import/alias statement.

ipairs (obj)

Returns three values: an iterator function, the table, sequence, register, string or
userdata ob5, and 0O, so that the construction

for i, v in ipairs(obj) do body od

will iterate over the pairs (1, ooj[1]), (2, obj[2]). ---, Uup to the first infeger key absent
from the data structure.

If you pass userdata, for example a numarray, it must feature a metatable with an
' index' metamethod. Otherwise an error will be issued.

If there is nothing more to iterate, the iterator returns nulls.

See next for the caveats of modifying the table during its traversal; and also: pairs,
factory.iterate, skycrane.iterate.

234 8 Bassic Functions

Example:

> import numarray

> d := numarray.double(3)
> d[1l] := Pi; d[2] := 2*Pi; d[3] := 3 *Pi;
> f := ipairs(d):

procedure (00410A30)

> idx, val := f£(d, 0): # pass 0 to start the iteration
1 3.1415926535898

> idx, val := f(d, idx):

2 6.2831853071796

> idx, val := f(d, idx):

3 9.4247779607694

> idx, val := f(d, idx): # nothing left

null null

isboolean (---)

Checks whether the given arguments are all of type boolean and returns true or
false.

iscomplex (---)

Checks whether the given arguments are all of type complex and retumns true or
false.

isequal (objl, obj2)
Equivalent to obj1 = obj2 and returns true or false.

The function is writfen in Agena and included in the lib/library.agn file.

isint (---)

Checks whether all of the given arguments are integers and returns true or false. If
at least one of its arguments is not a numibber, the function returns fail.

See also: finite, float.

isnegative (---)

Checks whether all of its arguments are negative numbers and returns true or false.
If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnonneg, ispositive.

agena >> 235

isnegint (---)

Checks whether all of the given arguments are negative integers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

isnonneg (---)

Checks whether all of its arguments are zero or positive numibers and retumns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive.

isnonnegint (---)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function returns
fail.

isnonposint (---)

Checks whether all of the given arguments are zeros or negatfive intfegers and
returns true or false. If af least one of its arguments is not a number, the function
returns fail.

isnumber (---)

Checks whether the given arguments are all of type number and returns true or
false.

isnumeric (---)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

ispair (---)

Checks whether the given arguments are all type pair and retumns true or false.

isposint (---)

Checks whether all of its arguments are positive intfegers and returns true or false. If
at least one of its arguments is not a numiber, the function returns fail.

See also: isnonposint.

236 8 Bassic Functions

ispositive (---)

Checks whether all of its arguments are positive numbers and returns true or false. If
at least one of its arguments is not a numibber, the function returns fail.

See also: isnonposint, isposint, isnegative, isnonneg.

isreg (---)

Checks whether all of its arguments are of type register and returns true or false.

isseq (---)

Checks whether all of its arguments are of type sequence and returns true or false.

isstring (---)

Checks whether all of its arguments are of type string and retumns true or false.

isstructure (---)

Checks whether all of its arguments are of type table, set, sequence or pair and
retuns true or false.

istable (---)

Checks whether all of its arguments are of type table and returns true or false.

left (obj)

With the pair ob5, the operator returns its left operand. This is equals 10 oo [1].

See also: right.

load (£ [, chunkname])

Loads a chunk using function £ to get ifs pieces. Each call to £ must return a string
that concatenates with previous results. A return of null (or no value) signals the end
of the chunk.

If there are no errors, retumns the compiled chunk as a function; otherwise, returns
null plus the error message. The environment of the refurned function is the global
environment,

chunkname IS used as the chunk name for error messages and delbug information.

loadfile ([filename])

Similar to load, but gets the chunk from file filename Or from standard input, if No
file name is given.

agena >> 237

loadstring (s [, chunkname])

Similar to load, but gets the chunk from the given string s. To load and run a given
string, use the idiom

assume (loadstring(s)) (- --)

Examples:

> f := loadstring('a := exp(1l)"');
> f£():

> a:

2.718281828459
> f := loadstring('local x := exp(l); return x') ();

> f:
2.718281828459

> f := loadstring('return exp(l)') ():
2.718281828459

See also: strings.dump.

map (£, obj [, ---]1 [, true])
map (£, g)

In the first form, the map function maps a function £ to all the values in table, set,
sequence, register, string or pair obj. £ Must return only one value. The type of
return is the same as of obj. If obj has metamethods or user-defined types, the
return will also have them.

If o5 is a string, £ is applied on all of its characters from the left to right. The retumn is
a sequence of function values.

If function £ has only one argument, then only the function and the structure ooj
must be passed to map. If the function has more than one argument, then all
arguments except the first are passed right after the name of the table or set.

Examples:

> map(<< x -> x"2 >>, [1, 2, 3]):

(1, 4, 9]

> map(<< (x, y) —> x >y >>, [-1, 0, 1], 0): # 0 for y

[false, false, true]

If the very last argument is the Boolean true, then the operation will be done
in-place, modifying the original structure, but saving memory. After completion, the
function returns the modified structure.

238 8 Bassic Functions

In the second form, the function creates the composition of two functions £ @ g =
f(g(X)) and returns it is @ new function (f @ g)(x). £ and g may be univariate or
multivariate and also return multiple results.

Example:

> # first take root, then negate

> h := map(<< x -> —-x >>, << X —> sqrt x >>) # which is equivalent to:
> h 1= << x => -x >> @ << x —> sqgrt x >> # which results to:
> h(2):

-1.4142135623731

See also: @ operator, iterate, sequences.new, registers.new, pipeline, reduce,
remove, select, subs, times, zip.

max (obj [, 'sorted'l])

max (x, y)

In the first form, returns the maximum of all numeric values in table, set, sequence
or register obj. If the option 'sorted’ is passed than the function assumes that all

values in obj are sorted in ascending order and returns the last entry. The function in
general returns null if it receives an empty table or sequence.

In the second form, the function returns the largest of the two numbers x and y.

See also: min, math.max, stats.minmax.

min (obj [, 'sorted'l])

min (x, y)

In the first form, returns the minimum of all numeric values in table, set, sequence or
reqgister obj. If the option 'sorted' is passed than the function assumes that all

values in obj are sorted in ascending order and returns the first entry. The function in
general returns null if it receives an empty table or sequence.

In the second form, the function returns the smallest of the two numbers x and y.

See dlso: max, math.min, stats.minmax.

move (objl, start, stop, newidx [, obj2])

Copies elements from the table, sequence, register or userdata opj1 to table,
sequence, register or userdata obj2, performing the equivalent to the following
multiple assignment: obj2[newidx], *** = objl[start], =+, objl[stop]. The default for
obj2 i obj1, i.e. elements are shifted in the same structure. The destination range
can overlap with the source range. obj1 and obj2 Must be of the same type.

agena >> 239

Returns the destination structure ob2.

Example: The following statement copies four elements in table a from position 3
up fo and including 6 to a new table b, starting with index 1:

> a e = Seq('a', Ibl, Icl, Idl, Iel, Ifl, Igl, lhl),
> b := move(a, 3, 6, 1, seq());
> b:

seqg(c, d, e, f)

The next statement copies four elements in a to its beginning:

> move(a, 3, 6, 1);

> a:
seq(c, d, e, £, e, £, g, h)

The function is implemented in the Agena language and is included in the
lio/library.agn file.

See also: purge, shift, swap, tables.move.

mulup (obj)

Multiplies all numeric values in table, sequence or register ob, using round-off error
correction. The return is a number. If obj is empty or consists entirely of
non-numbers, null will be retumned. If the structure contains numbers and other
objects, only the numbers are multiplied. In tables, numeric entries with
non-numeric keys are processed, as well.

See also: sumup, calc.fprod.

next (obj [, index [, sentinel]])

Allows a programme fo fraverse all fields of a table or all items of a set, sequence
or register opj. With strings, it iterates all its characters. Its first argument is a table,
set, string or sequence and its second argument is an index in the structure.

With tables, sequences or registers, next returns the next index of the sfructure and
its associated value. When called with null as its second argument, next returns an
initial index and its associated value. When called with the last index, or with null in
an empty structure, next returns null.

With setfs, next returns the next item of the set twice. When called with null as its
second argument, next returns the initial item twice. When called with the last index,
or with null in an empty set, next returns null.

240 8 Bassic Functions

With strings, next retumns the position of the respective character (a positive integer)
and the character. When called with null as its second argument, next returns the
first character. When called with the last index, next returns nuill.

If the second argument is absent, then it is interpreted as null. In particular, you can
use next (t) to check whether a table or set is empty. However, it is recommended
to use the filled operator for this purpose.

If the third optional argument sentinel is given, and if next during traversal
encounters an element that equals this sentine1, the function just returns null, and
you may start iterating the structure again from its beginning.

With tables, the order in which the indices are enumerated is not specified, even for
numeric indices. The same applies to set items.

The behaviour of next is undefined if, during the traversal, you assign any value to a
nonexistent field in the structure. With tables, you may however modify existing
fields. In particular, you may clear existing table fields.

See also: factory.iterate, factory.cycle, skycrane.iterate.

ops (index, ---)
ops (s, ---)

In the first form, if index is @ numiber, retumns all arguments after argument number
index. Otherwise, index mMust be the string '#', and ops returns the total number of
extra arguments it received. The function is useful for accessing multiple returns (e.g.

ops (n, ?)L

In the second form, the index positions (infegers) in sequence s specify the values
fo be returned after the first argument 1o ops.

Example:
> f = << () -> 10, 20, 30, 40 >>
20 30 40

If you want to obtain only the element at index, put the call to ops in brackets.

> (ops (2, £())):
20

> ops(seq(2, 4), £()):
20 40

See also: columns, ops, unpack, values.

agena >> 241

optboolean (x, y [, idx [, procname]])

The function checks whether x is a Boolean and in this case returns x. If x is null, it
returns the Boolean y, otherwise the function issues an error. If the third argument
idx, @ number, is given, then the position idx will be returned in error messages. If
the fourth argument procname is given, this name is printed as the function issuing
the error.

optcomplex (x, y [, idx [, procname]])

The function checks whether x is a number or complex numiber and in this case
refurns x. If x is null it retfurns the number or complex number y, otherwise the
function issues an error. If the third argument idx, a number, is given, then the
position idx will be returned in error messages. If the fourth argument procname is
given, this name is printed as the function issuing the error.

optint (x, y [, idx [, procname]l])

The function checks whether x is an infeger and in this case retumns x. If x is null it
returns the integer y, otherwise the function issues an error. If the third argument idx,
a number, is given, then the position idx will be returned in error messages. If the
fourth argument procname IS given, this name is printed as the function issuing the
error.

optnonnegative (x, y [, idx [, procname]])

The function checks whether x is a non-negative number and in this case returns x.
If x is null it retuns the non-negative number y, otherwise the function issues an
error. If the third argument idx, @ number, is given, then the position idx will be
returned in error messages. If the fourth argument procname is given, this name is
printed as the function issuing the error.

See also: optpositive, opthnumber.

optnonnegint (x, y [, procname])

The function checks whether x is a non-negative infeger and in this case retums x. If
x Is null it returns the non-negative integer y, otherwise the function issues an error. If
the third argument idx, a number, is given, then the position idx will be returned in
error messages. If the fourth argument procname is given, this name is printed as the
function issuing the error.

See also: optint, optposint.

optnumber (x, y [, idx [, procname]l])

The function checks whether x is a number and in this case returns x. If x is null it
returns the number y, otherwise the function issues an error. If the third argument
idx, @ number, is given, then the position idx will be returned in error messages. If

242 8 Bassic Functions

the fourth argument procname is given, this name is printed as the function issuing
the error.

See also: optpositive, optnonnegative.

optposint (x, y [, idx [, procname]])

The function checks whether x is a positive integer and in this case retuns x. If x is
null it returns the positive integer y, otherwise the function issues an error. If the third
argument idx, @ number, is given, then the position idx will be returned in error
messages. If the fourth argument procname is given, this name is printed as the
function issuing the error.

See also: optint, opthonnegint.

optpositive (x, y [, idx [, procname]])

The function checks whether x is a positive numiboer and in this case returns x. If x is
null it returns the positive number y, otherwise the function issues an error. If the third
argument idx, a number, is given, then the position idx will be returned in error
messages. If the fourth argument procname is given, this name is printed as the
function issuing the error.

See also: opthonnegative, opthumber.

optstring (x, y [, idx [, procname]l])

The function checks whether x is a string and in this case returns x. If x is null it refurns
the string vy, otherwise the function issues an error. If the third argument idx, a
number, is given, then the position idx will be refumned in error messages. If the
fourth argument procname is given, this name is printed as the function issuing the
eror.

pairs (obj)

Returns three values: the next function, the table obj, and null, so that the
construction

for k, v in pairs(obj) do DOdYy od
will iterate over all key~value pairs or values of table ob5.

See next for the caveats of modifying the table during its traversal; and also: ipairs,
factory.iterate, skycrane.iterate.

agena >> 243

pipeline (£ [, ---], obj [, ---1])

Maps one or more functions £, etc. on a table, set, sequence, register or userdata
obj, avoiding mulfiple infernal copies of the structure if possible.

If given a userdata ooy, the function will change its values in-place, whereas with
tables, sets, sequences and registers, the original structure ob5 will not be modified.

The return is a new structure, depending on the type of obj. If the function has more
than one argument, then all arguments except the first are passed right after the
name of object ob.

See also: map, @ operator.

prepend (x, obj)

Prepends an object x to the beginning of structure opj, in-place. The function
returns the modified structure.

The new object can always be found at index 1, all other elements have been
shifted up one index into open space. With a table, its hash part is not modified.

With a reqister, the function automatically increases its size by one. If obj is A pair,
returns x : obj.

The function is written in Agena and included in the lib/library.agn file.

See also: put, insert statement.

print (--- [, options])

Receives any number of arguments, and prints their values to the console, using
the tostring function to convert them fo strings. print is not infended for formatted
output, but only as a quick way to show a value, typically for debugging. For
formatted output, use strings.format.

In Agena, print also prints the confents of tables and nested tables to stdout if no
__tostring metamethods are assigned to them. The same applies to sets and
sequences.

If the option 'de1im': <sting> is given as the last argument, then print separates
mulfiple values with the given <string> delimiter, otherwise '\t' is used. If the
option "nonewline':true is passed, then Agena does not print a final newline when
finishing output. The r'enclose':<sting> option encloses the values in a given
substring. All other types will not be enclosed. All options can be combined.

If the kernel seﬁing environ.kernel ('longtable') IS set 1o true, then each
key~value pair is printed on a separate line, and Agena halts after environ.more
numiber of lines for the user 1o press any key for further output. Press 'q', 'Q' or the

244 8 Bassic Functions

Escape key to quit. The default for environ.more is 40 lines, but you may change
this value in the Agena session or in the Agena initialisation file.

You may change the way print formats objects by changing the respective
environ.print* functions in the lib/library.agn file. See Appendix A5 for further details.

See also: printf, io.write, io.writeline, skycrane.scribe, skycrane.tee.

printf ([fh,] template, :-:-:)

If the first argument £n is Not given, prints the optional arguments under the control
of the tfemplate string temp1ate O stdout, else it writes to the open file denoted by its
fle handle tn. See strings.format for information on how fo create the template
string.

Example:

> printf ('%$-10s %3d %10.2f\n', 'Carbon', 6, 12.0107);
Carbon 6 12.01

> fh := io.open('file.txt', 'w');

> printf(fh, '%$-10s %3d %10.2f\n', 'Carbon', 6, 12.0107);

> close(fh);

See also: print, io.write, io.writeline, skycrane.scribe, skycrane.tee.

protect (f, argl, --:)

Calls function £ with the given arguments in profected mode. This means that any
error inside £ is not propagated; instead, protect simply catches the error. Note that
protect does not work with operators.

The function either returns all results from the call in case there have been no errors,
or returns the error message as a string as the only return. In case of an error, the
error message is set to the global variable lasterror, otherwise lasterror is set o null.

lasterror is useful for checking the results of a call to protect as in the following:
if protect(---) = lasterror then --- fi

See also: xpceall, try/catch statement.

purge (obj [, pos])
purge (obj, a, b)
In the first form, the function removes from table, sequence or register obj the

element at position pos, shifing down other elements to close the space, if
necessary. It retuns the value of the removed element. The default value for pos is

agena >> 245

n, where n is the length of the table, sequence or register, so that a call purge (ob7)
removes the last element of obj.

In the second form, removes all elements starting from index a to index b (inclusive),
moving excess elements down to close the space; the function automatically
performs a garbage collection after shifting. In the 2™ form, nothing will be
returned.

Use the delete element from sfructure statement if you want to remove any
occurrence of the table value element from a table or sequence. You might also
consider using a linked list, a data structure which supports much faster operations
when inserting or deleting elements, see llist package in Chapter 10.7.

Note that with tables, the function only works if the table is an array, i.e. if it has
positive infegral and consecutive keys only. With registers, the top pointer is reduced
by the number of elements removed.

See also: move, prepend, put, llist.purge, ulist.purge.

put (obj, [pos,] wvalue)

Inserts element value af position pos in table, sequence or register obj, shifting up
other elements to open space, if necessary. The default value for pos is N+ 1, where
n is the current length of the structure, so that a call put (obj, value) insers value af
the end of ob.

Use the insert element into sfructure statement if you want to add an element at
the current end of a structure, for it is much faster. You might also consider using a
linked list, a data structure which supports much faster operations when inserting or
deleting elements, see llist package in Chapter 10.7.

The function returns the modified structure.

See also: prepend, purge, llist.put, ulist.put.

gsumup (obj)

Raises all numeric values in table, sequence or register obj to the power of 2 and
sums up these powers, using a precision-saving method. The return is a number. If
obj is empty or consists entirely of non-numbers, the operator returns fail. If the
structure contains numbers and other objects, only the powers of the numbers are
added. Numeric entries with non-numeric keys are processed, as well.

The operator uses a combination of fused multiply-add and Kahan-Babuska
Summation. To improve accuracy, you may sort obj before.

See also: gmdeyv, sumup, sort, sorted.

246 8 Bassic Functions

rawequal (objl, obj2)

Checks whether ob51 is equal to ob52, without invoking any metamethod. Returns a
Boolean.

rawget (obj, index)

Gefts the real value of objindex], wWithout invoking any metamethod. ob5 must be
a table, set, sequence or pair; index MAy be any value.

See also: getentry, rawset.

rawset (obj, index, value)

rawset (obj, value)

In the first form, sets the real value of obj[index] tO value, Without invoking any
metamethod. ob5 Mmust be a table, set, reqister, sequence or pair, index Any value

different from null, and vaiue any value. To delete a value from any structure, pass
null for value.

In the second form, the function inserts vaiue info the next free position in the given
structure ob3. obj can be a table, set, sequence or register.

This function returns ob.

See also: rawget.

read (filename)

Reads an object stored in the binary file denoted by file name filename and returns
it. The function is written in Agena and included in the lib/liorary.agn file.

See also: save.

readlib (packagename [, packagename2, ---]1 [, true])

Loads and runs packages stored to agn text files (with flename packagename.Qgn) or
binory C libraries (packagename.SO in UNIX, packagename.dll in Windows), or to both.

If true is given as the last argument, the function prints the search path(s), and also
quits and prints some diagnostics if a corrupt C library has been found.

The function first fries to find the libraries in the current working directory, and
thereafter in the path in mainlibname. If it fails, it traverses all paths in liboname until
it finds them. If it finds a library and the current user has at least read permissions for
it, it is initialised. On successful initialisation, the name of the package is entered into
the package.readlibbed set.

agena >> 247

Nofte that if a package consists both of a C DLL and an Agena text file, they should
both be located in the very same folder as readlib does not search for them across
multiple paths and may thus initialise a package only partially.

Make sure that on the operating system level the environment variable AGENAPATH
has been set, that the individual paths are separated by semicolons and that they
do not end in slashes. In UNIX, if AGENAPATH has not been set, readlib by default
searches in /usr/agena/lib.

In OS/2 and Windows, the Agena installation programme automatically sets
AGENAPATH. If it failed, or you want to modify its contents, you may manually set the
variable like in the following examples, assuming that the Agena lioraries are
located in the d:\agena\1ib folder and optionally in the d:\agena\mypackage folder.

SET AGENAPATH=d:/agena/lib Of
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

In UNIX, you may execute one of the following statements in your shell, assuming
that the Agena libraries are located in the /nome/usr/agena/1ib folder and
opTionoIIy iNn the /home/usr/agena/mypackage folder.

SET AGENAPATH=/home/usr/agena/lib Of
SET AGENAPATH=/home/usr/agena/lib; /home/usr/agena/mypackage

In DOS, you have to set AGENAPATH in the autoexec.bat file:

SET AGENAPATH=d:/agena/lib Of
SET AGENAPATH=d:/agena/lib;d:/agena/mypackage

Of course, packages may reside in other directories as well. Just enter further paths
to libname as you need them.

The function returns true if all the packages have been successfully loaded and
executed, or fail if an error occurred.

Hint: the import stafement is an interface o readlib (and initialise), but does not
require to put the package names info quotes. For example,

> readlib('stats');

is equivalent to

> import stats;

See also: run, initialise, import statement.

248 8 Bassic Functions

recurse (£, obj [, ---]1[, option])

Checks each element of the structure oonj (a table, set, pair, sequence or register)
by applying a function £ on each of its elements. £ can be a multivariate function
and must return either true or false. The optional second and all further arguments
of £ may be passed as the third, etc. argument.

With tables, all the entries and keys are scanned.
With sequences and reqisters, only the entries (not the keys) are scanned.

The function performs a recursive descent if it detects tables, sefts, pairs, registers or
seguences in obj SO that it can find elements in deeply nested structures.

If ob is a table and the option skiphash=true has been passed, then the function
ignores all non-numeric keys and their corresponding values.

The function immediately returns true if the function call to any element in obj
evaluates to true, and false otherwise. If obj is a numiber, boolean, complex
number, string, null, procedure, thread, userdata or lightuserdata, recurse returns
fail. It issues an error if ooy is unassigned.

See also: descend, has, satisfy.

reduce (£, obj [, init [, --- [, option]]])

Applies a function £ on each item of a structure or string opj and returns an
accumulated result,

£ must have two or more parameters, but at least parameters x, a, where x will
represent the respective item in obj, and a the accumulator to be updated. If init
is given, then the accumulator is initialised with it, otherwise the accumulator is set
to zero at first.

After fraversal of obj, the accumulator will be returned. The function is equivalent to:

> reduce := proc(f, s, init, ?) is

> local accumulator := init or 0;

> for item in s do

> accumulator := f(item, accumulator, unpack(?))
> od;

> return accumulator

> end;

For example, reduce (<< x, a -> x + a >>, [1, 2, 3, 4]) computes the sum of
the numbers in a table, i.e. 10; and reduce (<< x, a => a & x & '|' >>, '1234"',
') appends a pipe to each character, i.e. retums '1|2|3|4]".

agena >> 249

You can pass further arguments to the given accumulator function by just passing
them as the fourth and following argument(s) to reduce. Example fo compute the
arithmetic mean of all the numbers in table [10, 20, 30].

> tbl := [10, 20, 30];

> f := << x, a, len —> a + x/len >>
> a := reduce(f, tbl, 0, size tbl):
20

for:

> a, len := 0, size tbl;

> for x in tbl do

> inc a, x/len

> od;

A counter can also be used: it can be accessed within the accumulator function
by the name _c when passing the _c = true Option - with _c starting from 1. The
performance penalty, however, may be quite significant:

> tbl := seqg(3, 3, 3);
> a := reduce(<< x, a —> a + x * 10"(_c - 1) >>, tbl, 0, _c=true):
333

may be up 1o four time slower than

> a := 0;

> for _c from 1 to size tbl do
> inc a, tbl[_c] * 10~(_c - 1)
> od;

See also: @ operator, map.

_RELEASE

A global variable that holds a string containing the language name, the current
inferpreter main version, the subversion, and the patch level. The format of this
variable is; 'AGENA >> <version>.<subversion>.<patchlevel>'

See also: global environment variable environ.release, environ.version.

remove (£, obj [, --- [, newarray=true]] [, inplace=true])

Returns all values in table, set, sequence or register opj that do not satisfy a
condition determined by function £, as a new table, set, sequence or register. The
type of retun is determined by the type of second argument, depending on the
type of obj.

250 8 Bassic Functions

If the funcfion has only one argument, then only the function and the
table/set/reqister/sequence are passed to remove.

> remove (<< X -> x > 1 >>, [1, 2, 3]):
[1]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the table or set ob 5.

> remove (<< x, y -> x >y >>, [1, 2, 31, 1): # 1 for y

[1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

Please note that if o5 is a table, the return might include holes. If you pass the
newarray=true option as the last argument, however, the result will be returned in a
table array with consecutive positive integral keys, not preserving the original keys of
the respective values determined, and not having holes; for example:

> remove (<< X -> x < 2 >>, [1, 2, 3]):
[2 ~ 2, 3 ~ 3]

> remove (<< x —> x < 2 >>, [1, 2, 3], newarray = true):
[2, 3]

With a register, all values up to the current top pointer are evaluated, and the size of
the retumned register is equal to the number of the elements in the retumn.

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original sfructure, but saving
memory. After completion, the function returns the modified structure. (You can
combine the newarray and inplace options).

See also: cleanse, countitems, map, select, selectremove, subs, unique, zip.

restart

Restarts an Agena session. No argument is needed.

If a procedure has been assigned to the name environ.onexit, then this procedure
is automatically run before re-initialising the interpreter. An example:

> environ.onexit := proc() is print('Tschif !') end

> restart
Tschil !

During start-up, Agena stores all initial values, e.g. assigned package tables, in a
global variable called _origG. Tables are copied, too, so their contents cannot be

agena >> 251

altered in a session.

When the Agena session is reset, all values in the Agena environment are
unassigned including the environment variable 6. The seeds used by
math.random/math.randomseed are reset, too.

The system variables _origG, liboname, mainlibname environ.onexit, the current
working directory are not reset. mainlibname and liboname, however, are reset to
their original values if you issued the statement environ.kernel (libnamereset =
true) before,

Then all entries in _origG are re-read and assigned to the new environment.

After this, the library base file 1ibrary.agn and thereafter the initialisation file
agena.ini Of .agenainit - if present - are read and executed. Finally, restart runs a
garbage collection.

reverse (obj)

Reverses the order of all elements in a sequence or register opbj iNn-place. With
tables, it reverses the elements in the array part, only. The function returns the
maodified structure.

See also: strings.reverse, stack.reversed.

right (obj)

With the pair obj, the operator returns its right operand. This is equals to obj[2]. See
also: left.

run (filename)

Opens the named file and executes its contents as a chunk. When called without
arguments, run executes the contents of the standard input (stdin). Retuns all
values returned by the chunk. In case of errors, run propagates the error to its caller
(that is, run does not run in protected mode).

See also: readlib, with.

satisfy (£, x [, ---]1 [, option])
satisfy (£, obj [, ---1 [, option])
In the first form, with x a numiber, complex number, string, boolean, null or userdata,

calls the function £ which should return frue or false. The result is the return of this
call. You may also specify optional arguments to f.

252 8 Bassic Functions

With ob5 a structure (second form), checks each element in obj by calling function f
which also should return true or false. If at least one element in oo does not satisfy
the condition checked by f, the result is false, and otherwise true.

The function performs a recursive descent if it detects tables, sets, pairs, registers or
sequences in obj O that it can find elements in deeply nested structures. If ob is A
tfable and the option skiphash=true has been passed, then the function ignores all
non-numeric keys and their corresponding values.

See also: has, recurse, descend.

save (obj, filename)

Saves an object obj of any type into a binary file denoted by file name filename.

save returns an error if an object that cannot be stored to a file has been passed:
threads, userdata, for example. It also returns an error if the object to be written is
self-referencing (e.g. _G). If obj contains one and the same structure multiple times,
e.g. n fimes, then save stores it N times.

The function locks the file when writing, avoiding file corruption if another application
fries fo gain access fo it.

Note that save overwrites existing files without warning. Whereas numbers, strings,
and Booleans are stored in a portable fashion so that the data can e read both
on Big Endian (e.g SPARCs, PPCs) and Liffle Endian systems, procedures cannot.

The function is written in Agena and included in the lib/library.agn file.

See also: read, io.writefile.

select (£, obj [, --- [, newarray=true] [, inplace=true]])

Returns all values in table, set, sequence or register ooy that satisfy a condition
determined by function £. The type of retun is determined by the type of the
second argument.

If £ has only one argument, then only the function and the object are passed to
select.

> select(<< x —> x > 1 >>, [1, 2, 3]):
[2, 3]

If the function has more than one argument, then all arguments except the first are
passed right after the name of the object op5.

> select (<< x, vy —> x >y >, {1, 2, 3}, 1): # 1 for y
{3, 2}

agena >> 253

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

Please note that if o5 is a table, the return might include holes. If you pass the
newarray=true option as the last argument, however, the result will be returned in a
table array with consecutive positive integral keys, not preserving the original keys of
the respective values determined, and not having holes. Thus,

> select (<< x —> x :: number >>, ['a', 10, 20, 30, 'z'], newarray=true);

returns

[10, 20, 30]
instead of
[2 ~ 10, 3 ~ 20, 4 ~ 30]

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original structure, but saving
memory. After completion, the function returns the modified structure. (You can
combine the newarray and inplace options).

With a register, all values up to the current top pointer are evaluated, and the size of
the retumned register is equal to the number of the elements in the retumn.

See also: cleanse, countitems, descend, map, remove, selectremove, subs,
unique, values, zip.

selectremove (f, obj [, --- [, newarray=true]])

Combines the functionality of select with the one of remove: The first result contains
all the elements of a structure ob5 (Q table, set, sequence or register) that satisfy a
given condition, the second result contains the elements of a structure not satisfying
the condition. This may speed up computations where you need both results,
maybe for post-processing, by around 33 %.

If obj is @ table, the return might include holes. If you pass the newarray=true option
as the last argument, however, the result will be returned in tfable arrays with
consecutive positive integral keys, not preserving the original keys of the respective
values determined, and not having holes. Examples,

>a := ['a', 10, 20, 30, 'z'];

> selectremove (<< X —> X :: number >>, a):

[2 ~ 10, 3 ~ 20, 4 ~ 30] [1 ~a, 5 ~ z];

> selectremove (<< x -> x :: number >>, a, newarray=true):

(10, 20, 301 la, z]

254 8 Bassic Functions

See also: remove, select.

setbit (x, pos, bit)
Sefs or unsets a bit in an infeger x at the given bit position pos.

Internally, % is first converted into its binary representation. Then vit is set o the
pos-th position from the right of this binary representation of x. pit May be either
true or false, or the numbers 0 or 1. E.Q. if x is 2 = 00010, pos is 1, and pit is true,
then the result is 3 = 00011,

pos should be an integer in the range |pos| €1 .. 32].

See also: getbit, getbits, setbits, setnbits, numarray.setbit.

setbits (x, r)

Setfs or unsets all 32 bits of an integer x with the bits given in register r. The register
must contain a minimum of one, and a maximum of 32 values, either the Booleans
true or false, or the integers O and 1. If the register contains less than 32 elements,
and has length n, the first 32 - n bits "to the left” are nof set. Example:

> setbits (8, reg(l, 0, 0)):
12

See also: getbit, getbits, setbit, setnbits, numarray.setbit.

setmetatable (obj, metatable)

Sets the metatable for the given table, set, sequence, or pair obj. (You cannot
change the metatable of other types from Agena, only from C.) If metatabie is null,
removes the metatable of the given table. If the original metatable has a
' _metatable' field, raises an error.

This function returns ob-.

See also: getmetatable.

setnbits (x, y [, pos [, nbits [, 'or']l]ll])

Sets nbits bits in 32-bit integer y into position pos Of 32-bit integer x, and returns the
modified value of x. pos ANd nbits should be in [1, 32]. If pos is NOt given, it is 1 by
default (the right-most bit in x).

If nbits iS NOt given, it is math.mostsigbit(y) by default.

By default, the bits in x are overwritten by the bits in y. If the fifth argument 'or' (the
string) is given, the bits are Boolean-OR'ed.

agena >> 255

See also: getbit, getbits, getnbits, setbit, setbits.

settype (obj [, ---]1, str)
settype (obj [, ---1, null)

In the first form the function sets the type of one or more procedures, sequences,
tables, sets, pairs, or userdata obj to the name denoted by string str. gettype and
typeof will then retumn this string when called with ob5.

In the second form, by passing the null constant, the user-defined type is deleted,
and gettype thus will return null whereas typeof will return the basic type of obj.

If ob5 has NO _ tostring Metamethod, then Agena's prefty printer outputs the
objectinthe form str & ' (' & <elements> & ')' instead of the standard 'seq(' «

<elements> & ')' O '<element>:<element>" sTring.

If given just two arguments, i.e. an object and a string or an object and null, the
function returns the modified object. In all other cases, the function returns null.

See also: gettype.

shift (obj, a, b)

Moves an element in table, sequence or register obj from position o1d tO new, with
old, new integers, shifting all the other elements accordingly - which might also
cause a rotation. The function returns nothing.

See also: move, purge, swap.

size (obj)

With tables, the operator returns the number of key~value pairs in table ob;.
With sefts, pairs, and sequences, the operator returns the number of items in ob5.

With registers, the operator returns the number of elements up to the current top
pointer, but not the total numiber of elements in the registers.

With strings, the operator returns the number of characters in string obj, i.e. the
length of obj.

See also: environ.attrib, strings.strlen, strings.utf8size, tables.getsize.

sort (obj [1 [, ull [, £])

Sorts table, sequence or register elements in a given order, in-place, from obj[1] tO
obj[u], where by default 1 is T and u is the length of the structure. If £ is given, then
it must be a function that receives two structure elements, and returns true when

256 8 Bassic Functions

the first is less than the second (so that not £ (objri+11, objril) Will be true after
the sor). If £ is not given, then the standard operator < (less than) is used instead.

The sort algorithm is not stable; that is, elements considered equal by the given
order may have their relative positions changed by the sort. Also, the function
cannot sort structures featuring values of different types (see skycrane.sorted for an
alternative). The return is the sorted structure.

See also: sorted, stats.issorted, skycrane.sorted, stats.sorted.

Example:

> s := [1, 2, 3]

> sort(s, << X, Yy —> X >y >>):

[3, 2, 1]

> s := seq(l:'a', 1.1:'b', 1.2:'c');

> sort (s, << x, y —> left(x) > left(y) >>):
seq(l.2:c, 1.1:b, 1l:a)

sorted (obj [1 [, ull [, £1)

Sorts table, sequence or register elements in obj in @ given order from obj[1] 1O
obij[u], but - unlike sort - not in-place, and non-destructively. By default, 1 is 1 and u
is the length of the structure. Depending on the type of ob4, the return is a new table
or seguence.

If £ is given, then it must be a function that receives two structure elements to
determine the sorting order. See sort for further information.

The function cannot sort structures featuring values of different types (see
skycrane.sorted for an alternative).

See also: sort, skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, ---], obj [, true])

Substitutes all occurrences of the value x in the table, set, sequence or register obj
with the value v. More than one substitution pair can e given. The substitutions are
performed sequentially and by default simultaneously starting with the first pair. The
type of return is determined by the type of obj.

> subs(1:3, 2:4, [1, 2, -11):
(3, 4, -1]

If present, the function also copies the metatable and user-defined type of obj 10
the new structure.

agena >> 257

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original structure, but saving
memory. After completion, the function returns the modified structure.

By default, subs is sfill replacing the elements in a structure with all the
replacements given, including intermediate substitutions. So if we have an
expression like

> subs(1:2, 2:3, 3:4, [1, 2, 31)

we will get:

By passing the multipass=false option, the rest of the replacement list will be
skipped as soon as a substitution has been done:

> subs(1:2, 2:3, 3:4, [1, 2, 3], multipass=false):
(2, 3, 4]

You can check numbers for approximate instead of strict equality by passing the
new strict=false option.

See also: countitems, map, remove, select, zip.

sumup (obj)

Sums up all numeric values in table, sequence or register obj. The retun is a
number. If obj is empty or consists entirely of non-numbers, the operator returns fail.
If the structure contains numibbers and other objects, only the numbers are added.
Numeric entries with non-numeric keys are processed, as well. The operator uses
Kahan-Babuska Summation. To improve accuracy, you may sort ob before.

See also: mulup, gsumup, calc.fsum, stats.cumsum, stats.sumdata, sort, sorted.

swap (obj, a, b)

Swaps the table array, sequence or reqister ob5 entries at index positions a and b,
with a, b integers. The function returns nothing.

See also: move, purge, shift.

time ()

Returns UTC time in seconds elapsed since the epoch in seconds as a number. The
fractional part of the return represents milliseconds. The epoch usually is January 01,
1970, but this may vary between platforms.

258 8 Bassic Functions

See also: os.clock, os.difftime, os.time, watch, skycrane.stopwatch.

times (£, x, n [, ---1)

times (f, x, infinity, eps [, ---1)

In the first form, the function takes a start value x of any type, applies function £ to it
and repeatedly applies £ to its previous result n-1 times. n should be a positive
integer. It returns the result of the last call to £. The second and further arguments of
£ must be put right affer n.

If nis less than 1, the function returns null.

Example:

> times (<< x -> 1 + recip x >>, 1, 33) -> 1.6180339887499 # Golden ratio
> f 1= << x -=> times(<< n -> 0.5*(n + x/n) >>, 1, 20) >> # square root
You can bail out of the loop prematurely by including a Boolean condition in the

function definition. As soon as the expression evaluates to false, the iteration will
stop and the previous interim result will be returned, e.g.:

> times(<< X —> x < 10 and x + 1 >>, 1, 33):
10

If times should bail out in the first iteration then false, i.e. the result of the function
call, will be returned:

> times(<< x —> x < 0 and x + 1 >>, 1, 33):
false

In the second form, takes a start value x of any type, applies function £ to it and
repeatedly applies £ to its previous result until the absolute difference of the last two
function calls reaches or drops below the numeric threshold eps, a non-negative
value.

If a function call evaluates to tinfinity or undefined, the operator also quits,
returning infinity or undefined, respectively.

The third argument infinity just signals that the user wants to use this mode. If £ is
multivariate, all arguments but the first are passed right after eps.

Example: Solve the equation 73+ 2x - 5 = 0 using Newton's method.

> import calc

> 5 1= << X —> T*x"3 + 2*x — 5 >>

\%

times (<< x -> x — s(x)/calc.eulerdiff(s, x) >>, 4, infinity, DoubleEps):
.78792505251729

o

agena >> 259

> s (ans):
0

See also: @ operator, map, calc.aitken.

top (obj)

With the table array, sequence or register ob§, the operator returns the element with
the largest index. If ob5 is empty, it retuns null.

See also: bottom.

toreg (obj)

If obj is a string, the function will split it into its characters and return them in a
reqister with each character in obj as a register value, and in the same order as the
characters in obj.

If on is a table, the function puts all its values - but not its keys - info a register.

If obj is a set, the function puts all its items into a register. The same applies to
sequences.

If obj contains structures, then only their references are copied. Map copy 1o
structures if you want to create independent copies of them.

In all other cases, the function issues an error.
See also: toseq, toset, totable.

toseq (obj)

If obj is a string, the function will split it into its characters and return them in a
seguence with each character in obj as a sequence value, and in the same order
as the characters in obj.

If oby is a table, the function puts all its values - but not its keys - iNnfo a sequence.

If ooy is a set, the function puts all its items info a sequence. The same applies to
registers.

If obj contains structures, then only their references are copied. Map copy 1o
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toset, totable.

260 8 Bassic Functions

toset (obj)

If onj is a string, the function will split it into its characters and returns them in a set.
Note that there is no order in the resulting set.

If ob5 is @ table, sequence or register, the function puts all its values - but not its keys
- intfo a new set,

If obj contains structures, then only their references are copied. Map copy 1o
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toseq, totable.

totable (obj)

If onj is a string, the function splits it into its characters, and returns them in a table
with each character in obj as a table value in the same order as the characters in
obij.

If on5 is O sequence, register, or set, the function converts it into a table.

If obj contains structures, then only their references are copied. Map copy 1o
structures if you want to create independent copies of them.

In all other cases, the function issues an error.

See also: toreg, toseq, toset.

type (obj)

This operator returns the basic type of its only argument obj, coded as a string. The
possible results of this function are 'nu11' (the string, not the value null), 'mumber',
'string', 'boolean', 'table', 'set', 'sequence’', 'register’', 'pair',

'complex', 'procedure', 'thread', 'lightuserdata’, and 'userdata’.

If ob5j is @ table, set, sequence, pair, or procedure with a user-defined type, then
type always returns the basic type, €.9. 'sequence' Of 'procedure',

See also: :: and :- operators, checktype, gettype, typeof.

typeof (obj)

This operator returns the user-defined type - if it exists - of its only argument ob,
coded as a stfring.

agena >> 261

A self-declared type can be defined for procedures, tables, pairs, sets, and
sequences with the settype function. If there is no user-defined type for obj, then
the basic type will be retumned, i.e. 'nu11' (the string, not the value null), 'numper,
'string', 'boolean', 'table', 'set', 'register’', 'sequence’, 'pair’',

'complex', 'procedure', 'thread', ONd 'userdata'

See also: :: and :- operators, type, gettype.

unassigned (obj)

This Boolean operator checks whether an expression ob5 evaluates to null. If ob is a
constant, i.e. a number, boolean including fail, or a string, the operator always
returns false.

See also: assigned.

unique (obj)

With a fable obj, the function removes all holes ("missing keys') and removes
multiple occurrences of the same value in the array part, if present. The hash part of
a table is considered 1o be always unique by definition, so it just copies it to the
result. The return is a new table with the original table unchanged.

With a sequence or register ob5, the unique function removes multiple occurrences
of the same value, if present. The retun is a new sequence or register with the
original structure unchanged.

See also: tables.entries.

unpack (obj, [, i [, 311)

Retumns the elements from the given table, sequence or register obj. This function is
equivalent to

return obj[i], objli+l], ---, objljl

except that the above code can be written only for a fixed numiber of elements. By
default, i is 1 and 5 is the length of the object, as defined by the size operator.

Please note that if you put a call to unpack info an expression list, only the first return
of unpack is propagated if the call to unpack is not at the final position of the
expression list, for example:

> s := [unpack([1l, 2, 31), 4, 51]: # 2 and 3 are discarded
(1, 4, 5]

s := [-1, 0, unpack([l, 2, 3]1)]: # 2 and 3 are included
71! Or lr 2! 3}

262 8 Bassic Functions

Consider copyadd in this situation. See also: identity, ops, values.

values (obj, i, [, i, ---11)

Returns the elements i, from the given table, sequence or register ob5. This function
is equivalent to - for example -

return [i; ~ obj[i.], i, ~ obj[i.], --- 1 Of
return seq(obj[ii:], obj[i.], ---)

The type of return is determined by the first argument ob5.

See also: columns, ops, select, unpack.

watch ([option])

The function implements a stop watch. With the first call, the function starts counting
and returns 0. The second call returns the elapsed time in seconds and milliseconds
and restarts the clock. If any argument is given, then the clock is reset, but it does
not start counting.

See also: time, os.time, skycrane.stopwatch.

whereis (obj, x)

Returns the indices for a given value x in table, sequence or register obj As A new
table, sequence or register, respectively, dependent on the type of ob5.

See dlso: tables.entries, tables.indices.

write ([fh,] vi [, vz, ---]1 [, delim = <str>])

This function prints one or more numbers, Booleans or strings v, o the file denoted
by the handle £n, or to stdout (i.e. the console) if £n is not given.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (€.9. 'delim':'|' Of delim="|") QS
the last argument to the function with <str> being a sting of any length.
Rememlber that in the function call, a shorfcut 10 'delim' :<str>iSdelim = <str>.
The function is an interface to io.write.

See also: printf, skycrane.scribe, skycrane.tee.

agena >> 263

writeline ([fh,] vy [, vz, ---]1 [, delim = <str>])

This function prints one or more numbers, booleans or strings v, followed by a
newline to the file denoted by the handle £n, or to stdout (i.e. the console) if £n is
not given.

By default, no character is inserted between neighbouring values. This may be
changed by passing the option 'delim':<str> (i.€. A pair, €.9. 'delim':'|') as the
last argument to the function with <str> being a string of any length. Remember
that in the function call, a shortcuf O 'delim':<str>iS delim = <str>.

The function is an interface to io.writeline.

See also: printf, skycrane.scribe, skycrane.tee.

xpcall (f, err [, argl, ---])
This function is similar 1o protect, except that you can set a new error handler.

xpcall calls function £ in protected mode, using err as the error handler. Arguments
fo £ are opftional. Any error inside £ is not propagated; instead, xpcall catches the
error, calls the err function with the original error object, and retumns a status code.
Its first result is the status code (a Boolean), which is true if the call succeeds without
errors. In this case, xpceall also retuns all results from the call, after this first result. In
case of any error, xpcall returns false plus the result from err.

See also: protect.

zip (£, objl, obj2 [, ---1)
zip (op, objl, obj2)

In the first form, the function zips together either two sequences, two registers, or two
fables obj1, obj2 by applying the function £ to each of its respective elements.
Depending on the type of obj1, obj2, the result is a new sequence, register, or fable
s Where each element s[k] is determined by s[k] := f(obj1[K], ob52[K]).

obj1l ANd obj2 Must have the same numiber of elements. If you pass tables, they
must have the same keys.

If £ has more than two arguments, then its third to last argument must be given right
after s.

In the second form, op depicts an arithmetic operator, represented as a string, that
Zips together the structure elements:

264 8 Bassic Functions

e 41 addition,

e ' subctraction,

e v« multiplication,

e /v division,

* "\\'!:integer division,

e g modulus,

e a1 exponentiation,

* 'xx1:integer exponentiation.

This method is twice as fast with sequences and registers, and 50 % faster with
tables.

If obj1 Or obj2 have user-defined types or metatables, they are copied 1o the
resulting structure, as well. If obj1 has a metatable, then this metatable is copied,
else the metatable of onj2 is used if the lafter exists. The same applies to
user-defined types.

See also: map, remove, select, subs.

agena >> 265

Chapter Nine

Strings

266 Q Strings

agena >> 267

9 Strings

9.1 Basic String Functions

Summary of Functions:

Search

atendof, has, in, notin, instr, strings.find, strings.glob, strings.match,
strings.mfind.

Insertion, Substitution, and Deletion

replace, strings.appendmissing, strings.chomp, strings.chop, strings.gsub,
strings.include, strings.remove, strings.wrap, strings.wrapmissing.

Extraction

split, strings.advance, strings.between, strings.charset, strings.fields,
strings.gmatch, strings.gmatches, strings.gseparate, strings.separate,
strings.splitfields, strings.strchr, strings.strrchr, strings.strstr.

Queries

abs, empty, filled, strings.charmap, strings.compare, strings.contains,
strings.diffs, strings.dleven, strings.fuzzy, strings.isaligned, strings.isalpha,
strings.isalphanumeric, strings.isalphaspace, string.isalphaspec,
strings.isascii, strings.isblank, strings.iscenumeric, strings.iscontrol,
strings.isdia, strings.isending, strings.isfloat, strings.isgraph, strings.ishex,
strings.islatin, strings.isisoalpha, strings.isisolower, strings.isisoprint,
strings.isisospace, strings.isisoupper, strings.islatinnumeric,
strings.isloweralpha, strings.islowerlatin, strings.ismagic, strings.isnumber,
strings.isnumeric, strings.isnumberspace, strings.isprintable,
strings.isspace, strings.isspec, strings.isstarting, strings.isupperalpha,
strings.isupperlatin,strings.isutf8, strings.iswrapped, strings.shannon,
strings.strcmp, strings.strverscmp.

Counting
size, strings.hits, strings.strlen, strings.utf8size, strings.words.

Formatting
lower, trim, upper, strings.align, strings.capitalise, strings.format,
strings.isolower, strings.isoupper, strings.ljustify, strings.ltrim, strings.Irtrim,

strings.rjustify, strings.rtrim, strings.tolower, strings.toupper,
strings.uncapitalise.

268 Q Strings

Conversion

&, join, tonumber, tostring, strings.aé4, strings.diamap, strings.iterate,
strings.pack, strings.packsize, strings.reverse, strings.tolatin, strings.toutf8,
strings.transform, strings.unpack.

Manipulation

@, map, strings.iterate, strings.repeat, strings.rotateleft, strings.rotateright,
strings.tobytes, strings.tochars.

Miscellaneous

strings.random.

A notfe in advance: All operafors and strings package functions know how to
handle many diacritics properly. Thus, the lower and upper operators know how 1o
convert these diacritics, and various is* functions recognise diacritics as alphabetic
characters.

Diacritics in this context are the letters:

4 A 4 A a4 A 4 A & A & E & A
& E & & E é& E E

i I 1 I 1 I 1 I v Y ¥

5 6 6 6 o 0 o @ 6 0 5 0

a 0 u U 4 U u U

¢ ¢ A N &8 P p P B

9.1.1 Operators and Functions

sl & s2

This binary operator concatenates two strings s1, s2 and returns a new sfring. s1 or
s2 May also be a number or a Boolean; in this case the argument will be converted
to a string and then concatenated with the other operand.

See also: join.

v &:= s

The compound concatenation operator appends string s to the contents of the
string variable v. It is equivalent to: v := v & s.

agena >> 269

sl atendof s2

This binary operator checks whether string s2 ends in a substring s1. If frue, the
position of the position of s1 in s2 will be returned; otherwise null will be returned. The
operator also retuns null if the strings have the same length or at least one of them
is the empty string.

See also: in, instr, strings.isstarting, strings.isending.

sl in s2

This binary operator checks whether string s2 includes s1 and returns its position as a
numibber, or null if s1 cannot be found. The operator also returns null if at least one
of the strings is the empty string.

See also: atendof, instr, notin, strings.contains, strings.isstarting, strings.isending.

sl notin s2

This binary operator checks whether string s2 does noft include s1 and returns true or
false.

See also: in operator,

sl split s2

Splits the string s1 info words. The delimiter is given by string s2, which may consist of
one or more characters. The return of the operator is a sequence. If s1= s2, orif s2
is the empty string, then an empty sequence will be returned.

See also: strings.fields, strings.iterate, strings.separate.

abs (s)

With strings, the operator returns the numeric ASCII value of the given character s (a
string of length 1).

empty (s)

The operator checks whether the string s is empty. The return is true or false. See
also: filled.

filled (s)

The operator checks whether the string s is non-empty. The return is true or false.
See also: empty.

270 9 Strings

has (s, chars)

Checks whether at least one character in s matches one of the characters in
chars, A string representing a set of individual characters.

See also: in operator, strings.contains.

instr (s, pattern [, init] [, plain] [, 'reverse'] [, 'borders'])

Looks for the first match of string pattern in the string s. If it finds a match, then instr
returns the index of s where this occurrence starts; otherwise, it returns null.

If pattern is O set of pattern strings, retumns true if at least one of the patterns
matches s; otherwise returns false.

If the option 'reverse is given, then the search starts from the right end and always
runs to its left beginning and the first occurrence of pattern with respect to the
beginning of s will be retumned. In the reverse search, paftern matching is not
supported.

An optional numerical argument init passed anywhere after the second argument
specifies where 1o start the search; its default value is 1T and may be negative. In
the latter case, the search is started from the |init |'s position from the right end of

S,

The function by default suppors patftern matching, almost similar to regular
expressions, see Chapter 9.1.3. instr is 45 % faster than strings.find. If the optional
Boolean argument p1ain is set 1o the Boolean true, paftern matching is switched off
and a much faster plain search is conducted instead (speed bonus around 40 %).

The optional argument 'vorders' refumns the start and the end position of a match
in a pair. However, this mode is slow, use strings.find instead which is twice as fast.

See also: atendof, in, strings.isstarting, strings.isending, strings.find.

join (obj [, sep [, i [, 3111)

Concatenates all string values in the table, sequence or register obj in sequential
order and returns a string: objri] & sep & obj[i+1] - & sep & obj[5]1. The default
value for sep is the empty string, the default for i is 1, and the default for 5 is the
length of the sequence. The function issues an error if obj contains non-strings.

See also: & operator,

agena >> 271

lower (s)

The operator receives a string and returns a copy of this string with all uppercase
lefters (A' to 'Z' plus the above mentioned diacritics) changed to lowercase (‘a' fo 2
and the diacritics listed at the end of Chapter 9.1). The operator leaves all other
characters unchanged. Example:

> lower ('Elektronika MK-61"'):
elektronika mk-61

See also: strings.isolower, strings.tolower, upper.

map (£, s [, ---]1 [, true])

This function mayps a function £ to all characters of string s from the left to right. The
retun is a sequence of function values.

If function £ has only one argument, then only the function and the string s must be
passed to map. If the function has more than one argument, then all arguments
except the first are passed right after argument s. If the last argument is the option
inplace=true, or the Boolean true, then the operation wil be done in-place,
modifying the original structure, but saving memory. After completion, the function
returns the modified structure.

replace (sl, s2, s3)
replace (sl, obj)

replace (sl, pos, s2)

In the first form, the function replaces all occurrences of string s2 in string s1 by string
s3.

In the second form, the function receives a string s1 and a table, sequence or
reqgister onj of one or more string pairs of the form s2:s3 and replaces all
occurrences of s2 in string s1 with the corresponding string s3. Thus you can replace
multiple patterns simultaneously with only one call to replace.

In the third form, the function inserts a new string s2 info the string s1 at the given
position pos, substituting the respective character in s1 with the new string s2 which
may consist of zero, one or more characters. The return is a new string. If s2 is the
empty string, the character in s1 is deleted. The return is always a new string.

The function does not support pattern matching, use strings.gsub instead.

See also: utils.singlesubs.

272 9 Strings

size (s)

With a string s, the operator returns ifs length, i.e. the number of characters in s.

tonumber (e [, base])

Tries to convert its argument to a number or complex value. If the argument is
already a number, complex value, or a string convertible to a number or complex
value, then tonumber returns this value; otherwise, it returns e if e is a string, and fail
otherwise. The function recognises the strings 'undefined' ANd 'infinity' properly,
i.e. it converts them to the corresponding numeric values undefined and infinity,
respectively.

An optional argument specifies the base to interpret the numeral. The base may be
any integer between 2 and 36, inclusive. In bases above 10, the letter 'A' (in either
upper or lower case) represents 10, 'B' represents 11, and so forth, with 'Z'
representing 35. In base 10 (the default), the number may have a decimal part, as
well as an optional exponent part. In other bases, only unsigned intfegers are
accepted. If an option is passed, 'undefined' ANd 'infinity' Are not converted
to numbers; and if e could not be converted, fail will be returned.

tostring (e [, anyoption])

Receives an argument e of any type and converts it to a sting in a reasonable
format. For complete control of how numbers are converted, use strings.format.

If the metatable of e has a ' tosting' field, then the tostring function calls the
corresponding value with e as argument, and uses the result of the call as ifs result.
With numbers, the number of digits in the resulting string is dependent on the
kernel/digits setting. See environ.kernel for further information.

If e is @ complex number, its real and imaginary parts are returned as two strings. If
any option is given, the return is one string of the format t're+im*I" or t're-im*I",
depending on the sign of the imaginary part of e.

See also: tostringx.

tostringx (e)

Works like tostring but also formats structures, userdata and complex numbers the
same way as the prettyprinter does, or in other words: it returns the argument as a
string formafted the same way as the print function outputs it on screen. This is
useful if you want to write structures or complex numbers to a file.

trim (s)

Returns a new string with all leading, trailing and excess embedded white spaces
removed. trim is an operator. See also: strings.ltrim, strings.Intrim, strings.rtrim.

agena >> 273

upper (s)

The operator receives a string and retumns a copy of this string with all lowercase
lefters (‘a' to 'z' plus the above mentioned diacritics) changed to uppercase (A’ to 2
and the diacritics listed at the end of Chapter 9.1). The operator leaves all other
characters unchanged. Example:

> upper ('Elektronika MK-61"):
ELEKTRONIKA MK-61

See also: lower, strings.capitalise, strings.isoupper, strings.toupper.

9.1.2 The strings Library

The strings library provides generic functions for string manipulation, such as finding
and exfracting substrings, and paftern matching. When indexing a string in Agena,
the first character is at position 1 (not at O, as in C). Indices are allowed to be
negative and are interpreted as indexing backwards, from the end of the string.
Thus, the last character is at position -1, and so on.

The strings library provides all its functions inside the table strings.

strings.a64 (x)

The function converts between 32-bit long integers and little-endian base-64 ASCI
strings (of length O 1o 6).

If the argument x is a base-64 ASCII string, the result is a signed 32-bit integer; if the

argument x is a number, the resulf is the base-64 ASCII string, which consists of the

characters:
./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnoparstuvwxyz

strings.advance (s, p [, option])

strings.advance (s, pos)

In the first form, the function moves to substring p in string s and returns p up to the
end of s. If p could not be found, the function retumns null. The function supports
patftern matching. If the optional third argument true is given, the function returns
the rest of s following but not including p. In this case, if s ends with p, null will be
returned.

In the second form, the substring starting at position pos (a positive integer) up to the
end of s will be retumned. If pos is greater than the length of s, the result is nuill.

See also: strings.find.

274 9 Strings

strings.align (s [, n])

Inserts newlines into a string s after each n character. By default n is 79, so a newline
is inserted at position 80, 160, and so forth. The retumn is a string. The function helps
with correctly outputting formatted text at the console.

strings.appendmissing (s, t)

Appends suffix t (a string) to s (a string) if t is not already at its end; otherwise returns
s. If s is the empty string, t will be retumned.

strings.between (s, p, q [, truel)

Returns the substring in string s that is nested between the prefix sting p and the
suffix string q. p Or ¢ May reside within the string. If the Boolean value true is given as
a fourth argument, the function fries to return the substring found as a number. If
nothing could be found, the function returns null.

See also: strings.chomp, strings.include.

strings.capitalise (s)

Converts the first character in string s to upper case - if possible - and retumns the
capitalised string. If s is the empty string, it is simply refumned. It also converts
ligatures if the Western European character set is being used.

See also: upper, strings.uncapitalise.

strings.charmap ()

Queries the internal tables to classify characters. Returns a table of key~value pairs:

Key Sequence of Used by/Comment

alpha alphabetical leffers §’rrings.olpho, s’r'rings'.isolphonumeric, strings.
isalphaspace, strings.isalphaspec

pscii table of all ASCIl | result may vary across platforms and

characters codepages

upper upper-case lefters | strings.isupperalpha

lower lower-case letters strings.isloweralpha

vowel vowels strings.isvowel
strings.isalpha, strings.isalphanumeric,

dia diacritics strings.isalphaspace, strings.isalphaspec,
strings.isdia

digits digits 0 to 9 strings.isalphanumeric

hex hexadecimals strings.ishex

punct punctuations strings.isspec, strings.isalphaspec

agena >> 275

Key Sequence of Used by/Comment

control control characters | strings.iscontrol
such as\n, \r, \b

blank white space, tab strings.isblank

printable | printable strings.isprintable
characters

strings.charset (s)

Returns a set of all the unique characters included in a string.

See also: has, strings.contains.

strings.chomp (s, t [,---1)

Removes pattern string + from the end of string s if it is there, and retumns the
shortened string s; otherwise returns s unchanged. If more than one pattermn is given,
each additional pattern will be removed from the previous result.

The function supports pattern matching. In this case you or may not terminate the
pattern with one final 's'.

Example:

> strings.chomp ('agena language', '(%a+)', 'ena '):
ag

See also: strings.chop.

strings.chop (s)

strings.chop (s, f)

In the first form, removes the last character from string s and retumns the shortened
string. If s is empty, it is simply returned.

In the second form, if a function £ returning true or false is given, chop checks
each character in the string from the right fo the left for the given Boolean condition
and retumns the string from ifs beginning up to and including the character that no
longer satisfies the condition.

Example:

> strings.chop('path/file.name', << x —> x <> '/' >>):
path/

See also: strings.between, strings.chomp.

276 9 Strings

strings.compare (sl, s2)

When called with no opfion, retumns the first position - an integer - where the two
strings s1 and sz differ, or O if both strings are equal.

See also: strings.strcmp, strings.strverscmp.

strings.contains (s, t)

Checks whether all characters in string s are part of the characters in sting +, and
returns true or false.

See also: has, in operator, strings.charset.

strings.cut (s, d)

The function takes a string s to be split into two pieces, and a string 4 of one or
more single-character delimiters, and retumns two values: the first part of s up fo -
but not including - the delimiter found, and the rest of s also without the delimiter.

If a string cannot be split apart, it will be returned as the first result and the second
return is null.

See also: split, strings.separate.

strings.diffs (s, t [, n [, option]])

Counts the differences between the two strings s and +: substitutions, transpositions,
deletions, and insertions.

By default, both strings must contains at least n=3 characters. You may change this
by passing any other positive number for n. The function retums fail if af least one of
the strings consists of less characters.

If any fourth argument is given, the return is a sequence of strings describing the
respective difference found, otherwise the returns is the number of the differences
encountered.

The function is af least thrice as fast as strings.dleven, but may count differently in
odd situations.

See also: strings.dleven, strings.fuzzy, skycrane.tolerance.

agena >> 277

strings.dleven (s, t)

Returns the Damerau-Levenshtein distance between two strings s and «. It is a count
of the minimum number of insertions, deletions, substitutions of a single character,
or franspositions of two neighbouring characters to convert s into t. The retumn is a
number. If af least one of the strings is empty, undefined will be returned.

See also: strings.fuzzy, strings.diffs, skycrane.tolerance.

strings.diamap (s [, option])

The function corrects problems in the Solaris, Linux, OS/2, Windows, and DOS
consoles running code page 850 with diacritics and ligatures read in from the
keyboard or a text file by mapping them to code page 1252. It takes a strings s,
applies the mapping, and returns a new string. All other characters are returned
unchanged.

If any option is given, the function transforms a string from code page 1252 to 850.
Example:

> strings.diamap ('AEIOU-I_&+I"'):
AEIOUAOUEAD

Note that the function does not convert all existing special tokens.

Agena is shipped with substitution tables for code page 1252. If you want to use
another code page, edit the _c2f and _f2c tables in the lib/library.agn file
accordingly.

See also: os.codepage.

strings.dump (f [, strip])

Returns a string containing a binary representation of the given function £, so that a
later loadstring on this string refuns a copy of the function. £ must be an Agena
function without upvalues, remember table or internal store table.

If strip is a true value, the binary representation may not include all debug
information about the function, 1o save space.

The function can also be used to binarily serialise data by defining a function
returning data, e.Q.:

> f := proc() is return [1, 2, 3] end;

DS

strings.dump (f) ;

> loadstring(s) () :
(1, 2, 3]

278 9 Strings

See also: strings.tobytes.

strings.fields (s, i, [, i, ---1 [, delim] [, true])

strings.fields (s, o [, delim] [, true])

Extracts the given fields (columns) in string s. In the first form, the field positions i,, i.,
etc. are non-zero integers. The field positions may be negative, denoting fields
counted from the right end of s. In the second form, the field positions are given in
the sequence o.

An optional string de1im MAy be passed to denote the character or character
sequence that separates the individual fields. The default for de1im is the white
space. If the Boolean value true is given as the last argument, the function tries to
convert the fields infto numbers.

The return is a sequence of the fields (strings).

See also: strings.iterate, strings.gseparate, split, especially if you want to retrieve all
fields in a string.

strings.find (s, pattern [, init [, plain]])

Looks for the first match of string pattern in sting s. If it finds a match, then find
returns the indices of s where this occurrence starts and ends; otherwise, it returns
null. The function does support pattern matching facilities (which you can tumn off,
see below). If pattern is a table, set, sequence or register of string patterns, then the
function checks whether at least one of the patterns matches s and retumns the
respective result.

A third, optional numerical argument init specifies where fo start the search; ifs
default value is 1 and may be negative. A value of true as a fourth, optional
argument p1ain tumns off the pattern matching facilities (see Chapter 9.1.3), so the
function does a plain “find substring™ operation, with no characters in pattem being
considered "magic . Note that if p1ain is given, then init must be given as well.

If the pattern has captures, then in a successful match the captured values are also
returned, after the two indices.

See also: in, atendof, and instr, strings.mfind.

strings.format (formatstring, ---)

Returns a formatted version of its variable number of arguments following the
descriptfion given in its first argument (which must be a string). The format string
almost follows the same rules as the ISO C function sprintf. The only differences
are that the conversion specifiers *, | and L are not supported and that there are
thiteen extra specifiers: a, A, b, B, h, H,m, n, N, p, P, g, Q, D, and F.

agena >> 279

For an overview of all available specifies and examples, see below.

In general a format has the following syntax, where values in square brackets are
optional:

%[flags][width][.precision]
flags' may be one of the specifiers described below, optionally preceded by:

e — (minus): left-justify the result,
* + (plus): print plus sign in front of positive numbers

You can mix - and +.

'width' is the minimum length of the outfput in characters. 'precision' depicts the
minimumM number of decimal places to appear, with trailing zeros to be added if
necessary.

The following specifiers do not comply to the C standard:

The g specifier formats a string in a form suitable to be safely read back by the
Agena interpreter: All double quotes, newlines, embedded zeros, and backslashes
in the string are correctly escaped when written, and without trailing zeros in the
fractional part when the precision specified in the specifier is greater than the
numiber of significant digits in the argument supplied. The same applies to Q but
with single quotes. The a and A specifiers work the same like the g and Q specifiers,
respectively, but do not include trailing or leading double quotes. The B specifier
prints a string in backquotes. The b specifier prints a Binary value.

For instance, the call

> strings.format('%qg', 'a string with \"quotes\" and \n new line')

will produce the string:

"a string with \"quotes\" and \
new line"

The h and H specifiers print a floating-point number in a hexadecimal fractional
notation with the exponent to base 2 represented in decimal digits. On DOS and
0S/2, the h and H specifiers are not available, and in Windows 2000 they do not
work.

The p specifier multiplies the given numiber by 100 and displays it in fixed float ()
format, followed by a percent sign. The m specifier prints a monetary amount with
thousands separators and the decimal point defined by the current locale, the
default is the format string '%. 2f'.

280 Q Strings

The specifier P formats the pointer (returned by lua_topointer). That gives a unique
string identfifier for structures, userdata, threads, strings, and functions. For other
values (numbers, null, booleans), this specifier results in a string representing the
pointer NULL.

The n and N specifiers print a number using the decimal point separator of the
locale of the operating system (which may differ from the locale in use by Agenaq),
otherwise they work like the f and F specifiers.

The specifiers D and F prevent quarrels with numerical functions that may return
non-numbers in case of erors: D formats an infeger like the d specifier if the
argument is a number, and the C double representation of undefined otherwise if
the value is not a number. Likewise, F and N either format a float, or the C double
companion piece of undefined (e.g. 1.#onano in Windows) if the value is not a
number.

The conversion specifiersc, D, d, E, e, f,F, 9, G, h, H,i,m, n, N, 0, p, u, X, and x all
expect a number as argument, whereas s expects a string, and a, A, P, g, Q and
expect anything.

This function does not accept string values containing embedded zeros.

Examples:

> strings.format ('%+15.9f', 10k*Pi):
+31415.926535898

> strings.format ('%15.9f', 3.5):
3.500000000

> strings.format ('%-15.9f', 3.5):
3.500000000

> strings.format ('%015.9f', 3.5):
00003.500000000

> strings.format ('%15.0f', 3.5):
4

> strings.format ('%$15d', 3.5):
3

> strings.format ('$X', 2716-1):
FFFF

> strings.format ('%c', 97):
a

> strings.format('%s', 'agena >>'):
agena >>

> strings.format('%q', 'agena >>'):
"agena >>"

agena >>

281

> strings.format ('%d\n%2d\n%02d\n%2.5f\n%+2.5f\n+2.5f\n%s"', 1, 1, 1,

> Pi,
1

1

01
3.14159
+3.14159
-3.14159

Pi,

-Pi, 'New Horizons'):

New Horizons

Summary

Specifier | Description Example

%d, %l writes as an intfeger -1, 1

%0 writes as an octal numiber 12

%bo writes a binary number in the range [-1023, 1023] | -ObT111111111

YoU writes as an unsigned integer, with a cast to C's | 10
uint32 t

YoX, YoX writes as unsigned hexadecimal number, with a | f, F
cast fo uint32 t. %x uses lower-case, %X
upper-case

Yof writes as a floating-point number in normal, | 3.141593
fixed-point notation

Yolf writes as a floating-point number in normal, | 3.1415926535..
fixed-point notation with 16 fractional digits by
default

Y%ld writes a long double in normal, fixed-point
notfation with 19 fractional digits by default, see
long package in Chapter 11.15

%e, %E writes a floating-point number in exponential | 3.141593e+000,
notation. %e uses lower-case, %E upper-case 3.141593E+000

%Q, %G | writes a floating-point number in either normal or | Te-006
exponentfial notation, depending on its | TE-006
magnitude. %g uses lower-case, %G upper-case

%h, Y%H writes a floating-point number in a hexadecimal | 0x1.921fb5p+1,
fractional notation with the exponent to base 2 | OX1.921FB5P+1
represented in decimal digits. %h uses
lower-case, %H upper-case

%P writes in percent 314.159265%

%m writes a monetary amount with thousands | 31,415.93
separators and the decimal point defined by the
current locale

%N, %N | writes a number using the decimal point | 31415,926536
separator of the locale of the operating system

%D writes an integer if the value is a number, and | 3, undefined
"undefined" otherwise

Y%F writes a floating-point number if the value is a | 3.141593,
numiber, and "undefined" otherwise undefined

282 9 Strings

Specifier | Description Example
%Q, %Q), | writes a string put in double (%Qq). single (%Q) or | "3.1415926535.."
%B backqguotes (%B) suitable to be safely read back
by the interpreter
%Q, %A | like %Qq but without surrounding quotes 3.1415926535..
%C writes the corresponding ASCII character a
%S writes a string, numbers are automatically | agena,
converted properly 3.1415926535..
%% writes percentage sign Y%

strings.fuzzy (s, t)

Compares two strings case-insensitively and retumns an estimate of their similarity as
both an absolute and relative score, the lafter taking into account the length of the
longer string.

One point is given for a matching character. Subsequent matches are given two
extra points. A higher score indicates a higher similarity. With the second return, 1
depicts equality, and a lower value the degree of similarity.

The function is written in Agena and included in the lib/library.agn file.

See also: strings.dleven, strings.diffs, skycrane.tolerance.

strings.glob (s, pattern [, true])

Compares a sting s with a string pattern, the latter optionally including the
wildcards 2 and *, where » represents exactly one unknown character, and =
represents zero or more unknown characters. Other pattern matching facilities are
not supported.

The return is true if the pattern could be found, and false otherwise. If the optional
third argument is true, then the strings are compared case-insensitively.

See also: strings.find.

strings.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures
from pattern oOver sting s. The function supports pattern matching facilities
described in Chapter 9.1.3.

If pattern specifies Nno captures, then the whole match is produced in each call.

As an example, the following loop

> s := 'hello world from Lua'

agena >> 283

[

> for w in strings.gmatch(s, '%a+') do
> print (w)
> od

will iterate over all the words from string s, printing one per line. The next example
collects all pairs key~value from the given string into a table:

> create table t;

> s := 'from=world, to=Lua'

> for k, v in strings.gmatch(s, ' (%w+)=(%w+)"') do
> tlk] = v

> od

See also: strings.match, strings.gmatches.

strings.gmatches (s, pattern)

Wrapper around strings.gmatch which returns all occurrences of a substring
pattern iN striNg s A in a new sequence.

The function is writfen in Agena and included in the lib/library.agn file.

strings.gseparate (s, pattern [, tonumber [, init]])

The function takes a string s to be split apart into its tokens one after another, and a
delimiter string pattern, and returns an iterator function that each time it is called,
returns one token. If the end of s has been reached, the function returns null. The
function supports pattern matching. For an iterator without pattern matching, see
strings.iterate.

If s starts with the delimiter, an empty string will be returned.

If the Boolean value true is passed to tonumber, the function fries to return a
number. If init, @ positive integer is given, the function searches from the init'th
character in s.

If called with any argument, the function returns the number of tokens returned but
does not search for the next token.

See also: split, strings.fields, strings.iterate, strings.separate.

strings.gsub (s, pattern, repl [, n])

Returns a copy of s in which all occurrences of the pattern have been replaced
by a replacement string specified by rep1, which may be a string, a table, or a
function. gsub also returns, as its second value, the total number of substitutions
made. See Chapter 9.1.3 for more information on patterns.

284 Q Strings

If rep1 is @ string, then its value is used for replacement. The character % works as
an escape character: any sequence in repl Of the form %n, with n between 1 and
9, stands for the value of the n-th captured substring (see below). The sequence %0
stands for the whole match. The sequence %% stands for a single %.

If rep1 is @ table, then the table is queried for every match, using the first capture as
the key; if the pattern specifies no captures, then the whole match is used as the
key.

If rep1 is a function, then this function is called every time a match occurs, with all
captured substrings passed as arguments, in order; if the patftern specifies no
captures, then the whole match is passed as a sole argument.

If the value retumned by the table query or by the function call is a sting or a
number, then it is used as the replacement string; otherwise, if it is false or null, then
there is no replacement (that is, the original match is kept in the string).

The optional last parameter n limits the maximum numlber of substitutions to occur.
For instance, when n is 1 only the first occurrence of pattern is replaced.

Here are some examples:

X := strings.gsub('hello world', '(sw+)',
——> x = 'hello hello world world'

X := strings.gsub('hello world',
——> x = 'hello hello world'

X := strings.gsub('hello world from Lua', '(%w+)%s*(Sw+)', '%2 %$1')
-——> x = 'world hello Lua from'

X := strings.gsub('home = $HOME, user = SUSER', '%$$(%w+)', os.getenv)
—-—> x = 'home = /home/roberto, user = roberto'

X := strings.gsub('4+5 = Sreturn 4+5$', '%$S$(.-)%$', proc (s)

return loadstring(s) ()

end)

-——> x = '"4+5 = 9!

local t := [name~'lua', version~'5.1"]

X = strings.gsub('S$name%-Sversion.tar.gz', 'S(%w+)', t)

-——> x = 'lua-5.1.tar.gz'

See also: replace.

strings.hits (s, pattern [, true])

Returns the number of occurrences of substing pattern in string s.

If only two arguments are passed, pattern matching facilities (see Chapter 9.1.3)
are supported. If the Boolean constant true is passed as a third argument, pattemn
matching is switched off for faster execution.

agena >> 285

See also: strings.words.

strings.include (s, pos, p)

Inserts the string p into the string s at position pos.
If pos < size s, the character at position pos is Moved size p places to the right.
If pos = size s + 1, p is just appended 10 s, equal to the Agena expression s & p.

The function returns the new string and issues an error, if the index pos is invalid. p
may be the empty string, in this case, p will be returned.

See also: strings.between, strings.remove.

strings.isstarting (s, pattern [, true])

Determines whether a string s is beginning with the sulbstring pattern, i.e. whether
pattern fits entirely to the beginning of the string s in case the length of pattern is
less than that of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see Chapter 9.1.3)
are supported. If the Boolean constant true is passed as a third argument, pattemn
matching is switched off for faster execution.

If s Or pattern Are empty strings or have the same length, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given prefix.

See also: strings.isending, atendof.

strings.isaligned (s)

Checks whether the string s is aligned on the 4-byte word boundary and returns true
or false.

strings.isalpha (s [, t])

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and returns true or false.

If the opftional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isdia, strings.isisoalpha, strings.islatin, strings.ismagic.

286 Q Strings

strings.isalphanumeric (s [, t])

Checks whether the string s consists entirely of numlbers or alphabetic letters
(including diacritics) and returns true or false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in «.

See also: strings.islatinnumeric.

strings.isalphaspace (s [, t])

Checks whether the string s consists enfirely of alphabetic lefters (including
diacritics) and/or a white space and retumns true or false.

If the opftional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

strings.isalphaspec (s)

Checks whether the string s consists entirely of the Latin lefters a to z, A to Z, or all
characters that are not blanks or alphanumeric, and returns true or false.

See also: strings.isspec, strings.isalphaspace.

strings.isascii (s)

Checks whether the string s consists entirely of C unsigned char 7-bit characters
only that fits into the UK/US character. It is a direct port to the C function “isascii’,
and returns true or false.

strings.isblank (s [, true])

Checks whether the string s consists entirely white spaces or tabulators (\t) and
returns true or false. If the opfion true is given, the function checks for tabs,
linefeeds, carriage retumns, white spaces, vertical tabs, and form feeds.

See also: strings.isisospace, strings.isspace.

strings.iscenumeric (s)

Checks whether the string s consists entirely of the digits O to 9 and optionally
exactly one decimal comma at any position, and returns true or false.

See also: strings.isfloat, strings.isnumber, strings.isnumeric, os.setlocale.

agena >> 287

strings.iscontrol (s)

Checks whether the string s consists entirely of control characters and returns true or
false. Control characters are: \O', bell, backspace, tab, linefeed, cariage retumn,
and all other characters between ASCIl code 0 and 31, plus the DEL key (ASCII
code127). The function is the opposite to strings.isprintable.

See also: strings.isblank, strings.isprintable, strings.isspec.

strings.isdia (s)

Checks whether the string s consists entirely of diacritics (such as @, &. @, U) and
ligatures (such as B, &) and returns true or false. The function works correctly with
the ISO/IEC 8859-1 character set only.

See also: strings.isalpha.

strings.isending (s, pattern [, true])

Defermines whether a string s is ending in the substing pattern, i.e. whether
pattern fits entirely to the end of the string s in case the length of pattern is less
than that of s. The function returns true or false.

If only two arguments are passed, pattern matching facilities (see Chapter 9.1.3)
are supported. If the Boolean constant true is passed as a third argument, pattern
matching is switched off for faster execution.

If s Or pattern are empty strings or both are the same, the function returns false.

The function can be useful in linguistics if you want to check whether a word has a
given inflectional ending.

See also: strings.isstarting, atendof.

strings.isfloat (s)

Checks whether the string s consists entirely of the digits O to 9 and exactly one
decimal point (or the decimal-point separator at your locale) at any position, and
retuns true or false.

See also: strings.isnumber, strings.isnumeric, os.setlocale.

strings.ishex (s)

Checks whether the string s represents a hexadecimal number which consists of the
digits O to @ and or the letters 'a' to 'f' or 'A' to 'F', and retumns true or false.

See also: strings.isnumber, utils.hexlify.

288 Q Strings

strings.isgraph (s)

Checks whether the string s consists of glyphs only. It is a direct port to the C
function “isgraph’, and retumns true or false.

strings.isisoalpha (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic lower
and upper-case characters (including diacritics) and returns true or false. The
function only correctly recognises strings read from a file. Mostly, it cannot process
ligatures input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha.

strings.isisolower (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
lower-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isloweralpha.

strings.isisoprint (s)

Checks whether the string s consists entirely of printable ISO 8859/1 Latin-1 letters
and returns true or false.

strings.isisospace (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 white spaces and
returns true or false.

See also: strings.isspace.

strings.isisoupper (s)

Checks whether the string s consists entirely of ISO 8859/1 Latin-1 alphabetic
upper-case characters (including diacritics) and returns true or false. The function
only correctly recognises strings read from a file. Mostly, it cannot process ligatures
input in a shell, e.g. the Windows NT or Mac console.

See also: strings.isalpha, strings.isupperalpha.

strings.islatin (s [, t])

Checks whether the string s entirely consists of the characters 'a' to 'z, and A'to 'Z'. It
returns true or false. If s is the empty string, the result is always false.

agena >> 289

If the opftional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isalpha.

strings.islatinnumeric (s [, t])

Checks whether the string s consists entirely of numibers or Latin letters 'a' to 'z' and ‘A’
to 'Z', and returns true or false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in «.

See also: strings.isalphanumeric.

strings.isloweralpha (s [, t])

Checks whether the string s consists entirely of the characters a to z and lower-case
diacritics, and retumns true or false. If s is the empty string, the result is always false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in «.

See also: strings.isisolower, strings.isupperalpha.

strings.islowerlatin (s [, t])

Checks whether the string s consists entirely of the characters 'a' to 'z, and returns
true or false. If s is the empty string, the result is always false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in «.

See also: strings.isupperlatin.

strings.ismagic (s)

Checks whether the string s contains one or more magic characters and returns
true or false. In this function, magic characters are anything unlike the letters 'A' fo
'Z','d' to 'Z', and the diacritics listed at the top of this chapter.

See also: strings.isalpha.

strings.ismultibyte (s)

Detects whether the given string s is in UTF-8 encoding and retumns two booleans
(true or false): The first Boolean indicates that s is compliant to the UTF-8 standard.
Remember that a string in ASCII or ISO 8859 encoding is also a valid UTF-8 string.

290 9 Strings

The second Boolean indicates that s contains at least one multi-byte UTF-8
character, i.e. that at least one character is part of the UTF-8 but not of the ASCII or
ISO 8859 standard.

If an infeger is returned as a third argument, it will denote the position where the
string did not meet UTF-8 criteria.

Please note that the function may not produce correct results with text input in a
console. The function can only retun correct results if the string to be checked has
been read from a file.

See also: strings.isutf8, strings.isisoalpha.

strings.isnumber (s)

Checks whether the string s consists entirely of the digits O to 9 and returns true or
false.

See also: strings.isfloat, strings.ishex, strings.isnumeric.

strings.isnumberspace (s)

Checks whether the string s consists entirely of the digits O to 9 or white spaces and
returns true or false.

strings.isnumeric (s)

Checks whether the string s consists entirely of the digits 0 fo 9 or digits and
optionally exactly one decimal point (or the decimal-point separator at your locale)
at any position, and returns true or false.

See also: strings.iscenumeric, strings.isfloat, strings.isnumber, os.setlocale.

strings.isolower (s)

Receives an ISO 8859/1 Latin-1 string s and retumns a copy of this string with all
upper-case letters changed to lower-case. The operator leaves all other characters
unchanged.

See also: lower, strings.isoupper.

strings.isoupper (s)

Receives an ISO 8859/1 Latin-1 string s and returns a copy of this string with all
lower-case letters changed o upper-case. The operator leaves all other characters
unchanged.

See also: lower, strings.isoupper.

agena >> 291

strings.isprintable (s)

Checks whether the string s consists entirely of characters that can be output at the
console (characters with ASCIl codes 32 to 255 except the backspace) and returns
true or false. The function is the opposite 1o strings.iscontrol.

strings.isspace (s)
Checks whether the string s consists entirely white spaces and returns true or false.
See also: strings.isblank, strings.isisospace.

strings.isspec (s)

Checks whether the string s consists entirely of punctuation characters (any printing
character that is not a white space or alphanumeric), including

whitespace ; 2 ; ' "#ses%s& ' > *x/ + - ., ()L 1LY\~ _

~ =< >
and returns true or false.
See also: strings.isalphaspec, strings.isspace, strings.ismagic.

strings.isupperalpha (s [, t])

Checks whether the string s consists entirely of the capital letters 'A' to 'Z' and
upper-case diacritics, and returns true or false. If s is the empty string, the result is
always false.

If the opftional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in t.

See also: strings.isisoupper, strings.isloweralpha.

strings.isupperlatin (s [, t])

Checks whether the string s consists entirely of the capital letters 'A' to 'Z', and returns
true or false. If s is the empty string, the result is always false.

If the optional string t representing a character set is given, the function also checks
whether any character in s might match one of the characters in «.

See also: strings.islowerlatin.

292 9 Strings

strings.isutf8 (s)

Detects whether the given string contains at least one multibyte and return true or
false.

See also: strings.ismultibyte, strings.isisoalpha.

strings.iswrapped (s, t)

Checks a string s with a another string ¢ if ¢ is missing at the start and the end of s,
and returns true or false.

See also: strings.wrap, strings.wrapmissing.

strings.iterate (s [, pos [, n]l])
strings.iterate (s, 0 [, option])

strings.iterate (s, delim)

In the first form, returns an iterator function that, when called returns the next n
characters in string str, starting at position pos. pos and n are 1 by default.

In the second form, when pos is zero, returns an iterator function that from the left to
right returns each four consecutive characters in string str as an unsigned 4-byte
integer. The iterator returns Little Endian integers unless the third argument is set to
true fo return Big Endian integers.

In the third form, by passing a string de1 of one or more delimiters as the second
argument, returns an iterator function that step-by-step returns a field surrounded by
at least one of the delimiters. Patternn-matching is not supported, use
strings.gseparate instead.

If there are no more characters 1o process, the factory returns null.

See also: split, strings.fields, strings.gseparate, strings.separate, strings.splitfields,
strings.tobytes.

strings.ljustify (s, width [, filler])

Adds filling characters to the right end of string s, as necessary to return a new string
of the given widtn. If s is a number, it is automatically converted to a string before
padding starts. The filling characters may be denoted by the third optional
argument filler (NUMber or string), otherwise filler is a white space by default. If
the resulting string is longer than the given width, it is fruncated to the first width
characters.

See also: strings.rjustify.

agena >> 293

strings.lrtrim (s [, c])

Retuns a new string with all leading and trailing white spaces removed from s. If a
single character is passed for ¢ as an optional second argument, then all leading
and frailing characters given by ¢ are removed. If ¢ is a multi-character string, then
if existing it is removed once from the start and once from the end of s. The
function supports pattern matching.

It does not remove spaces or the given character(s) within the “actual’ part of the
string.

See also: trim operator, strings.ltrim, strings.ririm, strings.wrap.

strings.ltrim (s [, c])

Returns a new string with all leading white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all leading
characters given by ¢ are removed. If ¢ is a multi-character string, then if existing it is
removed once from the start of s. The function supports pattern matching.

See also: trim operator, strings.Iftrim, strings.rtrim.

strings.match (s, pattern [, init])

Looks for the first match of pattern in the sting s. If it finds one, then match returns
the captures from the pattern; otherwise it retuns null. If pattern specifies no
captures, then the whole match will be returned. A third, optional numerical
argument init specifies where fo start the search; its default value is 1 and may be
negative.

The function supports pattern matching facilities. For examples and help in case of
problems, see Chapter 4.7.7.

See also: strings.gmatch, strings.matches, skycrane.xmimatch.

strings.matches (s, pattern [, init])

Works like strings.match, but returns all matches in only one call.

Example:
> strings.matches('St. Petersburg, Europe', ' ([&6UBRAOUSal*)"'):
St Petersburg Europe

strings.mfind (s, pattern [, init [, plain]])

Like strings.find, but looks for all the matches of pattern in the string s. If it finds at
least one match, it returns a sequence with at least one pair indicating where the
respective match starts and ends, otherwise, it returns null.

294 9 Strings

A third, optional numerical argument init specifies where to start the search; its
default value is 1 and may be negative. A value of true as a fourth, optional
argument p1ain tumns off the pattern matching facilities (see Chapter 9.1.3), so the
function does a plain "find substring”™ operation, with no characters in pattern
being considered "magic . Note that if p1ain is given, then init must be given as
well.

Contrary to strings.find, if the paftern has captures, then in a successful match the
captured values are not returned.

See also: in, atendof, and instr, strings.find, strings.matches.

strings.pack (fmt, vl1, v2, --:)

Returns a binary sftring containing the values vi, vz, efc. serialized in binary form
(packed) according to the format string fmt, see Chapter 9.1.4.

strings.packsize (fmt)

Returns the size of a string resulting from strings.pack with the given format. The
format string cannot have the variable-length options s or 'z'. For format strings,
see Chapter 9.1.4.

strings.random (length [, kind [, 1 [, ulll)

Creates a random string of the given fixed 1ength. By default, i.e. kind is sef fo
'base64', O Basebds string consisting of the characters

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghikimnoparstuvwxyz0123456789 +/

will be returned. If the second argument kind is 'ascii', @ random ASCIl string
consisting of characters in the range ASCII 32 to ASCII 126 will be returned. You can
change the upper and lower bounds by explicitly passing the non-negative integers
1and u.

strings.remove (s, pos [, len])
strings.remove (s, p [, nl)

strings.remove (s, p [, ---])

The function removes a substring from a string. It supports pattern matching.

In the first form, starting from string position pos, the function removes 1en characters
from sting s. The refumn is a new string. If 1en is NoOt given, it defaults to one
character to e deleted.

It is not an eror if 1en is greater than the actual length of s. In this case all
characters starting at position pos are deleted.

agena >> 295

In the second form, substring p is removed n fimes from string s. The default for n is
infinity, i.e. all occurrences of p are removed.

In the third form, one or more substrings p, ... are removed from string s, in the order
of the arguments.

See also: replace, strings.include.

strings.repeat (s, n [, delimiter])

Returns a string that is the concatenation of n copies of the sting s. An optional
delimiter StiNQ May also be given.

strings.reverse (s)

Returns a string that is the string s reversed. See also: reverse, stack.reversed.

strings.rjustify (s, width [, filler])

Adds filling characters to the beginning of string s, as necessary to return a new
string of the given width. If s is a number, it is automatically converted to a string
before padding begins. The filing characters may be denoted by the third optional
argument fil1er (NUMber or string), otherwise fil1er is a white space by default. If
the resulting string is longer than the given width, it is fruncated to the last width
characters.

See also: strings.ljustify.

strings.rtrim (s [, c])

Retuns a new string with all trailing white spaces removed from s. If a single
character is passed for ¢ as an optional second argument, then all trailing
characters given by ¢ are removed. If ¢ is a multi-character string, then if existing it is
removed once from the end of s. The function supports pattern matching.

See also: trim operator, strings.Irtrim, strings.ltrim.

strings.rotateleft (s, n [, xorkey [, xorval]])

Rotates all the bits in the string s n bits to the left, with n in range 0 .. 7.

The n bits dropping off the beginning of the string will be appended to the resulting
string, so that there is no information loss when calling strings.rotateright to decrypt
it.

For opfional arguments xorkey aNd xorval see strings.rotateright.

296 9 Strings

strings.rotateright (s, n [, xorkey [, xorval]])

Rotates all the bits in the string s n bits to the right, with n in range 0 .. 7.

The n bits dropping off the end of the string will be prepended to the resulting string,
so that there is no information loss when calling strings.rotateleft to decrypt it.

You can opfionally xor the string by passing the third argument xorkey, an infeger in
the range 0 .. 255. (Note that in case the string might be corrupted, the function
issues an error.) By explicitly seffing the optional fourth argument xorva1 fo true, you
can achieve further obfuscation of the string while xoring.

strings.separate (s, d [, anyl)

Splits a string s info its fokens. 4 is a string that specifies a set of delimiters that may
surround the token to be extracted. Thus, the delimiter in front of a token may be
different from the delimiter at its end. All the tokens or returned in a sequence in
sequential order. If s only consists of characters that are part of 4, or if s or a are
empty strings, the function returns fail.

> strings.separate('a word, another word.', ' .,"):
seqg(a, word, another, word)

If any third argument is passed, then Q) the function retumns a sequence with one
empty string if s is the empty string instead of fail, and b) if none of the delimiters
could be found in s, retuns a sequence with s in it instead of fail.

See also: split operator, strings.iterate, strings.gseparate, strings.splitfields.

strings.shannon (s)

Returns the normalised specific Shannon entropy, the specific Shannon entropy,
and the total information entropy (in bits) for string s, in this order.

The function does not ook for any patterns that might bbe available for compression,
SO its use is quite limited and gzip.deflate might be a better alternative.

strings.splitfields (s, wrapper, delim)

Splits a string s containing fields delimited by substring de1im into its fields and returns
them in a sequence. The function is suited 1o parse database or other dumps.

One or more fields may each be wrapped by substing wrapper - if the wrapper
exist, the respective leading and frailing substring wrapper is removed from each
individual field. Pass the empty string for wrapper if NO wrappers are to be deleted.

See also: split operator, strings.fields, strings.iterate, strings.gseparate,
strings.separate.

agena >> 297

strings.strchr (s, i)

The function is an inferface to the C strchr function, searches s for a single
character represented by its ASCIl code i and returns a substring starting from the
first match to the end of s. The second return is the position of the match, staring
from 1. It returns null and O if no match was found and issues an error if needle is
noN-positive.

See also: abs, strings.strrchr, strings.strstr.

strings.strrchr (s, i)

The function is an interface to the C strrchr function, searches s backwards from the
end for a single character represented by its ASCIl code i and returns a substring
starting from the first match to the end of s. The second return is the position of the
match, staring from 1. It retfurns null and O if no match was found and issues an
error if needle is non-positive.

See also: abs, strings.strchr, strings.strstr.

strings.strcmp (sl, s2)

The function calls the C function strcmp and returns its result, "a value that has the
same sign as the difference between the first differing pair of characters" (GNU C
Library manual).

See also: strings.compare, strings.strverscmp.

strings.strlen (s)

Returns the length of string s: the first return is the result of the call to the internal C
function strlen, and the second retum is the internally stored length of s, returned by
Agenad's size operator.

The difference between strlen and size is that C's strlen only counts the number of
characters up to and excluding the first embedded zero (i.e. character \O),
whereas size returns the real length including embedded zeros, but without the
terminating zero.

Example:

> s := 'abc' & char(0) & 'defgh';
> # 3 chars up to the first embedded zero, 9 chars at all

> strings.strlen(s):
3 9

298 9 Strings

strings.strstr (sl, s2)

The function is an interface to the C strstr function, searches s1 for a substring s2
and returns a substring starting from the first match to the end of s1. The second
return is the position of the match, starting from 1. It returns null and O if no match
was found. If s2 is an empty string, the function retums s1.

See also: strings.strchr, strings.strrchr.

strings.strverscmp (sl, s2)

The function compares two version strings. It is a direct interface to the GNU C
strverscmp function. The following is a summary of the GNU documentation:

"If you have files jan1, jan2, ..., jan9, jan10, ..., it feels wrong when an application
orders them janl1, janlQ, ..., jan2, ..., jan9, because the expected order is just: janl,
jan2, ..., jan9, jan10, ...

The function returns an integer less than, equal fo, or greater than zero if s1 is found,
respectively, to be earlier than, equal to, or later than s2.

Both input strings should be in plain ASCII."

See also: strings.compare.

strings.tobytes (s [, option [, bigendian]])

Converts a string s into a sequence of its numeric ASCII codes. If the string is empty,
an empty sequence will be retumned. If option is true or the integer 4, the function
returns word-aligned 4-byte unsigned integers instead of individual bytes. |If
bigendian I$ true, then with word-aligned 4-byte unsigned integers the result is in Big
Endian notation, otherwise it is Little Endian.

Note that numerical codes are not necessarily portable across platforms.

Example:

> s := strings.tobytes('agena', 4): # convert to 4-byte integers
seq (1852139361, 97)

> str = '";

> for 1 in s do # convert each 4-byte integer

> t := bytes.tobytes (i, 4) # to four single bytes and convert
> str &:= strings.tochars(t) # back to string
> od
> str:
agena

> # or just simply:

agena >> 299

> strings.tochars(s, 4):

See also: strings.iterate, bytes.tobytes, strings.tochars, utils.hexlify.

strings.tochars (---)

strings.tochars (s [, nbytes [, little]])

In the first form, receives zero or more integers in the range 0 .. 255 and returns a
string with length equal to the number of arguments, in which each character has
the intfernal numerical code equal to its corresponding argument.

In the second form, converts all the integers in sequence s to a string. By default, s
is assumed to contain integers in the range 0 .. 255. If nbytes is 4, s should include
unsigned 4-byte integers. If 1itt1e is the Boolean true - the default - the infegers are
converted tfo Little Endian before assembling the string, otherwise pass false.

Note that numerical codes are not necessarily portable across platforms.

See also: strings.tobytes.

strings.tolatin (s)

Creates a dynamically allocated copy of string s, changing the encoding from
UTF-8 fo ISO-8859-15. Unknown code points are returned unchanged. The return is a
string. ISO-88569-15 is ISO-8859-1 plus the Euro symbol.

See also: aconv package, strings.toutf8.

strings.tolower (s [, option])

Converts all uppercase lefters in sting s fo lowercase. By default, only the
characters 'A' 1o 'Z' are fransformed. If you pass any option, then also the diacritics
listed at the end of Chapter 9.1 are converted, t00.

See also: lower, strings.toupper.

strings.toupper (s [, option])

Converts all lowercase letters in sting s to uppercase. By default, only the
characters 'a' to 'z' are transformed. If you pass any option, then also the diacritics
listed at the end of Chapter 9.1 are converted, t00.

See also: lower, strings.toupper.

300 9 Strings

strings.toutf8 (s)

Creates a dynamically allocated copy of string s, changing the encoding from
ISO-8859-15 to UTF-8. The retun is a string. ISO-8859-15 is ISO-8859-1 plus the Euro
symbol.

See also: aconv package, strings.isutf8, strings.tolatin, strings.utf8size.

strings.transform (f, s)

Applies a function £ to the ASCII value of each character in string s and retuns a
new string. £ must return an integer in the range [0, 255], otherwise an error will be
issued.

Note that numerical codes are not necessarily portable across platforms.

strings.uncapitalise (s)

Converts the first character in string s to lower case - if possible - and returns the
uncapitalised string. If s is the empty string, it is simply returned. It also converts
ligatures if the Western European character set is being used.

See also: lower, strings.capitalise.

strings.unpack (fmt, s [, posl]])

Returns the values packed in string s (see strings.pack) according to the format
string fmt, see Chapter 9.1.4. An optional pos Marks where to start reading in s
(default is 1). After the read values, this function also returns the index of the first
unread byte in s. If s - depending on the requested transformation - is too short, the
function just returns null and zero.

strings.utf8size (s)

Determines the size of the string s in UTF-8 encoding and returns a non-negative
infeger. The return is not the number of bytes used to represent a UTF-8 string, but
the number of single- and multi-byte "UTF-8 characters™. Thus, for example, while
size strings.toutf8('a') returns 2, strings.utf8size(strings.toutf8('a'))
retuns 1.

Please note that the function may not produce correct results with text input in a
console. The function can only retumn correct results if the string to be checked has
been read from a file.

See also: size, strings.isutf8.

agena >> 301

strings.words (s [, delim [, true]])

Counts the number of words in a string s. A word is any sequence of characters
surrounded by white spaces or its left and/or right borders. The user can define any
other delimiter by passing an optional character de1im (Of type string) as a second
argument. If the third argument is true, then succeeding delimiters are ignored. The
return is a number.

See also: strings.hits.

strings.wrap (s, t)

Wraps a string s with another strings t, refumning the Agena equivalent of + & s & t.
See also: strings.iswrapped, strings.Irtrim, strings.wrapmissing.

strings.wrapmissing (s, t)

Wraps a string s with string + if £ is missing at the start and the end of s; otherwise
simply returns s.

See also: strings.iswrapped, strings.wrap.

302

9 Strings

9.1.3 Patterns

Character Class:

A character class is used to represent a set of characters. The following
combinations are allowed in describing a character class:

X: (where x is not one of the magic characters ~s () %. [1*+-2) represents the
character x itself.

.1 (a dot) represents all characters.

sa: represents all letters.

sc: represents all control characters.

sd: represents all digits.

$1: represents all lowercase letters.

sk. represents all upper and lower-case consonants, y and Y are not
considered consonants.

sp: represents all punctuation characters.

$s: represents all space characters, e.g. white spaces, newlines, tabulators,
and carriage retumns,

su: represents all uppercase letters.

sv: represents all upper and lower-case vowels including the letters y and Y.
sw: represents all alphanumeric characters.

sx: represents all hexadecimal digits.

sz: represents the character with representation O.

s<y>: (Where <y> is any non-alphanumeric character) represents the
character y. This is the standard way to escape the magic characters. Any
punctuation character (even the non magic) can be preceded by a 's'
when used to represent itself in a pattern.

[set]: represents the class which is the union of all characters in set. A range
of characters may be specified by separating the end characters of the
range with a . All classes sy described above may also be used as
components in set. All other characters in set represent themselves. For
example, [sw_] (or [_sw]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-751%-] represents the
ocftal digits plus the lowercase lefters plus the '-' character.

The interaction between ranges and classes is not defined. Therefore,
patfterns like [sa-z] Or [a-%%] have no meaning.

[~set]: represents the complement of sef, where set is interpreted as above.

For all classes represented by single letters (sa, sc, sv etc.), the corresponding
uppercase letter represents the complement of the class. For instance, ss
represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current
locale. In particular, the class [a-z] may not be equivalent to s1.

agena >> 303

Pattern ltem:
A pattern item may be

e asingle character class, which matches any single character in the class;

e asingle character class followed by '+', which matches O or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

e asingle character class followed by '+, which matches 1 or more repetitions
of characters in the class. These repetition items will always match the
longest possible sequence;

e a single character class followed by '-', which also matches O or more
repetitions of characters in the class. Unlike '+, these repetition items will
always match the shortest possible sequence;

e asingle character class followed by '2', which matches O or 1 occurrence of
a character in the class;

e :3n, for n between 1 and 9; such item matches a substring equal to the n-th
captured string (see below);

e sbxy, where x and y are two distinct characters; such itemn matches strings
that start with x, end in y, and where the x and y are balanced. This means
that, if one reads the string from left to right, counting +1 for an x and -1 for a
y. the ending vy is the first y where the count reaches 0. For instance, the item
%b() matches expressions with balanced parentheses;

e sf[sef], a frontier pattemn; such item mMmatches an empty string at any position
such that the next character belongs to set and the previous character does
not belong to set. The set “set’ is interpreted as previously described. The
beginning and the end of the subject are handled as if they were the
character \O',

Pattern:

A pattfern is a sequence of pattern items. A '~' at the beginning of a pattern anchors
the match at the beginning of the subject string. A 's' at the end of a pattemn
anchors the match at the end of the subject string. At other positions, '~ and 's'
have no special meaning and represent themselves.

Captures:

A pattern may contain sub-paftemns enclosed in parentheses; they describe
captures. When a match succeeds, the substrings of the subject string that match
captures are stored (captured) for future use. Captures are numbered according to
their left parentheses. For instance, in the paftern '(a*(.)sw(ss*))', the part of the
sting matching 'a*(.)sw(ss*)' is stored as the first capture (and therefore has
number 1); the character matching ' is captured with number 2, and the part
matching 'ss+' has number 3.

304 9 Strings

As a special case, the empty capture () captures the current string position (a
numiber). For instance, if we apply the pattern '(Jaa()' on the string 'flaaap', there will
be two captures: 3 and 5.

A pattern cannot contain embedded zeros. Use sz instead.

9.1.4 Format Strings for Pack and Unpack

The first argument to strings.pack, strings.packsize, and strings.unpack is a format
string, which describes the layout of the structure being created or read.

A format string is a sequence of conversion options. The conversion opfions are as
follows:

* <! sefs Little Endian

* >:sets Big Endian

* = sefs natfive Endian

* !'[n]: sets maximum alignment to n (default is native alignment)

. a signed byte (char)

: an unsigned byte (char)

: a signed short (native size)

. an unsigned short (native size)

. a signed long (native size)

: an unsigned long (native size)

 alua_Integer

: alua_Unsigned

* T:Qsize t(native size)

* i[n]: asigned int with n bytes (default is native size)

* I[n]:anunsigned inf with n bytes (default is native size)

* £ afloat (native size)

* d: adouble (native size)

* n:an Agena number of C type double = lua Number

* cn: A fixed-sized string with n bytes

* z: azero-ferminated string

* s[n]: astring preceded by its length coded as an unsigned integer with n bytes
(default is a size 1)

* x: oOne byte of padding

* Xop: an empty item that aligns according to opfion op (which is otherwise

ignored)

' ' (a white space) ignored

[]
Gu P DS WO

(A "[n]" means an optional integral numeral.) Except for padding, spaces, and
configurations (options "xX <=>1"), each option corresponds to an argument in
strings.pack or a result in strings.unpack.

For options "I»", "sn", "in", and "In", n can be any integer between 1 and 16. All
infegral options check overflows; strings.pack checks whether the given value fifs in

agena >> 305

the given size; strings.unpack checks whether the read value fits in a Lua integer.
For the unsigned options, Lua integers are treated as unsigned values too.

Any format string starts as if prefixed by "I1=", that is, with maximum alignment of 1
(no alignment) and native endianness.

Natfive endianness assumes that the whole system is either Big or Little Endian. The
packing functions will not emulate correctly the behavior of mixed-Endian formats.

Alignment works as follows: For each option, the format gets extra padding until the
data starts at an offset that is a multiple of the minimum between the option size
and the maximum alignment; this minimum must be a power of 2. Options "c" and
'z" are noft aligned; option "s" follows the alignment of its starting integer.

All padding is filled with zeros by strings.pack and ignored by strings.unpack.

306 9 Strings

9.2 memfile - Memory File for Strings

The memfile liorary implements a character buffer, i.e. a "memory file™ userdata
that stores a string of almost unlimited length, along with functions to administer it. It
is useful if you have to iteratively concatenate a lotf of strings, being 20 fimes faster
than the & operator.

Typical usage:

> m := memfile.charbuf () # create a memory file
> memfile.append(m, 'nasa', 'Jjpl') # put two strings into it
> f := memfile.iterate(m, 1, 2) # from position 1, return 2 chars per call

> f£():
na

> f£():
sa

> f£():
jp

> f£():
1

> f£():
null

Let us declare a bit field of two bytes:
> b := memfile.bitfield(16)
and in these two bytes, set the even bits to 1, i.e. twice to Ob10101010 = 170:

> for i to 16 do if even(i) then b[i] := 1 fi od

The contents of the field is:

> b:
bitfield(0b10101010, 0b10101010)

Get some bits, the first and the tenth:

Vv

b[1]:

Vv

b[10]:

Clear the bits in the first byte:

> for i to 8 do if even(i) then b[i] := 0 fi od

agena >>

307

> b:

bitfield (000000000, 0b10101010)

The package provides the following metamethods:

Metamethod Functionality

' index read operation, e.g. n[p] or n[p to q], with p, g indices, both
— counting from 1; with bit fields, reads a bit, not a byte

' writeindex' write operation, e.g. n[p] := value, with p the index, counting

from 1; with bit fields, sets a bit, not a byte

Vo aiger size operator, number of characters currently stored; with it
T fields returns the number of bits in the field, not bytes

'__in' in operator

'__notin' notin operator

'__eq' = equality operator

'__empty' empty operator

'__filled' filled operator

' tostring' formatting for oufput at the console; with bit fields, returns
T binary representations

'_gc' garbage collection

The functions are:

memfile.append (memfile, v [,---] [, delim=str])

Appends one or more numbers, strings, Booleans or null's v, etc. o the end of
memfile, The function returns nothing.

You can specify the optional character delimiter optfion "delim = str that
separates each value to be added to the memory file, €.9. memfile.append (m,
'a', 'b', 'c', delim = ';') actually adds the string 'a;b;c;'. You may later on
drop the final delimiter by calling memfile.dump with the size of the delimiter.

See dlso: memfile.move, memfile.rewind.

memfile.attrib (memfile)

Returns the total capacity of a memfile and the current number of allocated bytes,
in this order.

See also: memfile.getsize.

308 9 Strings

memfile.bitfield (n, [, ---1]1)

Creates a bit field of at least n bits and optionally sets zeros or ones into this field.
The return is a byte buffer with initially all positions set to zero.

If you pass optional ones or zeros, or the Booleans true or false, they are set from
the right end to the left end of the new bit field, e.qg. if we have

> b := memfile.bitfield (4, 1, 1, 1, 0)

we will store Ob0111 = 7 decimal into the field. If you need it the other way around,
execute something like

> b := memfile.bitfield (4, unpack(reverse(reg(l, 1, 1, 0))))

The numiber of bits actually allocated is always a multiple of 8, i.e. the field is filled
up to whole bytes. In the example above, instead of four bits we created a bit field
of eight bits.

Since the memory file created is no different from the one created by
memfile.charbuf, with the exception of the metatable, you can apply all the other
memfile functions on it. The bit field metatable bitfield™ contains specialised
functions to get, set, determine the size and print bit fields, which work on the bit
and not byte level.

See also: memfile.attrib, memfile.bytebuf, memfile.charbuf, memfile.resize.

memfile.bytebuf (n, [, --:])

Creates a memory file of fixed size n bytes and fills it with zeros by default. It can
also initialise the buffer with bytes (second to last argument).

Since the memory file created is no different froon the one created by
memfile.charbuf, you can apply all the other memfile functions on it.

See dlso: memfile.attrib, memfile.bitfield, memfile.charbuf, memfile.resize.

memfile.charbuf ([v [,---] [, delim=str]])

Creates a memory file and optionally puts one or more numbers, strings, Booleans
or null's v into it. The function returns the memory file created.

You can specify the optional character delimiter optfion "delim = str that
separates each value to be added to the memory file, €.9. memfile.charbuf('a’,
'b', 'c', delim = ';') AQctudlly adds the string 'a;b;c;'. You may later on drop
the final delimiter by calling memfile.dump with the size of the delimiter.

See also: memfile.attrib, memfile.bytebuf, memfile.resize.

agena >> 309

memfile.clearbit (memfile, n)

memfile.clearbit (memfile, pos, n)

In the first form, unsets absolute bit position n iN the memfile, i.€. sets it 10 0. n counts
from 1. To set a bit, use memfile.setbit.

In the second form, in byte No. pos Of the memfile, unsets the n-th bit, i.e. setfs it to O,
where n > 0.

The return is the modified byte at byte position pos.

See dalso: memfile.getbit, memfile.setbit, memfile.setbyte, memfile.setchar,
memfile.setfield, memfile.setitem.

memfile.dump (memfile [, n])

Without a second argument, retumns the whole string stored in memfile aANd resets
memfile completely to its original state, so that it can store a new string. With a byte
buffer, the function refills it with zeros again after dumping the contents.

If a positive integer n is passed as an optional argument, then the function just
dumps n bytes from the end (tail) of the memory file and retumns them as a string,
leaving the rest of the memfile untouched. If the memfile should be empty after this
operation, it is reset, which is equal to calling the function without an optional
argument.

See also: memfile.get, memfile.getbytes.

memfile.find (memfile, str [, pos])

memfile.find (memfile, byte [, pos])

With a character buffer, searches memfile for a substring str and returns its position,
an integer, or null if the string has not been found. The optional argument pos
indicates the position where to start the search, and is 1 by default.

With a byte buffer, searches for the given pyte, @ nON-negative intfeger in the range
0 to 255.

See also: memfile.substring, in metamethod.

memfile.get (memfile [, n])

Without a second argument, returns the whole string stored in memfile.

If a positive integer n is passed as an optional argument, then the function just
returns n characters from the end (tail) of the memory file.

310 9 Strings

The function contfrary 10 memfile.dump does not remove any contents and also
does not reset or re-size the memory file.

See also: memfile.dump, memfile.getbytes, memfile.substring.

memfile.getbit (memfile, n)

memfile.getbit (memfile, p [, n])

In the first form, returns the bit stored at absolute bit position n iN the memfile. n
counts from 1.

In the second form, from byte no. p in the memfile, returns the n-th bit, where » and
n > 0.

The return is either 1 or O.

See also: memfile.clearbit, memfile.getfield, memfile.setbit.

memfile.getbyte (memfile, pos [, option])

From nemfile, returns the byte at position pos, with pos <> 0. If pos is negative, the
position is relative to the end of the string. The return is an integer in the range [0,
2585].

If any option is given, then the function returns a string with the binary representation
of the byte at pos, €.g. '0010000000".

See also: memfile.getbit, memfile.getbytes, memfile.getchar, memfile.getitem.

memfile.getbytes (memfile [, pos])

From memfile, starting from byte position pos iNn memfile, returns a register of all the
bytes (integers in the range [0, 255]) stored in the memory file. pos is 1 by default,
i.e. all bytes will be returned. If pos is negative, the position is relative to the end of
the string.

See also: memfile.dump, memfile.getbit, memfile.getbyte, memfile.getchar,
memfile.getitem, memfile.getsize, size metamethod.

memfile.getchar (memfile, pos)

From memfile, returns the character at position pos, with p<> 0. If pos iS negative,
the position is relafive fo the end of the string. The return is a string of size 1: the
character.

See also: memfile.getbyte, memfile.get, memfile.getitem, memfile.substring.

agena >> 311

memfile.getfield (memfile, n)

Returns the bit stored at absolute bit position n iN memfile. n counts from 1.
The return is either 1 or O.

See also: memfile.setfield, memfile.clearbit, memfile.getbit, memfile.setbit.

memfile.getitem (memfile, p [, n])

From memfile, retuns the substring starting af position p and of length n, with
non-zero p. If p is negative, the position is relative to the end of the string. By default,
nis 1.

See also: memfile.getbyte, memfile.getchar, memfile.getsize, memfile.iterate,
memfile.setitem, memfile.substring.

memfile.getsize (memfile)

From memfile, returns the number of characters (bytes) stored in it.

See dlso: size metamethod, memfile.attrib.

memfile.iterate (memfile [, pos [, n]])

Returns an iterator function that when called, returns the next n characters stored in
memfile, StArting at position pos. If there are no more characters, the factory retumns
null. By default pos and n are 1.

See also: memfile.getitem, memfile.substring.

memfile.map (£, memfile [,:---])

Maps a function £ on each character in memfile, iNn-place. £ must always retun a
number or a string.

memfile.move (memfile, pos)

Moves the end of the current memfile tO the given position pos, inclusive, with pos a
non-negative integer, or in other words: changes the size of the memfile without
reallocating memoty. If pos is 0, the memfile is Cleared. If pos is, for example 2, then
if you call memfile.append thereafter with a substring, it will be added starting at
position 3, preserving the values at position 1 and 2. The function returns nothing.

See also: memfile.append, memfile.resize, memfile.rewind.

312 9 Strings

memfile.read (fh, memfile [, bufsize])

Reads data from the file denoted by its filehandle fn info the given memfile
userdata.

The file should have previously been opened with binio.open and should finally be
closed with binio.close.

By default, the function reads in the entire file if bufsize iS NOt given.

If a positive integer has been passed with bufsize, the function only reads in the
given number of bytes per each call, retuns the number of bytes actually read and
increments the file position thereafter so that the next bytes in the file can be read
with a new call to memfile.read.

(Passing the bursize Argument may also be necessary if your platform requires that
an inferal input buffer is aligned o a certain block size.)

If the end of the file has been reached, or there is nothing to read at all, null will be
returned. In case of an error, it quits with the respective error.

Example:

> m := memfile.charbuf ();
> print(size m); # should be zero

> fd := binio.open('memfile.bin');
> pos := 1;

> # the following loop is equivalent to the simple call
> # "memfile.read(fd, m) :

> do

> pos := memfile.read(fd, m, 512) # read 512 bytes per each call
> until pos = null;

> binio.close(fd); # should now be non-zero

> print(size m);

See also: memfile.write.

memfile.resize (memfile, n [, flag])

Resizes the memfile 1O exactly n places (bytes), with n > 0. It can grow or shrink a
memory file and in the lafter case preserves the remaining content. If the memory
file is o be enlarged, the function opftionally fills the new space with zeros if the third
argument f1ag true is given, otherwise you may just pass false which is the default.

You may cadll bytes.optsize before to determine the optimal number of places
(bytes) in the memory file to be word-aligned.

agena >> 313

See also: memfile.attrib, memfile.bytebuf, memfile.charbuf, memfile.getitem,
memfile.move, memfile.rewind.

memfile.reverse (memfile)

Reverses the data, i.e. bytes, in a memory file, in-place. The function returns
nothing.

memfile.rewind (memfile)

Setfs the current size of a memfile 1O zero, effectively clearing the buffer without
re-allocating memory. The function returns nothing.

See also memfile.append, memfile.move.

memfile.setbit (memfile, n)
memfile.setbit (memfile, pos, n [, wvall)

In the first form, sets absolute bit position n iNn the memfile t0 1. n counts from 1. To
clear a bit, use memfile.clearbit.

In the second form, in byte NO. pos Of the memfile, sets the n-th bit to va1, where val
is either a Boolean orO or 1 and n > 0. If va1 is omitted, sets the bit to 1.

The return is the modified byte at byte position pos.

See also: memfile.clearbit, memfile.getbit, memfile.setbyte, memfile.setchar,
memfile.setfield, memfile.setitem.

memfile.setbyte (memfile, pos, i [, count])

Sets byte i of type (non-negative) integer into memfile at the existing position Pos,
with pos <> 0.

If pos is negative, the position is relative to the end of the sting. i should be an
infeger in the range [0, 255]. The function returns nothing.

If a fourth argument count is given, then the function setfs count bytes - starting from
position pos - to the given byte. By default, count is 1. If pos has not been set before,
the function fills all preceding positions with zeros, if they have not yet been already
set to any byte.

See also: memfile.getbyte, memfile.getchar, memfile.setbit, memfile.setchar,
memfile.setitem.

314 9 Strings

memfile.setchar (memfile, pos, c)

Sets character ¢ of type string into menfile At the existing position pos, With pos <>
0. If ¢ is longer than one character only the first character is written to the memory
file.

If pos is negative, the position is relative to the end of the string. i should be an
infeger in the range [0, 255]. The function returns nothing.

If a fourth argument count iS given, then the function sefs count places - starting
from position pos - to the given character. By default, count is 1. If pos has not been
set before, the function fills all preceding positions with white spaces, if they have
not yet been already set.

See also: memfile.getbyte, memfile.getchar, memfile.setbit, memfile.setchar,
memfile.setitem.

memfile.setfield (memfile, n, wval)

Sets the n-th bit in a memory file to va1, where va1i is either the Boolean true or false,
or 0 or 1. In n is negative, then the |n|-th bit from the left side of the buffer is set or
unset.

The return is the modified byte in which the bit resides.

See also: memfile.clearbit, memfile.getfield, memfile.setbit.

memfile.setitem (memfile, str, pos [, count])

memfile.setitem (memfile, byte, pos [, count])

In the first form, setfs a substring str iNfO memfile At POSItiON pos, With NON-zero pos. If
the substring is too long, the function issues an error. If pos is negative, the position is
relafive to the end of the string.

In the second form, does the same with the non-negative infeger byte.

The function returns nothing.

See also: memfile.getitem, memfile.setbyte, memfile.setchar.

memfile.shift (memfile, n)

Rotates the contents of the buffer menfile n Oytes to the right if n is positive, and n
bytes to the left if n is negative. The function returns nothing.

See also: memfile.move, memfile.substring.

agena >> 315

memfile.substring (memfile, p [, ql)

From menfile, returns the substring from position p fo position g, with non-zero p, q. If
p Of g Are negative, the respective positions are relative to the end of the string. g is
p by default,

See also: memfile.get, memfile.getitem.

memfile.write (fh, memfile [, pos [, nchars]])

Writes the string in a memfile Userdata to the file denoted by ifs numeric file handle
fh.

The file should be opened with binio.open and closed with binio.close after
completion.

The start position pos is 1 by default but can be changed to any other valid position
iNn the memfile.

The number of characters (not necessarily bytes) to be written can be changed by
passing an optional fourth argument nchars, A positive number, and by default
equals the fotal number of characters in memfile. (Passing the nchars argument
may also be necessary if your platform requires that buffers must be aligned to a
particular block size.)

The function returns the index of the next start position (an integer) for a further call to
memfile.write to write further characters, where the return should be passed to the
third pos argument.

If the end of the string in menfile has bbeen reached, the function returns null and
flushes all unwritten content to the file so that you do not have to call binio.sync
manually.

No further information is stored to the file created.

Example on how to write a string of 8,000 characters piece-by-piece:

> m := memfile.charbuf();

> to 1000 do

> memfile.append(m, 'nasa/jpl')
> od;

> fd := binio.open('memfile.bin');
> pos := 1;

> # The following is equivalent to "memfile.write(fd, m)":

> do # write 1024 values per each call
> pos := memfile.write(fd, m, pos, 1024)
> until pos = null;

316 9 Strings

> binio.close (fd);

Use binio.sync if you want 1o make sure that any unwritten content is written to the
file when calling memfile.write multiple times.

See dlso: memfile.read.

agena >> 317

9.3 uif8 - UTF-8 Helpers

As a plus package, the utf8 package is not part of the standard distribution and
must be activated with the import statement, i.e. import utfs.

This library provides basic support for UTF-8 encoding. It provides all its functions
inside the table utf8. This library does not provide any support for Unicode other than
the handling of the encoding. Any operafion that needs the meaning of a
character, such as character classification, is outside its scope.

Unless stated otherwise, all functions that expect a byte position as a parameter
assume that the given position is either the start of a byte sequence or one plus the
length of the subject string. As with many string functions, negative indices count
from the end of the string.

Functions that create byte sequences accept all values up to Ox7FFFFFFF, as
defined in the original UTF-8 specification; that implies byte sequences of up to six
bytes.

Functions that interpret byte sequences only accept valid sequences (well formed
and not overlong). By default, they only accept byte sequences that result in valid
Unicode code points, rejecting values greater than 10FFFF and surrogates. A
boolean argument 1ax, when available, lifts these checks, so that all values up to
Ox7FFFFFFF are accepted. (Not well formed and overlong sequences are sfill
rejected.)

utf8.chars (---)

Receives zero or more integers, converts each one to its corresponding UTF-8 byte
sequence and returns a string with the concatenation of all these sequences.

utf8.charpattern

The pattern (a string, not a function) "[\O-\X7FWXC2-\xF4][\x80-\xBF]*", which matches
exactly one UTF-8 byte sequence, assuming that the subject is a valid UTF-8 string.

utf8.codes (s [, lax])

Returns values so that the construction

for p, ¢ in utf8.codes(s) do body od

will iterate over all characters in string s, with p being the position (in bytes) and < the
code point of each character. It raises an error if it meets any invalid byte
sequence.

318 9 Strings

utf8.codepoint (s, [, i [, j [, lax]l])

Returns the codepoints (as integers) from all characters in s that start between byte
position i and 5 (both included). The default for i is 1 and for 5 is i. It raises an error if
it meets any invalid byte sequence.

utf8.1len (s, [, i [, J [, lax]]l])

Returns the number of UTF-8 characters in string s that start between positions i and j
(both inclusive). The default for i is 1 and for 5 is -1. If it finds any invalid byte
seguence, returns a false value plus the position of the first invalid byte.

utf8.offset (s, n [, il)

Returns the position (in bytes) where the encoding of the n-th character of s
(counting from position i) starts. A negative n gets characters before position i. The
default for i is 1 when n is non-negative and size s + 1 otherwise, so that
utf8.offset(s, -n) gets the offset of the n-th character from the end of the string. If the
specified character is neither in the subject nor right after its end, the function
returns null.

As a special case, when n is O the function returns the start of the encoding of the
character that contains the i-th byte of s.

This function assumes that s is a valid UTF-8 string.

agena >> 319

9.4 aconv - Internationalization

As a plus package, the aconv package is not part of the standard distribution and
must be activated with the import statement, i.e. import aconv.

The package is not available for Mac OS X.
The aconv library allows to convert strings from one code page (character set) to
another. For a list of available code pages, see aconv.list. It is a port to the GNU

iconv package, where iconv stands for " inferationalization conversion .

Typical usage: First open a handle by passing the from code page and the to
code page, in this example, we convert a text from Latin-1 to UTF-8:

> import aconv

> cd := aconv.open('latinl', 'utf-8"');
> aconv.convert (cd, 'asuB'):
-a-06-i+1

After all strings have been converted, the handle must be closed.

> aconv.close (fd);

Hint for UNIX & MacOS X users: You must have the iconv package installed on your
system in order to use this package.

The available functions are:

aconv.open (from, to)

Opens a new conversion descriptor, from the from character set (a string) to the to
character set (also a string). Concatenating "//TRANSLIT" to the first argument will
enable character trangliteration and concatenating "//IGNORE" to the first argument
will cause iconv to ignore any invalid characters found in the input string.

This function returns a new converter or issues an error. For a list of available
character sefs, see aconv.list. from ANd to MaAy be given in upper and lower case.

320 9 Strings

aconv.convert (cd, str)

Converts string str to the desired character set. ca depicts the converter descriptor.
This method always returns the converted string on success, and null and an error
code otherwise:

e aconv.ERROR NO MEMORY
Failed to allocate enough memory in the conversion process.
e aconv.ERROR INVALID
An invalid character was found in the input sequence.
e aconv.ERROR INCOMPLETE
An incomplete character was found in the input sequence.
e aconv.ERROR FINALIZED
Trying 10 use an already-finalized converter. This usually means that the user was
tweaking the garbage collector private methods.
e aconv.ERROR_UNKNOWN
There was an unknown error.

See also: strings.tolatin, strings.toutf8.

aconv.close (ed [, ---1)

Closes one or more converters ca and for each converter successfully closed
returns true, or false otherwise.

aconv.list ()

Returns a table of all supported codepages.

agena >> 321

9.5 hashes - Hashes

As a plus package, the hashes package is not part of the standard distribution and
must be activated with the import statement, i.€. import hashes.

9.5.1 Introduction

The packages computes various hashes for variable-sized strings and for numbers.
All the functions require a string or number as the first argument, and - with the
exception of the hashes.md5 function - optionally the maximum number of slots in
an assumed hash table as the second argument if you want the modulus of the
hash value 1o be retuned. Alternatively, you can tentatively apply
hashes.fibomod32 to the resulting hash for more evenly distributed results.

For almost each of the functions listed below an algorithm in the Agena language
roughly explaining its mode of operation has been given.

9.5.2 Usefulness
With a dictionary of 517,996 surnames, where each surname consists of 7.55

characters on average, the following table shows the performance of some string
hashes, computed on an Intel i-5 6500 CPU, 3.2 GHz.

Hash Collision quotient Collisions | Max. values | Running
per hash | fime
adlerd2 1.000054 28 2| 246
asu 1.022457 11'377 5233
bkdr 1.000234 121 2237
bp 3.360010 363'831 4'656 | 2.2
bsd 12.675476 477'130 447 | 2.55
cksum 1.000054 28 31233
crclé 7.910631 452'515 23 13.20
crc3d2 1.000064 33 2227
dek 1.003477 1'795 4 12.30
djb 1.000788 408 21235
djb2 1.000122 63 2266
djb2rot 1.000073 38 2246
elf 1.022457 11'377 5241
fletcher 3.447653 367'750 42 2.28
fnv 1.000070 36 21224
jen 1.000058 30 2239
lua 1.001793 927 31222
mdbd 1.000000 0 11694
mMurmur2 1.000044 23 21230
mMurmur3 1.000075 39 21230
murmur3 128 1.000066 34 2257
oaat 1.000098 51 21217

322 9 Strings

Hash Collision quotient Collisions | Max. values | Running
per hash | fime

pjw 1.022457 11'377 51216

Pl 1.000056 29 2271

raw 1.003783 1'952 3227

roaat 1.000655 339 2237

s 1.000073 38 21219

SOX 1.000879 455 21229

sdlbom 1.000064 33 2| 2.31

sth 1.009873 5'064 5225

strval 8.042167 453'586 8'712 | 2.29

varlen 1.000000 0 11575

9.5.3 Summary of Operators and Functions

Numeric Hashes and Checksums

%, symmod, math.morton, math.modulus, math.nearmod, bytes.parity,
hashes.damm, hashes.digitsum, hashes.droot, hashes.fibomod32,
hashes.ftok, hashes.interweave, hashes.j32t032, hashes.jinteger,
hashes.jnumber, hashes.luhn, hashes.mix, hashes.mixé4,
hashes.mix64t032, hashes.parity, hashes.reflect, hashes.varlen,
hashes.verhoeff

String Hashes

hashes.adler32, hashes.asu, hashes.bkdr, hashes.bp, hashes.bsd,
hashes.cksum, hashes.crc8, hashes.crc16, hashes.crc32, hashes.dek,
hashes.djb, hashes.djb2, hashes.djb2rot, hashes.elf, hashes.fletcher,
hashes.fuv, hashes.jen, hashes.lua, hashes.md5, hashes.murmur2,
hashes.murmur3, hashes.murmur3128, hashes.oaat, hashes.pjw,

hashes.pl, hashes.raw, hashes.roaat, hashes.rs, hashes.sax, hashes.sdbm,

hashes.sha512, hashes.sth, hashes.strval, hashes.sumupchars,
hashes.sysv, hashes.varlen

9.5.4 Functions

hashes.adler32 (s [, n [, hl])

Returns the Adlerd2 hash for string s. If n is given and non-zero, the hash is taken
modulo n before returning. n by default is 65521, but may be any other

non-negative integer.

agena >> 323

hashes.asu (s [, n [, hll)

Returns a hash for string s as proposed by A. V. Aho, R. Sethi, J. D. Ullman in their
ook "Compilers: Principle, Techniques, and Tools", Addison-Wesley, 1988, p. 436.

If n, a positive integer, is given, the computed hash is taken modulo n. The optional
argument n determines the inifial value of the resulting hash code before the string
is evaluated, and is 0 by default.

The algorithm used is equivalent to:

asu := proc(s :: string, n, h) is
local g;
n :=n or 0;
h := h or 0;
for i in s do
(h <<< 4) &+ abs 1i;
h && 0xf0000000;
<> 0 then
h ™ (g >>> 24);
h "~ g

oy

g :
if

fi
od;
return if n <> 0 then h % n else h fi
end;

See also: hashes.elf.

hashes.bkdr (s [, n [, seed]])

Computes a hash value published by Brian Kernighan and Dennis Ritchie, for string
s. If n, a positive integer, is given, the computed hash is taken modulo n. The
optional infeger seea determines a salt is 131 by default; you may chose other
primes if necessary. The return is a number. The algorithm used is equivalent fo:

bkdr := proc(s :: string, n, h) is
n :=n or 0;
seed := seed or 131; # 31, 131, 1313, 13131, 131313, etc.
h := 0;
for i in s do
h := (h &* seed) &+ abs 1
od;
return if n <> 0 then h % n else h fi
end;

hashes.bp (s [, n [, h]])

Computes a hash for string s; it may be useful to classify words with common
endings since they have the same hash code. If n, a positive integer, is given, the
computed hash is taken modulo n. The optional argument n determines the initfial
value of the resulting hash code before the string is evaluated, and is O by default.

324 9 Strings

The retumn is a number. The algorithm used is equivalent to:

bp := pr :: string, n, h) is

o

oc(s
n n or 0;
h :=h or 0;

for i in s do

h := h <<< 7 " abs 1i;

od;
return if n <> 0 then h % n else h fi
end;

See also: hashes.strval, math.ndigits, math.nthdigit.

hashes.bsd (s [, model])

Returns the 8-bit or 16-bit BSD checksum for the given string s. The retun is @
non-negative integer. By default, the function computes the 16-bit checksum, a
value between 0 and 65,535 if mode is NOt given or is true. If mode is set to false, the
8-bit checksum is computed, a value between 0 and 255.

hashes.cksum (s [, len])

Returns the same checksum as the UNIX cksum utility for the given sting s. The
return is a non-negative integer. By default, the full length of s is evaluated, but you
may compute the hash for the first 1en characters by passing a second argument
(an integer).

The function can be used to validate the integrity of a file but may not always
detect hacker manipulation.

hashes.collisions (s, £ [, iters [, factor [, returnbag]ll])

Takes a table or sequence s of strings and one of the hash functions £ and retumns
the mean number of collisions (a value of 1 is best), numiber of total slots (occupied
or free), the time it fook fo run the procedure, and if returnbag is true, the hashing
table (a bag). If iters, A positive integer, is not given, then the function determines
the hash values only once, otherwise iters fimes. If factor, Q positive infeger or
fraction, is not given, the number of slots of the virtual hash table is twice the
number of elements in s.

The function is written in Agena (see lib/hashes.agn).

hashes.crc8 (s [, init])

Performs 8-bit reversed cyclic redundancy check for string s, starting with initial CRC
value init, which is O by default. The return is a non-negative integer.

agena >> 325

hashes.crcl6 (s [, init])

Performs 16-bit reversed cyclic redundancy check for string s, starting with initial
CRC value init, which is O by default. The return is a non-negative integer.

hashes.crec32 (s [, init])

Performs 32-bit reversed cyclic redundancy check for string s, starting with initial
CRC value init, which is O by default. The return is a non-negative integer.

hashes.damm (x [, true])

If passed no option, computes the checksum of its argument x (an integer or string
consisting of ciphers), and returns an integer in the range 0 .. 9 using the Damm
algorithm. Contrary to the Luhn algorithm, it detects all single-digit errors and all
adjacent transposition errors.

If passed the Boolean option true, the function checks whether x includes the
correct checksum digit af its end.

If you pass an infeger x and if |x| > math.lastcontint, then an eror will be issued,
for x cannot be represented accurately on your system. Pass a string instead.

See adlso: hashess.luhn, hashes.verhoeff.

hashes.dek (s [, n [, h]l])

Computes a hash value for string s proposed by Donald E. Knuth in The At Of
Computer Programming Volume 3, under the topic of sorting and search.

If n, a positive integer, is given, the computed hash is taken modulo n. The optional
argument n determines the inifial value of the resulting hash code before the string
is evaluated, and is O by default. The algorithm used roughly resembles:

dek := proc(s :: string, n, h) is
n :=n or 0;
h := h or size s;
for i in s do
h := ((h <<< 5) ™ (h >>> 27)) *” abs 1
od;
return if n <> 0 then h % n else h fi
end;

hashes.digitsum (x [, n])

Computes the digit sum of the integer x fo the base n and retumns an integer. nis 10
by default. If x is negative, the result is negative, i.e. -hashes.digitsum(abs(x), n) will
be returned. The function is written in Agena and included in the lib/hashes.agn file.

326 9 Strings

hashes.djb (s [, n [, 1sh [, h]l])

Computes the Daniel J. Bernstein hash for stiing s. If n, a positive integer, is given,
the computed hash is taken modulo n. The optional argument n detfermines the
inifial value of the resulting hash code before the string is evaluated, and is 5381 by
default. The retun is a number. The algorithm used roughly resembles:

djb := proc(s :: string, n, sh) is
local h;
h : 5381;
n : n or 0;
sh := sh or 5;
for i in s do
h :=(h <<< sh) &+ h &+ abs i
od;
return if n <> 0 then h % n else h fi

end;

hashes.djb2 (s [, n [, £ [, hlll)

Computes a modified Daniel J. Bemnstein hash for string s. If n, a positive integer, is
given, the computed hash is faken modulo n. The optional argument n determines
the initial value of the resulting hash code before the string is evaluated, and is
5381 by default. The return is a number. The algorithm used roughly resembles:

djb2 := proc(s :: string, n, f) is

local h;

h := 5381;

f := £ or 33;

n := n or 0;

for i in s do

h := (f & h) " abs i

od;

return if n <> 0 then h % n else h fi
end;

hashes.djb2rot (s [, n [, sh [, £ [, h]]]l])

Like hashes.djb2, but using an additional left rotation-bit shift operation; good
performance, few collisions. The algorithm used is equivalent to:

djb2rot := proc(s :: string, n, sh, f) is
local h;
h := 5381;
f := £ or 33;
sh := sh or 17;
n := n or 0;
for i in s do
h := h <<<< sh;
h := (f & h) " abs i

od;
return if n <> 0 then h % n else h fi
end;

agena >> 327

hashes.droot (x [, b])

Returns the digital root and the additive persistence for the integer x and base b. By
default v is 10.

The digital root is the sum of its digits and the sum of the digits of this sum, and so
forth, until the respective sum is less than ». The additive persistence is the number
of summations it ook to compute the root.

hashes.elf (s [, n [, hll])

Similar to hashes.asu, but optimised for 32-bit CPUs, commonly used in UNIX
systems. The code is equivalent to:

elf := proc(s :: string, n, h) is
local x;
n :=n or 0;
h := h or 0;

for 1 in s do

h :=(h <<< 4) &+ abs i;
X := h && 0xf0000000;
if x <> 0 then
h := h ™ (x >>> 24);
fi;
h := h && ~~(x)
od;
return if n <> 0 then h % n else h fi
end;

hashes.fibmod32 (k, m [, truel])

Returns an unsigend 32-bit integer hash value for the non-negative integer x and
the given number of slofs m - Also a non-negative integer - that may be more
evenly distriouted than just computing x % m, but not necessarily. The function uses
Fibonacci hashing, and refurns a value that is equivalent to:

fibmod := proc(k :: nonnegint, m :: nonnegint) 1is
local p := k *(math.Phi - 1);
return bytes.numto32(m * frac(p))

end;

The result is in the range 0 .. m - 1 if m is 0dd; if m is even, the result is always in the
range 1 ..m- 1, unless x = 0 orm = O where the function returns 0.

Note that with a < b, flbmod32(a, m) is not necessarily less than filomod32(b, m).

If you pass the optional third argument true, then the results are always the same
across different platforms - due to performance reasons, the default is false.

See also: %, math.modulus.

328 9 Strings

hashes.fletcher (s, [mode [, len]])

If mode is NOt Qiven or is true, returns the position-dependent 16-bit checksum of a
string s according to Fletcher's algorithm using an internal 32-bit accumulator, and
returns an integer. The 360th and all succeeding characters are ignored.

If mode is false, returns the position-dependent 8-bit checksum using an internal
16-bit accumulator, and retumns an integer in the range [257, 65535]. The 21st and
all succeeding characters are ignored.

If the option 1en is given, only the first 1en characters are processed.

hashes.fnv (s [, n])

Computes the Fowler-Noll-Vo hash for string s. If n, a positive integer, is given, the
computed hash is taken modulo n. The refurn is a number. The algorithm used is
equivalent to:

fnv := proc(s :: string, n) is
local h;
h := 2166136261;
n :=n or 0;
for i in s do
h := (h &* 16777619) ~”" abs i
od;

return if n <> 0 then h % n else h fi

end;

hashes.ftok (inode, device [, id, [, nll])

Computes the System V IPC (Inter Process Communications) key. inode, device and
optional ia are all 4-byte signed integers, with ia defaulting to 0. The retumn is an
integer equivalent 1o, in signed bits mode:

(inode && OXffff) | | ((device && Oxff) <<< 16) || ((1a && Oxffu) < << 24)
If n is given and non-zero, the hash is taken modulo n before returmning.

See also: os.ftok.

hashes.interweave (x [, option [, mask [, sh [, n]]ll])

Splits a number x info its higher and lower unsigned 4-byte words hx and Ix and
applies one of the following binary operations on them: ror' (the default), 'and’,

XOor .

By passing a non-negative mask as the optional third argument, the mask is applied
to the infermediate result, the default is OXFFFFFFFF.

agena >> 329

If a fourth positive sh infeger is given, the intermediate result is right-shifted snh bits; if
sh IS A negative integer, it is left-shiffed sh bits. If sh is O (the default), there is no shift.

If a fiffth argument » is given, a positive integer, the intermediate result is taken
modulus n. The default is 1.

Thus, with hx, Ix := bytes.numwords(x):
* option = 'or': (((hx |] IX) && mask) >>> sh) % n, if sh > 0,

® option 'and'. [((hX && IX) && mask) >>> sh) % n, if sn > 0,
® option = 'xor'. [((hX 7 IX) && mask) >>> sn) %N, if sh >0,

and

* option = 'or': ((hx || IX) && mask) << < |sh]|) % n, if sh <0,
® option rand'! (((NX && IX) && mask) <<< |sh|) %N, if sh <O,
® option = 'xor'. [((hX N X) && mask) <<< |sh|] % n, if sn < 0.

hashes. j32to32 (x [, n])

Hashes an unsigned 4-byte integer x (i.e. in the range 0 .. 2% - 1) to yet another
infeger in the same range, Julio-style.

If a second argument n is given, a positive integer, the intermediate result is taken
modulus n. The defaulf fornis 1.

See also: hashes.jinteger.

hashes.jen (s [, n])

Computes the Bob Jenkins' hash (96 bit Mix Function) for string s. If n, a positive
integer, is given, the computed hash is faken modulo n. The refurn is a number.
Please see the C hashes.c source file for its implementation.

hashes. jinteger (x [, h])

Value-based hashing of an unsigned 4-byte integer %, with seed n which by default
is 4,294,967,295 = 2* - 1, ported from the Julia language.

See also: hashes.jnumber, hashes.j32t032.

hashes. jnumber (x [, n [, option]])

Maps a number x to one or two unsigned 4 byte integers, Julia-style. If n, a positive
integer, is given, the computed hashes are taken modulo n. By default, only one
unsigned 4-byte integer will be retumned. If you pass true for option then the
function will split x into its higher and lower unsigned 4-byte words and returns

330 9 Strings

unsigned 4-byte integer hashes for each of them. In this case, the second return is
equal to the result of hashes.jnumber when called without this option.

See also: bytes.numwords, hashes.jinteger.

hashes.lua (s [, n])

Returns the hash, an infeger, Luo/Agena intemally computes for string s. If n, @
positive integer, is given, the computed hash is taken modulo n. It is an adaption of
the Shift-Add-XOR hash. This variant chooses the length of the string as its seed, not
a fixed value, and scans from the right to the left. See also: hashes.sax.

hashes.luhn (x [, true])

If passed no option, computes the checksum of its argument x (an integer or string
consisting of ciphers), and returns an integer in the range 0 .. 9 using the Luhn
formula, which is used to validate credit card numbers, IMEIs or some social security
numbers.

If passed the Boolean option true, the function checks whether x includes the
correct checksum digit at its end.

If you pass an integer x and if |x| > math.lastcontint, then an error will be issued,
for x cannot be represented accurately on your system. Pass a string instead.

The Luhn formula does not recognise the transposition 09 vs. 90, nor does it detect
twin 22 vs. 55, 33 vs. 66, and 44 vs. 77.

See also: hashess.damm, hashes.verhoeff.

hashes.md5 (s [, anyoption])

Computes the MD5 hash for strings s. The refumn is a string of 32 characters that
represent 16 pairs of hexagesimal numbers where the alphabetical letter is in
upper-case.

If any option is given, the MD5S hash for file s will be returned.

See also: hashes.varlen.

hashes.mix (a, b, c)

The function mixes three non-negative integers a, b, ¢ assumed to be 32-bit and
returns an infeger.

agena >> 331

hashes.mix64 (x [, n])

Computes the 64-bit mix for number x. If n, a positive integer, is given, the
computed hash is taken modulo n. The retun is a number. See also:
hashes.mix64t032.

hashes.mix64to32 (x [, n])

Computes the 64-bit mix for number x. If n, a positive integer, is given, the
computed hash is taken modulo n. The retun is a number. See also:
hashes.mix64.

hashes.murmur2 (s [, n])

Returns MurmurHash2 for string s. If n, @ positive integer, is given, the computed
hash is taken modulo n. Note that the function returns different values on little-
endian and Big Endian machines.

See dlso: hashes.murmur3, hashes.murmur3128.

hashes.murmur3 (s [, n])

Computes MurmurHash3 using 32-bit unsigned integers infernally, for the given
string s and returns an infeger. If n, a positive integer, is given, the computed hash is
taken modulo n. Note that the function returns different values on little-endion and
big-endian machines.

See dlso: hashes.murmur2, hashes.murmur3128.

hashes.murmur3128 (s [, n [, seed]])

Computes MurmurHash3 using 128-bit unsigned integers intermnally, for the given
string s and returns four unsigned 32-bit integers. If n, a positive integer, is given, the
computed hash is taken modulo n. seed, if Nnot given, is 0x9747b28c by default.
Note that the function returns different values on little-endion and big-endian
machines. (In OS/2 and Raspberry Pi the function always retumns an error.)

See also: hashes.murmur2, hashes.murmur3128.

hashes.ocaat (s [, n [, hl])

Computes the One-at-a-Time hash for string s. If given, n must be a positive integer.
The optional argument h determines the initial value of the resulting hash code
before the string is evaluated, and is 0 by default. The return, which may vary across
platforms, is a number. The algorithm used is equivalent to:

hashmask := << n -—> (1 <<< n) - 1 >>

332 9 Strings

oaat := proc(s :: string, n) is
local h := 0;
n :=n or 0;

for i in s do
inc h, abs i;
inc h, h <<< 10;

h :(= h * (h >>> 6)
od;
inc h, h <<< 3;
h :=h * (h >> 11);

inc h, h <<< 15;
return if n <> 0 then h && hashmask(n) else h fi

end;

See also: hashes.roaat.

hashes.parity (x)

Returns a byfe with even parity for the non-negative integer x, and returns an integer
in the range [0, 255]. See also: bytes.parity32.

hashes.pjw (s [, n [, h]])

Computes the P. J. Weinberger Hash for string s. If n, a positive infeger, is given, the
computed hash is taken modulo n. The optional argument n determines the initfial
value of the resulting hash code before the string is evaluated, and is O by default.

The return is a number.

hashes.pl (s [, n [, £ [, h]]])

Computes Paul Larson's hash of Microsoft Research for string s. If n, a positive
integer, is given, the computed hash is taken modulo n. The optional argument n
determines the initial value of the resulting hash code before the string is evaluated,
and is O by default. The return is @ number. The algorithm is equivalent fo:

pl := proc(s :: string, n, £, h) is

local h := 0;

f = £ or 101;

n :=n or 0;

h :=h or 0;

for i in s do

h :=(h &* f£f) &+ abs 1

od;

return if n <> 0 then h % n else h fi
end;

With initial h=5381 and £=33, emulates the GNU hash.

hashes.raw (s [, n [, hl])

Computes a self-invented hash for string s. If n, a positive integer, is given, the
computed hash is faken modulo n. The optional argument n determines the initial

agena >> 333

value of the resulting hash code before the string is evaluated, and is O by default.
The return is a number. The algorithm used is equivalent to:

raw := proc(s :: string, n, h) is
n :=n or 0;
h :=h or 0;
for i in s do
h := 38 &* (h <<< 1) &+ abs i &- 63
od;

return if n <> 0 then h % n else h fi
end;

hashes.reflect (x [, n])

Reorders the bits of the n-bit infeger x by reflecting them albout the middle position.
By default, n is 32, but may be any other integer in [1, 32]. The return is an integer.

hashes.rocaat (s [, n [, hll)

Like hashes.oaat, but uses bit rotation internally instead of simple bit shifts. The result
may vary across platforms.

hashes.rs (s [, n [, hll])

Computes a hash for string s. If n, a positive integer, is given, the computed hash is
taken modulo n. The optfional argument n determines the initial value of the
resulting hash code before the string is evaluated, and is O by default. The return is a
number. The algorithm used is equivalent to:

rs := proc(s :: string, n, h) is
local a, b := 63689, 378551;
n :=n or 0;
h := h or 0;
for i in s do
h := h &* a &+ abs i;
a :=a &* b
od;
return if n <> 0 then h % n else h fi
end;

hashes.sax (s [, n [, hll])

Computes the Shift-Add-XOR hash for string s. If n, a positive integer, is given, the
computed hash is faken modulo n. The optional argument n determines the initial
value of the resulting hash code before the string is evaluated, and is 5381 by
default. The return is a number. The algorithm used is equivalent to:

sax := proc(s :: string, n) is
local h := 5381;
n :=n or 0;
for i in s do
h :=h * ((h <<< 5) + (h >>> 2) + abs 1)
od;
return if n <> 0 then h % n else h fi
end;

334 9 Strings

hashes.sdbm (s [, n [, h]])

Computes the ndiom database library hash for string s. If n, a positive integer, is
given, the computed hash is taken modulo n. The opfional argument n determines
the initial value of the resulting hash code before the string is evaluated, and is O by
default. The retun is a number. The algorithm uses a public-domain
implementation. The algorithm used is equivalent fo:

sdbm := proc(s :: string, n) is
local h := 0;
n :=n or 0;
for i in s do
h := abs 1 &+ (h <<< 6) &+ (h <<< 16) &= h
od;
return if n <> 0 then h % n else h fi
end;

hashes.sha512 (s [, salt [, rounds]])

Calculates a SHA512 cryptographic hash for string s, optionally using a sa1t of type
string, and the optional number of rounds 10 be taken. sa1t by default is the empty
string and rounds is 5000.

The first return is the hash itself, and the second return includes the control
parameters salt and rounds PlUs the first result. Thus, the second return is the same
as the output of the mkpasswd UNIX command.

In case of errors, the function returns fail.

The function is very slow.

hashes.sth (s [, n [, hl])

Computes the s-th hash for string s. If n, a positive integer, is given, the computed
hash is taken modulo n. The optional argument h determines the initial value of the
resulting hash code before the string is evaluated, and is O by default. The return is a
number. The algorithm has been published af StackOverflow. The algorithm is
equivalent 1o:

sth := proc(s :: string, n) is
local h := 0;
n :=n or 0;
for i in s do
h := (h <<< 6) * (h >>> 26) """ abs 1
od;

return if n <> 0 then h % n else h fi
end

agena >> 335

hashes.strval (s [, sh [, h]l])

Computes a hash with many collisions, useful to classify words with common
endings since they have the same hash code. s denotes the string 1o be hashed,
sh the left-shiff, which is -8 by default; and n the initial hash value before
computation starts, 0 by default. The algorithm used is equivalent to:

strval := proc(s :: string, sh, h) is
sh := n or 8;
h :=h or 0;
for i in s do

h := h <<< sh;
h := h &+ abs 1
od;
return h
end;

See also: hashes.bp, math.ndigits, math.nthdigit.

hashes.sumupchars (s [, £ [, gll)

Sums up all the ASCII values in string s and returns the result as a positive integer.
The sum is expressed as an unsigned 32-bit integer, so keep overflows in mind.

Instead of just adding the plain ASCII values, you might optionally apply function £
to the first character in s, and function g to the second character in s, then £ again
on the third character, g on the fourth character, and so forth. Example:

> import bytes;

> sum := hashes.sumupchars("agena",
> << x —>(x && 0Oxff) <<< 8 >>,

> << X —> x && Oxff >>):

> ~~(sum + (sum >>> 16)):

Note that the Internet checksum, even if strictly implemented according to RFC
1071, has by far more collisions than the other hash functions available in this
package.

hashes.sysv (s [, n [, £ [, h]l])

For string s, computes the System V hash to access libraries via dynamic symbol
tables on UNIX. If n, a positive integer, is given, the computed hash is taken modulo
n. The optional positive integer f is the factor to multiply intermediate results, see
algorithm below, and is 16 by default. The optional argument seed n determines
the salt and is O by default; you may chose other primes if necessary.

The return is a number.

The algorithm used is equivalent to:

336 9 Strings

sysv := proc(s :: string, n, f, h) is
n :=n or 0;
f := £ or 16;
h := h or 0;

for 1 in s do

h := £ & h &+ abs i;
h :=h " ((h >>> 24) && 0x£f0)
od;
h := h && Oxfffffff;
return if n <> 0 then h % n else h fi
end;

For GNU hash, see hashes.pl.

hashes.varlen (x, salt [, n])

Computes a variable-length integer hash for string or number x and string sait. If
the opftional positive integer n is given, the computed hash is taken modulo n.
Depending on the given keyword, the number of collisions might e zero, so this
function is an alternative to hashes.md5.

hashes.verhoeff (x [, true])

If passed no option, computes the checksum of its argument x (an integer or string
consisting of ciphers), and returns an integer in the range 0 .. 9 using the Verhoeff
algorithm. Contrary to the Luhn algorithm, it detects all single-digit errors, and all
accidental fransposition involving two adjacent ciphers.

If passed the Boolean option true, the function checks whether x includes the
correct checksum digit at its end.

If you pass an integer x and if |x| > math.lastcontint, then an error will be issued,
for x cannot be represented accurately on your system. Pass a string instead. The
function also returns an error, if a non-digit is included in string x.

See also: hashes.damm, hashes.luhn.

agena >> 337

9.6 bloom - Bloom Filter

As a plus package, the bloom package is not part of the standard distribution and
must be activated with the import statement, i.e. import bloom.

9.6.1 Introduction

This package implements the Bloom filter, a dictionary containing bit signatures of
its individual strings (words).

A Bloom filter is a memory-efficient mean to check whether a sting probably is part
of a dictionary or whether it is definitely not part of the dictionary, with acceptable
query times. It consumes less memory than the original dictionary of strings and can
be used 1o prevent unnecessary access to the file system on which the actual
dictionary resides, for example in dBASE I+, binary or text files.

With respect to this package, a dictionary does not depict an Agena table
dictionary, but just a list of strings, e.g.: "Akatsuki’, "Chandrayaan”, "Chang'e", "Mars
Express", "Venera", "Voyager".

Depending on the size of the Bloom filter, the hash string function used, and the
number of internal iterations - i.e. number of “salts® - when inserting or reading
values, around 80 % of memory can be saved with only around 5 % of the words to
e actually looked up in the original dictionary. Bloom filter lookup takes around a
third more running fime than searching Agena built-in data structures.

Technically, the hash value of a string - see hashes package for a variety of string
hash functions - is converted into a bit signature that is stored fo slots in the Bloom
filter. Internally, the Bloom filter implemented here uses four unsigned bytes for each
slot (C type uint32 _1). The string hash function should produce the least number of
collisions.

You cannot delete values from a Bloom filter. Also, you cannot change the number
of slots of the bloom filter or the number of salfs.

You may use the package as follows:
1. Determine the number of entries s in your original dictionary 4.
2. Create a Bloom filter b with s\4 slots and 4 salts:

b := bloom(s \ 4, 4);

338 9 Strings

3. Insert all entries str of your dictionary into Bloom filter » using a string hash
funcftion, e.g.:

for str in d do
bloom.include (b, hashes.sdbm(str))
od;

4. Query the Bloom filter for any entry, using the same hash function:

result := hashes.find (b, hashes.sdbm('Zond"'));

if result = false then

print ('entry really not included')
else

print ('entry probably included, search original dictionary.')
fi;

5. Query a Bloom filter slot, with an index counting from 1:

b[1]:
of just output all slots with bloom.toseq.

6. Check the state of the bloom filter »:

bloom.attrib(b) :

9.6.2 Functions

bloom.attrib (b)

Returns various information on the Bloom filter:

* key 'size': number of internal slots of the bloom filter, the first argument to
bloom.new.

* key 'salts': number of internal hash functions (salts) applied to a word when
computing the signature, the second argument to bloom.new.

* key 'wordsincluded': Number of words included into the filter. If the signature of
a word is already included, it is not counted.

* key 'collisions': number of collisions detected when frying to include a word
into the filter, for its internal signature is already present. If a word has already
been included in the filter, its collision is being counted nevertheless.

* key 'bytes': size of the whole Bloom filter userdata in bytes.

bloom.get (b, i)

With a bloom filter b, returns the value stored af p[i], where i, the index, is an integer
counting from 1.

See also: bloom.toseq.

agena >> 339

bloom.find (b, hash)

Checks whether a string converted to the nash value is part of a dictionary of strings
represented by Bloom filter userdata ». The function returns true or false, where false
means that the string is definitely not included in the original dictionary, and true
means it is probably part of the original dictionary.

Example: bloom.find (b, hashes.pl('Soyuz')).

See also: bloom.include.

bloom.include (b, hash)

Inserts the nash value (an integer) of a string into the Bloom filter b, a userdata. By
default, the function returns nothing.

If a hash value has already been inserted, nothing happens.

If the optional third argument is true, internal information will be retumed: the last
internal subhash - an integer - computed before inserting the signature of the string
into the Bloom filter, and a table with the keys representing the slot indices of the
Bloom filter modified (an integer starting from 1) and the respective bit position set
fo 1 (counting from O, from the right of the bit field).

EXOrﬂFﬂeIbloom.include(b, hashes.pl('Soyuz')).

See also: bloom.find.

bloom.new (n, salts)

Creates a Bloom filter, of type userdata, consisting of n slots. The numiber of salts
internally applied when inserting or searching the hash value of a string is given by
salts, A positive integer in the range [1, 69]. If saits is 1, then no salt is applied,
otherwise (sa1ts - 1) salts are applied.

With a large list of surnames, for example, n should be at least a fourth of the
numiber of words contained in the dictionary, and sa1ts should be 4.

See also: bloom.attrib, bloom.toseq.

bloom.toseq (b)

Receives a Bloom filter o and converts its infernal slofs into a sequence of integers,
the retumn.

See also: bloom.get.

340 9 Strings

agena >> 341

Chapter Ten

Structures

342 10 Structures

agena >> 343

10 Structures

10.1 Tables

Summary of Functions:
Queries

countitems, empty, filled, in, notin, size, tables.getsize, tables.maxn, type,
typeof.

Retrieving Values

getentry, unique, unpack, values, tables.array, tables.borders,
tables.entries, tables.hash, tables.indices, tables.parts.

Operations
copy, copyadd, map, move, purge, put, gsumup, remove, sumup, select,
selectremove, shift, sort, sorted, subs, swap, zip, tables.include,
tables.move, tables.reshuffle.

Relational Operators
=, ==, ~=, <>, ~<>,

Cantor Operations
intersect, minus, subset, union, xsubset.

Miscellaneous

tables.dimension, tables.allocate, tables.newtable.

10.1.1 Operators and Functions

Most of the following functions have been built info the kernel as unary operators,
with the exception of map and zip.

copy (t)

The function copies the entire contents of a table t into a new table. See Chapter 8
for more information.

344 10 Structures

copyadd (t [, ---1)
See Chapter 8.

countitems (item, t)

countitems (£, t [, ---])

In the first form, counts the number of occurrences of an item in the table «.

In the second form, by passing a function £ with a Boolean relation as the first
argument, all elements in the structure t that safisfy the given relafion are counted.
If the function has more than one argument, then all arguments except the first are
passed right after the name of table t.

The return is a number. The function may invoke metamethods.

See also: select.

empty (t)

Checks whether table + does not contain any element. The return is true or false.
The operator works with dictionaries, as well. See also: filled.

filled (t)

Checks whether table + contains at least one element. The return is true or false.
The operator works with dictionaries, as well. See also: empty.

getentry (t [, ki, ---, kil)

Retuns the entry t(x,, ---, k., from the table + without issuing an error if one of
the given indices k. (second to last argument) does not exist. See also rawget.

join (t [, sep [, i [, 3111)

Concatenates all string values in the table t in sequential order and returmns a string:
t[i] & sep & t[i+1] = & sep & t[j]. The default value for sep is the empty string,
the default for i is 1, and the default for § is the length of the table. The function
issues an error if + contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.Q9.:

> join(map(tostring, [1, 2, 31)):
123

agena >> 345

map (fl t [I "'] [I true])

Maps the function £ on all elements of a table t. See map in Chapter 8 for more
information.

See also: countitems, remove, select, selectremove, subs, and zip.

move (tl, start, stop, newidx [, t2])

Copies elements from table t1 to table t2, performing the equivalent to the
following multiple assignment: t2[newidx]," = ti[start], ==, t1[stop]. The default for
t2 is t1, i.e. elements are shiffed in the same table. The destination range can
overlap with the source range.

Returns the destination table 2.

See also: purge, put.

purge (t [, pos])
purge (t, a, b)

Removes from table t the element at position pos, shifing down other elements to
close the space, if necessary. Returns the value of the removed element. The
default value for pos is N, where n is the length of the table, so that a call purge (t)
removes the last element of .

In the second form, removes all elements starting from index a to index b (inclusive),
moving excess elements down to close the space; the function automatically
performs a garbage collection after shifting. In the 2™ form, nothing will be
returned.

Use the delete element from fable statement if you want to remove any
occurrence of the table value element from a table.

Note that the function only works if the table is an array, i.e. if it has positive integral
and consecutive keys only.

See also: move, put, shift, swap.

put (t, [pos,] wvalue)

Inserts element value at position pos in fable t, shifting up other elements to open
space, if necessary. The default value for pos is N+ 1, where n is the current table
size, so that a call put (t, value) insers value af the end of t.

Use the insert element into sfructure statement if you want to add an element at
the current end of a table, for it is much faster.

346 10 Structures

The function returns the modified structure.

See also: move, prepend, purge.

gsumup (t)

Raises all numeric values in table t 1o the power of 2 and sums up these powers.
See qsumup in Chapter 8 for more information. See also: sumup.

remove (£, t [, --- [, newarray=true] [, inplace=true]])

Returns all values in table t that do not satisfy a condition determined by function
£. See remove in Chapter 8 for more information. See also: map, select,
selectremove, subs, zip.

sumup (t)

Sums up all numeric values in table t. See sumup in Chapter 8 for more
information. See also: gsumup.

select (£, t [, --- [, newarray=true] [, inplace=true]])

Returns all values in table t that safisfy a condition determined by function . See
select in Chapter 8 for more information. See also: map, remove, selectremove,
subs, zip.

selectremove (£, t [, --- [, newarray=true]])

Returns all values in table + that satisfy and do not satisfy a condition determined
by function £, in two tables. See selectremove in Chapter 8 for more information.

See also: map, remove, select, subs, zip.

size (t)

Returns the number of actual entries in the array and hash parts of table t. The
operator returns a number and conducts a linear traversal.

See also: environ.attrib, tables.getsize.

shift (t, a, b)

Moves an element in the table array ¢ from position o1d O new, With o1d, new
infegers, shifting all the other elements accordingly - which might also cause a
rotation. The function returns nothing.

See also: move, purge, swap.

agena >> 347

sort (t [, comp])

Sorts table t in a given order, and in-place. See sort in Chapter 8 for more
information.

See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (t [, comp])

Sorts table elements in « in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 8 for more information.

See also: sort, skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, ---]1, t [, true])

Substitutes all occurrences of value x in table + with value v. See subs in Chapter 8
for more information.

See also: map, remove, select, zip.

swap (t, a, b)

Swaps the table array t entries at index positions a and b, with a, b infegers. The
function returns nothing.

See also: move, purge.

unique (t)

The function removes all holes (" missing keys') in the array part of table + and
removes multiple occurrences of the same value, if present. See unique in Chapter
8 for more information.

values (t/ il [I i2/ ° ']])

Retuns the elements from the given table t in a new tfable. This function is
equivalent 1o

return [i; ~ t[i;], i, ~ t[i,], ---]

See also: ops, select, unpack.

348 10 Structures

zip (£, tl1, t2)

This function zips together two tables t1, t2 by applying the function £ to each of its
respective elements. See Chapter 8 for more information.

See also: map, remove, select, subs.

The following functions have been built info the kernel as binary operators.

Please note that the operators retuning a Boolean work in the Cantor way, i.e. (1,
1} = {1} > true, (1, 2} xsubset {1, 1, 2, 2, 3, 3} - frue.

tl = t2

This equality check of two tables t1, t2 first tests whether t1 and t2 point to the
same table reference in memory. If so, it retumns true and quits.

If not, the operator then checks whether t1 and t2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadrafic.

See also: environ.isequal.

tl == t2

This strict equality check of two tables t1, t2 first tests whether 1 and t2 point to the
same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are the same. In this case,
the search is linear.

See also: environ.isequal.

tl ~= t2

This approximate equality check of two tables t1, t2 first tests whether t1 and t2
point to the same table reference in memory. If so, it returns true and quits.

If not, the operator then checks whether t1 and t2 contain the same number of
elements and whether all key~value pairs in the tables are approximately equal
(please see approx for further details). In this case, the search is linear.

tl <> t2

This inequality check of two tables t1, t2 first tests whether t1 and t2 do not point to
the same table reference in memory. If so, it returns true and quits.

agena >> 349

If not, the operator then checks whether 1 and t2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

tl ~<> t2

Approximate inequality check, the negation of the ~= operator.

c in t

Checks whether the table + contains the value < and returns true or false. The
search is linear.

See also: notin operator, binsearch for binary search.

c notin t

Checks whether table + does not contain the value < and refurns true or false. The
search is linear.

See also: in operator,

tl intersect t2

Searches all values in t1 that are also values in t2 and returns them in a new table.
The search is quadratic, so you may use bintersect instead if you want to compare
large tables since bintersect performs a binary search. The key ~ value pairs in the
hash part of a table are treated as being unique. If t1 has a metatable and/or a
user-defined type, then they will be copied 1o the result; otherwise the function will
tfry to copy them from t2.

tl minus t2

Searches all values in table t1 that are not values in table t2 and returns them as a
new table. The search is quadratic, so you may use bminus instead if you want 1o
compare large tables since bminus performs a binary search. The key ~ value
pairs in the hash part of a table are treated as being unique. If t1 has a metatable
and/or a user-defined type, then they will be copied to the result; otherwise the
function will fry to copy them from t2.

tl subset t2

Checks whether all values in tfable t1 are included in table t2 and returns true or
false. The operator also returns true if t1 = t2. The search is quadratic.

tl union t2

Concatenates two tables 1 and t2 simply by copying all its elements - even if they
occur multiple times - to a new table. The key ~ value pairs in the hash part of a
table are treated as being unique. If t1 has a metatable and/or a user-defined

350 10 Structures

type, then they will be copied to the result; otherwise the function will fry to copy
them from t2.

t1l xsubset t2

Checks whether all values in table t1 are included in table t2 and whether t2
contains at least one further element, so that the result is always false if t1 = t2. The
search is quadratic.

See also: bintersect, bisequal, bminus, purge, put in Chapter 8 Basic Functions.

f@t

The operator maps a function £ to all the values in table + and returns a table as
the result. £ must be a univariate function and return only one value. If £ has
metamethods or user-defined types, the return will also have them.

Examples:

> << x —> xX"2 >> @ [1, 2, 3]:
(1, 4, 9]

> << x > x> 0> @ [1, 2, 3]:
[true, true, true]

See also: $ and $$ operators.

£fs$t

Returns all values in table t that satisfy a condition determined by function £. £
should be a univariate function and return at least one value. In the multivariate
case, all results but the first are ignored. The return might include holes.

> << x > x >1>> 8% [1, 2, 3]:
(2, 3]

If present, the function also copies the metatable and user-defined type of + to the
new table.

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

£85 t

Checks whether at least one element in table t satisfies the condition defined by
function £ and retumns true or false. £ should be a univariate function and return at
least one value. In the multivariate case, all results but the first are ignored.

agena >> 351

> << x —> x < 1 > $$ [1, 2, 31:
false

The return might include holes.

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

10.1.2 tables Library

This library provides generic functions for table manipulation. It provides all its
functions inside the table tabies.

Most functions in the table library assume that the table represents an array or a list.
For these functions, when we talk about the length' of a table we mean the result of
the length operator.

tables.allocate (t, key;, value; [, key,, value,, ---, key,, value,])

Sets the specified keys and values to table ¢, i.e. tikey,] := value.. NOte that if a
key is given mulfiple fimes, then only the first occurrence of the key in the argument
seguence is processed. The function returns nothing.

See also: tables.include.

tables.array (t)
Returns the array part of table + in a new table, with all key~value pairs preserved.

See also: tables.hash, tables.parts.

tables.borders (t [, option])

By default, returns the smallest and largest assigned integral index - in this order - in
the array part of a table t.

If any option is given, then the function determines the smallest and largest
assigned integral index in both the array and hash part of table +. Note that this is
slower since the entire hash part has to be searched linearly.

If zeros are returned, the array or the array and hash part of the table is empty.

See also: environ.attrib, tables.getsize, tables.indices, tables.maxn.

352 10 Structures

tables.dimension (a:b [, c:d, ---] [, default])
tables.dimension (a:b [, c:d, ---]1 [, init = default])
In the first form, creates a table of any dimension with arbitrary index ranges a:o efc.

with a, b, efc. infegers, and an optional default for all its entries. defauit mMust not
e a pair.

In the second form the initialiser may be given as the option "init = defau1t", which
allows to also use pairs as a default.

If the initialiser is a structure, i.e. table, set, sequence or register, then individual
copies of the initialiser are created to avoid referencing to the same structure.

See dlso: tables.newtable, create table/dict statements.

tables.entries (t)

Returns all entries of table + (not its keys) in a new table array. Its second result, a
Boolean, indicates whether a value has been found in the hash part of .

See also: tables.indices, unique, whereis.

tables.getsize (t [, option])

Returns a guess on the number of elements in a fable t. If any option is given, the
function additionally returns a Boolean indicator on whether a table contains an
allocated hash part, and a Boolean indicator on whether null has been assigned to
a table. The lafter return is not foolproof, especially if a table value has been
deleted with a raw assignment, e.g. 1[2] := null;

The function is useful 1o determine the size of a table much more quickly than the
size operator does, using a logarithmic instead of linear method, but may return
incorrect results if the array part of a table has holes. It also does not count the
numiber of elements in the hash part of a table.

See also: size, tables.getsizes.

tables.getsizes (t [, option])

If any option is given, retumns the actual number of elements currently stored in the
array and hash par. If no option iS given, then an estimate of the number of
elements in the array part will be returned, and 0 for the hash part as this cannot be
estimated.

Returns two integers: the first for the array part, the second for the hash part.

See also: size, tables.getsize.

agena >> 353

tables.hash (t)

Returns the hash part of table t in a new table with all key~value pairs preserved.

See also: tables.array, tables.parts.

tables.include (t, key, value [, ---])

Inserts values into a subtable of table t. If t[xey] Already represents a table, value is
added to the end of its array part. If t[key] is unassigned, then it creates a new
subtable and inserts va1ue into it, which is equivalent to the pseudo code:

for i from 3 to nargs do
if assigned tlkey] then
insert <argument;> into t[key]
else
t[key] := [<argument;>]
end
fi

The function returns nothing.

See also: copyadd, bags.include, tables.allocate.

tables.indices (t [, option])

Returns all keys of table t in an unsorted new table.

If you pass any optional argument, the function will return the integral indices of a
table only. In this case, the second result, a Boolean, indicates whether at least one
integral key has been found in the hash part, so you might sort the table if needed.
This mode is 40 % faster than the standard mode of the function.

See also: tables.borders, tables.entries, whereis.

tables.maxn (t)

Returns the largest positive numerical index of the given table t, or zero if the table
has no positive numerical indices. (To do its job this function does a linear traversal
of the whole table.) See also tables.borders, which is faster with arrays.

tables.move (tl, start, stop, newidx [, t2])

Copies elements from the table t1 to the table t2, performing the equivalent to the
following multiple assignment: t2[newidx]," = ti[start], ==, t1[stop]. The default for
t2 is t1, i.e. elements are shiffed in the same table. The destination range can
overlap with the source range.

Returns the destination table 2.

354 10 Structures

Example: The following statement copies four elements in table a from position 3
up fo and including 6 to a new table b, starting with index 1:

> a := ['a', lbl, 'C', ldl, |e|, lfl, 'g'[lhl];
> b := tables.move(a, 3, 6, 1, [1);

> Db:

[c, d, e, f]

The next statement copies four elements in a to its beginning:

> tables.move(a, 3, 6, 1);

> a:
[c, 4, e, £, e, £, g, h]

See also: move, purge, shift, swap.

tables.new ([bool,] a, b [, k])
tables.new ([bool,] £, a, b [, k [, ---11)

tables.new (n, init = default)

In the first form, if no Boolean voo1 is given as the very first argument, the function
creates a table array [a, a+k, ---, b-k, O], with a, b, and « (the step size) being
numibers. The step size is 1 if x - a numiber - is not given. If any Boolean voo1 is given
as the very first argument, the function generates a linearly spaced table array of x
numbers in the interval [a, o).

In the second form, if no Boolean woo1 is Qiven as the very first argument, the
function returns a table array [1~£(a), 2~f(a+k), ---, ((b-a) *1/x+1)~£(0)], with £ a
function, a and o numibers. Thus, the function ¢ is applied to all numbers between
and including a and b. If £ requires two or more arguments, the second, third, etfc.
argument must be passed after k. If any Boolean voo1 is given as the very first
argument, the function generates a linearly spaced table array of x numbers in the
interval [a, v] with £ applied to all its members.

The function uses the Kahan-Babuska summation algorithm to prevent round-off
errors in case the step size is non-integral.

In the third form, creates a table array of n slots, pre-filled with default which may
e of any type.

Examples:

> tables.new (<< x, y —> x:x"2 + vy >>, 1, 5, 1, 10):
[1:11, 2:14, 3:19, 4:26, 5:35]

>p := [0.1, 0.2, 0.1, 0.3, 1]

agena >> 355

> tables.new(<< x —> x:pl[x] >>, 1, size p):
[1:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1]

> tables.new(true, -4, 4, 6):
(-4, -2.4, -0.8, 0.8, 2.4, 4]

> tables.new (8, init = 0):
(6, 06, o, 0, o0, 0, 0, O]

tables.new also accepts functions that may return null. Example:

> tables.new(<< x —> if x % 3 = 0 then x else null fi >>, 0, 10):
[1 ~0, 4 ~3, 7~6, 10 ~ 9]

See also: map, registers.new, sequences.new.

tables.newtable (a, b)

Returns a table with a pre-allocated array slots and b pre-allocated hash slots. a and
b should be non-negative integers. If a or b is negative, zero slofs will be
pre-allocated with no error being issued.

The function is useful only if you have to pass a table initialiser as a function
argument, otherwise it is recommended to use the create table statfement.

See also: tables.dimension, create table/dict statements.

tables.parts (t)

Returns both the array and the hash part of table t in two tables, with all key~value
pairs preserved.

See also: tables.array, tables.hash.

tables.reshuffle (t)

The function moves all values in the hash part of table t to the end of its array part,
thus emptying the hash part. The function works in-place, thus destructively, and
returns No result.

See also: sort, sorted.

356 10 Structures

10.2 Sets

Summary of Functions:
Queries

$$, empty, filled, in, notin, size, type, typeof.
Retrieving Values

unpack
Operations

@, $S. copy, map, remove, select, selectremove.
Relational Operators

=, ==, ~=, <>,
Cantor Operations

intersect, minus, subset, union, xsubset.
Miscellaneous

cleanse, sets.newset, sets.resize.

cleanse (s)

Empties set s and returns the emptied structure. The memory previously occupied
can be reused by the interpreter,

copy (s)

The function copies the entire contents of a set s info a new set. See Chapter 8 for
more information.

empty (s)

The operator checks whether a set s does not contain any element. The return is
true or false.

See also: filled.

agena >> 357

filled (s)

The operator checks whether a set s contains at least one element. The retun is
true or false.

See also: empty.

map (£, s [, ---]1 [, true])

Maps the function £ on all elements of a set s. See map in Chapter 8 for more
information.

See also: countitems, remove, select, selectremove, subs, and zip.

remove (£, s [, ---]1 [, true])

Returns all values in set s that do not satisfy a condition determined by function t.
See remove in Chapter 8 for more information.

See also: map, select, selectremove, subs, zip.

select (£, s [, ---]1 [, truel])

Returns all values in set s that satisfy a condition determined by function £. See
select in Chapter 8 for more information.

See also: map, remove, selectremove, subs, zip.

selectremove (£, s [, ---1)

Returns all values in set s that satisfy and do not satisfy a condition determined by
function £, in two sets. See selectremove in Chapter 8 for more information.

See also: map, remove, select, subs, zip.

size (s)

Returns the number of items in a set s.

typeof (s)
Returns the user-defined type assigned to sef s.

The following functions have been built into the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. (1, 1}
= {1} » true, (1, 2} xsubset {1, 1, 2, 2, 3, 3} - tfue.

358 10 Structures

sl = s2

This equality check of two sets s1, s2 first tests whether s1 and s2 point to the same
set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same items, and
retuns true or false. In this case, the search is linear.

sl == s2

With sefts, the == operator acts exactly as the = operator.

sl ~= s2

With sets, the ~= operator compares each element in s1 and s2 for approximate
equality. See approx for further details. The return is either true or false.

sl <> s2

This inequality check of two sets s1, s2 first tests whether s1 and s2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same items,
and returns true or false. In this case, the search is linear.

c in s

Checks whether the set s contains the item < and returns frue or false. The search is
constant.

c notin s

Checks whether the set s does not contain the item < and returns true or false. The
search is constant.

sl intersect s2

Searches all items in set s1 that are also items in set s2 and retumns them in a set.
The search is linear. If t1 has a metatable and/or a user-defined type, then they will
e copied to the result; otherwise the function will try to copy them from t2.

sl minus s2

Searches all items in set s1 that are not items in set s2 and returns them as a set.
The search is linear. If s1 has a metatable and/or a user-defined type, then they will
e copied to the result; otherwise the function will try to copy them from s2.

agena >> 359

sl subset s2

Checks whether all items in set s1 are included in set s2 and returns true or false.
The operator also returns true if s1 = s2. The search is linear.

sl union s2

Concatenates two sets s1 and s2 simply by copying all its items to a new set. If s1
has a metatable and/or a user-defined type, then they will be copied to the result;
otherwise the function will try to copy them from s2.

sl xsubset s2

Checks whether all items in set s1 are included in set s2 and whether s2 contains at
least one further item, so that the result is always false if s1 = s2. The search is linear.

f Qs

The operator maps a function £ to all the values in set s and retuns a set as the
result. £ must be a univariate function and return only one value. If s has
metamethods or user-defined types, the return will also have them.

Examples:

> << X —> X2 >> @ {1, 2, 3}:
{1, 4, 9}

> << x > x > 1 > @ {1, 2, 3}:
{false, true}

See also: §, $$. countitems, remove, select, selectremove, subs, and zip.

f $s

Returns all values in set s that satisfy a condition determined by function £. £ should
be a univariate function and return at least one value. In the multivariate case, all
results but the first are ignored.

> << x > x >1> 8% {1, 2, 3}:
{2, 3}

If present, the function also copies the metatable and user-defined type of s to the
new set,

See also: @, $$, map, remove, selectremove, subs, zip.

360 10 Structures

f $$ s

Checks whether at least one element in set s satisfies the condition defined by
function £ and retumns true or false. £ should be a univariate function and return at
least one value. In the multivariate case, all results but the first are ignored.

> << x > x < 1 > $$ {1, 2, 3}:
false

sets.newset (n)

Returns a set with n pre-allocated slofs. n should be a non-negative infeger.

The function is useful only if you have to pass a set initialiser as a function argument,
otherwise it is recommended 10 use the create set statement.

sets.resize (s [, newsize [, true]])

Resizes set s fO store at least newsize elements. If the last argument is true the
numibber of pre-allocated slots will be adjusted to an optimum of the smallest power
of 2 greater than or equal to n.

If only s is given, the number of pre-allocated slots will be changed to the smallest
power of 2 greater than or equal the current size, usually freeing formerly occupied
space.

If newsize < size s oOr the number of pre-allocated slots would not change, the
function does nothing and returns without modifying the set.

The function returmns the number of allocated elements and the number of
pre-allocated slots.

See also: math.nextpower, size, environ.attrib maxsize and size values.

agena >> 361

10.3 Sequences

Summary of Functions:
Queries
countitems, empty, filled, in, notin, size, typeof.
Retrieving Values
getentry, unique, unpack, values.
Operations

@, copy, copyadd, join, map, move, mulup, purge, gsumup, remove,
reverse, select, selectremove, sumup, shift, sort, sorted, subs, swap, zip.

Relational Operators
=, ==, ~=, <>,
Cantor Operations
intersect, minus, subset, union, xsubset.
With the exception of getentry, map and zip, the following functions have been
built into the kernel as unary operators.
10.3.1 Operators

copy (s)

The function copies the entire contents of a sequence s into a new sequence. See
Chapter 8 for more information.

copyadd (s [, ---1)
See Chapter 8.

countitems (item, s)
countitems (£, s [, ---])

Counts the number of occurrences of an item in the sequence s. For further
information, see Chapter 8.

362 10 Structures

empty (s)

The operator checks whether the sequence s does not contain any element. The
retun is true or false. See also: filled.

filled (s)

The operator checks whether the sequence s contains at least one element. The
return is true or false. See also: empty.

getentry (s [, ki, -+, kal)

Returns the entry s(x,, ---, k.1 from the sequence s without issuing an error if one
of the given indices k., (second 1o last argument) does not exist.

join (s [, sep [, i [, 3111)

Concatenates all string values in sequence s in sequential order and returns a
Sting: s(i] & sep & s[i+1] - & sep & s[j1. The default value for sep is the empty
string, the default for 1 is 1, and the default for 5 is the length of the sequence. The
function issues an error if s contains non-strings.

Use the tostring function if you want to concatenate other values than strings, e.g.:

> join(map(tostring, seq(l, 2, 3))):
123

map (f/ S [/ "'] [/ true])

Maps the function £ on all elements of a sequence s. See map in Chapter 8 for
more information. See also: remove, select, subs, zip.

move (sl, start, stop, newidx [, s2])

Copies elements from sequence s1 to sequence s2, performing the equivalent to
the following multiple assignment: s2[newidx],": = s1[start], ==, s1[stop]. The default
for s2 is s1, i.e. elements are shiffed in the same sequence. The destination range
can overlap with the source range.

Returns the destination sequence s2.
See also: purge, put.

mulup (s)

Multiplies all numeric values in sequence s. See mulup in Chapter 8 for more
information. See also: sumup.

agena >> 363

purge (s [, posl])

purge (s, a, b)

In the first form, the function removes from sequence s the element atf position pos,
shiffing down other elements to close the space, if necessary. Returns the value of
the removed element, or nothing if pos is invalid. The default value for pos is N,
where n is the length of the sequence, so that a call purge (s) removes the last
element of s.

In the second form, it removes all elements starting from index a to index b
(inclusive), moving excess elements down fo close the space; the function
automatically performs a garbage collection after shifting. In the 2™ form, nothing
will be returned.

See also: move, put.

gsumup (s)

Raises all numeric values in sequence s to the power of 2 and sums up these
powers. See gsumup in Chapter 8 for more information. See also: sumup.

remove (£, s [, ---]1 [, truel)

Returns all values in sequence s that do not satisfy a condition determined by
function £. See remove in Chapter 8 for more information. See also: map, select,
subs, zip.

reverse (s)

Reverses the order of all elements in a sequence s in-place. The function returns the
modified structure.

See also: strings.reverse, stack.reversed.

select (£, s [, ---]1 [, truel])

Returns all values in sequence s that satisfy a condition determined by function t.
See select in Chapter 8 for more information. See also: map, remove, subs, zip.

selectremove (£, s [, :::1)

Retuns all values in sequence s that satfisfy and do not safisfy a condition
determined by function £, in two sequences. See selectremove in Chapter 8 for
more information. See also: map, remove, select, subs, zip.

364 10 Structures

shift (s, a, b)

Moves an element in sequence s from position o1d tO new, With o1d, new integers,
shiffing all the other elements accordingly - which might also cause a rotation. The
function returns nothing.

See also: move, purge, swap.

size (s)

Returns the number of items in a sequence s.

sort (s [, comp])

Sorfs sequence s in a given order, and in-place. See sort in Chapter 8 for more
information. See also: sorted, skycrane.sorted, stats.issorted, stats.sorted.

sorted (s [, comp])

Sorts sequence elements in s in a given order, but - unlike sort - not in-place, and
non-destructively. See sorted in Chapter 8 for more information. See also: sort,
skycrane.sorted, stats.issorted, stats.sorted.

subs (x:v [, ---]1, s [, true])

Substitutes all occurrences of the value x in sequence s with the value v. See subs
in Chapter 8 for more information. See also: map, remove, select, zip.

sumup (s)

Sums up all numeric values in sequence s. See sumup in Chapter 8 for more
information. See also: gsumup.

swap (s, a, b)

In sequence s, swaps the entries at index positions a and b, with a, b infegers. The
function returns nothing.

See also: move, purge, shift.

typeof (s)
Returns the user-defined type assigned to sequence s.

unique (s)

With a sequence s, the function removes multiple occurrences of the same item, if
present in s. See unique in Chapter 8 for more information.

agena >> 365

values (s, i, [, i, ---11)

Returns the elements from the given sequence s in a new sequence. This function is
equivalent to

return seq(s[ii], s[i,], ---)

See also: ops, select, unpack.

zip (£, sl1l, s2)

This function zips together two sequences s1, s2 by applying the function £ to each
of its respective elements. See Chapter 8 for more information. See also: map,
remove, select, subs.

See also: bintersect, bisequal, bminus, purge, put in Chapter 8 Basic Functions.

Following are the binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. seq(1,
1) = seq(l) —» frue, seq(1l, 2) xsubset seq(l, 1, 2, 2, 3, 3) —tue.

sl = s2

This equality check of two sequences s1, s2 first tests whether s1 and s2 point to the
same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

sl == s2

This strict equality check of two sequences s1, s2 first tests whether s1 and s2 point
to the same sequence reference in memory. If so, it returns tfrue and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are the saome and are in the
same order, and returns true or false. In this case, the search is linear.

sl ~= s2

This approximate equality check of two sequences s1, s2 first tests whether s1 and
s2 point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same number of
elements and whether all entries in the sequences are approximately equal and
are in the same order, and returns true or false. In this case, the search is linear. See
approx for further information on the approximation check.

366 10 Structures

sl <> s2

This inequality check of two sequences s1, s2 first tests whether s1 and s2 do not
point to the same sequence reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

c in s

Checks whether the sequence s contains the value < and returns true or false. The
search is linear. See also binsearch for binary search.

c notin s

Checks whether the sequence s does not contain the value « and returns true or
false. The search is linear.

See also: in operator,

sl intersect s2

Searches all values in sequence s1 that are also values in sequence s2 and returns
them in a sequence. The search is quadratic. If s1 has a metatable and/or a
user-defined type, then they will be copied 1o the result; otherwise the function will
fry to copy them from s2.

sl minus s2

Searches all values in sequence s1 that are not values in sequence s2 and returns
them as a sequence. The search is quadratic. If s1 has a metatable and/or a
user-defined type, then they will be copied 1o the result; otherwise the function will
fry to copy them from s2.

sl subset s2

Checks whether all values in sequence s1 are included in sequence s2 and returns
true or false. The operator also retumns true if s1 = s2. The search is quadratic.

sl union s2

Concatenates two sequences s1 and s2 simply by copying all its elements - even if
they occur multiple times - 10 a new sequence. If s1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
fry to copy them from s2.

sl xsubset s2

Checks whether all values in sequence s1 are included in sequence s2 and
whether s2 contains atf least one further element, so that the result is always false if
s1 = s2. The search is quadratic.

agena >> 367

f@s

The operator maps a function £ to all the values in sequence s and returns a
sequence as the result. £ must be a univariate function and return only one value. If
s has metamethods or user-defined types, the retumn will also have them.

Examples:

> << x —> x"2 >> @ seq(l, 2, 3):
seq(l, 4, 9)

> << x => x > 0 > @ seq(l, 2, 3):
seq(true, true, true)

See also: $ and $$ operators.

f $s

Returns all values in sequence s that satisfy a condition determined by function £. £
should be a univariate function and return at least one value. In the multivariate
case, all results but the first are ignored.

> << x => x > 1 > $§ seq(l, 2, 3):
seq (2, 3)

If present, the function also copies the metatable and user-defined type of obj 10
the new sequence.

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

f $$ s

Checks whether at least one element in sequence s satisfies the condition defined
by function £ and returns true or false. £ should be a univariate function and return
at least one value. In the multivariate case, all results but the first are ignored.

> << x => x < 1 > $$ seq(l, 2, 3):
false

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

368 10 Structures

The following functions in the base library also support sequences:

Function Meaning

Same as the intersect operator but much faster with very
large sequences.

Same as the = operator but much faster with very large

bintersect

bisequal
sequences.
bminus Same as the minus operator but much faster with very large
sequences.
. Retumns all the values that are stored more than once in the
duplicates

given sequence.

10.3.2 sequences Library

This library provides generic functions for sequence manipulation. It provides all its
functions inside the table sequences.

sequences.dimension (a:b [, c:d, ---] [, default])

sequences .dimension (a:b [, c:d, ---] [, init = default])

In the first form, creates a sequence of any dimension with index ranges a:b efc.
with a, b, efc. infegers, and an optional default for all its entries. defauit mMust not
e a pair. The left-hand side values a, ¢, ... of the dimensions must always be 1.

In the second form the initialiser may be given as the option "init = defau1t", which
allows to also use pairs as a default,

If the initialiser is a structure, i.e. table, set, pair, sequence or register, then individual
copies of the initialiser are created to avoid referencing to the same structure.

See also: sequences.newtable, create sequence statements.

sequences.new ([bool,] a, b [, k])
sequences.new ([bool, 1 £, a, b [, kK [, ---11)

sequences.new (n, init = default)

In the first form, if no Boolean voo1 is given as the very first argument, the function
creates a sequence seq(a, a+k, ---, b-k, D), with a, b, and x (the step size) being
numibers. The step size is 1 if x - a numiber - is not given. If any Boolean voo1 is given
as the very first argument, the function generates a linearly spaced sequence of x
numbers in the interval [a, o).

In the second form, if no Boolean ool is Qiven as the very first argument, the
function returns a sequence seq(1~f(a), 2~f(a+x), ---, ((b-a) *1/x+1)~£(b)), with £
a function, a and » numbers. Thus, the function £ is applied to all numibers between
and including a and b. If £ requires two or more arguments, the second, third, etfc.
argument must be passed after k. If any Boolean voo1 is given as the very first

agena >> 369

argument, the function generates a linearly spaced sequence of xk numbers in the
interval [a, v] with £ applied to all its members.

The function uses the Kahan-Babuska summation algorithm to prevent round-off
errors in case the step size is non-integral.

In the third form, creates a sequence of n slots, pre-filled with default which may
e of any type.

Examples:

> sequences.new (<< x, y —> x:x"2 + vy >>, 1, 5, 1, 10):
seq(l:11, 2:14, 3:19, 4:26, 5:35)

> p := seq(0.1, 0.2, 0.1, 0.3, 1)

> sequences.new(<< x —-> x:p[x] >>, 1, size p):
seq(l:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

> sequences.new(true, -4, 4, 6):
seq(-4, -2.4, -0.8, 0.8, 2.4, 4)

> sequences.new (8, init = 0):
seq(0, 0, 0, 0, 0, 0, 0, 0)

sequences.new also accepts functions that may return null. In this case, an
element is not added tfo the resulfing structure. Example:

[

> sequences.new(<< x —> if x % 3 = 0 then x else null fi >>, 0, 10):
seq(0, 3, 6, 9)

See also: map, tables.new, registers.new.

sequences.newseq (n)

Returns a sequence with n pre-allocated slots. n should be a non-negative integer.

The function is useful only if you have to pass a sequence initialiser as a function
argument, otherwise it is recommended to use the create sequence statement.

See also: sequences.dimension.

sequences.resize (s [, newsize [, true]])

Resizes sequence s to the given number of pre-allocated slofs. If you actually shrink
a sequence, then it discards any surplus elements.

The function retuns the number of allocated elements and the number of
pre-allocated slotfs, which may be vacant.

370 10 Structures

If newsize iS O Or newsize is less than the current size, then the function also purges
all surplus values in the sequence.

If the optional third argument is tfrue and newsize is NON-zero, then the function sefs
the optimum number of pre-allocated slots to the smallest power of 2 greater than
or equal tO newsize.

If you pass just s without any further arguments, the function automatically allocates
fo the optimum number of slots without dropping any values.

Note that Agena automatically enlarges and shrinks a sequence if necessary when
adding new or purging existing values, see environ.kernel/seqautoshrink.

See also: math.nextpower, size, environ.attrib maxsize and size values.

agena >> 371

10.4 Registers

Summary of Functions:
Queries

countitems, filled, in, size.
Retrieving Values

getentry, unique, unpack, values.
Operations

copy, copyadd, join, map, move, mulup, purge, remove, replace, sumup,
select, selectremove, shift, sort, sorted, subs, swap, zip.

Relational Operators
=, ==, ~=, <>,
Cantor Operations
intersect, minus, subset, union, xsubset.

With the excepftion of getentry, map and zip, the following functions have been
built into the kernel as unary operators:

10.4.1 Operators

copy (r)

The function deep-copies the entire contents of a register r into a new register. See
Chapter 8 for more information.

copyadd (r [, ---1)
See Chapter 8.

countitems (item, r)
countitems (£, r [, ---1)

Counts the number of occurrences of an item in the register . For further
information, see Chapter 8.

372 10 Structures

duplicates (r [, option])

Returns all the values that are stored more than once to the given register »r, and
returns them in a new register. Each duplicate will be returned only once.

If option is NOt given, the structure is sorted before evaluation since this is needed to
determine all duplicates. The original structure is left untouched, however.

The total size of the new register is equal to the number of the elements in the result.

If a value of any type is given for option, the function assumes that the reqgister has
been already sorted. Otherwise it is suggested to use skycrane.sorted before the
call to duplicates if the register contains values of different types, to prevent errors.

The function is written in Agena and included in the lib/library.agn file.

empty (r)

The operator checks whether the reqister r does not contain any element. The
retun is true or false. See also: filled.

filled (r)

The operator checks whether the reqister r contains af least one element. The return
is true or false. See also: empty.

getentry (r [, ki, ---, kil)

Returns the entry r (x,, ---, k.1 from the register without issuing an error if one of
the given indices k; (second to last argument) does not exist.

join (r [, sep [, i [, 3111)

Concatenates all string values in register r in sequential order and retumns a string:
rii] & sep & rii+1] - & sep & r[j]1. The default value for sep is the empty string,
the default for i is 1, and the default for 5 is the top of the register. The function
issues an error if s contains non-strings.

map (£, r [, ---1)

Maps the function £ on all elements of a register r. See map in Chapter 8 for more
information.

See also: has, remove, select, subs, zip.

agena >> 373

move (rl, start, stop, newidx [, r2])

Copies elements from register r1 to register r2, performing the equivalent to the
following multiple assignment: r2[newidx],"" = ri[start], ==, r1[stop]. The default for
r2 i r1, i.e. elements are shifted in the same register. The destination range can
overlap with the source range.

Returns the destination register r2.

See also: purge, put, swap.

mulup (r)

Multiplies all numeric values in register r. See mulup in Chapter 8 for more
information. See also: sumup.

purge (r [, pos])
purge (r, a, b)

In the first form, the function removes from register r the element at position pos,
shiffing down other elements to close the space, if necessary. Returns the value of
the removed element, or nothing if pos is invalid. The default value for pos is N,
where n is the length of the register, so that a call purge(r) removes the last
element of r.

In the second form, removes all elements starting from index a to index b (inclusive),
moving excess elements down to close the space; the function automatically
performs a garbage collection after shifting. In the 2™ form, nothing will be
returned.

Note that the function also reduces the top pointer of »r by the number of elements
removed.

See also: move, put, shift, swap.

gsumup (r)

Raises all numeric values in register r to the power of 2 and sums up these powers.
See qsumup in Chapter 8 for more information. See also: sumup.

remove (£, r [, ---]1 [, truel)

Returns all values in reqister » that do not satisfy a condition determined by function
£. The total size of the new register is equal to the number of the elements in the
result. See remove in Chapter 8 for more information. See also: map, select, subs,
zip.

374 10 Structures

select (£, r [, ---]1 [, truel])

Returns all values in reqister » that satisfy a condition determined by function . The
total size of the new register is equal to the number of the elements in the result. See
select in Chapter 8 for more information. See also: map, remove, subs, zip.

selectremove (£, r [, ---1)

Returns all values in register r that satisfy and do not satisfy a condition determined
by function £, in two new registers. The total size of the new registers is equal to the
numiber of the elements in the respective results. See selectremove in Chapter 8 for
more information.

See also: map, remove, select, subs, zip.

shift (r, a, b)

Moves an element in register r from position o1d tO new, With o1d, new integers,
shifting all the other elements accordingly - which might also cause a rotation. The
function returns nothing.

See also: move, purge, swap.

size (r)

Returns the total numiber of items assignable in reqister r.

sort (r [, compl])

Sorts reqister r in a given order, and in-place. All the values in the register up fo the
position pointed to by the size operator must be of the same type and non-null.
See sort in Chapter 8 for more information. See also: sorted.

sorted (r [, comp])

Sorts register elements in r in a given order, but - unlike sort - not in-place, and
non-destructively. All the values in the register up to the position pointed to by the
size operator must be of the same type and non-null. See sorted in Chapter 8 for
more information.

See also: sort.

subs (x:v [, ---], x)

Substitutes all occurrences of the value x in reqister r with the value v. See subs in
Chapter 8 for more information.

See also: map, remove, select, zip.

agena >> 375

sumup (r)

Sums up all numeric values in register r. See sumup in Chapter 8 for more
information. See also: gsumup.

swap (r, a, b)

In reqisters r, swaps the entries af index positions a and b, with a, b integers. The
function returns nothing.

See also: move, purge.

unique (r)

With a register r, the unique function removes mulfiple occurrences of the same
item, if present in r, and returns a new register. The fotal size of the new register is
eqgual to the numiber of the elements in the result. See unique in Chapter 8 for more
information.

values (r, i, [, i, ---11)
Returns the elements from the given register r in a new register. This function is
equivalent to

return reg(r[i;], rl[i,]l, =---)

The total size of the new reqister is equal to the number of the elements in the result.
See also: ops, select, unpack.

zip (£, rl, r2)

This function zips together two reqisters r1, r2 by applying the function £ to each of
its respective elements. See Chapter 8 for more information. See also: map,
remove, select, subs.

The following functions have been built info the kernel as binary operators.

Please note that the operators returning a Boolean work in a Cantor way, i.e. reg (1,
1) = reg(1l) - true, reg(l, 2) xsubset reg(l, 1, 2, 2, 3, 3) - true.

rl = r2

This equality check of two regqisters r1, r2 first tests whether r1 and r2 point to the
same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether s1 and s2 contain the same values without
regard to their keys, and returns true or false. In this case, the search is quadratic.

376 10 Structures

rl == r2

This strict equality check of two registers r1, r2 first fests whether r1 and r2 point to
the same register reference in memoiry. If so, it refuns true and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all entries in the registers are the same and are in the same
order, and returns true or false. In this case, the search is linear.

rl ~= r2

This approximate equality check of two registers r1, r2 first tests whether r1 and r2
point to the same register reference in memory. If so, it returns true and quits.

If not, the operator then checks whether r1 and r2 contain the same number of
elements and whether all entries in the registers are approximately equal and are in
the same order, and returns true or false. In this case, the search is linear. See
approx for further information on the approximation check.

rl <> r2

This inequality check of two registers s1, s2 first tests whether s1 and s2 do not point
fo the same register reference in memory. If so, it retuns true and quits.

If not, the operator then checks whether s1 and s2 do not contain the same values,
and returns true or false. In this case, the search is quadratic.

c in r

Checks whether the register s contains the value « and returns true or false. The
search is linear. See also binsearch for binary search.

rl intersect r2

Searches all values in register r1 that are also values in register r2 and returns them
in a new register. The search is quadratic. The total size of the new register is equal
fo the number of the elements in the result. If r1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
tfry to copy them from r2.

rl minus r2

Searches all values in register r1 that are not values in register sr2 and refumns them
as a new register. The search is quadratic. The total size of the new register is equal
to the number of the elements in the result. If r1 has a metatable and/or a
user-defined type, then they will be copied to the result; otherwise the function will
fry to copy them from r2.

agena >> 377

rl subset r2

Checks whether all values in register r1 are included in register r2 and returns true or
false. The operator also returns true if r1 = r2. The search is quadratic. The total size
of the new register is equal to the number of the elements in the result.

rl union r2

Concatenates two registers r1 and r2 simply by copying all its elements - even fif
they occur mulfiple times - to a new register. The total size of the new register is
equal to the number of the elements in the result. If r1 has a metatable and/or a
user-defined type, then they will be copied 1o the result; otherwise the function will
tfry to copy them from r2.

rl xsubset r2

Checks whether all values in register r1 are included in register r2 and whether r2
contains at least one further element, so that the result is always false if r1 = r2. The
search is quadratfic. The total size of the new register is equal to the number of the
elements in the result.

fR~r

In the first form, the operator maps a function £ to all the values in reqister r. £
should be a univariate function and return only one value. The return is a register. If »
has metamethods or user-defined types, the return will also have them.

Examples:

> << x —> x"2 >> @ reg(l, 2, 3):
reg(l, 4, 9)

> << x => x > 1 > @ reg(l, 2, 3):
reg(false, true, true)

See also: @ and $$ operators, map, reduce, remove, select, subs, times, zip.

f$r

Returns all values in register » that satisfy a condition determined by function £. £
should be a univariate function and return at least one value. In the multivariate
case, all results but the first are ignored.

> << x => x > 1 > $ reg(l, 2, 3):
(2, 3]

If present, the function also copies the metatable and user-defined type of r to the
new register.

378 10 Structures

All values up to the current top pointer are evaluated, and the size of the returned
reqister is equal to the number of the elements in the return.

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

f $§$ r

Checks whether at least one element in register r satisfies the condition defined by
function £ and returns true or false. £ should be a univariate function and return at
least one value. In the multivariate case, all results but the first are ignored.

> << x => x < 1 > $$ reg(l, 2, 3):
false

All values up to the current top pointer are evaluated.

See also: @ operator, countitems, descend, map, remove, seleciremove, subs,
unique, values, zip.

The following functions in the base library also support reqisters:

10.4.2 registers Library

This library provides generic functions for register manipulation. It provides all its
functions inside the table registers.

registers.dimension (a:b [, c:d, ---1 [, default])

registers.dimension (a:b [, c:d, ---]1 [, init = default])

In the first form, creates a register of any dimension with index ranges a:b etc. with a,
b, efc. infegers, and an optional default for all its enfries. defau1t Must Not be a
pair. The left-hand side values a, ¢, ... of the dimensions must always be 1.

In the second form the initialiser may be given as the opfion "init = defau1t", which
allows 1o also use pairs as a default,

If the initialiser is a structure, i.e. table, set, pair, sequence or register, then individual
copies of the initialiser are created to avoid referencing to the same structure.

See also: registers.newtable, create register statements.

registers.extend (r, n)

Extends the given register r o - and not by - the given number of elements. All the
elements already residing in r are kepf. If n is less or equal fo the current top (see

agena >> 379

size), the structure is leff unchanged and false will be returned - otherwise returns
true.

See also: registers.reduce.

registers.new ([bool,] a, b [, k])
registers.new ([bool,] £, a, b [, kK [, ---11)

registers.new (n, init = default)

In the first form, if no Boolean woo1 is given as the very first argument, the function
creates a register reg(a, a+k, ---, b-k, D), with a, b, and x (the step size) being
numbers. The step size is 1 if x - a numlber - is not given. If any Boolean poo1 is given
as the very first argument, the function generates a linearly spaced register of x
numbers in the interval [a, o).

In the second form, if no Boolean voo1 is Qiven as the very first argument, the
function retuns a reqister reg(1~£(a), 2~f(a+x), ---, ((b-a)*1/x+1)~£(p)), with £ Q
function, a and b numibers. Thus, the function ¢ is applied to all numbers between
and including a and b. If £ requires two or more arguments, the second, third, etc.
argument must be passed after k. If any Boolean vool is given as the very first
argument, the function generates a linearly spaced register of k. numbers in the
interval [a, v] with £ applied to all its members.

The function uses the Kahan-Babuska summation algorithm to prevent round-off
errors in case the step size is non-integral.

In the third form, creates a register of n slots, pre-filled with defau1lt which may be of
any type.

Examples:

> registers.new(<< x, y —> x:x"2 + vy >>, 1, 5, 1, 10):
reg(l:11, 2:14, 3:19, 4:26, 5:35)

> p := reg(0.1, 0.2, 0.1, 0.3, 1)

> registers.new(<< x —-> x:p[x] >>, 1, size p):
reg(l:0.1, 2:0.2, 3:0.1, 4:0.3, 5:1)

> registers.new(true, -4, 4, 6):
reg(-4, -2.4, -0.8, 0.8, 2.4, 4)

> registers.new(8, init = 0):
reg(0, 0, 0, 0, 0, 0, 0, 0)

registers.new also accepts functions that may refurn null. Example:

[)

> registers.new (<< x -> if x % 3 = 0 then x else null fi >>, 0, 10):
reg(0, null, null, 3, null, null, 6, null, null, 9, null)

380 10 Structures

See also: map, tables.new, sequences.new.

registers.newreg (n)

Returns a register with n pre-allocated slots. n should be a non-negative integer.

The function is useful only if you have to pass a register initialiser as a function
argument, otherwise it is recommended to use the create register statfement.

See also: registers.dimension.

registers.reduce (r, n)

Reduces register r to - and not by - fo the first n given number of elements. All the
elements residing above are removed. If the current top pointer is greater than n, it
is reset tO n.

See also: registers.extend.

registers.settop (r, n)

Sefts the current position of the pointer to the top of register r to the given position n,
a non-negative infeger. Values above this position cannot be altered by any
functions and operators. It returns true on success, and false otherwise. If the return
is false, the current position of the top pointer has not been changed.

See also: size.

agena >> 381

10.5 Pairs

Summary of Functions:
Queries
in, notin, left, right, size, type, typeof.
Operations
copy. map.
Relational Operators

=, ==, ~=, <>,

The following functionality has been built into the kernel as unary operators:

copy (p)
The function deep-copies the entire contents of a pair p into a new pair.

map (fl P [I "'])

Maps the function £ on both elements of a pair p and returns a new pair. See map
in Chapter 8 for more information.

size (p)

Returns the number of items in a pair p, i.e. always returns 2.

type (p)
Returns the type of a pair p, i.e. the string 'pair'.

typeof (p)
Returns either the user-defined type of the pair p, or the basic type 'pair'.

382 10 Structures

The following functionality has been built into the kemel as binary operators.

pl = p2

This equality check of two pairs p1, p2 first tests whether o1 and p2 point to the same
pair reference in memory. If so, it retuns true and quits.

If not, the operator then checks whether the left-hand side of p1 and the left-hand
side of p2 are equal, and the same with both right-hand sides, and returns true or
false.

Pl == p2
With pairs, the == operator acts exactly as the = operator.

pl ~= p2

With pairs, the ~= operator compares the left-hnand side of p1 and the left-hand
side of p2 for approximate equality, and the same with both right-nand sides. The
return is either true or false. See approx for further details.

Pl <> p2

This inequality check of two pairs p1, p2 first tests whether o1 and p2 do not point to
the same set reference in memory. If so, it returns true and quits.

If not, the operator then checks whether 1 and p2 do not contain the same items,
and returns true or false.

c in p

Checks whether the number ¢ fits into the closed interval with borders denoted by
the numeric elements of pair p, and returns true or false.

c notin p

Checks whether the number ¢ does not fit info the closed interval with borders
denoted by the numeric elements of pair p, and returns true or false.

agena >> 383

10.6 numarray - Numeric C Arrays

As a plus package, the numarray package is not part of the standard distribution
and must be activated with the import statement, i.e. import numarray.

10.6.1 Introduction

The numarray package implements arrays of the C data types of either double,
unsigned char, unsigned 2-byte and signed or unsigned 4-byte integers. The
unsigned char type also supports bit fields.

The arrays implemented by this package are called numarrays for short.

Since numbers stored to numarrays consume less space, numarrays may be useful
if a large amount of numbers have fo be processed, but the amount of
random-access memory of your system is limited.

While any element in a sequence, for example, occupies 24 bytes of memory, a
numiber in a numeric stack takes only eight bytes, and a character in a character
stack only one byte.

Also, numarrays are useful to store binary data. Operations on numarrays, however,
are usually slower than those on Agend's native structures: tables, pairs, sequences
or reqisters - so you will frade speed for memory.

Internally, numarrays are userdata structures that also support various
metamethods.

You can create numarrays, assign and read numbers, resize arrays, store them to
binary files, and read from files.

Functions to convert arrays to Agend's native structures, and vice versa, are
provided, as well.

To create an array of unsigned chars, use numarray.uchar, of signed 64-bit
doubles use numarray.double, of 16-bit unsigned infegers use numarray.ushort, of
32-pit unsigned infegers use numarray.uint32 and of 32-bit signed integers use
numarray.int32. The number of entries to be stored must be given when calling
these three procedures. When creating arrays, all slots are automatically filled with
zeros. Array indices count from 1, not 0. You can pass negative indices 1o access
values from the end of an array.

Agena's standard indexing functions save and read numbers. So, for example, a[l]
= -1 stores the number -1 o index 1 of the array a. a[1] reads the value stored at
index 1 of the array a. Alternatively, numarray.setitem and numarray.getitem save
and read numbers, respectively. Furthermore, numarray.include (bulk-assigns)
numbers.

384 10 Structures

Arrays can be shrunk or extended with the numarray.resize function.

Arrays can be converted to sequences and registers with numarray.toseq and
numarray.toreg. numarray.toarray creates arrays from tables, sequences and
reqisters.

Functions numarray.setbit, numarray.getbit, humarray.iterate support bit fields
with unsigned char arrays.

numarray.whereis searches for numbers, and numarray.iterate can sequentially
fraverse arrays.

numarray.write writes the contents of any array to a binary file.
numarray.readuchars reads a complete file of unsigned chars,
numarray.readushorts of unsigned 2-byte integers, numarray.readdoubles of
doubles, numarray.readlongdoubles of longdoubles (see long package) and
numarray.readintegers of signed integers with only one call. To open and close
these files, use binio.open and binio.close. Most other binio function, such as
binio.sync, binio.rewind, and binio.filepos, is supported, as well, with the exception
of the binio.read* procedures. The low-level numarray.read function is used by the
above mentioned numarray.read* functions.

The following metamethods exist: standard read and write indexing (see above), in
and notin operators, strict and approximate equality (=, ==, <>, ~=, ~<>
operators), size, zero, nonzero and tostring . To easily add further metamethods,
have a look at the end of the lio/numarray.agn source file.

The arrays can store status information or other data in a special reqistry table that is
available at pseudo-index position 0. You can use the index metamethod or
numarray.getitem to read from or wite dafa into this table, e.g. nio1 or

numarray.getitem(n, 0).

10.6.2 Functions

numarray.convert (£, a [,---])

Same as numarray.map, but processes in-place: Maps a function £ on each
element in the numarray a and changes the entries accordingly, i.e. the array
elements will be fransformed from a[1] 10 £(a[1]), etc. £ must always retun a
number.

numarray.cycle (a [, i [, p, [, truelll)

Like numarry.iterate, but cycles through the numarray a, restarting from the i-th
element which is 1 by default. For arguments p and true, Se€ numarray.iterate.

agena >> 385

numarray.double (n)

Creates a numarray of (signed) doubles (C double) with the given number of entries
n, With n an infeger, and with each slot setf fo the number 0.

Initially, the number of elements can be zero or more, use numarray.resize to
extend the array before assigning values.

See also: numarray.int32, numarray.longdouble, numarray.uint32,
numarray.uchar, numarray.ushort.

numarray.getitem (a, i [, n])

With a any numarray, returns the value stored at a[ij, where i, the index, is an
integer counting from 1. The funcftion is provided to avoid the index metamethod
overhead.

If n is given, then besides a[i], the values a(i+1]1 ... a[i + n - 1] Are AlSO returned
as additional results. The defaulf for nis 1.

See also: numarray.iterate, numarray.setitem, numarray.replicate,
numarray.subarray.

numarray.getbit (a, i)

Returns the bit at index position i of uchar array a. i stars from 1, the rightmost bit,
not zero.

The return is either 0 or 1.

See also: getbit, numarray.setbit, numarray.iterate.

numarray.getsize (a)

Returns the number of slofs used by the numarray.

numarray.include (a, pos, b)

numarray.include (a, i, x)

In the first form, copies all values in the numarray » info the numarray a, starting af
index pos (@ Nnumber) of a. The function retumns nothing. Both numarrays must by of
the same ftype: either be uchar, integer, or double arrays. See also
numarray.setitem.

In the second form, inserts a new number = into an array. First, the array is enlarged
by one slof, all values starting at position i (thus including the value already stored
at a[i]) are pushed to open space and finally the number x is assigned to a[i].

The function returns nothing.

386 10 Structures

numarray.int32 (n)

Creates a numarray of signed 4-byte integers (C int32_t) with the given number of
entries n, with n an integer, and with each slot set to the number 0. Initially, the
number of elements can be zero or more.

See also: numarray.double, humarray.resize, numarray.uchar, numarray.uint32,
numarray.ushort.

numarray.iterate (a [, i [, p, [, truelll)

Returns an iterator function that when called returns the next value in the numarray
userdata structure a, or null if there are no further entries in the structure.

If an index i is passed, the first call to the iterator function returns the i-th element in
the numarray list and with sulbbsequent calls, the respective elements after index i.

You may also pass a positive integer step p to the iterator function: If given, then in
subsequent calls the p-th element after the respective current one will be returned,
equivalent fo giving an optional step size in numeric for I0ops.

Bit Fields can be iterated one after the other by passing the fourth argument, the
Boolean value true. (You may set i and p to 1 each to fraverse all bits.)

Example 1: C doubles

> import numarray

> a := numarray.double(3)
> for i to 3 do al[i] := 1 * Pi od
> f := numarray.iterate(a, 2): # return all values starting with index 2

procedure (01CDC200)

> f£():
6.2831853071796

> f£():
9.4247779607694

> f£(): # no more values in a
null

Example 2: Bit Fields

> import numarray as n
> a := n.uchar (1)
> for i to 8 do n.setbit(a, i, 1) od

> n.get(a, 1):
255

agena >> 387

> f := numarray.iterate(a, 1, 1, true) # iterate each bit, from the right

> f£():
1

(etc.)

See also: numarray.cycle.

numarray.longdouble (n)

Creates a numarray of (signed) longdoubles (C long double) with the given number
of entries n, with n an integer, and with each slot set o the number 0. Check the
long package for further information.

Initially, the number of elements can be zero or more, use numarray.resize o
extend the array before assigning values.

See also: numarray.int32, numarray.double, numarray.uint32, numarray.uchar,
numarray.ushort.

numarray.map (£, a [,---] [, true])

Maps a function £ on each element in the numarray a and returns a new numarray
with the mapped results, i.e. the new array includes the values £(a[1]), £(a[2]). etc. £
must always return a numiber.

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array, but saving memory.
After completion, the function returns the modified array.

See also: numarray.convert, numarray.subs.

numarray.purge (a, i [, bool])

Removes the value stored at a[i], shifting down other elements o close the space,
and by default reduces the size of the array by one slot. If the array already is of size
0, an error will be returned. The function returns the value deleted.

If boo1 is false, the size of the array is not reduced. Instead, the last entry of the array
is set to 0. Use numarray.resize if you want to finally shrink the array to its new smaller
size. Passing the false option may be useful t0 avoid memory re-allocation
overhead when deleting a lot of values at one time.

See also: numarray.include, numarray.setitem.

numarray.read (fh [, bufsize])

388 10 Structures

Reads data from the file denoted by its filehandle fn and refurns a numarray
userdata structure of unsigned C chars.

The file must be opened before with binio.open and must finally be closed with
binio.close.

In general, the function reads in a limited amount of bytes per call. If only £n is
passed, the number of bytes read is determined by the environ.kernel('buffersize')
setting, usually 512 bytes.

You can pass the second argument oufsize, Q pPOSsitive infeger, 10 read less or
more bytes. Passing the pufsize argument may also be necessary if your platform
requires that an internal input buffer is aligned to a certain block size.

The function increments the file position thereafter so that the next bytes in the file
can be read with a new call fo numarray.read.

If the end of the file has been reached, or there is nothing to read at all, null will be
returned.

In case of an error, it quits with the respective error. Use one of the following
functions to read an entire file with only one cal: numarray.readdoubles,
numarray.readintegers, numarray.readuchars.

numarray.readdoubles (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle £n and returns a
numarray of C doubles.

By default, the function internally uses an input buffer of environ.kernel('ouffersize')
bytes, but you may choose another setting by passing the pufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, 1oo.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is writfen in Agena (see lio/numarray.agn).

numarray.readintegers (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle £n and retuns a
numarray of C (signed) int32_t's.

By default, the function internally uses an input buffer of environ.kernel('ouffersize')
bytes, but you may choose another setting by passing the pufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, 1oo.

agena >> 389

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is writfen in Agena (see lio/numarray.agn).

numarray.readlongdoubles (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle £n and retuns a
numarray of C long doubles, see long package.

By default, the function internally uses an input buffer of environ.kernel('ouffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function reads in the entire file with only one
call, too.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is writfen in Agena (see lio/numarray.agn).

numarray.readuchars (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle £n and retuns a
numarray of C unsigned chars.

By default, the function internally uses an input buffer of environ.kernel('ouffersize')
bytes, but you may choose another setting by passing the bufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, as well.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is writfen in Agena (see lio/numarray.agn).

numarray.readuint32 (fh [, bufsize])

Reads all the numeric data from the file denoted by its flehandle £n and returns a
numarray of C unsigned uint32_t's.

By default, the function internally uses an input buffer of environ.kernel(lbouffersize')
bytes, but you may choose another setting by passing the bufsize opfion. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, too.

The file must be opened before with binio.open and finally be closed with
binio.close.

390 10 Structures

The function is writfen in Agena (see lio/numarray.agn).

numarray.readushorts (fh [, bufsize])

Reads all the numeric data from the file denoted by its filehandle £n and returns a
numarray of 16-bit C unsigned integers.

By default, the function internally uses an input buffer of environ.kernel('ouffersize')
bytes, but you may choose another setting by passing the pufsize option. When
passing an alternative buffer size, the function however reads in the entire file with
only one call, 1oo.

The file must be opened before with binio.open and finally be closed with
binio.close.

The function is writfen in Agena (see lio/numarray.agn).

numarray.remove (£, a [, ---] [, true])

Returns all values in numeric array a that do not satisfy a condition determined by
function £ and returns a new array, or null if the condition has not been satisfied at
all.

If £ has only one argument, then only the function and the array are passed.

> numarray.remove (<< x -> x > 1 >>, a);

If the function has more than one argument, then all arguments except the first are
passed right after the name of a.

> numarray.remove (<< x, y —-> X >y >>, a, 1): # 1 for y

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array if the given condition
has been satisfied at least once, but saving memory. After completion, the function
returns the modified array. If the result is null, then the array has not been changed.

See also: numarray.map, humarray.satisfy, numarray.select, numarray.subs.

numarray.replicate (a)

Copies the entire contents of numarray a into a new array and returns it.

See also: numarray.getitem, numarray.subarray.

numarray.resize (a, n)

The function re-sizes a numarray userdata structure a to the given numiber of entries
n. Thus you can extend or shrink a numarray. When extending, the function fills the

agena >> 391

new array slots with zeros, while existing values are preserved. An array can be
reduced to zero entries, as well.

The function returns the new size, an infeger.

numarray.satisfy (£, a [,---])

With any numarray a, checks each element by calling function £ which should
retun true or false. If af least one element in a does not satisfy the condition
checked by £, the result is false, and true otherwise.

numarray.select (£, a [, ---] [, true])

Returns all values in numeric array a that safisfy a condition determined by function
£ and returns a new array, or null if the condition has not been satisfied at alll.

If £ has only one argument, then only the function and the array are passed.

> numarray.select (<< x -> x > 1 >>, a);

If the function has more than one argument, then all arguments except the first are
passed right after the name of a.

> numarray.select (<< x, y -> x > vy >>, a, 1): # 1 for y

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array if the given condition
has been satisfied at least once, but saving memory. After completion, the function
returns the modified array. If the result is null, then the array has not been changed.

See also: numarray.map, humarray.remove, humarray.satisfy, numarray.subs.

numarray.setbit (a, i, n)

Sets bit n af index position i of unsigned char array a. n must be either O or 1. i starts
from 1, the rightmost bit, not from position zero. The function returns nothing.

See also: setbit, numarray.getbit, numarray.iterate.

numarray.setitem (a, i, v)

With a2 any numarray, sefs number v to a(i], where i, the index, is an integer
counfing from 1. The function is provided to avoid the index metamethod
overhead.

See also: numarray.include, numarray.purge.

392 10 Structures

numarray.sort (a)

Sorts @ numarray a in ascending order, in-place. The function returns nothing.

numarray.sorted (a)

Sorts a numarray a in ascending order, non-destructively, and refurns a new array.

numarray.subarray (a, i, 3j)

With a any numarray, returns the subarray a(i to 51, where i, §, the indices, are
infegers counting from 1. The function is provided to avoid the index metamethod
overhead.

See also: numarray.getitem.

numarray.subs (x:v [, ---], a [, true])

Substitutes all occurrences of the value % in the numarray a with the value v. More
than one substitution pair can be given. The substitutions are performed sequentially
and simultaneously starting with the first pair.

> numarray.subs(1:3, 2:4, [1, 2, -11):
(3, 4, -1]

If the last argument is the option inplace=true, or the Boolean true, then the
operation will be done in-place, modifying the original array, but saving memory.
After completion, the function returns the modified array.

You can check numbers for approximate instead of strict equality by passing the
new strict=false option.

See also: numarray.map, humarray.remove, humarray.select.

numarray.toarray (o [, option])

Writes all data in the table array, sequence or register o info a numarray and retumns
it. By default, a double array will be returned (opfion 'double'); if the second
argument option is the string 'uchar', An unsigned char array is created; if it is the
sting 'integer', An infeger array will be returned.

If a value in o is not a number, zero is written to the array.

numarray.toreg (a)

Receives numarray a and converts it into a register of numlbers, the return.

agena >> 393

numarray.toseq (a)

Receives numarray a and converts it info a sequence of numibers, the return.

numarray.uchar (n)

Creates a numarray of unsigned 1-byte characters (C unsigned char) with the given
numiber of entries n, with n an integer, and with each slot set to the number O.
Initially, the number of elements can be zero or more.

See also: numarray.double, numarray.int32, numarray.uint32, numarray.ushort,
numarray.resize.

numarray.uint32 (n)

Creates a numarray of unsigned 4-byte infegers (C uint32_t) with the given number
of entfries n, with n an integer, and with each slot set to the number 0. Initially, the
numiber of elements can be zero or more.

See also: numarray.double, numarray.resize, numarray.uchar, humarray.int32,
numarray.readuint32, numarray.uint32, numarray.ushort.

numarray.used (a)

Returns the estimated numiber of bytes consumed by the given array a.

numarray.ushort (n)

Creates a numarray of unsigned 2-byte integers (C int16_t) with the given number of
entries n, with n an integer, and with each slot set to the number 0. Initially, the
number of elements can be zero or more.

See also: numarray.double, numarray.int32, numarray.resize, numarray.uchar,
numarray.uint32.

numarray.whereis (a, what [, pos [, eps]])

Returns the index for a given value what in the numarray a. By default, the search
starts at the beginning of the array, but you may pass any valid position pos (Q
positive integer) to determine where to start the search. The return is the index
position, a positive number, or null if what could not be found in a.

By default, the function checks for exact equality to detect the existence of a value.
By passing the fourth argument eps, a non-negative number, the function also
compares the values approximately with the given maximum deviation eps. See
approx for more details.

The '__in' metamethod internally uses this function to check for the existence of
values.

394 10 Structures

numarray.write (fh, a [, pos, nvalues]])

Writes unsigned chars, doubles, long doubles or integers stored in a numarray a to
the file denoted by its numeric file handle fn. The file must be opened with
binio.open and closed with binio.close.

The start position pos is 1 by default but can be changed to any other valid position
in the numarray.

The number of values (not bytes !) nvalues tO e writen can be changed by
passing an optional fourth argument, a positive number, and by default equals the
total number of entries in a, so the function can be called only once to write the
entire array. Passing the nvalues argument may also be necessary if your platform
requires internal buffers to be aligned to a particular block size. Depending on the
type of data stored in a, the function automatically computes the number of bytes
to be written.

The function retumns the index of the next start position (an integer) for a further call,
to write the next bunch of data in a, or null, if the end of the array has been
reached. When the function retuns null, then it also automatically flushes all
unwriffen content to the file so that you do not have to call binio.sync manually if
you want to read the file subsequently.

No further information is stored to the file created, so you always must know the type
of data you want to read in |ater.

Example on how to write an entire array of 4,096 integers piece-by-piece:

> a := numarray.int32(4 * 1024);
> fd := binio.open('integer.bin');
> pos := 1;

> do # write 1024 values per each call
> pos := numarray.write(fd, a, pos, 1024)
> until pos = null;

> binio.close (fd);

Use binio.sync if you want 1o make sure that any unwritten content is physically
written fo the file when calling numarray.write multiple fimes on one array.

If you want 1o add data to the end of a file later on, pass the 'a' option 1o
binio.open.

agena >>

395

10.6.3 Metamethods

Metamethod Functionality

C index read operation, e.g. n[p] or n[p to g], with p, g any valid
- indices

'_writeindex' write operation, e.g. n[p] := value, with p any valid index
'__size' size operator, number of elements in a numarray
'__in' in operator

'__notin' notin operator

'__empty' empty operator

'__filled' filled operator

'__tostring' formatting for output af the console

'__aeq' approximate equality ~= operator

'__eq' equality operator =

'__eeq' strict equality operator ==

'__zero' zero operator

'_nonzero' nonzero operator

'__gc' garbage collection

396 10 Structures

10.7 llist - Linked Lists

As a plus package, the llist package is not part of the standard distribution and
must be activated with the import statement, e.Q. import 11ist.

10.7.1 Introduction and an Example

Tables and sequences are quite slow if you have to insert or delete a lot of
elements during an operation, for with each insertion or deletion, objects have fo
be shifted upward or downward physically.

To avoid these costly operations, data can also be represented in containers, or
‘nodes’, where "[eJach node contains two fields: a "data" field to store whatever
element [...], and a "next" field which is a pointer used to link one node to the next
node.'”" For example, if you would like to insert a new element at position n, the
address of the "next entry” of node n - 1 is changed to the address of the new
node confaining the element to be inserted, and the "next entry” in the new node
is assigned the address of the node containing the original value at position n.

This speeds up write operations by dimensions; read operations, however, are
slower, for the linked list has to be fraversed linearly. However, linked lists Qs
implemented in this package are around fiffeen times faster even when
conducting a read operation with each write operation.

Metamethods exist 1o support printing, indexing, and indexed assignments; the size,
in, notin, =, and ~= operators are also supported.

Linked lists can contain nulls, i.e. putting null info the data field of a node does not
delete this node from the chain.

Linked list can store status information or other data in a special registry table that is
available at pseudo-index position 0. You can use the index metamethod or
llist.getitem to read from or write data into this table. Examples:

> print(al0]); # print contents of status table

> print(llist.getitem(a, 0)); # dito

> a[0].cursor := 16; # assign 16 to status table key 'cursor'
> a[0, 'cursor'] := 16; # dito

For an example of how to use linked lists, see Chapter 6.27.

Note that the linked list implemented in this package always knows about the
position of the top and the bottom element - so read and write access to them is

1 For an excellent introduction on implementing linked lists, see "Linked List Basics', Copyright ©
1998-2001, Nick Parlante. This quote has been taken from his manual, page 4.

agena >> 397

always O(1).

10.7.2 Functions

llist.append (1, obj [, ---1)

Appends one or more elements obj which may be of any type, 1o the singly-linked
list 1, in sequential order. There is No return.

See also: llist.prepend, llist.put.

llist.checkllist (1)

Checks whether its argument is a singly-linked list and issues an error otherwise. The
function returns nothing.

llist.dump (1)

Wirites each element in the singly-linked list 1 to a sequence and then deletes it from
the list. The linked list thereafter is completely empty and cannot be used any
longer. It will be garbage collected later as soon as you delete the reference to it.
The return is the sequence.

The function can be used in case available memory is insufficient.

See also: llist.toseq.

llist.getitem (1, idx [, n])

Returns the item af index idx of the singly-linked list 1. If the index does not exist, the
function returns null.

If iax is negative, the function retumns the value stored at the -idx's position counting
from end of the list.

If n is given, then besides a[idx], the values a[idx + 1] ... alidx + n - 1] Are Also
returned as additional results. The default is 1.

See also: llist.setitem.

llist.iterate (1 [, n [, pll])

Returns an iterator function that when called returns the next value in the
singly-linked list 1, which might also be null if one or more nulls are included in the
linked list, or null if there are no more entries in the list. Also returns null if the linked list

is empty.

398 10 Structures

If an index n is passed, the first call to the iterator function returns the n-th element in
the list and with subsequent calls, the respective elements after index n.

You may also pass a non-negative integer p to the iterator function: In this case, the
next consecutive p elements in the list are skipped before determining and
returning a value.

Example: Since the iterator can return null even if the end of the list has not yet
bbeen reached, we use a counter:

> L := 1llist.list(l); llist.append(L, null); llist.append(L, 2);
> f := llist.iterate(L);
> c := 0;

> while c++ < size L do
> print (£())

> od;

1

null

2

The function can also process ulists.

See also: ipairs.

llist.list ([---])

The function creates a new singly-linked list and optionally stores all of the given
elements in it. The return is a userdata of user-type '11ist’'.

llist.prepend (1, obj [, ---1)

Prepends an element ob§, and optionally further elements, which may be of any
type, 1o the singly-linked list 1. There is no retun.

See also: llist.append, llist.put.

llist.purge (1 [, n])

The function removes the element at position n from the linked list 1. All the
successors of the element to be deleted are “shiffed” downwards. The function
returns the value deleted, but issues an error if there is no element (i.e. node) at
index n.

If iax is negative, the function deletes the value stored af the -idx's position
counting from end of the list.

If nis not given, then the last, i.e. fop node is deleted; this is equal to llist.purge(1,
size 1).

agena >> 399

The function can also process ulists.

llist.put (1, n, obj)

The function inserts the given element ob5 into singly-linked list 1 at position n. The
original element at position n is not deleted - it and all of its successors are “shifted
fo open space. The function returns nothing, and issues an error if the index is
out-of-range.

If 1ax is negative, the function inserts the value at the -idx's position counting from
end of the list.

The function can also process ulists.

See also: llist.append, llist.prepend.

llist.replicate (1)

The function creates a copy of the singly-linked list 1 and returns a new linked list.
However, if an element in 1 is a structure, it is not deep-copied.

llist.setitem (1, idx, obj)

Stores obj, which may be of of any type, fo position idax of the singly-linked list 1,
overwriting the existing value. If size 1 > idx + 1 and the index does not yet exist,
the function simply quits without an error. If iax = size 1 + 1, then the call is
equivalent fo llist.append. The function returns nothing.

If iax is negative, the function sets value to the -idx's position counting from the end
of the list.

See also: llist.getitem.

llist.toseq (1)

The function creates a new sequence and copies all elements in the singly-linked
list 1 into it, in sequential order. The return is the sequence. If there are no elements
in 1, an empty sequence will be retumned. If the list includes nulls, they are ignored.

llist.totable (1)

The function creates a new table and copies all elements in the singly-linked list 1
into it, in sequential order. The retun is the table. If there are no elements in 1, an
empty table will be returned. If the list includes nulls, the resulting table will contain
holes.

400 10 Structures

10.7.3 Unrolled Singly-Linked Lists

The llist package also supports unrolled singly-linked lists. You will find the respective
functions in the "package’™ table ulist. To use the functions, it suffices you have
already invoked the llist package with import 11ist.

Unrolled singly-linked lists (ulists) internally consist of a singly-linked list storing
sequences of the actual values in each of its nodes. Various administrative
information - the current number of sequences (i.e. nodes), the current and the
maximum number of values in each sequence - is stored in a “registry” table at
pseudo-index 0. However, this intermnal structure is hidden from the user, and you
can use the same indices as you would do when calling llist functions to read or
write values.

Insert and delete operations on ulists are twenty times faster when compared 1o
singly-linked lists, with only a small increase of memory consumption. Similarly,
simple read and write operations are 15 times faster.

Note that confrary to llists, ulists cannot store null. The ulist package provides the
following metamethods:

Functionality ulist metamethod ulist alternative
Prefty printer print function, colon utility ulist.tostring(L)
Reading values L[K] ulist.getitem(L, k)
Saving values LK] := v, efc. ulist.setitem(L, k, V)
Size size operator ulist.getsize(L)
Existence check in operator ulist.nas(L, V)
Existence check notin operatfor ulist.nasnot(L, v)
Equality check = operator ulist.isequal(K, L)

The following ulist functions work like the llist functions of the same name, with the
exception of ulist.list:

ulist.append (ul, obj [, ---1)
The function works like llist.append.

It is written in Agena and included in the li/llist.agn file.

ulist.checkulist (ul)

Checks whether its argument is a ulist and issues an error otherwise. The function
returns nothing.

See also: ulist.isulist.

agena >> 401

ulist.dump (ul)
The function works like llist.dump.

ulist.getitem (ul, idx [n])
The function works like llist.getitem.

ulist.getllist (ul, node)

Returns the sequence stored at node (a positive integer) of the underlying llist. If the
node does not exist, the function returns null.

ulist.getsize (ul)

Returns the number of items in a ulist.

ulist.has (ul, v)

Checks whether the ulist contains item v and returns true or false.

ulist.isulist (ul)

Checks whether its argument is a ulist and returns true or false.

See also: ulist.checkulist.

ulist.iterate (ul [, n [, pll)
The function works like llist.iterate.

It is written in Agena and included in the lib/llist.agn file.

See also: ipairs.

ulist.list (n [, £ill])

The function creates a new unrolled singly-linked list and internally uses sequences
with a maximum size of n slots. The default for n is 128.

If the number ri11 is given, with O < fi11 < 1, each underlying sequence is filled to

the given percentage before a new one is created. The default is 0.75 for 75
percent. Reasonable values for £i11 may range between 0.5 to 0.75.

ulist.prepend (ul, obj [, ---1)
The function works like llist.prepend.

It is written in Agena and included in the lib/llist.agn file.

402 10 Structures

ulist.purge (ul, n)

The function works like llist.purge, but also returns the element deleted.

It is written in Agena and included in the lib/llist.agn file.

ulist.put (ul, n, obj)
The function works like llist.put.

It is written in Agena and included in the lib/llist.agn file.

ulist.setitem (ul, idx, value)

The function works like llist.setitem.

ulist.sort (ul [, £])

The function works like sort and returns nothing.

ulist.swap (ul, i, j)

Swaps the positions of u1[i] and u1[5] in-place. The function returns nothing.

ulist.tostring (ul)

Converts the contents of a ulist to a formatted string that can be output at the
prompf.

It is written in Agena and included in the lib/llist.agn file.

ulist.toseq (ul)
The function works like llist.totable but refurns a sequence instead of a table.

See also: ulist.dump.

ulist.totable (ul)

The function works like llist.totable.

agena >> 403

10.7.4 Doubly-Linked Lists

Finally, the llist package features doubly-linked lists. Read and write access to
elements in doubly-linked lists is twice as fast as for singly-linked lists.

You find the respective functions in the package table dlist. It suffices you have
already invoked the llist package with import 11ist.

The functions implemented for doubly-linked lists have the same name, work the
same and have the same syntfax as those for singly-linked lists, which are available
in package table llist. Just replace the prefix llist™ with “dlist .

dlist.append (1, obj [, ---1)

Appends one or more elements oo which may be of any type, to the doubly-linked
list 1, in sequential order. There is No return.

See also: dlist.prepend, dlist.put.

dlist.checkdlist (1)

Checks whether its argument is a doubly-linked list and issues an error otherwise. The
function returns nothing.

dlist.dump (1)

Writes each element in the doubly-linked list 1 t0 a sequence and then deletes it
from the list. The linked list thereafter is completely empty and cannot be used any
longer. It will be garbage collected later as soon as you delete the reference to it.
The return is the sequence.

The function can be used in case available memory is insufficient.

See also: dlist.toseq.

dlist.getitem (1, idx [, n])

Returns the item at index idx of the doubly-linked list 1. If the index does not exist,
the function returns nuill.

If iax is negative, the function retumns the value stored at the -idx's position counting
from end of the list.

If n is given, then besides a[idx], the values a[idx + 1] ... alidx + n - 1] Are Also
returned as additional results. The default is 1.

See also: dlist.setitem.

404 10 Structures

dlist.iterate (1 [, n [, pll)

Returns an iterator function that when called returns the next value in the
doubly-linked list 1, which might also be null if one or more nulls are included in the
linked list, or null if there are no more entries in the list. Also returns null if the linked list

is empty.

If an index n is passed, the first call to the iterator function returns the n-th element in
the list and with subsequent calls, the respective elements after index n.

You may also pass a non-negative integer p to the iterator function: In this case, the
next consecutive p elements in the list are skipped before determining and
returning a value.

Example: Since the iterator can return null even if the end of the list has not yet
bbeen reached, we use a counter:

> L := dlist.list(l); dlist.append(L, null); dlist.append(L, 2);
> f := dlist.iterate(L);

> c := 0;

> while c++ < size L do

> print (£())

> od;

1

null

2

See also: ipairs.

dlist.list ([---])

The function creates a new doubly-linked list and optionally stores all of the given
elements in it. The return is a userdata of user-type 'diist'.

dlist.prepend (1, obj [, ---1)

Prepends an element obj, and optionally further elements, which may be of any
type, to the doubly-linked list 1. There is no return.

See also: dlist.append, dlist.put.

dlist.purge (1 [, n])

The function removes the element at position n from the doubly-linked list 1. All the
successors of the element to be deleted are “shiffed” downwards. The function
retuns the value deleted, but issues an error if there is no element (i.e. node) af
index n.

agena >> 405

If iax is negative, the function deletes the value stored af the -idx's position
counting from end of the list.

If n is NOt given, then the last, i.e. top node is deleted; this is equal to dlist.purge(1,
size 1).

dlist.put (1, n, obj)

The function inserts the given element obj into doubly-linked list 1 af position n. The
original element at position n is not deleted - it and all of its successors are “shifted
fo open space. The function returns nothing, and issues an error if the index is
out-of-range.

If 1ax is negative, the function inserts the value at the -idx's position counting from
end of the list.

See also: dlist.append, dlist.prepend.

dlist.replicate (1)

The function creates a copy of the doubly-linked list 1 and returns a new linked list.
However, if an element in 1 is a structure, it is not deep-copied.

dlist.setitem (1, idx, obj)

Stores ob5, which may be of of any type, to position idx of the doubly-linked list 1,
overwriting the existing value. If size 1 > idx + 1 and the index does not yet exist,
the function simply quits without an error. If iax = size 1 + 1, then the call is
equivalent to dlist.append. The function returns nothing.

If iax is negative, the function sets value to the -idx's position counting from the end
of the list.

See also: dlist.getitem.

dlist.toseq (1)

The function creates a new sequence and copies all elements in the doubly-linked
list 1 into it, in sequential order. The return is the sequence. If there are no elements
in 1, an empty sequence will be retumned. If the list includes nulls, they are ignored.

dlist.totable (1)

The function creates a new table and copies all elements in the doubly-linked list 1
into it, in sequential order. The retun is the table. If there are no elements in 1, an
empty table will be returned. If the list includes nulls, the resulting table will contain
holes.

406 10 Structures

10.8 bags - Mulitsets

As a plus package, the bags package is not part of the standard distrioution and
must be activated with the import statement, e.Q. import bags.

10.8.1 Introduction and Examples

A bag, also called a multiset, is a kind of Cantor set that also stores the number of
occurrence of each unigue element.

Consider a bulk of orders of books where each order is reported individually. You
may only want to know how many times a book has been sold, instead of storing
each individual order (and maybe all its data) to finally count them. You may want
to save space and perform the count immediately as soon as the order has been
committed.

The package uses tables of the user-defined type 'oag' to implement multisets.

A sequence of orders might look like this:

Vv

import bags;

> orders := seq(

> 'Programming in Lua', 'Moon Lander', 'Lost Moon',
> 'Programming in Lua', 'Moon Lander', 'Lost Moon',
> 'C von A bis Z');

> books := bags.bag(unpack (orders));

Vv

books['Lost Moon']:

For a further order, just enter

> bags.include (books, 'Agena');
> books:

bag(Agena ~ 1, C von A bis Z ~ 1, Lost Moon ~ 2, Moon Lander ~ 2,
Programming in Lua ~ 2)

A customer has cancelled his previous orders:

> bags.remove (books, 'Agena'):

> books:

bag(C von A bis Z ~ 1, Lost Moon ~ 2, Moon Lander ~ 2, Programming in Lua ~
2)

agena >>

407

10.8.2 Functions & Metamethods

The package also provides the following metamethods:

Metamethod Functionality

'__index' read operation, e.g. N[p], with p an index
'__writeindex' write operation, e.g. n[p] := value, with p the index
'__size! size operator, number of characters currently stored
'__in' in operator

'__notin' notin operator

'__empty' empty operator

' filled' filled operator

'_union' union operator

'__intersect' intersect operator

'__minus' minus operator

'_tostring' formatting for output af the console

'_gc' garbage collection

The functions provided by the package are:

bags.attrib (b)

Returns the number of occurrence of all unique elements in the bag » and also the
accumulated number of all occurrences of these elements in it. For example, the
multiset bag('Curiosity' ~ 2, 'Skycrane' ~ 1) results to 2, 3.

See also: bags.getsize.

bags.bag ([---1)
The function creates a new bag and opftionally stores all of the given elements in it.

See also: sykcrane.bagtable.

bags.bagtoset (b)
The function returns all of the unique elements in b As A set.

bags.getsize (b)

Returns the number of occurrence of all unique elements in the bag o . without the
overhead of calling bags.attrib. For example, the multiset bag('Curiosity' ~ 2,
'Skycrane' ~ 1) results to 2.

See also: bags.attrib.

408 10 Structures

bags.include (b, obj [, ---1])
The function inserts all of the given elements op4, efc. into bag b.

The function returns nothing.

See also: bags.minclude, tables.include.

bags.minclude (b, obj)

The function inserts all of the given elements in the sequence obj into bag b. The
function should be used instead of bags.include if the number of elements to be
inserted exceeds Agendad's argument stack.

The function returns nothing.

See also: bags.include.

bags.remove (b, obj [, ---1)

The function removes all of the given elements obj, etc. from bag o. If the number
of counts of the removed element reaches 0, the element will be deleted from the
bag.

The function returns nothing.

There are metamethods for conducting some sort of arbitrary Cantor set operations
on bags. Try out the binary operators union (for union), minus for difference sef,
intersect for intersection, in and notin for searching an object, plus support of the
size, empty and filled operators.

If you would like to iterate a bag, you can use conventional for/in loops, for
example, using the bag in the previous chapter:

> for i, j in books do print(i, j) od

Programming in Lua 2
C von A bis Z 1
Lost Moon 2

Moon Lander 2

agena >> 409

10.9 bimaps - Bi-directional Maps

As a plus package, the bimaps package is not part of the standard distribution and
must be activated with the import statement, i.€. import bimaps.

10.9.1 Introduction and Examples
The bimaps package implements a bi-directional map through tables. It is
intended to hold items, i and j, that have a 1-to-1 relationship and allows to ook up

item j from table i and look up i from table j.

Examples:

> import bimaps

> 1, r := bimaps.bimap ()
> 1l.foo :=1

> l.bar := 2

> l.spam := 'eggs'

> 1:

[bar ~ 2, foo ~ 1, spam ~ eggs]

> r:
[l ~ foo, 2 ~ bar, eggs ~ spam]

> 1 = r:
true

10.9.2 Functions and Metamethods

The functions are:

bimaps.bimap ([tbl])

Creates two tables representing a bi-directional map. You can initialise the bimap
by passing an optional table tb1 with pre-defined values.

bimaps.attrib (bm)
Returns administrative information for bimap om, see environ.attrib for details.

bimaps.entries (bm)

Returns all entries in bimap om, without invoking any metamethods.

See also: bimaps.indices.

410 10 Structures

bimaps.indices (bm)

Returns all indices in bimap bm, without invoking any metamethods.
See also: bimaps.entries.

bimaps.rawget (bm [, k])

Returns the underlying table in bimap om, without invoking any metamethods, if no
index x is given - or if x is given, retuns entry pm[k] without invoking any
metamethods.

The package also provides the following metamethods:

Metamethod Functionality
'__index' read operation, e.g. n[p], with p any valid table index
'__writeindex' write operation, e.g. n[p] := value, with p any valid index

' size!

size operator, number of bi-directional pairs
__in' in operator

A}

'__notin’ notin operator

'__empty' empty operator

'__filled' filled operator

'_tostring' formatting for output af the console

agena >> 411

10.10 heaps - Priority Queues

As a plus package, the heaps package is not part of the standard distribution and
must be activated with the import statement, i.€. import heaps.

10.10.1 Introduction and Examples

The package implements skew heaps, "emulated” binary heaps and AVL trees
which for example can be used as priority queues. A skew heap is a mostly
unbalanced binary tree, usually avoiding costly reshuffles with each insert, whereas
binary heaps and AVL trees are usually balanced - with extra cost at insertion.

The exact amortized complexity O(n) of all operations on a skew heap is known to
e log(n, Phi), and the one for AVL and binary heaps is log(n, 2).

The package provides constructors (avl.new, skew.new, binary.new),
metamethods (see table below), functions to insert new and replace existing values
(avlinclude, skew.include, binary.include), to remove the entry with the smallest
index (avl.remove, skew.remove, binary.remove), and iterators (avl.iterate,
skew.iterate, binary.iterate) that traverse the heqps in an ordered fashion -
depending on the sorting method chosen at heap creation, which by default is in
ascending order of the indices.

Usage is:

> import heaps;

All the functions to work with skew heaps reside in the “skew' table, those for binary
heaps are in table "binary”, and those for AVL trees in table "avl .

The package operations on binary heaps and AVL trees are at least 25 times faster
than on skew heaps.

> h := binary.new()

> binary.include(h, 2, 'world')
binary.include(h, 1, 'hello')
> binary.include(h, 10, 'everybody')

\

> k1, vl := binary.remove (h)
> k2, v2 := binary.remove (h)
> k3, v3 := binary.remove (h)

> print(vl, v2, v3)
hello world everybody

> binary.include(h, 2, "world"); binary.include(h, 1, "hello");
> binary.include(h, 10, "everybody");

> f := binary.iterate(h);

412

10 Structures

> f£():

1 hello

> f£():

2 world

> f£():

10 everybody

The skew heap functions have the same syntax and work the same.

10.10.2 Metamethods

The package provides the following metamethods for all three heap types:

Metamethod Functionality

'__index' read operation, e.g. N[p]. with p any valid non-null index

' writeindex' skew heqps and AVL trees only: write operation, e.g. n[p] :=
value, with p any valid non-null index

'__size' size operator, number of key~value pairs in the heap

'__in' in operator

'__notin' notin operator

'__empty' empty operator

'__filled' filled operator

10.10.3 Binary Heap Functions

binary.entries (h)

The function retumns all entries in heap n in a new table. For the ordering, see

binary.iterate.

See also: binary.indices.

binary.include (h, k, v)

Inserts a new key~value pair into heap n. The key k and value v must be non-null.
The function returns nothing.

See also: binary.remove.

binary.indices (h)

The function returns all indices in heap n in a new table. For the ordering, see

binary.iterate.

See also: binary.entries.

agena >> 413

binary.iterate (h)

The factory returns an iterator that with each call returns a key~value pair from
heap n, in an ordered fashion.

The ordering is determined by the comparison function passed to binary.new,

which by default is a “less than™ comparison, so that the iterator returns the values
in ascending order of ifs indices.

binary.new ([comparison])

Creates an empty binary heap with the default comparison method for various
operations the “less than™ relation, i.e.

<< k1, k2 -> k1 and type k1 = type k2 and k1 < k2 >>,

You might pass another comparison function to be used.

binary.remove (h)

Removes the key~value pair with the smallest key and retumns the key and the value
removed. If the key does not exist, the function just returns null.

See also: binary.include.

binary.reorder (h)

The function deletes all obsolete datasets in binary heap n - to free memory.

10.10.4 AVL Tree Functions

The AVL free functions are:

avl.attrib (h)

The function returns administrative information about an AVL tree: maximum height
(key maxheight), numMiber of key~value pairs currently included (key 1ength) and the
balance factor (key balancefactor).

avl.entries (h)

The function returns all entries in the AVL free n in a new table, in ascending order of
its respective indices.

See adlso: avl.indices.

414 10 Structures

avl.getmax (h)

The function returns the largest key along with ifs associated value from AVL tree n.
The function does not remove the data from n.

See also: avl.getmin, getminmax, avl.getroot.

avl.getmin (h)

The function returns the smallest key along with its associated value from AVL tree n.
The function does not remove the data from .

See also: avl.getmax, avl.getminmax, avl.getroot.

avl.getminmax (h)

The function retumns the smallest and largest key along with their associated values
from AVL tree n. The function does not remove the datfa from n.

See also: avl.getmax, getminmax, avl.getroot.

avl.getroot (h)

The function returns the key along with its associated value from the root node of
AVL tfree n. The function does not remove the data from n.

avl.include (h, k, v)

Inserts a new key~value pair into AVL free n. The key k must be non-null; if v is null
then the function will call avs.remove(n, k). The function returns nothing.

See dlso: avl.remove.

avl.indices (h)

The function returns all indices in AVL tree n in ascending order and returns them in a
new table.

See also: avl.entries.

avl.iterate (h)

The factory returns an iterator that with each call returns a key~value pair from AVL
free n, in ascending order of its indices.

avl.new ()

Creates an empty AVL tree.

agena >> 415

avl.remove (h)

avl.remove (h, k)

In the first form, removes the key~value pair with the smallest key and returns the
key and the value removed.

In the second form, deletes the given key~value pair from the tree.
If the key does not exist or the tree is empty, the function just returns null.

See also: avl.include.

10.10.5 Skew Heap Functions

The skew heap functions are:

skew.entries (h)

The function retumns all entries in heap n in a new table. For the ordering, see
skew.iterate.

See also: skew.indices.

skew.height (h, k)

Returns the height of a key x in skew heap n, with 0 depicting that the key is in the
root node.

skew.include (h, k, v)

Inserts a new key~value pair intfo the skew heap n. The key k and value v must be
non-null. The function returns nothing.

See also: skew.remove.

skew.indices (h)

The function returns all indices in heap n in a new table. For the ordering, see
skew.iterate.

See also: skew.entries.

416 10 Structures

skew.iterate (h)

The factory returns an iterator that with each call returns a key~value pair from
heap n, in an ordered fashion.

The ordering is determined by the comparison function passed to skew.new, which
by default is a “less than™ comparison, so that the iterator retumns the values in
ascending order of ifs indices.

skew.new ([comparison])

Creates an empty skew heap with the default comparison method for various
operations the “less than™ relation, i.e.

<< k1, k2 -> k1 and type k1 = type k2 and k1 < k2 >>,
You might pass another comparison function to be used.

skew.remove (h)

Removes the key~value pair with the smallest key from heap n and returns the key
and the value removed. If the key does not exist, the function just returns null.

See dlso: skew.include.

skew.reorder (h)

The function balances skew heap n internally by popping the node with the highest
priority and then re-inserting it. This is just for maintenance, you do not have 1o run
this function before executing any other package function.

agena >> 417

10.11 bfield - Bit Fields

The package provides lean, low-level functions to work with memory-saving bit
fields. The functions are generally faster than those implemented in the memfile
package.

Typical usage:

Create a bit field of at least ten bits, which is internally rounded up to 16 bits, as 16
is a multiple of eight whereas ten is nof:

> m := bfield.new(10);

The field is by default pre-filled with zeros. If you want to preset other values, like 255
to set all bits to 1, enter:

> m := bfield.new (10, Oxff);

The actual size of the field is:

> size m:
16

Get some bits:

The package provides the following metamethods:

Metamethod Functionality

read operation, e.g. n[p], with p an index counting from 1;
reads a bit, not a byte

write operation, e.g. n[p] := value, with p the index, counting

' index'

' writeindex' .
from 1, sets a bit, not a byte
'__size! size operator, number of bits in the field
'__zero' zero operator, checks whether all field bits are set to zero
- N formafting for output at the console; retuns binary
__tostring ,
representations

_gc' garbage collection

418 10 Structures

The bit field functions are:

bfield.clearbit (bitfield, n)

Clears a bit, i.e. sets absolute bit position n in the bitfield 0 0. n counts from 1.
The function returns nothing.
See also: bfield.flipbit, bfield.getbit, bfield.setbit, bfield.setbitto, bfield.setbyte.

bfield.flipbit (bitfield, n)

Flips the bit stored at absolute bit position n in the bitfield: if the current bitis 1, it is
set to 0, and vice versa. n counts from 1.

The retum is the bit value after flipping, either 1 or O.

See also: bfield.clearbit, bfield.setbit.

bfield.getbit (bitfield, n)

Returns the bit stored at absolute bit position n in the bitfield. n counts from 1.
The return is either 1 or O.

See also: bfield.clearbit, bfield.setbit.

bfield.getbyte (bitfield, pos [, option])

From pitfield, returns the byfe at position pos, with pos > 0. The retumn is an integer
in the range [0, 255].

See also: bfield.getbit, bfield.getbytes.

bfield.new (n, [, wval])

Creates a bit field of at least n bits. If val is not given, then every byfe in the field is
set fo zero. If va1 - @ non-negative integer preferably in the range [0, 255] - is given,
then every byfe in the field is filled with it.

The numibber of bits actually allocated is always a multiple of 8, i.e. the field is filled
up to whole bytes.

See also: bfield.resize.

agena >> 419

bfield.resize (bitfield, n [, wval])

Resizes the bitfield O exactly n bits, with n > 0. It can grow or shrink a bit field and
in the lafter case preserves the remaining content. If the bit field is o be enlarged,
the function fills the new space with zeros if the third argument va1 is not given,
otherwise the added byfes are set to the non-negative infeger va1, which should be
in the range [0, 255].

The size of the modified bit field is always a multiple of 8.

See also: bfield.new.

bfield.setbit (bitfield, n)

Sets absolute bit position n in the vitfield to 1. n counts from 1. To clear a bit, use
bfield.clearbit.

The function returns nothing.

See also: bfield.clearbit, bfield.flipbit, bfield.getbit, bfield.setbyte.

bfield.setbitto (bitfield, n, wval)

Sets absolute bit position n in the vitfielda to 1 the val, a non-negative intfeger
preferably in the range [0, 255]. n counts from 1.

The function returns nothing.

See also: bfield.clearbit, bfield.getbit, bfield.setbyte.

bfield.setbyte (bitfield, pos, val)

Sets va1, @ non-negative integer preferably in the range [0, 255] iNfO bitfield af
byte position pos, with pos > 0.

The function returns nothing.

See also: bfield.getbyte, bfield.setbit.

420 10 Structures

agena >> 421

Chapter Eleven

Numbers

422 11 Numbers

agena >> 423

11 Numbers

11.1 Mathematical Functions

The mathematical operators and functions explained in this chapter work on both
real numbers as well as complex numbers, except if indicated otherwise.

For the sake of speed, basic arithmetic functions have been implemented as
operators, whereas all other mathematical functions are implemented as Agena
library functions (implemented either in C or Agena). While functions can be
overwritten with self-defined versions, operators cannot be overwritten.,
Summary of Operators and Functions:
Basic Arithmetic Operators

+, -, % [, /% &+, &, &*, &/, &\, math.accu, math.fdim, math.koadd.

Relational Operators

=I ==I <I >I <=I >

. <>, |, approx.
Integer Division

\, %, drem, igr, modf, symmod, math.cld, math.fld, math.modiv,
math.modulus, math.nearmod.

Exponentiation
~, ** antilog2, antilog10, cube, exp, expx2, frexp, Idexp,
math.expminusone, math.exp2, math.exp10, math.iscube, math.issquare,
square, squareadd.

RooOts

cbrt, hypot, hypot2, hypot3, hypot4, invsqgrt, proot, pytha, root, sqrt,
math.isqrt, fastmath.hypotfast, fastmath.sqroot, fastmath.sqrifast.

Logarithms

ilog2, In, log, log2, log10, math.ceillog2, fastmath.lbfast, math.Inplusone,
math.xinplusone.

424 11 Numbers

Trigonometric Functions

cas, cos, cot, csc, sec, sin, tan, math.quadrant, math.sincos,
fastmath.sincosfast, math.wrap.

Inverse Trigonometric Functions

arccos, arccsc, arccot, arcsec, arcsin, arctan, arctan2, math.arccosh,
math.arcsinh, math.arctansh.

Hyperbolic Functions
cosh, coth, csch, sech, sinh, tanh.
Inverse Hyperbolic Functions
arccosh, arccsch, arccoth, arcsech, arcsinh, arctanh.
Sign
sign, sighum, math.copysign, math.flipsign, math.mulsign, math.signbit.
Miscellaneous
erf, erfc, erfcx, erfi, inverf, inverfc, fma, sinc, cosc, tanc,
math.fib, math.fibinv, math.gcd, math.isfib, math.lcm, math.makx,
math.min, math.rectangular, math.relerror, math.triangular, muladd.
Miscellaneous Complex Functions
argument, bea, conjugate, cosxx, flip, polar.

Gamma, eftc.

beta, binomial, fact, gamma, Ingamma, math.fall, math.Infact,
math.pochhammer.

Bessel Functions
besselj, bessely.
Rounding Functions

ceil, entier, int, mdf, round, xdf, math.rint.

agena >> 425

Numbers

frac, frexp, ++, --, +++, ---, math.compose, math.decompose,
math.eps, math.epsilon, math.exponent, math.fraction, math.frexp,
math.mantissa, math.ndigits, math.nextafter, math.nextmultiple,
math.nextpower, math.nthdigit, math.tohex, math.uexponent, math.ulp.

Numeric Checks
even, finite, float, in, infinite, inrange, isint, isnegative, isnegint, isnonneg,
isnonnegint, isnonposint, isnumber, isnumeric, isposint, ispositive,
nan, odd, math.fpclassify, math.isinfinity, math.isminuszero,
math.isnormal, math.isordered, math.ispow2, math.issubnormail.
Range Reduction and Conversion
abs, | |, heaviside, math.branch, math.chop, math.clip, math.Inabs,
math.norm, math.normalise, math.piecewise, math.ramp,
math.rectangular, math.rempio2, math.unitise, math.unitstep, math.wrap.
Random Numbers
math.random, math.randomseed.

Bases and Conversion

math.convertbase, math.norm, math.tobinary, math.todecimal,
math.tohex, math.toradians, math.tosgesim.

Primes
math.congruentprime, math.isprime, math.nextprime, math.prevprime.

Bitwise Operators, Bit and Byte Twiddling
&&, ~~, ||, 7, <<<, >>>, <<<<, >>>>, implies, nand, nor, xnor,
xor, getbit, getbits, getnbits, setbit, setbits, setnbits, math.inttofpb,
bytes.numhigh, bytes.numilow, bytes.gethigh, bytes.getlow,
bytes.numwords, math.fpbtoint, bytes.leadzeros, bytes.leastsigbit,
bytes.mostsigbit, bytes.onebits, bytes.reverse, bytes.setdouble,
bytes.sethigh, bytes.setnumhigh, bytes.setlow, bytes.setnumiow,
bytes.setnumwords, bytes.tobytes.

Boolean Operators

and, implies, nand, nor, not, or, xnor, xor

426 11 Numbers

11.1.1 Operators and Functions

xty

The operator adds two numbers; returns a number. Complex numbers are
supported.

See also: factory.count, math.accu, math.koadd, inc operator in Chapter 4.6.8.

Xy
The operator subtracts two numbers; returns a number. Complex numbers are
supported.

See also: math.fdim, dec operator in Chapter 4.6.8.

x *y
The operator multiplies two numbers; returns a number. Complex numbers and

Booleans are supported. A Boolean operand represents 1 for true, and O for false or
fail.

See also: mul operator in Chapter 4.6.8.

x/y

The operator divides two numbers; returns a number. Complex numbers are
supported.

See also: recip,math.cld, math.fld, div operator in Chapter 4.6.8.

x\y
The operator performs an integer division of two numlbers, and returns a number.
The integer division is defined as: x \ y = sign(x) * sign(y) * entier(| %).

See also: %, /, igr, math.cld, math.fid, intdiv operator in Chapter 4.6.8.

X &+ y

The operator adds two signed or unsigned 32-bit numbers; refurns a number.
Complex numbers are supported, as well. By default, the operator intermnally
calculates with unsigned 32-bit integers. You can change this to signed integers by
calling environ.kernel with the signedbits option.

See also: bytes.add32, factory.count, math.accu, math.koadd.

agena >> 427

X &y

The operator subtracts two signed or unsigned 32-bit numbers; returns a number.
Complex numbers are supported, as well. By default, the operator internally
calculates with unsigned 32-bit integers. You can change this fo signed integers by
calling environ.kernel with the signedbits option.

See also: bytes.sub32, math.fdim.

x &% y

The operator multiplies two signed or unsigned 32-bit numbers; returns a number.
Complex numbers are supported. By default, the operator internally calculates with
unsigned 32-bit integers. You can change this to signed integers by calling
environ.kernel with the signedbits option.

See also: bytes.mul32.

x &/ y

The operator divides two signed or unsigned 32-bit numbers; returns a number.
Complex numbers are supported. By default, the operator internally calculates with
unsigned 32-bit integers. You can change this to signed integers by calling
environ.kernel with the signedbits opfion. See also: bytes.div32.

X *% y

The operator multiplies two numibbers and divides the result by 100; retuns a
number, the percentage.

x /%y

The operator divides two numbers and multiplies the result by 100; returns a
number, the ratio.

x 3% y

The operator computes the percentage change from the number x to the number
y and returns a number. It is equivalent to y /% = - 100.

x %5y
The operator adds the given percentage y 1o x.

X =%y
The operator subtracts the given percentage y from x.

428 11 Numbers

z roll r

The binary operator rotates a two-dimensional vector, represented by the complex
number z, through the angel r (given in radians) counterclockwise and returns the
new complex number z*exp(I*r). To convert degrees to radians, multiply by Pi/180.
If = is just a number, it is internally converted to the complex number =z + 0*l.

See also: conjugate, flip.

x5y

The modulus operator conducts the operation x % v = x - entier[?)*y. The return is
always non-negative.

See also. \, drem, everyth, igr, symmod, hashes.fibomod32, math.modinv,
math.modulus, math.wrap, mod operator in Chapter 4.6.8.

X symmod y

The symnmetric modulus operator evaluates the remainder of a division x/y (with x, y
two Agena numbers). The result has the same sign as the numerator x. Specifically,
the return value is x - g * y, where g is the quotient x/y, rounded towards O to the
next infeger.

See also: \,%, drem, igr, math.modinv, math.modulus, math.wrap.
x 2y
The operator performs an exponentiation of real or complex x with a rational power

y. With numbers, if x is negative and y non-integral, it returns undefined.

See also: ™ operator, antilog2, antilog10, proot, root, square, squareadd.

X ** y

The operator exponentiates the real or complex number x with the integer power .
Depending on the platform and with small y, the operator is at least 50 % faster
than the ™ operator. If v is undefined or tinfinity, undefined will be returned.

See also: cube, square, squareadd.

z squareadd c

For numeric or complex z, ¢, computes z ™~ 2 + ¢, preventing round-off errors.

See also: **, fma, square.

agena >> 429

1x]

The operator computes the absolute value of the number or complex number x,
i.e. abs(x). The return in both cases is a number.

See also: |-, abs, cabs, calc.eucliddist, math.Inabs, math.fdim.

X |-y
The operator computes the absolute difference of the two numbers x and v, i.e.
abs(x - y). The return is a number.

See also: |-, abs, cabs, calc.eucliddist, math.fdim.

X &8 y

Bitwise "and’ operation on two numbers x and y. By default, the operator intemnailly
calculates with unsigned 32-bit integers. You can change this to signed integers by
caling environ.kernel with the signedbits opfion. See also: environ.kernel in
Chapter 14.2. See also: bytes.and32.

+++ x

Returns the next representable number larger than x. If given a variable, the
operator does not change its value. See also: ---, math.nextafter.

-— x

Returns the next representable number smaller than x. If given a variable, the
operator does not change its value. See also: + ++, math.nextafter.

~~ X

Bitwise 32-bit complementary operation on the number x, i.e. bitwise NOT, flipping
all the bits representing x. The operator returns signed results only, regardiess of the
environ.kernel/signedbits sefting. See also: bytes.not32.

x1ly

Bitwise "or operation on two numbers x and y. By default, the operator intemailly
calculates with unsigned 32-bit integers. You can change this to signed integers by
caling environ.kernel with the signedbits opfion. See also: environ.kernel in
Chapter 14.2,

See also: bytes.or32.

430 11 Numbers

x "y
Bitwise 32-bit “exclusive-or’ operation on two numbers x and y. By default, the
operator intemnally calculates with unsigned 32-bit integers. You can change this fo

signed infegers by calling environ.kernel with the signedbits option. See also:
environ.kernel in Chapter 14.2.

See also: bytes.xor32.

X <K vy

Bitwise left-shift operation (multiplication by 2, i.e. x <<< y = x*2v). By default, the
operator intemnally calculates with signed 32-bit integers. You can change this fo
signed integers by calling environ.kernel with the signedbits option. If y >=
environ.kernel('nbits'), returns 0. Please note that the results may vary across
platforms with overflows and that shift by negative y are undefined. Shift by zero is
the identity shift.

See also: >>>, environ.kernel, bytes.shift32.

X >>>y

Bitwise right-shift operation (division by 2, i.e. x >>> y = x/2v). The operator by
default calculates with unsigned 32-bit integers infernally. You can change this fo
signed integers by calling environ.kernel with the signedbits option. If y >=
environ.kernel('nbits'), returns 0. Please note that the results may vary across
platforms with overflows and that shift by negative y are undefined. However, if x is
negative and y positive, an arithmetic right-shift is accomplished, thus preserving
the sign of x. A shift by zero is the identity shift.

See adlso: << <, environ.kernel, bytes.shift32.

X <<y

Returns the number x rotated a given number of bits y to the left. Internally it uses
unsigned 32-bit integers by default. You can change this to signed integers by
calling environ.kernel with the signedbits option.

See also: >>>>, environ.kernel, bytes.rotate32.

X >>>> vy

Returns the number x rotated a given number of bits y to the right. Internally it uses
unsigned 32-bit integers by default. You can change this to signed integers by
calling environ.kernel with the signedbits option.

See also: < << <, environ.kernel, bytes.rotate32

agena >> 431

x in y

Checks whether the number x is part of the interval defined by the pair y consisting
of two numbers. The operator returns true or false. For a much faster check, see
inrange operator.

x |y

The operator compares two finite numbers x, y, determines whether x is less than v,
x IS exactly equal to y, or x is greater than y, and retumns -1, O, or 1 respectively.

If at least one of the operators is infinite or undefined, the function returns
undefined.

The operator is twice as fast as sign. See also: ~|, signum.

To build a piece-wise function, for example the absolute function, you may enter:

> my_abs := proc(x) is
> case x | O

> of -1 then return -x
> else

> return x

> esac

> end;

X~y
The operator compares two finite numbers x, y, determines whether x s

approximately equal fo y, x is less than y, or x is greater than y, and returns O, -1, or
1 respectively. See also: | operator.

abs (z)

If z is a number, the abs operator returns the absolute value of z. With a complex
number z = x + |*y, it returns the distance between it and the origin as a number,

e, JX2+y?.
See also: ||, |-, argument, cabs, math.Inabs, polar.

antilog2 (z)

The operator computes 22, i.e. 2 raised to the power of the number or complex
number z.

See also: ™ and ** operators, antilog10, log2.

432 11 Numbers

antilogl0 (z)

The operator computes 10?, i.e. 10 raised to the power of the numlber or complex
number z.

See also: ™ and ** operators, antilog2, log10.

approx (x, y [, epsl])

Compares the two numbers or complex values x and y and checks whether they
are approximately equal. If eps is omitted, Eps is used.

suited for values "‘near’ 0 and a simplified relative approximation algorithm
developed by Donald H. Knuth suited for larger values (1x-y| < eps * max(|x|,
Y1)), that checks whether the relafive error is bound to a given folerance eps.

The algorithm uses a combination of simple distance measurement (|x-y| < eps)

The function returns true if x and y are considered equal or false otherwise. If both a
and o are infinity, the function returns true. The same applies 10 a and b being
-infinity or undefined.

See also: math.eps, math.epsilon.

arccos (x)

Returns the inverse cosine operator (x in radians). Complex numibers are supported.

arccosh (x)

Returns the inverse hyperbolic cosine of x (in radians). The function is implemented
in Agena and included in the lib/library.agn file.

arccsc (x)

Retumns the inverse cosecant of x (in radians). The function works on both numbers
and complex values. The function is implemented in Agena and included in the
lio/library.agn file.

arccsch (x)

Retuns the inverse hyperbolic cosecant of x (in radians). The function works on
both numbers and complex values. The function is implemented in Agena and
included in the lib/library.agn file.

arccot (x)

Returns the inverse cotangent of x (in radians). The function works on both numbers
and complex values. The function is implemented in Agena and included in the
lib/library.agn file.

agena >> 433

arccoth (x)

Retuns the inverse hyperbolic cotangent of x (in radians). The function works on
both numbers and complex values.

arcsec (x)

Retuns the inverse secant of x (in radians). The operator works on both numbers
and complex values.

arcsech (x)

Returns the inverse hyperbolic secant of x (in radians). The function works on both
numbers and complex values. The function is implemented in Agena and included
in the lib/library.agn file.

arcsin (x)

Computes the inverse sine operator (in radians). Complex numbers are supported.

arcsinh (x)

Retuns the inverse hyperbolic sine of x (in radians). The function works on both
numibers and complex values. See also: math.arcsinh.

arctan (x)

Computes the inverse tangent operator (in radians). Complex numbers are
supported. See also: arctan2.

arctan2 (y, x)

Returns the arc tfangent of y/x (in radians), but uses the signs of both parameters to
find the quadrant of the result. (It also handles correctly the case of y being zero.) x
and y must be numbers or complex numbers. See also: arctan.

arctanh (x)

Returns the inverse hyperbolic tangent of x (in radians). The function works on both
numbers and complex values. The function is implemented in Agena and
included in the lio/library.agn file. See also: math.arctanh.

argument (z)

Returns the argument (the phase angle) of the complex value z in radians as a
number. If z is a number, the function returns O if z > O, and = otherwise.

See also: abs, cabs, polar.

434 11 Numbers

bea (z)

The operator takes the complex numiber z = xly and returns the complex number
sin(x)*sinh(y) + I*cos(x)*cosh(y). This function may be mathematically useless, but it
creates beaufiful fractals. With numbers, it returns undefined.

See also: cosxx, flip.

beta (x, y)

Computes the Beta function. x and y are numbers or complex values. The return

may be a number or complex value. The Beta function is defined as: Betq(x, y) =
Ixxly
—F(:+y)' with special treatment if x and y are integers.

binomial (n, k)

Retuns the binomial coefficient (E) as a number. n, k may also be negative
integers, or floats of any sign.

besselj (n, x)

Returns the Bessel function of the first kind. The order is n given as the first argument,
the argument x as the second argument. The return is a number. The function works
on both numbers and complex values.

bessely (n, x)

Returns the Bessel function of the second kind. The order n is given as the first
argument, the argument x as the second argument. The return is a number. The
function works on both numbers and complex values.

cabs (z [, option])

If z is a number, the cabs function returns the absolute value of z as a number
(default) or abs(z) + I1*0 if any option is given.

If z is a complex number z = x + I*y, contfrary to the abs operator, it returns the real
and imaginary absolute value, i.e. x| + | lyl.

See also: ||, |-, abs, argument, polar.

cartesian (x, y)

Returns a complex number z in Cartesian notation a + [*b for magnitude/modulus
x and argument/phase angle y. x and y must be numbers. The result is equivalent
foz = x * cis(y).

See also: cis, polar.

agena >> 435

cas (x)
Returns the "casine’ of the number or complex number x the efficient way, i.e.

sin(x) + cos(x) = ﬁsin(;ﬁ%). It is written in Agena and included in the lib/library.agn
file.

cbrt (x)

Returns the cubic root of the numiber or complex number x. With complex x, it is
equal to x 7~ (1/3), but not to root(x, 3).

See also: ™ operator, root.

ceil (x)

The function rounds upwards to the nearest integer larger than or equal to the
number or complex number x. See the entier operator for a function that rounds
downwards o the nearest integer. For the definition of ceil, see entier.

See also: entier, floor, int, round, math.rint.

cis (x)

Returmns the complex exponential function exp(l*x) = cos(x) + I*sin(x) for any real or
complex argument x. It is around 33 % faster than the equivalent expression
exp(l*x). Note the equality abs(x) * cis(argument(x)) = x.

See also: polar.

conjugate (z)

The operator returns the conjugate x-I*y of the complex value z=x+I*y. If z is of
type numiber, it is simply returned.

See also: flip.
cos (x)
The operator returns the cosine of x (in radians). Complex numibers are supported.

See also: math.cospi, math.sincos.

cosc (x)

The function returns the un-normalised cardinal cosine of x (in radians), i.e. COs(x)/x,
with cosc(0) = undefined. Complex numbers are supported.

See also: math.rectangular, sinc, tanc.

436 11 Numbers

cosh (x)

The operator retumns the hyperbolic cosine of x (in radians). Complex numbers are
supported. See also: sinh, tanh, math.sinhcosh.

cosxx (z)

The operator takes the complex number z = xly and returns the complex number
cos(x)*cosh(y)+1*sin(x)*sinh(y), i.e. the imaginary part of the result had the wrong
sign. It represents FRACTINT's buggy cos function ftill v16. This function may be
mathematically useless, but it creates beautiful fractals. With the number z, it returns
COs(z).

See also: cos, beaq, flip.

cot (x)

Returns the cotangent -tan(§+x) as a number (in radians). The function is
implemented in Agena and included in the lib/liorary.agn file. The function works on
both numbers and complex values.

coth (x)

Returns the hyperbolic cotangent ‘ronlw as a number (in radians). The function is

implemented in Agena and included in the lib/library.agn file. The function works on
both numbers and complex values.

csc (x)

Returns the cosecant sinpg 98 @ number (in radians). The function is implemented in

Agena and included in the lib/library.agn file. The function works on both numbers
and complex values.

csch (x)

Retuns the hyperbolic cosecant as a number (in radians). The function is
implemented in Agena and included in the lib/library.agn file. The function works on
both numbers and complex values.

cube (x)

The operator raises the numiber or complex number x 1o the power of 3. See also:
** ~ square operators.

agena >> 437

drem (x, y)

Evaluates the remainder of an integer division x/y (with %, y two Agena numlbers),
but contrary to symmod, rounds the internal quotient x/y to the nearest integer
instead of towards zero. The function actually is a wrapper to C's remainder.

See also: \, %, igr, modf, symmod, math.modinv, math.modulus.

entier (x)

The operator rounds the number x downwards to the nearest integer. For complex
x, the retumn is:

re = redl(x) - entier(real(x)) and im = imag(x) - entier(imag(x)).
then entier(x) = int(real(x)) + I*inf(imag(x)) + X, where

0 if a+b < 1
X=91lTifa+tbs1 Aasb
| fa+b >s1T Aa<b
Also: ceil(x) = -entier(-x). (With numbers, the function internally calls C's floor.)

See adlso: ceil, frac, int, mdf, round, math.rint.

erf (x)
X

Returns the error function of x. It is defined by erf(x) = % fe—TAQ. The function
t=0

works on both numbers and complex values.

See also: erfc, erfex, erfi, inverf.

erfc (x)

Returns the complementary error function of x, a number or complex value. It is
defined by erfc(x) = 1 - erf(x). The retumn is a number or complex value.

See adlso: erf, erfcx, erfi, inverfc.

erfex (x)

Implements the Scaled Complementary Error Function erfcx(x) = exp(x ™ 2)*erfc(x),
with x @ number or complex number and - depending on the type of x- a numeric
or complex result,

See also: erfe, erfex, erfi, inverfc.

438 11 Numbers

erfi (z)

Computes the imaginary error function erfi(z) = -1*erf(I*z) for real or complex z. The
type of return depends on the type of z.

See also: erf, erfc, erfex, inverfc.

even (x)

Checks whether the number x is even. The operator returns true if x is even, and
false otherwise. With non-integral numbers, the operator returns false. With the
complex value x, the operator returns fail. See also: odd.

exp (x)

Exponential function; the operator retumns the value €*, with e Euler's number.
Complex numbers are supported. See also: antilog2, antilog10, cis, expx2,
math.expminusone, math.exp2, math.exp10.

exp2 (x)
Returns 2« with x any (complex) number. See also: ™ operator, exp, exp10.

expl0 (x)
Returns 10+ with x any (complex) number. See also: ~ operator, exp, exp2.

expx2 (x [, sign])

Computes either X" 2 if sign > 0, or e*"? if sign < 0 while suppressing error
amplification that would occur from the in-exactness of the exponential argument
X2, x may be a number or complex number, while sign must be a number. By
default, sign is positive.

fact (n)

Returns the factorial of n, i.e. the product of the values from 1 10 n. n May be a
non-negative integer or a negative or positive rational number that is non-integral,
otherwise the function returns undefined. The function is implemented in Agena
and included in the lib/liorary.agn file. It features a defaults remember table
(rotable) which you may extend by adding new defaults to your agena.ini file (see
rtable.defaults and Appendix Ab).

See also: math.fall, math.pochhammer.

agena >> 439

finite (x)

Checks whether the number or complex number x is neither +infinity nor undefined
(C NaN). The operator returns true or false.

See also: even, float, infinite, nan, odd, math.isinfinity, math.isordered.

flip (z)

The operator takes the complex number z and returns the new complex number
imag(z)lreal(z), i.e. the real and imaginary pars are swapped. With numlbers,
always returns 0.

See also: bea, conjugate, cosxx.

floor (x)

The function rounds downwards to the nearest integer larger than or equal to the
number or complex number x. It works like the entier operator.

float (x)

Checks whether the number x is a float, i.e. not an intfeger, and returns true or failse.

With complex numbers, if returns true if the real par is infegral and the imaginary
part is zero, and false otherwise.

If x is not a (complex) number, the operator returns fail. With +/-infinity and
undefined, returns false.

See also: finite, integral, isint.

fma (x, y, 2z)

Performs the fused multiply-add operation (x * y) + z, with the infermediate result
not rounded 1o the destination type, to improve the precision of a calculation. x, v,
and z must be numbers or complex numbers. See also: squareadd and muladd
operators.

frac (x)

Returns the fractional part of the number x, i.e. x - int(x), thus preserving the sign.
With complex numibers a + I*b, returns frac(a) + [*frac(b).

See adlso: entier, int, modf.

440 11 Numbers

frexp (x)

Returns the mantissa m and the exponent e of the numiber x such that x = m2°®, e is
an integer, and the value of m is in the range [0.5, 1) (or zero when x is zero). The
operation is bijective, i.e. l[dexp(frexp(x)) = x. With complex x, retfurns m and e both
for the real and the imaginary part.

See also: frexp10, ilog2, Idexp, math.exponent, math.frexp, math.mantissa.

frexpl0 (x)

Returns the mantissa m and the exponent e of the numiber x such that x = m10° e
is an integer, and the value of m is in the range [0, 1). Since floats are represented
with base 2, and not base 10, the operation is not bijective, i.e. Idexp(frexp(x)) # x.
With complex x, returns m and e both for the real and the imaginary part. See also:
frexp.

gamma (x)

The gamma function I'" x. x may be a number or complex value.

See also: Ingamma.

heaviside (x [, z])

The Heaviside function. Retums O if x < 0, T if x > 0, and z if x = O, where z defaults
to undefined. The function is implemented in Agena and included in the
lib/library.agn file.

See also: calc.smoothstep, math.clip, math.ramp, math.rectangular,
math.unitise, math.unitstep.

hypot (x, y)

Retuns [x2+y? with x, y numbers, complex numbers or a mix of them. With x, vy
numbers, it is the length of the hypotenuse of a right triangle with sides of length x
and y, or the distance of the point (x, y) from the origin. The function is slower but
more precise than using sqrt along with square, avoiding over- and underflows and
freating subnormal numbers accordingly. The return is a number or complex
number.

See also: hypot2, hypot3, hypot4, invhypot, pytha, root, sqrt, calc.eucliddist.

agena >> 441

hypot2 (x)

Returns the number or complex number 1+x?, with x a number or complex
numiber. The function is slower but more precise than using sqrt along with square,
avoiding over- and underflows and treating subnormal numibers accordingly.

See also: hypot, hypot3, hypot4, root, sqrt.

hypot3 (x)

Retumns the number V1 -x2, with x a number or complex number. The function is
slower but more precise than using sqgrt along with square, avoiding over- and
underflows and treatfing subnormal numbers accordingly.

See also: hypot, hypot2, hypot4, root, sqrt.

hypotd (x, y)

Returns the number /x2-y?2, with x, y numbers, complex numbers or a mix of

them. The function is slower but more precise than using sqrt along with square,
avoiding over- and underflows and treating subnormal numibers accordingly.

See also: hypot, hypot2, hypot3, root, sqrt.

ilog2 (x)

Extracts the exponent of the number or complex number x (i.e. the integer part of
the base-2 logarithm of the positive number x) and retumns it as the number
entier(log2(x)).

See also: frexp, ilog10, In, log, log2, log10, math.ceillog2, math.ispow2.

ilogl0 (x)
Extracts the exponent of number x and returns it as the number entier(log10(x)).

See also: ilog2, log10.

implies (x, y)

With two booleans, the function computes not(x) or v, with numbers returns:

(~~=)] v,

442 11 Numbers

infinite (x)

Checks whether the numibber or complex number x is +infinity. The operator returns
true or false.

See also: even, float, finite, nan, odd, math.isinfinity, math.isordered.

inrange (x, a, b)

The operator checks whether x is part of the closed interval [a, b] and returns true or
false. All arguments must be numlbers.

See also: in operator.

int (x)

Rounds x fo the nearest integer towards zero. The operator also supports complex
numibers. To round a float to a given decimal place, use xdf. To get the fractional
part of a number, call frac.

See also: \ operator, ceil, entier, float, igr, mdf, modf, round, math.rint, xdf.

integral (x)

Checks whether the number x is an integer, i.e. not a float, and returns true or false.

With complex numbers, if returns true if the real part is integral and the imaginary
part is zero, and false otherwise.

If x is not a (complex) number, the operator returns fail. With +/-infinity and
undefined, returns false.

See also: finite, float, isint, multiple.

inverf (x)

Computes the inverse error function erf’(x), where x is a number.

See also: erf, inverfc.

inverfc (x)

Computes the inverse complimentary error function erfc™(x), where x is a number.

See also: erfc, inverfc.

agena >> 443

invhypot (x, y)

Computes 1/./x?+y? = 1/hypot(x, v). is 35 % faster than the naive 1/hypot
approach and is protected against underflow and overflow.

See also: hypot.

invsqgrt (x)

Retumns the inverse square root of numeric or complex x, i.e. 1/sqri(x).

See also: sqrt.

igr (x, y)

Computes both the integer quotient and the integer remainder - rounded toward
zero - of the numiber x divided by the number y and returns them. If x or y are not
integers, the function retumns undefined twice. The function is equivalent to the
Agena representation:

igr := proc(x :: number, y :: number) is
if float(x) or float(y) then
return undefined, undefined
else
return x \ y, x symmod y
fi
end;

See also: \ and % operators, drem, modf, math.cld, math.fld, math.modinv,
math.modulus, symmod.

iscomplex (---)

Checks whether the given arguments are all of type complex and retumns true or
false.

isint (---)

Checks whether all of the given arguments are integers and returns true or false. If
at least one of its arguments is not a numibber, the function returns fail.

See also: float, integral.

isnegative (---)

Checks whether all of its arguments are negative numbers and retumns true or false.
If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isnegative, isnonneg, ispositive.

444 11 Numbers

isnegint (---)

Checks whether all of the given arguments are negative integers and returns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnonnegint, isposint, isnegative, ispositive.

isnonneg (---)

Checks whether all of its arguments are zero or positive numibers and retumns true or
false. If at least one of its arguments is not a number, the function returns fail.

See also: isnegint, isposint, isnegative, ispositive.

isnonnegint (---)

Checks whether all of the given arguments are zeros or positive integers and returns
true or false. If at least one of its arguments is not a number, the function returns
fail.

isnonposint (---)

Checks whether all of the given arguments are zeros or negative integers and
returns true or false. If af least one of its arguments is not a number, the function
returns fail.

isnumber (---)

Checks whether the given arguments are all of type number and returns true or
false.

isnumeric (---)

Checks whether the given arguments are all of type number or of type complex
and returns true or false.

See also: numeric.

isposint (---)

Checks whether all of its arguments are positive intfegers and returns true or false. If
at least one of its arguments is not a numiber, the function returns fail.

See also: isnonposint.

agena >> 445

ispositive (---)

Checks whether all of its arguments are positive numbers and returns true or false. If
at least one of its arguments is not a numibber, the function returns fail.

See also: isposint, isnegative, isnonneg.

ldexp (m, e)

Returns m2° (e should be an integer, and m must be a number).
See also: frexp.

1ln (x)

Natural logarithm of x with the base e'. If x is non-positive, the operator retums
undefined. Complex numlbers are supported.

See also: exp, log, log2, log10.

lngamma (x)

Computes In IT' x. If x is a non-positive number, the operator returns undefined.
Complex numibers are supported.

See also: gamma, calc.Psi.

log (x, b)

The operator returns the logarithm of the numiber or complex number x o the base
b, With b @ number or a complex number.

See also: In, log2, log10.

log2 (x)

Returns the base-2 logarithm of the number or complex number x.
See also: antilog2, ilog2, In, log, log10, math.ceillog2.

logl0 (x)

Retumns the base-10 logarithm of the number or complex number x.

See also: antilog2, ilog10, In, log, log2.

446 11 Numbers

mdf (x [, n])

Rounds up the number x at its n-th decimal place and returns a number. If % is

positive, rounds towards +oo; if x is negative, rounds towards —oo. The default of n is
2. With complex %, rounds both the real and imaginary parts.

See also: entier, int, round, xdf.

modf (x)

Returns two numbers, the integral part of the number x and its fractional part. The
integral part is rounded towards zero. Both the integral and fractional part of the
return have the same sign as x. The sum of the two values returned equals x. The
function actually is a wrapper to C's modf. With complex x, returns the integral and
fractional parts for both its real and the imaginary part.

See also: \, %, frac, entier, int, symmod, mod assignment statfement.

muladd (x, y, z)

The operator computes x*y + z with extended internal precision, with x, y, z all
numbers. See also: fma.

multiple (x, y [, option])

Checks whether numeric or complex x is a multiple of numeric v, i.e. whether x/y
evaluates to an integral, and returns true or false.

Also returns true with x = 0 and any non-zero y.
If v is zero, undefined or +/-infinity, the function returns fail.

With complex x, retums true if both real(x)/y and imag(x)/y evaluate to the same
infegral, or if real(x)/y evaluates to an integral and imag(x) is zero.

By passing the optional third argument true, a tolerant check is done, with
subnormal x or y first converted to zero, and a subsequent approximate equality
check to the nearest integer of x/y. The tolerance value internally used is the value
of DoubleEps at the time of the function call.

In most cases, it may suffice to just call integral(x/y), which is twice as fast as this
function.

nan (x)

Checks whether the number or complex number x evaluates to undefined (NaN).
The operator returns true or false.

agena >> 447

See dlso: finite, float, math.isordered.

x nand y

The operator returns the bitwise complement Boolean "and’, a signed integer:
~~(X &&).

See also: bytes.nand32.

X nor y

The operator returns the bitwise complement Boolean “or’, a signed integer:
~~(]y

See also: bytes.nor32.

nonzero (x)

Checks whether the number or complex number x is neither O nor 0+0*,
respectively. The operator returns true or false.

See also: zero.

odd (x)

Checks whether the number x is odd. The operator returns true if x is odd, and false
otherwise. With non-integral numibers, the operator retumns false. With the complex
value x, the operator returns fail.

See also: even.

polar (z)

Transforms the complex number z in Caresian notation or the number z to polar
form and returns two numbers: the magnitude (modulus) and the argument (phase
angle), in this order. If z is a number and is zero, or if z is complex and its real and
imaginary parts equal zero, the function returns zero twice.

See also: abs, argument, cabs, cis.

proot (x, n)

Returns the principal n-th root of the number or complex value x. n must be a
positive integer. The principal n-th root in the complex domain is the first root found
starting from the positive real axis going counter-clockwise.

See also: cbrt, hypot, hypot2, hypot3, hypot4, root, sqrt.

448 11 Numbers

pytha (a, b)

Computes the Pythagorean equation ¢? = a? + »?, without undue underflow or
overflow and treating subnormal numbers accordingly, for numbers a, b.

See also: hypot, squareadd.

gmdev (o)

The operator computes the sum of the squared deviations of each observation o. in
the sequence, register, or table o, from its arithmetic mean u, i.e.

n
2.0 w?

i=1

The return should be divided either by the numiber of elements n in the distrioution o
to calculate its population variance, or by n - 1 to compute its sample variance.

The Knuth-Welford algorithm used by the operator tries to prevent round-off errors as
much as possible.

See also: stats.sd, stats.var.

recip (x)

Returns the inverse 1/x of a number or complex number x.

See also: /, fastmath.reciprocal.

root (x [, n])

Returns the non-principal n-th root of the numiber or complex value x. n must be an
infeger and is 2 by default. Note, that since the function computes the
non-principal root, with complex x, root(x, n) # x ™ (1/n). In the complex domain, the
function returns the n-th root of x whose argument is nearest to the argument of x.
See also: argument, cbrt, hypot, hypot2, hypot3, hypot4, proot, sqrt.

round (x [, d])

Rounds the number x to its a-th digit, using the round-half-up method. The return is
number. If 4 is omitted, the number is rounded to the nearest integer. If 4 is positive,
the function rounds to the a-th fractional digit. If 4 is negative, it rounds o the a-th
infegral digit. round freafs positive and negative values symmetrically, and is
therefore free of sign bias. With complex numbers x=a+I1*b returns round(real(q), d)
+ I*round(imag(q), d).

The following Agena code explains the algorithm used:

agena >> 449

round := proc(x, d) is
d :=d or 0; # assign zero if d is null
return int ((107d)*x + sign(x)*0.5) * (10"(-d))
end;

See adlso: ceil, entier, int, mdf, xdf, math.rint.

scalbn (x, n)

Just an alias for Idexp.

sec (x)

Returns the secant CO]S(X) as a numiber (in radians). The function is implemented in

Agena and included in the lib/library.agn file. The function works on both numbers
and complex values.

sech (x)

Retuns the hyperbolic secant as a number (in radians). The function s
implemented in Agena and included in the lib/liorary.agn file. The function works on
both numbers and complex values.

sign (x)

Determines the sign of the number or complex value x. The result of the operator is
determined as follows:

e 1,ifredl(x) > 0 orredl(x) = 0 and imag(x) > O
e -1, ifredl(x) < 0 orredl(x) = 0 and imag(x) < 0
* 0 otherwise, even for -0.
If x is undefined, sign returns undefined.
See also: math.copysign, math.flipsign, math.mulsign, signum, | operator.

signum (x)

Determines the sign of the numlber or complex value x. If x is a number, the result of
the operator is determined as follows:

e 1,ifx>0
e -1 otherwise.

With complex x, the operator returns x/| x|.

If x is undefined, signum returns undefined.

450 11 Numbers

See also: math.copysign, math.mulsign, sign, | operator.

sin (x)

The operator returns the sine of x (in radians). Complex numbers are supported.
See also: math.sincos, math.sinpi.

sinc (x)

The operator returns the un-normalised cardinal sine of x (in radians), i.e. sin(x)/x,
with sinc(0) = 1. Complex numbers are supported.

See also: cosc, math.rectangular, tanc.

sinh (x)

The operator returns the hyperbolic sine of x (in radians). Complex numbers are
supported. See also: cosh, tanh, math.sinhcosh.

sgrt (x)
Returns the square root of x.

If x is a number and negative, the operator retuns undefined.

With complex numbers, the operator returns the complex square root, in the range
of the right halfplane including the imaginary axis.

See also: cbrt, hypot, hypot2, hypot3, invsqgrt, proot, root, fastmath.sqroot,
fastmath.sqrifast.

square (x)
The operator squares the number or complex numiber x and returns x**2,
See also: **, ~, cube operators, math.issquare, squareadd.

tan (x)

The operator returns the tangent of x (in radians). Complex numibers are supported.
See also: math.tanpi.

agena >> 451

tanc (x)

The operator returns the un-normalised cardinal tangent of x (in radians), i.e.
tfan(x)/x, with tfanc(0) = 1. Complex numbers are supported.

See also: cosc, math.rectangular, sinc.

tanh (x)

The operator returns the hyperbolic tangent of x (in radians). Complex numbers are
supported.

See also: cosh, sinh.

xdf (x [, n])

Rounds down the number x at its n-th decimal place towards zero and returns A
numiber. This is equivalent to truncating a float at its n-th decimal place. The default
of nis 2.

With complex %, rounds both the real and imaginary parts.

See also: entier, int, round, mdf.

X XNnor y

With numbers, the operator returns the bitwise complement Boolean “xor”, a signed
infeger. ~~(x ©~ 7 y). With Booleans, returns not(x xor y), sometimes also called
“if-and-only-if* (iff). See also: bytes.xnor32.

X xXor y

With Booleans, refurns x <> y. With non-booleans: returns the first operand if the
second operand evaluates to null, otherwise the second operand will be returned.

See also: ™ ™, bytes.xor32.

zero (x)

Checks whether the number or complex number x is 0 or 0+0*I, respectively. The
operator returns true or false.

See also: nonzero.

452 11 Numbers

11.1.2 math Library

This library is an interface to the standard C math library. It provides all
miscellaneous functions inside the table matn.

math.accu ([init [, method]])

Returns a factory that gets a number with each call, adds it fo an intemnal
accumulator, and returns the accumulated sum. If the factory is called with no
argument, the current accumulated sum will be returned.

The function can be used if high accuracy numeric addition is needed. The initial
value of the accumulator is 0. If init, @ number, is given, the accumulator is set to
init instead.

The function automatically takes care of storing and processing internal correction
values - so the user does not have to worry about this.

By default, Neumaier sumnmations is used. By passing a method (Of type string), you
mMay use an alternative algorithm to add numbers:

method algorithm

'babuska’ Kahan-Babuska summation, highest accuracy but slowest

'kahan' classic Kahan summation, lowest accuracy but fastest

S Kahan-Babuska-Neumaier compensated summation, used in the

Julia programming language

'neumaier' | Neumaier summation, good accuracy and performance (default)
'ozawa' Kahan-Ozawa summation

'raw' no aufo-correction

See also: factory.count, math.koadd.

math.arccosh (x)

Returns the inverse hyperbolic cosine of the number x and returns a number. It
works in the real domain only, and is a simple port of the acosh C function.

See also: arccosh.

math.arcsinh (x)

Returns the inverse hyperbolic sine of the number x and returns a number. It works in
the real domain only, and is a simple port of the asinh C function.

See also: arcsinh.

agena >> 453

math.arctanh (x)

Returns the inverse hyperbolic tangent of the number x and returns a number. It
works in the real domain only, and is a simple port of the atanh C function.

See also: arctanh.

math.branch (x [, d [, subs]])

Returns its argument x - a number - if x is non-negative, otherwise returns 0. By
passing any non-negative optional number a (the "direction’), the retumn is the
same.

By passing any non-positive optional number 4, returns x if it is negative, otherwise
retuns O.

If x should be undefined, you can return any other number by passing the optional
argument subs, which is undefined by default.

See also: math.clip, math.wrap, end of Chapter 11.1.2 for a comparison chart.

math.ceillog2 (x)

Returns the smallest exponent to 2 equals or greater than x, i.e. ilog2(x - 1) + 1,
where x is a positive integer. If x= 1, the result is O; if x < 1, undefined will be
returned.

See also: ilog2, math.ceilpow2.

math.ceilpow2 (x)

Finds the smallest power of 2 greater than or equal to x, where x is a non-negative
infeger. If x = 0, the result is 1; if x < 0, undefined will be returned. Examples:
math.ceilpow2(3) = 4 = 22, and math.ceilpow2(8) = 8 = 2°,

The function returns fail if x > 237,

See also: ilog2, math.ceillog2, math.floorpow2, math.ispow2.

math.chop (x [, eps [, method [, n]l]])

Shrinks a number or complex number x more or less near zero to exactly zero, using
one of many methods, passed as an integer. The default for eps is Eps. The
standard method is O for hard shrinking. n is used in the SmoothGarrote method.

454

11 Numbers

method | Comment Value Domain
0 "Hard", performs hard shrinking 8 IXI i zz
C L 0 bd < eps
1 "Soft", performs soft shrinkin .
P 9 &gnbﬂ(|x|-epﬂ |x|>eps
3 'PiecewiseGarrote") 6252 / IXI i ;fz
"SmoothGarrote”; with n >0, | 5041, o on
4 goes to "Hard" shrinking BT A eps™) any x
I 0 0 | X | < eps
5 Hyperbola SigN(X) /x> —eps? | |x| > eps

Method 2 has not been implemented. The function is a port of Mathematica's
Chop function.

See also: math.clip, math.unitise, math.zeroin.

math.cld (x, y)

Returns the largest integer less than or equal to the real quotient % of the numbers x
and vy.

See also: \ operator, math.fld.

math.clip (x [, a [, b [, £f111)
math.clip (x, a)

In the first form, retumns x clipped to be between a and b. The return is x if a < x < b,
aif x < a andp if x > b. By default a = -1, o = +1. If function £ is given which
should return one numeric result, then if x is not in [a, b], The result of £(x) will be
returned.

In the second form, retumns x clipped to be between -a and +a, -a if x < a and +a if

X > +a.

See also: calc.sigmoid, heaviside, math.branch, math.chop, math.rectangular,
math.unitise, math.wrap, end of Chapter 11.1.2 for a comparison chart.

math.compose (coeffs [, b])

Takes a table, sequence or register of coefficients coeffs and a base b and retumns
the composed number. In coeffs, the highest-order digit as the first element and
the lowest-order digit as the last element. By default, the base is 10. The function
does not take care of potential overflows. It is the complement to
math.decompose.

agena >> 455

math.congruentprime (n [, a [, bll])

Determines whether integer n is a prime numiber congruent to a modulo o - or in
other words: a prime of the form bn + a, and returns it; otherwise for n, returns the
next prime number congruent 10 a modulo b. By default, a is 3 and v is 4.

The function is implemented in Agena and included in the lib/library.agn file.

See also: math.nextprime.

math.convertbase (s, a, b)

Converts a number s or a number represented as a string s from base a to base b.
a and o must be integers in the range 1 to 36. The number in s must be an integer
of any sign. Floats are not allowed. The retun is a string. The function is
implemented in Agena and included in the lib/library.agn file.

See also: math.decompose, math.ndigits.

math.copysign (x, y)

Returns a number with the magnitude of x and the sign of v, i.e. abs(x) * sign(y). If v
is O, then its sign is considered to be 1. It is a plain binding to C's copysign function
and does not post-process its result.

See also: math.flipsign, math.mulsign, math.signbit, sign, signum.

math.cospi (x)

Refurns cos(z*x) for number x with befter precision than calling the respective
standard operator.

See also: cos, math.sincos, math.sincospi, math.sinpi, math.tanpi.

math.dd (x)

Converts a number x representing a sexagesimal number in TI-30 DMS format into
its decimal representation, and returns a numiber. For example: 10.3045
representing 10°30'45" returns 10.5125.

The function is implemented in Agena and included in the lib/library.agn file.

See also: math.dms, math.splitdms, math.todecimal, math.tosgesim.

math.decompose (x [, bl])

Splits an integer x 1o the base b into its digits and returns them in a sequence, with
the highest-order digit as the first element and the lowest-order digit as the last

456 11 Numbers

element. Any sign of x is ignored. By defaulf, the base is 10, but you may choose
any other positive base.

Example:

> b := 256;

> math.decompose (15 * b*2 + 7 * b + 1, 256):
seq (15, 7, 1)

See also: math.compose, math.convertbase, math.ndigits.

math.dirac (x [, eps])

The Dirac delta function, also known as the impulse function, returns O for all
numibers x other than 0, and infinity if x = O, iff eps is set to zero which is the default.

If eps is set o any positive value x, returns 1/(2*eps)*exp(- | x |/eps) even if x = 0.

math.dms (x)

Converts a number representing a decimal number x into its TI-30 sexagesimal DMS
representation and retuns a number. For example: 10.5125 returns 10.3045,
representing 10°30'45".

See also: math.dd, math.splitdms, math.todecimal, math.tosgesim.

math.eps ([x [, option]])

The function returns the machine epsilon, the relative spacing between the number
|x| and its next larger number in the machine’s floating point system. If no
argument is given, x is set fo 1.

On x86 machines and with Agena numbers, i.e. C doubles, eps(1) and eps() retun
2.2204460492503e-016 = 2%, and eps(2) retums 4.4408920985006e-016 = 2°',

When given any second argument, the function computes a “mathematical’
epsilon value that is also dependent on the magnitude of itfs argument x. It can be
used in difference quotients, etc., for it prevents huge precision erors with
computations on very small or very large numbers. The mathematical epsilon with
respect to x is equal to x* sqrimath.eps(x)).

See also: math.epsilon, math.nextafter.

math.epsilon (x [, method])
math.epsilon (£, x [, ---]1 [, iters=n])

In the first form, by default returns the relative spacing between |x| and its next
larger number on the machine’s floating point system, taking into account the
magnitude of its argument. In this case, the function works like math.eps with the

agena >> 457

true option set, but is 20 percent faster. If |x| < 1, you may choose a constant
epsilon value yourself, e.Q. Eps.

In the first form, you may choose between different methods to determine an epsilon
value, where ulp = math.nextafter(x, infinity) - x:

Method Formula
O (default) x * sqri(ulp)
1 x * cbr(ulp)
2 sqri(ulp) * (x +sqri(ulp))
3 cbri(ulp) * (x +cbrt(ulp))

In the second form, by passing a function £ and an argument x, the function
determines an epsilon value by taking the function value £(x) into account, using a
divided difference table. If £ is multivariate, pass its further arguments tight after x.

math.expminusone (x)

Returns a value equivalent to exp(x) - 1, with x @ number. It is computed in a way
that is accurate even if x is near O, since exp(~0) and 1 are nearly equal.

The function can be used, for example, in financial mathematics, to calculate
small daily interest rates, among other things.

See also: expx2, math.Inplusone.

math.exponent (x)

Returns the exponent e of a number x such that math.mantissa(x) * 2° equals x.
The result is identical to the second result returned by frexp. The function is around
20 percent faster but returns correct results only if your system supports |[EEE 754
floating-point numbers, whereas frexp always works regardless of the internal
representation.

See also: frexp, math.mantissa, math.uexponent.

math.fall (x, n)

The falling factorial function computes x*(x - 1)*(x - 2)* ... *(x - n + 1), with x Q
number and n an infeger. If n is negative, the rising factorial function (Pochhammer
function) is computed.

See also: fact, math.pochhammer.

458 11 Numbers

math.fdim (x, y [, al)

The function retumns x - y if its argument x, @ number, is greater than or equal y, else
it returns a, which is O by default.

math.fib (n)

Retuns the n-th Fibonacci number, with n a non-negative integer. If n > 76, the
function returns fail since the result is foo large to be accurately represented. The
defaults are: math.fib(0) = O and math.fib(1) = 1; with all other values computed
by math.fib(n) := math.fib(n - 2) + math.fib(n - 1).

See also: math.fibinv.

math. fibinv (n)

For any non-negative integer n returns the index i of the Fibonacci number with fib(i)
<= n < fib(i + 1). The function is implemented in Agena and included in the
lib/library.agn file.

See also: math.fib.

math.fld (x, y)

Returns the largest integer less than or equal to the real quotient % of the numbers x
and y.

See also: \ operator, math.cld.

math.flipsign (x, y)

Returns the number x with its sign flipped if v (@ numlber) is negative. For example,
abs(x) = flipsign(x, X).

See also: math.copysign, math.signbit, sign.

math. floorpow2 (x)

Finds the largest power of 2 less than or equal fo x, where x is a non-negative
infeger. If x < 2, the result is x. If x < 0, undefined will be returned. Examples:
math.floorpow2(3) = 2 = 2!, and math.floorpow?2(8) = 8 = 2°,

The function returns fail if x > 23!,

See also: ilog2, math.ceillog2, math.ceilpow2, math.ispow2.

math. fpclassify (x)
For the given number x, returns

agena >> 459

* 0if x is undefined (= constant math.fp_nan),

* 1if xisinfinite, i.e. +/-infinity (= constant math.fp_infinite),

* 2if xis subnormal (= constant math.fp_subnormail,

» 3 if x is zero (= constant math.fp_zero),

* 4if x is normal (= constant math.fp_normal), including irregular values > 252,

Thus, for example, “ordinary” numbers are represented by results greater than 2.

The function returns fail if it could not determine the type of floating-point number
(of C type double). It is a platform-independent port of C's fpclassify.

See also: math.isnormal, math.issubnormail.

math.fraction (x [, err])

Given a number x, this function outputs two integers and a numiber: the numerator
n, the denominator d, and the accuracy epsilon, such that x := n / d to the
accuracy epsilon ;= | (x-n/d)/ x | <err.

The ermnor err should be a non-negative number, and by default is O.
The function is implemented in Agena and included in the lib/library.agn file.

See also: div package.

math.frexp (x [, option])

Retuns the sign s, the mantissa m and the exponent e of the number x, in this
order, such that s*m*2° = x. The sign is -1 if x is negative (including -0) and 1
otherwise. The mantissa is a float in the range [0.5, 1) except for x = 0, where the
result is 0. The exponent is a negative or positive integer or zero.

If any option is given, then instead of the sign the sign bit s will be returned: 1 if x is
negative or -0, and 0 otherwise. In this case x = signum(-s) * m*2°,

The function works correctly only on I[EEE 754-compliant systems.

See also: frexp, Idexp, ilog2, math.exponent, math.mantissa.

math.ged (x, y)

Returns the greatest common divisor of the numbers x and y as a number. If x or y
is not an integral, 1 will be returned. The function is implemented in Agena and
included in the lio/library.agn file.

See also: math.lem.

460 11 Numbers

math.hEps

Deprecated. Represented the value 1.4901161193847656e-12, an epsilon value
more or less in the middle of Eps and DoubleEps. See also: hEps constant,
environ.kernel/hEps.

math.iscube (n)

Checks if a given integer n is a perfect cube, i.e. if cbrt(n) ™3 = n.

See also: cbrt, cube, math.issquare.

math.isfib (n)

Checks whether the non-negative integer n is a Fibonacci number.

See also: math.fib, math.fibinv.

math.isinfinity (x)

Returns -1 if its numeric argument x is -infinity, +1 if x is +infinity, or O if neither.

See also: finite, infinite.

math.isirregular (x)

Checks whether a number or complex numiber can e represented exactly on your
system. | returns:

« false if |x| < 2°20 a number with decimal places can intemally be represented
as a number with decimal places, but not necessarily itself. With n < 52, the
spacing between two subsequent representable numbers is the fraction 272,

o fail if 2°%< |x| < 2°°+1: representable numbers are exactly the integers; spacing
between representable numbers is exactly 1.

e trueif |x| > 2°°+1: an integer mostly cannot be exactly represented; with n >
52, spacing is the infeger 2™,

With complex =, checks whether at least the real or imaginary part evaluates to
false or fail - according to the rule mentioned above - and returns that; otherwise if
both parts evaluate to true, returns true.

math.isminuszero (x)

Returns true if x is -0 (Minus zero) and false otherwise. See also: math.signbit.

agena >> 461

math.isnormal (x)

Returns true returns true if a number is neither +0, -0, +infinity, -infinity, undefined
nor subnormal. The result is equal to the expression math.fpclassify(x) =
math.fp_normal.

With complex x, refurns math.isnormal(real(x)) and math.isnormal(imag(x)).

See also: finite, math.isminuszero, math.issubnormal.

math.isordered (x, y)

Returns false if af least one of its arguments x and y - two numbers - is undefined,
and true otherwise. See also: nan.

math.ispow2 (x)

Checks whether a given non-negative number x is a power of base 2 (x = 2'°9%%)
and returns true or false. Also returns false if x is negative.

The function returns fail if its argument is tinfinity or undefined.

math.isprime (x)

Retumns true, if the integral number x is a prime number, and false otherwise. Note
that you have to take care yourself that x is an integer and is less than the largest
integer representable on your system.

See also: math.nextprime, math.prevprime.

math.isqrt (x)

Returns the integer square root of the number x: the largest infeger m such that
m*m < x.

math.issquare (n)

Checks if a given integer n is a perfect square, i.e. if sqrt(n) ™2 = n. Any power of
two is a perfect square, forexample n = 1, 4, 9, 16, 25, 36, 49, etc.

See also: sqrt, square, cube, math.iscube, math.ispow2.

math.issubnormal (x)

Checks whether the number x is subnormal, i.e. whether internally the leading digit
of its mantissa is 0. The function returns true or false. Subnormal numbers are very
close to zero, have reduced precision and lead to excessive CPU usage. They are
in the range [-2.2250738585072009e-308, -4.9406564584124654e-324] and
[4.9406564584124654e-324, 2.2250738585072009e-308]. 0O, undefined and

462 11 Numbers

+/-infinity are not subnormal. Please note that the next representable number after
0 (towards +0) is subnormal.

With complex x, returns math.issubnormal(real(x)) or math.issubnormal(imag(x)).

See also: math.normalise, math.smallesthormail, math.two54,
math.zerosubnormail.

math.koadd (x, y [, 4ql)

The function adds x and y using Kahan-Ozawa round-off error prevention and
returns two numbers: the sum of x and y plus the updated value of the correction
variable . The optional correction variable g should e 0 at first invocation, and the
previously retumed correction variable otherwise - if g is not given, it defaults to O.

The following algorithm used is:

math.koadd := proc(s :: number, x :: number, g) is

local sold, u, v, w, t;

q := optnumber (g, 0);

vV 1= X - gy

sold := s;

S 1= S + Vv;

if abs(x) < abs(qg) then
Xy, 9 = -9, X

fi;

u = (v - x) + g;

if abs(sold) < abs(v) then
sold, v := v, sold

fi;

w := (s — sold) - v;

q :=u + w;

return s, g

end;

A typical usage should look like:

x, q —> 0;
y := 0.1;
while x < 1 do
X, q := math.koadd(x, y, q)
od;

print(s + q);

See also: math.accu, stats.sumdata.

math.largest

This constant represents the largest positive number representable in Agena. It is
computed during start-up and may be different fromm the setting returned by
environ.system, the latter stafically compiled into the Agena binary. The smallest
negative number (nearest o —xo) is the negative of this constant, i.e. - math.largest.

agena >> 463

See dlso: math.lastcontint, math.smallest.

math.lastcontint

This constant represents the largest integer i on the floating-point system such that i -
1 <> i. In other words: The constant represents the largest integer value that can be
stored in an Agena number without loss of precision. On 32-bit systems (and higher),
it is equal to 2% = 9,007,199,254,740,992.

See also: math.largest.

math.lem (x, y)

Returns the least common multiple of 1o numbers x and y as a number. The
function is implemented in Agena and included in the lib/library.agn file.

See also: math.gcd.

math.lnabs (x)

Returns In(abs(x)) for numeric or complex x. With complex numibers, takes care of
underflows.

math.lnplusone (x)

Returns a value equivalent to In(1 + x), with x a number. It is computed in a way
that is accurate even if x is near zero.

It can be used, for example, in financial calculations, when computing small daily
interest rates.

Example: In(1.0000000000000001) =0, math.Inplus1(0.0000000000000001) =
1e-016.

See also: math.expminusone.

math.logs (x, b)

The iterated logarithm of x, log*(x) (for "log star’) retums the number of times the
logarithm function to a given base » must be iteratively applied on x until the result
reaches or drops below 1. If x <=1, retfumns 0. The algorithm is equivalent fo:

> logs := proc(x, b) is
> for i from 0 while x > 1 do
> x := log(x, b)

> od;
> return i
> end;

464 11 Numbers

math.mantissa (x)

Returns the mantissa m of a number x such that m * 2~ math.exponent(x) equals
x. The result is identical to the first result returned by frexp, and is in the range [0.5, 1)
(or zero when x is zero). The function is around 20 percent faster but returns correct
results only if your system supports IEEE 754 floating-point numbers, whereas frexp
always works regardless of the internal representation.

See also: frexp, math.exponent, math.significand.

math.max (x [, ---1)

Returns the maximum value among its arguments of type number.

math.min (x [, ---1)

Returns the minimum value among its arguments of type number.

math.modinv (a [, m])

Computes the modular (multiplicative) inverse a of an integer a (modulo m) such
that a * a' = 1 (modulo m). m is 257 by default. If n is not prime, then not every
non-zero infeger a has a modular inverse - in this case the function returns
undefined.

See also: % operator, drem, iqr, symmod, math.modulus.

math.modulus (x, y)

The function is a plain binding to the C "% modulus operator. Both its arguments
must be integers. The return is an integer. If y = 0, the function returns undefined.

See also: % operator, bytes.mod32, drem, hashes.fibomod32, iqr, symmod,
math.modinv, math.nearmod.

math.morton (x, y)

Interleaves the bits of integers x and y, so that all of the bits of x are in the even
positions and y in the odd; the function can e used fo linearising 2D integer
co-ordinates, combining x and y into a single integer that can be compared
easily. It has the property that a numibber is usually close to another if their x and y
values are close.

math.mulsign (x, y)

Multiplies, not copies, its first argument with the sign of its second, and retumns x *
signum(y).

agena >> 465

See also: math.copysign, math.flipsign, math.signbit, sign, signum.

math.ndigits (x [, bl])

Returns the number of infeger digits - without decimal places - in the number x to
the base b. By default, »is 10.

If b is -10, counts the numiber of decimal places (fractional digits) in x, where x is
considered to be of base 10. This feature is experimental and not failsafe.

See also: math.decompose, math.nthdigit.

math.nearbyint (x)

Returns x rounded o the nearest infeger, returns the same result as round(x, 0) does
but is implemented differently and 5 % faster. The function has been included for C
math library compatibility reasons only.

See adlso: int, math.rint, math.trunc.

math.nearmod (x, m)

Returns the closest value fo the given number x divisible by the given modulus m,
equivalent o round(x/m) * m. See also: %, math.modulus.

math.nextafter (x, y)

Retumns the next machine floating-point number of x in the direction toward .
See also: +++ and --- operators, math.eps, math.ulp.

math.nextmultiple (n, b)

Returns the next multiple of an infeger n 10 the given base b, towards +infinity if b is
positive, and towards -infinity, if o is negative.

math.nextpower (x, base [, option])

By default returns the smallest power of pase greater than x. If the third argument is
true, then the smallest power of base greater than or equal to x will be returned.

math.nextprime (x)

Returns the smallest prime greater than the given number x.

See also: math.congruentprime, math.prevprime, math.isprime.

466 11 Numbers

math.norm (x, al:a2 [, bl:b2])

Converts the number x in the scale [a1, a2] O one in the scale [v1, b2]. The second
and third arguments must be pairs of numbers. If the third argument is missing, then
x IS converted to a numiber in [0, 1]. The return is a number.

See also: linalg.scale, math.wrap, stats.scale.

math.normalise (x [, option])

Checks whether its numeric argument x is subnormal and in this case normalises fit,
i.e. returns a non-zero normalised value x*2° that is close o x; otherwise returns its
argument x unaltered. If any option is given, the unsigned high 4-byte word of the
result will be returned, foo.

With complex =, normalises both its real and imaginary part if necessary and retumns
the complex number math.normalise(real(x)) + I*math.normalise(imag(x)); the
option iS NOt supported in this case.

It is useful to prevent excessive CPU usage with values very close to zero.
For more information, see math.issubnormail.

See also: math.zeroin, math.zerosubnormal.

math.nthdigit (x, n)

Returns the n-th digit of the number %, with n an integer. To evaluate an integer digit,
n should be positive; for a decimal place, n should be negative.

The function is written in Agena and included in the lib/library.agn file.

See also: math.ndigits.

math.piecewise (cond;, f,, cond,, £f,, ..., cond,, £, [, fotherwise])

Evaluates a piecewise-contfinuous function. cond;, efc. are relations evaluating to
Booleans, and t.,, etc. numeric expressions. The arguments are checked from left to
right and as soon as a condition cond, IS Met, piecewise returns the respective
value f,. If no condition meets, the function retumns fotherwise, and undefined if
not given.

The implementation is far from perfect as all of its arguments are evaluated before
executing the procedure. Better use the Boolean operator and and or, for
example:

® math.piecewise(x < 2, -1, x < 3, 1, infinity)(]nd

® x < 2 and -1 or x < 3 and 1 or infinity

agena >> 467

are equivalent, but the latter is around 15 times faster due to application of the
McCarthy Rule.

math.pochhammer (x, n)

Computes the Pochhammer function (rising factorial), where both x and n are real
numbers. It returns the number:

I'x+n)
I'(x)

See also: fact, math.fall.

math.powmod (x, p, m)

Computes x ™~ p % m.

math.prevprime (x)

Returns the largest prime less than the given number x.

See also: math.nextprime, math.isprime.

math.quadrant (x)

This function returns the quadrant of an angle x given in radians and returns an
integerin [1, 4].

math.ramp (x)

For number x, gives x if x > 0 and O otherwise.

See also: heaviside, math.rectangular.

math.random ([m [, n]])

When called without arguments, returns a pseudo-random float with uniform
distribution in the range [0,1).

When called with two integers m and n, math.random returns a pseudo-random
integer with uniform distribution in the range [m, n].

The call “math.random(n)’, for a positive n, is equivalent fo “math.random(1, n) .
The call “math.random(0)" produces an integer with all bits (pseudo) random.

This function uses the xoshiro256** algorithm to produce pseudo-random 64-bit
infegers, which are the results of calls with argument 0. Other results (ranges and
floats) are unbiased extracted from these integers.

468 11 Numbers

Agena initializes its pseudo-random generator with the equivalent of a call to
math.randomseed with no arguments, so that math.random should generate
different sequences of results each time the program runs.

math.randoms ([m [, n]] [, option])

This function creates random numbers as Agena did before version 2.27.10.

When called without arguments, returns a pseudo-random real number in the
range (0,1). It can generate up to 2 * environ.maxlong unique random numbers in
this interval.

When called with a number m, math.random refumns a pseudo-random integer in
the range [1, n).

When called with two numbers m and n, math.random returns a pseudo-random
infeger in the range [, nl.

If option, Any Boolean, is given, then the sequence of values returned should be
arbitrary, otherwise it is always the same unless math.randomseed is called with
other values.

See also: math.randomseed, skycrane.dice.

math.randomseed ([x, y])

When called with at least one argument, the infeger parameters x and y are joined
info a 128-bit seed that is used to reinitialize the pseudo-random generator; equal
seeds produce equal sequences of numbers. The default for vy is zero.

When called with no arguments, Lua generates a seed with a weak attempt for
randomness.

This function returns the two seed components that were effectively used, so that
setting them again repeats the sequence.

To ensure a required level of randomness o the initial state (or contrarily, to have a
deterministic sequence, for insfance when debugging a program), you should call
math.randomseed with explicit arguments.

math.randomseeds ([x, y])

Sets x and y as the “seeds’ for the pseudo-random generator, as Agena did
before version 2.27.10: equal seeds produce equal sequences of numbers. x and
y must both e positive infegers. It refurns two new settings. The function does not
check for x= 0x464fffff and y = OxQ068ffff.

agena >> 469

If called without arguments, the function retumns the current seeds.

See dlso: math.random.

math.rectangular (x [, pil])

math.rectangular (x [, a [, b [, pilll)

In the first form, computes the rectangular pulse function for number x:

1 if|x <0.5
math.rectangular(x) = ¢ 0.5 if |x = 0.5
0 if|x >0.5

In the second form, a represents the rising edge, and v the faling edge of the
rectangular pulse function. By default, a = -0.5 and » = +0.5. The function then
retuns Oif x < aorx >1n; 0.5if (x =aorx =p)and a <> b, and 1 otherwise.

If pi is the Boolean value true, the function computes the box distriobution Pi(x):

1 if X <0.5
Pix) = 1 undefined if |x = 0.5
0 if x| > 0.5

See also: heaviside, math.clip, math.ramp, math.triangular, math.unitise, sinc.

math.relerror (a, b)

Computes the relative error | b - al/|a

. handling case of undefined and infinity.

math.rempio2 (x [, option])

Conducts an argument reduction of x into the range |y| < % and refurns y = x -

*%. If any option is given, then the function also returns N, or actually the last three

digits of N. The number of operations conducted are independent of the exponent
of the input.

The function is 60 percent faster than math.wrap, but returns a result different from x
if its argument | x| is already in the range % . %

This function is just a port to the underlying C function rem_pio2 which is used to
compute sines, cosines and fangents.

See end of Chapter 11.1.2 for a comparison chart.

470 11 Numbers

math.rint (x)

Rounds a (complex) float to a (complex) integer according to the current rounding
method which you can query and set with environ.kernel/rounding.

See also: ceil, entier, int, mdf, round, math.nearbyint.

math.signbit (x)

Checks whether the number x has its sign bit set and returns true or false. It is a
plain binding to C's copysign function. For example, although -0 = 0,
math.signbit(-0) = true and math.signbit(0) = false.

See also: math.copysign, math.flipsign, math.isminuszero, sign.

math.significand (x)

Retuns the mantissa of number x in a normalised form, in the range[1, 2), with
math.significand(x) = 2*math.mantissa(x) = Idexp(x, -ilog2(x)). If x is O, the retun is
0.

See also: math.uexponent.

math.sincos (x)

Returns both the sine and cosine for number or complex x as two numbers or
complex numbers. The function is around 10 to 15 % faster than calling the sin and
cos operators separately,

See also: cos, sin, math.sincosfast, math.sincospi.

math.sinhcosh (x)

For number x, returns both the hyperbolic sine and hyperbolic cosine as two
numibers. The function is around 30 to 35 % faster than calling the sinh and cosh
operators separately.

With complex x, returns complex results.
See also: cosh, sinh.

math.sincospi (x [, option])

Returns both sin(z*x) and cos(z*x) for number x with better precision than calling the
respective standard operators. If option is true, than the tangent, i.e. tan(z*x) is
returned too.

agena >> 471

See also: math.sincos, math.sinpi, math.cospi, math.tanpi.

math.sinpi (x)

Returns sin(z*x) for number x with better precision than calling the respective
standard operator.

See also: sin, math.sincos, math.sincospi, math.cospi, math.tanpi.

math.smallest

This constant represents the smallest positive number representable in Agena. It is
computed during start-up and is different from the sefting returned by
environ.system, the latter statically compiled into the Agena binary.

See also: math.largest.

math.smallestnormal

This constant denotes the smallest positive normal numiber representable on your
system.

math.splitdms (x)

Splits the number x representing a sexagesimal number in TI-30 DMS format info its
parts and refurns three numbers: the degrees, minutes, and seconds. For example:
-10.3045 represents -10°30'45",

The function is implemented in Agena and included in the lib/library.agn file.

See also: math.dd, math.dms, math.todecimal, math.tosgesim.

math.stirnum (n, k, kind)

Computes either the Stirling number for n, x, of the first or the second kind. kind is 1
by default to compute the first kind; you can set it to 2 10 evaluate the second kind.

math.tanpi (x)

Retuns tan(z*x) for number x with better precision than calling the respective
standard operator.

See also: tan, math.sincos, math.sincospi, math.sinpi, math.cospi.

math.todecimal (h [, m [, s]l])

Converts a sexagesimal time value given in hours n, minutes m and seconds s info
its decimal representation. The opftional arguments m and s default to 0. If a

472 11 Numbers

sexagesimal value is negative, then n should be negative, while m and s should be
non-negative.

Example:

> math.todecimal (12, 30, 1): # half past noon and one second
12.500277777778

See also: clock.todec, math.todms, math.tosgesim.

math.todms (x)

Converts a number in DMS notation to its decimal representation, e.g. 10.3045,
representing 10°30'45", returns 10.5125.

See also: math.todecimal.

math.tohex (x)

Converts a non-negative integer x in the range [0, 255] to its hexadecimal
representation, refumned as a 2-character string.

See dlso: math.convertbase.

math.toradians (d [, m [, s]])

Returns the angle given in degrees 4, minutes m and seconds s, in radians. The
optional arguments m and s default to 0.

math.tosgesim (d)

Converts a decimal time value given by the number 4 info its sexagesimal
representation and returns three numibers: the hours, minutes, and seconds.

Example:

> math.tosgesim(12.500277777778) :
12 30 1

The function is written in Agena and included in the lib/library.agn file.
See also: math.dms, math.todecimal, math.todm:s.

math.triangular (x)

math.triangular (x [, a [, bl])

In the first form, computes the triangular function of base length 1 for number x:

agena >> 473

1—|2x| if|x <0.5

math.triangular(x) = { 0 if1x > 0.5

In the second form, by passing a left and a right border a, », the function returns
non-zero values in this range, and 0 otherwise, with a2 = -0.5 and v = +0.5 the
defaults. Thus, the general formula used by the function is:

math.triangular(x, a, v) 1= Max(0, 1 - | 2*(x - offset)/d|),
where d = |b - a| and offset := a + d/2.

See also: heaviside, math.branch, math.clip, math.rectangular, math.unitise,
math.wrap, sinc.

math.trunc (x)

Returns x rounded to the nearest infeger towards zero, returns the same result as
int(x). The function has been included for C math library compatibility reasons only.

See also: math.nearbyint.

math.two54

The constant represents 2°4, a value with which subnormal numbers can be
multiplied in order to become normal. See also: math.issubnormail.

math.uexponent (x [, option])

Computes the unbiased base-2 exponent of number x, i.e. retuns
math.exponent(x) - 1, except for x = 0 and subnormal numibbers where the result is
-1023, and for x = undefined or x = Zinfinity returns 1024,

If any option iS given, then retuns sign(x)*math.uexponent(x), but for x =
undefined returns 0x401= 1025, for x = -infinity retuns -1024, and for x = infinity
retuns +1024. Due to the definition, returns O for x = 0 and subnormal x.

See also: bytes.getunbiased, math.significand, frexp.

math.ulp (x [, eps])

Computes the unit of least precision (ULP), the spacing between floating-point
numbers, for number x, as a measure of accuracy in numeric calculations. It is
equivalent fo math.nextafter(x, infinity) - x.

If eps is given, the function also returns the numiber of ULPs - an infeger - between x
and x + eps.

474 11 Numbers

math.unitise (x [, eps])

Returns O if its number argument x is zero or close to zero, and 1 otherwise:

d Oif|x| < eps,
d]if|x| > eps.

With complex numbers x = a + I*b, returns
e Qff |O| < eps and |b| < eps,

i]iflO >epsOnd|b| > eps.
By default, eps is set to the constant Eps.

See also: heaviside, math.clip, math.rectangular, math.unitstep, math.zeroin.

math.unitstep (x [, eps])
For number x, gives O for x < 0 and 1 otherwise.

See also: heaviside, math.unitise.

math.wrap (x [, a [, bll)

Conducts a range reduction of the number x to the interval [a, b) and refumns a
number. If x € [a, b), x is SIMpPIy refurned.

In the second form, if a is Not given, a is set fo —z and v to +x. If a is given but not b,
a is set to -a and b tO +a, SO a should be positive.

The result is equivalent 1o

> dec X, a;
> dec b, a;

> a + (b + x symmod b) symmod b:

See also: % operator, math.branch, math.clip, math.norm, math.rempio2,
zx.reduce, end of Chapter 11.1.2 for a comparison chart,

math.xlnplusone (x)

Computes x - In(1 + x) in a way that is accurate even if x is near zero. The algorithm
is ten percent faster than simply retumning = - math.Inplusone(x).

math.zeroin (x)

Sets a number or complex number x to O if |x| < DoubleEps. With a complex
number x, return 0+1*0 if its magnitude |x| < DoubleEps or sets its respective parts
to zero if their respective absolute values are less or equal 1o DoubleEps.

agena >> 475

See also: math.chop, math.normalise, math.zerosubnormail.

math.zerosubnormal (x)

Checks whether its numeric argument x is subnormal and in this case returns O,
otherwise refumns its argument x. It is useful to prevent excessive CPU usage in case
of arguments very close to zero. Note that result retains the sign of x.

With complex x, returns the complex number math.zerosubnormal(real(x)) +
I*math.zerosubnormal(imag(x)).

For more information, see math.issubnormal, math.normalise, math.zeroin.

Comparison of some clipping functions:

gdi.plotfn([<< x —> math.rempio2(x) >>,
<< x -> math.wrap(x) >>,
<< x —> math.clip(>>,

>

>

> X))
> << X —> zx.reduce(x) >> ,
>

>

>

<< X —> math.branch(x) >>],
74! 4! 74! 4!

colour=['red', 'navy', 'green', 'black', 'maroon']);

math.branch

math.clip

4

0 1 2 3 4

K]
s
T b2

T
zx.reduce ‘ math.rempio2 =

math.wrap

11.1.3 fastmath Library

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, e.Q. import fastmath.

The library provides procedures to approximate mathematical functions in the real
domain. Despite its name, the package functions may not necessarily be faster
than the standard functions and operators implemented in Agena.

476 11 Numbers

fastmath.cosfast (x)

Approximates cos(x) for number x, and returns a number. It is around 40 percent
faster than cos.

See also: cos.

fastmath.hypotfast (x, y)

Returns the hypotenuse of the two numibers x and vy; the return is a number. The
function is sixty percent faster than hypot, but prone two round-off errors.

fastmath.invroot (x [, degree [, n [, xhalf]]])

Approximates the inverse root 1/root(x, degree) using the Quake Il method, and
returns a number. x is the radicand, degree the degree-th root which by default is 2.
n is tThe number of iterations 10 be conducted and by default is 2™ degree. xhalf iS
the internal equivalent of %, 0.5*x by default. The greater the degree, the less
accurate is the result.

See also: fastmath.reciprocal, fastmath.sqroot.

fastmath.invsqrt (x)

Approximates the inverse square root 1/sqgrt(x), using Quake’'s Fast Inverse Square
Root method and returns a number. It is five percent faster than the inverse of the
sqrt operator.

fastmath.lbfast (x)

Approximates log2(x) for number x, and returns a number. It is around a third faster
than log2. If x <= 0, the result will be wrong.

See also: log2.

fastmath.reciprocal (x)

Approximates the reciprocal of its argument x of type number. The retun is a
number. The function is purely experimental.

See also: fastmath.invroot, fastmath.sqroot.

fastmath.sinfast (x)

Approximates sin(x) for number x, and returns a number. It is around 40 percent
faster than sin.

agena >> 477

fastmath.sincosfast (x)

Returns both an approximation of the sine and cosine as two numbers. The function
is around 10 % faster than calling math.sincos.

fastmath.sqroot (x)

Roughly approximates the square root of its argument x of fype number. The returns
are two numbers: guesses computed using C doubles and floats, in this order. The
function is purely experimental.

See also: fastmath.invroot, fastmath.reciprocal, fastmath.sqrifast.

fastmath.sqrtfast (x)

Approximates the square root of its argument x of type number. The function is
purely experimental,

See also: fastmath.sqroot.

fastmath.tanfast (x)

Approximates tan(x) for number x, and returns a number. It is around 40 percent
faster than tan.

See also: tan.

478 11 Numbers

11.2 bytes Library

As a plus package, this library is not part of the standard distribution and must be
activated with the import statement, €.g. import bytes.

The library provides procedures for bit and byte twiddling.

11.2.1 General Functions

bytes.becd (n)

Returns the Binary coded decimal (BCD) representation of the non-negative integer
n. From left to right, each decimal digit is converted to a four-bit representation (O =
0Ob0000, 9 = 0Ob1001), and the resulting bit sequence is then returned as one
decimal integer, e.g. decimal 102 = 0001 0000 0010 = BCD 258.

By default, if only n is given, the function converts the decimal integer to BCD. If true
is passed as a second argument, n is converted from BCD fo its decimal integer
representation.

bytes.castint (x, bits)

Casts number x to a C integer. The results may be platform-dependent.

bits Cast to
8 uint8 t
16 uint1é6 t
32 uint32 t
64 uinté4 t
-8 int8 t
-16 int16 t
-32 int32 t
-64 inté64 1

bytes. fpbtoint (x)

Converts a floating point byte™ generated by bytes.inttofpb back. This function is
used to evaluate numbers fransported to the Lua/Agena virtual machine. Please
note that math.inttofpb(math.fpbtoint(x)) does not refun x.

agena >> 479

bytes.numhigh (x)

Returns the higher bytes of a number x as an integer. The function does not support
complex numbers.

See also: bytes.numwords, bytes.numliow.

bytes.numlow (x)

Returns the lower bytes of a number x as an integer. The function does not support
complex numbers.

See also: bytes.numhigh, bytes.numwords, bytes.setlow.

bytes.numwords (x)

Returns both bytes.numhigh(x), bytes.numlow(x) plus the unbiased exponent (i.e.
math.exponent(bytes_numhigh(x)) - 1, except for x = 0 -> -1023) as three resulfs,
in this order.

See also: bytes.sethumwords.

bytes.inttofpb (x)

Converts the integer x to a “floating point byte ", represented as (eeeeexxx), where
the real value is (Txxx) * 27 (eeeee - 1) if eeeee <> 0 and (xxx) otherwise. This
function is used to fransport numibers to the Lua/Agena virtual machine.

See also: bytes.fpbtoint.

bytes.leadzeros (x)

Retuns the number of leading zeros in the unsigned 32-bit infeger x, and the
modified value of x after this operation, where all bits starting with the first non-zero
bif in x are sef fo 1.

See also: bytes.leastsigbit, bytes.mostsigbit, bytes.onebits, bytes.trailzeros.

bytes.leastsigbit (x)

Returns the position of the least significant bit (Isb) in the unsigned 32-bit integer x,
here the smallest index of the first 1-bit, counting from bif index 1. If x < 1, retuns O.

See also: bytes.leadzeros, bytes.mostsigbit, bytes.onebits.

480 11 Numbers

bytes.mostsigbit (x)

Returns the position of the most significant bit (msb) in the unsigned 32-bit integer x,
i.e. the largest index of a 1-bit, counting from bit index 1. If x < 1, retumns O.

See also: bytes.leadzeros, bytes.leastsigbit, bytes.mostsigbit.

bytes.onebits (x)
Returns the number of bifs set in the unsigned 32-bit integer x.

See also: bytes.leadzeros, bytes.mostsigbit.

bytes.optsize (n)

For a given number of bytes n, calculates the optimal number of bytes (places) in a
C "array’ (e.g. a memfile, numarray or even a string) if it shall be aligned on the 4-
or 8-byte word boundary.

See also: strings.strlen.

bytes.pack (fmt, v1, v2, ---)

Returns a binary string containing the values v1, v2, etc. packed (that is, serialised in
binary form) according to the format string £mt.

The first argument to bytes.pack, bytes.packsize, and bytes.unpack is a format
string, which describes the layout of the structure being created or read.

A format string is a sequence of conversion options. The conversion opfions are as
follows:

. sefts liffle endian

. setfs big endian

: sefs natfive endian

[n]: sets maximum alignment to n (default is native alignment)
. a signed byte (char)

: an unsigned byte (char)

: a signed short (native size)

. an unsigned short (native size)

. a signed long (native size)

: an unsigned long (native size)

alua_Integer

: alua_Unsigned

: a size t (native size)

i [n]: A signed int with n bytes (default is native size)
[n]: AN unsigned int with n bytes (default is native size)

H 4w & = - 5 W o - IV A

H H

agena >> 481

£: a float (native size)

d: a double (native size)

n: d lua_Number

cn: A fixed-sized string with n bytes

z. A zero-terminated string

s[n]: A string preceded by its length coded as an unsigned integer with n
bytes (default is a size 1)

x: one byte of padding
Xop: an empty item that aligns according to option op (which is otherwise
ignored)

v (empty space) ignored

(A "n1" means an optional integral numeral.) Except for padding, spaces, and
configurations (options "xXX <=>1"), each option corresponds to an argument (in
bytes.pack) or a result (in bytes.unpack).

For options "In", "sn", "in", and "In", n can be any integer between 1 and 16. Al
integral options check overflows; bytes.pack checks whether the given value fits in
the given size; bytes.unpack checks whether the read value fits in a Lua integer.

Any format string starts as if prefixed by "I1=", that is, with maximum alignment of 1
(no alignment) and native endianness.

Alignment works as follows: For each option, the format gets extra padding until the
data starts at an offset that is a multiple of the minimum between the option size
and the maximum alignment; this minimum must be a power of 2. Options "c" and
'z" are noft aligned; option "s" follows the alignment of its starting integer.

All padding is filled with zeros by bytes.pack (and ignored by bytes.unpack).

See also: bytes.packsize, bytes.unpack, math.ispow2.

bytes.packsize (fmt)

Returns the size of a string resulting from bytes.pack with the given format. The
format string cannot have the variable-length options 's' or 'Z'.

bytes.reverse (x)

Reverses all the bits in the unsigned 32-bit infeger x, flipping all bits from 0 to 1T and
vice versa.

bytes.setnumhigh (x, i)

The function sefs the higher bytes of the number x 1o the unsigned 32-bit integer 1,
and returns the new number. It does not support complex numbers.

482 11 Numbers

See also: bytes.setnumilow, bytes.numhigh.

bytes.setnumlow (x, i)

The function sets the lower bytes of the number x to the unsigned 32-bit infeger i,
and returns the new number. It does not support complex numbers.

See also: bytes.sethumhigh, bytes.numiow.

bytes.setnumwords (hx, 1x)

Returns the number (C double) x represented by the unsigned 32-bit infegers nx
and 1x, i.e. x = bytes.setnumwords(math.numhigh(x), math.numlow(x)).

See also: bytes.numwords.

bytes.tobig (x [, order])

On Little Endian systems, converts the number x into its Big Endian representation
and returns it. On Big Endian platforms, just returns x unaltered. If order is 4, then the
function processes x as an unsigned 4-byte integer. If order is -4, the function treats
x QS A signed 4-byte integer.

See also: bytes.tolittle, os.endian.

bytes.tobinary (x)

Converts a non-negative integer into its binary representation, a sequence of zeros
and ones.

See also: math.convertbase.

bytes.tobytes (x [, nbytes [, false]])

If given no option, returns a sequence of eight bytes representing the number x in
Little Endian order, i.e. the least-significant byte is the first enfry in the resulting
sequence. If nbytes is the number +4 or -4, x is a assumed to be an unsigned
4-byte integer or signed 4-byte integer, respectively, and a sequence of four bytes
representing x in Little Endian representation will be returned. If nybtes is +2, X will be
freated as an unsigned 2-byte integer, with a sequence of two bytes to be
returned.

On Big Endian systems, conversion to Liffle Endian representation can be switched
off by passing a third argument, the Boolean value false.

See also: getbit, getbits, getnbits, bytes.tonumber.

agena >> 483

bytes.tolittle (x [, order])

On Big Endian systems, convers the number x into its Little Endian representation
and returns it. On Little Endian platforms, just returns x unaltered. If order is 4, then
the function processes x as an unsigned 4-byte integer. If order is -4, the function
freats x as a signed 4-byte integer.

See also: bytes.tobig, os.endian.

bytes.tonumber (s)

Takes a sequence s of two, four or eight numibbers representing bytes and converts it
info an Agena number. Regardiess of your platform, the order of bytes in s is
assumed to be Little Endian.

If s contains eight bytes, it is assumed to represent a C unsigned double. If it
contains four bytes, an unsigned four-byte integer is assumed; and with two bytes,
an unsigned two-byte infeger is assumed.

See also: bytes.tobytes.

bytes.trailzeros (x)

Retuns the number of tfrailing zeros in the unsigned 32-bit integer x, and the
modified value of x affer this operation, where all bits staring with the least
significant bit in x are sefto 1.

See also: bytes.leadzeros, bytes.leastsigbit, bytes.mostsigbit, bytes.onebits.

bytes.unpack (fmt, s [, pos])

Returns the values packed in string s (see bytes.pack) according to the format
string fmt. An optional pos Marks where to start reading in s (default is 1). After the
read values, this function also returns the index of the first unread byte in s.

11.2.2 cast Functions

The bytes package provides the 'cast’ userdata data structure representing an
Agena number as both a C double (i.a. Agena number) and its two higher and
lower 32-bit unsigned integer representations, along with functions to query and

assign its individual components.

Example:

> import bytes

484 11 Numbers

> a := bytes.cast (-Pi):
cast (-3.1415926535898 : 3221823995, 1413754136)

> hx := bytes.gethigh(a):

3221823995

> hx >>> 31: # sign bit (1 = minus, 0 = plus)

1

> bytes.sethigh(a, hx && O0x7fffffff): # absolute value

3.1415926535898

bytes.cast ([x])
bytes.cast ([hx, 1x])
Creates a userdata structure of type 'cast' that stores the Agena number 0 or x and

its integer representation as two unsigned 32-bit integers. Technically, the userdata
represents the C union (see source file src/sunpro.h):

Big-Endian platforms Little-Endian platforms
typedef union { typedef union {
double value; double value;
struct { struct {
uint32_t msw; uint32_t lsw;
uint32_t lsw; uint32_t msw;
} parts; } parts;
} ieee_double_shape_type; } ieee_double_shape_type;

If nO argument is given, then the userdata represents zero (0), alternatively you can
set it to numiber x (first form).

You may also initialise the userdata by passing both its unsigned 32-bit integer word
hx and unsigned 32-bit infeger lower word 1x (second form).

See dalso: Dbytes.getdouble, bytes.gethigh, bytes.getlow, bytes.getwords,
bytes.setdouble, bytes.setwords.

bytes.getdouble (a)
Returns the floating point element of 'cast' userdata a, i.e. a number.

bytes.gethigh (a)

Returns the higher unsigned 32-bit integer representation of a number from 'cast’
userdata a.

See also: bytes.getlow, bytes.getwords.

agena >> 485

bytes.getlow (a)

Returns the lower unsigned 32-bit intfeger representation of a number from 'casf
userdata a.

See also: bytes.gethigh, bytes.getwords.

bytes.getunbiased (a)

Returns the unbiased exponent of the double x represented by 'cast' userdata a.
Equals math.exponent(x) - 1, except for x = 0 where the result is -1023. If |x| < 1,
the result is always negative.

See also: bytes.gethigh, bytes.getlow, bytes.getwords, math.uexponent.

bytes.getwords (a)

Returns both the higher and lower unsigned 32-bit integer representations of a
number from 'cast' userdata a.

See also: bytes.getdouble, bytes.gethigh, bytes.getlow.

bytes.setdouble (a, x)

Sefts the floating point element of 'cast' userdata a and returns the higher and lower
unsigned 32-bit integer representations, in this order.

See also: bytes.setwords.

bytes.sethigh (a, hx)

Sets the higher unsigned 32-bit integer element nx of 'cast' userdata a. The retum is
the corresponding floating point representation, i.e. a number.

See also: bytes.setdouble, bytes.setlow.

bytes.setlow (a, 1x)

Sets the lower unsigned 32-bit integer element 1x of 'cast' userdata a. The return is
the corresponding floating point representation, i.e. a number.

See also: bytes.setdouble, bytes.sethigh.

486 11 Numbers

bytes.setwords (a, hx, 1lx)

Sets the higher and lower unsigned 32-bit infeger elements nx and 1x of 'cast’
userdata a. The retun is the corresponding floating point representation, i.e. a
number.

See also: bytes.setdouble, bytes.sethigh, bytes.setlow.

11.2.3 IEEE754 Functions

The bytes package provides the ‘ieee' userdata data structure representing an
Agena number as both a C double (i.a. Agena number) and its components sign
bit, biased exponent and high- and low-word mantissa. See bytes.ieee for details.

Example:

> import bytes

> expl0 := proc(x) is

> x *:= log2(10);

> local i := round(x);

> local £ := bytes.ieee(0);

> bytes.setieee(f, expo = 1 + 1023);

> X —:= 1i;

> return bytes.getieee(f, 'double') *

> (1.0 + x*(0.69314718055994530941723212145818 +

> x*(0.24022650695910071233355126316333 +

> x*(0.055504108664821579953142263768622 +

> x*(0.0096181291076284771619790715736589 +

> x*(0.0013333558146428443423412221987996 +

> x*(0.00015403530393381609954437097332742 +

> x*(0.00001525273380405984028002543901201 +

> x*(0.0000013215486790144309488403758228288 +
> x*0.00000010178086009239699727490007597745)))))))))
>end;

bytes.ieee ([x])

bytes.ieee ([signbit, exponent, high_mantissa, low_mantissa])

Creates a userdata structure of type ‘ieee' that stores the Agena numiber O or x and
adllows read and write access to its components sign bit signbit, its biased
exponent, the high-word part of the mantissa high_mantissa and its low-word part
high_mantissa. Technically, the userdata represents the C union (see source file
Src/sunpro.hj:

agena >> 487

Big-Endian platforms Little-Endian platforms
typedef union { typedef union {
double v; double v;
struct { struct {
uint64_t sign 15 uint64_t mantissa_low : 32;
uint64_t exponent 11, uint64_t mantissa_high : 20;
uint64_t mantissa_high : 20; uint64_t exponent 11,
uint64_t mantissa_low : 32; uint64_t sign 1,
}oci }oci
} double_ieee754; } double_ieee754;

If nO argument is given, then the userdata represents zero (0), alternatively you can
set it to number x (first form).

You may also initialise the userdata by passing both its sign bit, exponent, and the
high and low parts of the mantissa (second form).

bytes.setieee (a, options)

Sets components in 'ieee' structure a. Accepted options Are one or more pairs:

* 'double': any Agena number,

* 'signbit':the sign bit, 1 for minus, O for plus,

* rexpo': the biased exponent, an unsigned 4-byte integer,
* high': high-word part of the mantissa,

e 1ow': low-word part of the mantissa.

Example:

> bytes.setieee(a, double=Pi, signbit=1); # sets -Pi to 'ieee' object a

bytes.getieee (a [, options])

Returns the components of ‘ieee' structure a. If only a is given, then its five
components number, sign bit, exponent, mantissa high-word and mantissa
low-word are returned, in this order.

If one or more of the following strings are passed as options, then the requested
components will be refumned in the order given by the user:

* 'double': Any Agena number,

* 'signbit':the sign bit, 1 for minus, O for plus,

* expo': the biased exponent, an unsigned 4-byte infeger,
* 'high': high-word part of the mantissa,

* rlow': low-word part of the mantissa.

Example:

> bytes.getieee(a, 'double', 'signbit'):
-3.1415926535898 1

488 11 Numbers

Following are specialised functions for 'ieee' data:

bytes.setieeesignbit (a, bit [, option])

Sets the sign bit of ieee structure a to bit, which is either 1 for minus or O for plus. If
any option is given, the function retuns the updated values for double, sign bit,
exponent, high and low-word mantissa, in this order.

bytes.setieeeexpo (a, e [, option])

Sefts the biased exponent of ieee structure a to non-negative integer e. If any option
is given, the function returns the updated values for double, sign bit, exponent, high
and low-word mantissa, in this order.

bytes.setieeehigh (a, hi [, option])

Sefs the high-word of the mantissa of ieee structure a fo non-negative infeger ni. If
any option is given, the function retuns the updated values for double, sign bit,
exponent, high and low-word mantissa, in this order.

bytes.setieeelow (a, lo [, option])

Sets the high-word of the mantissa of ieee structure a to non-negative integer 1o. If
any option is given, the function retuns the updated values for double, sign bit,
exponent, high and low-word mantissa, in this order.

bytes.setieeedouble (a, v [, option])

Sets the floating-point component in ieee structure a to Agena number v. If any
option iS given, the function retumns the updated values of the sign bit, exponent,
high and low-word mantissa in a, in this order.

bytes.getieeedouble (a)

Returns the floating-point component in ieee structure a, an Agena number.

agena >> 489

11.2.4 32-bit Integer Operations
The following functions process 32-bit signed and unsigned integers.

Please note, that by default, Agena including the functions listed below, work in
unsigned mode. You can switch to signed operations by issuing

> environ.kernel (signedbits = true);

on the command line or in a (library) file.

bytes.add32 (a, b [, ---1)

Adds two or more numbers a, b, ... Using 4-byfe unsigned intfeger arithmetic. The
return is an infeger.

You can switch from unsigned to signed arthmetic by setting
environ.kernel(signedbits = true), and from signed fo unsigned arithmetic by
environ.kernel(signedbits = false).

See also: &+ operator,

bytes.sub32 (a, b [, ---1)

Subtracts two or more numbers a, b, ... Using 4-byte unsigned integer arithmetic. The
return is an infeger.

You can switch from unsigned fo signed arithmetfic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbifs = false).

See also: &- operator,

bytes.mul32 (a, b [, ---1)

Multiplies two or more numbers a, b, ... using 4-byte unsigned integer arithmetic. The
return is an infeger.

You can switch from wunsigned fo signed arithmetfic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbifs = false).

See also: &* operator.

bytes.muladd32 (a, b [, ---1)

Multiplies two numbers a, b, and adds further numbers ¢, ... using 4-byte unsigned
integer arithmetic. The return is the integer a*o + ¢ + ...

490 11 Numbers

You can switch from unsigned fo signed arithmetfic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbifs = false).

See also: bytes.add32, bytes.mul32.

bytes.div32 (a, b [, ---1)

Divides two or more numbers a, b, ... using 4-byfe unsigned integer arithmetic. The
return is an infeger.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed fo unsigned arithmetic by
environ.kernel(signedbits = false).

See also: &/ operator.

bytes.mod32 (a, b)

Takes the modulus a % b (with % the C modulus operator, not Agena's %), using
4-byte unsigned integer arithmetic. The return is an integer.

You can switch from unsigned fo signed arithmetfic by setting
environ.kernel(signedbits = true), and from signed to unsigned arithmetic by
environ.kernel(signedbifs = false).

See also: math.modulus.

bytes.divmod32 (a, b)

Returns the quotient and remainder of the 4-byte division a/b.

See also: bytes.div32, bytes.mod32.

bytes.and32 (--:)

Conducts a binary AND operation on all the arguments (none, one or multiple
signed or unsigned 32-bit integers) and returns an integer.

See also: && operators.

bytes.arshift32 (x, n)

Returns the 32-bit signed or unsigned integer x shifted n bits fo the right. The number
n May be any representable integer. Negative displacements shift to the left.

agena >> 491

This shift operation is what is called arithmetic shift. Vacant bits on the left are filled
with copies of the higher bit of %, thus preserving the sign of x; vacant bits on the
right are filled with zeros. In particular, displacements with absolute values higher
than 31 result in zero or OxFFFFFFFF (all original bifs are shiffed out).

See also: < << and >>> operators, bytes.shift32.

bytes.extract32 (n, field [, width])

Returns the unsigned number formed by the bits field to field + width - 1 from n.
Bits are numbered from O (least significant) o 31 (most significant). All accessed bits
must be in the range [0, 31].

The defaulf for widtnis 1.
Signed 32-bit integers n are not supported.

See also: bytes.replaced2.

bytes.isint32 (n)

Checks whether the given number n is in the range of a signed or an unsigned
4-byte integer and returns true or false.

To check in which mode Agena is, check the environ.kernel/signedbits setting. It
should usually be unsigned.

If you are in unsigned mode, the argument should be in the range 0 ..
environ.kernel().maxulong = 0 .. 4'294'967'295.

If you are in signed mode, n should be in the range environ.kernel().minlong ..
environ.kernel().maxlong = -2'147'483'647 .. 2'147'483'647.

Example:

> import bytes

> environ.kernel () .signedbits: # we are in unsigned mode (C uint32_t's).
false

> bytes.isint32(4'294'967'295) :
true

> bytes.isint32(4'294'967'295 + 1):
false

492 11 Numbers

bytes.mask32 (n)

Returns an integer with the first n bifs set to one, e.g. bytes.mask32(3) - 7.

bytes.nand32 (---)

Conducts a binary complementary OR operation on all the arguments (none, one
or multiple signed 32-bit integers) and retumns an integer. There is no “unsigned’
mode available, as the results would be of no use.

See also: nand.

bytes.nextbit (mask)

Gefts and clears the next bit from the unsigned 4-byte mask, starting with the most
significant bit. The function returns the modified value of mask and the respective bit
position O .. 31.

bytes.nor32 (---)

Conducts a binary complementary OR operation on all the arguments (none, one
or multiple signed 32-bit infegers) and returns an integer. There is no "unsigned’
mode available, as the results would be of no use.

See also: nor.

bytes.not32 (x)

Conducts a binary NOT operation on the signed or unsigned 32-bit infeger x and
returns an infeger.

See also: ~~ operator.

bytes.numto32 (x)

Converts a number x to its signed or unsigned 4-byte intfeger representation. Note
that very large values (positive or negative] might overflow, e.Q.
bytes.numto32(2 " 32+1) =1. The result may differ across platforms in overflow
situations.

You can switch from unsigned to signed arithmetic by setting
environ.kernel(signedbits = true), and from signed fo unsigned arithmetic by
environ.kernel(signedbits = false).

See also: math.uexponent.

agena >> 493

bytes.or32 (--:)

Conducts a binary OR operation on all the arguments (none, one or multiple signed
or unsigned 32-pbit integers) and returns an infeger.

See also: | | operator.

bytes.parity32 (x)

Determines the parity of the unsigned 4-byte integer x, i.e. the number of 1-bifs in x
modulo 2.

Returns O if x is of even parity, and 1 in case of odd parity.

See also: hashes.parity.

bytes.replace32 (n, v, field [, width])

Returns a copy of n, an unsigned 32-bit integer, with the Dits field tO field + width
- 1 replaced by the value v.

Signed 32-bit integers n are not supported.

See bytes.extract32 for details about fie1d and width.

bytes.rotate32 (x, n)

Rotates the bits in the 32-bit infeger x n displacements to the right if n >= 0, or n
places to the left if n < 0. The return is a 32-pbit integer.

Internally the function uses unsigned 32-bit integers by default. You can change this
fo signed integers by calling environ.kernel with the 'signedbits' option.

See also: <<<< and >>>> operators.

bytes.shift32 (x, n)

Shifts the bits in the 32-bit integer x n displacements to the left if n < 0, and to the
right if n > O.

Internally the function uses unsigned 32-bit integers by default. You can change this
fo signed integers by calling environ.kernel with the 'signedbits' Option.

See adlso: < << and >>> operators, bytes.arshift32.

494 11 Numbers

bytes.xnor32 (--:)

Conducts a binary complementary exclusive-OR operation on all the arguments
(none, one or multiple signed 32-bit integers) and returns an integer. There is no
“unsigned” mode available, as the results would be of no use.

See also: xnor.

bytes.xor32 (--:)

Conducts a binary exclusive-OR operatfion on all the arguments (none, one or
mulfiple signed or unsigned 32-bit integers) and returns an integer.

See also: ™ © operator.

agena >> 495

11.3 mapm - Arbitrary Precision Library

As a plus package, in Solaris, Linux, Mac OS X, and Windows, this library is not part of
the standard distribution and must be activated with the import statement, e.Q.

import mapm.

In OS/2 and DOS, the package is built info the binary executable and does not
need o be activated with import.

The package provides functions to conduct arbitrary precision mathematics with
real numibers. It uses Mike's Arbitrary Precision Math Library, written by Michael C.
RiNQ.

Standard operators like +, -, *, /., ™, %, <, =, >, and unary minus are supported.
All function names in this library begin with the lefter x.

The package uses its own kind of numlbers which are different from Agena
numbers: use mapm.xnumber and mapm.xtonumber 10 convert between them.

By default, the precision is set to 17 digits, but you can change this any fime with
the mapm.xdigits function, see example below:

It is always advised to pass numbers as strings if possible. This is because Agena
uses C doubles which are not 100 % precise.

> import mapm;

> mapm.xdigits(100); # precision set to 100 digits
> a := mapm.xnumber ('0.5");

> a*mapm.Pi:

1.57079632679489662

> b := mapm.xnumber (0.5) :
0.50000000000000000

> b*mapm.Pi:
1.57079632679489662

You cannot directly compare MAPM numibe