

SMARTdata UTILITIES

Data Description and Conversion

SC26-7091-01

IBM SMARTdata UTILITIES

Data Description and Conversion

SC26-7091-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

| Second Edition, April 1997

| This edition applies to all platforms supported by SMARTdata UTILITIES Version 1 Release 2 and Version 2 Release
| 1, and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using
| the correct edition for the level of the product.

Publications are not stocked at the address below. Requests for IBM publications should be made to your IBM repre-
sentative or the IBM branch office serving your locality.

You can order by calling IBM Software Manufacturing Solutions at 1-800-879-2755.

A form for reader comments is provided at the back of this publication. If the form has been removed, address your
comments to:

International Business Machines Corporation
RCF Processing Department

 G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0000

 U.S.A.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1994, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Trademarks and service marks . viii

About this book . ix

Bibliography . xi

| Summary of Amendments . xiii
| April 1997 . xiii

Chapter 1. Data Conversion with DD&C . 1
Why Data Conversion is Necessary . 1
Types of Data Conversions . 2

Using Your Own Conversion Routines . 2
Planned Conversions . 3

Creating ADL Source Files . 6
The ADL Declaration Translator . 7
The Conversion Plan Builder . 7
The Conversion Plan Executor . 8
Example of Planned Conversion . 11

Ad Hoc Conversions . 13
Data-Type Conversion Routines — Numeric . 14
Data-Type Conversion Routines — Alphanumeric 14

Chapter 2. DD&C Data Areas and Data Structures 19
Conventions . 19

Data types . 19
Hungarian Notation . 20

The Condition Token . 20
The ADL Communications Area . 23
The Consistency Token . 24
Data Overflow . 25

Chapter 3. The ADL Declaration Translator APIs 27
FMTPRS - Parse Source Text . 28
FMTGEN - Generate Source Text . 34

Chapter 4. The Conversion Plan Builder API 39
FMTCRCP - Create Conversion Plan . 40

Chapter 5. The Conversion Plan Executor APIs 49
FMTCPXI - Initialize Conversion Plan Executor 50
FMTCPXC - Conversion Plan Executor Convert 52
FMTCPXT - Terminate Conversion Plan Executor 57

 Copyright IBM Corp. 1994, 1997 iii

Chapter 6. The Data-Type Conversion Routines 59
CDRMSCI - Initialize Multiple-Step Conversion 60
CDRMSCP - Perform Multiple-Step Conversion 63
CDRMSCC - Multiple-Step Conversion Cleanup 66
CDRGESE - Get Encoding Scheme Element and Its Subelements 67
CDRGESP - Get Encoding Scheme, Character Set, and Code Page Elements . 69
CDRSMXC - Get CCSID With Largest Character Set for Specified Encoding

Scheme and Code Page . 71
CDRGCTL - Get Control Function Definition . 73
Numeric Conversion Routines . 76

Attribute Array Formats for Numeric Conversion Routines 77
FMTBNBN - Binary to Binary . 86
FMTBNFL - Binary to Float . 88
FMTBNPK - Binary to Packed . 89
FMTBNZN - Binary to Zoned . 90
FMTFLBN - Float to Binary . 92
FMTFLFL - Float to Float . 93
FMTFLPK - Float to Packed . 94
FMTFLZN - Float to Zoned . 95
FMTPKBN - Packed to Binary . 96
FMTPKFL - Packed to Float . 97
FMTPKPK - Packed to Packed . 98
FMTPKZN - Packed to Zoned . 100
FMTZNBN - Zoned to Binary . 101
FMTZNFL - Zoned to Float . 103
FMTZNPK - Zoned to Packed . 104
FMTZNZN - Zoned to Zoned . 106

Chapter 7. The User Exit — Calling Your Own Programs 107

Chapter 8. Data Conversion Exceptions and Errors 109
Finding and Correcting Errors in Your Programs 109

Extracting Error Messages From the Condition Token 110
Using the Listing File to Identify Errors . 110
Using the Consistency Token to Control ADLDCLSPCs 111
Using the Generate Function to Create ADL Source Files 111

ADL Exceptions . 112
CDRA Return Codes . 115
DD&C Messages . 119

Parse Function Messages . 119
Generate Function Messages . 141

Appendix A. DD&C Sample Programs . 145
| Sample Programs Showing the Use of the Parse and Generate Functions 145
| 1. ADL Source Input - SAMPLE.ADL . 146
| 2. C Source Code - SAMPLE1.C . 146
| 3. Parse Function Optional Listing File - SAMPLE_P.LIST 154
| 4. Generate Function Optional Listing File - SAMPLE_G.LIST 155

iv SdU Data Description and Conversion

| 5. Generate ADL Source Output - SAMPLE.GEN 158
| Sample Program Showing the Use of The Conversion Plan Builder 159
| 6. C Source Code for the Conversion Plan Executor - SAMPLE2.C 159
| Sample Program Showing a User Exit . 168
| 7. ADL Source Input - USEREXIT.ADL . 168
| 8. C Source Code - USEREXIT.C . 169
| 9. Parse USEREXIT.ADL and Create a Conversion Plan 172
| 10. User Exit Conversion Plan Executor . 179

Appendix B. Sample Programs in COBOL 187
ADL Declaration Translator and CPB Sample 191
Conversion Plan Executor Example . 198
User Exit (ADL Source) Example . 206
Sample ADL File . 207

Appendix C. Sample Programs in PLI . 209
TEST.PLI . 210
TEST.ADL . 218
TEST.MAK . 218
TEST.DEF . 219

Appendix D. Using the OS/2 Trace Function 221
Preparing to Use the Trace Function . 221
Issue the FMTTRACE Command . 222
Start the Trace Function . 223
Stop the Trace Function . 224
Write the Trace Entries to a File . 224

Viewing the trace entries on the screen . 224
Storing the entries in an ASCII file . 224
Specifying the number of trace entries to be displayed or stored. 224

Example of Trace Output . 225
Trace Function Messages . 225

Glossary . 229

Index . 233

 Contents v

vi SdU Data Description and Conversion

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any refer-
ence to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Subject to IBM's valid intellectual
property or other legally protectable rights, any functionally equivalent product, program,
or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to :

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

 IBM Corporation
Information Enabling Requests

 Dept. M13
5600 Cottle Road
San Jose, CA 95193

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

 Copyright IBM Corp. 1994, 1997 vii

Trademarks and service marks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the
IBM Corporation in the United States or other countries or both:

| The following terms are trademarks of other companies:

AIX
IBM
MVS/ESA
Operating System/2
Operating System/400
OS/2
OS/400
VM/ESA

| Windows| Microsoft Corp.
| Windows NT| Microsoft Corp.
| Windows 95| Microsoft Corp.

viii SdU Data Description and Conversion

About this book

This manual was written to help application programmers use the APIs used by the
Data Description and Conversion (DD&C) program. DD&C:

1. Converts field data from one type to another. For example, to convert a binary to a
floating point representation.

2. Converts data structures from the form in which they are stored by a specific lan-
guage, compiler, or operating environment to one that can be accessed directly by
a program written for a different language, compiler, or operating environment.

To work with DD&C, you should be familiar with the following:

� The operating system for your platform

� C programming language

� Any other programming languages that you may use when converting data, such
as COBOL or PL/1, including their respective compilers and operating systems

� IBM's A Data Language (ADL), which describes the encodings of data types and
structures.

� Character Data Representation Architecture (CDRA).

 Copyright IBM Corp. 1994, 1997 ix

x SdU Data Description and Conversion

 Bibliography

You can order books by calling IBM Software Manufacturing Solutions at
1-800-879-2755.

| Table 1. SMARTdata UTILITIES for Windows Publications

| Publication Title| Order Number

| SMARTdata UTILITIES for Windows Set| SBOF-6135

| SMARTdata UTILITIES for Windows Distributed FileManager User's Guide| SC26-7134

| SMARTdata UTILITIES Data Description and Conversion| SC26-7091

| SMARTdata UTILITIES VSAM Application Programming Interface Reference| SC26-7133

| SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
| version
| SC26-7092

Table 2. SMARTdata UTILITIES for OS/2 Publications

Publication Title Order Number

SMARTdata UTILITIES for OS/2 Set SBOF-6131

SMARTdata UTILITIES for OS/2: VSAM in a Distributed Environment SC26-7063

SMARTdata UTILITIES SMARTsort for OS/2 and AIX SC26-7099

SMARTdata UTILITIES Data Description and Conversion SC26-7091

SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
version

SC26-7092

Table 3. SMARTdata UTILITIES for AIX Publications

Publication Title Order Number

SMARTdata UTILITIES for AIX Set SBOF-6132

SMARTdata UTILITIES for AIX: VSAM in a Distributed Environment SC26-7064

SMARTdata UTILITIES SMARTsort for OS/2 and AIX SC26-7099

SMARTdata UTILITIES Data Description and Conversion SC26-7091

SMARTdata UTILITIES A Data Language Reference for Data Description and Con-
version

SC26-7092

Table 4 (Page 1 of 2). Other Publications

Publication Title Order Number

DDM Architecture: Specifications for ADL SC21-8286

Character Data Representation Architecture, Level 2 SC09-1390

IBM Systems Journal: Volume 31, No. 3, 1992 G321-5483

IBM Dictionary of Computing SC20-1699

Compilers—Principles, Techniques, and Tools: by the Addison—Wesley Publishing
Company

IEEE Standard for Binary Floating—Point Arithmetic: ANSI/IEEE STANDARD 754-1985

INTEL 387 DX User

 Copyright IBM Corp. 1994, 1997 xi

Table 4 (Page 2 of 2). Other Publications

Publication Title Order Number

IBM Distributed Data Management: General Information GC21-9527

IBM Distributed Data Management: Reference Guide SC21-9526

Using Distributed Data Management for the IBM Personal Computer SC21-9643

AS/400 Communications: Distributed Data Management Guide SC21-9600

CICS/Distributed Data Management: User's Guide SC33-0695

IBM 4680 Store Systems: Distributed Data Management: User's Guide SC30-4915

DFSMS/MVS Version 1 Release 2 Distributed FileManager/MVS Guide and Refer-
ence

SC26-4915

xii SdU Data Description and Conversion

| Summary of Amendments

| This section summarizes changes made for this edition of the publication.

| April 1997
| This book has been revised to make it platform independent and to add Windows
| support.

| For OS/2, this book replaces SMARTdata UTILITIES for OS/2 Data Description and
| Conversion, SC26-7091-00. Information about the OS/2 trace function has been moved
| from Chapter 8 to Appendix D.

| For AIX, this book replaces SMARTdata UTILITIES for AIX Data Description and Con-
| version, SC26-7066-00.

| The basic information has not changed for either OS/2 or AIX.

 Copyright IBM Corp. 1994, 1997 xiii

xiv SdU Data Description and Conversion

Chapter 1. Data Conversion with DD&C

This chapter introduces DD&C and discusses:

� Why data conversion is necessary
� The types of data conversion DD&C performs
� The components used to perform data conversion

Why Data Conversion is Necessary
In today's distributed processing environment, it is often necessary to share data
between heterogeneous operating systems and programming languages. In doing so,
however, a major problem is differences in:

� The hardware environments,1

� The operating systems that the application programs run under,

� The programming languages in which the application programs are written,

� The method of encoding data that is carried out by the programming languages
and their compilers.

Application programs that do not have all these factors in common are unlikely to be
able to share their data. For example, an application program that is written in C lan-
guage wanted to access a character string or binary digit that is stored by an MVS
COBOL program. The data would not be in the proper representation for use by that
language or operating system.

To solve this problem, an application programmer can write data conversion routines
specifically to convert data from one format to the other. However, this approach is
impractical given the continuing trend toward open computing systems. There are too
many combinations of hardware, operating system, programming language, and com-
piler to make individual solutions feasible.

DD&C offers a solution to the data conversion problem. DD&C allows application pro-
grams to transparently read and exchange data with other programs that run in the
same or different operating environments.

You can write applications in various programming languages for DD&C. programs that
are written in:

 � C
 � COBOL
 � FORTRAN
 � PL/1

1 Not all machines store numbers in the same way. We could use 32-bit integers as an example. On some machines, the lowest
memory address contains the low-order byte of the integer. These machines are called “little endian”. On other machines, the
lowest memory address contains the high-order byte of the integer. These machines are called “big endian”.

 Copyright IBM Corp. 1994, 1997 1

� Other high-level languages (HLL's)

and running under:

 � AIX2

 � MVS/ESA
� OS/2 (IBM Operating System/2)
� OS/400 (IBM Operating System/400)

 � VM/ESA
| � Windows NT and Windows 95

can share data with each other, provided the methods that are used to store data are
known. In fact, as long as you know the data structure of a programming language,
and the structure can be described by ADL, you can:

� Assign the proper CCSID (coded character set identifier) code, or
� Use ADL coding

to enable DD&C translation for different environments and languages.

Types of Data Conversions
DD&C carries out planned conversions and ad hoc conversions for structured data and
individual data fields.

Planned conversions of structured data
You can convert record-oriented, structured data by performing a planned
conversion.

Planned conversions of data fields
You can also use the planned method of data conversion to:

� Convert data fields
� Change the ordering of data fields, or
� Produce a reduced view of data

when not all fields of the original data need to be represented in the con-
verted data.

Ad hoc conversions of data fields
You can convert individual data fields from one type to another by per-
forming an ad hoc conversion . You do this by calling the appropriate
DD&C for Windows data-type conversion routines from within your applica-
tion program.

Using Your Own Conversion Routines
DD&C also includes a user-exit function whereby you use a CALL statement to run
your own conversion routines during program run time. The user-exit is described in
Chapter 7.

2 DD&C does not serialize the processing of DD&C functions within threads of the same process, or threads from different processes.

2 SdU Data Description and Conversion

ADL declaration translator
parse Generate

A
P
I

A
P
I

A
P
I

A
P
I

Conversion plan builder

Conversion plan executor

Data type conversion routines
(numberic and alphanumeric)

Parse source text and
create conversion plans

Manually prepare
ADL source files

PLAN (AB)
PLAN (AC)
PLAN (BA)

Convert data

Conversion plan space

ADLDCLSPC

ADL source ADL source Default plans ADL source

ADLDCLSPC
User-defined
ADLPLNSPC

Default
ADLPLNSPC

PLAN (AB)
PLAN (AC)
PLAN (BA)

PLAN (AB)
PLAN (AC)
PLAN (BA)

DECLARE A

DECLARE A
PLAN (AB)

DECLARE A
PLAN (AB)

PLAN (AB)DECLARE B
DECLARE C

DECLARE B
DECLARE C

Figure 1. DD&C Components

 Planned Conversions
A number of functionally distinct components perform data conversion. Each compo-
nent has associated application programming interfaces (APIs) or functions. These
APIs or functions are called by your application program. The components involved in
data conversion are described on the following pages and in Figure 2 through
Figure 3. The APIs that are used by each component are described in:

 Chapter 1. Data Conversion with DD&C 3

Chapter 3, “The ADL Declaration Translator APIs” on page 27
Chapter 4, “The Conversion Plan Builder API” on page 39
Chapter 5, “The Conversion Plan Executor APIs” on page 49
Chapter 6, “The Data-Type Conversion Routines” on page 59
Chapter 7, “The User Exit — Calling Your Own Programs” on page 107.

The steps involved in planned data conversions are:

1. Create the ADL source files to describe the physical layout of the source and target
data by using ADL.

2. Start the parse function of the ADL declaration translator to convert the ADL data
descriptions into encoded forms. The encoded statements are automatically stored
in memory.

3. Start the conversion plan builder which uses the encoded forms of ADL data
descriptions to build a conversion plan that maps the source data onto the target
data.

4. Execute the conversion plan at run time to convert the data for one or more data
structures.

5. Start the data-type conversion routines to convert numeric and alphanumeric data.

4 SdU Data Description and Conversion

For all ADL source files:

Create ADL source files
with an editor.

These files describe the
data structure(s) to be
converted and the
associated conversion
specifications.

Build conversion plan(s)
using the encoded data
in the binary ADL
DECLARE and PLAN
spaces

Translate ADL
source files into
binary ADL encodings

Store created
resources as
appropriate

Conversion plan(s)
for every ADL
PLAN statement in
the input
ADLPLNSPCs

Create binary encodings
of the source file content

For all ADL PLAN
statements in the input
ADLPLNSPCs:

Create a conversion
plan for ADL PLAN
statements in the
input ADLPLNSPCs

Group the created
conversion plans into
one conversion plan
space

2.

1.

()

)(

1.

3.

2.

-
ADL source files

ADLDCLSPC

ADLDCLSPCs

ADLPLNSPC

User-defined
ADLPLNSPCs

Default
ADLPLNSPCs

Conversion plan
space

ADL Declaration Translator

Application using DDC Input or
Output

DDC Components

Conversion Plan Builder

-

Figure 2. Creating and Executing Planned Conversions, Part 1

 Chapter 1. Data Conversion with DD&C 5

Initialize the
conversion execution

For each data item to
be converted:

This step can be
repeated as often as
necessary

Terminate the
conversion execution
environment

Call the
appropriate

Process the
converted data

Conversion plan
space handle

Conversion plan
name

Conversion input

Conversion plan
space handle

Conversion plan
space handle

Conversion
output data

Conversion
plan space

Initialize
conversion
execution for all
conversion plans in
the conversion plan
space

Load resources
needed by the
conversion plans

Interpret the specified
conversion plan with
its inputs and convert
data using data type
conversion routines

Free resources
associated with this
conversion plan
space handle, and the

Data Type
Conversion

Perform
numeric and
alphanumeric

4.

()

)(

1.

6.

2.

3.

-

5.

Conversion Plan Executor
- Initialization

Application using DD&C Input or

Output

DD&C Components

Conversion Plan
Executor - Conversion

Conversion Plan
Executor - Termination

-

Figure 3. Creating and Executing Planned Conversions, Part 2

Creating ADL Source Files
The first step in the conversion process is to create ADL source files. You do this by
writing ADL source text by using a standard text editor. Refer to SMARTdata UTILI-
TIES A Data Language Reference for Data Description and Conversion for the syntax
and semantics of the ADL data description language.

The ADL source files must accurately describe the physical memory layout of both the
source data and target data. The source data is the data that is to be converted and
the target data is the format that the data must have after conversion. The ADL source
files must also specify how to map the source data onto the target data.

6 SdU Data Description and Conversion

The parse function of the ADL Declaration Translator receives the ADL source files as
input.

The ADL Declaration Translator
The figure below shows how the ADL Declaration Translator operates.

Create binary encodings
of the source file content

ADL source files

ADLDCLSPC

ADLPLNSPC

ADL Declaration Translator

Figure 4. The ADL Declaration Translator

The ADL Declaration Translator component consists of two APIs, or functions:

1. The Parse function, FMTPRS, creates encoded ADL statements. FMTPRS uses
files that describe the physical layout of the source and target data. A benefit from
FMTPRS is that by doing this compilation step now, you will get better run-time
performance than you would if the ADL source were interpreted at run time.

The encoded ADL statements are stored in blocks of memory that is called:

ADLDCLSPC This is the ADL declare space that describes the data.
Normally there are two ADL declare statements; one describing
the source data and one the target data. This results in two
ADLDCLSPC's.

ADLPLNSPC This is the ADL plan space that specifies how to map the
source data onto the target data.

2. The Generate function, FMTGEN, allows you to use an existing ADL file as a tem-
plate to change an ADL file. You can also create your own ADL file from an
existing ADLDCLSPC OR ADLPLNSPC object.

It is also a helpful tool for troubleshooting. Generate will show you the ADL source
statements from which the ADLDCLSPC or ADLPLNSPC was created. You can
spot any incorrect statements, change them, and then rerun the parse function to
create a new ADLDCLSPC or ADLPLNSPC.

The Conversion Plan Builder
The figure below shows how the Conversion Plan Builder operates.

 Chapter 1. Data Conversion with DD&C 7

Conversion plan(s)
for every ADL
PLAN statement in
the input
ADLPLNSPCs

For all ADL PLAN
statements in the input
ADLPLNSPCs:

Create a conversion
plan for ADL PLAN
statements in the
input ADLPLNSPCs

Group the created
conversion plans into
one conversion plan
space

1.

2.

ADLDCLSPCs

User-defined
ADLPLNSPCs

Default
ADLPLNSPCs

Conversion plan
space

Conversion Plan Builder

Figure 5. The Conversion Plan Builder

The Conversion Plan Builder accepts as input the blocks of memory that contain the
encoded ADLPLNSPC and ADLDCLSPC spaces. The ADLPLNSPC and ADLDCLSPC
spaces are generated by the parse function of the ADL Declaration Translator. It gen-
erates a conversion plan for each plan statement. The ADL plan space can contain
one or more plan statements. Likewise, the conversion plan space that was created by
the conversion plan builder, can contain one or more conversion plans. Figure 2 on
page 5 shows the process flow for creating a conversion plan. ADLPLNSPCs are
either:

� Default . At least one default ADLPLNSPC must be specified.
� User-defined . User-defined ADLPLNSPCs are optional.

If you do not specify user-defined plans, the Conversion Plan Builder uses the default
plan or plans to generate the conversion plan for an application.

If you specify a user-defined plan that has the same name as a default plan, the Con-
version Plan Builder uses it instead of the default plan.

If you specify a user-defined plan but no default plan with the same name exists, the
Conversion Plan Builder returns a warning and no conversion plan is created.

The Conversion Plan Builder stores all conversion plans in a single conversion plan
space.

The Conversion Plan Executor
The figure below shows how the Conversion Plan Executor operates.

8 SdU Data Description and Conversion

Conversion plan
space handle

Conversion plan
space

Initialize conversion
execution for all
conversion plans in
the conversion plan
space

Load resources
needed by the
conversion plans

Return a unique
conversion plan
identifier

1.

2.

3.

Conversion Plan Executor
- Initialization

Figure 6. The Conversion Plan Executor – Initialization

The Conversion Plan Executor component accomplishes the actual conversion of the
source data into the target data according to the specifications in the conversion plan.
Start the Conversion Plan Builder APIs at run time to:

� Initialize the Conversion Plan Executor. FMTCPXI loads the required conversion
plan space into memory and initializes the resources for all conversion plans in the
conversion plan space, including conversion tables.

� Perform the conversion. FMTCPXC converts data according to the specifications
in the conversion plan. You can call it multiple times.

� Terminate the Conversion Plan Executor. FMTCPXT releases the resources that
were loaded during initialization.

The Conversion Plan Executor converts data that is based on the conversion plans that
is created by the Conversion Plan Builder. To achieve maximum data throughput at
conversion time, use separate initialization and termination functions as shown in
Figure 3 on page 6.

 Chapter 1. Data Conversion with DD&C 9

Figure 7. The Conversion Plan Executor - Conversion and Termination

The Data-Type Conversion Routines: Data-type conversion routines can be used by
both planned conversion called at any time during planned or ad hoc data routines.
You use data-type conversion routines to convert alphanumeric and numeric field data.
The data-type conversion routines are described in 14.

10 SdU Data Description and Conversion

Example of Planned Conversion
Figure 8 shows an example of a planned conversion. The numbers indicate the
sequence of actions.

3

21

4

5

Source Data ADL Description

Conversion Specification

Target Data ADL Description

Create
Conversion

Plan

Convert
Data

Base Data View DataDD&C
(MVS COBOL) (AIX C)

Figure 8. Example of Planned Conversion

 Chapter 1. Data Conversion with DD&C 11

Suppose that an AIX application that is written in C needs to read data that is gener-
ated by an MVS application that is written in COBOL. The data to be shared is:

"ABC", +1234

An MVS COBOL program describes the data as:

ð1 COBOLREC.

ð2 INITIALS PIC XXX USAGE DISPLAY.

ð2 NUMBER PIC 99999 USAGE PACKED-DECIMAL.

The following steps enable an AIX C program to access this data:

Step .1/ Describe the physical memory layout of the source data in the MVS
COBOL program using ADL DECLARE statements. This description sub-
sequently serves as input for the conversion process.

/\ Description of the source data \/

DECLARE BEGIN; /\ ADL \/

COBOLREC: SEQUENCE BEGIN;

INITIALS: CHAR LENGTH(3) CCSID(5ðð);

NUMBER: PACKED PRECISION(5);

 END;

END;

The source file record in this example consists of the following two fields:

INITIALS A string of 3 characters with CCSID 500.

NUMBER A decimal numeric field with 5 significant decimal digits.

Step .2/ Describe the physical representation of the target data that is expected by
an AIX C program. This is done using ADL DECLARE statements. The
description completely identifies the physical memory layout of the target
data that is returned by the conversion process. This format represents the
data in a way that the Windows C program can process it directly.

/\ Description of the target data \/

DECLARE BEGIN; /\ ADL \/

CREC: SEQUENCE BEGIN;

INITIALS: CHARSFX MAXLEN (4) CCSID(85ð);

NUMBER: BINARY PRECISION(15) BYTRVS (FALSE);

 END;

END;

The target file consists of the same fields as the source file with different
attributes:

INITIALS A string of characters with CCSID 850.
NUMBER A decimal numeric field with 15 significant decimal digits.

12 SdU Data Description and Conversion

| Note: This example is the same for OS/2 and Windows except for the
| BYTRVS value which is TRUE.

Step .3/ Describe the method of converting the source data to the target data (the
conversion specification):

/\ Conversion specification from MVS COBOL to AIX C \/

COBOL_TO_C: PLAN (COBOLREC: INPUT

 CREC: OUTPUT)

 BEGIN; /\ ADL \/

CREC <- COBOLREC;

 END;

/\ Conversion specification from to AIX C to MVS COBOL \/

C_TO_COBOL: PLAN (CREC: INPUT,

 COBOLREC: OUTPUT)

 BEGIN; /\ ADL \/

COBOLREC <- CREC;

 END;

ADL conversion specifications consist of assignment statements between
ADL PLAN statements.

Note: Conversion specifications permit both unidirectional and
bidirectional conversions. This example describes a bidirectional
conversion, where the MVS COBOL data is once the source
(COBOL_TO_C) and once the target (C_TO_COBOL).

Step .4/ Create a conversion plan, supplying the source-data description, the target-
data description, and the conversion specifications as inputs. See “The
Conversion Plan Builder” on page 7 for further details of how this is
accomplished.

Step .5/ Perform the data conversion, using the conversion plan to convert the
source data and generate the target data. The Windows C program can
read the target data and has the following format:

struct {

 char INITIALS[4];

signed short NUMBER;

 } CREC;

Ad Hoc Conversions
The second method of converting data is by calling the DD&C data-type conversion
routines directly from within an application program.

DD&C does not provide conversion routines for all possible combinations of data types
for two reasons:

1. DD&C does not support conversion between a particular pair of data types, such
as CHAR to BINARY.

 Chapter 1. Data Conversion with DD&C 13

2. A particular numeric conversion is done by some other means, such as ASIS to
ASIS (simple copy), and ENUMERATION to ENUMERATION. Other numeric rou-
tines cover these conversions.

SMARTdata UTILITIES A Data Language Reference for Data Description and Conver-
sion describes which data-type conversions are possible with DD&C.

Data-Type Conversion Routines — Numeric
Table 5 shows the conversion routines that are supplied by DD&C for numeric data
types.

The field data types in Table 5 are as follows:

BINARY A fixed-length string of bits that encodes a fixed-precision number in dual
representation.

FLOAT A fixed-length string of bits that encodes a number by means of a char-
acteristic and a significand.

PACKED A fixed-length string of bits. Each byte represents two decimal digits of
the represented number.

ZONED A fixed-length string of bits. Each byte represents one decimal digit of
the represented number.

Table 5. Numeric Conversion Routines

 To →
↓ From

BINARY FLOAT PACKED ZONED

BINARY FMTBNBN FMTBNFL FMTBNPK FMTBNZN

FLOAT FMTFLBN FMTFLFL FMTFLPK FMTFLZN

PACKED FMTPKBN FMTPKFL FMTPKPK FMTPKZN

ZONED FMTZNBN FMTZNFL FMTZNPK FMTZNZN

Data-Type Conversion Routines — Alphanumeric
To perform alphanumeric conversions, DD&C uses a subset of the services that is pro-
vided by the Character Data Representation Architecture (CDRA). CDRA services that
are used by DD&C include:

 � CDRA identifiers
 � CDRA resources
 � Common services.

14 SdU Data Description and Conversion

CDRA Identifiers Used in DD&C
CDRA identifiers provide the means by which a graphic character associated with a
code point can be determined unambiguously.3

The following CDRA identifiers are used in DD&C API calls. These descriptions do not
include the values that are allowed for each field. For that information, see Character
Data Representation Architecture, Level 2.

� The ESID - encoding scheme identifier.

The ESID is a 4-digit hexadecimal number that uniquely identifies a particular
encoding scheme.

0-F 0-F 00 - FF

1 2 3 4

Code extension method

Nibbles
ESID

Number of bytes
Basic encoding structure

The ESID has the following elements:

1. The first nibble 4 contains the basic encoding structure. This element identifies
the basic structural characteristic that differentiates various encoding schemes,
such as EBCDIC (extended binary-coded decimal interchange code), ISO-8,
IBM-PC data, and others.

2. The second nibble contains the number of bytes in each code point. An
encoding scheme might allow variations in the number of bytes that are asso-
ciated with a code point. For example, SBCS (single-byte character set) or
DBCS (double-byte character set) allow variations in the number of bytes.

3. The last two nibbles contain the code extension method. Code extensions are
techniques that are used to encode more characters than can be accommo-
dated in the basic encoding structure. An example is the use of SO (shift-out)
and SI (shift-in) as control characters. These control characters are used to
access an alternative assignment of graphic characters to code points. The
SO and SI control characters show whether one or two bytes of data constitute
a code point in the EBCDIC mixed SBCS and DBCS code. This element of
the ESID identifies the particular method of code extension used from among
the many that are possible in the encoding scheme.

For details of the values that are allowed, refer to the Character Data Represen-
tation Architecture, Level 2.

� The CGCSGID - coded graphic character set global identifier.

3 Each unique bit pattern that is defined by a code is called a code point.

4 A nibble is a sequence of four bits, that is, half a byte.

 Chapter 1. Data Conversion with DD&C 15

 The CGCSGID has two decimal numbers:

GCSGID

CGCSGID

CPGID

Characters

Identifies the code page
Identifies the graphic character set

1 2 3 4 5 1 2 3 4 5

1. The graphic character set global identifier (GCSGID) A 5-digit decimal number
that uniquely identifies a graphic character set. A character set is a defined
set of characters. No coded representation is assumed.

2. The code page global identifier (CPGID). A 5-digit decimal number assigned
to a code page. A code page is a specification of code points for each graphic
character in a character set, or in a collection of graphic character sets. Within
a given code page, a code point can have only one meaning. The same code
pages are used when the encoding structures are similar but not identical.

� The CCSID - coded character set identifier.

This 16-bit number identifies a unique combination of:

– Encoding scheme identifier (ESID)

– Character set identifier or identifiers

– Code page identifier or identifiers

– Additional coding-related information that uniquely identifies the coded graphic
character representation that is used.

CDRA Services Used by DD&C
DD&C implements a subset of the data conversion services that is defined by CDRA,
including the following alphanumeric conversion routines.

� APIs that retrieve information from a CCSID resource table are:

CDRGESE Get an encoding scheme element and its subelements

CDRSMXC Get the CCSID with largest character set for a specified encoding
scheme and code page

CDRGESP Get encoding scheme, character set, and code page elements

CDRGCTL Get the definition of control function.

� APIs that convert characters from one CCSID to another are:

CDRMSCI Initialize multiple-step conversion
CDRMSCP Perform multiple-step conversion
CDRMSCC Clean up after multiple-step conversion.

16 SdU Data Description and Conversion

Chapter 6, “The Data-Type Conversion Routines” describes these alphanumeric con-
version APIs in detail.

CDRA Resources Used by DD&C
CDRA resources are machine representations of tables that are:

� Associated with graphic character data conversion
� Used for querying defaults
� Used for finding relationships between different CCSIDs.

The CDRA resources that are used by DD&C are:

CCSID resource table
The CCSID resource table contains representations of the various ele-
ments that are associated with a CCSID within a system in a machine-
readable form.

Graphic character conversion selection table
This table relates the source and target CCSID to the correct conversion
table and conversion algorithm.

Graphic character conversion tables
These tables contain “CCSID to CCSID” conversion strings. The conver-
sion strings consist of hexadecimal code points for the special conversion.

For example, the CCSID resource table identifies the related CPGID. You can append
the CCSID to an ADL data description of a field or a file. If both the source and target
CPGID are used for the conversion of a character field, both CPGIDs are used to look
up the applicable conversion table.

You must select and use the correct conversion tables to ensure that data objects can
be shared between different computing environments.

Select the conversion method according to the encoding scheme and string type of the
input and output data. The string types are:

� Input that ends with a null character
� Output that ends with a null character
� Output space padded

Substring separation might be necessary if the input data string contains embedded
code extension controls. Character controls such as shift-in (SI) or shift-out (SO) in
EBCDIC mixed single-byte character set (SBCS) and double-byte character set (DBCS)
data might require substring separation. The conversion method first parses the input
data string and, if necessary, performs any required substring separation.

DD&C supports SBCS to SBCS, DBCS to DBCS, and SBCS to DBCS conversions.

The required CDRA resources are listed for each of the alphanumeric data conversion
routines that are described in Chapter 6.

 Chapter 1. Data Conversion with DD&C 17

Note: You cannot add to, change, or delete any part of a CDRA resource from within
DD&C.

18 SdU Data Description and Conversion

Chapter 2. DD&C Data Areas and Data Structures

The DD&C data areas and data structures described in this chapter are:

 � Conventions
� The ADL Communication Area – FMTADLCA
� The Condition Token – FMTCTOK
� The Consistency Token – FMTCNSTKN

 Conventions
Some conventions to observe when calling API functions in DD&C are the data defi-
nitions used by the APIs and Hungarian Notation to specify variable data.

 Data types
Table 6 describes data types used in the DD&C APIs, their definitions and platform
equivalents.

Table 6. Data Types and Definitions

Type Definition Platform Equivalent

LONG Signed integer in the range -2 147 483 648
through 2 147 483 647

typedef long LONG;

SHORT Signed integer in the range -32 768 through
32 767

typedef short SHORT;

UCHAR Unsigned integer in the range 0 through
255

typedef unsigned char UCHAR;

UINT Unsigned integer in the range 0 through 4
294 967 295

typedef unsigned int UINT;

ULONG Unsigned integer in the range 0 through 4
294 967 295

typedef long ULONG;

USHORT Unsigned integer in the range 0 through 65
535

typedef unsigned short USHORT;

PBYTE Pointer to a data area typedef unisgned char *PBYTE;

PCHAR Pointer to a character typedef char *PCHAR;

PLONG Pointer to a signed integer typedef long *PLONG;

PSHORT Pointer to a signed short integer typedef short *PSHORT;

PULONG Pointer to an unsigned integer typedef unsigned long *PLONG;

PUSHORT Pointer to an unsigned short integer typedef unsigned short *PSHORT;

PVOID Pointer to a data type of undefined format. typedef void *PVOID;

 Copyright IBM Corp. 1994, 1997 19

 Hungarian Notation
Hungarian notation is used for DD&C variable names. This naming convention adds a
lowercase prefix abbreviation of the data type to the beginning of the variable so that its
type is immediately recognizable. The prefixes used in the APIs are:

ab Array of bytes
ap Array of pointers
l Long (LONG)
p Pointer
pch Pointer to a single-byte character string.
pp Pointer to a pointer
s Short (SHORT)
uch Unsigned character (UCHAR)
ui Unsigned integer (UINT)
ul Unsigned long (ULONG)
us Unsigned short (USHORT)

The Condition Token
All DD&C API functions return a condition token to indicate their current processing
status. The name of the field is FMTCTOK and it's pointed to by the pfeedback param-
eter. To declare and initialize a condition token, use the following format.

FMTISINF MyIsInfo;

FMTCTOK MyCtok={{ð,ð},ð,ð,ð,"",&MyIsInfo};

The condition token is 12 bytes long, it's format is shown in Figure 9.

20 SdU Data Description and Conversion

Condition ID 01 001 Facility ID Instance-specific information

For Conversion Plan Builder and Conversion
Plan Executor, start address of the
ADL communications area. For conversion
plan executor, also user-exit condition
token address.

For numeric conversion
routines, the ADL exception number.

"FMT" to indicate DD&C platform
"001" to indicate IBM facility ID
Condition severity (0..3)
Type is "Case 1" service condition

Message severity Message number

DD&C for platform-defined

0=Information
1=Warning
2=Error
3=severe
4=Critical

0
0

0
0

1
5

1
6

3
1

3
1

33
23

3
4

3
6

3
7

3
9

4
0

6
3

6
4

9
6

Figure 9. Format of the DD&C Condition Token

 Chapter 2. DD&C Data Areas and Data Structures 21

typedef struct _FMTCTOK

{

 struct

 {

 USHORT usMsgSev;

 USHORT usMsgNo;

 } Condition_ID;

 UINT fCase :2;

 UINT fSeverity:3;

 UINT fControl :3;

 UCHAR uchFacility_ID[3];

 union

 {

 ULONG ulAdlExId;

 FMTADLCA \pAdlCommArea;

 struct _FMTCTOK \pUserExitCtok;

 } pI_S_Info;

} FMTCTOK, \PFMTCTOK;

Figure 10. Layout of the DD&C Condition Token

Figure 10 shows the structure of the condition token as a C-language type definition.

The fields of the DD&C condition token have the following meanings:

Condition_ID A 4-byte identifier that, together with the uchFacility_ID , describes
the processing condition.

Note: The alphanumeric character conversion routines supplied by
CDRA use a different definition of the condition token. Refer to
“CDRA Return Codes” on page 115.

fCase A 2-bit field that defines the format of the Condition_ID portion of
the token. In DD&C, its value is always Case 1 - Service
Condition . identifiers are used. Service condition identifiers consist
of the 2-byte message severity,usMsgSev , and 2-byte message
number, usMsgNo .

fSeverity A 3-bit field that indicates the severity of the condition. Severity
values are the same as defined for a “Case 1” Condition_ID .

fControl A 3-bit field that contains flags that describe or control various
aspects of condition handling. In DD&C, this field has the binary
value B'001' to indicate that the uchFacility_ID is assigned by IBM.

uchFacility_ID A 3-character alphanumeric string that identifies a product or compo-
nent of a product. The combination of uchFacility_ID and usMsgNo
fields uniquely identifies a condition.

The string FMT is used for DD&C and all its components.

pI_S_Info Instance-specific information. You access this information by using a
C-language UNION construct.

For data-type conversion routines , it is a 32-bit ADL exception

22 SdU Data Description and Conversion

identifier that identifies the error that has occurred. “ADL Exceptions”
on page 112 contains a complete list of possible ADL exceptions.

For the Conversion Plan Builder , it is a pointer to the FMTISINF
union, which is the ADL communications area, FMTADLCA.

For the Conversion Plan Executor , it is a pointer the FMTISINF
union. The FMTISINF union contains the ADL communication area.

However, if you used an ADL Plan CALL statement to call a user-exit
which returned a non-zero severity code, and the Conversion Plan
Executor returns either:

 CPX_USEREXIT_WARNING, or
 CPX_USEREXIT_ERROR

the FMTISINF union contains a copy of the Condition Token of the
user-provided function.

The ADL Communications Area
The ADL Communications Area, FMTADLCA, contains information that is returned to
the caller of a conversion plan when an exception occurs. The format of the ADL com-
munications area is shown in Figure 11.

typedef struct _CHARPRE

{

 USHORT usLength;

 UCHAR uchData[255];

} CHARPRE;

typedef struct _FMTADLCA

{

 LONG lLength;

 LONG lExId;

 USHORT usSevCod;

 CHARPRE PlanId;

 LONG lPlanStmt;

 CHARPRE InpErrDta;

 CHARPRE SrcFldId;

 CHARPRE TrgFldId;

} FMTADLCA, \PFMTADLCA;

Figure 11. Layout of the ADL Communications Area

The CHARPRE data type is provided for compatibility with the ADL definition of a string
prefixed by its length. It corresponds to the following ADL declaration:

CHARPRE PRELEN(16) PRESIGNED(FALSE) PREBYTRVS(FALSE) MAXLEN(255)

 UNITLEN(8) MAXALC(TRUE)

The fields of the ADL Communications Area have the following meanings:

lLength Specifies the length of the ADL Communications Area structure.
lExId Specifies an ADL exception identifier (see “ADL Exceptions” on page 112).

 Chapter 2. DD&C Data Areas and Data Structures 23

usSevCod Specifies the severity of the ADL exception:

Value Meaning

0 INFORMATION.

1 WARNING. Service completed, probably correctly.

2 ERROR detected. Correction was attempted. Service completed,
but possibly incorrectly.

3 SEVERE error detected. Service not completed.

4 CRITICAL error detected. Service not completed and error condi-
tion signaled.

PlanId Identifies the conversion plan being executed when the exception was
detected.

lPlanStmt Specifies the number of the PLAN statement that was being executed when
the exception was detected.

InpErrDta Specifies the portion of the input data being processed when the exception
was detected.

SrcFldId Specifies the identifier of the source field being processed when the excep-
tion was detected.

TrgFldId Specifies the identifier of the target field being processed when the excep-
tion was detected.

The Consistency Token
The Consistency Token (CNSTKN) provides the physical composition of an
ADLDCLSPC in terms of:

� The order in which ADL objects appear within the space,
� Where empty spaces exist
� Whether inaccessible objects exist within the space.

The Consistency Token is returned after a call to the FMTPRS function. It is pointed to
by pADLDclSpcCNSTKN. By comparing the consistency token's returned from succes-
sive parsings of ADL source text, you can determine whether the resulting
ADLDCLSPCs are identical.

The Consistency Token is shown below:

Value Meaning

22 This 4-byte field indicates the total length of the structure, from the begin-
ning of this length field to the end of the Consistency Yoken.

X'3062' This 2-byte hex value indicates that the data that follows is a Consistency
Token.

22 X'3062' 16-byte value of
consistency token

24 SdU Data Description and Conversion

Figure 12 shows the C-language type definition of the structure.

typedef struct _FMTCNSTKN {

 ULONG ulLength;

 USHORT usClass;

 BYTE abValue[16];

} FMTCNSTKN, \ PFMTCNSTKN;

Figure 12. Layout of the Consistency Token

 Data Overflow
The DD&C alphanumeric conversion routines, CDRGESP and CDRGCTL, require that
data areas or arrays be allocated by the invoking program for:

� An input parameter specifying the size of the data area that is to receive the con-
verted data.

� An output parameter that returns the size of the data area required by the conver-
sion routine to contain all the converted data.

Data overflow occurs when the size of the data area provided by the invoking program
is smaller than the size required by the function. If this happens:

1. DD&C returns the data in blocks that are the size of the data area allocated by the
invoking program.

2. DD&C returns a non-zero feedback code to indicate that there is more data.

3. The invoking program calls the function repeatedly until all the data is obtained.

For example, assume the amount of allocated space is 4, the required space is 15, and
the two variables are N1 for the amount of allocated space and N2 for the amount of
space actually required. The algorithm for calling this function is similar to the following
pseudo-code segment:

| Set N1 to four

| Set N2 to zero

| Do

| Call function(ccsid, N1, N2, space, feedback)

| Process returned data

| Until N1 >= N2

The variable N2 acts as both an input and an output variable. Notice that N2 must be
initially set to zero by the invoking program. Table 7 on page 26 shows the values of
N1 and N2 passed to and returned from the function for each call.

 Chapter 2. DD&C Data Areas and Data Structures 25

The sequence of events is:

1. The invoking program calls the function with N2 initially set to zero.

2. If the returned value of N2 is greater than N1 and a nonzero return code indicates
that there is more data, the invoking program processes the returned segment of
N1 elements and calls the function again for the remaining data.

3. The function is called repeatedly for as long as the value of N2 is greater than N1.
The invoking program must not change the values of N1 or N2 between function
calls.

4. When the returned value of N2 is less than or equal to N1, the function has
returned all the requested data, consisting of N2 valid elements. The return code
returned with the last block of data is zero unless an error condition unrelated to
data overflow is encountered by the function.

5. The invoking program examines the return code after each call to ensure that there
are no other conditions reported by the performing function—do not rely completely
on the changing values of N1 and N2 to determine when the function is successful.

Errors that may arise are:

| � N2 is less than or equal to N1, but feedback is not equal to zero.
� N2 is greater than N1, but the start address of the block of data to be returned is

outside the range of 1 to the maximum possible value of N2.

Specific errors are documented with the individual API function descriptions.

Table 7. Example of Data Overflow

Event N1 N2 Data
Remaining

First call to routine

 Return code

 4

 –

 0

 15

 0

 11

Second call to routine

 Return code

 4

 –

 15

 11

 11

 7

Third call to routine

 Return code

 4

 –

 11

 7

 7

 3

Fourth call to routine

 Return code

 4

 –

 7

 3

 3

 –

26 SdU Data Description and Conversion

Chapter 3. The ADL Declaration Translator APIs

This chapter describes the ADL Declaration Translator APIs (application program
interfaces):

FMTPRS This function parses the ADL source files and creates binary encodings
of the data that is passed as input to the Conversion Plan Builder.

FMTGEN This function generates ADL source files from the binary encodings of
data.

 Copyright IBM Corp. 1994, 1997 27

FMTPRS

FMTPRS - Parse Source Text

 Purpose
The FMTPRS function:

� Reads a file that contains the ADL source text

� Parses the file

� Builds ADL declare space (ADLDCLSPC) and ADL plan space (ADLPLNSPC)
objects.

The FMTPRS function subsequently passes these objects as input parameters to the
Conversion Plan Builder API. You can also specify that FMTPRS generate a listing file.
This file contains a listing of the ADL source code and messages that describe errors
that are detected by the Parse function during compilation.

Prerequisite for this function is an ADL source file that you created with a text editor.
This source file must contain at least one ADL DECLARE statement or one ADL PLAN
statement. See SMARTdata UTILITIES A Data Language Reference for Data
Description and Conversion for the complete specification of ADL.

 Format
void FMTPRS(PBYTE pbDclXlrId, /\ INPUT \/

 FMTCCSID lParameterCCSID, /\ INPUT \/

 LONG lSrcFilNamLength, /\ INPUT \/

 PCHAR pchSrcFilNam, /\ INPUT \/

 FMTCCSID lSrcFilCCSID, /\ INPUT \/

 LONG lDclXlrOptLength, /\ INPUT \/

 PCHAR pchDclXlrOpt, /\ INPUT \/

 LONG lLstOptLength, /\ INPUT \/

 PCHAR pchLstOpt, /\ INPUT \/

 LONG lLstFilNamLength, /\ INPUT \/

 PCHAR pchLstFilNam, /\ INPUT \/

 LONG lADLDclSpcLength, /\ INPUT \/

PBYTE pbADLDclSpc, /\ OUTPUT \/

 FMTCCSID lADLDclSpcCCSID, /\ INPUT \/

PFMTCNSTKN pADLDclSpcCNSTKN, /\ OUTPUT \/

 LONG lADLPlnSpcLength, /\ INPUT \/

PBYTE pbADLPlnSpc, /\ OUTPUT \/

PFMTCTOK pFeedBack); /\ OUTPUT \/

 Parameters
pbDclXlrId An input variable that contains the name of the declaration

translator that is to parse the source text.

This parameter is a pointer to a 16-byte field. The first 8 bytes
must contain the name of the declaration translator. DD&C
only supports the ADL Declaration Translator, which has the

| value X'2B12 0003 0188 6D01' . In the fmtb.h include file
shipped with DD&C, the define statement,

28 SdU Data Description and Conversion

FMTPRS

ADLDECLTRANSLATOR specifies this value. All other input
values result in the following message:

The value of the pbDclXlrId parameter is incorrect.

DDM reserves bytes 9 to 16 inclusive. The FMTPRS function
ignores these bytes.

lParameterCCSID Parameter that is reserved. The FMTPRS function ignores this
parameter.

lSrcFilNamLength An input variable that contains the length of the area
addressed by the pchSrcFilNam parameter.

pchSrcFilNam The start address of an area that contains the name of the
ADL source file to be parsed.

This area can contain a fully-qualified ASCII filename5 , or a
filename only, in which case the current directory is searched
for the file.

lSrcFilCCSID Parameter that is reserved. The FMTPRS function ignores this
parameter.

lDclXlrOptLength An input variable that contains the length of the area
addressed by the pchDclXlrOpt parameter.

pchDclXlrOpt The start address of an area that directs the declaration trans-
lator to use the AUTOSKIP option.

If you set AUTOSKIP , The FMTPRS function automat-
ically generates SKIP statements according to the ADL
alignment rules.

You must insert SKIP statements in the appropriate places
in the ADL source text if:

� You do not set AUTOSKIP , or

� pchDclXlrOpt is null, or

� lDclXlrOptLength is less than or equal to zero.

The ADL Declaration Translator performs checks and
returns appropriate errors if the alignment of fields is incor-
rect.

lLstOptLength An input variable that contains the length of the area
addressed by the pchLstOpt parameter.

pchLstOpt The start address of an area that contains listing options. The
options to use are expressed as an ASCII character string.

If pchLstOpt is NULL or lLstOptLength is less than or equal

| 5 A fully-qualified ASCII file name is one that contains both the directory structure and file name. An example is \DDC2\ADLSOURCE
| or /DDC2/ADLSOURCE on AIX systems.

 Chapter 3. The ADL Declaration Translator APIs 29

FMTPRS

to zero, then the FMTPRS function uses the default options,
and does not flag listing and information messages.

If the listing options that are used contradict each other, then
the last option that is specified is used. You can specify
Listing options in any order. At least one blank must separate
listing options.

When the FMTPRS function parses the ADL source, it
produces a listing file which contains the source listing and
messages. You can control when a source listing is produced
using the following options:

� NOLIST - No source listing is produced. NOLIST is the
default if the pchLstOpt area does not contain any listing
options. If there are other listing options in the pchLstOpt
area, they override the NOLIST option.

� LIST - A source listing of the ADL source is produced.
The FMTPRS function replaces any ADL INCLUDE state-
ments in the source text with the included ADL source
text. A line number precedes each source line in the
listing, for example:

<ðð25> b: BINARY;

Any error messages follow the text line. These error mes-
sages describe exceptions that are detected while parsing
the text line.

� FLAG(x) - Specifies the minimum severity level of the
exceptions for which messages are to be listed. The
FLAG(x) option is valid independently from the LIST
option. You can specify the following FLAG options (in
order of increasing severity):

I Information
W Warning
E Error
S Severe

If you do not specify the FLAG option, the FMTPRS func-
tion assumes FLAG(I).

Messages have the following format:

1. The current ADL source file name

2. The line and column number where the exception
occurred

3. The error level

4. The exception number

5. Text that explains the exception.

30 SdU Data Description and Conversion

FMTPRS

An example of the message format is:

source.adl(125:24) : error FMT1432: Duplicate ENUMERATION

 value name

lLstFilNamLength An input variable that contains the length of the area
addressed by the pchLstFilNam parameter.

pchLstFilNam The start address of an area that contains the name of a listing
file. You should always specify the name of a listing file. If
you do not specify a path, the FMTPRS function stores the
listing file in the current directory. If you specify that no listing
is to be produced (NOLIST option), the FMTPRS function
writes any ADL error messages that occur to this file. If you
specify a file name that cannot be opened, the FMTPRS func-
tion generates the error message:

Error opening listing file

If a file with the same name already exists, the FMTPRS func-
tion overwrites the file when the function is called.

lADLDclSpcLength An input variable that contains the length of the area
addressed by the pbADLDclSpc parameter. If you set this
parameter to 0, the pbADLDclSpc parameter value can be
NULL and the FMTPRS function does not generate an
ADLDCLSPC.

If the ADL source contains a DECLARE statement, an excep-
tion informs you that the ADLDCLSPC size is too small. The
value specifies the exception in the pFeedBack parameter.
To generate an ADLDCLSPC, this parameter must have a
value of at least 4 so that the FMTPRS function can return the
required length for the ADLDCLSPC.

pbADLDclSpc The start address of an area in which the ADLDCLSPC is
returned to the caller. When returned, the first four bytes of
the declaration space indicate the length of the space, in the
format of an ULONG. However, if the area that is required by
the declaration space exceeds the value that is specified by
lADLDclSpcLength , the object's length field is set to the
required length. The value in pFeedBack indicates an excep-
tion.

If no declaration space is generated, this field is set to zero.

lADLDclSpcCCSID Parameter that is reserved. The FMTPRS function ignores this
parameter.

pADLDclSpcCNSTKN A pointer to the consistency token (PFMTCNSTKN) structure.
This structure is described in “The Consistency Token” on
page 24.

 Chapter 3. The ADL Declaration Translator APIs 31

FMTPRS

The consistency token is only calculated when the
ADLDCLSPC is generated successfully and
pADLDclSpcCNSTKN is not NULL.

lADLPlnSpcLength An input variable that contains the length of the area
addressed by the pbADLPlnSpc parameter. If this parameter
is set to 0, the next parameter value can be NULL and no
ADLPLNSPC is generated.

If the ADL source contains a PLAN statement, the value in
pFeedBack indicates an exception and notifies you that the
ADLPLNSPC size is too small. To generate an ADLPLNSPC,
this parameter must have a value of at least 4 so that the
required length for ADLPLNSPC is returned.

pbADLPlnSpc The start address of an area in which the plan space is
returned to the caller. When returned, the first four bytes of
the plan space indicate the length of the space, in the format
of an ULONG. However, if the area that is required by the
plan space exceeds the value that is specified by
lADLPlnSpcLength , the object's length field is set to the
required length. The value in pFeedBack indicates an excep-
tion.

If no plan space is generated, this field is set to 0.

pFeedBack The condition token is returned to the caller in an area of
memory whose start address is specified by pFeedBack . The
condition token consists of a message severity and a message
number that identify the error that occurred during the proc-
essing of the function. See “The Condition Token” on page 20
for the layout and description of the condition token.

 Return codes

Message
severity

Message
number

Mnemonic Explanation

0 0 PRS_NO_ERROR FMTPRS executed successfully.

2 1 PRS_ERROR A parser error occurred during processing.
See the listing file for further information.

3 2 PRS_ERR_INTERNAL Internal error. The cause of the error is
specified in the trace file.

3 3 PRS_ERR_LIST_OPEN Error opening listing file.

3 4 PRS_ERR_LIST_WRITE Error writing to listing file.

2 5 PRS_ERR_DCLSPC The ADLDCLSPC area is too small or not in
a valid memory location.

2 6 PRS_ERR_PLNSPC The ADLPLNSPC area is too small or not in
a valid memory location.

2 7 PRS_ERR_DCLPLNSPC Both the ADLDCLSPC and ADLPLNSPC
areas are too small or not in valid memory
locations.

32 SdU Data Description and Conversion

FMTPRS

Message
severity

Message
number

Mnemonic Explanation

3 8 PRS_ERR_XLRID The value of the pbDclXlrId parameter is
not supported.

3 10 PRS_ERR_LSTOPT The value of the pchLstOpt or
lLstOptLength parameter is not valid.

3 11 PRS_ERR_XLROPT The value of the pchDclXlrOpt or
lDclXlrOptLength parameter is not valid.

3 12 PRS_ERR_SOURCE The value of the pchSrcFilNam or
lSrcFilNamLength parameter is not valid.

3 13 PRS_ERR_INV_LSTOPT An unknown listing option was specified in
pchLstOpt . The pI_S_Info.ulAdlExId field
contains the number of the listing option that
is not recognized.

3 14 PRS_ERR_INV_XLROPT An unknown parser option was specified in
pchDclXlrOpt . The pI_S_Info.ulAdlExId
field contains the number of the parser
option not recognized.

 Comments
1. You can call the FMTPRS function from more than one process simultaneously.

2. The DDM architecture defines the lParameterCCSID , lSrcFilCCSID , and
lAdlDclSpcCCSID parameters. DD&C does not support these parameters. This
implies that character conversion of ADL source text is not possible using this func-
tion.

 Chapter 3. The ADL Declaration Translator APIs 33

FMTGEN

FMTGEN - Generate Source Text

 Purpose
The FMTGEN function generates a file that contains ADL source code from an ADL
declaration space (ADLDCLSPC) or an ADL plan space (ADLPLNSPC) object. The
FMTPRS function produces the ADLDCLSPC and ADLPLNSPC objects. Optionally,
you can generate a listing file by using the pchLstOpt parameter.

 Format
void FMTGEN(PBYTE pbDclXlrId, /\ INPUT \/

 FMTCCSID lParameterCCSID, /\ INPUT \/

 LONG lDclXlrOptLength, /\ INPUT \/

 PCHAR pchDclXlrOpt, /\ INPUT \/

 PBYTE pbAdlSpc, /\ INPUT \/

 FMTCCSID lAdlSpcCCSID, /\ INPUT \/

 LONG lSrcFilNamLength, /\ INPUT \/

 PCHAR pchSrcFilNam, /\ INPUT \/

 FMTCCSID lSrcFilCCSID, /\ INPUT \/

 LONG lLstOptLength, /\ INPUT \/

 PCHAR pchLstOpt, /\ INPUT \/

 LONG lLstFilNamLength, /\ INPUT \/

 PCHAR pchLstFilNam, /\ INPUT \/

 FMTCCSID lLstFilCCSID, /\ INPUT \/

PFMTCTOK pFeedBack); /\ OUTPUT \/

 Parameters
pbDclXlrId An input variable that contains the name of the declaration

translator of the representation domain for which the ADL
source text is to be generated. It is a pointer to a 16-byte
field.

DD&C only supports the ADL Declaration Translator, which
has the value X'2B12 0003 0188 6D01'. In the fmtb.h include
file shipped with DD&C, the define ADLDECLTRANSLATOR
specifies this value. All other input values result in the fol-
lowing message:

The value of the pbDclXlrId parameter is incorrect.

The DDM architecture reserves bytes 9 to 16 inclusively. The
FMTGEN function ignores these bytes.

lParameterCCSID Parameter that is reserved. The FMTGEN function ignores
this parameter.

lDclXlrOptLength Parameter that is reserved. The FMTGEN function ignores
this parameter.

pchDclXlrOpt Parameter that is reserved. The FMTGEN function ignores
this parameter.

34 SdU Data Description and Conversion

FMTGEN

pbAdlSpc The start address of the area that contains the ADLDCLSPC
or the ADLPLNSPC object from which ADL source code is to
be generated.

The FMTPRS function creates these objects as outputs.

lAdlSpcCCSID Parameter that is reserved. The FMTGEN function ignores
this parameter.

lSrcFilNamLength An input variable that contains the length of the area
addressed by the pchSrcFilNam parameter.

pchSrcFilNam The start address of an area that contains the name of the
ADL source file to be generated.

This area can contain, for example, a fully-qualified ASCII
filename (such as /DDC2/ADLSOURC.ADL), or a filename only. If
the area contains a filename only, the FMTGEN function
creates the file in the current directory.

If a file with the same name already exists, it is overwritten.

lSrcFilCCSID Parameter that is reserved. The FMTGEN function ignores
this parameter.

lLstOptLength An input variable that contains the length of the area
addressed by the pchLstOpt parameter. If the length is 0, the
FMTGEN function uses the default list options.

pchLstOpt The start address of an area that contains listing options. If
the pointer is NULL, the FMTGEN function uses the default
options. You can specify the options in any order. At least
one blank must separate the options.

A listing file contains a symbolic representation of the
ADLDCLSPC or ADLPLNSPC. The listing file also contains
any messages that are produced while generating the ADL
source. You can control when a source listing is produced
using the following options:

� LIST - The listing contains a symbolic representation of
the space.

� NOLIST - No symbolic representation is produced. You
can specify either NOLIST or LIST in the list options;
NOLIST is the default.

� FLAG(x) - Specifies the minimum severity level of the
exceptions for which messages are to be listed. The
FLAG(x) option can be used independently of the LIST
option. You can specify the following FLAG options, in
order of increasing severity:

I Information
W Warning
E Error

 Chapter 3. The ADL Declaration Translator APIs 35

FMTGEN

S Severe

If you do not specify the FLAG option, this function
assumes FLAG(I).

Messages have the following format:

1. The error level

2. The exception number

3. If the exception occurred within the space, the offset
is relative to the beginning of the space field in the
ADLDCLSPC or ADLPLNSPC.

4. Text that explains the meaning of the exception.

An example of the message format is:
source.adl(125:24) : error FMT2859: offset ððððð1E6: anonymous

ADLCNS in constant declaration chain

lLstFilNamLength An input variable that contains the length of the area
addressed by the pchLstFilNam parameter. If the value of
this parameter is zero, no listing file is produced.

pchLstFilNam The start address of an area that contains the name of a listing
file, if one is to be produced. If the pointer is NULL, the
FMTGEN function does not produce a listing file.

If a file with the same name already exists, this function over-
writes the file.

Messages that are produced while generating the ADL source
are also written to the listing file, depending on the setting of
the FLAG(x) option.

lLstFilCCSID Parameter that is reserved. The FMTGEN function ignores
this parameter.

pFeedBack The condition token is returned to the caller in an area of
memory whose start address is specified by pFeedBack . The
condition token consists of a message severity and a message
number that identify the error that occurred during the proc-
essing of the function. See “The Condition Token” on page 20
for the layout and description of the condition token.

 Return codes

36 SdU Data Description and Conversion

Message
severity

Message
number

Mnemonic Explanation

0 0 GEN_NO_ERROR Generation finished without errors.

1 1 GEN_WARNING Warning occurred. See list file for further
information.

2 2 GEN_ERROR Error occurred. See list file for further infor-
mation.

3 3 GEN_SEV_ERROR A severe error occurred. See the list file for
further information.

3 4 GEN_ERR_INTERNAL An internal error occurred.

3 5 GEN_ERR_MEMORY Insufficient memory available.

3 6 GEN_ERR_LSTOPT Incorrect listing option specified.

3 8 GEN_ERR_LIST_NLEN The LstFilNamLength parameter value is
incorrect.

3 9 GEN_ERR_LIST_OPEN Error opening list file.

3 10 GEN_ERR_LST_WRITE Error writing list file.

3 12 GEN_ERR_SRC_NLEN The lSrcFilNamLength parameter value is
incorrect.

3 13 GEN_ERR_SRC_OPEN Error opening source file.

3 14 GEN_ERR_SRC_WRITE Error writing source file.

3 15 GEN_ERR_INV_XLRID The value of the pDclXlrId parameter is
incorrect.

3 18 GEN_ERR_LSTOPT_LEN The value of the lLstOptLength parameter
is incorrect.

 Comments
1. You can call the FMTGEN function from more than one process simultaneously.

2. The DDM architecture also describes the parameters usParameterCCSID ,
lLstFilCCSID , and usSrcFilCCSID . DD&C for Windows does not support these
parameters, implying that character conversion of ADL source text is not possible.

 Chapter 3. The ADL Declaration Translator APIs 37

38 SdU Data Description and Conversion

Chapter 4. The Conversion Plan Builder API

This chapter describes the FMTCRCP function, which represents the Conversion Plan
Builder API.

 Copyright IBM Corp. 1994, 1997 39

FMTCRCP

FMTCRCP - Create Conversion Plan

 Purpose
The input to the Conversion Plan Builder is:

� At least one ADLDCLSPC object.

� At lease one default ADLPLNSPC object. Default ADLPLNSPCs contain the plans
that are to be generated for a particular application.

� Optionally, user-defined ADLPLNSPC objects. User-defined ADLPLNSPCs can be
specified to overwrite default ADLPLNSPCs with the same name.

The ADLDCLSPC objects are encodings of ADL DECLARE sections describing dif-
ferent views of data. The ADLPLNSPC objects are encodings of ADL PLAN sections,
and specify how the data is to be converted from one view to another.

As output, the Conversion Plan Builder creates a separate conversion plan for each
PLAN section found in the ADLPLNSPC objects. The Conversion Plan Builder stores
the generated conversion plans in a contiguous area of memory called the conversion
plan space. You must supply the address of this area of memory as an input to this
function.

If user-defined ADLPLNSPCs are supplied for which no default ADLPLNSPC of the
same name exists, a warning (CPB_NO_EQ_DEFAULT_PLAN_NAME) is issued and
no conversion plan is created.

If the conversion plan or plans that are generated do not fit into the block of memory
allocated, the return code CPB_CNVPLNSPC_NO_MEMORY is issued and the
required buffer size is supplied in the first four bytes of the returned conversion plan
space.

 Format
void FMTCRCP(ULONG ulAdlDclSpcCount, /\ INPUT \/

 PBYTE \ppAdlDclSpcList, /\ INPUT \/

ULONG ulUserAdlPlnSpcCount, /\ INPUT \/

 PBYTE \ppUserAdlPlnSpcList, /\ INPUT \/

ULONG ulDefaultAdlPlnSpcCount, /\ INPUT \/

 PBYTE \ppDefaultAdlPlnSpcList, /\ INPUT \/

 ULONG ulCnvPlnSpcLength, /\ INPUT \/

PVOID pCnvPlnSpc, /\ OUTPUT \/

 ULONG ulFlagList, /\ INPUT \/

PFMTCTOK pFeedBack); /\ OUTPUT \/

 Parameters
ulAdlDclSpcCount An input variable containing the number of ADLDCLSPC

addresses in the ppAdlDclSpcList parameter. The
length of the ppAdlDclSpcList parameter is calculated

40 SdU Data Description and Conversion

FMTCRCP

by multiplying the result of sizeof(PBYTE) by the value of
this parameter. It must be greater than zero.

ppAdlDclSpcList The address of an array that contains the addresses of
the ADLDCLSPC objects supplied as inputs.

ppAdlDclSpcList ADLDCLSPC

ADLDCLSPC

ADLDCLSPC

The first four bytes of an ADLDCLSPC indicate the
length of the declaration space.

The order of the ADLDCLSPCs in the list is determined
by the caller.

If the PLAN uses ADL positional identifiers to refer to the
data declared in the ADLDCLSPC, the elements are
numbered as they occur in the ADLDCLSPC:

DECLARE DECLARE DECLARE

ADLDCLSPC 1 ADLDCLSPC 2 ADLDCLSPC n

"1" "3" "m-1"

"2" "4" "m"DECLARE DECLARE DECLARE

The declaration spaces must be in the format generated
by the FMTPRS function of the ADL Declaration Trans-
lator. This implies that an application program cannot
call the FMTCRCP function without having first called
the FMTPRS function.

ulUserAdlPlnSpcCount This input variable contains the number of user
ADLPLNSPC addresses in the ppUserAdlPlnSpcList
parameter. The total length of the
ppUserAdlPlnSpcList parameter can therefore be cal-
culated by multiplying the result of sizeof(PBYTE) by the
value specified by this parameter. The value can be
zero when no user defined ADLPLNSPC object is sup-
plied.

 Chapter 4. The Conversion Plan Builder API 41

FMTCRCP

ppUserAdlPlnSpcList The address of an array that contains the addresses of
the ADLPLNSPC objects that are supplied as inputs to
this function.

ppUserAdlPlnSpcList ADLPLNSPC

ADLPLNSPC

ADLPLNSPC

The plan spaces must be in the format generated by the
FMTPRS function of the ADL Declaration Translator.
This implies that an application program cannot call the
FMTCRCP function without having first called the
FMTPRS function.

These ADLPLNSPCs can contain plans with the same
names as those in the default ADLPLNSPCs. You must
decide which default plans are required and which
names to use for the plans. Plans in user-defined
ADLPLNSPCs are taken instead of those in default
ADLPLNSPCs with the same names.

When ulUserAdlPlnSpcCount is zero,
ppUserAdlPlnSpcList must also be zero.

ulDefaultAdlPlnSpcCount This input variable contains the number of default
ADLPLNSPC addresses in the ppDefaultAdlPlnSpcList
parameter. The length of the ppDefaultAdlPlnSpcList
parameter can therefore be calculated by multiplying the
result of sizeof(PBYTE) by the value of this parameter.
The value must be greater than zero.

ppDefaultAdlPlnSpcList The address of an array that contains the addresses of
the default ADLPLNSPC objects which are supplied as
inputs.

42 SdU Data Description and Conversion

FMTCRCP

ppDefaultAdlPinSpcList ADLPLNSPC

ADLPLNSPC

ADLPLNSPC

These ADLPLNSPCs contain default conversion plans.
These plans are used to build the conversion plan space
unless user-defined ADLPLNSPCs with the same name
are also supplied as inputs.

The plan spaces must be in the format generated by the
FMTPRS function of the ADL Declaration Translator.
This implies that an application program cannot call the
FMTCRCP function without first having called the
FMTPRS function.

ulCnvPlnSpcLength This input variable specifies the length of the area of
memory specified with the pCnvPlnSpc parameter.

pCnvPlnSpc The start address of the conversion plan space. The
length of the conversion plan space is specified by the
ulCnvPlnSpcLength parameter. Conversion plans gen-
erated by the Conversion Plan Builder are written to this
area. The first four bytes of the returned buffer contain
the actual length of the area. If the size specified with
ulCnvPlnSpcLength was not sufficient, the required
length is returned in the first four bytes (ULONG) of the
conversion plan space.

Note: The conversion plan space must be at least 32
bytes long.

ulFlagList Contains:

Bit Meaning

1-31 Reserved flags.

0 DDC_REDUCED_SOURCE.

Specifies whether a reduced SEQUENCE dec-
laration is allowed.

DDC_REDUCED_SOURCE(FALSE) indicates
that when a SEQUENCE declaration in the
target DECLARE section contains a field which
does not occur in the corresponding

 Chapter 4. The Conversion Plan Builder API 43

FMTCRCP

SEQUENCE declaration in the source
DECLARE section, the command is rejected
with the ADL exception “23.—Sequence
element not found”.

DDC_REDUCED_SOURCE(TRUE) indicates
that a reduced SEQUENCE declaration in the
source DECLARE section is allowed.

pFeedBack The start address of an area of memory in which the
condition token is returned to the caller. The condition
token is made up of a message severity and a message
number identifying the error that occurred during the
processing of the function.

The pI_S_Info field of the condition token must be initial-
ized with a pointer to the ADL communications area
(FMTADLCA). Otherwise, the error message
CPB_ERROR_PARAMETERS occurs.

See “The Condition Token” on page 20 for the layout
and description of the condition token.

44 SdU Data Description and Conversion

FMTCRCP

 Return codes

Message
severity

Message
number

Mnemonic Explanation

0 0 CPB_NO_ERROR No error.

1 1 CPB_NO_EQ_DEFAULT_PLAN_NAME No default plan with the same name was
found for a user-supplied plan.

The user plan was not processed.

2 2 CPB_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
18 Assignment of complex to

scalar.
23 Sequence element not

found.

3 3 CPB_ERROR_PARAMETERS An error occurred in one of the function's
parameters:

The number of declare spaces specified
(ulAdlDclSpcCount) is equal to zero

The number of default plan spaces specified
(ulDefaultAdlPlnSpcCount) is equal to zero

The pointer to the declare space list
(ppAdlDclSpcList) is NULL, or an entry in
the list is NULL

The pointer to the default plan space list
(ppDefaultAdlPlnSpcList) is NULL, or an
entry in the list is NULL

The pointer to the user-defined plan space
list (ppUserAdlPlnSpcList) is NULL, or an
entry in the list is NULL and
ulUserAdlPlnSpcCount is greater than zero

The length of the conversion plan space
(ulCnvPlnSpcLength) specified is less than
32 bytes

The pointer to the conversion plan space
(pCnvPlnSpc) is NULL.

3 4 CPB_ERROR_NO_MEMORY Unable to allocate sufficient working
storage.

3 5 CPB_INVALID_ADLDCLSPC Error in input ADLDCLSPC:

� The field length size field in the
ADLDCLSPC is incorrect.

� Incorrect ADLDCLSPC format.
� A variable-length field that is shorter

than the maximum possible field length
is followed by another field.

� An unknown code point was found in
the declaration space.

� A comparison in a WHEN statement is
not possible because of different data
types.

 Chapter 4. The Conversion Plan Builder API 45

FMTCRCP

Message
severity

Message
number

Mnemonic Explanation

3 6 CPB_INVALID_ADLPLNSPC Error in input ADLPLNSPC:

� More than one identical user-defined
plan name was found in the user-
defined plan spaces

� More than one identical default plan
name was found in the list of default
plan spaces

� An unknown code point was found in
the plan space.

3 7 CPB_ERROR_SAME_DECLARE View and base declarations are located in
the same DECLARE statement.

3 8 CPB_ERROR_BUILD_PLAN An internal error occurred.

3 9 CPB_CNVPLNSPC_NO_MEMORY The space specified for the conversion plan
space is too small.

3 10 CPB_INVALID_ATTR_VALUE An attribute of a PLAN parameter contains a
nonnumeric value.

3 11 CPB_STMT_ID_NOT_FOUND An ADL <qualified identifier> in an
assignment or CALL statement was not
found in any ADLDCLSPC.

3 12 CPB_ID_NOT_FOUND An ADL <qualified identifier> used as a
referenced field was not found.

3 13 CPB_PP_NOT_FOUND An ADL <qualified identifier> used as a
plan parameter cannot be found in any
ADLDCLSPC.

3 14 CPB_STMT_ID_AMBIGUOUS An ADL <qualified identifier> found in
an assignment or CALL statement is ambig-
uous.

3 15 CPB_ID_AMBIGUOUS An ADL <qualified identifier> used as a
referenced field is ambiguous.

3 16 CPB_PP_AMBIGUOUS An ADL <qualified identifier> used in a
plan parameter is ambiguous.

3 17 CPB_ERROR_DCL_REFERENCED An ADL <qualified identifier> used in an
ADLDCPSPC or ADLPLNSPC consists only
of an identifier of a DECLARE. This is not
allowed.

3 18 CPB_ADL_EXCEPTION_SEV3 ADL No. ADL Exception

1 Conversion not supported

8 Nonconformable arrays

9 ENUMERATION mismatch

10 Invalid ENUMERATION
value

16 Input area too short

17 Output area too short

3 19 CPB_ID_CONTAINED_IN_
MULTIPLE_PARAMETERS

An ADL <qualified identifier> is con-
tained in several plan parameters of the
same plan. This is not allowed.

3 20 CPB_ERROR_INTERRUPT An interrupt occurred during a system call.

46 SdU Data Description and Conversion

 Comments
� All conversion plans specified in the list of default ADL PLAN spaces

(ppDefaultAdlPlnSpcList parameter) are generated. If a user-defined ADL PLAN
with the same name as a default ADL PLAN exists, the user-defined plan's defi-
nitions are used to generate a conversion plan.

� The FMTCRCP function can be called simultaneously from more than one process.

 Chapter 4. The Conversion Plan Builder API 47

48 SdU Data Description and Conversion

Chapter 5. The Conversion Plan Executor APIs

This chapter describes the Conversion Plan Executor APIs:

FMTCPXI The FMTCPXI function initializes the procedure.

FMTCPXC The FMTCPXC function carries out the conversion. This procedure can
be called one or more times.

DMTCPXT The FMTCPXT function cleans up after the procedure has finished.

Call the functions of the Conversion Plan Executor API in the order they are listed
above. The conversion procedure will run the most efficiently if you use separate initial-
ization and termination calls.

 Copyright IBM Corp. 1994, 1997 49

FMTCPXI

FMTCPXI - Initialize Conversion Plan Executor

 Purpose
Use this function to initialize the Conversion Plan Executor. You do this by passing the
address of the conversion plan space created by the Conversion Plan Builder.
FMTCPXI returns a conversion plan space handle, which must then be specified in sub-
sequent calls to the Conversion Plan Executor to convert data.

 Format
void FMTCPXI(PVOID pCnvPlnSpc, /\ INPUT \/

 PULONG pulCnvPlnSpcHdl, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

 Parameters
pCnvPlnSpc An input variable containing the address of the conversion plan

space returned by the FMTCRCP (create conversion plan) func-
tion.

pulCnvPlnSpcHdl An output variable containing the address where the conversion
plan space handle is returned as an output by this function.

pFeedBack The start address of an area in which the condition token is
returned to the caller. This condition token contains the message
severity and a message number indicating the error that occurred
during processing of the function. See “The Condition Token” on
page 20 for the layout and data-type description of the condition
token.

 Return codes

Message
severity

Message
number

Mnemonic Explanation

0 0 CPX_NO_ERROR No error occurred.

3 1 CPX_ERROR_INTERRUPT An ERROR_INTERRUPT was returned from
an Windows function.

3 2 CPX_INTERNAL_ERR Internal error occurred.

3 3 CPX_INVALID_CODE Incorrect conversion plan statement in con-
version plan space.

3 5 CPX_INVALID_ADDR One of the following is incorrect:

� The address of the conversion plan
space, or length specified with the
length field of the conversion plan
space.

� The address of the conversion plan
space handle.

3 7 CPX_INVALID_CPS Invalid conversion plan space.

3 9 CPX_NO_MEMORY Insufficient memory available.

50 SdU Data Description and Conversion

FMTCPXI

Message
severity

Message
number

Mnemonic Explanation

3 12 CPX_RESOURCE_LIM Resource limits reached on Windows
system, when creating a semaphore, for
example.

3 15 CPX_CDRA_RESOURCE_ERROR Error in CDRA resources when loading con-
version table.

3 16 CPX_LOADMODUL_ERROR An error occurred when loading a user-
provided exit, or in obtaining the address of
the user-defined function. The field
pFeedBack->pI_S_Info.ulAdlExId contains
the Windows return code (errno).

3 103 CPX_ADL_EXCEPTION_SEV3 ADL
No. ADL Exception
2 CCSID not supported.
3 Invalid CCSID pair.
4 Undefined CCSID.

 Comments
� This function must be called to initialize a conversion plan space before a conver-

sion plan can be executed. This initialization must be performed separately for
each Windows process.

� The same conversion plan space can be initialized more than once. For each
initialization, a new conversion plan space handle is returned and new resources
are allocated.

� When return code CPX_ADL_EXCEPTION_SEV3 is returned, the field
pFeedBack->pI_S_Info.ulAdlExId contains the ADL exception.

 Chapter 5. The Conversion Plan Executor APIs 51

FMTCPXC

FMTCPXC - Conversion Plan Executor Convert

 Purpose
Use this function to execute a specified conversion plan. The data to be converted is
contained in the input parameters, and converted data is returned in the output parame-
ters. The conversion plan is contained in a conversion plan space that was loaded by
a previous call to the FMTCPXI function, and is identified by the handle returned by that
function.

 Format
void FMTCPXC(

 ULONG ulCnvPlnSpcHdl, /\ INPUT \/

 ULONG ulPlnNamLength, /\ INPUT \/

 PCHAR pchAdl_Plan_Name /\ INPUT \/

 ULONG ulInputParmNum, /\ INPUT \/

 PVOID \ppInputData, /\ INPUT \/

 ULONG ulOutputParmNum, /\ INPUT \/

 PVOID \ppOutputData, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

 Parameters
ulCnvPlnSpcHdl An input variable. This is the handle that identifies the con-

version plan space containing the plans to convert. This
handle is returned by the FMTCPXI function.

ulPlnNamLength An input variable that specifies the length of the conversion
plan name.

pchAdl_Plan_Name An input variable that specifies the ADL identifier of the PLAN
statement within the conversion plan space that is to be used
for conversion.

ulInputParmNum This input variable specifies the number of input parameters
supplied in the ppInputData array. The total length of the
ppInputData parameter can therefore be calculated by multi-
plying the result of sizeof(PBYTE) by the value specified by
this parameter.

ppInputData This input variable contains the address of an array of
pointers to the input parameters of the conversion plan. They
must be the same number and in the same order as the ori-
ginal input parameters of the ADL PLAN statement.

52 SdU Data Description and Conversion

FMTCPXC

ppInputData data

data

data

ulOutputParmNum This input variable specifies the number of output parameters
supplied in the ppOutputData array. The total length of the
ppOutputData parameter can therefore be calculated by
multiplying the result of sizeof(PBYTE) by the value specified
by this parameter.

ppOutputData This output variable contains the address of an array of
pointers to the output parameters of the conversion plan.
They must have the same order as the original output param-
eters of the ADL PLAN statement.

ppOutputData data

data

data

pFeedBack The start address of an area in which the condition token is
returned to the caller. This condition token contains a
message severity and message number indicating the error
encountered during the processing of the function.

The pI_S_Info field of the condition token must be initialized
with a pointer to the ADL communications area. Otherwise,
the error message CPX_INVALID_ADLCA occurs. See “The
Condition Token” on page 20 for layout and data-type
description.

 Chapter 5. The Conversion Plan Executor APIs 53

FMTCPXC

 Return codes

Message
severity

Message
number

 Mnemonic
Explanation

0 0 CPX_NO_ERROR No error occurred.

3 1 CPX_ERROR_INTERRUPT An ERROR_INTERRUPT was returned from
a Windows function.

3 2 CPX_INTERNAL_ERR Internal error occurred.

3 3 CPX_INVALID_CODE Incorrect contents of conversion plan.

3 4 CPX_INVALID_HANDLE Unknown conversion plan space handle.

3 5 CPX_INVALID_ADDR One of the following is incorrect:

� The address of pchAdl_Plan_Name
� The address of ppInputData when

ulInputParmNum is greater than zero
� The address of ppOutputData when

ulOutputParmNum is greater than
zero.

3 6 CPX_INVALID_ADLCA Incorrect ADL communications area
address.

3 8 CPX_INVALID_PLNNM Invalid conversion plan name.

3 9 CPX_NO_MEMORY No memory available.

3 10 CPX_PARMNBR_DIFFERS Number of plan parameters differs.

3 11 CPX_PLAN_NOT_FOUND Conversion plan not found in conversion
plan space.

3 12 CPX_RESOURCE_LIM| Resource limits reached on the system.

1 13 CPX_USEREXIT_WARNING User exit has returned a warning in the
pI_S_Info area.

3 14 CPX_USEREXIT_ERROR User exit has returned an error in the
pI_S_Info area.

3 15 CPX_CDRA_RESOURCE_ERROR Error in CDRA resources when loading con-
version table.

3 17 CPX_MIXED_BYTE_TRUNC Possible incorrect truncation of mixed-byte
string.

1 101 CPX_ADL_EXCEPTION_SEV1 ADL
No. ADL Exception
12 Assignment of negative value to

unsigned field.

2 102 CPX_ADL_EXCEPTION_SEV2 ADL
No. ADL Exception
5 Floating-point overflow.
11 Fixed-point overflow.
13 Floating-point underflow.
14 Undable to convert.
15 Unable to convert infinity.
18 Assignment of complex to scalar.
19 Floating-point fit violation.
21 Fixed-point constraint violation.
22 Fixed-point fit violation.
23 Sequence element not found.

54 SdU Data Description and Conversion

FMTCPXC

Message
severity

Message
number

 Mnemonic
Explanation

3 103 CPX_ADL_EXCEPTION_SEV3 ADL
No. ADL Exception
1 Conversion not supported.
2 CCSID not supported.
3 Invalid CCSID pair.
4 Undefined CCSID.
6 Target CASE failure.
7 Invalid WHEN clause in an assign-

ment.
8 Nonconformable arrays.
9 ENUMERATION mismatch.
10 Invalid ENUMERATION value.
20 CASE rejected.
24 Target CASE mismatch.
25 Negative array dimension size.
26 Invalid array dimension size.
27 Invalid LENGTH value of ASIS, BIT,

or BITPRE field.
28 Invalid LENGTH or HIGH LOW

value of CHAR or CHARPRE field.
29 Invalid LENGTH or HIGH LOW

value of CHAR or CHARPRE field.
30 Input CHARSFX field contains no

suffix.
31 Output CHARSFX field might

contain one or more characters
matching the suffix.

32 Input is DBCS and orphan byte was
found.

33 Output is DBCS and output length is
odd.

34 Invalid input character field.
35 Invalid digit in PACKED input field

(digit>9).
36 Invalid sign in PACKED input field.
37 Invalid digit in ZONED input field

(digit>9).
38 Invalid sign in ZONED input field.
39 Invalid zone nibble in ZONED input

field.

 Comments
� When the function returns with CPX_USEREXIT_WARNING

CPX_LOADMODULE_ERROR, or CPX_USEREXIT_ERROR, the instance-specific
information in the condition token (the pI_S_Info.ulAdlExId field) contains the DOS
return code of the error.

� For performance reasons, DD&C does not check that the pointers of the Conver-
sion Plan Executor are correct. It is the responsibility of the caller of the function to
check these, otherwise segment violation errors may occur.

� When return code CPX_ADL_EXCEPTION_SEVx is returned, and x is 1, 2, or 3,
the field pFeedBack->pI_S_Info.pAdlCommArea->lExId contains the ADL excep-
tion. The ADL communications area contains additional information about which

 Chapter 5. The Conversion Plan Executor APIs 55

FMTCPXC

assignment statement was being executed when the error occurred. For further
information, refer to “The ADL Communications Area” on page 23.

56 SdU Data Description and Conversion

FMTCPXT - Terminate Conversion Plan Executor

 Purpose
Use this function to terminate the use of a conversion plan space, identified by its con-
version plan space handle.

 Format
void FMTCPXT(ULONG ulCnvPlnSpcHdl, /\ INPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

 Parameters
ulCnvPlnSpcHdl An input variable containing the handle of the conversion plan

space that is to be terminated.

pFeedBack The start address of an area in which the condition token is
returned to the caller. This condition token contains a
message severity and message number indicating the error
encountered during the processing of the function. See “The
Condition Token” on page 20 for layout and data-type
description.

 Return codes

Message
severity

Message
number

 Mnemonic
Explanation

0 0 CPX_NO_ERROR No error.

3 1 CPX_ERROR_INTERRUPT An interrupt was returned from a function.

3 2 CPX_INTERNAL_ERR An internal error occurred.

3 4 CPX_INVALID_HANDLE The conversion plan space handle specified
is incorrect.

3 12 CPX_RESOURCE_LIM Resource limits reached on the system.

 Chapter 5. The Conversion Plan Executor APIs 57

58 SdU Data Description and Conversion

Chapter 6. The Data-Type Conversion Routines

This chapter describes the data-type conversion routines of DD&C.

CDRA (Character Data Representation Architecture) provides these alphanumeric con-
version routines:

CDRMSCI This function loads conversion resources into memory.

CDRMSCP This function converts a character string from one CCSID (coded char-
acter set identifier) to another.

CDRMSCC This function releases the resources that are obtained by CDRMSCI.

CDRGESE This function retrieves ESIDs.

CDRGESP This function retrieves frequently accessed ESIDs, character and code
page elements.

CDRSMXC This function obtains the CCSID for the largest character set for a spe-
cific code page.

CDRGCTL This function returns CCSID control function definitions.

The Numeric conversion routines describe conversions between the following formats:

 � BINARY
 � FLOAT
 � PACKED
 � ZONED

 Copyright IBM Corp. 1994, 1997 59

CDRMSCI

CDRMSCI - Initialize Multiple-Step Conversion

 Purpose
The CDRMSCI function loads the conversion resources that are required for character
data conversion, such as conversion tables and algorithms, into memory. The handle
that is returned from this function is used when calling the CDRMSCP function to
perform conversion.

The CDRA resources that are used by this function are:

� The CCSID resource table
� The graphic character conversion selection table
� The graphic character conversion table.

 Format
void CDRMSCI (CDRASRV_CCSID_T \lCCSID1, /\ IN \/

 LONG \lST1, /\ INPUT \/

CDRASRV_CCSID_T \lCCSID2, /\ INPUT \/

 LONG \lST2, /\ INPUT \/

 LONG \lGCCASN, /\ INPUT \/

 PLONG pToken, /\ OUTPUT \/

CDRASRV_FeedBack_T \pFeedBack); /\ OUTPUT \/

 Parameters
lCCSID1 This variable contains the CCSID of the character string or strings to

convert. Subsequent calls to the CDRMSCP function converts a
character string from one CCSID to another. A positive number in
the CDRA-defined range of X'0001' to X'FEFF' (1 to 65279).

lST1 The type of input string to be converted:

Type Explanation

0 A graphic character string with the specified CCSID. The
CDRMSCP function uses an input variable which specifies
the length of the string, in bytes.

1 A graphic character string that ends with a null character.

CDRA reserves the usage of types 2 through 255. Types 2 through
255 is not supported in DD&C for Windows.

lCCSID2 A variable that contains the CCSID of the converted character string
or strings. Subsequent calls to the CDRMSCP function converts a
character string from one CCSID to another. A positive number in
the CDRA-defined range X'0001' to X'FEFF' (1 to 65279).

60 SdU Data Description and Conversion

CDRMSCI

lST2 The type of output string to be produced:

Type Explanation

0 A graphic character string. The CDRMSCP function uses an
input variable which specifies the length of the area to hold
the converted string.

1 A graphic character string that ends with a null character.

2 A graphic character string padded with spaces up to the
length as specified by the lL2 variable (see “CDRMSCP -
perform multiple-step conversion” on page 63) in subsequent
calls to the CDRMSCP function.

CDRA reserves the usage of types 3 through 255. Types 3 through
255 is not supported in DD&C.

lGCCASN A variable that contains a number which indicates the conversion
alternative to be selected from the graphic character conversion
selection table.

Value Meaning

0 or 1 Used to select the designated installation default conver-
sion method and conversion table or tables.

0–The IBM Default

1–The Customer Default

CDRA defines the range between 2 and 255. This range is not sup-
ported in DD&C for Windows.

pToken The start address of a handle returned by the function. This handle
is used as an input parameter for subsequent calls to CDRMSCP
and a subsequent call to CDRMSCC.

Note: pToken is a pointer to an array of 8 LONGs.

pFeedBack The start address of an area in which the condition token is returned
to the calling program. This condition token contains a status and
reason code which indicates the error that is encountered during the
processing of the function. See “The Condition Token” on page 20
for the layout and type definition of the condition token and “CDRA
Return Codes” on page 115 for the meaning of the status codes for
CDRA.

 Chapter 6. The Data-Type Conversion Routines 61

CDRMSCI

 Return codes

Status
code

Reason
code

Explanation

X'0000' X'0000' The function completed successfully.

X'0001' X'0001' The requested conversion is not supported (that is, there is no entry for it in the GCCST) for
the specified combination of lCCSID1, lST1, lCCSID2, lST2, and lGCCASN parameters.

X'0001' X'0005' The conversion algorithm specified by lGCCASN does not support the specified combination
of (lCCSID1, lST1) to (lCCSID2, lST2).

X'0001' X'0006' The value of lGCCASN is zero, but an “installation default” was not found in the graphic char-
acter conversion selection table for the specified (lCCSID1,lST1) to (lCCSID2, lST2) pair.

X'0002' X'0001' The value of lCCSID1 specified is zero. This value specifies that the CCSID to use for the
invoking program's data must be determined by the caller from the next higher level in some
hierarchy.

This could mean, for example, that if the CCSID is not specified at the field level, the value
specified at the record level is used. If not specified at the record level, then the value speci-
fied at the file level must be used.

This value must be resolved before invoking this function.

X'0002' X'0002' lCCSID2 is zero, which is reserved to indicate defaulting to a higher level in a hierarchy. The
invoking program must resolve the default before invoking this function.

X'0003' X'0001' lCCSID1 has one of the special-purpose CCSID values in the range 65280 to 65535.

X'0003' X'0002' lCCSID2 has one of the special-purpose CCSID values in the range 65280 to 65535.

X'0005' X'0007' A space-padded string was specified (the lST2 parameter is equal to 2), but either the neces-
sary space character is not defined in the CDRA resources, or the CCSID resource table defi-
nition could not be found.

X'0006' X'0001' The graphic character conversion selection table was not found.

X'0006' X'0002' A CDRA resource is currently unavailable.

X'0006' X'0003' The conversion method identified in the graphic character conversion selection table for the
specified selection is currently unavailable.

X'0006' X'0004' A conversion table identified in the graphic character conversion selection table for the speci-
fied selection is not found.

X'0006' X'0007' Unable to generate the requested handle (pToken parameter).

X'0007' X'0001' The structure of the graphic character conversion selection table accessed by the function is
incorrect.

X'0007' X'0002' The structure of the graphic character conversion table accessed by the function is incorrect.

X'0007' X'0003' The table type of graphic character conversion table does not match the method selected from
the graphic character conversion selection table.

X'0008' X'0001' lCCSID1 value is outside the permitted range.

X'0008' X'0002' lCCSID2 value is outside the permitted range.

X'0008' X'0003' lST1 value is outside the permitted range.

X'0008' X'0004' lST2 value is outside the permitted range.

X'0008' X'0007' lGCCASN value is outside the permitted range.

X'0800' X'0002' CDRA dynamically linked load module problem occurred during initialization.

62 SdU Data Description and Conversion

CDRMSCP

CDRMSCP - Perform Multiple-Step Conversion

 Purpose
The CDRMSCP function converts a character string from one CCSID to another. The
converted character string is returned to the calling program. You must supply the
token that is returned from a previous call to the CDRMSCI function to perform conver-
sion of data from one CCSID to another.

The CDRA resources that are used by this function are:

� The graphic character conversion table.

 Format
void CDRMSCP (PLONG pToken, /\ INPUT \/

 PCHAR pchS1, /\ INPUT \/

 LONG \lL1, /\ INPUT \/

 LONG \lL2, /\ INPUT \/

 PCHAR pchS2, /\ OUTPUT \/

 PLONG plL3, /\ OUTPUT \/

 PLONG plL4, /\ OUTPUT \/

CDRASRV_FeedBack_T \pFeedBack); /\ OUTPUT \/

 Parameters
pToken The start address of the handle returned by a previous call to the

CDRMSCI function.

pchS1 The start address of the string to be converted.

lL1 A positive number whose maximum value is 999 999 999. This
contains:

� The length in bytes of the string to be converted when parameter
lST1 of the CDRMSCI function was equal to zero, or

� The input buffer length when the parameter lST1 is equal to 1
(indicating a graphic character string ending with a null character).

lL2 A positive number (whose maximum value is 999 999 999) which con-
tains the length, in bytes, of the output buffer.

pchS2 The start address of the output buffer where the converted string is
placed.

plL3 The start address of a variable which contains the length in bytes of
the converted string (parameter lST2 of CDRMSCI). If applicable, this
variable includes the ending null character or padding characters.

plL4 The start address of a variable which contains the number of the byte
(not the offset) in the input string that caused an error. The value of
this parameter depends on the manner in which the convert function
ends. The possible values are as follows:

 Chapter 6. The Data-Type Conversion Routines 63

CDRMSCP

� If the function detects an output overflow condition, plL4 is set to
the first byte of the code point. This represents the next char-
acter to be converted in the input string pchS1 .

� If the function detects an error in the input string, plL4 contains
the byte number in the input string pchS1 . This is the part of the
string that was being processed when the error was detected.

� If the conversion is error free, a value of zero is returned in plL4 .

pFeedBack The start address of an area in which the condition token is returned
to the caller. This condition token contains a status and reason code
which indicates the error that is encountered during the processing of
the function. See “CDRA Return Codes” on page 115 for more infor-
mation.

64 SdU Data Description and Conversion

CDRMSCP

 Return codes

Status
code

Reason
code

Explanation

X'0000' X'0000' The function completed successfully.

X'0100' X'0001' One or more input graphic characters were replaced with a “SUB” control specified for the
output string.

X'0100' X'0002' One or more input graphic characters were replaced with another graphic character with
CCSID specified by lCCSID2.

X'0004' X'0001' The supplied output buffer was too small for the output data. A converted string that is cor-
rectly truncated and terminated and that fits within the allocated buffer is returned in the area
starting at pchS2 with its length in bytes in plL3 . The value in plL4 is set to the first byte of
the code point representing the next character to be converted in the input string pchS1 .

X'0004' X'0002' The encoding scheme of lCCSID1 is X'1301' (Host Mixed SB/DB encoding). The length
value in iL2 allocated for area pchS2 is too small for the output data. A converted string that
is correctly truncated and terminated and that fits within the allocated buffer is returned in the
area starting at pchS2 with its byte-length in plL3 . The value in plL4 is set to the first byte of
the double-byte character (between SO and SI brackets) that would have been converted next
in the input buffer.

X'0005' X'0001' A double-byte lCCSID1 was specified, but either the parameter ST1 is equal to zero and lL1
is odd, or ST1 is equal to 1 and an orphan byte was found.

X'0005' X'0004' The ESID of CCSID1 is X'1301' and there is an odd number of bytes between the SO and SI
brackets.

X'0005' X'0005' Parameter ST1 is equal to 1, but a null-termination character was not found in the input buffer.

X'0005' X'0006' Parameter ST2 is equal to 1. However, as a result of using the selected conversion tables,
the output string contains one or more characters matching the null-termination character.

X'0005' X'0008' A double-byte lCCSID2 with parameter ST2 equal to 1 was specified, together with an odd
value as the length of the output buffer (lL2). The convert function returns only an even
number of bytes (up to a maximum of the value of lL2 minus 1 byte), including the null-
termination character in pchS2 . The contents of the remaining locations in the output buffer
are unpredictable.

X'0005' X'0009' A double-byte lCCSID2 with ST2 equal to 2 (space-padded string) was specified, together with
an odd value for the length of the output buffer (lL2). The function returns lL2 minus 1 byte,
including the space-padded characters in ST2. The content of the remaining locations in the
output buffer are unpredictable.

X'0005' X'000C' The ESID of CCSID1 is X'1301' but a trailing SI bracket is missing.

X'0005' X'000D' The ESID of lCCSID1 is X'1301', and a trailing SI code point was met without first encount-
ering the corresponding leading SO code point. (The number of intervening code points may
have been odd or even; the code points may have been treated as single-byte code points
because the leading SO was missing)

X'0006' X'0006' The control token structure is incorrect.

X'0008' X'0005' lL1 is outside the permitted range.

X'0008' X'0006' lL2 is outside the permitted range.

X'0800' X'0002' CDRA dynamically linked load module problem occurred during initialization.

 Chapter 6. The Data-Type Conversion Routines 65

CDRMSCC

CDRMSCC - Multiple-Step Conversion Cleanup

 Purpose
The CDRMSCC function releases all the allocated resources and conversion informa-
tion that are associated with the token that was obtained by a previous CDRMSCI func-
tion call.

The CDRA resources that are used by this function are:

� The graphic character conversion table to be deallocated.

 Format
void CDRMSCC (PLONG pToken, /\ INPUT/OUTPUT \/

CDRASRV_FeedBack_T \pFeedBack); /\ OUTPUT \/

 Parameters
pToken Start address of the handle returned from a previous call to

CDRMSCI. After a successful cleanup, the handle is filled with zeros.

pFeedBack The start address of an area in which the condition token is returned
to the caller. This condition token contains a message severity and
message number which indicates the error that is encountered during
the processing of the function. See “The Condition Token” on
page 20 for information on the layout and type definition of the condi-
tion token and “CDRA Return Codes” on page 115 for the meaning of
the status codes for CDRA.

 Return codes

Status
code

Reason
code

Explanation

X'0000' X'0000' The function completed successfully.

X'0006' X'0006' The structure of the token is incorrect.

X'0800' X'0002' CDRA dynamically linked load module problem occurred during initialization.

66 SdU Data Description and Conversion

CDRGESE

CDRGESE - Get Encoding Scheme Element and Its Subelements

 Purpose
The CDRGESE function retrieves the value of the encoding scheme identifier (ESID)
and each of its subelements for a given CCSID. The format of the ESID is described in
“CDRA Identifiers Used in DD&C” on page 15 and in Character Data Representation
Architecture, Level 2.

The CDRA resources that are used by this function are:

� The CCSID resource table.

 Format
void CDRGESE (CDRASRV_CCSID_T \lCCSID1, /\ INPUT \/

 CDRASRV_ESID_T \pESEL, /\ OUTPUT \/

CDRASRV_FeedBack_T \pFeedBack); /\ OUTPUT \/

 Parameters
lCCSID1 A variable which contains the CCSID value. A positive number in

the CDRA-defined range of X'0001' to X'FEFF' (1 to 65279).

pESEL The start address of a structure with four elements is returned. Each
element is a positive 32-bit binary number. The elements in the
structure are:

ESID Value of ESID (4352 to 65534)

BasicEncoding The basic encoding structure (1 to 15)

NumberOfBytes The number of bytes indicator (1 to 15)

CodeExtension The code extension method (0 to 254).

pFeedBack The start address of an area in which the condition token is returned
to the caller. This condition token contains a status and reason code
which indicates the error that is encountered during the processing of
the function. See “The Condition Token” on page 20 for information
on the layout and type definition of the condition token and “CDRA
Return Codes” on page 115 for the meaning of the status codes for
CDRA.

 Chapter 6. The Data-Type Conversion Routines 67

CDRGESE

 Return codes

Status
code

Reason
code

Explanation

X'0000' X'0000' The function completed successfully.

X'0001' X'0001' lCCSID1 value is not in the CCSID resource repository.

X'0002' X'0001' CCSID1 is zero, which is reserved for indicating a default in a hierarchy.

X'0003' X'0001' lCCSID1 has one of the special-purpose CCSID values in the range 65280 to 65535.

X'0006' X'0001' The CCSID resource repository was not found.

X'0006' X'0002' The CCSID resource repository is currently unavailable.

X'0007' X'0001' The structure of the system CCSID resource repository accessed by the function is incorrect.

X'0007' X'0004' No ES element is defined in the CCSID resource table for lCCSID1.

X'0008' X'0001' CCSID1 value is outside permitted range.

X'0800' X'0002' CDRA dynamically linked load module problem occurred during initialization.

68 SdU Data Description and Conversion

CDRGESP

CDRGESP - Get Encoding Scheme, Character Set, and Code Page Elements

 Purpose
The most frequently accessed elements of a CCSID are the ESID and elements of the
character set and code page. The CDRGESP function returns the value of ESID that is
associated with the CCSID and the values of character set and code page elements.
The format of the ESID is described in “CDRA Identifiers Used in DD&C” on page 15
and in Character Data Representation Architecture, Level 2.

The CDRA resources that are used by this function are:

� The CCSID resource table.

 Format
void CDRGESP (CDRASRV_CCSID_T \lCCSID1, /\ IN \/

 LONG \lN1, /\ INPUT \/

 PLONG plN2, /\ INPUT/OUTPUT \/

 CDRASRV_ESIDA_T \plES, /\ OUTPUT \/

 PLONG pCSCPL, /\ OUTPUT \/

CDRASRV_FeedBack_T \pFeedBack); /\ OUTPUT \/

 Parameters
lCCSID1 A variable that contains the CCSID value. A positive number in the

CDRA-defined range X'0001' to X'FEFF' (1 to 65279).

lN1 A variable that contains the number of character set and code page
elements in the output area. The start address of an array of char-
acter set and code page pairs is specified by pCSCPL . The calling
program allocates the space. This parameter contains an even
number greater than or equal to 2.

plN2 The address of a variable to contain the number of values. Each
character set and code page pair counts as two values. These
values are associated with lCCSID1 and returned in pCSCPL . The
calling program must allocate sufficient space for the character set
and code page elements (lN1). For the first call of CDRGESP, the
calling program must set plN2 to zero. For a detailed description of
the function's handling of the output and value of plN2 returned, see
“Data Overflow” on page 25.

plES The start address of an encoding scheme identifier associated with
lCCSID1. This is a 32-bit two's complement binary number in the
range 4352 to 65534.

pCSCPL The start address of an array of character set and code page pairs
whose format is CS1, CP1, CS2, CP2, ..., CSn, CPn.

pFeedBack The start address of an area in which the condition token is returned
to the caller. This condition token contains a status and reason code
which indicates the error that is encountered during the processing of

 Chapter 6. The Data-Type Conversion Routines 69

CDRGESP

the function. See “The Condition Token” on page 20 for information
on the layout and type definition of the condition token and “CDRA
Return Codes” on page 115 for the meaning of the status codes for
CDRA.

 Return codes

Status
code

Reason
code

Explanation

X'0000' X'0000' The function completed successfully.

X'0001' X'0001' lCCSID1 value is not in the CCSID resource repository.

X'0002' X'0001' lCCSID1 value is zero, which is reserved for indicating a default in a hierarchy.

X'0003' X'0001' lCCSID1 has one of the special-purpose CCSID values in the range 65280 to 65535.

X'0004' X'0001' The allocated length (value of lN1) for the area to contain returned values was insufficient to
contain all the output data that is to be returned, see “Data Overflow” on page 25.

X'0005' X'0002' plN2 is greater than lN1 at function invocation time, however, the start of the next block of
data to be returned is outside the valid range from 1 to the maximum value of lN2. See “Data
Overflow” on page 25.

X'0005' X'000A' lN2 is less than or equal to lN1 but not 0.

X'0006' X'0001' The CCSID resource repository was not found.

X'0006' X'0002' The CCSID resource repository is currently unavailable.

X'0007' X'0001' The structure of system CCSID resource repository accessed by the function is incorrect.

X'0007' X'0004' There is no ES element definition in the CCSID resource for lCCSID1.

X'0007' X'0006' There is no definition for the CS and CP elements in the CCSID resource for lCCSID1.

X'0008' X'0001' The lCCSID1 value is outside permitted range.

X'0008' X'0002' The value of lN1 is an odd number.

X'0008' X'0003' lN1 is less than 2.

X'0800' X'0002' CDRA dynamically linked load module problem occurred during initialization.

70 SdU Data Description and Conversion

CDRSMXC

CDRSMXC - Get CCSID With Largest Character Set
for Specified Encoding Scheme and Code Page

 Purpose
The CDRSMXC function gets the CCSID of the largest character set for a specified
code page. The encoding scheme parameter can also be specified to distinguish
between different encoding schemes of the same code page (such as PC-Display or
PC-Data). CDRSMXC only works for those CCSIDs that have only one character set
and code page value associated with them. That is, CDRSMXC works for pure single
or pure double-byte CCSIDs for those registered to date. The character set associated
with the returned CCSID is the largest (in size) of all the character sets in the CCSID
resource installed on the system.

The CDRA resources that are used by this function are:

� The CCSID resource table.

 Format
void CDRSMXC (CDRASRV_CPGID_T \lCPIN, /\ INPUT \/

 CDRASRV_ESIDA_T \lESIN, /\ INPUT \/

 CDRASRV_CCSID_T \plCCSIDR, /\ OUTPUT \/

 CDRASRV_ESIDA_T \plESR, /\ OUTPUT \/

CDRASRV_FeedBack_T \pFeedBack); /\ OUTPUT \/

 Parameters
lCPIN Variable which contains the code page value. A positive number in

the range X'0001' to X'FDFE' (1 to 65022). The additional range
X'FDFF' to X'FFFF' is defined by CDRA. DD&C does not support
the additional range.

lESIN Variable which contains the encoding scheme:

ESIN Meaning

0 The calling program does not know the encoding
scheme and requests the first CCSID encountered
that has the specified code page and the “full” or
“maximum” character set. The CCSID is found in
the CCSID repository.

Other The calling program specifies the ESID value. A
32-bit two's complement binary, positive number in
the range 4352 to 65534 . Only ESIDs that have
a single character set and code page pair that is
associated with them are valid for this function.

plCCSIDR The start address of a variable to contain the returned CCSID value.
A positive number in the CDRA-defined range of X'0001' to X'FEFF'
(1 to 65279).

 Chapter 6. The Data-Type Conversion Routines 71

CDRSMXC

plESR The start address of a variable to contain the encoding scheme value
of the returned CCSID. A 32-bit two's complement binary, positive
number in the range 4352 to 65534.

pFeedBack The start address of an area in which the condition token is returned
to the caller. This condition token contains a status and reason code
which indicates the error that is encountered during the processing of
the function. See “The Condition Token” on page 20 for information
on the layout and type definition of the condition token and “CDRA
Return Codes” on page 115 for the meaning of the status codes for
CDRA.

 Return codes

Status
code

Reason
code

Explanation

X'0000' X'0000' The function completed successfully.

X'0001' X'0001' No entry was found in the CCSID resource repository for the specified lCPIN and lESIN com-
bination.

X'0001' X'0003' ESID specified was 0. The first CCSID encountered in the CCSID repository with the speci-
fied code and the “Full” or “Maximum” character set was returned, additional CCSIDs meeting
the criteria may exist.

X'0001' X'0009' The ESID specified indicates that more than one pair of CS and CP (control point) are associ-
ated with it, which is not allowed for this function.

X'0002' X'0001' lCPIN value is zero.

X'0003' X'0001' lCPIN value is 65535.

X'0006' X'0001' The CCSID resource repository was not found.

X'0006' X'0002' The CCSID resource repository is currently unavailable.

X'0007' X'0001' The structure of the system CCSID resource repository accessed by the function is incorrect.

X'0008' X'0001' CP value is outside permitted range.

X'0008' X'0009' ESIN value is nonzero and outside permitted range.

X'0800' X'0002' CDRA dynamically linked load module problem occurred during initialization.

72 SdU Data Description and Conversion

CDRGCTL

CDRGCTL - Get Control Function Definition

 Purpose
The CDRGCTL function returns the control function definition that is associated with a
given CCSID. Each control function definition is defined as a triplet consisting of:

� The code point value that is allocated to the requested control function definition
� The width, as a number of bytes
� The state number in which the code point is used.

For each of the possible code extension switching states6 associated with the CCSID,
there is at most one code point for a control function within a switching state. A
selection parameter (SEL) is used to identify which control function definition is returned
by the function.

The CDRA resources that are used by this function are:

� The CCSID resource table.

 Format
void CDRGCTL (CDRASRV_CCSID_T \lCCSID1, /\ IN \/

 LONG \lSEL, /\ INPUT \/

 LONG \lN1, /\ INPUT \/

 PLONG plN2, /\ INPUT/OUPUT \/

 PLONG pCTLFDF, /\ OUTPUT \/

CDRASRV_FeedBack_T \pFeedBack); /\ OUTPUT \/

 Parameters
lCCSID1 Variable which contains the CCSID value. A positive number in the

CDRA defined range X'0001' to X'FEFF' (1 to 65279).

lSEL Variable which contains the selection specification, a positive number
in the range 0 to 5. If the selected control function element is avail-
able in the resource definition for CCSID1, the triplet is returned in the
area starting at pCTLFDF . The following values are currently defined
for SEL:

SEL Selected control characters
0 Space
1 Substitute
2 New Line
3 Line Feed
4 Carriage Return

6 An example is the use of two switching states, the SO (shift-out) and SI (shift-in) characters. These characters are used:

� To control access to an alternative assignment of graphic characters to code points, and

� To show whether one byte or two bytes of the data constitutes a code point.

This is used in the EBCDIC (extended binary-coded decimal interchange code) mixed single-byte and double-byte codes.

 Chapter 6. The Data-Type Conversion Routines 73

CDRGCTL

5 End of File

CDRA reserves the usage of types 6 through 255. Types 6 through
255 is not supported in DD&C for Windows.

lN1 Variable which contains the size of the allocated area starting at
pCTLFDF . The allocated area contains the returned data. This
parameter is specified as a number of elements. Each triplet is
counted as 3 elements. The minimum value is 3.

plN2 Start address of a variable to contain the number of values that are
returned in pCTLFDF . It is a positive integer and is a multiple of 3
(corresponding to each triplet in pCTLFDF). If no definition is found in
the CCSID resource, plN2 returns a value of 0. At the first call of
CDRGCTL, the calling program must set plN2 to zero. For a detailed
description of the function's handling of the output and the value of
plN2 returned, see “Data Overflow” on page 25.

pCTLFDF The start address of an array to contain the returned definition ele-
ments. Each definition element triplet consists of a code point, its
width, and the state number of the code point for each possible code
extension switching state for lCCSID1. A zero state number in the
corresponding entry in CTLFDF indicates an undefined element.

pFeedBack The start address of an area in which the condition token is returned
to the caller. This condition token contains a status and reason code
indicating the error that is encountered during the processing of the
function. See “The Condition Token” on page 20 for information on
the layout and type definition of the condition token and “CDRA
Return Codes” on page 115 for the meaning of the status codes for
CDRA.

74 SdU Data Description and Conversion

 Return codes

Status
code

Reason
code

Explanation

X'0000' X'0000' The function completed successfully.

X'0001' X'0001' lCCSID1 value is not in the CCSID resource repository.

X'0001' X'0004' One or more of the requested control function definitions are undefined (as indicated by a zero
value for its corresponding state number in pCTLFDF).

X'0001' X'000A' The requested control function definition element in the CCSID resource for lCCSID1 was not
found.

X'0002' X'0001' lCCSID1 value is zero, which is reserved for indicating a default in a hierarchy.

X'0003' X'0001' CCSID1 has one of the special-purpose CCSID values in the range 65280 to 65535.

X'0004' X'0001' The allocated length (value of lN1) for the area to contain returned values was insufficient to
contain all the output data that is to be returned, see “Data Overflow” on page 25.

X'0005' X'0002' plN2 is greater than lN1 at function invocation, but the start of the next block of data to be
returned is outside the valid range from 1 to the maximum value of lN2. See “Data Overflow”
on page 25 for details.

X'0005' X'0003' The value specified in the SEL parameter is not supported.

X'0005' X'000A' lN2 is less than or equal to lN1 but is not 0.

X'0006' X'0001' The CCSID resource repository was not found.

X'0006' X'0002' The CCSID resource repository is currently unavailable.

X'0007' X'0001' The structure of the system CCSID resource repository accessed by the function is incorrect.

X'0008' X'0001' lCCSID1 value is outside permitted range.

X'0008' X'0002' Reserved.

X'0008' X'0003' The value of lN1 is less than 3.

X'0008' X'000B' SEL value is outside permitted range.

X'0800' X'0002' CDRA dynamically linked load module problem occurred during initialization.

 Chapter 6. The Data-Type Conversion Routines 75

Numeric Conversion Routines
DD&C defines an API call for each supported numeric conversion combination. The
format of the API calls is:

FMTxxyy (INATTR, /\ INPUT \/

 INBUF, /\ INPUT \/

 OUTATTR, /\ INPUT \/

 OUTBUF, /\ OUTPUT \/

 FeedBack); /\ OUTPUT \/

where xx and yy denote two-character codes. The codes represent ADL data types of
input and output fields, respectively. Codes that are supported by DD&C are:

Code ADL data type
BN BINARY
FL FLOAT
PK PACKED
ZN ZONED

For example, FMTBNFL is the name of the BINARY-to-FLOAT conversion routine.

Each conversion routine has the following parameters:

INATTR An array which contains attribute values of the input data. The size
and contents of the array depend on the data type of the input data.
Each array element is a 32-bit two's complement binary number.
See “Attribute Array Formats for Numeric Conversion Routines” on
page 77 for a more detailed description of the array for each data
type supported.

INBUF The start address of the area that contains the input data, that is, the
data to be converted.

OUTATTR An array which contains attribute values of the output data. The size
and the contents of the array depend on the data type of the output
data. See “Attribute Array Formats for Numeric Conversion
Routines” on page 77 for a more detailed description of the array for
each data type supported.

OUTBUF The start address of an area in which the converted data is to be
returned.

If an error occurs during conversion, the contents of this area are
unpredictable.

FeedBack The start address of an area in which the condition token is returned
to the caller. This condition token contains the message severity and
message number which indicates the error that is encountered during
the processing of the function. See “The Condition Token” on
page 20 for the layout and data type description.

76 SdU Data Description and Conversion

For performance reasons, DD&C does not check the pointers that are used as inputs to
the numeric conversion routines. You should ensure that all pointers that are passed to
the routines are valid, otherwise access violation errors may occur.

Attribute Array Formats for Numeric Conversion Routines
Attributes are the parameters for the numeric data-type conversion routines. The attri-
butes are defined as a “union” whose contents can be either an array or a structure.
This is necessary because not all programming languages support the concept of a
structure. The size of an attribute union is fixed for a given ADL data type. Each
element of the structure or array is a 32-bit two's complement binary number.

For further information about the meaning of the ADL attributes, refer to SMARTdata
UTILITIES A Data Language Reference for Data Description and Conversion.

Attributes for BINARY
This union consists of an array and a structure with 10 elements. This union contains
the values of the following ADL attributes in the order that is specified:

 BYTRVS

 COMPLEX

 CONSTRAINED

 FIT

 LENGTH

 PRECISION

 RADIX

 SCALE

 SGNCNV

 SIGNED

The union has the following declaration:

typdef union

{

 LONG BNAttrVector[1ð];

 struct

 {

 LONG lBYTRVS;

 LONG lCOMPLEX;

 LONG lCONSTRAINED;

 LONG lFIT;

 LONG lLENGTH;

 LONG lPRECISION;

 LONG lRADIX;

 LONG lSCALE;

 LONG lSGNCNV;

 LONG lSIGNED;

 }BNAttrRecord;

} BNATTR, \PBNATTR;

 Chapter 6. The Data-Type Conversion Routines 77

lBYTRVS This is a Boolean value. It specifies whether the field is encoded in
byte-reversed order:

TRUE Field is byte-reversed.
FALSE Field is not byte-reversed.

lCOMPLEX This is a Boolean value. It indicates whether the field consists of
two adjacent fields with the same attributes. The first field repres-
ents the “real” part of a complex number and the second field
represents the “imaginary” part of a complex number.

TRUE Field represents a complex number
FALSE Field does not represent a complex number.

lCONSTRAINED This is a Boolean value. It indicates whether the values that are
assigned to a field must be constrained to the range that is implied
by following attributes:

 � RADIX
 � SCALE
 � PRECISION

TRUE Field is constrained
FALSE Field is not constrained.

lFIT This assigns a numeric value to the BINARY field.

Value Definition

0 ROUND. The least-significant binary digits are rounded to
fit.

1 TRUNCATE. The least-significant binary digits are trun-
cated to fit.

2 EXACT. No loss of the least-significant binary digits.

lLENGTH This specifies the length of the BINARY field in bits. The valid
range is from 1 to 32. If a length of 0 is specified, the length is
determined from the precision. See the rules relating to the
BINARY data type in SMARTdata UTILITIES A Data Language Ref-
erence for Data Description and Conversion for more information.

If BYTRVS(TRUE) or COMPLEX(TRUE), the value must be a mul-
tiple of 8.

lPRECISION This specifies the maximum number of significant binary or decimal
digits and depends on the RADIX attribute. The valid range is from
1 to 32, depending on the LENGTH, RADIX, and SIGNED attri-
butes.

78 SdU Data Description and Conversion

lRADIX This specifies the number system base that is assumed by the
SCALE and PRECISION attributes.

Value Meaning

2 The SCALE and PRECISION attributes refer to binary
digits (bits).

10 The SCALE and PRECISION attributes refer to decimal
digits though the number is stored in binary format.

lSCALE This is the scaling factor of the BINARY field in the range -128 to
+127.

lSGNCNV This specifies how the sign of the BINARY field is to be determined.

Value Meaning

0 ALGEBRAIC. Assignment of negative to unsigned field is
not allowed.

1 LOGICAL. Assignment of negative to unsigned field is
allowed.

lSIGNED This is a Boolean value that specifies whether the field has a sign:

TRUE Field has a sign.
FALSE Field is unsigned.

Attributes for FLOAT
This union consists of an array and a structure with 6 elements. This union contains
the values of the following attributes in the order that is specified:

BYTRVS

COMPLEX

FIT

FORM

PRECISION

RADIX

The union has the following declaration:

typdef union

{

 LONG FLAttrVector[6];

 struct

 {

 LONG lBYTRVS;

 LONG lCOMPLEX;

 LONG lFIT;

 LONG lFORM;

 LONG lPRECISION;

 LONG lRADIX;

 }FLAttrRecord;

} FLATTR, \PFLATTR;

 Chapter 6. The Data-Type Conversion Routines 79

lBYTRVS Boolean value. Specifies whether the field is encoded in byte-reversed
order.

TRUE Field is byte-reversed
FALSE Field is not byte-reversed.

lCOMPLEX This is a Boolean value. This value indicates whether the field consists of
two adjacent fields with the same attributes. The first field represents the
“real” part of the complex number and the second field represents the
“imaginary” part of the complex number.

TRUE Field represents a complex number
FALSE Field does not represent a complex number.

lFIT This assigns a numeric value to the FLOAT field.

Value Meaning

0 ROUND. The least significant binary digits are rounded to fit.

1 TRUNCATE. The least significant binary digits are truncated to fit.

2 EXACT. No loss of the least-significant binary digits.

lFORM This specifies the form of the floating point number.

Value Meaning

0 FB32. Single-precision binary floating-point number

1 FB64. Double-precision binary floating-point number

2 FB80. Extended-precision binary floating-point number

3 FH32. Single-precision hexadecimal floating-point number

4 FH64. Double-precision hexadecimal floating-point number

5 FH128. Extended-precision hexadecimal floating-point number

6 FI128. Extended-precision binary floating-point number.

lPRECISION This specifies the maximum number of significant binary or decimal digits,
depending on the RADIX attribute. The valid range depends on the FORM
and RADIX attributes. The PRECISION attribute has no influence on the
format or value of the FLOAT field.

lRADIX This specifies the number system base that is assumed by the PRECISION
attribute.

Value Meaning
2 The PRECISION attribute refers to binary digits (bits).
10 The PRECISION attribute refers to decimal digits.

80 SdU Data Description and Conversion

Attributes for PACKED
This union consists of an array and a structure with 10 elements. This union contains
the values of the following attributes in the order that is specified:

 COMPLEX

 CONSTRAINED

 FIT

 PRECISION

 SCALE

 SGNLOC

 SGNMNS

 SGNPLS

 SGNUNS

 SIGNED

The union has the following declaration:

typdef union

{

 LONG PKAttrVector[1ð];

 struct

 {

 LONG lCOMPLEX;

 LONG lCONSTRAINED;

 LONG lFIT;

 LONG lPRECISION;

 LONG lSCALE;

 LONG lSGNLOC;

 LONG lSGNMNS;

 LONG lSGNPLS;

 LONG lSGNUNS;

 LONG lSIGNED;

 }PKAttrRecord;

} PKATTR, \PPKATTR;

lCOMPLEX This is a Boolean value. This value indicates whether the field con-
sists of two adjacent fields with the same attributes. The first field
represents the “real” part of the complex number and the second
field represents the “imaginary” part of the complex number.

TRUE Field represents a complex number
FALSE Field does not represent a complex number.

lCONSTRAINED This is a Boolean value. This value indicates whether the values
that are assigned to a field must be constrained to the range
implied by the SCALE and PRECISION attributes:

TRUE Field is constrained
FALSE Field is not constrained.

 Chapter 6. The Data-Type Conversion Routines 81

lFIT This assigns a numeric value to the PACKED field.

Value Meaning

0 ROUND. The least-significant decimal digits are rounded
to fit.

1 TRUNCATE. The least-significant decimal digits are trun-
cated to fit.

2 EXACT. No loss of the least-significant decimal digits.

lPRECISION This specifies the maximum number of significant decimal digits.
The valid range is 1 to 31.

lSCALE This is a scaling factor for the PACKED field in the range -128 to
+127.

lSGNLOC This specifies the location of the sign in the PACKED field. The
variable is ignored if SIGNED(FALSE).

Value Meaning

0 DGTLSTBYT. Last nibble of last byte.

lSGNMNS This is a string of 8 hexadecimal digits and represents the sign of a
negative number. The first digit represents the preferred sign, and
sets the sign of the target field. If you use less than 8 hexadecimal
digits, fill the remainder of the string with one of the digits that is
used. See “Example” on page 84 for further information.

lSGNPLS This is a string of 8 hexadecimal digits that is used to represent the
sign of a positive number. The first digit represents the preferred
sign, and sets the sign of the target field. If you use less than 8
hexadecimal digits, fill the remainder of the string with one of the
digits that is used. See “Example” on page 84 for further informa-
tion.

lSGNUNS This is a string of 8 hexadecimal digits that are used to indicate an
unsigned number with a sign position. The first digit sets the sign
of the target field.

If you use this attribute, set lSGNMNS and lSGNPLS to zero.

If you use less than 8 hexadecimal digits, fill the remainder of the
string with one of the digits that are used.

lSIGNED This is a Boolean value that specifies whether the field includes a
sign position in its representation:

TRUE Field has a sign.
FALSE Field does not have a sign.

Attributes for ZONED
This union consists of an array and a structure with 11 elements. This union contains
the values of the following attributes in the order that is specified:

82 SdU Data Description and Conversion

CCSID

COMPLEX

CONSTRAINED

FIT

PRECISION

SCALE

SGNLOC

SGNMNS

SGNPLS

SIGNED

ZONENC

The union has the following declaration:

typdef union

{

 LONG ZNAttrVector[11];

 struct

 {

 LONG lCCSID;

 LONG lCOMPLEX;

 LONG lCONSTRAINED;

 LONG lFIT;

 LONG lPRECISION;

 LONG lSCALE;

 LONG lSGNLOC;

 LONG lSGNMNS;

 LONG lSGNPLS;

 LONG lSIGNED;

 LONG lZONENC;

 }ZNAttrRecord;

} ZNATTR, \PZNATTR;

lCCSID This specifies the CCSID of the sign if SGNLOC(FRSBYT,
LSTBYT) is specified. The value has to be in the range X'1' to
X'DFFF' (1 to 57343).

lCOMPLEX This is a Boolean value. This value specifies whether the field con-
sists of two adjacent fields with the same attributes. The first field
represents the “real” part of the complex number and the second
field represents the “imaginary” part of the complex number.

TRUE Field represents a complex number.
FALSE Field does not represent a complex number.

lCONSTRAINED This is a Boolean value. This value specifies whether the values
that can be assigned to a field must be constrained to the range
implied by the SCALE and PRECISION attributes:

TRUE Field is constrained
FALSE Field is not constrained.

 Chapter 6. The Data-Type Conversion Routines 83

lFIT Assigns a numeric value to the ZONED field.

Value Meaning

0 ROUND. The least-significant decimal digits are rounded
to fit.

1 TRUNCATE. The least-significant decimal digits are trun-
cated to fit.

2 EXACT. No loss of the least-significant decimal digits.

lPRECISION This specifies the maximum number of significant decimal digits.
The valid range is 1 to 31.

lSCALE That is a scaling factor for the ZONED field in the range -128 to
+127.

lSGNLOC This specifies the location of the sign in the ZONED field. The vari-
able is ignored if SIGNED(FALSE).

Value Meaning

1 ZONFRSBYT. First nibble of first byte.

2 ZONLSTBYT. First nibble of the last byte.

3 FRSBYT. First byte which contains the plus (+) or minus
(-) character in the specified CCSID.

4 LSTBYT. Last byte which contains the plus (+) or minus
(-) character in the specified CCSID.

lSGNMNS This is a string of 8 hexadecimal digits. lSGNMNS is used to repre-
sent the sign of a negative number if SGNLOC(ZONFRSBYT) or
SGNLOC(ZONLSTBYT) is specified. The first digit represents the
preferred sign, and is used to set the sign of the target field. If you
use less than 8 hexadecimal digits, fill the remainder of the string
with one of the digits that are used.

lSGNPLS This is a string of 8 hexadecimal digits. lSGNPLS is used to repre-
sent the sign of a positive number if SGNLOC(ZONFRSBYT) or
SGNLOC(ZONLSTBYT) is specified. The first digit represents the
preferred sign. This digit is used to set the sign of the target field.
If you use less than 8 hexadecimal digits, fill the remainder of the
string with one of the digits that is used.

Example:

Assume that any of the hexadecimal digits X'C', X'A', X'F', or
X'E' can be used to represent a plus sign (+). X'C' must be used
as the target of conversion. The hexadecimal string to define in this
case is:

X'CAFEEEEE'

To define this as a LONG constant, specify:

ðxCAFEEEEE

84 SdU Data Description and Conversion

Note: The principle that is illustrated by this example also applies
to the lSGNMNS and lSIGNED attributes.

lSIGNED This is a Boolean value that specifies whether the field includes a
sign position in its representation:

TRUE Field has a sign.
FALSE Field does not have a sign.

lZONENC This is the value of the zoned portion of the ZONED field. The
range of valid values is X'0' to X'F'.

 Chapter 6. The Data-Type Conversion Routines 85

FMTBNBN

FMTBNBN - Binary to Binary

 Purpose
The FMTBNBN function converts an input data field of the ADL BINARY data type to
an output field of the ADL BINARY data type.

 Format
void FMTBNBN(PBNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PBNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the definition of the data type PBNATTR see “Attributes for BINARY” on page 77.

86 SdU Data Description and Conversion

FMTBNBN

 Return codes

Message
severity

Message
number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 51 LCF_INV_IN_LENGTH LENGTH attribute of input field is invalid.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 53 LCF_INV_IN_RADIX RADIX attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 57 LCF_INV_IN_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYTRVS(TRUE).

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 60 LCF_INV_OUT_LENGTH LENGTH attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 62 LCF_INV_OUT_RADIX RADIX attribute of output field is invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 64 LCF_INV_OUT_SGNCNV SGNCNV attribute of output field is invalid.

3 67 LCF_INV_OUT_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYTRVS(TRUE).

 Chapter 6. The Data-Type Conversion Routines 87

FMTBNFL

FMTBNFL - Binary to Float

 Purpose
The FMTBNFL function converts an input data field of the ADL BINARY data type to an
output field of the ADL FLOAT data type.

 Format
void FMTBNFL(PBNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PFLATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PBNATTR, see “Attributes for BINARY” on page 77. For the
attribute list for PFLATTR, see “Attributes for FLOAT” on page 79.

 Return codes

Message
severity

Message
number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
5 Floating-point overflow.
13 Floating-point underflow.
18 Assignment of complex to

scalar.
19 Floating-point fit violation.

3 51 LCF_INV_IN_LENGTH LENGTH attribute of input field is invalid.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 53 LCF_INV_IN_RADIX RADIX attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 57 LCF_INV_IN_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYTRVS(TRUE).

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 59 LCF_INV_OUT_FORM FORM attribute of output field is invalid.

88 SdU Data Description and Conversion

FMTBNPK

FMTBNPK - Binary to Packed

 Purpose
The FMRBNPK function converts an input data field of the ADL BINARY data type to
an output field of the ADL PACKED data type.

 Format
void FMTBNPK(PBNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PPKATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PBNATTR, see “Attributes for BINARY” on page 77. For the
attribute list for PPKATTR, see “Attributes for PACKED” on page 81.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 51 LCF_INV_IN_LENGTH LENGTH attribute of input field is invalid.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 53 LCF_INV_IN_RADIX RADIX attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 57 LCF_INV_IN_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYTRVS(TRUE).

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

 Chapter 6. The Data-Type Conversion Routines 89

FMTBNZN

FMTBNZN - Binary to Zoned

 Purpose
The FMTBNZN function converts an input data field of the ADL BINARY data type to an
output field of the ADL ZONED data type.

 Format
void FMTBNZN(PBNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PZNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PBNATTR, see “Attributes for BINARY” on page 77. For the
attribute list for PZNATTR, see “Attributes for ZONED” on page 82.

90 SdU Data Description and Conversion

FMTBNZN

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
2 CCSID not supported.

3 51 LCF_INV_IN_LENGTH LENGTH attribute of input field is invalid.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 53 LCF_INV_IN_RADIX RADIX attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 57 LCF_INV_IN_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYTRVS(TRUE).

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 65 LCF_INV_OUT_SGNLOC SGNLOC attribute of output field is invalid.

3 66 LCF_INV_OUT_ZONENC ZONENC attribute of output field is invalid.

 Chapter 6. The Data-Type Conversion Routines 91

FMTFLBN

FMTFLBN - Float to Binary

 Purpose
The FMTFLBN function converts an input data field of the ADL FLOAT data type to an
output field for the ADL BINARY data type.

 Format
void FMTFLBN(PFLATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PBNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PFLATTR, see “Attributes for FLOAT” on page 79. For the
attribute list for PBNATTR, see “Attributes for BINARY” on page 77.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
14 Unable to convert.
15 Unable to convert infinity.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 50 LCF_INV_IN_FORM FORM attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 60 LCF_INV_OUT_LENGTH LENGTH attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 62 LCF_INV_OUT_RADIX RADIX attribute of output field is invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 64 LCF_INV_OUT_SGNCNV SGNCNV attribute of output field is invalid.

3 67 LCF_INV_OUT_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYtrvs(TRUE).

92 SdU Data Description and Conversion

FMTFLFL

FMTFLFL - Float to Float

 Purpose
The FMTFLFL function converts an input data field of the ADL FLOAT data type to an
output field of the ADL FLOAT data type.

 Format
void FMTFLFL(PFLATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PFLATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PFLATTR, see “Attributes for FLOAT” on page 79.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
5 Floating-point overflow.
13 Floating-point underflow.
14 Unable to convert.
15 Unable to convert infinity.
18 Assignment of complex to

scalar.
19 Floating-point fit violation.

3 50 LCF_INV_IN_FORM FORM attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 60 LCF_INV_OUT_FORM FORM attribute of input field is invalid.

 Chapter 6. The Data-Type Conversion Routines 93

FMTFLPK

FMTFLPK - Float to Packed

 Purpose
The FMTFLPK function converts an input data field of the ADL FLOAT data type to an
output field of the ADL PACKED data type.

 Format
void FMTFLPK(PFLATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PPKATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PFLATTR, see “Attributes for FLOAT” on page 79. For the
attribute list for PPKATTR, see “Attributes for PACKED” on page 81.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
14 Unable to convert.
15 Unable to convert infinity.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 50 LCF_INV_IN_FORM FORM attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

94 SdU Data Description and Conversion

FMTFLZN

FMTFLZN - Float to Zoned

 Purpose
The FMTFLZN function converts an input data field of the ADL FLOAT data type to an
output field of the ADL ZONED data type.

 Format
void FMTFLZN(PFLATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PZNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PFLATTR, see “Attributes for FLOAT” on page 79. For the
attribute list for PZNATTR, see “Attributes for ZONED” on page 82.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
14 Unable to convert.
15 Unable to convert infinity.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
2 CCSID not supported.

3 50 LCF_INV_IN_FORM FORM attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 65 LCF_INV_OUT_SGNLOC SGNLOC attribute of output field is invalid.

3 66 LCF_INV_OUT_ZONENC ZONENC attribute of output field is invalid.

 Chapter 6. The Data-Type Conversion Routines 95

FMTPKBN

FMTPKBN - Packed to Binary

 Purpose
The FMTPKBN function converts an input data field of the ADL PACKED data type to
an output field of the ADL BINARY data type.

 Format
void FMTPKBN(PPKATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PBNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PPKATTR, see “Attributes for PACKED” on page 81. For the
attribute list for PBNATTR, see “Attributes for BINARY” on page 77.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
35 Invalid digit in PACKED

input field (digit>9).
36 Invalid sign in PACKED

input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 60 LCF_INV_OUT_LENGTH LENGTH attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 62 LCF_INV_OUT_RADIX RADIX attribute of output field is invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 64 LCF_INV_OUT_SGNCNV SGNCNV attribute of output field is invalid.

3 67 LCF_INV_OUT_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYTRVS(TRUE).

96 SdU Data Description and Conversion

FMTPKFL

FMTPKFL - Packed to Float

 Purpose
The FMTPKFL function converts an input data field of the ADL PACKED data type to
an output field of the ADL FLOAT data type.

 Format
void FMTPKFL(PPKATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PFLATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PPKATTR, see “Attributes for PACKED” on page 81. For the
attribute list for PFLATTR, see “Attributes for FLOAT” on page 79.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
5 Floating-point overflow.
13 Floating-point underflow.
18 Assignment of complex to

scalar.
19 Floating-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
35 Invalid digit in PACKED

input field (digit>9).
36 Invalid sign in PACKED

input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 59 LCF_INV_OUT_FORM FORM attribute of input field is invalid.

 Chapter 6. The Data-Type Conversion Routines 97

FMTPKPK

FMTPKPK - Packed to Packed

 Purpose
The FMTPKPK function converts an input data field of the ADL PACKED data type to
an output field of the ADL PACKED data type.

 Format
void FMTPKPK(PPKATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PPKATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the definition of the data type PPKATTR see “Attributes for PACKED” on page 81.

98 SdU Data Description and Conversion

FMTPKPK

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
35 Invalid digit in PACKED

input field (digit>9).
36 Invalid sign in PACKED

input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

 Chapter 6. The Data-Type Conversion Routines 99

FMTPKZN

FMTPKZN - Packed to Zoned

 Purpose
The FMTPKZN function converts an input data field of the ADL PACKED data type to
an output field of the ADL ZONED data type.

 Format
void FMTPKZN(PPKATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PZNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PPKATTR, see “Attributes for PACKED” on page 81. For the
attribute list for PZNATTR, see “Attributes for ZONED” on page 82.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
2 CCSID not supported.
35 Invalid digit in PACKED

input field (digit>9).
36 Invalid sign in PACKED

input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 52 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 65 LCF_INV_OUT_SGNLOC SGNLOC attribute of output field is invalid.

3 66 LCF_INV_OUT_ZONENC ZONENC attribute of output field is invalid.

100 SdU Data Description and Conversion

FMTZNBN

FMTZNBN - Zoned to Binary

 Purpose
The FMTZNBN function converts an input data field of the ADL ZONED data type to an
output field of the ADL BINARY data type.

 Format
void FMTZNBN(PZNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PBNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PZNATTR, see “Attributes for ZONED” on page 82. For the
attribute list for PBNATTR, see “Attributes for BINARY” on page 77.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
2 CCSID not supported.
37 Invalid digit in ZONED input

field (digit>9).
38 Invalid sign in ZONED input

field.
39 Invalid zone nibble in

ZONED input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 55 LCF_INV_IN_SGNLOC SGNLOC attribute of input field is invalid.

3 56 LCF_INV_IN_ZONENC ZONENC attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 60 LCF_INV_OUT_LENGTH LENGTH attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 62 LCF_INV_OUT_RADIX RADIX attribute of output field is invalid.

 Chapter 6. The Data-Type Conversion Routines 101

FMTZNBN

Message
severity

Message
Number

Mnemonic Explanation

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 64 LCF_INV_OUT_SGNCNV SGNCNV attribute of output field is invalid.

3 67 LCF_INV_OUT_LENGTH_BYTRVS LENGTH of input field not multiple of 8 and
BYTRVS(TRUE).

102 SdU Data Description and Conversion

FMTZNFL

FMTZNFL - Zoned to Float

 Purpose
The FMTZNFL function converts an input data field of the ADL ZONED data type to an
output field of the ADL FLOAT data type.

 Format
void FMTZNFL(PZNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PFLATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PZNATTR, see “Attributes for ZONED” on page 82. For the
attribute list for PFLATTR, see “Attributes for FLOAT” on page 79.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
5 Floating-point overflow.
13 Floating-point underflow.
18 Assignment of complex to

scalar.
19 Floating-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
2 CCSID not supported.
37 Invalid digit in ZONED input

field (digit>9).
38 Invalid sign in ZONED input

field.
39 Invalid zone nibble in

ZONED input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 55 LCF_INV_IN_SGNLOC SGNLOC attribute of input field is invalid.

3 56 LCF_INV_IN_ZONENC ZONENC attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 59 LCF_INV_OUT_FORM FORM attribute of input field is invalid.

 Chapter 6. The Data-Type Conversion Routines 103

FMTZNPK

FMTZNPK - Zoned to Packed

 Purpose
The FMTZNPK function converts an input data field of the ADL ZONED data type to an
output field of the ADL PACKED data type.

 Format
void FMTZNPK(PZNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PPKATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the attribute list for PZNATTR, see “Attributes for ZONED” on page 82. For the
attribute list for PPKATTR, see “Attributes for PACKED” on page 81.

104 SdU Data Description and Conversion

FMTZNPK

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
2 CCSID not supported.
37 Invalid digit in ZONED input

field (digit>9).
38 Invalid sign in ZONED input

field.
39 Invalid zone nibble in

ZONED input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 55 LCF_INV_IN_SGNLOC SGNLOC attribute of input field is invalid.

3 56 LCF_INV_IN_ZONENC ZONENC attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

 Chapter 6. The Data-Type Conversion Routines 105

FMTZNZN

FMTZNZN - Zoned to Zoned

 Purpose
The FMTZNZN function converts an input data field of the ADL ZONED data type to an
output field of the ADL ZONED data type.

 Format
void FMTZNZN(PZNATTR pINATTR, /\ INPUT \/

 PVOID pINBUF, /\ INPUT \/

 PZNATTR pOUTATTR, /\ INPUT \/

 PVOID pOUTBUF, /\ OUTPUT \/

 PFMTCTOK pFeedBack); /\ OUTPUT \/

For the definition of the data type PZNATTR see “Attributes for ZONED” on page 82.

 Return codes

Message
severity

Message
Number

Mnemonic Explanation

0 0 LCF_NO_ERROR No error.

1 101 LCF_ADL_EXCEPTION_SEV1 ADL No. ADL Exception
12 Assignment of negative

value to unsigned field.

2 102 LCF_ADL_EXCEPTION_SEV2 ADL No. ADL Exception
11 Fixed-point overflow.
18 Assignment of complex to

scalar.
21 Fixed-point constraint vio-

lation.
22 Fixed-point fit violation.

3 103 LCF_ADL_EXCEPTION_SEV3 ADL No. ADL Exception
2 CCSID not supported.
37 Invalid digit in ZONED input

field (digit>9).
38 Invalid sign in ZONED input

field.
39 Invalid zone nibble in

ZONED input field.

3 52 LCF_INV_IN_PRECISION PRECISION attribute of input field is invalid.

3 54 LCF_INV_IN_SCALE SCALE attribute of input field is invalid.

3 55 LCF_INV_IN_SGNLOC SGNLOC attribute of input field is invalid.

3 56 LCF_INV_IN_ZONENC ZONENC attribute of input field is invalid.

3 58 LCF_INV_OUT_FIT FIT attribute of output field is invalid.

3 61 LCF_INV_OUT_PRECISION PRECISION attribute of output field is
invalid.

3 63 LCF_INV_OUT_SCALE SCALE attribute of output field is invalid.

3 65 LCF_INV_OUT_SGNLOC SGNLOC attribute of output field is invalid.

3 66 LCF_INV_OUT_ZONENC ZONENC attribute of output field is invalid.

106 SdU Data Description and Conversion

Chapter 7. The User Exit — Calling Your Own Programs

Purpose The DD&C user–exit allows you to call your own programs while
executing a plan statement.

The format of the CALL statement required to include the user–exit
function in ADL source text is described in SMARTdata UTILITIES A
Data Language Reference for Data Description and Conversion.

The user-provided program is called at conversion plan execution
time.

Format

void MyFunction(LONG lParamCount, /\ INPUT \/

VOID \rgpParam[], /\ INPUT/OUTPUT \/

PFMTCTOK pFeedBack); /\ INPUT/OUTPUT \/

 Parameters
MyFunction The function name which should be the entry point to the program

name that was specified on the ADL CALL statement.

lParamCount An input variable that contains the number of parameters specified in
the ADL CALL statement.

rgpParam An array of pointers to the parameters specified in the ADL call
statement. The pointers are set to the locations of the parameters in
the order they are specified in the ADL CALL statement.

pFeedBack The start address of an area in which the user-exit function writes
error information. This condition token can contain a message
severity and message number indicating the most severe error
encountered during the processing of the function. See “The Condi-
tion Token” on page 20 for the layout and data type description of
the condition token.

When calling the user-exit function, DD&C passes the data area
pI_S_INFO, initialized by the caller of FMTCPXC, to the user exit as
the pFeedback buffer.

 Return Codes
Execution of the conversion plan stops when the severity code, returned by the user-
provided function in the pFeedback buffer, is greater than 1 (Warning).

 Copyright IBM Corp. 1994, 1997 107

108 SdU Data Description and Conversion

Chapter 8. Data Conversion Exceptions and Errors

This chapter discusses methods of finding and correcting errors that can occur during
data conversion. It includes:

� Finding and correcting errors
� Using the condition token to extract error messages
� Using the listing file to identify errors
� Using the consistence token to control ADLDCLSPCs
� Using the generate function to check ADL source files

It also lists:

 � ADL exceptions
� CDRA return codes
� CDRA return codes mapped to DD&C return codes.
� Parse and Generate function messages.

Finding and Correcting Errors in Your Programs
The following describes how you can interpret and correct errors detected by DD&C in
your programs. The methods you can use to do this include using:

� The condition token
� The listing file
� The consistency token
� The generate function.

Table 8 summarizes the diagnostic information that is returned by the DD&C API func-
tions and tells you where to find further information.

Table 8. DD&C Diagnostic Information

API function Information returned Where to look

FMTPRS Listing file messages. Message
severity and number.

“Parse Function Messages” on
page 119. Return codes on page 32.

FMTGEN Listing file messages. Message
severity and number.

“Generate Function Messages” on
page 141. Return codes on page 36.

FMTCRCP, FMTCPXI, FMTCPXC ADL exceptions. Message severity and
number.

“ADL Exceptions” on page 112.
“Return codes” of Chapter 4 and
Chapter 5.

FMTCPXT Message severity and number. Return codes on page 57.

Alphanumeric conversion routines Status and reason codes. “Return codes” of alphanumeric conver-
sion routines in Chapter 6. “CDRA
Return Codes” on page 115.

Numeric conversion routines ADL exceptions. Message severity and
number.

“ADL Exceptions” on page 112.
“Numeric Conversion Routines” on
page 76.

Trace facility Error messages. “Trace Function Messages” on
page 225

 Copyright IBM Corp. 1994, 1997 109

Extracting Error Messages From the Condition Token
The condition token is returned by every DD&C API function. The information returned
in the condition token (the structure of which is described in “The Condition Token” on
page 20) includes:

� The message severity

� The message number

� For numeric data-type conversion routines and FMTCPXI, the ADL exception iden-
tifier

� For FMTCRCP and FMTCPXC, a pointer to the ADL communications area.

Your program should extract and test the appropriate fields of the condition token after
every API function call. Each API function description includes a table listing all pos-
sible values of message severity and message number (or status and reason codes for
the CDRA functions). Use the explanation column of these tables for advice on
resolving the problem.

For the numeric data-type conversion routines and the FMTCPXI function, ADL
exceptions are returned in the pFeedBack- >pI_S_Info.ulAdlExId field of the condition
token. Otherwise, ADL exceptions are returned in the
pFeedBack- >pI_S_Info.pAdlCommArea- >lExId field of the ADL communications area
(FMTADLCA). “ADL Exceptions” on page 112 contains a complete list of the ADL
exceptions that can occur, together with an explanation of the possible cause.

Using the Listing File to Identify Errors
Use the Parse (FMTPRS) and Generate (FMTGEN) functions to create a listing file.

For the Parse function, you can specify whether the listing file includes both the ADL
source code being parsed and any error messages detected during parsing, or the error
messages only.

You can specify the severity of messages that are included in the listing on the FLAG
parameter.

Specify I to include all error messages.
Specify W to include warning, error and severe messages.
Specify E to include error and severe messages.
Specify S to include only severe messages.

Error message listings begin on 119.

Figure 13 shows an extract of a listing file with a number of ADL errors detected during
parsing. This listing file was produced using the options LIST and FLAG(I).

110 SdU Data Description and Conversion

(ð:ð): informational FMT1ððð: Data Description and Conversion for OS/2 Version 1.1ð

(ð:ð): informational FMT1ðð1: ADL Parser (c) Copyright IBM Corp. 1994.

(ð:ð): informational FMT1ðð2: All rights reserved.

<ððð1> DECLARE BEGIN;

<ððð2> COBOLREC: SEQUENCE BEGIN;

<ððð3> INITIALS: CHAR LENGTH(4) BYTRVS(TRUE);

<ððð4> NUMBER: PACKED PRECISION(5);

<ððð5> END;

<ððð6> END;

sample.adl(3:32): error FMT1453: This attribute is not allowed with a CHAR object.

<ððð7> DECLARE BEGIN;

<ððð8> A: CONSTANT B;

<ððð9> B: CONSTANT A;

<ðð1ð> CREC: SEQUENCE BEGIN;

<ðð11> INITIALS: CHARSFX MAXLEN(A) CCSID(85ð);

<ðð12> NUMBER: BINARY PRECISION(15) BYTRVS(TRUE);

<ðð13> END;

<ðð14> END;

sample.adl(9:4): error FMT1418: Constant declaration loop for "B".

Figure 13. Sample Parse Listing File

Use the Generate function, to create either:

A symbolic representation of the ADL declare space, ADLDCLSPC,
A listing of error messages similar to that of the Parse function,
A combination of both.

An example of the symbolic representation of ADLDCLSPC is shown in Figure 17 on
page 155. This is generally used by IBM service personnel only. Generate function
messages begin on 141

Using the Consistency Token to Control ADLDCLSPCs
The consistency token is calculated by the Parse function (FMTPRS) and reflects the
physical composition of the ADLDCLSPC. If the ADL source code passed to the Parse
function is structurally changed, the composition of the ADLDCLSPC changes and so
does the value of the consistency token returned.

By comparing the consistency token returned from successive parsings of the same file,
therefore, you can determine whether the source file has been modified since the last
time it was parsed. If you need to find out how the source file has been modified, you
can use the Generate function to create ADL source code from the ADLDCLSPC and
compare it to the original source.

Using the Generate Function to Create ADL Source Files
You can use the Generate function to test that the composition of an ADLDCLSPC is
correct. The Generate function produces ADL source code from an ADLDCLSPC. If
the ADLDCLSPC is correct, this source code should be equivalent to that passed as an
input parameter to the Parse function. One important difference, however, is that the
ADL source code produced by the Generate function includes all default ADL attributes,
even if these were not specified in the ADL source code passed to the Parse function.
Therefore, you can use the Generate function to check the ADL defaults that are imple-
mented by DD&C. For an example of this, see Figure 14 on page 146 and Figure 18

 Chapter 8. Data Conversion Exceptions and Errors 111

on page 158, which show sample ADL source files input to the Parse function and
output by the Generate function, respectively.

 ADL Exceptions
A unique value is assigned to each ADL exception.

Message
severity

Message
number

Mnemonic Explanation

3 1 ADL_CONV_NOT_SUPPORTED Conversion not supported. The attempted
conversion is not supported in the conversion
matrix shown in SMARTdata UTILITIES A
Data Language Reference for Data
Description and Conversion.

3 2 ADL_CCSID_NOT_SUPPORTED CCSID not supported. The source or target
CCSID is not supported.

3 3 ADL_INVALID_CCSID_PAIR Invalid CCSID pair. Conversion between the
source CCSID and the target CCSID is not
supported.

3 4 ADL_UNDEFINED_CCSID Undefined CCSID. The source or target
CCSID is not defined by CDRA.

2 5 ADL_FLOAT_OVERFLOW Floating-point overflow.

3 6 ADL_CASE_FAILURE Target CASE failure. The selected target
<WHEN statement> evaluates to FALSE or
one or more target <WHEN statement>s pre-
ceding the selected <WHEN statement> eval-
uates to TRUE.

3 8 ADL_NONCONFORM_ARRAYS Nonconformable arrays. The target array
does not have the same number of dimen-
sions as the source array, or the dimension
sizes of a dimension do not match.

3 9 ADL_ENUM_MISMATCH ENUMERATION mismatch. The source enu-
meration identifier does not match an enu-
meration identifier of the target.

3 10 ADL_INVALID_ENUM_VALUE Invalid ENUMERATION value. The value of
the source number does not match a value
associated with the enumeration identifier of
the target.

2 11 ADL_FIX_OVERFLOW Fixed-point overflow. The converted source
number is too large to be represented within
the target field.

1 12 ADL_NEG_TO_UNSIGNED Assignment of negative value to unsigned
field. The source is a signed negative
number and the target field is unsigned.

2 14 ADL_NOT_A_NUMBER Unable to convert. The source value is not a
“Not a Number” (NaN).

2 15 ADL_INFINITY Unable to convert infinity. The source value
represents infinity and cannot be converted.

3 16 ADL_INPUT_AREA_TOO_SHORT Input area too short. The length specified on
an input parameter of the plan is less than
the declared length of the data.

112 SdU Data Description and Conversion

Message
severity

Message
number

Mnemonic Explanation

3 17 ADL_OUTPUT_AREA_TOO_SHORT Output area too short. The maximum length
specified on an output parameter of the plan
is less than the declared length of the data.

2 18 ADL_COMPLEX_TO_SCALAR Assignment of complex to scalar. The source
contains a complex number but the target
field is not a complex number.

2 19 ADL_FLOAT_FIT_VIOLATION Floating-point fit violation. The converted
number results in the loss of low-order digits
in a target floating-point field with
FIT(EXACT) specified.

3 20 ADL_CASE_REJECTED CASE rejected. All <WHEN statement>s
evaluate to FALSE and an <OTHERWISE
statement> does not exist.

2 21 ADL_FIX_CONSTRAINT_VIOLATION Fixed-point constraint violation. The number
of significant digits required in the stored
value exceeds the number of digits specified
by the PRECISION attribute of the target with
CONSTRAINED(TRUE) specified.

2 22 ADL_FIX_FIT_VIOLATION Fixed-point fit violation. The converted
number results in the loss of low-order digits
in a target fixed-point field with FIT(EXACT)
specified.

2 23 ADL_SEQ_ELEMENT_NOT_FOUND Sequence element not found. A SEQUENCE
that is the target of an assignment contains
an element for which an element of the
source SEQUENCE with a matching identifier
cannot be found.

3 24 ADL_TARGET_CASE_MISMATCH Target CASE mismatch. A source <WHEN
statement> evaluates to TRUE, but no target
<WHEN statement> with the same statement
<identifier> or <positional identifier> can be
found.

3 25 ADL_NEG_ARRAY_SIZE Negative array dimension size. The size of a
source array dimension was specified by a
referenced field or was calculated. This
value is negative.

3 26 ADL_INVALID_ARRAY_SIZE Invalid array dimension size. The size of a
source array dimension was specified by a
referenced field or was calculated. This
value is greater than the value of the
<DMNMAX attribute>.

3 27 ADL_INV_IN_LENGTH Incorrect LENGTH value of ASIS, BIT, or
BITPRE field. The LENGTH value is greater
than MAXLEN or the remaining buffer size.

3 28 ADL_INV_IN_HIGH_LOW Incorrect LENGTH or HIGH LOW value of
CHAR or CHARPRE field. The length of the
field is greater than MAXLEN or the
remaining buffer size.

3 29 ADL_INV_OUT_HIGH_LOW Incorrect LENGTH or HIGH LOW value of
CHAR or CHARPRE field. The length of the
field is greater than the MAXLEN size.

3 30 ADL_IN_NO_SFX Input CHARSFX field contains no suffix.

 Chapter 8. Data Conversion Exceptions and Errors 113

Message
severity

Message
number

Mnemonic Explanation

3 31 ADL_OUT_MULT_SFX Output CHARSFX field might contain one or
more characters matching the suffix.

3 32 ADL_IN_ORPHAN_BYTE Input is DBCS and orphan byte was found.

3 33 ADL_OUT_ORPHAN_BYTE Output is DBCS and output length is odd.

3 34 ADL_INV_IN_STRING Invalid input character field.

3 35 ADL_INV_PK_DIGIT Invalid digit in PACKED input field (digit>9).

3 36 ADL_INV_PK_SIGN Invalid sign in PACKED input field.

3 37 ADL_INV_ZN_DIGIT Invalid digit in ZONED input field (digit>9).

3 38 ADL_INV_ZN_SIGN Invalid sign in ZONED.

3 39 ADL_INV_ZN_ZONE Invalid zone nibble in ZONED input field.

114 SdU Data Description and Conversion

CDRA Return Codes
Like the other DD&C API functions, the CDRA data-type conversion routines return the
processing status in the condition token. Instead of the message severity and message
number, however a status code and a reason code are returned. The status codes that
are returned have the following meaning:

Status (Hex) Reason

X'0000' The function completed successfully.

X'0001' An element or value was not found while the function was
running.

X'0002' A CCSID, code page, or character set value of 0 was encount-
ered.

X'0003' The CCSID encountered is a special-purpose CCSID in the
range 65280 (X'FF00') to 65535 (X'FFFF'). This value is also
used to indicate a code page value of 65535 (X'FFFF').

X'0004' An overflow situation was encountered. See “Data Overflow” on
page 25.

X'0005' A syntax error was detected in one or more parameters.

X'0006' The function encountered a condition that prevents it from pro-
ceeding. For example, the CCSID resource table was not
found, or insufficient storage was available to be able to copy or
load resources.

X'0007' One or more CDRA resources required by the function are
damaged and cannot be used.

X'0008' A parameter's value is outside the specified range.

X'0009' to X'00FF' Reserved for future allocation by CDRA.

X'0100' Indicates that a graphic character substitution occurred,
resulting in a loss of information.

X'0101' to X'07FF' Not used in DD&C.

X'0800' OS/2 environment-specific return codes.

X'0801' to X'17FF' Not used in DD&C.

X'1800' to X'7FFF' Function-specific and environment-specific, not used by DD&C.

X'8000' to X'FFFF' Not used in DD&C.

The CDRA return codes actually returned are listed separately in the “Return codes”
section of each API function description. Table 9 shows how Conversion Plan Exec-
utor error messages are mapped to their CDRA-defined equivalents for the CDRMSCI
function.

 Chapter 8. Data Conversion Exceptions and Errors 115

Table 9 (Page 1 of 3). How CDRA messages are mapped to Conversion Plan Executor messages

CDRA Conversion Plan Executor

Status
code

Reason
code

Explanation Mnemonic

X'0000' X'0000' The function completed successfully. CPX_NO_ERROR

X'0001' X'0001' The requested conversion is not supported
(there is no entry in the GCCST) for the spec-
ified combination of CCSID1, ST1, CCSID2,
ST2, and GCCASN.

CPX_ADL_EXCEPTION_SEV3
(ADL_INVALID_CCSID_PAIR)

X'0001' X'0005' The requested conversion algorithm specified
by GCCASN does not support the specified
(CCSID1, ST1) to (CCSID2, ST2) combina-
tion.

CPX_INTERNAL_ERR

X'0001' X'0006' GCCASN value is 0, but an “installation
default” was not found in the GCCST for the
pair (CCSID1, ST1) to (CCSID2, ST2).

CPX_ADL_EXCEPTION_SEV3
(ADL_INVALID_CCSID_PAIR)

X'0002' X'0001' CCSID1 is zero, meaning that the real CCSID
pertaining to the caller’s data must be deter-
mined by the caller from the next higher level
in some hierarchy. The invoking program
must resolve the default before invoking this
function.

CPX_INTERNAL_ERR

X'0002' X'0002' CCSID2 is zero, which is reserved to indicate
defaulting to a higher level in a hierarchy.
The invoking program must resolve the
default before invoking this function.

CPX_INTERNAL_ERR

X'0003' X'0001' CCSID1 is one of the special-purpose CCSID
values in the range 65280 to 65535.

CPX_ADL_EXCEPTION_SEV3
(ADL_CCSID_NOT_SUPPORTED)

X'0003' X'0002' CCSID2 is one of the special-purpose CCSID
values in the range 65280 to 65535.

CPX_ADL_EXCEPTION_SEV3
(ADL_CCSID_NOT_SUPPORTED)

X'0004' X'0001' The supplied output buffer was too small for
the output data. A properly truncated and ter-
minated converted string that fits within the
allocated maximum is returned in the area
starting at S2 with its byte-length in L3.
Value in L4 is set to the first byte of the code
point, representing the next character to be
converted in the input string S1.

CPX_INTERNAL_ERR

X'0004' X'0002' The encoding scheme of CCSID1 is X'1301'
(Mixed Host SB/DB encoding). The length
value in L2 allocated for area S2 was too
small for the output data. A properly trun-
cated and terminated converted string that fits
within the allocated maximum is returned in
the area starting at S2 with its byte-length in
L3. Value in L4 is set to the first byte of a
double byte character (between SO and SI
brackets) that would have been converted
next in the input buffer.

CPX_INTERNAL_ERR

X'0005' X'0001' A pure DBCS CCSID1 was specified, but
either ST1 is equal to 0 and L1 is odd, or
ST1 is equal to 1 and an orphan byte was
detected.

CPX_ADL_EXCEPTION_SEV3
(ADL_IN_ORPHAN_BYTE)

116 SdU Data Description and Conversion

Table 9 (Page 2 of 3). How CDRA messages are mapped to Conversion Plan Executor messages

CDRA Conversion Plan Executor

Status
code

Reason
code

Explanation Mnemonic

X'0005' X'0004' The ES of CCSID1 was X'1301' and an
incorrectly formed string, (an odd number of
bytes between SO, SI brackets) was encount-
ered.

CPX_ADL_EXCEPTION_SEV3
(ADL_INV_IN_STRING)

X'0005' X'0005' ST1 is equal to 1 but a null-termination char-
acter was not found in the input buffer.

CPX_ADL_EXCEPTION_SEV3
(ADL_IN_NO_SFX)

X'0005' X'0006' ST2 is equal to 1. However, the output string
contains one or more characters matching the
null-termination character, resulting from
using the selected conversion tables.

CPX_ADL_EXCEPTION_SEV3
(ADL_OUT_MULT_SFX)

X'0005' X'0007' ST2 is equal to 2, but the required space
character is not defined in the CDRA
resources, or the CCSID resource definition
could not be found.

CPX_ADL_EXCEPTION_SEV3
(ADL_INVALID_CCSID_PAIR)

X'0005' X'0008' A pure double-byte CCSID2 with ST2 equal
to 1 was specified, and an odd value was
specified for length L2 of the output buffer.
The conversion function returns only an even
number of bytes (maximum L2-1 bytes),
including the null-termination character in
ST2. The contents of the remaining locations
in the output buffer are unpredictable.

CPX_ADL_EXCEPTION_SEV3
(ADL_OUT_ORPHAN_BYTE)

X'0005' X'0009' A pure double-byte CCSID2 with ST2 equal
to 2 was specified (a space-padded string),
and an odd value was specified for length L2
of the output buffer. The conversion function
returns L2-1 bytes, including the space-
padded characters in ST2. The contents of
the remaining locations in the output buffer
are unpredictable.

CPX_ADL_EXCEPTION_SEV3
(ADL_OUT_ORPHAN_BYTE)

X'0005' X'000C' The ES of CCSID1 was X'1301', but a
trailing SI bracket is missing.

CPX_ADL_EXCEPTION_SEV3
(ADL_INV_IN_STRING)

X'0005' X'000D' The ES of CCSID1 was X'1301' and a
trailing SI code point was encountered
without first encountering a corresponding SO
code point. The number of intervening code
points may have been odd or even—the code
points are treated as single-byte code points
because the leading SO was missing)

CPX_ADL_EXCEPTION_SEV3
(ADL_INV_IN_STRING)

X'0006' X'0001' The GCCST was not found. CPX_CDRA_RESOURCE_ERROR

X'0006' X'0002' A CDRA resource is currently unavailable. CPX_RESOURCE_LIM

X'0006' X'0003' The conversion method identified in the
GCCST for the specified selection is currently
unavailable.

CPX_RESOURCE_LIM

X'0006' X'0004' A conversion table identified in the GCCST
for the specified selection is not found.

CPX_CDRA_RESOURCE_ERROR

X'0006' X'0006' The token's structure is incorrect. CPX_INTERNAL_ERR

X'0006' X'0007' Unable to generate the token as requested. CPX_NO_MEMORY

 Chapter 8. Data Conversion Exceptions and Errors 117

Table 9 (Page 3 of 3). How CDRA messages are mapped to Conversion Plan Executor messages

CDRA Conversion Plan Executor

Status
code

Reason
code

Explanation Mnemonic

X'0007' X'0001' The structure of the GCCST resource
accessed by the function is incorrect.

CPX_CDRA_RESOURCE_ERROR

X'0007' X'0002' The structure of the system GCCT resource
accessed by the function is incorrect.

CPX_CDRA_RESOURCE_ERROR

X'0007' X'0003' The table type of GCCT does not match the
method selected from the GCCST.

CPX_CDRA_RESOURCE_ERROR

X'0007' X'0004' There is no ES element definition in the
CCSID resource for lCCSID1.

CPX_CDRA_RESOURCE_ERROR

X'0008' X'0001' The value of CCSID1 is outside the permitted
range.

CPX_ADL_EXCEPTION_SEV3
(ADL_UNDEFINED_CCSID)

X'0008' X'0002' The value of CCSID2 is outside the permitted
range.

CPX_ADL_EXCEPTION_SEV3
(ADL_UNDEFINED_CCSID)

X'0008' X'0003' The value of ST1 is outside the permitted
range.

CPX_INTERNAL_ERR

X'0008' X'0004' The value of ST2 is outside the permitted
range.

CPX_INTERNAL_ERR

X'0008' X'0005' The value of lL1 is outside the permitted
range.

CPX_INTERNAL_ERR

X'0008' X'0006' The value of lL2 is outside the permitted
range.

CPX_INTERNAL_ERR

X'0008' X'0007' The value of GCCASN is outside the per-
mitted range.

CPX_INTERNAL_ERR

X'0100' X'0001' One or more input graphic characters were
replaced with a “SUB” control character spec-
ified for the output string.

CPX_ADL_EXCEPTION_SEV3
(ADL_INV_IN_STRING)

X'0100' X'0002' One or more input graphic caracters were
replaced with another graphic character or
characters in CCSID2.

CPX_ADL_EXCEPTION_SEV3
(ADL_INV_IN_STRING)

X'0800' X'0001' Semaphore problem.

X'0800' X'0002' CDRA dynamic link module problem occurred
during initialization.

CPX_RESOURCE_LIM

118 SdU Data Description and Conversion

FMT1010I �FMT1201W

 DD&C Messages
The following messages are returned by the Parse and Generate functions. Two types
of messages are produced:

 1. Severe errors.

These errors are either the result of calling a function with an incorrect set of
parameters, or internal errors.

2. Information, warning, and error messages.

These are errors of an internal nature. Because the ADLDCLSPC and
ADLPLNSPC objects are usually created by the Parse Function, internal messages
are more likely to occur at Parse time. Internal errors can occur, however, when
the ADLDCLSPC or ADLPLNSPCs are not formed correctly, or when the Generate
function does not work correctly. If you use the Generate function correctly and
messages of this type still occur, resolving the error requires knowledge of the
internal operation of the Generate function. Therefore, the message text and
message explanation are often formulated specifically for IBM service personal.

Parse Function Messages

FMT1010I Start of include file fn.

Explanation: An INCLUDE statement has been successfully processed in the current ADL
source file. The ADL Declaration Translator is starting to process the included file.

User Response: None.

FMT1011I End of include file fn.

Explanation: The ADL Declaration Translator has reached the end of the included ADL source
file. It resumes processing the original ADL source file.

User Response: None.

FMT1201W System CCSID could not be obtained.

Explanation: For character literals, the current system CCSID is stored together with the literal in
the ADLDCLSPC. An error occurred when trying to obtain the system CCSID. Therefore, char-
acter literals are stored with the CCSID value 0.

User Response: This is probably an internal error.

 Chapter 8. Data Conversion Exceptions and Errors 119

FMT1202W �FMT1207W

FMT1202W SKIP statement with length n inserted.

Explanation: In ADL, all data types other than ASIS and BIT must be byte-aligned. That is,
before the current data declaration, a SKIP statement with an appropriate value is required so that
the current data declaration begins on a byte boundary.

User Response: Check that the data declarations following the SKIP statement have the correct
offsets.

FMT1203W SKIP attribute value changed from n to m.

Explanation: For arrays, each element of the array must be byte-aligned. To ensure this, an
array declaration can have a SKIP attribute which defines the skip space necessary between two
array elements.

User Response: Check the SKIP attribute produced and ensure that the declared array has the
intended layout.

FMT1204W MAXLEN attribute specified but not evaluated.

Explanation: If a constant length is specified for fields of data types ASIS, BIT, and CHAR, then
a MAXLEN attribute of the data type is ignored. A constant length for such a field can be speci-
fied, with the LENGTH attribute, for example.

User Response: If the ADL source is correct, no action is necessary.

FMT1205W DMNMAX attribute specified but not evaluated for this dimension.

Explanation: If the size of a dimension is fixed, then a DMNMAX attribute specified for this
dimension is ignored.

User Response: If the ADL source is correct, no action is necessary.

FMT1207W Reference to constructor data type in LENGTH function could lead to dec-
laration loop.

Explanation: When using the LENGTH function in declaration statements, it is possible to apply
the LENGTH function to a data type which is not yet declared as in the following example:

a: CASE BEGIN;

WHEN LENGTH(a)=16 then BIT LENGTH(8);

OTHERWISE BIT LENGTH(16);

 END;

This warning message is issued to avoid a declaration loop in cases where such forward refer-
ences occur.

User Response: Check that the data declaration referenced with the LENGTH function is com-
pletely declared before the current data declaration. In this case you can ignore the message.

120 SdU Data Description and Conversion

FMT1400E �FMT1406E

FMT1400E Incorrect comment end symbol.

Explanation: The comment end symbol “*/” appeared in an ADL statement. This symbol is only
allowed at the end of a comment. The symbol is ignored during subsequent parsing.

User Response: Remove the symbol.

FMT1401E Carriage return not allowed in bit literal.

Explanation: Only the characters 0 and 1 are allowed in bit literals.

User Response: Remove the carriage return.

FMT1402E Character x not allowed in bit literal.

Explanation: Only the characters 0 and 1 are allowed in bit literals.

User Response: Remove the character.

FMT1403E Carriage return not allowed in hexadecimal literal.

Explanation: Only the characters 0 to 9 and A to F inclusive are allowed in hexadecimal literals.

User Response: Remove the carriage return.

FMT1404E Character x not allowed in hexadecimal literal.

Explanation: Only the characters 0 to 9 and A to F inclusive are allowed in hexadecimal literals.

User Response: Remove the character.

FMT1405E Carriage return not allowed in character literal.

Explanation: Control characters are not allowed in character literals.

User Response: Either remove the character or use an encoded hexadecimal literal instead.

FMT1406E Carriage return not allowed in qualified identifier.

Explanation: Qualified identifiers must be written on one line.

User Response: Change the qualified identifier accordingly.

 Chapter 8. Data Conversion Exceptions and Errors 121

FMT1407E �FMT1412E

FMT1407E Identifier id is an ADL keyword.

Explanation: The identifier is not enclosed within double quotation marks ("). In some cases,
this can lead to ambiguity.

User Response: Instead of the identifier BEGIN, for example, use "BEGIN".

FMT1408E Includes nested too deeply.

Explanation: The maximum number of nested INCLUDE statements allowed in ADL source files
is 32.

User Response: The nesting level can be reduced by moving INCLUDE statements from lower-
level to higher-level ADL source files. Ensure that such changes do not change the semantics of
the ADL source, however.

FMT1409E File fn is already included.

Explanation: Including ADL source files results in a loop. The ADL Declaration Translator
cannot resolve the INCLUDE statements for all open ADL source files.

User Response: Remove an INCLUDE statement for one ADL source file.

FMT1410E Unknown character x found in INCLUDE statement.

Explanation: The ADL Declaration Translator parsed the ADL keyword “INCLUDE”. Following
this, it expects a character literal followed by a semicolon (;).

User Response: Remove the character.

FMT1411E Unexpected character x found.

Explanation: A character was detected during lexical analysis of the ADL source that is not
allowed in this context.

User Response: Check the syntax of the ADL source at this point or earlier in the source for
correctness.

FMT1412E File name missing for INCLUDE statement.

Explanation: The ADL keyword “INCLUDE” must be followed by a character literal identifying the
file to include and then a semicolon (;) to end the INCLUDE statement.

User Response: Change the ADL source accordingly.

122 SdU Data Description and Conversion

FMT1413E �FMT1419E

FMT1413E File fn not found.

Explanation: The file to be included could not be found.

User Response: Check that the file name is correct. If the environment variable ADLINC is used
to search for the file to include, check the value of this variable.

FMT1414E Message text for svr message msgno not found.

Explanation: The ADL Declaration Translator attempted to issue a message. Due to an internal
problem, the ADL Declaration Translator can only return the message severity and number, not
the message text.

User Response: See the explanation for message number msgno.

FMT1415E Message msg is not in the range of declaration translator message
numbers.

Explanation: The ADL Declaration Translator attempted to issue a message with an incorrect
message number.

User Response: Search the ADL source at the specified point for a syntactic or semantic error.

FMT1416E Constant declaration for "ref" not found.

Explanation: A constant is referenced but not declared.

User Response: Either declare the constant or change the reference appropriately.

FMT1417E Subtype declaration for subtype instance "sub" not found.

Explanation: No subtype declaration is given for a subtype instance name.

User Response: Either declare the subtype or change the reference appropriately.

FMT1418E Constant declaration loop for "ref".

Explanation: The constant declaration references form a loop, for example:

a: CONSTANT b;

b: CONSTANT a;

User Response: Remove at least one reference from this declaration loop.

FMT1419E Subtype declaration loop for "ref".

Explanation: The subtype declaration references form a loop, for example:

a: SUBTYPE b;

b: SUBTYPE a;

 Chapter 8. Data Conversion Exceptions and Errors 123

FMT1420E �FMT1426E

User Response: Remove at least one subtype instance reference from this declaration loop.

FMT1420E A qualified identifier cannot be an output parameter.

Explanation: An output parameter is not allowed at this point in the ADL source. Only an input
parameter, field of an input parameter record, or constant is allowed.

User Response: Change the ADL source accordingly.

FMT1421E A qualified identifier cannot be an input parameter.

Explanation: An input parameter is not allowed at this point in the ADL source. Only an output
parameter, or field of an output parameter record, is allowed.

User Response: Change the ADL source accordingly.

FMT1422E Identifier with length n is longer than the allowed limit of m.

Explanation: There is a limit to the length of an ADL identifier.

User Response: Shorten the identifier accordingly.

FMT1423E Positional identifier "n" is too long.

Explanation: The maximum value of a positional identifier is defined as being “<max31>”.

User Response: Use an identifier instead of a positional identifier.

FMT1424E The literal with length n is too long.

Explanation: The maximum length allowed for a character literal is 32756 bytes.

User Response: Split up the literal into smaller segments.

FMT1425E A subtype or data type identifier exists with the same name.

Explanation: All data type, subtype, constant, WHEN statement, and OTHERWISE statement
names must be unique within one DECLARE statement. A data type and a constant, for example,
cannot have the same name.

User Response: Change or delete one of the affected names so that all names are unique.

FMT1426E A constant identifier exists with the same name.

Explanation: All data type, subtype, and constant names must be unique within one DECLARE
statement. A data type and a constant, for example, cannot have the same name.

User Response: Change or delete one of the affected names so that all names are unique.

124 SdU Data Description and Conversion

FMT1427E �FMT1433E

FMT1427E A DEFAULT statement already exists for the data type typ.

Explanation: Only one DEFAULT statement is allowed for each data type within a DECLARE
statement.

User Response: Merge the affected statements into a single DEFAULT statement. If this is not
possible, specify the attributes of the data type within the data declaration statement itself.

FMT1428E Identifier already used for a data declaration at the same level.

Explanation: Identifiers of data types need not be unique within a DECLARE statement, only at
the current declaration level. If, for example, the identifier occurs as an element of a sequence
declaration, then the names must be unique within this sequence.

User Response: Change or delete one of the affected names so that they are unique.

FMT1429E A DECLARE statement with the same name already exists.

Explanation: If DECLARE statements have names, then these names must be unique. In addi-
tion, no data type can have the same name as a DECLARE statement.

User Response: Change or delete one of the affected names so they are unique.

FMT1430E A PLAN statement with the same name already exists.

Explanation: All PLAN statements must have unique names.

User Response: Change or delete one of the affected names so they are unique.

FMT1431E The attribute has already been specified.

Explanation: Each attribute can be specified only once within an attribute list.

User Response: Delete one occurrence of the attribute.

FMT1432E Duplicate ENUMERATION value name.

Explanation: The names of ENUMERATION values must be unique.

User Response: Change or delete one of the affected names so they are unique.

FMT1433E Encoded hexadecimal literal has an uneven number of nibbles (n).

Explanation: Encoded hexadecimal literals for a given CCSID are interpreted by ADL as being
character strings. Since each character contains at least two nibbles of 4 bits each, the encoded
hexadecimal literal must have an even number of nibbles.

User Response: Add or subtract one nibble from the length of the literal.

 Chapter 8. Data Conversion Exceptions and Errors 125

FMT1434E �FMT1438E

FMT1434E Memory allocated to ADLDCLSPC with size n too small for ADLDCLSPC
with size m.

Explanation: An ADL declare space is written to a block of memory that is allocated by the user.
This error message occurs when the amount of memory allocated is insufficient. The ADL Decla-
ration Translator writes the amount of space actually required into the first four bytes of the ADL
declare space.

User Response: Call the ADL Declaration Translator again, allocating at least the specified
amount of space to the ADL declare space.

FMT1435E Memory allocated to ADLPLNSPC with size n too small for ADLPLNSPC
with size m.

Explanation: An ADL plan space is written to a block of memory that is allocated by the user.
This error message occurs when the amount of memory allocated is insufficient. The ADL Decla-
ration Translator writes the amount of space actually required into the first four bytes of the ADL
plan space.

User Response: Call the ADL Declaration Translator again, allocating at least the specified
amount of space to the ADL plan space.

FMT1436E Syntax error.

Explanation: While parsing ADL source, the parser could not apply a syntax rule to further
process the ADL source. To resume parsing, subsequent lexical tokens are skipped until a token
is identified from which parsing can resume. Following such an error, therefore, it cannot be guar-
anteed that the remaining ADL source text has been parsed correctly.

User Response: Check the ADL source text at or before the specified location for syntax errors.

FMT1437E Error at or before n, attribute "tok".

Explanation: The parser expected an attribute at the specified location. This error message
occurred either because the current token could not be identified as an attribute, or because a
syntax error occurred before the specified location.

User Response: Check that the specified token is a valid ADL attribute and that no syntax error
occurred before this location.

FMT1438E att text too long.

Explanation: The length of the literal used to specify the value of the attribute is limited for some
ADL attributes.

User Response: Reduce the length of the literal to within the permitted size.

126 SdU Data Description and Conversion

FMT1439E �FMT1443E

FMT1439E Incorrect statement in tok statement.

Explanation: If the error occurred in a DECLARE statement, the parser expected one of the
following statements at this location:

 DEFAULT statement
 CONSTANT statement
 SUBTYPE statement

Data declaration statement.

If the error occurred in a PLAN statement, the parser expected either an assignment statement or
a CALL statement.

User Response: Check the ADL source text at or before the specified location for syntax errors.

FMT1440E Incorrect plan parameter.

Explanation: At this point, the parser expected either an input parameter or an output parameter
of the plan.

User Response: Check the ADL source text at or before the specified location for syntax errors.

FMT1441E Qualified identifier is already declared as a plan parameter.

Explanation: Plan parameters must be unique within a plan parameter list.

User Response: Delete one occurrence of the plan parameter.

FMT1442E Another PLAN statement exists with the same name.

Explanation: If PLAN statements (assignment statements and CALL statements) have names,
then the names must be unique within a PLAN statement.

User Response: Change or delete one of the affected names so that all names are unique.

FMT1443E The program name literal must begin with "<".

Explanation: In a CALL statement, the character literal containing the program name must have
the following syntax:

<library_path_name><file_path_name>

Spaces are only allowed within the library name.

User Response: Change the literal accordingly.

 Chapter 8. Data Conversion Exceptions and Errors 127

FMT1444E �FMT1448E

FMT1444E The character ">" is missing from the program name literal.

Explanation: In the character literal identifying the library name and function name of a CALL
statement, the ADL Declaration Translator parsed the library name and expected the terminating
character “>”. This was not found. See message FMT1443E for a description of the format of the
program name literal.

User Response: Change the literal accordingly.

FMT1445E The character "<" is missing from the program name literal.

Explanation: In the character literal denoting the library name and function name of a CALL
statement, the ADL Declaration Translator parsed the library name, including the terminating char-
acter “>”. A “<” character must immediately follow this character. See message FMT1443E for a
description of the format of the program name literal.

User Response: Change the literal accordingly.

FMT1446E In the program name literal, blanks are not allowed within the function
name.

Explanation: In the character literal denoting the library name and function name of a CALL
statement, blanks are not allowed within the function name. See message FMT1443E for a
description of the format of the program name literal.

User Response: Change the literal accordingly.

FMT1447E The character ">" is missing from the program name literal.

Explanation: In the character literal denoting the library name and function name of a CALL
statement, the ADL Declaration Translator parsed the function name and expected the terminating
character “>”. This was not found. See message FMT1443E for a description of the format of the
program name literal.

User Response: Change the literal accordingly.

FMT1448E A qualified identifier is not allowed for the attribute att.

Explanation: Qualified identifiers can only be specified as values for certain ADL attributes. For
all other ADL attributes, including the one referred to in this message, only literals and constants
are allowed as values.

User Response: Change the attribute value to a literal. If the attribute allows a constant as a
value, a constant may also be used.

128 SdU Data Description and Conversion

FMT1449E �FMT1454E

FMT1449E PRECISION must be greater than zero for this data declaration.

Explanation: Only BINARY data types with SIGNED(TRUE) and SCALE(2) can have
PRECISION(0). All other numeric data types must have PRECISION greater than zero.

User Response: Change the data declaration accordingly.

FMT1450E UNITLEN must be either 8 or 16 for this data type.

Explanation: For character fields, UNITLEN specifies the length of a character in bits. Only the
values 8 and 16 are supported by ADL.

User Response: Change the data declaration accordingly.

FMT1451E The data type of the value of typ is not allowed.

Explanation: Depending on the context, a number of different data types are allowed at this point
in the source text. Integer literals may be allowed but not character literals, for example.

User Response: Change the data type used to one of the data types allowed at this point in the
source text. See SMARTdata UTILITIES A Data Language Reference for Data Description and
Conversion. for details of which data types are allowed.

FMT1452E This attribute value is not allowed.

Explanation: ADL defines the constant values allowed for each attribute. The value specified in
the source text is not valid for the current attribute.

User Response: Correct the attribute value. See SMARTdata UTILITIES A Data Language Ref-
erence for Data Description and Conversion for details of the attributes allowed.

FMT1453E This attribute is not allowed with a tok object.

Explanation: ADL objects, such as data types, dimension list attributes, subtype instances,
DEFAULT statements, input and output parameters, and declarations, can have attributes. For
each of these objects, there is a list of valid attributes. Not all attributes allowed with a data type,
for example, are allowed with a DEFAULT statement for the data type. The current attribute is not
allowed with the specified object.

User Response: Remove the attribute from the source text.

FMT1454E This identifier is already used in a higher-level data declaration.

Explanation: The following rule applies to the identifiers of data declarations: no fully-qualified
identifier can be identical to a partially-qualified identifier within a DECLARE statement. This rule
has been violated, that is, there are two identical identifiers of data declaration statements, on
different levels but within the same hierarchy of data declarations.

User Response: Rename one of the two identifiers.

 Chapter 8. Data Conversion Exceptions and Errors 129

FMT1455E �FMT1460E

FMT1455E The identifier must contain at least one character that is not a digit.

Explanation: An identifier cannot be made up entirely of digits. At certain points within an ADL
source, an identifier composed entirely of digits could be interpreted as an integer literal.

User Response: Change the name of the identifier to contain at least one character that is not a
digit.

FMT1456E The declaration of this qualified identifier cannot be found.

Explanation: A qualified identifier is used to reference a data type, but no data declaration for
this qualified identifier was found within the current DECLARE statement.

User Response: Either change the current qualified identifier or modify a data declaration or
subtype declaration so that the reference can be resolved.

FMT1457E Several data declarations were found as references for this qualified identi-
fier.

Explanation: Every data declaration can be uniquely identified, provided that all field and
constructor declarations have names and that a fully-qualified name is used.

User Response: Use a fully-qualified identifier to ensure that the reference is unique.

FMT1458E The data declaration of this identifier must have the attribute SCALE(0).

Explanation: The data declaration of this identifier is used as an attribute value. Variable attri-
bute values can only be declared with data declarations having the attribute SCALE(0).

User Response: Either change the data declaration of the identifier or use a different attribute
value at the point where the data declaration is referred to.

FMT1459E The data declaration of this identifier must have the attribute
COMPLEX(FALSE).

Explanation: The data declaration of this identifier is used as an attribute value. Variable attri-
bute values can only be declared with data declarations having the attribute COMPLEX(FALSE).

User Response: Either change the data declaration of the identifier or use a different attribute
value at the point where the data declaration is referred to.

FMT1460E Positional identifiers are not allowed at this point.

Explanation: Positional identifiers that are part of a qualified identifier are only allowed in PLAN
statements, not in DECLARE statements.

User Response: If the qualified identifier remains unique, remove the positional identifier from
the qualified identifier. Otherwise, use a name instead of a positional identifier for the part of the
DECLARE statement referenced.

130 SdU Data Description and Conversion

FMT1461E �FMT1465E

FMT1461E SEQUENCE body element "tok" not valid.

Explanation: At this point, the ADL Declaration Translator expected a data declaration for
another member of the SEQUENCE.

User Response: Either change the current location to a valid data declaration, or complete the
SEQUENCE declaration correctly according to the ADL syntax.

FMT1462E Elements of this array are themselves declared as arrays.

Explanation: In ADL, an element of an array cannot itself be an array. This also applies to an
array element that is a subtype instance and the subtype is declared as an array.

User Response: There are several ways of resolving this situation:

1. Replace the current construction by an array declaration, with the dimension equal to the sum
of the dimensions of the first two array elements.

2. Declare the array element of the outer array as a SEQUENCE with the inner array as the only
data declaration.

FMT1463E Boolean operand expected for this operator.

Explanation: Boolean operators are boolean literals, boolean fields, or operators returning a
boolean value. The data type of the operand does not belong to this group.

User Response: Change the expression so that the operator and operand agree.

FMT1464E Combination of operands not valid.

Explanation: For each operator, the following rules apply:

� Only certain data types and literal types are allowed

� Only certain combinations of operands are allowed for an operator.

For further details, see the description of the operators in the SMARTdata UTILITIES A Data Lan-
guage Reference for Data Description and Conversion.

User Response: Change the expression so that only valid combinations of operands appear.

FMT1465E The value of the PRECISION attribute is too large or too small.

Explanation: The ADL Declaration Translator currently supports BINARY numbers with a
maximum length of 32 bits. The value of PRECISION would result in a larger representation. For
details, see the description of the BINARY data type in the SMARTdata UTILITIES A Data Lan-
guage Reference for Data Description and Conversion.

User Response: Change the data declaration accordingly.

 Chapter 8. Data Conversion Exceptions and Errors 131

FMT1466E �FMT1471E

FMT1466E The value of PRECISION and the LENGTH attribute are not compatible.

Explanation: The BINARY field must be long enough for the number to have the requested pre-
cision. For details, see the description of the BINARY data type in the SMARTdata UTILITIES A
Data Language Reference for Data Description and Conversion.

User Response: Change the data declaration accordingly.

FMT1467E The value of the LENGTH attribute is not valid.

Explanation: A BOOLEAN data type can have a length of between 1 and 64 bits. The length
specified is not within this range.

User Response: Change the data declaration accordingly.

FMT1468E PRECISION is too large for the specified FORM value.

Explanation: For each format of the FLOAT data type, specified with the FORM attribute and a
given RADIX, there is a maximum allowed value of PRECISION. For details, see the description
of the FLOAT data type in the SMARTdata UTILITIES A Data Language Reference for Data
Description and Conversion.

User Response: Change the data declaration accordingly.

FMT1469E The specified value of the MAXLEN attribute is not valid.

Explanation: For each data type where MAXLEN can be specified, valid attribute values are
limited.

User Response: Check the rules for the current data type given in the SMARTdata UTILITIES A
Data Language Reference for Data Description and Conversion and change the MAXLEN attribute
accordingly.

FMT1470E The SGNUNS attribute cannot be used with the attributes SGNMNS and
SGNPLS.

Explanation: For the PACKED data type, either the attribute SGNUNS can be specified or the
attributes SGNMNS and SGNPLS, but not both.

User Response: Delete either the SGNUNS attribute or the attributes SGNMNS and SGNPLS
from the current statement.

FMT1471E The value of the PRECISION attribute of this data declaration is not valid.

Explanation: The SMARTdata UTILITIES A Data Language Reference for Data Description and
Conversion specifies a range of valid values for the PACKED data type. The value specified in
the ADL source is outside this range.

User Response: Change the attribute’s value.

132 SdU Data Description and Conversion

FMT1472E �FMT1477E

FMT1472E The value of the SCALE attribute of this data declaration is not valid.

Explanation: The SMARTdata UTILITIES A Data Language Reference for Data Description and
Conversion specifies a range of valid values for the PACKED data type. The value specified in
the ADL source is outside this range.

User Response: Change the attribute’s value.

FMT1473E The value of the SGNLOC attribute of this data declaration is not valid.

Explanation: The SMARTdata UTILITIES A Data Language Reference for Data Description and
Conversion specifies a range of valid values for the PACKED and ZONED data types. The value
specified in the ADL source is outside this range.

User Response: Change the attribute’s value.

FMT1474E The SGNMNS and SGNPLS attributes can only be specified together.

Explanation: For the PACKED and ZONED data types, the attributes SGNMNS and SGNPLS
can be specified with the data declaration itself, subtype instances, or DEFAULT statements. In
each case, either both or none of these attributes must be specified.

User Response: Change the ADL source accordingly.

FMT1475E The values for SGNMNS and SGNPLS must be mutually exclusive.

Explanation: Each hexadecimal digit in the SGNMNS or SGNPLS attribute represents the code
of either the minus sign or plus sign, respectively. Since the same code cannot represent both the
minus sign and plus sign, each hexadecimal digit can only appear in the hexadecimal literal of one
of the two attributes.

User Response: Change the values of the SGNMNS and SGNPLS attributes so that the
hexadecimal digits of the two literals are mutually exclusive.

FMT1476E A CCSID attribute must be specified for this data type.

Explanation: For a ZONED data type, if SIGNED is TRUE and SGNLOC has the values
LSTBYT or FRSBYT, then a CCSID must be specified and applies to the sign character.

User Response: Change the attribute values accordingly.

FMT1477E For ENUMERATION data types, LENGTH must be either 8, 16, or 32.

Explanation: The length of the ENUMERATION field must be one of the specified values.

User Response: Change the attribute value accordingly.

 Chapter 8. Data Conversion Exceptions and Errors 133

FMT1478E �FMT1483E

FMT1478E The enumeration value of this identifier is outside the allowed range.

Explanation: An ENUMERATION data type can have various lengths and can be either signed
or unsigned. Depending on these attributes, the enumeration values must be within a specific
range, specified with the ENUMERATION data type.

User Response: Change either the identifier value so that it fits within the range, or the LENGTH
or SIGNED attributes of this data type.

FMT1479E Attribute att must be specified.

Explanation: The attribute must be specified for this combination of data type and attribute.

User Response: Either change the values of other attributes of this data type, or the attribute
specified with this data type.

FMT1480E The value of the LENGTH attribute is not allowed.

Explanation: For ASIS and BIT data types, there are restrictions on the values of the LENGTH
attribute.

User Response: Change the attribute value to a valid value.

FMT1481E Duplicate ENUMERATION value.

Explanation: The numeric values of enumeration names must be unique.

User Response: Change one of the affected enumeration values so that they are unique.

FMT1482E Comment start symbol "/*" not allowed within a comment.

Explanation: A comment starts with the string “/*” and ends with the string “*/”. As comments
cannot be nested, the string “/*” is not allowed inside a comment.

User Response: Check that the current string “/*” starts a comment. If so, it could be that the
comment end symbol of the previous comment is missing.

FMT1483E The LENGTH attribute is mutually exclusive with the HIGH and LOW attri-
butes.

Explanation: For the data type CHAR, either the attribute LENGTH can be specified or the attri-
butes HIGH and LOW, but not both.

User Response: Remove the LENGTH attribute or the HIGH and LOW attributes from the
current statement.

134 SdU Data Description and Conversion

FMT1484E �FMT1489E

FMT1484E The HIGH and LOW attributes can only be specified together.

Explanation: For CHAR data types, the attributes HIGH and LOW can be specified with the data
declaration itself, with subtype instances, or with DEFAULT statements. In each case, either both
or neither of these two attributes must be specified.

User Response: Change the ADL source accordingly.

FMT1485E The value of HIGH must be greater than or equal to the value of LOW.

Explanation: If both HIGH and LOW are specified for a CHAR field and both are constants, then
for the CHAR field to have a positive length the value of the HIGH attribute cannot be less than
the value of the LOW attribute.

User Response: Change the ADL source accordingly.

FMT1486E Data declaration has a variable length but is not at the end of the
SEQUENCE.

Explanation: Variable-length data declarations are only allowed as the last field of a
SEQUENCE. Since the current data declaration is not the last in the SEQUENCE, this causes an
error.

User Response: Change the ADL source accordingly.

FMT1487E Either DMNHIGH or DMNSIZE must be specified.

Explanation: For each dimension of an array, either of the attributes DMNHIGH or DMNSIZE
must be specified, but not both.

User Response: Change the ADL source accordingly.

FMT1488E The value of DMNHIGH must be greater than or equal to the value of
DMNLOW-1.

Explanation: If both DMNHIGH and DMNLOW are specified for a dimension of an ARRAY and
are both constant, then for the dimension to have a size greater than or equal zero, the value of
the DMNHIGH attribute cannot be less than the value of the DMNLOW attribute minus 1.

User Response: Change the ADL source accordingly.

FMT1489E DMNMAX must be specified for this dimension.

Explanation: If the size of an array dimension is variable, then at least the maximum size must
be specified with the DMNMAX attribute.

User Response: Either specify the DMNMAX attribute or change the values for DMNSIZE or
DMNLOW and DMNHIGH to constant values.

 Chapter 8. Data Conversion Exceptions and Errors 135

FMT1490E �FMT1495E

FMT1490E ARRAY elements must have fixed lengths.

Explanation: An array consists of a number of elements, each of the same length. Therefore,
the data declaration used to declare the array elements must have a fixed size. Variable-length
fields can appear in this declaration if MAXALC(TRUE) is specified for these fields .

User Response: Change the ADL source accordingly.

FMT1491E The DMNLST attribute must be specified.

Explanation: An array declaration defines the size of the array. This is done using the DMNLST
(dimension list) attribute to declare the dimensions of the array.

User Response: Add the DMNLST attribute to the array declaration.

FMT1492E Variable attribute att not allowed here.

Explanation: The value of some attributes (for example, LENGTH) must be either fixed or vari-
able, depending on the data type they are used with. This message appears when the attribute
value must be fixed for the current data type and attribute.

User Response: Change the attribute value to a literal or a constant, as appropriate.

FMT1493E Length n missing on SKIP statement.

Explanation: In ADL, data types other than ASIS and BIT must be byte-aligned. This means
that an appropriate SKIP statement must be inserted before the current data declaration so that
the current data declaration starts on a byte boundary.

User Response: Either insert a SKIP statement with an appropriate value in the ADL source, or
specify the AUTOSKIP option.

FMT1494E Array dimensions are fixed but MAXALC(FALSE) is specified.

Explanation: For an array, MAXALC(FALSE) can only be specified if at least one dimension has
a variable size. A dimension has a variable size if at least one of the attributes DMNLOW,
DMNHIGH or DMNSIZE has a qualified identifier as its value.

User Response: Change the ADL source accordingly.

FMT1495E SKIP attribute must have value n instead of value m.

Explanation: Each element of an array must be byte-aligned. To ensure this, an array declara-
tion can have a SKIP attribute that defines the skip space necessary between two array elements.

User Response: Either insert the skip attribute with the proposed value in the ADL source, or
specify the AUTOSKIP option.

136 SdU Data Description and Conversion

FMT1496E �FMT1500E

FMT1496E Only numeric constants are allowed for this attribute.

Explanation: In plans, attributes can have qualified identifiers, identifiers, or constant literals as
values. Only numeric values are allowed as literals.

User Response: Change the ADL source accordingly.

FMT1497E CCSID value cannot be zero.

Explanation: An encoded hex literal or character literal is treated as a character string with a
system-independent representation. To interpret this string correctly, a CCSID must be specified.
The value zero for the CCSID attribute means that no CCSID is specified. This is an error.

User Response: Specify the correct CCSID value. For character literals, the CCSID attribute
can be omitted. In this case, the parser sets the CCSID of the character literal to the system
CCSID.

FMT1498E Integer value too large or too small.

Explanation: Internally, the parser represents integer values as 32-bit signed binary numbers.
The smallest and largest number that can be represented are defined as <min31> and <max31>
respectively.

User Response: Remove the integer value from the ADL source.

FMT1499E Maximum size of this data type is too large.

Explanation: The largest field size supported by DD&C is <max31> bits. It is specified
with the UNITLEN attribute together with either the MAXLEN attribute or the LOW and HIGH attri-
butes.

User Response: Change the MAXLEN, LOW, HIGH or UNITLEN attributes so that the field size
is below this limit.

FMT1500E The value of the LENGTH attribute is not valid.

Explanation: A BINARY data type can have a length of between 1 and 32 bits. The length
specified is not in this range.

User Response: Change the data declaration accordingly.

 Chapter 8. Data Conversion Exceptions and Errors 137

FMT1501E �FMT1504E

FMT1501E A variable attribute value is not allowed here.

Explanation: The attribute values of DEFAULT statements must be fixed. The CCSID value of
literals must also be fixed. For the given attribute, however, a data type defines the value.

User Response: Change the attribute value to a fixed value. Another possibility with default
attributes is to define a subtype with the variable attribute value.

Warning: If, for example, the underlying data type is a CHAR LENGTH(a) field with a variable a, the
attribute value is updated (in case the CHAR field is a target field in an assignment). If the same
variable a is also used as length reference for other target fields, this variable is updated there
also.

FMT1502E The number of pln parameters defined exceeds the limit of 255.

Explanation: In a plan, a maximum of 255 input and 255 output parameters can be defined. The
specified parameter exceeds this limit.

User Response: There are several ways to reduce the number of parameters:

� Declare a structured data type that replaces several plan parameters.

� Split up the plan into several smaller plans and use workspace variables to store information
between the processing of one plan and the next.

FMT1503E LENGTH attribute value (n bits) smaller than maximum size (m bits) of this
CASE.

Explanation: The LENGTH attribute can be specified to define a larger CASE structure size than
actually needed by its variants. At the indicated point in the ADL source, at least one variant of
the CASE has a larger size than the specified value of the LENGTH attribute. Both sizes are
measured in bits.

User Response: Check the CASE and change the declaration so that the specified lengths are
consistent.

FMT1504E n is larger than the allowed limit of 2,147,483,647 bits.

Explanation: The size of the ARRAY and SEQUENCE constructors is limited.

User Response: If you must declare such large structures, try to split them up into a number of
parts, each described by a separate data declaration in the same DECLARE statement. In the
case of ARRAY, the declaration of a subtype describing the array fields might be helpful.

138 SdU Data Description and Conversion

FMT1505E �FMT1802S

FMT1505E Length of referenced data type is not yet defined.

Explanation: In ADL source files, it is not permitted to use the LENGTH function of a data decla-
ration that is currently declared, or to use the LENGTH function of a data declaration which itself
depends on the currently declared data declaration. Were this to be allowed, then a data declara-
tion loop would occur.

User Response: In the ADL source, remove at least one LENGTH function referencing a
constructor data type.

FMT1506E Reference into array field is ambiguous.

Explanation: A reference to a data declaration that is part of an array is only permitted if the
reference is located in the same array. This reference is then valid and always refers to the data
declaration of the current array element.

User Response: Change the reference to a constant reference or to a reference of a data decla-
ration outside the array.

FMT1800S Memory could not be allocated.

Explanation: When processing ADL source text, the ADL Declaration Translator allocates
memory dynamically. This error occurs when insufficient system resources are available.

User Response: Do the following to help prevent this problem:

1. Check and if necessary increase the amount of memory and swapping space available on
your machine.

2. Split up the ADL input files so that they can be translated independently.

3. Restart the ADL Declaration Translator.

FMT1801S Parser stack overflow.

Explanation: When parsing ADL source, information is stored in an internal stack. If the ADL
source contains very deeply nested syntax structures, this stack can overflow.

User Response: Reduce the syntactic complexity of the ADL source, for example, by defining
subtypes for complex nested structures. Alternatively, recompile the program that calls the
FMTPRS function specifying a larger stack size.

FMT1802S Requested size for memory allocation is n, maximum allowed size is m.

Explanation: If the ADL source contains large literals or the ADL source itself is large, an internal
memory allocation limit can be exceeded.

User Response: If large literals are used, split them into several parts without concatenating
them. If the ADL source is large, try to split it up.

 Chapter 8. Data Conversion Exceptions and Errors 139

FMT1803S �FMT1811S

FMT1803S Internal system error, function fnc, rc rc.

Explanation: An error occurred when using operating system resources.

User Response: The error may disappear after modifying the ADL source. The error may also
disappear after a system restart.

FMT1804S Pointer to condition token is incorrect.

Explanation: When calling the ADL Parse function, the pFeedBack parameter must point to a
memory location that is large enough to hold the condition token structure.

User Response: Change the call to the Parse function accordingly.

FMT1810S Cannot open ADL source file fn.

Explanation: The pchSrcFilNam parameter of the ADL Parse function specifies the ADL source
file. This file could not be found or opened.

User Response: Check that the file can be accessed and is not being used by another program.

FMT1811S Internal error detected by lexical analyzer at point n.

Explanation: Lexical analysis is the first step the parser undertakes when processing the ADL
source.

User Response: Check the ADL source at or before the specified source location for syntax
errors. If the problem persists, try modifying the ADL source slightly.

140 SdU Data Description and Conversion

FMT2951I �FMT2854E

Generate Function Messages

FMT2951I Some code points not found in symbolic dump

Explanation: Some structures could not be expanded into specific fields because the code point
was not found.

FMT2952I ADLLITBOOL with incorrect boolean value.

Explanation: The boolean value is incorrectly coded in the space. Only the boolean values
TRUE = 0xf1 and FALSE = 0xf0 are allowed.

FMT2953I Last structure exceeds space length.

Explanation: The last structure could not be included in the symbolic dump because it was not
completely inside the space.

FMT2901W Offset n: next pointer in anonymous ADLCNS not NULL.

Explanation: In an anonymous ADLCNS, the next pointer must be NULL, so that it is ignored for
further processing.

FMT2851E Offset n: pointer in structure exceeds space length.

Explanation: The structure contains a pointer to a location outside the space. Look at the dump
for further information about the structure and to indicate which element of the structure is not
valid. Messages about structures within this structure may not be correct.

FMT2852E Offset n: structure exceeds space length.

Explanation: The structure is too long; a part of the structure is not inside the space. Look at
the dump for further information about the structure.

FMT2853E Offset n: length m of structure must be less than 32K bytes.

Explanation: The length field of the structure contains an incorrect value. The DDM architecture
defines that the value of the length field must be less than 32K bytes. Messages about structures
within this structure may not be correct.

FMT2854E Offset n: length m of structure does not conform with code point cp.

Explanation: The length field of the structure contains an incorrect value. Messages about struc-
tures within this structure may not be correct.

 Chapter 8. Data Conversion Exceptions and Errors 141

FMT2855E �FMT2863E

FMT2855E Offset n: code point cp of structure not found.

Explanation: The code point of this structure is not valid for ADL encodings. Messages about
structures within this structure may not be correct.

FMT2857E Offset n: structure has NULL length.

Explanation: The length field of the structure contains a NULL value. Messages about struc-
tures within this structure may not be correct.

FMT2858E Offset n: structure with incorrect pointer m.

Explanation: A pointer in the structure points to a location that is not a valid structure.

FMT2859E Offset n: anonymous ADLCNS in constant declaration chain.

Explanation: There is a constant without an identifier in the constant declaration chain.

FMT2860E Offset n: structure m pointing to structure o at offset p is not ADLCNS
(0x300B).

Explanation: At this point, there must be an ADLCNS structure.

FMT2861E Offset n: the ADLCNS pointing to ADLLITBIT or ADLLITHEX at offset m has
an attribute other than ADLLENGTH, or no attribute.

Explanation: The ADLCNS structure must have an ADLLENGTH attribute, and no other attri-
butes.

FMT2862E Offset n: the ADLLENGTH pointed to in ADLCNS at offset m has a value
other than ADLLITINT at offset p

Explanation: The ADLLENGTH structure must have an ADLLITINT value.

FMT2863E Offset nx: the ADLLITINT pointed to in ADLLENGTH at offset m has value
greater than length of ADLLITBIT or AD

Explanation: The ADLLENGTH structure contains the length of the ADLLIT... value. Therefore,
its length must conform with the structure length of the ADLLIT...

142 SdU Data Description and Conversion

FMT2864E �FMT2871E

FMT2864E Offset n: the ADLCNS structure pointing to ADLLITEH or ADLLITCHAR at
offset m has an attribute other than ADLCCSID, or no attribute.

Explanation: The ADLCNS structure must have an ADLCCSID attribute, and no other attributes.

FMT2865E Offset n: the boolean value in the ADLLITBOOL structure is x, not 0xf1 or
0xf0.

Explanation: The boolean value is incorrectly coded in the space. Only the boolean values
TRUE = 0xf1 and FALSE = 0xf0 are allowed.

FMT2866E Offset n: loop within space: structure with code point cp is in its own
subtree.

Explanation: The structure points to itself, possibly indirectly through another structure.

FMT2867E Offset n: the ADLQLFID structure with NULL identifier has next pointer that
is not NULL.

Explanation: The subscript list is encoded using a ADLQLFID structure with a NULL identifier.
There can be no other qualified identifier within a subscript list.

FMT2868E Offset n: the structure pointing to subscript list at offset m is not
ADLQLFID.

Explanation: The subscript list is encoded using a ADLQLFID structure with a NULL identifier. It
can only be used at the end of a qualified identifier.

FMT2869E Offset n: ADLID structure is longer than 255 characters.

Explanation: An ADL identifier can have a maximum length of 255 characters

FMT2870E Dump output stopped; structure with NULL length found.

Explanation: The dump output cannot be completed. The beginning of the next structure could
not be found because of a NULL length field.

FMT2871E Offset n: code point cp of structure pointed to in structure offset o not
found.

Explanation: The code point of this structure is not valid for ADL encodings.

 Chapter 8. Data Conversion Exceptions and Errors 143

FMT2872E �FMT2812S

FMT2872E Offset n: unexpected NULL pointer in structure.

Explanation: The Generator expected a pointer field to point to another structure, but the pointer
is NULL.

FMT2873E Offset n: pointer s in structure m points to NULL.

Explanation: The Generator expected a pointer field to point to another structure, but the pointer
is NULL.

FMT2802S Message text for error message msgno, severity x not found.

Explanation: The parameter DclXlrId does not contain the identifier of the ADL Declaration
Translator.

User Response: Specify the correct value for DclXlrId. The value can be specified with the
define ADLDECLTRANSLATOR.

FMT2803S Message msgno is not in the range of Generate message numbers.

Explanation: The message number is incorrect.

FMT2809S Incorrect parameter pointing to condition token.

Explanation: The parameter pFeedBack, pointing to the condition token that contains return
value information, is incorrect.

FMT2811S Space with code point cp is not ADLDCLSPC or ADLPLNSPC.

Explanation: The space pointed to by pAdlSpc is not an ADL Declare Space or an ADL Plan
Space. The valid code points are 3035 for the ADL Declare Space and 3055 for ADL Plan Space.

FMT2812S Offset n: space probably incomplete.

Explanation: The space is probably incomplete, because the memory allocated to the space and
filled by the ADL Declaration Translator was too small to hold the entire space.

144 SdU Data Description and Conversion

Appendix A. DD&C Sample Programs

The following examples use C language to demonstrate how to prepare a planned con-
version using DD&C for Windows. The sample programs and listings include:

| 1. ADL Source Input

| 2. C Source Code - which shows the use of the FMTPRS, FMTGEN and FMTCRCP
| APIs

| 3. A Parse Function Optional Listing File

| 4. A Generate Function Optional Listing File

| 5. The Generate Function Source Output File

| 6. C Source Code for the Conversion Plan Executor - which shows the use of the
| FMTCPXI, FMTCPXC, and FMTCPXT APIs

| 7. ADL Source Input for a User Exit

| 8. C Source Code for a User Exit.

| The source code for these sample programs, and the accompanying make and defi-
| nition files, are available in the /usr/lpp/ddc/samples directory of the drive where
| DD&C for Windows is installed.

| Sample Programs Showing the Use of the Parse and Generate Functions
| The following sample program passes an ADL source file to the Parse function, then
| calls the Generate function to create ADL source text.

 Copyright IBM Corp. 1994, 1997 145

| 1. ADL Source Input - SAMPLE.ADL
| Figure 14 shows the ADL source statements that are used as input to the sample
| program.

| /\\/

| /\ PRODUCT = Data Description and Conversion \/

| /\ \/

| /\ SOURCE FILE NAME = SAMPLE.ADL \/

| /\ \/

| /\ This ADL file is used by the SAMPLE1.C program to create a conversion \/

| /\ plan. \/

| /\\/

| /\\/

| /\ Declare statements for Input data structure \/

| /\\/

| DECLARE BEGIN; /\ ADL \/

| COBOLREC: SEQUENCE BEGIN;

| INITIALS: CHAR LENGTH(3)

| CCSID(5ðð);

| NUMBER: PACKED PRECISION(5);

| END;

| END;

| /\\/

| /\ Declare statements for Output data structure \/

| /\\/

| DECLARE BEGIN; /\ ADL \/

| CREC: SEQUENCE BEGIN;

| INITIALS: CHARSFX MAXLEN(4)

| CCSID(437);

| NUMBER: BINARY PRECISION(15)

| BYTRVS (TRUE);

| END;

| END;

| /\\/

| /\ Plan statements for COBOL_TO_C conversion plan \/

| /\\/

| COBOL_TO_C: PLAN(COBOLREC: INPUT,

| CREC: OUTPUT)

| BEGIN;

| CREC <- COBOLREC;

| END;

| /\\/

| /\ Plan statements for C_TO_COBOL conversion plan \/

| /\\/

| C_TO_COBOL: PLAN(CREC: INPUT,

| COBOLREC: OUTPUT)

| BEGIN;

| COBOLREC <- CREC;

| END;

| Figure 14. SAMPLE.ADL - Input ADL Source Text

| 2. C Source Code - SAMPLE1.C
| Figure 15 shows the C source code for the Sample1 program. It uses the Parse func-
| tion, the Generate function, and the Conversion Plan Builder APIs.

146 SdU Data Description and Conversion

| #pragma title ("SAMPLE1")

| /\\/

| /\ PRODUCT = Data Description and Conversion \/

| /\ \/

| /\ SOURCE FILE NAME = Sample1.C \/

| /\ \/

| /\ DESCRIPTIVE NAME = ADL Declaration Translator and CPB sample \/

| /\ \/

| /\ FUNCTION = This sample program performs the following functions: \/

| /\ \/

| /\ 1. Calls the parse function of the ADL declaration translator \/

| /\ to compile ADL source text SAMPLE.ADL into the appropriate \/

| /\ ADL declare and plan spaces. \/

| /\ 2. Calls the generate function of the ADL declaration \/

| /\ translator to reproduce the ADL source file SAMPLE.GEN. \/

| /\ 3. Calls the conversion plan builder using the declear and \/

| /\ plan spaces created by the parse function. This will \/

| /\ create a conversion plan. The conversion plan will be used \/

| /\ by follow-on programs to do actual conversions. The \/

| /\ conversion plan will be stores in the file SAMPLE.SPC \/

| /\ \/

| /\ INPUTS = SAMPLE.ADL: File containing ADL text \/

| /\ \/

| /\ OUTPUTS = SAMPLE_P.LST: File containing listing output from PARSE \/

| /\ funtion (FMTPRS). \/

| /\ SAMPLE_G.LST: File containing listing output from Generate \/

| /\ funtion (FMTGEN). \/

| /\ SAMPLE.GEN: File containing ADL statements created by the \/

| /\ Generate function (FMTGEN). \/

| /\ SAMPLE.SPC: File containing the conversion plan created by \/

| /\ the FMTCRCP (Create Conversion Plan) function. \/

| /\ NOTES = \/

| /\ \/

| /\ DEPENDENCIES = This program was compiled on OS/2, AIX, Windows NT 3.51, \/

| /\ and Windows 95 systems using the IBM VisaulAge compilers. \/

| /\ Changes may be required to the Windows and OS/2 header \/

| /\ statements below when using a different compiler. \/

| /\ \/

| /\ The DD&C path statements must be set according to the \/

| /\ Getting Started book that is part of the Cobol \/

| /\ documentation. \/

| /\ \/

| /\ RESTRICTIONS = None \/

| /\ \/

| /\ ENTRY POINTS = main() \/

| /\\/

| Figure 15 (Part 1 of 7). SAMPLE1.C - C Source Code

 Appendix A. DD&C Sample Programs 147

| #pragma page ()

| /\\/

| /\ Header Files. \/

| /\\/

| /\--\/

| /\ The following code adds the Windows header if this program is compiled \/

| /\ under the Windows operating system. The following lines can be deleted \/

| /\ if this is not being compiled under Windows NT or Windows 95 \/

| /\--\/

| #if defined(__WINDOWS__) /\ If compiled using Windows compiler \/

| #include <windows.h> /\ include Windows header file \/

| #endif /\ End if statement \/

| /\--\/

| /\ The following code adds OS/2 header definitions if this program is \/

| /\ compiled under the OS/2 operating system. The following lines can be \/

| /\ deleted if this is not being compiled under OS/2. \/

| /\--\/

| #if defined(__OS2__) /\ If compiled using OS/2 compiler \/

| #define INCL_BASE /\ All of OS/2 Base \/

| #define INCL_NOPMAPI /\ No presentation manager functions \/

| #include <os2.h> /\ Include OS/2 header file \/

| #endif /\ End if statement \/

| /\---------------- C Library Header --\/

| #include <stdio.h>

| #include <memory.h>

| #include <string.h>

| #include <stdlib.h>

| #include <ctype.h>

| #pragma page ()

| /\\/

| /\ DDC global header file \/

| /\\/

| #define FMT_NO_LCF FMT_NO_LCF /\ exclude the Low Level Conversion

| Functions function prototypes and

| their declarations \/

| #define FMT_NO_CPEX FMT_NO_CPEX /\ exclude the Conversion Plan

| Executor function prototypes and

| their declarations \/

| #include "fmt.h"

| Figure 15 (Part 2 of 7). SAMPLE1.C - C Source Code

148 SdU Data Description and Conversion

| /\\/

| /\ Define ADLDCLSPC and ADLPLNSPC buffer length \/

| /\\/

| #define BUFLEN_ADLDCLSPC 64ððð

| #define BUFLEN_ADLPLNSPC 64ððð

| #define BUFLEN_CNVPLNSPC 5ððð

| /\\/

| /\ MAIN function \/

| /\\/

| int main()

| {

| /\\/

| /\ Local Variable definitions. \/

| /\\/

| FMTCTOK FeedBack; /\ DD&C Feed Back area \/

| PBYTE pAdlDclSpc; /\ Ptr to ADL Declare Space \/

| PBYTE pAdlPlnSpc; /\ Ptr to ADL Plan Space \/

| PBYTE \ppAdlDclSpcList = ð; /\ Ptr to array that contains \/

| /\ addresses of declare spaces \/

| PBYTE \ppDefaultAdlPlnSpcList = ð; /\ Ptr to array that contains \/

| /\ addresses of plan spaces \/

| PVOID pCnvPlnSpc = ð; /\ Ptr to Conversion Plan Space \/

| FMTCNSTKN Cnstkn; /\ Consistency Token \/

| FMTADLCA MyIsInfo; /\ ADL communications area \/

| FILE \CnvPlnSpcHandle; /\ Handle to file that will hold \/

| /\ conversion plan \/

| ULONG ulSpcLen; /\ Length of conversion plan \/

| /\\/

| /\ Get space for ADLDCLSPC and ADLPLNSPC. \/

| /\\/

| pAdlDclSpc = (PBYTE) malloc(BUFLEN_ADLDCLSPC);

| pAdlPlnSpc = (PBYTE) malloc(BUFLEN_ADLPLNSPC);

| /\\/

| /\ Call PARSE function of ADL Declaration Translator for ADL source text \/

| /\ to get ADLDCLSPC and ADLPLNSPC. \/

| /\ Type Manager id is set to ADL. \/

| /\ Note: Currently all CCSID's should be zero. \/

| /\\/

| FMTPRS (ADLDECLTRANSLATOR, // PBYTE pbDclXlrId

| ð, // FMTCCSID lParameterCCSID

| 1ð, // LONG lSrcFilNamLength

| "SAMPLE.ADL", // PCHAR pchSrcFilNam

| ð, // FMTCCSID lSrcFilCCSID

| 8, // LONG lDclXlrOptLength

| Figure 15 (Part 3 of 7). SAMPLE1.C - C Source Code

 Appendix A. DD&C Sample Programs 149

| "AUTOSKIP", // PCHAR pchDclXlrOpt

| 4, // LONG lLstOptLength

| "LIST", // PCHAR pchLstOpt

| 12, // LONG lLstFilNamLength

| "SAMPLE_P.LST", // PCHAR pchLstFilNam

| BUFLEN_ADLDCLSPC, // LONG lADLDclSpcLength

| pAdlDclSpc, // PBYTE pbADLDclSpc

| ð, // FMTCCSID lADLDclSpcCCSID

| &Cnstkn, // PFMTCNSTKN pbADLDclSpcCNSTKN

| BUFLEN_ADLPLNSPC, // LONG lADLPlnSpcLength

| pAdlPlnSpc, // PBYTE pbADLPlnSpc

| &FeedBack); // PFMTCTOK pFeedBack

| /\\/

| /\ Check the Condition Token \/

| /\\/

| if (FeedBack.Condition_ID.usMsgNo != PRS_NO_ERROR)

| {

| printf("Error in PARSE function.\n");

| printf("The Condition Token has the following contents:\n");

| printf("Message Severity %d Number %d\n", FeedBack.Condition_ID.usMsgSev,

| FeedBack.Condition_ID.usMsgNo);

| printf("Service Condition Case %d\n", FeedBack.fCase);

| printf("Condition Severity %d\n", FeedBack.fSeverity);

| printf("Control %d\n", FeedBack.fControl);

| printf("Facility ID %c%c%c\n", FeedBack.uchFacility_ID⅛ð‘,

| FeedBack.uchFacility_ID⅛1‘,

| FeedBack.uchFacility_ID⅛2‘);

| printf("Instance Specific %d\n\n", FeedBack.pI_S_Info.ulAdlExId);

| } /\ endif \/

| else

| {

| /\\\/

| /\ Call GENERATE function of ADL Declaration Translator for ADLDCLSPC \/

| /\ to get ADL Source text. \/

| /\ This call is not necessary to create a conversion plan, it is mainly \/

| /\ done for debugging of the PARSE function. \/

| /\ Type Manager id is set to ADL. \/

| /\ Note: Currently all CCSID's should be zero. \/

| /\\\/

| FMTGEN (ADLDECLTRANSLATOR, // PBYTE pbDclXlrId

| ð, // FMTCCSID lParameterCCSID

| ð, // LONG lDclXlrOptLength

| "", // PCHAR pchDclXlrOpt

| pAdlDclSpc, // PBYTE pbAdlSpc

| ð, // FMTCCSID lAdlSpcCCSID

| Figure 15 (Part 4 of 7). SAMPLE1.C - C Source Code

150 SdU Data Description and Conversion

| 1ð, // LONG lSrcFilNamLength

| "SAMPLE.GEN", // PCHAR pchSrcFilNam

| ð, // FMTCCSID lSrcFilCCSID

| 12, // LONG lLstOptLength

| "LIST FLAG(I)", // PCHAR pchLstOpt

| 12, // LONG lLstFilNamLength

| "SAMPLE_G.LST", // PCHAR pchLstFilNam

| ð, // FMTCCSID lLstFilCCSID

| &FeedBack); // PFMTCTOK pFeedback

| /\\\/

| /\ Check the Condition Token \/

| /\\\/

| if (FeedBack.Condition_ID.usMsgNo != GEN_NO_ERROR)

| {

| printf("Error in GENERATE function.\n");

| printf("The Condition Token has the following contents:\n");

| printf("Message Severity %d Number %d\n",FeedBack.Condition_ID.usMsgSev,

| FeedBack.Condition_ID.usMsgNo);

| printf("Service Condition Case %d\n", FeedBack.fCase);

| printf("Condition Severity %d\n", FeedBack.fSeverity);

| printf("Control %d\n", FeedBack.fControl);

| printf("Facility ID %c%c%c\n",FeedBack.uchFacility_ID⅛ð‘,

| FeedBack.uchFacility_ID⅛1‘,

| FeedBack.uchFacility_ID⅛2‘);

| printf("Instance Specific %d\n\n", FeedBack.pI_S_Info.ulAdlExId);

| } /\ endif \/

| /\\\/

| /\ Get space for conversion plan space (CNVPLNSPC) \/

| /\\\/

| pCnvPlnSpc = malloc(BUFLEN_CNVPLNSPC);

| memset(pCnvPlnSpc, 'ð', BUFLEN_CNVPLNSPC);

| /\\\/

| /\ Initialize ADL Communication Area \/

| /\\\/

| FeedBack.pI_S_Info.pAdlCommArea = &MyIsInfo;

| /\\\/

| /\ Call Conversion Plan Builder \/

| /\\\/

| ppAdlDclSpcList = malloc(sizeof(PBYTE));

| ppAdlDclSpcList⅛ð‘ = pAdlDclSpc;

| ppDefaultAdlPlnSpcList = malloc(sizeof(PBYTE));

| ppDefaultAdlPlnSpcList⅛ð‘ = pAdlPlnSpc;

| Figure 15 (Part 5 of 7). SAMPLE1.C - C Source Code

 Appendix A. DD&C Sample Programs 151

| FMTCRCP(

| 1, // ULONG ulAdlDclSpcCount

| ppAdlDclSpcList, // PBYTE \ppAdlDclSpcList

| ð, // ULONG ulUserAdlPlnSpcCount

| NULL, // PBYTE \ppUserAdlPlnSpcList

| 1, // ULONG ulDefaultAdlPlnSpcCount

| ppDefaultAdlPlnSpcList, // PBYTE \ppDefaultAdlPlnSpcList

| BUFLEN_CNVPLNSPC, // ULONG ulCnvPlnSpcLength

| pCnvPlnSpc, // PVOID pCnvPlnSpc

| ð, // ULONG ulFlagList

| &FeedBack); // PFMTCTOK pFeedback

| /\\\/

| /\ Check the Condition Token \/

| /\\\/

| if (FeedBack.Condition_ID.usMsgNo != CPB_NO_ERROR)

| {

| printf("Error in Conversion Plan Builder.\n");

| printf("The Condition Token has the following contents:\n");

| printf("Message Severity %d Number %d\n",FeedBack.Condition_ID.usMsgSev,

| FeedBack.Condition_ID.usMsgNo);

| printf("Service Condition Case %d\n", FeedBack.fCase);

| printf("Condition Severity %d\n", FeedBack.fSeverity);

| printf("Control %d\n", FeedBack.fControl);

| printf("Facility ID %c%c%c\n",FeedBack.uchFacility_ID⅛ð‘,

| FeedBack.uchFacility_ID⅛1‘,

| FeedBack.uchFacility_ID⅛2‘);

| /\\/

| /\ Check whether an ADL exception occurred. If ADL exception the ADL \/

| /\ communication area is filled. \/

| /\\/

| if (FeedBack.Condition_ID.usMsgNo == CPB_ADL_EXCEPTION_SEV2 ||

| FeedBack.Condition_ID.usMsgNo == CPB_ADL_EXCEPTION_SEV3)

| {

| printf("The ADL communication area has the following contents:\n");

| printf("ADL exception: %d\n", MyIsInfo.lExId);

| printf("Severity of ADL exception: %d\n", MyIsInfo.usSevCod);

| /\ The Severity of the ADL \/

| /\ exception has the same value as \/

| /\ the message severity \/

| /\ (Feedback.Condition_ID.usMsgSev \/

| printf("Name of processed plan: %.255s\n",

| MyIsInfo.PlanId.uchData);

| Figure 15 (Part 6 of 7). SAMPLE1.C - C Source Code

152 SdU Data Description and Conversion

| printf("Number of processed PLAN statement: %d\n",

| MyIsInfo.lPlanStmt);

| printf("Source identifier of processed assignment statement: %.255s\n"

| , MyIsInfo.SrcFldId.uchData);

| printf("Target identifier of processed assignment statement: %.255s\n"

| , MyIsInfo.TrgFldId.uchData);

| } /\ endif \/

| } /\ endif \/

| else

| {

| /\\/

| /\ Write conversion plan space into file \/

| /\\/

| CnvPlnSpcHandle = fopen("SAMPLE.SPC","wb");

| ulSpcLen = \((PULONG)pCnvPlnSpc); /\ Get length of the space out of \/

| /\ the first 4 Byte \/

| fwrite(pCnvPlnSpc, sizeof(CHAR), ulSpcLen , CnvPlnSpcHandle);

| fclose(CnvPlnSpcHandle);

| } /\ endelse \/

| } /\ endelse \/

| /\\/

| /\ Free allocated resources \/

| /\\/

| if (pAdlDclSpc != NULL) {

| free(pAdlDclSpc);

| } /\ endif \/

| if (pAdlPlnSpc != NULL) {

| free(pAdlPlnSpc);

| } /\ endif \/

| if (pCnvPlnSpc != NULL) {

| free(pCnvPlnSpc);

| } /\ endif \/

| if (ppAdlDclSpcList != NULL) {

| free(ppAdlDclSpcList);

| } /\ endif \/

| if (ppDefaultAdlPlnSpcList != NULL) {

| free(ppDefaultAdlPlnSpcList);

| } /\ endif \/

| return ð;

| }

| Figure 15 (Part 7 of 7). SAMPLE1.C - C Source Code

 Appendix A. DD&C Sample Programs 153

| 3. Parse Function Optional Listing File - SAMPLE_P.LIST
| Figure 16 shows the optional listing file that is produced by the Parse function. It con-
| tains the ADL source input and related error messages (if any errors are found).

| (ð:ð): informational FMT1ððð: Data Description and Conversion for OS/2 Version 1.1ð

| (ð:ð): informational FMT1ðð1: ADL Parser (c) Copyright IBM Corp. 1994.

| (ð:ð): informational FMT1ðð2: All rights reserved.

| <ððð1> /\\/

| <ððð2> /\ PRODUCT = Data Description and Conversion \/

| <ððð3> /\ \/

| <ððð4> /\ SOURCE FILE NAME = SAMPLE.ADL \/

| <ððð5> /\ \/

| <ððð6> /\ This ADL file is used by the SAMPLE1.C program to create a conversion \/

| <ððð7> /\ plan. \/

| <ððð8> /\\/

| <ððð9>

| <ðð1ð> /\\/

| <ðð11> /\ Declare statements for Input data structure \/

| <ðð12> /\\/

| <ðð13> DECLARE BEGIN; /\ ADL \/

| <ðð14> COBOLREC: SEQUENCE BEGIN;

| <ðð15> INITIALS: CHAR LENGTH(3)

| <ðð16> CCSID(5ðð);

| <ðð17> NUMBER: PACKED PRECISION(5);

| <ðð18> END;

| <ðð19> END;

| <ðð2ð>

| <ðð21> /\\/

| <ðð22> /\ Declare statements for Output data structure \/

| <ðð23> /\\/

| <ðð24> DECLARE BEGIN; /\ ADL \/

| <ðð25> CREC: SEQUENCE BEGIN;

| <ðð26> INITIALS: CHARSFX MAXLEN(4)

| <ðð27> CCSID(437);

| <ðð28> NUMBER: BINARY PRECISION(15)

| <ðð29> BYTRVS (TRUE);

| <ðð3ð> END;

| <ðð31> END;

| <ðð32>

| <ðð33> /\\/

| <ðð34> /\ Plan statements for COBOL_TO_C conversion plan \/

| <ðð35> /\\/

| <ðð36> COBOL_TO_C: PLAN(COBOLREC: INPUT,

| <ðð37> CREC: OUTPUT)

| <ðð38> BEGIN;

| <ðð39> CREC <- COBOLREC;

| <ðð4ð> END;

| <ðð41>

| Figure 16 (Part 1 of 2). SAMPLE_P.LST - Parser Listing File

| <ðð42> /\\/

| <ðð43> /\ Plan statements for C_TO_COBOL conversion plan \/

| <ðð44> /\\/

| <ðð45> C_TO_COBOL: PLAN(CREC: INPUT,

| <ðð46> COBOLREC: OUTPUT)

| <ðð47> BEGIN;

| <ðð48> COBOLREC <- CREC;

| <ðð49> END;

| Figure 16 (Part 2 of 2). SAMPLE_P.LST - Parser Listing File

154 SdU Data Description and Conversion

| 4. Generate Function Optional Listing File - SAMPLE_G.LIST
| The optional Generate function listing file shown in Figure 17 contains a formatted
| dump of the ADL Declare Space and related error messages.

| Symbolic dump of ADL-Space

| Space class 3ð35 ADLDCLSPC

| length ððððð485

| ðððððððð: len ðððc class: ðð4f SPCANC next ðððððððc free ðððððððð

| ðððððððc: len ðð2ð class: 3ðð2 ADLDECLARE next ðððððð2c name ðððððððð attributes ðððððððð defaults ððððð244

| constants ðððððððð subtypes ðððððððð of ððððð3bd

| ðððððð2c: len ðð2ð class: 3ðð2 ADLDECLARE next ðððððððð name ðððððððð attributes ðððððððð defaults ðððððð4c

| constants ðððððððð subtypes ðððððððð of ððððð175

| ðððððð4c: len ðð14 class: 3ð4f ADLDEFAULT next ðððððð6ð name ðððððððð attributes ððððððc7 type ððððð16f

| ðððððð6ð: len ðð14 class: 3ð4f ADLDEFAULT next ðððððððð name ðððððððð attributes ðððððð74 type ððððððc1

| ðððððð74: len ðððc class: 3ð34 ADLCCSID next ðððððð8ð value ððððððb9

| ðððððð8ð: len ðððc class: 3ð3e ADLMAXALC next ðððððð8c value ððððððb4

| ðððððð8c: len ðððc class: 3ð3b ADLMAXLEN next ðððððð98 value ððððððac

| ðððððð98: len ðððc class: 3ððc ADLUNITLEN next ðððððððð value ðððððða4

| ðððððða4: len ððð8 class: 3ð56 ADLLITINT value ððððððð8

| ððððððac: len ððð8 class: 3ð56 ADLLITINT value ððððððð1

| ððððððb4: len ððð5 class: 3ð5e ADLLITBOOL value TRUE

| ððððððb9: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððððc1: len ððð6 class: ðððc CODPNT value 3ð13 ADLCHARSFX

| ððððððc7: len ðððc class: 3ð28 ADLBYTRVS next ððððððd3 value ððððð16a

| ððððððd3: len ðððc class: 3ð2c ADLCOMPLEX next ððððððdf value ððððð165

| ððððððdf: len ðððc class: 3ð2d ADLCNSTR next ððððððeb value ððððð16ð

| ððððððeb: len ðððc class: 3ð5f ADLFIT next ððððððf7 value ððððð158

| ððððððf7: len ðððc class: 3ð41 ADLPRECISION next ððððð1ð3 value ððððð15ð

| ððððð1ð3: len ðððc class: 3ð43 ADLRADIX next ððððð1ðf value ððððð148

| ððððð1ðf: len ðððc class: 3ð44 ADLSCALE next ððððð11b value ððððð14ð

| ððððð11b: len ðððc class: 3ð23 ADLSGNCNV next ððððð127 value ððððð138

| ððððð127: len ðððc class: 3ð4a ADLSIGNED next ðððððððð value ððððð133

| ððððð133: len ððð5 class: 3ð5e ADLLITBOOL value TRUE

| ððððð138: len ððð8 class: 3ð56 ADLLITINT value ððððððð1

| ððððð14ð: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððð148: len ððð8 class: 3ð56 ADLLITINT value ððððððð2

| ððððð15ð: len ððð8 class: 3ð56 ADLLITINT value ðððððð1f

| ððððð158: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððð16ð: len ððð5 class: 3ð5e ADLLITBOOL value FALSE

| ððððð165: len ððð5 class: 3ð5e ADLLITBOOL value FALSE

| ððððð16a: len ððð5 class: 3ð5e ADLLITBOOL value FALSE

| ððððð16f: len ððð6 class: ðððc CODPNT value 3ð14 ADLBINARY

| ððððð175: len ðð1c class: 3ð1b ADLSEQUENCE next ðððððððð name ððððð191 attributes ðððððððð when ðððððððð

| fldsiz ððððð199of ððððð1a1

| Figure 17 (Part 1 of 3). SAMPLE_G.LST - ADLDCLSPC and Messages from Generate

 Appendix A. DD&C Sample Programs 155

| ððððð191: len ððð8 class: 3ð3c ADLID value "CREC"

| ððððð199: len ððð8 class: 3ð3f ADLFLDSIZ value ðððððð3ð

| ððððð1a1: len ðð18 class: 3ð13 ADLCHARSFX next ððððð1b9 name ððððð2ð8 attributes ððððð214 when ðððððððð

| fldsiz ððððð23c

| ððððð1b9: len ðð18 class: 3ð14 ADLBINARY next ðððððððð name ððððð1d1 attributes ððððð1db when ðððððððð

| fldsiz ððððð2ðð

| ððððð1d1: len ððða class: 3ð3c ADLID value "NUMBER"

| ððððð1db: len ðððc class: 3ð41 ADLPRECISION next ððððð1e7 value ððððð1f8

| ððððð1e7: len ðððc class: 3ð28 ADLBYTRVS next ðððððððð value ððððð1f3

| ððððð1f3: len ððð5 class: 3ð5e ADLLITBOOL value TRUE

| ððððð1f8: len ððð8 class: 3ð56 ADLLITINT value ðððððððf

| ððððð2ðð: len ððð8 class: 3ð3f ADLFLDSIZ value ðððððð1ð

| ððððð2ð8: len ðððc class: 3ð3c ADLID value "INITIALS"

| ððððð214: len ðððc class: 3ð3b ADLMAXLEN next ððððð22ð value ððððð234

| ððððð22ð: len ðððc class: 3ð34 ADLCCSID next ðððððððð value ððððð22c

| ððððð22c: len ððð8 class: 3ð56 ADLLITINT value ððððð1b5

| ððððð234: len ððð8 class: 3ð56 ADLLITINT value ððððððð4

| ððððð23c: len ððð8 class: 3ð3f ADLFLDSIZ value ðððððð2ð

| ððððð244: len ðð14 class: 3ð4f ADLDEFAULT next ððððð258 name ðððððððð attributes ððððð367 type ððððð3b7

| ððððð258: len ðð14 class: 3ð4f ADLDEFAULT next ðððððððð name ðððððððð attributes ððððð26c type ððððð361

| ððððð26c: len ðððc class: 3ð2c ADLCOMPLEX next ððððð278 value ððððð35c

| ððððð278: len ðððc class: 3ð2d ADLCNSTR next ððððð284 value ððððð357

| ððððð284: len ðððc class: 3ð5f ADLFIT next ððððð29ð value ððððð34f

| ððððð29ð: len ðððc class: 3ð41 ADLPRECISION next ððððð29c value ððððð347

| ððððð29c: len ðððc class: 3ð44 ADLSCALE next ððððð2a8 value ððððð33f

| ððððð2a8: len ðððc class: 3ð46 ADLSGNLOC next ððððð2b4 value ððððð337

| ððððð2b4: len ðððc class: 3ð47 ADLSGNMNS next ððððð2cð value ððððð3ða

| ððððð2cð: len ðððc class: 3ð48 ADLSGNPLS next ððððð2cc value ððððð2dd

| ððððð2cc: len ðððc class: 3ð4a ADLSIGNED next ðððððððð value ððððð2d8

| ððððð2d8: len ððð5 class: 3ð5e ADLLITBOOL value TRUE

| ððððð2dd: len ðð14 class: 3ððb ADLCNS next ðððððððð name ðððððððð attributes ððððð2f1 value ððððð3ð5

| ððððð2f1: len ðððc class: 3ð2b ADLLENGTH next ðððððððð value ððððð2fd

| ððððð2fd: len ððð8 class: 3ð56 ADLLITINT value ððððððð1

| ððððð3ð5: len ððð5 class: 3ð5b ADLLITHEX value "cð"

| ððððð3ða: len ðð14 class: 3ððb ADLCNS next ðððððððð name ðððððððð attributes ððððð31e value ððððð332

| ððððð31e: len ðððc class: 3ð2b ADLLENGTH next ðððððððð value ððððð32a

| ððððð32a: len ððð8 class: 3ð56 ADLLITINT value ððððððð1

| ððððð332: len ððð5 class: 3ð5b ADLLITHEX value "dð"

| ððððð337: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððð33f: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððð347: len ððð8 class: 3ð56 ADLLITINT value ðððððððf

| ððððð34f: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððð357: len ððð5 class: 3ð5e ADLLITBOOL value FALSE

| ððððð35c: len ððð5 class: 3ð5e ADLLITBOOL value FALSE

| ððððð361: len ððð6 class: ðððc CODPNT value 3ð17 ADLPACKED

| ððððð367: len ðððc class: 3ð34 ADLCCSID next ððððð373 value ððððð3af

| ððððð373: len ðððc class: 3ðð1 ADLJUSTIFY next ððððð37f value ððððð3a7

| ððððð37f: len ðððc class: 3ð2b ADLLENGTH next ððððð38b value ððððð39f

| ððððð38b: len ðððc class: 3ððc ADLUNITLEN next ðððððððð value ððððð397

| ððððð397: len ððð8 class: 3ð56 ADLLITINT value ððððððð8

| ððððð39f: len ððð8 class: 3ð56 ADLLITINT value ððððððð1

| Figure 17 (Part 2 of 3). SAMPLE_G.LST - ADLDCLSPC and Messages from Generate

156 SdU Data Description and Conversion

| ððððð3a7: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððð3af: len ððð8 class: 3ð56 ADLLITINT value ðððððððð

| ððððð3b7: len ððð6 class: ðððc CODPNT value 3ð11 ADLCHAR

| ððððð3bd: len ðð1c class: 3ð1b ADLSEQUENCE next ðððððððð name ððððð3d9 attributes ðððððððð when ðððððððð

| fldsiz ððððð3e5of ððððð3ed

| ððððð3d9: len ðððc class: 3ð3c ADLID value "COBOLREC"

| ððððð3e5: len ððð8 class: 3ð3f ADLFLDSIZ value ðððððð3ð

| ððððð3ed: len ðð18 class: 3ð11 ADLCHAR next ððððð4ð5 name ððððð443 attributes ððððð44f when ðððððððð

| fldsiz ððððð477

| ððððð4ð5: len ðð18 class: 3ð17 ADLPACKED next ðððððððð name ððððð41d attributes ððððð427 when ðððððððð

| fldsiz ððððð43b

| ððððð41d: len ððða class: 3ð3c ADLID value "NUMBER"

| ððððð427: len ðððc class: 3ð41 ADLPRECISION next ðððððððð value ððððð433

| ððððð433: len ððð8 class: 3ð56 ADLLITINT value ððððððð5

| ððððð43b: len ððð8 class: 3ð3f ADLFLDSIZ value ðððððð18

| ððððð443: len ðððc class: 3ð3c ADLID value "INITIALS"

| ððððð44f: len ðððc class: 3ð2b ADLLENGTH next ððððð45b value ððððð46f

| ððððð45b: len ðððc class: 3ð34 ADLCCSID next ðððððððð value ððððð467

| ððððð467: len ððð8 class: 3ð56 ADLLITINT value ððððð1f4

| ððððð46f: len ððð8 class: 3ð56 ADLLITINT value ððððððð3

| ððððð477: len ððð8 class: 3ð3f ADLFLDSIZ value ðððððð18

| Figure 17 (Part 3 of 3). SAMPLE_G.LST - ADLDCLSPC and Messages from Generate

 Appendix A. DD&C Sample Programs 157

| 5. Generate ADL Source Output - SAMPLE.GEN
| Figure 18 shows the ADL source output that is produced by the Generate function.
| This ADL source is generated from the encoded ADL statements in the ADL Declare
| Space object.

| DECLARE

| BEGIN; /\ declare \/

| /\defaults\/

| DEFAULT CHAR CCSID(ð) JUSTIFY(ð) LENGTH(1) UNITLEN(8);

| DEFAULT PACKED COMPLEX(FALSE) CONSTRAINED(FALSE) FIT(ð) PRECISION(

| 15) SCALE(ð) SGNLOC(ð) SGNMNS(x'D') SGNPLS(x'C') SIGNED(TRUE);

| COBOLREC: SEQUENCE /\ size: 48 \/

| BEGIN; /\sequence\/

| INITIALS: CHAR LENGTH(3) CCSID(5ðð); /\ size: 24 \/

| NUMBER: PACKED PRECISION(5); /\ size: 24 \/

| END; /\sequence\/

| END; /\ declare \/

| DECLARE

| BEGIN; /\ declare \/

| /\defaults\/

| DEFAULT BINARY BYTRVS(FALSE) COMPLEX(FALSE) CONSTRAINED(FALSE) FIT(

| ð) PRECISION(31) RADIX(2) SCALE(ð) SGNCNV(1) SIGNED(TRUE);

| DEFAULT CHARSFX CCSID(ð) MAXALC(TRUE) MAXLEN(1) UNITLEN(8);

| CREC: SEQUENCE /\ size: 48 \/

| BEGIN; /\sequence\/

| INITIALS: CHARSFX MAXLEN(4) CCSID(437); /\ size: 32 \/

| NUMBER: BINARY PRECISION(15) BYTRVS(TRUE); /\ size: 16 \/

| END; /\sequence\/

| END; /\ declare \/

| Figure 18. SAMPLE.GEN - ADL Source Produced by the Generate Function

158 SdU Data Description and Conversion

| Sample Program Showing the Use of The Conversion Plan Builder
| The following sample program shows how to use DD&C for Windows to execute a
| planned conversion.

| 6. C Source Code for the Conversion Plan Executor - SAMPLE2.C
| SAMPLE2.C calls the Conversion Plan Executor to convert data according to the con-
| version plans created by the Conversion Plan Builder in SAMPLE1.

| Figure 19 shows the C source code for the Sample2 program.

| #pragma title ("SAMPLE2")

| /\\/

| /\ \/

| /\ PRODUCT = Data Description and Conversion \/

| /\ \/

| /\ SOURCE FILE NAME = Sample2.C \/

| /\ \/

| /\ DESCRIPTIVE NAME = Conversion Plan Executor sample \/

| /\ \/

| /\ FUNCTION = This sample program performs the following functions: \/

| /\ \/

| /\ 1. Calls the DD&C functions of the conversion plan executor to \/

| /\ convert data based on the conversion plans created by the \/

| /\ SAMPLE1 program. \/

| /\ 2. Hex string C1C2C3ð1234C will be converted with specified \/

| /\ plan COBOL_TO_C into the hex string 414243ðððD2ð4. \/

| /\ 3. Hex string 414243ðððD2ð4 will be converted with the \/

| /\ specified plan C_TO_COBOL into the hex string C1C2C3ð1234C. \/

| /\ 4. The result will be printed on standard output. \/

| /\ \/

| /\ INPUTS = SAMPLE.SPC: File containing conversion plan. This file was \/

| /\ created by the Sample1 program. \/

| /\ \/

| /\ OUTPUTS = The following will be printed to the standard output: \/

| /\ \/

| /\ Converted value for plan COBOL_TO_C: 414243ððd2ð4 \/

| /\ Converted value for plan C_TO_COBOL: c1c2c3ð1234c \/

| /\ \/

| /\ NOTES = \/

| /\ \/

| /\ DEPENDENCIES = This program was compiled on OS/2, AIX, Windows NT 3.51, \/

| /\ and Windows 95 systems using the IBM VisaulAge compilers. \/

| /\ Changes may be required to the Windows and OS/2 header \/

| /\ statements below when using a different compiler. \/

| /\ \/

| /\ The DD&C path statements must be set according to the \/

| /\ Getting Started book that is part of the Cobol \/

| /\ documentation. \/

| /\ \/

| /\ RESTRICTIONS = None \/

| /\ \/

| /\ ENTRY POINTS = main() \/

| /\ \/

| /\ \/

| /\\/

| Figure 19 (Part 1 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

 Appendix A. DD&C Sample Programs 159

| #pragma page ()

| /\\/

| /\ Header Files. \/

| /\\/

| /\--\/

| /\ The following code adds the Windows header if this program is compiled \/

| /\ under the Windows operating system. The following lines can be deleted \/

| /\ if this is not being compiled under Windows NT or Windows 95 \/

| /\--\/

| #if defined(__WINDOWS__) /\ If compiled using Windows compiler \/

| #include <windows.h> /\ include Windows header file \/

| #endif /\ End if statement \/

| /\--\/

| /\ The following code adds OS/2 header definitions if this program is \/

| /\ compiled under the OS/2 operating system. The following lines can be \/

| /\ deleted if this is not being compiled under OS/2. \/

| /\--\/

| #if defined(__OS2__) /\ If compiled using OS/2 compiler \/

| #define INCL_BASE /\ All of OS/2 Base \/

| #define INCL_NOPMAPI /\ No presentation manager functions \/

| #include <os2.h> /\ Include OS/2 header file \/

| #endif /\ End if statement \/

| /\---------------- C Library Header --\/

| #include <stdio.h>

| #include <memory.h>

| #include <string.h>

| #include <stdlib.h>

| #include <ctype.h>

| #include <io.h>

| #pragma page ()

| /\\/

| /\ DD&C global header \/

| /\\/

| #define FMT_NO_DCLXLRIFC FMT_NO_DCLXLRIFC

| /\ exclude the Declaration Translator

| and Generate function prototypes and

| their declarations \/

| #define FMT_NO_CPB FMT_NO_CPB /\ exclude the Conversion Plan Builder

| function prototypes and

| their declarations \/

| #define FMT_NO_LCF FMT_NO_LCF /\ exclude the Low Level Conversion

| Functions function prototypes and

| their declarations \/

| #include "fmt.h"

| Figure 19 (Part 2 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

160 SdU Data Description and Conversion

| /\\/

| /\ Define length of input and output buffer \/

| /\\/

| #define BUFFER_LENGTH 6

| /\\/

| /\ Enumeration to identify the appropriate CPEX function \/

| /\\/

| enum Execute { INIT,

| CONVERT,

| TERM

| };

| /\\/

| /\ \/

| /\ The function PrintCtok prints the condition token and the ADL \/

| /\ communication area after an error occured in a conversion plan executor \/

| /\ function. \/

| /\ \/

| /\\/

| void PrintCtok(PFMTCTOK pFeedBack, PFMTADLCA pMyIsInfo, enum Execute Type)

| {

| switch (Type)

| {

| case INIT : printf("Error in Conversion Plan Executor Init.\n");

| break;

| case CONVERT : printf("Error in Conversion Plan Executor Convert.\n");

| break;

| case TERM : printf("Error in Conversion Plan Executor Term.\n");

| break;

| } /\ endswitch \/

| printf("The Condition Token has the following contents:\n");

| printf("Message Severity %d Number %d\n",pFeedBack->Condition_ID.usMsgSev,

| pFeedBack->Condition_ID.usMsgNo);

| printf("Service Condition Case %d\n", pFeedBack->fCase);

| printf("Condition Severity %d\n", pFeedBack->fSeverity);

| printf("Control %d\n", pFeedBack->fControl);

| printf("Facility ID %c%c%c\n",pFeedBack->uchFacility_ID⅛ð‘,

| pFeedBack->uchFacility_ID⅛1‘,

| pFeedBack->uchFacility_ID⅛2‘);

| Figure 19 (Part 3 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

 Appendix A. DD&C Sample Programs 161

| /\\/

| /\ Check whether an ADL exception occurred. \/

| /\\/

| if (pFeedBack->Condition_ID.usMsgNo == CPX_ADL_EXCEPTION_SEV2 ||

| pFeedBack->Condition_ID.usMsgNo == CPX_ADL_EXCEPTION_SEV3)

| {

| if (Type == INIT)

| {

| printf("ADL exception %d\n", pFeedBack->pI_S_Info.ulAdlExId);

| } /\ endif \/

| else

| {

| printf("The ADL communication area has the following contents:\n");

| printf("ADL exception: %d\n", pMyIsInfo->lExId);

| printf("Severity of ADL exception: %d\n", pMyIsInfo->usSevCod);

| /\ The Severity of the ADL \/

| /\ exception has the same value as \/

| /\ the message severity \/

| /\ (Feedback.Condition_ID.usMsgSev \/

| printf("Name of processed plan: %.255s\n",

| pMyIsInfo->PlanId.uchData);

| printf("Number of processed PLAN statement: %d\n",

| pMyIsInfo->lPlanStmt);

| printf("Input data portion that caused the error: %.255s\n"

| , pMyIsInfo->InpErrDta.uchData);

| printf("Source identifier of processed assignment statement: %.255s\n"

| , pMyIsInfo->SrcFldId.uchData);

| printf("Target identifier of processed assignment statement: %.255s\n"

| , pMyIsInfo->TrgFldId.uchData);

| } /\ endelse \/

| } /\ endif \/

| return;

| }

| /\\/

| /\ MAIN function \/

| /\\/

| int main()

| {

| Figure 19 (Part 4 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

162 SdU Data Description and Conversion

| /\\/

| /\ Local Variable definitions. \/

| /\\/

| FMTCTOK FeedBack; /\ DD&C Feed Back area \/

| FMTADLCA MyIsInfo; /\ ADL communications area \/

| PVOID pCnvPlnSpc; /\ Ptr to Conversion Plan Space \/

| FILE \CnvPlnSpcHandle; /\ Handle to file that will hold \/

| /\ conversion plan \/

| ULONG ulLength; /\ Length of conversion plan \/

| ULONG ulCnvPlnSpcHdl; /\ Handle to conversion plan space\/

| PBYTE \ppInputData = ð; /\ Ptr to array that contains \/

| /\ address of input parameters \/

| PBYTE \ppOutputData = ð; /\ Ptr to array that contains \/

| /\ address of output parameters \/

| PBYTE pInValue = ð; /\ Ptr to Buffer for input value \/

| PBYTE pOutValue = ð; /\ Ptr to Buffer for output value \/

| CHAR Buffer⅛ BUFFER_LENGTH \ 2 ‘; /\ Length of buffer \/

| CHAR EBCDIC⅛‘ = { ðxC1,ðxC2,ðxC3,ðxð1,ðx23,ðx4C }; /\ EBCDIC chars \/

| CHAR ASCII⅛‘ = { ðx41,ðx42,ðx43,ðxðð,ðxD2,ðxð4 }; /\ ASCII chars \/

| int k; /\ Variable used for couter \/

| /\\/

| /\ Read the conversion plan space from file SAMPLE.SPC \/

| /\\/

| CnvPlnSpcHandle = fopen("SAMPLE.SPC","rb");

| ulLength = _filelength(fileno(CnvPlnSpcHandle));

| pCnvPlnSpc = (PVOID)calloc(ulLength, sizeof(CHAR));

| fread(pCnvPlnSpc, sizeof(CHAR), ulLength, CnvPlnSpcHandle);

| fclose(CnvPlnSpcHandle);

| /\\/

| /\ Call Conversion Plan Executor Initialization \/

| /\\/

| FMTCPXI(pCnvPlnSpc, // PBYTE pCnvPlnSpc

| &ulCnvPlnSpcHdl, // PULONG pulCnvPlnSpcHdl

| &FeedBack); // PFMTCTOK pFeedback

| Figure 19 (Part 5 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

 Appendix A. DD&C Sample Programs 163

| /\\/

| /\ Check the Condition Token \/

| /\\/

| if (FeedBack.Condition_ID.usMsgNo != CPX_NO_ERROR)

| {

| PrintCtok(&FeedBack, NULL, INIT);

| } /\ endif \/

| else

| {

| /\\\/

| /\ Initialize ADL Communication Area \/

| /\\\/

| FeedBack.pI_S_Info.pAdlCommArea = &MyIsInfo;

| /\\\/

| /\ Alloc input and output buffer \/

| /\\\/

| pInValue = malloc(BUFFER_LENGTH);

| pOutValue = malloc(BUFFER_LENGTH);

| ppInputData = malloc(sizeof(PBYTE));

| ppOutputData = malloc(sizeof(PBYTE));

| /\\\/

| /\ Call Conversion Plan Executor Convert \/

| /\ In this conversion the plan COBOL_TO_C is executed. The input data \/

| /\ are : \/

| /\ "ABC" in international EBCDIC format -> 'ðxC1C2C3' \/

| /\ 1234 in PACKED PRECISION(5) format -> 'ðxð1234C' \/

| /\ \/

| /\ The output data after conversion should be: \/

| /\ "ABC" in Latin PC Data format + suffix -> 'ðx414243ðð' \/

| /\ 1234 in BINARY bytereversed format -> 'ðxD2ð4' \/

| /\\\/

| memcpy(pInValue, EBCDIC, sizeof(EBCDIC));

| memset(pOutValue, ð, BUFFER_LENGTH);

| ppInputData⅛ð‘ = pInValue;

| ppOutputData⅛ð‘ = pOutValue;

| FMTCPXC(

| ulCnvPlnSpcHdl, // ULONG ulCnvPlnSpcHdl

| 1ð, // ULONG ulPlnNamLength

| "COBOL_TO_C", // PCHAR pPlnNam

| 1, // ULONG ulInputParmNum

| ppInputData, // PBYTE \ppInputData

| Figure 19 (Part 6 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

164 SdU Data Description and Conversion

| 1, // ULONG ulOutputParmNum

| ppOutputData, // PBYTE \ppInputData

| &FeedBack); // PFMTCTOK pFeedBack

| if (FeedBack.Condition_ID.usMsgNo != CPX_NO_ERROR)

| {

| /\\/

| /\ An error occured. Print the condition token \/

| /\\/

| PrintCtok(&FeedBack, &MyIsInfo, CONVERT);

| } /\ endif \/

| else

| {

| /\\/

| /\ Print the converted value \/

| /\\/

| printf("Converted value for plan COBOL_TO_C: ");

| for(k=ð; k < BUFFER_LENGTH ;k++)

| {

| printf("%ð2x",pOutValue⅛k‘);

| }

| printf(" \n");

| } /\ endelse \/

| /\\\/

| /\ Call Conversion Plan Executor Convert \/

| /\ In this conversion the plan C_TO_COBOL is executed. The input data \/

| /\ are : \/

| /\ "ABC" in Latin PC Data format + suffix -> 'ðx414243ðð' \/

| /\ 1234 in BINARY bytereversed format -> 'ðxD2ð4' \/

| /\ \/

| /\ The output data after conversion should be: \/

| /\ "ABC" in international EBCDIC format -> 'ðxC1C2C3' \/

| /\ 1234 in PACKED PRECISION(5) format -> 'ðxð1234C' \/

| /\\\/

| memcpy(pInValue, ASCII, sizeof(ASCII));

| memset(pOutValue, ð, BUFFER_LENGTH);

| ppInputData⅛ð‘ = pInValue;

| ppOutputData⅛ð‘ = pOutValue;

| FMTCPXC(

| ulCnvPlnSpcHdl, // ULONG ulCnvPlnSpcHdl

| 1ð, // ULONG ulPlnNamLength

| "C_TO_COBOL", // PCHAR pPlnNam

| Figure 19 (Part 7 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

 Appendix A. DD&C Sample Programs 165

| 1, // ULONG ulInputParmNum

| ppInputData, // PBYTE \apInputData

| 1, // ULONG ulOutputParmNum

| ppOutputData, // PBYTE \apInputData

| &FeedBack); // PFMTCTOK pFeedBack

| if (FeedBack.Condition_ID.usMsgNo != CPX_NO_ERROR)

| {

| /\\/

| /\ An error occured. Print the condition token \/

| /\\/

| PrintCtok(&FeedBack, &MyIsInfo, CONVERT);

| } /\ endif \/

| else

| {

| /\\/

| /\ Print the converted value \/

| /\\/

| printf("Converted value for plan C_TO_COBOL: ");

| for(k=ð; k < BUFFER_LENGTH ;k++)

| {

| printf("%ð2x",pOutValue⅛k‘);

| }

| } /\ endelse \/

| /\\\/

| /\ Call Conversion Plan Executor Termination \/

| /\\\/

| FMTCPXT(

| ulCnvPlnSpcHdl, // ULONG ulCnvPlnSpcHdl

| &FeedBack); // PFMTCTOK pFeedBack

| /\\\/

| /\ Check the Condition Token \/

| /\\\/

| if (FeedBack.Condition_ID.usMsgNo != CPX_NO_ERROR)

| {

| PrintCtok(&FeedBack, NULL, TERM);

| } /\ endif \/

| } /\ endelse \/

| Figure 19 (Part 8 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

166 SdU Data Description and Conversion

| /\\/

| /\ Free allocated resources \/

| /\\/

| if (pCnvPlnSpc != NULL) {

| free(pCnvPlnSpc);

| } /\ endif \/

| if (pInValue != NULL) {

| free(pInValue);

| } /\ endif \/

| if (pOutValue != NULL) {

| free(pOutValue);

| } /\ endif \/

| if (ppInputData != NULL) {

| free(ppInputData);

| } /\ endif \/

| if (ppOutputData != NULL) {

| free(ppOutputData);

| } /\ endif \/

| return ð;

| }

| Figure 19 (Part 9 of 9). SAMPLE2.C - C Source Code for the Conversion Plan Executor

 Appendix A. DD&C Sample Programs 167

| Sample Program Showing a User Exit
| The following two examples demonstrate the use of the DD&C for Windows User Exit.

| 7. ADL Source Input - USEREXIT.ADL
| Figure 20 shows the ADL source statements that are used as input to the sample User
| Exit program.

| /\\/

| /\ PRODUCT = Data Description and Conversion \/

| /\ SOURCE FILE NAME = USEREXIT.ADL \/

| /\ ADL source file for the USER EXIT sample. \/

| /\\/

| /\\/

| /\ Declare statements for source data structure \/

| /\\/

| source: DECLARE

| BEGIN;

| number_of_char: CONSTANT 1ð;

| input1: CHAR LENGTH(number_of_char);

| END;

| /\--\/

| /\\/

| /\ Declare statements for target data structure \/

| /\\/

| target: DECLARE

| BEGIN;

| output1: CHAR LENGTH(2ð);

| output2: CHAR LENGTH(2ð);

| END;

| /\--\/

| /\\/

| /\ Declare statements for conversion plan \/

| /\\/

| user_exit_plan: PLAN (input1: INPUT,

| output1: OUTPUT,

| output2: OUTPUT)

| BEGIN;

| CALL '<userexit><ConvertToUpperOrLowerCaseChar>'

| (input1,

| LENGTH(input1),

| TRUE, /\ Convert to upper case character. \/

| output1,

| LENGTH(output1)

|);

| CALL '<userexit><ConvertToUpperOrLowerCaseChar>'

| (input1,

| LENGTH(input1),

| FALSE, /\ Convert to lower case character. \/

| output2,

| LENGTH(output2)

|);

| END;

| /\--\/

| Figure 20. USEREXIT.ADL - ADL Source Input for User Exit

168 SdU Data Description and Conversion

| 8. C Source Code - USEREXIT.C
| Figure 21 shows the C source code for the sample User Exit program. This is a user-
| provided program called from within the conversion plan to convert character strings
| from upper case to lower case, or lower case to upper case.

| #pragma title ("USEREXIT")

| /\\/

| /\ \/

| /\ PRODUCT = Data Description and Conversion for Windows \/

| /\ \/

| /\ SOURCE FILE NAME = USEREXIT.C \/

| /\ \/

| /\ DESCRIPTIVE NAME = User Exit Sample \/

| /\ \/

| /\ FUNCTION = This user exit sample program can be called via the \/

| /\ DDC for Windows user exit facility. \/

| /\ It converts any character string from upper case to lower case \/

| /\ characters or from lower case to upper case characters, \/

| /\ depending on a boolean parameter. \/

| /\ NOTES = \/

| /\ \/

| /\ DEPENDENCIES = Windows 95 or Windows NT 3.51 \/

| /\ \/

| /\ RESTRICTIONS = None \/

| /\ \/

| /\ ENTRY POINTS = ConvertToUpperOrLowerCaseChar \/

| /\ \/

| /\\/

| #pragma page ()

| /\--\/

| /\ The following code adds the Windows header if this program is compiled \/

| /\ under the Windows operating system. The following lines can be deleted \/

| /\ if this is not being compiled under Windows NT or Windows 95 \/

| /\--\/

| #if defined(__WINDOWS__) /\ If compiled using Windows compiler \/

| #include <windows.h> /\ include Windows header file \/

| #endif /\ End if statement \/

| /\--\/

| /\ The following code adds OS/2 header definitions if this program is \/

| /\ compiled under the OS/2 operating system. The following lines can be \/

| /\ deleted if this is not being compiled under OS/2. \/

| /\--\/

| #if defined(__OS2__) /\ If compiled using OS/2 compiler \/

| #define INCL_BASE /\ All of OS/2 Base \/

| #define INCL_NOPMAPI /\ No presentation manager functions \/

| #include <os2.h> /\ Include OS/2 header file \/

| #endif /\ End if statement \/

| Figure 21 (Part 1 of 3). USEREXIT.C - C Source Code for User Exit

 Appendix A. DD&C Sample Programs 169

| /\---------------- C Library Header --\/

| #include <stdlib.h>

| #include <stdio.h>

| #include <ctype.h>

| /\---------------- DDC Global Header ---\/

| #define FMT_NO_DCLXLRIFC FMT_NO_DCLXLRIFC /\ Exclude FMTB.H (DCLXLRIFC) \/

| #define FMT_NO_CPB FMT_NO_CPB /\ Exclude FMTC.H (CPB) \/

| #define FMT_NO_CPEX FMT_NO_CPEX /\ Exclude FMTD.H (CPEX) \/

| #define FMT_NO_LCF FMT_NO_LCF /\ Exclude FMTF.H (LCF) \/

| #define FMT_NO_UTL FMT_NO_UTL /\ Exclude FMTU.H (UTL) \/

| #include "fmt.h"

| VOID APIENTRY ConvertToUpperOrLowerCaseChar(LONG, VOID \⅛‘, PFMTCTOK);

| /\\/

| /\ User Exit Function (API) \/

| /\\/

| VOID APIENTRY ConvertToUpperOrLowerCaseChar(LONG lParamCount,

| VOID \pParameter⅛‘,

| PFMTCTOK pFeedBack)

| /\\/

| /\ Expected parameters: \/

| /\ lParamCount: 5 \/

| /\ pParameter⅛ð‘: Reference to the input charater field. \/

| /\ pParameter⅛1‘: Reference to the length of the input character field. \/

| /\ pParameter⅛2‘: Reference to a boolen condition. \/

| /\ pParameter⅛3‘: Reference to output character field. \/

| /\ pParameter⅛4‘: Reference to the length of the output character field. \/

| /\ pFeedBack: Reference to feedback area (NO ERROR: usMsgSev == ð). \/

| /\\/

| {

| /\\\/

| /\ Declaration and initialization of variables. \/

| /\\\/

| INT i;

| INT CharToConvert;

| PCHAR pImputCharField = (PCHAR)(pParameter⅛ð‘);

| LONG lByteSizeOfInputChar = \((PLONG)pParameter⅛1‘);

| BOOL fToUpperCaseLetter = \((PBOOL)pParameter⅛2‘);

| PCHAR pOutputCharField = (PCHAR)(pParameter⅛3‘);

| LONG lByteSizeOfOutputChar = \((PLONG)pParameter⅛4‘);

| pFeedBack->Condition_ID.usMsgSev = ð;

| pFeedBack->Condition_ID.usMsgNo = ð;

| Figure 21 (Part 2 of 3). USEREXIT.C - C Source Code for User Exit

170 SdU Data Description and Conversion

| /\\\/

| /\ Check buffer sizes and parameter count \/

| /\\\/

| if ((lByteSizeOfInputChar <= lByteSizeOfOutputChar) &&

| (lParamCount == 5))

| {

| if (fToUpperCaseLetter == TRUE)

| {

| /\\\/

| /\ Convert all lower case character to upper case character \/

| /\\\/

| for (i = ð; i < lByteSizeOfInputChar; i++)

| {

| CharToConvert = (INT)(\pImputCharField++);

| CharToConvert = toupper(CharToConvert);

| \pOutputCharField++ = (CHAR)CharToConvert;

| } /\ endfor \/

| }

| else

| {

| /\\\/

| /\ Convert all upper case character to lower case character \/

| /\\\/

| for (i = ð; i < lByteSizeOfInputChar; i++)

| {

| CharToConvert = (INT)(\pImputCharField++);

| CharToConvert = tolower(CharToConvert);

| \pOutputCharField++ = (CHAR)CharToConvert;

| } /\ endfor \/

| } /\ endif \/

| }

| else

| {

| /\\/

| /\ Set error conditions \/

| /\\/

| pFeedBack->Condition_ID.usMsgSev = 3;

| pFeedBack->Condition_ID.usMsgNo = 2647;

| } /\ endif \/

| }

| Figure 21 (Part 3 of 3). USEREXIT.C - C Source Code for User Exit

 Appendix A. DD&C Sample Programs 171

| 9. Parse USEREXIT.ADL and Create a Conversion Plan
| The following is a sample program to parse USEREXIT.ADL and create a conversion
| plan.

| #pragma title ("Sample3")

| /\\/

| /\ \/

| /\ PRODUCT = Data Description and Conversion \/

| /\ \/

| /\ SOURCE FILE NAME = Sample3.C \/

| /\ \/

| /\ DESCRIPTIVE NAME = Userexit Sample driver program \/

| /\ \/

| /\ FUNCTION = This sample program performs the following functions: \/

| /\ \/

| /\ 1. Calls the parse function (FMTPRS) of the ADL declaration \/

| /\ translator to parse the ADL source text USEREXIT.ADL into \/

| /\ the appropriate ADL declare and plan spaces. \/

| /\ 2. Calls the conversion plan builder (FMTCRCP) to create \/

| /\ conversion plan from parser generated declare and plan \/

| /\ spaces \/

| /\ 3. The conversion plan builder output (conversion plan space) \/

| /\ stored in the file SAMPLE3.SPC. (This conversion plan \/

| /\ will be used by the SAMPLE4.C program to do an actual \/

| /\ conversion. \/

| /\ \/

| /\ INPUTS = USEREXIT.ADL: File containing ADL text \/

| /\ \/

| /\ OUTPUTS = SAMPLE3.LST: File containing listing output from FMTPRS \/

| /\ (Parse) funtion. \/

| /\ SAMPLE3.SPC: File containing the conversion plan created by \/

| /\ the FMTCRCP (Create Conversion Plan) function. \/

| /\ \/

| /\ NOTES = \/

| /\ \/

| /\ DEPENDENCIES = This program was compiled on OS/2, AIX, Windows NT 3.51, \/

| /\ and Windows 95 systems using the IBM VisaulAge compilers. \/

| /\ Changes may be required to the Windows and OS/2 header \/

| /\ statements below when using a different compiler. \/

| /\ \/

| /\ The DD&C path statements must be set according to the \/

| /\ Getting Started book that is part of the Cobol \/

| /\ documentation. \/

| /\ \/

| /\ RESTRICTIONS = None \/

| /\ \/

| /\ ENTRY POINTS = main() \/

| /\ \/

| /\ \/

| /\\/

| Figure 22 (Part 1 of 7). SAMPLE3.C - Parse USEREXIT.ADL and Create a Conversion Plan

172 SdU Data Description and Conversion

| #pragma page ()

| /\\/

| /\ Header Files. \/

| /\\/

| /\--\/

| /\ The following code adds the Windows header if this program is compiled \/

| /\ under the Windows operating system. The following lines can be deleted \/

| /\ if this is not being compiled under Windows NT or Windows 95 \/

| /\--\/

| #if defined(__WINDOWS__) /\ If compiled using Windows compiler \/

| #include <windows.h> /\ include Windows header file \/

| #endif /\ End if statement \/

| /\--\/

| /\ The following code adds OS/2 header definitions if this program is \/

| /\ compiled under the OS/2 operating system. The following lines can be \/

| /\ deleted if this is not being compiled under OS/2. \/

| /\--\/

| #if defined(__OS2__) /\ If compiled using OS/2 compiler \/

| #define INCL_BASE /\ All of OS/2 Base \/

| #define INCL_NOPMAPI /\ No presentation manager functions \/

| #include <os2.h> /\ Include OS/2 header file \/

| #endif /\ End if statement \/

| /\---------------- C Library Header --\/

| #include <stdio.h>

| #include <memory.h>

| #include <string.h>

| #include <stdlib.h>

| #include <ctype.h>

| #pragma page ()

| /\\/

| /\ DDC global header file \/

| /\\/

| #include "fmt.h"

| /\\/

| /\ Define ADLDCLSPC and ADLPLNSPC buffer length \/

| /\\/

| #define BUFLEN_ADLDCLSPC 64ððð

| #define BUFLEN_ADLPLNSPC 64ððð

| #define BUFLEN_CNVPLNSPC 5ððð

| Figure 22 (Part 2 of 7). SAMPLE3.C - Parse USEREXIT.ADL and Create a Conversion Plan

 Appendix A. DD&C Sample Programs 173

| /\\/

| /\ Enumeration to identify the appropriate CPEX function \/

| /\\/

| enum Execute { PARSE,

| GENERATE,

| INIT,

| CONVERT,

| TERM

| };

| /\\/

| /\ \/

| /\ The function PrintCtok prints the condition token and the ADL \/

| /\ communication area after an error occured in a conversion plan executor \/

| /\ function. \/

| /\ \/

| /\\/

| void PrintCtok(PFMTCTOK pFeedBack, PFMTADLCA pMyIsInfo, enum Execute Type)

| {

| switch (Type)

| {

| case PARSE : printf("Error in Conversion Parser.\n");

| break;

| case GENERATE: printf("Error in Conversion Generate.\n");

| break;

| case INIT : printf("Error in Conversion Plan Executor Init.\n");

| break;

| case CONVERT : printf("Error in Conversion Plan Executor Convert.\n");

| break;

| case TERM : printf("Error in Conversion Plan Executor Term.\n");

| break;

| } /\ endswitch \/

| printf("The Condition Token has the following contents:\n");

| printf("Message Severity %d Number %d\n",pFeedBack->Condition_ID.usMsgSev,

| pFeedBack->Condition_ID.usMsgNo);

| printf("Service Condition Case %d\n", pFeedBack->fCase);

| printf("Condition Severity %d\n", pFeedBack->fSeverity);

| printf("Control %d\n", pFeedBack->fControl);

| printf("Facility ID %c%c%c\n",pFeedBack->uchFacility_ID⅛ð‘,

| pFeedBack->uchFacility_ID⅛1‘,

| pFeedBack->uchFacility_ID⅛2‘);

| Figure 22 (Part 3 of 7). SAMPLE3.C - Parse USEREXIT.ADL and Create a Conversion Plan

174 SdU Data Description and Conversion

| /\\/

| /\ Check whether an ADL exception occurred. \/

| /\\/

| if (pFeedBack->Condition_ID.usMsgNo == CPX_ADL_EXCEPTION_SEV2 ||

| pFeedBack->Condition_ID.usMsgNo == CPX_ADL_EXCEPTION_SEV3)

| {

| if (Type == INIT)

| {

| printf("ADL exception %d\n", pFeedBack->pI_S_Info.ulAdlExId);

| } /\ endif \/

| else

| {

| printf("The ADL communication area has the following contents:\n");

| printf("ADL exception: %d\n", pMyIsInfo->lExId);

| printf("Severity of ADL exception: %d\n", pMyIsInfo->usSevCod);

| /\ The Severity of the ADL \/

| /\ exception has the same value as \/

| /\ the message severity \/

| /\ (Feedback.Condition_ID.usMsgSev \/

| printf("Name of processed plan: %.255s\n",

| pMyIsInfo->PlanId.uchData);

| printf("Number of processed PLAN statement: %d\n",

| pMyIsInfo->lPlanStmt);

| printf("Input data portion that caused the error: %.255s\n"

| , pMyIsInfo->InpErrDta.uchData);

| printf("Source identifier of processed assignment statement: %.255s\n"

| , pMyIsInfo->SrcFldId.uchData);

| printf("Target identifier of processed assignment statement: %.255s\n"

| , pMyIsInfo->TrgFldId.uchData);

| } /\ endelse \/

| } /\ endif \/

| return;

| }

| /\\/

| /\ MAIN function \/

| /\\/

| int main()

| {

| Figure 22 (Part 4 of 7). SAMPLE3.C - Parse USEREXIT.ADL and Create a Conversion Plan

 Appendix A. DD&C Sample Programs 175

| /\\/

| /\ Local Variable definitions. \/

| /\\/

| FMTCTOK FeedBack; /\ DD&C Feed Back area \/

| PBYTE pAdlDclSpc; /\ Ptr to ADL Declare Space \/

| PBYTE pAdlPlnSpc; /\ Ptr to ADL Plan Space \/

| PBYTE \ppAdlDclSpcList = ð; /\ Ptr to array that contains \/

| /\ addresses of declare spaces \/

| PBYTE \ppDefaultAdlPlnSpcList = ð; /\ Ptr to array that contains \/

| /\ addresses of plan spaces \/

| PVOID pCnvPlnSpc = ð; /\ Ptr to Conversion Plan Space \/

| FMTCNSTKN Cnstkn; /\ Consistency Token \/

| FMTADLCA MyIsInfo; /\ ADL communications area \/

| FILE \CnvPlnSpcHandle; /\ Handle to file that will hold \/

| /\ conversion plan \/

| ULONG ulSpcLen; /\ Length of conversion plan \/

| CHAR pszAdlFileName⅛‘ = "USEREXIT.ADL"; /\ Userexit ADL file \/

| CHAR pszPListFileName⅛‘ = "SAMPLE3.LST"; /\ Parse listing file \/

| CHAR pszConvPlanSpaceFile⅛‘ = "SAMPLE3.SPC"; /\ Conversion Plan File \/

| /\\/

| /\ Get space for ADLDCLSPC and ADLPLNSPC. \/

| /\\/

| pAdlDclSpc = (PBYTE) malloc(BUFLEN_ADLDCLSPC);

| pAdlPlnSpc = (PBYTE) malloc(BUFLEN_ADLPLNSPC);

| /\\/

| /\ Call PARSE function of ADL Declaration Translator for ADL source text \/

| /\ to get ADLDCLSPC and ADLPLNSPC. \/

| /\ Type Manager id is set to ADL. \/

| /\ Note: Currently all CCSID's should be zero. \/

| /\\/

| FMTPRS (ADLDECLTRANSLATOR, // PBYTE pbDclXlrId

| ð, // FMTCCSID lParameterCCSID

| strlen(pszAdlFileName), // LONG lSrcFilNamLength

| pszAdlFileName, // PCHAR pchSrcFilNam

| ð, // FMTCCSID lSrcFilCCSID

| 8, // LONG lDclXlrOptLength

| "AUTOSKIP", // PCHAR pchDclXlrOpt

| 4, // LONG lLstOptLength

| "LIST", // PCHAR pchLstOpt

| strlen(pszPListFileName), // LONG lLstFilNamLength

| pszPListFileName, // PCHAR pchLstFilNam

| BUFLEN_ADLDCLSPC, // LONG lADLDclSpcLength

| pAdlDclSpc, // PBYTE pbADLDclSpc

| ð, // FMTCCSID lADLDclSpcCCSID

| &Cnstkn, // PFMTCNSTKN pbADLDclSpcCNSTKN

| BUFLEN_ADLPLNSPC, // LONG lADLPlnSpcLength

| pAdlPlnSpc, // PBYTE pbADLPlnSpc

| &FeedBack); // PFMTCTOK pFeedBack

| Figure 22 (Part 5 of 7). SAMPLE3.C - Parse USEREXIT.ADL and Create a Conversion Plan

176 SdU Data Description and Conversion

| /\\/

| /\ Check the Condition Token \/

| /\\/

| if (FeedBack.Condition_ID.usMsgNo != PRS_NO_ERROR)

| {

| PrintCtok(&FeedBack, NULL, PARSE);

| } /\ endif \/

| else

| {

| /\\\/

| /\ Get space for conversion plan space (CNVPLNSPC) \/

| /\\\/

| pCnvPlnSpc = malloc(BUFLEN_CNVPLNSPC);

| memset(pCnvPlnSpc, 'ð', BUFLEN_CNVPLNSPC);

| /\\\/

| /\ Initialize ADL Communication Area \/

| /\\\/

| FeedBack.pI_S_Info.pAdlCommArea = &MyIsInfo;

| /\\\/

| /\ Call Conversion Plan Builder \/

| /\\\/

| ppAdlDclSpcList = malloc(sizeof(PBYTE));

| ppAdlDclSpcList⅛ð‘ = pAdlDclSpc;

| ppDefaultAdlPlnSpcList = malloc(sizeof(PBYTE));

| ppDefaultAdlPlnSpcList⅛ð‘ = pAdlPlnSpc;

| FMTCRCP(

| 1, // ULONG ulAdlDclSpcCount

| ppAdlDclSpcList, // PBYTE \ppAdlDclSpcList

| ð, // ULONG ulUserAdlPlnSpcCount

| NULL, // PBYTE \ppUserAdlPlnSpcList

| 1, // ULONG ulDefaultAdlPlnSpcCount

| ppDefaultAdlPlnSpcList, // PBYTE \ppDefaultAdlPlnSpcList

| BUFLEN_CNVPLNSPC, // ULONG ulCnvPlnSpcLength

| pCnvPlnSpc, // PVOID pCnvPlnSpc

| ð, // ULONG ulFlagList

| &FeedBack); // PFMTCTOK pFeedback

| /\\\/

| /\ Check the Condition Token \/

| /\\\/

| if (FeedBack.Condition_ID.usMsgNo != CPB_NO_ERROR)

| {

| PrintCtok(&FeedBack, NULL, GENERATE);

| } /\ endif \/

| else

| {

| Figure 22 (Part 6 of 7). SAMPLE3.C - Parse USEREXIT.ADL and Create a Conversion Plan

 Appendix A. DD&C Sample Programs 177

| /\\/

| /\ Write conversion plan space into file \/

| /\\/

| CnvPlnSpcHandle = fopen(pszConvPlanSpaceFile,"wb");

| ulSpcLen = \((PULONG)pCnvPlnSpc); /\ Get length of the space out of \/

| /\ the first 4 Byte \/

| fwrite(pCnvPlnSpc, sizeof(CHAR), ulSpcLen , CnvPlnSpcHandle);

| fclose(CnvPlnSpcHandle);

| } /\ endelse \/

| } /\ endelse \/

| /\\/

| /\ Free allocated resources \/

| /\\/

| if (pAdlDclSpc != NULL) {

| free(pAdlDclSpc);

| } /\ endif \/

| if (pAdlPlnSpc != NULL) {

| free(pAdlPlnSpc);

| } /\ endif \/

| if (pCnvPlnSpc != NULL) {

| free(pCnvPlnSpc);

| } /\ endif \/

| if (ppAdlDclSpcList != NULL) {

| free(ppAdlDclSpcList);

| } /\ endif \/

| if (ppDefaultAdlPlnSpcList != NULL) {

| free(ppDefaultAdlPlnSpcList);

| } /\ endif \/

| return ð;

| }

| Figure 22 (Part 7 of 7). SAMPLE3.C - Parse USEREXIT.ADL and Create a Conversion Plan

178 SdU Data Description and Conversion

| 10. User Exit Conversion Plan Executor
| The following is a sample program that calls the Conversion Plan Executor to convert
| data according to the conversion plan created by SAMPLE.C. This plan calls the user
| exit function ConvertToUpperOrLowerCaseChar defined in USEREXIT.C.

| #pragma title ("SAMPLE4")

| /\\/

| /\ \/

| /\ PRODUCT = Data Description and Conversion \/

| /\ \/

| /\ SOURCE FILE NAME = Sample4.C \/

| /\ \/

| /\ DESCRIPTIVE NAME = Userexit Conversion Plan Executor sample \/

| /\ \/

| /\ FUNCTION = This sample program performs the following functions: \/

| /\ \/

| /\ 1. Calls the DD&C functions of the conversion plan executor to \/

| /\ convert data based on the conversion plans created by the \/

| /\ SAMPLE3.C program. \/

| /\ 2. Charater string "ABCDEabcde" will be converted to all \/

| /\ upper case charaters using the USEREXIT function \/

| /\ ConverToUpperOrLowerCaseChar \/

| /\ 3. Charater string "ABCDEabcde" will be converted to all \/

| /\ lower case charaters using the USEREXIT function \/

| /\ ConverToUpperOrLowerCaseChar \/

| /\ 4. The result will be printed to the standard output \/

| /\ \/

| /\ INPUTS = SAMPLE3.SPC: File containing conversion plan. This file was \/

| /\ created by the Sample3 program. \/

| /\ \/

| /\ OUTPUTS = The following will be printed to the standard output: \/

| /\ \/

| /\ The input string is ABCDEabcde \/

| /\ The string converted to upper case is ABCDEABCDE \/

| /\ The string converted to lower case is abcdeabcde \/

| /\ \/

| /\ NOTES = \/

| /\ \/

| /\ DEPENDENCIES = This program was compiled on OS/2, AIX, Windows NT 3.51, \/

| /\ and Windows 95 systems using the IBM VisaulAge compilers. \/

| /\ Changes may be required to the Windows and OS/2 header \/

| /\ statements below when using a different compiler. \/

| /\ \/

| /\ The DD&C path statements must be set according to the \/

| /\ Getting Started book that is part of the Cobol \/

| /\ documentation. \/

| /\ \/

| /\ RESTRICTIONS = None \/

| /\ ENTRY POINTS = main() \/

| /\ \/

| /\\/

| Figure 23 (Part 1 of 7). SAMPLE4.C - Call Conversion Plan Executor

 Appendix A. DD&C Sample Programs 179

| #pragma page ()

| /\\/

| /\ Header Files. \/

| /\\/

| /\--\/

| /\ The following code adds the Windows header if this program is compiled \/

| /\ under the Windows operating system. The following lines can be deleted \/

| /\ if this is not being compiled under Windows NT or Windows 95 \/

| /\--\/

| #if defined(__WINDOWS__) /\ If compiled using Windows compiler \/

| #include <windows.h> /\ include Windows header file \/

| #endif /\ End if statement \/

| /\--\/

| /\ The following code adds OS/2 header definitions if this program is \/

| /\ compiled under the OS/2 operating system. The following lines can be \/

| /\ deleted if this is not being compiled under OS/2. \/

| /\--\/

| #if defined(__OS2__) /\ If compiled using OS/2 compiler \/

| #define INCL_BASE /\ All of OS/2 Base \/

| #define INCL_NOPMAPI /\ No presentation manager functions \/

| #include <os2.h> /\ Include OS/2 header file \/

| #endif /\ End if statement \/

| /\---------------- C Library Header --\/

| #include <stdio.h>

| #include <memory.h>

| #include <string.h>

| #include <stdlib.h>

| #include <ctype.h>

| #include <io.h>

| #pragma page ()

| /\\/

| /\ DD&C global header \/

| /\\/

| #define FMT_NO_DCLXLRIFC FMT_NO_DCLXLRIFC

| /\ exclude the Declaration Translator

| and Generate function prototypes and

| their declarations \/

| #define FMT_NO_CPB FMT_NO_CPB /\ exclude the Conversion Plan Builder

| function prototypes and

| their declarations \/

| #define FMT_NO_LCF FMT_NO_LCF /\ exclude the Low Level Conversion

| Functions function prototypes and

| their declarations \/

| #include "fmt.h"

| Figure 23 (Part 2 of 7). SAMPLE4.C - Call Conversion Plan Executor

180 SdU Data Description and Conversion

| /\\/

| /\ Define length of input and output buffer \/

| /\\/

| #define MAX_INPUT_LENGTH 1ð

| #define MAX_OUTPUT_LENGTH 2ð

| /\\/

| /\ Enumeration to identify the appropriate CPEX function \/

| /\\/

| enum Execute { INIT,

| CONVERT,

| TERM

| };

| /\\/

| /\ \/

| /\ The function PrintCtok prints the condition token and the ADL \/

| /\ communication area after an error occured in a conversion plan executor \/

| /\ function. \/

| /\ \/

| /\\/

| void PrintCtok(PFMTCTOK pFeedBack, PFMTADLCA pMyIsInfo, enum Execute Type)

| {

| switch (Type)

| {

| case INIT : printf("Error in Conversion Plan Executor Init.\n");

| break;

| case CONVERT : printf("Error in Conversion Plan Executor Convert.\n");

| break;

| case TERM : printf("Error in Conversion Plan Executor Term.\n");

| break;

| default : printf("Error During conversion.\n");

| break;

| } /\ endswitch \/

| printf("The Condition Token has the following contents:\n");

| printf("Message Severity %d Number %d\n",pFeedBack->Condition_ID.usMsgSev,

| pFeedBack->Condition_ID.usMsgNo);

| printf("Service Condition Case %d\n", pFeedBack->fCase);

| printf("Condition Severity %d\n", pFeedBack->fSeverity);

| printf("Control %d\n", pFeedBack->fControl);

| printf("Facility ID %c%c%c\n",pFeedBack->uchFacility_ID⅛ð‘,

| pFeedBack->uchFacility_ID⅛1‘,

| pFeedBack->uchFacility_ID⅛2‘);

| Figure 23 (Part 3 of 7). SAMPLE4.C - Call Conversion Plan Executor

 Appendix A. DD&C Sample Programs 181

| /\\/

| /\ Check whether an ADL exception occurred. \/

| /\\/

| if (pFeedBack->Condition_ID.usMsgNo == CPX_ADL_EXCEPTION_SEV2 ||

| pFeedBack->Condition_ID.usMsgNo == CPX_ADL_EXCEPTION_SEV3)

| {

| if (Type == INIT)

| {

| printf("ADL exception %d\n", pFeedBack->pI_S_Info.ulAdlExId);

| } /\ endif \/

| else

| {

| printf("The ADL communication area has the following contents:\n");

| printf("ADL exception: %d\n", pMyIsInfo->lExId);

| printf("Severity of ADL exception: %d\n", pMyIsInfo->usSevCod);

| /\ The Severity of the ADL \/

| /\ exception has the same value as \/

| /\ the message severity \/

| /\ (Feedback.Condition_ID.usMsgSev \/

| printf("Name of processed plan: %.255s\n",

| pMyIsInfo->PlanId.uchData);

| printf("Number of processed PLAN statement: %d\n",

| pMyIsInfo->lPlanStmt);

| printf("Input data portion that caused the error: %.255s\n"

| , pMyIsInfo->InpErrDta.uchData);

| printf("Source identifier of processed assignment statement: %.255s\n"

| , pMyIsInfo->SrcFldId.uchData);

| printf("Target identifier of processed assignment statement: %.255s\n"

| , pMyIsInfo->TrgFldId.uchData);

| } /\ endelse \/

| } /\ endif \/

| return;

| }

| /\\/

| /\ MAIN function \/

| /\\/

| int main()

| {

| Figure 23 (Part 4 of 7). SAMPLE4.C - Call Conversion Plan Executor

182 SdU Data Description and Conversion

| /\\/

| /\ Local Variable definitions. \/

| /\\/

| FMTCTOK FeedBack; /\ DD&C Feed Back area \/

| FMTADLCA MyIsInfo; /\ ADL communications area \/

| PVOID pCnvPlnSpc; /\ Ptr to Conversion Plan Space \/

| FILE \CnvPlnSpcHandle; /\ Handle to file that will hold \/

| /\ conversion plan \/

| ULONG ulLength; /\ Length of conversion plan \/

| ULONG ulCnvPlnSpcHdl; /\ Handle to conversion plan space\/

| PBYTE ppInputData⅛1‘; /\ Pointer to input parameter \/

| PBYTE ppOutputData⅛2‘; /\ Pointer to output parameters \/

| CHAR pszInString⅛MAX_INPUT_LENGTH+1‘ = "ABCDEabcde"; /\ Input String \/

| CHAR pszOutString1⅛MAX_OUTPUT_LENGTH+1‘; /\ 1st Output string buffer \/

| CHAR pszOutString2⅛MAX_OUTPUT_LENGTH+1‘; /\ 2nd Output string buffer \/

| CHAR pszConvPlanSpaceFile⅛‘ = "SAMPLE3.SPC"; /\ Conversion plan \/

| /\ space File \/

| /\\/

| /\ Read the conversion plan space from file SAMPLE.SPC \/

| /\\/

| /\ -- Open the conversion Plan File for read -- \/

| CnvPlnSpcHandle = fopen(pszConvPlanSpaceFile,"rb");

| /\ -- Determine length of conversion plan -- \/

| ulLength = _filelength(fileno(CnvPlnSpcHandle));

| /\ -- Allocate space for Conversion Plan -- \/

| pCnvPlnSpc = (PVOID)calloc(ulLength, sizeof(CHAR));

| /\ -- Read conversion plan file into allocated space -- \/

| fread(pCnvPlnSpc, sizeof(CHAR), ulLength, CnvPlnSpcHandle);

| /\ -- Close conversion plan file. -- \/

| fclose(CnvPlnSpcHandle);

| /\\/

| /\ Call Conversion Plan Executor Initialization \/

| /\\/

| FMTCPXI(pCnvPlnSpc, // PBYTE pCnvPlnSpc

| &ulCnvPlnSpcHdl, // PULONG pulCnvPlnSpcHdl

| &FeedBack); // PFMTCTOK pFeedback

| Figure 23 (Part 5 of 7). SAMPLE4.C - Call Conversion Plan Executor

 Appendix A. DD&C Sample Programs 183

| /\\/

| /\ Check the Condition Token \/

| /\\/

| if (FeedBack.Condition_ID.usMsgNo != CPX_NO_ERROR)

| {

| PrintCtok(&FeedBack, NULL, INIT);

| } /\ endif \/

| else

| {

| /\\\/

| /\ Initialize ADL Communication Area \/

| /\\\/

| FeedBack.pI_S_Info.pAdlCommArea = &MyIsInfo;

| /\\\/

| /\ Zero out output string buffers \/

| /\\\/

| memset(pszOutString1, ð, MAX_OUTPUT_LENGTH);

| memset(pszOutString2, ð, MAX_OUTPUT_LENGTH);

| /\\\/

| /\ Set pointers for input and output strings \/

| /\\\/

| ppInputData⅛ð‘ = pszInString;

| ppOutputData⅛ð‘ = pszOutString1;

| ppOutputData⅛1‘ = pszOutString2;

| /\\\/

| /\ Call Conversion Plan Executor Convert \/

| /\ In this conversion the plan user_exit_plan is executed. The input is: \/

| /\ pszInString = "ABCDEabcde" \/

| /\ \/

| /\ The output data after conversion should be: \/

| /\ pszOutString1 = "ABCDEABCDE" \/

| /\ pszOutString2 = "abcdeabcde" \/

| /\\\/

| FMTCPXC(

| ulCnvPlnSpcHdl, // ULONG ulCnvPlnSpcHdl

| 14, // ULONG ulPlnNamLength

| "user_exit_plan", // PCHAR pPlnNam

| 1, // ULONG ulInputParmNum

| ppInputData, // PBYTE \ppInputData

| 2, // ULONG ulOutputParmNum

| ppOutputData, // PBYTE \ppInputData

| &FeedBack); // PFMTCTOK pFeedBack

| if (FeedBack.Condition_ID.usMsgNo != CPX_NO_ERROR)

| {

| Figure 23 (Part 6 of 7). SAMPLE4.C - Call Conversion Plan Executor

184 SdU Data Description and Conversion

| /\\/

| /\ An error occured. Print the condition token \/

| /\\/

| PrintCtok(&FeedBack, &MyIsInfo, CONVERT);

| } /\ endif \/

| else

| {

| /\\/

| /\ Print the converted strings \/

| /\\/

| printf("\nThe input string is %s\n", pszInString);

| printf("The string converted to upper case is %s\n", pszOutString1);

| printf("The string converted to lower case is %s\n", pszOutString2);

| } /\ endelse \/

| /\\\/

| /\ Call Conversion Plan Executor Termination \/

| /\\\/

| FMTCPXT(ulCnvPlnSpcHdl, /\ ULONG ulCnvPlnSpcHdl \/

| &FeedBack); /\ PFMTCTOK pFeedBack \/

| /\\\/

| /\ Check the Condition Token \/

| /\\\/

| if (FeedBack.Condition_ID.usMsgNo != CPX_NO_ERROR)

| {

| PrintCtok(&FeedBack, NULL, TERM);

| } /\ endif \/

| } /\ endelse \/

| /\\/

| /\ Free allocated resources \/

| /\\/

| if (pCnvPlnSpc != NULL) {

| free(pCnvPlnSpc);

| } /\ endif \/

| /\\/

| /\ Exit Program \/

| /\\/

| return ð;

| }

| Figure 23 (Part 7 of 7). SAMPLE4.C - Call Conversion Plan Executor

 Appendix A. DD&C Sample Programs 185

186 SdU Data Description and Conversion

Appendix B. Sample Programs in COBOL

The following examples use the COBOL language to demonstrate how to prepare a
planned conversion using DD&C.

Note that all COBOL comment lines must begin in column 7.

 \\

\ PRODUCT = Data Description and Conversion \

 \ \

\ SOURCE FILE NAME = USEREXIT.CBL \

 \ \

\ DESCRIPTIVE NAME = User Exit Sample \

 \ \

\ FUNCTION = This user exit sample program can be called via \

\ the DDC user exit facility. \

\ It converts any character string from upper case\

\ to lower case characters or from lower case to \

\ upper case characters, depending on a boolean \

 \ parameter. \

 \ \

\ ENTRY POINT = ConvertToUpperLowerCaseChar \

 \ \

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. ConvertToUpperLowerCaseChar.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-PS2.

 OBJECT-COMPUTER. IBM-PS2.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 \\

\ Conversion tables and local variables \

 \\

ð1 UpperCase VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

ð5 UpperChar PICTURE X(1) OCCURS 26 TIMES

INDEXED BY J.

ð1 LowerCase VALUE IS "abcdefghijklmnopqrstuvwxyz".

ð5 LowerChar PICTURE X(1) OCCURS 26 TIMES

INDEXED BY L.

77 Switch PICTURE 9(6) USAGE IS BINARY.

77 ADLTrue PICTURE X(1) VALUE IS X"ð1".

 LINKAGE SECTION.

Figure 24 (Part 1 of 4). COBOL User Exit Sample

 Copyright IBM Corp. 1994, 1997 187

 \\

 \ Expected parameters: \

 \ ParamCount: 5 \

\ ParameterPtr(1) Reference to the input character field. \

\ ParameterPtr(2) Reference to the length of the input \

 \ character field. \

\ ParameterPtr(3) Reference to a boolean condition. \

\ ParameterPtr(4) Reference to output character field. \

\ ParameterPtr(5) Reference to the length of output \

 \ character field. \

\ ParameterPtr(6) Reference to feedback area \

\ (NO ERROR: MsgSev = ð). \

 \\

77 ParamCount PICTURE 9(6) USAGE IS BINARY.

 ð1 ParameterList.

ð5 ParameterPtr USAGE IS POINTER OCCURS 5 TIMES.

 ð1 FeedBack.

 ð5 Condition-ID.

1ð MsgSev PICTURE 9(2) USAGE IS BINARY.

1ð MsgNo PICTURE 9(2) USAGE IS BINARY.

 ð5 Case-Severity-Control PICTURE X.

 ð5 Facility-ID PICTURE X(3).

 ð5 I-S-Info.

1ð AdlExId PICTURE 9(6) USAGE IS BINARY.

1ð AdlCommAreaPtr REDEFINES AdlExId USAGE IS POINTER.

1ð User-ExitCtokPtr REDEFINES AdlExId USAGE IS POINTER.

 ð1 InputCharField.

ð5 InputChar PICTURE X(1) OCCURS 1 TO 256 TIMES

DEPENDING ON ByteSizeOfInputChar

INDEXED BY I.

77 ByteSizeOfInputChar PICTURE 9(6) USAGE IS BINARY.

77 ToUpperCaseLetter PICTURE X(1).

 ð1 OutputCharField.

ð5 OutputChar PICTURE X(1) OCCURS 1 TO 256 TIMES

DEPENDING ON ByteSizeOfOutputChar

INDEXED BY K.

77 ByteSizeOfOutputChar PICTURE 9(6) USAGE IS BINARY.

PROCEDURE DIVISION USING BY VALUE ParamCount

BY REFERENCE ParameterList

BY REFERENCE FeedBack.

 \\

\ Initialization of variables \

 \\

SET ADDRESS OF InputCharField TO ParameterPtr(1).

SET ADDRESS OF ByteSizeOfInputChar TO ParameterPtr(2).

SET ADDRESS OF ToUpperCaseLetter TO ParameterPtr(3).

SET ADDRESS OF OutputCharField TO ParameterPtr(4).

SET ADDRESS OF ByteSizeOfOutputChar TO ParameterPtr(5).

MOVE ð TO MsgSev OF Condition-ID IN FeedBack.

MOVE ð TO MsgNo OF Condition-ID IN FeedBack.

Figure 24 (Part 2 of 4). COBOL User Exit Sample

188 SdU Data Description and Conversion

 \\

\ Check buffer sizes and parameter count \

 \\

IF ByteSizeOfInputChar <= ByteSizeOfOutputChar AND

ParamCount = 5

 THEN

IF ToUpperCaseLetter = ADLTrue

 THEN

 \\

\ Convert all lower case characters to upper case characters \

 \\

PERFORM ToUpper VARYING I FROM 1 BY 1

UNTIL I > ByteSizeOfInputChar

 ELSE

 \\

\ Convert all upper case characters to lower case characters \

 \\

PERFORM ToLower VARYING I FROM 1 BY 1

UNTIL I > ByteSizeOfInputChar

 ELSE

 \\

\ Set error conditions \

 \\

MOVE 3 TO MsgSev OF Condition-ID IN FeedBack

MOVE 2647 TO MsgNo OF Condition-ID IN FeedBack

 END-IF.

 EXIT PROGRAM.

 ToUpper.

MOVE ð TO Switch.

SET K TO I.

MOVE Inputchar(I) TO OutputChar(K).

PERFORM VARYING J FROM 1 BY 1

UNTIL J > 26 OR Switch = 1

IF InputChar(I) = LowerChar(J)

 THEN

MOVE UpperChar(J) TO OutputChar(K)

MOVE 1 TO Switch

 END-IF

 END-PERFORM.

Figure 24 (Part 3 of 4). COBOL User Exit Sample

 Appendix B. Sample Programs in COBOL 189

 ToLower.

MOVE ð TO Switch.

SET K TO I.

MOVE Inputchar(I) TO OutputChar(K).

PERFORM VARYING L FROM 1 BY 1

UNTIL L > 26 OR Switch = 1

IF InputChar(I) = UpperChar(L)

 THEN

MOVE LowerChar(L) TO OutputChar(I)

MOVE 1 TO Switch

 END-IF

 END-PERFORM.

 END PROGRAM ConvertToUpperLowerCaseChar.

Figure 24 (Part 4 of 4). COBOL User Exit Sample

190 SdU Data Description and Conversion

ADL Declaration Translator and CPB Sample

 \\

\ PRODUCT = Data Description and Conversion \

 \ \

\ SOURCE FILE NAME = Sample1.CBL \

 \ \

\ DESCRIPTIVE NAME = ADL Declaration Translator and CPB sample \

 \ \

\ FUNCTION = This sample program calls the parse function of \

\ the ADL declaration translator to compile ADL source \

\ text SAMPLE.ADL into the appropriate ADL declare \

\ and plan spaces, calls the generate function of \

\ the ADL declaration translator to reproduce the \

\ ADL source file SAMPLE.GEN. The parse function's \

\ output is also used to call the conversion plan \

\ builder to create conversion plans from the encoded \

 \ descriptions. \

\ The conversion plan space generated as the output \

\ of the conversion plan builder is stored in the \

 \ file SAMPLEF. \

 \ \

 \\\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. SAMPLE1.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-PS2.

 OBJECT-COMPUTER. IBM-PS2.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT Sample-SPC ASSIGN TO SampleF

ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD Sample-SPC

RECORDING MODE IS F

RECORD CONTAINS 5ððð CHARACTERS.

 ð1 CnvPlnSpc PICTURE X(5ððð).

 WORKING-STORAGE SECTION.

Figure 25 (Part 1 of 7). COBOL ADL Declaration Translator and CPB Sample

 Appendix B. Sample Programs in COBOL 191

 \\

\ Work areas and values specific to this sample program \

 \\

77 BUFLEN-ADLDCLSPC PICTURE 9(6) USAGE IS BINARY

VALUE IS 64ððð.

77 BUFLEN-ADLPLNSPC PICTURE 9(6) USAGE IS BINARY

VALUE IS 64ððð.

77 BUFLEN-CNVPLNSPC PICTURE 9(6) USAGE IS BINARY

VALUE IS 5ððð.

77 UserAdlPlnSpcNull PICTURE 9(6) USAGE IS BINARY

VALUE IS ð.

 77 AdlDclSpc PICTURE X(64ððð).

 77 AdlPlnSpc PICTURE X(64ððð).

 \\

\ Return codes and ADL exception codes \

 \\

77 PRS-NO-ERROR PICTURE 9(2) USAGE BINARY VALUE IS ð.

77 GEN-NO-ERROR PICTURE 9(2) USAGE BINARY VALUE IS ð.

77 CPB-NO-ERROR PICTURE 9(2) USAGE BINARY VALUE IS ð.

 77 CPB-ADL-EXCEPTION-SEV2 PICTURE 9(6)

USAGE IS BINARY VALUE is 2.

 77 CPB-ADL-EXCEPTION-SEV3 PICTURE 9(6)

USAGE IS BINARY VALUE IS 18.

 \\

\ Parameters for FMTPRS, FMTGEN and FMTCRCP \

 \\

 77 DclXlrId PICTURE X(8).

 77 ADLDECLTRANSLATOR PICTURE X(8)

VALUE IS X"2B12ððð3ð1886Dð1".

77 ParameterCCSID PICTURE 9(6) USAGE IS BINARY

VALUE IS ð.

77 SrcFilNamLength PICTURE 9(6) USAGE IS BINARY.

 77 SrcFilNam PICTURE X(255).

77 SrcFilCCSID PICTURE 9(6) USAGE IS BINARY

VALUE IS ð.

77 DclXlrOptLength PICTURE 9(6) USAGE IS BINARY.

 77 DclXlrOpt PICTURE X(255).

77 LstOptLength PICTURE 9(6) USAGE IS BINARY.

 77 LstOpt PICTURE X(255).

77 LstFilNamLength PICTURE 9(6) USAGE IS BINARY.

 77 LstFilNam PICTURE X(255).

77 ADLDclSpcCCSID PICTURE 9(6) USAGE IS BINARY

VALUE IS ð.

77 ADLDclSpcLength PICTURE 9(6) USAGE IS BINARY.

77 ADLPlnSpcLength PICTURE 9(6) USAGE IS BINARY.

77 ADLSpcCCSID PICTURE 9(6) USAGE IS BINARY

VALUE IS ð.

77 LstFilCCSID PICTURE 9(6) USAGE IS BINARY

VALUE IS ð.

Figure 25 (Part 2 of 7). COBOL ADL Declaration Translator and CPB Sample

192 SdU Data Description and Conversion

77 AdlDclSpcCount PICTURE 9(6) USAGE IS BINARY.

77 UserAdlPlnSpcCount PICTURE 9(6) USAGE IS BINARY.

77 DefaultAdlPlnSpcCount PICTURE 9(6) USAGE IS BINARY.

77 CnvPlnSpcLength PICTURE 9(6) USAGE IS BINARY.

77 FlagList PICTURE 9(6) USAGE IS BINARY.

 ð1 AdlDclSpcList.

ð5 AdlDclSpcptr USAGE IS POINTER OCCURS 32 TIMES.

 ð1 UserAdlPlnSpcList.

ð5 UserAdlPlnSpcPtr USAGE IS POINTER OCCURS 32 TIMES.

 ð1 DefaultAdlPlnSpcList.

ð5 DefaultAdlPlnSpcPtr USAGE IS POINTER OCCURS 32 TIMES.

 ð1 Cnstkn.

ð5 CnstknLength PICTURE 9(6) USAGE IS BINARY.

ð5 CnstknClass PICTURE 9(2) USAGE IS BINARY.

 ð5 CnstknValue PICTURE X(16).

 ð1 FeedBack.

 ð5 Condition-ID.

1ð MsgSev PICTURE 9(2) USAGE IS BINARY.

1ð MsgNo PICTURE 9(2) USAGE IS BINARY.

 ð5 Case-Severity-Control PICTURE X.

 ð5 Facility-ID PICTURE X(3).

 ð5 I-S-Info.

1ð AdlExId PICTURE 9(6) USAGE IS BINARY.

1ð AdlCommAreaPtr REDEFINES AdlExId USAGE IS POINTER.

1ð User-ExitCtokPtr REDEFINES AdlExId USAGE IS POINTER.

 \\

\ ADL Communication Area \

 \\

 ð1 AdlCommArea.

ð5 AdlCALength PICTURE 9(6) USAGE IS BINARY.

ð5 ExId PICTURE 9(6) USAGE IS BINARY.

ð5 SevCod PICTURE 9(2) USAGE IS BINARY.

 ð5 PlanId.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

ð5 PlanStmt PICTURE 9(6) USAGE IS BINARY.

 ð5 InpErrDta.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

 ð5 SrcFldID.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

 ð5 TrgFldId.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

 PROCEDURE DIVISION.

Figure 25 (Part 3 of 7). COBOL ADL Declaration Translator and CPB Sample

 Appendix B. Sample Programs in COBOL 193

 \\

\ Call PARSE function of ADL Declaration Translator for \

\ ADL source text to get ADLDCLSPC and ADLPLNSPC. \

\ Translator id is set to ADL. \

\ Note: Currently all CCSIDs should be zero \

 \\

MOVE ADLDECLTRANSLATOR TO DclXlrId.

MOVE 1ð TO SrcFilNamLength.

MOVE "SAMPLE.ADL" TO SrcFilNam.

MOVE 8 TO DclXlrOptLength.

MOVE "AUTOSKIP" TO DclXlrOpt.

MOVE 4 TO LstOptLength.

MOVE "LIST" TO LstOpt.

MOVE 12 TO LstFilNamLength.

MOVE "SAMPLE_P.LST" TO LstFilNam.

MOVE BUFLEN-ADLDCLSPC TO ADLDclSpcLength.

MOVE BUFLEN-ADLPLNSPC TO ADLPlnSpcLength.

CALL "FMTPRS" USING

BY REFERENCE DclXlrId

 BY VALUE ParameterCCSID

 BY VALUE SrcFilNamLength

BY REFERENCE SrcFilNam

 BY VALUE SrcFilCCSID

 BY VALUE DclXlrOptLength

BY REFERENCE DclXlrOpt

 BY VALUE LstOptLength

BY REFERENCE LstOpt

 BY VALUE LstFilNamLength

BY REFERENCE LstFilNam

 BY VALUE ADLDclSpcLength

BY REFERENCE AdlDclSpc

 BY VALUE ADLDclSpcCCSID

BY REFERENCE Cnstkn

 BY VALUE ADLPlnSpcLength

BY REFERENCE AdlPlnSpc

BY REFERENCE FeedBack.

 \\

\ Check the Condition Token \

 \\

IF MsgNo OF Condition-ID IN FeedBack NOT = PRS-NO-ERROR

 THEN

DISPLAY "Error in PARSE function"

 DISPLAY

"The Condition Token has the following contents:"

DISPLAY "Message Severity "

MsgSev OF Condition-ID IN FeedBack

" Number "

MsgNo OF Condition-ID IN FeedBack

DISPLAY "Case+Severity+Control "

Case-Severity-Control IN FeedBack

Figure 25 (Part 4 of 7). COBOL ADL Declaration Translator and CPB Sample

194 SdU Data Description and Conversion

DISPLAY "Facility ID "

Facility-ID OF FeedBack

DISPLAY "Instance Specific "

AdlExId OF FeedBack

 STOP RUN

 END-IF.

 \\

\ Call GENERATE function of ADL Declaration Translator for \

\ ADLDCLSPC to get ADL Source test. \

\ This call is not necessary to create a conversion plan. \

\ It is mainly done for debugging of the PARSE function. \

\ Translator id is set to ADL. \

\ Note: Currently all CCSIDs should be zero. \

 \\

MOVE 1ð to SrcFilNamLength.

MOVE "SAMPLE.GEN" TO SrcFilNam.

MOVE ð to DclXlrOptLength.

MOVE 12 TO LstOptLength.

MOVE "LIST FLAG(I)" to LstOpt.

MOVE 12 to LstFilNamLength.

MOVE "SAMPLE_G.LST" TO LstFilNam.

CALL "FMTGEN" USING

BY REFERENCE DclXlrId

 BY VALUE ParameterCCSID

 BY VALUE DclXlrOptLength

BY REFERENCE DclXlrOpt

BY REFERENCE AdlDclSpc

BY VALUE AdlSpcCCSID

BY VALUE SrcFilNamLength

BY REFERENCE SrcFilNam

 BY VALUE SrcFilCCSID

 BY VALUE LstOptLength

BY REFERENCE LstOpt

 BY VALUE LstFilNamLength

BY REFERENCE LstFilNam

 BY VALUE LstFilCCSID

BY REFERENCE FeedBack.

 \\

\ Check the Condition Token \

 \\

IF MsgNo OF Condition-ID IN FeedBack NOT = GEN-NO-ERROR

 THEN

DISPLAY "Error in GENERATE function"

 DISPLAY

"The Condition Token has the following contents:"

DISPLAY "Message Severity "

MsgSev OF Condition-ID IN FeedBack

" Number "

MsgNo OF Condition-ID IN FeedBack

Figure 25 (Part 5 of 7). COBOL ADL Declaration Translator and CPB Sample

 Appendix B. Sample Programs in COBOL 195

DISPLAY "Case+Severity+Control "

Case-Severity-Control IN FeedBack

DISPLAY "Facility ID "

Facility-ID OF FeedBack

DISPLAY "Instance Specific "

AdlExId OF FeedBack

 STOP RUN

 END-IF.

 \\

\ Call Conversion Plan Builder \

\ Note: If UserAdlPlnSpcCount (third parameter) is not zero, \

\ then the fourth parameter must be replaced with \

\ BY REFERENCE UserAdlPlnSpcList \

\ and addresses of user defined plan spaces must be \

\ entered into the list. \

 \\

MOVE 1 TO AdlDclSpcCount.

SET AdlDclSpcPtr(1) TO ADDRESS OF AdlDclSpc.

MOVE ð TO UserAdlPlnSpcCount.

MOVE 1 TO DefaultAdlPlnSpcCount.

SET DefaultAdlPlnSpcPtr(1) TO ADDRESS OF AdlPlnSpc.

MOVE BUFLEN-CNVPLNSPC TO CnvPlnSpcLength.

MOVE ð TO FlagList.

SET AdlCommAreaPtr TO ADDRESS OF AdlCommArea.

CALL "FMTCRCP" USING

 BY VALUE AdlDclSpcCount

BY REFERENCE AdlDclSpcList

 BY VALUE UserAdlPlnSpcCount

 BY VALUE UserAdlPlnSpcNull

 BY VALUE DefaultAdlPlnSpcCount

BY REFERENCE DefaultAdlPlnSpcList

 BY VALUE CnvPlnSpcLength

BY REFERENCE CnvPlnSpc

 BY VALUE FlagList

BY REFERENCE FeedBack.

 \\

\ Check the Condition Token \

\ Note: The Case-Severity-Control field is further divided into\

\ three sub-fields. You may want to display it in hex. \

 \\

IF MsgNo OF Condition-ID IN FeedBack NOT = CPB-NO-ERROR

 THEN

DISPLAY "Error in Conversion Plan Builder"

 DISPLAY

"The Condition Token has the following contents:"

DISPLAY "Message Severity "

MsgSev OF Condition-ID IN FeedBack

" Number "

MsgNo OF Condition-ID IN FeedBack

Figure 25 (Part 6 of 7). COBOL ADL Declaration Translator and CPB Sample

196 SdU Data Description and Conversion

DISPLAY "Case+Severity+Control "

Case-Severity-Control IN FeedBack

DISPLAY "Facility ID "

Facility-ID OF FeedBack

 \\

\ Check whether an ADL exception occurred. If so, the ADL \

\ communication area is displayed. \

 \\

IF MsgNo OF Condition-ID = CPB-ADL-EXCEPTION-SEV2 OR

MsgNo OF Condition-ID = CPB-ADL-EXCEPTION-SEV3

 THEN

 DISPLAY

"The ADL communication area has the following

 - " contents:"

DISPLAY "ADL exception: " ExId OF AdlCommArea

DISPLAY "Severity of ADL exception: "

SevCod OF AdlCommArea

DISPLAY "Name of processed plan: "

CharData OF PlanId OF AdlCommArea

DISPLAY "Number of processed PLAN statement: "

PlanStmt OF AdlCommArea

DISPLAY "Source identifier of processed assignment

- " statement: "

CharData OF SrcFldId OF AdlCommArea

DISPLAY "Target identifier of processed assignment

- " statement: "

CharData OF TrgFldId OF AdlCommArea

 STOP RUN

 END-IF

 ELSE

 \\

\ Write conversion plan space into file. \

 \\

OPEN OUTPUT Sample-SPC

 WRITE CnvPlnSpc

 CLOSE SAMPLE-SPC.

 STOP RUN.

Figure 25 (Part 7 of 7). COBOL ADL Declaration Translator and CPB Sample

 Appendix B. Sample Programs in COBOL 197

Conversion Plan Executor Example

 \\

 \ \

\ PRODUCT = Data Description and Conversion \

 \ \

\ SOURCE FILE NAME = Sample2.CBL \

 \ \

\ DESCRIPTIVE NAME = Conversion Plan Executor Example \

 \ \

\ FUNCTION = This sample program calls the function of the \

\ conversion plan executor to convert data based on \

\ the conversion plans created by the conversion \

\ plan builder in program SAMPLE1. \

\ In this sample the hex string C1C2C3ð1234C will \

\ be converted with specified plan COBOL_TO_C into \

\ the hex string 414243ððD2ð4. Then the hex string \

\ 414243ððd2ð4 will be converted with the specified \

\ plan C_TO_COBOL into the hex string C1C2C3ð1234C. \

\ The result will be printed on screen. \

 \ \

 \\

 IDENTIFICATION DIVISION.

 PROGRAM-ID. SAMPLE2.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE-COMPUTER. IBM-PS2.

 OBJECT-COMPUTER. IBM-PS2.

 INPUT-OUTPUT SECTION.

 FILE-CONTROL.

SELECT Sample-SPC ASSIGN TO SampleF

ORGANIZATION IS SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD Sample-SPC

RECORD CONTAINS 5ððð CHARACTERS

RECORDING MODE IS F.

ð1 CnvPlnSpc PICTURE X(5ððð).

 WORKING-STORAGE SECTION.

Figure 26 (Part 1 of 8). COBOL Conversion Plan Executor Example

198 SdU Data Description and Conversion

 \\

\ Parameters for FMTCPXI, FMTCPXC, and FMTCPXT \

 \\

77 CnvPlnSpcHdl PICTURE 9(6) USAGE IS BINARY.

77 PlnNamLength PICTURE 9(6) USAGE IS BINARY.

77 PlnNam PICTURE X(255).

77 InputParmNum PICTURE 9(6) USAGE IS BINARY.

77 OutputParmNum PICTURE 9(6) USAGE IS BINARY.

 ð1 InputData.

ð5 InputDataPtr USAGE IS POINTER OCCURS 32 TIMES.

 ð1 OutputData.

ð5 OutputDataPtr USAGE IS POINTER OCCURS 32 TIMES.

 ð1 FeedBack.

 ð5 Condition-ID.

1ð MsgSev PICTURE 9(2) USAGE IS BINARY.

1ð MsgNo PICTURE 9(2) USAGE IS BINARY.

 ð5 Case-Severity-Control PICTURE X.

 ð5 Facility-ID PICTURE X(3).

 ð5 I-S-Info.

1ð AdlExId PICTURE 9(6) USAGE IS BINARY.

1ð AdlCommAreaPtr REDEFINES AdlExId USAGE IS POINTER.

1ð User-ExitCtokPtr REDEFINES AdlExId USAGE IS POINTER.

 \\

\ ADL Communication Area \

 \\

 ð1 AdlCommArea.

ð5 AdlCALength PICTURE 9(6) USAGE IS BINARY.

ð5 ExId PICTURE 9(6) USAGE IS BINARY.

ð5 SevCod PICTURE 9(2) USAGE IS BINARY.

 ð5 PlanId.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

ð5 PlanStmt PICTURE 9(6) USAGE IS BINARY.

 ð5 InpErrDta.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

 ð5 SrcFldID.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

 ð5 TrgFldId.

1ð PreLength PICTURE 9(2) USAGE IS BINARY.

1ð CharData PICTURE X(255).

 \\

\ Return Codes and ADL Exception Codes \

 \\

77 CPX-NO-ERROR PICTURE 9(6) USAGE IS BINARY

VALUE IS ð.

77 CPX-ADL-EXCEPTION-SEV2 PICTURE 9(6) USAGE IS BINARY

VALUE IS 1ð2.

Figure 26 (Part 2 of 8). COBOL Conversion Plan Executor Example

 Appendix B. Sample Programs in COBOL 199

77 CPX-ADL-EXCEPTION-SEV3 PICTURE 9(6) USAGE IS BINARY

VALUE IS 1ð3.

77 CpxType PICTURE X(7).

 \\

\ Input and Output buffers and test data for SAMPLE2 \

 \\

77 SizeOfInput PICTURE 9(6) USAGE IS BINARY VALUE IS 6.

77 InValue PICTURE X(6).

 ð1 OutBuffer.

 ð5 OutValue PICTURE X(6).

ð5 OutValueTbl REDEFINES OutValue

PICTURE X(1) OCCURS 6 TIMES

INDEXED BY M.

ð1 OutHexBuffer VALUE IS "X'".

ð5 OutHexValue PICTURE X(1) OCCURS 15 TIMES

INDEXED BY K.

77 EBCD PICTURE X(6) VALUE IS X"C1C2C3ð1234C".

77 ASCII PICTURE X(6) VALUE IS X"414243ððD2ð4".

 \\

\ Tables and Work Areas for displaying the value in the output \

\ buffer in hex \

 \\

77 First-Digit PICTURE 9(6) USAGE IS BINARY.

77 Second-Digit PICTURE 9(6) USAGE IS BINARY.

77 I PICTURE 9(6) USAGE IS BINARY.

77 Switch PICTURE 9(6) USAGE IS BINARY.

 ð1 HexIndex.

 ð5 HexValue-1 PICTURE X(128)

VALUE IS X"ððð1ð2ð3ð4ð5ð6ð7ð8ð9ðAðBðCðDðEðF

 - "1ð1112131415161718191A1B1C1D1E1F

 - "2ð2122232425262728292A2B2C2D2E2F

 - "3ð3132333435363738393A3B3C3D3E3F

 - "4ð4142434445464748494A4B4C4D4E4F

 - "5ð5152535455565758595A5B5C5D5E5F

 - "6ð6162636465666768696A6B6C6D6E6F

 - "7ð7172737475767778797A7B7C7D7E7F".

 ð5 HexTable-1 REDEFINES HexValue-1

PICTURE X(1) OCCURS 128 TIMES.

 ð5 HexValue-2 PICTURE X(128)

VALUE IS X"8ð8182838485868788898A8B8C8D8E8F

 - "9ð9192939495969798999A9B9C9D9E9F

 - "AðA1A2A3A4A5A6A7A8A9AAABACADAEAF

 - "BðB1B2B3B4B5B6B7B8B9BABBBCBDBEBF

 - "CðC1C2C3C4C5C6C7C8C9CACBCCCDCECF

 - "DðD1D2D3D4D5D6D7D8D9DADBDCDDDEDF

 - "EðE1E2E3E4E5E6E7E8E9EAEBECEDEEEF

 - "FðF1F2F3F4F5F6F7F8F9FAFBFCFDFEFF".

 ð5 HexTable-2 REDEFINES HexValue-2

PICTURE X(1) OCCURS 128 TIMES.

Figure 26 (Part 3 of 8). COBOL Conversion Plan Executor Example

200 SdU Data Description and Conversion

 ð1 Hex-To-Char.

 ð5 CharValue PICTURE X(16)

VALUE IS "ð123456789ABCDEF".

ð5 Hex-To-Char-Tbl REDEFINES CharValue PICTURE X(1)

OCCURS 16 TIMES.

 PROCEDURE DIVISION.

 \\

\ Read the conversion plan space created in SAMPLE1 \

 \\

OPEN INPUT Sample-SPC.

 READ Sample-SPC.

 CLOSE Sample-SPC.

 \\

\ Call Conversion Plan Executor Initialization \

 \\

CALL "FMTCPXI" USING

BY REFERENCE CnvPlnSpc

BY REFERENCE CnvPlnSpcHdl

BY REFERENCE FeedBack.

 \\

\ Check the Condition Token \

 \\

IF MsgNo OF Condition-ID IN FeedBack NOT = CPX-NO-ERROR

 THEN

MOVE "Init" TO CpxType

 PERFORM PrintCtok

 ELSE

SET AdlCommAreaPtr TO ADDRESS OF AdlCommArea

 \\

\ Call Conversion Plan Executor Convert \

\ In this conversion the plan COBOL_TO_C is executed. The input\

\ data are: \

\ "ABC" in international EBCDIC format -> X'C1C2C3' \

\ 1234 in PACKED PRECISION(5) format -> X'ð1234C' \

 \ \

\ The output data after conversion should be: \

\ "ABC" in Latin PC Data format + suffix -> X'414243ðð' \

\ 1234 in BINARY byte reversed format -> X'D2ð4' \

 \\

MOVE 1ð TO PlnNamLength

MOVE "COBOL_TO_C" TO PlnNam

MOVE 1 TO InputParmNum

MOVE 1 TO OutputParmNum

MOVE EBCD TO InValue

MOVE SPACES TO OutValue

SET InputDataPtr(1) TO ADDRESS OF InValue

SET OutputDataPtr(1) TO ADDRESS OF OutValue

Figure 26 (Part 4 of 8). COBOL Conversion Plan Executor Example

 Appendix B. Sample Programs in COBOL 201

CALL "FMTCPXC" USING

 BY VALUE CnvPlnSpcHdl

 BY VALUE PlnNamLength

BY REFERENCE PlnNam

 BY VALUE InputParmNum

BY REFERENCE InputData

 BY VALUE OutputParmNum

BY REFERENCE OutputData

BY REFERENCE FeedBack

IF MsgNo OF Condition-ID IN FeedBack NOT = CPX-NO-ERROR

 THEN

 \\

\ An error occurred. Print the condition token \

 \\

MOVE "Convert" TO CpxType

 PERFORM PrintCtok

 STOP RUN

 ELSE

 \\

\ Print the converted value \

 \\

SET K TO 3

PERFORM Hex-Convert VARYING M FROM 1 BY 1

UNTIL M > SizeOfInput

MOVE "'" TO OutHexValue(K)

DISPLAY " Converted value for plan COBOL_TO_C: "

 OutHexBuffer

 END-IF

 \\

\ Call Conversion Plan Executor Convert \

\ In this conversion the plan C_TO_COBOL is executed. The input\

\ data are: \

\ "ABC" in Latin PC Data format + suffix -> X'414243ðð' \

\ 1234 in BINARY byte reversed format -> X'D2ð4' \

 \ \

\ The output data after conversion should be: \

\ "ABC" in international EBCDIC format -> X'C1C2C3' \

\ 1234 in PACKED PRECISION(5) format -> X'ð1234C' \

 \\

MOVE 1ð TO PlnNamLength

MOVE "C_TO_COBOL" TO PlnNam

MOVE 1 TO InputParmNum

MOVE 1 TO OutputParmNum

MOVE ASCII TO InValue

MOVE SPACES TO OutValue

SET InputDataPtr(1) TO ADDRESS OF InValue

SET OutputDataPtr(1) TO ADDRESS OF OutValue

Figure 26 (Part 5 of 8). COBOL Conversion Plan Executor Example

202 SdU Data Description and Conversion

CALL "FMTCPXC" USING

 BY VALUE CnvPlnSpcHdl

 BY VALUE PlnNamLength

BY REFERENCE PlnNam

 BY VALUE InputParmNum

BY REFERENCE InputData

 BY VALUE OutputParmNum

BY REFERENCE OutputData

BY REFERENCE FeedBack

IF MsgNo OF Condition-ID IN FeedBack NOT = CPX-NO-ERROR

 THEN

 \\

\ An error occurred. Print the condition token \

 \\

MOVE "Convert" TO CpxType

 PERFORM PrintCtok

 ELSE

 \\

\ Print the converted value \

 \\

SET K TO 3

PERFORM Hex-Convert VARYING M FROM 1 BY 1

UNTIL M > SizeOfInput

MOVE "'" TO OutHexValue(K)

DISPLAY " Converted value for plan C_TO_COBOL: "

 OutHexBuffer

 END-IF

 \\

\ Call Conversion Plan Executor Termination \

 \\

CALL "FMTCPXT" USING

 BY VALUE CnvPlnSpcHdl

BY REFERENCE FeedBack

 \\

\ Check the Condition Token \

 \\

IF MsgNo OF Condition-ID IN FeedBack NOT = CPX-NO-ERROR

 THEN

MOVE "Term" TO CpxType

 PERFORM PrintCtok

 END-IF

 END-IF.

 STOP RUN.

Figure 26 (Part 6 of 8). COBOL Conversion Plan Executor Example

 Appendix B. Sample Programs in COBOL 203

 \\

\ The procedure PrintCtok prints the condition token and ADL \

\ communication area after an error occurred in a conversion \

\ plan executor function. \

\ Note: The Case-Severity-Control field is further divided into\

\ three sub-fields. You may want to display it in hex. \

 \\

 PrintCtok.

DISPLAY "Error in Conversion Plan Executor " CpxType.

DISPLAY "The Condition Token has the following contents:".

DISPLAY "Message Severity "

MsgSev OF Condition-ID IN FeedBack

" Number "

MsgNo OF Condition-ID IN FeedBack.

DISPLAY "Case+Severity+Control "

Case-Severity-Control IN FeedBack.

DISPLAY "Facility ID "

Facility-ID OF FeedBack.

 \\

\ Check whether an ADL exception occurred. \

 \\

IF MsgNo OF Condition-ID = CPX-ADL-EXCEPTION-SEV2 OR

MsgNo OF Condition-ID = CPX-ADL-EXCEPTION-SEV3

 THEN

IF CpxType = "INIT"

 THEN

DISPLAY "ADL exception " AdlExId IN FeedBack

 ELSE

 DISPLAY

"The ADL communication area has the following

 - " contents:"

DISPLAY "ADL exception: " ExId OF AdlCommArea

DISPLAY "Severity of ADL exception: "

SevCod OF AdlCommArea

DISPLAY "Name of processed plan: "

CharData OF PlanId OF AdlCommArea

DISPLAY "Number of processed PLAN statement: "

PlanStmt OF AdlCommArea

DISPLAY "Input data portion that caused the error: "

CharData OF InpErrDta OF AdlCommArea

DISPLAY "Source identifier of processed assignment

- " statement: "

CharData OF SrcFldId OF AdlCommArea

DISPLAY "Target identifier of processed assignment

- " statement: "

CharData OF TrgFldId OF AdlCommArea

 END-IF

 END-IF.

Figure 26 (Part 7 of 8). COBOL Conversion Plan Executor Example

204 SdU Data Description and Conversion

 \\

\ The procedure Hex-Convert converts a byte string to a hex \

\ string which can be DISPLAYed. \

 \\

 Hex-Convert.

MOVE ð TO Switch.

PERFORM Hex-Convert-1 VARYING I FROM 1 BY 1

UNTIL Switch = 1 OR I > 128.

IF Switch = ð

 THEN

PERFORM Hex-Convert-2 VARYING I FROM 1 BY 1

UNTIL Switch = 1

 END-IF.

 Hex-Convert-1.

IF OutValueTbl(M) = HexTable-1(I)

 THEN

DIVIDE 16 INTO I GIVING First-Digit

 REMAINDER Second-Digit

MOVE Hex-To-Char-Tbl(First-Digit + 1)

 TO OutHexValue(K)

SET K UP BY 1

MOVE Hex-To-Char-Tbl(Second-Digit) TO OutHexValue(K)

SET K UP BY 1

MOVE 1 TO Switch

 END-IF.

 Hex-Convert-2.

IF OutValueTbl(M) = HexTable-2(I)

 THEN

DIVIDE 16 INTO I GIVING First-Digit

 REMAINDER Second-Digit

MOVE Hex-To-Char-Tbl(First-Digit + 9)

 TO OutHexValue(K)

SET K UP BY 1

MOVE Hex-To-Char-Tbl(Second-Digit) TO OutHexValue(K)

SET K UP BY 1

MOVE 1 TO Switch

 END-IF.

Figure 26 (Part 8 of 8). COBOL Conversion Plan Executor Example

 Appendix B. Sample Programs in COBOL 205

User Exit (ADL Source) Example

 /\\\/

 /\ USEREXIT.ADL \/

 /\ ADL source for the USER EXIT sample. \/

 /\\\/

/\-----------------DECLARE of the source data----------------\/

 source: DECLARE

 BEGIN;

number_of_char: CONSTANT 1ð;

input1: CHAR LENGTH(number_of_char);

 END;

 /\---\/

/\-----------------DECLARE OF the target data----------------\/

 target: DECLARE

 BEGIN;

output1: CHAR LENGTH(2ð);

output2: CHAR LENGTH(2ð);

 END;

 /\---\/

 /\-----------------PLAN--------------------------------------\/

user_exit_plan: PLAN (input1: INPUT,

 output1: OUTPUT,

output2: OUTPUT)

 BEGIN;

 CALL '<USEREXIT><CONVERTTOUPPERLOWERCASECHAR>'

 (input1,

LENGTH(input1),

TRUE, /\ Convert to upper case character \/

 output1,

LENGTH(output1)

);

 CALL '<USEREXIT><CONVERTTOUPPERLOWERCASECHAR>'

 (input1,

LENGTH(input1),

FALSE, /\ Convert to lower case character \/

 output2,

LENGTH(output2)

);

 END;

 /\---\/

Figure 27. User Exit (ADL Source) Example

206 SdU Data Description and Conversion

Sample ADL File

DECLARE BEGIN; /\ ADL \/

COBOLREC: SEQUENCE BEGIN;

INITIALS: CHAR LENGTH(3)

 CCSID(5ðð);

NUMBER: PACKED PRECISION(5);

 END;

END;

DECLARE BEGIN; /\ ADL \/

CREC: SEQUENCE BEGIN;

INITIALS: CHARSFX MAXLEN(4)

 CCSID(85ð);

NUMBER: BINARY PRECISION(15)

BYTRVS (TRUE);

 END;

END;

COBOL_TO_C: PLAN(COBOLREC: INPUT,

CREC: OUTPUT)

 BEGIN;

CREC <- COBOLREC;

 END;

C_TO_COBOL: PLAN(CREC: INPUT,

COBOLREC: OUTPUT)

 BEGIN;

COBOLREC <- CREC;

 END;

Figure 28. Sample ADL File

 Appendix B. Sample Programs in COBOL 207

208 SdU Data Description and Conversion

Appendix C. Sample Programs in PLI

The following are sample programs in PLI.

 Copyright IBM Corp. 1994, 1997 209

 TEST.PLI

 /\\\/

 /\ \/

/\ PRODUCT = Data Description and Conversion for OS/2 \/

 /\ \/

/\ SOURCE FILE NAME = TEST.PLI \/

 /\ \/

/\ DESCRIPTIVE NAME = ADL Declaration Translator, CPB, and CPEX sample \/

 /\ \/

/\ FUNCTION = This TEST.PLI program parses the adl file TEST.ADL using the\/

/\ FMTPRS function and return the appropriate ADL declare and \/

/\ plan space. It then invokes FMTCRCP to create conversion \/

/\ plan from the encoded ADL declare and plan space. With the \/

/\ conversion plan, TEST.PLI invokes the FMTCPXI to initialize \/

/\ conversion plan executor, calls FMTCPXC to executes the \/

/\ conversion plan CNVREC to convert EBCDIC string to ASCII \/

/\ string, and finally calls FMTCPXT to terminate and release \/

 /\ resources. \/

/\ In summary, TEST.PLI exercises FMTPRS, FMTCRCP, FMTCPXI, \/

/\ FMTCPXC, and FMTCPXT functions to accomplish the task of \/

/\ convert EBCDIC string to ASCII string as specified by the \/

 /\ TEST.ADL. \/

 /\ \/

/\ NOTES = \/

 /\ \/

 /\ DEPENDENCIES = OS/2 Release 2.ð or later \/

 /\ \/

 /\ RESTRICTIONS = None \/

 /\ \/

/\ ENTRY POINTS = test() \/

 /\ \/

 /\ \/

 /\\\/

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ Program variables \/

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

 DCL ADLDECL CHAR(9) VARZ;

DCL CCSID1 FIXED BIN(31,ð);

DCL ADLFILELEN FIXED BIN(31,ð);

DCL ADLFILENAM CHAR(9) VARZ;

DCL CCSID2 FIXED BIN(31,ð);

DCL XLROPTLEN FIXED BIN(31,ð);

DCL XLROPTNAME CHAR(9) VARZ;

DCL LSTOPTLEN FIXED BIN(31,ð);

DCL LSTOPTNAME CHAR(9) VARZ;

DCL LSTLEN FIXED BIN(31,ð);

DCL LSTNAME CHAR(9) VARZ;

DCL ADLDCLLEN FIXED BIN(31,ð);

DCL ADLDCLSPC CHAR(8ððð) CONTROLLED;

DCL CCSID3 FIXED BIN(31,ð);

Figure 29 (Part 1 of 8). TEST.PLI

210 SdU Data Description and Conversion

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ Mapping CNSTKN and FMTCTOK in fmt.h \/

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

DCL 1 CNSTKN UNALIGNED,

2 ULLENGTH FIXED BIN(31,ð),

 2 USCLASS FIXED BIN(15,ð),

 2 ABVALUE CHAR(16) VARZ;

DCL PCNSTKN POINTER;

DCL ADLPLNLEN FIXED BIN(31,ð);

DCL ADLPLNSPC CHAR(8ððð) CONTROLLED;

DCL 1 FMTADLCA UNALIGNED,

2 LLENGTH FIXED BIN(31,ð),

 2 LEXID FIXED BIN(31,ð),

2 USSEVCOD FIXED BIN(15,ð),

 2 PLANID,

3 USLENGTH FIXED BIN(15,ð),

3 UCHDATA CHAR(255),

2 LPLANSTMT FIXED BIN(31,ð),

 2 INPERRDTA,

3 USLENGTH FIXED BIN(15,ð),

3 UCHDATA CHAR(255),

 2 SRCFLDID,

3 USLENGTH FIXED BIN(15,ð),

3 UCHDATA CHAR(255),

 2 TRGFLDID,

3 USLENGTH FIXED BIN(15,ð),

3 UCHDATA CHAR(255);

DCL 1 FMTCTOK UNALIGNED,

 2 CONDITION_ID,

3 USMSGSEV FIXED BIN(15,ð),

 3 USMSGNO FIXED BIN(15,ð),

2 FCASE BIT(2),

2 FSEVERITY BIT(3),

2 FCONTROL BIT(3),

2 UCHFACILITY_ID CHAR(3),

2 PL_S_INFO UNION,

3 ULADLEXLD FIXED BIN(31,ð),

3 PADLCOMMAREA POINTER,

3 PUSEREXITCTOK POINTER ;

DCL PFMTCTOK POINTER;

Figure 29 (Part 2 of 8). TEST.PLI

 Appendix C. Sample Programs in PLI 211

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ Program variables \/

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

DCL 1 X ,

2 C CHAR(5);

DCL 1 Y ,

2 C CHAR(1ð);

DCL 1 PPADLDCLSPCLIST POINTER;

DCL 1 PPDEFAULTADLPLNSPCLIST POINTER;

DCL 1 PPUSERADLPLNSPCLIST POINTER;

DCL 1 CNVPLNSPC CHAR(8ððð) CONTROLLED;

DCL 1 ULCNVPLNSPCHDL FIXED BIN(31,ð);

DCL 1 PULCNVPLNSPCHDL POINTER;

DCL 1 PINPUTDATA POINTER;

DCL 1 PPINPUTDATA POINTER;

DCL 1 POUTPUTDATA POINTER;

DCL 1 PPOUTPUTDATA POINTER;

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

/\ Prototype for DDC API \/

 /\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\/

DCL FMTPRS entry(char(\) varz byaddr,fixed bin(31) byvalue,

fixed bin(31) byvalue,char(\) varz byaddr,

fixed bin(31) byvalue,

fixed bin(31) byvalue,char(\) varz byaddr,

fixed bin(31) byvalue,char(\) varz byaddr,

fixed bin(31) byvalue,char(\) varz byaddr,

fixed bin(31) byvalue,char(\) byaddr,

fixed bin(31) byvalue,

 pointer byvalue,

fixed bin(31) byvalue,char(\) byaddr,

 pointer byvalue)

 external('FMTPRS')

 options(linkage(system));

Figure 29 (Part 3 of 8). TEST.PLI

212 SdU Data Description and Conversion

DCL FMTCRCP entry(fixed bin(31) byvalue,

 pointer byaddr,

fixed bin(31) byvalue,

 pointer byvalue,

fixed bin(31) byvalue,

 pointer byaddr,

fixed bin(31) byvalue,

 char(\) byaddr,

fixed bin(31) byvalue,

 pointer byvalue)

 external('FMTCRCP')

 options(linkage(system));

DCL FMTCPXI entry(char(\) byaddr,

 pointer byvalue,

 pointer byvalue)

 external('FMTCPXI')

 options(linkage(system));

DCL FMTCPXC entry(fixed bin(31) byvalue,

fixed bin(31) byvalue,

 char(\) byaddr,

fixed bin(31) byvalue,

 pointer byvalue,

fixed bin(31) byvalue,

 pointer byvalue,

 pointer byvalue)

 external('FMTCPXC')

 options(linkage(system));

DCL FMTCPXT entry(fixed bin(31) byvalue,

 pointer byvalue)

 external('FMTCPXT')

 options(linkage(system));

 ALLOCATE ADLDCLSPC;

 ALLOCATE ADLPLNSPC;

Figure 29 (Part 4 of 8). TEST.PLI

 Appendix C. Sample Programs in PLI 213

ADLDECL = '2B12ððð3ð1886Dð1'X;

CCSID1 = ð;

ADLFILELEN = 8;

ADLFILENAM = "test.adl";

CCSID2 = ð;

XLROPTLEN = 8;

XLROPTNAME = "AUTOSKIP";

LSTOPTLEN = 4;

LSTOPTNAME = "LIST";

LSTLEN = 8;

LSTNAME = "test.lsp";

ADLDCLLEN = 8ððð;

ADLDCLSPC = REPEAT('ðð'X,4ððð);

CCSID3 = ð;

CNSTKN.ULLENGTH = ð;

 CNSTKN.USCLASS = ð;

CNSTKN.ABVALUE = "THIS IS A TEST";

PCNSTKN = ADDR(CNSTKN);

ADLPLNLEN = 8ððð;

ADLPLNSPC = REPEAT('ðð'X,4ððð);

PFMTCTOK = ADDR(FMTCTOK);

fetch FMTPRS title('FMTB/FMTPRS');

 call FMTPRS(ADLDECL,

 CCSID1,

 ADLFILELEN,

 ADLFILENAM,

 CCSID2,

 XLROPTLEN,

 XLROPTNAME,

 LSTOPTLEN,

 LSTOPTNAME,

 LSTLEN,

 LSTNAME,

 ADLDCLLEN,

 ADLDCLSPC,

 CCSID3,

 PCNSTKN,

 ADLPLNLEN,

 ADLPLNSPC,

 PFMTCTOK);

if FMTCTOK.CONDITION_ID.USMSGNO [= ð then

 do;

display('error in parsing the ADL file.');

display('The condition token has the following contents:');

put edit ('Message Severity :',FMTCTOK.CONDITION_ID.USMSGSEV)

 (skip,a(4ð),f(7));

put edit ('Message Number :',FMTCTOK.CONDITION_ID.USMSGNO)

 (skip,a(4ð),f(7));

 goto exit;

 end;

Figure 29 (Part 5 of 8). TEST.PLI

214 SdU Data Description and Conversion

 else

 do;

display('no error in parsing the ADL file.');

 end;

 ALLOCATE CNVPLNSPC;

CNVPLNSPC = REPEAT('ðð'X,4ððð);

FMTCTOK.PL_S_INFO.PADLCOMMAREA = ADDR(FMTADLCA);

PPADLDCLSPCLIST = ADDR(ADLDCLSPC);

PPDEFAULTADLPLNSPCLIST = ADDR(ADLPLNSPC);

PPUSERADLPLNSPCLIST = NULL();

fetch FMTCRCP title('FMTC/FMTCRCP');

 call FMTCRCP(1,

 PPADLDCLSPCLIST,

 ð,

 NULL,

 1,

 PPDEFAULTADLPLNSPCLIST,

 8ððð,

 CNVPLNSPC,

 ð,

 PFMTCTOK);

if FMTCTOK.CONDITION_ID.USMSGNO [= ð then

 do;

display('error in conversion plan builder.');

display('The condition token has the following contents:');

put edit ('Message Severity :',FMTCTOK.CONDITION_ID.USMSGSEV)

 (skip,a(4ð),f(7));

put edit ('Message Number :',FMTCTOK.CONDITION_ID.USMSGNO)

 (skip,a(4ð),f(7));

 goto exit;

 end;

 else

display('no error in conversion plan builder.');

PULCNVPLNSPCHDL = ADDR(ULCNVPLNSPCHDL);

fetch FMTCPXI title('FMTD/FMTCPXI');

 call FMTCPXI(CNVPLNSPC,

 PULCNVPLNSPCHDL,

 PFMTCTOK);

if FMTCTOK.CONDITION_ID.USMSGNO [= ð then

 do;

display('error in initialize conversion plan executor.');

display('The condition token has the following contents:');

put edit ('Message Severity :',FMTCTOK.CONDITION_ID.USMSGSEV)

 (skip,a(4ð),f(7));

put edit ('Message Number :',FMTCTOK.CONDITION_ID.USMSGNO)

 (skip,a(4ð),f(7));

 goto exit;

Figure 29 (Part 6 of 8). TEST.PLI

 Appendix C. Sample Programs in PLI 215

 end;

 else

display('no error in initialize conversion plan executor.');

X.C = 'D3D4D5D6D7'X;

PINPUTDATA = ADDR(X);

PPINPUTDATA = ADDR(PINPUTDATA);

POUTPUTDATA = ADDR(Y);

PPOUTPUTDATA = ADDR(POUTPUTDATA);

fetch FMTCPXC title('FMTD/FMTCPXC');

 call FMTCPXC(ULCNVPLNSPCHDL,

 6,

 "CNVREC",

 1,

 PPINPUTDATA,

 1,

 PPOUTPUTDATA,

 PFMTCTOK);

if FMTCTOK.CONDITION_ID.USMSGNO [= ð then

 do;

display('error in conversion plan executor convert.');

display('The condition token has the following contents:');

put edit ('Message Severity :',FMTCTOK.CONDITION_ID.USMSGSEV)

 (skip,a(4ð),f(7));

put edit ('Message Number :',FMTCTOK.CONDITION_ID.USMSGNO)

 (skip,a(4ð),f(7));

 goto exit;

 end;

 else

display('no error in conversion plan executor convert.');

fetch FMTCPXT title('FMTD/FMTCPXT');

 call FMTCPXT(ULCNVPLNSPCHDL,

 PFMTCTOK);

if FMTCTOK.CONDITION_ID.USMSGNO [= ð then

 do;

display('error in terminate conversion plan executor.');

display('The condition token has the following contents:');

put edit ('Message Severity :',FMTCTOK.CONDITION_ID.USMSGSEV)

 (skip,a(4ð),f(7));

put edit ('Message Number :',FMTCTOK.CONDITION_ID.USMSGNO)

 (skip,a(4ð),f(7));

 goto exit;

 end;

Figure 29 (Part 7 of 8). TEST.PLI

216 SdU Data Description and Conversion

 else

 do;

display('no error in terminate conversion plan executor.');

put edit ('Expected output for Y.C = LMNOP')

 (skip,a(45));

put edit ('Y.C = ',Y.C)

 (skip,a(4ð),a);

 end;

 exit:

 FREE ADLDCLSPC;

 FREE ADLPLNSPC;

 FREE CNVPLNSPC;

 end test;

Figure 29 (Part 8 of 8). TEST.PLI

 Appendix C. Sample Programs in PLI 217

 TEST.ADL

/\\/

/\ TEST ADL \/

/\\/

DECLARE BEGIN;

 X: SEQUENCE BEGIN;

C: CHAR LENGTH(5) CCSID(5ðð);

 END;

END;

DECLARE BEGIN;

 Y: SEQUENCE BEGIN;

C: CHAR LENGTH(1ð) CCSID(437);

 END;

END;

CNVREC: PLAN (X: INPUT,

 Y: OUTPUT)

 BEGIN;

Y <- X;

 END;

Figure 30. TEST.ADL

 TEST.MAK

/\\\/

/\ TEST MAK \/

/\\\/

doit: test.exe

test.exe: test.obj

link386 test.obj /stack:32ððð /co /noe,test.exe,,d:\pli\lib\ibmlink.lib d:\pli\lib\ceelink,test.def

test.obj: test.pli test.mak

 pli test.pli

Figure 31. TEST.MAK

218 SdU Data Description and Conversion

 TEST.DEF

/\\\/

/\ TEST DEF \/

/\\\/

===

NAME TEST WINDOWCOMPAT

===

Figure 32. TEST.DEF

 Appendix C. Sample Programs in PLI 219

220 SdU Data Description and Conversion

Appendix D. Using the OS/2 Trace Function

The trace function is primarily used by IBM service personnel to debug internal prob-
lems that occur while using DD&C for OS/2. This trace function is not available on the
AIX or Windows platforms.

The procedure for tracing is:

1. Prepare your system for tracing and define the level of trace events you want to
collect.

2. Start the trace function.

3. Run the application program causing the error.

4. Stop the trace function.

5. Specify the ASCII file where you want the trace entries written.

Preparing to Use the Trace Function
Before you can use the DD&C trace function, you must make the following changes to
your CONFIG.SYS file:

1. Set the path to the DD&C for OS/2 program files directory.

To set the path to the DD&C program files directory to an environment variable:

� Edit your CONFIG.SYS file, using an editor such as the OS/2 system editor.
Add the following entry, and save the change:

SET FMTDIR= program files directory

Where program files directory is the directory where the DD&C for OS/2
program files are located. The default is \IBMDDC.

2. Specify the trace level. By specifying a trace level you define which objects or
processes are to be traced. This way you receive only trace entries that are of
relevant to your problem.

If you do not specify a trace level, all events in DD&C for OS/2 are traced. (This
corresponds to FMTTRACELEVEL=15 as shown in Table 10.)

To specify a trace level:

� Edit your CONFIG.SYS file, using an editor such as the OS/2 system editor. Add
the following entry, and save the change:

SET FMTTRACELEVEL = n

Where n is a value between 1 and 15 inclusive. The meaning of the values is
explained in Table 10 on page 222.

3. Activate the FMTTRACELEVEL environment variable. One way to do this is by
shutting down and restarting your system.

 Copyright IBM Corp. 1994, 1997 221

Table 10 explains the trace levels available and the use of parameters for each level.
The parameters are described as follows:

FMTTRACELEVEL A value between 1 and 15 with which you control the tracing of
the objects and processes listed in the table.

API Parameter If ON, all parameter values or contents are traced.

Data If ON, all data buffers before the conversion and after the con-
version are traced.

Locking If ON, each locking and unlocking of internal resources is
recorded by two trace entries:

� One trace entry before locking or unlocking

� One trace entry after locking or unlocking, plus the return
code of the lock or unlock command.

Internal Return Code If set to ON, the return codes of certain internal functions are
traced.

Table 10. Trace levels available for FMTTRACE

FMTTRACELEVEL
API Param-

eter Data Locking
Internal

Return Code

1 ON OFF OFF OFF

2 OFF ON OFF OFF

3 ON ON OFF OFF

4 OFF OFF ON OFF

5 ON OFF ON OFF

6 OFF ON ON OFF

7 ON ON ON OFF

8 OFF OFF OFF ON

9 ON OFF OFF ON

10 OFF ON OFF ON

11 ON ON OFF ON

12 OFF OFF ON ON

13 ON OFF ON ON

14 OFF ON ON ON

15 ON ON ON ON

Issue the FMTTRACE Command
You issue the FMTTRACE command from an OS/2 window or full-screen command
prompt. The syntax of the FMTTRACE command is:

222 SdU Data Description and Conversion

FMTTRACE [
ON [[{/|-}B tracebuffersize]] |
[OFF]
[{/|-}P [trace_file_name]

[{/|-}N max_trace_entries]]
{/|-}HELP |
{/|-}Q |
{/|-}KILL
]

The parameters have the following meaning:

Parameter Meaning

ON Start collecting trace entries for DD&C API commands.

B Specifies the maximum amount of storage to be allocated for the
trace entries. tracebuffersize is specified in bytes. If you do not
specify tracebuffersize, a default of 64KB is used.

OFF Stop collecting trace entries.

P Writes collected trace entries. If the trace is still running, it is
stopped when you issue this parameter. The entries are written to
the trace_file_name. If you do not specify a trace_file_name, the
entries are written to the screen.

N Specifies the maximum number of trace entries to be written. If you
do not specify a value for max_trace_entries, all trace entries are
either written to a trace file or to the screen.

HELP Displays help text explaining the use of the FMTTRACE command.
If you enter the FMTTRACE command without any parameters, the
help screen appears automatically.

Q Suppresses the title.

KILL Frees all resources allocated with the first FMTTRACE ON
command.

Start the Trace Function
1. Go to an OS/2 window or full-screen command prompt.

2. At the prompt, enter:

FMTTRACE ON

This activates the trace function and the collected entries are stored.

3. Restart the application that causes the error.

 Appendix D. Using the OS/2 Trace Function 223

Stop the Trace Function
1. Go to an OS/2 window or full-screen command prompt.

2. At the prompt, enter:

FMTTRACE OFF

No further trace entries are generated until you restart FMTTRACE.

Write the Trace Entries to a File
Choose from the following options:

Viewing the trace entries on the screen
Issue the FMTTRACE /P command, but omit the trace_file_name.

Storing the entries in an ASCII file
When you start the trace, specify the name of a file to receive the trace entries. For
example:

FMTTRACE /P trace.out

Specifying the number of trace entries to be displayed or stored.
To limit the number of trace entries to be displayed, specify the number when starting
the trace. For example:

FMTTRACE /N 2ð

To limit the number of trace entries to be written to a file, specify the file name and the
number when starting the trace.
For example:

FMTTRACE /P trace.out /N 2ð

Notes:

1. If you do not specify a number, all collected trace entries are either displayed or
written to the file specified.

2. If you use an existing filename, FMTTRACE overwrites the existing information.

3. Printing the trace entries to a file implicitly stops FMTTRACE.

224 SdU Data Description and Conversion

Example of Trace Output
Figure 33 shows the layout of the trace entries.

---------------------------- Begin of Trace Output -------------------

 . . .

TRACELEVEL: 1 PID: ðð419 TID: ððð1 DATE: ð7/25/1993 TIME: 16:ð2:59.47

TITLE: Input data to convert LENGTH: ððð23 MOD: FMTDCPXC ID: ð1

ððð35C94: 6461 7461 2ð62 7566 6665 722ð 746F 2ð63 | data buffer to c

ððð35CA4: 6F6E 7665 7274 ðð | onvert.

 . . .

TRACELEVEL: 1 PID: ðð419 TID: ððð1 DATE: ð7/25/1993 TIME: 16:ð3:ð2.56???

TITLE: RC LENGTH: ðððð4 MOD: FMTDCPXC ID: ð2

18883E36: ðððð ðððð |

----------------------------- End of Trace Output --------------------

Figure 33. Layout of Trace Entries

The trace header for each entry consists of:

� The trace level of that trace entry
� The current OS/2 process identifier (PID)
� The current OS/2 thread identifier (TID)
� The date and time of the trace entry
� The title of the trace entry
� The length of the trace entry, as a decimal number
� The module name
� The ID of the trace entry point within a module.

Each line of a trace entry consists of:

� A pointer to the traced data area
� The trace entry data in hexadecimal format
� The readable trace entry data.

“Trace Function Messages” lists all error messages that can occur while using the
DD&C trace facility.

Trace Function Messages
The following error messages can occur when using the DD&C for OS/2 trace function
(FMTTRACE):

 Appendix D. Using the OS/2 Trace Function 225

FMT0002E �FMT0007E

FMT0002E Error opening file fn.

Explanation: The program is unable to open the specified file. The file does not exist, cannot be
created, or the drive containing the file is not ready.

User Response: Correct the problem and then start FMTTRACE again.

FMT0003E Parameter prm for the command is not valid.

Explanation: The parameter you have specified is not valid for this command.

User Response: Refer to “Issue the FMTTRACE Command” on page 222 for a list of valid
keywords. Specify the command with the correct keyword.

FMT0004E Semaphores cannot be created.

Explanation: DD&C for OS/2 attempted to create an OS/2 semaphore in order to serialize
access to shared resources, but creation failed due to a system error.

User Response: Contact your IBM support representative.

FMT0005E The detached process FMTGTDAE.EXE cannot be started.

Explanation: To keep the trace data resident in memory, DD&C for OS/2 needs a detached
process, FMTGTDAE.EXE. This program cannot be found. DD&C for OS/2 stops processing.

User Response: Verify that the program FMTGTDAE.EXE is available in the DD&C for OS/2
program files directory and that the environment variable FMTDIR contains the name of this
system directory.

FMT0006E The detached process FMTGTDAE.EXE, used to keep trace data, was
started, but the central resources in the shared segment cannot be
accessed.

Explanation: To keep the trace resources resident in memory, DD&C for OS/2 requires a
detached process, FMTGTDAE.EXE. FMTGTDAE.EXE cannot access the shared memory where
the resources are located. DD&C for OS/2 stops processing. This is a system error.

User Response: Contact your IBM support representative.

FMT0007E Internal semaphore error.

Explanation: An internal system error occurred when DD&C for OS/2 attempted to use an OS/2
semaphore to serialize access to shared resources.

User Response: Contact your IBM support representative.

226 SdU Data Description and Conversion

FMT0008E �FMT0015I

FMT0008E HELP and Q parameters are mutually exclusive.

Explanation: The parameters HELP and Q (suppress title) cannot be specified at the same time
when you invoke FMTTRACE.

User Response: Specify either HELP or Q, but not both.

FMT0009I FMTTRACE processing complete.

Explanation: The trace has been turned off.

User Response: None

FMT0011E ON and OFF parameters are mutually exclusive.

Explanation: The parameters ON and OFF cannot be specified at the same time when you
invoke FMTTRACE.

User Response: Specify either ON or OFF, but not both.

FMT0012E N parameter was specified but FMTTRACE was not invoked with the P
parameter.

Explanation: The N (maximum trace entries) parameter can only be specified together with the P
(activate trace print) parameter.

User Response: Remove the N parameter or add the P parameter.

FMT0013E You tried to activate the DD&C for OS/2 trace and print the trace entries at
the same time. Printing, however, implicitly ends the trace collection.

Explanation: The ON parameter starts the collection of trace entries and the P parameter prints
the trace entries already collected. There are no entries to print when the P parameter is specified
with the ON parameter.

User Response: Do not specify the P parameter with the ON parameter.

FMT0014I The DD&C for OS/2 trace is already active.

Explanation: You attempted to start the DD&C for OS/2 trace, but it has already been started
and is still active.

User Response: To restart the trace, invoke the FMTTRACE OFF command first.

FMT0015I The DD&C for OS/2 trace is already inactive.

Explanation: You attempted to stop the DD&C for OS/2 trace, but it has already been stopped.

 Appendix D. Using the OS/2 Trace Function 227

FMT0016E �FMT0020E

FMT0016E The DD&C for OS/2 trace memory is in use. The trace memory call timed
out.

Explanation: A process attempted to access the trace memory, but a timeout problem occurred.

User Response: Try the command again. If the same message occurs, contact your IBM
support representative.

FMT0017E The DD&C for OS/2 trace memory exists, but cannot be accessed.
DosRequestMutexSem returned rc.

Explanation: The specified error occurred when DD&C for OS/2 attempted to use an OS/2
semaphore to access shared resources.

User Response: Contact your IBM support representative.

FMT0018E DD&C for OS/2 could not allocate the shared memory required for tracing.

Explanation: DD&C for OS/2 attempted to allocate shared memory for tracing that already exists.

User Response: Contact your IBM support representative.

FMT0019E Either -B or /B can only be used with ON at the same time when you
invoke FMTTRACE.

Explanation: FMTTRACE was invoked with the B (buffer size) parameter, but without the ON
parameter. If the parameter B is specified, the ON parameter must also be specified.

User Response: Only specify the B parameter together with the ON parameter.

FMT0020E The environment variable FMTDIR is not set.

Explanation: FMTTRACE was invoked but the environment variable FMTDIR has not previously
been set.

User Response: Set the environment variable:

SET FMTDIR=x:\IBMDDC

Where x is the drive letter of the drive where DD&C for OS/2 is installed.

228 SdU Data Description and Conversion

 Glossary

A Data Language . A language for describing the fields,
arrays, and so on of data records in a programming
environment so the records can be transparently
accessed by other programming environments.

abend . Abnormal end of task.

access method . The part of the DDM architecture
which accepts commands to access and process the
records of a file.

ADL . A Data Language

ADLCA . ADL Communications Area, which contains
control information for exception handling.

alternate index file . A file that has a different key path
over a base file. The base file can be a keyed, direct, or
sequential file.

API. Application Programming Interface

array . An object consisting of an ordered collection of
homogeneous objects mapped onto N dimensions.

attribute . An object that specifies information about
another object, such as the length of a character string,
field or the date at which a record was last accessed.

Backus Naur Form . BNF

BNF. The metalanguage, Backus Naur Form.

case . An ordered collection of selections for the decla-
ration of a field.

CCS. Common Communication Support.

CCSID. Coded Character Set Identifier.

CDRA. Character Data Representation Architecture.

character string . A string of bytes containing charac-
ters encoded as specified by its CCSID attribute.

CM. Communications Manager

complete path name . The specifications for a file
which includes the drive (if OS/2), directory, filename
and file extension.

constructor . A data type that consists of zero or more
instances of other data types. ADL examples of
constructors are ARRAYs, CASEs, AND SEQUENCESs.

CPGID. Code Page Global Identifier.

CTOK. Condition Token. A 12-byte area in which infor-
mation about the execution of a called program is
returned by that program.

CUA. Common User Access.

data conversion . A set of programs that convert data
according to defined data descriptions. For example,
characters can be converted from EBCDIC to ASCII, and
numeric data can be converted from System /370
packed decimal to IEEE floating point or ASCII character
(or vice versa).

data description . Specification of the layout of data.
The data description of data stored in a file can be
viewed as a file attribute.

data security . The protection of data against unauthor-
ized disclosure, transfer, modifications or destruction,
whether accidental or intentional.

data set . The major unit of data storage and retrieval.
It consists of a collection of data in one of several pre-
scribed arrangements which is described by control
information that the system has access to.

data stream . All data transmitted through a data
channel in a single read or write operation.

DBCS. Double-byte character set. A set of characters
in which each character is represented by 2 bytes.

DD&C. Data Description and Conversion. An architec-
ture extension to DDM.

DDM. A set of interfaces that gives users access to
data files that reside on remote systems connected by a
communication network. The DDM interfaces enable an
application program to retrieve, add, update and delete
data records in a file existing on a remote system. The
DDM interfaces can be used to communicate between
systems that have different architectures.

deadlock . Unresolved contention for the use of a
resource. Each element in a process is waiting for an
action by, or a response from, the other.

 Copyright IBM Corp. 1994, 1997 229

declaration . An ADL statement specifying the type,
attributes, and entities of a record or an object.

DFM client . Translates requests from the source
system for access to file data on a remote system into a
standard architected DDM request.

DFM server . A DFM component that accepts remote
requests to access data and translates the requests into
data management requests on the target system.

direct file . A file that is organized so that there is a
relationship between the contents of the records and
their positions.

discriminant . A field that can be tested by a WHEN
statement of a CASE to determine if the data declaration
clause of the WHEN statement is to be selected.

Distributed Data Management (DDM) . Architecture for
accessing distributed data located in files and distributed
relational databases.

Distributed File Management (DFM) . Strategy for a
set of programming facilities that implement the file
aspects of the DDM architecture on those systems which
represent distributed environments.

intersystem communication . Communication between
different systems by means of SNA facilities.

DRBA . Distributed relational data base access.

element . An instance of a data type that is a compo-
nent of a constructor data type.

entity . A record or an object.

fixed-point number . An object representing a number
whose precision and scale are fixed.

floating-point number . An object representing a
number with fixed precision and floating scale.

FSD. File System Driver.

HLL . High Level Language

HPFS. High Performance File System.

IFS. Installable File System.

keyed file . A file organization that supports keyed
access to the records of the file.

LAN . Local Area Network.

Local Area Network . LAN

LDM. Local Data Management.

LDMI. Local Data Management Interface.

local file . A file that resides on the same system as the
application program that is accessing it.

LU. Logical unit.

mixed-character string . A character string consisting
of both SBCS and DBCS characters.

module . A set of data declarations and plans used to
convert data.

object . An instance of a type, such as a field of a
record or an attribute of a field.

PL. Programming Language

plan . A program for converting data from one represen-
tation to another.

protocol . A set of rules to be followed by communi-
cation systems.

RACF. Resource Access Control Facility. An external
security management facility.

record . The basic unit of data stored in a file and trans-
ferred between DDM source and target servers. An
instance of a field or constructor type.

record file . Record files consist of data fields organized
into records that can be accessed as a set of bytes.

remote file . A file that resides on a system other than
the system where the application program requesting
access to the file resides.

Remote Record Access Support . The DFM function
that allows VSAM applications to access remote file
data.

SBCS. Single-byte character set. A set of characters in
which each character is represented by 1 byte.

SCM. Source Communications Manager. The DDM
layer responsible for interfacing with the local communi-
cations facilities. It coordinates the sending and
receiving of data on the source system.

230 SdU Data Description and Conversion

sequence . An object consisting of an ordered collection
of heterogeneous objects.

sequential file . A file in which records are arranged in
exactly the same sequence as they were stored into the
file.

SNA. Systems Network Architecture.

source system . A system that requests access to data
on another system. In a client/server relationship, it is
the client system.

Stream Agent . The DDM program responsible for
transformation of data between the stream oriented API
requests and the DDM byte requests.

subtype . In the type hierarchy, a lower level type which
inherits characteristics and attributes from a higher level
type.

supertype . In the type hierarchy, a higher level type
from which a subtype inherits its characteristics and attri-
butes.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through and controlling the configuration and oper-
ation of networks.

target system . The system that contains data that is
being accessed by another system. In a client/server
relationship, it is the server system.

target system data . Data considered to be owned and
maintained according to the rules and functions pre-
scribed by the data manager on the target system.

TP. Transaction Program

user exit . A point in an IBM-supplied program at which
a user-exit routine may be given control.

type . A set of representable values encapsulated by a
set of operations on those values. Each programming
language defines its own set of data types, such as the
PIC data types of COBOL or the integer data type of C.

type domain . The set of programs and objects that
process or store data of the same set of programming
language data types and representations. Examples of
type domains are MVS COBOL and OS/2 C.

type manager . A facility for a single type domain
capable of:

� Mapping programming language data descriptions
into ADL.

� Mapping the ADL of another type domain into ADL
of its own type domain.

� Mapping ADL into programming language data
descriptions.

VTAM. Virtual Telecommunications Access Method.

 Glossary 231

232 SdU Data Description and Conversion

 Index

A
access method, definition 229
ad hoc data conversion

components involved in 2
description of 2
numeric conversion routines 14

ADL
CALL statement 23, 107
calling your own programs from 107
DECLARE statement 7, 28
exceptions 110, 112
generating source code with FMTGEN 7, 34, 111
INCLUDE statement 30
PLAN statement 7, 28
positional identifiers 41
producing source code listing 30
sample output produced by FMTGEN 158
sample source code 146, 168
SKIP statements, inserting 29
source file name, as input to FMTGEN 29
source files, creating 6

ADL communications area (FMTADLCA)
example of declaring and initializing 20
example of printing 159
extracting ADL exceptions returned in 110
fields of 23
initializing condition token with pointer to 44
layout of 23
pointer to from condition token 23

ADL Declaration Translator
calls of API 27
description of 7
Generate function 7
input to FMTGEN 34
input to FMTPRS 28

ADLDCLSPC
address as input to FMTCRCP 40
address as input to FMTGEN 7, 34
address as input to FMTPRS 31
as listing file output of FMTGEN 111
description 7
determining order in conversion plan space 41
determining required length 31
testing contents with Consistency Token 24

ADLPLNSPC

ADLPLNSPC (continued)
address as input to FMTCRCP 40
address as input to FMTGEN 7, 34
address as input to FMTPRS 32
description 7

alphanumeric conversion routines
CDRGCTL 73
CDRGESE 67
CDRGESP 69
CDRMSCC 66
CDRMSCI 60
CDRMSCP 63
CDRSMXC 71
overview 14

attributes
of BINARY 77
of FLOAT 79
of PACKED 81
of ZONED 82

AUTOSKIP option of FMTPRS 29

B
big endian 1
BINARY attributes 77
BINARY field, definition of a 14
binary to binary conversion 86
binary to float conversion 88
binary to packed conversion 89
binary to zoned conversion 90

C
C language sample programs

SAMPLE1.C 146
SAMPLE2.C 159
USEREXIT.C 169

CALL statement, ADL 23, 107
CCSID

converting from one to another 16
example of use in ADL 12
format 16
getting with CDRSMXC 16, 71
range of special-purpose 115
relating to correct conversion table 17
resource table, retrieving information from 16

 Copyright IBM Corp. 1994, 1997 233

CCSID (continued)
system 68

CDRA
identifiers 15
resources used by DD&C for Windows 17
return codes 115
services used by DD&C 16

CDRA identifiers
coded character set identifier (CCSID) 16
coded graphic character set global identifier

(CGCSGID) 15
encoding scheme identifier (ESID) 15

CDRA resources
CCSID resource table 17
graphic character conversion selection table 17, 60
graphic character conversion table 60
graphic character conversion tables 17
handle identifying 61, 63, 66
used by CDRGCTL 73
used by CDRGESE 67
used by CDRMSCC 66
used by CDRMSCI 60
used by CDRMSCP 63
used by CDRSMXC 71

CDRA services
CDRGCTL 16, 73
CDRGESE 16, 67
CDRGESP 16, 69
CDRMSCC 16, 66
CDRMSCI 16, 60
CDRMSCP 16, 63
CDRSMXC 16, 71

CDRGCTL (get control function definition) 16, 25, 73
CDRGESE (get encoding scheme elements) 16, 67
CDRGESP (get encoding scheme, CS, and CP) 16,

25, 69
CDRMSCC (clean up after multiple-step

conversion) 16, 66
CDRMSCI (initialize multiple-step conversion) 16, 60
CDRMSCP (perform multiple-step conversion) 16, 63
CDRSMXC (get short form CCSID) 16, 71
character conversion routines 17
character set

getting with CDRGESP 16, 69
global identifier (GCSGID) 16
largest, getting CCSID for code page 71
relationship to code page 16

CNSTKN (consistency token) 19, 24
code page

getting elements of with CDRGESP 16

code page (continued)
getting with CDRGESP 69

code page global identifier (CPGID) 16
coded character set identifier (CCSID) 16
coded graphic character set global identifier

(CGCSGID) 15
components of DD&C for Windows

ADL Declaration Translator 7
Conversion Plan Builder 8, 17
Conversion Plan Executor 9
data-type conversion routines 10

condition token
debugging using 110
format of 20—23
initializing with pointer to FMTADLCA 44
structure FMTCTOK 19
using information returned in 110

consistency token
fields of 24
format of 24
structure FMTCNSTKN 19
to check that a file has not changed 111
use in FMTPRS 31, 111

control function definition
definition of 73
getting with CDRGCTL 16, 73

conventions
calling 19
Hungarian notation 20
naming 19

conversion
alphanumeric 59
data type 59
example of planned conversion 11
numeric 59
plan, description of creating 8

Conversion Plan Builder
creating conversion plan 8, 40
description of 8, 17
inputs 8
outputs 8

Conversion Plan Executor
API calls of 49
convert 52
description of 9
initialize 50
terminate 57

conversion plan space
as Conversion Plan Builder output 40
description of 8

234 SdU Data Description and Conversion

conversion plan space (continued)
determining buffer size from 40
handle 51
initializing 51
loading into memory 9
order of ADLDCLSPCs in 41
specifying size of 43
specifying start address 43

conversion plan space handle
as input to FMTCPXC 52
returned by FMTCPXI 50

conversion resources
loading into memory 60

conversions
ad hoc 2
planned 3

converting data 9
CP

See code page
CS

See character set

D
data conversion

ad hoc 13
methods of 2

data overflow
CDRA return code following 115
handling 25

data structures 19
data types 19
data-type conversion routines

alphanumeric 14
description of 10
numeric 14

DD&C
system directory path 221
tracing 221

DD&C for Windows
overview 1

DDM
parameters of FMTPRS defined by 33

DDM definition 229
debugging

using FMTGEN 111
using the condition token 110
using the listing file 110

debugging applications 109

declaration translator
input to FMTPRS 28

declaration translator, ADL 7
default plan space 8
diagnostic information, where to find 109

E
encoding scheme

getting elements of with CDRGESE 16, 67
getting with CDRGESP 16, 69

encoding scheme identifier (ESID)
format of 15
getting with CDRGESP 69
retrieving with CDRGESE 67

endian, big and little 1
error messages

how to interpret 109
including in ADL listing 30
specifying severity to list 30

ESID
See encoding scheme identifier (ESID)

exceptions, ADL 112

F
facility ID 22
field data types definitions

BINARY 14
FLOAT 14
PACKED 14
ZONED 14

FLAG option of FMTPRS 30
FLOAT attributes 79
FLOAT field, definition of a 14
float to binary conversion 92
float to float conversion 93
float to packed conversion 94
float to zoned conversion 95
FMTADLCA

See ADL communications area (FMTADLCA)
FMTBNBN (binary to binary conversion) 86
FMTBNFL (binary to float conversion) 88
FMTBNPK (binary to packed conversion) 89
FMTBNZN (binary to zoned conversion) 90
FMTCPXC (Conversion Plan Executor convert) 52—56,

159
FMTCPXI (initialize Conversion Plan Executor) 50—51,

110, 159

 Index 235

FMTCPXT (terminate Conversion Plan Executor) 57
FMTCRCP (create conversion plan) 40—47
FMTCTOK (condition token) structure 19
FMTFLBN (float to binary conversion) 92
FMTFLFL (float to float conversion) 93
FMTFLPK (float to packed conversion) 94
FMTFLZN (float to zoned conversion) 95
FMTGEN (generate)

calling from more than one process 37
debugging with 111
determining default ADL attributes with 111
diagnostic information returned from 109
example of call to 146
format 34
listing file, example 155
parameters 34
purpose 34
return codes 36
sample ADL output 158
using listing file to identify errors 111

FMTPKBN (packed to binary conversion) 96
FMTPKFL (packed to float conversion) 97
FMTPKPK (packed to packed conversion) 98
FMTPKZN (packed to zoned conversion) 100
FMTPRS (parse)

calling from more than one process 33
diagnostic information returned from 109
example of call to 146
FLAG option 30
format of 28
LIST option 30
listing file, example 154
NOLIST option 30
options 29
parameters defined by DDM 33
parameters of 28
passing ADLDCLSPC address to 31
passing ADLPLNSPC address to 32
purpose of 28
return codes 32
using listing file to identify errors 110

FMTTRACE command 222
FMTZNBN (zoned to binary conversion) 101
FMTZNFL (zoned to float conversion) 103
FMTZNPK (zoned to packed conversion) 104
FMTZNZN (zoned to zoned conversion) 106

G
generate function (FMTGEN)

See FMTGEN
graphic character conversion selection table 17, 60
graphic character conversion tables 17, 60
graphic character set global identifier (GCSGID) 16

H
handle, conversion plan space

as input to FMTCPXC 52
returned by FMTCPXI 50

handle, identifying CDRA resources
as input to CDRMSCC 66
as input to CDRMSCP 63
returned by CDRMSCI 61

Hungarian notation 20

I
INCLUDE statement, ADL 30

L
LIST option of FMTPRS 30
listing file

debugging using 110
example generate function 155
example parse function 154

little endian 1

M
messages

Generate function errors 141
Parse function messages 119
trace errors 225

multiple-step conversion
cleaning up after with CDRMSCC 66
cleaning up after with CDRMSCP 16
initializing with CDRMSCI 16, 60
performing with CDRMSCP 16, 63

N
naming conventions 19
NOLIST option of FMTPRS 30
numeric conversion routines

attribute array formats 77

236 SdU Data Description and Conversion

numeric conversion routines (continued)
BINARY attributes 77
extracting ADL exceptions returned by 110
FLOAT attributes 79
FMTBNBN (binary to binary conversion) 86
FMTBNFL (binary to float conversion) 88
FMTBNPK (binary to packed conversion) 89
FMTBNZN (binary to zoned conversion) 90
FMTFLBN (float to binary conversion) 92
FMTFLFL (float to float conversion) 93
FMTFLPK (float to packed conversion) 94
FMTFLZN (float to zoned conversion) 95
FMTPKBN (packed to binary conversion) 96
FMTPKFL (packed to float conversion) 97
FMTPKPK (packed to packed conversion) 98
FMTPKZN (packed to zoned conversion) 100
FMTZNBN (zoned to binary conversion) 101
FMTZNFL (zoned to float conversion) 103
FMTZNPK (zoned to packed conversion) 104
FMTZNZN (zoned to zoned conversion) 106
naming convention 76
overview 14
PACKED attributes 81
ZONED attributes 82

numeric conversions
binary to binary 86
binary to float 88
binary to packed 89
binary to zoned 90
float to binary 92
float to float 93
float to packed 94
float to zoned 95
packed to binary 96, 101
packed to float 97
packed to packed 98
packed to zoned 100
zoned to float 103
zoned to packed 104
zoned to zoned 106

O
OS/2

extended precision 80
process identifier (PID) in trace 225
thread identifier (TID) in trace 225

overflow handling 25—26, 115
overview of DD&C for Windows 1

P
PACKED attributes 81
PACKED field, definition of 14
packed to binary conversion 96, 101
packed to float conversion 97
packed to packed conversion 98
packed to zoned conversion 100
parse function

See FMTPRS
PID (process identifier) 225
plan space

default 8
format required 42
format required by FMTCRCP 40
user-defined 8

planned conversion
components involved in 2
description of 2
example of 11
with user exits 2

positional identifiers 41
process identifier (PID) 225
programs, sample 145
providing your own programs 107

R
return codes

ADL exceptions 112
CDRA 115

S
sample programs 145
SAMPLE_G.LST 155
SAMPLE_P.LST 154
SAMPLE.ADL 146
SAMPLE.GEN 158
SAMPLE1.C 146
SAMPLE2.C 159
SAMPLE3.C 172
SAMPLE4.C 179
SCM, definition 230
SKIP statements, inserting ADL 29
source code, generating ADL 7
source files

creating ADL 6
substring separation 17

 Index 237

system CCSID 68
system directory path 221

T
thread identifier (TID) 225
TID (thread identifier) 225
TP 231
trace entries

contents 225
PID 225
TID 225
writing to a file 224

trace level 221
tracing

error messages 225
FMTTRACE command 222
overview 221
preparation 221
setting system directory path 221
specifying the trace level 221
starting 223
stopping 224
writing entries to a file 224

U
user-defined plan space 8
user-exit API call 2, 107
 user-exit function 107
USEREXIT.ADL 168
USEREXIT.C 169

W
Windows

as source system 1
data types used 19

Z
ZONED attributes 82
ZONED field, definition of 14
zoned to float conversion 103
zoned to packed conversion 104
zoned to zoned conversion 106

238 SdU Data Description and Conversion

Communicating Your Comments to IBM

SMARTdata UTILITIES
Data Description and Conversion

Publication No. SC26-7091-01

If you especially like or dislike anything about this book, please use one of the methods listed
below to send your comments to IBM. Whichever method you choose, make sure you send your
name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter, or
completeness of this book. However, the comments you send should pertain to only the informa-
tion in this manual and the way in which the information is presented. To request additional publi-
cations, or to ask questions or make comments about the functions of IBM products or systems,
you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United States, you
can give the RCF to the local IBM branch office or IBM representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

 – United States: 1-800-426-6209
– Other countries: (+1)+408+256-7896

� If you prefer to send comments electronically, use this network ID:

– IBMLink from U.S. and IBM Network: STARPUBS at SJEVM5
– IBMLink from Canada: STARPUBS at TORIBM
– IBM Mail Exchange: USIB3VVD at IBMMAIL

 – Internet: starpubs@vnet.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

SMARTdata UTILITIES
Data Description and Conversion

Publication No. SC26-7091-01

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com-
ments in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC26-7091-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
G26/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

Fold and Tape Please do not staple Fold and Tape

SC26-7091-01

IBM

Program Number: 5765-548
 5765-549
 5622-793
 5622-794
 5639-B92

Printed in U.S.A.

SC26-7ð91-ð1

