

IB
M

SMARTdata UTILITIES for OS/2

VSAM in a Distributed Environment

SC26-7063-02

IBM SMARTdata UTILITIES for OS/2

VSAM in a Distributed Environment

SC26-7063-02

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page xv.

| Third Edition (July 1997)

| This edition applies to the SMARTdata UTILITIES Version 2 function, and to all subsequent releases and modifications
until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product.

Publications are not stocked at the address below. Requests for IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

You can order by calling IBM Software Manufacturing Solutions at 1-800-879-2755.

A form for reader comments is provided at the back of this publication. If the form has been removed, address your
comments to:

International Business Machines Corporation
RCF Processing Department

 G26/050
5600 Cottle Road
San Jose, CA 95193-0001

 U.S.A.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xv
Programming Interface Information . xv
Trademarks and service marks . xvi

About This Book . xvii
Who Should Read This Publication . xvii
What You Should Know Before Reading This Publication xvii

Bibliography . xix

Summary of Changes . xxi
| July 1997 . xxi

June 1996 . xxi

Using This Reference . xxiii
Notation Conventions . xxiii
Function Descriptions . xxiii
DDMExample (Example) . xxiv

Syntax . xxiv
Parameters . xxiv
Returns . xxiv
Remarks . xxv
Effect on Cursor Position . xxv
Locking (for Local VSAM File System Only) xxv
Exceptions . xxv
Record File Attributes by File Class . xxv
Examples . xxv

Chapter 1. Introduction to VSAM as a DDM Implementation 1
Distributed Data Management Overview . 1
DDM Record Types . 4

RECORD formats . 4
RECINA formats . 4

Record Attribute Lists (RECALs) . 5
Extended Attributes . 5
Record Files . 6
Record File and Record Length Classes . 7

Sequential Files . 8
Direct Files . 10
Keyed Files . 13
Alternate Index File . 16
File Naming Conventions . 17

Performance Considerations . 17
Sequential and Direct Files . 18
Keyed and Alternate Index Files . 18

 Copyright IBM Corp. 1993, 1997 iii

Access Methods . 18
Promoting Access Methods . 20

DDM Cursor . 21
DDM Lock Management . 22

Concurrency Protection . 22
File Locking . 23
Record Locking (Implementation is Dependent on the Server) 25
Promoting Locks (Implementation is Dependent on the Server) 27
DDM Architecture Promotions and Exceptions 28

Technical Considerations . 29

Part 1. VSAM in a Distributed Environment . 31

Chapter 2. Function Lists . 33
VSAM Function Descriptions . 33
Parameters Used in Function Descriptions . 36
Access Functions Applicable to Each File Class 36
Cursor-Positioning Functions Applicable to Each File Class 37
Record File Attributes by File Class . 39
Modifiable Record File Attributes by File Class 40
Private File Attributes by File Class . 41
Access Functions Applicable to Each Access Method 42
Access Functions Applicable to Each Access Method Continued 44

Chapter 3. VSAM API Functions . 45
DDMClose (Close File) . 46
DDMCopyFile (Copy File) . 48
DDMCreateAltIndex (Create Alternate Index File) 52
DDMCreateRecFile (Create Record File) . 59
DDMDelete (Delete File) . 66
DDMDeleteRec (Delete Record) . 68
DDMForceBuffer (Commit a File's Cached Information) 72
DDMGetRec (Get Record) . 74
DDMGetReplyMessage (Get Reply Message) 83
DDMInsertRecEOF (Insert Records at EOF) . 85
DDMInsertRecKey (Insert Records by Key Value) 95
DDMInsertRecNum (Insert by Record Number) 100
DDMLoadFileFirst (Load Records into File) . 108
DDMLoadFileNext (Load Records into File) . 117
DDMModifyRec (Modify Record) . 124
DDMOpen (Open File) . 129
DDMQueryFileInfo (Get a File's Information) . 135
DDMQueryPathInfo (Get File or Subdirectory Information) 137
DDMRename (Rename File) . 140
DDMSetBOF (Set Cursor to Beginning of File) 143
DDMSetEOF (Set Cursor to End of File) . 146
DDMSetFileInfo (Set File Information) . 148
DDMSetFirst (Set Cursor to First Record) . 150

iv VSAM for OS/2

DDMSetKey (Set Cursor by Key) . 161
DDMSetKeyFirst (Set Cursor to First Record in Key Sequence) 179
DDMSetKeyLast (Set Cursor to Last Record in Key Sequence) 188
DDMSetKeyLimits (Set Key Limits) . 197
DDMSetKeyNext (Set Cursor to Next Record in Key Sequence) 204
DDMSetKeyPrevious (Set Cursor to Previous Record in Key Sequence) 222
DDMSetLast (Set Cursor to Last Record) . 235
DDMSetMinus (Set Cursor Minus) . 245
DDMSetNextKeyEqual (Set Cursor to Next Record with Equal Key) 255
DDMSetNextRec (Set Cursor to Next Record) 271
DDMSetPathInfo (Set File or Directory Information) 290
DDMSetPlus (Set Cursor Plus) . 293
DDMSetPrevious (Set Cursor to Previous Record) 303
DDMSetRecNum (Set Cursor to Record Number) 316
DDMSetUpdateKey (Set Update Intent by Key Value) 323
DDMSetUpdateNum (Set Update Intent by Record Number) 332
DDMTruncFile (Move EOF to Current Cursor Position) 339
DDMUnLoadFileFirst (Unload Records from File) 341
DDMUnLoadFileNext (Unload Records from File) 351
DDMUnLockRec (Unlock Implicit Record Lock) 360

Chapter 4. VSAM API Common Parameters 363
ACCINTLS (Access Intent List) . 363
ACCMTHCL (Access Method Class) . 364
ACCMTHLS (Access Method List) . 364
ALCINISZ (Allocate Initial Extent)—DFM Only 365
ALTINDLS (Alternate Index List) . 366
BASFILNM (Base File) . 367
BASMGMNM (Base Management Class Name) 367
BASSTGNM (Base Storage Class Name) . 368
CODPNT (Code Point Attribute) . 368
CSRPOSST (Cursor Position Status) . 368
DATE (Date and Time) . 369
DELCP (Record Deletion Capability) . 371
DFTREC (Default Record) . 371
DTACLSNM (Data Class Name) . 372
DTALCKST (Data Lock Status) . 373
EOFNBR (End of File Record Number) . 374
ERRFILNM (Error File Name) . 374
FILBYTCN (File Byte Count) . 375
FILCHGDT (File Change Date)—DFM Only . 375
FILCLS (File Class) . 376
FILCRTDT (File Creation Date) . 376
FILHDD (File Hidden) . 377
FILINISZ (Initial File Size) . 377
FILNAM (File Name) . 378
FILPRT (File Protected) . 379
FILSIZ (File Size) . 380

 Contents v

FILSYS (System File) . 380
GETCP (File Get Capability) . 381
INSCP (File Insert Capability) . 381
KEYDEF (Key Definition) . 382
KEYDEFCD (Key Definition Error Code) . 382
KEYDUPCP (Duplicate Keys Capability) . 384
KEYFLDDF (Key Field Definition) . 384
KEYVAL (Key Value) . 385
LSTACCDT (Last Access Date)—DFM Only . 385
LSTARCDT (Last Archived Date)—DFM Only 386
MAXARNB (Maximum Active Record Number) 386
MAXOPN (Maximum Number of Files Opened) 387
MGMCLSNM (Management Class Name) . 387
MODCP (File Modify Capability) . 387
NEWFILNM (New File Name) . 388
RECAL (Record Attribute List) . 389
RECCNT (Record Count) . 390
RECINA (Inactive Record) . 391
RECLEN (Record Length) . 392
RECLENCL (Record Length Class) . 392
RECNBR (Record Number) . 393
RECORD (Record) . 394
RTNCLS (File Retention Class) . 394
SRVDGN (Server Diagnostic Information) . 394
STGCLSNM (Storage Class Name) . 395
SVRCOD (Severity Code) . 396
SYNERRCD (Syntax Error Code) . 398
TITLE (A Brief Description) . 399

Chapter 5. VSAM API Flags . 401
AccessFlags (Access Flags) . 401

DDM_HLDUPD (Hold Update Intent) . 402
DDM_UPDCSR (Update Cursor) . 402
DDM_INHMODKY (Inhibit Modified Keys) 402
DDM_ALWINA (Allow Cursor to Be Set to Inactive Record) 403
DDM_HLDCSR (Hold Cursor Position) . 403
DDM_BYPDMG (Bypass Damaged Records) 403
DDM_NODATA (No Record Data Returned) 404
DDM_ALLREC (All Records, Active and Inactive) 404
DDM_RTNINA (Return Inactive Record) . 404
DDM_KEYVALFB (Key Value Feedback) . 404
DDM_RECNBRFB (Record Number Feedback) 405
DDM_UPDINT (Update Intent) . 405

CopyFlags (Copy Flags) . 406
DDM_BYPINA (Bypass Inactive Records) 407
DDM_BYPDMG (Bypass Damaged Records) 407
DDM_ACCORD (Access Order) . 407

CreateFlags (Create Flags) . 407

vi VSAM for OS/2

DDM_FILPRT (Protected File) . 408
DDM_FILSYS (System File) . 408
DDM_FILHDD (Hidden File) . 409
DDM_MODCP (Allow Modify Record Capability) 409
DDM_INSCP (Allow Insert Record Capability) 409
DDM_GETCP (Allow Get Record Capability) 409
DDM_INIEX (Inhibit Initial Extent) . 410
DDM_DELCP (Allow Record Deletion) . 410
DDM_TMPFIL (Temporary File) . 410
DDM_ALDUPKEY (Allow Duplicate Keys) 411

Chapter 6. VSAM API Reply Messages . 413
Reply Message Interface . 413
Reply Message Structure . 413
Reply Messages . 414
ACCATHRM (Not Authorized to Use Access Method) 417
ACCINTRM (Access Intent List Error) . 417
ACCMTHRM (Invalid Access Method) . 418
ADDRRM (Address Error) . 419
AGNPRMRM (Permanent Agent Error) . 420
BASNAMRM (Invalid Base File Name) . 420
CLSDMGRM (File Closed with Damage) . 421
CMDCHKRM (Command Check) . 421
COMMRM (Communications Error) . 423
CSRNSARM (Cursor Not Selecting a Record Position) 426
CVTNFNRM (Conversion Table Not Found) . 427
DDFNFNRM (Data Description File Not Found) 427
DFTRECRM (Default Record Error) . 428
DRCATHRM (Not Authorized to Directory) . 428
DRCFULRM (Directory Full) . 429
DTARECRM (Invalid Data Record) . 429
DUPFILRM (Duplicate File Name) . 431
DUPKDIRM (Duplicate Key Different Index) . 431
DUPKSIRM (Duplicate Key Same Index) . 432
DUPRNBRM (Duplicate Record Number) . 434
ENDFILRM (End of File) . 435
EXSCNDRM (Existing Condition) . 437
FILATHRM (Not Authorized to File) . 437
FILDMGRM (File Damaged) . 438
FILFULRM (File Is Full) . 440
FILIUSRM (File in Use) . 441
FILNAMRM (Invalid File Name) . 442
FILNFNRM (File Not Found) . 442
FILSNARM (File Space Not Available) . 443
FILTNARM (File Temporarily Not Available) . 444
FUNATHRM (Not Authorized to Function) . 444
FUNNSPRM (Function Not Supported) . 445
HDLNFNRM (File Handle Not Found) . 445

 Contents vii

INTATHRM (Not Authorized to Open Intent for Named File) 446
INVFLGRM (Invalid Flag) . 446
INVRQSRM (Invalid Request) . 447
KEYDEFRM (Invalid Key Definition) . 448
KEYLENRM (Invalid Key Length) . 449
KEYUDIRM (Key Update Not Allowed by Different Index) 450
KEYUSIRM (Key Update Not Allowed by Same Index) 451
KEYVALRM (Invalid Key Value) . 452
LENGTHRM (Field Length Error) . 453
NEWNAMRM (Invalid New File Name) . 454
OBJNSPRM (Object Not Supported) . 454
OPNMAXRM (Concurrent Opens Exceeds Maximum) 455
PRCCNVRM (Conversational Protocol Error) 456
PRMNSPRM (Parameter Not Supported) . 457
RECDMGRM (Record Damaged) . 457
RECINARM (Record Inactive) . 459
RECIUSRM (Record in Use) . 459
RECLENRM (Record Length Mismatch) . 460
RECNAVRM (Record Not Available) . 461
RECNBRRM (Record Number Out of Bounds) 462
RECNFNRM (Record Not Found) . 463
RSCLMTRM (Resource Limits Reached on Target System) 464
SRCLMTRM (Resource Limit Reached in Source System) 465
SYNTAXRM (Data Stream Syntax Error) . 465
TRGNSPRM (Parameter Not Supported on Target System) 466
UPDCSRRM (Update Cursor Error) . 467
UPDINTRM (No Update Intent on Record) . 468
VALNSPRM (Parameter Value Not Supported) 468
XLATERM (Translation Error) . 469

Part 2. DFM for OS/2 . 471

Chapter 7. Introduction to the Distributed FileManager for OS/2 473
OS/2 as a DFM Source System . 473

Types of APIs Supported by DFM . 475
DFM File Models . 475

Internal Structure of DFM for OS/2 . 477
Remote Stream Access Support . 478
Remote Record Access Support . 479

How DFM for OS/2 is Connected to Target Systems 480

Chapter 8. DFM for OS/2 Administrative Activities 481
Before You Work with DFM for OS/2 . 481
Startup Activities . 483
Optional Activities . 484

Features of Remote Record Access Support 484
Global DFM for OS/2 Features . 485

viii VSAM for OS/2

Chapter 9. Starting and Stopping DFM for OS/2 487
Starting the DFM for OS/2 and Remote Stream Access Support 487
Starting the DFM for OS/2 Remote Record Access Support 488
Stopping the DFM for OS/2 Remote Record Access Support 488
Stopping the DFM for OS/2 Remote Stream Access Support 489

Chapter 10. Working with the Configuration File 491
Conversation Control . 491
Local LU Profile . 492
Default DFM Target System . 493
Mode Name . 493
Default Coded Character Set . 494
Data Conversion Control for Remote Record Access Support 494
Default Conversion Tables for Remote Stream Access Support 496
Tracing for Remote Record Access Support . 496

Chapter 11. Assigning and Releasing Drive Letters 499
Using the Command-Line Interface . 499
Using the Graphical User Interface . 504

Starting the Graphical User Interface . 505
Assigning a Drive Letter . 508
Getting Help . 511

Using the Application Programming Interface 512

Chapter 12. Exploiting the DFM for OS/2 Caching Facility for Stream Files . 515
| About Memory Caching . 515

DFM for OS/2 Memory Caching of Remote Stream Files 515

Chapter 13. Converting Record File Data . 517
When to Use Data Conversion . 517
How to Use DFM for OS/2 Data Conversion . 518
Creating an ADL Data Description . 519

General ADL Rules . 520
Translating an ADL File into a DDF File . 533

Explicit ADL Translation . 534
Implicit ADL Translation . 534

How to Exploit Conversion of Character Data 534
Conversion Tables for Character Code Point Conversion 535

Record Field Sequence Conversion . 536
Data Type Conversion . 537
Analyzing Conversion Errors . 537

Chapter 14. Writing a File Name Mapping Exit Program 541
Using the Name Mapping User Exits . 541
Writing A Name Mapping User Exit . 541
Special Considerations for OS/400 DFM File Servers 543

Chapter 15. What to Do if an Error Occurs in DFM for OS/2 545

 Contents ix

Handling Problems in DFM for OS/2 . 545
Initial Evaluation of a DFM for OS/2 Problem 545

Messages . 545
The Internal Trace Facility . 546
Defining the Level of the VSAM Trace Events 546
Starting DFMTRACE . 546
Stopping DFMTRACE . 547
Printing the Trace Entries to a File . 547

Submitting an APAR . 548

| Chapter 16. Information for the Application Programmer 551
| VSAM API commands . 551
| DFM Reply Messages and Error Processing . 552
| The C Programmer . 552
| The COBOL Programmer . 553
| The PL/I Programmer . 554

Appendix A. CDRA Character Conversion Tables for Remote Record Access
Support . 559

Appendix B. OS/2 Commands Not Supported by DFM for OS/2 563
Target System Restrictions for Remote Stream Access 564

Appendix C. ADL Subset Supported by DFM for OS/2 565

| Appendix D. The Convert Utility for Local VSAM Files Version 1.0 569

| Appendix E. Programming Extended Attributes in VSAM APIs 571

Glossary . 583

Index . 585

x VSAM for OS/2

 Figures

1. Overview of DDM Processing . 3
2. Local VSAM File Component Parts . 8
3. Sequential File with Variable-Length Records 9
4. Quasi Byte Stream Record File . 10
5. Direct File with Inactive Fixed-Length Records 12
6. Direct / Sequential File Format . 13
7. Keyed File . 14
8. Keyed File of Fixed-Length Records . 16
9. Lost Update Concurrency Problem . 23

10. DDMDeleteRec Function . 71
11. DDMInsertRecEOF . 87
12. DDMInsertRecEOF . 88
13. DDMInsertRecEOF Function . 92
14. DDMInsertRecEOF Function with DDM_UPDCSR 93
15. DDMInsertRecKey Function with DDM_UPDCSR 99
16. DDMInsertRecNum Function . 106
17. DDMInsertRecNum Function with Multiple Records 107
18. DDMLoadFileFirst Function to a New File 114
19. DDMLoadFileFirst Function to Append to a File 115
20. DDMLoadFileFirst Function to Random Load a Direct File 116
21. DDMLoadFileNext Function to Append to a File 123
22. DDMModifyRec Function . 128
23. DDMSetBOF Function . 145
24. DDMSetEOF Function . 147
25. DDMSetFirst Function with DDM_ALLREC Set 155
26. DDMSetFirst Function with DDM_ALLREC Not Set 156
27. DDMSetKey Function with RelOpr Set to KEYEQ 167
28. DDMSetKey Function with RelOpr Set to KEYAE 168
29. DDMSetKey Function with RelOpr Set to KEYAF 169
30. DDMSetKey Function with RelOpr Set to KEYBE 170
31. DDMSetKey Function with RelOpr Set to KEYAE 171
32. DDMSetKey Function with RelOpr Set to KEYBE 172
33. DDMSetKey Function with RelOpr Set to KEYBE 173
34. DDMSetKey Function with RelOpr Set to KEYBF 174
35. DDMSetKeyFirst Function for Ascending Sequence 182
36. DDMSetKeyFirst Function for Descending Sequence 183
37. DDMSetKeyLast Function for Ascending Sequence 191
38. DDMSetKeyLast Function for Descending Sequence 192
39. DDMSetKeyLimits Function . 201
40. DDMSetKeyNext Function with Key Limits Set 202
41. Resetting Limits with DDMSetKey Function 203
42. DDMSetKeyNext Function with Duplicate Key Values 209
43. DDMSetKeyNext Function for Ascending Sequence 210
44. DDMSetKeyNext Function for Descending Sequence 211
45. DDMSetKeyNext Function with Key Limits Set 212

 Copyright IBM Corp. 1993, 1997 xi

46. DDMSetKeyNext Function with Hold Cursor Initially On 213
47. DDMSetKeyNext Function with Hold Cursor Initially On 214
48. DDMSetKeyNext Function with Hold Cursor Initially Off 215
49. DDMSetKeyPrevious Function with Duplicate Key Values 226
50. DDMSetKeyPrevious Function for Ascending Sequence 227
51. DDMSetKeyPrevious Function for Descending Sequence 228
52. DDMSetLast DDM_ALLREC Set Off for Sequential File 239
53. DDMSetLast DDM_ALLREC Set On for Sequential File 240
54. DDMSetMinus Function . 249
55. DDMSetNextKeyEqual to Access First Duplicate Key 259
56. DDMSetNextKeyEqual to Access the Next Duplicate Key 260
57. DDMSetNextKeyEqual to Access Past the Last Duplicate Key 261
58. DDMSetNextKeyEqual Function with Key Limits Set 262
59. DDMSetNextKeyEqual Function with Hold Cursor Initially On 263
60. DDMSetNextKeyEqual function with Hold Cursor Initially On 264
61. DDMSetNextKeyEqual function with Hold Cursor Initially Off 265
62. DDMSetNextRec Function with DDM_ALLREC Set 278
63. DDMSetNextRec Function with DDM_ALLREC Not Set 279
64. DDMSetNextRec Function with Hold Cursor Initially On 280
65. DDMSetNextRec Function with Hold Cursor Initially On 281
66. DDMSetNextRec Function with Hold Cursor Initially On 282
67. DDMSetNextRec Function with Hold Cursor Initially Off 283
68. DDMSetPlus Function . 297
69. DDMSetPrevious Function with DDM_ALLREC Set to On 308
70. DDMSetPrevious Function with DDM_ALLREC Not Set 309
71. DDMSetRecNum Function . 320
72. DDMSetUpdateKey Function . 327
73. DDMSetUpdateNum Function . 336
74. DDMTruncFile Function . 340
75. DDMUnLoadFileFirst Function When Returning Active or Inactive Records 347
76. DDMUnLoadFileFirst Function Skipping Inactive Records 348
77. DDMUnLoadFileFirst Function Skipping Damaged Records 349
78. DDMUnLoadFileFirst Function Unloading in Key Order 350
79. DDMUnLoadFileNext Function . 356
80. DDMUnLoadFileNext Function Skipping Inactive Records 357
81. DDMUnLoadFileNext Function Skipping Damaged Records 358
82. DDMUnLoadFileNext Function Unloading in Key Order 359
83. Record Length Class Promotion . 392
84. DDMSetNextRec ENDFILRM . 436
85. DDMSetKeyNext ENDFILRM . 436
86. Overview of DFM for OS/2 Processing 474
87. DFM for OS/2 Running Under OS/2 2.0 477
88. Remote Stream Access Support . 478
89. Remote Record Access Support . 479
90. DFM Servers Accessed by DFM for OS/2 480
91. Sample STARTDFM.CMD File . 487
92. Sample Statements for the OS/2 STARTUP.CMD File 487
93. DFMDRIVE - Drive Control Window . 505

xii VSAM for OS/2

94. Drive Pull-down . 506
95. Help Pull-down . 507
96. The “About” Logo Window . 508
97. Assign a Drive to a System . 509
98. Select Directory Window . 510
99. Help for Distributed FileManager . 512
100. Format of DosFsAttach Function Call . 512
101. Example ADL Base Sequence Description 520
102. Example ADL View Sequence Description 520
103. Example Data Declaration . 522
104. Layout of a Signed BINARY Field . 523
105. Base Sequence Specifying an EBCDIC Code Page 535
106. View Sequence Specifying an ASCII Code Page 535
107. DFM for OS/2 Data Type Conversion Table 537
108. Structure of DFM_MAP_CB . 542
109. Layout of Trace Entries . 548
110. Supported CDRA Code Page IDs . 559
111. Supported Pairs of EBCDIC - PC Code Page IDs 560
112. Supported Pairs of EBCDIC - EBCDIC Code Page Ids 561
113. Supported Pairs of PC - PC Code Page Ids 561
114. ADL Subset Supported by DFM for OS/2 566

| 115. Example of C Program using Extended Attributes 571

 Figures xiii

xiv VSAM for OS/2

 Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM's valid
intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to :

IBM Director of Licensing
 IBM Corporation

500 Columbus Avenue
 Thornwood, NY 10594
 U.S.A.

Licensees of this program who wish to have information about it for the purpose of
enabling (1) the exchange of information between independently created programs and
other programs (including this one) and (2) the mutual use of the information that has
been exchanged, should contact:

 IBM Corporation
Information Enabling Requests

 Dept. M13
5600 Cottle Road
San Jose, CA 95193

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming Interface Information
This publication documents General-use Programming Interface provided by
SMARTdata UTILITIES.

General-use programming interfaces allow the customer to write programs that obtain
the services of SMARTdata UTILITIES.

General-use Programming Interface is identified where it occurs with an introductory
statement to a section.

 Copyright IBM Corp. 1993, 1997 xv

Trademarks and service marks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the
IBM Corporation in the United States or other countries or both:

 IBM
 MVS/ESA
 Operating System/2
 Operating System/400
 OS/2
 OS/400
 VM/ESA

The following terms are trademarks of other companies:

Intel Intel Corp.
Intel 387 Intel Corp.

xvi VSAM for OS/2

About This Book

This publication introduces the Application Programming Interface (API) for VSAM in a
Distributed Environment, program number 5648-02012. It discusses the capabilities of
the VSAM APIs and how they are used to access remote and local data organized in
various file types.

The first chapter introduces VSAM for OS/2 and Distributed Data Management. It
describes the features of VSAM and the characteristics of the VSAM record files and
file types.

The remainder of the book is divided into two sections.

Part 1 describes the VSAM APIs (also referred to as functions) in detail. It tells you
how to code the APIs, gives information about VSAM parameters, and information
about the VSAM flags. The last chapter in Part 1 describes the VSAM reply messages.

Part 2 describes how to use the Distributed FileManager (DFM) for remote record
access. It describes start-up activities, how to configure DFM, and how record file data
is converted using A Data Language (ADL). DFM uses CDRA coded character set
identifiers (CCSIDs) to define the language for data conversion. Appendix A contains
character conversion tables for various countries. Appendix B lists the ADL subset
supported by DFM for OS/2. Appendix C lists OS/2 commands that DFM does not
support.

Who Should Read This Publication
This book is for you if you are an application programmer who wants to write
applications that open, access, modify, and close record files on local or remote
systems.

What You Should Know Before Reading This Publication
You should have an understanding of Distributed Data Management (DDM) architecture
level 4.0 and C programming language, as well as other programming languages such
as COBOL and PL/1.

 Copyright IBM Corp. 1993, 1997 xvii

xviii VSAM for OS/2

 Bibliography

You can order books by calling IBM* Software Manufacturing Solutions at
1-800-879-2755.

Table 1. SMARTdata UTILITIES for OS/2 Publications

Publication Title Order Number

SMARTdata UTILITIES for OS/2 Set SBOF-6131

SMARTdata UTILITIES for OS/2: VSAM in a Distributed Environment SC26-7063

SMARTdata UTILITIES Data Description and Conversion SC26-7091

SMARTdata UTILITIES A Data Language Reference for Data Description
and Conversion

SC26-7092

Table 2. Other Publications

Publication Title Order Number

DDM Architecture: Specifications for ADL SC21-8286

Character Data Representation Architecture, Level 2 SC09-1390

IBM Systems Journal: Volume 31, No. 3, 1992 G321-5483

Compilers–Principles, Techniques, and Tools: by the Addison–Wesley
Publishing Company

—

IEEE Standard for Binary Floating–Point Arithmetic: 754-1985

INTEL** 387** DX User —

IBM Distributed Data Management: General Information GC21-9527

IBM Distributed Data Management: Reference Guide SC21-9526

Using Distributed Data Management for the IBM Personal Computer SC21-9643

AS/400* Communications:Distributed Data Management Guide SC21-9600

CICS/Distributed Data Management: User's Guide SC33-0695

IBM 4680 Store Systems: Distributed Data Management: User's Guide SC30-4915

DFSMS/MVS Version 1 Release 2 Distributed FileManager/MVS Guide
and Reference

SC26-4915

 Copyright IBM Corp. 1993, 1997 xix

xx VSAM for OS/2

Summary of Changes

This section summarizes the changes made for this edition.

| July 1997
| � Minor changes have been made to Part 1 to make this information more platform
| independent.

| � The following VSAM API Common Parameters have been added:

| – ALCINISZ (Allocate Initial Extent)—DFM only
| – FILCHGDT (File Change Date)—DFM only
| – LSTACCDT (Last Access Date)—DFM only
| – LSTARCDT (Last Archived Date)—DFM only

| � Information has been deleted about disk caching.

| � A new chapter has been added, Chapter 16, “Information for the Application
| Programmer” on page 551, to discuss information the C, COBOL, and PL/I
| application programmer should know.

| � A new appendix has been added, Appendix E, “Programming Extended Attributes
| in VSAM APIs” on page 571, to discuss programming extended attributes in VSAM
| APIs.

 June 1996
The major technical changes are:

� Chapter 7. VSAM Reply Messages

The following reply messages have been added:

– COMMRM (Communications Error)
– CVTNFNRM (Conversation Table Not Found)
– DDFNFNRM (Data Description File Not Found)
– PRCCNVRM (Conversational Protocol Error)
– XLATERM (Translation Error)

� Chapter 12. Assigning and Releasing Drive Letters

You can specify a parameter list when issuing the DFMDRIVE ASSIGN command
to assign a drive letter.

A new command has been added, DFMDRIVE SETPARM, to set a drive
parameter list.

 Copyright IBM Corp. 1993, 1997 xxi

xxii VSAM for OS/2

Using This Reference

Before you begin using this reference, read the following sections to understand the
format and access functions for VSAM APIs.

 Notation Conventions
The function descriptions and examples are shown in C language. Lengths, code
points, bit flag masks, and other values are shown in the following hexadecimal
notation:

X'hex value'

with the hexadecimal value enclosed in single quotes following a capital X.

Bit constants appear in the following format:

B'bit value'

with the bit value enclosed in single quotes following a capital B.

Severity codes are shown in decimal and hexadecimal notation.

Note: See the file DUBCODPT.H in the installation directory (default: C:\IBMDDM\H)
for an example of the code point notation.

 Function Descriptions
The functions in this book follow a pseudo-C high-level language format. The following
example outlines the sections for each &prod. function:

 Copyright IBM Corp. 1993, 1997 xxiii

DDMExample

 DDMExample
(Example)

This is the purpose of the function.

 Syntax
This is the invocation format (Call Interface) for the function and describes all the
parameters of the function.

#include os2.h
#include dub.h

APIRET DDMExample (ULONG Parm 1,
 PULONG Parm 2,
);

 Parameters
This section contains the parameters that apply to the function.

Parm1
The first parameter (ULONG) of the function.

Parm2
The second parameter (PULONG) of the function.

There are four types of parameters:

Function specific Used only by the function, such as FileName.
Common Described in Chapter 4, “VSAM API Common Parameters”

on page 363
AccessFlags Described in “AccessFlags (Access Flags)” on page 401
CreateFlags Described in “CreateFlags (Create Flags)” on page 407

 Returns
This section lists all possible reply messages that can be generated by invoking this
function.

This information is returned in the form of reply messages. For function-specific
information on reply messages, see the specific function in Chapter 3, “VSAM API
Functions” on page 45. For general information on reply messages, see Chapter 6,
“VSAM API Reply Messages” on page 413.

In addition, each function returns a return-code value of the type APIRET. For
descriptions of the severity code (SVRCOD) values, see “SVRCOD (Severity Code)” on
page 396.

To retrieve the reply messages, the DDMGetReplyMessage function must be issued
immediately after the &prod. function that generates the messages. If any other record
I/O function is called by the current &prod. thread of execution, any reply messages
queued are lost.

xxiv VSAM for OS/2

DDMExample

Note: All error codes that refer to security or DDM network communications functions
are not supported in &prod..

 Remarks
This section contains general comments about the function.

Effect on Cursor Position
This section describes the effect the function has on the position of the cursor.

Locking (for Local VSAM File System Only)
This section describes the kind of file locking that occurs for each function.

 Exceptions
This section contains tables that list the reply messages you will normally receive and
provide detailed information about what causes the reply messages.

Record File Attributes by File Class
This section describes the record file attributes by file class.

 Examples
This section contains examples to illustrate what changes may be caused by the
function invocation, such as cursor movement and limit resetting.

 Using This Reference xxv

DDMExample

xxvi VSAM for OS/2

Chapter 1. Introduction to VSAM as a DDM Implementation

This chapter describes the subset of the Distributed Data Management (DDM)
architecture supported by the VSAM APIs. It discusses the API parameters, flags, and
messages.

This chapter describes:

� Distributed Data Management Concepts
� Record types and attributes

 � Access Methods
� Record file types

 � VSAM cursor
 � Lock management

Distributed Data Management Overview
SMARTdata UTILITIES implements two components that manage access to files: the
local VSAM file system and Distributed FileManager (DFM). The local VSAM file
system provides record-type access on the workstation. The Distributed FileManager
provides client remote record access to other DDM server implementations. The
availability of these SMARTdata UTILITIES components is platform dependent. See
the appropriate SMARTdata UTILITIES publication for your platform.

The Distributed Data Management architecture is a methodology used to store,
organize, and access data. The architecture defines the protocol for data connectivity
between computer systems, regardless of their individual application programs, user
applications, hardware, or software.

Using the VSAM APIs, C application programmers can retrieve, add, update, and delete
data records from files that reside on the same system or other systems,

The DDM architecture is based on a client/server model. The system that initiates a
request for access to data is called the source system, or client . The system that
contains the requested data is called the target system, or server .

Note: In conformance with this model, the local VSAM file system behaves like a
server, though the data is local.

The following terms are used in describing how DDM works.

Local File If data is requested from a file that is located on the system that
initiated the request, that file is called a local file.

Remote File If data is requested from a file that is not located on the system that
initiated the request, that file is called a remote file.

Note: The definition of local or remote is always from the point of
view of the system requesting the data.

 Copyright IBM Corp. 1993, 1997 1

Source System The system that initiates requests for access to data is called the
source system. The source system can request data from its own
local files or from the remote files of another system. A component
of the source system is the DDM client. It translates the source
system’s request for data from a remote system into a standardized
DDM request. The DDM client routes the request to the network
access software of the source system, which sends the request to
the corresponding network access software of the system that
contains the requested data.

Target System The system that contains the requested data is called the target
system. A component of the target system is the DDM server, which
receives the DDM client’s request and translates it into a data
management request that the target system understands. Once the
target system has processed the request, it returns the results of the
request to the DDM server. The DDM server routes the results of
the request to the network access software which sends the results
to the source system.

The Distributed Data Management architecture is represented in Figure 1. The text
that follows describes the steps involved in record file access.

2 VSAM for OS/2

Application Program

Source System Target System

Local Data
Management

Interface

Local Data
Management

Interface

Local Data
Manager

Local Data
Manager

DDM
Client

Network
Access
Software

Network
Access
Software

Local
File

Remote
File

DDM Server

Figure 1. Overview of DDM Processing

� An Application Program initiates processing by requesting data.

� The Local Data Management Interface (LDMI) determines whether the data
requested by the application is on a local (source) or a remote (target) system. If
the data is on the local system, the Local Data Manager (LDM) of the source
system retrieves the requested data from storage. If the data is on the remote
system, LDMI invokes the DDM Client.

� The Distributed Data Management Client translates the local command into one
or more Distributed Data Management commands.

� The network access software on the Source System transmits the commands to
the network access software on the Target System .

� The network access software on the Target System directs the Distributed Data
Management command to the Distributed Data Management Server, which handles
the request.

� The Distributed Data Management Server interprets the Distributed Data
Management commands and builds the calls for LDMI on the Target system. The

 Chapter 1. Introduction to VSAM as a DDM Implementation 3

Distributed Data Management Server builds a data stream with the retrieved data.
It then inserts a reply into the data stream and transmits it back to the source
system.

Starting with the following section, the rest of this chapter discusses how the DDM
architecture is implemented in SMARTdata UTILITIES and supported by the VSAM
APIs.

DDM Record Types
Every record-oriented file consists of a set of records. Records are the basic unit of
data stored in record-oriented files and are transferred between requesters and files.
The record length can be either fixed or variable. The record number indicates the
record's position in the file in which it is stored. The first position for a record in a file
has a record number of one.

The VSAM APIs support two DDM record formats: RECORD and RECINA.

 RECORD formats
These are active records and can have fixed or variable lengths. When you create a
file, specify a RECLEN (Record Length) attribute as either the length of the fixed
records or the maximum length of the variable records. See 392. for a description of
the record length parameter.

Fixed-length record (RECFIX)
A record whose length is specified as an attribute (RECLEN) of the file in which it
is stored and cannot be changed.

Variable-length record (RECVAR)
A record whose length can be changed after it has been written to a file. The
length of individual records in the file varies from record to record, but it cannot
exceed the maximum length specified by the file's RECLEN attribute.

Initially-variable-length record (RECIVL)
A record whose length is specified the first time it is written to a file. Once a file
position in a file has been assigned a record length, the length of the record
position is fixed and cannot be changed. The length of individual records in the
file varies from record to record, but it cannot exceed the maximum length
specified by the file's RECLEN attribute.

 RECINA formats
These are inactive records used to represent record positions where a record has never
been inserted or where a previously active record has been deleted. The RECINA
parameter specifies the required length of any record to be inserted at that record
position.

4 VSAM for OS/2

Record Attribute Lists (RECALs)
A record attribute list (RECAL) is used to transmit more than one attribute of a record
as a single unit. For example, the record number or key value and the record itself can
be returned in a RECAL. A RECAL can also return duplicate records using the
RECCNT parameter and DATA fields. The record is returned as DATA and the number
of duplicate records is returned in RECCNT.

See “RECAL (Record Attribute List)” on page 389 for a description of the RECAL
parameter.

 Extended Attributes
The VSAM APIs support Extended Attributes (EAs) to associate DDM attributes with a
file. The set of VSAM API file attributes is a superset of the standard set of file
attributes. This allows programs using the VSAM APIs to access both DDM and
operating system dependent attributes without opening the file.

The DDM file attributes supported by the local VSAM file system are listed in Table 11
on page 39 and Table 12 on page 40. Table 11 on page 39 lists the EAs that can
only be viewed, and Table 12 on page 40 lists the EAs that can be modified.

The VSAM APIs assume each DDM file attribute is described in a DDM format. These
formats are described in Chapter 4, “VSAM API Common Parameters” on page 363.

The EAs reflecting DDM file attributes are coded in C with a prefix of “.DDM_.” The
VSAM APIs use the OS/2 DOS-like “EAOP2” structures to read and write EA lists.

The following example is an overview of how to request two EAs (.DDM_DELCP and
.DDM_FILCLS) when issuing DDMQueryFileInfo for a sequential, delete-capable file in
the current directory. For examples of C code to set up the “GEA2List” and “FEA2List,”
see Appendix E, “Programming Extended Attributes in VSAM APIs” on page 571 .

 Chapter 1. Introduction to VSAM as a DDM Implementation 5

DDMQueryFileInfo("\SAMPLE.SEQ",
 1L,

pointer to an EAOP2 structure,
size of EAOP2 structure);

Input Data Structures
struct _EAOP2 {

(4)pointer to GEA2List structure
(4)pointer to FEA2List structure
(4)offset to error if any

}; /\ end of EAOP2 structure \/
struct _GEA2List {

----- (4)length of structure = 25
| (4)nextentry offset = 1ð /\ each entry must be on a 4 byte boundary \/
| (1)length of name 1 = A
----- (B)name 1 = .DDM_DELCP
----- (4)next entry offset = ð /\ no entry after this one \/
| (1)length of name 2 = B
----- (C)name 2 = .DDM_FILCLS

 }; /\ end of GEA2List structure \/

 Structure _FEA2List {
(4)Length of structure = 3C /\ total length of data expected \/

/\ each entry is on an 4 byte boundary \/
}; /\ end of FEA2List structure \/

Output Data Structures

Structure _FEA2List {
-----(4)length of structure = 3C
| (4)next entry offset = 1C /\note: each entry must be on a 4 byte

 | boundary \/
| (1)flag byte = ð
| (1)length of name 1 = A
| (2)length of value for name 1 = 7
| (B)name 1 = .DDM_DELCP
| (7)value 1 = ððððððð7 /\ length of value \/
| 111B /\ DDM code point for DELCP \/
----- F1 /\ DDM Value for TRUE \/

(2) /\ 2 bytes of padding to force \/
/\ next entry to a 4 byte \/

 /\ boundary \/
-----(4)next entry offset = ð /\ there is no next entry \/
| (1)flag byte = ð
| (1)length of name 2 = B
| (2)length of value for name 2 = 8
| (C)name 2 = .DDM_FILCLS
| (8)value 2 = ððððððð8 /\ length of value \/
| 111ð /\ code point for FILCLS \/
----- 143B /\ sequential file \/

/\ end FEA2List structure \/
 };

 Record Files
A record file is a file in which data is stored as a set of discretely addressable
structures called records. A record file class describes a method of organizing,
accessing, and managing a set of records. The VSAM APIs support sequential, direct,
keyed, and alternate index file classes.

6 VSAM for OS/2

All files have the following major components:

� File attributes that are stored as Extended Attributes (EAs), such as record length
and file class.

� File record extents that store the record data.

 � Special objects:

– The index of a keyed file is stored in a separate file that is given an internal
VSAM name, .DDMEA (AIX local VSAM file system only).

– Alternate index files related to a base key file.

The length of the records of a file can be either fixed or variable. Once a
variable-length record is inserted into a record position of the file, the length of the
record at that position remains fixed if the record class is initially variable. It remains
variable if the record class is variable.

A file is created with either delete-capable or non-delete-capable status. If a file is
delete-capable, you can issue the DDMDeleteRec function to delete records from that
file. If a file is non-delete-capable, the DDMDeleteRec function is rejected when issued
for the file. You specify delete status when creating the file.

An access method is used to process records in a record file. The VSAM APIs support
methods that access records by number and by key value. When the DDMOpen (Open
File) function opens the file, the access method is bound to a file and remains bound to
the file until the DDMClose (Close File) function closes the file or the function is
terminated. The access method maintains a cursor for each file to which it is bound.
The cursor is set to the beginning of the file when the access method is used to open a
file. Access methods are described in “Access Methods” on page 18. The DDM
cursor and cursor movement is described in “DDM Cursor” on page 21.

Records can be inserted into a file when it is created, or the application can insert the
records later. In order to update or delete a record in a file, you must place an update
intent on the record by using the appropriate VSAM API.

 Important Note

The local VSAM file system cannot prevent non-DDM access to local VSAM
managed files. If these files are processed by non-DDM functions (such as other
APIs or user functions), information about the files can be lost and the local VSAM
file system will not be able to process the files. Therefore, users MUST NOT
access local VSAM-managed files using non-DDM functions.

Record File and Record Length Classes
The VSAM APIs support the following record classes:

 � Sequential
 � Direct

 Chapter 1. Introduction to VSAM as a DDM Implementation 7

 � Keyed
 � Alternate index

The VSAM APIs support three logical record length classes:

 � Fixed
 � Variable
 � Initially Variable

For the local VSAM file system, each of the file classes supported is implemented as a
meta-file on top of a standard file. Each file (see Figure 2) consists of two parts.

Directory Entry

File Data Extended Attribute

Attribute Data

Data Records

.

.

.

Figure 2. Local VSAM File Component Parts. This figure illustrates the two component parts of a
Record File within a Byte Stream file: the Data Records and the Attribute Data.

1. Data and Control Structures (Records)

This is the user file data along with an architected set of control data structures.
These structures are defined in a way that allows the DDM file model semantics to
be implemented on top of a standard file. From the file system perspective, this is
simply the data portion of the file.

 2. Attribute Data

The Attribute Data is additional descriptive information required to describe a
record-oriented file. This information is called the DDM Attributes. For the AIX
local VSAM file system, all of the DDM Attributes are kept in .DDMEA files.

 Sequential Files
A sequential file contains records that are arranged in exactly the same order they were
placed in the file.

After the initial loading of records, additional records can be added at End-of File (EOF)
or inserted into existing inactive record positions. There is no relationship between the
contents of a record and its record number.

When a sequential file is created, its allocated record positions can be either:

8 VSAM for OS/2

� initialized to a specified default value,
� initialized as inactive records, or

 � uninitialized.

When a file is opened, the cursor is positioned at the Beginning-of-File (BOF). The
BOF position for a sequential file is always the position before any record position. The
first record position of a sequential file is always the first record in the file, whether the
record is active or inactive. The EOF position for a sequential file is one position past
the last record position at which an active or inactive record exists. The last record
position of a sequential file is always the last active or inactive record in the file.

Figure 3 gives a logical view of a sequential file with variable-length records.

BOF

Record
Number

Cursor
Positions

0

1

2

3

4

Record Slot

Record Slot

Record Slot

First

Last

EOF

Sequential File
Variable Length

Figure 3. Sequential File with Variable-Length Records

Quasi Byte Stream Files
There is a special requirement that a certain type of local VSAM file also look like a
byte stream file. A quasi byte stream file is a sequential record file that is created with
non-delete-capable status and with fixed-length records. It does not have any record
headers or separators. A quasi byte stream file can be read as a pure byte stream file
through local byte stream I/O with no change to byte stream applications. There can
be no inactive records in a quasi byte stream record file.

Since the file has the same format as a byte stream file, byte stream applications are
able to do byte stream read operations on this type of sequential record file.

 Important Note

Non-VSAM API applications can read, but not modify, local quasi-byte stream files.
If these files are modified by non-VSAM functions, such as user functions, the file
attributes will not be updated and information about the files can be lost.

 Chapter 1. Introduction to VSAM as a DDM Implementation 9

The format of quasi byte stream record files is shown in Figure 4 on page 10

NOTE: RL = Max Record Length (4K default)

0

RL

RL*2

RL*3

R
e
c
o
r
d

1

R
e
c
o
r
d

2

R
e
c
o
r
d

3

Data

Data

Data

.

.

.

Byte Stream

Figure 4. Quasi Byte Stream Record File

 Direct Files
A direct file contains records that have a relationship between the record contents and
the position at which the record is stored. An application program inserting a record
into a direct file uses the record number to find the place to insert the record. The
application uses the value of one of the record fields as the record number, or
calculates a record number value.

10 VSAM for OS/2

When you open the file, the cursor points to the BOF position. For direct files:

The BOF position is always one position before the first record position.

The first record position is the first active record position of the file.

Do not confuse this with record number one, which
can contain an active record, but not necessarily so.

The last record position is always the last active record in the file.

The EOF position is one position past the last active record position.

You can insert a record at EOF or past EOF in a direct file. If you insert a record past
EOF, VSAM will insert inactive records (if they don't already exist) starting at EOF up to
the record position where the desired record is to be inserted. For direct files with
delete-capable status, you can move the EOF position toward the beginning of the file
by deleting the last active record in the file.

The physical boundary for a direct file is defined by the requester when the file is
created.

When you create a direct file, you can specify allocated positions as either:

� Initialized to a specified default active record. If you initialize a file with default
records, all allocated record positions are active.

� Initialized as inactive records. If you initialize a direct file with inactive records,
each record position in the file is inactive until a record is inserted into it. Records
can be inserted at any inactive record position within the physical boundaries of the
file as long as space is available in the file.

� Uninitialized and treated as inactive records because they are beyond the EOF.

See Figure 5 for a logical view of the BOF, EOF, first record position, and last record
position.

 Chapter 1. Introduction to VSAM as a DDM Implementation 11

BOF

Record
Number

Cursor
Positions

First

Last

EOF

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Active

Active

Active

0

1

2

3

4

5

6

7

8

9

Direct File
Fixed Length Records

Figure 5. Direct File with Inactive Fixed-Length Records. Note that the EOF is one position past
the last active record, even though there is another inactive record in the file.

Media Formats for Direct and Sequential Files
The media formats, or data and control structures, for direct and sequential files are
identical. However, a number of semantic differences between them are found in the
descriptions of the access functions. Some differences are:

� The EOF positioning is different when you delete records from the end of the file:
EOF for direct files retreats, while EOF for sequential files does not.

� In direct files, records can be inserted beyond EOF, and EOF gets moved after the
last active inserted record. For sequential files, records can be inserted at, but not
beyond, EOF.

� Cursor positioning differs: in DDMSetFirst, DDM_ALLREC must always be False
for direct files.

Direct and sequential files have the format shown in Figure 6 on page 13.

12 VSAM for OS/2

0

RL

RL*2

RL*3

R
e
c
o
r
d

1

R
e
c
o
r
d

2

R
e
c
o
r
d

3

Data

Data

Data

.

.

.

NOTE: RL = Max Record Length

Length 1 (L1)

Length 2 (L2)

Length 3 (L3)

CODEPOINT

CODEPOINT

CODEPOINT

Field Lengths
[Bytes]

[4]

[2]

[L1-6]

[4]

[2]

[L2-6]

[RL-L2]

[4]

[2]

[L3-6]

[RL-L3]

[RL-L1]

Byte Stream

Figure 6. Direct / Sequential File Format. This figure shows the format of a direct or sequential
file superimposed on a byte stream file. The same format applies to fixed-, variable-, and
initially-variable-length records.

 Keyed Files
A keyed file is implemented as two files: a DDM sequential file (called the base file or
keyed file) and an index file that maps keys to record numbers.

When a keyed file is created, the file name specified in the function is used for the base
file. A name is generated by the file system for the index file. The index file is always
placed in the same subdirectory as the base file. The name (not including path) of the

 Chapter 1. Introduction to VSAM as a DDM Implementation 13

base file is placed in the attribute information of the index file and vice versa for the
name of the index file.

When the base file is later opened, the name and path information given in DDMOpen
is used to locate the base file. The attribute information in the base file is used to get
the index file name. Then the same path specified in the function is used to locate the
index file. The base and its index must always be in the same subdirectory.

Keyed sequential files contain an overlying B-Tree Indexing structure. Figure 7
illustrates the basic keyed file concepts. Note that the data field of the index file
contains a base-file record number.

Data
3 C 5 F 4 H 1 K 7

A F H

(index file)
KEYED SEQUENTIAL

KEYED
SEQUENTIAL
(base file)

Key
A

1 2 3 4 5 6 7

Pointer Records

Data
Records

File
Records

Figure 7. Keyed File. Example of the structure of a local VSAM file system keyed file. Note that a "keyed file" really
consists of two files: an index file and a base file.

A keyed file supports keyed access to the records in the file. Each keyed file has a file
index that contains an entry for each active record in the file. The index allows an
application to process records by referring to the key of the record.

The key, also called the key field or record key is the portion of the record containing
information that identifies the record. Index entries identify a record by the value of its
key and the position of the record in the file. The index is ordered as specified by the
file attribute, KEYDEF, which you defined when the file is created.

14 VSAM for OS/2

A keyed file has a primary index and can have multiple alternate index files. Any
update to a keyed file causes automatic updates to all alternate index files built on that
file.

A variable-length record in a keyed file must be large enough for all the key field values
in the file index and any alternate index files that use the keyed file as a base file.

When they are created, keyed files can be either:

� initialized with inactive records,
� initialized with active records that have a specified default value, or

 � uninitialized.

The BOF for a keyed file is the position before any record positions. When the file is
opened, the cursor is positioned at the BOF. The first record position is the first active
or inactive record position of the file. This may not be the first record in key sequence.

The EOF position for a keyed file is one past the last record position at which an active
or inactive record exists. The last record position is the last active or inactive position
of the file. This may not be the last record in key sequence.

Cursor Positioning Functions: Different VSAM APIs have different cursor positioning
characteristics:

1. DDMSetNextRec and DDMSetPrevious, set the cursor position relative to record
positions in the file.

2. DDMSetKeyNext, DDMSetKeyPrevious, and DDMSetNextKeyEqual, set the cursor
position relative to key sequence .

In Figure 8 on page 16, for example, if the cursor is initially positioned at EOF,
DDMSetKeyPrevious moves the cursor to the record whose key is BBB, the last key by
key sequence.

 Chapter 1. Introduction to VSAM as a DDM Implementation 15

BOF

Record
Number

Cursor
Positions

Record Slot

Record Slot

Record Slot

First

Last

EOF

Record Slot

Last Key

First Key
BOF

EOF

Index

Keyed File
Fixed Length Records

Key

AAA
ABC
BBB

Record

0
2
4
1
5

0

1

2

3

4

5

Key=BBB

Key=AAA

Inactive

Key=ABC

Figure 8. Keyed File of Fixed-Length Records

Alternate Index File
Physically, an alternate index file is identical to the index portion of a keyed file. An
alternate index file allows the user to view the base file from a different perspective.
Typically, an alternate index file will key off a different portion of the base records, thus
allowing the user to retrieve records in a different sequence from that provided by the
normal keyed file processing. VSAM APIs only support alternate indexes for keyed
files. The index file is built from the base portion of the keyed file.

A base file is an existing keyed file upon which an alternate index is built. Base file
records are the same as the alternate index file records, however the record contents of
the base file do not appear in the alternate index file. The base key file has one
primary index, and can have multiple alternate index files. Each alternate index file
contains an entry for each active record in the file. Updates to a base file result in
automatic updates to all of its alternate index files. Every alternate index file has a
separate set of attributes.

The BOF and EOF positions in an alternate index file are the same as those of its base
file. When you open the file the cursor is positioned at BOF.

16 VSAM for OS/2

If the file has variable record lengths, the lengths must be large enough to include all of
the key field values for the alternate index file.

The key, which is also called the key field or record key, is the portion of the record
containing information that identifies the record. Index entries use the value of a record
key and the position of the record in the file to identify the record. You use the
KEYDEF attribute when creating the file to specify the ordering of the records.

Figure 7 on page 14 illustrates index files.

Fixed-, Variable-, and Initially-Variable-Length Records
The media formats for fixed-, variable-, and initially-variable-length records are identical.
However, there are a number of semantic differences between them, found in the
descriptions of the access functions.

Some semantic differences between the three classes of record lengths are:

� Fixed-length records must all be the same length.

� Variable-length records can be overwritten with either smaller or larger records as
long as the maximum record size is not exceeded.

� Initially-variable-length records can be any size up to the maximum record length
when first inserted. Only a record of the same size can overwrite the original
record at that location.

File Naming Conventions
The VSAM APIs do not enforce any specific file naming syntax. A file name provided
by the application must conform to the naming syntax of the local installed byte stream
file system (such as Fat or HPFS) or the target remote DDM system. However,
conversion of mixed-case file names to upper-case file names can occur. Thus, any
reply messages that contain a file name may not reflect the case that was used as
input to the API.

The local VSAM system on OS/2 supports the double backslash naming convention for
files located on remote nodes of a Local Area Network (LAN). Note that this
convention (known as UNC, for Universal Naming Convention) is only supported for
LANs administered by the OS/2 LAN Server product. UNC is used to represent remote
file names that were never qualified with a drive letter, for example: DosOpen
(\\servername\dir1\a.dat).

 Performance Considerations
The following sections recommend which access method to use to optimize
performance.

 Chapter 1. Introduction to VSAM as a DDM Implementation 17

Sequential and Direct Files
For sequential or direct files use the following access methods.

� Specify RELRNDAM on DDMOpen if the predominant order of reading records will
be sequential.

� Specify RNDRNDAM on DDMOpen if the predominant order of reading records will
be random.

� Specify CMBRNAM if you do not expect a sequential or random access bias.

Keyed and Alternate Index Files
For keyed and alternate files use the following access methods.

� Specify RELKEYAM on DDMOpen if:

1. the predominant order of reading records will be in key sequence,
2. the file was loaded in key sequence,
3. you expect new records to be added in key sequence, and
4. the file was created without delete capability (DDM_DELCP).

� Specify RNDKEYAN on DDMopen If the predominant order of reading records will
be random.

� Specify CMBKEYAM on DDMOpen

1. if you do not expect a key sequence or random access bias, or

2. if the predominant order of reading records will be in key sequence but the file
is or has become "disorganized" because it was not loaded sequentially, or
because it was created with delete capability (DDM_DELCP).

If a keyed file becomes disorganized (less sequential) after many delete and insert
operations, you may be able to improve performance by reorganizing the file using
DDMUnLoadFile UnloadOrder=KEYORD and DDMLoadFile.

 Access Methods
The VSAM APIs have a series of access methods that provide consistent ways to
access the records in a file. To understand how your choice of access method can
also affect performance, see Performance Considerations.

For all access methods, the file indexes are updated when keys are updated or when
records are inserted or deleted. The following list describes the access methods that
the VSAM APIs use when opening files with DDMOpen:

� RELRNBAM (Relative by Record Number Access Method)

Use this access method to process records according to the current cursor position
in the record number sequence. The record number is not specified to identify the
record; all positioning is relative to the current cursor position. For keyed and
alternate index files, records are processed as though the file were sequential.
The indexes over the file are maintained when keys are updated or when records
are inserted or deleted.

18 VSAM for OS/2

You can use this access method with sequential, direct, keyed, or alternate index
files.

� RNDRNBAM (Random by Record Number Access Method)

Use this access method to process records in a random sequence as determined
by the requester. Record numbers (the positions of records in the file) are used to
identify the records. For keyed and alternate index files, records are processed as
though the file were sequential. The indexes over the file are maintained when
keys are updated or when records are inserted or deleted.

You can use this access method for sequential, direct, keyed, or alternate index
files.

� CMBRNBAM (Combined Record Number Access Method)

This access method combines the functional capabilities of the RELRNBAM and
the RNDRNBAM access methods. The cursor can be set to point to any record by
specifying its record number. Relative requests for neighboring records can then
be made without specifying record numbers. For keyed and alternate index files,
records are processed as though the file were sequential. The indexes over the
file are maintained when keys are updated or when records are inserted or deleted.

You can use this access method for sequential, direct, keyed, or alternate index
files.

� RELKEYAM (Relative by Key Access Method)

Use this access method to process records of keyed or alternate index files in key
value sequence. Records can be accessed by moving forward or backward from
the current record according to the key sequence. If duplicate keys are present in
the file, they are processed in First-In-First-Out (FIFO) order. If a record's key
value is modified, its record number is not changed. The indexes over the file are
maintained when keys are updated or when records are inserted or deleted.

You can use this access mothod for keyed or alternate index files only.

� RNDKEYAM (Random by Key Access Method)

Use this access method to process records in keyed or alternate index files in a
random sequence as determined by the requester. Records are selected by their
key values, not by their relative positions. If a record's key value is modified, its
record number is not changed. The indexes over the file are maintained when
keys are updated or when records are inserted or deleted.

You can use this access method for keyed or alternate index files only.

� CMBKEYAM (Combined Key Access Method)

This access method combines the functional capabilities of the RELKEYAM and
the RNDKEYAM access methods. The cursor can be set to point to any record by
specifying its key. Relative requests for neighboring records can then be made
without specifying keys. If duplicate keys are present in the file, they are
processed in FIFO order. If a record's key value is modified, its record number is
not changed. The indexes over the file are maintained when keys are updated or
when records are inserted or deleted.

 Chapter 1. Introduction to VSAM as a DDM Implementation 19

This access method is valid for keyed or alternate index files only.

� CMBACCAM (Combined Access Method)

This access method combines the functional capabilities of the CMBKEYAM and
the CMBRNBAM access methods. The cursor can be set to a record with a key or
to a record number. Then, from that position, the cursor can be set relatively by
key value or by record number. If duplicate keys are present in the file, they are
processed in FIFO order. If a record's key value is modified, its record number is
not changed. The indexes over the file are maintained when keys are updated or
when records are inserted or deleted.

Table 3 shows the access methods you can use with each file class.

Table 3. Access Method by File Class

Access Method Access Description SF DF KF AIF

RELRNBAM Relative by record
number

X X X X

RNDRNBAM Random by record
number

X X X X

CMBRNBAM Combined by record
number

X X X X

RELKEYAM Relative by key X X

RNDKEYAM Random by key X X

CMBKEYAM Combined by key X X

CMBACCAM Combined access X X X X

X The access method supports the file class.

Blank The access method does not support the file class.

SF Sequential file.

DF Direct file.

KF Keyed File

AIF Alternate Index File

Promoting Access Methods
The DDM architecture permits the promotion of user-specified access methods. For
remote data access, see your DDM server implementation documentation. The
following promotions and exceptions pertain to the local VSAM file system.

To open a file, an application program issues the DDMOpen (Open File) function. The
local VSAM file system verifies whether the type of file specified by the function can be
opened by DDMOpen and notifies the application. If the file can be opened, then:

1. The specified access method is promoted to the appropriate CMBxxxAM.

2. The file is opened under that access method.

20 VSAM for OS/2

3. The access method is bound to the file. The access method remains bound to the
file until an application program issues a DDMClose function or the application
program is terminated.

If the access method cannot be applied to the file class, the attempt to open the file is
rejected with the INVRQSRM reply message. The local VSAM file system also issues
the INVRQSRM reply message when a keyed file class function is issued for a
non-keyed file.

Each access method defines the VSAM APIs it supports under its instance commands
list. These instance commands are also called the access method commands. For
more information on the commands, see Chapter 2, “Function Lists” on page 33,
“Access Functions Applicable to Each File Class” on page 36, and “Cursor-Positioning
Functions Applicable to Each File Class” on page 37.

Access method commands are processed by the local VSAM file system and applied
against the access method to which the file is bound. If a command is issued and is
not supported by the file class, unpredictable results may occur.

The local VSAM file system uses the following promotion rules:

� Promote RELRNBAM and RNDRNBAM access methods to CMBRNBAM to allow
any direct or sequential file to be accessed by any of the record number cursor
positioning functions.

� Promote RELKEYAM, RNDKEYAM, and CMBKEYAM access methods to
CMBACCAM to allow any keyed file to be accessed by any of the cursor
positioning functions.

 DDM Cursor
Each open file in the DDM architecture has a logical structure associated with it called
a cursor. The cursor points to a particular position within the file and also maintains
certain information about the file. The DDM cursor has the following logical elements:

� The current position in the file. This can be BOF, an individual record number in
the file, or EOF. When the file is opened, the cursor is initially set to BOF.

� The access intent specified for the file when it was opened.

� The level of file sharing specified when the file was opened.

� A hold cursor indicator that specifies if hold cursor position has been requested or
not. This indicator is set (or remains set) if the DDM_HLDCSR bit in the
AccessFlags parameter of the DDMSetxxx functions is true and is reset if the
DDM_HLDCSR bit is false.

� The most recent update intent placed on a record in the file. The update intent is
set by the DDMSetUpdatexxx functions. It may also be set by the DDMGetRec
function and by most of the DDMSetxxx functions by setting Bit 0 in the
AccessFlags parameter.

Note that the update intent can only be specified for a single record.

 Chapter 1. Introduction to VSAM as a DDM Implementation 21

� The position of the record with this update intent. This record position can be
different from the current record if a DDMSetUpdatexxx function was issued or a
DDMInsertRecEOF or DDMInsertRecKey function is issued with the
DDM_HLDUPD bit of the AccessFlags parameter set.

� A locked record indicator that specifies whether the update intent record is locked.

� The high key limit for the file that is set with the DDMSetKeyLimits function.

The cursor position can be adjusted explicitly by issuing the appropriate DDMSetxxx
function. The effect each function has on the cursor position is described for each
function in the “Effect on Cursor Position” section.

The hold cursor indicator is checked by the DDMSetNextRec, DDMSetKeyNext, and
DDMSetNextKeyEqual functions to determine if the cursor should remain at its current
position. If the hold cursor indicator has been set on by a previous function and the
DDM_HLDCSR bit in the AccessFlags parameter of the current function is false, the
cursor remains at its current position when:

� The function is DDMSetNextRec and one of the following conditions is true.

– The record is active.

– The record is inactive and the DDM_ALLREC bit in the AccessFlags
parameter of this function is true.

� The function is DDMSetKeyNext and the record is active.

� The function is DDMSetNextKeyEqual, the specified key is equal to the key of the
current record, and the record is active.

In all other cases, the cursor position is updated.

In the case of errors, the cursor position can be determined from the CSRPOSST
(Cursor Position Status) parameter returned in the reply message. (The value of
CSRPOSST is always X'F1'.) The CSRPOSST (Cursor Position Status) parameter is
described in Chapter 4, “VSAM API Common Parameters” on page 363.

DDM Lock Management
DDM lock management supervises the file and record locks of one or more users on a
set of files. The responsibilities of lock management are to:

� Accept lock requests and determine whether the lock request can be granted.
� Keep track of all the file locks held by each user.
� Update the correct cursor to track the granting and releasing of record locks.

 Concurrency Protection
File and record locks provide concurrency protection in a multi-user, shared data
environment. An example of a typical concurrency problem occurs when an update to
a record is lost because of simultaneous updating of the file by two or more users.
Figure 9 on page 23 illustrates this problem.

22 VSAM for OS/2

Time Program A

Get record 4
from file PAYROLL

Get record 4
from file PAYROLL

Write modified
record 4 in
file PAYROLL

Write modified
record 4 in
file PAYROLL

Program B

Figure 9. Lost Update Concurrency Problem

Another concurrency problem occurs when a user does not have exclusive rights to a
file after it has been accessed. This means that a user cannot read and retrieve the
same data from a file accessed before because another user has modified it in the
interim. This is called a repeatable read problem.

To avoid these and other concurrency problems, lock protection is needed for files and
records. DDM provides file and record locking functions.

The following pages describe the requesting and granting of file and record locks and
the level of protection available with locks. The responsibilities of lock management are
also summarized.

 File Locking
DDM file locks require a requester to obtain an appropriate level of access to a file
before allowing any operations to be performed on any record in the file. A requester
obtains the appropriate level of access by acquiring a lock that indicates the requester's
processing intentions for the file and the degree to which the requester is willing to
share the file with concurrent users.

DDM allows the requester to declare processing intentions as follows (the DDM
abbreviation for the processing intent is given in parentheses):

� Reference Only (GET)

The requester intends to read or use the data in the specified file, but does not
intend to modify, delete, or insert any data in the file.

 � Change (MOD)

The requester intends to update the file by modifying, deleting, or inserting data.

 Chapter 1. Introduction to VSAM as a DDM Implementation 23

The requester can declare the tolerable level of file sharing with concurrent users. The
possible sharing levels are as follows (the DDM abbreviation for the sharing level is
given in parentheses):

� No Sharing (NON)

The requester wants exclusive control of the file and is not willing to share the file
with any concurrent users.

� Reference Only (GET)

The requester is only willing to share the file with concurrent users that have
Reference Only (GET) intention.

 � Change (MOD)

The requester is willing to share the file with concurrent users that intend to get,
modify, delete, or insert data in the file.

Concurrent users are defined as threads of the same process or threads from different
processes.

These processing intentions and file sharing levels produce the combinations listed in
Table 4. These combinations are the basis for the different types of DDM-specified file
locks.

A requester can acquire many locks on a single file as long as there are no lock
conflicts. A lock conflict is a request by any process to obtain a file lock for a file that is
already locked exclusively by another process. The locks can all be of the same lock
type or different types. The operating system defines the maximum number of file locks
a single requester can have on a single file. If a file lock is requested for a file that
already has the maximum number of file locks on it, the RSCLMTRM (Resource Limit
Error) reply message is returned.

If the file to be locked is an alternate index file, both the base file and the alternate
index file are locked.

Table 4. File Locking Combinations

Processing Intent

Sharing Level

NON GET MOD

GET GETNONLK GETGETLK GETMODLK

MOD MODNONLK MODGETLK MODMODLK

Requesting and Releasing File Locks
File locks are requested and released implicitly by the following functions:

24 VSAM for OS/2

Function Action

DDMOpen Open file

DDMCreateAltIndex Create alternate index file

DDMDelete* Delete file

DDMLoadFileFirst Load records into file

DDMLoadFileNext Load next record into the file

DDMUnLoadFileFirst Unload records from file

DDMUnLoadFileNext Unload next record from the file

DDMRename Rename file

* DDMDelete does not implicitly release a file lock. The file no longer exists after a
DDMDelete.

Record Locking (Implementation is Dependent on the Server)
The local VSAM file system supports record locking only for files on the client OS/2
system. This section describes this support.

The local VSAM file system supports record locks so that a requester can perform
intended operations on a record without interference from concurrent users. Record
locks are used only when the requester opens a file with an intent to update the file and
specifies that the file is to be shared with another updater. This is called opened for
multiple updaters.

The local VSAM file system obtains only exclusive record locks. This means that only
the requester can update the record. Concurrent users are unable to read the record.
Record locks requested for an alternate index file are obtained on the records of the
base file. Each process can lock one record in a file. Thus, multiple records in a file
can be locked if the file was opened for multiple updaters.

The local VSAM file system does not prevent more than one process from updating a
record concurrently; it does not prevent multiple threads within a process from
accessing and updating the same record. When threads from the same process are
accessing a file using the same file handle, they should use a semaphore to provide
mutual exclusion on the file.

Requesting and Releasing Record Locks
Record locks can be implicitly obtained by the following functions:

Function Action

DDMGetRec Get record function

DDMDeleteRec Delete record function

DDMInsertRecxxx Any insert record function

DDMModifyRec Modify record function

DDMSetxxx Any set function

 Chapter 1. Introduction to VSAM as a DDM Implementation 25

Record locks can be explicitly obtained by the following functions:

The DDMClose function implicitly releases all record locks. Table 5 summarizes which
functions lock records and when these record locks are released. DDMUnLockRec
explicitly removes a record lock.

Function Action

DDMSetUpdateNum Set update intent by record number

DDMSetUpdateKey Set update intent by key value

Table 5. Releasing Record Locks

Implicit Lock
Commands

Release Lock When

Function
Completed

Record
Updated Cursor Moved File Closed See Note

DDMGetRec X X X X

DDMSetxxx X X X X

DDMSetUpdateKey X X X X

DDMSetUpdateNum X X X X

DDMModifyRec X

DDMDeleteRec X

DDMInsertRecxxx X

Note: DDMUnLockRec, or any function that references a record other than the one currently pointed to by the cursor.

26 VSAM for OS/2

Promoting Locks (Implementation is Dependent on the Server)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation.

The local VSAM file system uses the following locking rules:

� Only exclusive record locks are obtained. This means that only the requester can
update the record. Concurrent users are unable to read the record. For more
information, see “Record Locking (Implementation is Dependent on the Server)” on
page 25.

� DDMLoadFileFirst/Next file locks are promoted to MODNONLK.

� DDMCopyFile promotes “copy-from file” parameter to GETNONLK and the “copy-to
file” parameter to MODNONLK.

� Only one exclusive file lock can be held on a file.

A requester can request a GETMODLK, MODGETLK, or MODMODLK lock on a file
that is on a redirected drive of a LAN server. To prevent an application from reading a
file that another application (on a different system) is modifying, the local VSAM file
system promotes the lock as follows:

� GETMODLK to GETGETLK
� MODGETLK to MODNONLK
� MODMODLK to MODNONLK

Granting File and Record Locks
All requests for a lock are made to the operating system by the local VSAM file system.
For file locks, the operating system examines all of the file locks held by concurrent
users on a file, determines whether a conflict would occur, and decides whether the
requested lock can be granted.

Table 6 is a summary of the rules for granting file locks. The left column lists the
requested lock types with the strongest lock at the top. Across the top of the table are
all of the concurrent user-held locks, from the strongest to the weakest. To read the
table, locate the requested lock type in the left column. Then, locate the strongest of
the locks held by concurrent users across the top of the table. The intersection of the
selected row and column indicates whether the lock request can be granted or whether
a lock conflict occurs.

Table 6 (Page 1 of 2). Table for Granting File Locks

Requested
Lock

Concurrent User Held File Lock

MODNONLK GETNONLK MODGETLK MODMODLK GETGETLK GETMODLK None

MODNONLK * * * * * * GT

GETNONLK * * * * * * GT

MODGETLK * * * * * GT GT

MODMODLK * * * GT * GT GT

GETGETLK * * * * GT GT GT

 Chapter 1. Introduction to VSAM as a DDM Implementation 27

Table 6 (Page 2 of 2). Table for Granting File Locks

Requested
Lock

Concurrent User Held File Lock

MODNONLK GETNONLK MODGETLK MODMODLK GETGETLK GETMODLK None

GETMODLK * * GT GT GT GT GT

Notes:

GT Lock request is granted.

* Lock conflict occurs.

The local VSAM file system only attempts to get the lock once and then the lock
request is refused with one of the following reply messages:

� File in use reply message (FILIUSRM) if the request is for a file lock.
� Record in use reply message (RECIUSRM) if the request is for a record lock.

DDM Architecture Promotions and Exceptions
All promotions and exceptions described below are allowed by the DDM architecture
and by the SAA subset definitions.

The following promotions and exceptions are made by the local VSAM file system:

� Promote the RELRNBAM and RNDRNBAM access methods to the CMBRNBAM
access method.

This allows any direct or sequential file to be accessed by any of the record
number cursor positioning commands.

� Promote the RELKEYAM, RNDKEYAM, and CMBKEYAM access methods to the
CMBACCAM access method.

This allows any keyed file to be accessed by any of the cursor positioning
commands.

� This item is for OS/2 local VSAM files on the client OS/2 workstation only:

The local VSAM file system obtains only exclusive record locks. This means that
only the requester can update the record. Concurrent users are unable to read the
record.

� DDMLoadFileFirst/Next file locks are promoted to MODNONLK.

� DDMCopyFile promotes "copy from file" parameter to GETNONLK and the "copy to
file" parameter to MODNONLK.

� Only one exclusive file lock can be held on a file.

� DDMLoadFileFirst returns FILIUSRM instead of INVRQSRM when a file has
already been opened by DDMOpen, DDMLoadFileFirst (DDM_CHAIN flag on), or
DDMUnLoadFileFirst (More Data flag on).

� DDMUnLoadFileFirst returns FILIUSRM instead of INVRQSRM when a file has
already been opened by DDMOpen, DDMLoadFileFirst (DDM_CHAIN flag on).

28 VSAM for OS/2

� DDMDelete and DDMRename returns FILIUSRM instead of INVRQSRM when a
file has already been opened by DDMOpen, DDMLoadFileFirst (DDM_CHAIN flag
on), or DDMUnLoadFileFirst (More Data flag on).

 Technical Considerations
This section contains a list of implementation considerations:

� As part of its internal processing, when the local VSAM file system is instructed to
open (DDMOpen) a member of a keyed file set, all members are opened, using the
same access and file share values as specified for the explicitly opened file. If a
subsequent DDMOpen function is issued for a different member of that file set
using different access and file share specifications, a conflict will occur.

For example, assuming base file X.BAS and alternate index file X.ALT. If X.BAS is
opened for Insert Access Intent with FileShare NONE, VSAM issues a DosOpen
for X.BAS and X.ALT, using the same access and share specification. Any
subsequent attempts to open X.ALT with Get Access Intent will fail because X.ALT
was already opened with FileShare NONE.

� Attempting to issue a name-based VSAM API for a file not belonging to the local
VSAM file system will result in the function being rejected with the FILATHRM reply
message and a server diagnostic code of 1 (for local VSAM file systems only).

� When processing multiple records, it is faster to request multiple records with
DDMSetNextRec than to request a single record multiple times. The same applies
for DDMSetPrevious and the key file equivalents.

� The local VSAM file system can control access to the same file from multiple
processes. It does not control access to the same file from multiple threads in the
same process. The process is responsible for synchronization of its threads.

� Exercise caution in defining the record length for a variable-length file.
Variable-record-length files are implemented as fixed-record-length files with each
record being the maximum length variable record allowed. If small records are
used in a variable-length file with a large record length, there can be an excessive
amount of unused space within the file. (For local VSAM file systems only.)

 Chapter 1. Introduction to VSAM as a DDM Implementation 29

30 VSAM for OS/2

Part 1. VSAM in a Distributed Environment

This part describes VSAM in a distributed environment for local file access. It contains
descriptions of VSAM APIs, their common parameters, flags, and reply messages.

Chapter 2. Function Lists . 33

Chapter 3. VSAM API Functions . 45

Chapter 4. VSAM API Common Parameters 363

Chapter 5. VSAM API Flags . 401

Chapter 6. VSAM API Reply Messages . 413

 Copyright IBM Corp. 1993, 1997 31

32 VSAM for OS/2

 Chapter 2. Function Lists

The tables in this chapter group the VSAM APIs according to their capabilities. The
VSAM APIs are called VSAM API functions, VSAM functions, or simply functions. The
tables describe:

1. VSAM Function Parameters
 2. VSAM Functions

3. Access Functions Applicable to Each File Class
4. Cursor–Positioning Functions Applicable to Each File Class
5. Record File Attributes by File Class
6. Modifiable Record File Attributes by File Class
7. Access Functions Applicable to Each Access Method

The server support of these APIs is implementation specific. In general, the details in
this chapter is specific to the local VSAM file system.

VSAM Function Descriptions
Table 7 lists and briefly describes each VSAM function.

Table 7 (Page 1 of 3). VSAM Functions

Function Description of Function

DDMClose Terminates the logical connection that DDMOpen establishes between the requester
and a file.

DDMCopyFile Copies a record-oriented file to the target system.

DDMCreateAltIndex Creates an alternate index file on the target system. The alternate index file provides
a key-field access sequence to the records in an existing base target system file. In
VSAM, the base file must be a keyed file.

DDMCreateRecFile Creates a record file on the target system.

DDMDelete Deletes a file from the target system, releases all locks held on the file, and releases
the space it occupied.

DDMDeleteRec Deletes the record that has an update intent placed on it.

DDMForceBuffer Commits a file's cached information to non-volatile storage.

DDMGetRec Gets and returns the record indicated by the current cursor position.

DDMGetReplyMessage Gets and returns a reply message issued from the previously requested function.

DDMInsertRecEOF Inserts a record at the end of the file.

DDMInsertRecKey Inserts one or more records, according to their key values, wherever there is available
space in the file.

DDMInsertRecNum Inserts one or more records at the position specified by the record number parameter.

DDMLoadFileFirst Loads one or more records into a file.

DDMLoadFileNext Continues the load of one or more records into a file. Issue DDMLoadFileFirst before
DDMLoadFileNext.

 Copyright IBM Corp. 1993, 1997 33

Table 7 (Page 2 of 3). VSAM Functions

Function Description of Function

DDMModifyRec Modifies the record that has an update intent placed upon it.

DDMOpen Establishes a logical connection between the using program on the source system and
the file on the target system.

DDMQueryFileInfo Returns the information for a specific file.

DDMQueryPathInfo Returns information for a specific file or subdirectory.

DDMRename Renames an existing file.

DDMSetBOF Sets the cursor to the beginning of file (that is, to the position ahead of the first record
on the file).

DDMSetEOF Sets the cursor to the end of file (that is, to the position following the last record of the
file).

DDMSetFileInfo Specifies information for a file or a directory.

DDMSetFirst Sets the cursor to the first record of the file.

DDMSetKey Positions the cursor based on the key value supplied and the relational operator
specified for the relational operator parameter.

DDMSetKeyFirst Sets the cursor to the first record of the file in key sequence.

DDMSetKeyLast Sets the cursor to the last record of the file in key sequence order.

DDMSetKeyLimits Sets the limits of the key values for subsequent DDMSetKeyNext or
DDMSetNextKeyEqual functions.

DDMSetKeyNext Sets the cursor to the next record of the file in the key sequence order that follows the
record currently indicated by the cursor.

DDMSetKeyPrevious Sets the cursor to the previous record of the file in the key sequence order that
precedes the record currently indicated by the cursor.

DDMSetLast Sets the cursor to the last record of the file.

DDMSetMinus Sets the cursor to the record number of the file indicated by the cursor minus the
number of record positions specified by the CsrDisp parameter.

DDMSetNextKeyEqual Sets the cursor to the next record in the key sequence if the key field of that record
has a value specified in the KeyValBuf parameter.

DDMSetNextRec Sets the cursor to the next record of the file that has a record number one greater
than the current record position.

DDMSetPathInfo Specifies information for a file or a directory.

DDMSetPlus Sets the cursor to the record number of the file indicated by the cursor plus the integer
number of records specified by the CsrDisp parameter.

DDMSetPrevious Sets the cursor to the record of the file that has a record number one less than the
current cursor position.

DDMSetRecNum Sets the cursor to the record of the file indicated by the RecordNumber parameter.

DDMSetUpdateKey Places an update intent on the record that has a key value equal to the KeyValBuf
parameter. The cursor position is not changed.

DDMSetUpdateNum Places an update intent on the record at the position specified by the RecordNumber
parameter. The cursor position is not changed.

34 VSAM for OS/2

Table 7 (Page 3 of 3). VSAM Functions

Function Description of Function

DDMTruncFile Moves EOF to current cursor position.

DDMUnLoadFileFirst Transfers one or more records of a source file to a target system.

DDMUnLoadFileNext Continues the transfer of one or more source file records to a target system. Issue
DDMUnLoadFileFirst before DDMUnLoadFileNext.

DDMUnLockRec Releases all implicit record locks on records.

 Chapter 2. Function Lists 35

Parameters Used in Function Descriptions
Table 8 lists and describes the parameters used with VSAM functions.

Table 8. Parameters Used with VSAM Functions

Parameter Data Type Description

USHORT 2 bytes.

ULONG 4 bytes. This is the natural word size of the system. It may be passed by value or
reference as a parameter.

PBYTE Pointer to a byte.

PULONG Pointer to a ULONG.

szNAME Null (0) terminated ASCII character string. This parameter is passed only by
reference.

PSZ Pointer to a null-terminated string.

HDDMLOAD 4 bytes. Contains a handle to a DDM file being loaded with DDMLoadFileNext.

PHDDMLOAD Pointer to a handle to a DDM file being loaded with DDMLoadFileNext.

HDDMFILE 4 bytes. Contains a handle to a DDM file.

PHDDMFILE Pointer to a handle to a DDM file.

PDDMRECORD Pointer to a DDM record structure.

PDDMOBJECT Pointer to a DDM object structure.

PKEYDEFBUF Pointer to a DDM key buffer structure.

PDDMDFTREC Pointer to a DDM default record initialization buffer.

PRECNUM Pointer to a DDM record number structure.

RECNUM DDM record number structure.

CODEPOINT 2 bytes

PEAOP2 Pointer to an EAOP2 structure.

PRESULTSCODES Pointer to a structure used in DosExecPgm.

OTHER Any other structure. This parameter is passed only by reference.

Access Functions Applicable to Each File Class
Table 9 on page 37 lists the functions that can be used with each file class.

36 VSAM for OS/2

Table 9. Access Functions Applicable to Each File Class

Functions Description SF DF KF AIF

DDMClose Close file X X X X

DDMCopyFile Copy file X X X

DDMCreateAltIndex Create alternate index file X

DDMCreateRecFile Create record file X X X

DDMDelete Delete file X X X X

DDMDeleteRec Delete record X X X X

DDMGetRec Get record X X X X

DDMInsertRecEOF Insert record at EOF X X X X

DDMInsertRecKey Insert record by key X X

DDMInsertRecNum Insert record by number X X X X

DDMLoadFileFirst Load first file X X X

DDMLoadFileNext Load next file X X X

DDMModifyRec Modify record X X X X

DDMOpen Open file X X X X

DDMRename Rename file X X X X

DDMSetUpdateKey Set update intent by key X X

DDMSetUpdateNum Set update intent by record
number

X X X X

DDMTruncFile Move EOF to current cursor
position

X

DDMUnLoadFileFirst Unload first file X X X X

DDMUnLoadFileNext Unload next file X X X X

DDMUnLockRec Unload implicit record lock X X X X

X The function is supported by the file class.

Blank The function is not supported by the file class and may cause unpredictable results.

SF Sequential file.

DF Direct file.

KF Keyed file.

AIF Alternate index file.

Cursor-Positioning Functions Applicable to Each File Class
Table 10 on page 38 lists the cursor-positioning functions that can be used with each
file class.

 Chapter 2. Function Lists 37

Table 10. Cursor Positioning Functions Applicable to Each File Class

Functions Description SF DF KF AIF

DDMSetBOF Set cursor to BOF X X X X

DDMSetEOF Set cursor to EOF X X X X

DDMSetFirst Set cursor to first record X X X X

DDMSetKey Set cursor by key X X

DDMSetKeyFirst Set cursor to first record by key X X

DDMSetKeyLast Set cursor to last record by key X X

DDMSetKeyLimits Set key limits X X

DDMSetKeyNext Set cursor to next record by key X X

DDMSetKeyPrevious Set cursor to previous record by
key

X X

DDMSetLast Set cursor to last record X X X X

DDMSetMinus Set cursor minus X X X X

DDMSetNextKeyEqual Set cursor to next record with
equal key

X X

DDMSetNextRec Set cursor to next record X X X X

DDMSetPlus Set cursor plus X X X X

DDMSetPrevious Set cursor to previous record X X X X

DDMSetRecNum Set cursor to record number X X X X

X The function is supported by the file class.

Blank The function is not supported by the file class and unpredictable results may occur.

SF Sequential file.

DF Direct file.

KF Keyed file.

AIF Alternate index file.

38 VSAM for OS/2

Record File Attributes by File Class
These EAs can be viewed by using DDMQueryPathInfo or DDMQueryFileInfo functions
on the local VSAM file system.

Table 11 (Page 1 of 2). Record File Attributes by File Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

ACCMTHLS Access Method List X X X X

ALTINDLS Alternate Index File List X

BASFILNM Base File Name X

DELCP Record Deletion
Capability

X X X X

DFTREC Default Record X X X X

DTACLSNM Data Class Name X X X X

EOFNBR End of File Record
Number

X X X X

FILBYTCN File Byte Count Number X X X X

FILCLS File Class X X X X

FILCRTDT File Creation Date X X X X

FILHDD Hidden File X X X X

FILINISZ Initial File Size X X X X

FILPRT File Is protected. X X X X

FILSIZ Number of active and
inactive record positions.
Not applicable to files
with variable-length
records.

X X X X

FILSYS System File X X X X

GETCP Record Get Capability X X X X

INSCP Record Insert Capability X X X X

KEYDEF Key Definition X X

KEYDUPCP Duplicate Keys
Capability

X X

MAXARNB Maximum Active Record
Number

X X X X

MGMCLSNM Management Class
Name

X X X X

MODCP Record Modify
Capability

X X X X

RECLEN Record Length X X X X

RECLENCL Record Length Class X X X X

RTNCLS Retention Class X X X X

STGCLSNM Storage Class Name X X X X

TITLE Title X X X X

 Chapter 2. Function Lists 39

Table 11 (Page 2 of 2). Record File Attributes by File Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

X The file EA is supported by the file class.

Blank The file EA is not supported by the file class.

Modifiable Record File Attributes by File Class
These EAs can be modified using DDMSetPathInfo or DDMSetFileInfo functions on the
local VSAM file system.

Table 12. Modifiable Record File Attributes by File Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

DELCP Record Deletion
Capability

X (see note) X X X

FILHDD Hidden File X X X X

FILINISZ Initial File Size X X X X

FILPRT File Is Protected X X X X

FILSYS System File X X X X

GETCP Record Get Capability X X X X

INSCP Record Insert Capability X X X X

MGMCLSNM Management Class
Name

X X X X

MODCP Record Modify
Capability

X X X X

STGCLSNM Storage Class Name X X X X

TITLE Title X X X X

X The file EA is supported by the file class.

Note The file EA is not modifiable if the record length class is “fixed.”

40 VSAM for OS/2

Private File Attributes by File Class
These EAs are private to the local VSAM file system and cannot be viewed or modified
with VSAM functions and should not be changed by the native workstation commands.

Table 13. Private File Attributes by Class

Record File Attributes
Name EA Description

File Class

Sequential File Direct File
Keyed

File
Alternate
Index File

MINARNB Minimum Active Record
Number

X X X X

VERSION RLIO version that
created this file

X X X X

PRMINDEX Name of Primary Index
File

X

BASCHGDT Base file change date X

BASEFILE Name of Base File (see
note)

X

MAXFILESIZE Maximum File Size X X X X

FILCHGDT File Change Date X X X X

LSTACCDT Last Access Date X X X X

PHYEOF Physical End of File X X X X

X The file EA is supported by the file class.

Blank The file EA is not supported by the file class.

Note Used for Primary Index File Only.

 Chapter 2. Function Lists 41

Access Functions Applicable to Each Access Method

Table 14 (Page 1 of 2). Access Functions Applicable to Each Access Method

Functions RELRNBAM RNDRNBAM CMBRNBAM

DDMClose 1 1 X

DDMDeleteRec 1 1 X

DDMGetRec 1 1 X

DDMInsertRecEOF 1 1 X

DDMInsertRecKey

DDMInsertRecNum 2 1 X

DDMModifyRec 1 1 X

DDMOpen 1 1 X

DDMSetBOF 1 1 X

DDMSetEOF 1 1 X

DDMSetFirst 1 1 X

DDMSetKey

DDMSetKeyFirst

DDMSetKeyLast

DDMSetKeyLimits

DDMSetKeyNext

DDMSetKeyPrevious

DDMSetLast 1 1 X

DDMSetMinus 1 2 X

DDMSetNextKeyEqual

DDMSetNextRec 1 2 X

DDMSetPlus 1 2 X

DDMSetPrevious 1 2 X

DDMSetRecNum 2 1 X

DDMSetUpdateKey

DDMSetUpdateNum 2 1 X

DDMTruncFile 1 1 X

DDMUnLockRec 1 1 X

42 VSAM for OS/2

Table 14 (Page 2 of 2). Access Functions Applicable to Each Access Method

Functions RELRNBAM RNDRNBAM CMBRNBAM

X The function is supported by the CMBRNBAM access method.

1 RELRNBAM and RNDRNBAM are promoted to CMBRNBAM.

2 The function is processed without regard to the restrictions associated with this
access method because the access method is promoted to CMBRNBAM access
method (local VSAM file system only).

Blank The function is not supported by the access method and may cause unpredictable
results.

 Chapter 2. Function Lists 43

Access Functions Applicable to Each Access Method Continued

Table 15. Access Functions Applicable to Each Access Method Continued

Functions RELKEYAM RNDKEYAM CMBKEYAM CMBACCAM

DDMClose 1 1 1 X

DDMDeleteRec 1 1 1 X

DDMGetRec 1 1 1 X

DDMInsertRecEOF 2 2 2 X

DDMInsertRecKey 1 1 1 X

DDMInsertRecNum 2 2 2 X

DDMModifyRec 1 1 1 X

DDMOpen 1 1 1 X

DDMSetBOF 1 1 1 X

DDMSetEOF 1 1 1 X

DDMSetFirst 2 2 2 X

DDMSetKey 2 1 1 X

DDMSetKeyFirst 1 1 1 X

DDMSetKeyLast 1 1 1 X

DDMSetKeyLimits 1 2 1 X

DDMSetKeyNext 1 2 1 X

DDMSetKeyPrevious 1 1 1 X

DDMSetLast 2 2 2 X

DDMSetMinus 2 2 2 X

DDMSetNextKeyEqual 1 2 1 X

DDMSetNextRec 2 2 2 X

DDMSetPlus 2 2 2 X

DDMSetPrevious 2 2 2 X

DDMSetRecNum 2 2 2 X

DDMSetUpdateKey 2 1 1 X

DDMSetUpdateNum 2 2 2 X

DDMTruncFile 2 2 2 X

DDMUnLockRec 1 1 1 X

X The function is supported by the CMBACCAM access method.

1 RELKEYAM, RNDKEYAM, and CMBKEYAM are promoted to CMBACCAM.

2 The function is processed without regard to the restrictions associated with this access method because the
access method is promoted to CMBACCAM access method (local VSAM file system only).

44 VSAM for OS/2

Chapter 3. VSAM API Functions

This chapter describes the VSAM API functions, their formats and characteristics.

The functions are in alphabetical order and are presented in the structure described in
“DDMExample (Example)” on page xxiv.

This section describes the General-Use Programming Interface you can use to obtain
the services of SMARTdata UTILITIES.

 Copyright IBM Corp. 1993, 1997 45

DDMClose

 DDMClose
(Close File)

This function ends the logical connection that DDMOpen establishes between the
requester and a file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMClose (HDDMFILE FileHandle
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

CLSDMGRM X'125E' File Closed with Damage
HDLNFNRM X'1257' File Handle Not Found

 Remarks
The DDMClose function considers the file closed unless the reply message indicates
that an error was detected before starting the DDMClose function. For example, if you
receive a SYNTAXRM, PRCCNVRM, or FUNNSPRM reply message. This is true even
if the reply message has a severity code greater than 4.

The DDMClose function also works on byte stream files.

In order to reflect changes in file attributes from open-file activities, DDMClose updates
the following EAs if the file was opened with other than just GETAI. Examples of
changes in file attributes from open-file activities are: update, insert, delete, or truncate.

 � EOFNBR
 � FILSIZ
 � MAXARNB

These EAs are updated not only for a base file, but for all associated index files when
DDMClose is issued.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

This function destroys the cursor. there is no cursor position.

Error Termination (SVRCOD of 8)
The cursor position is the same as it was before the function was called. If the
error termination occurs after starting DDMClose, this function destroys the
cursor. Therefore, there is no cursor position. The value of the CSRPOSST

46 VSAM for OS/2

DDMClose

(Cursor Position Status) parameter on the reply message indicates the state of
the cursor.

Severe Termination (SVRCOD of 16 or higher)
CSRPOSST on the reply message. indicates the cursor position. If the severe
termination occurs after starting DDMClose, this function destroys the cursor.
Therefore, there is no cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

This function releases all locks that are held by the VSAM file system on records in the
file. All file locks that were acquired implicitly by the DDMOpen function are released.

If DDMClose ends with a reply message that has a severity code value of ERROR or
higher, then:

� For error termination (SVRCOD of 8): Record locks and file locks are the same as
before DDMClose was issued. If the error termination occurs after starting
DDMClose, this function releases all record locks. The file lock that is obtained by
DDMOpen is released.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.
If the severe termination occurs after starting the DDMClose function, this function
releases all record locks. The file lock that is obtained by DDMOpen is released.

Even if an error occurs after starting DDMClose, this function releases all record locks,
and the file lock that is obtained by DDMOpen is released.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file is not open (the file handle is not valid). HDLNFNRM

The file is closed, but it is not possible to complete all
operations on the file.

CLSDMGRM

 Chapter 3. VSAM API Functions 47

DDMCopyFile

 DDMCopyFile
(Copy File)

This function copies a file to the target system. (You cannot use DDMCopyFile to copy
an alternate index file.)

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMCopyFile (PSZ FromFileName,
 PSZ ToFileName,
 ULONG CopyFlags,
 PBYTE SubsetDefBuf,
 CODEPOINT ToFileOld,
 CODEPOINT ToFileNew
);

 Parameters
FromFileName

The pointer (PSZ) to the name of the record-oriented file to be copied. This file is
the source of the DDMCopyFile function.

ToFileName
The pointer (PSZ) to the name of the record-oriented file to copy to. This file is the
target of the DDMCopyFile function.

CopyFlags
CopyFlags must be set to 0. The bit flags are:

Bit Meaning
0–31 Reserved flags.

SubsetDefBuf
The pointer (PBYTE) to the subset definition buffer. This pointer must be set to
null.

ToFileOld
The code point (CODEPOINT) that specifies the action to take if the file name that
is pointed to by ToFileName already exists. The only valid value is:

CPYERR Return Duplicate File Name (X'1483').

The function is rejected with DUPFILRM, and the option returns an
error condition (SVRCOD=X'0008'). You must specify CPYERR.

ToFileNew
The code point (CODEPOINT) that specifies the action to take if the file name that
is pointed to by ToFileName does not exist. The only valid value is:

48 VSAM for OS/2

DDMCopyFile

CPYDTA Copy with Data Option (X'1466').

You should create a new file and copy the data to it. The new file is
created with the same file attribute values as the copy-from file for the
following file EAs:

DELCP File Deletion Capability
DFTREC Default Record
DTACLSNM Data Class Name
FILCLS File Class
FILINISZ Initial File Size
FILPRT File Protected
GETCP File Get Capability
INSCP File Insert Capability
KEYDEF Key Definition
KEYDUPCP Duplicate Keys Capability
MODCP File Modify Capability
MGMCLSNM Management Class Name
RECLEN Record Length
RECLENCL Record Length Class
RTNCLS File Retention Class
STGCLSNM Storage Class Name
TITLE A Brief Description

For the definition of these EAs, see Chapter 4, “VSAM API Common
Parameters” on page 363.

The other file attributes are set as appropriate for a newly created file.
The data content of the Fromfile is copied to the Tofile. CPYDTA must
be specified.

 Returns
Message ID Code Point Message Title

DUPFILRM X'1207' Duplicate File Name
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RSCLMTRM X'1233' Resource Limits Reached on Target System
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
For remote files, Distributed FileManager requires that the path information for both the
FromFile name and the ToFile name must be specified, and it must be the same (for
OS/2 only).

 Chapter 3. VSAM API Functions 49

DDMCopyFile

Since alternate index files cannot be copied:

� An alternate index file cannot be specified as the FromFile name.

� An alternate index file cannot be copied as an indirect result of copying the base
file.

DDMCopyFile does not return the count of the number of records that are copied.

When the FromFile contains damaged records, DDMCopyFile ends without creating a
new ToFile copy.

When the FromFile contains inactive records, the inactive records are copied to the
ToFile.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
DDMCopyFile does the following:

If the FromFile exists:

1. Attempts to obtain a GETNONLK on the FromFile.

If the GETNONLK lock is obtained, the function is processed (successfully or
unsuccessfully). If the GETNONLK lock is not obtained, the function is rejected
with a FILIUSRM reply message.

2. The function releases the GETNONLK lock it obtained on the file.

If DDMCopyFile ends with a reply message that has a severity code value of ERROR
or higher:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

50 VSAM for OS/2

DDMCopyFile

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The ToFile exists and CPYERR is specified.

The FromFile name is the same as the ToFile name.

DUPFILRM

The EAs described for ToFileNew are required, but cannot
be found in the FromFile EA buffer when creating the
ToFile.

FILDMGRM

The FromFile is open. FILIUSRM

The ToFile name is invalid. FILNAMRM

CopyFlags contains a value other than zero. INVFLGRM

The FromFile is an alternate index file.

The file class is invalid or is not found.

INVRQSRM

SubsetDefBuf contains a value other than null.

ToFileOld contains a value other than CPYERR (X'1483').

ToFileNew contains a value other than CPYDTA
(X'1466').

PRMNSPRM

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object and the Function Continues With This Reply Message

For the FromFile, if the file-change date and time recorded
by the VSAM API is not the same as that recorded by the
file system, either an aborted DDM application has left the
file in an inconsistent state or a non-DDM application has
changed the file. DDMCopyFile does not re-synchronize
the file-change date and time of the FromFile.

FILDMGRM

 Chapter 3. VSAM API Functions 51

DDMCreateAltIndex

 DDMCreateAltIndex
(Create Alternate Index File)

This function creates an alternate index file on the target system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMCreateAltIndex (PSZ FileName,
 PSZ BaseFileName,
 ULONG CreateFlags,
 PKEYDEFBUF KeyDefBuf,
 CODEPOINT DupFilOpt,
 PEAOP2 EABuf
);

 Parameters
FileName

The pointer (PSZ) to the name of the file to be created. This file must be in the
same directory as the base file. If a path is not specified, the current path of the
base file will be used.

BaseFileName
The pointer (PSZ) to the name of the record-oriented file on which the created file
is to be based.

CreateFlags
The CreateFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
10–31 Reserved flags
9 DDM_FILPRT (Protected File)
2–8 Reserved flags
1 DDM_TMPFIL (Temporary File)
0 DDM_ALDUPKEY (Allow Duplicate Keys)

For detailed information on the create flags, see Chapter 5, “VSAM API Flags” on
page 401.

KeyDefBuf
The pointer to the key definition buffer (PKEYDEFBUF). The format of the key
definition buffer when the function is called:

LL X'1114' X'0..10' X'140F' KeySeq X'0044'

KeyLen KeyDisp

52 VSAM for OS/2

DDMCreateAltIndex

Field Description

LL The length (ULONG) from the beginning of LL to the end of the
last Key Displacement field.

X'1114' The value (CODEPOINT) indicating the following field is a key
definition.

X'00000010' The length (ULONG) of the key definition. This length includes the
length field and the Key Displacement field.

X'140F' The value (CODEPOINT) indicating the following data is a key field
definition.

KeySeq Either X'1420' for Ascending Key Sequence field or X'1421' for
Descending Key Sequence field.

X'0044' The value (CODEPOINT) indicating the key field is a byte string.

KeyLen The length (USHORT) of the key field.

KeyDisp The offset (ULONG) from the beginning of the key field in the
record. If multiple Key Field Definitions are provided, the fields are
concatenated to form a combined key. The maximum length of the
key is 255 bytes.

Multiple key field definitions are allowed in the Key Definition Buffer. The following
example shows two key definitions:

The following structures define the key definition buffer:

X'0..26' X'1114' X'0..10' X'140F' X'1420' X'0044'

... X'0013' X'00000010' ...

X'0..12' X'140F' X'1420' X'0044' X'0003' X'0..04'

 Chapter 3. VSAM API Functions 53

DDMCreateAltIndex

/\ Define the following key definition buffer structure, \/
/\ modeling it after the _DDMOBJECT structure defined in DUBDEFS.H \/

typedef struct _MYKEYDEFBUF
{
 ULONG cbKeyDefBuf;
 CODEPOINT cpKeyDefBuf;
 KEYFLDDEF KeyFldDef[1];
} MYKEYDEFBUF, \PMYKEYDEFBUF;

/\ Use the following structure to map each key field definition. \/
/\ It is defined in DUBDEFS.H. \/

typedef struct _KEYFLDDEF
{
 ULONG cbKeyFldDef;
 CODEPOINT cpKeyFldDef;
 CODEPOINT cpSequence;
 CODEPOINT cpKeyClass;
 USHORT cbKeyField;
 ULONG oKeyField;
} KEYFLDDEF, \PKEYFLDDEF;

where:

cbKeyDefBuf The length (ULONG) of the key definition buffer from the
beginning of cbKeyDefBuf to the end of oKeyField in the last key
field definition.

cpKeyDefBuf The code point value (KEYDEF) indicating that this is a key
definition buffer object.

KeyFldDef One or more contiguous key field definition structures
(KEYFLDDEF). Specify an index value that indicates the
number of key fields to be defined.

cbKeyFldDef The length (ULONG) of the key field definition
structure from the beginning of cbKeyFldDef
to the end of oKeyField.

cpKeyFldDef The code point value (KEYFLDDF) indicating
that this is a key field definition object.

cpSequence The code point value that indicates the key
order:

SEQASC Ascending key sequence field

SEQDSC Descending key sequence field

cpKeyClass The code point value (BYTSTRDR) indicating
that the key field is a byte string.

cbKeyField The length (USHORT) of the key field.

54 VSAM for OS/2

DDMCreateAltIndex

oKeyField The offset (ULONG) from the beginning of the
key field in the record. If multiple key field
definitions are provided, the fields are
concatenated to form a combined key. The
maximum length of the key is 255 bytes.

DupFilOpt
Indicates the value (CODEPOINT) for the action to be taken if a file with the same
name already exists. The valid values are:

DUPFILDO Return Duplicate File Name (X'1459').

The function is rejected with DUPFILRM, and this option returns an
error condition (SVRCOD=X'0008').

EXSCNDDO Return Existing Condition (X'145A'). The function is rejected with
EXSCNDRM, and this option returns a warning condition
(SVRCOD=X'0004').

EABuf
The pointer (PEAOP2) to the address of the file's EA data to be set by
DDMCreateAltIndex. This is NULL if no additional DDM file attributes are to be set
at create time. Refer to “Extended Attributes” on page 5 for more information on
the format of this buffer.

Only the following DDM file attributes can be specified in the EA Buffer that is pointed
to by this parameter:

 TITLE
 MGMCLSNM
 DTACLSNM
 STGCLSNM

For the definition of these EAs, see Chapter 4, “VSAM API Common Parameters” on
page 363.

If any other file attributes are specified in this buffer, the function is rejected and a
PRMNSPRM reply message is given.

The MGMCLSNM or STGCLSNM file attributes for an alternate index can be specified
as different from the base file. However, the target system may not support the
difference.

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ADDRRM X'F212' Address Error
BASNAMRM X'1234' Invalid Base File Name
DRCATHRM X'1237' Not Authorized to Directory
DRCFULRM X'1258' Directory Full
DUPFILRM X'1207' Duplicate File Name
EXSCNDRM X'123A' Existing Condition

 Chapter 3. VSAM API Functions 55

DDMCreateAltIndex

Message ID Code Point Message Title

FILDMGRM X'125A' File Damaged
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYDEFRM X'123D' Invalid Key Definition
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RECIUSRM X'124A' Record in Use
RSCLMTRM X'1233' Target Resource Limits Reached
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
The alternate index file provides an alternate key field access to the records in an
existing keyed file.

This function does not require the base file to have any access capabilities. If,
however, the base file is created without any access capabilities, DDMSetPathInfo must
be used to set the access capabilities that are required for further processing.

This function requires exclusive access to the keyed file, which must be closed.

Certain attributes are derived from the base file EAs when creating an alternate index.
Derived EAs have the same values as the base file. The following EAs are derived
from the base file for the alternate index file:

 � DELCP
 � EOFNBR
 � FILINISZ
 � GETCP
 � INSCP
 � MAXARNB
 � MODCP
 � RECLEN
 � RECLENCL

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
No locks are obtained on the alternate index file as the result of this function.

DDMCreateAltIndex does the following:

1. Attempts to obtain a MODGETLK lock on the base file.

56 VSAM for OS/2

DDMCreateAltIndex

If the MODGETLK lock is obtained, DDMCreateAltIndex is processed (successfully
or unsuccessfully). If the MODGETLK lock is not obtained, DDMCreateAltIndex is
rejected with the FILIUSRM reply message.

2. Releases the MODGETLK lock it obtained on the base file.

If DDMCreateAltIndex ends with a reply message that has a severity code of ERROR
or higher, then:

� For error termination (SVRCOD of 8): The base file locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the base file locks
may not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file specified by BaseFileName is the name of a direct
or sequential file.

BASNAMRM

The new file cannot be entered into the directory because
the directory is full.

DRCFULRM

The FileName is equal to the BaseFileName, regardless of
whether the file exists or the specification of the DupFilOpt
parameter.

Note: If a file exists with the same name, the DupFilOpt
parameter specifies the action to take for this condition.

DUPFILRM

The alternate index files that exist for the specified base file
have a last-change date/time for that base file that is
different than the current system last-change date/time
(System Object Attribute).

FILDMGRM

The base file is open (regardless of the sharing mode
specified).

FILIUSRM

The file specified by BaseFileName is an alternate index
file.

The FileName specified has a path qualifier that is different
than the path qualifier specified for BaseFileName.

INVRQSRM

The KeyDefBuf parameter specifies a key length of zero or
a value greater than 255.

The KeyDefBuf parameter specifies a key that does not fall
within the boundaries of the record.

KEYDEFRM

Invalid file attributes specified in the EA buffer. PRMNSPRM

 Chapter 3. VSAM API Functions 57

DDMCreateAltIndex

This Causes a Reply Message to be Generated with
SRVCOD = X'04' and the Function Continues With This Reply Message

For the base file only, if the file-change date and time
recorded by the VSAM API is not the same as that
recorded by the file system, either an aborted DDM
application has left the file in an inconsistent state or a
non-DDM application has changed the file.
DDMCreateAltIndex re-synchronizes the file-change date
and time of all files in the keyed file object, unless a higher
severity condition prevents it from doing so.

FILDMGRM

58 VSAM for OS/2

DDMCreateRecFile

 DDMCreateRecFile
(Create Record File)

This function creates a record-oriented file on the target system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMCreateRecFile (PSZ FileName,
 ULONG CreateFlags,
 ULONG RecLen,
 CODEPOINT RecLenCls,
 PKEYDEFBUF KeyDefBuf,
 ULONG InitFileSiz,
 LONG MaxFileSiz,
 CODEPOINT DupFilOpt,
 CODEPOINT DftRecOp,
 ULONG RecCnt,
 PEAOP2 EABuf,
 CODEPOINT FileClass,
 PDDMDFTREC DftRecBuf
);

 Parameters
FileName

A pointer (PSZ) to the name of the record-oriented file to be created.

CreateFlags
The CreateFlags (ULONG) specify the action to be taken depending on whether
the flag bit is set. The bit flags are:

Bit Meaning
10–31 Reserved flags
9 DDM_FILPRT (Protected File)
8 DDM_FILSYS (System File)
7 DDM_FILHDD (Hidden File)
6 DDM_MODCP (Allow Modify Record Capability)
5 DDM_INSCP (Allow Insert Record Capability)
4 DDM_GETCP (Allow Get Record Capability)
3 DDM_INIEX (Inhibit Initial Extent)
2 DDM_DELCP (Allow Record Deletion Capability)
1 DDM_TMPFIL (Temporary File)
0 DDM_ALDUPKEY (Allow Duplicate Keys)

For detailed information on the create flags, see “CreateFlags (Create Flags)” on
page 407.

 Chapter 3. VSAM API Functions 59

DDMCreateRecFile

RecLen
Specifies the maximum length (ULONG) of the user data in the DDM record object.
For information on the maximum and minimum record lengths, see “RECLEN
(Record Length)” on page 392.

RecLenCls
Indicates the value (CODEPOINT) for the type of record length that the record on
the file can have. Valid values are:

RECFIX Fixed Length Record (X'142E')

RECIVL Initially-Variable-Length Record (X'142F')

RECVAR Variable-Length Record (X'1431')

KeyDefBuf
The pointer to the key definition buffer (PKEYDEFBUF) or NULL. This parameter
is ignored if the create is not being done for a keyed file. When the function is
called, the format of the key definition buffer is:

LL X'1114' X'0..10' X'140F' KeySeq X'0044'

KeyLen KeyDisp ...

Field Description

LL The length (ULONG) from the beginning of LL to the end of the
last Key Displacement field.

X'1114' The value (CODEPOINT) indicating the following field is a key
definition.

X'0..10' The length (ULONG) of the key definition. This length includes
length field through the Key Displacement field.

X'140F' The value (CODEPOINT) indicating the following data is a key field
definition.

KeySeq The value (CODEPOINT) to indicate ascending or descending key
sequence field:

X'1420' Ascending Key Sequence field
X'1421' Descending Key Sequence field

Key Sequence always assumes the sorting order of the target
system.

X'0044' The value (CODEPOINT) indicating the key field is a byte string.

KeyLen The length (USHORT) of the key field.

60 VSAM for OS/2

DDMCreateRecFile

KeyDisp The offset (ULONG) from the beginning of the key field in the
record. If multiple Key Field Definitions are provided, the fields are
concatenated to form a combined key. The maximum length of the
key is 255 bytes.

Multiple key field definitions are allowed in the Key Definition
Buffer. The following example shows two key definitions:

The following structures define the key definition buffer:

/\ Define the following key definition buffer structure, \/
/\ modeling it after the _DDMOBJECT structure defined in DUBDEFS.H \/

typedef struct _MYKEYDEFBUF
{
 ULONG cbKeyDefBuf;
 CODEPOINT cpKeyDefBuf;
 KEYFLDDEF KeyFldDef[1];
} MYKEYDEFBUF, \PMYKEYDEFBUF;

/\ Use the following structure to map each key field definition. \/
/\ It is defined in DUBDEFS.H. \/

typedef struct _KEYFLDDEF
{
 ULONG cbKeyFldDef;
 CODEPOINT cpKeyFldDef;
 CODEPOINT cpSequence;
 CODEPOINT cpKeyClass;
 USHORT cbKeyField;
 ULONG oKeyField;
} KEYFLDDEF, \PKEYFLDDEF;

where:

cbKeyDefBuf The length (ULONG) of the key definition buffer from the
beginning of cbKeyDefBuf to the end of oKeyField in the last key
field definition.

cpKeyDefBuf The code point value (KEYDEF) indicating that this is a key
definition buffer object.

X'0..26' X'1114' X'0..10' X'140F' X'1420' X'0044'

X'0..13' X'0..12' X'0..10' X'140F' X'1420' X'0044'

X'0..08' X'0..04'

 Chapter 3. VSAM API Functions 61

DDMCreateRecFile

KeyFldDef One or more contiguous key field definition structures
(KEYFLDDEF). Specify an index value that indicates the
number of key fields that are defined.

cbKeyFldDef The length (ULONG) of the key field definition
structure from the beginning of cbKeyFldDef
to the end of oKeyField.

cpKeyFldDef The code point value (KEYFLDDF) indicating
that this is a key field definition object.

cpSequence The code point value that indicates the key
order:

SEQASC Ascending key sequence field

SEQDSC Descending key sequence field

cpKeyClass The code point value (BYTSTRDR) indicating
that the key field is a byte string.

cbKeyField The length (USHORT) of the key field.

oKeyField The offset (ULONG) from the beginning of the
key field in the record. If multiple key field
definitions are provided, the fields are
concatenated to form a combined key. The
maximum length of the key is 255 bytes.

InitFileSiz
The first time space is allocated for records, specifies the initial number (ULONG)
of records to allocate. A value of 0 indicates that the file exists but has no
allocated space. A nonzero value for this parameter causes space to be allocated,
but the contents of the space is undefined. Use RecCnt to initialize the space.
InitFileSiz can be used to reduce the fragmentation of a file if you know the
approximate size it will grow to. Reducing fragmentation can improve product
performance. A remote target system might ignore this information.

MaxFileSiz
Specifies the maximum number (LONG) of records that can be allocated to the file.
A value of -1 indicates that the file size is unlimited.

DupFilOpt
The value (CODEPOINT) indicating the action to take if a file with the same name
already exists. The valid values are:

DUPFILDO Return Duplicate File Name (X'1459').

The function is rejected with DUPFILRM, and the option returns an
error condition (SVRCOD=X'0008').

EXSCNDDO Return Existing Condition (X'145A').

The function is rejected with EXSCNDRM, and the option returns a
warning condition (SVRCOD=X'0004').

62 VSAM for OS/2

DDMCreateRecFile

DftRecOp
The value (CODEPOINT) indicating the action a create file function should take to
initialize the data contents of the file.

If the value is specified as NIL, the file is not initialized with default records.

If a value other than NIL is specified, the file is initialized with at least the number
of records that are specified. The number of records that are specified is through
the RecCnt variable that is related to this parameter. This function ignores the
value of the DDM_INIEX parameter flag.

The valid values are:

DFTINAIN Default inactive record initialization (X'1460'). Specifies that the file
is to be initialized with inactive records.

If the file is created with initially-varying-length records or with
variable-length records, the initialized records have a length equal to
RecLen.

If the file is not delete-capable and is not a direct file, DFTRECRM
is returned.

DFTTRGIN Default target initialization (X'145F').

Specifies that the file is to be initialized with active records whose
contents are determined by the target server. All records have the
same initial contents that is defined by the target server. the local
VSAM file system initializes records with the '!' character.

If the file is created with initially-varying-length records or with
variable-length records, the initialized records have a length equal to
RecLen.

DFTSRCIN Default source initialization (X'1449').

Specifies that the file is to be initialized with active records whose
contents are defined by the DftRecBuf parameter. The contents of
DftRecBuf are replicated or truncated to match the record length of
the file. This means that DftRecBuf(X'00') causes the file to be
initialized with records that consist of all zeros. A DftRecBuf(‘ABC’)
would initialize a file with 10-byte records with ‘ABCABCABCA’ as
the initialization record.

If the file is created with initially-varying-length records or with
variable-length records, the initialized records have a length equal to
RecLen.

NIL Do not initialize the data content of the file (X'002A').

RecCnt
Specifies the number (ULONG) of records to initialize. This parameter works in
conjunction with the DftRecOp parameter. If the DftRecOp parameter is specified
as NIL, RecCnt is ignored. Records are initialized in the space that is allocated by
InitFileSiz with additional space that is allocated as needed.

 Chapter 3. VSAM API Functions 63

DDMCreateRecFile

EABuf
The pointer (PEAOP2) to the file's EA data to be set by DDMCreateRecFile, or
NULL if no additional DDM file attributes are to be set at create time. Refer to
“Extended Attributes” on page 5 for more information on the format of this buffer.

The following DDM file attributes can be specified in EABuf:

 TITLE
 MGMCLSNM
 DTACLSNM
 STGCLSNM

For the definition of these EAs, see Chapter 4, “VSAM API Common Parameters”
on page 363.

FileClass
Indicates the value (CODEPOINT) for the class or type of record file to create.
Valid values are:

DIRFIL Direct File (X'140C')
KEYFIL Keyed File (X'141E')
SEQFIL Sequential File (X'143B')

DftRecBuf
The pointer (PDDMDFTREC) to the default record initialization buffer or NULL.
When this function is called, the format of the buffer is:

Field Description

LL The length (ULONG) of the default initialization record from the
beginning of LL to the end of the Initialization Record.

X'142B' The value (CODEPOINT) indicating that the following content is the
default initialization record.

Data The default initialization record information.

See “DFTREC (Default Record)” on page 371 for more information.

LL X'142B' Initialization Record

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ADDRRM X'F212' Address Error
DFTRECRM X'1204' Default Record Error
DRCATHRM X'1237' Not Authorized to Directory
DUPFILRM X'1207' Duplicate File Name
EXSCNDRM X'123A' Existing Condition
FILATHRM X'123B' Not Authorized to File
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found

64 VSAM for OS/2

DDMCreateRecFile

Message ID Code Point Message Title

FILSNARM X'120F' File Space Not Available
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RSCLMTRM X'1233' Target Resource Limits Reached
SYNTAXRM X'124C' Data Stream Syntax Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
DDMCreateRecFile does not require the file to have any access capabilities. If
however, the base file is created without any access capabilities, DDMSetPathInfo must
be used to set the access capabilities that are required for further processing.

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
No locks are obtained and held on the file by this function.

 Exceptions
If a file exists on the target system with the same name, the DupFilOpt parameter
specifies the action to take for this condition.

This Causes the Function to Be Rejected With This Reply Message

The new file cannot be entered into the directory because
the directory is full.

DRCFULRM

The file is not delete-capable and is not a direct file. DFTRECRM

The KeyDefBuf parameter specifies a key length of zero or
a value greater than the maximum allowed by the target
system.

The KeyDefBuf parameter defines a key that cannot be
mapped to the key-field capabilities of the target server.

KEYDEFRM

The DDM_ALDUPKEY is false and DftRecOp is not NIL. SYNTAXRM

DftRecOp (with a value other than NIL) is specified and
RecCnt exceeds the maximum number of record positions
that the target system allocates to the file.

VALNSPRM

 Chapter 3. VSAM API Functions 65

DDMDelete

 DDMDelete
(Delete File)

This function deletes a file from the target system, releases all locks that are held on
the file, and releases the space the file occupied.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMDelete (PSZ FileName,
 ULONG Flags
);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be deleted.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_OVRDTA (Overwrite Data)

Specifies that the data being deleted is to be overwritten with binary zeros.
This prevents the data from being read by subsequent users of the
allocated file space.

If the file is a keyed file or alternate index file, this flag specifies whether
the indexes for the file are also overwritten.

 Returns
Message ID Code Point Message Title

EXSCNDRM X'123A' Existing Condition
ADDRRM X'F212' Address Error
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request

66 VSAM for OS/2

DDMDelete

 Remarks
For an alternate index file, only the index is deleted. The base file of an alternate index
file is not deleted.

The primary index file for the specified keyed file is also deleted.

Any alternate index files, using the specified file as a base file, must be deleted before
the specified file can be deleted.

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMDelete does the following:

1. Attempts to obtain a MODNONLK lock on the file.

If the MODNONLK lock is obtained, the function is processed (successfully or
unsuccessfully). If the MODNONLK lock is not obtained, the function is rejected
with FILIUSRM.

2. Releases the MODNONLK lock it obtained on the file.

If DDMDelete ends with a reply message that has a severity code value of: ERROR or
higher, then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to Terminate Normally With This Reply Message

The file specified by FileName cannot be found. FILNFNRM

This Causes the Function to be Rejected With This Reply Message

The file specified by FileName is the base file for one or
more alternate index files.

The file specified by FileName is a protected file.

INVRQSRM

The requester has the file open. FILIUSRM

 Chapter 3. VSAM API Functions 67

DDMDeleteRec

 DDMDeleteRec
(Delete Record)

This function deletes a record that has an update intent on it.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMDeleteRec (HDDMFILE FileHandle,
 ULONG Flags
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1-31 Reserved flags

0 DDM_OVRDTA (Overwrite Data)

Specifies whether the record being deleted is to be overwritten with binary
zeros to prevent the data from being read by non-DDM applications.

Note: This flag is obsolete, but supported for compatibility with earlier
releases. The deleted record space is always overwritten with binary
zeros.

 Returns
Message ID Code Point Message Title

EXSCNDRM X'123A' Existing Condition
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
RECIUSRM X'124A' Record in Use
RECDMGRM X'1249' Record Damaged
UPDINTRM X'124E' No Update Intent on Record

 Remarks
DDMDeleteRec has the following effects:

� The data content of the record is no longer available.

� The record position becomes inactive and its length is preserved if it is initially
variable or fixed.

68 VSAM for OS/2

DDMDeleteRec

� If the file contains variable-length records, the length of the record position goes to
the maximum record length for the file. See “RECINA (Inactive Record)” on
page 391 for a detailed description.

� If the file is a keyed file or an alternate index file, the associated indexes are
updated to show that the record has been deleted.

� If the record's position is overwritten, it is overwritten with binary zeros.

� Update intent is removed.

Before this function can be used, an update intent must be placed on a record in the
file. A DDMSetxxx or DDMGetRec function can be used to place an update intent on a
record.

If the record that is deleted was the last active record in a direct file, EOF is backed up
to the previous active record.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply message
determines the state of the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMDeleteRec does the following:

If the file was opened for multiple updates, the access method attempts to acquire an
EXCRECLK lock on the record that has an update intent placed on it. If the
EXCRECLK lock cannot be obtained because of a lock conflict, the DDMDeleteRec is
rejected with the RECIUSRM reply message.

If the EXCRECLK lock is obtained:

1. DDMDeleteRec is processed.

2. Because all record modifications are committed at the time of modification, the
EXCRECLK lock is released from the record.

3. Even if DDMDeleteRec is rejected with an error reply, the obtained EXCRECLK
lock is released from the record.

If DDMDeleteRec ends with a reply message that has a severity code value of ERROR
or higher, then:

 Chapter 3. VSAM API Functions 69

DDMDeleteRec

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.

 Exceptions
This Causes the Function to Terminate Normally With This Reply Message

The file handle is not valid. HDLNFNRM

Any reserved bits in Flags are active. INVFLGRM

The DELAI access intent was not specified when the file
was opened.

The file is not delete-capable.

The file is direct and the file is empty.

INVRQSRM

A damaged record (not an active or inactive record) is
encountered.

RECDMGRM

There is not a record with update intent placed on it in the
file.

UPDINTRM

This Causes the Function to be Rejected With This Reply Message

The record is already inactive. EXSCNDRM

An EXCRECLK lock cannot be obtained. RECIUSRM

70 VSAM for OS/2

DDMDeleteRec

 Example

BOF BOF

Record
Number

Record
Number

BEFORE AFTER

Assume the following:

Update
Intent

Cursor

EOF

0

1

2

3

4

5

6

Cursor

EOF

DDMDeleteRec (FileHandle, Flags)

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE

AAAAAAAA

CCCCCCCC

DDDDDDDD

EEEEEEEE

Inactive

0

1

2

3

4

5

6

Figure 10. DDMDeleteRec Function

 Chapter 3. VSAM API Functions 71

DDMForceBuffer

 DDMForceBuffer
(Commit a File's Cached Information)

This function commits a file's cached information to non-volatile storage. The file's
directory entry and EAs are updated (as if the file had been closed with a DDMClose),
but the file remains in the open state.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMForceBuffer (HDDMFILE FileHandle
);

 Parameters
FileHandle

The handle (HDDMFILE) of the open file whose cached information is to be
committed to non-volatile storage. A value of X'FFFFFFFF' for this parameter
causes all open files for this process to have their caches written to non-volatile
storage.

 Returns
Message ID Code Point Message Title

HDLNFNRM X'1257' File Handle Not Found

 Remarks
This function is analogous to the DosResetBuffer command.

To obtain the current EA values while a file is being used, you must issue a
DDMForceBuffer and request the EA values to be returned. The EA values are returned
through DDMQueryFileInfo or DDMOpen.

When a file is being used in the local VSAM file system, the file system maintains
certain extended attributes in memory for each I/O operation that affects the file. When
an alternate index file is being used, the local VSAM file system maintains only the
base file EAs in memory. These changed EAs are permanently updated for the file as
well as for all associated index files when a DDMForceBuffer or DDMClose function is
issued.

Effect on Cursor Position
If the file is opened without GETAI access intent, there is no effect on the cursor
position.

If the file was opened with GETAI access intent, the cursor is positioned to EOF.

72 VSAM for OS/2

DDMForceBuffer

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

The locks on the requester's files are the same before and after the DDMForceBuffer
function. All record locks that are held by the requester are released.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not valid. HDLNFNRM

 Chapter 3. VSAM API Functions 73

DDMGetRec

 DDMGetRec
(Get Record)

This function gets and returns the record that is indicated by the current cursor position.
This function also optionally returns the record number and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMGetRec (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) that is obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
4–31 Reserved flags
3 DDM_RTNINA (Return Inactive Records)
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

Note: DDM_KEYVALFB is ignored for nonkeyed files.

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer to the record buffer (PDDMRECORD) for the returned record. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples of
RecordBuf Data Formats” on page 77.

RecordBufLen
The length (ULONG) of the Record Buffer.

74 VSAM for OS/2

DDMGetRec

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CSRNSARM X'1205' Cursor Not Selecting a Record Position
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYMODRM X'1260' Key value was modified since cursor was last set
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use

 Remarks
As an option, DDMGetRec can:

� Specify whether inactive records should be returned (DDM_RTNINA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply message
determines the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file is opened for multiple updates, the
access method acquires an implicit SHRRECLK on the record. This occurs if the
requester does not lock the record with a SHRRECLK. If a different record is already
locked, the lock on that record is released before the SHRRECLK on the current record
is obtained.

The SHRRECLK is released when one of the following occurs:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The DDMUnLockRec function is issued.

� Any function is issued that references a record other than the one currently pointed
to by the cursor. Examples of these functions are DDMInsertRecEOF,

 Chapter 3. VSAM API Functions 75

DDMGetRec

DDMInsertRecKey, DDMInsertRecNum, DDMSetUpdateKey, and
DDMSetUpdateNum.

� The file is closed.

If none of these conditions are met, the record remains locked.

If the record lock is not obtained, the function is rejected with RECIUSRM.

If DDM_UPDINT(TRUE) is specified and the file is not opened for multiple updates, an
update intent is placed on the record. However, the access method does not acquire
any record locks.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message. determines the state of the record locks.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set or
DDM_NODATA is not set and RecordBuf does not contain
an address.

ADDRRM

The cursor is positioned to outside the bounds of the file.

The cursor position is unknown.

CSRNSARM

The file handle is not valid. HDLNFNRM

Any of the reserved bits in AccessFlags are set. INVFLGRM

The file was opened without GETAI specified.

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The file is a keyed or alternate index file, the cursor was
last positioned by key value, and the key value has
changed or the record has become inactive since the
cursor was positioned to its current location.

KEYMODRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

The record returned is damaged (not an active or inactive
record).

RECDMGRM

The DDM_RTNINA parameter specifies that inactive
records are not to be returned and the current record is
inactive.

RECINARM

A record lock cannot be obtained. RECIUSRM

76 VSAM for OS/2

DDMGetRec

Examples of RecordBuf Data Formats
AccessFlags

DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the buffer from the beginning of LL to
the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the buffer from the beginning of LL to
the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either the record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

LL X'144A' Data

LL CP Data

 Chapter 3. VSAM API Functions 77

DDMGetRec

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
CP.

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'1430' L1 X'111D' RN L2 CP Data

78 VSAM for OS/2

DDMGetRec

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either the record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 79

DDMGetRec

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either the record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

80 VSAM for OS/2

DDMGetRec

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) of the field from the beginning of L2 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) of the field from the beginning of L3 to
the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_RTNINA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is a
record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number.

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) of the field from the beginning of L2 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is a
key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 CP Data

 Chapter 3. VSAM API Functions 81

DDMGetRec

L3 The length (ULONG) of the field from the beginning of L3 to
the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is an ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

82 VSAM for OS/2

DDMGetReplyMessage

 DDMGetReplyMessage
(Get Reply Message)

This function gets and returns a reply message that is issued from the previously
requested function in the current thread of execution.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMGetReplyMessage (PBYTE RpyMsgBuf,
 ULONG RpyMsgBufLen,
 ULONG RpyMsgFlags
);

 Parameters
RpyMsgBuf

The pointer (PBYTE) to the reply message buffer for the returned reply message.
For information on how to interpret the reply message data, see Chapter 6, “VSAM
API Reply Messages” on page 413.

RpyMsgBufLen
The length (ULONG) of the reply message buffer. The length of the reply message
buffer should be the same as the largest reply message plus four bytes for the
length and four bytes for the code point fields.

RpyMsgFlags
The RpyMsgFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 Full Error Reply Message

If this flag is set, at least one full error reply message is returned. If this
flag is not set, only the USHORT code point that identifies the error reply
message is returned. A subsequent repeat invocation of
DDMGetReplyMessage with this flag that is not set causes the code point
of the next reply message to be returned. The previous error reply
message is lost.

 Chapter 3. VSAM API Functions 83

DDMGetReplyMessage

 Returns
On return, APIRET contains one of the SVRCOD error codes. For a detailed
description of the severity code values, see “SVRCOD (Severity Code)” on page 396.

APIRET Description

X'00000000' All reply messages for last requested function have been
received.

X'00000004' There are more reply messages to be received. Call the
DDMGetReplyMessage function again to get the next
message. The reply messages are put in a process
thread-based FIFO (first-in first-out) queue. Each call of
DDMGetReplyMessage gets the next reply message from
the queue.

If the currently executing thread issues a function other than
DDMGetReplyMessage, before all of the reply messages
have been received, the remaining reply messages are
discarded. The process thread-based queue is filled with
the reply messages from the requested function.

X'00000008' Reply buffer is too small. The reply message buffer is not
large enough to hold the reply message. If the buffer length
is at least 1 ULONG, the first ULONG of the reply message
buffer contains the length of the reply message.

X'00000010' Warning error. A reply message was requested but there
are no reply messages available.

X'00000020' Error. An invalid reply message buffer address was
specified.

X'00000040' Severe error. An un-architected reply message object was
encountered. One or more additional reply messages are
available. The cause may be a target problem.

X'00000080' Severe error. A reserved bit was set on in the
RpyMsgFlags parameter.

84 VSAM for OS/2

DDMInsertRecEOF

 DDMInsertRecEOF
(Insert Records at EOF)

This function inserts records at the end of the file and optionally returns the record
number and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMInsertRecEOF (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecCount,
 PDDMOBJECT FdbkBuf,
 ULONG FdbkBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
12–31 Reserved flags
11 DDM_HLDUPD (Hold Update Intent)
10 DDM_UPDCSR (Update Cursor)
3–9 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 Reserved flag

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the records to be inserted.
When DDMInsertRecEOF is called, the format of RecordBuf is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
Record Data or an Inactive Record Length.

LL CP Data ...

 Chapter 3. VSAM API Functions 85

DDMInsertRecEOF

X'144A' Indicates that the following data is Record Data.

X'142D' Indicates that the following data is an ULONG
Inactive Record Length. The number of record
descriptions (Record Data or Inactive Record
Lengths) should be the same as the number
indicated in RecCount.

Data The record data.

Examples of the DDMInsertRecEOF function are shown in “Examples” on page 92.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

FdbkBuf
The pointer (PDDMOBJECT) to the Feedback Buffer for the requested returned
feedback data, or NULL if no information has been requested. The format of the
returned data in the buffer depends on the bit settings in AccessFlags. Examples
of the returned feedback data formats are shown in “Remarks.”

FdbkBufLen
The length (ULONG) of the feedback buffer or 0.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
FILFULRM X'120C' File is Full
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECIUSRM X'124A' Record in Use
RECLENRM X'1215' Record Length Mismatch
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
For files with variable-length records, new record positions that have the same length
as the inserted records are created. Records to be inserted are contained in the record
buffer.

After successful completion of this command, EOF points to the record position after
the last inserted record.

86 VSAM for OS/2

DDMInsertRecEOF

This function processes the records in a Record Buffer as a group. This function treats
inactive records in the group as place holders between the active records, as the group
is inserted into the file. How the EOF is updated depends on the type of the file.

� If the file is a direct file, the EOF is only updated when an active record in the
group is inserted. Therefore, inactive records that follow the last active record in a
group are located at or beyond the EOF and are subject to overlay by other
functions. The method of inserting records into a direct file can affect the file
contents; for example:

– When multiple records are inserted at a time, both active and inactive records
can occur before the EOF (see Figure 11).

– When individual records are inserted one at a time, only the active records will
occur before the EOF (see Figure 12 on page 88).

� If the file is not a direct file, the EOF is updated as each record in the group is
inserted. If all the records in the group are inserted successfully, the EOF is
positioned after the last record in the group. This is true whether the record is an
active or inactive record. The method of inserting records into these files does not
affect the file contents.

BOF BOF

EOF

BEFORE AFTER

Record
Number

0

1

0

1

2

3

4

In this example,

Record
Number

(RECORD n) indicates active record number n
(RECINA n) indicates inactive record number n

Assume the following operating on a direct file:

RecordBuf = (RECINA 1)(RECORD 2)(RECINA 3)(RECINA 4);
RecCount = 4;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount, FdbkBuf, FdbkBufLen);

RECINA1

RECORD2

RECINA3

RECINA4

EOF

Figure 11. DDMInsertRecEOF. Insert Multiple Records at the Same Time into a Direct File

 Chapter 3. VSAM API Functions 87

DDMInsertRecEOF

BOF BOF

BEFORE AFTER

Record
Number

0

1

In this example,

Record
Number

(RECORD n) indicates active record number n
(RECINA n) indicates inactive record number n

0

1

2

Assume the following operating on a direct file:

RecordBuf = (RECINA 1);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount, FdbkBuf, FdbkBufLen);

RecordBuf = (RECORD 2);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount, FdbkBuf, FdbkBufLen);

RecordBuf = (RECINA 3);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount, FdbkBuf, FdbkBufLen);

RecordBuf = (RECINA 4);
RecCount = 1;

DDMInsertRecEOF(FileHandle, AccessFlags, RecordBuf,
RecCount, FdbkBuf, FdbkBufLen);

EOF RECORD2

RECINA4EOF

Figure 12. DDMInsertRecEOF. Insert One Record into a Direct File

RecCount specifies the number of records to be inserted at EOF. An instance of a
record or an inactive record length must be set for each record to be inserted.

Depending on the value of the DDM_UPDCSR flag, this function sets the cursor to the
inserted record or keeps its current setting. If RecCount specifies a value greater than
1 and the DDM_UPDCSR flag is set, the cursor is updated after each record is
successfully inserted at the end of file.

88 VSAM for OS/2

DDMInsertRecEOF

If the DDM_RECNBRFB flag is set, the record number of the last inserted record is
returned in FdbkBuf.

If the DDM_KEYVALFB flag is set, the key value of the last inserted record is returned
in FdbkBuf.

If the DDM_HLDUPD flag is not set, the update intent on any record in the file is
released. If the DDM_HLDUPD flag is set, the update intent on any record in the file
remains in place.

When inserting records into a keyed or alternate index file, this function updates the file
index and all associated indexes.

Inactive records can only be inserted if the file is delete-capable.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

This function positions the cursor that is based on the DDM_UPDCSR
flag. If DDM_UPDCSR is set, this function moves the cursor to the
inserted record. If DDM_UPDCSR is not set, the cursor position is not
changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was called. If
the RecCount is greater than 1, the cursor position is the same as it
was before the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message indicates the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMInsertRecEOF does the following:

1. If DDM_HLDUPD(FALSE) is specified and the requester has a SHRRECLK lock on
a record in the file, the SHRRECLK lock is released.

2. If the file is opened for multiple updates, DDM_HLDUPD(TRUE) is specified, and
the requester has a SHRRECLK lock on a record in the file. The SHRRECLK lock
is not released.

3. In all cases, the access method attempts to acquire an EXCRECLK lock on the
record. If the EXCRECLK lock cannot be obtained due to a lock conflict, the
function is rejected with RECIUSRM.

If the EXCRECLK lock is obtained:

a. The record insert function is performed.

 Chapter 3. VSAM API Functions 89

DDMInsertRecEOF

b. The EXCRECLK lock is released from the record, because all record
modifications are committed at the time of modification.

c. The obtained EXCRECLK lock is released from the record, even if the function
is rejected with an error reply.

4. If the function ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as
before the function was issued. If RecCount is greater than 1, the record locks
are the same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data
Lock Status) parameter on the reply message determines the record locks.

 Exceptions
This Causes the Function to be Terminated With This Reply Message

The data in the RecordBuf is not a valid record type. OBJNSPRM

This Causes the Function to be Rejected With This Reply Message

The DDM_KEYVALFB or DDM_RECNBRFB access flags
are set and a pointer is not supplied to the FdbkBuf.

ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

One of the following sets of conditions exists:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the alternate index.

or

� The file is an alternate index file.
� The file's base file does not allow duplicate keys, or

another alternate index file with the same base file
does not allow duplicate keys.

� The inserted record would result in a duplicate key
value in the file's base file or in another alternate index
file with the same base file.

DUPKDIRM

The following conditions exist:

� The file is a keyed file or alternate index file.
� The file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the file index.

DUPKSIRM

Inserting the record would cause the file to become full. FILFULRM

The file handle is invalid. HDLNFNRM

Any of the reserved bits are set in the access flags. INVFLGRM

90 VSAM for OS/2

DDMInsertRecEOF

This Causes the Function to be Rejected With This Reply Message

The file was opened without INSAI (Insert Record) access
intent.

INVRQSRM

The file supports variable-length records, the file is a keyed
file or an alternate index file, and the record to be inserted
does not contain all of the fields for the specified file key.

KEYVALRM

The FdbkBuf is not large enough to hold the returned
information.

LENGTHRM

An EXCRECLK lock cannot be obtained on the file. RECIUSRM

If the following are not true:

1. If the record class is fixed and the record to be
inserted is an active record, the length of the record
must be equal to the length of the header plus the
record length. (See “RECORD (Record)” on page 394
for more information.)

2. If the record to be inserted is an inactive record, the
record length represented by the inactive record must
be the same as the length defined for a record in the
file. (See “RECINA (Inactive Record)” on page 391 for
more information.)

RECLENRM

RecCount is not greater than zero. VALNSPRM

 Chapter 3. VSAM API Functions 91

DDMInsertRecEOF

 Examples

BOF BOF

BEFORE AFTER
Record
Number

Record
Number

Assume the following:

Cursor

EOF

0

1

2

3

4

5

6

RecCount = 0x00000003 ;
AccessFlags = 0x00000000 ;

DDMInsertRecEOF (FileHandle, AccessFlags, RecordBuf,
RecCount, FdbkBuf, FdbkBufLen)

0

1

2

3EOF

Cursor

/* DDM UPDCSR=OFF */

Figure 13. DDMInsertRecEOF Function

92 VSAM for OS/2

DDMInsertRecEOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

EOF

0

1

2

3

4

5

Assume the following:

RecCount = 0x00000001

Cursor

Cursor

EOF

AccessFlags = 0x00000400 ; /* DDM UPDCSR=ON */

DDMInsertRecEOF (FileHandle, AccessFlags, RecordBuf,
RecCount, FdbkBuf, FdbkBufLen)

Figure 14. DDMInsertRecEOF Function with DDM_UPDCSR

Examples of FdbkBuf returned data formats are:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE)

FdbkBuf
This parameter returns nothing.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE)

FdbkBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the buffer from the beginning of LL to
the end of RN.

LL X'111D' RN

 Chapter 3. VSAM API Functions 93

DDMInsertRecEOF

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE)

FdbkBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the field from the beginning of LL to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE)

FdbkBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

94 VSAM for OS/2

DDMInsertRecKey

 DDMInsertRecKey
(Insert Records by Key Value)

This function inserts records according to their key values and optionally returns the
record number of the last record that is inserted.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMInsertRecKey (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 PRECNUM RecordNumber,
 ULONG RecCount
);

 Parameters
FileHandle

The file handle (HDDMFILE) that is obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
12–31 Reserved flags
11 DDM_HLDUPD (Hold Update Intent)
10 DDM_UPDCSR (Update Cursor)
2–9 Reserved flags
1 DDM_RECNBRFB (Record Number Feedback)
0 Reserved flag

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the record descriptions and
the records to be inserted by key. The format of the record buffer on when
DDMInsertRecKey is called:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
Record Data. The number of record descriptions (record data's)
should be the same as the number indicated in RecCount.

LL X'144A' Data ...

 Chapter 3. VSAM API Functions 95

DDMInsertRecKey

Data Record data.

RecordNumber
The pointer (PRECNUM) to an output variable of type RECNUM for the Record
Number Feedback from the last record inserted. If the Record Number Feedback
flag of AccessFlags has not been set, this parameter is ignored.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
FILFULRM X'120C' File is Full
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
RECLENRM X'1215' Record Length Mismatch
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
For files with a RECLENCL (record length class) of variable-length record, either:

� A new record position having the same length as the record to be inserted is
created, or

� An existing record position containing an inactive record the same length as the
record to be inserted is used.

The record structure must be consistent with the key definition on DDMCreateRecFile
and DDMCreateAltIndex.

If the file supports variable-length records whose lengths are changeable, the length of
the record position is changed to equal the length of the inserted record.

If RecCount specifies a value greater than 1, multiple records are inserted into the file.
RecCount specifies the number of times the DDMInsertRecKey function will be
performed. If the DDM_UPDCSR flag is set, the cursor position is updated after each
iteration of the DDMInsertRecKey.

Depending on the setting of the DDM_UPDCSR flag, the cursor can be set to the
inserted record or can retain its current setting.

If the DDM_RECNBRFB flag specifies that the record number of the inserted record is
to be returned, RecordNumber is returned with the record number of the last record
inserted.

96 VSAM for OS/2

DDMInsertRecKey

At the completion of the function, any existing update intent is released unless the
DDM_HLDUPD flag is set. In this case, the existing update intent remains in effect.

The file index and all other indexes that are associated with the file are updated to
show the inserted records.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is based on the DDM_UPDCSR flag. If
DDM_UPDCSR is set, the cursor is moved to the last inserted record.
If DDM_UPDCSR is not set, the cursor position is not changed.

Error Termination (SVRCOD of 8)
 The cursor position is the same If RecCount is greater than 1, the
cursor position is the same as before the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message indicates the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMInsertRecKey does the following:

1. If the file was opened for multiple updaters for each record to be inserted:

a. If DDM_HLDUPD(FALSE) was specified and the requester currently has a
SHRRECLK on a record in the file, the SHRRECLK is released.

b. If DDM_HLDUPD(TRUE) was specified and the requester currently has a
SHRRECLK on a record in the file, the SHRRECLK is not released.

In all cases, the local VSAM file system attempts to acquire an EXCRECLK. If the
EXCRECLK cannot be obtained due to a lock conflict, the function is rejected with
RECIUSRM. If the EXCRECLK is obtained, the record insert function is performed.
Since all record modifications are committed at the time of modification, the
EXCRECLK is released from the record. Even if the function is rejected with an
error reply, the obtained EXCRECLK is released from the record.

2. If the function ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as
before the function was issued. If RECCNT is greater than 1, the record locks
are the same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data
Lock Status) parameter on the reply message determines the state of the
record locks.

 Chapter 3. VSAM API Functions 97

DDMInsertRecKey

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

One of the following sets of conditions exists:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the alternate index.

or

� The file is an alternate index file.
� The file's base file does not allow duplicate keys, or

another alternate index file with the same base file
does not allow duplicate keys.

� The inserted record would result in a duplicate key
value in the file's base file or in another alternate index
file with the same base file.

DUPKDIRM

The following conditions exist:

� The file is a keyed file or alternate index file.
� The file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the file index.

DUPKSIRM

The file handle is invalid. HDLNFNRM

The following conditions exist:

� The file supports variable-length records.
� The file is a keyed file or an alternate index file.
� The record to be inserted does not contain all of the

fields for the specified file key.

KEYVALRM

An EXCRECLK record lock cannot be obtained. RECIUSRM

The RECLENCL (Record Length Class) is fixed, and the
length of the record to be inserted (LL) is not equal to the
record length (RECLEN) of the file plus the length of the
record header (see “RECORD (Record)” on page 394 for
more information).

The record length of the record to be inserted exceeds the
maximum record length of the file.

RECLENRM

98 VSAM for OS/2

DDMInsertRecKey

 Example

EOF

BOF BOF

BEFORE AFTER
Record
Key

Assume the following:

RecCount = 0x00000001 ;

A

B

C

B

Cursor

EOF

A

B

C

B

XCursor

Record
Key

DDMInsertRecKey (FileHandle, AccessFlags, RecordBuf,
RecordNumber,RecCount)

AccessFlags = 0x00000400 ; /* DDM UPDCSR=ON */

Figure 15. DDMInsertRecKey Function with DDM_UPDCSR

 Chapter 3. VSAM API Functions 99

DDMInsertRecNum

 DDMInsertRecNum
(Insert by Record Number)

This function inserts records at the position that is specified by the RecordNumber
parameter and optionally returns the record key.

 Syntax
APIRET DDMInsertRecNum (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 PDDMOBJECT KeyFdbk,
 ULONG KeyFdbkLen,
 RECNUM RecordNumber,
 ULONG RecCount
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
11–31 Reserved flags
10 DDM_UPDCSR (Update Cursor)
3–9 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
0–1 Reserved flags

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the records to be inserted at
the specified record number. When this function is called, the format of the record
buffer is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

LL CP Data ...

100 VSAM for OS/2

DDMInsertRecNum

X'142D' Indicates that the following data is an ULONG
inactive record length. The number of record
descriptions (record Data or inactive record
lengths) should be the same as the number
indicated in the RecCount.

Data The data associated with this code point.

KeyFdbk
The pointer (PDDMOBJECT) to the key value feedback buffer of the last record
inserted. If the DDM_KEYVALFB flag of AccessFlags has not been set, this
parameter is ignored. The format of the key value feedback buffer on return from
the function is:

Field Description

LL The length (ULONG) of the response from the beginning of LL to
the end of the Key Value.

X'1115' The value (CODEPOINT) indicating that the following data is a key
value.

Key Value The key value.

KeyFdbkLen
The length (ULONG) of the key value feedback buffer. The key value feedback
buffer should be the same length as a key value, with an additional six bytes for
the length and code point fields. If the DDM_KEYVALFB flag of AccessFlags has
not been set, this parameter is ignored.

RecordNumber
The length (RECNUM) of the record number for the first record to be inserted. All
other records are placed in consecutive record positions.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

LL X'1115' Key Value

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged

 Chapter 3. VSAM API Functions 101

DDMInsertRecNum

Message ID Code Point Message Title

RECIUSRM X'124A' Record in Use
RECLENRM X'1215' Record Length Mismatch
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
Records can only be inserted within the bounds of the file and only in inactive record
positions:

� For sequential and keyed files, the bounds are record number 1 (inclusive) and the
current EOF (exclusive).

� For direct files, the bounds are record number 1 For direct files, the bounds are:

– Record number 1 (inclusive), and
– The physical boundaries of the file (inclusive)

as defined by the application when the file was created (this can be beyond the
EOF position of the file).

� An alternate index file has the same bounds as its base file.

Depending on the value of the DDM_UPDCSR flag, the cursor can be set to the
inserted record position or can retain its current setting.

The records in a Record Buffer are processed as a group. Inactive records in the
group are treated as place holders between the active records as the group is inserted
into the file. How the EOF is updated depends on the type of file. For example, if the
file is a direct file and records are added at or beyond the current EOF, the EOF is only
updated when an active record is inserted. Inactive records that follow the last active
record will be located in the file at or beyond the EOF and are subject to overlay by
other functions. See “DDMInsertRecEOF (Insert Records at EOF)” on page 85 for
additional information and examples.

The RecCount parameter specifies the number of records to be inserted. The insertion
of records begins at RecordNumber.

If RecCount specifies a value other than 1, the record number is increased after each
record is inserted. The new record number must meet the same validity criteria as the
original (previous) record number before the next record can be inserted. The validity
criteria for record number refers to the file boundary rules for record insertion.

If RecCount specifies a value greater than 1 and the DDM_UPDCSR flag is set, the
cursor is updated after each record is successfully inserted.

If Key Value Feedback is requested (DDM_KEYVALFB), the key value of the last
record inserted is returned.

If the DDM_KEYVALFB flag is set and the file is not keyed, the flag is ignored.

102 VSAM for OS/2

DDMInsertRecNum

The file index is updated when inserting records into a keyed or alternate index file or
into the base file of an alternate index file.

If the file supports variable-length records whose lengths are changeable, the length of
the record position is changed to match the length of the inserted record.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is based on the DDM_UPDCSR flag. If the
DDM_UPDCSR flag is set, the cursor is moved to the inserted record.
If the DDM_UPDCSR flag is not set, the cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was called. If
RecCount is greater than 1, the cursor position is the same as before
the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters, then:

1. If the requester currently has a SHRRECLK on a record in the file, the SHRRECLK
is released.

2. The access method attempts to acquire an EXCRECLK on the record.

If the EXCRECLK cannot be obtained because of a lock conflict, the function is
rejected with RECIUSRM. If the EXCRECLK is obtained, then:

a. The record insert function is performed, and because all record modifications
are committed at the time of modification, the EXCRECLK is released from the
record.

b. The obtained EXCRECLK is released from the record, even if the function is
rejected with an error reply.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued. If RecCount is greater than 1, the record locks are the
same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.

 Chapter 3. VSAM API Functions 103

DDMInsertRecNum

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The record buffer address is not greater than zero.

DDM_KEYVALFB access flag is specified and KeyFdbk is
not specified.

ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

One of the following sets of conditions exists:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the alternate index.

or

� The file is an alternate index file.
� The file's base file does not allow duplicate keys, or

another alternate index file with the same base file
does not allow duplicate keys.

� The inserted record would result in a duplicate key
value in the file's base file or in another alternate index
file with the same base file.

DUPKDIRM

The following are true:

� The file is a keyed file or an alternate index file.
� The file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value in the file index.

DUPKSIRM

The RecordNumber parameter specifies a record position
that contains an active record.

DUPRNBRM

The file handle is invalid. HDLNFNRM

Any of the reserved bits are set in the access flags. INVFLGRM

The file was opened without INSAI (Insert Record) access
intent.

INVRQSRM

The following are true:

� The file supports variable-length records.
� The file is a keyed file or an alternate index file.
� The record to be inserted does not contain all of the

fields for the specified file key.

KEYVALRM

The Keyfdbk is not large enough to hold the returned key. LENGTHRM

The data in the record is not a valid record. OBJNSPRM

The record is to be inserted at a position that does not
contain an active or inactive record.

RECDMGRM

An EXCRECLK lock cannot be obtained on the file. RECIUSRM

104 VSAM for OS/2

DDMInsertRecNum

This Causes the Function to be Rejected With This Reply Message

The combination of the following two are true:

� The file supports variable-length records whose
lengths are not changeable (RECIVL).

� The record length of the record to be inserted is not
equal to the record position length.

The record length of the record to be inserted exceeds the
maximum record length of the file or is less than the
minimum record length.

The following conditions are not true:

� If the record length class (RECLENCL) is fixed and the
record to be inserted is an active record, the length of
the record to be inserted (LL) must be equal to the
record length (RECLEN) plus the length of the record
header. (See “RECORD (Record)” on page 394 for
more information.)

� If the record to be inserted is an inactive record, the
record length specified in the inactive record (Data)
must be equal to the record length (RECLEN) for the
file. (See “RECINA (Inactive Record)” on page 391 for
more information.)

RECLENRM

The RecordNumber parameter specifies a value that is
outside the bounds of the file, for example:

� The record is outside the bounds for a direct file.

� The record would be inserted past the EOF for
nondirect files.

� RecordNumber is not greater than zero.

RECNBRRM

RecCount is not greater than zero. VALNSPRM

 Chapter 3. VSAM API Functions 105

DDMInsertRecNum

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Number

Record
Number

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Assume the following:

/* DDM UPDCSR=OFF */

DDMInsertRecNum (FileHandle,AccessFlags,RecordBuf,
KeyFdbk,KeyFdbkLen,RecordNumber,
RecCount)

Inactive

Cursor Cursor

RecCount = 0x00000001 ;
RecordNumber = 0x00000002 ;
AccessFlags = 0x00000000 ;

Figure 16. DDMInsertRecNum Function

106 VSAM for OS/2

DDMInsertRecNum

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Number

Record
Number

Assume the following:

DDMInsertRecNum (FileHandle, AccessFlags, RecordBuf,
KeyFdbk, KeyFdbkLen, RecordNumber,
RecCount)

AccessFlags = 0x00000400 ;
RecordNumber = 0x00000002
RecCount = 0x00000002

/* DDM UPDCSR=ON */

Inactive

Inactive

Cursor

Cursor

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 17. DDMInsertRecNum Function with Multiple Records

 Chapter 3. VSAM API Functions 107

DDMLoadFileFirst

 DDMLoadFileFirst
(Load Records into File)

This function loads a file with one or more records that are contained in the record
buffer.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMLoadFileFirst (PSZ FileName,
 PHDDMLOAD LoadHandle,
 ULONG Flags,
 PDDMRECORD RecordBuf,
 ULONG RecCount,
);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be loaded.

LoadHandle
The pointer (PHDDMLOAD) to the location where the system returns a handle
value that is to be used with a subsequent corresponding DDMLoadFileNext
function.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_CHAIN

This bit notifies the system to keep system resources allocated on
behalf of this LoadFile. When the chaining bit is on, any unwritten
chained (related) buffers are to be written out or sent to the target
system. This occurs on the completion of a DDMLoadFileNext
function that has the DDM_CLOSE flag bit set to a value of 1.

When the chaining bit is off:

� The DDM server is allowed to deallocate resources on
completion of the DDMLoadFileFirst function.

� A NULL value is returned for LoadHandle.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The record buffer can contain
the following objects:

 RECORD
 RECINA

108 VSAM for OS/2

DDMLoadFileFirst

 RECAL

These objects can be in mixed order, and they can be repeated.

The format of the record buffer when calling DDMLoadFileFirst is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is record
data, an inactive record length, or a record attribute list containing
a record number and record data.

X'144A' Indicates that the following data is record data
(RECORD).

X'142D' Indicates that the following data is an inactive
record (RECINA).

X'1430' Indicates that the following data is a Record
Attribute List (RECAL) and can contain RECCNT,
RECNBR, or both:

If CP is a record attribute list, the format of DATA
is:

Field Description

L2 The length (ULONG) from the beginning of L2 to the end of RC.

X'111A' The value (CODEPOINT) indicating that the following data is a
record count (RECCNT). The RECCNT (Record Count) parameter
is used to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where N≥0,
without replicating the contents of the record.

RC The number (ULONG) of duplicate records in the record attribute
list.

L3 The length (ULONG) from the beginning of L3 to the end of RN.

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

LL CP Data ...

L2 X'111A' RC L3 X'111D' RN

L4 CP Data

 Chapter 3. VSAM API Functions 109

DDMLoadFileFirst

RN The record number (ULONG) of the record in the record attribute
list. When RC and RN are both specified, the record number
specified by RN applies to the first occurrence of the record. Each
subsequent record has a record number one greater than the
previous record.

L4 The length (ULONG) of the record description from beginning of L4
to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is a length
(ULONG) of an inactive record.

Data The record data or the length (ULONG) of an inactive record.

If CP is a record or inactive record description, the format of Data is the record
data or the length (ULONG) of an inactive record.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore if
RecordBuf contained 10 data records and a RECAL, with RECCNT having a value
of 100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILFULRM X'120C' File is Full
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged
RECLENRM X'1215' Record Length Mismatch
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

110 VSAM for OS/2

DDMLoadFileFirst

 Remarks
A set of records can be transferred to a target server and:

� Placed in an empty, existing file.
� Appended to the records in an existing file.
� Distributed into record positions of an existing file.

The record buffer can contain any of the following items and any combination of these
items:

� One or more inactive records.

� One or more records.

� One or more RECAL (Record Attribute List) parameters that contains a record and
record number. If the record attribute list contains a key value attribute, the key
value attribute is ignored.

The DDMLoadFileFirst function begins to load records into a file that is based on the
following:

� If the first object is a record or an inactive record, the records are loaded at the
EOF position for the file. In this case, the operation of DDMLoadFileFirst is similar
to the DDMInsertRecEOF function.

� If the first object is a record attribute list, the records are loaded at the record
position that is specified by the record number attribute. In this case, the operation
of DDMLoadFileFirst is similar to the DDMInsertRecNum function.

Subsequent records are loaded in the next higher record position until a RECAL
(Record Attribute List) is found or until the entire RecordBuf has been processed. If a
RECAL parameter is found, the records that follow are loaded starting with the record
position that is specified by the record number value (RN). This allows nonsequential
loading of the file.

The records in RecordBuf are processed as a group. Inactive records in the group are
treated as place holders between the active records as the group is inserted into the
file. How the EOF is updated depends on the type of file. For example, if the file is a
direct file and records are added at or beyond the current EOF. The EOF is only
updated when an active record is inserted. Inactive records that follow the last active
record will be located in the file at or beyond the EOF and are subject to overlay by
other functions. See “DDMInsertRecEOF (Insert Records at EOF)” on page 85 for
additional information and examples.

If the target file is a keyed file or the base file for an alternate index file, the appropriate
indexes are updated as the records are loaded.

An inactive record can be loaded to an inactive record position of a delete-capable file
that causes the record position to remain inactive.

If an error condition is encountered, do not use the file handle in a DDMLoadFileNext.

 Chapter 3. VSAM API Functions 111

DDMLoadFileFirst

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMLoadFileFirst does the following:

1. Attempts to obtain a MODNONLK on the file.

If the MODNONLK is obtained, the function is processed (successfully or
unsuccessfully). If the MODNONLK is not obtained, the function is rejected with
FILIUSRM.

2. Releases the MODNONLK it obtained on the file if the DDM_CHAIN bit is not
active. If the DDM_CHAIN bit is active, the lock is released by DDMLoadFileNext
with the DDM_CLOSE bit active.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Terminated With This Reply Message

The file gets full when loading. FILFULRM

The MODNONLK cannot be obtained on the file. FILIUSRM

The function tried to load the records outside the bounds of
the file.

Note: This can occur if the RecCount parameter did not
include the actual number of records that was specified in
the RECAL descriptor.

RECNBRRM

This Causes the Function to be Rejected With This Reply Message

The record buffer address is not greater than zero. ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

DTARECRM

The following are true:

� The file is a keyed file.
� An associated alternate index file does not allow

duplicate keys.
� The loading of records would result in a duplicate key

value.

DUPKDIRM

112 VSAM for OS/2

DDMLoadFileFirst

This Causes the Function to be Rejected With This Reply Message

The following are true:

� The file is a keyed file.
� The file does not allow duplicate keys.
� The loaded record would result in a duplicate key

value.

DUPKSIRM

An attempt is made to load a record at an active record
position.

DUPRNBRM

The file that the records are loaded into is a non-DDM file. FILATHRM

The file has already been opened by DDMOpen,
DDMLoadFileFirst (DDM_CHAIN flag on), or
DDMUnLoadFileFirst (More Data flag on).

FILIUSRM

Any of the reserved bits are set in the access flags. INVFLGRM

DDM_CHAIN is specified and LoadHandle is not specified.

The file does not have insert or modify capability.

INVRQSRM

The following are true:

� The file supports variable-length records.
� The file is a keyed file or the base file of an alternate

index file.
� The record to be loaded does not contain all of the

fields for the specified file key.

KEYVALRM

The records to be loaded are not active or inactive. OBJNSPRM

The active or inactive records to be loaded are too long or
too short for the record positions in the file.

RECLENRM

A RECAL specifies a RECNBR that is outside the
boundaries of the file (see “DDMInsertRecNum (Insert by
Record Number)” on page 100 for definition of file
boundaries).

RECNBRRM

RecCount is not greater than zero. VALNSPRM

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed
the file.

DDMLoadFileFirst or DDMLoadFileNext re-synchronizes
the file-change date and time during close processing
unless a higher severity condition prevents it from doing so.

FILDMGRM

 Chapter 3. VSAM API Functions 113

DDMLoadFileFirst

 Examples

EOF

BOF BOF

BEFORE AFTER
Record
Number

Record
Number

0

1

0

1

2

3

EOF XXXX

YYYY

Assume the following:

Has the following effect:

DDMLoadFileFirst (FileName, LoadHandle, Flags,
RecordBuf, RecCount)

RecordBuf = { 0x0000000A, 0x144A, ’XXXX’,
0x0000000A, 0x144A, ’YYYY’ } ;

Flags = 0x00000000 ;
RecCount = 0x00000002 ;

Figure 18. DDMLoadFileFirst Function to a New File

114 VSAM for OS/2

DDMLoadFileFirst

Record
Number

Record
Number

EOF

BOF BOF 0

1

2

3

4

5

6

0

1

2

3

4EOF

Assume the following:

YYYY

XXXX

Has the following effect:

BEFORE AFTER

DDMLoadFileFirst (FileName, LoadHandle, Flags,
RecordBuf, RecCount)

RecordBuf = { 0x0000000A, 0x144A, ’XXXX’,
0x0000000A, 0x144A, ’YYYY’ } ;

Flags = 0x00000000 ;
RecCount = 0x00000002 ;

Figure 19. DDMLoadFileFirst Function to Append to a File

 Chapter 3. VSAM API Functions 115

DDMLoadFileFirst

BEFORE AFTER

BOF BOF

DDMLoadFileFirst (FileName, LoadHandle, Flags,

Record
Number

Record
Number

RecordBuf = {{ 0x0000001A, 0x1430, 0x000A, 0x111D,

Assume the following:

EOF

EOF

Flags = 0x00000000 ;
RecCount = 0x00000003 ;

RecordBuf, RecCount)

0x00000002, 0x0000000A, 0x144A, ’XXXX’ },
{ 0x0000000A, 0x144A, ’YYYY’ },
{ 0x0000001A, 0x1430, 0x000A, 0x111D,
0x00000001, 0x0000000A, 0x144A, ’ZZZZ’ }} ;

0

1

2

3

0

1

2

3

4

Inactive

Inactive

Inactive

ZZZZ

XXXX

YYYY

Figure 20. DDMLoadFileFirst Function to Random Load a Direct File

116 VSAM for OS/2

DDMLoadFileNext

 DDMLoadFileNext
(Load Records into File)

This function continues the load of a file with the records that are contained in the
record buffer.

Note: This function should be called after the DDMLoadFileFirst function.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMLoadFileNext (HDDMLOAD LoadHandle,
 ULONG Flags,
 PDDMRECORD RecordBuf,
 ULONG RecCount
);

 Parameters
LoadHandle

The handle value (HDDMLOAD) previously returned to the caller with
DDMLoadFileFirst.

Flags
The Flags (ULONG) specify the action to be taken depending on whether the bit
flag is set. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_CLOSE (Close LoadFile Requests).

A value of 1 for this bit flag notifies the system to end
LoadHandle-based chaining and to deallocate LoadHandle-based
system resources for this function. Any unwritten chained (related)
buffers are written out or sent to the target system on the
completion of the DDMLoadFileNext function.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The record buffer can contain
the following objects:

 RECORD
 RECINA
 RECAL

These objects can be in mixed order, and they can be repeated. It is not an error
for the record buffer to be null when the DDM_CLOSE flag is set to 1. The format
of the record buffer when calling DDMLoadFileNext is:

LL CP Data ...

 Chapter 3. VSAM API Functions 117

DDMLoadFileNext

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is record
data, an inactive record length, or a record attribute list containing
a record number and record data.

X'144A' Indicates that the following data is record data
(RECORD).

X'142D' Indicates that the following data is an ULONG
length of an inactive record (RECINA).

X'1430' Indicates that the following data is a RECAL
(Record Attribute List), and can contain RECCNT,
RECNBR, or both.

If CP is a record attribute list, the format of the DATA is:

Field Description

L2 The length (ULONG) from the beginning of L2 to
the end of RC.

X'111A' The value (CODEPOINT) indicating that the
following data is a RECCNT (Record Count). The
RECCNT parameter is used to indicate the number
of duplicate records. RECCNT provides a
shorthand way of specifying N records, where N≥0,
without replicating the record's contents.

RC The number (ULONG) of duplicate records in the
record attribute list.

L3 The length (ULONG) from the beginning of L3 to
the end of RN.

X'111D' The value (CODEPOINT) indicating that the
following data is a record number (RECNBR).

RN The record number (ULONG) of the record in the
record attribute list. When RC and RN are both
specified, the record number specified by RN
applies to the first occurrence of the record. Each
subsequent record has a record number one
greater than the previous record.

L4 The length (ULONG) of the record description from
beginning of L4 to the end of Data.

L2 X'111A' RC L3 X'111D' RN L4 CP Data

118 VSAM for OS/2

DDMLoadFileNext

CP The value (CODEPOINT) indicating that the
following is either record data or an inactive record
length.

X'144A' Indicates that the following data is
record data.

X'142D' Indicates that the following data is
an ULONG length of an inactive
record.

Data The record data or the length (ULONG) of an
inactive record.

If CP is a record or inactive record description, the format of DATA
is the record data or the length (ULONG) of an inactive record.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore if
RecordBuf contained 10 data records and a RECAL, with RECCNT having a value
of 100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DTARECRM X'1206' Invalid Data Record
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
FILFULRM X'120C' File is Full
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged
RECLENRM X'1215' Record Length Mismatch
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
A set of records can be transferred to a target server and either:

� Appended to the records in an existing file, or
� Distributed into record positions of an existing file.

The record buffer can contain any of the following items and any combination of these
items:

 Chapter 3. VSAM API Functions 119

DDMLoadFileNext

� One or more inactive records.

� One or more records.

� One or more RECAL (Record Attribute List) parameters that contains a record and
record number. If the record attribute list contains a key value attribute, the key
value attribute is ignored.

DDMLoadFileNext begins to load records into a file that is based on the following:

� If the first object is a record or an inactive record, the records are loaded at the
EOF position for the file. In this case, the operation of DDMLoadFileNext is similar
to the DDMInsertRecEOF function.

� If the first object is a record attribute list, the records are loaded at the record
position that is specified by the record number attribute. In this case, the operation
of DDMLoadFileNext is similar to the DDMInsertRecNum function.

Subsequent records are loaded in the next higher record position until a RECAL
(Record Attribute List) is found or until the entire RecordBuf has been processed. If a
record attribute list is found, the records that follow are loaded starting with the record
position that is specified by the record number value (RN). This allows nonsequential
loading of the file.

The records in a Record Buffer are processed as a group. Inactive records in the
group are treated as place holders between the active records as the group is inserted
into the file. How the EOF is updated depends on the type of file. For example, if the
file is a direct file and records are added at or beyond the current EOF, the EOF is only
updated when an active record is inserted. Inactive records that follow the last active
record will be located in the file at or beyond the EOF and are subject to overlay by
other functions. See “DDMInsertRecEOF (Insert Records at EOF)” on page 85 for
additional information and examples.

If the target file is a keyed file or the base file for an alternate index file, the appropriate
indexes are updated as the records are loaded.

An inactive record can be loaded to an inactive record position of a delete-capable file
causing the record position to remain inactive.

If an error condition is encountered, do not use the file handle in a DDMLoadFileNext.

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMLoadFileNext releases the MODNONLK that was obtained by DDMLoadFileFirst
on the file, provided the DDM_CLOSE bit is active.

If this function ends with a reply message that has a severity code of ERROR or higher,
then:

120 VSAM for OS/2

DDMLoadFileNext

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The record buffer address is not greater than zero. ADDRRM

The file is not delete-capable and the record to be inserted
is RECINA.

Note: An inactive record can be loaded to an inactive
record position of a delete-capable file causing the record
position to remain inactive. DTARECRM is not returned in
this case.

DTARECRM

The following are true:

� The file is the base file for an alternate index file.
� The alternate index file does not allow duplicate keys.
� The inserted record would result in a duplicate key

value.

DUPKDIRM

The following are true:

� The file is a keyed file.
� The file does not allow duplicate keys.
� The loaded record would result in a duplicate key

value.

DUPKSIRM

An attempt is made to load an active or inactive record at
an active record position.

DUPRNBRM

The handle from DDMLoadFileFirst is not used as the
handle for a DDMLoadFileNext.

HDLNFNRM

The file gets full when loading. FILFULRM

Any of the reserved bits are set in Flags. INVFLGRM

The following are true:

� The file supports variable-length records.
� The file is a keyed file or the base file of an alternate

index file.
� The record to be loaded does not contain all of the

fields for the specified file key.

KEYVALRM

The records to be loaded were not valid records. OBJNSPRM

The active or inactive records to be loaded are too long or
too short for the record positions in the file.

RECLENRM

 Chapter 3. VSAM API Functions 121

DDMLoadFileNext

This Causes the Function to be Rejected With This Reply Message

A RECAL specifies a RECNBR that is outside the
boundaries of the file (see “DDMInsertRecNum (Insert by
Record Number)” on page 100 for definitions of file
boundaries).

The function tried to load records outside the bounds of the
file.

Note: This can occur if the record count parameter did not
include the actual number of records that was specified in
the RECAL descriptor.

RECNBRRM

RecCount is not greater than zero. VALNSPRM

122 VSAM for OS/2

DDMLoadFileNext

 Examples

BEFORE AFTER
Record
Number

Record
Number

BOF BOF 0

1

2

3

4

5

6

0

1

2

3

4

Assume the following:

DDMLoadFileNext (LoadHandle, Flags, RecordBuf, RecCount)

EOF

YYYY

XXXXEOF

Has the following effect:

RecordBuf = { 0x0000000A, 0x144A, ’XXXX’,
0x0000000A, 0x144A, ’YYYY’ } ;

Flags = 0x00000000 ;
RecCount = 0x00000002 ;

Figure 21. DDMLoadFileNext Function to Append to a File

 Chapter 3. VSAM API Functions 123

DDMModifyRec

 DDMModifyRec
(Modify Record)

This function modifies a record that has an update intent placed on it.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMModifyRec (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
10–31 Reserved flags
9 DDM_INHMODKY (Inhibit Modified Keys)
0–8 Reserved flag

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the record. The format of the
record buffer when calling the function is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of record data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
HDLNFNRM X'1257' File Handle Not Found

124 VSAM for OS/2

DDMModifyRec

Message ID Code Point Message Title

INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYUDIRM X'1201' Key Update Not Allowed by Different Index
KEYUSIRM X'123F' Key Update Not Allowed by Same Index
KEYVALRM X'1240' Invalid Key Value
OBJNSPRM X'1253' Object Not Supported
RECLENRM X'1215' Record Length Mismatch
UPDINTRM X'124E' No Update Intent on Record

 Remarks
DDMModifyRec has the following effects:

� For a sequential or direct file, the contents of the record with the update intent are
replaced with the supplied record.

� If the modification affects the key field (or fields) and DDM_INHMODKY is set, the
function fails with a Key Update Not Allowed (KEYUDIRM or KEYUSIRM)
message. Otherwise, the contents of the record with the update intent are
replaced with the replacement record.

� For keyed and alternate index files, the associated indexes are updated.

� The record position becomes active if it was not active before.

� The cursor position does not change; it points to the same record position at the
completion of the function.

� If the file supports variable-length records whose length is changeable, the length
of the record position is changed to match the length of the modified record.

� Update intent is removed.

Before DDMModifyRec can be used, an update intent must be placed on a record in
the file. A DDMSetxxxx or DDMGetRec function can be used to place an update intent
on a record.

For direct files, EOF may change if the modified record was an inactive record that was
past the current EOF.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

 Chapter 3. VSAM API Functions 125

DDMModifyRec

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters:

1. The access method attempts to acquire an EXCRECLK lock on the record that has
an update intent placed on it. If the EXCRECLK lock cannot be obtained because
of a lock conflict, the function is rejected with the RECIUSRM reply message.

2. If the EXCRECLK lock is obtained, the DDMModifyRec function is performed.
Because all record modifications are committed at the time of modification, the
EXCRECLK lock is released from the record. Even if the function is rejected with
an error reply, the obtained EXCRECLK lock is released from the record.

If DDMModifyRec ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record lock.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

RecordBuf address is not supplied. ADDRRM

Modification would result in duplicate keys in associated
index file.

DUPKDIRM

Modification would result in duplicate keys in current index
file.

DUPKSIRM

The file handle is invalid. HDLNFNRM

Any reserved bits are set in the access flags. INVFLGRM

The MODAI access intent was not specified when the file
was opened.

INVRQSRM

KEYUDIRM Modification would cause key
in associated index file to be
modified.

Modification would cause key in current index file to be
modified.

KEYUSIRM

The file supports variable-length records; the file is a keyed
file or an alternate index file; and the modified record does
not contain all of the fields for the specified file key.

KEYVALRM

A record other than an active record is sent as the modified
record.

OBJNSPRM

126 VSAM for OS/2

DDMModifyRec

This Causes the Function to be Rejected With This Reply Message

The following are true:

� The file supports variable-length records whose length
is not changeable (initially variable).

� The record length of the modified record is not equal
to the record position length.

The record in the RecordBuf is not the correct length.

RECLENRM

The EXCRECLK lock cannot be obtained on the file. RECIUSRM

No record in the file has an update intent placed on it. UPDINTRM

 Chapter 3. VSAM API Functions 127

DDMModifyRec

 Example

BOF

BEFORE

EOF

Record
Number

0

1

2

3

4

5

6

BOF

EOF

Record
Number

0

1

2

3

4

5

6

Cursor

AFTER

Assume the following:

DDMModifyRec (FileHandle, AccessFlags, RecordBuf)

AAAAAAAA

XXXXXXXX

CCCCCCCC

DDDDDDDD

EEEEEEEE

AAAAAAAA

BBBBBBBB

CCCCCCCC

DDDDDDDD

EEEEEEEE

Update
Intent

Cursor

RecordBuf LL: 000Eh
CP: 144Ah

VALUE: ’XXXXXXXX’

AccessFlags = 0x00000000 ;

Figure 22. DDMModifyRec Function. The BEFORE state illustrates a case where the cursor and the update intent
are on different records. This occurs when a function like DDMSetUpdateNum or DDMSetRecNum is issued using the
DDM_HLDCSR and DDM_UPDINT flags.

128 VSAM for OS/2

DDMOpen

 DDMOpen
(Open File)

This function establishes a logical connection between the using program on the source
system and the accessed file on the target system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMOpen (PSZ FileName,
 PHDDMFILE FileHandle,
 CODEPOINT AccessMethod,
 ULONG AccIntList,
 USHORT FileShare,
 PBYTE EABuf,
 PBYTE (reserved)
);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be opened.

FileHandle
The pointer (PHDDMFILE) to the file handle returned for use on all subsequent file
access and close requests for the file that is being opened.

AccessMethod
The value (CODEPOINT) indicating the requested access method for the file.
Specifying the appropriate value identifies the requested access method. Valid
values are:

Value Description
X'1433' RELRNBAM (Relative by Record Number)
X'1435' RNDRNBAM (Random by Record Number)
X'1407' CMBRNBAM (Combined Record Number)
X'1432' RELKEYAM (Relative by Key)
X'1434' RNDKEYAM (Random by Key)
X'1406' CMBKEYAM (Combined Keyed)
X'1405' CMBACCAM (Combined Access)

The choice of access method can affect read performance. For more information
about access methods, see “Access Methods” on page 18.

AccIntList
The value (ULONG) that specifies the access functions that will be used based on
whether the bit flag is set. The bit flags are:

Bit Meaning

7-31 Reserved flags

 Chapter 3. VSAM API Functions 129

DDMOpen

6 DDM_FAILONERROR (Fail-Errors)

Specifies the handling of media I/O errors.

This bit is the same as DosOpen with OpenMode bit
FAIL_ON_ERROR.

5 Reserved For Future Use

4 DDM_WRITETHRU (File Write-Through)

The file is opened as follows:

� 0 — any data that is written to the file may be cached in
memory and written to the media at a later time.

� 1 — any data that is written to the file may be cached in
memory. However, the data is immediately written to the media
synchronously with the request.

This bit is the same as DosOpen with OpenMode bit
OPEN_FLAGS_WRITE_THROUGH.

3 DDM_DELAI (Delete Record)

Specifies that the requester intends to delete records from the file.
If DDM_DELAI is not specified, the DDMDeleteRec function is
rejected with the INVRQSRM reply message.

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READWRITE.

2 DDM_MODAI (Modify Record)

Specifies that the requester intends to modify existing records in the
file. If the DDM_MODAI intent is not specified, the following
functions are rejected with the INVRQSRM reply message.

 � DDMTruncFile
 � DDMModifyRec

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READWRITE.

1 DDM_INSAI (Insert Record)

Specifies that the requester intends to insert records into the file. If
the DDM_INSAI intent is not specified, the following functions are
rejected with the INVRQSRM reply message.

 � DDMInsertRecNum
 � DDMInsertRecEOF
 � DDMInsertRecKey

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READWRITE.

130 VSAM for OS/2

DDMOpen

0 DDM_GETAI (Get Record)

Specifies that the requester intends to retrieve records from the file.
If DDM_GETAI is not specified, the DDMGetRec function is rejected
with the INVRQSRM reply message.

If DDM_GETAI is not specified and DDM_NODATA is not set, the
following functions are rejected with the INVRQSRM reply message.

 � DDMGetRec
 � DDMSetFirst
 � DDMSetKey
 � DDMSetKeyFirst
 � DDMSetKeyLast
 � DDMSetKeyNext
 � DDMSetKeyPrevious
 � DDMSetLast
 � DDMSetMinus
 � DDMSetRecNum
 � DDMSetNextRec
 � DDMSetNextKeyEqual
 � DDMSetPlus
 � DDMSetPrevious
 � DDMSetUpdateKey
 � DDMSetUpdateNum.

This bit is the same as DosOpen with OpenMode bit
OPEN_ACCESS_READONLY (if no other access intent is specified
along with GETAI).

FileShare
Specifies the value (USHORT) for the concurrent users with which the requester is
willing to share the file. The valid values are:

X'0001' DDM_NOSHARE (None). This value allows no concurrent users.

This bit is the same as DosOpen with OpenMode bit
OPEN_SHARE_DENYREADWRITE.

X'0002' DDM_READERS (Readers). This value allows sharing with
concurrent users who only intend to read records from the file.

This bit is the same as DosOpen with OpenMode bit
OPEN_SHARE_DENYWRITE.

X'0003' DDM_UPDATERS (Updaters). This value allows sharing with
concurrent users who intend to update records in the file.

This bit is the same as DosOpen with OpenMode bit
OPEN_SHARE_DENYNONE.

Note: The combination of the AccIntList and the FileShare value that are specified
determines what implicit lock is obtained on the file.

 Chapter 3. VSAM API Functions 131

DDMOpen

EABuf
The pointer (PBYTE) to the file's EA data to be returned by DDMOpen or NULL.
See “Extended Attributes” on page 5 for more information on the format of this
buffer.

(reserved)
This pointer (PBYTE) is reserved for future use and must be specified as NULL.

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ACCINTRM X'1266' Access Intent List Error
ACCMTHRM X'1231' Invalid Access Method
ADDRRM X'F212' Address Error
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
HDLNFNRM X'1257' File Handle Not Found
INTATHRM X'125C' Not Authorized to Open Intent for Named File
INVFLGRM X'F205' Invalid Flags
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RSCLMTRM X'1233' Target Resource Limits Reached

 Remarks
Once the connection is established, access method commands can flow between the
source and target systems.

The target server uses both AccessMethod and AccIntList to determine the access
method that is required by the user. If the required support is not available in the target
server, the function is rejected with the ACCMTHRM reply message.

The DDM architecture permits the DDM server to promote a user-specified lower-level
access method class to a file to a higher-level access method class. All subsequent
access to this file are processed as though the promoted access method class has
been specified by the user. The promotion values for record-oriented access methods
are described in “Access Methods” on page 18.

The AccIntList is used to limit the use of valid functions in an access method.

The FileShare value indicates the type of concurrent users with which the requester is
willing to share the file while processing the file. This permits the requester to ensure
that concurrency problems do not occur.

In the local VSAM file system, to process a keyed file via an associated alternate index
file, it is only necessary for the user to issue a DDMOpen for the alternate index file.
Issuing a subsequent DDMOpen for another alternate index (of the same keyed file) or

132 VSAM for OS/2

DDMOpen

for the keyed file itself, is considered concurrent use by the local VSAM file system.
Concurrent use requires that the AccIntList and FileShare parameters of the DDMOpen
functions be compatible. For example, if an alternate index file is opened with
AccIntList=MODAI and FileShare=Readers, any subsequent DDMOpen function issued
for another alternate index of the same keyed file requires AccIntList=GETAI and
FileShare=Updaters. Otherwise, the subsequent DDMOpen will fail. (See “Locking (for
Local VSAM File System Only)” for more information.)

When the file is opened, the cursor is set to the BOF position.

An example of requesting Extended Attributes (EAs) is provided on page 5.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is created and moved to the beginning of the file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

Locking (for Local VSAM File System Only)
DDMOpen does the following:

1. Acquires a file lock on the file. For keyed and alternate index files, an equivalent
file lock is placed on the keyed file and each of its associated index files. This
occurs when the command is issued for the keyed file or for any of its associated
alternate index files. The type of lock that is acquired is dependent on the values
of the AccIntList and FileShare parameters. Table 16 on page 134 specifies the
type of file lock the DDMOpen function acquires.

For keyed and alternate index files, an equivalent file lock is placed on the keyed
file and each of its associated index files. This occurs when the function is issued
for the keyed file or any of its associated alternate index files.

2. Acquires only one file lock on the file. This file lock is not released until the file is
closed.

For keyed and alternate index files, only one lock per file is acquired. The file
locks are not released until the file is closed.

3. If the function ends with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The file locks are the same as before
the function was issued.

� Severe Termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Chapter 3. VSAM API Functions 133

DDMOpen

Table 16. File Locks Obtained by DDMOpen for Record Files

File Sharing (FileShare)

File Access Intents (AccIntList)

GETAI Only MODAI, DELAI, INSAI

None GETNONLK MODNONLK

Reader GETGETLK MODGETLK

Updater GETMODLK (See Note)

Note: In this case, the file is being opened so that both the requester and concurrent users
can update the file. (This is referred to as “opened for multiple updaters” elsewhere in this
document.) For the files where the local VSAM file system supports implicit record locks, a
MODMODLK lock is acquired. Otherwise, a MODGETLK file lock is acquired.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

If the user attempts to open a file without setting at least
one of the following bits in AccIntList:

 � GETAI
 � INSAI
 � MODAI
 � DELAI

ACCINTRM

The target server does not support the access method
specified by AccessMethod and AccIntList.

ACCMTHRM

DDMOpen is issued against a keyed file or any of its
associated indexes and the associated indexes have
recorded, in DDM_BASCHGDT, the last-change date/time
for the base file that is different from the current system
last-change date/time (System Object Attribute).

FILDMGRM

The file lock cannot be acquired because of a lock conflict. FILIUSRM

The user attempts to open a file with an access intent
(specified in AccIntList) for which the file is not allowed.

INTATHRM

The file lock cannot be acquired because of insufficient
lock manager resources or because of an implementation
file lock maximum.

RSCLMTRM

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object and the Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed
the file.

If the file was opened for write access, DDMClose will
re-synchronize the file-change date and time unless a
higher severity condition prevents it from doing so.

FILDMGRM

134 VSAM for OS/2

DDMQueryFileInfo

 DDMQueryFileInfo
(Get a File's Information)

This function returns information for a specific file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMQueryFileInfo (HDDMFILE FileHandle,
 ULONG FileInfoLevel,
 PBYTE FileInfoBuf,
 ULONG FileInfoBufSize
);

 Parameters
FileHandle

The handle (HDDMFILE) of the open file.

FileInfoLevel
The level (ULONG) of file information that is required.

Level 0x00000001 is the only defined level. This is the same as DosQueryFileInfo,
ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 returns a subset of the EA information for the file. On input,
FileInfoBuf maps to an EAOP2 structure. fpGEA2List points to a GEA2 list defining
the attribute names whose values are returned. fpFEA2List points to a data area
where the relevant FEA2 list is returned. The length field of this FEA2 list is valid,
giving the size of the FEA2 list buffer. oError is ignored.

On output, FileInfoBuf is unchanged because the buffer pointed to by fpFEA2List is
the one that is filled in with the returned information.

FileInfoBuf
The pointer (PBYTE) to the storage area where the system returns the requested
level of file information. Refer to “Extended Attributes” on page 5 for more
information on the format of this buffer.

FileInfoBufSize
The length (ULONG) of the FileInfoBuf.

 Chapter 3. VSAM API Functions 135

DDMQueryFileInfo

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
FILIUSRM X'120D' File in Use
HDLNFNRM X'1257' File Handle Not Found
LENGTHRM X'F211' Field Length Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the OS/2 DosQueryFileInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

When requesting information on the variable-length EAs (ALTINDLS and KEYDEF), it is
possible for the user to provide inadequate buffer space in the FileInfoBuf parameter. If
this is the case, the function is rejected with the LENGTHRM reply message and a
server diagnostic code of 0004 (Extended Attribute reply buffer too small). If the buffer
that is provided was at least 4 bytes long, it contains the required buffer length. This
buffer length should be used to create a FileInfoBuf of FileInfoBufSize that is large
enough to contain the requested list of EAs.

File information, where applicable, is at least as accurate as the most recent
DDMClose, DDMForceBuffer, or DDMSetFileInfo.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
For the local VSAM file system on AIX, the file needs to be opened for
DDMQueryFileInfo. The level of locking in effect is the same as what was specified in
the DDMOpen call for the file.

For the local VSAM file system on OS/2, the locking behaviour is the same as that for
DOSQueryFileInfo. See OS/2 WARP Control Program Programming Reference.

Record File Attributes by File Class
Refer to Table 11 on page 39.

136 VSAM for OS/2

DDMQueryPathInfo

 DDMQueryPathInfo
(Get File or Subdirectory Information)

This function returns information for a specific file or subdirectory.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMQueryPathInfo (PSZ PathName,
 ULONG PathInfoLevel,
 PBYTE PathInfoBuf,
 ULONG PathInfoBufSize
);

 Parameters
PathName

The pointer (PSZ) to the full path name of the file or subdirectory.

PathInfoLevel
The level (ULONG) of path information that is required.

Level 0x00000001 is the only defined level. This is the same as
DosQueryPathInfo, ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 returns a subset of the EA information for the file. On input,
PathInfoBuf maps to an EAOP2 structure. fpGEA2List points to a GEA2 list
defining the attribute names whose values are returned. fpFEA2List points to a
data area where the relevant FEA2 list is returned. The length field of this FEA2
list is valid, giving the size of the FEA2 list buffer. oError is ignored.

On output, PathInfoBuf is unchanged since the buffer pointed to by fpFEA2List is
the one that is filled in with the returned information.

PathInfoBuf
The pointer (PBYTE) to the storage area where the system returns the requested
level of path information. Refer to “Extended Attributes” on page 5 for more
information on the format of this buffer.

PathInfoBufSize
The length (ULONG) of PathInfoBuf.

 Chapter 3. VSAM API Functions 137

DDMQueryPathInfo

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
LENGTHRM X'F211' Field Length Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the OS/2 DosQueryPathInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

When requesting information on the variable-length EAs (.DDM_ALTINDLS and
.DDM_KEYDEF), it is possible for the user to provide inadequate buffer space in the
PathInfoBuf parameter. If this is the case, the function is rejected with the LENGTHRM
reply message and a server diagnostic code of 0004 (Extended Attribute reply buffer
too small). If the buffer that is provided was at least 4 bytes long, it contains the
required buffer length. This buffer length should be used to create a PathInfoBuf of
PathInfoBufSize that is large enough to contain the requested list of EAs.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
For the OS/2 local VSAM file system, the file locking rules are the same as for
DOSFindFirst. These rules do not permit access to the file attributes if the file is
already opened by another process. See OS/2 WARP Control Program Programming
Reference.

For the AIX local VSAM file system, two processes can call this API concurrently.

 Exceptions
This Causes a Reply Message to be Generated with
SRVCOD = X'04'. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed
the file.

DDMQueryPathInfo re-synchronizes the file-change date
and time if the file is not open to another process unless a
higher severity condition prevents it from doing so.

FILDMGRM

138 VSAM for OS/2

DDMQueryPathInfo

Record File Attributes by File Class
Refer to Table 11 on page 39.

 Chapter 3. VSAM API Functions 139

DDMRename

 DDMRename
(Rename File)

This function changes the name of an existing file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMRename (PSZ FileName,
 PSZ NewFileName
);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be renamed.

NewFileName
The pointer (PSZ) to the new file name.

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
DRCATHRM X'1237' Not Authorized to Directory
DRCFULRM X'1258' Directory Full
EXSCNDRM X'123A' Existing Condition
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
HDLNFNRM X'1257' File Handle Not Found
INVRQSRM X'123C' Invalid Request
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RSCLMTRM X'1233' Target Resource Limits Reached

140 VSAM for OS/2

DDMRename

 Remarks
Naming that directory as part of the new file name (NewFileName) can move a file to a
different directory.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
The DDMRename function:

1. Attempts to obtain a MODNONLK lock on the file.

If the MODNONLK lock is obtained, the function is processed (successfully or
unsuccessfully). If the MODNONLK lock is not obtained, the function is rejected
with the FILIUSRM reply message.

2. Releases the MODNONLK lock it obtained on the file.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions

This Causes
This Reply Message to be
Returned

The new name for the file is the same as the existing name
for the file.

EXSCNDRM

This Causes the Function to be Rejected With This Reply Message

The new file cannot be entered into the directory because
the directory is full.

DRCFULRM

The requester has the named file open. FILIUSRM

 Chapter 3. VSAM API Functions 141

DDMRename

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed
the file.

DDMRename re-synchronizes the file-change date and
time unless a higher severity condition prevents it from
doing so.

FILDMGRM

142 VSAM for OS/2

DDMSetBOF

 DDMSetBOF
(Set Cursor to Beginning of File)

This function sets the cursor to the beginning-of-file (BOF) position of the file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetBOF (HDDMFILE FileHandle

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

HDLNFNRM X'1257' File Handle Not Found

 Remarks
DDMSetBOF sets the cursor to the BOF position in the file to allow relative accesses
(for example, DDMSetNextRec, DDMSetPlus, and DDMSetKeyNext) to be performed.
Any attempt to retrieve, insert, or modify a record at this file position is rejected.

If the hold cursor indicator of the cursor is on, it is set off by this function.

Resets any key limits that were set on a keyed file.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the BOF position of the file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The CSRPOSST (Cursor Position Status) parameter on the reply
message determines the cursor position.

 Chapter 3. VSAM API Functions 143

DDMSetBOF

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters and the requester currently has a
SHRRECLK lock on a record in the file, the SHRRECLK lock is released.

If the function ends with a reply message that has a severity code of ERROR or higher,
then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The DTALCKST (Data Lock
Status) parameter on the reply message determines the state of the record locks.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

144 VSAM for OS/2

DDMSetBOF

 Example

BOF

EOF

0

1

2

3

4

5

6

BEFORE

BOF 0

1

2

3

4

5

6

AFTER

EOF

DDMSetBOF (FileHandle)

Record
Number

Record
Number

Cursor

Assume the following:

Cursor

Hold Cursor
Indicator is on

Hold Cursor
Indicator is off

Figure 23. DDMSetBOF Function

 Chapter 3. VSAM API Functions 145

DDMSetEOF

 DDMSetEOF
(Set Cursor to End of File)

This function sets the cursor to the end-of-file (EOF) position of the file.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetEOF (HDDMFILE FileHandle

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

HDLNFNRM X'1257' File Handle Not Found

 Remarks
The cursor position is defined by each file class.

The cursor is placed at the EOF position to allow relative accesses (for example
DDMSetPrevious, DDMSetMinus, and DDMSetKeyPrevious) to be performed.

If the hold cursor indicator of the cursor is turned on, it is set off by this function.

Resets any key limits that were set on a keyed file.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the EOF position of the file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters and the requester currently has a
SHRRECLK lock on a record in the file, the SHRRECLK lock is released.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

146 VSAM for OS/2

DDMSetEOF

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

 Example

BOF

EOF

Record
Number

0

1

2

3

4

5

6

BEFORE

BOF

Record
Number

0

1

2

3

4

5

6

AFTER

EOF

Cursor

Assume the following:

Has the following effect:

DDMSetEOF (FileHandle)

Cursor

Hold Cursor
Indicator is on

Hold Cursor
Indicator is off

Figure 24. DDMSetEOF Function

 Chapter 3. VSAM API Functions 147

DDMSetFileInfo

 DDMSetFileInfo
(Set File Information)

This function specifies information for a file or a directory. File information support is
specific to the DDM server implementation and is dependent on the operating system.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetFileInfo (HDDMFILE FileHandle,
 ULONG FileInfoLevel,
 PBYTE FileInfoBuf,
 ULONG FileInfoBufSize
);

 Parameters
FileHandle

The handle (HDDMFILE) of the open file.

FileInfoLevel
The level (ULONG) of file/directory information being defined.

Level 0x00000001 information is the only defined level. This is the same as
DosSetFileInfo, ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 file information sets a series of EA name/value pairs. On input,
FileInfoBuf maps to an EAOP2 structure. fpGEA2List is ignored. fpFEA2List
points to a data area where the relevant FEA2 list is to be found. oError is
ignored.

On output, fpGEA2List is unchanged. fpFEA2List is unchanged as is the area
pointed to by fpFEA2List. If an error occurred during the set, oError is the offset of
the FEA2 where the error occurred. The return code is the error code
corresponding to the condition generating the error. If no error occurred, oError is
undefined.

FileInfoBuf
The pointer (PBYTE) to the storage area where the system gets the file
information. Refer to “Extended Attributes” on page 5 for more information on the
format of this buffer.

FileInfoBufSize
The length (ULONG) of FileInfoBuf.

148 VSAM for OS/2

DDMSetFileInfo

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
HDLNFNRM X'1257' File Handle Not Found
LENGTHRM X'F211' Field Length Error
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the DosSetFileInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

Effect on Cursor Position
There is no effect on the cursor position.

Locking (for Local VSAM File System Only)
For the OS/2 local VSAM file system, the locking behaviour is the same as for
DOSSetFileInfo. See OS/2 WARP Control Program Programming Reference.

For the AIX local VSAM file system, an exclusive lock is requested for the file.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

Record File Attributes by File Class
These are modifiable record file attributes.

Refer to Table 12 on page 40.

When the FILINISZ EA is changed, it has no effect on the current space already
allocated to the file.

When the DELCP EA of an alternate index file is changed, the DELCP of the base file
and all other indexes is also changed.

When the GETCP EA of an alternate index file is changed, the GETCP of the base file
and all other indexes are also changed.

When the INSCP EA of an alternate index file is changed, the INSCP of the base file
and all other indexes are also changed.

When the MODCP EA of an alternate index file is changed, the MODCP of the base file
and all other indexes are also changed.

 Chapter 3. VSAM API Functions 149

DDMSetFirst

 DDMSetFirst
(Set Cursor to First Record)

This function sets the cursor to the first record of the file and optionally returns the
record, record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetFirst (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active and Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats are found in “Examples” on
page 155.

RecordBufLen
The length (ULONG) of the record buffer.

150 VSAM for OS/2

DDMSetFirst

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record In Use
RECNFNRM X'1225' Record Not Found

 Remarks
The DDM_ALLREC bit flag is used to determine the first record of a file. If
DDM_ALLREC is not set, the cursor is set to the first active record in the file.
Otherwise the cursor is set to record 1 in the file. For direct files, DDM_ALLREC must
be set off.

As an option, DDMSetFirst can:

� Set the hold cursor indicator (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Key limits are reset after completion of function.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

 Chapter 3. VSAM API Functions 151

DDMSetFirst

Table 17. DDMSetFirst (DDM_NODATA or DDM_ALLREC) Decision Table

If the DDMSetFirst function is issued:

When initial system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

CURSOR (returned) F T T T T

Repeat table after bypassing record T F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to record number 1 if DDM_ALLREC is set. The
cursor is moved to the first active record in the file if DDM_ALLREC is
not set.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

152 VSAM for OS/2

DDMSetFirst

� The record is updated (DDMModifyRec, DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, DDMInsertRecEOF, DDMInsertRecKey, DDMInsertRecNum,
DDMSetUpdateKey, or DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes a Reply Message to be Generated and the
Function Continues With This Reply Message

DDM_ALLREC and DDM_NODATA are active and an
inactive record is read.

RECINARM

This Causes the Function to be Terminated With This Reply Message

Access flag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set or
DDM_NODATA is not set and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is not valid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

 Chapter 3. VSAM API Functions 153

DDMSetFirst

This Causes the Function to be Rejected With This Reply Message

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

DDM_ALLREC is set and the file is a direct file.

INVRQSRM

The record is damaged (not an active or inactive record). RECDMGRM

A record lock cannot be obtained. RECIUSRM

Bypassing inactive records is requested (DDM_ALLREC is
off) and the file only contains inactive records.

The file does not contain any records.

Note: The cursor position is not changed.

RECNFNRM

154 VSAM for OS/2

DDMSetFirst

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

DDMSetFirst (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Inactive

Inactive

Cursor

Inactive

InactiveCursor

/* DDM__ALLREC=ON */AccessFlags = 0x00000010 ;

Figure 25. DDMSetFirst Function with DDM_ALLREC Set

 Chapter 3. VSAM API Functions 155

DDMSetFirst

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Inactive

Inactive

Inactive

Inactive

Has the following effect:

DDMSetFirst (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

/* DDM__ ALLREC=OFF */

Cursor

Cursor

AccessFlags = 0x00000000 ;

Figure 26. DDMSetFirst Function with DDM_ALLREC Not Set

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

LL CP Data

156 VSAM for OS/2

DDMSetFirst

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

LL X'1430' L1 X'111D' RN L2 CP Data

 Chapter 3. VSAM API Functions 157

DDMSetFirst

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

158 VSAM for OS/2

DDMSetFirst

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 CP Data

 Chapter 3. VSAM API Functions 159

DDMSetFirst

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
date (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

160 VSAM for OS/2

DDMSetKey

 DDMSetKey
(Set Cursor by Key)

This function positions the cursor based on the key value and relational operator
specified, and optionally returns the record, record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKey (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMOBJECT KeyValBuf,
 CODEPOINT RelOpr,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen,
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
Specify the action to be taken depending on whether the bit flag is set. The bit
flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on access flags, see Chapter 5, “VSAM API Flags” on
page 401.

KeyValBuf
Pointer to the buffer which contains the key to which the cursor should be moved.
The format of the key value buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description (from the
beginning of LL to the end of Key Value).

LL X'1115' Key Value

 Chapter 3. VSAM API Functions 161

DDMSetKey

X'1115' The value (CODEPOINT) indicating that the following data is a key
value (KEYVAL).

RelOpr
Specifies the relational test that should be used to test the specified key value
against the file index key values. Valid values are:

X'1445' KEYAE (Key After or Equal)

Specifies that the relational test between the specified key value
and the index key values is after or equal to. After is towards the
end of file in the key sequence.

X'1446' KEYAF (Key After)

Specifies that the relational test between the specified key value
and the index key values is after. After is towards the end of file in
the key sequence.

X'1447' KEYEQ (Key Equal)

Specifies that the relational test between the specified key value
and the index key values is equal to.

X'144B' KEYBE (Key Before or Equal)

Specifies that the relational test between the specified key value
and the index key values is before or equal to. Before is towards
the beginning of file in the key sequence.

X'144C' KEYBF (Key Before)

Specifies that the relational test between the specified key value
and the index key values is before. Before is towards the
beginning of file in the key sequence.

These values are described in detail on page 163.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 167.

RecordBufLen
The length (ULONG) of the record buffer.

162 VSAM for OS/2

DDMSetKey

 Returns
Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Access Method
ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DRCATHRM X'1237' Not Authorized to Directory
FILATHRM X'123B' Not Authorized to File
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYLENRM X'122D' Invalid Key Length
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRMNSPRM X'1251' Parameter Not Supported
RECDMGRM X'1249' Record Damaged
RECNFNRM X'1225' Record Not Found
RSCLMTRM X'1233' Target Resource Limits Reached

 Remarks
The cursor can be moved to the key value that is equal to, after, after or equal to,
before, or before or equal to the specified key value. This function is only valid for
keyed and alternate index files. The following list describes how this function sets the
cursor for specific values for the RelOpr parameter.

Value The Cursor Is Set by Key Sequence to:

KEYEQ The first record in the file that has a key equal to the key specified in
the key value buffer.

KEYAE The first record in the file that has a key after or the last record in the
file that has a key equal to the key specified in the key value buffer. If
there is more than one record that has a key equal to the specified key,
the cursor is set to the last record with an equal key. If there is no
record with an equal key and there are multiple records that have a key
equal to the next key in sequence, the cursor is set to the first of these
records.

KEYAF The first record in the file that has a key after the key specified in key
value buffer.

KEYBE The first record of the file that has a key equal to the key specified in
key value buffer. If no equal key is found, the cursor, by key sequence,
is set to the last record of the file with a key before the key specified in
key value buffer.

KEYBF The last record in the file with a key before the key specified in key
value buffer.

 Chapter 3. VSAM API Functions 163

DDMSetKey

If the key value specified in key value buffer is shorter than the file record keys, a
generic search is performed. Only the first record of all records satisfying the generic
search can be accessed with this function. DDMSetKeyNext can be used to access
additional records that satisfied the generic search.

If the key value specified in key value buffer has duplicate entries in the file (duplicate
keys), only the first or last record, depending upon the value of RelOpr, of all records
having the duplicate key value can be accessed with this function. See
“DDMSetKeyNext (Set Cursor to Next Record in Key Sequence)” on page 204 or
“DDMSetKeyPrevious (Set Cursor to Previous Record in Key Sequence)” on page 222
for accessing additional records with the same key value.

As an option, DDMSetKey can:

� Set the hold cursor indicator (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the record that satisfies the relational operator
specification.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

164 VSAM for OS/2

DDMSetKey

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, or DDMSetUpdateNum functions).

If the record lock is not obtained, the DDMSetKey function is rejected with the
RECIUSRM reply message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 165

DDMSetKey

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The key length specified for KEYVAL is larger than the key
length used to build the index.

Note: The cursor position is not changed.

KEYLENRM

The file does not contain any records or a record does not
exist that satisfies RelOpr.

Note: The cursor position is not changed.

RECNFNRM

166 VSAM for OS/2

DDMSetKey

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,
RecordBufLen)

With the following Key Value Buffer:

Assume the following:

Has the following effect:

RelOpr = 0x1447 ; /* KEYEQ */

AccessFlags = 0x00000000 ;

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

Figure 27. DDMSetKey Function with RelOpr Set to KEYEQ

 Chapter 3. VSAM API Functions 167

DDMSetKey

EOF

BEFORE AFTER

EOF

With the following Key Value Buffer:

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,
RecordBufLen)

Has the following effect:

Cursor

Cursor

BOF BOF

RelOpr = 0x1445 ; /* KEYAE */

AccessFlags = 0x00000000 ;

KeyValBuf LL: 8
CP: 0x1115

Value: ’AD’

Figure 28. DDMSetKey Function with RelOpr Set to KEYAE

168 VSAM for OS/2

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Assume the following:

With the following Key Value Buffer:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,
RecordBufLen)

BEFORE AFTER

Cursor

Cursor

Has the following effect:

KeyValBuf LL: 8
CP: 0x1115

Value: ’CA’

RelOpr = 0x1446 ; /* KEYAF */

AccessFlags = 0x00000000 ;

Figure 29. DDMSetKey Function with RelOpr Set to KEYAF

 Chapter 3. VSAM API Functions 169

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,
RecordBufLen)

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’DB’

RelOpr = 0x144B ; /* KEYBE */

AccessFlags = 0x00000000 ;

Figure 30. DDMSetKey Function with RelOpr Set to KEYBE

170 VSAM for OS/2

DDMSetKey

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Has the following effect:

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,
RecordBufLen)

Cursor

Record
Key(seq)

Record
Key(seq)

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

RelOpr = 0x1446 ; /* KEYAE */

AccessFlags = 0x00000000 ;

Figure 31. DDMSetKey Function with RelOpr Set to KEYAE

 Chapter 3. VSAM API Functions 171

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,
RecordBufLen)

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’CA’

RelOpr = 0x144B ; /* KEYBE */

AccessFlags = 0x00000000 ;

Figure 32. DDMSetKey Function with RelOpr Set to KEYBE

172 VSAM for OS/2

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,
RecordBufLen)

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

RelOpr = 0x144B ; /* KEYBE */

AccessFlags = 0x00000000 ;

Figure 33. DDMSetKey Function with RelOpr Set to KEYBE

 Chapter 3. VSAM API Functions 173

DDMSetKey

EOF

BOF BOF

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

With the following Key Value Buffer:

Assume the following:

Has the following effect:
BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’CC’

RelOpr = 0x144C ; /* KEYBF */

AccessFlags = 0x00000000 ;
DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,

RecordBufLen)

Figure 34. DDMSetKey Function with RelOpr Set to KEYBF

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

174 VSAM for OS/2

DDMSetKey

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list. A value of X'FFFFFFFF' for RN indicates that
the record number of the first record in the record attribute list
is not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

 Chapter 3. VSAM API Functions 175

DDMSetKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

176 VSAM for OS/2

DDMSetKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

 Chapter 3. VSAM API Functions 177

DDMSetKey

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

178 VSAM for OS/2

DDMSetKeyFirst

 DDMSetKeyFirst
(Set Cursor to First Record in Key Sequence)

This function sets the cursor to the first record in key sequence and optionally returns
the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyFirst (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
6–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 181.

RecordBufLen
The length (ULONG) of the record buffer.

 Chapter 3. VSAM API Functions 179

DDMSetKeyFirst

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
FILATHRM X'123B' Not Authorized to File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
KEYLENRM X'122D' Invalid Key Length
LENGTHRM X'F211' Field Length Error
OBJNSPRM X'1253' Object Not Supported
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found

 Remarks
As an option, DDMSetKeyFirst can:

� Set the hold cursor indicator (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the first record according to the index key
sequence.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

DDMSetKeyFirst does the following:

� If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters,
the access method acquires an implicit SHRRECLK on the record if the record is
not already locked by the requester with a SHRRECLK lock. The SHRRECLK
record lock is released when:

– The record is updated (DDMModifyRec or DDMDeleteRec).

– The cursor is moved to a different record.

180 VSAM for OS/2

DDMSetKeyFirst

– The file is closed.

– The DDMForceBuffer function is issued.

– The DDMUnLockRec function is issued.

– Any function is issued that references a record other than the one currently
pointed to by the cursor (for example, the DDMInsertRecEOF,
DDMInsertRecKey, DDMInsertRecNum, DDMSetUpdateKey, and
DDMSetUpdateNum functions).

� If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

� If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple
updaters, an update intent is placed on the record, but the access method does not
acquire any record locks.

� If the function terminates with a reply message that has a severity code of ERROR
or higher, then:

– For error termination (SVRCOD of 8): The record locks are the same as
before the function was issued.

– For severe termination (SVRCOD of 16 or higher): The state of the record
locks is determined by the DTALCKST (Data Lock Status) parameter on the
reply message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records.

Note: The cursor position is not changed.

RECNFNRM

 Examples

 Chapter 3. VSAM API Functions 181

DDMSetKeyFirst

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Assume the following:

DDMSetKeyFirst (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Has the following effect:

Cursor

Cursor

AccessFlags = 0x00000000 ;

Figure 35. DDMSetKeyFirst Function for Ascending Sequence

182 VSAM for OS/2

DDMSetKeyFirst

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

DDMSetKeyFirst (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Has the following effect:

AccessFlags = 0x00000000 ;

Cursor

Cursor

Figure 36. DDMSetKeyFirst Function for Descending Sequence

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

 Chapter 3. VSAM API Functions 183

DDMSetKeyFirst

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list. A value of X'FFFFFFFF' for RN indicates that
the record number of the first record in the record attribute list
is not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

184 VSAM for OS/2

DDMSetKeyFirst

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

 Chapter 3. VSAM API Functions 185

DDMSetKeyFirst

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

Field Description

LL The length (ULONG) of the record attribute list (from the
beginning of LL to the end of Data).

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

186 VSAM for OS/2

DDMSetKeyFirst

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list (from the
beginning of LL to the end of KEY).

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 187

DDMSetKeyLast

 DDMSetKeyLast
(Set Cursor to Last Record in Key Sequence)

This function sets the cursor to the last record of the file in key sequence order and
optionally returns the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyLast (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 191.

RecordBufLen
The length (ULONG) of the record buffer.

188 VSAM for OS/2

DDMSetKeyLast

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' address error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
FILATHRM X'123B' Not Authorized to File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found

 Remarks
If the file permits duplicate keys and the last record in the file has a duplicate key, the
cursor is set to the last record of the duplicates in key sequence.

As an option, DDMSetKeyLast can:

� Set the hold cursor indicator on (DDM_HLDCSR).
� Return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the last record in the index key sequence.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record, if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

 Chapter 3. VSAM API Functions 189

DDMSetKeyLast

� Any function is issued that references a record other than the one currently pointed
to by the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records.

Note: The cursor position is not changed.

RECNFNRM

190 VSAM for OS/2

DDMSetKeyLast

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Assume the following:

Has the following effect:

DDMSetKeyLast (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Cursor

Cursor

AccessFlags = 0 ;

Figure 37. DDMSetKeyLast Function for Ascending Sequence

 Chapter 3. VSAM API Functions 191

DDMSetKeyLast

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

Has the following effect:

DDMSetKeyLast (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Cursor

Cursor

AccessFlags = 0 ;

Figure 38. DDMSetKeyLast Function for Descending Sequence

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

192 VSAM for OS/2

DDMSetKeyLast

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list. A value of X'FFFFFFFF' for RN indicates that
the record number of the first record in the record attribute list
is not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

 Chapter 3. VSAM API Functions 193

DDMSetKeyLast

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

194 VSAM for OS/2

DDMSetKeyLast

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

 Chapter 3. VSAM API Functions 195

DDMSetKeyLast

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

196 VSAM for OS/2

DDMSetKeyLimits

 DDMSetKeyLimits
(Set Key Limits)

This function sets the limits of the key values for subsequent DDMSetKeyNext and
DDMSetNextKeyEqual functions.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyLimits (HDDMFILE FileHandle,
 PDDMOBJECT LowKeyLim,
 PDDMOBJECT HiKeyLim
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

LowKeyLim
The pointer (PDDMOBJECT) to the key buffer for the lower key value limit. The
format of the low key limit buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description from the
beginning of LL to the end of the key value. This field may be set
to 6 and no key value need be provided. This has the special
meaning of first key value of the file.

X'1130' The value (CODEPOINT) indicating that the following data is a key
value, representing a low key limit.

Data The key value (BYTE) for a record. The key value can be a
maximum of 255 bytes.

HiKeyLim
The pointer (PDDMOBJECT) to the key buffer for the higher key value limit. The
format of the high key limit buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description from the
beginning of LL to the end of the key value. This field may be set
to 6 and no key value need be provided. This has the special
meaning of last key value of the file.

LL X'1130' Data

LL X'112F' Data

 Chapter 3. VSAM API Functions 197

DDMSetKeyLimits

X'112F' The value (CODEPOINT) indicating that the following data is a key
value, representing a high key limit.

Data The key value (BYTE) for a record. The key value can be a
maximum of 255 bytes.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVRQSRM X'123C' Invalid Request
KEYLENRM X'122D' Invalid Key Length
OBJNSPRM X'1253' Object Not Supported

 Remarks
The DDMSetKeyLimits function is only valid for files with ascending keys.

The DDMSetKeyLimits function:

� Establishes the key limits and associates them with the active cursor.

� Sets the cursor to the record position of the lower limit or the first key after the low
key limit if it is not in the file.

� Sets the hold cursor indicator to the on value so the first DDMSetKeyNext or
DDMSetNextKeyEqual function remains at the first record within the limits.

When key limits have been established, the DDMSetKeyNext or DDMSetNextKeyEqual
function only operates within the defined limits.

DDMSetKeyNext or DDMSetNextKeyEqual sets the cursor, in key sequence, to the
next record that is within the bounds of the key limits. If the cursor is already
positioned at the highest key limit, the function is terminated with the ENDFILRM reply
message, the key limits are reset, and the cursor is set to the EOF position.

The key limits remain in effect until one of the following occurs:

� The file is closed by a DDMClose function or termination of communications.

� A cursor positioning function other than DDMSetKeyNext or DDMSetNextKeyEqual
is performed. This includes the following functions:

 DDMSetBOF
 DDMSetEOF
 DDMSetFirst
 DDMSetKey
 DDMSetKeyFirst
 DDMSetKeyLast
 DDMSetKeyPrevious
 DDMSetLast
 DDMSetMinus

198 VSAM for OS/2

DDMSetKeyLimits

 DDMSetRecNum
 DDMSetNextRec
 DDMSetPrevious

� A DDMInsertRecxxx function with the DDM_UPDCSR bit in the AccessFlags set on
is performed.

� An ENDFILRM reply message is returned from a DDMSetKeyNext or
DDMSetNextKeyEqual function.

� A DDMSetKeyLimits function specifies new limits.

When the key limits are reset, they are logically reset with a low key limit value of
beginning of file and high key limit value of end of file. The cursor is not directly
affected by resetting the key limits, but its position may be changed by the function that
resets the key limits.

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the first record in the file with a key value equal
to or greater than the low key limit (LowKeyLim) in the index key
sequence. If an ENDFILRM reply message results, the cursor is set to
the end of file.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters and the requester currently has a
SHRRECLK lock on a record in the file, the SHRRECLK lock is released.

If the DDMSetKeyLimits function terminates with a reply message that has a severity
code of ERROR or higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 199

DDMSetKeyLimits

 Exceptions

This Causes
This Reply Message to be
Returned

The LowKeyLim specified is after the last key.

The HiKeyLim specified is before the first key.

ENDFILRM

This Causes the Function to be Rejected With This Reply Message

The file handle is not invalid. HDLNFNRM

The HiKeyLim specifies a key value that is before the
LowKeyLim.

The file was created with a key (or composite key) whose
parts are not all ascending.

INVRQSRM

Either the HiKeyLim or LowKeyLim parameter specifies a
partial key.

KEYLENRM

200 VSAM for OS/2

DDMSetKeyLimits

 Examples

BEFORE AFTER

EOF

BOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)
EOF

BOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

LowKeyLim=BOF
HiKeyLim =EOF

LowKeyLim=BB
HiKeyLim =DD

Given the following key limits:

DDMSetKeyLimits (FileHandle, LowKeyLim, HiKeyLim)

LowKeyLim LL: 8
CP: 0x1130

Value:’BB’

HIKeyLim LL: 8
CP: 0x112F

Value:’DD’

Cursor

Cursor

Assume the following:

Figure 39. DDMSetKeyLimits Function

 Chapter 3. VSAM API Functions 201

DDMSetKeyLimits

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

LowKeyLim=BB LowKeyLim=BB

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

HiKeyLim =CC HiKeyLim =CC

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

AccessFlags = 0 ;
RecCount = 1 ;

Cursor

Cursor

Figure 40. DDMSetKeyNext Function with Key Limits Set

202 VSAM for OS/2

DDMSetKeyLimits

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

HiKeyLim =CC
LowKeyLim=AA

Key limits are no longer in effect.

LowKeyLim=BOF
HiKeyLim =EOF

Given the following key value buffer:

Assume the following:
DDMSetKey (FileHandle, AccessFlags, KeyValBuf, RelOpr,RecordBuf,

RecordBufLen)

BEFORE AFTER

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value:’AA’

RelOpr = 0x1447 ; */ KEYEQ */
AccessFlags = 0 ;

Figure 41. Resetting Limits with DDMSetKey Function

 Chapter 3. VSAM API Functions 203

DDMSetKeyNext

 DDMSetKeyNext
(Set Cursor to Next Record in Key Sequence)

This function moves the cursor to the next record of the file in key sequence order and
optionally returns the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyNext (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen,
 ULONG RecCount,
 PULONG RecRtnCnt
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 DDM_BYPDMG (Bypass Damaged Record)
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 209.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
Specifies the number (ULONG) of records requested.

204 VSAM for OS/2

DDMSetKeyNext

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When
RECAL (Record Attribute List) parameters are specified in RecordBuf and
RECCNT is specified within the RECAL, the RecRtnCnt parameter (ULONG)
reflects the RECCNT number of duplicate records. Therefore, if RecordBuf
contained 25 data records, one of which included a RECAL with RECCNT having a
value of 150, the value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
The cursor is set to the next record in key sequence even if that record has a key equal
to the key of the current record.

If key limits have been established (see “DDMSetKeyLimits (Set Key Limits)” on
page 197), DDMSetKeyNext sets the cursor to the next record in key sequence, as
long as that record has a key value which is before or equal to the value specified by
the high key limit parameter on the DDMSetKeyLimits function. If the cursor is currently
at the high key limit, the function is terminated with the ENDFILRM reply message, the
cursor is set to EOF, and the key limits are reset (unspecified value).

As an option, DDMSetKeyNext can:

� Specify whether more than one record is being requested (RecCount).
� Set the hold cursor indicator to on (DDM_HLDCSR).
� Specify whether damaged records should be bypassed (DDM_BYPDMG).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If the hold cursor indicator in the cursor is set to on, the DDM_HLDCSR bit in
AccessFlags is FALSE, and the record is active, the cursor remains at its current
position. For all other conditions, the cursor is updated.

If RecCount specifies a value greater than 1, multiple records are sent to the source
agent. RecCount specifies the number of times the DDMSetKeyNext function is to be
performed. This moves the cursor to the last record processed by the DDMSetKeyNext

 Chapter 3. VSAM API Functions 205

DDMSetKeyNext

function. If RecCount specifies a number and DDM_NODATA is set, the cursor is still
updated but no records are sent; this is not an error.

If RecCount specifies a number greater than the remaining records in the file, the
remaining records are sent to the source agent, the cursor position is changed to EOF,
and an ENDFILRM reply message is sent.

If the DDM_BYPDMG bit of AccessFlags is set, any damaged record encountered by
the DDMSetKeyNext function sends a RECDMGRM reply message, updates the cursor,
and decreases RecCount by one. This allows the maximum number of undamaged
records to be sent to the source system.

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the next record in the index key sequence or
remains in the same position in the current record based on:

� The hold cursor indicator in the cursor
� The DDM_HLDCSR flag
� Whether the record is active.

If the ENDFILRM reply message results, the cursor is set to the end of
file.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued. If
RecCount is greater than 1, the cursor position is the same as before
the last iteration of the function.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, then
the access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

206 VSAM for OS/2

DDMSetKeyNext

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued, or if RecCount is greater than 1, the record locks are the
same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 207

DDMSetKeyNext

 Exceptions
This Causes the Function to be Rejected With this Reply Message

The file does not contain any records initially after a
DDMCreateRecFile.

The file does not contain any records beyond the current
cursor position.

The cursor had previously been set to an inactive record.

The file does not contain any records beyond the current
cursor position, within the limits set by the
DDMSetKeyLimits function.

RecCount specifies a number greater than the number of
records remaining in the file.

ENDFILRM

The file handle is invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

208 VSAM for OS/2

DDMSetKeyNext

 Examples

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Hold Cursor
indicator is off

Hold Cursor
indicator is off

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

/* DDM_HLDCSR = OFF */

Figure 42. DDMSetKeyNext Function with Duplicate Key Values

 Chapter 3. VSAM API Functions 209

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Hold Cursor
indicator is off

Hold Cursor
indicator is off

Assume the following:

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

/* DDM_HLDCSR = OFF */

Has the following effect:

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

Figure 43. DDMSetKeyNext Function for Ascending Sequence

210 VSAM for OS/2

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

Hold Cursor
indicator is off

Hold Cursor
indicator is off

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

/* DDM_HLDCSR = OFF */AccessFlags = 0 ;
RecCount = 1 ;

Cursor

Cursor

Figure 44. DDMSetKeyNext Function for Descending Sequence

 Chapter 3. VSAM API Functions 211

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

LowKeyLim=BB

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

HiKeyLim =CC

RESULTS: Command rejected with ENDFILRM
Key limits are no longer in effect

Assume the following:

LowKeyLim=BOF
HiKeyLim =EOF

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Has the following effect:

Cursor

Cursor

/* DDM HLDCSR = OFF */AccessFlags = 0 ;
RecCount = 1 ;

Figure 45. DDMSetKeyNext Function with Key Limits Set

212 VSAM for OS/2

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

Hold Cursor
indicator is on

Hold Cursor
indicator is off

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor Cursor

/* DDM_HLDCSR = OFF */AccessFlags = 0 ;
RecCount = 1 ;

Figure 46. DDMSetKeyNext Function with Hold Cursor Initially On

 Chapter 3. VSAM API Functions 213

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

Hold Cursor
indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Hold Cursor
indicator is on

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0x00000080 ;

RecCount = 1 ;

/* DDM_HLDCSR = ON */

Figure 47. DDMSetKeyNext Function with Hold Cursor Initially On

214 VSAM for OS/2

DDMSetKeyNext

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Hold Cursor
indicator is on

Hold Cursor
indicator is off

Assume the following:

Has the following effect:

DDMSetKeyNext (FileHandle,AccessFlags,RecordBuf, RecordBufLen)
RecCount, RecRtnCnt)

Cursor

Cursor

/* DDM_HLDCSR = ON */AccessFlags = 0x00000080 ;

RecCount = 1 ;

Figure 48. DDMSetKeyNext Function with Hold Cursor Initially Off

 Chapter 3. VSAM API Functions 215

DDMSetKeyNext

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N records, where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

LL X'1430' L1 X'111A' RC L2 X'144A' Data

216 VSAM for OS/2

DDMSetKeyNext

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

When RC and RN are both specified, the record number
specified by RN applies to the first occurrence of the record
and each subsequent record has a record number one
greater than the previous record.

A value of X'FFFFFFFF' for RN indicates that the record
number of the first record in the record attribute list is not
known.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'144A' Data

 Chapter 3. VSAM API Functions 217

DDMSetKeyNext

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

LL X'111D' RN

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

L3 X'144A' Data

218 VSAM for OS/2

DDMSetKeyNext

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. It provides a shorthand way of specifying
N keys, where N>1, without replicating the key's contents.

Note: RC is not included unless identical, consecutive keys
are being returned.

RC The number (ULONG) of duplicate keys in the record attribute
list.

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

 Chapter 3. VSAM API Functions 219

DDMSetKeyNext

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'1115' KEY L4 X'144A' Data

220 VSAM for OS/2

DDMSetKeyNext

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 221

DDMSetKeyPrevious

 DDMSetKeyPrevious
(Set Cursor to Previous Record in Key Sequence)

This function moves the cursor to the previous record of the file in key sequence and
optionally returns the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetKeyPrevious (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen,
 ULONG RecCount,
 PULONG RecRtnCnt
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 226.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
Specifies the number (ULONG) of records requested.

222 VSAM for OS/2

DDMSetKeyPrevious

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When
RECAL (Record Attribute List) parameters are specified in RecordBuf and
RECCNT is specified within the RECAL, the RecRtnCnt parameter (ULONG)
reflects the RECCNT number of duplicate records. Therefore, if RecordBuf
contained 25 data records, one of which included a RECAL with RECCNT having a
value of 150, the value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
FILATHRM X'123B' Not Authorized to File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
If the file contains records with duplicate keys, the cursor is set to the previous record
with the same or next key in the key sequence.

As an option, DDMSetKeyPrevious can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If RecCount gives a value greater than 1, multiple records are sent to the source agent.
RecCount requests that the DDMSetKeyPrevious function be performed the number of
times specified by RecCount. This moves the cursor to the last record processed by
the DDMSetKeyPrevious function.

If RecCount gives a number greater than the remaining records in the file, the
remaining records are sent to the source agent, the cursor position is changed to BOF,
and an ENDFILRM reply message is sent.

 Chapter 3. VSAM API Functions 223

DDMSetKeyPrevious

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the previous record in the index key sequence.
If an ENDFILRM reply message results, the cursor is moved to the
beginning of file.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function issued references a record other than the one currently pointed to by
the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

224 VSAM for OS/2

DDMSetKeyPrevious

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is set to BOF.

The file does not contain any records before the current
cursor position.

Note: The cursor position is set to BOF.

RecCount specifies a number greater than the number of
records remaining in the file.

ENDFILRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

 Chapter 3. VSAM API Functions 225

DDMSetKeyPrevious

 Examples

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Assume the following:

Has the following effect:

DDMSetKeyPrevious (FileHandle, AccessFlags, RecordBuf,
RecordBufLen RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

Figure 49. DDMSetKeyPrevious Function with Duplicate Key Values

226 VSAM for OS/2

DDMSetKeyPrevious

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Assume the following:

Has the following effect:

DDMSetKeyPrevious (FileHandle, AccessFlags, RecordBuf,
RecordBufLen RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0 ;
RecCount = 1 ;

Figure 50. DDMSetKeyPrevious Function for Ascending Sequence

 Chapter 3. VSAM API Functions 227

DDMSetKeyPrevious

EOF

BOF BOF

EOF

Record
Key(seq)

Record
Key(seq)

BEFORE AFTER

DDMSetKeyPrevious (FileHandle, AccessFlags, RecordBuf,
RecordBufLen RecCount, RecRtnCnt)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

AA(5)

DD(1)

BB(3)

CC(2)

BB(4)

Assume the following:

Has the following effect:

AccessFlags = 0 ;
RecCount = 1 ;

Cursor

Cursor

Figure 51. DDMSetKeyPrevious Function for Descending Sequence

228 VSAM for OS/2

DDMSetKeyPrevious

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N records, where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

X'144A' The value (CODEPOINT) indicating that the following data is
a record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

LL X'1430' L1 X'111A' RC L2 X'144A' Data

 Chapter 3. VSAM API Functions 229

DDMSetKeyPrevious

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

When RC and RN are both specified, the record number
specified by RN applies to the first occurrence of the record
and each subsequent record has a record number one
greater than the previous record.

A value of X'FFFFFFFF' for RN indicates that the record
number of the first record in the record attribute list is not
known.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'144A' Data

230 VSAM for OS/2

DDMSetKeyPrevious

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

LL X'111D' RN

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

L3 X'144A' Data

 Chapter 3. VSAM API Functions 231

DDMSetKeyPrevious

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. The RC parameter provides a shorthand
way of specifying N keys, where N>1, without replicating the
key's contents.

Note: RC is not included unless identical, consecutive keys
are being returned.

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

232 VSAM for OS/2

DDMSetKeyPrevious

RC The number (ULONG) of duplicate keys in the record attribute
list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

Note: RECCNT is not included unless identical, consecutive
records are being returned.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'1115' KEY L4 X'144A' Data

 Chapter 3. VSAM API Functions 233

DDMSetKeyPrevious

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

234 VSAM for OS/2

DDMSetLast

 DDMSetLast
(Set Cursor to Last Record)

This function sets the cursor to the last record of the file and optionally returns the
record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetLast (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active or Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 239.

RecordBufLen
The length (ULONG) of the record buffer.

 Chapter 3. VSAM API Functions 235

DDMSetLast

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found

 Remarks
The DDM_ALLREC bit flag is used to determine the last record of the file. If
DDM_ALLREC is not set, the cursor is set to the last active record in the file.
Otherwise, the cursor is set to the last record in the file (the record preceding EOF).
For direct files, DDM_ALLREC must be set off.

As an option, DDMSetLast can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

Any key limits set are reset when the function completes.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

236 VSAM for OS/2

DDMSetLast

Table 18. DDMSetLast (DDM_NODATA or DDM_ALLREC) Decision Table

If the DDMSetLast function is issued:

When initial system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

CURSOR (returned) F T T T T

Repeat table after bypassing record T F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the last record position in the file if
DDM_ALLREC is set on. The cursor is moved to the last active record
in the file if DDM_ALLREC is set to off.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

 Chapter 3. VSAM API Functions 237

DDMSetLast

� The record is updated (for example, DDMModifyRec or DDMDeleteRec.)

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes a Reply Message to be Generated and the
Function Continues With This Reply Message

DDM_ALLREC and DDM_NODATA are active and an
inactive record is read.

RECINARM

This Causes the Function to be Terminated With This Reply Message

Accessflag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set or
DDM_NODATA is not set and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is not valid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

238 VSAM for OS/2

DDMSetLast

This Causes the Function to be Rejected With This Reply Message

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

DDM_ALLREC is set and the file is a direct file.

INVRQSRM

The record is damaged (not an active or inactive record). RECDMGRM

A record lock cannot be obtained. RECIUSRM

Bypassing inactive records is requested (DDM_ALLREC is
off) and the file only contains inactive records.

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is not changed.

RECNFNRM

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

AccessFlags = 0x00000000 ; /* DDM ALLREC = OFF */

Cursor

Cursor

inactive inactive

Has the following effect:

DDMSetLast (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Figure 52. DDMSetLast DDM_ALLREC Set Off for Sequential File

 Chapter 3. VSAM API Functions 239

DDMSetLast

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Cursor

Cursor inactiveinactive

AccessFlags = 0x00000010 ; /* DDM ALLREC = ON */

Has the following effect:

DDMSetLast (FileHandle,AccessFlags,RecordBuf, RecordBufLen)

Figure 53. DDMSetLast DDM_ALLREC Set On for Sequential File

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

LL CP Data

240 VSAM for OS/2

DDMSetLast

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

LL X'1430' L1 X'111D' RN L2 CP Data

 Chapter 3. VSAM API Functions 241

DDMSetLast

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

Data Either record data or the length (ULONG) of the inactive
record.

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

242 VSAM for OS/2

DDMSetLast

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

 Chapter 3. VSAM API Functions 243

DDMSetLast

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is
record data or a ULONG length inactive record length.

X'144A' Indicates that the following data is record
data (RECORD).

X'142D' Indicates that the following data is a ULONG
length of an inactive record (RECINA).

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

244 VSAM for OS/2

DDMSetMinus

 DDMSetMinus
(Set Cursor Minus)

This function sets the cursor to the record number of the file indicated by the cursor,
minus the number of record positions specified by the CsrDisp (Cursor Displacement)
parameter. This function can also return the record, the record number, and record
key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetMinus (HDDMFILE FileHandle,
 ULONG AccessFlags,
 ULONG CsrDisp,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 DDM_ALWINA (Allow Cursor on Inactive Record)
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

CsrDisp
Specifies the cursor displacement (ULONG) in the negative direction.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 249.

 Chapter 3. VSAM API Functions 245

DDMSetMinus

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds

 Remarks
The type of the records in the file (active or inactive) bypassed by DDMSetMinus has
no effect on the cursor positioning.

As an option, DDMSetMinus can:

� Specify whether the cursor can be set to an inactive record position
(DDM_ALWINA).

� Set the hold cursor indicator on (DDM_HLDCSR).

� Not return the requested record (DDM_NODATA).

� Specify whether inactive records should be returned (DDM_RTNINA).

� Specify whether the record key value should be returned (DDM_KEYVALFB).

� Specify whether the record number should be returned (DDM_RECNBRFB).

� Place an update intent on the record (DDM_UPDINT).

Any key limits set are reset when the function completes.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

246 VSAM for OS/2

DDMSetMinus

Table 19. DDMSetMinus (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision Table

If the DDMSetMinus function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed) T T T F F T T

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is positioned to the record position CsrDisp records prior to
where the cursor was positioned before the DDMSetMinus function was
issued.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

 Chapter 3. VSAM API Functions 247

DDMSetMinus

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to Continue and Return This Reply Message

An inactive record is read and DDM_ALWINA is active, and
DDM_RTNINA is not set or DDM_NODATA is set.

RECINARM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set, and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

Access flag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

RecordBuf is not large enough to hold the returned record. LENGTHRM

The record is damaged (not an active or inactive record). RECDMGRM

248 VSAM for OS/2

DDMSetMinus

This Causes the Function to be Rejected With This Reply Message

The record is inactive and the cursor is not allowed to be
set to an inactive record position (DDM_ALWINA is not
set).

Note: The cursor is not changed.

RECINARM

The record lock cannot be obtained. RECIUSRM

The CsrDisp value places the cursor prior to the first record
in the file.

Note: The cursor position does not change.

The file contains no records after a DDMCreateRecFile.

Note: The cursor position does not change.

The cursor is placed outside the bounds of the file; before
BOF in a sequential file, and past the physical boundary in
a direct file.

RECNBRRM

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

AccessFlags = 0 ;
CsrDisp = 2 ;

Cursor

Cursor

DDMSetMinus (FileHandle, AccessFlags, CsrDisp,
RecordBuf, RecordBufLen)

Figure 54. DDMSetMinus Function

 Chapter 3. VSAM API Functions 249

DDMSetMinus

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL CP Data

LL X'1430' L1 X'111D' RN L2 CP Data

250 VSAM for OS/2

DDMSetMinus

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 251

DDMSetMinus

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

LL X'1115' KEY

252 VSAM for OS/2

DDMSetMinus

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'1115' KEY L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data Either record data or the length (ULONG) of the inactive
record.

 Chapter 3. VSAM API Functions 253

DDMSetMinus

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

254 VSAM for OS/2

DDMSetNextKeyEqual

 DDMSetNextKeyEqual
(Set Cursor to Next Record with Equal Key)

The DDMSetNextKeyEqual function moves the cursor to the next record in the key
sequence. This happens only if the key field of that record has a value that equals the
value specified in KeyValBuf (Key Value Buffer) parameter. This function can also
return the record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetNextKeyEqual (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMOBJECT KeyValBuf,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
3–4 Reserved flags
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

KeyValBuf
Pointer to the buffer which contains the key to which the cursor should be moved.
The format of the key value buffer upon invocation of the function is:

Field Description

LL The length (ULONG) of the key value description from the
beginning of LL to the end of Key Value.

LL X'1115' Key Value

 Chapter 3. VSAM API Functions 255

DDMSetNextKeyEqual

X'1115' The value (CODEPOINT) indicating that the following data is a key
value (KEYVAL).

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 259.

RecordBufLen
The length (ULONG) of the record buffer. The record buffer length should be the
same size as the largest possible record plus the number of bytes required for the
RECAL (Record Attribute List).

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECNFNRM X'1225' Record Not Found
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
Generic keys can be specified in KeyValBuf.

If the key value of the next key in the key sequence is not equal to the value specified
by KeyValBuf, an ENDFILRM reply message is returned and the cursor is moved to
EOF. The requester must reposition the cursor before another DDMSetNextKeyEqual
function can be requested.

The cursor remains at its current position if the key value of the current record in key
sequence is equal to the value specified by the key value buffer and:

� The hold cursor indicator in the cursor is set to on.
� The DDM_HLDCSR bit in AccessFlags is FALSE.
� The record is active.

For all other conditions, the cursor is updated.

As an option, DDMSetNextKeyEqual can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

256 VSAM for OS/2

DDMSetNextKeyEqual

If key limits have been established DDMSetNextKeyEqual sets the cursor to the next
record if it equals the specified key value, and the key value of the record is before or
equal to the value specified by high key limit on DDMSetKeyLimits. If the next record is
after the high key limit, the function is rejected with an ENDFILRM reply message and
the cursor is set to the EOF position of file. See “DDMSetKeyLimits (Set Key Limits)”
on page 197.

If the hold cursor indicator in the cursor is set to on, the DDM_HLDCSR bit in
AccessFlags is FALSE, and the record is active, the cursor remains at its current
position. For all other conditions, the cursor is updated.

Effect on Cursor Position
Normal completion (SVRCOD of 0 or 4)

The cursor is moved to the selected record, or remains in the current
record based on the hold cursor indicator in the cursor, DDM_HLDCSR
bit in AccessFlags, and whether the record is active. If an ENDFILRM
reply message results, the cursor is moved EOF.

Error termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if it is not already locked
by the requester with a SHRRECLK lock. The SHRRECLK record lock is released
when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

 Chapter 3. VSAM API Functions 257

DDMSetNextKeyEqual

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions

This Causes
This Reply Message to be
Returned

The key field of the next record in key sequence is not
equal to the key value specified by the KeyValBuf
parameter.

ENDFILRM

This Causes the Function to be Rejected With This Reply Message

The file does not contain any records beyond the current
cursor position, within the limits set by the
DDMSetKeyLimits function.

The cursor had previously been set to an inactive record.

Note: The cursor is positioned to EOF.

ENDFILRM

The file handle is invalid. HDLNFNRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

INVRQSRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is not changed.

RECNFNRM

258 VSAM for OS/2

DDMSetNextKeyEqual

 Examples

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

For the following Key Value Buffer:

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Assume the following:

Has the following effect:

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

Cursor

Cursor

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Figure 55. DDMSetNextKeyEqual to Access First Duplicate Key. From the current cursor position, the next record in
the key sequence is examined for a key value of BB. The cursor is moved to that record and the record is returned.

 Chapter 3. VSAM API Functions 259

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

For the following Key Value Buffer:

Assume the following:
AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Cursor

Cursor

Has the following effect:

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

Figure 56. DDMSetNextKeyEqual to Access the Next Duplicate Key. From the current cursor position, within a set of
records with duplicate keys, the next record in key sequence is examined for a key value of BB. The cursor is
positioned at that record and the record is returned.

260 VSAM for OS/2

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Cursor

For the following Key Value Buffer:

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

KeyValBuf LL: 8
CP: 0x1115

Value: ’BB’

AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Cursor

Assume the following:

Has the following effect:

Figure 57. DDMSetNextKeyEqual to Access Past the Last Duplicate Key. From the current cursor position, at the last
record in a set of records with duplicate keys, the next record in the key sequence is examined for a key value of BB.
This record does not contain a key field of BB. The cursor is set to EOF, and ENDFILRM is returned.

 Chapter 3. VSAM API Functions 261

DDMSetNextKeyEqual

For the following Key Value Buffer:
KeyValBuf LL: 8

CP: 0x1115
Value: ’CC’

Assume the following:
AccessFlags = 0 ;

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)Has the following effect:

LowKeyLim = BB
HiKeyLim = CC

Record
Key(seq)

Record
Key(seq)

BOF BOF
AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

AA(1)

DD(5)

BB(2)

CC(4)

BB(3)

EOF

Key limits are no longer in effect
RESULT: Command rejected with ENDFILRM

BEFORE AFTER

Cursor

Cursor

LowKeyLim = BOF
HiKeyLim = EOF

EOF

Figure 58. DDMSetNextKeyEqual Function with Key Limits Set. If key limits have been established (see
DDMSetKeyLimits), the DDMSetNextKeyEqual command sets the cursor to the next record if it equals the specified
key value, and the key value of the record is before or equal to the value specified by High Key Limit on
DDMSetKeyLimits. If the next record is after the High Key Limit limit, the command is rejected with ENDFILRM and
the cursor is set to the end of file.

262 VSAM for OS/2

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is off

Hold Cursor
Indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

For the following Key Value Buffer:

Assume the following:

Has the following effect:

KeyValBuf LL: 8
CP: 0x1115

Value: ’CC’

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

Cursor Cursor

AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Figure 59. DDMSetNextKeyEqual Function with Hold Cursor Initially On. If the hold cursor indicator in the cursor is
set to on, the HLDCSR bit in the Access Flags is FALSE, and the record is active, the cursor remains at its current
position. For all other conditions, the cursor is updated.

 Chapter 3. VSAM API Functions 263

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

For the following Key Value Buffer:

Assume the following:

Has the following effect:

AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */

Cursor

Cursor

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

KeyValBuf LL: 8
CP: 0x1115

Value: ’DD’

Figure 60. DDMSetNextKeyEqual function with Hold Cursor Initially On

264 VSAM for OS/2

DDMSetNextKeyEqual

EOF

BOF BOF

BEFORE AFTER

EOF

Record
Key(seq)

Record
Key(seq)

Hold Cursor
Indicator is on

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

AA(1)

DD(5)

BB(3)

CC(4)

BB(2)

Hold Cursor
Indicator is off

For the following Key Value Buffer:

Assume the following:

Has the following effect:

KeyValBuf LL: 8
CP: 0x1115

Value: ’DD’

DDMSetNextKeyEqual (FileHandle, AccessFlags, KeyValBuf, RecordBuf,
RecordBufLen)

Cursor

Cursor

AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */

Figure 61. DDMSetNextKeyEqual function with Hold Cursor Initially Off

 Chapter 3. VSAM API Functions 265

DDMSetNextKeyEqual

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

LL X'144A' Data

LL X'1430' L1 X'111D' RN L2 X'144A' Data

266 VSAM for OS/2

DDMSetNextKeyEqual

RN The record number (ULONG) of the record in the record
attribute list. A value of X'FFFFFFFF' for RN indicates that
the record number of the first record in the record attribute list
is not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

 Chapter 3. VSAM API Functions 267

DDMSetNextKeyEqual

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

268 VSAM for OS/2

DDMSetNextKeyEqual

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

 Chapter 3. VSAM API Functions 269

DDMSetNextKeyEqual

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

270 VSAM for OS/2

DDMSetNextRec

 DDMSetNextRec
(Set Cursor to Next Record)

This function sets the cursor to the record that has a record number one greater than
the current cursor position and optionally returns the record, the record number, and
record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetNextRec (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen,
 ULONG RecCount,
 PULONG RecRtnCnt
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 DDM_BYPDMG (Bypass Damaged Records)
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active and Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Examples”
on page 278.

RecordBufLen
The length (ULONG) of the record buffer.

 Chapter 3. VSAM API Functions 271

DDMSetNextRec

RecCount
Specifies the number (ULONG) of records requested.

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When
RECAL (Record Attribute List) parameters are specified in RecordBuf and
RECCNT is specified within the RECAL, the RecRtnCnt parameter (ULONG)
reflects the RECCNT number of duplicate records. Therefore, if RecordBuf
contained 25 data records, one of which included a RECAL with RECCNT having a
value of 150, the value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
If inactive records are to be bypassed (DDM_ALLREC not set), the cursor is set to the
next active record that has a record number greater than the current cursor position.
For direct files, the only valid specification for DDM_ALLREC is DDM_ALLREC not set.

As an option, DDMSetNextRec can:

� Specify whether more than one record should be returned (RecCount).
� Set the hold cursor indicator on (DDM_HLDCSR).
� Specify whether damaged records should be bypassed (DDM_BYPDMG).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If DDM_HLDCSR in AccessFlags is FALSE, the cursor remains at its current position
when the hold cursor indicator in the cursor was previously set and either the record is
active, or the record is inactive and DDM_ALLREC in AccessFlags is TRUE. Under all
other conditions, the cursor is updated. This decision process is illustrated in Table 20
on page 274.

If RecCount specifies a value greater than 1, multiple records are sent to the requestor.
RecCount specifies the number of times that the DDMSetNextRec function be
performed, with the following exceptions:

272 VSAM for OS/2

DDMSetNextRec

� For all iterations of the function except the last iteration, the RECINARM is not
sent. All other reply messages resulting from the iteration of the function are sent.

� For the last iteration of the function, any reply message resulting from the last
iteration of the function, including RECINARM, is sent.

This moves the cursor to the last record processed by the DDMSetNextRec function.
Bypassed records (as a result of DDM_ALLREC not being set) are not counted to
satisfy RecCount. If RecCount specifies a number and DDM_NODATA is set, no
records are sent.

If the RecCount specifies a number greater than the remaining records in the file:

� The remaining records are sent to the source agent.
� The cursor position is changed.
� A ENDFILRM reply message is sent.

If DDM_BYPDMG is set, any damaged record encountered by the DDMSetNextRec
function:

� Sends a RECDMGRM reply message.
� Updates the cursor.
� Is counted to satisfy RecCount.

This allows the maximum number of undamaged records to be sent to the source
system.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

 Chapter 3. VSAM API Functions 273

DDMSetNextRec

Table 20. DDMSetNextRec (DDM_ALLREC or DDM_NODATA) Decision Table (Part 1 of 2)

If the DDMSetNextRec function is issued, two decision tables are processed
sequentially starting with Decision Table 1:

Decision Table 1: DDM_HLDCSR / DDM_ALLREC

When initial system states are:

hldcsr indicator in cursor T T T T F F

DDM_HLDCSR T F F F T F

Record State * A I I * *

DDM_ALLREC * * F T * *

The next system states are: ↓ ↓ ↓ ↓ ↓ ↓

hldcsr indicator in cursor set T F F F T F

move cursor to next record Y N Y N Y Y

go to Table 21 on page 275 Y Y Y Y Y Y

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE
Y YES
N NO

274 VSAM for OS/2

DDMSetNextRec

Table 21. DDMSetNextRec (DDM_ALLREC or DDM_NODATA) Decision Table (Part 2 of 2)

Decision Table 2: DDM_ALLREC / DDM_NODATA

When the system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The next system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

cursor position saved F T T T T

move cursor to next record and repeat Table 2 T F F F F

DDMSetNextRec complete N Y Y Y Y

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE
Y YES
N NO

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is determined in two steps: step 1 determines the
first record to be considered, step 2 determines if the contents of the
record are acceptable to the user.

Step 1. The cursor remains at the current record if:

� The hold indicator in the cursor is on, DDM_HLDCSR is
off, and the record is active.

� The hold indicator in the cursor is on, DDM_HLDCSR is
off, the record is inactive, and DDM_ALLREC is on.

Otherwise, the cursor is advanced to the next record.
The cursor may be advanced more than one record.
See Table 20 on page 274 for an illustration of this step.

Step 2. If DDM_ALLREC is off, and the record is inactive, the cursor
is advanced until it points to an active record.

 Chapter 3. VSAM API Functions 275

DDMSetNextRec

Otherwise, the cursor is pointing to the correct record.

Step 3. If an ENDFILRM results from the advancing of the cursor, the
cursor is moved to EOF.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued. If
RecCount is greater than 1, the cursor position is the same as before
the last iteration of the function.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, then
the access method acquires an implicit SHRRECLK on the record if it is not already
locked by the requester with a SHRRECLK lock. The SHRRECLK record lock is
released when:

� The record is updated (for example, DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, or DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued. If RecCount is greater than 1, the record locks are the
same as before the last iteration of the function.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

276 VSAM for OS/2

DDMSetNextRec

 Exceptions
This Causes the Function to Continue and Returns This Reply Message

DDM_ALLREC is not set and the cursor is at the last active
record.

ENDFILRM

The record is damaged and DDM_BYPDMG flag is set. RECDMGRM

This Causes the Function to be Rejected With This Reply Message

Any data is to be returned and RecRtnCnt has not been
specified.

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set, and RecordBuf doesn't contain
an address.

ADDRRM

The cursor is already positioned at EOF.

If one of the following conditions is true about the file:

� It does not contain any records initially after a
DDMCreateRecFile.

� It does not contain any records beyond the current
cursor position.

� It does not contain any active records beyond the
current cursor position when DDM_ALLREC is not set.

Note: The cursor position is changed to EOF.

ENDFILRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified as one of the access
intents.

DDM_ALLREC(TRUE) is specified for a direct file.

The DDM_NODATA flag is not set and the file was opened
without GETAI.

INVRQSRM

The RecordBuf is not large enough to hold the returned
record.

LENGTHRM

The record is damaged (record not active or inactive). RECDMGRM

The record is inactive and DDM_NODATA is set. RECINARM

The record lock cannot be obtained. RECIUSRM

The RecCount is not greater than 0. VALNSPRM

 Chapter 3. VSAM API Functions 277

DDMSetNextRec

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor Inactive

/* DDM ALLREC = ON */
AccessFlags = 0x00000010 ; /* DDM HLDCSR = OFF */

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Inactive

Figure 62. DDMSetNextRec Function with DDM_ALLREC Set

278 VSAM for OS/2

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor

Inactive Inactive

/* DDM ALLREC = OFF */
AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Figure 63. DDMSetNextRec Function with DDM_ALLREC Not Set

 Chapter 3. VSAM API Functions 279

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor Cursor

AccessFlags = 0 ; /* DDM HLDCSR = OFF */
/* DDM ALLREC = OFF */

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

Figure 64. DDMSetNextRec Function with Hold Cursor Initially On

280 VSAM for OS/2

DDMSetNextRec

EOF

BOF BOF 0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

Inactive

InactiveInactive

Inactive

BEFORE AFTER

Cursor

Cursor

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

/* DDM ALLREC = OFF */
AccessFlags = 0 ; /* DDM HLDCSR = OFF */

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

Figure 65. DDMSetNextRec Function with Hold Cursor Initially On

 Chapter 3. VSAM API Functions 281

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor

/* DDM ALLREC = OFF */
AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */

Hold Cursor
Indicator is on

Hold Cursor
Indicator is on

Figure 66. DDMSetNextRec Function with Hold Cursor Initially On

282 VSAM for OS/2

DDMSetNextRec

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetNextRec (FileHandle,AccessFlags,RecordBuf,
RecordBufLen,RecCount, RecRtnCnt)

Cursor

Cursor

AccessFlags = 0x00000080 ; /* DDM HLDCSR = ON */
/* DDM ALLREC = OFF */

Hold Cursor
Indicator is off

Hold Cursor
Indicator is off

Figure 67. DDMSetNextRec Function with Hold Cursor Initially Off

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL X'1430' L1 X'111A' RC L2 CP Data

 Chapter 3. VSAM API Functions 283

DDMSetNextRec

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N record where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'111D' RN L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

284 VSAM for OS/2

DDMSetNextRec

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list. When RC and RN are both specified, the record
number specified by RN applies to the first occurrence of the
record and each subsequent record has a record number one
greater than the previous record.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

LL X'111D' RN

 Chapter 3. VSAM API Functions 285

DDMSetNextRec

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'1115' KEY L3 CP Data

Field Description

LL The length (ULONG) of the record attribute list (from the
beginning of LL to the end of Data).

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

286 VSAM for OS/2

DDMSetNextRec

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG)from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. It provides a shorthand way of specifying
N keys, where N>1, without replicating the key's contents.

Note: RC is not included unless identical, consecutive keys
are being returned.

RC The number (ULONG) of duplicate keys in the record attribute
list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 X'1115' KEY L4 CP Data

 Chapter 3. VSAM API Functions 287

DDMSetNextRec

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records (where
N>1) without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

288 VSAM for OS/2

DDMSetNextRec

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 289

DDMSetPathInfo

 DDMSetPathInfo
(Set File or Directory Information)

This function specifies information for a file or a directory.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetPathInfo (PSZ PathName,
 ULONG PathInfoLevel,
 PBYTE PathInfoBuf,
 ULONG PathInfoBufSize
);

 Parameters
PathName

The pointer (PSZ) to the full path name of the file or subdirectory.

PathInfoLevel
The level (ULONG) of the file or directory information being defined.

Level 0x00000001 information is the only defined level. This is the same as
DosSetPathInfo, ulFileInfoLevel bit (FILE_STANDARD).

Level 0x00000001 file information sets a series of EA name/value pairs. On input,
PathInfoBuf maps to an EAOP2 structure. fpGEA2List is ignored. fpFEA2List
points to a data area where the relevant FEA2 list is to be found. oError is
ignored.

On output, fpGEA2List is unchanged. fpFEA2List is unchanged as is the area
pointed to by fpFEA2List. If an error occurred during the set, oError is the offset of
the FEA2 where the error occurred. The API return code is the error code
corresponding to the condition generating the error. If no error occurred, oError is
undefined.

PathInfoBuf
The pointer (PBYTE) to the storage area where the system gets the file
information. Refer to “Extended Attributes” on page 5 for more information on the
format of this buffer.

PathInfoBufSize
The length (ULONG) of PathInfoBuf.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
CMDCHKRM X'1254' Command Check
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
LENGTHRM X'F211' Field Length Error

290 VSAM for OS/2

DDMSetPathInfo

Message ID Code Point Message Title

VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
This function is similar to the DosSetPathInfo command.

An example of requesting Extended Attributes (EAs) is provided on page 5.

Effect on Cursor Position
There is no effect on the cursor position, because the file is not open.

Locking (for Local VSAM File System Only)
For theOS/2 local VSAM file system, the locking behaviour is the same as that of
DOSSetPathInfo. See OS/2 WARP Control Program Programming Reference.

For the AIX local VSAM file system, an exclusive lock is requested for the file.

 Exceptions
This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object and the Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed
the file.

DDMSetPathInfo re-synchronizes the file-change date and
time if the file is not open to another process unless a
higher severity condition prevents it from doing so.

FILDMGRM

Record File Attributes by File Class
These are modifiable record file attributes.

Refer to Table 12 on page 40.

When the FILINISZ EA is changed, it has no effect on the current space already
allocated to the file.

When the DELCP EA of an alternate index file is changed, the DELCP of the base file
and all other indexes is also changed.

When the GETCP EA of an alternate index file is changed, the GETCP of the base file
and all other indexes is also changed.

When the INSCP EA of an alternate index file is changed, the INSCP of the base file
and all other indexes is also changed.

 Chapter 3. VSAM API Functions 291

DDMSetPathInfo

When the MODCP EA of an alternate index file is changed, the MODCP of the base file
and all other indexes is also changed.

292 VSAM for OS/2

DDMSetPlus

 DDMSetPlus
(Set Cursor Plus)

This function sets the cursor to the record number of the file indicated by the cursor,
plus the number of record positions specified by the CsrDisp (Cursor Displacement)
parameter. This function can also return the record, the record number, and record
key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetPlus (HDDMFILE FileHandle,
 ULONG AccessFlags,
 ULONG CsrDisp,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 DDM_ALWINA (Allow Cursor on Inactive Record)
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
1 !DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

CsrDisp
Specifies the cursor displacement (ULONG) in the positive direction.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 297.

 Chapter 3. VSAM API Functions 293

DDMSetPlus

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds

 Remarks
The type of the records in the file (active or inactive) bypassed by DDMSetPlus has no
effect on the cursor positioning.

As an option, DDMSetPlus can:

� Specify whether the cursor can be set to an inactive record position
(DDM_ALWINA).

� Set the hold cursor indicator on (DDM_HLDCSR).

� Not return the requested record (DDM_NODATA).

� Specify whether inactive records should be returned (DDM_RTNINA).

� Specify whether the record key value should be returned (DDM_KEYVALFB).

� Specify whether the record number should be returned (DDM_RECNBRFB).

� Place an update intent on the record (DDM_UPDINT).

Any key limits set are reset when function completes.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

294 VSAM for OS/2

DDMSetPlus

Table 22. DDMSetPlus (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision Table

If the DDMSetPlus function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed) T T T F F T T

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is positioned to the record position that is beyond its original
position by the number of records specified by CsrDisp.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if it is not already locked
by the requester with a SHRRECLK lock. The SHRRECLK record lock is released
when:

 Chapter 3. VSAM API Functions 295

DDMSetPlus

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to Return and Continue With This Reply Message

An inactive record is read and DDM_ALWINA is active,
when DDM_RTNINA is not set or DDM_NODATA is set.

RECINARM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set and RecordBuf doesn't contain
an address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

Access flag DDM_NODATA is not set and the file was
opened without GETAI.

INVRQSRM

RecordBuf is not large enough to hold the returned record. LENGTHRM

The record is damaged (not an active or inactive record). RECDMGRM

296 VSAM for OS/2

DDMSetPlus

This Causes the Function to be Rejected With This Reply Message

The record is inactive and the cursor is not allowed to be
set to an inactive record position (DDM_ALWINA is not
set).

Note: The cursor is not changed.

RECINARM

The record lock cannot be obtained. RECIUSRM

The CsrDisp would cause the cursor to be placed outside
the bounds of the file.

Note: The cursor position is not changed.

The file does not contain any records initially after a
DDMCreateRecFile.

Note: The cursor position is not changed.

RECNBRRM

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

DDMSetPlus (FileHandle,AccessFlags,CsrDisp, RecordBuf,
RecordBufLen)

AccessFlags = 0 ;
CsrDisp = 3 ;

Cursor

Cursor

Figure 68. DDMSetPlus Function

These are examples of RecordBuf data formats:

 Chapter 3. VSAM API Functions 297

DDMSetPlus

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

LL CP Data

LL X'1430' L1 X'111D' RN L2 CP Data

298 VSAM for OS/2

DDMSetPlus

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

LL X'111D' RN

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 299

DDMSetPlus

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1115' KEY

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

300 VSAM for OS/2

DDMSetPlus

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

L3 CP Data

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 301

DDMSetPlus

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

302 VSAM for OS/2

DDMSetPrevious

 DDMSetPrevious
(Set Cursor to Previous Record)

This function sets the cursor to the record that has a record number 1 less than the
current cursor position and optionally returns the record, the record number, and record
key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetPrevious (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen,
 ULONG RecCount,
 PULONG RecRtnCnt
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
8–31 Reserved flags
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 DDM_ALLREC (All Records, Active and Inactive)
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. See “Examples” on page 308.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
Specifies the number (ULONG) of records requested.

 Chapter 3. VSAM API Functions 303

DDMSetPrevious

RecRtnCnt
The pointer (PULONG) to the count of the records actually returned. When Record
Attribute List (RECAL) parameters are specified in RecordBub and RECCNT is
specified within the RECAL, the RecRtnCnt parameter (ULONG) reflects the
RECCNT number of duplicate records. Therefore, if RecordBuf contained 25 data
records, one of which included a RECAL with RECCNT having a value of 150, the
value of RecRtnCnt would be 175.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
If inactive records are bypassed (DDM_ALLREC not set), the cursor is set to the next
active record whose record number is less than the current cursor position. For direct
files, DDM_ALLREC must be false or a INVRQSRM reply will be sent.

As an option, DDMSetPrevious can:

� Set the hold cursor indicator to on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).
� Place an update intent on the record (DDM_UPDINT).

If RecCount specifies a value greater than 1, multiple records are sent to the requester.
RecCount
specifies the number of times DDMSetPrevious is to be performed, with the following
exceptions:

� For all iterations of the function except the last iteration, the RECINARM is not
sent. All other reply messages resulting from the iteration of the function are sent.

� For the last iteration of the function, any reply message resulting from the last
iteration of the function, including RECINARM, is sent.

This moves the cursor to the last record processed by DDMSetPrevious. Bypassed
records (as a result of the DDM_ALLREC bit not being set) are not counted in
RecCount. If RecCount specifies a number and DDM_NODATA is set, no records are
returned.

If RecCount specifies a number greater than the remaining records in the file:

304 VSAM for OS/2

DDMSetPrevious

� The remaining records are sent to the requestor.
� The cursor position is changed.
� A ENDFILRM reply message is sent.

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

Table 23. DDMSetPrevious (DDM_ALLREC or DDM_NODATA) Decision Table

If the DDMSetPrevious function is issued:

When initial system states are:

Record State I I I A A

DDM_ALLREC F T T * *

DDM_NODATA * F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F F T4 F F

RECINA (returned) F T F F F

RECORD (returned) F F F T F

CURSOR (changed) F T T T T

Repeat table after bypassing record T F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

One of the following occurs:

� If DDM_ALLREC is set, the cursor is moved to the previous record
in the file.

� If DDM_ALLREC is not set, the cursor is moved to the previous
active record in the file

� If an ENDFILRM reply message results, the cursor is moved to
BOF.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

 Chapter 3. VSAM API Functions 305

DDMSetPrevious

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if it is not already locked
by the requester with a SHRRECLK lock. The SHRRECLK record lock is released
when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions)

If the record lock is not obtained, the function is rejected with RECIUSRM.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

306 VSAM for OS/2

DDMSetPrevious

 Exceptions
This Causes the Function to Return and Continue With This Reply Message

The following are true:

� The record is inactive.
� The DDM_NODATA flag is set.
� The DDM_ALLREC flag is set.

Note: If DDM_ALLREC is not set, this record is bypassed
and the cursor is set to the previous record, as shown in
Figure 70 on page 309.

RECINARM

This Causes the Function to be Rejected With This Reply Message

DDM_RECNBRFB or DDM_KEYVALFB is set, or
DDM_NODATA is not set, and RecordBuf doesn't contain
an address.

Any data is to be returned and RecRtnCnt does not contain
an address.

ADDRRM

The cursor is set to BOF in the following cases:

� The file does not contain any records initially after a
DDMCreateRecFile.

� The file does not contain any records before the
current cursor position (or any inactive records when
DDM_ALLREC is set).

Note: Any time the ENDFILRM is returned, the hold
cursor indicator is set to OFF in the cursor regardless of
the value specified for the DDM_HLDCSR flag.

ENDFILRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI specified.

DDM_ALLREC(TRUE) is specified for a direct file.

DDM_NODATA is not set and the file was opened without
GETAI.

INVRQSRM

The RecordBufLen value is not large enough to contain the
number of records that are returned.

LENGTHRM

The record is damaged (record not active or inactive). RECDMGRM

The record lock cannot be obtained. RECIUSRM

The RecCount is not greater than 0. VALNSPRM

 Chapter 3. VSAM API Functions 307

DDMSetPrevious

 Examples

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

Assume the following:

Has the following effect:

DDMSetPrevious (FileHandle,AccessFlags,RecordBuf, RecordBufLen,
RecCount, RecRtnCnt)

Cursor

CursorInactive Inactive

AccessFlags = 0x00000010 ; /* DDM ALLREC = ON */
RecCount = 1 ;

Figure 69. DDMSetPrevious Function with DDM_ALLREC Set to On

308 VSAM for OS/2

DDMSetPrevious

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Has the following effect:

DDMSetPrevious (FileHandle,AccessFlags,RecordBuf, RecordBufLen,
RecCount, RecRtnCnt)

Assume the following:

Inactive Inactive

Cursor

Cursor

AccessFlags = 0 ; /* DDM ALLREC = OFF */
RecCount = 1 ;

Figure 70. DDMSetPrevious Function with DDM_ALLREC Not Set

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

LL X'1430' L1 X'111A' RC L2 CP Data

 Chapter 3. VSAM API Functions 309

DDMSetPrevious

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count. The RC parameter is used to indicate the
number of duplicate records. It provides a shorthand way of
specifying N records, where N>1, without replicating the
record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

Note: RC is not included unless identical, consecutive
records are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

LL X'1430' L1 X'111A' RC L2 X'111D' RN

L3 CP Data

310 VSAM for OS/2

DDMSetPrevious

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list. When RC and RN are both specified, the record
number specified by RN applies to the first occurrence of the
record and each subsequent record has a record number one
greater than the previous record.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

LL X'111D' RN

 Chapter 3. VSAM API Functions 311

DDMSetPrevious

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG).

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

L3 CP Data

312 VSAM for OS/2

DDMSetPrevious

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

If RecCount is greater than one, the RecordBufLen must be provided in the
record attribute list (RECAL).

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of the record key value.

X'1430' The value (CODEPOINT) indicating that the following key is a
record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following key is a
key count. The RC parameter is used to indicate the number
of duplicate keys. It provides a shorthand way of specifying
N keys, where N>1, without replicating the key's contents.

RC The number (ULONG) of duplicate keys in the record attribute
list.

Note: RC is not included unless identical, consecutive keys
are being returned.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111A' RC L2 X'1115' KEY

LL X'1430' L1 X'111A' RC L2 X'111D' RN

 Chapter 3. VSAM API Functions 313

DDMSetPrevious

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RC.

X'111A' The value (CODEPOINT) indicating that the following data is
a record count (RECCNT). The RECCNT parameter is used
to indicate the number of duplicate records. RECCNT
provides a shorthand way of specifying N records, where
N>1, without replicating the record's contents.

RC The number (ULONG) of duplicate records in the record
attribute list.

L2 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L3 The length (ULONG) from the beginning of L3 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L4 The length (ULONG) from the beginning of L4 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

L3 X'1115' KEY L4 CP Data

314 VSAM for OS/2

DDMSetPrevious

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 315

DDMSetRecNum

 DDMSetRecNum
(Set Cursor to Record Number)

This function sets the cursor to the record of the file specified by RecordNumber and
optionally returns the record and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetRecNum (HDDMFILE FileHandle,
 ULONG AccessFlags,
 RECNUM RecordNumber,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 DDM_ALWINA (Allow Cursor on Inactive Record)
7 DDM_HLDCSR (Hold Cursor Position)
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
1 Reserved flag
0 DDM_UPDINT (Update Intent)

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

RecordNumber
Specifies the record number (ULONG) of the record to which the cursor should be
moved.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 320.

316 VSAM for OS/2

DDMSetRecNum

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
As an option, DDMSetRecNum can:

� Specify whether the cursor can be set to an inactive record position
(DDM_ALWINA).

� Set the hold cursor indicator on (DDM_HLDCSR).
� Not return the requested record (DDM_NODATA).
� Specify whether inactive records should be returned (DDM_RTNINA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Place an update intent on the record (DDM_UPDINT).

If DDM_KEYVALFB flag is set and the file type is not keyed, the flag is ignored.

 Chapter 3. VSAM API Functions 317

DDMSetRecNum

Table 24. DDMSetRecNum (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision
Table

If the DDMSetRecNum function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed) T T T F F T T

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor is moved to the record specified by RecordNumber.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If DDM_UPDINT(TRUE) is specified and the file was opened for multiple updaters, the
access method acquires an implicit SHRRECLK on the record if the record is not
already locked by the requester with a SHRRECLK lock. The SHRRECLK record lock
is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

318 VSAM for OS/2

DDMSetRecNum

� The cursor is moved to a different record.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function references a record other than the one currently pointed to by the
cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with the RECIUSRM reply
message.

If DDM_UPDINT(TRUE) is specified and the file was not opened for multiple updaters,
an update intent is placed on the record, but the access method does not acquire any
record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to Return and Continue With This Reply Message

The record is inactive and the DDM_ALWINA flag is set on,
and either DDM_RTNINA is set off or DDM_NODATA is
set on.

RECINARM

This Causes the Function to be Rejected With This Reply Message

If DDM_KEYVALFB is set or DDM_NODATA not set,
RecordBuf does not contain a valid address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

DDM_UPDINT(TRUE) is specified and the file was opened
without DELAI or MODAI.

DDM_NODATA is not set and the file was opened without
GETAI.

INVRQSRM

The record is damaged (not an active or inactive record). RECDMGRM

The record is inactive and the DDM_ALWINA flag is set off.

Note: The cursor position is not changed.

RECINARM

The record lock cannot be obtained. RECIUSRM

 Chapter 3. VSAM API Functions 319

DDMSetRecNum

This Causes the Function to be Rejected With This Reply Message

The specified record number (RecordNumber) is outside
the bounds of the file.

Note: File boundaries are discussed in
DDMInsertRecNum on page 102.

Note: The cursor position is not changed.

RECNBRRM

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6
EOF

DDMSetRecNum (FileHandle, AccessFlags, RecordNumber, RecordBuf,
RecordBufLen)

Assume the following:

Has the following effect:

Cursor

Cursor

AccessFlags = 0 ;
RecordNumber = 2 ;

Figure 71. DDMSetRecNum Function

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) and & DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

LL CP Data

320 VSAM for OS/2

DDMSetRecNum

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) and DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(TRUE) and DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) of the field from the beginning of L1 to
the end of the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) of the field from the beginning of L2 to
the end of the key value.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 321

DDMSetRecNum

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) and DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1115' KEY

322 VSAM for OS/2

DDMSetUpdateKey

 DDMSetUpdateKey
(Set Update Intent by Key Value)

This function places an update intent on the record having a key value equal to the key
value specified in KeyValBuf (Key Value Buffer). This function can also return the
record, the record number, and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetUpdateKey (HDDMFILE FileHandle,
 ULONG AccessFlags,
 PDDMOBJECT KeyValBuf,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
6–31 Reserved flags
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 Reserved flag
2 DDM_KEYVALFB (Key Value Feedback)
1 DDM_RECNBRFB (Record Number Feedback)
0 Reserved flag

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

KeyValBuf
The pointer (PDDMOBJECT) to the key value buffer for the key of the record on
which update intent is placed. The format of the key value buffer upon invocation
of the function is:

Field Description

LL The length (ULONG) of the key value description from the
beginning of LL to the end of Key Value.

LL X'1115' Key Value

 Chapter 3. VSAM API Functions 323

DDMSetUpdateKey

X'1115' The value (CODEPOINT) indicating that the following data is a key
value (KEYVAL).

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 327.

Field Description

LL The length (ULONG) of the response from the beginning of LL to
the end of record data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
KEYLENRM X'122D' Invalid Key Length
KEYVALRM X'1240' Invalid Key Value
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECIUSRM X'124A' Record in Use
RECNFNRM X'1225' Record Not Found
VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
Partial key values are valid for the DDMSetUpdateKey function. The first record
selected receives the update intent.

If the key value specified in key value buffer has duplicate entries in the file (duplicate
keys), the first record, in key sequence, of all records with the duplicate key value will
have the update intent placed on it.

As an option, DDMSetUpdateKey can:

� Not return the requested record (DDM_NODATA).
� Specify whether the record key value should be returned (DDM_KEYVALFB).
� Specify whether the record number should be returned (DDM_RECNBRFB).

324 VSAM for OS/2

DDMSetUpdateKey

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is the same as before the function was issued.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters, the access method acquires an implicit
SHRRECLK on the record if it is not already locked by the requester with a SHRRECLK
lock. The SHRRECLK record lock is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� A DDMGetRec with DDM_UPDINT(TRUE) is issued.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function issued references a record other than the one currently pointed to by
the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If the file was not opened for multiple updaters, an update intent is placed on the
record, but the access method does not acquire any record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Chapter 3. VSAM API Functions 325

DDMSetUpdateKey

 Exceptions
This Causes the Function to be Rejected With This Reply Message

If DDM_KEYVALFB or DDM_RECNBRFB is set, or
DDM_NODATA not set, and RecordBuf does not contain a
valid address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

The file was opened without DELAI or MODAI specified.

The access method is not valid for this function.

DDM_NODATA is not set and the file was opened without
GETAI.

INVRQSRM

The key length specified for the key value is larger than the
key length used to build the index.

KEYLENRM

The record lock cannot be obtained. RECIUSRM

The file does not contain any records initially after a
DDMCreateRecFile

A record does not exist with a key value equal to the value
contained in KeyValBuf.

RECNFNRM

RecordNumber is invalid. VALNSPRM

326 VSAM for OS/2

DDMSetUpdateKey

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

Cursor

Update
Intent

Cursor

AccessFlags = 0 ;
RecordNumber = 2 ;

DDMSetUpdateNum (FileHandle, AccessFlags, RecordNumber,
RecordBuf, RecordBufLen)

Figure 72. DDMSetUpdateKey Function

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer from the beginning
of LL to the end of Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'144A' Data

 Chapter 3. VSAM API Functions 327

DDMSetUpdateKey

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list. A value of X'FFFFFFFF' for RN indicates that
the record number of the first record in the record attribute list
is not known.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'111D' RN L2 X'144A' Data

LL X'111D' RN

328 VSAM for OS/2

DDMSetUpdateKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG). A value of X'FFFFFFFF' for
RN indicates that the record number is not known.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(FALSE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 X'144A' Data

LL X'1115' KEY

 Chapter 3. VSAM API Functions 329

DDMSetUpdateKey

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L3 The length (ULONG) from the beginning of L3 to the end of
Data.

X'144A' The value (CODEPOINT) indicating that the following data is
record data.

Data The record data.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

L3 X'144A' Data

330 VSAM for OS/2

DDMSetUpdateKey

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_RECNBRFB(TRUE) &
DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of KEY.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
RN.

X'111D' The value (CODEPOINT) indicating that the following data is
a record number (RECNBR).

RN The record number (ULONG) of the record in the record
attribute list.

L2 The length (ULONG) from the beginning of L2 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1430' L1 X'111D' RN L2 X'1115' KEY

 Chapter 3. VSAM API Functions 331

DDMSetUpdateNum

 DDMSetUpdateNum
(Set Update Intent by Record Number)

This function places an update intent on the record of the file that is indicated by the
RecordNumber parameter and optionally returns the record and record key.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMSetUpdateNum (HDDMFILE FileHandle,
 ULONG AccessFlags,
 RECNUM RecordNumber,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
9–31 Reserved flags
8 !DDM_ALWINA (Allow Update Intent on Inactive Record)
7 Reserved flag
6 Reserved flag
5 DDM_NODATA (No Record Data Returned)
4 Reserved flag
3 DDM_RTNINA (Return Inactive Record)
2 DDM_KEYVALFB (Key Value Feedback)
0–1 Reserved flags

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

332 VSAM for OS/2

DDMSetUpdateNum

RecordNumber
Specifies the record number (ULONG) of the record on which update intent is
placed.

RecordBuf
The pointer (PDDMRECORD) to the record buffer for the returned data. The
format of the returned data in the buffer depends on the bit settings in
AccessFlags. Examples of the returned data formats can be found in “Example”
on page 336.

RecordBufLen
The length (ULONG) of the record buffer.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flag
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record in Use
RECNBRRM X'1224' Record Number Out of Bounds

 Remarks
As an option, DDMSetUpdateNum can:

� Specify whether an update intent can be placed on an inactive record position
(DDM_ALWINA).

� Not return the requested record (DDM_NODATA).

� Specify whether inactive records should be returned (DDM_RTNINA).

� Specify whether the record key value should be returned (DDM_KEYVALFB).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is the same as before the function was issued.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

 Chapter 3. VSAM API Functions 333

DDMSetUpdateNum

Locking (for Local VSAM File System Only)
Record locks apply only to OS/2 local VSAM files on the client OS/2 workstation. For
other local VSAM files, locking occurs at the file level.

If the file was opened for multiple updaters, the access method acquires an implicit
SHRRECLK on the record if it is not already locked by the requester with a SHRRECLK
lock. The SHRRECLK record lock is released when:

� The record is updated (DDMModifyRec or DDMDeleteRec).

� The cursor is moved to a different record.

� A DDMGetRec with DDM_UPDINT(TRUE) is issued.

� The file is closed.

� The DDMForceBuffer function is issued.

� The DDMUnLockRec function is issued.

� Any function issued references a record other than the one currently pointed to by
the cursor (for example, the DDMInsertRecEOF, DDMInsertRecKey,
DDMInsertRecNum, DDMSetUpdateKey, and DDMSetUpdateNum functions).

If the record lock is not obtained, the function is rejected with a RECIUSRM reply
message.

If the file was not opened for multiple updaters, an update intent is placed on the
record, but the access method does not acquire any record locks.

If the function terminates with a reply message that has a severity code of ERROR or
higher, then:

� For error termination (SVRCOD of 8): The record locks are the same as before
the function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the record locks is
determined by the DTALCKST (Data Lock Status) parameter on the reply
message.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

If DDM_KEYVALFB or DDM_RECNBRFB is set, or
DDM_NODATA is not set, and RecordBuf does not contain
a valid address.

ADDRRM

The file handle is invalid. HDLNFNRM

Any reserved bits in AccessFlags are set. INVFLGRM

The file was opened without DELAI or MODAI specified.

The file was opened with a GETAI access intent and
DDM_NODATA(FALSE) was specified.

INVRQSRM

334 VSAM for OS/2

DDMSetUpdateNum

This Causes the Function to be Rejected With This Reply Message

The RecordBufLen value is not large enough to contain the
number of records that are returned.

LENGTHRM

The record position is inactive and an update intent is not
allowed to be set to an inactive record position
(DDM_ALWINA not set).

RECINARM

The record lock cannot be obtained. RECIUSRM

The specified record number (RecordNumber) is outside
the bounds of the file.

Note: The cursor position is not changed.

RECNBRRM

Table 25. DDMSetUpdateNum (DDM_ALWINA, DDM_RTNINA, or DDM_NODATA) Decision
Table

If the DDMSetUpdateNum function is issued:

When initial system states are:

Record State I I I I I A A

DDM_ALWINA T T T F F * *

DDM_RTNINA T * F * * * *

DDM_NODATA F T F F T F T

The final system states are: ↓ ↓ ↓ ↓ ↓ ↓ ↓

RECINARM (returned) F T4 T4 T8 T8 F F

RECINA (returned) T F F F F F F

RECORD (returned) F F F F F T F

CURSOR (changed, see note) F F F F F F F

Legend

A Active
I Inactive
T TRUE (On)
F FALSE (Off)
T4 TRUE with SVRCOD (Warning)
T8 TRUE with SVRCOD (Error)
* Either TRUE or FALSE

Note: The cursor position does not change.

 Chapter 3. VSAM API Functions 335

DDMSetUpdateNum

 Example

EOF

BOF BOF

BEFORE AFTER

0

1

2

3

4

5

6

Record
Number

Record
Number

0

1

2

3

4

5

6EOF

Assume the following:

Has the following effect:

Cursor

Update
Intent

Cursor

AccessFlags = 0 ;
RecordNumber = 2 ;

DDMSetUpdateNum (FileHandle, AccessFlags, RecordNumber,
RecordBuf, RecordBufLen)

Figure 73. DDMSetUpdateNum Function

These are examples of RecordBuf data formats:

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record buffer (from the beginning
of LL to the end of Data).

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

LL CP Data

336 VSAM for OS/2

DDMSetUpdateNum

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(FALSE) & DDM_NODATA(TRUE)

RecordBuf
Nothing is returned.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_NODATA(FALSE)

RecordBuf
DATA FORMAT

Field Description

LL The length (ULONG) of the record attribute list from the
beginning of LL to the end of Data.

X'1430' The value (CODEPOINT) indicating that the following data is
a record attribute list (RECAL).

L1 The length (ULONG) from the beginning of L1 to the end of
the key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

L2 The length (ULONG) from the beginning of L2 to the end of
Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record
data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of the inactive record.

AccessFlags
DDM_KEYVALFB(TRUE) & DDM_NODATA(TRUE)

RecordBuf
DATA FORMAT

LL X'1430' L1 X'1115' KEY L2 CP Data

 Chapter 3. VSAM API Functions 337

DDMSetUpdateNum

Field Description

LL The length (ULONG) from the beginning of LL to the end of
the Key value.

X'1115' The value (CODEPOINT) indicating that the following data is
a key value (KEYVAL).

KEY The record key value.

LL X'1115' KEY

338 VSAM for OS/2

DDMTruncFile

 DDMTruncFile
(Move EOF to Current Cursor Position)

This function moves EOF to the current cursor position.

The records starting at the current cursor position and ending at the old EOF are
eliminated.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMTruncFile (HDDMFILE FileHandle
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

FILIUSRM X'120D' File in Use
HDLNFNRM X'1257' File Handle Not Found
INVRQSRM X'123C' Invalid Request

 Remarks
This function is only valid for sequential files.

This function physically shortens the file by the number of records eliminated. Any data
in these records is permanently lost.

Effect on Cursor Position
After this function is successfully completed, the cursor is set to the new EOF.

Locking (for Local VSAM File System Only)
The file must be opened with MODNONLK.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file was not opened with MODNONLK. FILIUSRM

The file handle is invalid. HDLNFNRM

A direct, keyed, or alternate index file is accessed.

MODAI access intent was not specified when the file was
opened.

INVRQSRM

 Chapter 3. VSAM API Functions 339

DDMTruncFile

 Example

BOF BOF

BEFORE AFTER

EOF

Cursor
Cursor
EOF

Assume the following is executed at cursor position 27:

DDMTruncFile (FileHandle)

Has the following effect:

Record 38

Record 27

Record 26

Record 2

Record 1

Record 26

Record 2

Record 1

Figure 74. DDMTruncFile Function

340 VSAM for OS/2

DDMUnLoadFileFirst

 DDMUnLoadFileFirst
(Unload Records from File)

This function unloads records from a file and transfers them to the requester's buffers.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMUnLoadFileFirst (PSZ FileName,
 PHDDMLOAD UnLoadHandle,
 ULONG AccessFlags,
 PULONG Flags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen,
 CODEPOINT UnloadOrder,
 PULONG RecCount
);

 Parameters
FileName

The pointer (PSZ) to the name of the record-oriented file to be unloaded to the
requester's buffers.

UnLoadHandle
The pointer (PHDDMLOAD) to the location where the system returns a handle
value that is to be used with a subsequent corresponding DDMUnLoadFileNext
function.

AccessFlags
The AccessFlags (ULONG) specify the action to be taken depending on whether
the bit flag is set. The bit flags are:

Bit Meaning
7–31 Reserved flags
6 DDM_BYPDMG (Bypass Damaged Records)
4–5 Reserved flags
3 DDM_RTNINA (Return Inactive Record)
0–2 Reserved flags

For detailed information on the access flags, see Chapter 5, “VSAM API Flags” on
page 401.

Flags
The pointer (PULONG) to the bit flags parameter. The bit flags are:

Bit Meaning

1–31 Reserved flags

0 DDM_MOREDATA flag.

The system sets this bit upon return from DDMUnLoadFileFirst if the
record buffer is not large enough to hold all of the target file's

 Chapter 3. VSAM API Functions 341

DDMUnLoadFileFirst

existing records. This flag bit notifies the user to issue a
subsequent DDMUnLoadFileNext in order to continue the unload
function. When the DDM_MOREDATA flag bit is off, the system
has completed the unload of the entire file and a NULL value is
returned for UnLoadHandle.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The returned record buffer can
contain the following objects:

 RECORD
 RECAL

These objects can be in mixed order and can be repeated. The format of the
record buffer upon return of the function is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
record data or a RECAL (Record Attribute List) containing a record
number and record data.

X'144A' Indicates that the following data is record data.

X'1430' Indicates that the following data is a RECAL
(Record Attribute List). A RECAL object is
returned when inactive records have been
encountered. This is not used when unloading in
key order.

If CP is a record attribute list, the format of Data is:

Field Description

L2 The length (ULONG) from the beginning of L2 to the end of RC.

X'111A' The value (CODEPOINT) indicating that the following data is a
record count (RECCNT). The RECCNT parameter is used to
indicate the number of duplicate inactive records, where N≥1.

RC The number (ULONG) of duplicate records in the record attribute
list.

L3 The length (ULONG) from the beginning of L3 to the end of RN.

LL CP Data

LL X'111A' RC L3 X'111D' RN L4 CP Data

342 VSAM for OS/2

DDMUnLoadFileFirst

X'111D' The value (CODEPOINT) indicating that the following data is a
record number (RECNBR).

RN The record number (ULONG) of the record in the record attribute
list.

L4 The length (ULONG) from the beginning of L4 to the end of Data.

CP The value (CODEPOINT) indicating that the following is either
record data or an inactive record length.

X'144A' Indicates that the following data is record data.

X'142D' Indicates that the following data is a ULONG
length of an inactive record.

Data The record data or the length (ULONG) of an inactive record.

If CP is record data, the format is RECORD.

RecordBufLen
The length (ULONG) of the record buffer.

UnloadOrder
(CODEPOINT) Specifies the order in which the function processes the records in
the file. The valid values are:

RNBORD Record Number Order (X'145E')

KEYORD Key Order Processing (X'145D')

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore, if
RecordBuf contained 10 data records and a RECAL, and RECCNT had a value of
100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
ENDFILRM X'120B' End of File
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILIUSRM X'120D' File in Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged
VALNSPRM X'1252' Parameter Value Not Supported

 Chapter 3. VSAM API Functions 343

DDMUnLoadFileFirst

 Remarks
The DDMUnLoadFileFirst function unloads the records of the file in the order specified
by UnloadOrder. If the file is not an alternate index or keyed file, then the specified
value of UnloadOrder is ignored and the records are unloaded in record number order.

� To unload in record number order:

1. The DDMUnLoadFileFirst function unloads records from a file in a sequence
order that begins with the first record and proceeds through the remainder of
the file.

2. If the DDM_RTNINA flag is not set, inactive records are not returned. A
Record Attribute List (RECAL) is placed in the RecordBuf that includes the
record number (RECNBR) of the next active record in the file. The RECAL
also includes the active record.

3. If inactive records are to be returned, a RECAL object that includes a
RECCNT object is placed in the RecordBuf. RECCNT contains the number of
duplicate inactive records. RECAL also includes the inactive records.

� To unload in key order:

1. The DDMUnLoadFileFirst function unloads records from a file beginning with
the first record in the key sequence and proceeding sequentially through the
file in key order.

2. If the DDM_RTNINA flag is set, then it is ignored for this unload order.

� For all unload orders:

The RecCount is the actual number of records sent on each request; it does not
include inactive records that are not returned. The RecCount permits the requester
to verify that the total number of records sent is correct. If the total RecCount does
not match, the requester can re-issue the DDMUnLoadFileFirst function. Before
issuing DDMUnloadFileFirst, the requester must first close UnLoadHandle by
issuing a DDMUnLoadFileNext function with the DDM_CLOSEUNLOAD bit set.

The user can specify that damaged records be bypassed. For each record bypassed, a
RECDMGRM reply message with a warning (SVRCOD of 4) is returned. Bypassed
damaged records are not counted as part of the RecCount.

Multiple DDMUnLoadFileFirst functions may be issued on the same file without issuing
the corresponding DDMUnLoadFileNext close functions. Each DDMUnLoadFileFirst
function returns a unique unload handle. This allows more than one unload cursor to
be active at the same time on the same file.

If an error condition is encountered, do not use the file handle in a
DDMUnLoadFileNext.

Effect on Cursor Position
There is no effect on the cursor position.

344 VSAM for OS/2

DDMUnLoadFileFirst

Locking (for Local VSAM File System Only)
DDMUnLoadFileFirst attempts to:

1. Obtain a GETGETLK lock on the file.

If the GETGETLK lock is obtained, the DDMUnLoadFileFirst is processed
(successfully or unsuccessfully).

If the GETGETLK lock is not obtained, the DDMUnLoadFileFirst is rejected with a
FILIUSRM reply message.

2. Release the GETGETLK it obtained on the file if the DDM_MOREDATA flag is not
active. If the DDM_MOREDATA flag is active, the lock is released by the
DDMUnLoadFileNext function, provided the Close UnloadFile flag is set.

If the function terminates with a reply message that has a severity code of ERROR or
higher then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The file that the records are loaded into is a non-VSAM file. ACCATHRM

The RecordBuf address is NULL.

The address for the Flags is not valid.

ADDRRM

The file to be unloaded is empty. ENDFILRM

The file has already been opened by DDMOpen or
DDMLoadFileFirst (DDM_CHAIN flag on).

FILIUSRM

Any of the reserved bits are set in AccessFlags. INVFLGRM

UnLoadHandle is not specified. INVRQSRM

The RecordBufLen value is not large enough for at least 1
record.

LENGTHRM

UnloadOrder parameter does not contain a correct value. VALNSPRM

 Chapter 3. VSAM API Functions 345

DDMUnLoadFileFirst

This Causes a Reply Message to be Generated with
SRVCOD = X'04' for each out-of-sync file in the file
object. The Function Continues With This Reply Message

If the file-change date and time recorded by the VSAM API
is not the same as that recorded by the file system, either
an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed
the file.

DDMUnLoadFileFirst and DDMUnLoadFileNext will not
re-synchronize the file-change date and time during close
processing.

FILDMGRM

346 VSAM for OS/2

DDMUnLoadFileFirst

 Examples

BOF

EOF

0

1

2

3

4

5

XXXX

(inactive)

(inactive)

YYYY

x 0..0A x 144A XXXX x 0..1A x 1430 x 0..0A x 111A x 0..02

x 0..0A x 142D x 0..04 x 0..0A x 144A YYYY

UnloadOrder = 0x145E ;

DDMUnLoadFileFirst (FileName, UnLoadHandle, AccessFlags,
Flags, RecordBuf, RecordBufLen,

Record
Number

Assume the following:

Upon return, the value of RecCount is 4, and the RecordBuf contains:

AccessFlags = 0x00000008 ; /* DDM RTNINA = TRUE */

UnloadOrder, RecCount)

Figure 75. DDMUnLoadFileFirst Function When Returning Active or Inactive Records

 Chapter 3. VSAM API Functions 347

DDMUnLoadFileFirst

BOF

(inactive)

(inactive)

AAAA

CCCC

0

1

2

3

4

5

6EOF

ZZZZ

AccessFlags = 0 ; /* DDM RTNINA = FALSE */

x 0..0A x 144A AAAA x 0..1A x 1430 x 0..0A x 111D x 0..04

x 0..0A x 144A CCCC x 0..0A x 144A ZZZZ

UnloadOrder = 0x145E ;
DDMUnLoadFileFirst (FileName,UnLoadHandle,AccessFlags,Flags,

RecordBuf, RecordBufLen,UnloadOrder,RecCount)

Assume the following:

Record
Number

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 76. DDMUnLoadFileFirst Function Skipping Inactive Records

348 VSAM for OS/2

DDMUnLoadFileFirst

BOF

AAAA

CCCC

0

1

2

3

4

5

6EOF

ZZZZ

(Damaged)

(Damaged)

x 0..0A x 144A AAAA x 0..0A x 144A CCCC x 0...0A x 144A ZZZZ

AccessFlags = 0x00000040 ; /* DDM BYPDMG = TRUE */

DDMUnLoadFileFirst (FileName,UnLoadHandle,AccessFlags,Flags,
RecordBuf, RecordBufLen,UnloadOrder,RecCount)

In addition, two reply messages are sent, one for each damaged record encountered.
The reply message is RECDMGRM. The reply messages contain the record numbers
of the damaged records.

Assume the following:

Record
Number

Upon return, the RecCount value is 3, and the RecordBuf contains:

Figure 77. DDMUnLoadFileFirst Function Skipping Damaged Records

 Chapter 3. VSAM API Functions 349

DDMUnLoadFileFirst

EOF

DDMUnLoadFileFirst (FileName,UnLoadHandle,AccessFlags,Flags,
RecordBuf, RecordBufLen,UnloadOrder,RecCount)
Key Value

XXXXXXXX

(inactive)

(inactive)

AAAAAAAA

KKKKKKKK

BOF

XXX

AAA

KKK

UnloadOrder = 0x145D ; /* Key Order Processing */
AccessFlags = 0 ; /* DDM RTNINA = False */

x 0..0E x 144A AAAAAAAA x 0..0E x 144A

KKKKKKKK x 0...0E x 144A XXXXXXXX

Assume the following:

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 78. DDMUnLoadFileFirst Function Unloading in Key Order

350 VSAM for OS/2

DDMUnLoadFileNext

 DDMUnLoadFileNext
(Unload Records from File)

This function unloads records from a target server file and transfers them to the
requester.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMUnLoadFileNext (HDDMLOAD UnLoadHandle,
 ULONG Flags,
 PULONG UnloadFlags,
 PDDMRECORD RecordBuf,
 ULONG RecordBufLen,
 PULONG RecCount
);

 Parameters
UnLoadHandle

The handle value (HDDMLOAD) returned previously to the requester in a
corresponding DDMUnLoadFileFirst function.

Flags
The bit flags (ULONG) parameter. The bit flags are:

Bit Meaning

2–31 Reserved flags

1 DDM_CLOSEUNLOAD flag.

The user has the option of setting this flag bit and notifying the
system to terminate UnLoadHandle based chaining (for the
DDM_MOREDATA flag) and de-allocate UnLoadHandle based
system resources for this UnLoadFile function. This flag provides
the user with a way of prematurely terminating the unload file
operation quickly without having to wait until the entire file has been
unloaded.

When this flag is set, no records will be unloaded and the
UnloadFlags and RecCount will not be set.

0 Reserved flag.

UnloadFlags
The pointer (PULONG) to the bit unload flags parameter. The bit flags are:

Bit Meaning

1–31 Reserved flags

 Chapter 3. VSAM API Functions 351

DDMUnLoadFileNext

0 DDM_MOREDATA flag.

The system sets this bit upon return from DDMUnLoadFileNext, if
the record buffer is not large enough to hold all of the target file's
existing records. This flag bit notifies the user to issue a
subsequent DDMUnLoadFileNext in order to continue the unload file
function. When the DDM_MOREDATA flag bit is off, the system
has completed the unload of the entire file and has de-allocated all
previously allocated system resources based on UnLoadHandle. No
user-initiated action is required to terminate this function.

RecordBuf
The pointer (PDDMRECORD) to the record buffer. The returned record buffer can
contain the following objects:

 RECORD
 RECAL

These objects can be in mixed order and can be repeated. The format of the
record buffer upon return of the function is:

Field Description

LL The length (ULONG) of the record description from the beginning
of LL to the end of Data.

CP The value (CODEPOINT) indicating that the following data is either
record data or a record attribute list containing a record number
and record data.

X'144A' Indicates that the following data is record data.

X'1430' Indicates that the following data is a record
attribute list.

A RECAL object is returned when inactive records have been
encountered. This is not used when unloading in key order.

� If CP is a record attribute list, the format of DATA is:

Field Description

L2 The length (ULONG) from the beginning of L2
to the end of RC.

X'111A' The value (CODEPOINT) indicating that the
following data is a record count (RECCNT).
The RECCNT parameter is used to indicate
the number of duplicate inactive records,
where N≥1.

LL CP Data

LL X'111A' RC L3 X'111D' RN L4 CP Data

352 VSAM for OS/2

DDMUnLoadFileNext

RC The number (ULONG) of duplicate records in
the record attribute list.

L3 The length (ULONG) from the beginning of L3
to the end of RN.

X'111D' The value (CODEPOINT) indicating that the
following data is a record number (RECNBR).

RN The record number (ULONG) of the record in
the record attribute list.

L4 The length (ULONG) from the beginning of L4
to the end of Data.

CP The value (CODEPOINT) indicating that the
following is either record data or an inactive
record length.

X'144A' Indicates that the following
data is record data.

X'142D' Indicates that the following
data is a ULONG length of an
inactive record.

Data The record data or the length (ULONG) of an
inactive record.

� If CP is record data, the format is record.

The number of record descriptions (record data and inactive record lengths) should
be the same as the number indicated in the record count.

RecordBufLen
The length (ULONG) of the record buffer.

RecCount
The count (ULONG) of the record descriptions in the record buffer.

The number of record descriptions (record data and inactive record lengths) should
be the same number as indicated in the record count. When a RECAL (Record
Attribute List) is specified in RecordBuf and RECCNT of N is specified within the
RECAL, the RecCount parameter reflects the N duplicate records. Therefore if
RecordBuf contained 10 data records and a RECAL, with RECCNT having a value
of 100, the value of RecCount would be 110.

 Returns
Message ID Code Point Message Title

ADDRRM X'F212' Address Error
HDLNFNRM X'1257' File Handle Not Found
INVFLGRM X'F205' Invalid Flags
INVRQSRM X'123C' Invalid Request
LENGTHRM X'F211' Field Length Error
RECDMGRM X'1249' Record Damaged

 Chapter 3. VSAM API Functions 353

DDMUnLoadFileNext

Message ID Code Point Message Title

VALNSPRM X'1252' Parameter Value Not Supported

 Remarks
DDMUnLoadFileNext starts unloading records for the position in the file that was
current from a previous DDMUnLoadFileNext or DDMUnLoadFileFirst function.

DDMUnLoadFileNext unloads the records of the file in the order specified by the
UnloadOrder parameter of the originating DDMUnLoadFileFirst function. If the file is
not an alternate index or keyed file, the specified value of the originating
DDMUnLoadFileFirst UnloadOrder parameter is ignored and the records are unloaded
in record number order. DDM_RTNINA and DDM_BYPDMG flags that were set in
DDMUnLoadFileFirst are saved and used in the function.

� To load in record number order:

1. DDMUnLoadFileNext unloads records from a file in sequence order specified
by the originating DDMUnLoadFileFirst.

2. If the originating access flag DDM_RTNINA was not set, inactive records are
not returned. A RECAL (Record Attribute List) is placed in the RecordBuf that
includes the record number (RECNBR) of the next active record in the file.
The RECAL also includes the active record.

3. If inactive records are to be returned, a RECAL object that includes a
RECCNT object is placed in the RecordBuf. RECCNT contains the number of
duplicate inactive records. RECAL also includes the inactive records.

� To unload in key order:

1. DDMUnLoadFileNext unloads records from a file beginning with the first record
in the key sequence and proceeding sequentially through the file in key order.

2. If the originating access flag DDM_RTNINA was set, then it is ignored for this
unload order.

� For all unload orders:

1. RecCount is the actual number of records transferred for each request; it does
not include inactive records that are not returned. RecCount lets the requester
verify that the total number of records transferred is correct.

2. If the total record count does not match, the requester can optionally close the
UnLoadHandle by issuing a DDMUnLoadFileNext function with the
DDM_CLOSEUNLOAD flag set and start a new unload file operation by
issuing a DDMUnLoadFileFirst function.

If an error condition is encountered, do not use the file handle in a
DDMUnLoadFileNext.

354 VSAM for OS/2

DDMUnLoadFileNext

Effect on Cursor Position
There is no effect on the cursor position because the file is not open.

Locking (for Local VSAM File System Only)
DDMUnLoadFileNext releases the GETGETLK lock that was obtained by
DDMUnLoadFileFirst on the file if no more data is to be unloaded or the
DDM_CLOSEUNLOAD flag is set.

If DDMUnLoadFileNext terminates with a reply message that has a severity code of
ERROR or higher then:

� For error termination (SVRCOD of 8): The file locks are the same as before the
function was issued.

� For severe termination (SVRCOD of 16 or higher): The state of the file locks may
not be the same as before the function was issued.

 Exceptions
This Causes the Function to be Rejected With This Reply Message

The RecordBuf address is NULL.

The address for the Flags is not valid.

ADDRRM

The handle from DDMUnLoadFileFirst is not used as the
handle for a DDMUnLoadFileNext.

HDLNFNRM

Any of the reserved bits in AccessFlags are set. INVFLGRM

This Causes the Function to be Terminated With This Reply Message

The RecordBufLen value is not large enough for at least 1
record.

LENGTHRM

 Chapter 3. VSAM API Functions 355

DDMUnLoadFileNext

 Examples

BOF

EOF

XXXX

(inactive)

(inactive)

YYYY

x 0..0A x 144A XXXX x 0..1A x 1430 x 0..0A x 111A x 0..02

x 0..0A x 142D x 0..04 x 0..0A x 144A YYYY

0

21

22

23

24

25

Originating UnloadOrder = 0x145E ;

Assume the following:

Upon return, the value of RecCount is 4, and the RecordBuf contains:

Originating AccessFlags = 0x00000008 ; /* DDM RTNINA = TRUE */

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

Record
Number

Figure 79. DDMUnLoadFileNext Function

356 VSAM for OS/2

DDMUnLoadFileNext

BOF

(inactive)

(inactive)

AAAA

CCCC

EOF

ZZZZ

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

0

5

6

7

8

9

10

Originating UnloadOrder = 0x145E ;

x 0..0A x 144A AAAA x 0..1A x 1430 x 0..0A x 111D x 0..08

x 0..0A x 144A CCCC x 000A x 144A ZZZZ

Originating AccessFlags = 0x00000000 ; /* DDM RTNINA = FALSE */
Assume the following:

Record
Number

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 80. DDMUnLoadFileNext Function Skipping Inactive Records

 Chapter 3. VSAM API Functions 357

DDMUnLoadFileNext

BOF

AAAA

CCCC

EOF

ZZZZ

(Damaged)

(Damaged)

x 0..0A x 144A AAAA x 0..0A x 144A CCCC x 0...0A x 144A ZZZZ

0

21

22

23

24

25

26

Originating AccessFlags = 0x00000040 ; /* DDM BYPDMG = TRUE */

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

Record
Number

Upon return, the RecCount value is 3, and the RecordBuf contains:

Assume the following:

In addition, two reply messages are sent, one for each damaged record encountered.
The reply message is RECDMGRM. The reply messages contain the record numbers
of the damaged records.

Figure 81. DDMUnLoadFileNext Function Skipping Damaged Records

358 VSAM for OS/2

DDMUnLoadFileNext

EOF

Key Value

XXXXXXXX

(inactive)

(inactive)

AAAAAAAA

KKKKKKKK

BOF

XXX

AAA

KKK

x 0..0E x 144A AAAAAAAA x 0..0E x 144A

KKKKKKKK x 0...0E x 144A XXXXXXXX

DDMUnLoadFileNext (UnLoadHandle,Flags,RecordBuf,
RecordBufLen,RecCount)

Originating AccessFlags = 0x00000000 ; /* DDM RTNINA = False */
Originating Unloader = 0x145D ; /* Key Order Processing */

Assume the following:

Upon return, the value of RecCount is 3, and the RecordBuf contains:

Figure 82. DDMUnLoadFileNext Function Unloading in Key Order

 Chapter 3. VSAM API Functions 359

DDMUnlockRec

 DDMUnLockRec
(Unlock Implicit Record Lock)

This function releases any implicit record lock (that is, an update intent) currently held
by the cursor.

 Syntax
#include dub.h /\ Required for all platforms \/

APIRET DDMUnLockRec (HDDMFILE FileHandle
);

 Parameters
FileHandle

The file handle (HDDMFILE) obtained from DDMOpen.

 Returns
Message ID Code Point Message Title

EXSCNDRM X'123A' Existing Condition
HDLNFNRM X'1257' File Handle Not Found

 Remarks
The DDM architecture requires that an "update intent" be set for a record before the
record can be deleted or modified.

For the AIX local VSAM file system, DDMUnLockRec releases the update intent (if any)
currently in place. However, concurrent data access control is done at the file level
(that is, record locking is not supported).

Effect on Cursor Position
Normal Completion (SVRCOD of 0 or 4)

The cursor position is not changed.

Error Termination (SVRCOD of 8)
The cursor position is the same as before the function was issued.

Severe Termination (SVRCOD of 16 or higher)
The cursor position is determined by the CSRPOSST (Cursor Position
Status) parameter on the reply message.

 Exceptions
This Causes the Function to Terminate Normally With This Reply Message

The user requests to release the implicit record lock and
the cursor does not hold a record lock.

Note: If this condition cannot be detected, the function
terminates normally.

EXSCNDRM

360 VSAM for OS/2

DDMUnlockRec

This Causes the Function to be Rejected With This Reply Message

The file handle is invalid. HDLNFNRM

 Chapter 3. VSAM API Functions 361

DDMUnlockRec

362 VSAM for OS/2

Chapter 4. VSAM API Common Parameters

This chapter provides detailed information about the common parameters of reply
messages, data buffers, and EAs.

The parameters are listed in alphabetical order. Each parameter is described in three
parts: purpose, code point, and structure. A code point is a hexadecimal value that
uniquely identifies the class of a DDM object. The parameter name is also the name of
the pre-defined constant for the code point of the parameter. Each common parameter
is a DDM object whose generic structure is defined by the DDMOBJECT type:

LL Indicates the total length (ULONG) of the data description from the
beginning of the length field to the end of Data.

CP Indicates the code point of the parameter.

Data Indicates the objects contained in the parameter.

LL CP Data

ACCINTLS (Access Intent List)
Purpose Specifies the file access intentions of the requester. One or more file

access intents may be returned. The same value should not be
returned more than once in the list.

Code Point The code point for this parameter is X'1134'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'1134' The value (code point) indicating that the following
data is an access intent list.

Data A list of access intent values (code point):

X'140B' DELAI (Delete Record Access
Intent)

X'1416' GETAI (Get Record Access
Intent)

X'1417' INSAI (Insert Record Access
Intent)

LL X'1134' Data

 Copyright IBM Corp. 1993, 1997 363

X'1428' MODAI (Modify Record Access
Intent)

ACCMTHCL (Access Method Class)
Purpose Specifies the class of the access method to be opened for file

access.

Code Point The code point for this parameter is X'114E'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'114E' The value (code point) indicating that the following
data names the class of the access method.

Data The value (code point) specifying the access
method class: dl tsize=15.

X'140B' DELAI (Delete Record Access Intent)

X'1416' GETAI (Get Record Access Intent)

X'1417' INSAI (Insert Record Access Intent)

X'1428' MODAI (Modify Record Access Intent)

LL X'114E' Data

ACCMTHLS (Access Method List)
Purpose Specifies the access methods that can be used to access the

records of a file.

When returned by DDMQueryFileInfo or DDMQueryPathInfo, only
those access methods supported are listed. If no access method
classes are specified, the records of the file cannot be accessed.

Code Point The code point for this parameter is X'1402'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

LL X'1402' Data

364 VSAM for OS/2

X'1402' The value (code point) indicating that the following
data is a list of the access methods.

Data The values (code point) specifying the access
methods:

X'1433' RELRNBAM (Relative by
Record Number Access
Method)

X'1435' RNDRNBAM (Random by
Record Number Access
Method)

X'1407' CMBRNBAM (Combined
Record Number Access
Method)

X'1432' RELKEYAM (Relative by Key
Access Method)

X'1434' RNDKEYAM (Random by Key
Access Method)

X'1406' CMBKEYAM (Combined Keyed
Access Method)

X'1405' CMBACCAM (Combined
Access Access Method)

ALCINISZ (Allocate Initial Extent)—DFM Only
Purpose Specifies whether storage is to be allocated for the initial extent of a

file at the time the file is created. The value can be:

TRUE Indicates the initial extent should be allocated.

FALSE Indicates the initial extent should NOT be
allocated.

Note: The value specified in the ALCINISZ parameter is considered
a preference. The target system can choose to ignore this
parameter.

Code Point The code point for this parameter is X'1154'.

Structure

Field Description

X'00000007' The length (ULONG) of the attribute description
(from the beginning of this length field to the end
of data).

X'00000007' X'1154' Status

 Chapter 4. VSAM API Common Parameters 365

X'1154' The value (code point) indicating that the following
data is the initial file size.

Status The 1-byte status of ALCINISZ. The value can
be:

X'F1' Indicates a value of TRUE.

X'F0' Indicates a value of FALSE.

ALTINDLS (Alternate Index List)
Purpose Specifies a list of alternate index file names associated for a base

file. The base file can only be a keyed file.

Code Point The code point for this parameter is X'144E'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'144E' The value (code point) indicating that the following
data is a list of alternate index file names.

Data A list of alternate index file names. The maximum
file name length is defined by the underlying file
system driver.

LL The length (ULONG) from the
beginning of LL to the end of
the file name.

X'110E' The value (code point)
indicating that the following data
is a file name.

Filename An ASCII string containing the
file name and ending with a null
character.

LL X'144E' Data

LL X'1103' Filename LL X'1103' Filename

... LL X'1103' Filename

366 VSAM for OS/2

BASFILNM (Base File)
Purpose Specifies the name of the file upon which an alternate index file is

based.

The base file cannot be an alternate index file. The base file can
only be a keyed file.

A DDM file name is an unarchitected string of characters. DDM
assumes that a name provided by the user to the source system
DDM is in the format required by the target system data manager for
locating the file. The named string can contain qualifiers for libraries,
catalogs, members, instances, or other levels of identification for the
file.

Code Point The code point for this parameter is X'1103'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'1103' The value (code point) indicating that the following
data is a base file name.

Data The base file name.

LL X'1103' Data

BASMGMNM (Base Management Class Name)
Purpose Specifies the name of the management class for the base file in a

reply message.

Code Point The code point for this parameter is X'11D3'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Name.

X'11D3' The value (code point) indicating that the following
information is the base management class name.

Name The character string of up to 16 characters.

LL X'11D3' Name

 Chapter 4. VSAM API Common Parameters 367

BASSTGNM (Base Storage Class Name)
Purpose Specifies the name of the storage class for the base file in a reply

message.

Code Point The code point for this parameter is X'11D4'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Name.

X'11D4' The value (code point) indicating that the following
information is the base storage class name.

Name The character string of up to 16 characters.

LL X'11D4' Name

CODPNT (Code Point Attribute)
Purpose Specifies a value that is a DDM-architected code point.

Code Point The code point for this parameter is X'000C'.

Structure

Field Description

X'0008' The length (ULONG) of the code point description
(from the beginning of this length field to the end
of the code point).

X'000C' The value (code point) indicating that the following
information is a code point.

Code Point The code point.

X'0008' X'000C' Code Point

CSRPOSST (Cursor Position Status)
Purpose Specifies the status of the cursor in a reply message.

If the severity code is at least ERROR:

� The cursor position is the same as before the function that
caused the reply message that carried this parameter.

� If the function was DDMInsertRecNum, DDMInsertRecEOF,
DDMInsertRecKey, DDMSetNextRec, or DDMSetKeyNext with

368 VSAM for OS/2

RecCount greater than 1, the cursor position is the same as
before the function iteration that caused the reply message.

A value of TRUE (X'F1') indicates that the cursor position is the
same as before the function was issued or before the function
iteration in error. TRUE is the only valid value if the severity code is
ERROR.

A value of FALSE (X'F0') indicates that the cursor position may not
be the same as before the function was issued, or before the
function iteration in error, or that the current cursor position is
unknown.

If the severity code is SC_NO_ERROR or SC_WARNING, the value
of this parameter is ignored. The cursor status is as specified for the
function that returned the reply message with a severity code of
SC_NO_ERROR or SC_WARNING.

Code Point The code point for this parameter is X'115B'.

Structure

Field Description

X'0007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'115B' The value (code point) for cursor position status.

Status The 1-byte cursor position status:

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

Note: This value is always X'F1'.

X'0007' X'115B' Status

DATE (Date and Time)
Purpose A date and time can be specified for the required level of resolution.

The optional data terms (for example, seconds) can be specified only
if the preceding terms (for example, minutes) are also specified.

Dates and times are determined by the calendar and clock of the
originator of the date/time stamp. Dates are specified according to
the Gregorian calendar. Times are specified according to the military
clock.

Code Point The code point of this term is X'000F'.

Structure

 Chapter 4. VSAM API Common Parameters 369

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'000F' The value (code point) indicating that the following
is date and time data.

Data The date and time data.

Field Description

Year The year:

� Character digit string
 � LENGTH 4
� Minimum value is 0000
� Maximum value is 9999.

Month The month in the year:

� Character digit string
 � LENGTH 2
� Enumerated values for this parameter:

00 (Month is unknown or special meaning
is being conveyed that is server
dependent.)

01 (Month of January)
02 (Month of February)
03 (Month of March)
04 (Month of April)
05 (Month of May)
06 (Month of June)
07 (Month of July)
08 (Month of August)
09 (Month of September)
10 (Month of October)
11 (Month of November)
12 (Month of December)

Day The day of the month:

� Character digit string
 � LENGTH 2
� Minimum value is 00
� Maximum value is 31.
� A value of 00 means the day is unknown or

special meaning is being conveyed that is
server dependent.

LL X'000F' Data

370 VSAM for OS/2

Hour The hour of the day:

� Character digit string
 � LENGTH 2
� Minimum value is 00
� Maximum value is 23
� 00 is midnight, 06 is 6 a.m., 12 is noon, and

18 is 6 p.m.

Minute The minute of the hour:

� Character digit string
 � LENGTH 2
� Minimum value is 00
� Maximum value is 59.

Second The second of the minute:

� Character digit string
� LENGTH 2
� Minimum value is 00
� Maximum value is 59.

DELCP (Record Deletion Capability)
Purpose Specifies whether records can be deleted from the file.

Code Point The code point for this parameter is X'111B'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'111B' The value (code point) indicating that the following
data is the record deletion capability.

Status The 1-byte status of DELCP.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'111B' Status

DFTREC (Default Record)
Purpose The default record is used to initialize a file when it is created. The

length of the record data must be at least 1 and not greater than
4096.

Code Point The code point for this parameter is X'142B'.

 Chapter 4. VSAM API Common Parameters 371

Structure

Field Description

LL The length (ULONG) of the buffer
from the beginning of this length field
to the end of Default Record Data.

X'142B' The value (code point) indicating that
the following data is the default record
data.

Default Record Data The contents of the default record
data are replicated or truncated to
match the record length of the file.
This means that a value of X'00'
causes the file to be initialized with
records consisting of all zeroes. A
value of ‘ABC’ would initialize a file
with 10-byte records with
‘ABCABCABCA’ as the initialization
record.

If the file is created with
initially-varying-length records or with
variable-length records, the initialized
records have a length equal to
RecLen.

If DFTINAIN record initialization was
requested when the file was created,
the Default Record Data field will be
null, and the LL field will be
X'00000006'.

LL X'142B' Default Record Data

DTACLSNM (Data Class Name)
Purpose Specifies the name of the data class that applies to a file or

directory. For the target system, a data class specifies a set of
allocation attributes to create a file or directory.

Code Point The code point for this parameter is X'1121'.

Structure

LL X'1121' Name

372 VSAM for OS/2

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Name.

X'1121' The value (code point) indicating that the following
information is the data class name.

Name The character string of up to 16 characters.

DTALCKST (Data Lock Status)
Purpose Specifies the status of the locks held on the records of a file.

If the severity code is ERROR or higher, this parameter indicates
whether the locks are:

� the same as before the function that caused the reply message
which carried this parameter, or

� the same as before the function iteration that caused the reply
message, if the function was:

 DDMInsertRecNum
 DDMInsertRecEOF
 DDMInsertRecKey
 DDMSetNextRec

DDNSetKeyNext with RecCount greater than 1.

A value of TRUE indicates that the locks are the same as before the
function was issued, or before the function iteration in error. TRUE
is the only valid value if the severity code is ERROR.

A value of FALSE indicates either:

The record locks are not the same as they were before the
function was issued,
The record locks are not the same as they were before function
iteration in error, or
The current lock status in unknown.

If the severity code is SC_NO_ERROR or SC_WARNING, the value
of this parameter is ignored. The data locks are as specified for the
function that returned the reply message with a severity code of
SC_NO_ERROR or SC_WARNING.

Code Point The code point for this parameter is X'115C'.

Structure

X'00000007' X'115C' Status

 Chapter 4. VSAM API Common Parameters 373

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'115C' The value (code point) indicating that the following
data is the data lock status.

Status The 1-byte status of the data locks on the file.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

Note: This value is always
X'F1'.

EOFNBR (End of File Record Number)
Purpose The record number of the EOF position of the file.

Code Point The code point of this term is X'110B'.

Field Description

X'0000000A' The length (ULONG) of the reply message object
from the beginning of this length field to the end of
EOF Number.

X'110B' The value (code point) for the EOF record number
object.

EOF Number The ULONG EOF number.

X'0000000A' X'110B' EOF Number

ERRFILNM (Error File Name)
Purpose The error file name is the name of a file, other than the one the

function is directly accessing, that caused the error. For example,
modification of a record of a file may fail because an alternate index
file built over the file does not allow keys to be updated. In this
case, the name of the alternate index file would be specified as the
error file name.

Code Point The code point for this parameter is X'1126'.

Structure

LL X'1126' Error File Name

374 VSAM for OS/2

Field Description

LL The length (ULONG) of this data description
from the beginning of LL to the end of the Error
File Name.

X'1126' The value (code point) indicating the following
data is the error file name.

Error File Name The file name.

FILBYTCN (File Byte Count)
Purpose The file byte count is the total number of bytes currently allocated to

a file. The bytes are counted in 1K (1024) byte units. The byte
count is rounded to the next higher 1K byte value (for example, 1027
bytes requires a 2K byte value). The minimum value for this
parameter is 0.

Code Point The code point for this parameter is X'1139'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute description
(from the beginning of this length field to the end
of Count).

X'1139' The value (code point) indicating that the following
data is the file byte count.

Count The total number of bytes currently allocated to
the file. The value of Count is specified in a
ULONG.

X'0000000A' X'1139' Count

FILCHGDT (File Change Date)—DFM Only
Purpose The change date of a file is the target system date on which certain

operations occurred, such as:

� The file was created

� A record was processed by a DDMModifyRec, DDMInsertRec, or
DDMDeleteRec command

� The file was renamed

� The attributes were changed

The file change date can be updated either as each change occurs
to the file, or when the file is closed following such a change. This is
dependent on the DDM server implementation.

 Chapter 4. VSAM API Common Parameters 375

Code Point The code point of this term is X'113A'.

Structure

Field Description

LL The length (ULONG) of the attribute description
from the beginning of LL to the end of Data.

X'113A' The value (code point) indicating that the following
data is the file change date.

Data Date and time data, rounded down to the even
second. See “DATE (Date and Time)” on
page 369 for the format of date and time data.

LL X'113A' Data

FILCLS (File Class)
Purpose Specifies the class of a file.

Code Point The code point for this parameter is X'1110'.

Structure

Field Description

X'00000008' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'1110' The value (code point) indicating that the following
data is the file class value.

Data A file class value (USHORT) that can have the
following values:

ALTINDF Alternative Index File (X'1423')
DIRFIL Direct File (X'140C')
KEYFIL Keyed File (X'141E')
SEQFIL Sequential File (X'143B')

X'00000008' X'1110' Data

FILCRTDT (File Creation Date)
Purpose The creation date of a file is the date on which a DDMCreatexxx

function created the file.

Code Point The code point of this term is X'1108'.

Structure

376 VSAM for OS/2

Field Description

LL The length (ULONG) of the attribute description
from the beginning of LL to the end of Data.

X'1108' The value (code point) indicating that the following
data is the file creation date.

Data Date and time data, rounded down to the even
second. See “DATE (Date and Time)” on
page 369 for the format of date and time data.

LL X'1108' Data

FILHDD (File Hidden)
Purpose Specifies whether the file was created with the FILE_HIDDEN

attribute.

FALSE Files or subdirectories with an attribute of
FILHDD(TRUE) are not considered a match.

TRUE Files or subdirectories with an FILHDD attribute
value of TRUE or FALSE are considered a match.

Code Point The code point for this parameter is X'1132'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1132' The value (code point) indicating that the following
data is the hidden file attribute.

Status The 1-byte status of FILHDD.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1132' Status

FILINISZ (Initial File Size)
Purpose Specifies the preferred initial file size in records. The maximum

initial size is determined by the target system, and the value
specified can be rounded up or down to the next unit of allocation.

The value is expressed in the number of record positions preferred
for the initial file size. The RecLen (Record Length) parameter on

 Chapter 4. VSAM API Common Parameters 377

the DDMCreateRecFile function is used to compute the amount of
storage requested.

Note that the value specified in the FILINISZ parameter is considered
a preference. The target system can choose to implement another
value.

Code Point The code point for this parameter is X'113C'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute description
(from the beginning of this length field to the end
of Data).

X'113C' The value (code point) indicating that the following
data is the initial file size.

Size The initial file size in records:

� The value is specified in a ULONG.

� Minimum value is 0, which means that the file
exists but has no space allocated to it.

� The value of X'FFFFFFFF' means that the
file is of unlimited size.

X'0000000A' X'113C' Size

FILNAM (File Name)
Purpose A VSAM API file name is an unarchitected string. A VSAM API

assumes that a name provided by the user to the DDM source
server is in the format required by the target server for creating or
locating the file. The named string can contain qualifiers for
directories, libraries, catalogs, members, instances, or other levels of
identification of the file.

The target agent validates the file name according to its own rules
for naming. This can be done before or after attempting to use the
specified file name.

No semantic meaning is assigned to file names.

Code Point The code point for this parameter is X'110E'.

Structure

LL X'110E' File Name

378 VSAM for OS/2

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of File Name.

X'110E' The value (code point) indicating that the following
information is the file name.

File Name The file name. The maximum file name length is
defined by the underlying file system driver.

FILPRT (File Protected)
Purpose Specifies whether the file is protected. DDMDelete cannot be used

on a protected file.

Having a protected file attribute does not prevent a file from being
opened with access intents of MODAI, DELAI, or INSAI. Nor does
this attribute prevent DDMModifyRec, DDMDeleteRec, or
DDMInsertRecxxx function from being performed. These functions
are controlled by the file capabilities attributes: MODAI, DELAI, or
INSAI.

The value of TRUE indicates that the file is protected from file
management functions that would change the entire contents of the
file.

The value of FALSE indicates that the file is not protected from file
management functions that would change the entire contents of the
file.

Code Point The code point for this parameter is X'112A'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'112A' The value (code point) indicating that the following
data is the file protect attribute.

Status The 1-byte status of FILPRT.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE. (This is the

default value.)

X'00000007' X'112A' Status

 Chapter 4. VSAM API Common Parameters 379

FILSIZ (File Size)
Purpose The size of a file is determined by the total number of record

positions allocated to the file. This includes all active and inactive
records between the BOF and the EOF plus all allocated record
positions between the EOF and the end of the last allocated extent.
This attribute does not apply to files with variable-length records.

Code Point The code point for this parameter is X'110F'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute description
from the beginning of this length field to the end of
Data.

X'110F' The value (code point) for this attribute.

Data A ULONG binary number:

� The value is specified in a ULONG.
� Minimum value is 0.

X'0000000A' X'110F' Data

FILSYS (System File)
Purpose Specifies whether the file was created with the FILE_SYSTEM

attribute.

Code Point The code point for this parameter is X'1133'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1133' The value (code point) indicating that the following
data is the system file attribute.

Status The 1-byte status of FILSYS.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1133' Status

380 VSAM for OS/2

GETCP (File Get Capability)
Purpose Specifies whether the contents of a file can be read by DDMGetRec,

DDMSETxxx with NODATA(FALSE), or DDMUnLoadFilexxxx.

If the file is not get-capable, a DDMGetRec, DDMSETxxx with
NODATA(FALSE), or DDMUnLoadFilexxxx is rejected with an
INVRQSRM reply message.

Code Point The code point for this parameter is X'1191'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1191' The value (code point) indicating that the following
data is the file get capability

Status The 1-byte status of GETCP.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1191' Status

INSCP (File Insert Capability)
Purpose Specifies whether data records can be inserted into the file by a

DDMInsertRECxxx or DDMLoadFilexxxx function.

If the file is not insert-capable, an insert function DDMInsertRecxxx
(an insert function) or DDMLoadFilexxxx is rejected with an
INVRQSRM reply message.

Code Point The code point for this parameter is X'1192'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description (from
the beginning of this length field to the end of
Status).

X'1192' The value (code point) indicating that the following
data is the file insert capability.

Status The 1-byte status of INSCP.

X'00000007' X'1192' Status

 Chapter 4. VSAM API Common Parameters 381

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

KEYDEF (Key Definition)
Purpose The key of a record consists of one or more fields that define an

ordering of the records for relative or random access. Key fields are
defined in terms of their length and displacement in the record.

Composite keys can be expressed by repeating the KEYFLDDF (Key
Field Definition) parameter as many times as necessary. The first
KEYFLDDF specifies the most significant part of the key and the last
KEYFLDDF specifies the least significant part of the key. The total
of all key lengths in a composite key cannot exceed 255 bytes, which
is the maximum length key definition.

For a description of the errors that can be detected by target
systems in a definition of the keys of a file, see “KEYDEFRM (Invalid
Key Definition)” on page 448 and “KEYDEFCD (Key Definition Error
Code).”

Code Point The code point for this parameter is X'1114'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'1114' The value (code point) indicating that the following
data is a key definition.

Data A list of one or more key field definitions
(KEYFLDDF).

LL X'1114' Data

KEYDEFCD (Key Definition Error Code)
Purpose Specifies the condition for which the KEYDEFRM reply message was

returned.

Code Point The code point for this parameter is X'1164'.

Structure

X'00000007' X'1164' Data

382 VSAM for OS/2

Field Description

X'00000007' The length (ULONG) of the data description from
the start of this length field to the end of Data.

X'1164' The value (code point) indicating that the following
data is a key definition error code.

Data A 1-byte value specifying the key definition error
code:

X'01' The specified key does not fall within
the record boundaries.

X'02' The target system does not support
composite keys or the number of
composite keys specified.

X'03' The total length of the specified key or
composite key exceeds the maximum
key length supported by the target
system. The maximum length key
supported in the local VSAM file
system is 255 bytes.

X'04' The target system does not support
overlapping fields. For example, if key
field A begins in position 10 for a key
length of 10, it is not possible to
specify a key field B that overlaps
positions 10 through 19.

X'05' The target system does not allow a
key field to be defined over multiple
record fields when the record fields
are defined in a target system data
dictionary.

X'06' The target system does not allow a
key field to be defined for a part of a
record field.

X'07' The target does not allow a key field
to be specified for non-character
record fields, such as an encoded
integer or floating point field.

X'08' The target system does not support
the specified key sequence for the
specified key data class.

X'09' The target system does not support
the specified key data class.

 Chapter 4. VSAM API Common Parameters 383

KEYDUPCP (Duplicate Keys Capability)
Purpose Specifies whether or not duplicate keys are allowed in a file.

Code Point The code point for this parameter is X'113D'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'113D' The value (code point) that indicates whether
duplicate keys are allowed.

Data A 1-byte value:

X'F0' Duplicate keys are not allowed.
X'F1' Duplicate keys are allowed.

X'00000007' X'113D' Data

KEYFLDDF (Key Field Definition)
Purpose The key field defines the location, length, data class, and ordering of

a single record key.

Code Point The code point for this parameter is X'140F'.

Structure

Field Description

X'00000010' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'140F' The value (code point) indicating that the following
data is a key field definition.

Keyseq A value (USHORT) specifying the key sequence:

X'1420' Ascending Key Sequence
X'1421' Descending Key Sequence

Keycls A value (USHORT) specifying the key class:

X'0044' The key field is a byte string.

X'00000010' X'140F' Keyseq Keycls Keylen Keydsp

KeyLen KeyDisp

384 VSAM for OS/2

Keylen A value (USHORT) specifying the key length.

Keydsp The displacement (ULONG) of the start of the key
field in the record. If multiple KEYFLDDF (Key
Field Definitions) are provided, the fields are
concatenated to form a combined key. The
maximum length key is 255 bytes.

KEYVAL (Key Value)
Purpose Specifies the value of a record key.

Code Point The code point for this parameter is X'1115'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'1115' The value (code point) that indicates the following
is a key value.

Data The key value (BYTE) for a record. The key value
can be up to 255 bytes. If the record is inactive,
the key value is set to X'00'.

LL X'1115' Data

LSTACCDT (Last Access Date)—DFM Only
Purpose The last access date is the target system date on which the file was

last accessed by operations such as a record DDMDeleteRec,
DDMModifyRec, or DDMInsertRec command.

The last access date can be updated either as these commands are
performed or when the file is closed following one of these
commands. This is dependent on the DDM server implementation.

Code Point The code point of this term is X'1113'.

Structure

Field Description

LL The length (ULONG) of the attribute description
from the beginning of LL to the end of Data.

LL X'1113' Data

 Chapter 4. VSAM API Common Parameters 385

X'1113' The value (code point) indicating that the following
data is the last access date of the file.

Data Date and time data, rounded down to the even
second. See “DATE (Date and Time)” on
page 369 for the format of date and time data.

LSTARCDT (Last Archived Date)—DFM Only
Purpose The last archive date is the date on which the file was last archived

by the target system.

Code Point The code point of this term is X'118A'.

Structure

Field Description

LL The length (ULONG) of the attribute description
from the beginning of LL to the end of Data.

X'118A' The value (code point) indicating that the following
data is the last archive date of the file.

Data Date and time data, rounded down to the even
second. See “DATE (Date and Time)” on
page 369 for the format of date and time data.

LL X'118A' Data

MAXARNB (Maximum Active Record Number)
Purpose The maximum active record number is the highest record number at

which an active record is stored in a file.

Code Point The code point of this term is X'1159'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute reply data.

X'1159' The value (code point) indicating that the
following data is the maximum active record
number.

RecordNumber The ULONG maximum active record number.

X'0000000A' X'1159' RecordNumber

386 VSAM for OS/2

MAXOPN (Maximum Number of Files Opened)
Purpose Specifies the maximum number of times the same file can be

opened concurrently by the same agent.

Code Point The code point of this term is X'1157'.

Structure

Field Description

X'00000008' The length (ULONG) of the reply message object
(for OPNMAXRM).

X'1157' The value (code point) indicating that the following
data is the MAXOPN object.

MaxNumOpn The maximum number (USHORT) of concurrent
opens allowed.

X'00000008' X'1157' MaxNumOpn

MGMCLSNM (Management Class Name)
Purpose Specifies the name of the management class that applies to a file or

directory. The format of a management class is unarchitected. A
management class specifies the target system policies related to
when and how often the file or directory is to be backed up, saved,
or archived.

Code Point The code point for this parameter is X'1140'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of name.

X'1140' The value (code point) indicating that the following
is a management class name.

Name Character string up to 16 bytes.

LL X'1140' Name

MODCP (File Modify Capability)
Purpose Specifies whether the contents of a file can be modified by a

DDMModifyRec or DDMTruncFile function.

If the file is not modify-capable, a DDMModifyRec or DDMTruncFile
function is rejected with an INVRQSRM reply message.

 Chapter 4. VSAM API Common Parameters 387

Code Point The code point for this parameter is X'1166'.

Structure

Field Description

X'00000007' The length (ULONG) of the data description from
the beginning of this length field to the end of
Status.

X'1166' The value (code point) indicating that the following
data is the file modify capability.

Status The 1-byte status of MODCP.

X'F1' Denotes TRUE.
X'F0' Denotes FALSE.

X'00000007' X'1166' Status

NEWFILNM (New File Name)
Purpose Specifies the new name to be assigned to a file that was invalid.

The names of files in the VSAM APIs are unarchitected strings of
characters with no semantic meaning. A VSAM API assumes that a
name provided by the user to the source DDM server is in the format
required by the target system data manager for creating or locating
the file. The name string can contain qualifiers for libraries, catalogs,
members, instances, or other levels of identification for the file.

Code Point The code point of this parameter is X'114F'.

Structure

Field Description

LL The length (ULONG) of the reply message object
for NEWNAMRM (Invalid New File Name) reply
message from the beginning of this length field to
the end of NewFilNam.

X'114F' The value (code point) indicating that the following
data is the new file name object.

NewFilNam The name of the new file. The maximum file
length is determined by the underlying file system.

LL X'114F' NewFilNam

388 VSAM for OS/2

RECAL (Record Attribute List)
Purpose Specifies a list of attributes of a record as an ordered collection.

A Record Attribute List is used when transmitting more than one
attribute of the record (for example, record number or key value and
the record itself) as a single unit.

The RECCNT parameter is used to indicate the number of duplicate
records.

The elements of a RECAL must be specified in the order in which
they are listed in the format of this parameter. If an optional
parameter is not included, the order of the remaining variables must
be maintained.

If RECNBR and RECCNT are both specified, the record number
specified by RECNBR applies to the first occurrence of the record,
and each subsequent record has a record number of 1 greater than
the previous record.

Note: The returned Record Attribute List structure is contiguous.

Code Point The code point for this parameter is X'1430'.

Structure

LL X'1430' L1 X'111A' RC L2 X'111D' RN

Field Description

LL The length (ULONG) of the record attribute list
from the beginning of LL to the end of Data. This
field is not checked.

X'1430' The value (code point) indicating that the following
data is a RECAL.

L1 The length (ULONG) from the beginning of L1 to
the end of RC. This field is not checked.

X'111A' The value (code point) indicating that the following
data is a record count. The RECCNT parameter
is used to indicate the number of duplicate
records. RECCNT provides a shorthand way of
specifying N records, where N>1, and not
replicating the record's contents.

RC The number (ULONG) of duplicate records in the
RECAL (RECCNT).

L3 X'1115' KEY L4 CP Data

 Chapter 4. VSAM API Common Parameters 389

L2 The length (ULONG) from the beginning of L2 to
the end of RN. This field is not checked.

X'111D' The value (code point) indicating that the following
data is a record number.

RN The record number (ULONG) of the record in the
RECAL (RECNBR).

L3 The length (ULONG) from the beginning of L3 to
the end of the key value.

X'1115' The value (code point) indicating that the following
data is a key value.

KEY The record key value (KEYVAL).

L4 The length (ULONG) from the beginning of L4 to
the end of Data.

CP The value (code point) indicating that the following
is either record data or an inactive record length.

X'144A' Indicates that the following data is
record data (RECORD).

X'142D' Indicates that the following data is
a ULONG of an inactive record
(RECINA).

Data The record data or the length (ULONG) of the
inactive record.

RECCNT (Record Count)
Purpose Specifies the number of records:

� Loaded by a DDMLoadFilexxxx function.

� Unloaded by a DDMUnLoadFilexxxx function.

� Initialized when creating a record-oriented file with the
DFTRECOP parameter specified on the DDMCreateRecFile
function.

� Retrieved by a DDMSETxxx function.

When specified in a reply message, RECCNT specifies the number
of records successfully inserted in a file by an DDMInsertRecxxx
function with a Record Count parameter value greater than 1 or by a
DDMLoadFilexxxx function.

When used with a RECAL, RECCNT specifies the number of times
the contents of the record attribute list is repeated. This provides an
efficient way to send multiple copies of the same records.

Code Point The code point for this parameter is X'111A'.

390 VSAM for OS/2

Structure

Field Description

X'0000000A' The length (ULONG) of the data description from
the beginning of this length field to the end of
Count.

X'111A' The value (code point) indicating the following
data is the record count.

Count The number of records successfully returned or
inserted:

� The value in count is specified in a ULONG.
� Minimum value is 0.

X'0000000A' X'111A' Count

RECINA (Inactive Record)
Purpose Represents file record positions at which a record has never been

inserted or at which a previously active record has been deleted.
The data value of an inactive record is the required length of any
record to be inserted at the record position.

Code Point The code point of this term is X'142D'.

Structure

Field Description

X'0000000A' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'142D' The value (code point) indicating that the following
data is the inactive record length.

Data The required length of any record to be inserted at
the record position. The value of an inactive
record is specified in a ULONG.

If the special value of -1 is present, this
variable-length record has not had a previous
value and it can store any length record up to the
maximum allowed by the file.

X'0000000A' X'142D' Data

 Chapter 4. VSAM API Common Parameters 391

RECLEN (Record Length)
Purpose The length of the user data in all of the records in files of fixed-length

records.

The maximum length of the user data in the records in files of
variable-length records or initially-variable-length records.

Code Point The code point of this term is X'111C'.

Structure

Field Description

X'0000000A' The length (ULONG) of the attribute description
from the beginning of this length field to the end of
Data.

X'111C' The value (code point) indicating that the following
data is the record length.

Data The record length:

� The value of Data is specified in a ULONG.
� Minimum value is 1.
� Maximum value is 64,000.

X'0000000A' X'111C' Data

RECLENCL (Record Length Class)
Purpose Specifies the type of record length that records in a file can have.

If a record length class that is not supported is specified, the record
length class can be promoted to a record class that is supported.
The record length class cannot be demoted. The promotion scheme
for record length classes is:

fixed
length

variable
length

initially
variable length

Figure 83. Record Length Class Promotion

Code Point The code point of this term is X'1142'.

Structure

X'00000008' X'1142' RLC

392 VSAM for OS/2

Field Description

X'0000008' The length (ULONG) of the attribute description
from the beginning of this length field to the end of
record length class (RLC).

X'1142' The value (code point) indicating that the following
is a record length class.

RLC A value (code point) specifying the record length
class. Valid code points are:

Code Point Description

X'142E' Fixed-length record (This is the
default value.)

X'142F' Initially-variable-length record

X'1431' Variable-length record

RECNBR (Record Number)
Purpose A record number identifies a record at a specific position of the file.

Record positions are numbered starting with 1.

Code Point The code point of this term is X'111D'.

Structure

Field Description

X'0000000A' The length (ULONG) of the data description
from the start of length field to the end of
RecordNumber.

X'111D' The value (code point) indicating that the
following data is a record number.

RecordNumber The record number that is being returned:

� The value is specified in a ULONG.

� Minimum value is 1.

� The maximum value is target system
dependent.

� The value of X'FFFFFFFF' means the
actual record number is not known.

X'0000000A' X'111D' RecordNumber

 Chapter 4. VSAM API Common Parameters 393

 RECORD (Record)
Purpose Records are the basic unit of data stored in a record-oriented file.

They are the basic unit of transfer between requesters and files. A
record consists of a record header followed by the record data. This
type of record object is also known as an active record.

Code Point The code point of this parameter is X'144A'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of Data.

X'144A' The value (code point) indicating that the following
is record data.

Data Encoded information.

LL X'144A' Data

RTNCLS (File Retention Class)
Purpose Specifies the file retention as temporary or permanent.

Code Point The code point for this parameter is X'1148'.

Structure

Field Description

X'00000008' The length (ULONG) of the data description from
the beginning of this length field to the end of
Data.

X'1148' The value (code point) indicating that the following
data is the file retention class.

Data A value (code point) specifying the retention class:

X'143E' A temporary file.
X'142A' A permanent file.

X'00000008' X'1148' Data

SRVDGN (Server Diagnostic Information)
Purpose Specifies diagnostic information in reply messages that is defined by

the responding server. This information can be logged or otherwise
used to support problem determination. The contents of this
parameter are unarchitected. A maximum of 255 bytes can be sent,

394 VSAM for OS/2

but only a server-determined minimum amount of information should
be returned.

Code Point The code point for this parameter is X'1153'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of LL to the end of Data.

X'1153' The value (code point) indicating that the following
is server diagnostic information.

Data The diagnostic information. This data is in the
format of the server system that generated the
reply message.

LL X'1153' Data

STGCLSNM (Storage Class Name)
Purpose Specifies the name of a storage class that applies to a file or

directory. The format of a storage class is unarchitected. A storage
class specifies the target system policies related to the types and
speeds of the storage devices that the file or directory can be
allocated to.

Code Point The code point for this parameter is X'1141'.

Structure

Field Description

LL The length (ULONG) of the data description from
the beginning of LL to the end of name.

X'1141' The value (code point) indicating that the following
is a storage class name.

Name Character string up to 16 bytes.

LL X'1141' Name

 Chapter 4. VSAM API Common Parameters 395

SVRCOD (Severity Code)
Purpose Indicates the severity of a condition detected during the execution of

a function.

In addition to being in the reply message data, the value is returned
in the EAX register after every function.

Code Point The code point of this term is X'1149'.

Structure

Field Description

X'00000008' The length (ULONG) of this data description from
the beginning of this length field to the end of
Severity.

X'1149' The value (code point) indicating the following is
the severity class.

Severity A ULONG value specifying the severity code.

X'0000' SC_NO_ERROR (Information Only
Severity Code)

Specifies that a reply message
contains information only and does
not describe any problem condition.

X'0004' SC_WARNING (Warning Severity
Code)

Specifies that a reply message
constitutes the warning of a potential
problem in the processing of a
request.

Further processing of a function
depends on the specifications of the
specific function, the error condition,
and the environment in which it is
being executed.

X'0008' SC_ERROR (Error Severity Code)

Specifies that an error condition was
detected in the processing of a
function. All effects of the condition
have been reversed or prevented.
For example, any effects on cursor
positioning or locks obtained or
released have been reversed.

X'00000008' X'1149' Severity

396 VSAM for OS/2

Further processing of a function
depends on the architected
specifications of that function, the
error condition, and the environment
in which it is being executed. For
example, a FILE NOT FOUND error
always causes a function to be
terminated, but a DUPLICATE FILE
error terminates processing of a
DDMCreateRecFile function only if
specified by the duplicate file option
parameter.

X'0010' SC_SEVERE (Severe Error Severity
Code)

Specifies that a severe error has
occurred during the execution of the
function. It was not possible to
prevent or reverse all changes to
objects affected by the function. For
example, record locks or cursor
position may have been lost.

It is possible to send further functions
to the affected objects.

X'0020' SC_ACCESSDAMAGE (Access
Damage Severity Code)

Specifies that damage has occurred
to the target agent's ability to access
a file as it is currently opened. It is
not possible to make further use of
that access path, but it may be
possible to access other opened files
or other objects.

To recover from access damage, it is
necessary to close and reopen the
file.

X'0040' SC_PERMDAMAGE (Permanent
Damage Severity Code)

Specifies that damage has occurred
to the state or value of permanent
objects of the server. Recovery from
permanent damage may require
special action that cannot be called
through DDM functions; for example,
loading a backup file.

 Chapter 4. VSAM API Common Parameters 397

Further processing of the function
depends on the architected
specifications of that request, the
permanent damage condition, and the
environment in which it is being
executed. For example, it may be
possible to continue processing with
other undamaged resources.

X'0080' SC_SESSIONDAMAGE (Session
Damage Severity Code)

Specifies that damage has occurred
to the target server's ability to
continue the communication session.
It is not possible to make further use
of the current session, but it may be
possible to use other available
communication sessions.

To recover from session damage, it is
necessary to terminate the current
session and establish a new session.

SYNERRCD (Syntax Error Code)
Purpose Specifies the condition that caused termination of data stream parsing.

The following code points might be returned:

X'01' Data Stream Structure (DSS) header length less than or
equal to 6.

X'02' DSS header length does not match the number of bytes of
data found.

X'03' DSS header C-byte not X'D0'.
X'04' DSS header f-bytes not recognized or not supported.
X'05' DSS continuation specified but not found.
X'06' DSS chaining specified but no DSS found.
X'07' Object length less than 4.
X'08' Object length does not match the number of bytes of data

found.
X'09' Object length greater than maximum allowed.
X'0A' Object length less than minimum required.
X'0B' Object length not allowed (for example, if a value must be a

multiple of 1 word long but an odd number of bytes is sent).
X'0C' Incorrect large object length field (see DSS).
X'0D' Object code point index not supported.
X'0E' Required object not found.
X'0F' Too many function data objects sent.
X'10' Mutually exclusive objects present.
X'11' Too few function data objects sent.

398 VSAM for OS/2

X'12' Duplicate object present.
X'13' Invalid request correlator specified.
X'14' Required value not found.
X'15' Reserved value not allowed.
X'16' DSS continuation less than or equal to 2.
X'17' Objects not in required order.
X'18' DSS chaining bit not b'1' but DSSFMT bit3 set to b'1'.
X'19' Previous DSS indicated current DSS has the same request

correlator but the request correlators are not the same.
X'1A' DSS chaining bit not b'1' but error continuation requested.
X'1B' Mutually exclusive parameter values specified.
X'1D' Code point is not a valid function.

Code Point The code point of this term is X'114A'.

Structure

Field Description

X'0007' The length (ULONG) of the reply message object
(from the start of this length field to the end of Byte).

X'114A' The value (code point) for the syntax error code
object.

Byte The syntax error code as listed above (1-byte).

X'0007' X'114A' Byte

TITLE (A Brief Description)
Purpose A brief description of the file stored in EAs.

Code Point The code point of this parameter is X'0045'.

Structure

Field Description

LL The length (ULONG) of this data description from
the beginning of this length field to Title.

X'0045' The value (code point) indicating the following is
the title.

Title Character string up to 255 bytes.

LL X'0045' Title

 Chapter 4. VSAM API Common Parameters 399

400 VSAM for OS/2

Chapter 5. VSAM API Flags

This chapter provides information about each bit flag in each of the ULONG
parameters: AccessFlags and CreateFlags.

Each flag parameter section provides three basic kinds of information about bits:

1. A description of what the flag parameter does

2. An overview of all ULONG bit masks associated with the flag parameter

3. A detailed description of each bit associated with the flag parameter, which
includes:

� A brief explanation of each bit
� The bit number

 � Bit values.

The bit flags may be set individually or in appropriate combinations by using the bitwise
inclusive OR operator (|).

Throughout this publication, these bits are referred to by their bit mask names as
defined in DUBCALLS.H.

For more detailed information on each of these bits, see the individual bit names. The
individual bit names in the following section are arranged in bit number order.

Bit value:

TRUE, set to 1, ON, or B'1', all have the same meaning.

FALSE, set to 0, OFF, and B'0', all have the same meaning.

AccessFlags (Access Flags)
Purpose Access Flags specify the action to be taken depending on whether

the bit flag is set. Not all of the flags are valid on all functions.
Flags that are not valid on a particular function are marked as
reserved when describing that function. Reserved bits must be set
to zero (B'0') or an invalid parameter error occurs.

Bit Mask Names and Descriptions
The total list of bit flags is:

Bit Mask Name Description
Reserved (Bits 12–31)
DDM_HLDUPD Hold Update Intent (Bit 11)
DDM_UPDCSR Update Cursor (Bit 10)
DDM_INHMODKY Inhibit Modified Key (Bit 9)
DDM_ALWINA Allow Cursor on Inactive Record (Bit 8)
DDM_HLDCSR Hold Cursor Position (Bit 7)
DDM_BYPDMG Bypass Damaged Record (Bit 6)

 Copyright IBM Corp. 1993, 1997 401

DDM_NODATA No Record Data Returned (Bit 5)
DDM_ALLREC All Records, Active and Inactive (Bit 4)
DDM_RTNINA Return Inactive Record (Bit 3)
DDM_KEYVALFB Key Value Feedback (Bit 2)
DDM_RECNBRFB Record Number Feedback (Bit 1)
DDM_UPDINT Update Intent (Bit 0)

DDM_HLDUPD (Hold Update Intent)
Purpose Specifies whether the currently held update intent and record lock, if

any, should be released.

Bit number Bit 11 of the AccessFlags word.

Bit value A bit value of TRUE indicates that the update intent should not be
released.

A bit value of FALSE indicates that the update intent is released. In
this case, systems that cannot hold locks on two records can reject
the function with a VALNSPRM reply message.

DDM_UPDCSR (Update Cursor)
Purpose Specifies whether the cursor is to be updated to point to the record

inserted in the file by the function.

When multiple records are being inserted in a file, the cursor points
to the last record inserted when DDM_UPDCSR is set.

Bit number Bit 10 of the AccessFlags word.

Bit value A bit value of TRUE allows the cursor to be updated.

A bit value of FALSE does not allow the cursor to be updated.

DDM_INHMODKY (Inhibit Modified Keys)
Purpose Specifies whether the key value of an existing record can be

modified by the DDMModifyRec function.

The inhibit modified keys bit is only effective when the file is opened
with the RELKEYAM, RNDKEYAM, CMBKEYAM, or CMBACCAM
access methods. This bit is ignored if the file is opened with any
other access method.

Bit number Bit 9 of the AccessFlags word.

Bit value A bit value of FALSE permits key fields to be modified if the file
permits key fields to be modified.

A bit value of TRUE indicates that key fields cannot be modified. An
attempt to modify a key field results in the DDMModifyRec function
being rejected with a KEYUSIRM reply message.

402 VSAM for OS/2

DDM_ALWINA (Allow Cursor to Be Set to Inactive Record)
Purpose Specifies whether the cursor can be set to point to an inactive record

or whether the DDMSetUpdateNum function can set an update intent
on an inactive record.

Bit number Bit 8 of the AccessFlags word.

Bit value A bit value of TRUE allows the cursor to point to an inactive record
and specifies that the DDMSetUpdateNum function can set an
update intent on an inactive record.

A bit value of FALSE specifies that the cursor is not allowed to point
to an inactive record and that the DDMSetUpdateNum function is not
allowed to set an update intent on an inactive record.

DDM_HLDCSR (Hold Cursor Position)
Purpose Causes the hold cursor indicator to be set ON or OFF for the cursor.

The hold cursor indicator is used by the following functions to
determine whether the cursor should be moved to the next record or
remain at the current record position:

Bit number Bit 7 of the AccessFlags word.

Bit value A bit value of TRUE means that the hold cursor indicator in the
cursor is set on. If the hold cursor indicator is already on, it remains
on.

A bit value of FALSE means that the hold cursor indicator in the
cursor is set off. If the hold cursor indicator is already off, it remains
off.

Function Described on page:

DDMSetKey 161
DDMSetKeyFirst 179
DDMSetKeyLast 188
DDMSetKeyNext 204
DDMSetKeyPrevious 222
DDMSetLast 235
DDMSetMinus 245
DDMSetNextKeyEqual 255
DDMSetNextRec 271
DDMSetPlus 293
DDMSetPrevious 303
DDMSetRecNum 316

DDM_BYPDMG (Bypass Damaged Records)
Purpose The bypass damaged records bit specifies whether processing is to

continue if damaged records are detected for the DDMSetKeyNext,
DDMSetNextRec, and DDMUnLoadFilexxxx functions.

Bit number Bit 6 of the AccessFlags word.

 Chapter 5. VSAM API Flags 403

Bit value A bit value of TRUE bypasses damaged records.

A bit value of FALSE does not bypass damaged records.

DDM_NODATA (No Record Data Returned)
Purpose Indicates whether the record, where the cursor is set, is to be

returned.

Bit number Bit 5 of the AccessFlags word.

Bit value A bit value of TRUE indicates that the record, where the cursor is
set, is not to be returned.

A bit value of FALSE indicates that the record, where the cursor is
set, is to be returned. This is the default value.

DDM_ALLREC (All Records, Active and Inactive)
Purpose Specifies whether inactive records are to be bypassed when using

one of the DDMSetxxx functions to set the cursor.

Bit number Bit 4 of the AccessFlags word.

Bit value A bit value of TRUE does not bypass inactive records.

A bit value of FALSE bypasses inactive records.

DDM_RTNINA (Return Inactive Record)
Purpose Specifies whether an inactive record can be returned if the cursor is

set to an inactive record and the record selected by the cursor is to
be returned.

Bit number Bit 3 of the AccessFlags word.

Bit value A bit value of TRUE indicates that an inactive record can be
returned.

A bit value of FALSE indicates that an inactive record cannot be
returned. This is the default value.

DDM_KEYVALFB (Key Value Feedback)
Purpose Specifies whether the key value of the record is to be returned to the

requester. If the record is inactive, a null key value (length = 4) is
returned.

The local VSAM file system ignores this parameter when the file is
opened with the RELRNBAM, RNDRNBAM, or CMBRNBAM access
method or the file is not keyed.

Bit number Bit 2 of the AccessFlags word.

Bit value A bit value of TRUE indicates the key value of the record is returned.

A bit value of FALSE indicates the key value of the record is not
returned.

404 VSAM for OS/2

DDM_RECNBRFB (Record Number Feedback)
Purpose Specifies whether the record number of the record is to be returned

to the requester.

Bit number Bit 1 of the AccessFlags word.

Bit value A bit value of TRUE indicates the record number is returned.

A bit value of FALSE indicates the record number is not returned.

DDM_UPDINT (Update Intent)
Purpose Allows a requester to indicate that the user intends to modify the

record. This can be specified when the cursor is moved to the
record (DDMSetxxx) or when the record at the current cursor position
is read (DDMGetRec). An update intent must be placed on a record
before a DDMModifyRec or DDMDeleteRec function can be
performed for the record. An update intent can also be placed on a
record by the DDMSetUpdateKey and DDMSetUpdateNum functions.

Update intent is necessary so that a requester can perform
operations on a record without interference from concurrent users.
For information about the interaction of update intent and sharing
and locking files, see “Record Locking (Implementation is Dependent
on the Server)” on page 25.

The update intent for the record lasts until one of the following
occurs:

� The record is modified (DDMModifyRec).

� The record is deleted (DDMDeleteRec).

� The cursor is moved to a different record. All cursor movement
DDMSetxxx functions are considered to have moved the cursor
even if the result of normal completion of the DDMSetxxx
function leaves the cursor position the same as before the
DDMSetxxx function was called.

� A DDMInsertRecNum, DDMSetUpdateKey, or
DDMSetUpdateNum function for a
different record is issued.

� A DDMInsertRecEOF or DDMInsertRecKey function with
DDM_HLDUPD (FALSE) specified for a different record is
issued.

� A DDMUnLockRec function is issued.

� A DDMGetRec function with update intent is issued.

� The file is closed.

Once the update intent for a record is removed, a new update intent
must be placed on the record before a DDMModifyRec or
DDMDeleteRec function can be performed for the record. Two
consecutively issued DDMModifyRec functions result in the rejection

 Chapter 5. VSAM API Flags 405

of the second DDMModifyRec function with UPDINTRM because the
first DDMModifyRec function removed the update intent for the
record.

Bit number Bit 0 of the AccessFlags word.

Bit value A bit value of 1 (TRUE) indicates that the requester intends to
modify or delete the record and, therefore, an update intent is to be
placed on the record. If the file was opened for multiple
modifications, an implicit (exclusive access) lock is placed on the
record. Record locking is dependent on the remote server. See the
appropriate documentation.

For the local VSAM file system, record locks apply only to OS/2 local
VSAM files on the client OS/2 workstation.

A bit value of 0 (FALSE) indicates that the requester does not intend
to modify or delete the record.

CopyFlags (Copy Flags)
Purpose Copy Flags specify the action to be taken depending

on whether the bit flag is set. Not all of the flags are
valid on all functions. Flags that are not valid on a
particular function are marked as reserved when
describing that function. Reserved bits must be set
to zero (B'0') or an invalid parameter error occurs.

Bit Names and Descriptions The total list of bit flags is:

Bit Name Description

Reserved (bits 13-31)
DDM_ACCORD Access Order (Key versus

record order processing) (bit
12)

Reserved (bits 7-11)
DDM_BYPDMG Bypass Damaged Records

(bit 6)
Reserved (bit 5)
DDM_BYPINA Bypass Inactive Records

(Not applicable to direct
files) (bit 4)

Reserved (bits 0-3)

Throughout this document, these bits are referred to
by name.

For more detailed information on each of these bits,
see the individual bit names. The individual bit
names in the following section are arranged in bit
number order.

406 VSAM for OS/2

Bit value An individual bit is referred to as TRUE, set to 1,
ON, or B'1', all of which have the same meaning.

An individual bit can also be referred to as FALSE,
set to 0, OFF, and B'0', all of which have the same
meaning.

DDM_BYPINA (Bypass Inactive Records)
Purpose Specifies whether inactive records are to be bypassed.

Bit number Bit 4 of the CopyFlags word.

Bit value A bit value of TRUE indicates inactive records are to be bypassed.

A bit value of FALSE indicates inactive records are not to be
bypassed.

DDM_BYPDMG (Bypass Damaged Records)
Purpose Specifies whether damaged records are to be bypassed.

Bit number Bit 6 of the CopyFlags word.

Bit value A bit value of TRUE indicates damaged records are to be bypassed
and that processing continues when the data record is damaged.

A bit value of FALSE indicates damaged records are not to be
bypassed and that processing does not continue when a data record
is damaged.

DDM_ACCORD (Access Order)
Purpose Specifies the order in which the records of the file are processed.

Bit number Bit 12 of the CopyFlags word.

Bit value A bit value of TRUE specifies key order processing.

A bit value of FALSE specifies record number order processing.

CreateFlags (Create Flags)
Purpose Create Flags specify the action to be taken depending on whether

the bit flag is set. Not all of the flags are valid on all functions.
Those flags not valid on a particular function are marked as reserved
in the section describing that function. Reserved bits must be set to
0 (B'0') or an invalid parameter error occurs.

Bit Mask Names and Descriptions
The total list of bit flags is:

Bit Mask Name Description

Reserved (Bits 10–31)
DDM_FILPRT Specifies Protected File (Bit 9)
DDM_FILSYS Specifies System File (Bit 8)

 Chapter 5. VSAM API Flags 407

DDM_FILHDD Specifies Hidden File (Bit 7)
DDM_MODCP Allows Modify Record Capability (Bit 6)
DDM_INSCP Allows Insert Record Capability (Bit 5)
DDM_GETCP Allows Get Record Capability (Bit 4)
DDM_INIEX Inhibit Initial Extent (Bit 3)
DDM_DELCP Allows Record Deletion (Bit 2)
DDM_TMPFIL Temporary File (Bit 1)
DDM_ALDUPKEY Allows Duplicate Keys (Bit 0)

DDM_FILPRT (Protected File)
Purpose Specifies whether the file is protected. A protected file is protected

from the DDMDelete function.

If the DDMDelete function is attempted against a protected file, the
function is rejected with an INVRQSRM reply message.

A protected file does not prevent a file from being opened with
access intents of MODAI, DELAI, or INSAI. Nor does a protected file
prevent DDMModifyRec, DDMDeleteRec, or DDMInsertRecxxx
functions from being performed. These functions are controlled by
the file capabilities attributes: DDM_MODCP, DDM_DELCP, and
DDM_INSCP.

Bit number Bit 9 of the CreateFlags word.

Bit value A value of TRUE indicates that the file is protected from file
management functions that would change the entire contents of the
file.

A value of FALSE indicates that the file is not protected from file
management functions that would change the entire contents of the
file. This is the default value.

DDM_FILSYS (System File)
Purpose

DDM_FILSYS(TRUE) indicates that the file was created with the
FILE_SYSTEM attribute. A system file is the same as a non-system
file in all respects except for the processing done during a directory
search or scan in which the FILE_SYSTEM attribute is used to
determine whether a file or subdirectory should be considered a
match.

Bit number Bit 8 of the CreateFlags word.

Bit value A value of TRUE indicates that the file was created with the
FILE_SYSTEM attribute.

A value of FALSE indicates that the file was not created with the
FILE_SYSTEM attribute.

408 VSAM for OS/2

DDM_FILHDD (Hidden File)
Purpose DDM_FILHDD(TRUE) indicates that the file was created with the

FILE_HIDDEN attribute. A hidden file is the same as a non-hidden
file in all respects except for the processing done during a directory
search or scan in which the FILE_HIDDEN attribute is used to
determine whether a file or subdirectory should be considered a
match.

Bit number Bit 7 of the CreateFlags word.

Bit value A value of TRUE indicates that the file is hidden.

A value of FALSE indicates that the file is not hidden.

DDM_MODCP (Allow Modify Record Capability)
Purpose The allow modify record capability bit specifies whether the data

records of a file can be modified by a DDMModifyRec or
DDMTruncFile function. If the file is not modify-capable, a
DDMModifyRec function is rejected with an INVRQSRM reply
message.

Bit number Bit 6 of the CreateFlags word.

Bit value A value of TRUE indicates that the data records of a file can be
modified.

A value of FALSE indicates that the data records of a file cannot be
modified and that requests to modify the file are rejected.

DDM_INSCP (Allow Insert Record Capability)
Purpose The allow insert record capability bit specifies whether the data

records can be inserted into the file by either:

 DDMInsertRecxxx, or
 DDMLoadFilexxx

If the file is not insert-capable these functions are rejected with an
INVRQSRM reply message.

Bit number Bit 5 of the CreateFlags word.

Bit value A value of TRUE indicates that data records can be inserted into the
file.

A value of FALSE indicates that data records cannot be inserted into
the file and that the request is rejected.

DDM_GETCP (Allow Get Record Capability)
Purpose The get record capability bit specifies whether the contents of a file

can be read by either:

 DDMGetRec,
DDMSetxxx with DDM_NODATA(FALSE), or

 DDMUnloadFilexxx.

 Chapter 5. VSAM API Flags 409

If the file is not get-capable, these functions are rejected with an
INVRQSRM reply message.

Bit number Bit 4 of the CreateFlags word.

Bit value A value of TRUE indicates that the contents of a file can be read by
the requester.

A value of FALSE indicates that the contents of a file cannot be read
by the requester and the request is rejected.

DDM_INIEX (Inhibit Initial Extent)
Purpose Specifies whether storage is to be allocated for the initial extent of a

file when the file is created.

Bit number Bit 3 of the CreateFlags word.

Bit value A bit value of TRUE indicates that storage is not allocated for the
initial extent of the file when the file is created.

A bit value of FALSE indicates that storage is allocated for the initial
extent of the file when the file is created.

DDM_DELCP (Allow Record Deletion)
Purpose Specifies whether records may be deleted from the file being

created.

Bit number Bit 2 of the CreateFlags word.

Bit value A bit value of TRUE indicates that records may be deleted from the
file.

A bit value of FALSE indicates that records may not be deleted from
the file.

DDM_TMPFIL (Temporary File)
Purpose Specifies whether the file being created is a permanent or temporary

file.

Bit number Bit 1 of the CreateFlags word.

Bit value A bit value of TRUE indicates that the file being created is a
temporary file. A temporary file only exists until:

1. The file is deleted.
2. Communications with the target are terminated.

Temporary files operate exactly like permanent files while they exist.

A bit value of FALSE indicates that the file being created is a
permanent file. A permanent file exists until it is explicitly deleted.
Termination of communications does not affect the existence of a
permanent file.

410 VSAM for OS/2

DDM_ALDUPKEY (Allow Duplicate Keys)
Purpose specifies whether duplicate keys are allowed for a file at the time the

file is created.

Bit number Bit 0 in the Create Flags word.

Bit value A bit value of TRUE indicates that duplicate keys are allowed for the
file being created.

A bit value of FALSE indicates that duplicate keys are not allowed.

 Chapter 5. VSAM API Flags 411

412 VSAM for OS/2

Reply Messages

Chapter 6. VSAM API Reply Messages

This chapter provides detailed information about reply messages. Each reply message
is accompanied by a brief explanation of the message, its code point, and its structure,
which is defined by parameters.

For information about the parameters returned by the reply messages, see Chapter 4,
“VSAM API Common Parameters” on page 363.

Reply Message Interface
A reply message is returned to the sender of a function to provide the sender with
information about some condition that occurred during the processing of the function. A
single function can generate several reply messages.

When a VSAM API function returns a non-zero return code, a DDMGetReplyMessage
function should be issued immediately to obtain the reply messages. The Reply
Message queue for a thread is cleared every time a new VSAM API function is issued.
Therefore, the DDMGetReplyMessage must be issued before making any other VSAM
API function call under this thread to avoid losing the reply messages corresponding to
the function that returned the non-zero code.

All reply messages contain a severity code parameter that characterizes the severity of
the condition reported. In addition, each reply message may define specific additional
parameters to be returned with the message.

Reply Message Structure

The first length field (4 bytes) indicates the total length of the reply message, and the
first code point (2 bytes) is the code point of the reply message which follows.

Subsequent length fields (4 bytes) are for the objects contained in the reply message.
The code point words (2 bytes) indicate what data follows.

All length fields represent the length of the data, the code point, and the length field
itself.

For information on how to get access to the reply message, see the
“DDMGetReplyMessage (Get Reply Message)” on page 83.

Each reply message has a list of the data that may accompany it. Each data item is
tagged with one of two possible return conditions:

� Distributed FileManager returns this information.
� The target server decides whether this information is returned.

LL CP LL CP DATA LL CP DATA LL CP DATA

 Copyright IBM Corp. 1993, 1997 413

Reply Messages

The DDM server is responsible for translating file system exceptions to the
DDM-architected reply messages as described in this chapter.

If there is no reply message to which the condition can be translated, the DDM server
replies with a CMDCHKRM reply message, which might contain the file system return
code.

Mixed-case file names might be converted to upper-case file names. Therefore, any
reply messages that contain a filename may not reflect the case that was used as input
to the API.

 Reply Messages
These VSAM API reply messages are returned by the local VSAM file system. There
might be other reply messages returned by other DDM server implementations. See
the documentation for your DDM server.

The VSAM reply messages are listed alphabetically in the following table:

Table 26 (Page 1 of 2). VSAM Reply Messages Listed Alphabetically

Message ID Code Point Message Title

ACCATHRM X'1230' Not Authorized to Use Access Method
ACCINTRM X'1266' Access Intent List Error
ACCMTHRM X'1231' Invalid Access Method
ADDRRM X'F212' Address Error
AGNPRMRM X'1232' Permanent Agent Error
BASNAMRM X'1234' Invalid Base File Name
CLSDMGRM X'125E' File Closed with Damage
CMDCHKRM X'1254' Command Check
COMMRM X'F207' Communications Error
CSRNSARM X'1205' Cursor Not Selecting a Record Position
CVTNFNRM X'F202' Conversion Table Not Found
DDFNFNRM X'F201' Data Description File Not Found
DFTRECRM X'1204' Default Record Error
DRCATHRM X'1237' Not Authorized to Directory
DRCFULRM X'1258' Directory Full
DTARECRM X'1206' Invalid Data Record
DUPFILRM X'1207' Duplicate File Name
DUPKDIRM X'1208' Duplicate Key Different Index
DUPKSIRM X'1209' Duplicate Key Same Index
DUPRNBRM X'120A' Duplicate Record Number
ENDFILRM X'120B' End of File Condition
EXSCNDRM X'123A' Existing Condition
FILATHRM X'123B' Not Authorized to File
FILDMGRM X'125A' File Damaged
FILERRRM X'F216' File Error
FILFULRM X'120C' File Is Full
FILIUSRM X'120D' File In Use
FILNAMRM X'1212' Invalid File Name
FILNFNRM X'120E' File Not Found
FILSNARM X'120F' File Space Not Available

414 VSAM for OS/2

Reply Messages

The VSAM reply messages are listed in code point order in the following table:

Table 26 (Page 2 of 2). VSAM Reply Messages Listed Alphabetically

Message ID Code Point Message Title

FILTNARM X'121E' File Temporarily Not Available
FUNATHRM X'121C' Not Authorized to Function
FUNNSPRM X'1250' Function Not Supported
HDLNFNRM X'1257' File Handle Not Found
INTATHRM X'125C' Not Authorized to Open Intent for Named File
INVFLGRM X'F205' Invalid Flag
INVRQSRM X'123C' Invalid Request
KEYDEFRM X'123D' Invalid Key Definition
KEYLENRM X'122D' Invalid Key Length
KEYUDIRM X'1201' Key Update Not Allowed by Different Index
KEYUSIRM X'123F' Key Update Not Allowed by Same Index
KEYVALRM X'1240' Invalid Key Value
LENGTHRM X'F211' Field Length Error
NEWNAMRM X'124F' Invalid New File Name
OBJNSPRM X'1253' Object Not Supported
OPNMAXRM X'1244' Concurrent Opens Exceeds Maximum
PRCCNVRM X'1245' Conversational Protocol Error
PRMNSPRM X'1251' Parameter Not Supported
RECDMGRM X'1249' Record Damaged
RECINARM X'1259' Record Inactive
RECIUSRM X'124A' Record In Use
RECLENRM X'1215' Record Length Mismatch
RECNAVRM X'126F' Record Not Available
RECNBRRM X'1224' Record Number Out Of Bounds
RECNFNRM X'1225' Record Not Found
RSCLMTRM X'1233' Resource Limits Reached on Target System
SRCLMTRM X'F210' Resource Limits Reached in Source System
SYNTAXRM X'124C' Data Stream Syntax Error
TRGNSPRM X'125F' Target Not Supported on Target System
UPDCSRRM X'124D' Update Cursor Error
UPDINTRM X'124E' No Update Intent on Record
VALNSPRM X'1252' Parameter Value Not Supported
XLATERM X'F203' Translation Error

Table 27 (Page 1 of 2). VSAM Reply Messages Listed in Code Point Order

Code Point Message ID Message Title

X'1201' KEYUDIRM Key Update Not Allowed by Different Index
X'1204' DFTRECRM Default Record Error
X'1205' CSRNSARM Cursor Not Selecting a Record Position
X'1206' DTARECRM Invalid Data Record
X'1207' DUPFILRM Duplicate File Name
X'1208' DUPKDIRM Duplicate Key Different Index
X'1209' DUPKSIRM Duplicate Key Same Index
X'120A' DUPRNBRM Duplicate Record Number
X'120B' ENDFILRM End of File Condition
X'120C' FILFULRM File Is Full
X'120D' FILIUSRM File In Use
X'120E' FILNFNRM File Not Found

 Chapter 6. VSAM API Reply Messages 415

Reply Messages

Table 27 (Page 2 of 2). VSAM Reply Messages Listed in Code Point Order

Code Point Message ID Message Title

X'120F' FILSNARM File Space Not Available
X'1212' FILNAMRM Invalid File Name
X'1215' RECLENRM Record Length Mismatch
X'121C' FUNATHRM Not Authorized to Function
X'121E' FILTNARM File Temporarily Not Available
X'1224' RECNBRRM Record Number Out Of Bounds
X'1225' RECNFNRM Record Not Found
X'122D' KEYLENRM Invalid Key Length
X'1230' ACCATHRM Not Authorized to Use Access Method
X'1231' ACCMTHRM Invalid Access Method
X'1232' AGNPRMRM Permanent Agent Error
X'1233' RSCLMTRM Resource Limits Reached on Target System
X'1234' BASNAMRM Invalid Base File Name
X'1237' DRCATHRM Not Authorized to Directory
X'123A' EXSCNDRM Existing Condition
X'123B' FILATHRM Not Authorized to File
X'123C' INVRQSRM Invalid Request
X'123D' KEYDEFRM Invalid Key Definition
X'123F' KEYUSIRM Key Update Not Allowed by Same Index
X'1240' KEYVALRM Invalid Key Value
X'1244' OPNMAXRM Concurrent Opens Exceeds Maximum
X'1245' PRCCNVRM Conversational Protocol Error
X'1249' RECDMGRM Record Damaged
X'124A' RECIUSRM Record In Use
X'124C' SYNTAXRM Data Stream Syntax Error
X'124D' UPDCSRRM Update Cursor Error
X'124E' UPDINTRM No Update Intent on Record
X'124F' NEWNAMRM Invalid New File Name
X'1250' FUNNSPRM Function Not Supported
X'1251' PRMNSPRM Parameter Not Supported
X'1252' VALNSPRM Parameter Value Not Supported
X'1253' OBJNSPRM Object Not Supported
X'1254' CMDCHKRM Command Check
X'1257' HDLNFNRM File Handle Not Found
X'1258' DRCFULRM Directory Full
X'1259' RECINARM Record Inactive
X'125A' FILDMGRM File Damaged
X'125C' INTATHRM Not Authorized to Open Intent for Named File
X'125E' CLSDMGRM File Closed with Damage
X'125F' TRGNSPRM Parameter Not Supported on Target System
X'1266' ACCINTRM Access Intent List Error
X'126F' RECNAVRM Record Not Available
X'F201' DDFNFNRM Data Description File Not Found
X'F202' CVTNFNRM Conversion Table Not Found
X'F203' XLATERM Translation Error
X'F205' INVFLGRM Invalid Flag
X'F207' COMMRM Communications Error
X'F210' SRCLMTRM Resource Limits Reached in Source System
X'F211' LENGTHRM Field Length Error
X'F212' ADDRRM Address Error
X'F216' FILERRRM File Error

416 VSAM for OS/2

Reply Messages

ACCATHRM (Not Authorized to Use Access Method)
Purpose The requester is not authorized to use the specified access

method.

Code Point The code point for this term is X'1230'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

ACCMTHCL Access method class

� Code point is X'114E'.
� Enumerated values for this parameter are:

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

X'1433' RELRNBAM (Relative by record number access

method)
X'1435' RNDRNBAM (Random by record number access

method)
X'1407' CMBRNBAM (Combined record number access

method)
X'1432' RELKEYAM (Relative by key access method)
X'1434' RNDKEYAM (Random by key access method)
X'1406' CMBKEYAM (Combined keyed access method)
X'1405' CMBACCAM (Combined access access method)

ACCINTRM (Access Intent List Error)
Purpose Indicates that the access-intent-list parameter in the DDMOpen

function is in error for one of the following reasons:

� The file does not support the requested access intent.
� The file access capability specified on DDMCreateRecFile

does not support the requested access intent.

For more information, see “DDMOpen (Open File)” on page 129.

Code Point The code point for this term is X'1266'.

 Chapter 6. VSAM API Reply Messages 417

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

ACCMTHRM (Invalid Access Method)
Purpose Indicates that the function failed because the specified access

method was in error. This can happen because:

� The specified access method class is not supported.
� The access method class specified is not a defined access

method class.

Code Point The code point for this term is X'1231'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

ACCMTHCL Access method class

� Code point is X'114E'.
� Enumerated values for this parameter are:

X'1433' RELRNBAM (Relative by record number access

method)
X'1435' RNDRNBAM (Random by record number access

method)
X'1407' CMBRNBAM (Combined record number access

method)
X'1432' RELKEYAM (Relative by key access method)
X'1434' RNDKEYAM (Random by key access method)
X'1406' CMBKEYAM (Combined keyed access method)

418 VSAM for OS/2

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

X'1405' CMBACCAM (Combined access access method)

ADDRRM (Address Error)
Purpose A buffer address of zero was specified when a non-zero value

was expected.

Code Point The code point for this term is X'F212'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� Enumerated value(s) for this parameter:

0001 Record Buffer
0002 Key Buffer
0003 GEA (Get Extended Attribute

Buffer)
0004 Record Number Buffer
0005 Get Extended Attribute Reply or

Set Extended Attribute Buffer
0006 Record Count Buffer or Returned

Record Count Buffer
0007 File Name or Title
0008 File Handle
0009 Flags Buffer
0010 Default Record Buffer
0011 Feedback Buffer

 Chapter 6. VSAM API Reply Messages 419

Reply Messages

AGNPRMRM (Permanent Agent Error)
Purpose The function requested could not be completed because of a

permanent error condition detected at the target system.

Code Point The code point for this term is X'1232'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

BASNAMRM (Invalid Base File Name)
Purpose The base file name is not a valid target system file name.

Code Point The code point for this term is X'1234'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

BASFILNM Base file

� Code point is X'1103'.
� VSAM returns this information.

420 VSAM for OS/2

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

CLSDMGRM (File Closed with Damage)
Purpose The file was closed as requested by the DDMClose function, but

the file was damaged. That is, the file does not contain all the
data of the file in the state required by DDM architecture.

If the target system blocks data for storage, the damage can
result from failing to write the last block of data being processed
to permanent storage.

Other reasons for this condition may also exist, as defined by the
target system.

Code Point The code point for this term is X'125E'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

64 Permanent Damage Severity Code

FILNAM File name

� Code Point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

CMDCHKRM (Command Check)
Purpose An error occurred in a non-DDM related operating system

support function that could not be mapped to an existing DDM
error reply message.

Code Point The code point for this term is X'1254'.

 Chapter 6. VSAM API Reply Messages 421

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

0 Information Only Severity Code
4 Warning Severity Code
8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code
128 Session Damage Severity Code

SVRCOD can also contain an operating system
error code. If the error code is from the
operating system, SRVDGN is 2.

DTALCKST Data lock status

� Code point is X'115C'.

� Value is X'F1' (TRUE) if the data locks are
the same as before the failure.

� Value is X'F0' (FALSE) if the data locks are
not the same as before the failure.

CSRPOSST Cursor position status

� Code point is X'115B'.

� Value is X'F1' (TRUE) if the cursor position
is the same as before the function iteration
that caused the reply message. TRUE is
the only valid value if the severity code is
ERROR.

� Value is X'F0' (FALSE) if the cursor
position is not the same as before the
function iteration that caused the reply
message or is that the current cursor
position is unknown.

� The target server determines whether this
information is returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

422 VSAM for OS/2

Reply Messages

� Required for requests to insert multiple
records in a file.

SRVDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� The target server determines whether this

information is returned.
� Enumerated value(s) for this parameter are:

1 FileShare parameter on the DDMOpen
was promoted to NON because the file
is remote over the LAN (for local
VSAM file system only).

2 An operating system error occurred
and cannot be mapped to a reply
message. The SVRCOD contains the
value for the condition the operating
system detected.

COMMRM (Communications Error)
Purpose A problem was encountered communicating with a target system.

The requestor is not authorized to use the specified access
method.

Code Point The code point for this term is X'F207'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code

SVRDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� SOURCE DDM network enumerated value(s) for this

parameter. See Table 28 on page 424.

The table below shows the hexadecimal (Hex) and decimal (Dec) values for COMMRM.

 Chapter 6. VSAM API Reply Messages 423

Reply Messages

Table 28 (Page 1 of 3). SRVDGN Values for COMMRM

Dec Hex Mnemonic Possible Causes

1 1 APPC_NOT_ACTIVE DFM cannot access the remote system.
The possible causes are:

� The network services have not been
started.

� The network link has not been started.
� The specified APPC LU is not an LU

accessible on the network.

2 2 COMM_ENV_NOT_STARTED STRTDFMC has not been successfully
executed (OS/2 only).

3 3 CONV_UNEXP_ENDED A conversation with a target system has
ended unexpectedly. Possible causes:

� A problem on the network
� A problem in the target system
� A problem in the network access

software
� A problem in the operating system

4 4 INSUFF_LOCAL_RESOURCES Local resources are not sufficient.

Most likely, the stack size of the application
is too small.

5 5 INTERNAL_ERROR_IN_DFMCM An internal error has occurred in the record
access communications manager
component of DFM. Contact your service
representative.

6 6 NO_SESSION_AVAILABLE DFM tried to allocate a conversation with
the remote system, but no session was
available. Possible causes:

� The network access software
configuration conflicts with the DFM
configuration data.

� The network access link is not active.
� A cable problem exists.
� The target system is not active.
� The session limit is exceeded.

7 7 PCS_ROUTER_ERROR An internal error has occurred in the
stream access communication manager
component of DFM (OS/2 only). Contact
your service representative.

8 8 TDDM_NOT_FOUND An application requested record access to
a file on a target system, but CONFIG.DFM
contains no DFM_TARGET entry for that
target system.

424 VSAM for OS/2

Reply Messages

Table 28 (Page 2 of 3). SRVDGN Values for COMMRM

Dec Hex Mnemonic Possible Causes

9 9 TDDM_UNEXP_ENDED The DFM target server has unexpectedly
terminated the conversation. The most
likely cause is the program that implements
the DDM target server contains an error.
Contact the supplier of the DDM target
server.

10 A TGT_ISSUED_SEND_ERROR The DFM target server has issued the
SEND_ERROR verb when it was not
expected by DFM.

11 B UNKNOWN_COMM_ERROR DFM tried to communicate with a target
system, but an unknown return code from
the network access software occurred.
Contact your service representative.

12 C SRVDGN_DFMINIT_FAILURE Unable to initialize the DFM control blocks
from the binary configuration file
dfmcfg.dfm. Ensure that the dfmcfg.dfm file
is accessible and valid by issuing dfmcfg
-c from the session where the application
was started (for Windows only).

13 D SRVDGN_INVALID_SECURITY_MODE An unknown security mode was assigned
to a server system. The DFM binary
configuration file has most likely been
corrupted. Recreate the DFM configuration
file with the dfmcfg command (for
Windows only).

14 E SRVDGN_INVALID_SECURITY_NONE A security mode violation was detected for
the remote system. The security mode,
either specified explicitly in the DFM
configuration or by default if not explicitly
specified is PROGRAM. The dfmlogon
command was not issued for the server
system. Remember if you do not explicitly
specify the security mode for a server
system in the DFM configuration file, the
default is PROGRAM. Issue the dfmlogon
command to define logon information for
the server system (for Windows only).

15 F SRVDGN_INVALID_SECURITY_
PROGRAM

A security mode violation was detected.
The dfmlogon command was issued for
the server system. However, either the
password or the user ID, or both, were not
specified (for Windows only).

17 11 SRVDGN_INVALID_UNC_PATHNAME The specification of a remote file for DFM
to access has an not valid UNC format (for
Windows only).

 Chapter 6. VSAM API Reply Messages 425

Reply Messages

Table 28 (Page 3 of 3). SRVDGN Values for COMMRM

Dec Hex Mnemonic Possible Causes

18 12 BAD_ENV A problem with the runtime environment
has caused a fatal error. One or both of
the following files cannot be loaded or is
corrupted: dfmmain.dll and dfmext.dll (for
Windows only).

19 13 SRVDGN_INVALID_SECURITY_ SERVER The remote server determined that security
information is not valid. The possible
causes are (for Windows only):

� The specified type of security access
is not acceptable.

� The user ID is invalid.
� The user ID and password

combination is not valid.

20 14 SRVDGN_INVALID_TPN_SERVER The remote system does not support the
SNA registered DDM server transaction
program, or the DDM server is not active.

21 15 SRVDGN_INVALID_PARAMETER The remote system LU name is not valid
(cannot be found on the network), or the
mode name is not valid for the remote
system, or the LU name/mode name
combination is not valid. Note, some
network access software requires
specification of LU name/mode name
combinations at configuration time.

CSRNSARM (Cursor Not Selecting a Record Position)
Purpose The function failed because the cursor is not presently selecting

a record position. The cursor is either at the BOF or EOF
position, or its position is unknown.

Code Point The code point for this term is X'1205'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

426 VSAM for OS/2

Reply Messages

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

CVTNFNRM (Conversion Table Not Found)
Purpose The specified character conversion table was not found. No

character translation is performed. This reply message is
returned when DFM/2 tries to access a conversion table for a
character-to-character field conversion. The conversion table to
be loaded depends on the code page IDs related to the
from-character field and the to-character field (OS/2 only).

Code Point The code point for this term is X'F202'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM Conversion Table File name

� Code point is X'110E'.
 � Returned.

DDFNFNRM (Data Description File Not Found)
Purpose The named Data Description File was not found. No translation

is performed during the current function request. This reply
message is returned when DFM/2 tries to load the data
description information for a remote file and it could not find the
related DDF file, as specified in the MAPFMT entry of the DFM/2
configuration file (OS/2 only).

 Chapter 6. VSAM API Reply Messages 427

Reply Messages

Code Point The code point for this term is X'F201'

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data. the general structure of reply
message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM Data Description File Name

� Code point is X'110E'.
 � Returned.

DFTRECRM (Default Record Error)
Purpose The request to initialize a file could not be completed because

the default record does not meet the target server's criteria. For
example, default inactive record initialization cannot be done on
sequential files that do not have delete capability.

Code Point The code point for this term is X'1204'.

Structure See the description at the beginning of this section for the
general structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DRCATHRM (Not Authorized to Directory)
Purpose The user is not authorized to access or update the directory that

is specified or implied by a file name.

428 VSAM for OS/2

Reply Messages

Code Point The code point for this term is X'1237'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DRCFULRM (Directory Full)
Purpose The directory specified or implied by a file name is full and does

not have space for the file being created or renamed.

Code Point The code point for this term is X'1258'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DTARECRM (Invalid Data Record)
Purpose A record to be inserted in a file cannot contain a data value that

specifies an inactive record to the local data management on the
target system.

 Chapter 6. VSAM API Reply Messages 429

Reply Messages

An inactive record can not be inserted into a non-delete-capable
file.

If it is necessary to insert an inactive record into a delete-capable
file, send RECINA.

Code Point The code point for this term is X'1206'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.
� For alternate index files, this is the base file

name.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.
� Required for requests to insert multiple

records in a file.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

430 VSAM for OS/2

Reply Messages

DUPFILRM (Duplicate File Name)
Purpose An attempt to create or rename a file failed because it duplicates

an existing file name. The target system does not allow
duplicates.

Code Point The code point for this term is X'1207'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code Point is X'1153'.
� No information is returned.

DUPKDIRM (Duplicate Key Different Index)
Purpose The function was not completed because the record sent

contains a field that duplicates a key in an index different than
the one being used to access the file. The other index does not
allow duplicate key records.

The target returns the name of the file(s) in which the duplicate
key would occur (ERRFILNM).

Code Point The code point for this term is X'1208'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

 Chapter 6. VSAM API Reply Messages 431

Reply Messages

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

ERRFILNM Error file name

� Code point is X'1126'.
 � Returned.
� Only one Error File Name is required.

Additional Error File Names may be
specified if they are known.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file. In other cases, the DDM
server determines whether this information is
returned.

RECNBR Record number

� Code point is X'111D'.
� The DDM server determines whether this

information is returned.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

DUPKSIRM (Duplicate Key Same Index)
Purpose The function was not completed because the record duplicates a

key in the index being used to access the file. This index does
not allow duplicate key records.

Code Point The code point for this term is X'1209'.

432 VSAM for OS/2

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

4 Warning (duplicate record found).
Indicates that the API access
completed successfully and notifies
the caller that the record being
returned has a duplicate key. This
condition was previously flagged as an
error.

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file. In other cases, the DDM
server determines whether this information is
returned.

RECNBR Record number

� Code point is X'111D'.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 433

Reply Messages

DUPRNBRM (Duplicate Record Number)
Purpose A record cannot be inserted at a record position that is occupied

by an active record.

Code Point The code point for this term is X'120A'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file. In other cases, the DDM
server determines whether this information is
returned.

RECNBR Record number

� Code point is X'111D'.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

434 VSAM for OS/2

Reply Messages

ENDFILRM (End of File)
Purpose It is not possible to retrieve a record that is outside the BOF,

EOF, or some specified file limit with the following functions:

Function Limits

DDMSetNextRec Always the last and first record
positions, respectively, in the file.

DDMSetPrevious Always the last and first record
positions, respectively, in the file.

DDMSetKeyPrevious The first record, in key sequence,
of the file.

DDMSetKeyNext The last record, in key sequence,
of the file, or the high key limit
established by a
DDMSetKeyLimits function.

DDMSetNextKeyEqual The last record (in key sequence)
of the file, the high key limit
established by a
DDMSetKeyLimits function, or the
key value specified by the
KEYVAL parameter on the
DDMSetNextKeyEqual function.

Code Point The code point for this term is X'120B'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

4 Warning Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 435

Reply Messages

Examples:

Cursor

EOF

A DDMSetNextRec with NODATA not set would result in an ENDFILRM.

Figure 84. DDMSetNextRec ENDFILRM

Cursor

Key Limits = (AAA JJJ)

Key = AAA

Key = GGG

Key = CCC

Key = ZZZ

Key = LLL

EOF

A DDMSetKeyNext command with NODATA parameter not set
would result in an ENDFILRM.

Figure 85. DDMSetKeyNext ENDFILRM

436 VSAM for OS/2

Reply Messages

EXSCNDRM (Existing Condition)
Purpose A request was made that would have resulted in a condition that

already exists.

For example:

� A request to create a file when a file by that name already
exists.

� A request to unlock a record that is not locked.

� A request to delete a file that cannot be found.

� A request to delete a record that is already deleted.

� A request to rename a file to the same name.

Code Point The code point for this term is X'123A'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

4 Warning Severity Code

FILNAM File name

� Code point is X'110E'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILATHRM (Not Authorized to File)
Purpose The user is not authorized to perform the requested function on

the file being accessed.

Code Point The code point for this term is X'123B'.

 Chapter 6. VSAM API Reply Messages 437

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� Enumerated value(s) for this parameter:

0 The operating system denied access
to the file.

1 Access attempt to byte stream file with
VSAM API. Byte stream is not a
supported record type.

FILDMGRM (File Damaged)
Purpose The file may be damaged. Some of the indications of a

damaged file in the local VSAM file system are:

� The file-change date and time recorded by a VSAM API is
not the same as the file-change date and time recorded by
the file system. The function continues processing
(SVRCOD=4).

Either an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has changed the
file. The local VSAM file system resynchronizes the
file-change date and time if it can get write access to the file,
unless a higher severity condition prevents it from doing so.
Re-synchronizing the date and time corrects only this
particular file-damaged condition, but the file may still be
damaged. To verify that the file is not damaged, use
DDMCopyFile or DDMUnLoadFileFirst with

438 VSAM for OS/2

Reply Messages

AccessFlags=DDM_BYPDMG|DDM_RTNINA and inspect the
result.

� An index file is not consistent with its base file. The function
is rejected (SVRCOD=16).

The file-change date and time recorded by the VSAM API for
the base file is not the same as the base file's file-change
date and time that was recorded as an attribute of the index
file. Either an aborted DDM application has left the file in an
inconsistent state or a non-DDM application has replaced a
base file or an index file without replacing all of the files in
the file object. The local VSAM file system does not
resynchronize the file-change date and time.

Both of the above conditions can exist at the same time for the
same index file, causing two FILDMGRM reply messages to be
returned, one for SVRCOD=4 followed by one for SVRCOD=16.

Code Point The code point for this term is X'125A'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

 Chapter 6. VSAM API Reply Messages 439

Reply Messages

RECNBR Record number

� Code point is X'111D'.
� This is the record number of the record

being operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.
� Enumerated value for this parameter:

1 Either an aborted DDM application has
left the file in an inconsistent state or a
non-DDM application has changed the
file.

FILFULRM (File Is Full)
Purpose A file is full when a record cannot be added to the end of the file

because:

� All record positions in the file have been filled and the file is
not extendable.

� All record positions in the file have been filled and the file
has been extended the maximum number of times.

� There are not enough bytes available in the file to insert the
record and the file is not extendable, or the maximum
number of extents have already been made. For example, if
there are 45 bytes of space available in the file and an
attempt is made to insert a record of 150 bytes, a FILFULRM
reply message results.

Code Point The code point for this term is X'120C'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

440 VSAM for OS/2

Reply Messages

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

RECNBR Record number

� Code point is X'111D'.
� This is the number of the record being

operated on by the function.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILIUSRM (File in Use)
Purpose The named file is locked by another user at a level that prevents

the requested function from obtaining the locks it requires.

Code Point The code point for this term is X'120D'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

 Chapter 6. VSAM API Reply Messages 441

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILNAMRM (Invalid File Name)
Purpose The file name specified on the function is not a valid target

system file name.

Code Point The code point for this term is X'1212'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.
� This is the file name that is in error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILNFNRM (File Not Found)
Purpose The named file (specified on the function) cannot be found on the

target system.

Code Point The code point for this term is X'120E'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

442 VSAM for OS/2

Reply Messages

FILNAM File name

� Code point is X'110E'.
 � Returned.
� This is the file name that is in error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FILSNARM (File Space Not Available)
Purpose The file cannot be created or extended because the operating

system does not have sufficient space available.

Code Point The code point for this term is X'120F'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 443

Reply Messages

FILTNARM (File Temporarily Not Available)
Purpose The target system has temporarily made the file unavailable to all

users. Either the file is damaged and must be repaired before
further use, or a target system process, such as disk
compression, prevents immediate use.

Code Point The code point for this term is X'121E'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

FILNAM File name

� Code Point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FUNATHRM (Not Authorized to Function)
Purpose The user is not authorized to perform the requested function.

Code Point The code point for this term is X'121C'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

444 VSAM for OS/2

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

FUNNSPRM (Function Not Supported)
Purpose The function specified is not recognized or not supported for the

specified target object.

Code Point The code point for this term is X'1250'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� Specifies the code point of the function not

supported.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

HDLNFNRM (File Handle Not Found)
Purpose The file handle specified is not known or if the handle from

DDMLoadFileFirst or DDMUnLoadFileFirst is not used as the
handle for a DDMLoadFileNext or DDMUnLoadFileNext, this
reply message will be returned.

Code Point The code point for this term is X'1257'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 Chapter 6. VSAM API Reply Messages 445

Reply Messages

8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� Handle number is returned.

INTATHRM (Not Authorized to Open Intent for Named File)
Purpose The user is not authorized to open the file with the specified

processing intent. This message is returned by servers that
validate the user's authorization to access a file when the file is
opened. Servers can allow the file to be opened without
validation of the requester's specified intents if authorizations are
subsequently validated for each function used to access an
opened file.

Code Point The code point for this term is X'125C'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

ACCINTLS Access intent list

� Code point is X'1134'.
� Specifies the access intents for which the

requester is not
authorized.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

INVFLGRM (Invalid Flag)
Purpose One or more reserved bits have been set in a flag word.

Code Point The code point for this term is X'F205'.

446 VSAM for OS/2

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'
 � Returned.
� Reflects the reserved bits that had been set

on.

INVRQSRM (Invalid Request)
Purpose A request can be invalid for one of the following reasons:

� There is conflict with a user-specified attribute of the file,
such as:

– The function issues a request to delete a record from a
non-delete-capable file.

– The function violates the access intents specified when
the file was opened.

� The requester attempted to delete a file that is the base file
for some alternate index files.

� The requested function is supported by the access method
but not by the file class to which the access method is
opened.

� A DDMSetKeyLimits function was issued for a file that was
created with keys such that all parts of the key are not
ascending.

� A DDM_ALLREC bit was set on a DDMSetNextRec,
DDMSetPrevious, DDMSetFirst, or DDMSetLast function for
a direct file.

� An alternate index file was specified as the base file of an
alternate index file on the DDMCreateAltIndex function.

� The value of LowKeyLim is after the value of HiKeyLim on a
DDMSetKeyLimits function.

� An attempt was made to delete or clear a protected file.

� A DDMTruncFile function:

 Chapter 6. VSAM API Reply Messages 447

Reply Messages

– For file opened for read only (GETAI, but not MODAI)
– For a read-only-file (GETCP, but not MODCP).

� The requester attempted to create an alternate index file with
a path qualifier that was different than the path qualifier of
the base file.

Code Point The code point for this term is X'123C'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� Information is returned if available.
� Enumerated value(s) for this parameter:

15 The file is protected.

KEYDEFRM (Invalid Key Definition)
Purpose The key definition is invalid for the reason specified by the

KEYDEFCD parameter.

Code Point The code point for this term is X'123D'.

448 VSAM for OS/2

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

KEYDEFCD Key definition error code

� Code point is X'1164'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

KEYLENRM (Invalid Key Length)
Purpose Specifies that the key value provided on a function is not the

length required by the requested function.

This can be caused by:

� Specifying a partial key on a function that requires full keys.

� Specifying a key length greater than the maximum length
key supported by the target system.

� Specifying a record key value whose length is greater than
the defined key length of the file.

Code Point The code point for this term is X'122D'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

 Chapter 6. VSAM API Reply Messages 449

Reply Messages

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

KEYUDIRM (Key Update Not Allowed by Different Index)
Purpose A different file does not allow its key value (of the record being

modified) to be changed.

Code Point The code point for this term is X'1201'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

ERRFILNM Error file name

� Code point is X'1126'.
 � Returned.
 � Repeatable.
� Only 1 error file name is required.

Additional error file names may be specified
if they are known.

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

450 VSAM for OS/2

Reply Messages

KEYUSIRM (Key Update Not Allowed by Same Index)
Purpose The file index being used to access the file does not allow the

key value (of the record being modified) to be changed.

Code Point The code point for this term is X'123F'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 451

Reply Messages

KEYVALRM (Invalid Key Value)
Purpose Specifies that the key value provided on a function or a record is

not valid.

This can be caused by:

� Specifying a variable-length record that does not contain all
of the fields for the defined file key.

� Specifying a key that is not valid for the target server.

Code Point The code point for this term is X'1240'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

KEYVAL Key value in error

� Code point is X'1115'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file.

RECNBR Record number

� Code point is X'111D'.
� This is the number of the record being

operated on by the function.

452 VSAM for OS/2

Reply Messages

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

LENGTHRM (Field Length Error)
Purpose A field was found with incorrect length.

Code Point The code point for this term is X'F211'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� Enumerated value(s) for this parameter:

0001 Maximum Record Length
Exceeded
The maximum record length the
local VSAM file system supports is
65,000 bytes. The maximum
record length Distributed
FileManager/MVS supports is
32 000 bytes.

0002 Record Buffer Too Small
If the buffer is at least 4 bytes long,
and no records have been placed
in the buffer, the first 4 bytes
contain the length of the record that
did not fit.

0003 Key Definition Buffer Too Small
If the buffer is at least 4 bytes long,
the first 4 bytes contain the
required length of the buffer in
order for the key definition
information to fit.

 Chapter 6. VSAM API Reply Messages 453

Reply Messages

0004 Extended Attribute Reply Buffer
Too Small

If the buffer is at least 4 bytes long,
the first 4 bytes contain the
required length.

0005 Extended Attribute Input Buffer
Length Error

0007 Default Record Buffer Length
Error

The default record buffer is outside
the allowable limits.

NEWNAMRM (Invalid New File Name)
Purpose The new file name is not a valid target system file name.

Code Point The code point for this term is X'124F'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

NEWFILNM New file name

� Code point is X'114F'.
� This is the file name that is in error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

OBJNSPRM (Object Not Supported)
Purpose The object specified as data in a buffer is not recognized or not

supported for the function associated with the object. Only active
and inactive records are recognized.

OBJNSPRM is also returned if an object is found in a valid
collection that is part of a buffer (such as the RECAL collection)
that is not valid for that collection.

Code Point The code point for this term is X'1253'.

454 VSAM for OS/2

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� This is the code point of the object that is

not supported.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

OPNMAXRM (Concurrent Opens Exceeds Maximum)
Purpose The number of concurrent DDMOpen functions to the same file

exceeds the target server maximum.

Code Point The code point for this term is X'1244'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

 Chapter 6. VSAM API Reply Messages 455

Reply Messages

MAXOPN Maximum number of files opened

� Code point is X'1157'.
� Specifies the maximum number of opens to

the same file.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

PRCCNVRM (Conversational Protocol Error)
Purpose A conversational protocol error occurred.

Code Point The code point for this term is X'1245'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

16 Severe Error Severity Code

128 Session Damage Severity Code

PRCCNVCD Conversational protocol error code

� Code point is X'113F'.
 � Returned.
� Enumerated value(s) for this parameter:

0001 RPYDSS received by target
communication manager

0002 Multiple DSSs sent without chaining or
multiple DSS chains sent

0003 OBJDSS sent when not allowed

0004 The next correlation identifier was not
ascending

0005 The request correlation identifier of
OBJDSS and RPYDSS are not equal

0006 EXCSAT was not the first function
after the connection was established

456 VSAM for OS/2

Reply Messages

RECCNT Recode count

� Code point is X'111A'
� Minimum value is 0
� Information is returned if available

SVRDGN Server diagnostic information

� Code point is X'1153'
� No information is returned.

PRMNSPRM (Parameter Not Supported)
Purpose The parameter specified is not recognized or not supported for

the associated function.

Code Point The code point for this term is X'1251'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� Specifies the code point of the parameter

not supported.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECDMGRM (Record Damaged)
Purpose A record in the file is damaged and cannot be accessed. A

damaged record is one in which the Code point is not an active
or inactive record.

Damaged records can be bypassed as an option of the following
functions:

 DDMSetKeyNext
 DDMSetNextRec
 DDMUnloadFileFirst
 DDMUnLoadFileNext

 Chapter 6. VSAM API Reply Messages 457

Reply Messages

See “DDM_BYPDMG (Bypass Damaged Records)” on page 403.

RECDMGRM is returned with a severity code of WARNING for
every damaged record that is bypassed. The record number of
the bypassed record is also returned. If damaged records cannot
be bypassed, this message is returned with a severity code of
ERROR or greater.

Code Point The code point for this term is X'1249'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

458 VSAM for OS/2

Reply Messages

RECINARM (Record Inactive)
Purpose RECINARM is returned with the following severity codes:

SVRCOD Reason

X'0004' This is returned when a DDMSetxxx function has
moved the cursor to an inactive record.

X'0008' or higher
This is returned when the record is inactive, and
the function cannot be executed.

Code Point The code point for this term is X'1259'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 4 Warning Severity Code
 8 Error Severity Code
16 Severe Error Severity Code

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECIUSRM (Record in Use)
Purpose The record cannot be locked or accessed. This happens

because another user has the record locked at a level that
prevents the record from being locked or accessed by other
users.

Code Point The code point for this term is X'124A'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 Chapter 6. VSAM API Reply Messages 459

Reply Messages

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.

 � OPTIONAL.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the number of the record being

operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECLENRM (Record Length Mismatch)
Purpose The length of a data record does not match the length of the

current record position.

If the record class is fixed and the record to be inserted is an
active record, the length of the record object must be equal to the
length of the record object header (length and code point) plus
the length of the record object data. See “RECORD (Record)” on
page 394 for more information.

If the record to be inserted is an inactive record, the record
length represented by the inactive record must be the same as
the length defined for a record in the file. (See “RECINA
(Inactive Record)” on page 391 for more information.)

Code Point The code point for this term is X'1215'

460 VSAM for OS/2

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the number of the record being

operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECNAVRM (Record Not Available)
Purpose The requested record cannot be retrieved because it is not

available to the file.

Code Point The code point for this term is X'126F'.

 Chapter 6. VSAM API Reply Messages 461

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECNBRRM (Record Number Out of Bounds)
Purpose The specified record number is outside the boundaries of the file.

For a definition of file boundaries, see “DDMInsertRecNum (Insert
by Record Number)” on page 100.

Code Point The code point for this term is X'1224'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

462 VSAM for OS/2

Reply Messages

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RECNFNRM (Record Not Found)
Purpose The cursor cannot be positioned because a record that satisfies

the absolute or relative positioning parameters of a function does
not exist.

Code Point The code point for this term is X'1225'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

 Chapter 6. VSAM API Reply Messages 463

Reply Messages

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

RSCLMTRM (Resource Limits Reached on Target System)
Purpose The requested function could not be completed because of

insufficient target server resources. Examples of resource limits
are:

� The target agent has insufficient memory to keep track of
more open files.

� The lock manager cannot obtain another lock.

� The communication manager's send or receive buffer
overflowed.

� The MAX_SEND_LIMIT in a TARGET_SYSTEM statement
of the DFM configuration file is set to a low value.

Code Point The code point for this term is X'1233'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code
32 Access Damage Severity Code
64 Permanent Damage Severity Code
128 Session Damage Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
� The target server determines whether this

information is returned.

DTALCKST Data lock status

� Code point is X'115C'.
� The target server determines whether this

information is returned.

464 VSAM for OS/2

Reply Messages

FILNAM File name

� Code point is X'110E'.
� Returned when the FILNAM parameter is

specified for the function. In other cases,
the target server determines whether this
information is returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

SRCLMTRM (Resource Limit Reached in Source System)
Purpose Some resource has reached its limit in the source system.

Code Point The code point for this term is X'F210'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'
 � Returned.
� Enumerated value(s) for this parameter:

16 Severe Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'
� No information is returned.

SYNTAXRM (Data Stream Syntax Error)
Purpose The data sent to the target agent does not conform to the

structural requirements of DDM architecture. The target agent
terminated parsing of the Data Stream Structure (DSS) when the
condition specified by the Syntax Error Code parameter was
detected.

Code Point The code point for this term is X'124C'.

 Chapter 6. VSAM API Reply Messages 465

Reply Messages

Structure See the description at the beginning of this section for the
general structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated value(s) for this parameter:

8 Error Severity Code

SYNERRCD Syntax error code

� Code point is X'114A'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Information is returned if available.

CODPNT Code point attribute

� Code point is X'000C'
 � Returned.
� Specifies the code point of the object that

caused the syntax error.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

TRGNSPRM (Parameter Not Supported on Target System)
Purpose The parameter specified cannot be supported on the target

system.

Code Point The code point for this term is X'125F'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

 8 Error Severity Code

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

466 VSAM for OS/2

Reply Messages

UPDCSRRM (Update Cursor Error)
Purpose The cursor cannot be updated to point to the last record inserted

in the file.

This error can be sent only if the function set the UPDCSR bit
flag for the Access Flags parameter.

Code Point The code point for this term is X'124D'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Returned for requests to insert multiple

records in a file.

RECNBR Record number

� Code point is X'111D'.
� Information is returned if available.
� This is the number of the record being

operated on by the function.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

 Chapter 6. VSAM API Reply Messages 467

Reply Messages

UPDINTRM (No Update Intent on Record)
Purpose The record cannot be updated for one of the following reasons:

� An update intent has not been placed on the record by the
requester.

� The update intent may have been removed because of a
previous function issued by the requester.

Code Point The code point for this term is X'124E'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

 8 Error Severity Code
16 Severe Error Severity Code

CSRPOSST Cursor position status

� Code point is X'115B'.
 � Returned.

DTALCKST Data lock status

� Code point is X'115C'.
 � Returned.

FILNAM File name

� Code point is X'110E'.
 � Returned.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

VALNSPRM (Parameter Value Not Supported)
Purpose The parameter value specified is not recognized or not supported

for the named parameter.

The function parameter in error is returned as a parameter in this
message.

Code Point The code point for this term is X'1252'.

468 VSAM for OS/2

Reply Messages

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

8 Error Severity Code

CODPNT Code point attribute

� Code point is X'000C'.
 � Returned.
� Return the code point of the parameter

whose value is not
supported.

RECCNT Record count

� Code point is X'111A'.
� Minimum value is 0.
� Required for requests to insert multiple

records in a file.

SRVDGN Server diagnostic information

� Code point is X'1153'.
� No information is returned.

XLATERM (Translation Error)
Purpose An error occurred during translation of a record or field. The

record or field is not translated. This reply message is returned
when DFM tries to convert a record from source into target
format, or vice versa, by using the data description sequences.

Code Point The code point for this term is X'F203'.

Structure See “Reply Message Structure” on page 413 for the general
structure of reply message data.

Parameter Description

SVRCOD Severity code

� Code point is X'1149'.
 � Returned.
� Enumerated values for this parameter:

4 Warning Severity Code

8 Error Severity Code

16 Severe Error or Severity Code

 Chapter 6. VSAM API Reply Messages 469

Reply Messages

SVRDGN Server diagnostic information

� Code point is X'1153'.
 � Returned.
� Enumerated values for this parameter:

0001 Rounding error

0002 Truncation error

0006 Possible causes:

– CDRASRV environment variable
not set (Windows or AIX only).

– CDRA conversion table not
available.

0101 Range error

0102 Untranslated data

0103 Modification intent, but the view does
not cover the entire base record
(reduced view)

0104 A partial numeric key field cannot be
translated

Other server diagnostic values might be
returned. See SMARTdata UTILITIES Data
Description and Conversion.

470 VSAM for OS/2

Part 2. DFM for OS/2

Chapter 7. Introduction to the Distributed FileManager for OS/2 473

Chapter 8. DFM for OS/2 Administrative Activities 481

Chapter 9. Starting and Stopping DFM for OS/2 487

Chapter 10. Working with the Configuration File 491

Chapter 11. Assigning and Releasing Drive Letters 499

Chapter 12. Exploiting the DFM for OS/2 Caching Facility for Stream Files . 515

Chapter 13. Converting Record File Data . 517

Chapter 14. Writing a File Name Mapping Exit Program 541

Chapter 15. What to Do if an Error Occurs in DFM for OS/2 545

| Chapter 16. Information for the Application Programmer 551

 Copyright IBM Corp. 1993, 1997 471

472 VSAM for OS/2

Chapter 7. Introduction to the Distributed FileManager for OS/2

DFM for OS/2 enables an OS/2 application program to use byte-stream and
record-oriented access methods to access remote file data. DFM for OS/2 uses the
Distributed Data Management (DDM) protocol as specified in the DDM architecture to
communicate with the remote target systems.

DDM consists of two parts:

� DFM - Distributed FileManagement
� DRDA - Distributed Relational Data Base Access

DFM for OS/2 supports the DFM part of the architecture. DRDA is handled by the
DataBase Manager.

DFM facilitates data connectivity between systems that have heterogeneous
architectures. DFM defines how application programs running on one system retrieve,
add, update, and delete data records from files that reside on other systems. It does
this in a manner that makes the remote access transparent to the application program.
To accomplish these tasks, DFM constructs a data stream that both systems can
understand by using a set of standardized file models and access methods.

DFM uses Application Programming Interfaces (APIs) to access remote files. The
types of APIs supported are described in “Types of APIs Supported by DFM” on
page 475. DFM also provides support for data description and data conversion for
remote record access.

The data description and conversion is done using a subset of IBM’s A Data Language
(ADL). ADL is a formal specification that provides programmers with a means of
describing and converting data exported by other programs written for a different
machine architecture or a different programming language. For more information on
ADL, see Distributed Data Management: Specifications for A Data Language.

This chapter introduces DFM for OS/2 and its relationship with the Distributed Data
Management architecture. It explains the concepts and terms that you need to know to
understand DFM for OS/2 and also describes how DFM for OS/2 works.

OS/2 as a DFM Source System
The objective of DFM for OS/2 is to allow OS/2 applications to access data stored on
any DDM Target system.

Together with the local file Application Programming Interfaces (APIs) on OS/2, DFM
for OS/2 provides local and remote transparent application access to distributed files
and directories. Figure 86 on page 474 shows how DFM for OS/2 processes requests
for data.

 Copyright IBM Corp. 1993, 1997 473

ApplicationProgram

OS/2 Source System Target System

Stream File
LDMI (IFS)

Record File
LDMI

Target LDMI

Stream
File
LDM

Record
File
LDM

Remote
Stream
Access
Support

Remote
Record
Access
Support

Target LDM

Communications
Manager

DFM Client

Communications
Manager

Local
File

Local
File

LU 6.2

Remote
File

DFM Server

1 19 9

2 2

3

4
8

5

6

7

Figure 86. Overview of DFM for OS/2 Processing

The target system is the system where the data resides. The source system
contains the application that is accessing data on the target system.

1 An application program issues a Stream, a Directory, or a VSAM API request.

2 Request processing begins with the routing of the request to a Local Data
Management Interface (LDMI). The LDMI determines whether the requested data is
in a local or a remote system. This is determined by whether the drive letter part of
the file name used in an API call has already been assigned to a remote system.

Record Files If the data is in a remote system, the LDMI, which is also referred
to as the VSAM Router,invokes DFM for OS/2. If the data is in
the local system, the LDMI directs the request to the VSAM Local
Data Manager (LDM) for record files.

Stream Files If the data is in a remote system, the OS/2 Installable File
System (IFS) router directs the request to DFM for OS/2. If the
data is in the local system, the stream-file LDMI directs the
request to the stream-file LDM. In OS/2, the LDM is one of the
installed file system drivers (FSDs), for example, the High
Performance File System (HPFS). An FSD is installed at OS/2
startup time if a related “IFS” statement is found in the
CONFIG.SYS file.

474 VSAM for OS/2

Directories Requests for directory information are handled in the same way
as requests for stream file data.

3 DFM for OS/2 processes the request and passes it to the Communications
Manager.

4 The Communications Manager/2 transmits the request to the target system.

5 The target system’s Communications Manager receives the request and forwards it
to the DFM server.

6 The DFM server processes the request for remote data and invokes the appropriate
target LDMI.

7 The LDMI invokes the LDM, which retrieves the requested data and sends it back
to the server.

8 The DFM server builds a reply data stream and transmits it back to the source
system.

9 DFM for OS/2 passes the reply back to the application program.

Types of APIs Supported by DFM
DFM for OS/2 supports the following types of application programming interfaces,
allowing access to file data on remote systems:

� The VSAM application programming interface for accessing file data by record.

DFM for OS/2 supports sequential, direct, keyed, and alternate index access to
remote record files.

� The stream file application programming interface provided by OS/2 for accessing
file data in a continuous stream of bytes.

Stream files contain strings of bytes that can be accessed according to their
relative position within the file. OS/2 provides this API using the Installable File
System (IFS) router.

� The directory application programming interface commands provided by OS/2 for
accessing directory information. The IFS Router also handles the directory API
requests.

DFM for OS/2 transforms the application programming interface commands into DDM
requests.

DFM for OS/2 can access data on any target system on which a Distributed
FileManager server is installed. Whether a certain application programming interface
command can be used by an application to access the data depends on the capabilities
of the Distributed FileManager server.

DFM File Models
DFM supports the following types of files:

Sequential The records in this type of file are arranged in the
chronological order in which they were placed in the file.

 Chapter 7. Introduction to the Distributed FileManager for OS/2 475

Direct The records in this type of file have an application-defined
relationship between the record content and the position at
which the record is stored. The record number of each record
shows the original position of the record within the file.

Keyed A key index stores the location of records in this type of file.
By using the key index, users can access each record in the
file.

Alternate index This type of file supports keyed forms of access to records of a
base file. A base file is an existing file over which an alternate
index is built. The records of the base file are also the records
of the alternate index file. The record contents of the base file
are not duplicated in the alternate index file.

Stream File This type of file contains a string of bytes that can be
accessed according to their relative position within the file.

476 VSAM for OS/2

Internal Structure of DFM for OS/2
Figure 87 shows the location of DFM for OS/2 within OS/2 and its internal structure. It
gives a detailed description of how DFM for OS/2 works under OS/2 2.0.

APPLICATION PROGRAM

DISTRIBUTED FILEMANAGER/2

Stream File/ Dir. API
eg. DosOpen

DosRead

Record File API
eg. DDMOpen(...)

DDMSetFirst(...)

IFS Router

Remote Stream Access Remote Record Access
FSDs

(local
or
LAN)

LDM -
Local
Data
Manager
(local
or LAN)

OS/2 2.0 (32 bit)

RLIO Router

DFM/2 File System
Driver (DFMSFL0)

Stream
Agent

Str. API
DDM

Stream
Cmd

Record
Agent

RLIO API
DDM

Record
Cmd

Memory
Cache
Support

Data
Conversion
Support

DFM/2 Record
Access Mainline

Stream
File
Data

Record
File
Data

OS/2 ES Communications Manager

DFM Target Server

MVS DFSMS

DFM Target Server

OS/400

Figure 87. DFM for OS/2 Running Under OS/2 2.0

The Remote Stream Access Support and the Remote Record Access Support parts of
Figure 87 are explained in more detail in the following sections.

 Chapter 7. Introduction to the Distributed FileManager for OS/2 477

Remote Stream Access Support
The Remote Stream Access Support of DFM for OS/2 handles the stream and directory
API requests for remote data. Figure 88 shows the Remote Stream Access Support
connections of DFM for OS/2.

DISTRIBUTED

IFS Router

Remote Stream Access
FSDs

(local
or
LAN)

DFM/2 File System
Driver (DFMSFL0)

Stream
Agent

Str. API
DDM

Stream
Cmd

Memory
Cache
Support

Stream
File
Data

Figure 88. Remote Stream Access Support

The File System Driver DFMSFL0 accepts the stream and directory API commands and
transmits them to the Stream Agent.

The Stream Agent translates the API requests into the DDM-defined syntax and
analyzes the retrieved DDM replies.

Figure 87 also shows the Memory Cache support. This component reads bytes ahead
of the actual read API requests or performs a deferred write if possible to reduce line
traffic.

478 VSAM for OS/2

Remote Record Access Support
Figure 89 shows the Remote Record Access Support connections of DFM for OS/2.

FILEMANAGER/2
Remote Record Access

LDM -
Local
Data
Manager
(local
or LAN)

RLIO Router

Record
Agent

RLIO API
DDM

Record
Cmd

Data
Conversion
Support

DFM/2 Record
Access Mainline

Record
File
Data

Figure 89. Remote Record Access Support

The DFM for OS/2 Remote Record Access Support is delivered as a Dynamic Link
Library (DLL) file (EHNSDDM.DLL). This DLL accepts the VSAM requests from the
VSAM Router.

The DFM for OS/2 Remote Record Access Support also provides a component for Data
Conversion of records before they are sent to the target system or after they have been
received from it.

 Chapter 7. Introduction to the Distributed FileManager for OS/2 479

How DFM for OS/2 is Connected to Target Systems
The relationship between an API request and a DFM Server is defined by the drive

| letter of the target system. Figure 90 shows how two OS/400 systems and two
| MVS/ESA systems can be used to access data. (Multiple drive letters can also be
| assigned to the same target system.) Each target system is assigned to an OS/2 drive

letter.

MVS1

OS/400A

O:

M:

P:

N:

OS/400B

MVS2DFSMS

OS/400 OS/400

DFSMS

Remote
Data
Sets

Remote
Objects

Remote
Files

Remote
Files

Remote
Data
Sets

Distributed
FileManager

Figure 90. DFM Servers Accessed by DFM for OS/2

For example, if an application wants to access a dataset named PAYROLL on the
OS/400 target system, and the drive letter O: has previously been assigned to that
target system, the application can use the file specification O:PAYROLL to identify the
file in an API command.

480 VSAM for OS/2

Chapter 8. DFM for OS/2 Administrative Activities

DFM for OS/2 provides administrative commands that are necessary either to start the
basic support functions or to exploit some additional features. For example, translating
a data description using IBM’s A Data Language (ADL) into the internal format required
by DFM for OS/2.

Certain administration tasks must be performed to prepare an OS/2 system for DFM for
OS/2. The DFM for OS/2 administrator can create a basic set of DFM for OS/2
administration files for this purpose:

� A DFM for OS/2 configuration file

� A DFM for OS/2 startup procedure

� If required, one or more ADL data description files for remote files that should be
converted according to the needs of a certain application program

Samples of each of these administration files are delivered with DFM for OS/2.

DFM for OS/2 must be installed according to the instructions in the Installation Guide.
The administrator must ensure that the appropriate administration files are on each
OS/2 system that uses DFM for OS/2.

This chapter contains an overview of the DFM for OS/2 administrative tasks.

Required Activities
These are divided as follows:

� Initial activities that need to be performed once before you work with
DFM for OS/2. These are described under “Before You Work with DFM
for OS/2.”

� Startup activities that are performed once after you have started your
OS/2 system. These are described under “Startup Activities” on
page 483.

Once the required activities are completed, you can use the Remote Stream
Access Support of DFM for OS/2.

Optional Activities
If you want to use the DFM for OS/2 Remote Record Access Support and its
features, you must perform the additional activities described in “Optional
Activities” on page 484.

Before You Work with DFM for OS/2
The following are the initial activities that need to be performed on each OS/2 system
when DFM for OS/2 is installed for the first time.

1. Install DFM for OS/2 on the OS/2 system.

 Copyright IBM Corp. 1993, 1997 481

If you will use DFM to access MVS files you must also install DFSMS/MVS Version
1.2.0 or later.

2. Connect the OS/2 system to the potential DFM target systems.

For each OS/2 system, this involves:

� Installing the required adapter cards

� Installing the Communications Manager/2.

� Defining the target systems in the Communications Manager configuration
files. DFM for OS/2 uses the SNA LU6.2 protocol for communicating with
target systems. See the Communications Manager Configuration Guide: SNA
Network Definitions for details about Communications Manager configuration.
Required definitions are:

– Local Node characteristics
– Partner LU definitions
– Mode definition and connections.

Definitions must be created so that they match the definitions in the SNA
network and enable the Communications Manager/2 to establish sessions with
the desired partner LUs. DFM for OS/2 uses APPC support of
Communications Manager as follows:

– Only one local LU is supported by DFM for OS/2
– Only one MODENAME is supported by DFM for OS/2
– Multiple Partner LUs are supported by DFM for OS/2.

If a connection to multiple partner LUs is required, the SNA network should be
set up so that:

– All partner LUs can use the same mode name that is used by DFM for
OS/2.

– The local LU used by DFM for OS/2 is an independent LU that is capable
of parallel sessions.

See the ES OS/2 Communication Manager Configuration Guide for more
information.

� The OS/2 user needs the necessary authorizations on the target system to
access the remote file data.

When DFM for OS/2 is started with the STRTDFMC command, the user is
prompted to enter a user ID and password for each target system specified in
the CONFIGDFM. The target system administrators are responsible for
obtaining the necessary authorizations.

482 VSAM for OS/2

 CAUTION

DFM for OS/2 uses this user ID and password to access the remote
system until either the OS/2 system is shutdown or the STRTDFMC
command is invoked again. If the password on the remote system is
changed during this time, all subsequent requests fail and a
communication reply message is returned. Depending on the security
features of the remote system, the user’s password may also be revoked if
the expired password is used several times by DFM for OS/2.

To avoid these complications, you should invoke STRTDFMC immediately
after the password change and before the next API request for remote
data is executed.

Note: Authorization is also required if the remote file the user wants to
access is protected by security features, for example, Resource Access
Control Facility (RACF), on the remote system.

3. Create a DFM for OS/2 configuration file.

For each OS/2 system, a DFM for OS/2 configuration file has to be created
containing at least one DFM_TARGET statement for each partner LU alias the user
wants to access using DFM for OS/2.

See Chapter 10, “Working with the Configuration File” on page 491 for details.

DFM for OS/2 supports up to eight target systems.

 Startup Activities
To start DFM for OS/2 on an OS/2 system, the user has to perform some startup
activities. To support the end-user, the administrator can prepare and deliver a set of
base administration files. The following describes the activities the user has to perform
once OS/2 has been started.

1. Start the Communications Manager/2.

The Communications Manager must be started (“START CM”) before DFM for
OS/2 can be started. See the ES OS/2 Communication Manager User's Guide for
more information.

2. Start the DFM for OS/2 communication environment.

DFM for OS/2 provides the command STRTDFMC to establish the necessary
resources for communicating with the target systems defined in the DFM for OS/2
configuration file CONFIGDFM.

STRTDFMC can be executed at OS/2 startup time or when DFM for OS/2 is
started.

See Chapter 9, “Starting and Stopping DFM for OS/2” on page 487 for details.

3. Assign drive letters to the remote systems.

 Chapter 8. DFM for OS/2 Administrative Activities 483

DFM for OS/2 provides several interfaces for assigning OS/2 drive letters to remote
systems:

� The DFMDRIVE batch interface is typically used at OS/2 startup time to define
the drive letters for the commonly used target systems.

� The interactive DFMDRIVE end-user interface can be used to change drive
letter assignments or define additional assignments.

� DFM for OS/2 also provides an application programming interface to allow an
application program to define the drive letter assignments for the files
accessed in this application.

See Chapter 11, “Assigning and Releasing Drive Letters” on page 499 for details.

After the successful assignment of a drive letter to a DFM target system, the user is
able to use this drive in the same way as any other OS/2 drive letter.1 The OS/2
commands and APIs that can be supported depend on the capabilities of the DFM
server. Certain DFM servers might not support certain DDM stream and directory
commands. For example, an OS/2 DIR command might not be processed.

You can create a command file, for example called STARTDFM.CMD, to perform steps
1 to 3 in this list each time the OS/2 system is started. A sample command file
STARTDFM.CMD is delivered with DFM for OS/2. Add the command STARTDFM to
your STARTUP.CMD file to invoke STARTDFM.CMD. See Figure 91 on page 487 for
details.

Once the tasks have being successfully performed, the OS/2 user can use OS/2
commands and applications that access remote stream file and directory data. For
example, a worksheet program on OS/2 can now save its data on a drive letter that has
been assigned to OS/400 where PC Support/400 is installed.

 Optional Activities
The following chapters describe the optional features available with DFM for OS/2, and
how to use them. In general, these features are part of Remote Record Access
Support. File name mapping and tailoring your DFM for OS/2 system are features of
both Remote Record Access Support and Remote Stream Access Support.

Features of Remote Record Access Support
The following are features of Remote Record Access Support:

� Starting the Remote Record Access Support Function

To access remote file data in a record oriented manner by using a VSAM
application, the user has to start the Remote Record Access Support function of

1 There are some limitations for “DFM drive letters”. These are described in Appendix B, “OS/2 Commands Not Supported by DFM
for OS/2” on page 563.

484 VSAM for OS/2

DFM for OS/2 first by using STRTDFMR. This command can also be included in
the STARTDFM.CMD file.

See Chapter 9, “Starting and Stopping DFM for OS/2” on page 487 for details.

� Stop working with remote record files

Use STOPDFMR to release resources consumed by the Remote Record Access
Support.

See “Stopping the DFM for OS/2 Remote Record Access Support” on page 488 for
details.

� Preparing data conversion

To exploit the data conversion feature of the DFM for OS/2 Remote Record Access
Support, a data description has to be created using IBM’s A Data Language (ADL).
See “Creating an ADL Data Description” on page 519 for details.

The ADL descriptions are translated into the DFM for OS/2 internal Data
Description File (DDF) format using the ADLTRANS utility of DFM for OS/2. See
“Translating an ADL File into a DDF File” on page 533 for details.

The CONFIGDFM statement FILE_DESCRIPTOR_MAP is used to describe the
relationship between a remote record file and the created DDF files. See
Chapter 13, “Converting Record File Data” on page 517 for details.

� Controlling tracing of DFM for OS/2 events

The command DFMTRACE can be used to start and stop tracing of DFM for OS/2
events and to control the printing of collected trace entries.

Refer to “The Internal Trace Facility” on page 546 for details.

Global DFM for OS/2 Features
File name mapping and tailoring your DFM for OS/2 system are features of both
Remote Record Access Support and Remote Stream Access Support:

� Do your own file name mapping.

Although the remote file name can be directly used in an application, it is also
possible to map the name used in the application to the actual file name on the
remote system using the File Name Mapping Exit provided by DFM for OS/2. The
exit program that implements the mapping algorithm of your installation has to be
created as an OS/2 Dynamic Link Library (DLL).

Refer to Chapter 14, “Writing a File Name Mapping Exit Program” on page 541 for
a description of how to write an exit program.

� Tailor your DFM for OS/2 system.

The DFM for OS/2 configuration file CONFIG.DFM is the main administration file to
tailor DFM for OS/2 on an OS/2 system.

For a detailed description of these parameters, see Chapter 10, “Working with the
Configuration File” on page 491.

 Chapter 8. DFM for OS/2 Administrative Activities 485

486 VSAM for OS/2

Chapter 9. Starting and Stopping DFM for OS/2

You can include all necessary startup activities for DFM for OS/2 in a command file that
runs at OS/2 startup time. A sample command file, STARTDFM.CMD, shown in
Figure 91, is provided with the installation. The STRTDFMR line works only if
STRTDFMC has been successfully run previously.

REM
REM Start DFM/2 Communication Environment

and the Remote Stream Access Support
REM STRTDFMC E:\DAS\CONFIG.DFM
REM
REM Start DFM/2 Remote Record Access Support
STRTDFMR E:\DAS\CONFIG.DFM
REM
REM Assign drive letter(s) to remote system(s)
CALL DFMDRIVE ASSIGN W: //MVSESA
CALL DFMDRIVE ASSIGN X: //OS4ðð

Figure 91. Sample STARTDFM.CMD File

You can also include the following commands in the STARTUP.CMD file of your
system:

START CM
REM ... Wait until ES 1.ð Communications Manager is active ...
CALL CMWAIT
CALL STARTDFM

Figure 92. Sample Statements for the OS/2 STARTUP.CMD File

Starting the DFM for OS/2 and Remote Stream Access Support
To make the target systems that you want to access known to DFM for OS/2, use the
command STRTDFMC. This command starts the DFM for OS/2 communication
environment and the Remote Stream Access Support functions. It has the following
syntax:

STRTDFMC [configuration-file-specification [/Q | -Q] |
/HELP | -HELP]

 Copyright IBM Corp. 1993, 1997 487

The parameters have the following meaning:

configuration-file-specification
Specifies the fully qualified file name of the configuration file. If no file name is
specified, DFM for OS/2 searches the current directory for the file named
CONFIG.DFM.

/Q or -Q
Suppresses the product banner message.

/HELP or -HELP
Displays help for the command syntax.

Starting the DFM for OS/2 Remote Record Access Support
You start the DFM for OS/2 Remote Record Access Support component using the
STRTDFMR command as follows:

STRTDFMR [configuration-file-specification [/Q | -Q]
| /HELP | -HELP]

The parameters have the following meaning:

configuration-file-specification
Specifies the fully qualified file name of the configuration file. If no file name is
specified, DFM for OS/2 searches the current directory for the file named
CONFIG.DFM.

/Q or -Q
Suppresses the product banner message.

/HELP or -HELP
Displays help for the command syntax.

This command can only be run if the STRTDFMC command has already been
successfully executed.

Note: To avoid inconsistent target definitions, you should use the same configuration
file for both STRTDFMC and STRTDFMR.

Stopping the DFM for OS/2 Remote Record Access Support
You stop the DFM for OS/2 Remote Record Access Support component and freeall
system resources acquired by the STRTDFMR command using the following command:

STOPDFMR [/Q | -Q | /HELP | -HELP]

The parameters have the following meaning:

488 VSAM for OS/2

/Q or -Q
Suppresses the product banner message.

/HELP or -HELP
Displays help for the command syntax.

If a Remote Record Access Support application is still active, the Remote Record
Access Support component waits until the application is finished.

Stopping the DFM for OS/2 Remote Stream Access Support
Once Remote Stream Access Support is started, a background process is activated
that cannot be stopped with a regular DFM for OS/2 command. However, the following
situations can occur that require that the Remote Stream Access Support to stop:

� You are working with several Communications Manager configurations and want to
stop the current Communications Manager configuration and start a different one.
In this case, the background process of the Remote Stream Access Support still
holds some resources of the previous invocation of the Communications Manager
and it is not possible to start the second CM configuration.

� You install a new release of DFM for OS/2 while DFM for OS/2 is still active. In
this case, the background process for the Remote Stream Access Support
(DFMSFL3.EXE) is in use and cannot be replaced through the installation process.

You can stop Remote Stream Access Support two ways:

1. Shut down and restart your PC. When you restart your PC, do not start DFM for
OS/2.

2. Execute “DFMDRIVE RELEASE *” to release all drive letter assignments and then
stop the following processes (if they are running):

 � DFMSFL3.EXE
 � CMGRRTR.EXE

Shut down Remote Stream Access Support this way only if you are familiar with
the utilities required to stop OS/2 processes.

 Chapter 9. Starting and Stopping DFM for OS/2 489

490 VSAM for OS/2

Chapter 10. Working with the Configuration File

The DFM for OS/2 configuration file is the main interface for tailoring DFM for OS/2.
The configuration file is used by STRTDFMC.EXE to define the communication
environment, and STRTDFMR.EXE to define the resources for the Remote Record
Access Support component.

Only the REMOTE_LU parameter of the DFM_TARGET keyword is required. All other
parameters are optional. Comment lines are identified by a colon (:) in the first column.

The following describes how to specify values for parameters in the DFM for OS/2
configuration file.

 Conversation Control
DFM for OS/2 requires one DFM_TARGET keyword for each partner LU alias in the
configuration file. At least one DFM_TARGET keyword must be specified in the
configuration file. DFM for OS/2 only communicates with target systems having a
corresponding DFM_TARGET keyword in the configuration file.

The syntax of the DFM_TARGET keyword is:

 �

55──DFM_TARGET──(─ ──REMOTE_LU (partner_LU_alias) ───────────────────────5

5─ ──┬ ┬─────────────────────────── ──┬ ┬──────────────────── ──────────────5
│ │┌ ┐─HOLD──── └ ┘──DESCRIPTION (text)

 └ ┘──CONVERSATION ──┼ ┼─────────
 └ ┘─RELEASE─

5─ ──┬ ┬──────────────────────────────── ──┬ ┬────────────────── ─);───────5%
└ ┘──MAX_SEND_LIMIT (numeric_value) └ ┘──USERID (user-id)

The parameters have the following meaning:

REMOTE_LU (partner-LU-alias)
Specifies the LU ID of the target system. The partner LU alias must match the
Partner LU alias as defined to Communications Manager. See the Communication
Manager Configuration Guide: SNA Network Definitions, Partner LU Definitions for
details. The partner LU that is referenced by this alias must be known in the
network and must be set up to support the LU 6.2 protocol.

CONVERSATION(HOLD | RELEASE)
Specifies the duration of the LU 6.2 conversation that DFM for OS/2 uses for
communication with that target system.

HOLD DFM for OS/2 deallocates the conversation when the owning application
program stops. Specifying the HOLD parameter reduces the response time
of the target server.

 Copyright IBM Corp. 1993, 1997 491

RELEASE DFM for OS/2 deallocates the conversation when the last file on the
target system has been closed. Specifying the RELEASE parameter
maximizes the number of conversations available to you.

Note: This parameter applies only to conversations that use VSAM requests.

DESCRIPTION (text)
Specifies a string of up to 40 characters that can be used to identify the remote
system. This value is displayed by the DFMDRIVE graphical user interface as a
description of the remote system.

MAX_SEND_LIMIT (numerical-value)
Specifies in bytes the maximum buffer size that can be sent to the partner LU.
The value of this parameter is an integer between 256 to 32767. The default value
is 4096.

The MAX_SEND_LIMIT value is used by DFM for OS/2 to allocate a buffer where
DDM data streams are built before they are:

� Sent to a target system
� Received from the target LU.

No DDM object (such as a DDM record) that is larger than specified on the
MAX_SEND_LIMIT parameter can be sent by DFM for OS/2 to a partner LU or
received by DFM for OS/2 from a partner LU. A Resource Limits Reached reply
message is returned if an attempt is made to send an object that is larger than
MAX_SEND_LIMIT. It is recommended that the MAX_SEND_LIMIT value
specified be at least 16 bytes larger than the length of the largest record you want
to process.

Note: This parameter applies to VSAM related conversations only.

To comply with the paged address space of OS/2 Version 2.0, use multiples of
4096 when specifying MAX_SEND_LIMIT to avoid wasted storage.

USERID (user-id)
Specifies the user ID for the remote LU.

After starting the communication environment with the STRTDFMC command, you
are asked to supply logon information for each target system. If you have specified
a value for the USERID parameter in the configuration file, you only need to supply
the password for this user ID. Otherwise, you must supply both a user ID and a
password.

Local LU Profile

55──LOCAL_LU── (local_LU_alias)──;────────────────────────────────────5%

The parameter has the following meaning:

492 VSAM for OS/2

LOCAL_LU (local-LU-alias)
Specifies the name of the local LU alias.

The local LU alias must match the alias name that has been configured in the
Communication Manager. Depending on the configuration, this corresponds either
to the local node alias name or to the alias name for a local LU definition.

Note: Only one LOCAL_LU keyword is allowed in the configuration file.

Default DFM Target System

55──DEFAULT_DFM_TARGET── (partner-LU-alias)──;────────────────────────5%

The parameter has the following meaning:

DEFAULT_DFM_TARGET (partner-LU-alias)
Specifies the name of the default target system.

This is the default name for drive letter assignment if no target system is specified.
The name must match the partner LU alias name of a DFM_TARGET keyword in
the configuration file. See “Conversation Control” on page 491 for more details.

If you do not specify a value for this parameter, the first system started becomes
the default.

Note: Only one DEFAULT_DFM_TARGET keyword is allowed in the configuration
file.

 Mode Name

55──MODE_NAME── (mode-name)──;──5%

The parameter has the following meaning:

MODE_NAME (mode-name)
Specifies the mode name to be used by DFM for OS/2.

The mode name is used by SNA to specify the session parameters between a pair
of LUs. Before it can be used, it must be configured for OS/2 Communications
Manager. See the ES OS/2 Communication Manager Configuration Guide: SNA
Network Definitions, Mode Definitions for details.

The mode name must also be known to the partner LU. In a subarea network, a
MODEENT macro in the appropriate VTAM logmode table is used to identify the
Mode Name. In OS/400, a CRTMODD CL- command is used.

If no value is specified, the default mode QPCSUPP is used. This mode name is
also used by the 5250 Workstation feature, as well as by OS/400 PC Support.

If a mode name different from QPCSUPP is used, STRTDFMC cannot perform
authorization checks before a conversation is established.

 Chapter 10. Working with the Configuration File 493

Note: Only one MODE_NAME keyword is allowed in the configuration file. If the
MODE_NAME is configured for ES 1.0 Communications Manager, the maximum
Request Unit (RU) size parameter can have significant impact on performance.
The RU size should be the maximum value that fits into the hardware buffer of the
communications adapter. For example, to achieve the optimum performance, RU
size should be set to:

� 1500 bytes if using an Ethernet adapter
� 1920 bytes if using an IBM Token-Ring Adapter or Token-Ring Adapter/A
� 15360 bytes if using a Token-Ring 16/4 Adapter

The values you specify should match the values in the mode definition of the
partner LU.

Default Coded Character Set

55──DEFAULT_CCSID──(default-coded-character-set-id)───────────────────5%

The parameter has the following meaning:

DEFAULT_CCSID(default-coded-character-set-id)
Specifies the default coded character set for remote record file data. It is used for
conversion of character data if no coded character set is specified in the ADL base
sequence description. For more information, see “Creating an ADL Data
Description” on page 519.

A Coded Character Set ID (CCSID) consists of up to five decimal digits. Leading
zeros can be omitted. For example, 00500 can be specified as 500.

If you do not specify a value for this parameter, DFM for OS/2 uses the CCSID of
the international Latin-1 character set (00500) as the default.

Note: Only one DEFAULT_CCSID keyword is allowed in the configuration file.

Data Conversion Control for Remote Record Access Support
Data conversion for remote record file data is controlled with the
FILE_DESCRIPTOR_MAP keyword. Record data of a target file with an appropriate
FILE_DESCRIPTOR_MAP keyword is converted as described in the BASE_DDF and
VIEW_DDF files that are specified in this entry. If no FILE_DESCRIPTOR_MAP
keyword is found for a target file, the data contained in the file is not converted.

The syntax of the FILE_DESCRIPTOR_MAP keyword is: File Descriptor Map

494 VSAM for OS/2

 �

55──FILE_DESCRIPTOR_MAP──(─ ──REMOTE_LU (partner-LU-alias) ──────────────5

5─ ──TARGET_FILENAME (remote-filename) ──────────────────────────────────5

5─ ──BASE_DDF (base_descriptor-filename) ────────────────────────────────5

5─ ──VIEW_DDF (view_descriptor-filename) ─);────────────────────────────5%

The parameters have the following meaning:

REMOTE_LU (partner-LU-alias)
Specifies the name of the OS/2 Communication Manager partner LU alias for
identifying the DFM target system where the remote file is located. The name
must match the partner LU alias name of a DFM_TARGET keyword in the
configuration file.

TARGET_FILENAME (remote-filename)
Specifies the name of the remote file for conversion. The name is in the format
used by the application. If the File Name Mapping Exit is used, this name may
differ from that used by the target system.

The remote file name may be specified with a wildcard character, for example,
DDMRR*. An asterisk in a file name indicates that any combination of characters
can occupy that position in the name. A question mark in a file name indicates
that any single character can occupy that position in the name. All separators
must be specified in the file name.

Wildcard examples:

* all names
*nam

names like abcnam or cdenam
*.*nam

names like gdm.os2nam or abc.attnam
.nam

names like dos.namjohn
ab?.nam

names like abc.nam

| Note: The remote file name parameter is case sensitive and must match the case
| of the file name passed to the target server.

BASE_DDF (base-descriptor-filename[.DDF])
Specifies the name of the data description file containing the base sequence
description. The data description file is the DFM for OS/2 file that was produced
by the ADLTRANS conversion program. It contains the base description of the
record layout for the target files in a DFM for OS/2 internal format.

base-descriptor-filename must be a fully qualified name. If no path or drive letter is
specified, DFM for OS/2 searches for the DDF file in the current directory.

 Chapter 10. Working with the Configuration File 495

VIEW_DDF (view-descriptor-filename[.DDF])
Specifies the name of the data description file containing the view sequence
description. The data description file is the DFM for OS/2 file produced by the
ADLTRANS conversion program. It contains the view description of the local file in
a DFM for OS/2 internal format. This is the record layout of the application’s view
of the target data.

view-descriptor-filename must be a fully qualified name. If no path or drive letter is
specified, DFM for OS/2 searches for the DDF file in the current directory.

Default Conversion Tables for Remote Stream Access Support
The optional DEFAULT_CONVERSION_TABLE keyword can be used to specify the
default conversion tables for ASCII-to-EBCDIC and EBCDIC-to-ASCII character
conversion. All filenames exchanged with a DFM target system are converted using
these tables. The DEFAULT_CONVERSION_TABLE parameter has no influence on
the conversion of record data according to the record descriptors specified in the
FILE_DESCRIPTOR_MAP parameter. See Chapter 13, “Converting Record File Data”
on page 517 for details.

Note: Only one DEFAULT_CONVERSION_TABLE keyword is allowed in the
configuration file.

The syntax of the DEFAULT_CONVERSION_TABLE keyword is:

 �

55──DEFAULT_CONVERSION_TABLE──(──5

5─ ──ASCII_TO EBCDIC (conversion-table-filename) ────────────────────────5

5─ ──┬ ┬─── ─);────────────────5%
└ ┘──EBCDIC_TO_ASCII (conversion-table-filename)

The parameters have the following meaning:

[ASCII_TO_EBCDIC(conversion-table-filename)]
Specifies the name of a file that contains the ASCII to EBCDIC conversion table to
be used by DFM for OS/2 stream-file applications.

[EBCDIC_TO_ASCII(conversion-table-filename)]
Specifies the name of a file that contains the EBCDIC to ASCII conversion table to
be used by DFM for OS/2 stream-file applications.

If you do not specify names for the conversion tables, DFM for OS/2 takes the
combination of the currently used code page and the code page 500 (EBCDIC).

Tracing for Remote Record Access Support
Use the TRACE_BUFFER keyword to define the size of the buffer to be used for trace
entries.

496 VSAM for OS/2

55──TRACE_BUFFER── (integer)──5%

the parameter has the following meaning:

(integer)
Specifies the size of the internal trace buffer memory in kilobytes. The default
value is 64KB. The DFM for OS/2 trace is used in wrap-around mode overwriting
the oldest entries when the buffer is full. The minimum size is 1KB and the
maximum size is 1000KB.

Note: Only one TRACE_BUFFER keyword is allowed in the configuration file.
Memory is allocated when the DFMTRACE ON command is used for the first time.
See Chapter 15, “What to Do if an Error Occurs in DFM for OS/2” on page 545 for
more information on tracing.

 Chapter 10. Working with the Configuration File 497

498 VSAM for OS/2

Chapter 11. Assigning and Releasing Drive Letters

To be able to work with files on a target system, you must first assign a drive letter on
your workstation for the files on that system.

The DFM for OS/2 program DFMDRIVE provides two user interfaces and an application
programming interface for assigning and releasing DFM for OS/2 drive letters. You can
assign drive letters to all files on a target system or to a specific directory on a target
system, release drive letters that you previously assigned, and display the status of all
drive letters managed by DFM for OS/2. Up to eight drive letters can be assigned to
remote systems.

Command-Line Interface
The command-line interface lets you assign and release drive letters by entering
the appropriate function and values on the command input line. Commands can
be included in a batch file to allow for automatic assignment of all target servers,
for example, at OS/2 start-up time.

Graphical User Interface
The graphical user interface displays the target systems available for assigning
drive letters. The directories available for drive letter assignment can also be
listed.

Application Programming Interface
The DosFsAttach API function call lets you assign or release a drive letter to a
target system or to a set of files on the target system at program execution time.

The term directory is used in a general way. It specifies a set of files on a target
system that are organized logically in hierarchical collection levels. Each level has a
directory name assigned. The definition of the level depends on the target system.

Using the Command-Line Interface
The command-line interface provides a quick way of setting up drive letters. It is
invoked using the command DFMDRIVE followed by a function and its values. The
command-line interface is used either to assign a new drive letter or to release an
existing drive letter.

Table 29 shows the format of the command-line interface commands.

Table 29 (Page 1 of 2). Command-Line Interface Commands

Command Description

[drive][path]DFMDRIVE {-|/}HELP Display help about the DFM for OS/2 user
interface.

[drive][path]DFMDRIVE function {-|/}HELP Display help about a DFM for OS/2 user
interface function.

 Copyright IBM Corp. 1993, 1997 499

The parameters have the following meaning:

drive
The drive letter of the drive where DFMDRIVE is located.

path
The path to the directory where DFMDRIVE is located.

function
Is one of the following:

ASSIGN Assign a drive letter to a target system or to a set of files that reside
on a target system.

RELEASE Release drive letters that you previously assigned with the ASSIGN
function.

SETPARM Set parameter list which is to be passed to a previously assigned
target system.

STATUS Display the assigned DFM for OS/2 drive letters.

HELP
Display help information.

values
Specify the values required for the function.

Note: The drive letter and path information is only necessary if DFMDRIVE is neither
in the current directory and drive nor in a specified search path.

Table 29 (Page 2 of 2). Command-Line Interface Commands

Command Description

[drive][path]DFMDRIVE function [values] Invoke a DFM for OS/2 user interface
function.

Assigning Drive Letters
If the target system is Distributed FileManager/MVS, in addition to a directory (PDS or
PDSE) name, a high-level data set name qualifier can be specified. In this case, all
access to the drive is to be assumed to be prefixed by the specified qualifier. If no
qualifier is provided, all access will have an implicit prefix assigned to it. The implicit
prefix is the current MVS user ID.

If the target server supports a parameter list attached to the file name, it is possible to
specify that parameter list while assigning the drive. For example, Distributed
FileManager/MVS supports Stream Data Conversion when the string “,TEXT” is
attached to file names. The parameter list (which is meaningful to the target server)
can be specified at the time the drive is assigned by appending it to the directory or
path name. If you do not want to limit the drive assignment to a specific path but want
to specify a parameter list to apply to all files on the target system, you can use the

500 VSAM for OS/2

single character backslash (\) to mean all files accessed on the target system followed
by the parameter list.

To assign a drive letter, use the following command:

DFMDRIVE ASSIGN [drive] [directory[,parmlist]] [//sysname]

drive
The drive letter to be assigned. If no drive letter is specified, the next available
drive letter is used.

directory[,parmlist]
The directory or path is specified to qualify a subset of files to which you want to
assign a drive. Whether and how a directory or path can be specified depends
on the target system. A backslash prefix to the directory or path name is
optional. The directory or path is limited to a maximum of 63 characters.

If the directory or path is not specified, the drive letter is assigned to all target
files or folders on the target system.

An optional parameter list can be appended to the directory or path by specifying
a comma followed by the parameter list. The parameter list can have a maximum
of 63 characters.

If you want to specify a parameter list for all files on the target system, you can
substitute a backslash (\) as a place holder for the directory or path name
followed by the comma and parameter list.

There are two syntactical techniques for expressing the directory,parmlist
operand. You can enclose the entire directory,parmlist string with quotation
marks. For example, to indicate a directory assignment with one parameter,
enter:

 "IBMUSER,TEXT"

which is identical to:

 "\IBMUSER,TEXT"

To indicate all target files with one parameter, enter:

 "\,TEXT"

To indicate a directory assignment combined with a series of parameters, enter:

 "IBMUSER,PC_CCSID(437),TEXT"

To indicate all files with a series of parameters, enter:

 "\,PC_CCSID(437),TEXT"

Alternatively, you can omit the quotation marks if you prefix the directory (or path)
with a backslash (\) or substitute a backslash for a directory (or path) to mean all
files. For example, to indicate a directory assignment with one parameter, enter:

 \IBMUSER,TEXT

 Chapter 11. Assigning and Releasing Drive Letters 501

To indicate a series of parameters, enter:

 \IBMUSER,PC_CCSID(437),TEXT

To indicate all files with one parameter, enter:

 \,TEXT

To indicate all files with a series of parameters, enter:

 \,PC_CCSID(437),TEXT

Note: The DFMDRIVE SETPARM command can be used to set or reset the
parameter list after the DFMDRIVE ASSIGN command completes.

sysname
The system name of the target system. The name of the partner LU alias defined
in an OS/2 Communications Manager profile. The // is required in front of the
system name. If no sysname is specified, the default target system is used.

Examples of DFMDRIVE ASSIGN:

Commands Explanation

DFMDRIVE ASSIGN Assigns the next available drive to all target
files of the default target system

DFMDRIVE ASSIGN /HELP Displays help for DFMDRIVE ASSIGN

DFMDRIVE ASSIGN S: Assigns drive S to all target files of the
default target system

DFMDRIVE ASSIGN S: FLD1 Assigns drive S to directory FLD1 of the
default target system

DFMDRIVE ASSIGN S: \,TEXT Assigns drive S to all target files of the
default target system and attaches the
parameter list “,TEXT” to all file names
passed to the target system.

| DFMDRIVE ASSIGN S: “IBMUSER,PC_CCSID(437),TEXT” //S1
Assigns drive S to files with the high level
qualifier IBMUSER on the target system
named S1 (MVS only). It also attaches the
parameter list “,PC_CCSID(437)” to all file
names in the directory or path IBMUSER
passed to S1.

| DFMDRIVE ASSIGN S: “IBMUSER,HOST_CCSID(500),TEXT” //S1
| Assigns drive S to files with the high level
| qualifier IBMUSER on the target system
| named S1 (MVS only). It also attaches the
| parameter list “,HOST_CCSID(500)” to all
| file names in the directory or path IBMUSER
| passed to S1.

| The HOST_CCSID parameter is not used to
| override an explicit CCSID associated with a

502 VSAM for OS/2

| file; it is only used to tag new files or to
| access files that have no CCSID set. See
| your DFM server documentation for more
| information about parameter processing.

Releasing Drive Letters
To release a drive letter, use the following command:

DFMDRIVE RELEASE drive

drive The drive letter to release. For example, specify f: to release drive letter f.
Specify an asterisk (*) to release all drive letters.

Examples of DFMDRIVE RELEASE:

Commands Explanation

DFMDRIVE RELEASE /HELP Displays help for DFMDRIVE RELEASE

DFMDRIVE RELEASE S: Releases drive S

DFMDRIVE RELEASE * Releases all drive letters

Setting Drive Parameter Lists
If the target system supports a parameter list attached to the file names, it is possible to
specify that parameter list after the drive is assigned by using the DFMDRIVE
SETPARM command.

The parameter list character string length limit is 63 characters when using DFMDRIVE
SETPARM.

Note: The parameter list specified by DFMDRIVE SETPARM completely replaces any
parameter list specified by the DFMDRIVE ASSIGN command or an earlier
DFMDRIVE SETPARM command for a particular drive.

To set a drive parameter list, use the following command:

DFMDRIVE SETPARM drive parmlist

drive The drive which has been previously assigned with the DFMDRIVE ASSIGN
command. Specify asterisk (*) to set the same parameter list for all assigned
drives for which the target system accepts parameter lists. (The original status is
unchanged for those drives which do not accept parameter lists.)

parmlist The parameter list to be passed to the target system.

 Chapter 11. Assigning and Releasing Drive Letters 503

Examples of DFMDRIVE SETPARM:

Commands Explanation

DFMDRIVE SETPARM S: TEXT Sets the parameter list for drive S to “TEXT.”

DFMDRIVE SETPARM S: PC_CCSID(437),TEXT,LF
Sets the parameter list for drive S to
“PC_CCSID(437),TEXT,LF.”

DFMDRIVE SETPARM * PC_CCSID(437),TEXT,LF
Sets the parameter list for all assigned drives
which accept parameter lists to “PC_CCSID(437).”

Displaying the Status of All Drive Letters
To show the current drive assignments, use the following command:

DFMDRIVE STATUS

The status panel contains the following information:

Drive Lists all drive letters that are assigned.

System Name Shows the target system assigned to the drive letter.

Assignment The drive letter assignment:

(All target files)
An OS/2 drive letter assigned to all files of a target system.

directory
The qualifier used as a common prefix for all file names
accessed with the assigned drive letter.

The command-line interface provides one status screen. The status screen displays
the assigned drive letters, the system names, and the directories assigned to the drive
letters.

Command-Line Interface Help Screens
The command-line interface provides help screens that describe and show examples of
the DFM for OS/2 commands.

Using the Graphical User Interface
The graphical user interface consists of a set of windows that enable you to:

� Display currently assigned drive letters and their assignments
� Assign new drive letters
� Release assigned drive letters
� Display lists with system names, directory names, and directory descriptions
� Access help information to assist you when setting up drive letters.

504 VSAM for OS/2

The graphical user interface conforms to Common User Access* 1989 (CUA*)
standards.

Starting the Graphical User Interface
Before you can use the graphical user interface to assign a drive letter, you first have to
start the DFM for OS/2 communication environment with the STRTDFMC command.
See Chapter 10, “Working with the Configuration File” on page 491 for details.

You can start the graphical user interface by either:

1. Entering DFMDRIVE at the OS/2 command prompt.

2. Double-clicking on the DFMDRIVE icon.

DFM for OS/2 DFMDRIVE - Drive Control Window
The DFMDRIVE - Drive Control window shown in Figure 93 is displayed when
DFMDRIVE is started.

DFMDRIVE - Drive Control
Drive Help

F: SDFASB46
G: SDFASB46

O:
P:
Q:
R:
S:
T:
U:
V:
W:
X:
Y:
Z:

(All target files)
(All target files)

_ _

N: SDFASB46 QIWSADM

System Name Directory

Figure 93. DFMDRIVE - Drive Control Window

All the drive letters available for DFM for OS/2 are displayed. If a drive letter is already
assigned to a target system or to a target and a directory, the partner LU alias names
and directory names are also displayed. The following information is displayed:

System name Shows the drive letters you can assign. If a drive letter has
been assigned to a remote system, the partner LU alias
name of the remote system is also displayed.

Directory Shows either the string “(All target files)” if a drive letter is
assigned to all files on a target system or the explicitly
assigned directory name is shown.

 Chapter 11. Assigning and Releasing Drive Letters 505

In Figure 93, for example, the system SDFASB46 is assigned to the drive letter N:.
The drive letters not in use are also listed, for example, drive letter O:.

The options shown in Figure 94 are available from the Drive pull-down.

DFMDRIVE - Drive Control
Drive Help

P:
Q:
R:
S:
T:
U:
V:
W:
X:
Y:
Z:

(All target files)
(All target files)

_ _
System Name DirectoryAssign...

Release
Release all...

Exit

Ctrl+A
Ctrl+R
Ctrl+L

F3_

_
_

_

Figure 94. Drive Pull-down

Assign... Assigns a drive letter to a target system that contains the files you
want to use.

Note: A drive letter must already be selected on the DFMDRIVE -
Drive Control window before Assign... can be selected.

Release Releases an assigned drive letter from a target system and its
directories.

If a drive letter is selected that is not assigned to a system, or if no
drive letters are assigned, the action is greyed. Otherwise, the DFM
for OS/2 DFMDRIVE - Drive Control window (Figure 93 on
page 505) is displayed with updated information.

Release all... Release all assigned drive letters from target systems and their
directories. Before releasing any drive letters, DFM for OS/2 asks
you for confirmation. It then returns to the DFM for OS/2 DFMDRIVE
- Drive Control window (Figure 93 on page 505). This action is
shown grayed to indicate that it cannot be selected if no drive letters
are assigned.

Exit Use Exit to return to OS/2.

Accelerator Keys: You can use the following accelerator keys on the drive pull-down:

Ctrl+A Assign
Ctrl+R Release

506 VSAM for OS/2

Ctrl+L Release all
F3 Leave Drive Pull-down.

Figure 95 shows the options available from the Help pull-down. See “Getting Help” on
page 511 for more information.

DFMDRIVE - Drive Control
Drive Help

F: SDFASB
G: SDFASB

O:
P:
Q:
R:
S:
T:
U:
V:
W:
X:
Y:
Z:

N: SDFASB46

(All target files)
(All target files)

_ _
System Name DirectoryHelp for help...

Extended help...
Keys help...
Help index...

About..._

_
_

_

_

Figure 95. Help Pull-down

Help for help... To obtain information about how to use the help facility.

Extended help... To display information about the contents of the DFMDRIVE
window that you requested help from. See Figure 99 on
page 512.

Keys help... To display information describing the key assignments of
DFMDRIVE.

Help index... To display an alphabetic list of all the help index entries. Selecting
an item from the list displays the help for that item.

About... To display the DFM for OS/2 logo window.

 Chapter 11. Assigning and Releasing Drive Letters 507

Figure 96. The “About” Logo Window

Assigning a Drive Letter
To assign a drive letter, select:

1. A drive letter from the list displayed in the DFMDRIVE - Drive Control window.

2. Select Assign... from the Drive pull-down menu. Only one drive letter can be
selected from the list at a time.

Figure 97 is displayed when Assign... is selected.

508 VSAM for OS/2

Assign a Drive to a System

DDMCICS1 CICS/DDM MVS system DDMCICS1
SDFASB46 This is the AS/400 Target Model 40

Drive: N:

System Name: SDFASB46

Directory: QIWSADM

System List System Description

Assign_ _ _ _CancelDirectory list... Help

_>
Figure 97. Assign a Drive to a System

The Assign a Drive to a System window (Figure 97) lets you assign a drive letter to a
target system containing the files you want to use. If the drive letter is already
assigned, use this window to reassign an already selected drive letter to a different
target system. If you select one of the systems listed on the window, its name is
displayed in the System Name field.

The following information is shown on the Assign a Drive To a System window:

Drive The current drive letter that you are working with. This is
the drive letter that you are currently assigning to a target
system.

System Name The system that you want to assign to that drive letter.

System List Shows the target systems that can be selected for
assignment.

System Description Shows a description for the target system, if one has been
created in the DFM for OS/2 configuration file (keyword
DFM_TARGET, parameter DESCRIPTION).

Directory The directory or path on the target server system that you
want to assign to the selected drive letter. For example, in
Figure 97, the directory QIWSADM is assigned to drive
letter N: in the system SDFASB46.

An optional parameter list prefixed by a comma can be
appended to the path (directory) name. When appending a
parameter list to the path name either:

 Chapter 11. Assigning and Releasing Drive Letters 509

� Enclose the entire path,parmlist string with quotation
marks or

� Prefix the path name with a backslash.

A single backslash used as the path name indicates all files
on the target system.

The following push buttons are available:

Assigns a target system to a drive letter.

Displays a list of the directories available. The window shown
in Figure 98 is displayed.

Closes the window displayed.

Displays help information for the window displayed.

You can select a target system that you want to assign a drive letter to or select
Directory list... to display a list of directories available on a target system. You can
specify specific files that you want to use on the specific target system using the
directory list. The window shown in Figure 98 is displayed when the Directory list...
push button is selected.

Select directory

POS
QDIADOCS
QIWSADM
QIWSFLR
QIWSFLRD
QIWSFL2
QIWSFL2D
QIWSOS2
QIWSOS2D

POS
QFOSDIA
QIWSADM
QIWSFLR
QIWSFLRD
QIWSFL2
QIWSFL2D
QIWSOS2
QIWSOS2D

Directory: *.*

Directory List Description

Ok_ _ _ _CancelRefresh list Help

_>

Figure 98. Select Directory Window

The following information is displayed:

Directory List Shows the directories you can assign.

510 VSAM for OS/2

Description Contains the description corresponding to the directory name. The
description field can be up to 44 characters in length. Whether a
description is given depends on the target system.

The following push buttons are available:

Confirms that you want to use the directory selected.

Refreshes the list displayed.

Closes the window displayed.

Displays the help for the window displayed.

You can select a specific directory on a target system from the list displayed, and then
press the OK push button to confirm your selection. The Assign a Drive to a System
window is redisplayed. If you have selected a specific directory or set of files, their
names are displayed in the Directory field. To assign the drive letter to the target
system, you now press the Assign push button. The DFMDRIVE - Drive Control
window is displayed and the target system you selected is assigned to the drive letter
selected.

Note: The use of global substitution characters, wildcards, for example, * and ?, in the
directory field depends on the target system.

 Getting Help
To obtain help information for DFM for OS/2:

� Select the type of help you require from the Help pull-down menu

� Press F2 when the cursor is on a field

� Use the Help push button.

Figure 99 shows the help displayed when Extended help... is selected from the Help
pull-down.

 Chapter 11. Assigning and Releasing Drive Letters 511

DFMDRIVE - Help
Services Options Help

Distributed FileManager is a system
providing access control for distributed
files. Distributed files are files located on
remote systems. By assigning a drive
letter to a remote system, you can read
from and write to files on that system.
The drive letter can be assigned either to
all the files on a remote system, to a
particular set of files, or to a specific
directory on a remote system.

Once you have assigned a drive letter,
you use it as you would use any other
drive letter on your personal computer.

_ _ _
Help for Distributed FileManager

_>
Previous_ _ _ _Print...Search... Index

Figure 99. Help for Distributed FileManager

Using the Application Programming Interface
If the application programmer wants to assign and release the drive letters for DFM for
OS/2 in the program itself, the DosFsAttach API can be used.

 Procedure Declaration
The API is provided using the OS/2 DosFsAttach function call. The return code is in
the AX register returned from the call. Figure 100 shows the format of the call.

PUSH@ ASCIIZ Device Name
PUSH@ ASCIIZ FSD Name
PUSH@ OTHER Data Buffer
PUSH WORD Data Buffer Length
PUSH WORD Operation Flag
PUSH DWORD ð
Call DOSFSATTACH

Figure 100. Format of DosFsAttach Function Call

512 VSAM for OS/2

The parameters have the following meaning:

Device Name
Pointer to a drive letter followed by a colon in ASCIIZ format.

FSD Name
Pointer to the ASCIIZ string DFMSFL0.

Data Buffer
Pointer to the data buffer.

Data Buffer Length
Length of the data buffer. The data buffers for the Assign and Release action are
described in Table 30 and Table 31.

Operation Flag
The operation you want performed.

0 Assign
1 Release

0 Reserved parameter. Must be set to 0. This is a double word.

Data Buffer Structures
Table 30 shows assign buffer formats.

Table 31 shows release buffer formats.

Table 30. Assign Buffer Format

Offset Length Value Description

0 2 6 Number of parameters. Must be set to 6.

2 3 Return code qualifier. This is an ASCIIZ
string. The value in this field is only valid if
the return code in AX is X'58'.

5 9 Name of the host system. This is an
ASCIIZ string.

14 * Path name (maximum 63 characters). This
is an ASCIIZ string.

Table 31. Release Buffer Format

Offset Length Value Description

0 2 Number of parameters.

2 3 Return code. This is an ASCIIZ string.

 Chapter 11. Assigning and Releasing Drive Letters 513

 Return Codes
Table 32 shows the possible values of the return code in AX on the DosFsAttach call.

Table 33 shows return code qualifiers.

Table 32. Return Codes in AX on the DosFsAttach Call

Return
Code

Description Explanation

X'00' NO_ERROR No error.

X'03' ERROR_PATH_NOT_FOUND The specified path was not found.

X'05' ERROR_ACCESS_DENIED Not authorized to specify path.

X'08' ERROR_NOT_ENOUGH_MEMORY Not enough memory available.

X'0F' ERROR_INVALID_DRIVE The specified drive is not valid.

X'15' ERROR_NOT_READY Shared folders function has not been
started.

X'1F' ERROR_GENERAL_FAILURE Communications error occurred.

X'55' ERROR_ALREADY_ASSIGNED Drive is already assigned.

X'58' ERROR_NET_WRITE_FAULT See Table 33 for a list of the values
of the return code qualifiers.

X'7C' ERROR_INVALID_LEVEL The specified operation flag is not
valid.

X'8E' ERROR_BUSY_DRIVE Drive is being used by another
program.

X'FC' ERROR_INVALID_FSD_NAME The FSD name is not correct or not
found.

X'FD' ERROR_INVALID_PATH The specified path is not valid

Table 33. Return Code Qualifiers

Return
Code

Description

X'5A' Cannot allocate adequate resources to attach drive.

X'5B' Version levels for host and PC program do not match.

X'5C' System name is not correct or system is not active.

X'5D' Communications manager is not active.

X'5E' PC Support router is not active.

X'5F' Local LU specified in CONFIG.PCS file is incorrect.

514 VSAM for OS/2

Chapter 12. Exploiting the DFM for OS/2 Caching Facility for
Stream Files

This chapter describes how you use the DFM for OS/2 caching facility.

| About Memory Caching
| The Remote Stream Access Support of DFM for OS/2 provides memory caching with
| read-ahead and write-behind mechanisms for byte-stream files. Where possible, local
| bytestream API requests are satisfied with data available from the memory buffer.

DFM for OS/2 Memory Caching of Remote Stream Files
DFM for OS/2 provides memory caching for stream files. Stream files can be cached
for either reading or writing. Since a single cache is used for each file, caching is
limited to either read or write caching. For example, if writes are being cached and a
read for the same file is requested, the write cache is sent to the system, and a request
is sent to read data from the system.

With read caching, more data is obtained from the server than the application requests.
If the read can be cached, at least twice as much data as the application requested is
read from the target system and placed into cache. On subsequent reads, the request
is satisfied with the data in the cache instead of retrieving the data from the server.
Performance is improved if the application makes small sequential reads. If the
application shows a tendency of doing random reads, DFM for OS/2 stops caching.

With write caching, the application’s write data is stored in the cache buffer until the
cache is full or until a random write is made. The data is then sent to the server. If the
application makes many sequential writes, performance is improved.

A single large buffer is sent to the target system when the cache is cleared. This
reduces the number of requests sent to the target system for processing.

Files can only be cached in the following situations:

� To cache a read request, the file must be opened with a sharing mode of deny
read/write or it must be opened for read access with a sharing mode of deny write.
The locality flags must not be random when the file is opened.

� To cache a write request, the file must be opened with a sharing mode of deny
read/write. The locality flags must not be random when the file is opened.

 Copyright IBM Corp. 1993, 1997 515

516 VSAM for OS/2

Chapter 13. Converting Record File Data

This chapter describes the types of data conversion supported by DFM for OS/2 and
how you can exploit these features. A brief description of the ADL data description
language is included here.

When to Use Data Conversion
Sharing remote record file data with other applications running in heterogeneous
environments requires data conversion. Data written by different applications in alien
operating systems can normally not be used directly from local workstation applications
without data conversion.

Note: If the remote system is used as a file server only, the OS/2 data is saved
without the need for sharing the data and data conversion is not required. In addition,
there are target systems with the same character sets and data types as the local OS/2
system.

DFM for OS/2 provides the following types of data conversion functions:

� Character Code Point Conversion

To access character data created by a host application for use with a workstation
application, you may want to convert the received records from the EBCDIC code
page used on the host to the ASCII code page that can be used by your
application. This type of conversion is called character code point conversion.
See “How to Exploit Conversion of Character Data” on page 534 for a detailed
description of the necessary activities to exploit character code point conversion.

� Record Field Sequence Conversion

To define a selection of fields or change the sequence order of the fields from a
remote file, you need the record field sequence conversion function of DFM for
OS/2. “Record Field Sequence Conversion” on page 536 contains an example.

� Data Type Conversion

Use data type conversion to access a certain field of a remote record and use it
with a different data type than it is actually stored. For example, data type
conversion is necessary if a field A from the host record is described as having the
data type “zoned decimal numeric” but the application wants to view this field as
data type “binary”.

See “Data Type Conversion” on page 537 for a description of the possible data
type conversions.

DFM for OS/2 can perform the data conversion in both directions. The data can be
converted:

� As it is stored on the target system to a view required by the local application.

� From the format provided by the local application into the actual layout of the
remote file.

 Copyright IBM Corp. 1993, 1997 517

How to Use DFM for OS/2 Data Conversion
To use data conversion, you:

1. Describe the Data

DFM for OS/2 supports the IBM A Data Language (ADL). You can describe your
data by creating an ADL file containing the ADL data description for a file or for a
view to a file.

To define a data conversion, you need to create two ADL files containing data
descriptions:

Base sequence Contains the description of the record file as it is stored on the
remote system.

View sequence Contains the description of the workstation application’s view of
the remote record file.

Note: There exists a permanent restriction for ADL statements that describe
keyed records. The ADL statements must explicitly describe the key field
or fields. For example, if a record consists completely of character data,
one field is the key field and the remainder of the record is data. You must
code the key description statement separately from the description for the
remainder of the record.

2. Translate the ADL files into a DFM for OS/2 internal format called Data Description
File (DDF). This translation can be performed explicitly using the DFM for OS/2
ADL translation utility (ADLTRANS) or implicitly when starting DFM for OS/2. See
“Translating an ADL File into a DDF File” on page 533 for more information.

3. Create a FILE_DESCRIPTOR_MAP entry in the CONFIG.DFM to specify that the
two Data Description Files apply to one or more files on a remote DFM target
system. For more information about the FILE_DESCRIPTOR_MAP entry, see
“Data Conversion Control for Remote Record Access Support” on page 494.

4. The descriptions are activated when the Remote Record Access Support function
is started using STRTDFMR.

The .DDF files that contain the base sequence and view sequence are loaded by
DFM for OS/2 when the following conditions are satisfied:

a. A FILE_DESCRIPTOR_MAP entry for the remote file specifying the associated
.DDF files exists in the DFM for OS/2 configuration file.

b. DFM for OS/2 accesses a remote file as specified in the FILE_DESCRIPT
OR_MAP entry, using one of the following functions:

DDMLoadFileFirst
DDMOpen
DDMUnLoadFileFirst
DDMQueryPathInfo
DDMCreateRecFile.

For specific information on these VSAM functions, see Chapter 3, “VSAM API
Functions” on page 45.

518 VSAM for OS/2

Each time a workstation exchanges record data with the remote file, DFM for
OS/2 converts the data to correspond with the two descriptions.

If either the ADL data descriptions cannot be translated into the DDF format or if you
receive a reply message when performing a data conversion function, you should
analyze whether the error can be avoided by modifying the ADL source statements and
repeat steps 1 to 2 on page 518. See “Analyzing Conversion Errors” on page 537 for
a description of the possible conversion error situations.

Creating an ADL Data Description
ADL is an IBM description language that provides programmers with a means of
describing and converting data exported by programs so that it can be easily imported
by other programs written for either a different machine architecture or a different
programming language, or both.

DFM for OS/2 supports a subset of the ADL syntax for describing fixed record formats
with a maximum length of 32000 bytes.

You can use an editor to write the ADL statements into ASCII files for the base and
view sequence. The ADL file names should have the file extension “.ADL”.

Figure 101 and Figure 102 show the ADL syntax used for a data description for an
example employee file. The sequence EmplRecB represents the remote file’s layout of
the file:

 ┌───────┬─────────┬─────────┬────────┬────┬────────┐
│EMPNBR │LASTNAME │INITIALS │ADDRESS │AGE │HATSIZE │

 └───────┴─────────┴─────────┴────────┴────┴────────┘

The sequence EmplRecV represents the source application’s view of the same file:

 ┌─────────┬─────────┬───────┬────┬────────┐
│LASTNAME │INITIALS │EMPNBR │AGE │HATSIZE │

 └─────────┴─────────┴───────┴────┴────────┘

 Chapter 13. Converting Record File Data 519

/\ Start of sample ADL file for a base sequence \/
DECLARE
 BEGIN;
 letters:

SUBTYPE OF CHAR LENGTH(2ð) CCSID(5ðð);
 EmplRecB:
 SEQUENCE
 BEGIN;

EmpNbr: ZONED PRECISION(6) SCALE(ð) ZONENC(X'F');
 LastName: letters;

Initials: letters LENGTH(2);
 Address: letters;

Age: BINARY PRECISION(4) BYTRVS(FALSE) SCALE(ð) RADIX(1ð);
HatSize: PACKED PRECISION(5) SCALE(3);

 END;
 END;
/\ End of sample ADL file for a base sequence \/

Figure 101. Example ADL Base Sequence Description

/\ Start of sample ADL file for a view sequence \/
DECLARE
 BEGIN;

 letters:
SUBTYPE OF CHAR LENGTH(2ð) CCSID(437);

 EmplRecV:
 SEQUENCE
 BEGIN;
 LastName: letters;

Initials: letters LENGTH(2);
EmpNbr: ZONED PRECISION (6) SCALE(ð) ZONENC(X'3');

Age: BINARY BYTRVS(TRUE) PRECISION(9) SCALE(ð) RADIX(1ð);
HatSize: PACKED PRECISION(5) SCALE(3);

 END;
 END;
/\ End of sample ADL file for a view sequence \/

Figure 102. Example ADL View Sequence Description

Figure 101 and Figure 102 contain examples showing the structures of ADL source
files. You must specify the same field names in both sequences to define that data
conversion should take place between the base format and the view of the field.

General ADL Rules
The following rules apply to the ADL source specifications:

� ADL key words are specified in uppercase.

� ADL input is created by building one DECLARE statement.

� Identifiers can be one to ten characters and are case sensitive. Valid identifiers
consist of a sequence of upper or lower case letters, numbers, and the special
characters ‘_’, ‘%’, ‘&’, and ‘?’. Each identifier must be unique within one ADL
source file. ADL keywords must not be specified as identifiers.

520 VSAM for OS/2

� The attributes of data declarations can be specified once in any order. Certain
attributes must be specified for specific types.

� Comments can be specified in ADL text space. They consist of the character
sequence /* followed by the body of the comment and a terminator consisting of
the character sequence */. The character sequence */ must appear at the end of a
comment.

 ADL Statements
The following contains explanations for the various ADL statements.

The syntax is partly given in Backus Naur Form (BNF) type format. The names in <>
denote grammar non-terminal symbols2 that must be replaced by the right-hand-side-
part of the corresponding grammar rule.

DECLARE Statement: Specifies the descriptions of a set of data values.

An ADL text file consists of one DECLARE statement.

 Format

<declare_statement>::=
DECLARE
BEGIN;
<opt_subtype_statem_list>
 identifier: SEQUENCE
 BEGIN;
 <data_declaration_list>
END;
END;

SUBTYPE Statement: Declares a SUBTYPE of an ADL type and a collection of its
attributes.

 Format

<subtype_statement> ::=
<subtype_identifier> : SUBTYPE OF <type> ;

Rules:

� SUBTYPE statements are derived by applying the rules for
<opt_subtype_statement_list>.

2 non-terminal represents syntactical notions. The start symbol of a BNF grammer that is a non-terminal symbol is used to derive a
final program source that consists of ‘terminal” symbols only by applying production rules. Each non-terminal symbol is replaced by
the symbols of the appropriate production rule.

 Chapter 13. Converting Record File Data 521

� If the SUBTYPE statement refers to a predefined subtype identifier, the attributes
must be consistent. The list of attributes may be empty.

� If the SUBTYPE instance is specified, the referenced SUBTYPE must not result in
a loop of SUBTYPE references.

� Nested SUBTYPEs can result in a loop and should not be used. See also “ADL
Data Declarations” for valid data declarations.

� The identifier of a SUBTYPE can be used in a SEQUENCE that follows as a data
declaration of a field. When the SUBTYPE identifier is encountered, it is replaced
by the definition values it defines.

� The attributes list of a defined SUBTYPE may be empty, for example, if the current
SUBTYPE statement is referring to an existing subtype identifier. At the point of
the final data declaration, all required attributes must be available.

Examples: In Figure 103, the data declaration for LastName contains the identifier
“character” which has been declared as a subtype. The declared attributes
(LENGTH(1) CCSID(500) also automatically apply to LastName. Any explicit
specification of a type, for example, LENGTH(20) for LastName, overwrites the setting
from the SUBTYPE definition. The data declaration for LastName is CHAR LENGTH(20)
CCSID(500).

DECLARE
 BEGIN;

character: SUBTYPE OF CHAR LENGTH(1) CCSID(5ðð);
integer: SUBTYPE OF BINARY BYTRVS(TRUE) PRECISION(4) RADIX (1ð);

 Address: SEQUENCE
 BEGIN;

EmpNbr: ZONED PRECISION(6) SCALE(ð) ZONENC(X'F');
LastName: character LENGTH(2ð);

 Children: integer;
 END;

 END;

Figure 103. Example Data Declaration

ADL Data Declarations
Data declarations are derived by applying the rules for <data_declaration_list>.

 Format

<data_declaration_list> ::= <data_declaration>
 | <data_declaration_list> <data_declaration>

<data_declaration> ::= identifier : <type> ;

The following ADL data types are derived using <type> rules.

522 VSAM for OS/2

ASIS Data Declaration: Declares an instance of the ASIS type. The actual type of
this data is unknown. A field is declared as an ASIS field if either its type cannot be
expressed by other ADL terms or if its data value is not to be converted.

 Format

ASIS
 LENGTH(integer)
 UNITLEN(8)

Rules:

1. LENGTH and UNITLEN are required attributes.

2. The integer value of the LENGTH attribute must be specified as a decimal value in
the range of 1 to 32000. The unit of measurement is in bytes.

3. The value for UNITLEN must be 8.

Example: This example declares hello to be a 5-byte field in which no conversions are
to take place.

hello: ASIS LENGTH(5) UNITLEN(8);

BINARY Data Declaration: Declares an instance of the BINARY type that is a
fixed-point, binary encoded numeric field.

1. A fixed-point, binary-encoded number is represented as a bit string as shown in
Figure 104.

X: BINARY BYTRVS(FALSE) PRECISION(9) SCALE(0) RADIX(10);

is represented by the 32-bit, binary field:

┌───┐
 s p
└───┘

The bits are labeled:

s = sign bit - 1 bit
p = bits in which the significant digits of the value are stored

as an integer.
 31 bits are required to represent a value up to 231

Figure 104. Layout of a Signed BINARY Field

The first bit of the signed number represents the sign, and the remaining bits
represent the binary encoding of the number. Positive numbers are represented in
true binary notation with the sign bit set to zero. Negative numbers are
represented in two’s complement notation with a one in the sign bit position.

2. Binary scaling is calculated with a radix of 10, and the scaling factor is specified as
a power of 10. The scale value specifies the number of decimal digits to the right

 Chapter 13. Converting Record File Data 523

of the decimal point. The actual value of a fixed-point number is given by the
formula:

Actual_Value = Store_Value \ 1ð\\(-SCALE)

 Format

BINARY
 PRECISION (integer)
 RADIX (1ð)
 BYTRVS (<bool>)
 SCALE (integer)

Rules:

1. PRECISION and RADIX are required attributes. The value for RADIX must be 10.

2. The PRECISION attribute specifies the maximum number of decimal digits that can
be encoded in a BINARY field.

3. The integer PRECISION value must be in the range of 1 to 9.

4. TRUE and FALSE are the valid values for the BYTRVS attribute.

5. If BYTRVS(TRUE) is specified, the field is encoded in byte-reversed order.

6. The integer SCALE value must be in the range of 0 to 9. The value 0 is assumed
if the SCALE attribute is omitted.

7. A SCALE of less than 0 is not supported. The maximum value of SCALE is
determined by the values for PRECISION in Table 34.

8. Size of the binary number is determined by the values for PRECISION in Table 34.

Examples: In the following examples, the bits of a BINARY field are defined by: s =
sign bit and p = precision bit.

Signed BINARY field:

X: BINARY BYTRVS(TRUE) PRECISION(4) SCALE(0) RADIX(10);

bit │p│p│p│p│p│p│p│p│s│p│p│p│p│p│p│p│
 │1│1│1│1│ð│ð│ð│ð│1│1│1│1│1│1│1│1│
 └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

Table 34. PRECISION Values for Determining Field Size

PRECISION (digits) Field Size (bits) max SCALE value

1 - 4 16 4

5 - 9 32 9

524 VSAM for OS/2

Field Low Bound = -32768
Field High Bound = 32767
Scale Factor = 1ð\\(-ð) = 1
Stored Value = X'FðFF'
Byte-Reversed Value = X'FFFð' = -16
Actual Value = -16 \ 1 = -16

This declaration represents the BINARY number 9.999.

BINARY BYTRVS(FALSE) PRECISION(4) SCALE(3) RADIX(1ð);

Stored value:

┌────┬────┐
│ 27 │ ðF │
└────┴────┘

CHAR Data Declaration: Declares an instance of the CHAR type which is a
fixed-length string of characters.

 Format

CHAR
 LENGTH (integer)
 CCSID (integer)

Rules:

1. The LENGTH attribute is a required attribute, its integer value must be in the range
1 to 32000. The unit of measurement is bytes.

2. The Coded Character Set Identifier (CCSID) or code page of a field is defined by
the IBM Character Data Representation Architecture (CDRA).

If the CCSID attribute is specified, it applies only to the field value being described
and not to the attributes of the field being declared. See “How to Exploit
Conversion of Character Data” on page 534 for more details.

3. The range of the valid integer values for the CCSID attribute is 0 to 65535.

4. The hierarchy of CCSID attributes is as follows:

a. <data declaration statement>

b. The CCSID of the environment.

5. If the CCSID(0000) is specified for a lower level entity in the hierarchy, the CCSID
attribute is inherited from the next higher level of the hierarchy.

6. If the CCSID(65535) is specified, the encoding of a character string is not defined
and no data conversion occurs.

7. If no CCSID attribute is defined, DFM for OS/2 obtains the related code page for a
field through DOSQueryCP for source system. For the target system, the default
code page 500 is used. See “How to Exploit Conversion of Character Data” on
page 534 for details.

 Chapter 13. Converting Record File Data 525

Examples:

1. This example declares lastname to be a character string of length 20 that is
encoded as defined by CCSID 500.

lastname: CHAR LENGTH(2ð) CCSID(5ðð);

2. This example declares poem to be a character string in CCSID 437:

poem: CHAR LENGTH(4ð) CCSID(437);

FLOAT Data Declaration: Declares an instance of the FLOAT type, a floating-point
numeric field.

A floating-point number is a bit string characterized by the three components:

 � Sign
 � Signed exponent
 � Significand.

A floating-point number is represented in storage in one of the formats specified by the
<FORM attribute>. Its numerical value, V, may be derived from its stored
representation as follows:

e = C-b
V = (S\(B\\e))\((-1)\\s)

The terms of these expressions are defined as follows:

Term Definition

Sign (s) The high-order bit in the stored representation of the number.
The value of the number is considered to be positive or
negative depending on whether the sign is zero or one
respectively.

Exponent (e) The component of a floating-point number that normally
signifies the integer power to which the base is raised in
determining the value of the represented number. The
exponent is not stored directly. It is converted first to a
characteristic .

Base (B) The number to which the exponent is applied when
determining the numerical value of a floating-point number.
The base used depends on the format.

Characteristic (C) The sum of the exponent and a constant (bias) chosen to
make the range of the stored representation. The
characteristic is stored in the bits immediately following the
sign. The length of the characteristic depends on the format.

Bias (b) A constant that is added to the exponent to create the
unsigned characteristic is stored to represent the exponent.
The bias used depends on the format.

526 VSAM for OS/2

Significand (S) The component of a floating-point number specifying the value
to be multiplied by the base raised to the power of the
exponent. The length and interpretation of the significand
depends on the format.

Different formats of the FLOAT data type accommodate either binary or hexadecimal
representations of floating-point numbers.

HEXADECIMAL Formats:

In hexadecimal floating-point numbers, the significand consists of an implicit leading
zero bit to the left of its implied binary point and a fraction field to the right. The
significand is stored following the characteristic in the representation of the number.

A value that is stored in the significand can be normalized to represent it with the
greatest precision possible for a given format. Normalization is done by taking the
value in hexadecimal form and shifting left or right until the first digit to the right of the
hexadecimal point is nonzero and all digits to the left of the hexadecimal are zero. The
exponent is reduced by the number of hexadecimal digits that were shifted left or
increased by the number of hexadecimal digits that were shifted right. The result is
stored in the significand.

Up to three leftmost bits of the significand of a normalized hexadecimal floating-point
number may be zeroes, since the nonzero test applies to the entire leftmost
hexadecimal digit. Thus, the guaranteed binary precision is three less than the
maximum binary precision.

There are two values that represent zero: +0 and -0. A true zero is a floating-point
number with a zero sign, characteristic, and significand.

There are three formats of hexadecimal floating-point numbers:

Table 35. Hexadecimal Floating-Point Numbers

<form>
values

Format Sign Character-
istic

Bias Significand Length

FH32 single 1 bit 7 bits 64 6 hex digits 32 bits

FH64 double 1 bit 7 bits 64 14 hex
digits

64 bits

FH128 extended 1 bit 7 bits 64 28 hex
digits

128 bits

Single precision hexadecimal floating-point numbers, FORM(FH32), are represented as
follows:

 ┌─────┬───────────────┬────────────┐
│sign │characteristic │significand │

 └─────┴───────────────┴────────────┘
 ð 1 8 31

 Chapter 13. Converting Record File Data 527

Double precision hexadecimal floating-point numbers, FORM(FH64), are represented as
follows:

 ┌─────┬───────────────┬────────────┐
│sign │characteristic │significand │

 └─────┴───────────────┴────────────┘
 ð 8 8 63

Extended precision hexadecimal floating-point numbers, FORM(FH128), are
represented as follows:

 ┌─────┬───────────────┬──────────────────────────┐
│ │high─order │leftmost 14 hex digits of │
│sign │characteristic │28 hex digit significand │

 └─────┴───────────────┴──────────────────────────┘
 ð 1 8 63
 ┌─────┬───────────────┬──────────────────────────┐
│ │low─order │rightmost 14 hex digits of│
│sign │characteristic │28 hex digit significand │

 └─────┴───────────────┴──────────────────────────┘
 64 65 72 127

The characteristic and sign of the high-order part are the characteristic and sign of the
extended floating-point number. If the high-order part is normalized, the extended
number is considered normalized. When an extended floating-point number is operated
on, the sign of the low-order part is set to the same as that of the high-order part, and
unless the result is a true 0, the characteristic of the low-order part is made 14 less
than that of the high-order part. If the subtraction of 14 from the high-order part is less
than zero, the low-order characteristic is made 128 larger than the correct value. When
an extended floating-point field is initialized, the low-order part may be set to a true
zero if the low-order significand is zero. The preceding guarantees that both parts of
the extended floating-point field are valid long floating-point numbers and can each be
used as a long floating-point field.

BINARY Formats:

In binary floating-point numbers, the significand consists of an explicit or implicit integer
bit to the left of its implied binary point and fraction bits to the right. The significand is
stored following the characteristic in the representation of the number.

A value is normalized in order to represent it with the greatest precision possible for a
given format. Normalization is done by taking the value in binary form and shifting left
or right until a single binary one is to the left of the binary point. The exponent is
reduced by the number of bits shifted left or increased by the number of bits shifted
right. The resulting normalized significand is stored according to the format.

A denormalized value occurs when a normalized value would require an exponent
value smaller than the minimum exponent for the format. In this case, the value is
shifted left until the exponent equals the minimum exponent for the format. The
resulting denormalized significand is stored according to the format of the number. The
integer bit is zero and the stored significand may have leading zeroes. The
characteristic is set to zero to signal that this number is denormalized.

528 VSAM for OS/2

There are two values which represent zero: +0 and -0.

There are two formats for binary floating-point numbers:3

Table 36. Binary Floating-Point Numbers

<form>
values

Format Sign Character-
istic

Bias Significand Length

FB32 single 1 bit 8 bits 127 23 bits 32 bits

FB64 double 1 bit 11 bits 1023 52 bits 64 bits

Single precision binary floating-point numbers, FORM(FB32), are represented as
follows:

 ┌─────┬───────────────┬────────────┐
│sign │characteristic │significand │

 └─────┴───────────────┴────────────┘
 ð 1 9 31

In the single format, the integer bit of the significand is implicit and not stored. The
implied binary point is to the left of the first bit of the stored significand.

Double precision binary floating-point numbers, FORM(FB64), are represented as
follows:

 ┌─────┬───────────────┬────────────┐
│sign │characteristic │significand │

 └─────┴───────────────┴────────────┘
 ð 1 12 63

In the double format, the integer bit of the significand is implicit and not stored. The
implied binary point is to the left of the first bit of the stored significand.

 Format

FLOAT
 FORM (<form>)
 BYTRVS (<bool>)

Rules:

1. FORM is a required attribute. It specifies the form of a floating point number. See
Table 37 on page 530 for the valid FORM values.

2. TRUE and FALSE are the valid values for the BYTRVS attribute.

3 The single and double forms are defined by the IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985. The
extended form is defined by the Intel 387TM DX User’s Manual, Programmer Reference. The extended form is equivalent to the
double extended format of the IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 754-1985.

 Chapter 13. Converting Record File Data 529

3. The value for BYTRVS must be TRUE if a field is encoded in byte-reversed order.

4. The precision values that can be achieved by the different forms are displayed in
Table 37.

Examples:

1. A normalized single precision hexadecimal 32-bit FLOAT field:

x : FLOAT FORM(FH32) BYTRVS(FALSE);
The stored value of x is x'416ððððð'
6.ð is stored as a normalized FLOAT number.
s = sign = ð
C = characteristic = x'41' = 65
e = exponent = C - bias = 65 - 64 =1
S = significand = x'6ððððð' = ð.375
x = (-1)\\ð \ ð.375 \ 16\\1 = 6.ð

2. A normalized single precision binary FLOAT field:

x : FLOAT FORM(FB32) BYTRVS(TRUE);
The stored value of x is x'ððððCð4ð'
The byte reversed value of x is x'4ðCððððð' = 6.ð
s = sign = ð
C = characteristic = b'1ðððððð1' = x'81' = 129
e = exponent = C - bias = 129 - 127 = 2
since ð < C < 255 then the number is normalized
S = significand = b'1ðððððððððððððððððððððð' = 1 +ð.5 = 1.5
x = (-1)\\ð \ 1.5 \ 2\\2 = 1 \ 1.5 \ 4 = 6.ð

PACKED Data Declaration: Declares an instance of a packed decimal field.

A packed decimal field is a sequence of 4-bit strings representing decimal digits (0-9)
followed by an optional 4-bit sign position. If required, the field is extended on the left
to a multiple of 8-bit length.

A packed decimal field is represented as a sequence of 8-bit bytes consisting of an
optional sign position and a sequence of hexadecimal representations of decimal digits.

Note: All DFM for OS/2 packed numbers are signed.

Table 37. FORM Values

<form > Value

FH32 24 binary digits

FH64 56 binary digits

FH128 112 binary digits

FB32 24 binary digits

FB64 53 binary digits

530 VSAM for OS/2

 Format

PACKED
 PRECISION (integer)
 SCALE (integer)

Rules:

1. The PRECISION attribute is required. Its integer value must be in the range of 1
to 31. It specifies the maximum number of a significant digit or of significant digits
in a PACKED field. However, if the PRECISION value is even, the number of
digits stored in a PACKED field may be one greater than the PRECISION value.

2. The integer SCALE value must be less than or equal to the number of significant
digits. It specifies the number of decimal digits to the right of the decimal point
when the number is in base 10 representation. If SCALE is omitted, a value of
zero is assumed.

3. Numbers are stored in PACKED fields as integers. The actual value depends on
SCALE as defined by:

Actual_Value = Stored_Integer_Value\(1ð\\(-SCALE))

Examples: In the following examples, the half-bytes of a PACKED field are defined by:
s = sign digit and p = precision digit.

A packed decimal field with PRECISION and SCALE:

X: PACKED PRECISION(7) SCALE(2);

byte ð 1 2 3

│ p │ p │ p │ p │ p │ p │ p │ s │
 └───┴───┴───┴───┴───┴───┴───┴───┘

Where p is x'ð' to x'9' and s is sign
Hexadecimal digits A, C, E and F represent a plus sign,
while B and D represent a minus sign.
Number Stored:

byte ð 1 2 3

│ ð ð │ ð ð │ ð 1 │ 7 C │
 └───┴───┴───┴───┴───┴───┴───┴───┘

Value = ððððð17 \ ð.ð1 = ð.17

This declaration represents the PACKED number 123.45.

PACKED PRECISION(6) SCALE(2);

Stored value:

┌────┬────┬────┐
│ 12 │ 34 │ 5F │
└────┴────┴────┘

 Chapter 13. Converting Record File Data 531

This example declares weight to be a PACKED field represented with 6 significant
decimal digits.

weight: PACKED PRECISION(6) SCALE(ð);

ZONED Data Declaration

 Format

ZONED
 PRECISION (integer)
 SCALE (integer)

ZONENC (<zonenc>) ;

Rules:

1. The PRECISION attribute is required. Its integer value must be in the range of 1
to 31.

2. The length of a ZONED field in bits is PRECISION attribute *8. It defines the
maximum number of significant digits in a ZONED field.

3. The SCALE attribute is optional. Its valid integer values must be in the range of 0
to 31. A default value of 0 is assumed if the SCALE attribute is missing.

4. SCALE specifies the number of decimal digits to the right of the decimal point
when the number is in base 10 representation.

5. The ZONENC attribute is required. Valid <zonenc> values are X'3' or X'F'. It
specifies the encoding of the zone portion of ZONED field for all bytes except the
sign.

6. The minimum alignment of a ZONED field is byte alignment.

Declares an instance of the ZONED type that is a zoned decimal numeric field.

1. A zoned decimal field is a sequence of bytes each containing a representation of a
decimal digit (0-9) in its right-most 4 bits, and each normally containing a zone
encoding in its left-most 4 bits. The zone encoding normally causes the byte to
print as a numeric character. For example, the digit 9 could be encoded as X'F9',
representing the value X'9' and would print as the character 9 in CCSID(500).

2. The representation of the sign is defined in place of the ZONE portion of the
right-most digit. A hex X'A', X'C', X'E' or X'F' is used for positive numbers
and a X'B' or X'D' for negative numbers.

3. The maximum number of significant digits in a ZONED field is specified by the
PRECISION attribute.

Examples: In the following examples, the half-bytes of a ZONED field are defined by: z
= zone half-byte and p = precision half-byte.

ZONED with precision and a X'F' zone.

X: ZONED PRECISION(4) ZONENC (X'F');

532 VSAM for OS/2

byte ð 1 2 3
│ │ │ │ │
│ z │ p │ z │ p │ z │ p │ s │ p │

 └───┴───┴───┴───┴───┴───┴───┴───┘

z=X'F'
s=X'A' X'C' X'E' or X'F' for positive
or X'B' or X'D' for negative

This declaration represents the ZONED number 32.1ð with a precision of 4 significant
digits.

ZONED ZONENC(X'F') PRECISION(4) SCALE(2)

Stored value:

┌────┬────┬────┬────┐
│ F3 │ F2 │ F1 │ Fð │
└────┴────┴────┴────┘

X is a ZONED field that can be printed as an EBCDIC number.

X: ZONED PRECISION(3) ZONENC(X'F') SCALE(ð);

Likewise, the preferred sign zone encoding in ASCII is:

X'3' for unsigned and positive
X'7' for negative

Y is a ZONED field that can be printed as an ASCII number.

Y: ZONED PRECISION(3) ZONENC(X'3') SCALE(ð);

Translating an ADL File into a DDF File
You use the ADLTRANS utility to translate an ADL data description file into a file
containing the DFM for OS/2 internal DDF format. This translation is performed only if
the syntax of the ADL data description file is correct. Otherwise, a message is
displayed identifying the failing statements.

ADLTRANS uses the following conventions:

� The input file to ADLTRANS that contains the ADL statements for record
descriptions must have the extension “.ADL”.

� The output file of ADLTRANS that contains the DFM for OS/2 internal format of
these descriptions has by default the same file name as the associated input file
with the extension “.DDF”.

� The output file of ADLTRANS is written into the same directory as the input file
unless a fully qualified file name is specified using the /O option.

 Chapter 13. Converting Record File Data 533

Explicit ADL Translation
You invoke the ADL translation utility using the following command:

ADLTRANS [adl_filename[.ADL][/Q|-Q]
[/O|-O ddf_filename] |

 [/HELP|-HELP]

The parameters have the following meaning:

adl_filename
Is the file name of the ADL file to be translated into a data description file. The file
name is either a fully qualified file name or a file in the current working directory. It
must have the extension “.ADL”.

/Q or -Q
Suppress the product banner message.

/O or -O ddf_filename[.DDF]
Specify the name of the output data description file. The file name is either a fully
qualified file name or a file in the current working directory. If the file name is not
specified, the output is written to the file ddf_filename.DDF.

/HELP or -HELP
Display help for the command syntax. All other parameters are ignored if this is
specified.

Note: If you created a new DDF file while running your DFM for OS/2 system and the
conditions specified in “How to Use DFM for OS/2 Data Conversion” are satisfied, the
new file is used for data conversion.

Implicit ADL Translation
If ADLTRANS is not called to translate an ADL file, DFM for OS/2 detects this when
STRTDFMR.EXE is invoked. DFM for OS/2 performs the ADL translation utility
implicitly for each file satisfying the following conditions:

1. The file is defined in the DFM for OS/2 configuration file with BASE_DDF and
VIEW_DDF entries.

2. The .DDF file does not exist or is older than the .ADL file.

Automatic ADL translation can be suppressed if there is no FILE_DESCRIPTOR_MAP
entry in the CONFIG.DFM

How to Exploit Conversion of Character Data
Character code point conversion of file data applies to the DFM for OS/2 Remote
Record Access Support only. Stream file data cannot be converted using DFM for
OS/2.

534 VSAM for OS/2

To convert a character field or an entire record from a host code page to a workstation
code page or from a workstation code page to a host code page, you have to specify
the related Coded Character Set ID (CCSID) for both the base and view field.

Figure 105 shows a base sequence specifying an EBCDIC Code Page with the CCSID
500.

/\ ADL description for a remote record encoded in an EBCDIC code page \/
DECLARE
 BEGIN;
 BaseRec:
 SEQUENCE
 BEGIN;

Field1: CHAR LENGTH(8ð) CCSID(5ðð);
 END;

 END;

Figure 105. Base Sequence Specifying an EBCDIC Code Page

Figure 106 shows a view sequence specifying an ASCII code page 437.

/\ ADL description for a local view encoded in an ASCII code page \/
DECLARE
 BEGIN;

 ViewRec:
 SEQUENCE
 BEGIN;

Field1: CHAR LENGTH(8ð) CCSID(437);
 END;
 END;

Figure 106. View Sequence Specifying an ASCII Code Page

In the example shown in Figure 105 and Figure 106, the data in the file on the target
system is stored using the EBCDIC code page 500 (International Latin-1), and the
application uses the ASCII code page 437 (PC Base) to view this data. The entire
record with the length of 80 can then be converted from code page 500 to code page
437 and from code page 437 to code page 500.

To use the default setting being used by DFM for OS/2, you can omit the CCSID in the
data descriptions for a character field. If you omit the CCSID for a field of the local
view, DFM for OS/2 defaults the value to the code page specified for your OS/2 system
or process. If you omit the CCSID for a field of the base description, DFM for OS/2
uses the value specified with the DEFAULT_CCSID keyword in the CONFIG.DFM. If
there is no DEFAULT_CCSID specified in the CONFIG.DFM file, CCSID 500 is
assumed.

Conversion Tables for Character Code Point Conversion
DFM for OS/2 uses conversion tables to convert between code pages. A conversion
table is a file that translates the numeric value of a character in one code page to the
numeric representing the character in another code page.

 Chapter 13. Converting Record File Data 535

The CCSID specified in the data description is directly related to the Code Page Global
Identifier (CPGID) that is used to determine the required conversion table.4

Table 38 lists the pairs of CPGIDs most commonly used.

Note: The CCSID and the CPGID are identical in these cases.

Table 38. DFM for OS/2 Conversion Tables

EBCDIC CPGID

ASCII CPGID

00437
USA

00850
Latin-1

00860
Portugal

00863
Canada

00865
Denmark
Norway

00037 USA, Canada � � � � �

00273 Austria, Germany � � � � �

00277 Denmark, Norway � � � � �

00278 Finland, Sweden � � � � �

00280 Italy � � � � �

00284 Spain � � � � �

00285 UK � � � � �

00297 France � � � � �

00500 International Latin-1 � � � � �

00871 Iceland � � � � �

For every bullet in Table 38, there are two conversion tables, EBCDIC-to-ASCII and
ASCII-to-EBCDIC, that are automatically loaded when DFM for OS/2 needs the tables
for the first time.

Any other CDRA defined conversion table delivered with DFM for OS/2 in the
sub-directory \CONVTABL of the DFM for OS/2 system directory can be used for
character conversion. A complete list of supported pairs of CPGIDs is shown in
Appendix A, “CDRA Character Conversion Tables for Remote Record Access Support.”

DFM for OS/2 Version 1.00 supports only single byte to single byte conversion.

Record Field Sequence Conversion
The base description and the view description normally describe the same set of fields
which are ordered in the same sequence in both descriptions. You can define a
modified view to the remote record file:

4 DFM for OS/2 maps a CCSID into the related CPGID according to the IBM Character Data Representation Architecture. If no
mapping is found, DFM for OS/2 uses the given CCSID as the CPGID.

536 VSAM for OS/2

� The sequence of fields can differ between the base description and the view
description

� The view description can select a subset of the fields from the base description.

The sample ADL descriptions contained in Figure 101 and Figure 102 show the two
record field sequence conversion possibilities. The view rearranged the sequence of
fields in the base sequence and omitted one of the base fields ('Address').

If you are using a view with less fields than being described in the base description,
read-only access to the remote file is permitted. Any attempt to open a file with either a
modify or an insert access intent is rejected.

Data Type Conversion
Figure 107 lists the data type conversions provided by DFM for OS/2. For example,
the field “ZIP” is defined in the base sequence description as having the data type
PACKED. You can define a view sequence containing the same field name “ZIP” that
is associated with data type BINARY.

 ┌───┬───┬───┬───┬───┬───┐
│ A │ B │ C │ F │ Z │ P │ ASIS is an unknown type,
│ S │ I │ H │ L │ O │ A │ BINARY is a fixed point, binary encoded numeric field,
│ I │ N │ A │ O │ N │ C │ CHAR is a fixed length string of characters,
│ S │ A │ R │ A │ E │ K │ FLOAT is a floating point field,
│ │ R │ │ T │ D │ E │ PACKED is a packed decimal numeric field,
│ │ Y │ │ │ │ D │ ZONED is a zoned decimal numeric field.

┌────────┼───┼───┼───┼───┼───┼───┤
│ASIS │ O │ O │ O │ O │ O │ O │
│BINARY │ O │ X │ - │ X │ X │ X │
│CHAR │ O │ - │ X │ - │ - │ - │
│FLOAT │ O │ X │ - │ X │ X │ X │
│PACKED │ O │ X │ - │ X │ X │ X │
│ZONED │ O │ X │ - │ X │ X │ X │
└────────┴───┴───┴───┴───┴───┴───┘

Figure 107. DFM for OS/2 Data Type Conversion Table

 X = Valid combination, conversion is performed.
 O = Valid combination, no conversion is performed.
'-' = Invalid combination, untranslatable data.

Analyzing Conversion Errors
Figure 107 shows which data types are compatible. Data conversion is only attempted
for compatible combinations. Even when the data types are compatible, errors can
occur in conversion. These are dependent on the actual data value in the field to be
converted. See Table 39 for details.

If an error occurs during data conversion, DFM for OS/2 returns a XLATERM,
Translation Error Reply Message. The server diagnostic value returned with this reply
message indicates the kind of detected problem. See “XLATERM (Translation Error)”
on page 469 for an explanation of the returned reply message information.

 Chapter 13. Converting Record File Data 537

Note: If you are working with VSAM using a High Level Language compiler (for
example, PL/1, C or COBOL), the VSAM reply messages returned to the application
program are dependent on the application program.

Table 39 (Page 1 of 2). Conversion Errors

Server
Diagnostic
Information

Condition Detected DFM for OS/2 Result

0001 Rounding warning.

This is detected when there are more
significant digits in the decimal portion of the
input field than are allowed in the output
number.

If the first digit that does not fit in the output
field is greater than or equal to five, one is
added to the number. This is termed
rounding-up . If the first digit that does not fit
in the output field is less than five, the
number is unchanged. This is termed
rounding-down .

Note: A condition can occur in which the
number would otherwise be incremented,
rounded up, but that number is already at its
maximum value. If the number was
incremented, a range error would occur. In
this case, the number is left unchanged,
rounded-down.

0002 Truncation warning.

Occurs in character code point conversions
when there is more data than allowed in the
output field.

Data is truncated on the right and the
maximum amount of data possible is placed
in the output field.

0101 Range error.

This occurs when there are more significant
digits in the whole portion of the input number
than are allowed in the output number. The
data does not fit in the specified output field.

For range errors, the data that is placed into
the field is the maximum value possible for
that field length and scaling factor
specification if the value of the number is
positive. If the number was negative, the
minimum value is used.

For floating point numbers, this error occurs
when the exponent cannot fit. It is either too
large or too small for the output format. In
this case, the maximum value if it is too large,
or minimum value if it is too small, is placed
in the output field.

In cases in which the data is being sent to a
target system, this record and all that follow
are not sent to the target. If the data is in the
process of being received, the application can
determine whether to accept the record.

538 VSAM for OS/2

Table 39 (Page 2 of 2). Conversion Errors

Server
Diagnostic
Information

Condition Detected DFM for OS/2 Result

0102 Untranslatable data found in input field.

This can only occur in fields of type PACKED
and ZONED.

The data is converted into the output field in
the correct format. The value of the data in
that byte or half-byte remains untranslatable.

 EXAMPLE:
ZONED to PACKED
'3A' -> 'A'

If data is being sent to a target system, this
and following records are not sent to the
target. If the data is being received by the
workstation, the application can determine
whether to accept the record.

0103 If file is opened with MODCP or INSCP and
the fields in the view description of the record
are not equal to the fields in the base
description.

If file is opened with MODCP or INSCP, the
records are not sent to the target.

0104 Partial Key.

A partial numeric key field cannot be
translated.

If a key definition field is not so long as the
record field, defined in the view of base
description of the record and the data type is
not ASIS or CHARACTER, the record will not
be sent to the target, and DFM for OS/2
returns this reply message to the application.

Table 40 shows additional situations in which padding occurs in the output fields:

Table 40. Padding Situations

Condition Detected DFM for OS/2 Result

Padding of numeric fields.

This is necessary if the length of the output field is
greater than the length of the input field. This may be
a padding of leading zeros before the decimal point or
trailing zeros after the decimal point.

The extra bytes in the output field are automatically
padded with zeros of the appropriate date type. An
exception is BINARY data in twos-complement form
which is padded with X'FF' to ensure sign integrity.
No message is sent to the user.

Padding of character fields.

The length of the output field is greater than that of the
input field.

The extra bytes in the output field are padded with
nulls (X'00'). No message is sent to the user.

Padding in fields without conversion.

The length of the output field is greater than that of the
input field.

The extra bytes are padded with nulls (X'00')
regardless of data type.

 Chapter 13. Converting Record File Data 539

540 VSAM for OS/2

Chapter 14. Writing a File Name Mapping Exit Program

This chapter describes potential reasons for name mapping and how to develop a user
exit program for it. A sample exit is supplied with DFM for OS/2. You can modify it
according to your requirements or write your own exit using the interface conventions
described.

Although DFM for OS/2 accepts file or directory access commands to a remote DFM
server using the target system file names, you may find it useful to map file names
when data is transferred between the client and the server.

If you want to use OS/2 syntax for file and path specifications, including “\” and “.”, in
your application, you may need to convert this name into the target syntax, for example,
an MVS PDSE name.

Using the Name Mapping User Exits
Before DFM for OS/2 sends data containing a directory or file name to the target
system, it calls the user exit DFM_Map_to_Server if available in the dynamic link
library EHNXNMP. The exit is called for each file name that is included in the DFM for
OS/2 data stream before it is translated from ASCII to EBCDIC.

After DFM for OS/2 has received data containing a directory or file name from the
target system, it calls the user exit DFM_Map_to_Client, if it is available in the dynamic
link library EHNXNMP. The exit is invoked for each directory or file name found in the
data after the name has been translated from EBCDIC to ASCII.

Writing A Name Mapping User Exit
DFM_Map_to_Server and DFM_Map_to_Client are invoked with a pointer to the name
mapping exit interface control block, DFM_MAP_CB.

 DFM_Map_to_Server Syntax
command DFM_Map_to_Server(PDFM_MAP_CB pMapCB);

Parameter Description

pMapCB Pointer to the File Name Mapping Exit interface structure
described in “Structure of DFM_MAP_CB.”

Returns: The return in the EAX register is ignored by DFM for OS/2.

 DFM_Map_to_Client Syntax
command DFM_Map_to_Client(PDFM_MAP_CB pMapCB);

Parameter Description

pMapCB Pointer to the File Name Mapping Exit interface structure
described in “Structure of DFM_MAP_CB.”

 Copyright IBM Corp. 1993, 1997 541

Returns: The return in the EAX register is ignored by DFM for OS/2.

Structure of DFM_MAP_CB
Figure 108 shows the structure of the interface control block for the name mapping
user exit functions.

typedef struct
 {
 char SrvClsName[9];
 char LU_Name[9];
 char InFileName[256];
 char OutFileName[256];
} DFM_MAP_CB, \ PDFM_MAP_CB ;

Figure 108. Structure of DFM_MAP_CB

Parameter Description

SrvClsName Zero terminated ASCII string. It contains the value of the DDM
parameter SRVCLSNM as received from the target system. This
value identifies the DFM server class name of the remote system.
The following server class names for file servers have been defined
for the IBM operating systems and subsystems:

’Q36’ DDM file server on System/36

’Q38’ DDM file server on System/38

’QCICS’ CICS DDM file server on CICS/MVS and
CICS/VSE

’QAS’ DDM file server on OS/400

’QMVS’ DDM file server on MVS

’QCMS’ DDM file server on VM/CMS

’QFS’ Enhanced PC Support/400 target server

’Q4680’ DDM file server on a 4680 store system.

Maximum length is 8 characters plus a trailing zero. The File Name
Mapping Exit program can use this information to choose a different
mapping algorithm for each target operating system.

LU_Name Zero terminated ASCII string specifying the partner LU alias name,
under which the target system is known to the OS/2 ES
Communications Manager. Maximum length is 8 characters plus a
trailing zero.

InFileName Zero terminated ASCII string containing the original directory or file
name. Maximum length is 255 characters plus a trailing zero.

542 VSAM for OS/2

OutFileName Zero terminated ASCII string that contains the mapped directory or
file name. Maximum length is 255 characters plus a trailing zero.
This parameter is initially set with zeroes. It contains the fully
qualified file name without a preceding drive letter.

You must follow the following convention when writing your own user exits:

� The user exit function must be provided in a 32-Bit DLL with the name EHNXNMP.

� The exit must be programmed with system linkage convention.

� The string OutFileName must not exceed 255 characters and have a zero
termination.

� No name mapping is performed if DFM for OS/2 detects that the:

– OutFileName is not modified
– Requested exit function is not available in the DLL
– Returned name is not valid.

Note: If any error occurs in the name mapping exit, the entire DFM for OS/2 can be
affected.

Special Considerations for OS/400 DFM File Servers
If the target system is an AS/400 and if a stream file or a directory API function has
been called, the following name changes are carried out before the user exit is invoked:

� If DFM for OS/2 communicates with an enhanced PC Support/400 target system:

– The path name always starts with /
– All \ are changed to /.

� For other OS/400 systems:

– The path name always starts with /
– All \ are changed to /
– A suffix of FMS is appended to the file name.

 Chapter 14. Writing a File Name Mapping Exit Program 543

544 VSAM for OS/2

Chapter 15. What to Do if an Error Occurs in DFM for OS/2

This chapter explains how to find and report problems within DFM for OS/2.

Handling Problems in DFM for OS/2
If a problem occurs when you are using DFM for OS/2, use the following steps to find
out what is causing the problem, whether a correction or a circumvention exists, and
how to report a problem to IBM if no correction or circumvention exists.

 1. Initial Evaluation

Determine which system component is causing the problem. If DFM for OS/2 is
causing the problem, identify the components involved. For example, Remote
Stream Access Support, Remote Record Access Support, or one of the
administration commands. How to do this is described in “Initial Evaluation of a
DFM for OS/2 Problem.”

2. Submit an APAR

If you cannot solve the problem, report the problem to an IBM Support Center
specialist using an authorized program analysis report (APAR). How to do this is
described in “Submitting an APAR” on page 548.

Initial Evaluation of a DFM for OS/2 Problem
This section describes the error recording facilities in DFM for OS/2. These facilities
can help you in an initial evaluation of a problem.

 Messages
All DFM for OS/2 components issue messages if they detect an error to inform you
about the problem and about possible corrective actions. The destination of the
messages depends on the DFM for OS/2 component that issued them. For example:

� Remote Stream Access Support

The messages are displayed in pop-up windows on the screen.

� Remote Record Access Support

This API support uses the new IBM First Failure Support Technology (FFST/2). By
default FFST/2 routes the messages to the screen using STDOUT. In addition
they are logged into an FFST/2 message file. You can use the FFST/2 utilities to
check whether DFM for OS/2 Remote Record Access Support has issued a
message and what the explanation for this message is. See the ES OS/2 Problem
Determination Guide for the System Coordinator for details.

� Administration Commands, for example, ADLTRANS, STRTDFMC.

All DFM for OS/2 administration commands route their messages for display on the
screen using STDOUT. The messages are prefixed with “EHN” followed by a
four-digit number, for example, EHN0132. To see additional help for the message

 Copyright IBM Corp. 1993, 1997 545

or hints for corrective action, you should try the OS/2 HELP facility. To use it, you
type HELP EHN0132 on the command line.

The Internal Trace Facility
To activate DFM for OS/2 tracing you:

1. Define the level of VSAM trace events you want to collect
 2. Start DFMTRACE

3. Run the application program causing the error
 4. Stop DFMTRACE

5. Create an ASCII file that contains the trace entries.

You can send either a paper copy of the file or the file itself to your IBM service
personnel.

You can also activate a Communication Manager Trace to trace the communication
events. See the ES OS/2 Communication Manager User's Guide for details.

Defining the Level of the VSAM Trace Events
When trace is turned on, DFM for OS/2 will be traced. However, one additional step is
required to turn on the tracing for VSAM. In each session in which you want to trace
VSAM, set the environment variable, RLIOTRACELEVEL, to a value from 0 to 7
inclusive. If you want to trace VSAM in all sessions at the same trace level, it might be
more convenient to set RLIOTRACELEVEL in your CONFIG.SYS file. The type of
tracing for each level is as follows:

SET RLIOTRACELEVEL=0: Stop the VSAM trace
SET RLIOTRACELEVEL=1: Trace the DDM API parameters only
SET RLIOTRACELEVEL=2: Trace the HEAP only
SET RLIOTRACELEVEL=3: Trace locking only
SET RLIOTRACELEVEL=4: Trace the DDM API parameters and the HEAP only
SET RLIOTRACELEVEL=5: Trace the DDM API parameters and locking only
SET RLIOTRACELEVEL=6: Trace the HEAP and locking only
SET RLIOTRACELEVEL=7: Trace everything.

Note: If the RLIOTRACELEVEL is set to an invalid value, everything in RLIO is traced.

 Starting DFMTRACE
To start DFMTRACE:

1. Go to an OS/2 window or full-screen

2. At the prompt, enter:

DFMTRACE ON

The DFM for OS/2 memory trace is activated. The collected entries are stored in
memory. The available size for the trace memory is defined in the TRACE_BUFFER
parameter of the CONFIG.DFM file.

Note: If you are tracing a VSAM function and have not installed DFM for OS/2, you do
not have a CONFIG.DFM file. The default TRACE_BUFFER size is 64k.

546 VSAM for OS/2

 Stopping DFMTRACE
To stop DFM for OS/2 tracing:

1. Go to an OS/2 window or full-screen

 2. Enter:

DFMTRACE OFF

No additional trace entries are collected until you restart DFMTRACE.

Printing the Trace Entries to a File
To print the entries of a collected trace to the file, TRACE.OUT:

1. Go to an OS/2 Window or Full Screen.

2. At the prompt, enter:

DFMTRACE /P trace.out

You can:

� Omit the filename to view the trace entries on the screen

� Specify the number of the trace entries to be displayed or stored. In this case,
enter:

DFMTRACE /P trace.out /N <number>

where <number> can be any number from 1 to 999 999.

If you do not specify a number, all collected trace entries are either displayed or written
to a specified file.

Note: If an existing filename is used, DFMTRACE overwrites the existing information.
Printing the trace entries to a file stops DFMTRACE implicitly.

The layout of the trace entries is shown in Figure 109.

 Chapter 15. What to Do if an Error Occurs in DFM for OS/2 547

---------------------------- Begin of Trace Output -----------------------------
 . . .
--
DRIVE: Z TGT: SDFASB46 PID: ðð419 TID: ððð2 DATE: ð3/25/1992 TIME: 16:ð2:59.47
TITLE: Send Buffer LENGTH: ðð1ð2 MOD: EHNZSCMI ID: ð1
1888ð6D3: ðð66 Dðð1 ððð1 ðð6ð 1ð41 ððð8 1147 D8D6 | .f..... .A...G..
1888ð6E3: E2F2 ðð54 14ð4 14ð3 ððð4 1411 ððð4 1423 | ...T...........#
1888ð6F3: ððð4 14ð5 ððð4 14ð6 ððð4 14ð7 ððð4 1444 |D
1888ð7ð3: ððð1 1476 ðððð 1458 ððð1 1457 ððð1 14ðC | ...v...X...W....
1888ð713: ððð4 141E ððð4 1422 ððð1 1432 ððð4 1433 |"...2...3
1888ð723: ððð4 1434 ððð4 1435 ððð4 144ð ððð1 143B | ...4...5...@...;
1888ð733: ððð4 143C ððð1 | ...<..
--
 . . .
--
DRIVE: Z TGT: SDFASB46 PID: ðð419 TID: ððð1 DATE: ð3/25/1992 TIME: 16:ð3:ð2.56
TITLE: RC LENGTH: ðððð4 MOD: EHNZDEAL ID: ð2
18883E36: ðððð ðððð |
----------------------------- End of Trace Output ------------------------------

Figure 109. Layout of Trace Entries

Each trace entry is numbered to identify where the trace point was taken in a particular
module. The trace entry number is shown as the ID value in the header line.

A trace entry consists of the following:

� If known, the drive letter assigned to the addressed target system
� Partner LU alias of the addressed target system
� Current OS/2 process ID
� Current OS/2 thread ID
� Date and time of the trace entry
� Title of the trace entry
� Length of the trace entry in decimal

 � Module name
� ID of the trace entry point within a module.

Each line of the trace entry consists of the following:

� A pointer to the traced data area
� The trace entry data in hexadecimal format
� The readable trace entry data.

Submitting an APAR
To describe the problem as precisely as possible, include all the available diagnostic
information in the authorized program analysis report (APAR) and send it to your IBM
Support Center.

You should include the following information in the APAR:

� A trace of the DFM for OS/2 component resulting in the error

548 VSAM for OS/2

� The administration files of DFM for OS/2 (for example, CONFIG.DFM,
STARTDFM.CMD) or any used ADL files

� The source of the application program that caused the error.

 Chapter 15. What to Do if an Error Occurs in DFM for OS/2 549

550 VSAM for OS/2

| Chapter 16. Information for the Application Programmer

| This section lists the VSAM APIs supported by DFM for OS/2 and provides information
| about DFM Reply Messages and error processing.

| VSAM API commands
| The following list shows all the VSAM APIs supported by DFM for OS/2. These APIs
| are described in Part 1 of this publication. Also in the VSAM reference is the
| information returned to the caller of the API for error conditions.

| Function Call Description

| DDMClose Close File

| DDMCreateAltIndex Create Alternate Index File

| DDMCreateRecFile Create Record File

| DDMDelete Delete File

| DDMDeleteRec Delete Record

| DDMForceBuffer Commit a File's Cached Information

| DDMGetRec Retrieve a Record

| DDMGetReplyMessage Returns reply messages for prior DDM calls

| DDMInsertRecEOF Insert a Record at End of File

| DDMInsertRecKey Insert a Record by Key Value

| DDMInsertRecNum Insert a Record by Record Number

| DDMLoadFileFirst Load First Record into a File

| DDMLoadFileNext Load Next Record into a File

| DDMModifyRec Modify Record

| DDMOpen Open a File

| DDMQueryFileInfo Retrieve Information about a File

| DDMQueryPathInfo Retrieve Information about a File or Directory

| DDMRename Rename a File

| DDMSetBOF Set Cursor to Beginning of File

| DDMSetEOF Set Cursor to End of File

| DDMSetFileInfo Set Information about a File

| DDMSetFirst Set Cursor to First Record in File

| DDMSetKey Set Cursor by Key

| DDMSetKeyFirst Set Cursor to First Record in Key Sequence

 Copyright IBM Corp. 1993, 1997 551

| DDMSetKeyLimits Set Key Limits

| DDMSetKeyLast Set Cursor to Last Record in Key Sequence

| DDMSetKeyNext Set Cursor to Next Record in Key Sequence

| DDMSetKeyPrevious Set Cursor to Previous Record in Key Sequence

| DDMSetLast Set Cursor to Last Record in File

| DDMSetMinus Set Cursor Minus

| DDMSetNextKeyEqual Set Cursor to Next Record with Equal Key

| DDMSetNextRec Set Cursor to Next Record

| DDMSetPathInfo Set a File's or a Directory's Information

| DDMSetPlus Set Cursor Plus

| DDMSetPreviousRec Set Cursor to Previous Record

| DDMSetNextKeyEqual Set Cursor to Next Record with Equal Key

| DDMSetRecNum Set Cursor to Record Number

| DDMSetUpdateKey Set Update Intent by Key

| DDMSetUpdateNum Set Update Intent by Record Number

| DDMUnloadFileFirst Unload First Record from File

| DDMUnloadFileNext Unload Next Record from File

| DDMUnLockRec Unlock Implicit Record Lock

| DFM Reply Messages and Error Processing
| When DFM receives notice of an error condition by the server system in response to a
| file access request, it does not issue an error message. However, it does return an
| error code to the caller and can make the DFM Reply Message structure accessible.
| Within this structure, the type of error is encoded in a two-byte hexadecimal value
| called a code point. Depending on the specific reply message and the server
| implementation, more “server diagnostic” information in addition to the error codepoint
| can be returned. Table 41 on page 554 lists the DFM Reply Message names
| alphabetically, its hexadecimal code point, decimal code point equivalents, and a short
| description of the DFM access request feedback.

| The choice of programming language used by the application programmer dictates the
| amount of detailed knowledge of Reply Messages required for error processing when
| accessing files on the server system. Likewise, the choice of programming language
| dictates the amount of detailed Reply Message information available.

| The C Programmer
| The C programmer can use the VSAM API DDMGetReplyMessage following a VSAM
| API call to solicit the specific error Reply Message. Part 1 of this publication

552 VSAM for OS/2

| documents this interface and the Reply Message structure as well as a detailed
| discussion of many, but not all, Reply Messages.

| The COBOL Programmer
| The COBOL programmer can code programs based on the standardized COBOL
| returned file status values. If the COBOL runtime library invokes the VSAM APIs on
| behalf of the application program to do remote file access, it must map the Reply
| Message meaning to the most appropriate standardized COBOL file status. The IBM
| VisualAge COBOL product for the workstation provides for a second file status field
| which the COBOL programmer can optionally choose to define to provide program
| access to the specific DFM error. This is simply done by defining the second file status
| with a minimum length of six bytes. The fifth and sixth bytes in the field contains a
| binary decimal representation of the Reply Message codepoint. (The first four bytes
| are a decimal number indicating the total length of the Reply Message structure.)

| The following examples from a COBOL program:

| � Associates the second file status FILE8-STATUS with FILE1
| � Shows a sample definition for FILE8-STATUS which contains the Reply Message
| � Illustrates a DISPLAY of the COBOL file status and DFM Reply Message values.

| For simplicity purposes, the DFM Reply Message displays as a decimal number. Note,
| before running the program, the environment variable DDDIRECT is set to assign a
| specific file name, for example:

| SET DDDIRECT=V:\USER1.DDM.KEYFILE

| INPUT-OUTPUT SECTION.
| FILE-CONTROL.
| SELECT FILE1 ASSIGN TO DDDIRECT
| ORGANIZATION IS INDEXED
| ACCESS MODE IS DYNAMIC
| RECORD KEY IS EMP-NAME
| FILE STATUS IS FILE1-STATUS FILE8-STATUS.
| .
| .
| WORKING STORAGE SECTION.
| ð1 FILE1-STATUS.
| ð5 FILE1-STATUS-A PIC X.
| ð5 FILE1-STATUS-B PIC X.
| ð1 FILE8-STATUS.
| ð5 FILE8-STATUS-LEN COMP PIC S9(8).
| ð5 FILE8-STATUS-CP COMP PIC S9(4).
| .
| .
| PROCEDURE DIVISION.
| OPEN INPUT FILE1.
| IF FILE1-STATUS NOT EQUAL TO GOOD-STATUS THEN
| DISPLAY "Error opening INPUT file. Status code = ",
| FILE1-STATUS, " Dataname-8 = " FILE8-STATUS-CP
| .

 Chapter 16. Information for the Application Programmer 553

| Because the file does not exist on the server, the “OPEN INPUT FILE1” fails: The
| following is the output from such a run:

| Error opening INPUT file. Status code = 35 Dataname-8 = 4622

| Table 41 lists DFM Reply Message names, hexadecimal code points, decimal code
| point equivalents, and a short description of the DFM error. The COBOL file status
| value contained in FILE1-STATUS is 35 which means “An OPEN statement with the
| INPUT, I-O, or EXTEND phrase was attempted on a non-optional file that was not
| present.” The decimal equivalent of the DFM Reply Message codepoint value
| contained in the FILE8-STATUS-CP is 4622. This decimal value can be found in
| Table 41 in the row for Reply Message FILNFNRM with hexadecimal codepoint X'120E'
| and meaning “File Not Found.”

| The PL/I Programmer
| The PL/I programmer sets the file name environment variable “dd:” followed by the
| generic file name coded in the program and its specific real file name. To trigger DFM
| remote access of files, the access method specification of amthd(remote) must be set
| with the file name. An example of setting the environment variable is as follows, the
| key being the AMTHD keyword.

| set dd:infile=v:\edwards.io6ðð.dat,amthd(remote)

| In the above statement, the file name in the PL/I program is infile and the real file name
| is edwards.io600.dat . The real file is on an MVS system to which the v drive letter
| has has been assigned by DFMDRIVE. called mvs2 . To continue this example,
| suppose the user ID for whom the remote file access is being attempted is RACF
| prohibited from accessing the file. The server system will return an error when the
| OPEN request is made to indicate it could not OPEN the file on behalf of the user. PL/I
| reports the PL/I return code (Subcode1) and the hexadecimal DFM Reply Message
| value (Subcode2) in an error message. The following is the output from such a run:

| IBMð265I ONCODE=ðð99 The UNDEFINEDFILE condition was raised
| because the file could not be opened
| Subcode1=ððð24 Subcode2=123B (FILE= or ONFILE= F).
| At offset +ððððð145 in procedure with entry CIO627B

| Table 41 lists DFM Reply Message names, hexadecimal code points, decimal code
| point equivalents, and a short description of the error. The hexadecimal Subcode2
| value in the example above of 123B corresponds to the row for Reply Message
| FILATHRM, decimal value 4667, and meaning “Not Authorized to File.”

| The commonly encountered DFM Reply Messages are listed alphabetically in Table 41.

| Table 41 (Page 1 of 4). DFM Reply Messages

| Reply Message ID| Hexadecimal| Decimal| Message Title

| ACCATHRM| X'1230'| 4656| Not Authorized to Use Access Method

| ACCINTRM| X'1266'| 4710| Access Intent List Error

| ACCMTHRM| X'1231'| 4657| Invalid Access Method

554 VSAM for OS/2

| Table 41 (Page 2 of 4). DFM Reply Messages

| Reply Message ID| Hexadecimal| Decimal| Message Title

| ADDRRM| X'F212'| 61970| Address Error

| AGNPRMRM| X'1232'| 4658| Permanent Agent Error

| BASNAMRM| X'1234'| 4660| Invalid Base File Name

| CHGFATRM| X'1261'| 4705| Change File Attributes Rejected

| CLSDMGRM| X'125E'| 4702| File Closed with Damage

| CMDCHKRM| X'1254'| 4692| Command Check

| CMDCMPRM| X'124B'| 4683| Command Processing Complete

| CMDNSPRM| X'1250'| 4688| Command Not Supported

| COMMRM| X'F207'| 61959| Communications Error

| CSRNSARM| X'1205'| 4613| Cursor Not Selecting a Record Position

| CVTNFNRM| X'F202'| 61954| Conversion Table Not Found

| DCLCNFRM| X'1220'| 4640| Declare Conflict

| DCLNAMRM| X'1256'| 4694| Invalid Declared Name

| DCLNFNRM| X'1257'| 4695| Declared Name Not Found

| DDFNFNRM| X'F201'| 61953| Data Description File Not Found

| DFTRECRM| X'1204'| 4612| Default Record Error

| DRCATHRM| X'1237'| 4663| Not Authorized to Directory

| DRCFULRM| X'1258'| 4696| Directory Full

| DTARECRM| X'1206'| 4614| Invalid Data Record

| DUPDCLRM| X'1255'| 4693| Duplicate Declared Name

| DUPFILRM| X'1207'| 4615| Duplicate File Name

| DUPKDIRM| X'1208'| 4616| Duplicate Key Different Index

| DUPKSIRM| X'1209'| 4617| Duplicate Key Same Index

| DUPRNBRM| X'120A'| 4618| Duplicate Record Number

| ENDFILRM| X'120B'| 4619| End of File Condition

| EXSCNDRM| X'123A'| 4666| Existing Condition

| FILATHRM| X'123B'| 4667| Not Authorized to File

| FILDMGRM| X'125A'| 4698| File Damaged

| FILERRRM| X'F216'| 61974| File Error

| FILFULRM| X'120C'| 4620| File Is Full

| FILIUSRM| X'120D'| 4621| File In Use

| FILNAMRM| X'1212'| 4626| Invalid File Name

| FILNFNRM| X'120E'| 4622| File Not Found

| FILNOPRM| X'1211'| 4625| File Not Open

| FILOLORM| X'121D'| 4637| File Open Lock Option Changed

 Chapter 16. Information for the Application Programmer 555

| Table 41 (Page 3 of 4). DFM Reply Messages

| Reply Message ID| Hexadecimal| Decimal| Message Title

| FILSNARM| X'120F'| 4623| File Space Not Available

| FILTNARM| X'121E'| 4638| File Temporarily Not Available

| FUNATHRM| X'121C'| 4636| Not Authorized to Function

| FUNNSPRM| X'1250'| 4688| Function Not Supported

| HDLNFNRM| X'1257'| 4695| File Handle Not Found

| INTATHRM| X'125C'| 4700| Not Authorized to Open Intent for
| Named File

| INVFLGRM| X'F205'| 61957| Invalid Flag

| INVRQSRM| X'123C'| 4668| Invalid Request

| KEYDEFRM| X'123D'| 4669| Invalid Key Definition

| KEYLENRM| X'122D'| 4653| Invalid Key Length

| KEYMODRM| X'1260'| 4704| Key Value Modified After Cursor Was
| Last Set

| KEYUDIRM| X'1201'| 4609| Key Update Not Allowed by Different
| Index

| KEYUSIRM| X'123F'| 4671| Key Update Not Allowed by Same Index

| KEYVALRM| X'1240'| 4672| Invalid Key Value

| LENGTHRM| X'F211'| 61969| Field Length Error

| MGRLVLRM| X'1210'| 4624| Manager Level Conflict

| NEWNAMRM| X'124F'| 4687| Invalid New File Name

| OBJNSPRM| X'1253'| 4691| Object Not Supported

| OPNCNFRM| X'1242'| 4674| Open Conflict Error

| OPNMAXRM| X'1244'| 4676| Concurrent Opens Exceeds Maximum

| PRCCNVRM| X'1245'| 4677| Conversational Protocol Error

| PRMNSPRM| X'1251'| 4689| Parameter Not Supported

| RECCNTRM| X'125B'| 4699| Record Count Mismatch

| RECDMGRM| X'1249'| 4681| Record Damaged

| RECINARM| X'1259'| 4697| Record Inactive

| RECIUSRM| X'124A'| 4682| Record In Use

| RECLENRM| X'1215'| 4629| Record Length Mismatch

| RECNAVRM| X'126F'| 4719| Record Not Available

| RECNBRRM| X'1224'| 4644| Record Number Out Of Bounds

| RECNFNRM| X'1225'| 4645| Record Not Found

| RSCLMTRM| X'1233'| 4659| Resource Limits Reached on Target
| System

| STRDMGRM| X'1268'| 4712| Stream Damaged

556 VSAM for OS/2

| Table 41 (Page 4 of 4). DFM Reply Messages

| Reply Message ID| Hexadecimal| Decimal| Message Title

| SUBSTRRM| X'1265'| 4709| Invalid Substream

| SRCLMTRM| X'F210'| 61968| Resource Limits Reached in Source
| System

| SYNTAXRM| X'124C'| 4684| Data Stream Syntax Error

| TRGNSPRM| X'125F'| 4703| Target Not Supported

| UPDCSRRM| X'124D'| 4685| Update Cursor Error

| UPDINTRM| X'124E'| 4686| No Update Intent on Record

| VALNSPRM| X'1252'| 4690| Parameter Value Not Supported

| XLATERM| X'F203'| 61955| Translation Error

 Chapter 16. Information for the Application Programmer 557

558 VSAM for OS/2

Appendix A. CDRA Character Conversion Tables for Remote
Record Access Support

The following table shows the CPGID‘s for each country.

┌────────────────────────────────────┬─────────────────────────────────┐
│ │ │
│ USA, Canada ððð37 │ Hebrew ðð856 PC │
│ Canada, US ASCII ðð256 │ Turkey ðð857 PC │
│ Austria, Germany ðð273 │ Portugal ðð86ð PC │
│ Denmark, Norway ðð277 │ Iceland ðð861 PC │
│ Finland, Sweden ðð278 │ Canada ðð863 PC │
│ Italy ðð28ð │ Arabic ðð864 PC │
│ Spain ðð284 │ Denmark, Norway ðð865 PC │
│ UK ðð285 │ Urdu ðð868 PC │
│ Japanese Katakana ðð29ð │ Greek ðð869 PC │
│ France ðð297 │ Latin-2 ðð87ð │
│ Arabic ðð42ð │ Iceland ðð871 │
│ Greek ðð423 │ Greek ðð875 │
│ Hebrew ðð424 │ Turkey/Latin 3 │
│ USA ðð437 │ Multilingual ðð9ð5 │
│ Belgium, Canada (AS/4ðð), │ Urdu ðð918 │
│ Switzerland, │ Turkey ðð92ð │
│ International Latin-1 ðð5ðð │ ROECE Cyrillic │
│ Greek/Latin (ISO 8859-7) ðð813 │ Multilingual 1ð25 │
│ International Latin 1 │ Turkey 1ð26 │
│ (ISO 8859-1) ðð819 │ Japanese Latin 1ð27 │
│ Korean Host SB ðð833 │ Japanese PC 1ð41 │
│ Simplified Chinese │ Simplified Chinese PC 1ð42 │
│ Host SB ðð836 │ Traditional Chinese PC 1ð43 │
│ Thailand, extended │ │
│ Host SB ðð838 │ │
│ International Latin-1 ðð85ð PC │ │
│ Greek ðð851 PC │ │
│ Latin-2 Multilingual ðð852 PC │ │
│ Cyrillic ðð855 PC │ │
│ │ │
└────────────────────────────────────┴─────────────────────────────────┘

Figure 110. Supported CDRA Code Page IDs

 Copyright IBM Corp. 1993, 1997 559

Figure 111 contains a matrix list of the supported pairs of PC-EBCDICs.

┌────────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ PC│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│1│1│1│
│ │8│8│8│8│8│8│8│8│8│8│8│8│ð│ð│ð│
│ │5│6│6│6│5│5│6│5│5│6│5│6│4│4│4│
│ EBCDIC│ð│ð│3│5│1│2│1│5│7│4│6│8│1│2│3│
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ðð37│\│\│\│\│ │ │ │ │ │ │ │ │ │ │\│
│ ð273│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð277│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð278│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ð28ð│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð284│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð285│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð297│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ð5ðð│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │
│ ð871│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð437│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð29ð│ │ │ │ │ │ │ │ │ │ │ │ │\│ │ │
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ð836│ │ │ │ │ │ │ │ │ │ │ │ │ │\│ │
│ 1ð27│ │ │ │ │ │ │ │ │ │ │ │ │\│ │ │
│ ð423│ │ │ │ │\│ │ │ │ │ │ │ │ │ │ │
│ ð875│ │ │ │ │\│ │ │ │ │ │ │ │ │ │ │
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ð87ð│ │ │ │ │ │\│ │ │ │ │ │ │ │ │ │
│ ð819│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ 1ð25│ │ │ │ │ │ │ │\│ │ │ │ │ │ │ │
│ 1ð26│ │ │ │ │ │ │ │ │\│ │ │ │ │ │ │
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ð42ð│ │ │ │ │ │ │ │ │ │\│ │ │ │ │ │
│ ð424│ │ │ │ │ │ │ │ │ │ │\│ │ │ │ │
│ ð918│ │ │ │ │ │ │ │ │ │ │ │\│ │ │ │
│ ð9ð5│ │ │ │ │ │ │ │ │\│ │ │ │ │ │ │
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
└────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

Figure 111. Supported Pairs of EBCDIC - PC Code Page IDs

560 VSAM for OS/2

Figure 112 shows a list of the support pairs of EBCDIC - EBCDIC code page IDs.

┌────────┬─┐
│ │
│ EBCDIC│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│1│ð│ð│ð│ð│ð│ð│1│1│ð│ð│ð│ð│ð│ð│
│ │ð│2│2│2│2│2│2│2│5│8│4│2│8│8│8│ð│4│8│8│2│8│8│ð│ð│9│4│4│9│8│9│
│ │3│7│7│7│8│8│8│9│ð│7│3│9│3│3│3│2│2│6│7│5│7│1│2│2│2│2│2│1│1│ð│
│ EBCDIC│7│3│7│8│ð│4│5│7│ð│1│7│ð│3│6│8│7│3│9│5│6│ð│9│5│6│ð│ð│4│8│3│5│
├────────┼─┤
│ ðð37│ │\│\│\│\│\│\│\│\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð273│\│ │\│\│\│\│\│\│\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð277│\│\│ │\│\│\│\│\│\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð278│\│\│\│ │\│\│\│\│\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├────────┼─┤
│ ð28ð│\│\│\│\│ │\│\│\│\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð284│\│\│\│\│\│ │\│\│\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð285│\│\│\│\│\│\│ │\│\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð297│\│\│\│\│\│\│\│ │\│\│\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├────────┼─┤
│ ð5ðð│\│\│\│\│\│\│\│\│ │\│\│\│\│\│\│\│ │\│\│ │ │\│ │ │ │ │ │ │ │ │
│ ð871│\│\│\│\│\│\│\│\│\│ │\│\│\│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð437│\│\│\│\│\│\│\│\│\│\│ │
│ ð29ð│\│\│\│\│\│\│\│\│\│\│ │ │ │ │ │\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├────────┼─┤
│ ð833│\│\│\│\│\│\│\│\│\│\│ │
│ ð836│\│\│\│\│\│\│\│\│\│\│ │
│ ð838│\│\│\│\│\│\│\│\│\│\│ │
│ 1ð27│\│\│\│\│\│\│\│\│\│\│ │\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├────────┼─┤
│ ð423│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\│ │ │ │ │ │ │ │ │ │ │ │ │
│ ð869│ │ │ │ │ │ │ │ │\│ │ │ │ │ │ │ │\│ │\│\│ │ │ │ │ │ │ │ │\│ │
│ ð875│ │ │ │ │ │ │ │ │\│ │ │ │ │ │ │ │ │\│ │ │ │ │ │ │ │ │ │ │\│ │
│ ð256│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\│ │ │\│ │ │ │ │ │ │ │ │ │
├────────┼─┤
│ ð87ð│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\│ │ │ │ │ │ │ │ │ │ │
│ ð819│ │ │ │ │ │ │ │ │\│ │
│ 1ð26│ │\│ │ │ │ │\│
│ ð92ð│ │\│ │ │ │ │ │ │
├────────┼─┤
│ ð813│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð9ð5│ │\│ │ │ │ │ │ │
└────────┴─┘

Figure 112. Supported Pairs of EBCDIC - EBCDIC Code Page Ids

Figure 113 contains a list of the supported pairs of PC - PC code page IDs.

┌────────┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ PC│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│ð│1│1│1│
│ │8│8│8│8│8│8│8│8│8│8│8│8│ð│ð│ð│
│ │5│6│6│6│5│5│6│5│5│6│5│6│4│4│4│
│ PC │ð│ð│3│5│1│2│1│5│7│4│6│8│1│2│3│
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ð85ð│ │\│\│\│ │\│\│ │\│ │ │ │ │ │ │
│ ð86ð│\│ │\│\│ │ │ │ │ │ │ │ │ │ │ │
│ ð863│\│\│ │\│ │ │ │ │ │ │ │ │ │ │ │
│ ð865│\│\│\│ │ │ │ │ │ │ │ │ │ │ │ │
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
│ ð852│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð861│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ ð857│\│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
└────────┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

Figure 113. Supported Pairs of PC - PC Code Page Ids

 Appendix A. CDRA Character Conversion Tables for Remote Record Access Support 561

562 VSAM for OS/2

Appendix B. OS/2 Commands Not Supported by DFM for OS/2

DFM for OS/2 does not support OS/2 commands that:

� Perform disk or drive-oriented functions
� Perform direct sector I/O to an OS/2 formatted disk.

You cannot use the OS/2 commands shown in Table 42:

Table 42 (Page 1 of 2). OS/2 Commands Not Supported by the Stream-File Component

Command Description Reasons Not Supported

BACKUP (to root of
System/36 system drive)

Saves files for later retrieval. The BACKUP command creates a directory as part
of its processing. The System/36 does not support
creating directories at the root level of a system
drive. Because of this, the BACKUP command
should not be run from the root level of a System/36
system drive.

CHKDSK (Check Disk) Analyzes the directories, files, and the file
allocation table on a drive.

CHKDSK cannot analyze directories, files, and file
allocation tables on drives assigned to remote
systems because directories and files are not stored
in OS/2 format on the target system, and file
allocation tables do not exist as known to the OS/2
operating system. Also, CHKDSK performs sector
reads to the disk drive.

DELETE (folders) Deleting folders MVS does not support the deleting of folders.
However, files can be deleted.

DISKCOMP (Compare
Diskettes Only)

 Compares the contents of two diskettes. DISKCOMP does not work on drives assigned to
remote systems. Also, DISKCOMP performs sector
reads to the disk drive.

DISKCOPY (Copy
Diskette Only)

Copies the contents of one diskette to
another diskette.

DISKCOPY does not work on drives assigned to
remote systems. Also, DISKCOPY performs sector
reads to the disk drive.

FDISKPM (Hard Disk
Setup)

Prepares a PC hard disk for use by the
OS/2 operating system.

FDISKPM does not access any other drive.

FORMAT Initializes the disk in a designated drive. FORMAT is not appropriate for drives assigned to
remote systems since disk I/O is controlled by the
remote system.

JOIN Logically connects a drive to a directory
on another drive to produce a single
directory structure.

JOIN is not directly supported by the OS/2 operating
system, but is supported in the OS/2 DOS
compatibility mode.

RECOVER Recovers files from disks with defective
sectors.

RECOVER performs sector reads to the disk drive.

RENAME (Renaming
Folders)

Renaming folders when connected to
System/36 is not supported. MVS does
not support the renaming of folders.

System/36 and MVS do not support the renaming of
folders. Files can be renamed.

SUBST (Substitute) Allows you to use a different drive
specifier to refer to another drive or path.

SUBST is not directly supported by the OS/2
operating system, but is supported in the OS/2 DOS
compatibility mode.

 Copyright IBM Corp. 1993, 1997 563

Table 42 (Page 2 of 2). OS/2 Commands Not Supported by the Stream-File Component

Command Description Reasons Not Supported

SYS (System) Transfers the OS/2 hidden system files
from one drive to another.

Because of OS/2 restrictions on where operating
system files may be placed on a disk, SYS must use
sector I/O on the drive. Since a PC cannot be
started from a drive assigned to a target system, you
cannot place the operating system files on these
drives.

Target System Restrictions for Remote Stream Access
Description Maximum length in bytes
Complete path name 128
Path assigned to a drive letter 63
System description 40
Search argument 63
File names 63
File name description 44

Before DFM for OS/2 assigns a drive letter to a target system, it checks whether you
have authorization to access the target system using the OS/2 communication manager
mode QPCSUPP. The QPCSUPP mode must be specified for the target system.

If the target is MVS, avoid using stream-oriented editors and commands such as copy
on record files. To do so will result in the loss of the original record boundaries and a
subsequent inability to process the files with MVS applications.

New PDS members cannot be created through stream-oriented OS/2 commands. New
PDSE members can be created but they will only be created as stream files.

The data of stream files is not converted.

564 VSAM for OS/2

Appendix C. ADL Subset Supported by DFM for OS/2

The following describes the ADL subset supported by DFM for OS/2 in BNF.

Start symbol for the grammar is <declare_statement>.

An empty clause is indicated by <>. The integer and identifier terminal symbols are
described in the “General ADL Rules” on page 520 or in more detail in the rules
paragraph for a specific type or attribute.

 Copyright IBM Corp. 1993, 1997 565

<ASIS_attributes_list> ::= <ASIS_attribute>
 | <ASIS_attributes_list> <ASIS_attribute>

<ASIS_attribute> ::= LENGTH (integer)
| UNITLEN (8)

<attributes_list> ::= <ASIS_attributes_list>
 | <BINARY_attributes_list>
 | <CHAR_attributes_list>
 | <FLOAT_attributes_list>
 | <PACKED_attributes_list>
 | <ZONED_attributes_list>

<BINARY_attributes_list> ::= <BINARY_attribute>
 | <BINARY_attributes_list> <BINARY_attribute>

<BINARY_attribute> ::= BYTRVS (<bool>)
| PRECISION (integer)
| SCALE (integer)
| RADIX (10)

<bool> ::= TRUE
 | FALSE

<CHAR_attributes_list> ::= <CHAR_attribute>
 | <CHAR_attributes_list> <CHAR_attribute>

<CHAR_attribute> ::= LENGTH (integer)
| CCSID (integer)

<data_declaration_list> ::= <data_declaration>
 | <data_declaration_list> <data_declaration>

<data_declaration> ::= identifier : <type> ;

Figure 114 (Part 1 of 3). ADL Subset Supported by DFM for OS/2

566 VSAM for OS/2

<declare_statement> ::= DECLARE
 | BEGIN;
 | <opt_subtype_statem_list>
 | identifier :
 | BEGIN;
 | <data_declaration_list>
 | END;
 | END;

<field> ::= ASIS <ASIS_attributes_list>
 | BINARY <BINARY_attributes_list>
 | CHAR <CHAR_attributes_list>

| FLOAT <FLOAT_attributes_list>
 | PACKED <PACKED_attributes_list>

| ZONED <ZONED_attributes_list>

<FLOAT_attributes_list> ::= <FLOAT_attribute>
 | <FLOAT_attributes_list> <FLOAT_attribute>

<FLOAT_attribute ::= BYTRVS (<bool>)
| FORM (<form>)

<form> ::= FH32
 | FH64
 | FH128
 | FB32
 | FB64

<opt_attributes_list> ::= <>
 | <attributes_list>

<PACKED_attributes_list> ::= <PACKED_attribute>
 | <PACKED_attributes_list> <PACKED_attribute>

<PACKED_attribute> ::= PRECISION (integer)
| SCALE (integer)

<ZONED_attributes_list> ::= <ZONED_attribute>
 | <ZONED_attributes_list> <ZONED_attribute>

Figure 114 (Part 2 of 3). ADL Subset Supported by DFM for OS/2

 Appendix C. ADL Subset Supported by DFM for OS/2 567

<ZONED_attribute> ::= PRECISION (integer)
| SCALE (integer)
| ZONENC (<zonenc>)

<zonenc> ::= X'3'
 | X'F'

<opt_subtype_statem_list> ::= <>
 | <subtype_statem>
 | <opt_subtype_statem_list> <subtype_statem>

<subtype_statem> ::= <subtype_identifier> : SUBTYPE OF <type> ;

<subtype> ::= <subtype_identifier> <opt_attributes_list>

<subtype_identifier> ::= identifier

<type> ::= <field>
 | <subtype>

Figure 114 (Part 3 of 3). ADL Subset Supported by DFM for OS/2

568 VSAM for OS/2

| Appendix D. The Convert Utility for Local VSAM Files Version 1.0

| The purpose of this user interface is to convert local VSAM files for OS/2 created by
| local VSAM version 1.0 to a format compatible with local VSAM version 1.1 and above.

For users currently using keyed files under VSAM version 1.0, the following utility is
available to assist you in converting your version 1.0 data to version 1.1. Use the
following command to invoke the utility:

 <dubcvrt 'path\filename'>

 where path is the directory which contains the 1.ð
file needed for conversion, and

filename is the name of the 1.ð file you
are converting to 1.1

The utility function issues a message to indicate that the file has been converted
successfully.

A copy of the original 1.0 data file is saved in the following directory:

 x:\rliovð1
where x is the drive where the 1.ð source file is located.

If an error occurs during the conversion, the appropriate reply message is issued
followed by:

Error: Conversion failed for <filename>.

The data located in x:\rliov01 is copied to the original source directory, and the files in
\rliov01 will be deleted.

 Copyright IBM Corp. 1993, 1997 569

570 VSAM for OS/2

| Appendix E. Programming Extended Attributes in VSAM APIs

| The following example from a C program illustrates how extended attribute information
| can be prepared for a VSAM API. The particular APIs used are DDMSetPathInfo and
| DDMQueryPathInfo. It is assumed that a sequential file already exists and the file
| name coded in the C application has its value in SeqFN.

| See “Extended Attributes” on page 5 for an overview of extended attributes used by the
| VSAM APIs and the relationship of the DOS-based EAOP2, GEA2List, and FEA2List
| structures.

| /\---
| -- SYMBOLIC CONSTANTS
| --\/
| #define FILCLS_NAME ".DDM_FILCLS"
| #define DELCP_NAME ".DDM_DELCP" /\@WðA\/
| #define TITLE_NAME ".DDM_TITLE" /\@WðC\/
| #define TitleString "Title String" /\@WðC\/
| #define FILCLS_SIZE sizeof(OBJLENGTH) + (2 \ sizeof(CODEPOINT)) /\@WðM\/
| #define DELCP_SIZE sizeof(OBJLENGTH) + sizeof(CODEPOINT) + 1 /\@WðM\/
| #define TITLE_SIZE sizeof(OBJLENGTH) + sizeof(CODEPOINT) + strlen(TitleString)
| /\@WðC\/
| .
| .
| .

| /\ OS/2 extended attribute structures \/
| EAOP2 Eaop; /\ EA structure for DDMQueryPathInfo @WðC\/
| EAOP2 Eaop2; /\ EA structure for DDMSetPathInfo @WðC\/
| PFEA2 pFEA; /\ Pointer to FEA2 list entry @WðC\/
| PGEA2 pGEA; /\ Pointer to GEA2 list entry @WðC\/
| INT FEASize; /\ Tally size of FEA2 list area @WðC\/
| INT GEASize; /\ Tally size of GEA2 list area @WðC\/
| INT FEA2Size; /\ Tally size of second FEA2 list @WðC\/

| ULONG Remainder; /\ Holds remainder-byte offset calc @WðA\/
| LONG i; /\ Controls FEA2 WHILE loop @WðA\/
| .
| .
| .

| Figure 115 (Part 1 of 11). Example of C Program using Extended Attributes

 Copyright IBM Corp. 1993, 1997 571

| /\\\@WðA\/
| /\ Prepare and execute a DDMQueryPathInfo call to query a @WðA\/
| /\ file's Extended Attributes. @WðA\/
| /\\\@WðA\/
| /\ The DDM call to query a file's extended attributes is @WðA\/
| /\ based on the OS/2 extended attributes model. As such, the @WðA\/
| /\ calls to DDMQueryFileInfo and DDMQueryPAthInfo must pass a @WðA\/
| /\ pointer to an EAOP2 structure which, in turn, contains @WðA\/
| /\ pointers to the GEA2LIST area and the FEA2LIST area. @WðA\/
| /\ The GEA2LIST area contains a header and variable length @WðA\/
| /\ GEA2 list entries. Each list entry identifies one EA @WðA\/
| /\ being queried. The FEA2LIST area is where the returned @WðA\/
| /\ information will be set. @WðA\/
| /\ @WðA\/
| /\ The EAOP2, FEA2LIST, GEA2LIST, FEA2 and GEA2 are defined @WðA\/
| /\ in DUBDEFS.H which is included by DUB.H. The format of the @WðA\/
| /\ values which can be returned are documented in the VSAM @WðA\/
| /\ API Reference manual in the "VSAM API Common Parameters" @WðA\/
| /\ chapter. @WðA\/

| /\ Steps: @WðA\/
| /\ 1. Calculate the sizes of the GEA2LIST and FEA2LIST areas @WðA\/
| /\ 2. Do the GEA2LIST + FEA2LIST malloc + set EAOP2 pointers @WðA\/
| /\ 3. Fill in the GEA2LIST area @WðA\/
| /\ 4. Fill in the FEA2LIST area @WðA\/
| /\ 5. Issue the DDMQueryPathInfo @WðA\/
| /\ 6. Extract DDM attribute data from the FEA2LIST area @WðA\/
| /\ 7. Free the GEA2LIST and FEA2LIST areas @WðA\/

| /\---
-- Set up for DDMQueryPathInfo: @WðM
-- Build an extended attribute GEA2LIST area with two GEA2 @WðC
-- list entries specifying the DELCP and FILCLS EAs. The @WðC
-- attributes queried and structure content match those in @WðC
-- the "Extended Attributes" section of the VSAM API Reference @WðC
-- manual. @WðC
--
--\/
/\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
/\ 1. Calculate the sizes of the GEA2LIST and FEA2LIST areas @WðA\/
/\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
/\ @WðA\/
/\ First calculate size of GEA2LIST area to be passed. @WðA\/
/\ The GEA2LIST header : ULONG-Length of GEA2 list area @WðA\/
/\ (pointed to by fpGEA2LIST in EAOP2 @WðA\/
/\ The GEA2 list entry : ULONG-oNextEntryOffset, @WðA\/
/\ : UCHAR-cbName (len of name) @WðA\/
/\ : CHAR-szName[1] (char .DDM_xxx) @WðA\/
/\ Note 1: GEA2 list entries must start on 4 byte boundaries @WðA\/
/\ 2: The cbName does not count null string terminator @WðA\/
/\ 3: Last entry is identified by oNextEntryOffset=ð @WðA\/

| Figure 115 (Part 2 of 11). Example of C Program using Extended Attributes

572 VSAM for OS/2

| /\ Calculate the GEA2LIST area size @WðA\/

| /\ GEA2 list area begins with the GEA2LIST header @WðA\/
| GEASize = sizeof(Eaop.fpGEA2List->cbList); /\@WðA\/
| /\ Each attribute to be queried needs a GEA2 list entry @WðA\/
| /\ Add on size for first GEA2 list entry - .DDM_DELCP @WðA\/
| /\ DELCP_NAME is defined as: ".DDM_DELCP" @WðA\/
| GEASize = GEASize
| + sizeof(Eaop.fpGEA2List->list[ð].oNextEntryOffset)
| + sizeof(Eaop.fpGEA2List->list[ð].cbName)
| + strlen(DELCP_NAME)
| + 1; /\ + null string terminator @WðA\/
| /\ GEAOffset entry must be on 4 byte boundary @WðA\/
| Remainder = GEASize % 4; /\@WðA\/
| if (Remainder != ð) /\@WðA\/
| GEASize=GEASize + (4-Remainder); /\@WðA\/
| /\ Now add on next GEA2 list entry - .DDM_FILCLS @WðA\/
| /\ FILCLS_NAME is defined as: ".DDM_FILCLS" @WðA\/
| GEASize = GEASize
| + sizeof(Eaop.fpGEA2List->list[ð].oNextEntryOffset)
| + sizeof(Eaop.fpGEA2List->list[ð].cbName)
| + strlen(FILCLS_NAME)
| + 1; /\ + name string terminator @WðA\/
| /\ This is last GEA2 list entry so the 4 byte boundary rule @WðA\/
| /\ does not apply. i.e. you don't need to pad this entry. @WðA\/

| /\ Now calculate size of FEA2LIST area to hold returned info. @WðA\/
| /\ The FEA2LIST header: ULONG-Length of FEA2 list area @WðA\/
| /\ (pointed to by fpFEA2LIST in EAOP2 @WðA\/
| /\ The FEA2 list entry: ULONG-oNextEntryOffset, @WðA\/
| /\ : UCHAR-fEA (flag) @WðA\/
| /\ : UCHAR-cbName (len of name) @WðA\/
| /\ : USHORT-cbValue (len of value) @WðA\/
| /\ : CHAR-szName[1] (char .DDM_xxx) @WðA\/
| /\ : followed by DDMOBJECT encoded value @WðA\/
| /\ Note 1: FEA2 list entries start on 4 byte boundaries @WðA\/
| /\ 2: The cbName does not count null string terminator @WðA\/
| /\ 3: Last entry is identified by oNextEntryOffset=ð @WðA\/
| /\ 4: A cbValue of ð means value field is null @WðA\/

| /\ Calculate the FEA2LIST area size @WðA\/
| /\ FEA2LIST area begins with the FEA2LIST header @WðA\/
| FEASize = sizeof(Eaop.fpFEA2List->cbList); /\@WðA\/

| /\ Add on size for returned FEA2 list entry - .DDM_DELCP @WðA\/
| /\ DELCP_NAME is defined as: ".DDM_DELCP" @WðA\/
| /\ DELCP_SIZE is defined as: @WðA\/
| /\ sizeof(OBJLENGTH) + sizeof(CODEPOINT) + 1 @WðA\/
| FEASize = FEASize
| + sizeof(Eaop.fpFEA2List->list[ð].oNextEntryOffset)
| + sizeof(Eaop.fpFEA2List->list[ð].fEA)
| + sizeof(Eaop.fpFEA2List->list[ð].cbName)
| + sizeof(Eaop.fpFEA2List->list[ð].cbValue)
| + strlen(DELCP_NAME)
| + 1 /\ + null string terminator WðA\/
| + DELCP_SIZE; /\@WðA\/

| Figure 115 (Part 3 of 11). Example of C Program using Extended Attributes

 Appendix E. Programming Extended Attributes in VSAM APIs 573

| /\ FEAOffset entry must be on 4 byte boundary @WðA\/
| Remainder = FEASize % 4; /\@WðA\/
| if (Remainder != ð) /\@WðA\/
| FEASize=FEASize + (4-Remainder); /\@WðA\/
| /\ Add on size for returned FEA2 list entry - .DDM_FILCLS @WðA\/
| /\ FILCLS_NAME is defined as: ".DDM_FILCLS" @WðA\/
| /\ FILCLS_SIZE is defined as: @WðA\/
| /\ sizeof(OBJLENGTH) + (2 \ sizeof(CODEPOINT)) @WðA\/
| FEASize = FEASize
| + sizeof(Eaop.fpFEA2List->list[ð].oNextEntryOffset)
| + sizeof(Eaop.fpFEA2List->list[ð].fEA)
| + sizeof(Eaop.fpFEA2List->list[ð].cbName)
| + sizeof(Eaop.fpFEA2List->list[ð].cbValue)
| + strlen(FILCLS_NAME)
| + 1 /\ + null string terminator @WðA\/
| + FILCLS_SIZE ;
| /\ Order of returned attributes is up to server so allow for @WðA\/
| /\ each returned entry to be on a 4 byte boundary. @WðA\/
| Remainder = FEASize % 4; /\@WðA\/
| if (Remainder != ð) /\@WðA\/
| FEASize=FEASize + (4-Remainder); /\@WðA\/

| /\ Note, we have calculated the minimum FEA2LIST size to hold @WðA\/
| /\ the returned information. We are permitted to pass a much @WðA\/
| /\ bigger buffer for the FEA2LIST if we wish so we could have @WðA\/
| /\ skipped doing a precise FEA2LIST size calcuation. However, @WðA\/
| /\ if we pass too small a FEA2LIST area, we will get a @WðA\/
| /\ LENGTHRM error reply message. @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 2. Do the GEA2LIST + FEA2LIST malloc + set EAOP2 pointers @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ @WðA\/
| /\ The call to DDMQueryPathInfo will include a pointer to the @WðA\/
| /\ EAOP2 structure (locally defined as Eaop) and it has @WðA\/
| /\ pointers to the GEA2LIST and FEA2LIST areas. @WðA\/
| /\ @WðA\/
| /\ The EAOP2 struct: PGEA2LIST-fpGEA2List (ptr to GEA2LIST) @WðA\/
| /\ : PFEA2LIST-fpFEA2List (ptr to FEA2LIST) @WðA\/
| /\ : ULONG-oError @WðA\/

| /\ OK, now do the mallocs for GEA2LIST and FEA2LIST areas and @WðA\/
| /\ put the pointers in the EAOP2 structure. @WðA\/
| if ((Eaop.fpFEA2List = (PFEA2LIST)malloc(FEASize)) == NULL)
| { printf("Out of memory\n");
| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);
| return(1);
| }
| if ((Eaop.fpGEA2List = (PGEA2LIST)malloc(GEASize)) == NULL)
| { printf("Out of memory\n");
| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);
| return(1);
| }

| Eaop.oError = ðL;

| Figure 115 (Part 4 of 11). Example of C Program using Extended Attributes

574 VSAM for OS/2

| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 3. Fill in the GEA2LIST area @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ Initialize the GEA2LIST area @WðA\/
| memset(&(Eaop.fpGEA2List->cbList),'\ð',GEASize); /\@WðA\/

| /\ OK now start filling in the GEA2LIST area detail @WðA\/
| /\ Fill in the GEA2 header which has the area length @WðA\/
| Eaop.fpGEA2List->cbList = GEASize;
| /\ The GEA2LIST struct: ULONG-cbList (len of GEA2 area) @WðA\/
| /\ GEA2-list[1] (orient first entry) @WðA\/
| /\ The pGEA pointer will point to the specific GEA2 list @WðA\/
| /\ entry on which we are working. Use the GEA2LIST structure @WðA\/
| /\ definition to orient to the first list entry. @WðA\/
| pGEA = (PGEA2)(&(Eaop.fpGEA2List->list[ð]));

| /\ Fill out the first GEA2 list entry - DELCP_NAME @WðA\/
| pGEA->cbName = (CHAR)(strlen(DELCP_NAME)); /\@WðA\/
| strcpy(pGEA->szName, DELCP_NAME); /\@WðA\/

| /\ Calculate size for first GEA2 list entry - .DDM_DELCP @WðA\/
| pGEA->oNextEntryOffset =
| sizeof(pGEA->oNextEntryOffset)
| + sizeof(pGEA->cbName)
| + pGEA->cbName +1; /\@WðA\/

| /\ The next GEA2 list entry must begin on 4 byte boundary @WðA\/
| Remainder = pGEA->oNextEntryOffset % 4; /\@WðA\/
| if (Remainder != ð) /\@WðA\/
| pGEA->oNextEntryOffset = pGEA->oNextEntryOffset + (4-Remainder);
| /\@WðA\/

| /\ Now move the GEA list entry pointer for the next list entry@WðA\/
| pGEA = (PGEA2)((PBYTE)pGEA + pGEA->oNextEntryOffset); /\@WðA\/

| /\ Set up the next GEA2 list entry - .DDM_FILCLS @WðA\/
| pGEA->cbName = (CHAR)(strlen(FILCLS_NAME)); /\@WðA\/
| strcpy(pGEA->szName, FILCLS_NAME); /\@WðA\/

| /\ This GEA2 list entry is the last in this request. So @WðA\/
| /\ set the NextEntryOffset to ð to indicate this is last @WðA\/
| /\ list entry. @WðA\/
| pGEA->oNextEntryOffset = ðL;
| /\\\\\\\\\\\\\\\\\\\\ STEP 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 4. Fill in the FEA2LIST area @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ Initialize the FEA2LIST area @WðA\/
| memset(&(Eaop.fpFEA2List->cbList),'\ð',FEASize); /\@WðA\/

| /\ Fill in the FEA2LIST header which has the area length @WðA\/
| Eaop.fpFEA2List->cbList = FEASize;

| /\ The remainder of the FEA2LIST area is untouched. It will @WðA\/
| /\ contain the returned EA FEA2 list entries from the @WðA\/
| /\ DDMQueryPathInfo call. @WðA\/

| Figure 115 (Part 5 of 11). Example of C Program using Extended Attributes

 Appendix E. Programming Extended Attributes in VSAM APIs 575

| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 5. Issue the DDMQueryPathInfo @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\---
| -- Query a file to get .DDM_DELCP and .DDM_FILCLS EA. @WðC
| -- Then display the returned EAs. @WðC
| --\/
| SevCode = DDMQueryPathInfo
| (SeqFN, /\ PathName \/
| 1UL, /\ PathInfoLevel \/
| (PBYTE)&Eaop, /\ PathInfoBuf \/
| (ULONG)sizeof(EAOP2) /\ PathInfoBufSize \/
|);
| if (SevCode == SC_NO_ERROR)
| { printf("\n\nSuccessful DDMQueryPathInfo call to file %s\n",SeqFN);
| /\\\\\\\\\\\\\\\\\\\\ STEP 6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 6. Extract DDM attribute data from the FEA2LIST area @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ OK, we got a good return code, so it is time to look at @WðA\/
| /\ the FEA2LIST area which now holds the returned info. @WðA\/

| /\ Initialize the pFEA pointer to first FEA2 entry @WðA\/
| pFEA = (PFEA2)(&(Eaop.fpFEA2List->list[ð]));

| /\ The local i variable will govern the WHILE loop which @WðA\/
| /\ follows. It counts the number of bytes remaining in @WðA\/
| /\ the FEA2LIST. When the last FEA2 list entry is @WðA\/
| /\ encountered, it is set to zero to stop the WHILE loop. @WðA\/
| /\ If it goes negative, something went wrong while @WðA\/
| /\ navigating around the FEA2 entries, stop the WHILE loop. @WðA\/

| i = (Eaop.fpFEA2List->cbList - sizeof(Eaop.fpFEA2List->cbList));
| while (i > ð)
| { /\ while more FEA2 list entries to process @WðA\/

| /\ Temporarily set pAttValue to beginning szName which @WðA\/
| /\ is the .DDMxxx attribute name. @WðA\/
| pAttValue = (PDDMOBJECT)((PBYTE)&pFEA->szName);

| /\ Now move pAttValue past the .DDMxxx attribute to @WðA\/
| /\ the value field by adding the number given in cbName@WðA\/
| /\ plus one for the string terminating null character. @WðA\/
| pAttValue = (PDDMOBJECT)((PBYTE)pAttValue +
| pFEA->cbName + 1); /\@WðA\/

| /\ The value field is in PDDMOBJECT format. @WðA\/
| /\ The PDDMOBJECT: OBJLENGTH-cbObject (len obj-4 byte) @WðA\/
| /\ : CODEPOINT-cpObject (codept-2 byte) @WðA\/
| /\ : BYTE-pData[1] (data value) @WðA\/

| /\ We are expecting only 2 specific attributes back @WðA\/
| if (!memcmp(&(pFEA->szName[ð]),FILCLS_NAME,
| sizeof(FILCLS_NAME))) /\@WðA\/
| { /\ yes, this is the returned FILCLS attribute @WðA\/

| Figure 115 (Part 6 of 11). Example of C Program using Extended Attributes

576 VSAM for OS/2

| /\ DUBCODPT.H (inc by DUB.H) defines SEQFIL, etc. @WðA\/
| if (pFEA->cbValue == ð)
| { /\ a cbValue of zero means value field is null @WðA\/
| printf("The .DDM_FILCLS attribute "
| "for %s is null. \n", /\@WðC\/
| SeqFN);
| } /\ a cbValue of zero means value field is null @WðA\/
| else
| { /\ value returned @WðA\/
| switch (\(PCODEPOINT)pAttValue->pData) /\@WðC\/
| { case SEQFIL:
| printf("The .DDM_FILCLS attribute "
| "for %s is SEQFIL. \n",SeqFN); /\@WðC\/
| break;
| case DIRFIL:
| printf("The .DDM_FILCLS attribute "
| "for %s is DIRFIL. \n",SeqFN); /\@WðC\/
| break;
| case KEYFIL:
| printf("The .DDM_FILCLS attribute "
| "for %s is KEYFIL. \n",SeqFN); /\@WðC\/
| break;
| case ALTINDF:
| printf("The .DDM_FILCLS attribute "
| "for %s is ALTINDF. \n", /\@WðC\/
| SeqFN);
| break;
| default: printf("The .DDM_FILCLS attribute "
| "for %s is invalid. \n", /\@WðC\/
| SeqFN);
| break;
| } /\ end switch @WðC\/
| } /\ value returned @WðA\/
| } /\ yes, this is the returned FILCLS attribute @WðA\/
| else if (!memcmp(&(pFEA->szName[ð]),DELCP_NAME,
| sizeof(DELCP_NAME))) /\@WðA\/
| { /\ yes, this is the returned DELCP attribute @WðA\/
| if (pFEA->cbValue == ð)
| { /\ a cbValue of zero means value field is null @WðA\/
| printf("The .DDM_DELCP attribute "
| "for %s is null. \n", /\@WðC\/
| SeqFN);
| } /\ a cbValue of zero means value field is null @WðA\/
| else
| { /\ value returned @WðA\/
| if (\(PCODEPOINT)pAttValue->pData == ðxf1) /\@WðC\/
| printf("The .DDM_DELCP attribute for %s is TRUE. \n",
| SeqFN); /\@WðC\/
| else
| printf("The .DDM_DELCP attribute for %s is FALSE.\n",
| SeqFN); /\@WðC\/
| } /\ value returned @WðA\/
| } /\ yes, this is the returned DELCP attribute WðA\/
| else /\@WðA\/
| printf("unexpected EA returned for %s \n",
| SeqFN);

| Figure 115 (Part 7 of 11). Example of C Program using Extended Attributes

 Appendix E. Programming Extended Attributes in VSAM APIs 577

| /\ Now move to the next entry in the FEA @WðA\/
| if (pFEA->oNextEntryOffset > ð)
| { /\ the next entry is not the last entry @WðA\/
| i = i - pFEA->oNextEntryOffset; /\@WðA\/
| pFEA = (PFEA2)((PBYTE)pFEA + pFEA->oNextEntryOffset);
| /\@WðA\/
| } /\ the next entry is not the last entry @WðA\/
| else
| { /\ this was last entry-terminate WHILE @WðA\/
| i = ð; /\@WðA\/
| } /\ this was last entry-terminate WHILE @WðA\/
| } /\ while more FEA entries to process @WðA\/
| }
| else
| { printf("Error in DDMQueryPathInfo call to file %s\n",SeqFN);
| printf("Severity code = %u\n",SevCode);
| ReplyMsg();
| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);
| return(SevCode);
| }
| /\\\\\\\\\\\\\\\\\\\\ STEP 7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 7. Free the GEA2LIST and FEA2LIST areas @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| free(Eaop.fpFEA2List);
| free(Eaop.fpGEA2List);
| /\\\@WðA\/
| /\ Prepare and execute a DDMSetPathInfo call to set a file's @WðA\/
| /\ Extended Attribute. @WðA\/
| /\\\@WðA\/
| /\ The DDM call to set a file's extended attributes is @WðA\/
| /\ based on the OS/2 extended attributes model. As such, the @WðA\/
| /\ calls to DDMSetPathInfo must pass a pointer to an EAOP2 @WðA\/
| /\ structure which, in turn, contains a pointer to the @WðA\/
| /\ FEA2LIST area which contains the attributes values. @WðA\/
| /\ @WðA\/
| /\ The EAOP2, FEA2LIST, GEA2LIST, FEA2 and GEA2 are defined @WðA\/
| /\ in DUBDEFS.H which is included by DUB.H. The format of the @WðA\/
| /\ values which can be returned are documented in the VSAM @WðA\/
| /\ API Reference manual in the "VSAM API Common Parameters" @WðA\/
| /\ chapter. @WðA\/
| /\ @WðA\/
| /\ Steps: @WðA\/
| /\ 1. Calculate the size of the required FEA2LIST area @WðA\/
| /\ 2. Do the FEA2LIST malloc and set the EAOP2 pointer @WðA\/
| /\ 3. Fill in the FEA2LIST area @WðA\/
| /\ 4. Issue the DDMSetPathInfo @WðA\/
| /\ 5. Free the FEA2LIST area @WðA\/
| /\---
-- Set up for DDMSetPathInfo:
-- Build an extended attribute FEA2LIST area with one FEA2 @WðC
-- list entry to specify the TITLE extended attribute. @WðC
--\/

| Figure 115 (Part 8 of 11). Example of C Program using Extended Attributes

578 VSAM for OS/2

| /\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 1. Calculate the size of the required FEA2LIST area @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 1 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ Now calculate size of FEA2 list area to hold returned info.@WðA\/
| /\ The FEA2LIST header: ULONG-Length of FEA2LIST area @WðA\/
| /\ (pointed to by fpFEA2LIST in EAOP2) @WðA\/
| /\ The FEA2 list entry: ULONG-oNextEntryOffset, @WðA\/
| /\ : UCHAR-fEA (flag) @WðA\/
| /\ : UCHAR-cbName (len of name) @WðA\/
| /\ : USHORT-cbValue (len of value) @WðA\/
| /\ : CHAR-szName[1] (char .DDM_xxx) @WðA\/
| /\ : followed by DDMOBJECT encoded value @WðA\/
| /\ Note 1: FEA2 list entries start on 4 byte boundaries @WðA\/
| /\ 2: The cbName does not count null string terminator @WðA\/
| /\ 3: Last entry is identified by oNextEntryOffset=ð @WðA\/
| /\ Calculate the FEA2LIST area size @WðA\/

| /\ FEA2LIST area begins with the FEA2LIST header @WðA\/
| FEA2Size = sizeof(Eaop2.fpFEA2List->cbList); /\@WðA\/

| /\ Now add on an FEA2 list entry - .DDM_TITLE @WðA\/
| /\ TITLE_NAME is defined as: ".DDM_TITLE" @WðA\/
| /\ TitleString if defined as "Title String" @WðA\/
| /\ TITLE_SIZE is defined as: @WðA\/
| /\ sizeof(OBJLENGTH) + sizeof(CODEPOINT) @WðA\/
| /\ + strlen(TitleString); @WðA\/
| FEA2Size = FEA2Size
| + sizeof(Eaop2.fpFEA2List->list[ð].oNextEntryOffset)
| + sizeof(Eaop2.fpFEA2List->list[ð].fEA)
| + sizeof(Eaop2.fpFEA2List->list[ð].cbName)
| + sizeof(Eaop2.fpFEA2List->list[ð].cbValue)
| + strlen(TITLE_NAME)
| + 1 /\ + null string terminator @WðA\/
| + TITLE_SIZE; /\@WðC\/

| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 2. Do the FEA2LIST malloc and set the EAOP2 pointer @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ @WðA\/
| /\ The call to DDMSetPathInfo will include a pointer to the @WðA\/
| /\ EAOP2 structure (locally defined as Eaop2) and it has @WðA\/
| /\ pointers to the GEA2LIST and FEA2LIST areas. @WðA\/
| /\ @WðA\/
| /\ The EAOP2 struct: PGEA2LIST-fpGEA2List (ptr to GEA2LIST) @WðA\/
| /\ : PFEA2LIST-fpFEA2List (ptr to FEA2LIST) @WðA\/
| /\ : ULONG-oError @WðA\/
| if ((Eaop2.fpFEA2List = (PFEA2LIST)malloc(FEA2Size)) == NULL)
| { printf("Out of memory\n");
| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);
| return(1);
| }
| /\ Since this is a DDMSetPathInfo call, there is no GEA2LIST @WðA\/
| Eaop2.fpGEA2List = NULL; /\@WðM\/
| Eaop2.oError = ðL; /\@WðA\/

| Figure 115 (Part 9 of 11). Example of C Program using Extended Attributes

 Appendix E. Programming Extended Attributes in VSAM APIs 579

| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 3. Fill in the FEA2LIST area @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/

| /\ Initialize the FEA2LIST area @WðA\/
| memset(&(Eaop2.fpFEA2List->cbList),'\ð',FEA2Size); /\@WðA\/

| /\ Fill in the FEA2LIST header which has list area length @WðA\/
| Eaop2.fpFEA2List->cbList = FEA2Size;

| /\ The pFEA pointer will point to the specific FEA2 entry @WðA\/
| /\ on which we are working. Use the FEA2LIST structure @WðA\/
| /\ definition to orient to the first list entry. @WðA\/
| pFEA = Eaop2.fpFEA2List->list;

| /\ Fill out the first and only FEA2 list entry - TITLE @WðA\/
| pFEA->fEA = ð;
| pFEA->cbName = (CHAR)(strlen(TITLE_NAME)); /\@WðC\/
| pFEA->cbValue = TITLE_SIZE; /\@WðA\/
| strcpy(pFEA->szName,TITLE_NAME); /\@WðC\/
| /\ Now set pAttValue ptr past the .DDMxxx attribute to @WðA\/
| /\ the value field by adding the number given in cbName @WðA\/
| /\ plus one for the string terminating null character. @WðA\/
| pAttValue = (PDDMOBJECT)((PBYTE)&pFEA->szName +
| pFEA->cbName + 1); /\@WðA\/

| /\ The value field is in PDDMOBJECT format. @WðA\/
| /\ The PDDMOBJECT: OBJLENGTH-cbObject (len obj-4 byte) @WðA\/
| /\ CODEPOINT-cpObject (codept-2 byte) @WðA\/
| /\ BYTE-pData[1] (data value) @WðA\/

| pAttValue->cbObject = TITLE_SIZE; /\@WðA\/

| /\ DUBCODPT.H (included by DUB.H) TITLE codepoint=ðxðð45 @WðA\/
| pAttValue->cpObject = TITLE;
| strcpy(pAttValue->pData,TitleString);

| /\ This FEA2 entry is the last in this request. So set the @WðA\/
| /\ NextEntryOffset to ð to indicate this is the last entry. @WðA\/
| pFEA->oNextEntryOffset = ðL; /\@WðA\/

| Figure 115 (Part 10 of 11). Example of C Program using Extended Attributes

580 VSAM for OS/2

| /\\\\\\\\\\\\\\\\\\\\ STEP 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 4. Issue the DDMSetPathInfo @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| SevCode = DDMSetPathInfo
| (SeqFN, /\ PathName \/
| 1UL, /\ PathInfoLevel \/
| (PBYTE)&Eaop2, /\ PathInfoBuf \/
| (ULONG)sizeof(EAOP2) /\ PathInfoBufSize \/
|);
| if (SevCode == SC_NO_ERROR)
| printf("\nSuccessful DDMSetPathInfo call to file %s\n",SeqFN);
| else
| { printf("Error in DDMSetPathInfo call to file %s\n",SeqFN);
| printf("Severity code = %u\n",SevCode);
| ReplyMsg();
| CleanUp(SeqFN,DirFN,KeyFN,AltFN,KeyFN2);
| return(SevCode);
| }
| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| /\ 5. Free the FEA2LIST area @WðA\/
| /\\\\\\\\\\\\\\\\\\\\ STEP 5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\@WðA\/
| free(Eaop2.fpFEA2List); /\@WðA\/
| .
| .
| .

| Figure 115 (Part 11 of 11). Example of C Program using Extended Attributes

 Appendix E. Programming Extended Attributes in VSAM APIs 581

582 VSAM for OS/2

 Glossary

This glossary defines many of the terms and
abbreviations used in this manual. If you do not find the
term you are looking for, refer to the index or to the
Dictionary of Computing, SC20-1699.

abend . Abnormal end of task.

access method . The part of the DDM architecture
which accepts commands to access and process the
records of a file.

ADL . A Data Language

ADSM. ADSTAR Distributed Storage Manager.

alternate index file . A file that has a different key path
over a base file. The base file can be a keyed, direct, or
sequential file.

API. Application Programming Interface

CCS. Common Communication Support.

CCSID. Coded character set identifier.

CDRA. Character Data Representation Architecture.

CM. Communications Manager

complete path name . The specifications for a file
which includes the drive, directories, filename and file
extension.

data conversion . A set of programs that convert data
according to defined data descriptions. For example,
characters can be converted from EBCDIC to ASCII, and
numeric data can be converted from System /370
packed decimal to IEEE floating point or ASCII character
(or vice versa).

data description . Specification of the layout of data.
The data description of data stored in a file can be
viewed as a file attribute.

data security . The protection of data against
unauthorized disclosure, transfer, modifications or
destruction, whether accidental or intentional.

data set . The major unit of data storage and retrieval.
It consists of a collection of data in one of several

prescribed arrangements which is described by control
information that the system has access to.

data stream . All data transmitted through a data
channel in a single read or write operation.

DD&C. Data Description and Conversion; architecture
extension to DDM.

DDM. Distributed Data Management; an SAA CCS
architecture. A set of interfaces that gives users access
to data files that reside on remote systems connected by
a communication network. The DDM interfaces enable
an application program to retrieve, add, update and
delete data records in a file existing on a remote system.
The DDM interfaces can be used to communicate
between systems that have different architectures.

deadlock . Unresolved contention for the use of a
resource. Each element in a process is waiting for an
action by, or a response from, the other.

DFM. Distributed FileManager.

DFM client . Translates requests from the source
system for access to file data on a remote system into a
standard architected DDM request.

DFM server . A DFM component that accepts a remote
request to access data and translates this request into a
data management request on the target system.

direct file . A file that contains records that have a
relationship between the contents of the record and the
record position at which the record is stored.

distributed data management (DDM) . Architecture for
accessing distributed data located in files and distributed
relational databases.

distributed file management (DFM) . Strategy for a set
of programming facilities that implement the file aspects
of the DDM architecture on those systems which
represent the SAA environments.

DRBA . Distributed relational data base access.

FSD. File System Driver.

HPFS. High Performance File System.

IFS. Installable File System.

 Copyright IBM Corp. 1993, 1997 583

independent LU . A logical unit (LU) that is not
controlled by a System Network Architecture (SNA) host
system.

intersystem communication . Communication between
different systems by means of SNA facilities.

keyed file . A file organization that supports keyed
forms of access to the records of the file.

LAN . Local area network.

Local area network . LAN

LDM. Local data management.

LDMI. Local data management interface.

local file . A file that resides on the same system as the
application program that is accessing it.

LU. Logical unit.

protocol . A set of rules to be followed by
communication systems.

RACF. Resource Access Control Facility. An external
security management facility.

record . The basic unit of data stored in a file and
transferred between DDM source and target servers.

record file . Record files consist of data fields organized
into records that can be accessed as a set of bytes.

remote file . A file that resides on a system other than
the system where the application program requesting
access to the file resides.

Remote Record Access Support . DFM function that
allows applications to access remote file data. function
is to allow byte stream applications to access remote file
data.

SAA . Systems Application Architecture

SAA data . Data on SAA systems that is subject to
remote access and management using SAA DDM
protocols.

SCM. Source communications manager. The DDM
layer responsible for interfacing with the local
communications facilities. It coordinates the sending
and receiving of data on the source system.

sequential file . A file in which records are arranged in
exactly the same sequence as they were stored into the
file.

SNA. Systems Network Architecture.

source system . A system that requests access to data
on another system. It is the "source" of the request.

Stream Agent . The DDM program responsible for
transformation of data between the stream oriented API
requests and the DDM byte requests.

stream file . Stream files contain strings of bytes that
can be accessed according to their relative position
within the file.

Systems Network Architecture (SNA) . The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through and controlling the configuration and
operation of networks.

target system . The system that contains data that is
being accessed by another system.

target system data . Data considered to be owned and
maintained according to the rules and functions
prescribed by the data manager on the target system.

TP. Transaction Program

user exit . A point in an IBM-supplied program at which
a user-exit routine may be given control.

584 VSAM for OS/2

 Index

A
ACCATHRM (not authorized to use access method)

reply message 417
accelerator keys 506
access capability

allow get record capability, create flag 409
allow insert record capability, create flag 409
allow modify record capability, create flag 409

access damage severity code 397
access intent

list error, reply message 417
list, parameter 363

access method 7, 18
class, parameter 364
CMBACCAM (combined) 20
CMBKEYAM (combined key) 19
CMBRNBAM (combined record number) 19
invalid, reply message 418
list, parameter 364
not authorized to use, reply message 417
promotions 20, 28
RELKEYAM (relative by key) 19
RELRNBAM (relative by record number) 18
RNDKEYAM (random by key) 19
RNDRNBAM (random by record number) 19

access method, definition 583
access order (records), copy flag
AccessFlags 401
accessing

a file, date of 385
ACCINTLS (access intent list) parameter 363

DELAI (delete record access intent) 363
GETAI (get record access intent) 363
INSAI (insert record access intent) 363
MODAI (modify record access intent) 363

ACCINTRM (access intent list error) reply
message 417

ACCMTHCL (access method class) parameter 364
ACCMTHLS (access method list) parameter 364
ACCMTHRM (invalid access method) reply

message 418
adding a conversion table 534
address error, reply message 419
ADDRM (address error) reply message 419
ADL

ADL (continued)
creating 519
data descriptions 519
syntax 520
translation utility 534

ADLTRANS 533, 534
AGNPRMRM (permanent agent error) reply

message 420
ALCINISZ (allocate initial extent) parameter 365
allocate initial extent 365
allocating initial file size, parameter 377
allow

cursor to be set to inactive record, access flag 403
duplicate keys, create flag 411
get record capability, create flag 409
insert record capability, create flag 409
modify record capability, create flag 409
record deletion, create flag 410

alternate index file 16
base file 366, 367

ALTINDLS (alternate index list) parameter 366
APAR 545
APIs supported by DFM 475
APIs, VSAM 551
application programming interface 499
archiving

a file, date of 386
ASCII_TO_EBCDIC 496
ASIS data declaration 523
assign buffer format 513
assigning a new name to a file 388
assigning drive letters 499, 500
attribute

file hidden 377
File system 380

authorized program analysis report (APAR) 545

B
BACKUP command 563
base file 13, 16
base file name parameter 367
base management class name, parameter 367
base storage class name, parameter 368
BASFILNM (base file name) parameter 367
BASMGMNM (base management class name)

parameter 367

 Copyright IBM Corp. 1993, 1997 585

BASNAMRM (invalid base file name) reply
message 420

BASSTGNM (base storage class name) parameter 368
BINARY data declaration 523
BOF (beginning of file), definition 15
bypassing

all records, active and inactive, access flag 404
damaged records, access flag 403
damaged records, copy flag 407
inactive records, copy flag 407

byte count parameter, file 375

C
caching

creating profiles 515
profile 515
stream file 515

calendar, Gregorian 369
CCSID 494
CDRA 494
changing

a file, date of 376
CHAR data declaration 525
character

conversion table 535
data conversion 534
data representation architecture 494
tables 534

character code point conversion 517
character field conversion 535
CHKDSK command 563
class name

base management 367
base storage 368
data 372
management 387
storage 395

clock, date and time parameter 369
closing a file 46
CLSDMGRM (file closed with damage) reply

message 421
CMBACCAM (combined) access method 20
CMBKEYAM (combined key) access method 19
CMBRNBAM (combined record number) access

method 19
CMDCHKRM (command check) reply message 421
Code Point

attribute parameter 368

coded character set ID 494
CODPNT (code point) parameter 368
command

DFMDRIVE 499, 505
DFMDRIVE ASSIGN 500
DFMDRIVE RELEASE 503
DFMDRIVE SETPARM 503
DFMDRIVE STATUS 504
DosFsAttach 512

command check, reply message 421
command-line interface 499, 504
commands, format 499
COMMRM (communications error) reply message 423
communication environment, starting 487
composite key, definition 382
concurrency protection 22
concurrent opens exceeds maximum, reply

message 455
configuration file 491
configuration file entries

DEFAULT_CCSID 494
DEFAULT_CONVERSION_TABLE 496
DEFAULT_DFM_TARGET 493
DFM_TARGET 491
FILE_DESCRIPTOR_MAP 494
LOCAL_LU 492
MODE_NAME 493
TRACE_BUFFER 496

CONVERSATION 491
conversation control 491
conversion

character 535
character code point 534
character code point conversion 535
of character data 534
tables for stream files 496

conversion table 535
conversion table, adding 535
conversion, character code point 517
conversion, data type 517
conversion, record field sequence 517
CopyFlags 406
copying a file 48
CPGID codes for countries 559
CreateFlags 407
creating

a file, date of 376
alternate index file 52
record file 59

586 VSAM for OS/2

CSRPOSST (cursor position status) parameter 368
CSTNSARM (cursor not selecting a record position)

reply message 426
cursor

allow to be set to inactive record, access flag 403
general information 21
hold cursor indicator 22
hold position, access flag 403
moving EOF to current position 339
not selecting a record position, reply message 426
setting by key value 161
setting to BOF 143
setting to first record in key sequence 179
setting to first record of the file 150
setting to last record 235
setting to last record in key sequence 188
setting to minus the number of record positions in

CsrDisp 245
setting to next record 271
setting to next record in key sequence 204
setting to next record with equal key 255
setting to plus the number of record positions in

CsrDisp 293
setting to previous record 303
setting to previous record in key sequence 222
setting to record number 316
status of, parameter 368
update error, reply message 467
update, access flag 402

CVTNFNRM (conversation table not found) reply
message 427

D
damage

access damage severity code 397
permanent damage severity code 397
session damage severity code 398

damaged
bypass damaged records, access flag 403
file, reply message 438
record, bypassing 457
record, reply message 457

data
class name, parameter 372
conversion control 494
description file 533
lock status, parameter 373
stream syntax error, reply message 465

data area structures 513
data base of known problems 545
data conversion, using 518
data declarations, ADL 522
data descriptions, ADL 519
data stream

description 1
parsing, terminating 398

data type conversion 517
date

and time parameter 369
file access date, parameter 385
file access, parameter 385
file archived date, parameter 386
file change, parameter 376
file creation, parameter 376
Gregorian calendar 369

DATE (date and time) parameter 369
DCE 515
DCI 515
DDF 533
DDFNFNRM (data description file not found) reply

message 427
DDM

lock management 22
DDM (Distributed Data Management)

data stream 1
records 4

DDM definition 583
DDM_ACCORD (access order) flag 407
DDM_ALDUPKEY (allow duplicate keys) flag 411
DDM_ALLREC (all records, active & inactive) flag 404
DDM_ALWINA (allow cursor set to inactive record)

flag 403
DDM_BYPDMG (bypass damaged records) flag 403,

407
DDM_BYPINA (bypass inactive records) flag 407
DDM_DELCP (allow record deletion) flag 410
DDM_FILHDD (hidden file) flag 409
DDM_FILPRT (protected file) flag 408
DDM_FILSYS (system file) flag 408
DDM_GETCP (allow get record capability) flag 409
DDM_HLDCSR (hold cursor position) flag 403
DDM_HLDUPD (hold update intent) flag 402
DDM_INHMODKY (inhibit modified keys) flag 402
DDM_INIEX (inhibit initial extent) flag 410
DDM_INSCP (allow insert record capability) flag 409
DDM_KEYVALFB (key value feedback) flag 404
DDM_MODCP (allow modify record capability) flag 409

 Index 587

DDM_NODATA (no record data returned) flag 404
DDM_RECNBRFB (record number feedback) flag 405
DDM_RTNINA (return inactive record) flag 404
DDM_TMPFIL (temporary file) flag 410
DDM_UPDCSR (update cursor) flag 402
DDM_UPDINT (update intent) flag 405
DDMClose 46
DDMCopyFile 48
DDMCreateAltIndex 52
DDMCreateRecFile 59
DDMDelete 66
DDMDeleteRec 68
DDMForceBuffer 72
DDMGetRec 74
DDMGetReplyMessage 83
DDMInsertRecEOF 85
DDMInsertRecKey 95
DDMInsertRecNum 100
DDMLoadFileFirst 108
DDMLoadFileNext 117
DDMModifyRec 124
DDMOpen 129
DDMQueryFileInfo 135
DDMQueryPathInfo 137
DDMRename 140
DDMSetBOF 143
DDMSetEOF 146
DDMSetFileInfo 148
DDMSetFirst 150
DDMSetKey 161
DDMSetKeyFirst 179
DDMSetKeyLast 188
DDMSetKeyLimits 197
DDMSetKeyNext 204
DDMSetKeyPrevious 222
DDMSetLast 235
DDMSetMinus 245
DDMSetNextKeyEqual 255
DDMSetNextRec 271
DDMSetPathInfo 290
DDMSetPlus 293
DDMSetPrevious 303
DDMSetRecNum 316
DDMSetUpdateKey 323
DDMSetUpdateNum 332
DDMTruncFile 339
DDMUnLoadFileFirst 341
DDMUnLoadFileNext 351
DDMUnLockRec 360

DECLARE statement 521
default

coded character set ID 494
partner LU alias 493
record error, reply message 428
record, parameter 371

DEFAULT_CCSID 494
DEFAULT_CONVERSION_TABLE 496
DEFAULT_DFM_TARGET 493
defining a key field 384
DELAI (delete record access intent) 363
DELCP (record deletion capability) parameter 371
deleting

a file 66
a record 68

deletion (record) capability, parameter 371
DESCRIPTION 492
DFM messages 545
DFM_TARGET 491
DFMDRIVE drive control window 505
DFMTRACE 546
DFTREC (default record) parameter 371
DFTRECRM (default record error) reply message 428
diagnostic information, server 394
direct file 10, 12
directories, requesting 475
directory reply messages

full 429
not authorized to (access or update) 428

disk cache
exclude 515
include 515

disk file caching profile 515
DISKCOMP command 563
DISKCOPY command 563
DosFsAttach 512
DRCATHRM (not authorized to directory) reply

message 428
DRCFULRM (directory full) reply message 429
drive letters, assigning 506
drive letters, setting up 499
DTACLSNM (data class name) parameter 372
DTALCKST (data lock status) parameter 373
DTARECRM (invalid data record) reply message 429
DUPFILRM (duplicate file name) reply message 431
DUPKDIRM (duplicate key different index) reply

message 431
DUPKSIRM (duplicate key same index) reply

message 432

588 VSAM for OS/2

duplicate
file name, reply message 431
key

allow, create flag 411
capability, parameter 384
different index, reply message 431
same index, reply message 432

record number, reply message 434
DUPRNBRM (duplicate record number) reply

message 434

E
EAs (extended attributes) 5
EBCDIC_TO_ASCII 496
end of file

definition 15
record number, parameter 374
reply message 435

ENDFILRM (end of file) reply message 435
EOF (end of file), definition 15
EOFNBR (end of file record number) parameter 374
ERRFILNM (error file name) parameter 374
error code

key definition, parameter 382
syntax 398

error file name, parameter 374
error severity code 396
error, reply message 421
errors in DFM 545
evaluation, initial 545
example of ADL syntax 519
exclude list 515
existing condition, reply message 437
EXSCNDRM (existing condition) reply message 437
extended attributes (EAs) 5

F
FDISKPM command 563
field length error, reply message 453
field size, PRECISION values 524
FILATHRM (not authorized to file) reply message 437
FILBYTCN (file byte count) parameter 375
FILCHGDT (file change date) parameter 376
FILCLS (file class) parameter 376
FILCRTDT (file creation date) parameter 376
FILDMGRM (file damaged) reply message 438
file

access intent list parameter 363

file (continued)
access method class parameter 364
allocating storage 365
alternate index 16
base 13, 16
base file name, parameter 366, 367
byte count, parameter 375
caching profile 515
causing an error 374
change date 376
change date, parameter 376
closed with damage, reply message 421
closing 46
concurrent opens exceeds maximum, reply

message 455
copying 48
creating

an alternate index 52
record 59

creation date 376
creation date, parameter 376
damaged, reply message 438
deleting 66
direct 10, 12
duplicate keys capability 384
file class, parameter 376
file hidden attribute, parameter 377
get capability, parameter 381
handle

not found, reply message 445
hidden 409
in use, reply message 441
index 14
initial size, parameter 377
insert capability, parameter 381
invalid base file name, reply message 420
invalid name, reply message 442
is full, reply message 440
keyed 13, 14
last access date 385
last access date, parameter 385
last archived date 386
last archived date, parameter 386
length classes 7
limits 435
locked 441
locking 23, 24
modify capability, parameter 387
name, parameter 378
naming 388

 Index 589

file (continued)
new name, parameter 388
not authorized to file, reply message 437
not found, reply message 442
opening 129
protected

flag 408
parameter 379

quasi byte stream 9
record-oriented, description 4
renaming 140
retention class, parameter 394
sequential 8, 12
size, parameter 380
space not available, reply message 443
system 408
temporarily not available, reply message 444
unload records from 341, 351

file information
getting 135
setting 148

file name
duplicate, reply message 431
error 374
invalid new, reply message 454
invalid, reply message 442
parameter 378
validating 378

File Name Mapping Exit 541
file servers, OS/400 543
file space not available, reply message 443
FILE_DESCRIPTOR_MAP 494, 518
files

maximum number opened, parameter 387
opening not authorized 446
permanent 410

FILFULRM (file is full) reply message 440
FILHDD (file hidden) parameter 377
FILINISZ (initial file size) parameter 377
FILIUSRM (file in use) reply message 441
FILNAM (file name) parameter 378
FILNAMRM (invalid file name) reply message 442
FILNFNRM (file not found) reply message 442
FILPRT (file protected) parameter 379
FILSIZ (file size) parameter 380
FILSNARM (file space not available) reply

message 443
FILSYS (system file) parameter 380
FILTNARM (file temporarily not available) reply

message 444

fixed-length records 17
flag (invalid), reply message 446
flags

access 401
all records, active and inactive 404
allow cursor to be set to inactive record 403
bypass damaged records 403
hold cursor position 403
hold update intent 402
inhibit modified keys 402
key value feedback 404
no record data returned 404
record number feedback 405
return inactive record 404
update cursor 402
update intent 405

copy 406
access order 407
bypass damaged records 407
bypass inactive records 407

create 407
allow duplicate keys 411
allow get record capability 409
allow insert record capability 409
allow modify record capability 409
allow record deletion 410
hidden file 409
inhibit initial extent 410
protected file 408
system file 408
temporary file 410

FLOAT data declaration 526
FORM

in section: <FLOAT> 526
FORMAT command 563
format, assign buffer 513
format, release buffer 513
FUNATHRM (not authorized to function) reply

message 444
function call, DosFsAttach 512
function not supported, reply message 445
FUNNSPRM (function not supported) reply

message 445

G
general rules, ADL 520
get capability, file 381
GETAI (get record access intent) 363

590 VSAM for OS/2

GETCP (file get capability) parameter 381
GETGETLK (get, reference only) lock 24
GETMODLK (get, change) lock 24
GETNONLK (get, no sharing) lock 24
getting

a record 74
a reply message 83
file information 135
path information 137

graphical user interface 499, 504
Gregorian calendar 369

H
HDLNFNRM (file handle not found) reply message 445
help screens, command-line interface 504
hidden file

create flag 409
parameter 377

hold
cursor indicator 22
cursor position, access flag 403
update intent, access flag 402

I
IBM Support Center 545
implicit ADL translation 534
inactive

inserting inactive records 430
record bypass, copy flag 407
record, parameter 391
record, reply message 459

include list 515
information only severity code 396
inhibit initial extent, create flag 410
inhibit modified keys, access flag 402
initial evaluation 545
initial file size, parameter 377
initially-variable-length records 17
INSAI (insert record access intent) 363
INSCP (file insert capability) parameter 381
insert capability, file 381
inserting

a record at EOF 85
a record by key value 95
a record by record number 100

INTATHRM (not authorized for open intent) reply
message 446

interface, application programming 499
interface, command-line 499
interface, graphical user 499
interfaces

API 551
internal trace facility 546
invalid

base file name, reply message 420
data record, reply message 429
file name, reply message 442
flag, reply message 446
key definition, reply message 448
key length, reply message 449
key value, reply message 452
new file name, reply message 454
request, reply message 447

INVFLGRM (invalid flag) reply message 446
invoking the ADL translation utility 534
INVRQSRM (invalid request) reply message 447

J
JOIN command 563

K
key definition

error code, parameter 382
invalid, reply message 448
parameter 382

key field definition, parameter 384
key length

invalid, reply message 449
key update

not allowed by different index, reply message 450
not allowed by same index, reply message 451

key value
feedback, access flag 404
inhibit modified keys, access flag 402
inserting records by 95
invalid, reply message 452
parameter 385
setting limits 197
setting the cursor by 161
setting the update intent by 323

KEYDEF (key definition) parameter 382
KEYDEFCD (key definition error code) 382
KEYDEFRM (invalid key definition) reply message 448
KEYDUPCP (duplicate keys capability) parameter 384

 Index 591

keyed file 13, 14
example of fixed-length records 16

KEYFLDDF (key field definition) parameter 384
KEYLENRM (invalid key length) reply message 449
keys

capability of duplicates 384
duplicate 431, 432

KEYUDIRM (key update not allowed by different index)
reply message 450

KEYUSIRM (key update not allowed by same index)
reply message 451

KEYVAL (key value) parameter 385
KEYVALRM (invalid key value) reply message 452
keyword 491

DFM_TARGET 491

L
layout, Signed BINARY Field 523
LENGTHRM (field length error) reply message 453
loading records into a file 108, 117
local LU alias 492
LOCAL_LU 493
locked file 441
locking

data lock status, parameter 373
files 23, 24
promotion rules 27
records 25

LSTACCDT (last access date) parameter 385
LSTARCDT (last archived date) parameter 386

M
management class

name parameter 387
naming 367, 368

MAX_SEND_LIMIT 492
MAXARNB (maximum active record number)

parameter 386
maximum

active record number, parameter 386
number of files opened, parameter 387

MAXOPN (maximum number of files opened)
parameter 387

message
access intent list error 417
address error 419
command check 421
communications error 423

message (continued)
concurrent opens exceeds maximum 455
conversational protocol error 456
cursor not selecting a record position 426
damaged file 438
data description file not found 427
data stream syntax error 465
default record error 428
directory full 429
duplicate file name 431
duplicate key different index 431
duplicate key same index 432
duplicate record number 434
end of file 435
error 421
existing condition 437
field length error 453
file closed with damage 421
file handle not found 445
file in use 441
file is full 440
file not found 442
file space not available 443
file temporarily not available 444
function not supported 445
inactive record 459
invalid access method 418
invalid base file name 420
invalid data record 429
invalid file name 442
invalid flag 446
invalid key definition 448
invalid key length 449
invalid key value 452
invalid new file name 454
invalid request 447
key update not allowed by different index 450
key update not allowed by same index 451
mismatched record length 460
no update intent on record 468
not authorized to (access or update) directory 428
not authorized to file 437
not authorized to function 444
not authorized to open for intent 446
not authorized to use access method 417
object not supported 454
parameter not supported 457
parameter not supported error 466
parameter value not supported 468
permanent agent error 420

592 VSAM for OS/2

message (continued)
record damaged 457
record in use 459
record not available 461
record not found 463
record number out of bounds 462
resource limit reached in source system 465
resource limits reached on target system 464
severity code parameter 396
translation error 469
update cursor error 467

messages 545
MGMCLSNM (management class name)

parameter 387
MODAI (modify record access intent) 363
MODCP (file modify capability) parameter 387
mode name 493
MODE_NAME 493
MODGETLK (change, reference only) lock 24
modified keys

inhibited 402
modifying

a file, capability parameter 387
a record 124

MODMODLK (change, change) lock 24
MODNONLK (change, no sharing) lock 24
moving EOF to current cursor position 339

N
naming

a data class 372
a file 378, 388
a management class 367

new file name, parameter 388
NEWFILNM (new file name) parameter 388
NEWNAMRM (invalid new file name) reply

message 454
no record data returned, access flag 404
not authorized

to (access or update) directory, reply message 428
to access method, reply message 417
to file, reply message 437
to function, reply message 444
to open for intent, reply message 446
to use access method, reply message 417

notations, ADL syntax 520

O
object not supported, reply message 454
OBJNSPRM (object not supported) reply message 454
opening a file 129
OPNMAXRM (concurrent opens exceeds maximum)

reply message 455
OS/2 commands not supported by DFM 563
OS/400 file servers 543

P
PACKED data declaration 530
parameter

BASE_DDF 495
parameter not supported, reply message 457
parameter value not supported, reply message 468
partner LU alias 491, 495
path information

getting 137
setting 290

permanent
agent error, reply message 420
damage severity code 397
file 410

PRCCNVRM (conversational protocol error) reply
message 456

PRMNSPRM (parameter not supported) reply
message 457

problem determination
reply message diagnostic information 394

problem evaluation 545
problem reporting 545
problems in DFM 545
profile, caching 515
promotions

access method 20, 28
file and record locks 27
record length class 392

protected file
create flag 408
parameter 379

Q
quasi byte stream file 9
querying

file information 135
path information 137

 Index 593

R
RECAL (record attribute list) 5
RECAL (record attribute list) parameter 389
RECCNT (record count) parameter 390
RECDMGRM (record damaged) reply message 457
RECFIX (fixed-length record) 4
RECINA (inactive record) parameter 391
RECINA (inactive records) 4
RECINARM (record inactive) reply message 459
RECIUSRM (record in use) reply message 459
RECIVL (initially-variable-length record) 4
RECLEN (record length) parameter 392
RECLENCL (record length class) parameter 392
RECLENRM (record length mismatch) reply

message 460
RECNAVRM (record not available) reply message 461
RECNBR (record number) parameter 393
RECNBRRM (record number out of bounds) reply

message 462
RECNFNRM (record not found) reply message 463
record

allow get record capability, create flag 409
allow insert record capability, create flag 409
allow record deletion, create flag 410
attribute list (RECAL) 5
attribute list, parameter 389
bypass damaged records, access flag 403
bypassing all, active and inactive, access flag 404
bypassing damaged, copy flag 407
bypassing inactive, copy flag 407
count, parameter 390
damaged, bypassing 457
damaged, reply message 457
default, parameter 371
deleting 68
deletion capability, parameter 371
getting 74
in use, reply message 459
inactive, reply message 459
inserting at EOF 85
inserting by key value 95
loading into a file 108, 117
locking 25

releasing 402
modify capability, create flag 409
modifying 124
no data returned, access flag 404
no update intent, reply message 468
not available, reply message 461

record (continued)
not found, reply message 463
number feedback, access flag 405
number out of bounds, reply message 462
parameter 394
return inactive, access flag 404
unlock all implicit locks 360
update intent, access flag 405

RECORD (record) parameter 394
record field sequence conversion 517
record key

defining a key field 384
definition 382

record length
class

parameter 392
promotions 392

classes 8, 17
mismatch, reply message 460
parameter 392

record number
duplicate, reply message 434
end of file, parameter 374
feedback, access flag 405
inserting a record by 100
maximum active record number, parameter 386
out of bounds, reply message 462
parameter 393
setting the update intent by 332

records
active 394
basic description 4
inactive 391
inactive, description 4
inserting inactive 430
unload from file 341, 351

RECOVER command 563
RECVAR (variable-length record) 4
release buffer format 513
releasing

record lock 402
update intent 402

releasing drive letters 499, 503
RELKEYAM (relative by key) access method 19
RELRNBAM (relative by record number) access

method 18
Remote Record Access Support component,

starting 488
REMOTE_LU 491, 495

594 VSAM for OS/2

renaming a file 140
reply message

access intent list error 417
address error 419
command check 421
communications error 423
concurrent opens exceeds maximum 455
conversational protocol error 456
conversion table not found 427
cursor not selecting a record position 426
damaged file 438
data description file not found 427
data stream syntax error 465
default record error 428
directory full 429
duplicate file name 431
duplicate key different index 431
duplicate key same index 432
duplicate record number 434
end of file 435
error 421
existing condition 437
field length error 453
file closed with damage 421
file handle not found 445
file in use 441
file is full 440
file not found 442
file space not available 443
file temporarily not available 444
function not supported 445
getting 83
inactive record 459
invalid access method 418
invalid base file name 420
invalid data record 429
invalid file name 442
invalid flag 446
invalid key definition 448
invalid key length 449
invalid key value 452
invalid new file name 454
invalid request 447
key update not allowed by different index 450
key update not allowed by same index 451
mismatched record length 460
no update intent on record 468
not authorized to directory 428
not authorized to file 437
not authorized to function 444

reply message (continued)
not authorized to open for intent 446
not authorized to use access method 417
object not supported 454
parameter not supported 457
parameter not supported error 466
parameter value not supported 468
permanent agent error 420
record damaged 457
record in use 459
record not available 461
record not found 463
record number out of bounds 462
resource limit reached in source system 465
resource limits reached on target system 464
server diagnostic information 394
translation error 469
update cursor error 467

reporting problems to IBM 545
requesting storage size 377
resource limit reached in source system, reply

message 465
resource limits reached on target system, reply

message 464
restrictions 564
retention class, file 394
return code qualifiers 514
return codes, DosFsAttach call 514
return inactive record, access flag 404
RNDKEYAM (random by key) access method 19
RNDRNBAM (random by record number) access

method 19
RSCLMTRM (resource limits reached on target system)

reply message 464
RTNCLS (file retention class) parameter 394
rules, ADL 520

S
sample command file 487
sample startdfm.cmd file 487
SCM 584
sequential file 8, 12
server diagnostic information, parameter 394
session

damage severity code 398
setting

file information 148
key value limits 197
path information 290

 Index 595

setting drive parameter lists 503
setting the cursor

by key value 161
to BOF 143
to EOF 146
to first record in key sequence 179
to first record of the file 150
to last record 235
to last record in key sequence 188
to minus the number of record positions in

CsrDisp 245
to next record 271
to next record in key sequence 204
to next record with equal key 255
to plus the number of record positions in

CsrDisp 293
to previous record 303
to previous record in key sequence 222
to record number 316

setting the update intent
by key value 323
by record number 332

severe error severity code 397
severity code, parameter 396
severity codes

access damage 397
error 396
information only 396
permanent damage 397
session damage 398
severe error 397
warning 396

Signed BINARY Field, layout 523
size of file 380
source system, description 1
SRCLMTRM (resource limit reached in source system)

reply message 465
SRVDGN (server diagnositic information)

parameter 394
starting

the DFM for OS/2 communication environment 487
the DFM for OS/2 Remote Record Access Support

component 488
starting DFM for OS/2 505
statements, ADL 521
status

of cursor position, parameter 368
of data lock, parameter 373

status, drive letters 504

STGCLSNM (storage class name) parameter 395
stopping

the DFM for OS/2 Remote Record Access Support
component 488

storage
class name, parameter 395
inhibit initial extent, create flag 410
size, requesting 377

stream file, caching 515
STRTDFMC.EXE 491
structures, data area 513
submitting an APAR 545, 548
SUBST command 563
SUBTYPE statement 521
SVRCOD (severity code) parameter 396
SYNERRCD (syntax error code) parameter 398
syntax error code, parameter 398
SYNTAXRM (data stream syntax error) reply

message 465
SYS command 564
system file 408

File system attribute, parameter 380
system file, create flag 408

T
table, conversion 535
target system, description 1
TARGET_FILENAME 495
temporary file

create flag 410
terminating data stream parsing 398
time and date, parameter 369
TITLE (title) parameter 399
TP 584
trace facility, internal 546
TRACE_BUFFER 496, 497
tracing 546

VSAM 496
translating an ADL file into a DDF file 533
translation utility, ADL 534
TRGNSPRM (Parameter not supported on target

system) reply message 466
truncating a file 339

U
unload records from file 341, 351
unlock all implicit record locks 360

596 VSAM for OS/2

update cursor
access flag 402
error reply message 467

update intent
none on record, reply message 468
on inactive record 403
releasing 402
setting by key value 323
setting by record number 332

UPDCSRRM (update cursor error) reply message 467
UPDINTRM (no update intent on record) reply

message 468
user interface

VSAM APIs 551
user-exit

special considerations 543
writing 541

USERID 492

V
validating a file name 378
VALNSPRM (parameter value not supported) reply

message 468
variable-length records 17
VIEW_DDF 496
VSAM

architecture 1
record files 6
technical considerations 29

VSAM APIs 551
VSAM component, stopping 488
VSAM trace parameter 496

W
warning severity code 396

X
XLATERM (translation error) reply message 469

Z
ZONED data declaration 532

 Index 597

IBM

Program Number: 5765-548
 5765-549
 5622-793
 5622-794

Printed in U.S.A.

SC26-7ð63-ð2

