Floating-point to Fixed-point
conversion

Fixed-Point Design

Fixed-Point Data Types

In a digital hardware, numbers are stored in binary words. A binary word is a fixed-length
sequence of bits (1's and 0's). How hardware components or software functions interpret this
sequence of 1's and 0's is defined by the data type. Binary numbers are represented as either
fixed-point or floating-point data types. In order to implement an algorithm such as
communication algorithms, the algorithm should be converted to the fixed-point domain and
then it should be described with Hardware Description Language (HDL). In HDL coding process,
it is necessary to indicate the size of the variables and registers. The registers should be large
enough to represent the value of parameters with the desired precision.

Fixed-point data type helps us to know what happens in the hardware. In the other words
when an algorithm is represented in floating-point domain, all of the variables have 64 bits(in
MATLAB programming). So all of the operations are done with large number of bits. We know
that it is impossible to implement an algorithm with large number of flip flops. Because large
number of flip flops need a larger area, and more power consumption. In order to solve this
problem the algorithm should be converted to the fixed-point domain. In the fixed-point
domain a pair (W,F) is considered for each of the parameters in the algorithm, where W is the
word length of the parameters and F is the fractional length of the parameters. It is obvious
that larger W and F results in a better performance and lower bit error rate (BER) but the
design needs a large silicon area. On the other hand smaller W and F result in a larger BER but
less area. So we should choose suitable values of (W,F) for each parameter in the algorithm. For
this reason a simulation should be ran for the algorithm to get the dynamic range of the
parameters. Simulation results indicate the dynamic range of the variables and the number of
bits for W and F, which are used to represent the variables with the desired precision.

According to the previous section, a fixed-point data type is characterized by the word
length in bits, the position of the binary point, and whether it is signed or unsigned. The
position of the binary point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed or
unsigned) is shown below:

bwl-1 bwl-z """"""""" b3 bz b1 bo

MSB LSB

Binary point

Fixed-Point Design

Where:

b; is the ith binary digit

wl is the word length in bits

b,,;—1 is the location of the most significant, or highest, bit (MSB)
b, is the location of the least significant, or lowest, bit (LSB).

The binary point is shown three places to the left of the LSB. In this example, therefore, the
number is said to have three fractional bits, or a fraction length of three.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point numbers
are typically represented in one of these ways:

» Sign/magnitude
» One's complement
» Two's complement

Two's complement is the most common representation of signed fixed-point numbers and is
the only representation used by Fixed-Point Toolbox in MATLAB.

Fixed-point numbers can be encoded according to the following scheme:
Real — value = 2-fractional-length » gtored integer (1)

where stored integer is the raw binary number, in which the binary point assumed to be at
the far right of the word.

Conversion of an algorithm from floating-point domain to fixed-point domain can be done
through the MATLAB fixed-point toolbox.

Fixed-Point Toolbox provides fixed-point data types in MATLAB and enables algorithm
development by providing fixed-point arithmetic. Fixed-Point Toolbox enables you to create the
following types of objects:

» fi — Defines a fixed-point numeric object in the MATLAB workspace. Each fi object is
composed of value data, a fimath object, and a numerictype object.

fimath — Governs how overloaded arithmetic operators work with fi objects

fipref — Defines the display, logging, and data type override preferences of fi objects
numerictype — Defines the data type and scaling attributes of fi objects

YV V VYV V

quantizer — Quantizes data sets

Fixed-Point Design

Normally complicated algorithms have many variables so the number of fixed-point objects
grows significantly. Moreover, in some cases a long time simulation is needed to obtain the BER
curves of the algorithm. In the above cases fixed-point simulation with MATLAB fixed-point
toolbox needs a large amount of memory, time, and CPU usage and in most of the cases it will
crash.

In order to solve the above problem a simple method for floating-point to fixed-point
conversion is proposed in this tutorial. Simulation results with this method and simulation
results with the MATLAB fixed-point toolbox are the same, but the simulation with the
proposed method is significantly faster than the other. For example one iteration of K-Best
algorithm simulation with MATLAB fixed-point toolbox, takes 237 seconds but simulation with
the proposed method, needs only 36 seconds. So in a long-time simulation for example 5000
iteration MATLAB fixed-point toolbox doesn’t work well.

Floating-point to Fixed-point conversion:

In this part a simple method for floating-point to fixed-point conversion will describe. Then
we consider the various arithmetic operations and mention a lot of examples for them and
finally compare their results with the results of MATLAB fixed-point toolbox.

In order to convert a floating-point value to the corresponding fixed-point vlaue use the
following steps.

Consider a floating-point variable, a :

Step 1: Calculate b = a x 2F, where F is the fractional length of the variable. Note that b is
represented in decimal.

Step 2: Round the value of b to the nearest integer value. For example :

round(3.56) = 4

round(—1.9) = -2

round(—1.5) = -2

Step 3: Convert b from decimal to binary representation and name the new variable c.

Step 4: Now, we assume that c, needs n bits to represent the value of b in binary. On the
other hand we obtain the values of W and F, from the simulation. So the value of W should be

Fixed-Point Design

equal or larger than n. If Small value is chosen for W, we should truncate c. If W is larger than
n, (W-n) zero-bits add to the leftmost of c.

Now consider the simulation is ran carefully and suitable values of (W,F) are obtained. It
means that W is equal or larger than n. So (W-n) zero are added to leftmost of c¢. Then we
select F bits of c from position 0 to F-1 as the fractional part of the fixed-point variable.
Therefore the conversion from floating-point to fixed-point is finished by finding the position of
binary point in c.In order to verify the result, we can do the same conversion with MATLAB
fixed-point toolbox. The results of both methods are the same, but the proposed method is
faster. Because in MATLAB method we should call a large number of fixed-point functions and
fixed-point objects, which are time consuming and they need a large memory.

In the following section various examples are mentioned for different arithmetic operation
such as addition, subtraction, multiplication, and norm. In each case the operation is done
through the both methods and shown that the results are the same.

Note:
- In the following examples “Method 1” shows the MATLAB fixed-point toolbox and
“Method 2” shows the above method.
- The dot in the binary representation is used to separate the fractional part and the
integer part of the variable. But it isn’t a part of the variable.
Example 1)

This example shows that the value of (W,F) should choose carefully from the simulation
(according to the dynamic range of variables).

Method 1: fi (3.613,1,7,4) = 3.625 convert to binary with bin() 011.1010

fi(3.613,1,10,7) = 3.6094 convert to binary with bin() 011.1001110

fi(3.613,1,15,12) = 3.613 convert to binary with bin() 011.100111001111

Fixed-Point Design

Example 2)

This example shows the conversion of a floating-point value to fixed-point value and then
find the corresponding binary value and finally shows the conversion of a binary value to
corresponding real-value by (1).

Method 1:

fi(3.613,1,15,12) = 3.613 convert to binary with bin() = 011.100111001111 (W, F) = (15,12)

(011100111001111), = (14799)4 convert to decimal by (1) > 14799 x 2712 = 3,613

Example 3)

This example shows conversion of a floating-point value to corresponding fixed-point value
in two methods. Both positive and negative values are covered in this example.

a=3.013, (W,F)=(83)

Method 1:

fi(3.013,1,8,3) = 3.00 convert to binary with bin() 00011.000

Method 2:

Step1: b = ax 2F =3.013 x 23 = 24.1040

Step 2: round(24.1040) = 24
Step 3: ¢ = dec2bin(b) = 11000

Step4: ¢ =00011.000

In both methods: real value = integer value x 27F

Fixed-Point Design

Example 4)

a=951432 , (W,F) = (12,7)

Method 1:

fi(9.51432,1,12,7) = 9.5156 convert to binary with bin() 01001.1000010

Method 2:

Step1: b =ax 2F =9.51432 x 2¥7 = 1217.8329
Step 2: round(1217.8329) = 1218

Step 3: ¢ = dec2bin(b) = 010011000010

Step4: ¢ =01001.1000010

Example 5)

a=-9.0514 , (W,F) = (14,9)

Method 1:

fi(—9.0514 ,1,14,9) = —9.0508 convert to binary with bin() 10110.111100110

Method 2:

Stepl: b =ax2f =-9.0514 x 2% =-4634.3

Step 2: round(—4634.3) = —4634

Step 3: ¢ = dec2bin(b) = 10110111100110

Step4: ¢ =10110.111100110

Fixed-Point Design

Example 6) Multiplication 1

This example shows the conversion of a floating-point multiplication to fixed-point
multiplication. In order to perform this conversion:

1% : Each of operands are converted to fixed-point only by step 1 and step 2.
2" : Perform the multiplication with new values.

3, Apply the step 3 and step 4 on the multiplication result.

a=3613, (W,F)=(84) , b=2, (W,F)= (5,2)
Note:

(W, F) for the result of multiplication is (13,6).

Method 1:

d = fi(3.613,1,8,4) = 3.625 , e =fi(2152)=2

mult =d X e =7.25 convert to binary with bin() ¢ =0000111.010000

Note:

Note that if the multiplication is performed before fixed-point conversion, the result will be
different with the above result. It is better to perform fixed-point conversion for each operand,
then perform the operation.

Method 2:
Stepl: d =a x 2F =3.613 x 2% =57.808

Step 2: round(57.808) = 58

Stepl: e=bx2Ff=2x2%2 =8

Step 2: round(8) = 8

c=aXxXb

Fixed-Point Design

mult = round(d) X round(e) = 58 X 8 = 464

Step 3: ¢ = dec2bin(mult) = 0111010000

Step4:¢ =0000111.010000

Example 7) Multiplication 2.
a=213,(W,F) =(8,5) , b =3.2456,(W,F) = (12)9)
Note:

(W, F) for the result of multiplication is (20,14).

Method 1:
d = fi(2.13,1,8,5) = 2.125 , e = fi(3.2456,1,12,9) = 3.2461

mult =d X e = 6.8979 convert to binary with bin() ¢ =000110.11100101111000

Method 2:
Stepl: d = a x 2F =2.13 x 275 = 68.16

Step 2: round(68.16) = 68

Step1: e = b x 2F =3.2456 x 2%° = 1661.7472

Step 2: round(1662) = 1662

c=axXb

mult = round(d) X round(e) = 68 X 1662 = 113016
Step 3: ¢ = dec2bin(mult) = 011011100101111000

Step 4: ¢ =000110.11100101111000

Fixed-Point Design

Example 8) Addition.1

This example shows the conversion of a floating-point addition to fixed-point addition. In
order to perform this conversion:

1% : Align the binary point of operands by adding zero in the right side of the operand, which
has smaller fractional length.

2" Each of operands are converted to fixed-point only by step 1 and step 2.
3" perform the addition with new values.

4™ : Apply the step 3 and step 4 on the addition result.

a=3613 ,(W,F)=(7,3) , b=23,(W,F)=(7,2)
Note:

It is necessary to consider one bit for carry. So the word length of the addition result is the
larger word-length of operands plus one. The fractional-length of the addition is the larger
fractional-length of operands. So the step 1 is done with final fractional-length (fractional-
length of addition). Therefore in this example (W, F) of addition is equal to (8,3).

Method 1:

d = fi(3.613,1,7,3) = 3.625 , e = fi(2.3,1,7,2) = 2.25

add =d + e = 5.8750 convert to binary with bin() c=00101.111

Method 2:
Step1l: d = a x 2F = 3.613 x 2*3 = 28.904

Step 2: round(28.904) = 29

Stepl: e =b x2F =23 x2%3 =184
Step 2: round(18.4) = 18

c=a+b

10

Fixed-Point Design

add = round(d) + round(e) = 29 + 18 = 47

Step 3: ¢ = dec2bin(add) = 101111

Step4:c =00101.111

Example 9) Addition.2
This example shows the different between the following two ways in fixed-point simulation:

a- Perform the operation in floating-point domain and then convert the result to the
fixed-point domain.

b- Convert the operands to the fixed-point domain and then perform the operation in
fixed-point domain.

In order to show this note the Example8, which is done with the second way is performed again
in the first way.

In order to have an efficient fixed-point simulation, it is necessary to perform the second way.

1* way:
add = (3.613 + 2.3) = 5.913

add_fi = fi(add, 1,7,2) = 6 convert to binary with bin() ¢ =00110.00

2" way:

d=fi(3613172) =35 , e=fi(23172) =225

add =d+e =5.75 convert to binary withbin() ¢ =00101.11

11

Fixed-Point Design

Example 10) Addition.3

a=-9613 ,(W,F)=(10,5) , b=-3421,(W,F) = (8,)5)

Method 1:

d = fi(—9.613,1,10,5) = —9.625 , e = fi(—3.421,1,8,5) = —3.4063

add =d+e =-13.0313 convert to binary with bin() c=110010.11111
(W,F)=(11,5) !

Method 2:
Step1l: d = a x 2F = -9.613 x 2%5 = -307.616

Step 2: round(—307.616) = —308

Step1: e = b x 2F = —3.421 x 2*°> = —109.472

Step 2: round(—109.472) = —109

c=a+b

add = round(d) + round(e) = (—308) + (—109) = —417
Step 3: ¢ = dec2bin(add) = 11001011111

Step4:¢ =110010.11111

12

Fixed-Point Design

Example 11) Addition.4

a=-9613 ,(W,F) = (10,5) , b = +3.421,(W,F) = (8,5)

Method 1:

d = fi(—9.613,1,10,5) = —9.625 , e = fi(+3.421,1,8,5) = 3.4063

add =d+e =-6.2188 convert to binary with bin() c=111001.11001
(W,F)=(11,5)]

Method 2:
Step1l: d = a x 2F = -9.613 x 2%5 = -307.616

Step 2: round(—307.616) = —308

Step1: e = b x 2F =3.421 x 2*> = 109.472

Step 2: round(109.472) = 109

c=a+b

add = round(d) + round(e) = (—308) + (109) = —199
Step 3: ¢ = dec2bin(add) = 11100111001

Step4: ¢ =111001.11001

13

Fixed-Point Design

Example 12) Addition.5

a=+49.613 ,(W,F)=(10,5) , b=-3421,(W,F) = (8,)5)

Method 1:

d = fi(4+9.613,1,10,5) = +9.625 , e = fi(—3.421,1,8,5) = —3.4063

add =d+e =+6.2188 convert to binary with bin() ¢ =000110.00111
(W,F)=(11,5) ’

Method 2:
Step1: d = a x 2F = +9.613 x 275 = +307.616

Step 2: round(+307.616) = 308

Step1: e = b x 2F = —3.421 x 2*°> = —109.472

Step 2: round(—109.472) = —109

c=a+b

add = round(d) + round(e) = (+308) + (—109) = +199
Step 3: ¢ = dec2bin(add) = 00011000111

Step 4: ¢ = 000110.00111

14

Fixed-Point Design

Example 13) Norm calculation

This example shows the conversion of a floating-point norm calculation to a fixed-point
norm calculation.

a=325+426i ,(W,F)=(84)

Method 1:

b = fi(3.25 + 4.26i,1,8,4) = 3.2500 + 4.2500i

¢ = abs(b) = 5.3750 convert to binary with bin() > bin(c) = 0101.0110

Method 2:
Step 1: d = Re{b} x 2F =3.25 x 2** =52

e = Im{b} X 2F = 4.26 x 2** = 68.16
Step 2: round(52) = 52

round(68.16) = 68

Step 3: f = abs(52 + 68i) = 85.6037
Step 4: round(85.6037) = 86

Step 5: dec2bin(86) = 01010110

Step6: g = 0101.0110

Note:

In the hardware implementation the norm operation is done by CORDIC. So in an efficient
fixed-point conversion it is better to replace the corresponding command (i.e. abs()) with
CORDIC. But in the above code the difference between them is negligible.

15

Fixed-Point Design

Floating-point to fixed-point conversion of an algorithm

In this section conversion of an algorithm from the floating-point to the fixed-point is
shown. So a simple code is converted from the floating-point domain to the fixed-point domain.

The corresponding equation, which is described in the following MATLAB codes is:

j=NT1
Partial Euclidean Distance(PED) = Z |Z — RCS|?
j=1

Method1:
function PED = FixedPED2(R, S, C, 2);

R fi
Cfi
S fi
Z fi

fi(R 1,12,10); % i-object definitions
fi(C 1,14, 13);

fi(S,1,4,0);

fi(z, 1,16,12);

RCS = R*S*C, % he corresponding floating-point operation
RCS fi = Rfi*Cfi*S fi; %erformthe nultiplication in fixed-point
domai n

RCS fi_ =fi(RCS_ fi,1,16,12); %.inmt the (WF) of the result

PED interl = Z-RCS; %rhe correspondi ng floating-point operation
PED interl fi = Z fi-RCS fi_;

PED interl fi = fi(PED interl fi,1,16,12); %.imt the (WF) of the
resul t

PED inter2 fi = abs(PED interl fi); %Performthe norm cal cul ati on

for j=1:length(R(:,1)) %Cal cul ate the power operation
PED inter3_fi(j,1)=PED inter2_fi(j,1)*PED_inter2_fi(j,1);

end

FF=fi mat h;

PED inter4 fi = fi(PED inter3 fi,1,16,12); %imt the (WF) of the
result

PED = fi(sunm(PED inter4 fi),1,16,12); % erformthe Sum operation

NOTE:

In order to perform the summation operation in the above equation you can call the
above function (i.e. FixedPED2) in a loop with a proper value for the loop counter, which
is N in this equation. This process doesn’t affect on your fixed-point conversion.

16

Fixed-Point Design

Method2:

function PED = FixedPED3(R, S, C 2);

R _Frac=8; %rhe Fractional Length and

R Wor dLengt h=12; %rhe Word Length of the paraneters (WF)
S _Frac=0;

S _Wor dLengt h=4;

C Frac=14;

C _WordLengt h=15;

Z Frac=12;

Z \WrdLengt h=16;

RCS _Frac=R Frac+S _Frac+C Frac;
% PED i nterl Frac=nmax(Z_Frac, RCS Frac);

R fi 0=R*2”R_Fr ac; %Stepl in the Method2
S fi0=S*2"S Frac;
C fi0=C*2"C _Frac;
Z_fi0=2*2"Z_Fr ac;

R fi=round(R_fiO0); %St ep2 in the Method2
S fi=round(S_fiO0);
C fi=round(C fiO0);
Z fi=round(Z fiO0);

RCS fi = Rfi*S fi*Cfi; %erformng the nultiplication
RCS fi 1=RCS fi*2"(-RCS_Frac); %al culation of the real-value of the
RCS fil by (1)

RCS = R*S*C % he correspondi ng floating-point
operation

RCS _Frac = Z_Frac; %Equal i ze the Fractional Length of the
two operands

RCS_fi2 = RCS_fil *2*(RCS_Frac); ¥stepl in the Met hod2

RCS fi3 = round(RCS fi2); %St ep2 in the Method2

i f(RCS_Frac<Z Frac) % he two operands of the addition, should

have the sanme Fractional |ength.
RCS fi4=RCS fi 3*2"(Z_Frac-RCS Frac);
Z fil=Z fi; % n general This condition is
%used to equalize the fractional
el se % RCS_Frac>=Z Frac) % ength of the two operands.
Z fil=Z fi*2"(RCS_Frac-Z_Frac); %But in this code, in the
%previous lines this action is
RCS fi 4=RCS fi 3; %lone with "RCS Frac = Z Frac;"

end

17

Fixed-Point Design

PED interl fi = Z fil-RCS fi4;

PED interl Frac = Z Frac; %Jpdate the fractional |ength of
% he result of subtraction

PED interl = Z-RCS; %he correspondi ng floating-point

Yoper ation

for j=1:length(R(:,1))
PED_ inter2_fi(j,1)=abs(PED _interl fi(j,1)); % erformng the norm
%al cul ation
PED_ i nter2(j,1)=abs(PED inter1(j,1)); %rhe correspondi ng
floating-point operation
end

PED i nter2_Frac=PED i nterl1_ Frac; %Jpdate the fractional |ength of
% he result of normcal cul ation

PED inter3 fi=PED inter2 fi.”"2; %Perform ng the power operation
PED_i nt er 3=PED_i nter 2. "2; % he correspondi ng floating-point
%operation

PED_i nt er 3_Frac=PED i nter2_Frac*2; %Jpdate the fractional |ength of
% he result of power calcul ation

PED inter4 fi=PED inter3 fi*2~(-PED_inter3_Frac); %al culation of the
real -value of the PED inter4 fi by (1)

PED inter4 Frac=PED i nter3_Frac-8; %Jpdate the fractional |ength
for the next step
YNOTE:
%Wf the fractional length of the
% he internedi ate vari abl es
% ncrease significantly, we can
%imt it with the foll ow ng nethod.
% nportant NOTE:
%Cal cul ati on of the real value
% s done with the old F, but the
%tepl of Method2 is
%lone with the new F.

PED inter5 fi=PED inter4 fi*2"(PED inter4 Frac); %Stepl in the Method2

PED inter6 _fi=round(PED inter5 fi); %St ep2 in the Method2

PED i nter6_Frac=PED i nter4_Frac; %Jpdate the fractional |ength
% or the next step

PED1 =sum(PED inter6 fi); %erformthe sum operation

18

Fixed-Point Design

PED1 _Frac=PED i nter6_Frac;

PED=PEDL* 2/ (- PEDL_Fr ac) ;

PEDO = sum(PED i nter3);

% he

%Jpdate the fractional |ength for
% he next step
%Cal cul ati on of the real -val ue of
% he PED by (1)

correspondi ng fl oating-point operation

19

