www.it-ebooks.info

http://www.it-ebooks.info/

Richard Blum and Christine B

Linux _

Command Line ‘M‘*

and Shell Scrlptmg

Second Edition

Use command lines and

1}1']1;55 the GUI
Automate common tasks

Create E‘nT‘:1EL*.~'~51:}1']:1L

http://www.it-ebooks.info/

par s
"

The book you need to succeed!

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Title Page

Copyright

Dedication
Credits

About the Authors

About the Technical Editor

Acknowledgments

Introduction

Who Should Read This Book
How This Book Is Organized
Minimum Requirements
Where to Go from Here

PartI: The Linux Command Line

Chapter 1: Starting with Linux Shells

What Is Linux?
Linux Distributions

Summary

Chapter 2: Getting to the Shell

Terminal Emulation
The terminfo Database
The Linux Console

The xterm Terminal
The Konsole Terminal
The GNOME Terminal

Summary

www.it-ebooks.info

9781118087770f01.xhtml
9781118087770f02.xhtml
9781118087770f03.xhtml
9781118087770f04.xhtml
9781118087770f05.xhtml
9781118087770f06.xhtml
9781118087770f07.xhtml
9781118087770f08.xhtml
9781118087770f08.xhtml#f06_level1_1
9781118087770f08.xhtml#f06_level1_2
9781118087770f08.xhtml#f06_level1_3
9781118087770f08.xhtml#f06_level1_4
9781118087770p01.xhtml
9781118087770c01.xhtml
9781118087770c01.xhtml#c01_level1_1
9781118087770c01.xhtml#c01_level1_2
9781118087770c01.xhtml#c01_level1_3
9781118087770c02.xhtml
9781118087770c02.xhtml#c02_level1_1
9781118087770c02.xhtml#c02_level1_2
9781118087770c02.xhtml#c02_level1_3
9781118087770c02.xhtml#c02_level1_4
9781118087770c02.xhtml#c02_level1_5
9781118087770c02.xhtml#c02_level1_6
9781118087770c02.xhtml#c02_level1_7
http://www.it-ebooks.info/

Chapter 3: Basic bash Shell Commands

Starting the Shell

The Shell Prompt

The bash Manual
Filesystem Navigation
File and Directory Listing
File Handling

Directory Handling
Viewing File Contents
Summary

Chapter 4: More bash Shell Commands

Monitoring Programs
Monitoring Disk Space
Working with Data Files

Summary

Chapter 5: Using Linux Environment Variables

What Are Environment Variables?
Setting Environment Variables
Removing Environment Variables
Default Shell Environment Variables
Setting the PATH Environment Variable
Locating System Environment Variables
Variable Arrays

Using Command Aliases

Summary

Chapter 6: Understanding Linux File Permissions

Linux Security

Using Linux Groups
Decoding File Permissions
Changing Security Settings

Sharing Files
Summary

Chapter 7: Managing Filesystems

Exploring Linux Filesystems
Working with Filesystems
Logical Volume Managers

Summary

www.it-ebooks.info

9781118087770c03.xhtml
9781118087770c03.xhtml#c03_level1_1
9781118087770c03.xhtml#c03_level1_2
9781118087770c03.xhtml#c03_level1_3
9781118087770c03.xhtml#c03_level1_4
9781118087770c03.xhtml#c03_level1_5
9781118087770c03.xhtml#c03_level1_6
9781118087770c03.xhtml#c03_level1_7
9781118087770c03.xhtml#c03_level1_8
9781118087770c03.xhtml#c03_level1_9
9781118087770c04.xhtml
9781118087770c04.xhtml#c04_level1_1
9781118087770c04.xhtml#c04_level1_2
9781118087770c04.xhtml#c04_level1_3
9781118087770c04.xhtml#c04_level1_4
9781118087770c05.xhtml
9781118087770c05.xhtml#c05_level1_1
9781118087770c05.xhtml#c05_level1_2
9781118087770c05.xhtml#c05_level1_3
9781118087770c05.xhtml#c05_level1_4
9781118087770c05.xhtml#c05_level1_5
9781118087770c05.xhtml#c05_level1_6
9781118087770c05.xhtml#c05_level1_7
9781118087770c05.xhtml#c05_level1_8
9781118087770c05.xhtml#c05_level1_9
9781118087770c06.xhtml
9781118087770c06.xhtml#c06_level1_1
9781118087770c06.xhtml#c06_level1_2
9781118087770c06.xhtml#c06_level1_3
9781118087770c06.xhtml#c06_level1_4
9781118087770c06.xhtml#c06_level1_5
9781118087770c06.xhtml#c06_level1_6
9781118087770c07.xhtml
9781118087770c07.xhtml#c07_level1_1
9781118087770c07.xhtml#c07_level1_2
9781118087770c07.xhtml#c07_level1_3
9781118087770c07.xhtml#c07_level1_4
http://www.it-ebooks.info/

Chapter 8: Installing Software

Package Management Primer
The Debian-Based Systems
The Red Hat-Based Systems
Installing from Source Code
Summary

Chapter 9: Working with Editors

The vim Editor

The emacs Editor

The KDE Family of Editors
The GNOME Editor

Summary

Part II: Shell Scripting Basics

Chapter 10: Basic Script Building

Using Multiple Commands
Creating a Script File
Displaying Messages

Using Variables

Redirecting Input and Output
Pipes

Performing Math

Exiting the Script

Summary

Chapter 11: Using Structured Commands

Working with the if-then Statement
The if-then-else Statement

Nesting ifs

The test Command

Compound Condition Testing
Advanced if-then Features

The case Command

Summary

Chapter 12: More Structured Commands

The for Command
The C-Style for Command

www.it-ebooks.info

9781118087770c08.xhtml
9781118087770c08.xhtml#c08_level1_1
9781118087770c08.xhtml#c08_level1_2
9781118087770c08.xhtml#c08_level1_3
9781118087770c08.xhtml#c08_level1_4
9781118087770c08.xhtml#c08_level1_5
9781118087770c09.xhtml
9781118087770c09.xhtml#c09_level1_1
9781118087770c09.xhtml#c09_level1_2
9781118087770c09.xhtml#c09_level1_3
9781118087770c09.xhtml#c09_level1_4
9781118087770c09.xhtml#c09_level1_5
9781118087770p02.xhtml
9781118087770c10.xhtml
9781118087770c10.xhtml#c10_level1_1
9781118087770c10.xhtml#c10_level1_2
9781118087770c10.xhtml#c10_level1_3
9781118087770c10.xhtml#c10_level1_4
9781118087770c10.xhtml#c10_level1_5
9781118087770c10.xhtml#c10_level1_6
9781118087770c10.xhtml#c10_level1_7
9781118087770c10.xhtml#c10_level1_8
9781118087770c10.xhtml#c10_level1_9
9781118087770c11.xhtml
9781118087770c11.xhtml#c11_level1_1
9781118087770c11.xhtml#c11_level1_2
9781118087770c11.xhtml#c11_level1_3
9781118087770c11.xhtml#c11_level1_4
9781118087770c11.xhtml#c11_level1_5
9781118087770c11.xhtml#c11_level1_6
9781118087770c11.xhtml#c11_level1_7
9781118087770c11.xhtml#c11_level1_8
9781118087770c12.xhtml
9781118087770c12.xhtml#c12_level1_1
9781118087770c12.xhtml#c12_level1_2
http://www.it-ebooks.info/

The while Command

The until Command

Nesting Loops

Looping on File Data
Controlling the Loop

Processing the Output of a Loop

Summary

Chapter 13: Handling User Input

Command Line Parameters
Special Parameter Variables
Being Shifty

Working with Options
Standardizing Options
Getting User Input

Summary

Chapter 14: Presenting Data

Understanding Input and Output
Redirecting Output in Scripts
Redirecting Input in Scripts
Creating Your Own Redirection
Listing Open File Descriptors
Suppressing Command Output
Using Temporary Files

Logging Messages

Summary

Chapter 15: Script Control

Handling Signals

Running Scripts in Background Mode
Running Scripts Without a Console
Job Control

Being Nice

Running Like Clockwork

Summary

Part I1l: Advanced Shell Scripting

Chapter 16: Creating Functions

Basic Script Functions

www.it-ebooks.info

9781118087770c12.xhtml#c12_level1_3
9781118087770c12.xhtml#c12_level1_4
9781118087770c12.xhtml#c12_level1_5
9781118087770c12.xhtml#c12_level1_6
9781118087770c12.xhtml#c12_level1_7
9781118087770c12.xhtml#c12_level1_8
9781118087770c12.xhtml#c12_level1_9
9781118087770c13.xhtml
9781118087770c13.xhtml#c13_level1_1
9781118087770c13.xhtml#c13_level1_2
9781118087770c13.xhtml#c13_level1_3
9781118087770c13.xhtml#c13_level1_4
9781118087770c13.xhtml#c13_level1_5
9781118087770c13.xhtml#c13_level1_6
9781118087770c13.xhtml#c13_level1_7
9781118087770c14.xhtml
9781118087770c14.xhtml#c14_level1_1
9781118087770c14.xhtml#c14_level1_2
9781118087770c14.xhtml#c14_level1_3
9781118087770c14.xhtml#c14_level1_4
9781118087770c14.xhtml#c14_level1_5
9781118087770c14.xhtml#c14_level1_6
9781118087770c14.xhtml#c14_level1_7
9781118087770c14.xhtml#c14_level1_8
9781118087770c14.xhtml#c14_level1_9
9781118087770c15.xhtml
9781118087770c15.xhtml#c15_level1_1
9781118087770c15.xhtml#c15_level1_2
9781118087770c15.xhtml#c15_level1_3
9781118087770c15.xhtml#c15_level1_4
9781118087770c15.xhtml#c15_level1_5
9781118087770c15.xhtml#c15_level1_6
9781118087770c15.xhtml#c15_level1_7
9781118087770p03.xhtml
9781118087770c16.xhtml
9781118087770c16.xhtml#c16_level1_1
http://www.it-ebooks.info/

Returning a Value

Using Variables in Functions

Array Variables and Functions
Function Recursion

Creating a Library

Using Functions on the Command Line

Summary

Chapter 17: Writing Scripts for Graphical Desktops

Creating Text Menus
Doing Windows
Getting Graphic
Summary

Chapter 18: Introducing sed and gawk

Text Manipulation
The sed Editor Basics

Summary

Chapter 19: Reqular Expressions

What Are Regular Expressions?
Defining BRE Patterns
Extended Regular Expressions
Regular Expressions in Action
Summary

Chapter 20: Advanced sed

Multiline Commands
The Hold Space
Negating a Command
Changing the Flow
Pattern Replacement
Using sed in Scripts
Creating sed Utilities

Summary

Chapter 21: Advanced gawk

Using Variables
Working with Arrays
Using Patterns
Structured Commands

www.it-ebooks.info

9781118087770c16.xhtml#c16_level1_2
9781118087770c16.xhtml#c16_level1_3
9781118087770c16.xhtml#c16_level1_4
9781118087770c16.xhtml#c16_level1_5
9781118087770c16.xhtml#c16_level1_6
9781118087770c16.xhtml#c16_level1_7
9781118087770c16.xhtml#c16_level1_8
9781118087770c17.xhtml
9781118087770c17.xhtml#c17_level1_1
9781118087770c17.xhtml#c17_level1_2
9781118087770c17.xhtml#c17_level1_3
9781118087770c17.xhtml#c17_level1_4
9781118087770c18.xhtml
9781118087770c18.xhtml#c18_level1_1
9781118087770c18.xhtml#c18_level1_2
9781118087770c18.xhtml#c18_level1_3
9781118087770c19.xhtml
9781118087770c19.xhtml#c19_level1_1
9781118087770c19.xhtml#c19_level1_2
9781118087770c19.xhtml#c19_level1_3
9781118087770c19.xhtml#c19_level1_4
9781118087770c19.xhtml#c19_level1_5
9781118087770c20.xhtml
9781118087770c20.xhtml#c20_level1_1
9781118087770c20.xhtml#c20_level1_2
9781118087770c20.xhtml#c20_level1_3
9781118087770c20.xhtml#c20_level1_4
9781118087770c20.xhtml#c20_level1_5
9781118087770c20.xhtml#c20_level1_6
9781118087770c20.xhtml#c20_level1_7
9781118087770c20.xhtml#c20_level1_8
9781118087770c21.xhtml
9781118087770c21.xhtml#c21_level1_1
9781118087770c21.xhtml#c21_level1_2
9781118087770c21.xhtml#c21_level1_3
9781118087770c21.xhtml#c21_level1_4
http://www.it-ebooks.info/

Formatted Printing
Built-in Functions
User-Defined Functions

Summary

Chapter 22: Working with Alternative Shells

What Is the dash Shell?
The dash Shell Features
Scripting in dash

The zsh Shell

Parts of the zsh Shell
Scripting with zsh

Summary

Part IV: Advanced Shell Scripting Topics

Chapter 23: Using a Database

The MySQL Database

The PostgreSQL Database
Working with Tables

Using the Database in Your Scripts
Summary

Chapter 24: Using the Web

The Lynx Program
The cURL Program
Networking with zsh

Summary

Chapter 25: Using E-mail
The Basics of Linux E-Mail
Setting Up Your Server
Sending a Message with Mailx
The Mutt Program
Summary

Chapter 26: Writing Script Utilities

Monitoring Disk Space
Performing Backups
Managing User Accounts

www.it-ebooks.info

9781118087770c21.xhtml#c21_level1_5
9781118087770c21.xhtml#c21_level1_6
9781118087770c21.xhtml#c21_level1_7
9781118087770c21.xhtml#c21_level1_8
9781118087770c22.xhtml
9781118087770c22.xhtml#c22_level1_1
9781118087770c22.xhtml#c22_level1_2
9781118087770c22.xhtml#c22_level1_3
9781118087770c22.xhtml#c22_level1_4
9781118087770c22.xhtml#c22_level1_5
9781118087770c22.xhtml#c22_level1_6
9781118087770c22.xhtml#c22_level1_7
9781118087770p04.xhtml
9781118087770c23.xhtml
9781118087770c23.xhtml#c23_level1_1
9781118087770c23.xhtml#c23_level1_2
9781118087770c23.xhtml#c23_level1_3
9781118087770c23.xhtml#c23_level1_4
9781118087770c23.xhtml#c23_level1_5
9781118087770c24.xhtml
9781118087770c24.xhtml#c24_level1_1
9781118087770c24.xhtml#c24_level1_2
9781118087770c24.xhtml#c24_level1_3
9781118087770c24.xhtml#c24_level1_4
9781118087770c25.xhtml
9781118087770c25.xhtml#c25_level1_1
9781118087770c25.xhtml#c25_level1_2
9781118087770c25.xhtml#c25_level1_3
9781118087770c25.xhtml#c25_level1_4
9781118087770c25.xhtml#c25_level1_5
9781118087770c26.xhtml
9781118087770c26.xhtml#c26_level1_1
9781118087770c26.xhtml#c26_level1_2
9781118087770c26.xhtml#c26_level1_3
http://www.it-ebooks.info/

Summary

Chapter 27: Advanced Shell Scripts

Monitoring System Statistics
Problem-Tracking Database

Summary

Appendix A: Quick Guide to bash Commands

Built-in Commands
bash Commands
Environment Variables

Appendix B: Quick Guide to sed and gawk

The sed Editor
The gawk Program

Index

www.it-ebooks.info

9781118087770c26.xhtml#c26_level1_4
9781118087770c27.xhtml
9781118087770c27.xhtml#c27_level1_1
9781118087770c27.xhtml#c27_level1_2
9781118087770c27.xhtml#c27_level1_3
9781118087770b01.xhtml
9781118087770b01.xhtml#b01_level1_1
9781118087770b01.xhtml#b01_level1_2
9781118087770b01.xhtml#b01_level1_3
9781118087770b02.xhtml
9781118087770b02.xhtml#b02_level1_1
9781118087770b02.xhtml#b02_level1_2
9781118087770bindex.xhtml
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Linux® Con
and Shell Sc

Second

http://www.it-ebooks.info/

Richai
Christine

Wiley Pub

www.it-ebooks.info

http://www.it-ebooks.info/

Linux® Command Line and Shell Scripting Bible, Second Edition
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc, Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-00442-5

ISBN: 978-1-118-08777-0 (ebk)

ISBN: 978-1-118-08778-7 (ebk)

ISBN: 978-1-118-08779-4 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley &Sons, Inc,, 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If
professional assistance is required, the services of a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses
theinformation the organization or website may provide or recommendations it may make. Further, readers should be aware
that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is

read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appearsin print may not be availablein
electronicbooks.

Library of Congress Control Number: 2011921770

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.and/or its
affiliates, in the United States and other countries, and may not be used without written permission. Linux is a registered
trademark of Linus Torvalds. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.is not

associated with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.it-ebooks.info/

To the Lord God Almighty, “in whom are hidden all the treasures of wisdom and knowledge.”

—~Colossians 2:3

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Acquisitions Editor

Mary James

Project Editor

Brian Herrmann

Technical Editor

Jack Cox

Production Editor

Daniel Scribner

Copy Editor
Nancy Rapoport

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

www.it-ebooks.info

http://www.it-ebooks.info/

Katherine Crocker

Proofreader

Publication Services, Inc.

Indexer

Robert Swanson

Cover Designer

Ryan Sneed

Cover Image

Joyce Haughey

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Richard Blum has worked in the ITindustry for more than 20 years as both a systems and network administrator, and has
published numerous Linux and open source books. He has administered UNIX, Linux, Novell, and Microsoft servers, as well as
helped design and maintain a 3,500 user network utilizing Cisco switches and routers. He has used Linux servers and shell
scripts to perform automated network monitoring, and has written shell scriptsin most of the common Linux shell
environments. Richis an onlineinstructor for an Introduction to Linux course that is used by colleges and universities across
the U.S. When he's not being a computer nerd, Rich plays electric bass in a couple of different church worship bands, and

enjoys spending time with his wife Barbara, and two daughters Katie Jane and Jessica.

Christine Bresnahan starting working with computers more than 25 yearsago in the ITindustry as a system
administrator. Christine is currently an Adjunct Professor at lvy Tech Community Collegein Indianapolis, Indiana, teaching

Linux system administration, Linux security, and Windows security classes.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Editor

Jack Coxis a Senior Manager with CapTech Ventures in Richmond, VA. He has more than 25 years of experience in IT, spanning
abroad range of disciplinesincluding mobile computing, transaction processing, RFID, Java development, and
cryptography. Jack enjoys life in Richmond with his lovely wife and rambunctious children. Outside of technology, his
interestsinclude church, his children, and extended family.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things possible, and gives us the gift of
eternal life.

Many thanks go to the fantastic team of people at John Wiley & Sons for their outstanding work on this project. Thanks
to Mary James, the acquisitions editor, for offering us the opportunity to work on this book. Also thanks to Brian Herrmann,
the project editor, for keeping things on track and making this book more presentable. Thanks, Brian, for all your hard work
and diligence. The technical editor, Jack Cox, did a wonderful job of double checking all the work in the book, plus making

suggestions to improve the content. Thanks to Nancy Rapoport, the copy editor, for her endless patience and diligence to
make our work readable. We would also like to thank Carole McClendon at Waterside Productions, Inc, for arranging this

opportunity for us,and for helping us outin our writing careers.

Christine would like to thank her husband, Timothy, for his encouragement, patience, and willingness to listen, even when
he has no idea what she is talking about.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Welcome to the second edition of Linux Command Line and Shell Scripting Bible. Like all books in the Bible series, you can expect
to find both hands-on tutorials and real-world information, as well as reference and background information that provides
a context for what you are learning. This book is a fairly comprehensive resource on the Linux command line and shell
commands. By the time you have completed Linux Command Line and Shell Scripting Bible you will be well prepared to write

your own shell scripts that can automate practically any task on your Linux system.

Who Should Read This Book

If you're a system administrator in a Linux environment, you'll benefit greatly by knowing how to write shell scripts. The
book doesn't walk you through the process of setting up a Linux system, but once you haveit running you'll want to start
automating some of the routine administrative tasks. That's where shell scripting comesin, and that's where this book will help
you out. This book will demonstrate how to automate any administrative task using shell scripts, from monitoring system

statistics and data files to generating reports for your boss.

If you're a home Linux enthusiast, you'll also benefit from Linux Command Line and Shell Scripting Bible. Nowadays, it's easy
to get lost in the graphical world of pre-built widgets. Most desktop Linux distributions try their best to hide the Linux
system from the typical user. However, there are times when you have to know what's going on under the hood. This book
shows you how to access the Linux command line prompt and what to do once you get there. Often performing simple tasks,
such as file management, can be done more quickly from the command line than from a fancy graphical interface. There's a

wealth of commands you can use from the command line, and this book shows you how to use them.

How This Book Is Organized

This book leads you through the basics of the Linux command line and into more complicated topics, such as creating your
own shell scripts. The book is divided into five parts, each one building on the previous parts.

Part | assumes that you either have a Linux system running, or are looking into getting a Linux system. Chapter 1,
“Starting with Linux Shells,” describes the parts of a total Linux system and shows how the shell fits in. After describing the

basics of the Linux system, this part continues with the following:

®Using a terminal emulation package to access the shell (Chapter 2)
®Introducing the basic shell commands (Chapter 3)
* Using more advanced shell commands to peek at system information (Chapter 4)
* Working with shell variables to manipulate data (Chapter 5)
*Understanding the Linux filesystem and security (Chapter 6)
* Working with Linux filesystems from the command line (Chapter 7)
*Installing and updating software from the command line (Chapter 8)
® Using the Linux editors to start writing shell scripts (Chapter 9)

In Part 11, you begin writing shell scripts. As you go through the chaptersyou'll do the following:
* Learn how to create and run shell scripts (Chapter 10)
® Alter the program flow in a shell script (Chapter 11)
® Iterate through code sections (Chapter 12)
*Handle data from the user in your scripts (Chapter 13)
* See different methods for storing and displaying data from your Script (Chapter 14)
® Control how and when your shell scripts run on the system (Chapter 15)

Part Ill dives into more advanced areas of shell script programming, including:
® Creating your own functions to usein all your scripts (Chapter 16)
® Utilizing the Linux graphical desktop for interacting with your script users (Chapter 17)
® Using advanced Linux commands to filter and parse data files (Chapter 18)
*Using regular expressions to define data (Chapter 19)
® Learning advanced methods of manipulating data in your scripts (Chapter 20)
® Generating reports from raw data (Chapter 21)

* Modifying your shell scripts to run in other Linux shells (Chapter 22)
The last section of the book, Part IV, demonstrates how to use shell scripts in real-world environments. In this part, you

www.it-ebooks.info

http://www.it-ebooks.info/

will:
®See how to use popular open source databases in your shell scripts (Chapter 23)
* Learn how to extract data from Websites, and send data between systems (Chapter 24)
® Use e-mail to send notifications and reports to external users (Chapter 25)
® Write shell scripts to automate your daily system administration functions (Chapter 26)

® Utilize all of the features you've learned from the book to create professional-quality shell scripts (Chapter 27)

Conventions and Features

There are many different organizational and typographical features throughout this book designed to help you get the
most of the information.

Notes and Warnings

Whenever the authors want to bring something important to your attention the information will appear in a Warning.

Warning

This information is important and is set off in a separate paragraph with a special icon.
Warnings provide information about things to watch out for, whether simply inconvenient
or potentially hazardous to your data or systems.

For additional items of interest that relate to the chapter text, the authors will use Notes.

Note

Notes provide additional, ancillary information that is helpful, but somewhat
outside of the current presentation of information.

Minimum Requirements

Linux Command Line and Shell Scripting Bible doesn't focus on any specific Linux distribution, so you'll be able to followalong
in the book using any Linux system you have available. The bulk of the book references the bash shell, which is the default

shell for most Linux systems.

Where to Go from Here

Onceyou've completed Linux Command Line and Shell Scripting Bible, you'll be well on your way to incorporating Linux
commands in your daily Linux work. In the ever-changing world of Linux, it's always a good idea to stay in touch with new
developments. Often Linux distributions will change, adding new features and removing older ones. To keep you knowledge
of Linux fresh, always stay well-informed. Find a good Linux forum site and monitor what's happening in the Linux world.
There are many popular Linux news sites, such as Slashdot and Distrowatch, that provide up-to-the-minute information

about newadvancesin Linux.

www.it-ebooks.info

http://www.it-ebooks.info/

Part |

The Linux Command Line

In This Part
Chapter 1:Starting with Linux Shells

Chapter 2: Getting to the Shell

Chapter 3: Basic bash Shell Commands

Chapter 4: More bash Shell Commands

Chapter 5: Using Linux Environment Variables
Chapter 6: Understanding Linux File Permissions
Chapter 7: Managing Filesystems

Chapter 8:Installing Software

Chapter 9: Working with Editors

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1
Starting with Linux Shells

In this Chapter

* What is Linux?

* Parts of the Linux kernel
*Exploring the Linux desktop
® Visiting Linux distributions

Beforeyou can dive into working with the Linux command line and shells, it'sa good idea to first understand what Linux is,
where it came from, and how it works. This chapter walks you through what Linux is, and explains where the shell and

command line fit in the overall Linux picture.

What Is Linux?

If you've never worked with Linux before, you may be confused as to why there are so many different versions of it available.
I'm sure that you have heard various terms such as distribution, LiveCD, and GNU when looking at Linux packages and been
confused. Wading through the world of Linux for the first time can be a tricky experience. This chapter takes some of the

mystery out of the Linux system before you start working on commands and scripts.
For starters, there are four main parts that make up a Linux system:
* The Linux kernel
* The GNU utilities
* Agraphical desktop environment

* Application software
Each of these four parts has a specificjob in the Linux system. Each of the parts by itself isn't very useful. Figure 1.1 shows a
basicdiagram of how the parts fit together to create the overall Linux system.

Figure 1.1 The Linux system

www.it-ebooks.info

#c01_fig_0001
#c01_fig_anc_0001
http://www.it-ebooks.info/

Application Software

. v . !

Windows
Management
Software GNU
System
Utilities

Linux Kerngl

' { !)

Computer Hardware

This section describes these four main partsin detail, and gives you an overview of how they work together to createa
complete Linux system.

Looking into the Linux Kernel

The core of the Linux system is the kernel. The kernel controls all of the hardware and software on the computer system,
allocating hardware when necessary, and executing software when required.

If you've been following the Linux world at all, no doubt you've heard the name Linus Torvalds. Linus is the person
responsible for creating the first Linux kernel software while he was a student at the University of Helsinki. Heintended it to

be a copy of the Unix system, at the time a popular operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solicited suggestions for improving it.
This simple process started a revolution in the world of computer operating systems. Soon Linus was receiving suggestions

from students as well as professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos. To simplify things, Linus
acted asa central point for all improvement suggestions. It was ultimately Linus's decision whether or not to incorporate
suggested codein the kernel. This same concept is still in place with the Linux kernel code, except that instead of just Linus

controlling the kernel code, a team of developers has taken on the task.
The kernel is primarily responsible for four main functions:
* System memory management
* Software program management
*Hardware management

® Filesystem management

www.it-ebooks.info

#c01_fig_anc_0001
http://www.it-ebooks.info/

The following sections explore each of these functionsin more detail.

System Memory Management

One of the primary functions of the operating system kernel is memory management. Not only does the kernel manage the
physical memory available on the server, but it can also create and manage virtual memory, or memory that does not actually

exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the contents of virtual memory
locations back and forth from the swap space to the actual physical memory. This allows the system to think there is more

memory available than what physically exists (shown in Figure 1.2).

Figure 1.2 The Linux system memory map
Virtual Memory

The Kernel

Physical Memory

Swap Space

T
"“"--._.______

e
-._._'_,-l'"".

=

"'-u.___‘_____

T
-—''_'-'-H!

The memory locations are grouped into blocks called pages. The kernel locates each page of memory either in the physical
memory or the swap space. The kernel then maintains a table of the memory pages that indicates which pages are in physical

memory and which pages are swapped out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory pages that have not been
accessed for a period of time to the swap space area (called swapping out), even if there's other memory available. When a
program wants to access a memory page that has been swapped out, the kernel must make room for it in physical memory by
swapping out a different memory page, and swap in the required page from the swap space. Obviously, this process takes
time, and can slow down a running process. The process of swapping out memory pages for running applications continues

for aslong as the Linux systemis running.
You can see the current status of the virtual memory on your Linux system by viewing the special /proc/meminfo file.

Here'san example of a sample /proc/meminfo entry:

rich@rich-desktop:~$ cat /proc/meminfo

MemTotal:

1026084 kB

www.it-ebooks.info

#c01_fig_0002
#c01_fig_anc_0002
http://www.it-ebooks.info/

MemFree:
Buffers:
Cached:
SwapCached:
Active:
Inactive:
Active(anon):

Inactive(anon):

Active(file):

Inactive(file):

Unevictable:
Mlocked:
HighTotal:
HighFree:
LowTotal:
LowFree:
SwapTotal:
SwapFree:
Dirty:
Writeback:
AnonPages:
Mapped:
Shmem:

Slab:
SReclaimable:
SUnreclaim:
KernelStack:
PageTables:
NFS_Unstable:
Bounce:
WritebackTmp:
CommitLimit:
Committed_AS:
VmallocTotal:
VmallocUsed:
VmallocChunk:

HardwareCorrupted:
HugePages_Total:
HugePages_Free:
HugePages_Rsvd:
HugePages_Surp:

Hugepagesize:
DirectMap4k:
DirectMap4M:

666356
49900
152272
0
171468
154196
131056
32
40412
154164
12

12
139208
252
886876
666104
2781176
2781176
588

0
123500
52232
7600
17676
9788
7888
2656
5072

0

0

0
3294216
1234480
122880
7520
110672

0
0
0
0
0
4096

12280
897024

kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB
kB

kB
kB
kB

www.it-ebooks.info

http://www.it-ebooks.info/

rich@rich-desktop:~$

TheMemTotal : line shows that this Linux server has 1GB of physical memory. It also shows that about 660MB is not
currently being used (MemFree). The output also shows that there is about 2.5GB of swap space memory available on this
system (SwapTotal).

By default, each process running on the Linux system has its own private memory pages. One process cannot access
memory pages being used by another process. The kernel maintains its own memory areas. For security purposes, no

processes can access memory used by the kernel processes.

To facilitate data sharing, you can create shared memory pages. Multiple processes can read and write to and from a
common shared memory area. The kernel maintains and administers the shared memory areas and allows individual processes

access to the shared area.
The special ipcs command allows you to view the current shared memory pages on the system. Here's the output from a
sample ipcs command:

ipcs -m

—————— Shared Memory Segments --------

key shmid owner perms bytes nattch status
0x00000000 0 rich 600 52228 6 dest
0x395ec51c 1 oracle 640 5787648 6

#

Each shared memory segment has an owner that created the segment. Each segment also has a standard Linux permissions
setting that sets the availability of the segment for other users. The key value is used to allow other users to gain access to the

shared memory segment.

Software Program Management

The Linux operating system callsa running program a process. A process can run in the foreground, displaying output on a
display, or it can run in background, behind the scenes. The kernel controls how the Linux system manages all the processes
running on the system.

The kernel creates the first process, called the init process, to start all other processes on the system. When the kernel
starts, it loads the init process into virtual memory. As the kernel starts each additional process, it gives it a unique area in

virtual memory to store the data and code that the process uses.

Some Linux implementations contain a table of processes to start automatically on bootup. On Linux systems, this table
isusually located in the special file /etc/inittabs.

Other systems (such as the popular Ubuntu Linux distribution) utilize the /etc/init. d folder, which contains scripts for
starting and stopping individual applications at boot time. The scripts are started via entries under the /etc/rcX.d folders,
where Xis a run level.

The Linux operating system uses an init system that utilizes run levels. Arun level can be used to direct theinit process to
run only certain types of processes, as defined in the /etc/inittabs fileorthe /etc/rcX. d folders. There are five init

run levelsin the Linux operating system.

At run level 1, only the basic system processes are started, along with one console terminal process. This is called single
user mode. Single user mode is most often used for emergency filesystem maintenance when something is broken. Obviously,

in thismode only one person (usually the administrator) can log in to the system to manipulate data.

The standard init run level is 3. At this run level, most application software such as network support software is started.
Another popular run level in Linux is run level 5. This is the run level where the system starts the graphical X Window

software, and allows you to log in using a graphical desktop window.

The Linux system can control the overall system functionality by controlling theinit run level. By changing the run level
from 3 to 5, the system can change from a console-based system to an advanced, graphical X Window system.

In Chapter 4, you'll see how to use the ps command to view the processes currently running on the Linux system. Here's
an example of what you'll see using the ps command:

$ ps ax
PID TTY STAT TIME COMMAND
17 S 0:03 init

www.it-ebooks.info

http://www.it-ebooks.info/

v b W DN

L N A 0 B N L S VAL BERL U RN |

243
295
305
320
335
350
365
403
418
423
424
425
426
427
428
429
430
436
437
438
470
485
495
533
538
539
540
541
542
543
544
549
559
585
594
595
596
597
598
611

‘—'-
—+
<
n
o

N Y Y Y Y Y) Y)) Y Y oY)) oY)

—

—+
<

—

tty2
tty3
ttyd
tty5

—+

—+
<

(@)

NN Y) Y))) N oY)

nun n i it i n n

O O O O O O O O O O O O O O O O O O O OO OO OO OOOOOOOOLOOOOOLOOLOOLOOOOOoO OO

:00
:00
.00
:00
:00
.00
:00
:00
.00
:00
:00
:00
.00
:00
:00
:00
:00
:00
:00
:00
:00
:00
.00
:00
102
:00
:00
:00
.00
:00
:00
:00
:00
:00
:00
.00
02
:06
:00
:03
:02
.00
01
:00

[kflushd]
[kupdate]
[kpiod]
[kswapd]
[portmap]
syslogd
klogd
/usr/sbin/atd
crond
inetd
[lpd]

gpm -t ms
httpd
httpd
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
[httpd]
xfs -port -1
[smbd]
nmbd -D
[postmaster]
[mingetty]
[mingetty]
[mingetty]
[mingetty]
[mingetty]
[mingetty]
[prefdm]
[prefdm]
[kwm]
kikbd
kwmsound
kpanel
kfm
krootwm
kbgndwm
kcmlaptop -daemon

www.it-ebooks.info

http://www.it-ebooks.info/

666 ? S 0:00 /usr/libexec/postfix/master
668 ? S 0:00 gmgr -1 -t fifo -u

787 ? S 0:00 pickup -1 -t fifo

790 ? S 0:00 telnetd: 192.168.1.2 [vt100]
791 pts/0 S 0:00 login -- rich

792 pts/0 S 0:00 -bash

805 pts/0 R 0:00 ps ax

$

The first column in the output shows the process ID (or PID) of the process. Notice that the first process is our friend the
init process, and assigned PID 1 by the Linux system. All other processes that start after the init process are assigned PIDs in
numerical order. No two processes can have the same PID (althoughold PID numbers can be reused by the system after the

original process terminates).

The third column shows the current status of the process (S for sleeping, SW for sleeping and waiting, and R for running).
The process name is shown in the last column. Processes that are in brackets are processes that have been swapped out of
memory to the disk swap space due to inactivity. You can see that some of the processes have been swapped out, but most of

the running processes have not.

Hardware Management

Still another responsibility for the kernel is hardware management. Any device that the Linux system must communicate with
needs driver code inserted inside the kernel code. The driver code allows the kernel to pass data back and forth to the device,
acting as a middle man between applications and the hardware. There are two methods used for inserting device driver code

in the Linux kernel:
* Drivers compiled in the kernel

* Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time you added a new device to the
system, you had to recompile the kernel code. This process became even more inefficient as Linux kernels supported more

hardware. Fortunately, Linux developers devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allowyou to insert driver codeinto a running kernel without
having to recompile the kernel. Also, a kernel module could be removed from the kernel when the device was finished being

used. This greatly simplified and expanded using hardware with Linux.
The Linux system identifies hardware devices as special files, called device files. There are three different classifications of
device files:

® Character
*Block

* Network

Character device files are for devices that can only handle data one character at a time. Most types of modems and
terminals are created as character files. Block files are for devices that can handle datain large blocks at a time, such as disk

drives.

The network file types are used for devices that use packets to send and receive data. This includes network cards and a
special loopback device that allows the Linux system to communicate with itself using common network programming

protocols.

Linux creates special files, called nodes, for each device on the system. All communication with the device is performed
through the device node. Each node has a unique number pair that identifies it to the Linux kernel. The number pair includes a
major and a minor device number. Similar devices are grouped into the same major device number. The minor device number is
used to identify a specific device within the major device group. The following is an example of a few device files on a Linux

server.
rich@rich-desktop: ~$ cd /dev
rich@rich-desktop:/dev$ 1ls -al sda* ttyS*
brw-rw---- 1 root disk 8, 0 2010-09-18 17:25 sda
brw-rw---- 1 root disk 8, 1 2010-09-18 17:25 sda1
brw-rw---- 1 root disk 8, 2 2010-09-18 17:25 sda2

www.it-ebooks.info

http://www.it-ebooks.info/

brw-rw---- 1 root disk 8, 5 2010-09-18 17:25 sdab
crw-rw---- 1 root dialout 4, 64 2010-09-18 17:25 ttySO
crw-rw---- 1 root dialout 4, 65 2010-09-18 17:25 ttyS1
crw-rw---- 1 root dialout 4, 66 2010-09-18 17:25 ttyS2

crw-rw---- 1 root dialout 4, 67 2010-09-18 17:25 ttyS3
rich@rich-desktop:/dev$

Different Linux distributions handle devices using different device names. In this distribution, the sda device is the first
ATA hard drive, and the t tyS devices are the standard IBM PC COM ports. The listing shows all of the sda devices that were
created on the sample Linux system. Not all are actually used, but they are created in case the administrator needs them.

Similarly, the listing shows all of the t tyS devices created.

The fifth column is the major device node number. Notice that all of the sda devices have the same major device node, 8,
while all of the ttyS devices use 4. The sixth column is the minor device node number. Each device within a major number has

its own unique minor device node number.

The first column indicates the permissions for the device file. The first character of the permissions indicates the type of
file. Notice that the ATA hard drive files are all marked as block (b) device, while the COM port device files are marked as

character (c) devices.

Filesystem Management

Unlike some other operating systems, the Linux kernel can support different types of filesystems to read and write data to
and from hard drives. Besides having over a dozen filesystems of its own, Linux can read and write to and from filesystems
used by other operating systems, such as Microsoft Windows. The kernel must be compiled with support for all types of

filesystems that the system will use. Table 1.1 lists the standard filesystems that a Linux system can use to read and write data.

Table 1.1 Linux Filesystems

Filesystem | Description

ext Linux Extended filesystem—the original Linux filesystem

ext2 Second extended filesystem, provided advanced features over ext
ext3 Third extended filesystem, supports journaling

ext4 Fourth extended filesystem, supports advanced journaling

hpfs 0S/2 high-performance filesystem

jfs IBM's journaling file system

iS09660 ISO 9660 filesystem (CD-ROMs)

minix MINIX filesystem

msdos Microsoft FAT16

ncp Netware filesystem

nfs Network File System

ntfs Support for Microsoft NT filesystem
proc Access to system information

ReiserFS Advanced Linux file system for better performance and disk recovery

smb Samba SMB filesystem for network access

www.it-ebooks.info

#c01_tbl_0001
#c01_tbl_anc_0001
http://www.it-ebooks.info/

Sysv Older Unix filesystem

ufs BSD filesystem

umsdos Unix-like filesystem that resides on top of msdos
vfat Windows 95 filesystem (FAT32)

XFS High-performance 64-bit journaling filesystem

Any hard drive that a Linux server accesses must be formatted using one of the filesystem types listed in Table 1.1.

The Linux kernel interfaces with each filesystem using the Virtual File System (VFS). This provides a standard interface for
the kernel to communicate with any type of filesystem. VFS caches information in memory as each filesystem is mounted and

used.

The GNU Utilities

Besides having a kernel to control hardware devices, a computer operating system needs utilities to perform standard
functions, suchas controlling files and programs. While Linus created the Linux system kernel, he had no system utilities to
run on it. Fortunately for him, at the same time he was working, a group of people were working together on the Internet

trying to develop a standard set of computer system utilities that mimicked the popular Unix operating system.
The GNU organization (GNU stands for GNU's Not Unix) developed a complete set of Unix utilities, but had no kernel
system to run them on. These utilities were developed under a software philosophy called open source software (OSS).

The concept of OSS allows programmers to develop software and then release it to the world with no licensing fees
attached. Anyone can use the software, modify it, or incorporate it into his or her own system without having to pay a license
fee. Uniting Linus's Linux kernel with the GNU operating system utilities created a complete, functional, free operating

system.
While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will see some Linux purists on the
Internet refer to it as the GNU/Linux system to give credit to the GNU organization for its contributions to the cause.

The Core GNU Utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like environment available. This focus
resulted in the project porting many common Unix system command line utilities. The core bundle of utilities supplied for

Linux systems is called the coreutils package.
The GNU coreutils package consists of three parts:
® Utilities For handling files
® Utilities For manipulating text

® Utilities for managing processes
Each of these three main groups of utilities contains several utility programs that are invaluable to the Linux system
administrator and programmer. This book covers each of the utilities contained in the GNU coreutils package in detail.

The Shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start programs, manage files on the
filesystem, and manage processes running on the Linux system. The core of the shell is the command prompt. The command
prompt is the interactive part of the shell. It allows you to enter text commands, and then it interprets the commands and

then executes them in the kernel.

The shell contains a set of internal commands that you use to control things such as copying files, moving files, renaming
files, displaying the programs currently running on the system, and stopping programs running on the system. Besides the
internal commands, the shell also allows you to enter the name of a program at the command prompt. The shell passes the

program name off to the kernel to start it.

You can also group shell commandsinto files to execute as a program. Those files are called shell scripts. Any command
that you can execute from the command line can be placed in a shell script and run as a group of commands. This provides
great flexibility in creating utilities for commonly run commands, or processes that require several commands grouped

together.

www.it-ebooks.info

#c01_tbl_0001
http://www.it-ebooks.info/

There are quite a few Linux shells available to use on a Linux system. Different shells have different characteristics, some
being more useful for creating scripts and some being more useful for managing processes. The default shell used in all
Linux distributions is the bash shell. The bash shell was developed by the GNU project as a replacement for the standard Unix
shell, called the Bourne shell (after its creator). The bash shell name is a play on thiswording, referred to as the “Bourne again
shell.”

In addition to the bash shell, we will cover several other popular shellsin thisbook. Table 1.2 lists the different shells we

will examine.

Table 1.2 Linux Shells

Shell |Description

ash | Asimple, lightweight shell that runs in low-memory environments but has full
compatibility with the bash shell

korn || A programming shell compatible with the Bourne shell but supporting advanced
programming features like associative arrays and floating-point arithmetic

tcsh |Ashell that incorporates elements from the C programming language into shell scripts

zsh | An advanced shell that incorporates features from bash, tcsh, and korn, providing
advanced programming features, shared history files, and themed prompts

Most Linux distributionsinclude more than one shell, although usually they pick one of them to be the default. If your
Linux distribution includes multiple shells, feel free to experiment with different shells and see which one fits your needs.

The Linux Desktop Environment

In the early days of Linux (the early 1990s) all that was available was a simple text interface to the Linux operating system. This
text interface allowed administrators to start programs, control program operations, and move filesaround on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text interface to work with. This
spurred more development in the OSS community, and the Linux graphical desktops emerged.

Linux is Famous for being able to do thingsin more than one way, and no place is this more relevant than in graphical
desktops. There are a plethora of graphical desktopsyou can choose from in Linux. The following sections describe a few of

the more popular ones.

The X Windows System

There are two basic elements that control your video environment—the video card in your PC and your monitor. To display
fancy graphics on your computer, the Linux software needs to know how to talk to both of them. The X Windows software is

the core element in presenting graphics.

The X Windows software is a low-level program that works directly with the video card and monitor in the PC, and
controls how Linux applications can present fancy windows and graphics on your computer.

Linux isn't the only operating system that uses X Windows; there are versions written for many different operating
systems. In the Linux world, there are only two software packages that can implement it.

The XFree86 software package is the older of the two, and for a long time was the only X Windows package available for
Linux. Asits name implies, it's a free open source version of the X Windows software.

The newer of the two packages, X.org, has made great inroads in the Linux world and is now the more popular of the two.
It, too, provides an open source software implementation of the X Windows system, but has support for more of the newer

video cards used today.
Both packages work the same way, controlling how Linux uses your video card to display content on your monitor. To do
that, they have to be configured for your specific system. That is supposed to happen automatically when you install Linux.

When you firstinstall a Linux distribution, it attempts to detect your video card and monitor, and then creates an X
Windows configuration file that contains the required information. During installation you may notice a time when the
installation program scansyour monitor for supported video modes. Sometimes this causes your monitor to go blank for a
few seconds. Because there are lots of different types of video cards and monitors out there, this process can take a little

while to complete.

www.it-ebooks.info

#c01_tbl_0002
#c01_tbl_anc_0002
http://www.it-ebooks.info/

The core X Windows software produces a graphical display environment, but nothing else. While this is fine for running
individual applications, it is not too useful for day-to-day computer use. There is no desktop environment allowing users to
manipulate files or launch programs. To do that, you need a desktop environment on top of the X Windows system software.

The KDE Desktop

The K Desktop Environment (KDE) was first released in 1996 as an open source project to produce a graphical desktop similar
to the Microsoft Windows environment. The KDE desktop incorporates all of the features you are probably familiar with if

you are a Windows user. Figure 1.3 shows a sample KDE 4 desktop running in the openSuSE Linux distribution.

Figure 1.3 The KDE 4 desktop on an openSuSE Linux system

il (5 sich - Dolpkin
Eie Edin Miew [_@ Fettings Felp

& % & = H .

Bk Formwd U korm Deitnly Colorns Prawiew Soli

Placas & & 9> Hama I

- - 3 -

& Hetaoik
B Foo bin Desitop [Dipcumanis Doanicad

o Tragh

-“

led P Flap..

Rich Blum {richj on limizdzos

ﬁsnn:h: r]

IwprsL 5.2 léusic Facluras Pablic

A H
0 Wiab Browse : z - . :I

r pubkz_tam Tamphatas Widaos kgm0 B 2 ar
Y 5 Peisona Inkarenation Managss gz

& Wand Processs:
.L!-.‘]

e| Autia Playss

° Photo Manag=meni Program

11 Fosdars 1 Fila (1153 KE)

g File Manager
ﬂ L

x Configurs Dexktop

O™

The KDE desktop allows you to place bothapplication and fileiconsin a special area on the desktop. If you single-click an
application icon, the Linux system starts the application. If you single-click on a file icon, the KDE desktop attempts to

determine what application to start to handle thefile.

www.it-ebooks.info

#c01_fig_0003
#c01_fig_anc_0003
http://www.it-ebooks.info/

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:
*The K menu: Much like the Windows Start menu, the K menu contains links to start installed applications.
* Program shortcuts: These are quick links to start applications directly from the Panel.

* The taskbar: The taskbar shows icons for applications currently running on the desktop.
* Applets: These are small applications that have an icon in the Panel that often can change depending on
information from the application.

All of the Panel features are similar to what you would find in Windows. In addition to the desktop features, the KDE
project has produced a wide assortment of applications that run in the KDE environment. These applications are shown in

Table 1.3.(You may notice the trend of using a capital Kin KDE application names.)

Table 1.3 KDE Applications

Application | Description

amaroK Audio file player
digiKam Digital camera software
dolphin File manager

K3b CD-burning software
Kaffeine Video player

Kmail E-mail client

Koffice Office applications suite
Konqueror | File and Web browser
Kontact Personal information manager
Kopete Instant messaging client

Thisis only a partial list of applications produced by the KDE project. There are lots more applications that are included
with the KDE desktop.

The GNOME Desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop environment. First released in 1999,
GNOME has become the default desktop environment for many Linux distributions (the most popular being Red Hat Linux).

While GNOME chose to depart from the standard Microsoft Windows look-and-feel, it incorporates many features that
most Windows users are comfortable with:

* Adesktop area for icons
* Two panel areas
* Drag-and-drop capabilities
Figure 1.4 shows the standard GNOME desktop used in the Ubuntu Linux distribution.

Figure 1.4 AGNOME desktop on an Ubuntu Linux system

www.it-ebooks.info

#c01_tbl_0003
#c01_tbl_anc_0003
#c01_fig_0004
#c01_fig_anc_0004
http://www.it-ebooks.info/

i = File Browser
AMNFIMary

iatny IM Chie

{ Web Browser

Deskiop View

Downloads

2 11 GB Filesystem

__ Floppy Drive ‘q _F 1

SR, Pictures Public Templates

7 Documents

il Music d a ‘

|| Pictures untitled folder Videos Examples
H Videos Parha
i Downloads

ptest.sh test.txt

14 items, Free space; 54.1 GB

F® rich - File Browser

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical applications that integrate
with the GNOME desktop. These are shown in Table 1.4.

Asyou can see, there are also quite a few applications available for the GNOME desktop. Besides all of these applications,
most Linux distributions that use the GNOME desktop also incorporate the KDE libraries, allowing you to run KDE

applications on your GNOME desktop.

Table 1.4 GNOME Applications

Application Description
epiphany Web browser
evince Document viewer

www.it-ebooks.info

#c01_fig_anc_0004
#c01_tbl_0004
#c01_tbl_anc_0004
http://www.it-ebooks.info/

gcalc-tool Calculator

gedit GNOME text editor
gnome-panel Desktop panel for launching applications
gnome-nettool Network diagnostics tool

gnome-terminal | Terminal emulator

nautilus Graphical file manager

nautilus-cd-burner | CD-burning tool

sound juicer Audio CD-ripping tool

tomboy Note-taking software

totem Multimedia player
Other Desktops

The downside to a graphical desktop environment is that they require a fair amount of system resources to operate properly.
In the early days of Linux, a hallmark and selling feature of Linux was its ability to operate on older, less powerful PCs that
the newer Microsoft desktop products couldn't run on. However, with the popularity of KDE and GNOME desktops, this has

changed, as it takes just as much memory to run a KDE or GNOME desktop as the latest Microsoft desktop environment.

If you have an older PC,don't be discouraged. The Linux developers have banded together to take Linux back to its
roots. They've created several low-memory—oriented graphical desktop applications that provide basic features that run

perfectly fine on older PCs.

While these graphical desktops don't have a plethora of applications designed around them, they still run many basic
graphical applications that support features such as word processing, spreadsheets, databases, drawing, and, of course,

multimedia support.
Table 1.5 shows some of the smaller Linux graphical desktop environments that can be used on lower-powered PCs and
laptops.

Table 1.5 Other Linux Graphical Desktops

Desktop |Description

fluxbox | A bare-bones desktop that doesn't include a Panel, only a pop-up menu to launch
applications

xfce A desktop that's similar to the KDE desktop, but with less graphics for low-memory
environments

JWM Joe's Window Manager, a very lightweight desktop ideal for low-memory and low-disk
space environments

fvwm Supports some advanced desktop features such as virtual desktops and Panels, but
runs in low-memory environments

fvwm95 | Derived from fvwm, but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but they provide basic graphical
functionality just fine. Figure 1.5 shows what the fluxbox desktop used in the Puppy Linux antiX distribution looks like.

Figure 1.5 The JWM desktop as seen in the Puppy Linux distribution

www.it-ebooks.info

#c01_tbl_0005
#c01_tbl_anc_0005
#c01_fig_0005
#c01_fig_anc_0005
http://www.it-ebooks.info/

Welcome! Move mouse-pointer
" »i.." - . ﬁ here for getting-started

file hielp rraunt ristall setup information

cale paEint draw

i

- -.—I-

(Thumbs]

@ E vz & @ T 11 items (29 hic

L—".,-.J[_L[_.l_

=
Choices File-Shanng ftpd ICEWM Mzl my-

EEEE

puppy- Spot Startup Web-Server
reference

@Huslmss

¢
=i Personal

'E,' - [Thumbs)

Ifyou areusing an older PC, try a L|nux distribution that uses one of these desktops and see what happens. You may be
pleasantly surprised.

Linux Distributions

Now that you have seen the four main components required for a complete Linux system, you may be wondering how you
are going to get them all put together to make a Linux system. Fortunately, there are people who have already done that for

you.

Acomplete Linux system package is called a distribution. There are lots of different Linux distributions available to meet
just about any computing requirement you could have. Most distributions are customized for a specificuser group, such as
business users, multimedia enthusiasts, software developers, or average home users. Each customized distribution includes
the software packages required to support specialized functions, such as audio- and video-editing software for multimedia

enthusiasts, or compilers and integrated development environments (IDEs) for software developers.
The different Linux distributions are often divided into three categories:

® Full core Linux distributions

www.it-ebooks.info

#c01_fig_anc_0005
http://www.it-ebooks.info/

® Spedialized distributions

® LiveCD test distributions
The following sections describe these different types of Linux distributions, and show some examples of Linux
distributionsin each category.

Core Linux Distributions

A core Linux distribution contains a kernel, one or more graphical desktop environments, and just about every Linux
application that is available, precompiled for the kernel. It provides one-stop shopping for a complete Linux installation.

Table 1.6 shows some of the more popular core Linux distributions.

Table 1.6 Core Linux Distributions

Distribution | Description

Slackware One of the original Linux distribution sets, popular with Linux geeks

Red Hat A commercial business distribution used mainly for Internet servers

Fedora A spin-off from Red Hat but designed for home use

Gentoo A distribution designed for advanced Linux users, containing only Linux source
code

Mandriva Designed mainly for home use (previously called Mandrake)

openSuSe Different distributions for business and home use

Debian Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of floppy disks. You had to download groups of files and
then copy them onto disks. It would usually take 20 or more disks to make an entire distribution! Needless to say, this was a

painful experience.
Nowadays, with home computers commonly having CD and DVD players built in, Linux distributions are released as either
a CD set or asingle DVD. This makes installing Linux much easier.

However, beginnersstill often run into problems when they install one of the core Linux distributions. To cover just
about any situation in which someone might want to use Linux, a single distribution has to include lots of application
software. They include everything from high-end Internet database servers to common games. Because of the quantity of

applications available for Linux, a complete distribution often takes four or more CDs.

While having lots of options available in a distribution is great for Linux geeks, it can become a nightmare for beginning
Linux users. Most distributions ask a series of questions during the installation process to determine which applications to
load by default, what hardware is connected to the PC,and how to configure the hardware. Beginners often find these
questions confusing. As a result, they often either load way too many programs on their computer or don't load enough and

later discover that their computer won't do what they want it to.

Fortunately for beginners, there's a much simpler way to install Linux.

Specialized Linux Distributions

Anewsubgroup of Linux distributions has started to appear. These are typically based on one of the main distributions but
contain only a subset of applications that would make sense for a specificarea of use.

In addition to providing specialized software (such as only office products for business users), customized Linux
distributions also attempt to help beginning Linux users by autodetecting and autoconfiguring common hardware devices.

This makes installing Linux a much more enjoyable process.

Table 1.7 shows some of the specialized Linux distributions available and what they specialize in.

Table 1.7 Specialized Linux Distributions

www.it-ebooks.info

#c01_tbl_0006
#c01_tbl_anc_0006
#c01_tbl_0007
#c01_tbl_anc_0007
http://www.it-ebooks.info/

Distribution |Description

Xandros A commercial Linux package configured for beginners

SimplyMEPIS | A free distribution for home use

Ubuntu A free distribution for school and home use

PCLinuxOS || A free distribution for home and office use

Mint A free distribution for home entertainment use

dyne:bolic | A free distribution designed for audio and MIDI applications

Puppy Linux |A free small distribution that runs well on older PCs

That's just a small sampling of specialized Linux distributions. There are literally hundreds of specialized Linux
distributions, and more are popping up all the time on the Internet. No matter what your specialty, you'll probably find a

Linux distribution made for you.
Many of the specialized Linux distributions are based on the Debian Linux distribution. They use the same installation files
as Debian but package only a small fraction of a full-blown Debian system.

The Linux LiveCD

Arelatively new phenomenon in the Linux world is the bootable Linux CD distribution. This lets you see what a Linux system is
like without actually installing it. Most modern PCs can boot from a CD instead of the standard hard drive. To take advantage
of this, some Linux distributions create a bootable CD that contains a sample Linux system (called a Linux LiveCD). Because of
the limitations of the single CD size, the sample can't contain a complete Linux system, but you'd be surprised at all the
software they can cram in there. The result is that you can boot your PC from the CD and run a Linux distribution without

having to install anything on your hard drive!

This is an excellent way to test various Linux distributions without having to mess withyour PC. Just pop in a CD and
boot! All of the Linux software will run directly off the CD. There are lots of Linux LiveCDs that you can download from the

Internet and burn onto a CD to test drive.

Table 1.8 shows some popular Linux LiveCDs that are available.

Table 1.8 Linux LiveCD Distributions

Distribution |Description

Knoppix A German Linux, the first Linux LiveCD developed

SimplyMEPIS || Designed for beginning home Linux users

PCLinuxOS Full-blown Linux distribution on a LiveCD

Ubuntu A worldwide Linux project, designed for many languages

Slax A live Linux CD based on Slackware Linux

Puppy Linux |A full-featured Linux designed for older PCs

You may notice a familiarity in this table. Many specialized Linux distributions also have a Linux LiveCD version.Some
Linux LiveCD distributions, such as Ubuntu, allow you to install the Linux distribution directly from the LiveCD. This enables
you to boot with the CD, test drive the Linux distribution, and then if you likeiit, install it on your hard drive. This feature is

extremely handy and user-friendly.

Aswithall good things, Linux LiveCDs have a few drawbacks. Because you access everything from the CD, applications run
more slowly, especially if you're using older, slower computers and CD drives. Also, because you can't write to the CD, any

changes you make to the Linux system will be gone the next time you reboot.

www.it-ebooks.info

#c01_tbl_0008
#c01_tbl_anc_0008
http://www.it-ebooks.info/

But there are advances being made in the Linux LiveCD world that help to solve some of these problems. These advances
include the ability to:

* Copy Linux system files from the CD to memory
® Copy system files to a file on the hard drive
* Store system settings on a USB memory stick

*Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux system files. The LiveCD boot
scripts copies them directly into memory when the CD boots. This allows you to remove the CD from the computer as soon as
Linux boots. Not only does this make your applications run much faster (because applications run faster from memory), but
it also gives you a free CD tray to use for ripping audio CDs or playing video DVDs from the software included in Puppy

Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from the tray after booting. It involves
copying the core Linux files onto the Windows hard drive as a single file. After the CD boots, it looks for that file and reads
the system files from it. The dyne:bolic Linux LiveCD uses this technique, which is called docking. Of course, you must copy the
system file to your hard drive before you can boot from the CD.

Avery popular technique for storing data from a live Linux CD session is to use a common USB memory stick (also called a
flash drive or a thumb drive). Just about every Linux LiveCD can recognize a plugged-in USB memory stick (even if the stick is
formatted for Windows) and read and write files to and from it. This allows you to boot a Linux LiveCD, use the Linux
applications to create files, store those files on your memory stick, and then access them from your Windows applications

later (or from a different computer). How cool is that?

Summary

This chapter discussed the Linux system, and the basics of how it works. The Linux kernel is the core of the system, controlling
how memory, programs, and hardware all interact with one another. The GNU utilities are also an important piece in the Linux
system. The Linux shell, which is the main focus of this book, is part of the GNU core utilities. The chapter also discussed the
final piece of a Linux system, the Linux desktop environment. Things have changed over the years, and Linux now supports
several graphical desktop environments.

The chapter also discussed the various Linux distributions. A Linux distribution bundles the various parts of a Linux
systeminto a simple package that you can easily install on your PC. The Linux distribution world consists of full-blown Linux
distributions that include just about every application imaginable, as well as specialized Linux distributions that only include
applications focused on a special function. The Linux LiveCD craze has created another group of Linux distributions that

allowyou to easily test drive Linux without even having to install it on your hard drive.

In the next chapter, you look at what you need to start your command line and shell scripting experience. You'll see what
you need to do to get to the Linux shell utility from your fancy graphical desktop environment. These days that's not always

an easy thing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2
Getting to the Shell

In This Chapter

* Terminal emulation

* The terminfo database
* The Linux console

* The xterm terminal

* The Konsole terminal

* The GNOME terminal

In the old days of Linux, all that was available to work with was the shell. System administrators, programmers, and system
users all sat at the Linux console terminal entering text commands and viewing text output. These days, with our fancy
graphical desktop environments, it's getting harder just to find a shell prompt on the system to work from. This chapter
discusses what is required to provide a command line environment, and then walks you through the terminal emulation

packages you may run into in the various Linux distributions.

Terminal Emulation

Back before the days of graphical desktops, the only way to interact with a Unix system was through a text command line
interface (CLI) provided by the shell. The CLI allowed text input only,and could only display text and rudimentary graphics

output.

Because of this restriction, output devices did not have to be very fancy. Often a simple dumb terminal was all that was
required to interact with the Unix system. Adumb terminal was usually nothing more than a monitor and keyboard
(although later on in life they started getting fancier by utilizing a mouse) connected to the Unix system via a communication
cable (usually a multi-wire serial cable). This simple combination provided an easy way to enter text data into the Unix system

and view text results.

Asyou well know, things are significantly different in today's Linux environment. Just about every Linux distribution
uses some type of graphical desktop environment. However, to access the shell you still need a text display to interact witha
CLI. The problem now is getting to one. With all of the new graphical Linux desktop features, sometimes finding a way to get

aCllin aLinux distribution is not an easy task.

One way to get to a CLI is to take the Linux system out of graphical desktop mode and place it in text mode. This provides
nothing more than a simple shell CLI on the monitor, just like the days before graphical desktops. This mode is called the Linux

console because it emulates the old days of a hard-wired console terminal and is a direct interface to the Linux system.

The alternative to being in the Linux consoleis to use a terminal emulation package from within the graphical Linux
desktop environment. A terminal emulation package simulates working on a dumb terminal, all within a graphical window on

the desktop. Figure 2.1 shows an example of a terminal emulator running in a graphical Linux desktop environment.

Figure 2.1 Asimple terminal emulator running on a Linux desktop

www.it-ebooks.info

#c02_fig_0001
#c02_fig_anc_0001
http://www.it-ebooks.info/

- Work : bash

=

File Edit WView Bookmarks Settings Help

My Stuff test_directory
. Phonetic_Alphabet test_script
A File script.dat vb. junk
Dig_Deep Backups scripts Wrong Alphabet
Has Repeats set.dat zomble
Has Repeats too Stuff_to_Archive zombie.c
junk Stuff_to Restore
mount.dat test3

s 1

Each terminal emulation package has the ability to emulate one or more specific types of dumb terminals. If you're going
to work with the shell in Linux, unfortunately you'll need to know a little bit about terminal emulation.

Knowing the core features of the old dumb terminals will help you decide which emulation type to select when you're
using a graphical terminal emulator, and use all of the available features to their full capabilities. The main features used in
the dumb terminal can be broken down into two areas: the graphics capabilities and the keyboard. This section describes these

features and discusses how they relate to the different types of terminal emulators.

Graphics Capabilities
The most important part of terminal emulation is how it displays information on the monitor. When you hear the phrase “text
mode,” the last thing you'd think to worry about is graphics. However, even the most rudimentary dumb terminals supported
some method of screen manipulation (such as clearing the screen and displaying text at a specific location on the screen).

This section describes the graphics features that make each of the different terminal types unique, and what to look for in
the terminal emulation packages.

www.it-ebooks.info

#c02_fig_anc_0001
http://www.it-ebooks.info/

Character Sets

All terminals must display characters on the screen (otherwise, text mode would be pretty useless). The trick is in what
characters to display, and what codes the Linux system needs to send to display them. A character set is a set of binary
commands that the Linux system sends to a monitor to display characters. There are several character sets that are supported

by various terminal emulation packages:

* ASCII: The American Standard Code for Information Interchange. This character set contains the English characters
stored using a 7-bit code, and consists of 128 English letters (both upper and lower case), numbers, and special
symbols. This character set was adopted by the American National Standards Institute (ANSI) as US-ASCII. You will

often seeit referred to in terminal emulators as the ANSI character set.

*1S0-8859-1 (commonly called Latin-1): An extension of the ASCII character set developed by the International
Organization for Standardization (ISO). It uses an 8-bit code to support the standard ASCII characters as well as
special foreign language characters for most Western European languages. The Latin-1 character set is popular in

multinational terminal emulation packages.
®1SO-8859-2: 1SO character set that supports Eastern European language characters.
* 1SO-8859-6: 1SO character set that supports Arabiclanguage characters.
* 1SO-8859-7: 1SO character set that supports Greek language characters.

®1SO-8859-8: 1SO character set that supports Hebrew language characters.

*1SO-10646 (commonly called Unicode): 1ISO 2-byte character set that contains codes for most Englishand non-
English languages. This single character set contains all of the codes defined in all of the ISO-8859-x series of

character sets. The Unicode character set is quickly becoming popular among open source applications.

By far the most common character set in use today in English-speaking countries is the Latin-1 character set. The Unicode
character set is becoming more popular, and may very well one day become the new standard in character sets. Most popular

terminal emulators allow you to select which character set to use in the terminal emulation.

Control Codes

In addition to being able to display characters, terminals must have the ability to control special features on the monitor and
keyboard, suchas the cursor location on the screen. They accomplish this using a system of control codes. A control codeisa
special code not used in the character set, which signals the terminal to perform a special, nonprintable operation.

Common control code functions are the carriage return (return the cursor to the beginning of the line), line feed (put the
cursor on the next horizontal row), horizontal tab (shift the cursor over a preset number of spaces), arrow keys (up, down,
left, and right), and the page up/page down keys. While these codes mainly emulate features that control where the cursor is
placed on the monitor, there are also several other codes, such as clearing the entire screen, and even a bell ring (emulating
the old typewriter end-of-carriage bell).

Control codes were also used in controlling the communication features of dumb terminals. Dumb terminals were
connected to the computer system via some type of communication channel, often a serial communication cable. Sometimes
data needed to be controlled on the communication channel, so developers devised special control codesjust for data
communication purposes. While these codes aren't necessarily required in modern terminal emulators, most support these
codes to maintain compatibility. The most common codes in this category are the XON and XOFF codes, which start and stop

data transmission to the terminal, respectively.

Block Mode Graphics

As dumb terminals became more popular, manufacturers started experimenting with rudimentary graphics capabilities. By
far the most popular type of “graphical” dumb terminal used in the Unix world was the Digital Equipment Corporation (DEC)
VT series of terminals. The turning point for dumb terminals came with the release of the DEC VT100in 1978. The DEC VT100

terminal was the first terminal to support the complete ANSI character set, including block mode graphic characters.

The ANSI character set contains codes that not only allowed monitors to display text but also rudimentary graphics
symbols, suchas boxes, lines, and blocks. By far one of the most popular dumb terminals used in Unix operations during the
1980s was the DEC VT102, an upgraded version of the VT100. Most modern terminal emulation programs still emulate the

operation of the VT102 display, supporting all of the ANSI codes for creating block mode graphics.

Vector Graphics

The Tektronix company produced a popular series of terminals that used a display method called vector graphics. Vector
graphics deviated from the DEC method of block mode graphics by making all screen images (including characters) a series of
line segments (vectors). The Tektronix 4010 terminal was the most popular graphical dumb terminal produced. Many terminal

emulation packages still emulate its capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

The 4010 terminal displays images by drawing a series of vectors using an electron beam, much like drawing with a pencil.
Because vector graphics doesn't use dots to create lines, it has the ability to draw geometric shapes using higher precision than

most dot-oriented graphics terminals. This was a popular feature among mathematicians and scientists.

Modern terminal emulators use software to emulate the vector graphics drawing capabilities of the Tektronix 4010
terminals. This is still a popular feature for people who need precise graphical drawings, or those who still run applications

that used the vector graphics routines to draw complicated charts and diagrams.

Display Buffering
Akey to graphics displays is the ability of the terminal to buffer data. Buffering data requires having additional internal
memory within the terminal itself to store characters not currently being displayed on the monitor.

The DEC VT series of terminals utilized two types of data buffering:
*Buffering data asit scrolled off of the main display window (called a history)

* Buffering a completely separate display window (called an alternate screen)

The first type of buffering is known as a scroll region. The scroll region is the amount of memory the terminal has that
enablesit to “remember” data asit scrolls off of the screen. Astandard DEC VT102 terminal contained a viewing area for 25
lines of characters. As the terminal displays a new line of characters, the previous lineis scrolled upward. When the terminal

reaches the bottom line of the display, the next line causes the top line to scroll off the display.

The internal memory in the VT102 terminal allowed it to save the last 64 lines that had scrolled off of the display. Users had
the ability to lock the current screen display and use arrow keys to scroll backward through the previous lines that had
“scrolled off" of the display. Terminal emulation packages allow you to use either a side scrollbar or a mouse scroll button to
scroll through the saved data without having to lock the display. Of course, for full emulation compatibility, most terminal
emulation packages also allowyou to lock the display and use arrow and page up/page down to scroll through the saved

data.

The second type of buffering is known as an alternative screen. Normally, the terminal writes data directly to the normal
display area on the monitor. A method was developed to crudely implement animation by using two screen areas to store
data. Control codes were used to signal the terminal to write data to the alternative screen instead of the current display
screen. That data was held in memory. Another control code would signal the terminal to switch the monitor display between
the normal screen data and the data contained in the alternative screen almost instantaneously. By storing successive data

pagesin the alternative screen area, then displaying it, you could crudely simulate moving graphics.
Terminals that emulate the VT series of terminals have the ability to support both the scroll region and the alternative
screen buffering methods.

Color

Even back in the black-and-white (or green) dumb terminal days, programmers were experimenting with different ways to
present data. Most terminals supported special control codes to produce the following types of special text:

*Bold characters
*Underline characters
* Reverse video (black characters on white background)
*Blinking
* Combinations of all of the above features
Back in the old days, if you wanted to get someone's attention, you used bold, blinking, reverse video text. Now there's

something that could hurt your eyes!

As color terminals became available, programmers added special control codes to display text in various colors and
shades. The ANSI character set includes control codes for specifying specific colors for both foreground text and the

background color displayed on the monitor. Most terminal emulators support the ANSI color control codes.

The Keyboard

There is more to a terminal than just how the monitor operates. If you have ever worked with different types of dumb
terminals, you have seen that they often contain different keys on the keyboard. Trying to emulate specific keys on a specific

dumb terminal has proven to be a difficult task for terminal emulation packages.

It was impossible for the creators of the PC keyboard to include keys for every possible type of special key found in
dumb terminals. Some PC manufacturers experimented with including special keys for special functions, but eventually the

PC keyboard keys became somewhat standardized.

www.it-ebooks.info

http://www.it-ebooks.info/

For a terminal emulation package to completely emulate a specifictype of dumb terminal, it must remap any dumb
terminal keys that don't appear on the PC keyboard. This remapping feature can often become confusing, especially when

different systems use different control codes for the same key.

Some common special keys you'll see in terminal emulation packages are:
*Break: Sends a stream of zeroes to the host. This is often used to interrupt the currently executing programin the
shell.

*Scroll Lock: Also called “no scroll,” this stops the output on the display. Some terminals included memory to hold
the contents of the display so the user could scroll backward through previously viewed information while the scroll

lock was enabled.

* Repeat: When held down with another key, this caused the terminal to repeatedly send the other key's value to the
host.

* Return: Commonly used to send a carriage return character to the host. Most often used to signify the end of a
command for the host to process (now called Enter on PC keyboards).

*Delete: While basically a simple feature, the Delete key causes grief for terminal emulation packages. Some
terminals delete the character at the current cursor location, while others delete the preceding character. To resolve

this dilemma, PC keyboardsinclude two delete keys, Backspace and Delete.

* Arrow keys: Commonly used to position the cursor at a specific place—Ffor example, when scrolling through a
listing.

*Function keys: A combination of specialty keys that can be assigned unique values in programs similar to the PC F1
through F12 keys. The DEC VT series of terminals actually had two sets of function keys, F1 through F20,and PF1

through PF4.

Keyboard emulation is a crucial element in a terminal emulation package. Unfortunately, often applications are written
requiring users to hit specific keys for specific functions. I've seen many a communications package that used the old DEC PF1

through PF4 keys, which are often hard to find on a terminal emulation keyboard.

The terminfo Database

Now that you know about terminal emulation packages that can emulate different types of terminals, you need a way for
the Linux system to know exactly what terminal you're emulating. The Linux system needs to know what control codes to use
when communicating with the terminal emulator. This is done by using an environment variable (see Chapter 5) and a special

set of files collectively called the terminfo database.

The terminfo database is a set of files that identify the characteristics of various terminals that can be used on the Linux
system. The Linux system stores the terminfo data for each terminal type as a separate file in the terminfo database directory.
The location of this directory often varies from distribution to distribution. Some common locations are

/usr/share/terminfo,/etc/terminfo,and /1ib/terminfo.

To help with organization (often there are lots of different terminfo files), you will see that the terminfo database
directory contains directories for different letters of the alphabet. The individual files for specific terminals are stored under
the appropriate letter directory for their terminal name. For example, under /usr/share/terminfo/v are the VT

terminal emulators.
An individual terminfo file is a binary file that is the result of compiling a text file. This text file contains code words that
define screen functions, associated with the control code required to implement the function on the terminal.
Since the terminfo database files are binary, you cannot see the codes within these files. However, you can use the
infocmp command to convert the binary entries into text. An example of using this command is:
$ infocmp vt100
Reconstructed via infocmp from file: /lib/terminfo/v/vt100
vt100|vt100-am|dec vt100 (w/advanced video),
am, msgr, xenl, xon,
cols#80, it#8, lines#24, vt#3,
acsc="aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel="G, blink=\E[5m$<2>, bold=\E[1m$<2>,
clear=\E[H\E[J$<50>, cr="M, csr=\E[%1i%p1%d;%p2%dr,
cub=\E[%p1%dD, cub1="H, cud=\E[%p1%dB, cud1="J,
cuf=\E[%p1%dC, cuf1=\E[C$<2>,
cup=\E[%1%p1%d; %p2%dH$<5>, cuu=\E[%p1%dA,
cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>, el1=\E[1K$<3>,

www.it-ebooks.info

http://www.it-ebooks.info/

$

The terminfo entry defines the terminal name (in this case vt100), along with any alias names that can be associated with

enacs=\E(B\E)O, home=\E[H, ht="I, hts=\EH, ind="J, ka1=\EQOq,
ka3=\EOs, kb2=\EOr, kbs="H, kc1=\EOp, kc3=\EOn, kcub1=\EOD,
kcud1=\EOB, kcuf1=\EOC, kcuu1=\EOA, kent=\EOM, kf0=\EOy,
kf1=\EOP, kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
rev=\E[7m$<2>, ri=\EM$<5>, rmacs="0, rmam=\E[?71,
rmkx=\E[?11\E>, rmso=\E[m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?31\E[?41\E[?51\E[?7h\E[?8h,

sc=\E7,

sgr0=\E[m\017$<2>, smacs="N, smam=\E[?7h, smkx=\E[?1h\E=,
smso=\E[7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

the terminal name. Notice that the first line shows the location of the terminfo file the values were extracted from.

Following that, the infocmp command lists the capabilities of the terminal definition, along with the control codes used
to emulate the individual capabilities. Some capabilities are either enabled or disabled. If the capability appears in the list, it's
enabled by the terminal definition (such as the am, auto-right-margin, feature). Other capabilities must define a specific
control code sequence to perform the task (such as clearing the monitor display). Table 2.1 shows a list of some of the

capabilities you see in the vt 100 terminfo definition file listed.

Table 2.1 Terminfo Capability Codes

Code Description

am Set right-side auto-margin

msgr Safe to move cursor in standout mode

xenl Newline characters ignored after 80 columns
xon Terminal uses XON/XOFF characters for flow control
cols#80 |80 columnsinaline

it#8 Tab character set to eight spaces

lines#24 |24 lineson ascreen

vt#3 Virtual terminal number 3

bel Control code to use to emulate the bell

blink Control code used to produce blinking text
bold Control code used to produce bold text

clear Control code used to clear the screen

cr Control code used to enter a carriage return
csr Control code used to change scroll region

cub Move one character to the left without erasing
cub1 Move cursor back one space

www.it-ebooks.info

#c02_tbl_0001
#c02_tbl_anc_0001
http://www.it-ebooks.info/

cud

Move cursor down one line

cud1 Control code to move cursor down one line

cuf Move one character to the right without erasing

cuf Control code to move the cursor right one space without erasing

cup Control code to move to row one, column two on the display

cuu Move cursor up one line

cuuT Control code to move cursor up one line

ed Clear to the end of the screen

el Clear to the end of the line

el Clear to the beginning of the line.

enacs Enable the alternate character set

home Control code to move cursor to the home position—row one, column two (same as
cup)

ht Tab character

hts Set tab in every row at current column

ind Scroll text up

ka1 Upper-left key in keypad

ka3 Upper-right key in keypad

kb2 Center key in keypad

kbs Backspace key

kc1 Lower-left key in keypad

kc3 Lower-right key in keypad

kcub1 The left arrow key

kcud1 Control code for down arrow key

kcuf1 The right arrow key

kcuu1 The up arrow key

kent The Enter key

kf0 The FO function key

kf1 The F1 function key

kf10 The F10 function key

www.it-ebooks.info

http://www.it-ebooks.info/

rc Restore cursor to last saved position
rev Reverse video mode

ri Scroll text down

rmacs End alternate character set
rmam Turn off automatic margins
rmkx Exit keyboard transmit mode
rmso Exit standout mode

rmul Exit underline mode

rs2 Reset

e Save current cursor position
sgr Define video attributes

sgr0 Turn off all attributes

smacs Start alternate character set
smam Turn on automatic margins
smkx Start keyboard transmit mode
SmMSo Begin standout mode

smul Begin underline mode

thc Clear all tab stops

The Linux shell uses the TERM environment variable to define which terminal emulation setting in the terminfo database
to use for a specific session. When the TERM environment variable is set to vt100, the shell knows to use the control codes
associated with the vt100 terminfo database entry for sending control codes to the terminal emulator. To see the TERM

environment variable, you can just echo it from the CLI:

$ echo $TERM
xterm
$

This example shows that the current terminal type is set to the xterm entry in the terminfo database.

The Linux Console

In the early days of Linux, when you booted up your system you would see a login prompt on your monitor, and that's all. As
mentioned earlier, thisis called the Linux console. It was the only place you could enter commands for the system.

With modern Linux systems, when the Linux system starts it automatically creates several virtual consoles. A virtual
consoleis a terminal session that runsin memory on the Linux system. Instead of having several dumb terminals connected
to the PC, most Linux distributions start seven (or sometimes even more) virtual consoles that you can access from the single

PC keyboard and monitor.

In most Linux distributions, you can access the virtual consoles using a simple keystroke combination. Usually you must
hold down the Ctl+Alt key combination, and then press a function key (F1 through F8) for the virtual console you want to

use. Function key F1 produces virtual console 1, key F2 produces virtual console 2, and so on.

Six of the virtual consoles use a full-screen text terminal emulator to display a text login screen, as shown in Figure 2.2.

www.it-ebooks.info

#c02_fig_0002
http://www.it-ebooks.info/

Figure 2.2 The Linux console login screen

Ubintu 18.18 user-ceskiop tiyd

user-desktop loegin: user

Passwtrd:

Last login: Mon Dec 20 89:03:13 EST 2010 on tiy2

Linue user-desktop 2.6.35-24-generic #42-Ubuntu SMP Thu Dec 2 @1:41:57 UTC 2010 1636 GMU/Linux
Ubuntu 1@.18

Welcome to Ubuntu!
* Documentation: https://help.ubuntu. con/

Mo mail.
L1

After logging in withyour user ID and password, you are taken to the Linux bash shell CLI. In the Linux console, you do
not have the ability to run any graphical programs. You can only use text programs to display on the Linux text consoles.

After logging in to avirtual console, you can keep it active and switch to another virtual console without losing your
active session. You can switch between all of the virtual consoles, with multiple active sessions running.

The first or the last two virtual consoles are normally reserved for X Window graphical desktops. Some distributions only
assign one so you may have to test all three Ctl+Alt+F1, Ctl+Alt+F7, and Ctl+Alt+F8 to see which one your particular
distribution uses. Most distributions automatically switch to one of the graphical virtual consoles after the boot sequence

completes, providing a complete graphical login and desktop experience.

Logging in to a text virtual terminal session and then switching over to a graphical one can get tedious. Fortunately,
there's a better way to jump between graphical and text mode on the Linux system: terminal emulation packages are a
popular way to access the shell CLI from within a graphical desktop session. The following sections describe the most common

software packages that provide terminal emulation in a graphical window.

www.it-ebooks.info

#c02_fig_anc_0002
http://www.it-ebooks.info/

The xterm Terminal

The oldest and most basic of X Window terminal emulation packages is xterm. The xterm package has been around since the
original days of X Window, and isincluded by default in most X Window packages.

The xterm package provides both a basic VT102/220 terminal emulation CLI and a graphical Tektronix 4014 environment
(similar to the 4010 environment). While xterm is a full terminal emulation package, it doesn't require many resources (such as
memory) to operate. Because of this, the xterm package is still popular in Linux distributions designed to run on older

hardware. Some graphical desktop environments, such as fluxbox, use it as the default terminal emulation package.

While not offering many fancy features, the xterm package does one thing extremely well, and that is emulate a VT220
terminal. The newer versions of xterm even emulate the VT series of color control codes, allowing you to use color in your

scripts.

Figure 2.3 shows what the basic xterm display looks like running on a graphical Linux desktop.

Figure 2.3 The basic xterm display
{3 Applications Places System

Has_REepeats_too script.dat testd zomhbi
junk GCripts test_directory zombi
mount .dat set.dat test_script

Archives Hy_Stuff Stuff_te_Archive wb. junk

Haz_Repsats Phonetic_Alphabet Stuff_te_Restere Wrong_Alphabet

3
3 i

[Terminal] B xterm

The xterm package allows you to set individual features using both command line parameters and a series of four simple

www.it-ebooks.info

#c02_fig_0003
#c02_fig_anc_0003
http://www.it-ebooks.info/

graphical menus. The following sections discuss these features and how to change them.

Command Line Parameters

The list of xterm command line parameters is extensive. There are lots of featuresyou can control to customize the terminal

emulation features, such as enabling or disabling individual VT emulations.

The xterm command line parameters use the plus (+) and minus (-) signs to signify how a feature is set. A plus sign
indicates that the feature should be returned to the default setting. Aminus sign indicates that you are setting the feature to

anon-default value. Table 2.2 lists some of the more common features that you can set using the command line parameters.

Table 2.2 xterm Command Line Parameters

Parameter Description

132 By default, xterm does not allow 132 characters per line mode.
ah Always highlight the text cursor.

aw Auto-line-wrap is enabled.

bc Enables text cursor blinking.

bg color Specify the color to use for the background.

cm Disables recognition of ANSI color change control codes.

fb font Specify the font to use for bold text.

fg color Specify the color to use for the foreground text.

fn font Specify the font to use for text.

fw font Specify the font to use for wide text.

hc color Specify the color to use for highlighted text.

j Use jump scrolling, scrolling multiple lines at a time.

1 Enable logging screen data to a log file.

1f filename |Specify the file name to use for screen logging.

mb Ring a margin bell when the cursor reaches the end of aline.
ms color Specify the color used for the text cursor.

name name Specify the name of the application that appears in the title bar.
rv Enable reverse video by swapping the background and foreground colors.
sb Use a side scrollbar to allow scrolling of saved scroll data.

t Start xterm in Tektronix mode.

tb Specify that xterm should display a toolbar at the top.

Itisimportant to note that not all implementations of xterm support all of these command line parameters. You can
determine which parameters your xterm implements by using the -help parameter when you start xterm on your system.

www.it-ebooks.info

#c02_tbl_0002
#c02_tbl_anc_0002
http://www.it-ebooks.info/

The xterm Main Menu

The main xterm menu contains configuration items that apply to both the VT102 and Tektronix windows. You can access the
main menu by holding down the Ctrl key and clicking the mouse button once (the left button on a right-hand mouse, the

right button on a left-hand mouse) while in an xterm session window. Figure 2.4 shows what the xterm main menu looks like.

Figure 2.4 The xterm main menu

ELETim

A

¥
Flg -a

Haz_Repeatz_too zcoripht.dat teatd Zomhie
.,. Junk. scripts test_directory zosbie,c
b File wounit dat et dak test_goript
DNig_ Doy Backips My Studf St F_to_frchive wb. Junk
H.:s_ﬂq!mt: P'|'|nn:1'.'i|:_F|]p|1a|:|el‘. St _to_Hestore Ur:ﬂg_ll'l]pl'luh:'r.

£1

Main Options

Secure Keyhoard

Allow SendEvents

RFedraw Hindow

Log to File

Frint Hindou

Bedirest Lo frinter

8-Bit. Controls

Backarrouw Key (BS/EL}Y
+ Alt/Humlock Hodifiers

it Sevedn Escape

Heta Sends Ezcape

Delete iz OEL

0ld Function—Keys

Teracap Function—Keys

Sun Function-Keys

Y1220 Keyboard

Send STOP Signal

GSend CONT Signal

Send INT Signal

Send HUP Signal

Send TERH Signal
ke Ksterm it

There are four sections in the xterm main menu, as described in the following sections.

X Event Commands

The X event commands section contains features that allow you to manage how xterm interacts with the X Window display.
*Toolbar: If the xterm installation supports the toolbar, this entry enables or disables displaying the toolbar in the
xterm window (the same as the tb command line parameter).

www.it-ebooks.info

#c02_fig_0004
#c02_fig_anc_0004
http://www.it-ebooks.info/

*Secure Keyboard: Restricts the keyboard keystrokes to a specific xterm window. This is useful when typing
passwords to ensure they don't get hijacked by another window.
* Allow SendEvents: Allows X Window events generated by other X Window applications to be accepted by the
xterm window.
* Redraw Window: Instructs X Window to refresh the xterm window.
Again, all of these features may not be supported by your particular xterm implementation. If they're not supported,
they'll appear grayed-out in the menu.

Output Capturing

The xterm package allows you to capture data displayed in the window and either log it to a file or send it to a default
printer defined in X Window. The features that appear in this section are:
® Log to file:Sends all data displayed in the xterm window to a text file.
* Print window: Sends all data displayed in the current window to the default X Window printer.
*Redirect to printer:Sends all data displayed in the xterm window to the default X Window printer as well. This
feature must be turned offto stop printing data.

The capturing feature can get messy if you are using graphics characters or control characters (such as colored text) in
your display area. All characters sent to the display, including control characters, are stored in the log file or sent to the

printer.
The xterm print feature assumes that you define a default printer in the X Window system. If you have no printer defined,
the feature will appear grayed out in the menu.

Keyboard Settings

The keyboard settings section contains features that allow you to customize how xterm sends keyboard characters to the
host system.

* 8-bit controls: Sends 8-bit control codes, used in VT220 terminals, rather than 7-bit ASCII control codes.
* Back arrow key: Toggles the back arrow key between sending a backspace character or a delete character.
® Alt/Numlock Modifiers: Controls whether the Alt or Numlock keys change the PC number pad behavior.

* Alt Sends Escape: The Alt key sends an escape control code along with the other key pressed.
*Metasends Escape: Controls whether the function keys send a two-character control code, including the escape
control code.

* Delete is DEL: The PC Delete key sends a delete character instead of a backspace character.

* 0ld Function keys: The PC functions keys emulate the DEC VT100 function keys.

* Termcap Function keys: The PC function keys emulate the Berkley Unix Termcap function keys.
* Sun Function keys: The PC function keys emulate the Sun Workstation fFunction keys.

*VT220 keyboard: The PC function keys emulate the DEC VT220 function keys.

Asyou can see, setting keyboard preferences often depends on the specificapplication and/or environment you're
working in. There's also a fair amount of personal preference involved as well. Often it's just a matter of what works best for

you as to which keyboard settings to make.

The VT Options Menu

The VT options menu sets features xterm uses in the V1102 emulation. You access the VT options menu by holding down the
Control key and clicking the second mouse button. Typically, the second mouse button is the middle mouse button. If you're
using a two-button mouse, most Linux X Window configurations emulate the middle mouse button when you click both the

left and right mouse buttons together. Figure 2.5 shows what the VT options menu looks like.

Figure 2.5 The xterm VT options menu

www.it-ebooks.info

#c02_fig_0005
#c02_fig_anc_0005
http://www.it-ebooks.info/

{3 Applications Places System

. junk
A_File mount .dat
Archives Hy_Stuff
Has_Fepsatz FPhonetic_A

3
3 i

B xterm

[Terminal]

Has_Eepeats_too

script.dat
e o

testd
v

VT Options

Enable Scrollbar
«+ Enahle Junp Scroll
Enable Reverse Yideno
« Enabile futo Hraparound
Enable Reverse Hraparound
Enable Auto Linefeed
Enahle Application Curzor Keys
Enable Application Keypad
Scroll to Botton on Eey Preas
+ Scroll to Bottom on Tty Dutput
Allow BOSL32 Column Suitching
< Keep Selection
Select to Clipboard
Enable Yigual Bell
Enable Bell Urgency
« Enable Pop on Bell
Enable Blinking Curszor
+ Enable Hlternate Screen Suitching

Erpwinke Hetive Eon

Do Soft Reset
Oo Full Beset
Feset and Clear Sawed Lines

Show Tek Hindou
Suitch to Tek Hode
Hide VT Mindosw

Show Alternate Screen

zomhbi
rectory zombi
ript
L] phabet

Asyou can see from Figure 2.5, many of the VT features that you can set from the command line parameters can also be
set from the VT options menu. This produces quite a large list of available options. The VT options are divided into three sets

of commands, described in the following sections.

VT Features

The VT features commands to change the features of how xterm implements the VT102/220 emulation. They include:

*Enable Scrollbar

*Enable Jump Scrollbar
*Enable Reverse Video
*Enable Auto Wraparound

* Enable Reverse Wraparound

www.it-ebooks.info

#c02_fig_anc_0005
#c02_fig_0005
http://www.it-ebooks.info/

*Enable Auto Linefeed

*Enable Application Cursor Keys
*Enable Application Keypad
*Scroll to Bottom on Keypress
*Scroll to Bottom on TTY Output
* Allow 80/132 Column Switching
* Select to Clipboard

*Enable Visual Bell

*Enable Bell Urgency

*Enable Pop on Bell

*Enable Blinking Cursor

*Enable Alternate Screen Switching

*Enable Active lcon
You can enable or disable each of these features by clicking on the feature in the menu. An enabled feature will have a
checkmark next to it.

VT Commands

The VT commands section sends a specific reset command to the xterm emulation window. They include:
* Do Soft Reset
* Do Full Reset

® Reset and Clear Saved Lines

The soft reset sends a control code to reset the screen area. This is convenient if a program sets the scroll region
incorrectly. The full reset clears the screen, resets any set tab positions, and resets any terminal mode feature set during the
session to theinitial state. The Reset and Clear Saved Lines command performsa full reset and also clears out the scroll area

history file.

Current Screen Commands

The current screen commands section sends commands to the xterm emulator that affect which screen is the currently active
screen.

* Show Tek Window: Display the Tektronix terminal window along with the VT100 terminal window.
* Switch to Tek Window: Hide the VT100 terminal window and display the Tektronix terminal window.
*Hide VT Window: Hide the VT100 terminal window while displaying the Tektronix terminal window.

*Show Alternate Screen: Display the data currently stored in the VT100 alternate screen area.

The xterm terminal emulator provides the ability to start in either VT100 terminal mode (by default) or in the Tektronix
terminal mode (by using the t command line parameter). After you start in either mode, you can use this menu area to switch

to the other mode during your session.

The VT Fonts Menu

The VT fonts menu sets the font style used in the VT100/220 emulation window. You can access this menu by holding the
Control key and clicking on mouse button three (the right button on a right-handed mouse, or the left button on a left-

handed mouse). Figure 2.6 shows what the VT fonts menu looks like.

Figure 2.6 The xterm VT fonts menu

www.it-ebooks.info

#c02_fig_0006
#c02_fig_anc_0006
http://www.it-ebooks.info/

43 Applications Plas

Has_Repaats_too script . dat lesly sombl

= Jurk, scripts test_directory zombi
A_File mount . dat set .dat test_script
Archives Ay_Stut¥ Stuff_to_Archive wvb. junk

Has_FRepeats Phonetic_Alphabet 5S5tuff_to_Restore Wrong_Alphabet

1
i |

VT Fonts

lefault
Unreadable
Tiny
Gmall
e ium
« Large
Huge
Eavaps Sequfn
selection
Line-lrawing Characters
v Packed Fond
" Doublezized Characters
Truelype Fonts
W T -10
UTF-8 Titles
« Allow Color Ops
Allow Font Ops
Allow Terncap Dps
« Allow Title Dps
[Terminal] il xterm Allow Hindouw Ops

The VT fonts menu, covered in the following sections, contains three sections of selections.

Set the Font

These menu options set the size of the font used in the xterm window. The available sizes are:
* Default
*Unreadable
* Tiny
*Small
*Medium

®Large

www.it-ebooks.info

#c02_fig_anc_0006
http://www.it-ebooks.info/

*Huge
® Escape Sequence

* Selection

The default font is the standard-sized font used to display text in the current X Window frame. The unreadable font is
pretty much what it says. It shrinks the xterm window down to a size that is not really usable. This is handy, however, when you
want to minimize the window on your desktop without completely minimizing it on the system. The large and huge font

options produce extremely large font sizes for visually impaired users.
The Escape the Sequence option sets the font to the last font set by the VT100 set font control code. The Selection option
allows you to save the current font with a special font name.

Display the Font

This section of menu options defines the type of characters used to create the text. There are three options available:
*Line Drawing Characters: Tells the Linux system to produce ANSI graphical lines instead of using line characters
from the chosen font.

*Packed Font: Tells the Linux system to use a packed font.

*Doublesized characters: Tells the Linux system to scale the set font to double the normal size.
The line drawing characters allow you to determine which types of graphical features to use when drawing in text mode.
You can use either characters provided by the selected font source or characters provided by the DEC VT100 control codes.

Specify the Font

This section of the menu provides options for what type of fonts are used to create the characters:
*TrueType Fonts
* UTF-8 Fonts

* UTF-8 Titles

The TrueType fonts are popular in graphical environments. Instead of each character taking the same amount of spacein
the line, characters are proportioned by their natural sizes. Thus, the letter itakes up less space on the line than the letter m.
The UTF-8 font allows you to temporarily switch to use the Unicode character set for applications that don't support foreign

characters. The Titles option allows the xterm window title to be encoded using UTF-8.

The Konsole Terminal

The KDE Desktop Project has created its own terminal emulation package called Konsole. The Konsole package incorporates
the basic xterm features, along with more advanced features that we now expect from a Windows application. This section

describes the features of the Konsole terminal, and shows how to use them.

Command Line Parameters

Often a Linux distribution provides a method for starting applications directly from the graphical desktop menu system. If
your distribution doesn't provide this feature, you can manually start Konsole by using the format:

konsole parameters
Just like xterm, the Konsole package uses command line parameters to set features in the new sessions. Table 2.3 shows
the available Konsole command line parameters.

Table 2.3 The Konsole Command Line Parameters

Parameter Description

-e command Execute command instead of a shell.

--keytab file |Use the specified key file to define key mappings.

--keytabs List all of the available keytabs.

www.it-ebooks.info

#c02_tbl_0003
#c02_tbl_anc_0003
http://www.it-ebooks.info/

--1s Start the Konsole session with a login screen.

--name name Set the name that appears in the Konsole title bar.

--noclose Prevent the Konsole window from closing when the last session has been
closed.

--noframe Start Konsole without a frame.

--nohist Prevent Konsole from saving scroll history in sessions.

--nomenubar Start Konsole without the standard menu bar options.

--noresize Prevent changing the size of the Konsole window area.

--notabbar Start Konsole without the standard tab area for sessions.

--noxft Start Konsole without support for aliasing smaller fonts.

--profile file |Start Konsole with settings saved in the specified file.

--profiles List all of the available Konsole profiles.

--schema name |Start Konsole using the specified schema name or file.

--schemata List the schemes available in Konsole.

-T title Set the Konsole window title.

--type type Start a Konsole session using the specified type.

--types List all of the available Konsole session types.

--vt_sz CxL Specify the terminal columns (C) and rows (L).

--workdir dir Specify the working directory for Konsole to store temporary files.

Tabbed Window Sessions

When you start Konsole, you'll notice that it has a tabbed window, with one tab open to a terminal emulation session. This is
the default tabbed window session, and it is normally a standard bash shell CLI. Konsole allows you to have multiple tabs
active at the same time. The tabs, placed at either the top or bottom of the window area, allow you to easily switch between
sessions. This is a great feature for programmers who need to edit code in one tab, while testing the code in another tabbed
window. It's easy to flip back and forth between different active tabsin Konsole. Figure 2.7 shows a Konsole window with

three active tabs.

Figure 2.7 The Konsole terminal emulator with three active sessions

www.it-ebooks.info

#c02_fig_0007
#c02_fig_anc_0007
http://www.it-ebooks.info/

usar: bash

-
File Edit View Bookmarks Settings Help

%
$
§ ls -a
My Stuff test directory
i Phonetic Alphabet test_script
A File script.dat vb. junk
Dig Deep Backups scripts Wrong Alphabet
Haz Repeats set . dat zombie
Has Repeats too Stuff_to_Archive zombie.c
junk Stuff to Restore
mount.dat testa

s 1

- user:bash | @ Program Compiling

user: bop

Similar to the xterm terminal emulator, Konsole provides a simple menu by right-clicking in the active tab area. If you
right-click in the tab area, a menu appears with the following options:

® Copy: Copy the selected text to the clipboard.

® Paste: Paste the contents of the clipboard to the selected area.

* Clear Scrollback & Reset: Clears all the text out of the current tab and resets the terminal.

° Open File Manager: Opens the KDE default file manager, Dolphin, at the present working directory.
® Change Profile: Changes the profile for the current tab.

* Edit Current Profile: Edits the current tab's profile.

*Show Menu Bar: Toggles on/off the menu bar display.

® Character Encoding: Selects the character set used to send and display characters.

* Close Tab: Terminate the tabbed window session. If it is the last tab in the Konsole window, Konsole will close.

www.it-ebooks.info

#c02_fig_anc_0007
http://www.it-ebooks.info/

Konsole also provides another quick way to access the new tab menu—by holding down the Ctrl key and right-clicking in
the tab area.

After a tabbed window has been modified, you can keep the modifications to usein the future using a profile.

Profiles

Konsole delivers a powerful method, called profiles, for saving and reusing a tabbed session's settings. When you start
Konsole for the first time, the tab session's settings are pulled from the default profile, Shell. These settingsinclude items
such as what shell to use, color schemes, and so on. Once you have modified your current tab session, you can save those
modifications as a new profile. This feature allows multiple tab setups, such as a tab session that uses a different shell than

bash.

Profiles can also be used to automate mundane tasks, suchas logging into another system. You can define many profiles
and use different ones in each open tab session. To create a new profile, use the Edit Current Profile setting, described
previously in the simple Konsole menu. To switch the current profile to a different profile, use the simple menu option

Change Profile. These options are also provided on the menu bar.
By default, Konsole uses a menu bar to provide additional functionality so that you can modify and save your Konsole
tabs and profiles.

The Menu Bar

The default Konsole setup uses a menu bar for you to easily view and change options and features in your tabs. The menu
bar consists of six items, as described in the following sections.

File
The File menu bar item provides a location for starting a new tab in the current window or in a new window. It contains the
following entries:

* New Tab: Start a new Konsole tab within the current terminal window using the default profile, Shell.

* New Window: Start a new terminal window to hold a new Konsole tab.

* List of defined profiles: Switch to a new profilein the current tab session.

* Open File Manager: Open the file manager at the present working directory.

* Close Tab: Close the current tab.

® Quit: Quit the Konsole application.
When you first start Konsole, the only profile listed in the List-of-Defined-Profiles will be Shell. As more profiles are
created and saved, their names will appear in the list.

Edit
The Edit menu bar provides options for handling text in the session as well as a few additional options:

® Copy: Copies selected text (which was highlighted with the mouse) to the system clipboard.
* Paste: Pastes text currently in the system clipboard to the current cursor location. If the text contains newline
characters, they will be processed by the shell.
*Rename Tab: Changes the current tab name. The following tokens can be used in addition to text:
* %#—Session number
*%D—Current directory (absolute name)
* %d—Current directory (relative name)
*%n—Program name
* %u—User name
* %w—Shell set window title
* Copy Input To: Sends typed text in the current tab to one or more tabsin the current terminal windows.
*ZModem Upload: Uploads a file to the system using the ZModem protocol.

® Clear and Reset: Sends the control code to reset the terminal emulator, and clears the current session window.
Konsole provides an excellent method for tracking a tab's function. Using the Rename Tab menu option, you can name a

www.it-ebooks.info

http://www.it-ebooks.info/

tab to matchits profile. This helps in tracking which open tab is performing what function.

View
The View menu bar item contains items for controlling the individual sessions in the Konsole window. These selectionsinclude:
*Split View: Controls the display within the current terminal emulation window. Views can be modified by:
*Split View Left/Right: Splits the current display into two identical screens, side by side
*Split View Top/Bottom: Splits the current display into two identical screens, one on top of the other
*Close Active: Merges the current split terminal window back into a single window
*Close Others: Merges non-current split terminal windows back into a single window
* Expand View: Adjusts the active split of a terminal window to take up more of the display window
*Shrink View: Adjusts the active split of a terminal window to take up less display window
*Detach View: Remove the current tab from the Konsole window, and start a new Konsole window using the
current tab. This is available only when more than one active tab is open.

*Show Menu Bar: Toggles on/off the display of the menu bar.

*Full Screen Mode: Toggles on/off the terminal window filling the entire monitor display area.

* Monitor for Silence: Toggles on/off a special icon appearance when no new text appearsin the tab for 10 seconds.
This allows you to switch to another tab while waiting for output from an application to stop, such as when

compiling a large application.
* Monitor for Activity: Toggles on/off a special icon appearance when new text appears in the tab. This allows you to
switch to another tab while waiting for output from an application.

® Character Encoding: Selects the character set used to send and display characters.
*Increase Text Size: Increases the size of the text font.

* Decrease Text Size: Decreases the size of the text font.
The Split View option in Konsole will maintain the current number of open tabs in the split view. For example, if you have
three tabs in the terminal window and split the view, each view will have three tabs.

Scrollback

Konsole retains a history area, formally called a scrollback buffer, for each tab. The history area contains the output text for
lines that scroll out of the viewing area of the terminal emulator. By default, the last 1,000 lines of output in the scrollback

buffer are retained. The Scrollback menu offers various options for reviewing this buffer.
*Search Output: Opens a dialog box at the bottom of the current tab. The Find dialog box enables Konsole to
search for specific text in the scroll buffer. It has options for case, regular expressions, and search direction.

* Find Next: Finds the next text matchin more recent history of the scrollback buffer.
* Find Previous: Finds the next text match in more ancient history of the scrollback buffer.

® Save Output: Saves the contents of the scrollback buffer to a text or HTML file.

*Scrollback Options: Controls the activity of the scrollback buffer. The modifications available are:
* No Scrollback: Disable the scrollback buffer.
*Fixed Scrollback: Set the size (number of lines) of the scrollback buffer. The default is 1,000 lines.
*Unlimited Scrollback: Allows an infinite number of lines to be stored in the scrollback buffer.
*Save to Current Profile: Save the scrollback buffer options to the current profile settings.

* Clear Scrollback & Reset: Removes the contents of the scrollback buffer and resets the terminal window.

You can scroll through the scrollback buffer by using the scrollbar in the viewing area, or by pressing the Shift key and the
Up Arrow key to scroll line by line, or the Page Up key to scroll page (24 lines) by page.

Bookmarks

The Bookmarks menu items provide a way to manage bookmarks set in the Konsole window. Abookmark enables you to save
your directory location in an active session and then easily return there in either the same session or a new session. Have you
ever drilled down several directories deep to find something on the Linux system, exited, and then forgotten howyou got
there? Bookmarks will solve that problem. When you get to your desired directory location, just add a new bookmark. When
you want to return, look at the Bookmarks for your new bookmark, and it will automatically perform the directory change

to the desired location for you. The bookmark entriesinclude:

www.it-ebooks.info

http://www.it-ebooks.info/

* Add Bookmark: Create a new bookmark at the current directory location.

* Bookmark Tabs as Folder: Create a bookmark for all the current terminal window tabs.
* New Bookmark Folder: Create a new storage folder for bookmarks.

* Edit Bookmarks: Edit existing bookmarks.

° A list of your bookmarks: Any bookmarks you have created.

Thereis no limit to how many bookmarks you can storein Konsole, but having lots of bookmarks can get confusing. By
default, they all appear at the same level in the Bookmark area. You can organize them by creating new bookmark folders

and moving individual bookmarks to the new folders using the Edit Bookmarks item.

Settings

The Settings menu bar area allows you to customize and manage your profiles as well as add a little more functionality to
the current tab session. This area includes:

® Change Profile: Applies a selected profile for the current tab.

* Edit Current Profile: Opens a dialog box where a large variety of profile settings can be changed.
* Manage Profiles: Allows a particular profile to be the default profile and enables you to create and delete
profiles. Also manages the order in whichyour profiles appear in the File menu.
* Configure Shortcuts: Creates keyboard shortcuts for Konsole commands.
* Configure Notifications: Sets actions for specific session events.
® Configure Konsole: Create custom Konsole schemas and sessions.
The Configure Notifications area is pretty cool. It allows you to associate five specific events that can occur within a session
with six different actions. When one of the events occurs, the defined action (or actions) are taken.
The Edit Current Profile settings is a powerful tool that provides advanced control over profile features This dialog box
provides a way to create and save a variety of profiles for later use. Figure 2.8 shows the main Edit Current Profile dialog box.

Figure 2.8 The Konsole edit current profile dialog box

www.it-ebooks.info

#c02_fig_0008
#c02_fig_anc_0008
http://www.it-ebooks.info/

Edit Prafile "My Profile” - Konsale

Cianeral

General

Tabs Appearance Scrolling Input | Advanced
Profile name: My_Profile a
Command: /bin/bash '
Initial directory: =]
| Start in same directory as current tab

~F Shiow menu bar in new windows

Within the Edit Current Profile dialog box are six tabbed areas:

*General: Allows you to set the profile's name, the icon, the initial filesystem directory, and so on. You can also
designate the command to be executed upon the tab opening. This typically points to the bashshell, /bin/bash,

but can also be regularly used shell commands, suchas top.

® Tabs: Defines the tab's title format and the position of the tab bars.

® Appearance: Items such as a tab's color scheme and font settings are in this window.

*Scrolling: Settings included are the size of the scrollback buffer and the scroll bar's location on the window.
*Input: Keybindings, what characters are sent to the terminal emulation when certain keyboard combinations are

pressed, can be set here.

* Advanced: Allows you to configure several settings in this window. They include terminal features, character
encoding, mouse interaction, and cursor features.

www.it-ebooks.info

#c02_fig_anc_0008
http://www.it-ebooks.info/

Help

The Help menu item provides the full Konsole handbook (if KDE handbooks wereinstalled in your Linux distribution), a “tip
of the day” feature that shows interesting little-known shortcuts and tips each time you start Konsole, and the standard

About Konsole dialog box.

The GNOME Terminal

Asyou would expect, the GNOME desktop project has its own terminal emulation program. The GNOME Terminal software
package has many of the same features as Konsole and xterm. This section walks you through the various parts of configuring

and using GNOME Terminal.

The Command Line Parameters

The GNOME Terminal application also provides a wealth of command line parameters that allow you to control GNOME's
behavior when starting it. Table 2.4 lists the parameters available.

Table 2.4 The GNOME Terminal Command Line Parameters

Parameter Description

-e command Execute the argument inside a default terminal window.

-X Execute the entire contents of the command line after this
parameter inside a default terminal window.

--window Open a new window with a default terminal window. You may add

multiple --window parameters to start multiple windows.

--window-with-profile=

Open a new window with a specified profile. You may also add this
parameter multiple times to the command line.

--tab

Open a new tabbed terminal inside the last opened terminal
window.

--tab-with-profile=

Open a new tabbed terminal inside the last opened terminal
window using the specified profile.

--role=

Set the role for the last specified window.

--show-menubar

Enable the menu bar at the top of the terminal window.

--hide-menubar

Disable the menu bar at the top of the terminal window.

--full-screen

Display the terminal window fully maximized.

--geometry=

Specify the X Window geometry parameter.

--disable-factory

Don't register with the activation nameserver.

--use-factory

Register with the activation nameserver.

--startup-id=

Set the ID for the Linux startup notification protocol.

-t, --title=

Set the window title for the terminal window.

--working-directory=

Set the default working directory for the terminal window.

--zoom=

Set the terminal's zoom factor.

www.it-ebooks.info

#c02_tbl_0004
#c02_tbl_anc_0004
http://www.it-ebooks.info/

--active Set the last specified terminal tab as the active tab.

The GNOME Terminal command line parameters allow you to set lots of features automatically as GNOME Terminal starts.
However, you can also set most of these features from within the GNOME Terminal window after it starts.

Tabs

Similar to Konsole, the GNOME Terminal calls each session a tab, and it also uses tabs to keep track of multiple sessions
running within the window. Figure 2.9 shows a GNOME Terminal window with three session tabs active.

Figure 2.9 The GNOME Terminal with three active sessions

I3 Applications Places System w o) i ¢ =

=

Sl user: bask
| *
=

File Edit Wview Search Terminal Tabs Help

S—
e

| user; bash % |user: top ¥ Program Compiling
%

o= Y |

|1

frash

B user: bash

You can right-click in the tab window to see the quick menu. This quick menu provides a few actions for your use in the tab
session:

www.it-ebooks.info

#c02_fig_0009
#c02_fig_anc_0009
http://www.it-ebooks.info/

* Open Terminal: Open a new GNOME Terminal window with a default tab session.

* Open Tab: Open a new session tab in the existing GNOME Terminal window.

*Close Tab or Close Window: If multiple tabs are open, the menu option Close Tab is shown and it closes the current
session tab. If only onetab is open, the menu option Close Window is displayed and it closes the GNOME Terminal

window.
® Copy: Copy highlighted text in the current session tab to the dlipboard.
® Paste: Paste data in the clipboard into the current session tab at the current cursor location.
* Profiles: Change the profile for the current session tab or edit the current tab profile.

*Show Menubar: Toggles on/off the menu bar display.
*Input Methods: Allows you to change the current Input Method to another character translation or turn it off
completely.
The quick menu provides easy access to commonly used actions that are available from the standard menu bar in the
terminal window.

The Menu Bar

The main operation of GNOME Terminal happens in the menu bar. The menu bar contains all of the configuration and
customization optionsyou'll need to make your GNOME Terminal just the way you want it. The following sections describe

the different items in the menu bar.

File
The File menu item contains items to create and manage the terminal tabs:
* Open Terminal: Start a new shell session in a new GNOME Terminal window.
* Open Tab: Start a new shell session on a new tab in the existing GNOME Terminal window.
* New Profile: Allows you to customize the tab session and save it as a profile, which you can recall for use later.
* Save Contents: Saves the contents of the scrollback buffer to a text file.
* Close Tab: Close the current tab in the window.

® Close Window: Close the current GNOME Terminal session, closing all active tabs.
Most of the items in the File menu are also available by right-clicking in the session tab area. The New Profile entry allows
you to customize your session tab settings and save them for future use.
The New Profile first requests that you provide a name for the new profile; then it produces the Editing Profile dialog
box, shown in Figure 2.10.

Figure 2.10 The GNOME Terminal Editing Profile dialog box

www.it-ebooks.info

#c02_fig_0010
#c02_fig_anc_0010
http://www.it-ebooks.info/

§9 Applications Places System w & i o w

m——ld

[:l A user: bash e
-

File Edit Yiew %Search Temmninal Help

:
<0

f 1
Gereral | Title and Command Colors Background | Scrolling | Compatibility

User's Home

= Profile name: |My_Profile
u W Use the system fixed width font

1 Allow bold text
| Show menubar by default in new terminals
1 Terminal bell

-

Cursor shape: | Block -

Select-by-word characters: [-A-Za-z0-9,/7%E&#:_=+@~

| Use custom default terminal size

@ user; bash

This is the area where you can set the terminal emulation features for the session. It consists of six areas:

* General: Provides general settings such as font, the bell, and the menu bar.
*Title and Command: Allows you to set the title for the session tab (displayed on the tab) and determine if the
session starts with a special command rather than a shell.

® Colors: Sets the foreground and background colors used in the session tab.
*Background: Allows you to set a background image for the session tab, or make it transparent so you can see the
desktop through the session tab.

*Scrolling: Controls whether a scroll region is created, and how large.
* Compatibility: Allows you to set which control codes the Backspace and Delete keys send to the system.

Once you configure a profile, you can specify it when opening new session tabs.

www.it-ebooks.info

#c02_fig_anc_0010
http://www.it-ebooks.info/

Edit

The Edit menu item contains items for handling text within the tabs. You can use your mouse to copy and paste texts
anywhere within the tab window. This allows you to easily copy text from the command line output to a clipboard and import

itinto an editor. You can also paste text from another GNOME application into the tab session.
® Copy: Copy selected text to the GNOME clipboard.
® Paste: Paste text from the GNOME clipboard into the tab session.
*Select All: Selects output in the entire scrollback buffer.
® Profiles: Add, delete, or modify profiles in the GNOME Terminal.
* Keyboard Shortcuts: Create key combinations to quickly access GNOME Terminal features.

* Profile Preferences: Provides a quick way to edit the profile used for the current session tab.
The profile-editing feature is an extremely powerful tool for customizing several profiles, and then changing profiles as
you change sessions.

View
The View menu item contains items for controlling how the session tab windows appear. They include:
*Show Menubar: Toggles on/off the menu bar display.
*Full Screen: Enlarges the GNOME Terminal window to the entire desktop.
*Zoom In: Makes the font in the tab window larger.
*Zoom Out: Makes the font in the tab window smaller.

* Normal Size: Returns the tab font to the default size.
If you hide the menu bar, you can easily get it back by right-clicking in any session tab and toggling the Show Menubar
item.

Terminal

The Terminal menu item contains items for controlling the terminal emulation features of the tab session. They include:
* Change Profile: Allows you to switch to another configured profilein the session tab.
*Set Title: Sets the title on the session tab to easily identify it.
*Set Character Encoding: Selects the character set used to send and display characters.

* Reset: Sends the reset control code to the Linux system.
*Reset and Clear:Sends the reset control code to the Linux system and clears any text currently showing in the tab
area.
*Window Size List: Lists different sizes to which the current GNOME terminal window can be adjusted. Select a size
and the window automatically adjusts its size.
The character encoding offers a large list of available character sets to choose from. This is especially handy if you must
work in a language other than English.

Tabs

The Tabs menu item provides items for controlling the location of the tabs and selecting which tab is active. This menu only
displays when you have more than one tab session open.

* Next Tab: Make the next tab in the list active.

* Previous Tab: Make the previous tab in the list active.

* Move Tab to the Left: Shuffle the current tab in front of the previous tab.
® Move Tab to the Right: Shuffle the current tab in front of the next tab.

* Detach Tab: Remove the tab and start a new GNOME Terminal window using this tab session.
*The Tab list: Lists the currently running session tabs in the terminal window. Select a tab to quickly jump to that
session.

www.it-ebooks.info

http://www.it-ebooks.info/

This section allows you to manage your tabs, which can come in handy if you have several tabs open at once.

Help

The Help menu item provides a full GNOME Terminal manual so that you can researchindividual items and features used in
the GNOME Terminal.

Summary

To start learning Linux command line commands, you need access to a command line. In a world of graphical interfaces, this
can sometimes be challenging. This chapter discussed different things you should consider when trying to get to the Linux
command line from within a graphical desktop environment. First, the chapter covered terminal emulation and showed what
features you should know about to ensure that the Linux system can properly communicate with your terminal emulation

package, and display text and graphics properly.

In particular, the chapter covered three different types of terminal emulators. The xterm terminal emulator package was
the first available for Linux. It emulates both the VT102 and Tektronix 4014 terminals. The KDE desktop project created the
Konsole terminal emulation package. It provides several fancy features, such as the ability to have multiple sessions in the

same window, using both console and xterm sessions, with full control of terminal emulation parameters.

Finally, the chapter discussed the GNOME desktop project's GNOME Terminal emulation package. GNOME Terminal also
allows multiple terminal sessions from within a single window; plus it provides a convenient way to set many terminal

features.
In the next chapter, you'll start looking at the Linux command line commands. I'll walk you through the commands
necessary to navigate around the Linux filesystem, and create, delete, and manipulate files.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3
Basic bash Shell Commands

In This Chapter

® Starting the shell

* The shell prompt

* The bash manual

* Filesystem navigation

® File and directory listing
* File handling

* Directory handling

* Viewing file contents

The default shell used in all Linux distributions is the GNU bash shell. This chapter describes the basic features available in the
bash shell, and walks you through how to work with Linux files and directories using the basic commands provided by the
bashshell. If you're already comfortable working with files and directories in the Linux environment, feel free to skip this

chapter and continue with Chapter 4 to see more advanced commands.

Starting the Shell

The GNU bash shell is a program that provides interactive access to the Linux system. It runs as a regular program, normally
started whenever a user logs in to a terminal. The shell that the system starts depends on your user ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along with some basic configuration information
about each user.Here'sa sample entry froma /etc/passwd file:

rich:x:501:501:Rich Blum:/home/rich:/bin/bash
Each entry has seven data fields, with each field separated by a colon. The system uses the data in these fields to assign
specific features for the user. These fields are:

* The username

* The user's password (or a placeholder if the password is stored in another file)
® The user's system user ID number

* The user's system group ID number

* The user's full name

* The user's default home directory

* The user's default shell program
Most of these entries will be discussed in more detail in Chapter 6. For now, just pay attention to the shell program
specified.

Most Linux systems use the default bash shell program when starting a command line interface (CLI) environment for the
user. The bash program also uses command line parameters to modify the type of shell you can start. Table 3.1 lists the

command line parameters available in bash that define what type of shell to use.

Table 3.1 The bash Command Line Parameters

Parameter |Description

-c string |Read commands from string and process them.

-r Start a restricted shell, limiting the user to the default directory.

www.it-ebooks.info

#c03_tbl_0001
#c03_tbl_anc_0001
http://www.it-ebooks.info/

-1 Start an interactive shell, allowing input from the user.

-S Read commands from the standard input.

By default, when the bash shell starts, it automatically processes commandsin the .bashrc filein the user's home
directory. Many Linux distributions use this file to also load a common file that contains commands and settings for
everyone on the system. This common file is normally located in the file /et c/bashrc. This file often sets environment

variables (see Chapter 5) used in various applications.

The Shell Prompt

Onceyou start a terminal emulation package or log in from the Linux console, you get access to the shell CLI prompt. The
prompt is your gateway to the shell. This is the place where you enter shell commands.

The default prompt symbol for the bash shell is the dollar sign ($). This symbol indicates that the shell is waiting for you to
enter text. However, you can change the format of the prompt used by your shell. The different Linux distributions use

different formats for the prompt. On this Ubuntu Linux system, the bash shell prompt looks like this:
rich@user-desktop:~$
On this Fedora Linux system, it looks like this:
[rich@testbox~]$

You can configure the prompt to provide basicinformation about your environment. The first example shows three
pieces of information in the prompt:

* The username that started the shell
* The current virtual console number

* The current directory (the tilde sign is shorthand for the home directory)
The second example provides similar information, except that it uses the hostname instead of the virtual console number.
There are two environment variables that control the format of the command line prompt:

* PS1:Controlsthe format of the default command line prompt

* PS2:Controls the format of the second-tier command line prompt
The shell uses the default PS1 prompt for initial data entry into the shell. If you enter a command that requires
additional information, the shell displays the second-tier prompt specified by the PS2 environment variable.

To display the current settings for your prompts, use the echo command:

rich@ user-desktop:~$ echo $PS1
${debian_chroot:+($debian_chroot)}\u@\h:\w\$
rich@ user-desktop:~$ echo $PS2

>

rich@ user-desktop:~$
The format of the prompt environment variables can look pretty odd. The shell uses special characters to signify elements
within the command line prompt. Table 3.2 shows the special characters that you can use in the prompt string.

Table 3.2 Bash Shell Prompt Characters

Character | Description

\a Bell character

\d Date in the format “Day Month Date”
\e ASCIl escape character

\h Local hostname

\H Fully qualified domain hostname

www.it-ebooks.info

#c03_tbl_0002
#c03_tbl_anc_0002
http://www.it-ebooks.info/

\j Number of jobs currently managed by the shell
\1 Basename of the shell's terminal device name
\n ASCIl newline character

\r ASClI carriage return

\s Name of the shell

\t Current time in 24-hour HH:MM:SS format

\T Current time in 12-hour HH:MM:SS format

\@ Current time in 12-hour am/pm format

\u Username of the current user

\v Version of the bash shell

\V Release level of the bash shell

\w Current working directory

\W Basename of the current working directory

\! Bash shell history number of this command

\# Command number of this command

\$ A dollar sign if a normal user, or a pound sign if the root user
\nnn Character corresponding to the octal value nnn
\\ Backslash

\[Begins a control code sequence

\] Ends a control code sequence

Notice that all of the special prompt characters begin with a backslash (\). This is what delineates a prompt character from
normal text in the prompt. In the earlier example, the prompt contained both prompt characters and a normal character (the
“at” sign, and the square brackets). You can create any combination of prompt charactersin your prompt. To create a new

prompt, just assign a newstring to the PS1 variable:

[rich@testbox~]$ PS1="[\t][\u]\$ "
[14:40:32][rich]$

This new shell prompt now shows the current time, along with the username. The new PS1 definition only lasts for the
duration of the shell session. When you start a new shell, the default shell prompt definition is reloaded. In Chapter 5you'll
see howyou can change the default shell prompt for all shell sessions.

The bash Manual

Most Linux distributionsinclude an online manual for looking up information on shell commands, as well as lots of other
GNU utilitiesincluded in the distribution. It is a good idea to become familiar with the manual, asit's invaluable for working

with utilities, especially when you're trying to figure out various command line parameters.

The man command provides access to the manual pages stored on the Linux system. Entering the man command followed
by a specific utility name provides the manual entry for that utility. Figure 3.1 shows an example of looking up the manual

pages for the date command.

www.it-ebooks.info

#c03_fig_0001
http://www.it-ebooks.info/

Figure 3.1 Displaying the manual pages for the Linux date command

File Edit View Search Terminal Help

User Commands

print or set the system date and time

SYNOPSIS
date [OPTION]...
date [-ul--utc|--un

DESCRIPTION
Display the current time in the given FORMAT, or

-d, --date=STRING
display time described by STRING, not now'

-f, ==-f1le=DATEFILE
like --date once for each 1ine of DATEFILE

--reference=FILE
display the last modification time of FILE

-R, --rfc-2822
output date and time 1m RFC 2822 Tormat. i 4 : 56

==rfc-3339=TIMESPEC
output date and time in RFC 3339 format. TIMESPEC= date', seconds',
date and time to the indicated precision. Date and time components are
by a single space: 2006-088-07 12:34:56-086:00

-5, --set=STRING
Manual page date(l) line 1

The manual page divides information about the command into separate sections, shown in Table 3.3.

Table 3.3 The Linux man Page Format

Section Description

Name Displays the command name and a short description

Synopsis Shows the format of the command

Description Describes each command option

Author Provides information on the person who developed the command

Reporting bugs |Provides information on where to report any bugs found

Copyright Provides information on the copyright status of the command code

See Also Refers you to any similar commands available

You can step through the man pages by pressing the spacebar or using the arrow keys to scroll forward and backward
through the man page text (assuming that your terminal emulation package supports the arrow key functions). When you

www.it-ebooks.info

#c03_fig_anc_0001
#c03_tbl_0003
#c03_tbl_anc_0003
http://www.it-ebooks.info/

are done with the man pages, press the q key to quit.

To seeinformation about the bash shell, look at the man pages for it using the following command:

$ man bash

This allows you to step through all of the man pages for the bash shell. This is extremely handy when building scripts, as
you don't have to refer back to books or Internet sites to look up specific formats for commands. The manual is always there

for you in your session.

Filesystem Navigation

Asyou can see from the shell prompt, when you start a shell session, you are usually placed in your home directory. Most
often, you will want to break out of your home directory and explore other areas in the Linux system. This section describes
how to do that using shell commands. Before we do that, however, let's take a tour of just what the Linux filesystem looks like

so we know where we're going.

The Linux Filesystem

If you're new to the Linux system, you may be confused by how it references files and directories, especially if you're used to
the way that the Microsoft Windows operating system does that. Before exploring the Linux system, it helps to have an
understanding of howit's laid out.

The first difference you'll notice is that Linux does not use drive lettersin pathnames. In the Windows world, the physical
drivesinstalled on the PC determine the pathname of the file. Windows assigns a letter to each physical disk drive, and each

drive containsits own directory structure for accessing files stored on it.

For example, in Windows you may be used to seeing the filepaths such as:

c:\Users\Rich\Documents\test.doc.

This indicates that the file test.docis located in the directory Documents, which itself is located in the directory Rich. The
Rich directory is contained under the directory Users, whichis located on the hard disk partition assigned the letter C (usually

the first hard drive on the PC).

The Windows filepath tells you exactly which physical disk partition contains the file named test.doc. If you wanted to save
afileon aflash drive, it could be, for example, designated by the J drive. You would click the icon for the J drive, which would
automatically use the filepath J:\test.doc. This path indicates that the file is located at the root of the drive assigned the letter

J.

This is not the method used by Linux. Linux stores files within a single directory structure, called a virtual directory. The
virtual directory contains filepaths from all the storage devices installed on the PC, merged into a single directory structure.
The Linux virtual directory structure contains a single base directory, called the root. Directories and files beneath the

root directory are listed based on the directory path used to get to them, similar to the way Windows does it.

Tip
You'll notice that Linux uses a forward slash (/) instead of a backward slash (\) to denote
directories in filepaths. The backslash character in Linux denotes an escape character and
causes all sorts of problems when you use it in a filepath. This may take some getting used
to if you're coming from a Windows environment.

For example, the Linux filepath /home/rich/Documents/test.doc indicates only that the file test.docisin the
directory Documents, under the directory rich, which is contained in the directory home. It doesn't provide any information as
to which physical disk on the PC the file is stored on.

The tricky part about the Linux virtual directory is how it incorporates each storage device. The first hard drive installed in
a Linux PCis called the root drive. The root drive contains the core of the virtual directory. Everything else builds from there.

On the root drive, Linux creates special directories called mount points. Mount points are directories in the virtual
directory where you assign additional storage devices.

The virtual directory causes files and directories to appear within these mount point directories, even though they are
physically stored on a different drive.

Often the system files are physically stored on the root drive, while user files are stored on a different drive, as shown in
Figure 3.2.

Figure 3.2 The Linux file structure

www.it-ebooks.info

#c03_fig_0002
#c03_fig_anc_0002
http://www.it-ebooks.info/

Disk 1

-~ B
Disk 2
'l Y
— hin
— barbara
— etc
home — jessica
| i — katie
— rich
—— var

In Figure 3.2, there are two hard drives on the PC. One hard drive is associated with the root of the virtual directory
(indicated by a single forward slash). Other hard drives can be mounted anywhere in the virtual directory structure. In this

example, the second hard drive is mounted at the location /home, which is where the user directories are located.

The Linux filesystem structure has evolved from the Unix file structure. Unfortunately, the Unix file structure has been
somewhat convoluted over the years by different flavors of Unix. Nowadays it seems that no two Unix or Linux systems
follow the same filesystem structure. However, there are a few common directory names that are used for common functions.

Table 3.4 lists some of the more common Linux virtual directory names.

Table 3.4 Common Linux Directory Names

Directory |Usage

/ root of the virtual directory. Normally, no files are placed here.

/bin binary directory, where many GNU user-level utilities are stored.
/boot boot directory, where boot files are stored.

/dev device directory, where Linux creates device nodes.

/etc system configuration files directory.

/home home directory, where Linux creates user directories.

/lib library directory, where system and application library files are stored.

/media media directory, a common place for mount points used for removable media.

/mnt mount directory, another common place for mount points used for removable
media.

/opt optional directory, often used to store optional software packages.

/root root home directory.

/sbin system binary directory, where many GNU admin-level utilities are stored.

www.it-ebooks.info

#c03_fig_anc_0002
#c03_fig_0002
#c03_tbl_0004
#c03_tbl_anc_0004
http://www.it-ebooks.info/

/tmp temporary directory, where temporary work files can be created and destroyed.

Jusr user-installed software directory.

Jvar variable directory, for files that change frequently, such as log files.

When you start a new shell prompt, your session starts in your home directory, whichis a unique directory assigned to
your user account. When you create a user account, the system normally assigns a unique directory for the account (see

Chapter 6).
In the Windows world, you're probably used to moving around the directory structure using a graphical interface. To
move around the virtual directory from a CLI prompt, you'll need to learn to use the cd command.

Traversing Directories
You use the change directory command (cd) to move your shell session to another directory in the Linux filesystem. The

format of the cd command is pretty simplistic:

cd destination
The cd command may take a single parameter, destination, which specifies the directory name you want to go to. If
you don't specify a destination on the cd command, it will take you to your home directory.

The destination parameter, however, can be expressed using two different methods:
® An absolute filepath
® Arelative filepath

The following sections describe the differences between these two methods.

Absolute Filepaths

You can reference a directory name within the virtual directory using an absolute filepath. The absolute filepath defines
exactly where the directory isin the virtual directory structure, starting at the root of the virtual directory, sort of like a full

name for a directory.
Thus, to reference the apache directory, which is contained within the lib directory, whichin turn is contained within the usr
directory, you would use the absolute filepath:

/usr/1lib/NetworkManager
With the absolute filepath, there's no doubt as to exactly where you want to go. To move to a specific location in the
filesystem using the absolute filepath, you just specify the full pathname in the cd command:

rich@testbox[~]$cd /etc

rich@testbox[etc]$

The prompt shows that the new directory for the shell after the cd command is now /etc.You can move to any level
within the entire Linux virtual directory structure using the absolute filepath:

rich@testbox[~]$ cd /usr/lib/NetworkManager

rich@testbox[NetworkManager]$
However, if you're just working within your own home directory structure, often using absolute filepaths can get tedious.
For example, if you're already in the directory /home/rich, it seems somewhat cumbersome to have to type the command

cd /home/rich/Documents

just to get to your Documents directory. Fortunately, there's a simpler solution.

Relative Filepaths

Relative filepaths allow you to specify a destination filepath relative to your current location, without having to start at the
root. Arelative filepath doesn't start with a forward slash, indicating the root directory.
Instead, a relative filepath starts with either a directory name (if you're traversing to a directory under your current

www.it-ebooks.info

http://www.it-ebooks.info/

directory), or a special character indicating a relative location to your current directory location. The two special characters
used for this are:

*The dot (.) to represent the current directory

*The double dot (. .) to represent the parent directory

The double dot character is extremely handy when trying to traverse a directory hierarchy. For example, if you arein the
Documents directory under your home directory and need to go to your Desktop directory, also under your home directory,

you can do this:

rich@testbox[Documents]$ cd ../Desktop
rich@testbox[Desktop]$

The double dot character takes you back up one level to your home directory; then the /Desktop portion then takes you
back down into the Desktop directory. You can use as many double dot characters as necessary to move around. For
example, if you arein your home directory (/home/rich)and want to go to the /etc directory, you could type the

following:

rich@testbox[~]$ cd ../../etc
rich@testbox[etc]$

Of course, in a case like this, you actually have to do more typing to use the relative filepath rather than just typing the
absolute filepath, /etc!

File and Directory Listing

The most basic feature of the shell is the ability to see what files are available on the system. The list command (1s) is the tool
that helps do that. This section describes the 1s command and all of the options available to format the information it can

provide.

Basic Listing
The 1s command at its most basic form displays the files and directories located in your current directory:
$ 1s
4rich Desktop Download Music Pictures store store.zip test

backup Documents Drivers myprog Public store.sql Templates Videos

Notice that the 1s command produces the listing in alphabetical order (in columns rather than rows). If you're using a
terminal emulator that supports color, the 1s command may also show different types of entries in different colors. The
LS_COLORS environment variable controls this feature. Different Linux distributions set this environment variable

depending on the capabilities of the terminal emulator.
Ifyou don't have a color terminal emulator, you can use the - F parameter with the 1s command to easily distinguish files
from directories. Using the - F parameter produces the following output:

$ 1s -F

4rich/ Documents/ Music/ Public/ store.zip Videos/
backup.zip Download/ myprog* store/ Templates/

Desktop/ Drivers/ Pictures/ store.sql test

$

The - F parameter now flags the directories with a forward slash, to help identify them in the listing. Similarly, it flags
executable files (like the myprog file above) with an asterisk, to help you more easily find the files that can be run on the

system.

The basic 1s command can be somewhat misleading. It shows the files and directories contained in the current directory,
but not necessarily all of them. Linux often uses hidden files to store configuration information. In Linux, hidden files are files

with file names that start with a period. These files don't appear in the default 1s listing (thus, they are called hidden).
To display hidden files along with normal files and directories, use the -a parameter. Figure 3.3 shows an example of using
the -a parameter with the 1s command.

Figure 3.3 Using the-a parameter with the 1s command

www.it-ebooks.info

#c03_fig_0003
#c03_fig_anc_0003
http://www.it-ebooks.info/

Terminal

View Search Terminal Help

.gtk-bookmarks
.gtkrc-2.8

+e5d auth pli] postponed 1d
- JICEauthority .printer-groups.xml .viminfo
] - \ .profile]
.bash history
.bash logout) -
.bashrc jeql-8 - dia .pulse-cookie
bogofilts p-2 1 .recently-used
.gksu. lock 1ss1on-contr .recently-used.xbel
' .selected editor
sent
Jmy.cnt :
.mysql history Lsudo as admin successful

4 LT L

Wow, that's quite a difference. In a home directory for a user who has logged in to the system from a graphical desktop,
you'll see lots of hidden configuration files. This particular exampleis from a user logged in to a GNOME desktop session.
Also notice that there are three files that begin with .bash. These files are hidden files that are used by the bash shell

environment. These features are covered in detail in Chapter 5.

The -R parameter isanother option the 1s command can use. It shows files that are contained within directories in the
current directory. If you have lots of directories, this can be quite a long listing. Here's a simple example of what the -R

parameter produces:

$ 1s -F -R
filel test1/ test2/

./testl:

myprogl1* myprog2*
./test2:

$

Notice that first, the - R parameter shows the contents of the current directory, whichis a file (file1) and two directories
(test1and test2).Following that, -R traverses each of the two directories, showing if any files are contained within each
directory. The test1 directory shows two files (myprog1 and myprog2), while the test2 directory doesn't contain any files.
If there had been further subdirectories within the test1 or test2 directories, the -R parameter would have continued to

traverse those as well. As you can see, for large directory structures this can become quite a large output listing.

www.it-ebooks.info

#c03_fig_anc_0003
http://www.it-ebooks.info/

Modifying the Information Presented

Asyou can seein the basiclistings, the 1s command doesn't produce a whole lot of information about each file. For listing
additional information, another popular parameter is - 1. The -1 parameter produces a long listing format, providing more

information about each file in the directory:

$ 1s -1

total 2064

drwxrwxr-x 2 rich rich 4096 2010-08-24 22:04 4rich
-rw-r--r-- 1 rich rich 1766205 2010-08-24 15:34 backup.zip
drwxr-xr-x 3 rich rich 4096 2010-08-31 22:24 Desktop
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Documents
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Download
drwxrwxr-x 2 rich rich 4096 2010-07-26 18:25 Drivers
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Music
-rwxr--r-- 1 rich rich 30 2010-08-23 21:42 myprog
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Pictures
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Public
drwxrwxr-x 5 rich rich 4096 2010-08-24 22:04 store
-rw-rw-r-- 1 rich rich 98772 2010-08-24 15:30 store.sql
-rw-r--r-- 1 rich rich 107507 2010-08-13 15:45 store.zip
drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Templates

drwxr-xr-x 2 rich rich 4096 2009-11-01 04:06 Videos
[rich@testbox~]1$

The long listing format lists each file and directory contained in the directory on a single line. In addition to the file name,
the listing shows additional useful information. The first line in the output shows the total number of blocks contained within

the directory. Following that, each line contains the following information about each file (or directory):
* The file type—such as directory (d), file (-), character device (c), or block device (b)
* The permissions for the file (see Chapter 6)
* The number of hard links to the file (see the section “Linking Files” in this chapter)
* The username of the owner of the file
* The group name of the group the file belongs to
* The size of the file in bytes
* The time the file was modified last

* The file or directory name
The -1 parameter is a powerful tool to have. Armed with this information, you can see just about any information you
need to for any file or directory on the system.

The Complete Parameter List

There are lots of parameters for the 1s command that can come in handy as you do file management. If you use the man
command for 1s, you'll see several pages of available parameters for you to use to modify the output of the 1s command.

The 1s command uses two types of command line parameters:
®Single-letter parameters

* Full-word (long) parameters

The single-letter parameters are always preceded by a single dash. Full-word parameters are more descriptive and are
preceded by a double dash. Many parameters have both a single-letter and full-word version, while some have only one type.

Table 3.5 lists some of the more popular parameters that will help you out with using the bash 1s command.

www.it-ebooks.info

#c03_tbl_0005
http://www.it-ebooks.info/

Table 3.5 Some Popular s Command Parameters

Single Letter | Full Word Description
-a --all Don't ignore entries starting with a period.
-A --almost-all Don't list the . and .. files.
--author Print the author of each file.
-b --escape Print octal values for nonprintable characters.
--block-size=size Calculate the block sizes using size-byte
blocks.
-B --1ignore-backups Don't list entries with the tilde (~) symbol
(used to denote backup copies).
-C Sort by time of last modification.
-C List entries by columns.
--color=when When to use colors (always, never, or auto).
-d --directory List directory entries instead of contents, and
don't dereference symbolic links.
-F --classify Append file-type indicator to entries.
--file-type Only append file-type indicators to some
filetypes (not executable files).
--format=word Format output as either across, commas,
horizontal, long, single-column, verbose, or
vertical.
-g List Full file information except for the file's
owner.
--group-directories-first |List all directories before files.
-G --no-group In long listing don't display group names.
-h --human-readable Print sizes using K for kilobytes, M for
megabytes, and G for gigabytes.
--si Same as -h, but use powers of 1000 instead of
1024.
-1 --inode Display the index number (inode) of each file.
-1 Display the long listing format.
-L --dereference Show information for the original file for a
linked file.
-n --numeric-uid-gid Show numeric userid and groupid instead of
names.

www.it-ebooks.info

#c03_tbl_anc_0005
http://www.it-ebooks.info/

-0 In long listing don't display owner names.

-r --reverse Reverse the sorting order when displaying
files and directories.

-R --recursive List subdirectory contents recursively.

-S --size Print the block size of each file.

-S --sort=size Sort the output by file size.

-t --sort=time Sort the output by file modification time.

-u Display file last access time instead of last
modification time.

-U --sort=none Don't sort the output listing.

-V --sort=version Sort the output by file version.

-X List entries by line instead of columns.

-X --sort=extension Sort the output by file extension.

You can use more than one parameter at a time if you want to. The double dash parameters must be listed separately,
but the single dash parameters can be combined together into a string behind the dash. Acommon combination to use is the
-a parameter to list all files, the - i parameter to list the inode for each file, the - 1 parameter to produce a long listing, and
the - s parameter to list the block size of the files. The inode of a file or directory is a unique identification number the kernel

assigns to each object in the filesystem. Combining all of these parameters creates the easy-to-remember -sail parameter:

$ 1s -sail
total 2360

301860

65473
360621
301862
361443
301879
301871
301870
301872
360207
301882
301883
360338

CO 00O OO OO OO OO OO OO OO OO OO 0O

8

drwxr-xr-x
drwxrwxr-x
-rW-r--r--
drwxrwxr-x
drwxr-xr-x
drwxr-xr-x

drwxr-xr-x
drwxrwxr-x

rich
root
rich
rich
rich
rich
rich
rich
rich
rich
rich
rich
rich

rich
root
rich
rich
rich
rich
rich
rich
rich
rich
rich
rich
rich

4096 2010-09-03 15:12 .
4096 2010-07-29 14:20 ..
4096 2010-08-24 22:04 4rich
124 2010-02-12 10:18 .bashrc
4096 2010-07-26 20:31 .ccache
4096 2010-07-26 18:25 .config
4096 2010-08-31 22:24 Desktop
26 2009-11-01 04:06 .dmrc
4096 2009-11-01 04:06 Download
4096 2010-07-26 18:25 Drivers
4096 2010-09-02 23:40 .gconf
4096 2010-09-02 23:43 .gconfd
4096 2010-08-06 23:06 .gftp

In addition to the normal -1 parameter output information, you'll see two additional numbers added to each line. The
first number in the listing is the file or directory inode number. The second number is the block size of the file. The third entry

is a diagram of the type of file, along with the file's permissions. We dive into that in more detail in Chapter 6.

Following that, the next number is the number of hard links to the file (discussed later in the “Linking Files” section), the
owner of thefile, the group the file belongs to, the size of the file (in bytes), a timestamp showing the last modification time

by default, and finally, the actual file name.

Filtering Listing Output

www.it-ebooks.info

http://www.it-ebooks.info/

Asyou've seen in the examples, by default the 1s command lists all of the files in a directory. Sometimes this can be overkill,
espedially when you're just looking for information on asingle file.

Fortunately, the 1s command also provides a way for you to define a filter on the command line. It uses the filter to
determine which files or directories it should display in the output.

The filter works as a simple text-matching string. Include the filter after any command line parameters you want to use:

$ 1s -1 myprog
-rwxr--r-- 1 rich rich 30 2007-08-23 21:42 myprog
$

When you specify the name of specific file as the filter, the 1s command only shows the information for that onefile.
Sometimes you might not know the exact name of the file you're looking for. The 1s command also recognizes standard

wildcard characters and uses them to match patterns within the filter:
* Aquestion mark to represent one character
* An asterisk to represent zero or more characters
The question mark can be used to replace exactly one character anywhere in the filter string. For example:
$ 1s -1 mypro?
-rw-rw-r-- 1 rich rich 0 2010-09-03 16:38 myprob
-rwxr--r-- 1 rich rich 30 2010-08-23 21:42 myprog
$

The filter mypro? matched two filesin the directory. Similarly, the asterisk can be used to match zero or more characters:

$ 1s -1 myprob*

-rw-rw-r-- 1 rich rich 0 2010-09-03 16:38 myprob

-rw-rw-r-- 1 rich rich 0 2010-09-03 16:40 myproblem

$

The asterisk matches zero characters in the myprob Ffile, but it matches three characters in the myproblem file.

This is a powerful feature to use when searching for files when you're not quite sure of the file names.

File Handling

The bash shell provides lots of commands for manipulating files on the Linux filesystem. This section walks you through the
basic commands you will need to work with files from the CLI for all your file-handling needs.

Creating Files

Every oncein a while you will run into a situation where you need to create an empty file. Sometimes applications expect a log
file to be present before they can write to it. In these situations, you can use the touch command to easily create an empty

file:
$ touch test1
$ 1Is -il test1
1954793 -rw-r--r-- 1 rich rich 0 Sep 1 09:35 test1
$

The touch command creates the new file you specify and assigns your username as the file owner. Because the -i1
parameter was used for the 1s command, the first entry in the listing shows the inode number assigned to the file. Every file

on a Linux filesystem has a unique inode number.
Notice that the file size is zero because the touch command just created an empty file. The touch command can also be
used to change the access and modification times on an existing file without changing the file contents:

$ touch test1
$ 1s -1 test1
-rW-r--r-- 1 rich rich 0 Sep 1 09:37 testl

www.it-ebooks.info

http://www.it-ebooks.info/

$

The modification time of test1 is now updated from the original time. If you want to change only the access time, use the
-a parameter. To change only the modification time, use the -m parameter. By default, touch uses the current time. You can

specify the time by using the -t parameter with a specific timestamp:

$ touch -t 201112251200 test1

$ 1s -1 test1

-rW-r--r-- 1 rich rich 0 Dec 25 2011 test1
$

Now the modification time for the file is set to a date significantly in the future from the current time.

Copying Files
Copying files and directories from one location in the filesystem to another is a common practice for system administrators.
The cp command provides this feature.

In its most basic form, the cp command uses two parameters, the source object and the destination object:

cp source destination

When boththe source and destination parameters are file names, the cp command copies the source file to a new
file with the file name specified as the destination. The new file acts like a brand new file, with an updated file creation and last

modified times:

$ cp testl test2

$ 1s -il

total 0

1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
$

The new file test2 shows a different inode number, indicating that it's a completely new file. You'll also notice that the
modification time for the test2 file shows the time that it was created. If the destination file already exists, the cp command

will prompt you to answer whether or not you want to overwrite it:
$ cp testl test2
cp: overwrite ‘test2'? y
$

If you don't answer y, the file copy will not proceed. You can also copy a file to an existing directory:

$ cp testl dir1

$ 1s -il dir1

total 0

1954887 -rw-r--r-- 1 rich rich 0 Sep 6 09:42 test1
$

The new fileisnowunder the dir 1 directory, using the same file name as the original. These examples all used relative
pathnames, but you can just as easily use the absolute pathname for both the source and destination objects.

To copy afile to the current directory you'rein, you can use the dot symbol:

$ cp /home/rich/dir1/test1

cp: overwrite ‘./test1'?
As with most commands, the cp command has a few command line parameters to help you out. These are shown in Table
3.6.

Table 3.6 The cp Command Parameters

www.it-ebooks.info

#c03_tbl_0006
#c03_tbl_anc_0006
http://www.it-ebooks.info/

Parameter |Description

-a Archive files by preserving their attributes.

-b Create a backup of each existing destination file instead of overwriting it.

-d Preserve.

-f Force the overwriting of existing destination files without prompting.

-1 Prompt before overwriting destination files.

-1 Create afile link instead of copying the files.

-p Preserve file attributes if possible.

-r Copy files recursively.

-R Copy directories recursively.

-S Create a symbolic link instead of copying the file.

-S Override the backup feature.

-u Copy the source file only if it has a newer date and time than the destination
(update).

-V Verbose mode, explaining what's happening.

-X Restrict the copy to the current filesystem.

Use the - p parameter to preserve the file access or modification times of the original file for the copied file.

$ cp -p testl test3

$ 1s -il
total 4
1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954793 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3

$

Now, even thoughthe test3 fileis a completely newfile, it has the same timestamps as the original test1 file.
The -R parameter is extremely powerful. It allows you to recursively copy the contents of an entire directory in one

command:

$ cp -R dir1 dir2

$ 1s -1

total 8

drwxr-xr-x 2 rich rich 4096 Sep 6 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 6 09:45 dir2/
-rW-r--r-- 1 rich rich 0 Dec 25 2011 test1
-rW-r--r-- 1 rich rich 0 Sep 6 09:39 test2
-rW-r--r-- 1 rich rich 0 Dec 25 2011 test3

www.it-ebooks.info

http://www.it-ebooks.info/

$

Nowdir2isacomplete copy of dir1.You can also use wildcard charactersin your cp commands:

$ cp -f test* dir2

$ 1s -al dir2

total 12

drwxr-xr-x 2 rich rich 4096 Sep 6 10:55 ./
drwxr-xr-x 4 rich rich 4096 Sep 6 10:46 ../
-rW-r--r-- 1 rich rich 0 Dec 25 2011 test1
-rW-r--r-- 1 rich rich 0 Sep 6 10:55 test2
-rW-r--r-- 1 rich rich 0 Dec 25 2011 test3
$

This command copied all of the files that started with test to dir2.The - f parameter wasincluded to force the
overwrite of the test1 file that was already in the directory without asking.

Linking Files

You may have noticed a couple of the parameters for the cp command referred to linking files. Thisis a pretty cool option
availablein the Linux filesystems. If you need to maintain two (or more) copies of the same file on the system, instead of
having separate physical copies, you can use one physical copy and multiple virtual copies, called links. Alink is a placeholder

in a directory that points to the real location of the file. There are two different types of file links in Linux:
* Asymbolic, or soft link

® Ahard link
The hard link creates a separate file that contains information about the original file and where to locate it. When you
reference the hard link file, it's just as if you're referencing the original file:

$ cp -1 testl testd

$ 1s -il

total 16

1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 test2
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 0 Sep 1 09:51 test4

$

The -1 parameter created a hard link for the test1 file called test4.In thefilelisting, you can see that theinode
number of boththe test1 and test4 filesis the same, indicating that, in reality, they are both the same file. Also notice that

the link count (the third itemin the listing) now shows that both files have two links.

Note

You can only create a hard link between files on the same physical medium. You
can't create a hard link between files under separate mount points. In that case,
you'll have to use a soft link.

On the other hand, the - s parameter creates a symbolic, or soft link:

$ cp -s testl test5

$ Is -il test*

total 16

1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test1

www.it-ebooks.info

http://www.it-ebooks.info/

1954794 -rw-r--r--
1954888 -rw-r--r--
1954793 -rw-r--r--
1954891 1rwxrwxrwx
$

There are a couple of things to notice in the file listing, First, you'll notice that the new test5 file has a different inode
number than the test1 file, indicating that the Linux system treats it as a separate file. Second, the file size is smaller. A linked
file needs to store only information about the source file, not the actual data in the file. The file name area of the listing

shows the relationship between the two files.

rich rich 0 Sep 1 09:39 test2
rich rich 0 Dec 25 2011 test3
rich rich 6 Sep 1 09:51 test4
rich rich 5 Sep 1 09:56 test5 -> test1

_ N =)

Tip
Instead of using the cp command, if you want to link files you can also use the 1n

command. By default, the 1n command creates hard links. If you want to create a soft link,
you'll still need to use the -s parameter.

Be careful when copying linked files. If you use the cp command to copy a file that's linked to another source file, all
you're doing is making another copy of the source file. This can quickly get confusing. Instead of copying the linked file, you
can create another link to the original file. You can have many links to the same file with no problems. However, you also
don't want to create soft links to other soft-linked files. This creates a chain of links that can not only be confusing but also

be easily broken, causing all sorts of problems.

Renaming Files

In the Linux world, renaming files is called moving. The mv command is available to move both files and directories to another
location:

$ mv test2 testb6

$ 1s -il test*
1954793 -rw-r--r--
1954888 -rw-r--r--
1954793 -rw-r--r--
1954891 1rwxrwxrwx
1954794 -rw-r--r--
$

Notice that moving the file changed the file name but kept the same inode number and the timestamp value. Moving a file
with soft links is a problem:

$ mv testl test8

$ 1s -il test*

total 16

rich rich 6 Sep 1 09:51 test1
rich rich 0 Dec 25 2011 test3
rich rich 6 Sep 1 09:51 test4
rich rich 5 Sep 1 09:56 test5 -> test1
rich rich 0 Sep 1 09:39 testé6

—_ N =N

1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test4
1954891 Lrwxrwxrwx 1 rich rich 5 Sep 1 09:56 test5 -> test1
1954794 -rw-r--r-- 1 rich rich 0 Sep 1 09:39 testé6
1954793 -rw-r--r-- 2 rich rich 6 Sep 1 09:51 test8

[rich@test2 clsc]$ mv test8 testT
The test4 file that uses a hard link still uses the same inode number, which is perfectly fine. However, the test5 file now
points to an invalid file,and itis no longer a valid link.

You can also use the mv command to move directories:

$ mv dir2 dir4

The entire contents of the directory are unchanged. The only thing that changes is the name of the directory. Thus, the mv

www.it-ebooks.info

http://www.it-ebooks.info/

command operates much faster than the cp command.

Deleting Files

Most likely at some point in your Linux career, you'll want to be able to delete existing files. Whether it's to clean up a
filesystem or to remove a software package, there are always opportunities to delete files.
In the Linux world, deleting is called removing. The command to remove files in the bash shell is rm. The basic form of the

rm command is pretty simple:

$ rm -1 test2

rm: remove ‘test2’'? vy

$ 1s -1

total 16

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rW-r--r-- 2 rich rich 6 Sep 1 09:51 test1
-rW-r--r-- 1 rich rich 0 Dec 25 2011 test3
-rW-r--r-- 2 rich rich 6 Sep 1 09:51 test4
Lrwxrwxrwx 1 rich rich 5Sep 1 09:56 test5 -> test1
$

Notice that the command prompts you to make sure that you're serious about removing the file. There's no recycle bin or
trashcan in the bash shell. Once you remove a file, it's gone forever.

Now, here's an interesting tidbit about deleting a file that has links to it:

$ rm test1t

$ 1s -1

total 12

drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
drwxr-xr-x 2 rich rich 4096 Sep 1 09:45 dir2/
-rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
-rW-r--r-- 1 rich rich 6 Sep 1 09:51 test4
Lrwxrwxrwx 1 rich rich 5Sep 1 09:56 test5 -> test1
$ cat testd

hello

$ cat test5

cat: test5: No such file or directory

$

The test1 file was removed, which had both a hard link with the test4 file and a soft link with the test5 Ffile. Notice what
happened. Both of the linked files still appear, even thoughthe test1 fileisnowgone (although on my color terminal the
test5 filename nowappearsin red). When you look at the contents of the test4 file that was a hard link, it still shows the
contents of the file. When you look at the contents of the test5 file that was a soft link, bash indicates that it doesn't exist
anymore.

Remember that the hard link file uses the same inode number as the original file. The hard link file maintains that inode
number until you remove the last file hard-linked to it, preserving the data! All the soft link file knows is that the underlying

fileisnow gone, so it has nothing to point to. Thisis an important feature to remember when working with linked files.
One other feature of the rm command, if you're removing lots of filesand don't want to be bothered with the prompt, is

to use the - f parameter to force the removal. Just be careful!
Tip
As with copying files, you can use wildcard characters with the rm command. Again, use

www.it-ebooks.info

http://www.it-ebooks.info/

caution when doing this, as anything your remove, even by accident, is gone forever!

Directory Handling

In Linux there are a few commands that work for both files and directories (such as the cp command), and some that only
work for directories. To create a new directory, you'll need to use a specific command, which is covered in this section.

Removing directories can get interesting, so that is covered in this section as well.

Creating Directories

There's not much to creating a new directory in Linux—just use themkdir command:
$ mkdir dir3
$ 1s -il
total 16

1954886 drwxr-xr-x 2 rich rich 4096 Sep 1 09:42 dir1/
1954889 drwxr-xr-x 2 rich rich 4096 Sep 1 10:55 dir2/
1954893 drwxr-xr-x 2 rich rich 4096 Sep 1 11:01 dir3/
1954888 -rw-r--r-- 1 rich rich 0 Dec 25 2011 test3
1954793 -rw-r--r-- 1 rich rich 6 Sep 1 09:51 test4

$

The system creates a new directory and assigns it a newinode number.

Deleting Directories

Removing directories can be tricky, but there's a reason for that. There are lots of opportunities for bad things to happen
when you start deleting directories. The bash shell tries to protect us from accidental catastrophes as much as possible. The

basiccommand for removing a directory is rmdir:
$ rmdir dir3
$ rmdir dir1
rmdir: dir1: Directory not empty
$

By default, the rmdir command only works for removing empty directories. Because thereis a file in the dir 1 directory,
the rmdir command refuses to removeit. You can remove nonempty directories using the --ignore-fail-on-non-

empty parameter.
Our friend the rm command can also help us out some when handling directories.

If you try using it with no parameters, as with files, you'll be somewhat disappointed:

$ rm dir1
rm: dir1: is a directory
$

However, if you really want to remove a directory, you can use the - r parameter to recursively remove the filesin the
directory, then the directory itself:

$ rm -r dir2

rm: descend into directory ‘dir2’'? y
rm: remove ‘dir2/test1’? y

rm: remove ‘dir2/test3’'? y

rm: remove ‘dir2/test4’'? y

rm: remove directory ‘dir2’? vy
$

www.it-ebooks.info

http://www.it-ebooks.info/

While this works, it's somewhat awkward. Notice that you still must verify every file that gets removed. For a directory with
lots of files and subdirectories, this can become tedious.

The ultimate solution for throwing caution to the wind and removing an entire directory, contents and all, is the rm
command withboththe -r and - f parameters:

$ rm -rf dir2
$

That's it. No warnings, no fanfare, just another shell prompt. This, of course, is an extremely dangerous tool to have,
especially if you're logged in as the root user account. Useit sparingly, and only after triple checking to make sure that

you're doing exactly what you want to do.

Note

You may have noticed in the last example that the two command line parameters
were combined using one dash. This is a feature in the bash shell that allows you to
combine command line parameters to help cut down on typing.

Viewing File Contents

So far we've covered everything thereis to know about files, except for how to peek inside of them. There are several
commands available for taking a look inside files without having to pull out an editor (see Chapter 11). This section

demonstrates a few of the commands you have available to help you examine files.

Viewing File Statistics

You've already seen that the 1s command can be used to provide lots of useful information about files. However, there's still
more information that you can't seein the 1s command (or at least not all at once).

The stat command provides a complete rundown of the status of a file on the filesystem:

$ stat test10
File: “test10”
Size: 6 Blocks: 8 Regular File
Device: 306h/774d Inode: 1954891 Links: 2
Access: (0644/-rw-r--r--) Uid: (501/ rich) Gid: (501/ rich)
Access: Sat Sep 1 12:10:25 2010
Modify: Sat Sep 1 12:11:17 2010
Change: Sat Sep 1 12:16:42 2010
$

The results from the stat command show just about everything you'd want to know about the file being examined, even
down to the major and minor device numbers of the device where the file is being stored.

Viewing the File Type

Despite all of theinformation the stat command produces, there's still one piece of information missing—the file type.
Beforeyou go charging offtrying to list out a 1000-byte file, it's usually a good idea to get a handle on what type of file it is.

If you try listing a binary file, you'll get lots of gibberish on your monitor and possibly even lock up your terminal emulator.
The file command is a handy little utility to have around. It has the ability to peek inside of a file and determine just
what kind of file it is:

$ file test1

test1: ASCII text

$ file myscript

myscript: Bourne shell script text executable
$ file myprog

www.it-ebooks.info

http://www.it-ebooks.info/

myprog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
$
The file command dlassifies files into three categories:
® Text files: Files that contain printable characters
* Executable files: Files that you can run on the system

® Data files: Files that contain nonprintable binary characters, but that you can't run on the system

The first example shows a text file. The file command determined not only that the file contains text but also the
character code format of the text. The second example shows a text script file. While the file is text, because it's a script file,
you can execute (run) it on the system. The final example is a binary executable program. The file command determines the
platform that the program was compiled for and what types of libraries it requires. This is an especially handy feature if you

have a binary executable program from an unknown source.

Viewing the Whole File

If you have a large text file on your hands, you may want to be able to see what's inside of it. There are three different
commands in Linux that can help you out here.

The cat Command
The cat command is a handy tool for displaying all of the data inside a text file:

$ cat test1
hello

This is a test file.

That we'll use to test the cat command.
$

Nothing too exciting, just the contents of the text file. There are a few parameters you can use with the cat command,
however, that can help you out.

The -n parameter numbers all of the lines for you:

$ cat -n test1
hello

1
2
3 This is a test file.
4
5
6

That we'll use to test the cat command.
$

That feature will come in handy when you're examining scripts. If you just want to number the lines that have text in them,
the -b parameter is for you:

$ cat -b test1
1 hello

2 This is a test file.

3 That we'll use to test the cat command.

www.it-ebooks.info

http://www.it-ebooks.info/

$

If you need to compress multiple blank linesinto asingle blank line, use the - s parameter:

$ cat -s testi
hello

This is a test file.

That we'll use to test the cat command.
$

Finally, if you don't want tab characters to appear, use the - T parameter:

$ cat -T test1
hello

This is a test file.

That we'll use to"Itest the cat command.
$

The -T parameter replaces any tabs in the text with the "I character combination.
For large files, the cat command can be somewhat annoying. The text in the file will just quickly scroll off of the monitor

without stopping. Fortunately, there's a simple way to solve this problem.

The more Command

The main drawback of the cat command is that you can't control what's happening once you start it. To solve that problem,
developers created the more command. The more command displays a text file, but stops after it displays each page of data.

Asamplemore screen is shown in Figure 3.4.

Figure 3.4 Using themore command to display a text file

www.it-ebooks.info

#c03_fig_0004
#c03_fig_anc_0004
http://www.it-ebooks.info/

.
- Terminal - + ¥

File Edit View Search Terminal Help

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon: /usr/sbin:/bin/sh

bin:x:2:2:bin: /bin: /bin/sh

sys:x:3:3:5ys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games: /usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh

Lp:x:7:7:1p:/var/spool/Llpd: /bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

inews:x:9:9:news: /var/spool/news: /bin/sh

uucp:x:18:10:uucp: /var/spool/uucp: /bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data: /var/www: /bin/sh

backup:x:34:34:backup: /var/backups: /bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd: /bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody : x:65534:65534 :nobody : /nonexistent: /bin/sh
libuuid:x:1€0:181:;:/var/Lib/libuuid: /bin/sh

syslog:x:101:183:: /home/syslog: /bin/false

messagebus:x:182:1685:: /var/run/dbus: /bin/false
avahi-autoipd:x:183:108:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
avahi:x:184:1089:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false

Notice that at the bottom of the screen in Figure 3.4, themore command displays a tag showing that you're still in the
more application and how far along in the text file you are. This is the prompt for the more command. At this point, you can

enter one of several options, shown in Table 3.7.

Table 3.7 The more Command Options

Option Description

H Display a help menu.

spacebar Display the next screen of text from the file.

z Display the next screen of text from the file.
ENTER Display one more line of text from the file.

d Display a half-screen (11 lines) of text from the file.
q Exit the program.

s Skip forward one line of text.

f Skip forward one screen of text.

b Skip backward one screen of text.

/expression |Search for the text expression in the file.

www.it-ebooks.info

#c03_fig_anc_0004
#c03_fig_0004
#c03_tbl_0007
#c03_tbl_anc_0007
http://www.it-ebooks.info/

n Search for the next occurrence of the last specified expression.
' Go to the first occurrence of the specified expression.
lcmd Execute a shell command.
v Start up the vi editor at the current line.
CTRL-L Redraw the screen at the current location in the file.
= Display the current line number in the file.
Repeat the previous command.

The more command allows some rudimentary movement through the text file. For more advanced features, try the less
command.

The less Command

Although fromits name it sounds like it shouldn't be as advanced as the more command, the 1ess command is actually a
play on wordsand is an advanced version of themore command (the 1ess command name comes from the phrase “less is
more”). It provides several very handy features for scrolling both forward and backward through a text file, as well as some

pretty advanced searching capabilities.

The 1ess command can also display the contents of a file before it finishes reading the entire file. This is a serious

drawback for boththe cat and more commands when viewing extremely large files.

The 1ess command operates much the same as the more command, displaying one screen of text from a file at a time.

Figure 3.5 shows the 1ess command in action.

Figure 3.5 Viewing a file using the 1ess command

www.it-ebooks.info

#c03_fig_0005
#c03_fig_anc_0005
http://www.it-ebooks.info/

.
- Terminal -

File Edit View Search Terminal Help

daemon:x:1:1:daemon: fusr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:X:3:3:5ys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games: /usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:1p:/var/spool/lpd:/bin/sh

maill:x:B:8:mail:/var/mail:/bin/sh

news:x:9:9:news: /var/spool/news:/bin/sh

uucp:x:18:18:uucp: /var/spool/uucp: /bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh

www-data:x:33:33:www-data: /var/www:/bin/sh

backup:x:34:34:backup: /var/backups: /bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh

1rc:x:39:39:1rcd: /var/run/ircd: /bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534 : nobody : /nonexistent: /bin/sh
libuuid:x:100:181::/var/1ib/1libuuid: /bin/sh

syslog:x:101:183:: /home/syslog: /bin/false

messagebus:x:182:185:: /var/run/dbus:/bin/false
avahi-autoipd:x:183:188:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
avahi:x:184:1089:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
couchdb:x:185:113:CouchDB Administrator,,,:/var/Llib/couchdb:/bin/bash

Notice that the 1ess command provides additional information in its prompt, showing the total number of lines in the
fileand therange of lines currently displayed. The 1ess command supports the same command set as themore command
plus lots more options. To see all of the options available, look at the man pages for the 1ess command. One set of features
is that the 1ess command recognizes the up and down arrow keys as well as the page up and page down keys (assuming that

you're using a properly defined terminal). This gives you full control when viewing a file.

Viewing Parts of a File

Often the data you want to view is located either right at the top or buried at the bottom of a text file. If the information is at
the top of a large file, you still need to wait for the cat or more commands to load the entire file before you can viewit. If
theinformation is located at the bottom of a file (such as a log file), you need to wade through thousands of lines of text just

to get to the last few entries. Fortunately, Linux has specialized commands to solve both of these problems.

The tail Command

The tail command displays the last group of linesin a file. By default, it will show the last 10 lines in the file, but you can
change that with command line parameters, shown in Table 3.8.

Table 3.8 The tail Command Line Parameters

Parameter |Description

-c bytes |Display the last byte's number of bytes in the file.

-n lines || Display the last line's number of lines in the file.

-f Keeps the tail program active and continues to display new lines as they're added

www.it-ebooks.info

#c03_fig_anc_0005
#c03_tbl_0008
#c03_tbl_anc_0008
http://www.it-ebooks.info/

to the file.

--pid=PID |Along with -f, follows a file until the process with ID PID terminates.

-s sec Along with -T, sleeps for sec seconds between iterations.
-V Always displays output headers giving the file name.
-q Never displays output headers giving the file name.

The - f parameter is a pretty cool feature of the tail command. It allows you to peek inside a file asit's being used by
other processes. The tail command stays active and continues to display new lines as they appear in the text file. This is a great

way to monitor the system log file in real-time mode.

The head Command

While not as exoticas the tail command, the head command does what you'd expect; it displays the first group of lines at
the start of a file. By default, it will display the first 10 lines of text. Similar to the tail command, it supportsthe -c and -n
parameters so that you can alter what's displayed.

Usually the beginning of a file doesn't change, so the head command doesn't support the - f parameter feature. The
head command is a handy way to just peek at the beginning of a file if you're not sure what's inside, without having to go

through the hassle of displaying the entire file.

Summary

This chapter covered the basics of working with the Linux filesystem from a shell prompt. We began with a discussion of the
bash shell and showed you how to interact with the shell. The command line interface (CLI) uses a prompt string to indicate
when it's ready for you to enter commands. You can customize the prompt string to display useful information about your

system, your logon ID, and even dates and times.

The bash shell provides a wealth of utilities you can use to create and manipulate files. Before you start playing with files,
it'sa good idea to understand how Linux stores them. This chapter discussed the basics of the Linux virtual directory and
showed you how Linux references store media devices. After describing the Linux filesystem, the chapter walked you through

using the cd command to move around the virtual directory.

After showing you how to get to a directory, the chapter demonstrated how to use the 1s command to list the files and
subdirectories. There are lots of parameters that customize the output of the 1s command. You can obtain information on

files and directories just by using the 1s command.

The touch command is useful for creating empty files and for changing the access or modification times on an existing
file. The chapter also discussed using the cp command to copy existing files from one location to another. It walked you
through the process of linking files instead of copying them, providing an easy way to have the same file in two locations

without making a separate copy. The cp command does this, as does the 1n command.

Next, you learned how to rename files (called moving) in Linux using the mv command, and saw how to delete files (called
removing) using the rm command. It also showed you how to perform the same tasks with directories, using the mkdir and

rmdir commands.

Finally, the chapter closed with a discussion on viewing the contents of files. The cat,more,and less commands provide
easy methods for viewing the entire contents of a file, while the tail and head commands are great for peeking inside a file

to just see a small portion of it.
The next chapter continues the discussion on bash shell commands. We'll take a look at more advanced administrator
commands that will come in handy as you administer your Linux system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4
More bash Shell Commands

In This Chapter

® Managing processes

® Getting disk statistics
* Mounting new disks

*Sorting data

® Archiving data

Chapter 3 covered the basics of rummaging through the Linux filesystem and working with the files and directories. File and
directory management is a major feature of the Linux shell; however, there are some more things we should look at before we
start our script programming. This chapter digs into the Linux system management commands, showing you how to peek
inside your Linux system using command line commands. After that, it shows you a few handy commands that you can use to

work with data files on the system.

Monitoring Programs

One of the toughest jobs of being a Linux system administrator is keeping track of what's running on the system—especially
now, when graphical desktops take a handful of programs just to produce a single desktop. There are always a lot of

programsrunning on the system.
Fortunately, there are a few command line tools that can help make life easier for you. This section covers a few of the
basictoolsyou'll need to know how to use to manage programs on your Linux system.

Peeking at the Processes

When a program runs on the system, it's referred to as a process. To examine these processes, you'll need to become familiar
with the ps command, the Swiss Army knife of utilities. It can produce lots of information about all the programs running on

your system.

Unfortunately, with this robustness comes complexity—in the form of numerous parameters— making the ps command
probably one of the most difficult commands to master. Most system administrators find a subset of these parameters that

provide the information they want, and then stick with using only those.

That said, however, the basicps command doesn't really provide all that muchinformation:

$ ps
PID TTY TIME CMD
3081 pts/0 00:00:00 bash
3209 pts/0 00:00:00 ps
$

Not too exciting. By default the ps command shows only the processes that belong to the current user and that are
running on the current terminal. In this case, we only had our bash shell running (remember, the shell is just another program

running on the system) and, of course, the ps command itself.
The basicoutput shows the process ID (PID) of the programs, the terminal (TTY) that they are running from, and the CPU
time the process has used.

Note

The tricky feature of the ps command (and the part that makes it so complicated)
is that at one time there were two versions of it. Each version had its own set of
command line parameters controlling what information it displayed, and how.
Recently, Linux developers have combined the two ps command formats into a

www.it-ebooks.info

http://www.it-ebooks.info/

single ps program (and of course added their own touches).

The GNU ps command that's used in Linux systems supports three different types of command line parameters:
® Unix-style parameters, which are preceded by a dash
® BSD-style parameters, which are not preceded by a dash
* GNU long parameters, which are preceded by a double dash

The following sections examine the three different parameter types and show examples of how they work.

Unix-Style Parameters

The Unix-style parameters originated with the original ps command that ran on the AT&T Unix systems invented by Bell Labs.
These parameters are shown in Table 4.1.

Table 4.1 The ps Command Unix Parameters

Parameter Description

-A Show all processes.

-N Show the opposite of the specified parameters.

-a Show all processes except session headers and processes without a terminal.
-d Show all processes except session headers.

-e Show all processes.

-C cmslist ||Show processes contained in the list cmdlist.

-G grplist |Show processes with a group ID listed in grplist.

-U userlist |Show processes owned by a userid listed in userlist.

-g grplist |Show processes by session or by groupid contained in grplist.

-p pidlist |Show processeswith PIDsin the list pidlist.

-s sesslist ||Show processes with session ID in the list sesslist.

-t ttylist |Show processeswith terminal ID in the list ttylist.

-u userlist |Show processes by effective userid in the list userlist.

-F Use extra full output.

-0 format Display specific columns in the list format, along with the default columns.

-M Display security information about the process.

-C Show additional scheduler information about the process.
-f Display a full Format listing.

-] Show job information.

-1 Display a long listing.

-0 format Display only specific columns listed in format.

www.it-ebooks.info

#c04_tbl_0001
#c04_tbl_anc_0001
http://www.it-ebooks.info/

-y Don't show process flags.

-Z Display the security context information.

-H Display processes in a hierarchical format (showing parent processes).
-n namelist |Define the values to display in the WCHAN column.

-W Use wide output format, for unlimited width displays.

-L Show process threads.

-V Display the version of ps.

That's a lot of parameters, and remember, there are still more! The key to using the ps command is not to memorize all of
the available parameters, only those you find most useful. Most Linux system administrators have their own sets of
commonly used parameters that they remember for extracting pertinent information. For example, if you need to see
everything running on the system, use the -ef parameter combination (the ps command lets you combine parameters

together like this):
$ ps -ef
uibD
root
root
root
root
root
root
root
root
root
68
root
root
root
root
root
root
root
apache
apache
root
root
root
rich
rich
rich
$

PID PPID C STIME TTY
1 0 0 11:29 7
2 0 011:297?
3 2 011:29 7
4 2 011:297?
5 2 011:29 7
6 2 011:29 7
7 2 011:297?

47 2 011:297?

48 2 011:29 7
2349 7 011:30 ?
2489 17 0 11:30 tty1
2490 17 0 11:30 tty2
2491 1T 0 11:30 tty3
2492 17 0 11:30 tty4
2493 17 0 11:30 tty5
2494 17 0 11:30 tty6
2956 1 0 11:42 7
2958 2956 0 11:42 ?
2959 2956 0 11:42 7
2995 17 011:43 7
2997 2995 0 11:43 ?
3078 1981 0 12:00 ?
3080 3078 0 12:00 ?
3081 3080 0 12:00 pts/0
4445 3081 3 13:48 pts/0

TIME

:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:
:00:

01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

CMD

init [5]

[kthreadd]
[migration/0]
[ksoftirqd/0]
[watchdog/0]
[events/0]
[khelper]
[kblockd/0]
[kacpid]

hald

/sbin/mingetty tty1
/sbin/mingetty tty2
/sbin/mingetty tty3
/sbin/mingetty tty4
/sbin/mingetty tty5
/sbin/mingetty tty6
/usr/sbin/httpd
/usr/sbin/httpd
/usr/sbin/httpd
auditd
/sbin/audispd

sshd: rich [priv]
sshd: rich@pts/0
-bash

ps -ef

Quite a few lines have been cut from the output to save space, but as you can see, there are lots of processes running on
a Linux system. This example uses two parameters, the - e parameter, which shows all of the processes running on the system,

www.it-ebooks.info

http://www.it-ebooks.info/

and the - f parameter, which expands the output to show a few useful columns of information:
® UID: The user responsible for launching the process
* PID: The process ID of the process
* PPID: The PID of the parent process (if a process is started by another process)
® C: Processor utilization over the lifetime of the process
* STIME: The system time when the process started
*TTY: The terminal device from which the process was launched
* TIME: The cumulative CPU time required to run the process

* CMD: The name of the program that was started
This produces a reasonable amount of information, which is what many system administrators would like to see. For even
moreinformation, you can use the -1 parameter, which produces the long format output:

$ ps -1

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0S 500 3081 3080 0 80 0 - 1173 wait pts/0 00:00:00 bash
0 R 500 4463 3081 1 80 0 - 1116 - pts/0 00:00:00 ps

$

Notice the extra columns that appear when you use the -1 parameter:

* F: System flags assigned to the process by the kernel
» S: Thestate of the process (O =running on processor; S =sleeping; R =runnable, waiting to run;Z = zombie, process
terminated but parent not available; T = process stopped)

PRI:The priority of the process (higher numbers mean lower priority)

NI:The nicevalue, whichis used for determining priorities

ADDR: The memory address of the process

SZ: Approximate amount of swap space required if the process was swapped out

* WCHAN: Address of the kernel function where the process is sleeping

Before moving on, there's one more extremely handy parameter to remember, -H. The -H parameter organizes the
processes in a hierarchical format, showing which processes started which other processes. Here's an extraction from an -efH-

formatted listing:

$ ps -efH

UID PID PPID C STIME TTY TIME CMD

root 3078 1981 0 12:00 ? 00:00:00 sshd: rich [priv]
rich 3080 3078 0 12:00 ? 00:00:00 sshd: rich@pts/0
rich 3081 3080 0 12:00 pts/0 00:00:00 -bash

rich 4803 3081 1 14:31 pts/0 00:00:00 ps -efH

Notice the shifting in the CMD column output. This shows the hierarchy of the processes that are running—first, the sshd
process started by the root user (this is the Secure Shell, SSH, server session, which listens for remote SSH connections). Next,
because this session was connected from a remote terminal to the system, the main SSH process spawned a terminal process

(pts/0), whichin turn spawned a bash shell.

From there, the ps command was run, which appears as a child process from the bash process. On a multi-user system, this
isavery useful tool when trying to troubleshoot runaway processes, or when trying to track down which userid or terminal

they belong to.

BSD-Style Parameters

Now that you've seen the Unix parameters, let's take a look at the BSD-style parameters. The Berkeley Software Distribution
(BSD) was a version of Unix developed at (of course) the University of California, Berkeley. It had many subtle differences
from the AT&T Unix system, thus sparking many Unix wars over the years. The BSD version of the ps command parameters are

shown in Table 4.2.

www.it-ebooks.info

#c04_tbl_0002
http://www.it-ebooks.info/

Table 4.2 The ps Command BSD Parameters

Parameter |Description

T Show all processes associated with this terminal.

a Show all processes associated with any terminal.

g Show all processes including session headers.

r Show only running processes.

X Show all processes, even those without a terminal device assigned.

U userlist ||Show processes owned by a userid listed in userlist.

p pidlist |Show processeswith aPID listedin pidlist.

t ttylist |Show processes associated with aterminal listed in ttylist.

0 format List specific columnsin format to display along with the standard columns.

X Display data in the register format.

Z Include security information in the output.

j Show job information.

1 Use the long format.

o format Display only columns specified in format.

S Use the signal format.

u Use the user-oriented format.

Y Use the virtual memory format.

N namelist |Define the values to use in the WCHAN column.

0 order Define the order in which to display the information columns.

S Sum numerical information, such as CPU and memory usage, for child processes
into the parent process.

C Display the true command name (the name of the program used to start the
process).

e Display any environment variables used by the command.

f Display processes in a hierarchical format, showing which processes started
which processes.

h Don't display the header information.

k sort Define the column(s) to use for sorting the output.

n Use numeric values for user and group IDs, along with WCHAN information.

www.it-ebooks.info

#c04_tbl_anc_0002
http://www.it-ebooks.info/

w Produce wide output for wider terminals.
H Display threads as if they were processes.
m Display threads after their processes.

L List all Format specifiers.

V Display the version of ps.

Asyou can see, there's a lot of overlap between the Unix and BSD types of parameters. Most of the information you can
get fromoneyou can also get from the other. Most of the time, you choose a parameter type based on which format you're

more comfortable with (For example, if you were used to a BSD environment before using Linux).
When you use the BSD-style parameters, the ps command automatically changes the output to simulate the BSD format.
Here's an example using the 1 parameter:

$psl

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND
0 500 3081 3080 20 0 4692 1432 wait Ss pts/0 0:00 -bash
0 500 5104 3081 20 0 4468 844 - R+ pts/0 0:00 ps 1

$

Notice that while many of the output columns are the same as when we used the Unix-style parameters, there area couple
of different ones:

*VSZ: Thesize in kilobytes of the processin memory
® RSS: The physical memory that a process has used that isn't swapped out

* STAT: A two-character state code representing the current process state

Many system administrators like the BSD-style 1 parameter because it produces a more detailed state code for processes
(the STAT column). The two-character code more precisely defines exactly what's happening with the process than the single-

character Unix-style output.
The first character uses the same values as the Unix-style S output column, showing when a process is sleeping, running,
or waiting. The second character further defines the process's status:

<:The processis running at high priority.

N: The processis running at low priority.

L: The process has pages locked in memory.

s:The process is a session leader.

1:The process is multi-threaded.

+:The processis running in the foreground.
From the simple example shown previously, you can see that the bash command is sleeping, but it is a session leader (it's
the main process in my session), whereas the ps command was running in the foreground on the system.

The GNU Long Parameters

Finally, the GNU developers put their own touches on the new,improved ps command by adding a few more options to the
parameter mix. Some of the GNU long parameters copy existing Unix- or BSD-style parameters, while others provide new

features. Table 4.3 lists the available GNU long parameters.

Table 4.3 The ps Command GNU Parameters

Parameter Description

--deselect Show all processes except those listed in the command line.

--Group grplist |Show processeswhose group ID is listed in grplist.

www.it-ebooks.info

#c04_tbl_0003
#c04_tbl_anc_0003
http://www.it-ebooks.info/

--User userlist |Show processes whose user ID is listed in userlist.

--group grplist |Show processeswhose effective group ID is listed in grplist.
--pid pidlist Show processes whose process ID is listed in pidlist.
--ppid pidlist |Show processes whose parent processID is listed in pidlist.
--sid sidlist Show processes whose session ID is listed in sidlist.

--tty ttylist |Show processes whose terminal device ID is listed in tZylist.
--user userlist |Show processes whose effective user ID is listed in userlist.
--format format | Display only columns specified in the format.

--context Display additional security information.

--cols n Set screen width to ncolumns.

--columns n Set screen width to ncolumns.

--cumulative Include stopped child process information.

--forest Display processes in a hierarchical listing showing parent processes.
--headers Repeat column headers on each page of output.
--no-headers Don't display column headers.

--lines n Set the screen height to nlines.

--rows n Set the screen height to nrows.

--sort order Define the column(s) to use for sorting the output.

--width n Set the screen width to ncolumns.

--help Display the help information.

--info Display debugging information.

--version Display the version of the ps program.

You can combine GNU long parameters with either Unix- or BSD-style parameters to really customize your display. One
cool feature of GNU long parameters that we really like is the - - forest parameter. It displays the hierarchical process

information, but using ASCII characters to draw cute charts:

1981 ?
3078 ?
3080 ?
3081 pts/0
16676 pts/0

00:00:00 sshd
00:00:00 _ sshd

00:00:00 _ sshd
00:00:00 _ bash
00:00:00 _ ps

This format makes tracing child and parent processes a snap!

Real-Time Process Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

The ps command is great for gleaning information about processes running on the system, but it has one drawback. The ps
command can only display information for a specific point in time. If you're trying to find trends about processes that are

frequently swapped in and out of memory, it's hard to do that with the ps command.
Instead, the top command can solve this problem. The top command displays process information similarly to the ps
command, but it doesit in real-time mode. Figure 4.1is a snapshot of the top command in action.

Figure 4.1 The output of the top command whileitisrunning
2 ® @ rich@rich-desktop: ~

File Edit View Terminal Help

top - 16:04:38 up 1 min, 2 users, load average: 0.82, 0.52, 0.20 M
Tasks: 179 total, 1 running, 178 sleeping, © stopped, © zombie

Cpuls): ©.5%us, 1.3%sy, ©.0%ni, 97.8%id, 0.3%wa, ©.0%hi, ©.8%si, 0.0%st
Mem: 16266084k total, 433876k used, 5938088k free, 56448k buffers

Swap: 2781176k total, Ok used, 2781176k free, 191008k cached

VIRT RES SHR

=
=)

TIME+ COMMAND

952 root 20 B 35924 22m 7576 5 1 2.3 0:83.99 Xorg
1432 root 26 B 15856 1868 1516 S @ 8.2 08:00.25 prl wmouse d
1527 rich 26 0 78512 17'm 13m S 8@ 1.7 ©:00.43 nautilus
1668 rich 20 O 64568 15m 1lm S @ 1.5 9:01.25 gnome-terminal
1 root 20 0 2884 1656 1208 5 @ 8.2 09:80.61 init
2 root 8 @ B8 B 85 @ 8.8 9:00.80 kthreadd
3 root RT @ @ o 85 @ 8.8 ©6:00.80 migration/@
4 root 26 © 3] 3] 85 @ 6.8 ©0:00.81 ksoftirqd/e
5 root RT © g o 85 0 0.0 0:00.00 watchdog/e
6 root RT @ B8 B 85 @ 8.8 ©:00.80 migration/1
7 root 20 @ B : 85 @ 0.0 ©:00.00 ksoftirgd/l
g root RT @ B o 85 @ 0.8 ©:80.88 watchdog/1
9 root 26 o G 5] as 8 6.8 0:00.80 events/0
10 root 260 © G 3] 85 8 6.0 0:00.84 events/1
11 root 20 @8 B B 8s 8 6.8 0:00.00 cpuset
12 root 68 @ 8 B 85 @ 8.8 0:00.88 khelper
13 root 28 @ i 3] 85 8@ 0.8 B:00.80 metns
14 root 26 o B 5] 85 8 6.8 0:00.80 async/mgr
15 root 260 © g 3] 85 8 6.0 05:00.80 pm
17 root 20 @8 B B 8s @ 0.8 0:00.80 sync_supers

The first section of the output shows general system information. The first line shows the current time, how long the
system has been up, the number of userslogged in, and the load average on the system.

The load average appears as three numbers, the 1-minute, 5-minute, and 15-minute load averages. The higher the values,
the more load the system is experiencing. It's not uncommon for the 1-minute load value to be high for short bursts of

activity. If the 15-minute load value is high, your system may be in trouble.

Note

The trick in Linux system administration is defining what exactly a high load
average value is. This value depends on what's normally running on your system and
the hardware configuration. What's high for one system might be normal for
another. Usually, if your load averages start getting over 2, things are getting busy
on your system.

The second line shows general processinformation (called tasksin top): how many processes are running, sleeping,
stopped, and zombie (have finished but their parent process hasn't responded).

www.it-ebooks.info

#c04_fig_0001
#c04_fig_anc_0001
http://www.it-ebooks.info/

The next line shows general CPU information. The top display breaks down the CPU utilization into several categories
depending on the owner of the process (user versus system processes) and the state of the processes (running, idle, or

waiting).

Following that, there are two lines that detail the status of the system memory. The first line shows the status of the
physical memory in the system, how much total memory thereis, how muchis currently being used, and how muchis free. The

second memory line shows the status of the swap memory area in the system (if any is installed), with the same information.
Finally, the next section shows a detailed list of the currently running processes, with some information columns that
should look familiar from the ps command output:

* PID: The process ID of the process

* USER: The user name of the owner of the process

® PR: The priority of the process

* NI: The nice value of the process

* VIRT: The total amount of virtual memory used by the process

® RES: The amount of physical memory the process is using

* SHR: The amount of memory the process is sharing with other processes
*S: The process status (D =interruptible sleep, R=running, S = sleeping, T =traced or stopped, or Z =zombie)
* %CPU: The share of CPU time that the processis using

* %MEM: The share of available physical memory the process is using

* TIME+: The total CPU time the process has used since starting

* COMMAND: The command line name of the process (program started)

By default, when you start top it sorts the processes based on the %CPU value. You can change the sort order by using
one of several interactive commands while top is running. Each interactive command is a single character you can press while

topisrunning and changes the behavior of the program. These commands are shown in Table 4.4.

Table 4.4 The top Interactive Commands

Command | Description

1 Toggle the single CPU and Symmetric Multiprocessor (SMP) state.
b Toggle the bolding of important numbers in the tables.

I Toggle Irix/Solaris mode.

Z Configure color for the table.

1 Toggle the displaying of the load average information line.

t Toggle the displaying of the CPU information line.

m Toggle the displaying of the MEM and SWAP information lines.

f Add or remove different information columns.

0 Change the display order of information columns.

ForO Select a field on which to sort the processes (%CPU by default).

<or> Move the sort field one column left (<) or right (>).

r Toggle the normal or reverse sort order.

h Toggle the showing of threads.

C Toggle the showing of the command name or the full command line (including

www.it-ebooks.info

#c04_tbl_0004
#c04_tbl_anc_0004
http://www.it-ebooks.info/

parameters) of processes.

i Toggle the showing of idle processes.

S Toggle the showing of the cumulative CPU time or relative CPU time.

X Toggle highlighting of the sort field.

y Toggle highlighting of running tasks.

z Toggle color and mono mode.

b Toggle bold mode for x and y modes.

u Show processes for a specific user.

nor# Set the number of processes to display.

k Kill a specific process (only if process owner or if root user).

r Change the priority (renice) of a specific process (only if process owner or if root
user).

dors Change the update interval (default three seconds).

W Write current settings to a configuration file.

q Exit the top command.

You have lots of control over the output of the top command. Using this tool, you can often find offending processes
that have taken over your system. Of course, once you find one, the next job is to stop it, which brings us to the next topic.

Stopping Processes

Acrudial part of being a system administrator is knowing when and how to stop a process. Sometimes a process gets hung up
and just needs a gentle nudge to either get going again or stop. Other times, a process runs away with the CPU and refuses
to giveit up.In both cases, you need a command that will allow you to control a process. Linux follows the Unix method of

interprocess communication.

In Linux, processes communicate with each other using signals. A process signal is a predefined message that processes
recognize and may choose to ignore or act on. The developers program how a process handles signals. Most well-written

applications have the ability to receive and act on the standard Unix process signals. These signals are shown in Table 4.5.

Table 4.5 Linux Process Signals

Signal | Name | Description

1 HUP |Hang up.

2 INT Interrupt.

3 QUIT |Stop running.

9 KILL | Unconditionally terminate.

11 SEGV |Segment violation.

15 TERM | Terminate if possible.

www.it-ebooks.info

#c04_tbl_0005
#c04_tbl_anc_0005
http://www.it-ebooks.info/

17 STOP |Stop unconditionally, but don't terminate.

18 TSTP |Stop or pause, but continue to run in background.

19 CONT |Resume execution after STOP or TSTP.

There are two commands available in Linux that allow you to send process signals to running processes.

The kill Command

The kill command allows you to send signals to processes based on their process ID (PID). By default, the ki1l command
sendsa TERM signal to all the PIDs listed on the command line. Unfortunately, you can only use the process PID instead of its

command name, making the kill command difficult to use sometimes.

To send a process signal, you must either be the owner of the process or be logged in as the root user.

$ kill 3940
-bash: kill: (3940) - Operation not permitted
$

The TERM signal tells the process to kindly stop running. Unfortunately, if you have a runaway process, most likely it will
ignore the request. When you need to get forceful, the - s parameter allows you to specify other signals (either using their

name or signal number).

The generally accepted procedureis to first try the TERM signal. If the processignores that, try the INT or HUP signals. If
the program recognizes these signals, it will try to gracefully stop doing what it was doing before shutting down. The most
forceful signal is the KILL signal. When a process receives this signal, it immediately stops running. This can lead to corrupt

files.

Asyou can see from the following example, there's no output associated with the kill command.

kill -s HUP 3940
#

To see if the command was effective, you'll have to perform another ps or top command to see if the offending process
stopped.

The killall Command

Thekillall command isa powerful way to stop processes by using their names rather than the PID numbers. Thekillall
command allows you to use wildcard characters as well, making it a very useful tool when you've got a system that's gone

awry:
killall http*
#

This example will kill all of the processes that start with http, such as the httpd services for the Apache Web server.

Caution

Be extremely careful using the killall command when logged in as the root user. It's
easy to get carried away with wildcard characters and accidentally stop important system
processes. This could lead to a damaged filesystem.

Monitoring Disk Space
Another important task of the system administrator is to keep track of the disk usage on the system. Whether you're running
asimple Linux desktop or a large Linux server, you'll need to know how much space you have for your applications.

There are a few command line commands you can use to help you manage the media environment on your Linux system.
This section describes the core commands you'll likely run into during your system administration duties.

www.it-ebooks.info

http://www.it-ebooks.info/

Mounting Media

As discussed in Chapter 3, the Linux filesystem combines all media disks into a single virtual directory. Before you can usea
new media disk on your system, you need to placeit in the virtual directory. This task is called mounting.

In today's graphical desktop world, most Linux distributions have the ability to automatically mount specific types of
removable media. Aremovable media device is a medium that (obviously) can be easily removed from the PC, such as CD-ROMs,

floppy disks,and USB memory sticks.
If you're not using a distribution that automatically mountsand unmounts removable media, you'll have to do it
yourself. This section describes the Linux command line commands to help you manage your removable media devices.

The mount Command

Oddly enough, the command used to mount media is called mount. By default, the mount command displays a list of media
devices currently mounted on the system:

$ mount
/dev/mapper/VolGroup00-LogVol00 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sdal on /boot type ext3 (rw)
tmpfs on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)
/dev/sdb1 on /media/disk type vfat
(rw,nosuid,nodev,uhelper=hal, shortname=1lower,uid=503)
$
The mount command provides four pieces of information:

* The device file name of the media

* The mount point in the virtual directory where the media is mounted

® The filesystem type

* The access status of the mounted media
The last entry in the preceding example is a USB memory stick that the GNOME desktop automatically mounted at the
/media/disk mount point. The vfat filesystem type shows that it was formatted on a Microsoft Windows PC.
To manually mount a media device in the virtual directory, you'll need to be logged in as the root user. The following is
the basic command for manually mounting a media device:

mount -t type device directory

The type parameter defines the filesystem type the disk was formatted under. There are lots and lots of different
filesystem types that Linux recognizes. If you share removable media devices with your Windows PCs, the types you're most

likely to run into are:
* vfat: Windows long filesystem.
® ntfs: Windows advanced filesystem used in Windows NT, XP, and Vista.
*i509660: The standard CD-ROM filesystem.
Most USB memory sticks and floppies are formatted using the vfat filesystem. If you need to mount a data CD, you'll

have to use the is09660 filesystem type.

The next two parameters define the location of the device file for the media device and the location in the virtual
directory for the mount point. For example, to manually mount the USB memory stick at device /dev/sdb1 at location

/media/disk,you'd usethe following command:

mount -t vfat /dev/sdb1 /media/disk

Once a media device is mounted in the virtual directory, the root user will have full access to the device, but access by
other users will be restricted. You can control who has access to the device using directory permissions (discussed in Chapter

www.it-ebooks.info

http://www.it-ebooks.info/

6).
In case you need to use some of the more exotic features of the mount command, the available parameters are shown in
Table 4.6.

Table 4.6 The mount Command Parameters

Parameter | Description

-a Mount all filesystems specified in the /etc/fstab File.

-f Causes the mount command to simulate mounting a device, but not actually mount
it.

-F When used with the -a parameter, mounts all filesystems at the same time.

-V Verbose mode, explains all the steps required to mount the device.

-1 Don't use any filesystem helper files under /sbin/mount.filesystem.

-1 Add the filesystem labels automatically for ext2, ext3, or XFS filesystems.

-n Mount the device without registering it in the /etc/mstab mounted device file.

-p num For encrypted mounting, read the passphrase from the file descriptor num.

-S Ignore mount options not supported by the filesystem.
-r Mount the device as read-only.
-W Mount the device as read-write (the default).

-L label |Mount the device with the specified label.

-U wuid |Mount the device with the specified uuid.

-0 When used with the -a parameter, limits the set of filesystems applied.

-0 Add specific options to the filesystem.

The -0 option allows you to mount the filesystem with a comma-separated list of additional options. The popular
optionsto useare:

ro:Mount as read-only.

rw: Mount as read-write.

user:Allowan ordinary user to mount the filesystem.

check=none: Mount the filesystem without performing an integrity check.

loop: Mount afile.

Apopular thing in Linux these daysis to distributea CD asa . iso file. The . iso fileis a completeimage of the CD in a
single file. Most CD-burning software packages can create a new CD based on the . iso file. Afeature of themount
command is that you can mount a . iso file directly to your Linux virtual directory without having to burn it onto a CD. This

is accomplished using the - o parameter with the 1oop option:
$ mkdir mnt
$ su
Password:
mount -t 1s09660 -o loop MEPIS-KDE4-LIVE-DVD_32.iso mnt
1s -1 mnt

www.it-ebooks.info

#c04_tbl_0006
#c04_tbl_anc_0006
http://www.it-ebooks.info/

total 16
-r--r--r-- 1 root root 702 2007-08-03 08:49 about
dr-xr-xr-x 3 root root 2048 2007-07-29 14:30 boot
-r--r--r-- 1 root root 2048 2007-08-09 22:36 boot.catalog
-r--r--r-- 1 root root 894 2004-01-23 13:22 cdrom.ico
-r--r--r-- 1 root root 5229 2006-07-07 18:07 MCWL
dr-xr-xr-x 2 root root 2048 2007-08-09 22:32 mepis
dr-xr-xr-x 2 root root 2048 2007-04-03 16:44 0SX
-r--r--r-- 1 root root 107 2007-08-09 22:36 version

cd mnt/boot

1s -1

total 4399

dr-xr-xr-x 2 root root 2048 2007-06-29 09:00 grub
-r--r--r-- 1 root root 2392512 2007-07-29 12:53 initrd.gz
-r--r--r-- 1 root root 94760 2007-06-14 14:56 memtest
-r--r--r-- 1 root root 2014704 2007-07-29 14:26 vmlinuz
#

Themount command mounted the . iso CD image file just as if it were a real CD and allowed us to maneuver around
within its filesystem.

The umount Command

To remove a removable media device, you should never just remove it from the system. Instead, you should always unmount it
first.

Tip
Linux doesn't allow you to eject a mounted CD. If you ever have trouble removing a CD

from the drive, most likely it means the CD is still mounted in the virtual directory.
Unmount it first, and then try to eject it.

The command used to unmount devices is umount (yes, there's no “n” in the command, which gets confusing sometimes).
The format for the umount command is pretty simple:

umount [directory | device]
The umount command gives you the choice of defining the media device by either its device location or its mounted
directory name. If any program has a file open on a device, the system won't let you unmount it.

[root@testbox mnt]# umount /home/rich/mnt
umount: /home/rich/mnt: device is busy
umount: /home/rich/mnt: device is busy
[root@testbox mnt]# cd /home/rich
[root@testbox rich]# umount /home/rich/mnt
[root@testbox rich]# 1ls -1 mnt

total 0

[root@testbox richl#

In this example, the command prompt was still in a directory within the filesystem structure, so the umount command
couldn't unmount the image file. Once the command prompt was moved out of the image file filesystem, the umount

command was able to successfully unmount the image file.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the df Command

Sometimes you need to see how much disk space is available on an individual device. The df command allows you to easily see
what's happening on all of the mounted disks:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 18251068 7703964 9605024 45% /

/dev/sda1 101086 18680 77187 20% /boot

tmpfs 119536 0 119536 0% /dev/shm
/dev/sdb1 127462 113892 13570 90% /media/disk
$

The df command shows each mounted filesystem that contains data. As you can see from the mount command earlier,
some mounted devices are used for internal system purposes. The command displays the following:

* The device location of the device

*How many 1024-byte blocks of data it can hold
*How many 1024-byte blocks are used

* How many 1024-byte blocks are available

* The amount of used space as a percentage

* The mount point where the device is mounted

Afewdifferent command line parameters are available with the df command, most of whichyou'll never use. One
popular parameter is - h, which shows the disk space in human-readable form, usually asan M for megabytes or a Gfor

gigabytes:
$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sdb2 186G 7.4G 9.2G 45% /
/dev/sda1 99M 19M 76M 20% /boot
tmpfs 117M 0 117M 0% /dev/shm
/dev/sdb1 125M 112M 14M 90% /media/disk
$

Now instead of having to decode those ugly block numbers, all of the disk sizes are shown using “normal” sizes. The d f
command isinvaluable in troubleshooting disk space problems on the system.

Note

Remember that the Linux system always has processes running in the background
that handle files. The values from the df command reflect what the Linux system
thinks are the current values at that point in time. It's possible that you have a
process running that has created or deleted a file but has not released the file yet.
This value is not included in the free space calculation.

Using the du Command

With the df command, it is easy to see when a disk is running out of space. The next problem for the system administrator is
to know what to do when that happens.

Another useful command to help you out is the du command. The du command shows the disk usage for a specific
directory (by default, the current directory). This is a quick way to determine if you have any obvious disk hogs on the system.

By default, the du command displays all of the files, directories, and subdirectories under the current directory, and it
shows how many disk blocks each file or directory takes. For a standard-sized directory, this can be quite a listing. Here's a

partial listing of using the du command:

www.it-ebooks.info

http://www.it-ebooks.info/

$ du

484 ./.gstreamer-0.10

8 ./Templates

8 ./Download

8 /.ccache/7/0

24 ./.ccache/7

368 ./.ccache/a/d

384 /.ccache/a

424 ./.ccache

8 ./Public

8 ./ .gphpedit/plugins
32 ./ .gphpedit

72 ./ .gconfd

128 ./.nautilus/metafiles
384 ./.nautilus

72 ./.bittorrent/data/metainfo
20 ./.bittorrent/data/resume
144 ./.bittorrent/data
152 ./.bittorrent

8 ./Videos

8 ./Music

16 ./.config/gtk-2.0

40 ./.config

8 ./Documents

The number at the right of each line is the number of disk blocks that each file or directory takes. Notice that the listing
starts at the bottom of a directory and works its way up through the files and subdirectories contained within the directory.

The du command by itself can be somewhat useless. It's nice to be able to see how much disk space each individual file and
directory takes up, but it can be meaningless when you have to wade through pages and pages of information before you

find what you're looking for.

There are a few command line parameters that you can use with the du command to make things a little more legible:

- c:Produce a grand total of all the files listed.

* -h:Print sizesin human-readable form, using K for kilobyte, M for megabyte, and G for gigabyte.

-s:Summarize each argument.
The next step for the system administrator is to use some file-handling commands for manipulating large amounts of
data. That's exactly what the next section covers.

Working with Data Files

When you have a large amount of data, it's often difficult to handle the information and make it useful. As you saw with the
du command in the previous section, it's easy to get data overload when working with system commands.

The Linux system provides several command line tools to help you manage large amounts of data. This section covers the
basic commands that every system administrator—as well as any everyday Linux user—should know how to use to make their

lives easier.

Sorting Data

One popular function that comes in handy when working with large amounts of data is the sort command. The sort
command does what it says—it sorts data.
By default, the sort command sorts the data lines in a text file using standard sorting rules for the language you specify

www.it-ebooks.info

http://www.it-ebooks.info/

as the default for the session.

$ cat file1
one

two

three

four

five

$ sort file1
five

four

one

three

two

$

Pretty simple. However, things aren't always as easy as they appear. Take a look at this example:

$ cat file2
1

2

100

45

3

10

145

75

$ sort file2
1

10

100

145

2

3

45

75

$

If you were expecting the numbers to sort in numerical order, you were disappointed. By default, the sort command
interprets numbers as characters and performs a standard character sort, producing output that might not be what you
want. To solve this problem, use the -n parameter, which tells the sort command to recognize numbers as numbers instead

of characters and to sort them based on their numerical values:

$ sort -n file2
1

2

3

10

45

75

www.it-ebooks.info

http://www.it-ebooks.info/

100
145
$

Now, that's much better! Another common parameter that's used is -M, the month sort. Linux log files usually contain a
timestamp at the beginning of the line to indicate when the event occurred:

Sep 13 07:10:09 testbox smartd[2718]: Device: /dev/sda, opened

If you sort a file that uses timestamp dates using the default sort, you'll get something like this:

$ sort file3
Apr
Aug
Dec
Feb
Jan
Jul
Jun
Mar
May
Nov
Oct
Sep
$

Not exactly what you wanted. If you use the -M parameter, the sort command recognizes the three-character month
nomenclature, and sorts appropriately:

$ sort -M file3
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
$

There are several other handy sort parameters to use, as shown in Table 4.7.

Table 4.7 The sort Command Parameters

Single Dash |Double Dash Description
-b --ignore-leading-blanks Ignore leading blanks when sorting.
-C --check = quiet Don't sort, but don't report if data is out of sort

www.it-ebooks.info

#c04_tbl_0007
#c04_tbl_anc_0007
http://www.it-ebooks.info/

order.

-C --check Don't sort, but check if the input data is already
sorted. Report if not sorted.

-d --dictionary-order Consider only blanks and alphanumeric
characters; don't consider special characters.

-f --ignore-case By default, sort orders capitalized letters first.
This parameter ignores case.

-g --general-numeric-sort Use general numerical value to sort.

-1 --ignore-nonprinting Ignore nonprintable charactersin the sort.

-k --key = POS1[,P0OS2) Sort based on position POS1, and end at POS2 if
specified.

-M --month-sort Sort by month order using three-character month
names.

-m --merge Merge two already sorted data files.

-n --numeric-sort Sort by string numerical value.

-0 -output = file Write results to file specified.

-R --random-sort Sort by a random hash of keys.

--random-source = FILE Specify the file for random bytes used by the -R
parameter.

-r --reverse Reverse the sort order (descending instead of
ascending.

-S --buffer-size = SIZE Specify the amount of memory to use.

-S --stable Disable last-resort comparison.

-T --temporary-direction = DIR | Specify a location to store temporary working
files.

-t --field-separator = SEP |Specify the character used to distinguish key
positions.

-u --unique With the -c parameter, check for strict ordering;
without the -c parameter, output only the Ffirst
occurrence of two similar lines.

-z --zero-terminated End all lines with a NULL character instead of a
new line.

The -k and -t parameters are handy when sorting data that uses fields, suchas the /etc/passwd file. Use the - t
parameter to specify the field separator character, and the -k parameter to specify which field to sort on. For example, to

sort the password file based on numerical userid, just do this:

$ sort -t ‘:

I

-k 3 -n /etc/passwd

www.it-ebooks.info

http://www.it-ebooks.info/

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
1p:x:4:7:1p:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

Now the data is perfectly sorted based on the third field, which is the numerical userid value.

The -n parameter is great for sorting numerical outputs, such as the output of the du command:

$ du -sh * | sort -nr
1008k mrtg-2.9.29.tar.gz
972k bldg1

888k fbs2.pdf

760k Printtest

680k rsync-2.6.6.tar.gz

660k code
516k fig1001.tiff
496k test

496k php-common-4.0.4pl1-6mdk.1586.rpm
448k MesaGLUT-6.5.1.tar.gz
400k plp

Notice that the - r option also sorts the valuesin descending order, so you can easily see what files are taking up the most
spacein your directory.

Note

The pipe command (|) used in this example redirects the output of the du
command to the sort command. That's discussed in more detail in Chapter 10.

Searching for Data

Often in a large file, you have to look for a specific line of data buried somewhere in the middle of the file. Instead of
manually scrolling through the entire file, you can let the grep command search for you. The command line format for the

grep command is:

grep [options] pattern [file]
The grep command searches either the input or the file you specify for lines that contain characters that match the
specified pattern. The output from grep is the lines that contain the matching pattern.

Here are two simple examples of using the grep command withthe file1 file used in the “Sorting Data” section:

$ grep three file1

www.it-ebooks.info

http://www.it-ebooks.info/

three

$ grep t filel
two

three

$

The first example searches the file file1 for text matching the pattern three. The grep command produces the line that
contains the matching pattern. The next example searches the file file1 for the text matching the pattern ¢.In this case,

there were two lines that matched the specified pattern, and both are displayed.

Because of the popularity of the grep command, it has undergone lots of development changes over its lifetime. There
are lots of features that have been added to the grep command. If you look over the man pages for the grep command,

you'll see how versatile it really is.
If you want to reverse the search (output lines that don't match the pattern) use the -v parameter:
$ grep -v t filel
one
four
five
$

If you need to find the line numbers where the matching patterns are found, use the -n parameter:
$ grep -n t filel

2:two

3:three

$

If you just need to see a count of how many lines contain the matching pattern, use the - c parameter:
$ grep -c t filel

2

$

If you need to specify more than one matching pattern, use the -e parameter to specify eachindividual pattern:
$ grep -e t -e f filel

two

three

four

five

$

This example outputs lines that contain either the string t or the string f.
By default, the grep command uses basic Unix-style regular expressions to match patterns. AUnix-style regular
expression uses special characters to define how to look for matching patterns.

For a more detailed explanation of regular expressions, see Chapter 19.
Here's a simple example of using a regular expression in a grep search:
$ grep [tf] file1

two

three

four

five

$

The square bracketsin the regular expression indicate that grep should look for matches that contain either a tor an f

www.it-ebooks.info

http://www.it-ebooks.info/

character. Without the regular expression, grep would search for text that would match the string tf.

The egrep command is an offshoot of grep, which allows you to specify POSIX extended regular expressions, which
contain more characters for specifying the matching pattern (again, see Chapter 19 for more details). The fgrep command is
another version that allows you to specify matching patterns as a list of fixed-string values, separated by newline characters.
This allows you to place a list of stringsin a file and then use that list in the fgrep command to search for the stringsin a

larger file.

Compressing Data
If you've done any work in the Microsoft Windows world, no doubt you've used zip files. It became such a popular feature
that Microsoft eventually incorporated it into the Windows XP operating system. The zip utility allows you to easily compress
large files (both text and executable) into smaller files that take up less space.

Linux contains several file compression utilities. While this may sound great, it often leads to confusion and chaos when
trying to download files. Table 4.8 lists the file compression utilities available for Linux.

Table 4.8 Linux File Compression Utilities

Utility File Extension |Description

bzip2 .bz2 Uses the Burrows-Wheeler block sorting text compression
algorithm and Huffman coding

compress | .Z Original Unix file compression utility; starting to fade away into
obscurity

gzip .82 The GNU Project's compression utility; uses Lempel-Ziv coding

zip .zip The Unix version of the PKZIP program for Windows

The compress file compression utility is not often found on Linux systems. If you download a file with a . Z extension,
you can usually install the compress package (called ncompress in many Linux distributions) using the software installation

methods discussed in Chapter 8,and then uncompress the file with the uncompress command.

The bzip2 Utility

The bzip2 utility is a relatively new compression package that is gaining popularity, especially when compressing large
binary files. The utilities in the bzip2 package are:

* bzip2 for compressing files
* bzcat for displaying the contents of compressed text files
* bunzip2 for uncompressing compressed .bz2 files

* bzip2recover for attempting to recover damaged compressed files
By default, the bzip2 command attempts to compress the original file and replaces it with the compressed file, using the
same file name with a . bz2 extension:

$ 1s -1 myprog
-rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog
$ bzip2 myprog

$ 1s -1 my*
-rwxrwxr-x 1 rich rich 2378 2007-09-13 11:29 myprog.bz2
$

The original size of themyprog program was 4882 bytes, and after thebzip2 compression it is now 2378 bytes. Also,
notice that the bzip2 command automatically renamed the original file with the . bz 2 extension, indicating what

compression technique we used to compress it.

To uncompress the file, just use the bunzip2 command:

www.it-ebooks.info

#c04_tbl_0008
#c04_tbl_anc_0008
http://www.it-ebooks.info/

$ bunzip2 myprog.bz2

$ 1s -1 myprog

-rwxrwxr-x 1 rich rich 4882 2007-09-13 11:29 myprog

$

Asyou can see, the uncompressed file is back to the original file size. Once you compress a text file, you can't use the
standard cat,more, or Less commands to view the data. Instead, you need to use thebzcat command:

$ bzcat test.bz2

This is a test text file.

The quick brown fox jumps over the lazy dog.

This is the end of the test text file.

$

Thebzcat command displays the text inside the compressed file without uncompressing the actual file.

The gzip Utility
By far the most popular file compression utility in Linux is the gzip utility. The gzip packageis a creation of the GNU Project,
in their attempt to create a free version of the original Unix compress utility. This package includes the files:

* gzip for compressing files

* gzcat for displaying the contents of compressed text files

* gunzip for uncompressing files

These utilities work the same way as the bzip2 utilities:

$ gzip myprog

$ 1s -1 my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz
$

The gzip command compresses the file you specify on the command line. You can also specify more than one file name or
even use wildcard characters to compress multiple files at once:

$ gzip my*

$ 1s -1 my*

-rWXr--r-- 1 rich rich 103 Sep 6 13:43 myprog.c.gz
-FWXI-Xr-X 1 rich rich 5178 Sep 6 13:43 myprog.gz
-rWXr--r-- 1 rich rich 59 Sep 6 13:46 myscript.gz
-rWXr--r-- 1 rich rich 60 Sep 6 13:44 myscriptll.gz
$

The gzip command compresses every file in the directory that matches the wildcard pattern.

The zip Utility
The zip utility is compatible with the popular PKZIP package created by Phil Katz for MS-DOS and Windows. There are four
utilities in the Linux zip package:

* zip createsa compressed file containing listed files and directories.

* zipcloak createsan encrypted compress file containing listed files and directories.

* zipnote extracts the comments from a zip file.
* zipsplit splitsazip fileinto smaller files of a set size (used for copying large zip files to floppy disks).
* unzip extracts files and directories from a compressed zip file.

To see all of the options available for the zip utility, just enter it by itself on the command line:

www.it-ebooks.info

http://www.it-ebooks.info/

$
Co

Ty
Zi

zip

pyright (C) 1990-2005 Info-ZIP
pe '
p 2.31 (March 8th 2005). Usage:

zip “-L"' for software license.

zip [-options] [-b path] [-t mmddyyyy] [-n suffixes] [zipfile list]

[_

X1 list]

The default action is to add or replace zipfile entries from list,
which can include the special name - to compress standard input.
If zipfile and list are omitted, zip compresses stdin to stdout.

freshen: only changed files -u

delete entries in zipfile -m
recurse into directories -j
store only -1
compress faster -9
quiet operation -V
add one-line comments -2
read names from stdin -0

exclude the following names -i
fix zipfile (-FF try harder) -D
adjust self-extracting exe -J
test zipfile integrity -X

update: only changed or new files
move into zipfile (delete files)
junk directory names

convert LF to CR LF

compress better

verbose operation

add zipfile comment

make file as old as latest entry
include only the following names
do not add directory entries
junk zipfile prefix (unzipsfx)
eXclude eXtra file attributes

store symbolic links as the link instead of the referenced file

PKZIP recursion (see manual)
encrypt -Nn

don't compress these suffixes

The power of the zip utility is its ability to compress entire directories of filesinto a single compressed file. This makes it

ideal fo

$

$

r archiving entire directory structures:

zip -r testzip test
adding: test/ (stored 0%)
adding: test/test1/ (stored 0%)

adding: test/test1/myprog2 (stored 0%)
adding: test/test1/myprogl (stored 0%)
adding: test/myprog.c (deflated 39%)

adding: test/file3 (deflated 2%)
adding: test/file4 (stored 0%)
adding: test/test2/ (stored 0%)

adding: test/filel.gz (stored 0%)

adding: test/file2 (deflated 4%)

adding: test/myprog.gz (stored 0%)

This example creates the zip file named testzip.zip and recurses throughthe directory test, adding each file and
directory found to the zip file. Notice from the output that not all of the files stored in the zip file could be compressed. The

zip utility automatically determines the best compression type to use for eachindividual file.

Caution

www.it-ebooks.info

http://www.it-ebooks.info/

When you use the recursion feature in the zip command, files are stored in the same
directory structure in the zip file. Files contained in subdirectories are stored in the zip
file within the same subdirectories. You must be careful when extracting the files; the
unzip command will rebuild the entire directory structure in the new location. Sometimes
this gets confusing when you have lots of subdirectories and files.

Archiving Data

While the zip command works great for compressing and archiving datainto a singlefile, it's not the standard utility used in
the Unix and Linux worlds. By far the most popular archiving tool used in Unix and Linux is the tar command.

The tar command was originally used to write files to a tape device for archiving. However, it can also write the output to
a file, which has become a popular way to archive data in Linux.

The following is the format of the tar command:

tar function [options] object1 object2 ..

The function parameter defines what the tar command should do, as shown in Table 4.9.

Table 4.9 The tar Command Functions

Function (Long Name Description

-A --concatenate |Append an existing tar archive file to another existing tar archive
File.

-C --Create Create a new tar archive file.

-d --diff Check the differences between a tar archive file and the
filesystem.

--delete Delete from an existing tar archive file.

-r - -append Append files to the end of an existing tar archive file.

-t --list List the contents of an existing tar archive file.

-u --update Append files to an existing tar archive file that are newer than a
file with the same name in the existing archive.

-X --extract Extract files from an existing archive file.

Each function uses options to define a specific behavior for the tar archive file. Table 4.10 lists the common options that you
can use with the tar command.

Table 4.10 The tar Command Options

Option | Description

-C dir |Change to the specified directory.

-f file |Outputresults to file (or device) file.

-] Redirect output to the bzip2 command for compression.
-p Preserve all file permissions.
-V List files as they are processed.

www.it-ebooks.info

#c04_tbl_0009
#c04_tbl_anc_0009
#c04_tbl_0010
#c04_tbl_anc_0010
http://www.it-ebooks.info/

‘ -z ‘ Redirect the output to the gzip command for compression.

These options are usually combined to create the following scenarios. First, you'll want to create an archive file using this
command:

tar -cvf test.tar test/ test2/
The above command creates an archive file called test . tar containing the contents of both the test directory and the
test2 directory. Next, this command:

tar -tf test.tar

lists (but doesn't extract) the contents of the tar file test. tar.Finally, this command:

tar -xvf test.tar
extracts the contents of the tar file test. tar.If the tar file was created from a directory structure, the entire directory
structureis re-created starting at the current directory.
Asyou can see, using the tar command is a simple way to create archive files of entire directory structures. This is a
common method for distributing source code files for open source applicationsin the Linux world.

Tip
IF you download open source software, often you'll see filenames that end in . tgz. These

are gzipped tar files, and can be extracted using the command tar -zxvf
filename.tgz.

Summary

This chapter discussed some of the more advanced bash commands used by Linux system administrators and programmers.
The ps and top commands are vital in determining the status of the system, allowing you to see what applications are

running and how many resources they are consuming.

In this day of removable media, another popular topic for system administrators is mounting storage devices. Themount
command allows you to mount a physical storage device into the Linux virtual directory structure. To remove the device, use

the umount command.

Finally, the chapter discussed various utilities used for handling data. The sort utility easily sorts large data files to help
you organize data, and the grep utility allows you to quickly scan through large data files looking for specificinformation.
There are a few different file compression utilities availablein Linux, including bzip2,gzip,and zip.Eachoneallows you to
compress large files to help save space on your filesystem. The Linux tar utility is a popular way to archive directory

structuresinto asingle file that can easily be ported to another system.
The next chapter discusses Linux environment variables. Environment variables allow you to access information about
the system from your scripts, as well as provide a convenient way to store data within your scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5
Using Linux Environment Variables

In This Chapter

* What are environment variables?
®Setting environment variables

* Removing environment variables

* Default shell environment variables

® Setting the PATH environment variable
* Locating system environment variables
*Variable arrays

® Using command aliases

Linux environment variables help define your Linux shell experience. However, they can be a confusing topic for new Linux
users. Many programs and scripts use environment variables to obtain system information and store temporary data and
configuration information. There are lots of places where environment variables are set on the Linux system, and it's
important to know where these places are. This chapter walks you through the world of Linux environment variables, showing
where they are, how to use them, and even how to create your own. The chapter finishes off with a related topic, defining and

using aliases in your shell session.

What Are Environment Variables?

The bash shell uses a feature called environment variablesto store information about the shell session and the working
environment (thus the name environment variables). This feature also allows you to store data in memory that can be easily
accessed by any program or script running from the shell. This is a handy way to store persistent data that identifies features

of the user account, system, shell, or anything else you need to store.
There are two types of environment variables in the bash shell:
*Global variables
* Local variables

This section describes each type of environment variable, and shows how to see and use them.

Note

Even though the bash shell uses specific environment variables that are consistent,
different Linux distributions often add their own environment variables. The
environment variable examples you see in this chapter may differ slightly from
what's available in your specific distribution. If you run into an environment
variable not covered here, check the documentation for your Linux distribution.

Global Environment Variables

Global environment variables are visible from the shell session, and from any child processes that the shell spawns. Local
variables are only available in the shell that creates them. This makes global environment variables useful in applications that
spawn child processes that require information from the parent process.

The Linux system sets several global environment variables when you start your bash session (For more details about
what variables are started at that time, see the “Locating System Environment Variables” section later in this chapter). The

system environment variables always use all capital letters to differentiate them from normal user environment variables.

To view the global environment variables, use the printenv command:

$ printenv

www.it-ebooks.info

http://www.it-ebooks.info/

ORBIT_SOCKETDIR=/tmp/orbit-user
HOSTNAME=1ocalhost.localdomain
IMSETTINGS_INTEGRATE_DESKTOP=yes
TERM=xterm

SHELL=/bin/bash

XDG_SESSION_COOKIE=787b3cf537971ef8462260960000006b-1284670942.440386-101
2435051

HISTSIZE=1000
GTK_RC_FILES=/etc/gtk/gtkrc:/home/user/.gtkrc-1.2-gnome2
WINDOWID=29360131

GNOME_KEYRING_CONTROL=/tmp/keyring-Egjauk

IMSETTINGS_MODULE=none

USER=user
LS_COLORS=rs=0:di=01;34:1n=01;36:mh=00:pi=40;33:50=01;35:do=01;35:
bd=40;33;01:cd=40;33;01:0r=40,;31;01:m1=01,05;37;41:s5u=37,;41:5g=30,43

SSH_AUTH_SOCK=/tmp/keyring-Egjauk/ssh
SESSION_MANAGER=local/unix:@/tmp/.ICE-unix/1331,unix/unix:/tmp/.ICE-
unix/1331

USERNAME=user

DESKTOP_SESSION=gnome

MAIL=/var/spool/mail/user
PATH=/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin
QT_IM_MODULE=xim

PWD=/home/user/Documents

XMODIFIERS=@im=none

GDM_KEYBOARD_LAYOUT=us

LANG=en_US.utf8

GNOME_KEYRING_PID=1324

GDM_LANG=en_US.utf8

GDMSESSION=gnome
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
HISTCONTROL=1ignoredups

HOME=/home/user

SHLVL=2

GNOME_DESKTOP_SESSION_ID=this-is-deprecated
LOGNAME=user
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-
ifKtHnDKnU, guid=6f061c07be822c134f12956b00000081
LESSOPEN=| /usr/bin/lesspipe.sh %s

WINDOWPATH=1

DISPLAY=:0.0

G_BROKEN_FILENAMES=1
XAUTHORITY=/var/run/gdm/auth-for-user-GIU7sE/database

www.it-ebooks.info

http://www.it-ebooks.info/

COLORTERM=gnome-terminal
_=/usr/bin/printenv
OLDPWD=/home/user

$

Asyou can see, there are lots of global environment variables that get set for the bash shell. Most of them are set by the
system during the login process.
To display the value of an individual environment variable, use the echo command. When referencing an environment

variable, you must place a dollar sign before the environment variable name:

$ echo $HOME
/home/user
$

As mentioned, global environment variables are also available to child processes running under the current shell session:

$ bash

$ echo $HOME
/home/user

$

In this example, after starting a new shell using the bash command, you displayed the current value of the HOME
environment variable, which the system sets when you log into the main shell. Sure enough, the value is also available from

the child shell process.

Local Environment Variables

Local environment variables, as their name implies, can be seen only in the local process in which they are defined. Even
thoughthey are local, they are just asimportant as global environment variables. In fact, the Linux system also defines

standard local environment variables for you by default.

Trying to see the list of local environment variables is a little tricky. Unfortunately thereisn't a command that displays
only local environment variables. The set command displays all of the environment variables set for a specific process.

However, this also includes the global environment variables.

Here's the output from a sample set command:

$ set

BASH=/bin/bash
BASHOPTS=checkwinsize:cmdhist:expand_aliases:extquote:
force_fignore:hostcomplete:interactive_comments:
progcomp:promptvars:sourcepath

BASH_ALIASES=()

BASH_ARGC=()

BASH_ARGV=()

BASH_CMDS=()

BASH_LINENO=()

BASH_SOURCE=()

BASH_VERSINFO=([0]="4" [1]="1" [2]="7" [3]="1"
[4]1="release” [5]="1386-redhat-linux-gnu"”)
BASH_VERSION='4.1.7(1)-release’
COLORS=/etc/DIR_COLORS

COLORTERM=gnome-terminal

COLUMNS=80
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-

www.it-ebooks.info

http://www.it-ebooks.info/

ifKtHNnDKnU, guid=6f061c07be822c134f12956b00000081
DESKTOP_SESSION=gnome

DIRSTACK=()

DISPLAY=:0.0

EUID=500

GDMSESSION=gnome

GDM_KEYBOARD_LAYOUT=us

GDM_LANG=en_US.utf8
GNOME_DESKTOP_SESSION_ID=this-is-deprecated
GNOME_KEYRING_CONTROL=/tmp/keyring-Egjauk
GNOME_KEYRING_PID=1324

GROUPS=()
GTK_RC_FILES=/etc/gtk/gtkrc:/home/user/.gtkrc-1.2-gnome2
G_BROKEN_FILENAMES=1

HISTCONTROL=1ignoredups

HISTFILE=/home/user/.bash_history

HISTFILESIZE=1000

HISTSIZE=1000

HOME=/home/user

HOSTNAME=1ocalhost.localdomain

HOSTTYPE=1386

IFS=$' \t\n’

IMSETTINGS_INTEGRATE_DESKTOP=yes

IMSETTINGS_MODULE=none

LANG=en_US.utf8

LESSOPEN=" | /usr/bin/lesspipe.sh %s’

LINES=24

LOGNAME=user
LS_COLORS='rs=0:di=01;34:1n=01;36:mh=00:pi=40;33:50=01;35:do=01;35:
bd=40;33;01:cd=40;33;01:0r=40;31,01:mi=01,05;37;41:s5u=37,;41:5g=30,43

MACHTYPE=1386-redhat-1linux-gnu
MAIL=/var/spool/mail/user

MAILCHECK=60

OLDPWD=/home/user

OPTERR=1

OPTIND=1

ORBIT_SOCKETDIR=/tmp/orbit-user

OSTYPE=1inux-gnu
PATH=/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin
PIPESTATUS=([0]="0")

PPID=1674

www.it-ebooks.info

http://www.it-ebooks.info/

PROMPT_COMMAND="echo -ne "“\033]0;${USER}@${HOSTNAME%%.*}:
${PWD/#$HOME/~}"; echo -ne "\007"’

PS1="[\u@\h \W]\$ ’

PS2="> '

PS4="+ "'

PWD=/home/user/Documents

QT_IM_MODULE=xim
SESSION_MANAGER=1ocal/unix:@/tmp/.ICE-unix/1331,unix/unix:/tmp/.ICE-
unix/1331

SHELL=/bin/bash
SHELLOPTS=braceexpand:emacs:hashall:histexpand:history:interactive-
comments:monitor

SHLVL=2
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
SSH_AUTH_SOCK=/tmp/keyring-Egjauk/ssh

TERM=xterm

UID=500

USER=user

USERNAME=user

WINDOWID=29360131

WINDOWPATH=1
XAUTHORITY=/var/run/gdm/auth-for-user-GIU7sE/database

XDG_SESSION_COOKIE=787b3cf537971et8462260960000006b-1284670942.440386-101
2435051

XMODIFIERS=@im=none
_=printenv
colors=/etc/DIR_COLORS
__udisks ()

{
local IFS=’

local cur="${COMP_WORDS[COMP_CWORD]}";
if [“${COMP_WORDS[$(($COMP_CWORD - 1))]}" = "“--show-info”]; then

COMPREPLY=($(compgen -W “$(udisks --enumerate-device-
files)” -- $cur));

else
if [“${COMP_WORDS[$(($COMP_CWORD - 1))]}" = “--inhibit-
polling” 1; then

fi;
fi;
fi;
fi;
fi

www.it-ebooks.info

http://www.it-ebooks.info/

command_not_found_handle ()

{
runcnf=1;
retval=127;
[! -S /var/run/dbus/system_bus_socket] && runcnf=0;
[! -x /usr/sbin/packagekitd] && runcnf=0;
if [$runcnf -eq 1]; then
/usr/libexec/pk-command-not-found $1;
retval=%$?;
else
echo “bash: $1: command not found”;
fi;
return $retval
}
$

You'll notice that all of the global environment variables seen from the printenv command appear in the output from
the set command. However, there are quite a few additional environment variables that now appear. These are the local

environment variables.

Setting Environment Variables

You can set your own environment variables directly from the bash shell. This section shows you how to create your own
environment variables and reference them from your interactive shell or shell script program.

Setting Local Environment Variables

Once you start a bash shell (or spawn a shell script), you're allowed to create local variables that are visible within your shell
process. You can assign either a numericor a string value to an environment variable by assigning the variable to a value

using the equal sign:

$ test=testing
$ echo $test
testing

$

That was simple! Now any time you need to reference the value of the test environment variable, just reference it by the
name $test.

If you need to assign a string value that contains spaces, you'll need to use a single quotation mark to delineate the
beginning and the end of the string:

$ test=testing a long string
-bash: a: command not found

$ test="testing a long string’
$ echo $test

testing a long string

$

Without the single quotation marks, the bash shell assumes that the next character is another command to process. Notice
that for the local environment variable you defined, you used lowercase letters, while the system environment variables

you've seen so far have all used uppercase letters.

This is a standard convention in the bash shell. If you create new environment variables, it is recommended (but not
required) that you use lowercase letters. This helps distinguish your personal environment variables from the scores of

system environment variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Caution

It's extremely important that there are no spaces between the environment variable
name, the equal sign, and the value. If you put any spaces in the assignment, the bash shell
interprets the value as a separate command:

$ test2 = test
-bash: test2: command not found
$

Onceyou set alocal environment variable, it's available for use anywhere within your shell process. However, if you spawn
another shell, it's not available in the child shell:

$ bash

$ echo $test

$ exit

exit

$ echo $test

testing a long string
$

In this example, you started a child shell. As you can see, the test environment variable is not available in the child shell (it
contains a blank value). After you exited the child shell and returned to the original shell, the local environment variable was

still available.

Similarly, if you set a local environment variable in a child process, once you leave the child process the local environment
variableis no longer available:

$ bash

$ test=testing

$ echo $test

testing

$ exit

exit

$ echo $test

$

The test environment variable set in the child shell doesn't exist when we go back to the parent shell.

Setting Global Environment Variables

Global environment variables are visible from any child processes created by the process that sets the global environment
variable. The method used to create a global environment variableis to create a local environment variable and then export

it to the global environment.

Thisis done by using the export command:

$ echo $test

testing a long string
$ export test

$ bash

$ echo $test

testing a long string
$

www.it-ebooks.info

http://www.it-ebooks.info/

After exporting the local environment variable test, we started a child shell process and viewed the value of the test
environment variable. This time, the environment variable kept its value, as the export command madeit global.

Caution

Notice that when exporting a local environment variable, you don't use the dollar sign to
reference the variable's name.

Removing Environment Variables

Of course, if you can create a new environment variable, it makes sense that you can also remove an existing environment
variable. You can do this with the unset command:

$ echo $test

testing

$ unset test

$ echo $test

$

When referencing the environment variable in the unset command, remember not to use the dollar sign.

When dealing with global environment variables, things get a little tricky. If you'rein a child process and unset a global
environment variable, it applies only to the child process. The global environment variable is still available in the parent

process:
$ test=testing
$ export test
$ bash
$ echo $test
testing
$ unset test
$ echo $test

$ exit

exit

$ echo $test
testing

$

In this example, you set a local environment variable called test, and then exported it to make it a global environment
variable. You then started a child shell process and checked to make sure that the global environment variable test was still
available. Next, while still in the child shell, you used the unset command to remove the global environment variable test,
and then exited the child shell. Now back in the original parent shell, you checked the test environment variable value, and it is

still valid.
Default Shell Environment Variables

There are specific environment variables that the bash shell uses by default to define the system environment. You can always
count on these variables being set on your Linux system. Because the bash shell is a derivative of the original Unix Bourne

shell, it also includes environment variables originally defined in that shell.

Table 5.1 shows the environment variables the bash shell provides that are compatible with the original Unix Bourne shell.

Table 5.1 The bash Shell Bourne Variables

Variable |Description

CDPATH A colon-separated list of directories used as a search path for the cd command.

www.it-ebooks.info

#c05_tbl_0001
#c05_tbl_anc_0001
http://www.it-ebooks.info/

HOME The current user's home directory.

IFS A list of characters that separate fields used by the shell to split text strings.
MAIL The file name for the current user's mailbox. The bash shell checks this file for new
mail.

MAILPATH | A colon-separated list of multiple file names for the current user's mailbox. The
bash shell checks each file in this list for new mail.

OPTARG The value of the last option argument processed by the getopts command.

OPTIND |The index value of the last option argument processed by the getopts command.

PATH A colon-separated list of directories where the shell looks for commands.
PS1 The primary shell command line interface prompt string.
PS2 The secondary shell command line interface prompt string.

By far the most important environment variable in this list is the PATH environment variable. When you enter a command
in the shell command line interface (CLI), the shell must search the system to find the program. The PATH environment
variable defines the directories it searches looking for commands. On my Linux system, the PATH environment variable looks

like this:

$ echo $PATH
/usr/kerberos/sbin: /usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin

$

This shows that there are six directories where the shell looks for commands. Each directory in the PATH is separated by a
colon. There's nothing at the end of the PATH variable indicating the end of the directory listing. You can add additional
directories to the PATH simply by adding another colon, and adding the new directory. The PATH also shows the order in

which it looks for commands.
Besides the default Bourne environment variables, the bash shell also provides a few variables of its own, as shown in
Table 5.2.

Table 5.2 The bash Shell Environment Variables

Variable Description

BASH The full pathname to execute the current instance of the bash
shell.

BASH_ALIASES An associative array of currently set aliases.

BASH_ARGC A variable array that contains the number of parameters being
passed to a subroutine or shell script.

BASH_ARCV A variable array that contains the parameters being passed to a
subroutine or shell script.

BASH_CMDS An associative array of locations of commands the shell has
executed.

BASH_COMMAND The shell command currently being or about to be executed.

www.it-ebooks.info

#c05_tbl_0002
#c05_tbl_anc_0002
http://www.it-ebooks.info/

BASH_ENV

When set, each bash script attempts to execute a startup file
defined by this variable before running.

BASH_EXECUTION_STRING

The command(s) passed using the bash -c option.

BASH_LINENO

A variable array containing the source code line number of the
currently executing shell function.

BASH_REMATCH

A read-only variable array containing patterns and their
subpatterns for positive matches using the regular expression
comparison operator, =~.

BASH_SOURCE

A variable array containing the source code file name of the
currently executing shell function.

BASH_SUBSHELL

The current nesting level of a subshell environment. The initial
value is 0.

BASH_VERSION

The version number of the current instance of the bash shell.

BASH_VERSINFO

A variable array that contains the individual major and minor
version numbers of the current instance of the bash shell.

BASH_XTRACEFD

If set to a valid file descriptor (0,1,2), then trace output generated
from the ‘set -x' debugging option can be redirected. This is
often used to separate trace output into a file.

BASHOPTS A list of bash shell options that are currently enabled.

BASHPID Process ID of the current bash process.

COLUMNS Contains the terminal width of the terminal used for the current
instance of the bash shell.

COMP_CWORD An index into the variable COMP_WORDS, which contains the current
cursor position.

COMP_LINE The current command line.

COMP_POINT The index of the current cursor position relative to the beginning
of the current command.

COMP_KEY The final key used to invoke the current completion of a shell
function.

COMP_TYPE An integer value representing the type of completion attempted

that caused a completion shell function to be invoked.

COMP_WORDBREAKS

The Readline library word separator characters for performing
word completion.

COMP_WORDS A variable array that contains the individual words on the current
command line.
COMPREPLY A variable array that contains the possible completion codes

generated by a shell function.

www.it-ebooks.info

http://www.it-ebooks.info/

DIRSTACK A variable array that contains the current contents of the
directory stack.

EMACS Indicates the emacs shell buffer is executing and line editing is
disabled, when set to ‘t’.

EUID The numeric effective user ID of the current user.

FCEDIT The default editor used by the fc command.

FIGNORE A colon-separated list of suffixes to ignore when performing file
name completion.

FUNCNAME The name of the currently executing shell function.

GLOBIGNORE A colon-separated list of patterns defining the set of file names to
be ignored by file name expansion.

GROUPS A variable array containing the list of groups of which the current
user is a member.

histchars Up to three characters, which control history expansion.

HISTCMD The history number of the current command.

HISTCONTROL Controls what commands are entered in the shell history list.

HISTFILE The name of the File to save the shell history list (.bash_history
by default).

HISTFILESIZE The maximum number of lines to save in the history file.

HISTIGNORE A colon-separated list of patterns used to decide which commands
are ignored for the history file.

HISTSIZE The maximum number of commands stored in the history file.

HOSTFILE Contains the name of the file that should be read when the shell
needs to complete a hostname.

HOSTNAME The name of the current host.

HOSTTYPE A string describing the machine the bash shellis running on.

IGNOREEOF The number of consecutive EOF characters the shell must receive
before exiting. If this value doesn't exist, the default is 1.

INPUTRC The name of the Readline initialization file (the default is
.inputrc).

LANG The locale category for the shell.

LC_ALL Overrides the LANG variable, defining a locale category.

LC_COLLATE Sets the collation order used when sorting string values.

LC_CTYPE Determines the interpretation of characters used in file name

www.it-ebooks.info

http://www.it-ebooks.info/

expansion and pattern matching.

LC_MESSAGES

Determines the locale setting used when interpreting double-
quoted strings preceded by a dollar sign.

LC_NUMERIC Determines the locale setting used when formatting numbers.

LINENO The line number in a script currently executing.

LINES Defines the number of lines available on the terminal.

MACHTYPE A string defining the system type in cpu-company-system format.

MAILCHECK How often (in seconds) the shell should check for new mail (default
is 60).

OLDPWD The previous working directory used in the shell.

OPTERR If set to 1, the bash shell displays errors generated by the getopts
command.

OSTYPE A string defining the operating system the shell is running on.

PIPESTATUS A variable array containing a list of exit status values from the

processes in the foreground process.

POSIXLY_CORRECT

If set, bash starts in POSIX mode.

PPID

The process ID (PID) of the bash shell's parent process.

PROMPT_COMMAND

If set, the command to execute before displaying the primary
prompt.

PROMPT_DIRTRIM

An integer used to indicate the number of trailing directory names
to display when using the \w and \W prompt string escapes. The
directory names removed are replaced with one set of ellipses.

PS3 The prompt to use for the select command.

PS4 The prompt displayed before the command line is echoed if the
bash -x parameter is used.

PWD The current working directory.

RANDOM Returns a random number between 0 and 32767. Assigning a value
to this variable seeds the random number generator.

REPLY The default variable for the read command.

SECONDS The number of seconds since the shell was started. Assigning a
value resets the timer to the value.

SHELL The full path name to the bash shell.

SHELLOPTS A colon-separated list of enabled bash shell options.

SHLVL Indicates the shell level, incremented by one each time a new bash

www.it-ebooks.info

http://www.it-ebooks.info/

shellis started.

TIMEFORMAT A format specifying how the shell displays time values.

TMOUT The value of how long (in seconds) the select and read commands
should wait for input. The default of zero indicates to wait
indefinitely.

TMPDIR Directory name where the bash shell creates temporary files for its
use.

UID The numeric real user ID of the current user.

You may notice that not all of the default environment variables are shown when the set command was used. The reason
for thisis that although these are the default environment variables, not all of them are required to contain avalue.

Setting the PATH Environment Variable

The PATH environment variable seems to cause the most problem on Linux systems. It defines where the shell looks for
commands you enter on the command line. If it can't find the command, it produces an error message:

$ myprog
-bash: myprog: command not found

$

The problem is that often applications place their executable programsin directories that aren't in the PATH environment
variable. The trick is ensuring that your PATH environment variable includes all of the directories where your applications

reside.

You can add new search directories to the existing PATH environment variable without having to rebuild it from scratch.
The individual directories listed in the PATH are separated by a colon. All you need to do is reference the original PATH value

and add any new directories to the string. This looks something like this:

$ echo $PATH
/usr/kerberos/sbin: /usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin

$ PATH=$PATH:/home/user/test

$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin:
/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin:/home/user/test
$ myprog

The factorial of 5 is 120.

$

By adding the directory to the PATH environment variable, you can now execute your program from anywhere in the
virtual directory structure:

[user@localhost ~]1$% cd /etc
[user@localhost etc]$ myprog
The factorial of 5 is 120
[user@localhost etc]$

Acommon trick for programmersis to include the single dot symbol in their PATH environment variable. The single dot
symbol represents the current directory (see Chapter 3):

[user@localhost ~]$ PATH=$PATH:.
[user@localhost ~]$ cd test2

www.it-ebooks.info

http://www.it-ebooks.info/

[user@localhost test2]$ myprog2
The factorial of 6 is 720
[user@localhost test2]$

In the next section, you'll see how you can make changes to environment variables permanent on your system, so you can
always execute your programs.

Locating System Environment Variables

The Linux system uses environment variables to identify itself in programs and scripts. This provides a convenient way to
obtain systeminformation for your programs. The trick is in how these environment variables are set.

When you start a bash shell by logging in to the Linux system, by default bash checks several files for commands. These
files are called startup files. The startup files bash processes depend on the method you use to start the bash shell. There are

three ways of starting a bash shell:
* As a default login shell at login time
® As an interactive shell that is not the login shell
* As a non-interactive shell to run a script

The following sections describe the startup files the bash shell executes in each of these startup methods.

Login Shell

When you log in to the Linux system, the bash shell starts as a login shell. The login shell looks for four different startup files
to process commands from. The following is the order in which the bash shell processes the files:

* /etc/profile

* $HOME/.bash_profile

* $HOME/ .bash_login

* $HOME/.profile

The /etc/profile fileis the main default startup file for the bash shell on the system. Every user on the system
executes this startup file when they log in. The other three startup files are specific for each user and can be customized for

each user's requirements. Let's take a closer look at these files.

The /etc/profile File

The /etc/profile fileis the main default startup file for the bash shell. Whenever you log in to the Linux system, bash
executes the commandsin the /etc/profile startup file. Different Linux distributions place different commandsin this

file. On this Linux system, it looks like this:

$ cat /etc/profile

/etc/profile

System wide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc

It's NOT good idea to change this file unless you know what you
are doing. Much better way is to create custom.sh shell script in
/etc/profile.d/ to make custom changes to environment. This will
prevent need for merging in future updates.

pathmunge () {
case “:${PATH}:" in
*UE1T)

.o .
r

www.it-ebooks.info

http://www.it-ebooks.info/

*)
if [“$2" = "after”] ; then
PATH=$PATH: $1
else
PATH=$1:$PATH
fi
esac

if [-x /usr/bin/id]; then
if [-z “$EUID” 1; then
ksh workaround
EUID="id -u’
UID='id -ru’
fi
USER="'id -un"'"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
fi

Path manipulation

if [“$EUID” = “0"]; then
pathmunge /sbin
pathmunge /usr/sbin
pathmunge /usr/local/sbin

else
pathmunge /usr/local/sbin after
pathmunge /usr/sbin after
pathmunge /sbin after

fi

HOSTNAME="/bin/hostname 2>/dev/null’
HISTSIZE=1000
if [“$HISTCONTROL" = "ignorespace”] ; then
export HISTCONTROL=ignoreboth
else
export HISTCONTROL=ignoredups
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL
for i in /etc/profile.d/*.sh ; do

if [-r “$1" 1; then
if [“$PS1”]; then

www.it-ebooks.info

http://www.it-ebooks.info/

81

else
. $i >/dev/null 2>&1
fi
fi
done
unset 1
unset pathmunge
$

Most of the commands and scripts you see in this file are covered in more detail later on in Chapter 10. The important
thing to notice now s the environment variables that are set in this startup file. Notice the export line near the bottom of the

file:

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

This ensures that these environment variables are available to all child processes spawned from the login shell.

There's also another tricky Feature that the profile file uses. There's a for statement that iterates throughany files
located in the /etc/profile.ddirectory. (for statements are discussed in detail in Chapter 12.) This provides a place for
the Linux system to place application-specific startup files that will be executed by the shell when you log in. On this Linux

system, the following files arein the profile.d directory:

$ 1s -1 /etc/profile.d

total 72

-rw-r--r--. 1 root root 1133 Apr 28 10:43 colorls.csh
-rw-r--r--. 1 root root 1143 Apr 28 10:43 colorls.sh
-rw-r--r--. 1 root root 192 Sep 9 2004 glib2.csh

-rw-r--r--. 1 root root 192 Dec 12 2005 glib2.sh

-rw-r--r--. 1 root root 58 May 31 06:23 gnome-ssh-askpass.csh
-rw-r--r--. 1 root root 70 May 31 06:23 gnome-ssh-askpass.sh
-rw-r--r--. 1 root root 184 Aug 25 11:36 krb5-workstation.csh
-rw-r--r--. 1 root root 57 Aug 25 11:36 krb5-workstation.sh
-rw-r--r--. 1 root root 1741 Jun 24 15:20 lang.csh

-rw-r--r--. 1 root root 2706 Jun 24 15:20 lang.sh

-rw-r--r--. 1 root root 122 Feb 7 2007 less.csh

-rw-r--r--. 1 root root 108 Feb 7 2007 less.sh

-rw-r--r--. 1 root root 837 Sep 2 05:24 PackageKit.sh
-rw-r--r--. 1 root root 2142 Aug 10 16:41 udisks-bash-completion.sh
-rw-r--r--. 1 root root 74 Mar 25 19:24 vim.csh

-rw-r--r--. 1 root root 248 Mar 25 19:24 vim.sh

-rw-r--r--. 1 root root 161 Nov 27 2007 which2.csh
-rw-r--r--. 1 root root 169 Nov 27 2007 which2.sh

$

You'll notice that these are mostly related to specificapplications on the system. Most applications create two startup
files, one for the bash shell (using the . sh extension) and one for the cshell (using the . csh extension).

Thelang.cshand lang. sh files attempt to determine the default language character set used on the system, and set
the LANG environment variable appropriately.

The SHOME Startup Files

www.it-ebooks.info

http://www.it-ebooks.info/

The remaining three startup files are all used for the same function—to provide a user-specificstartup file for defining user-
specificenvironment variables. Most Linux distributions use only one of these three startup files:

* $HOME/.bash_profile
* $HOME/.bash_login

® $HOME/.profile

Notice that all three files start with a dot, making them hidden files (they don't appear in a normal 1s command listing).
Because they arein the user's HOME directory, each user can edit the files and add his or her own environment variables that

are active for every bash shell session they start.

This Linux system contains the following .bash_profile file:

$ cat .bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

~/ .bashrc
fi

User specific environment and startup programs
PATH=$PATH: $HOME/bin

export PATH
$

The .bash_profile startup file first checks to see if there's another startup file present in the HOME directory, called
.bashrc (whichwe'll talk about next in the “Interactive Shell” section). If it's there, the startup file executes the commandsin
it. Next, the startup file adds a directory to the PATH environment variable, providing a common location to place executable

filesin your HOME directory.

Interactive Shell

If you start a bash shell without logging into a system (such asif you just type bash at a CLI prompt), you start what's called
an interactive shell. The interactive shell doesn't act like the login shell, but it still provides a CLI prompt for you to enter

commands.
If bashis started as an interactive shell, it doesn't process the /etc/profile file.Instead, it checks for the .bashrc file

in the user's HOME directory.
On this Linux distribution, this file looks like this:

$ cat .bashrc

.bashrc

Source global definitions

if [-f /etc/bashrc]; then
/etc/bashrc

fi

User specific aliases and functions
$

The .bashrc file does two things. First, it checks for a common bashrcfilein the /etc directory. Second, it provides a
place for the user to enter personal aliases (discussed later in the “Using Command Aliases” section) and private script

www.it-ebooks.info

http://www.it-ebooks.info/

functions (described in Chapter 16).

The common /etc/bashrcstartup fileisrun by everyone on the system who starts an interactive shell session. On this
Linux distribution it looks like this:

$ cat /etc/bashrc

/etc/bashrc

System wide functions and aliases
Environment stuff goes in /etc/profile

=

It's NOT good idea to change this file unless you know what you
are doing. Much better way is to create custom.sh shell script in
/etc/profile.d/ to make custom changes to environment. This will
prevent need for merging in future updates.

H O H H

By default, we want this to get set.

Even for non-interactive, non-login shells.

Current threshold for system reserved uid/gids is 200

You could check uidgid reservation validity in

/usr/share/doc/setup-*/uidgid file

if [$UID -gt 199] && [“‘id -gn'” = “‘id -un'"]; then
umask 002

else
umask 022

fi

are we an interactive shell?
if [“$PS1” 1; then
case $TERM in
xterm¥*)
if [-e /etc/sysconfig/bash-prompt-xterm]; then
PROMPT_COMMAND=/etc/sysconfig/bash-prompt-xterm
else
PROMPT_COMMAND="echo -ne
“\033]0; ${USER}@${HOSTNAME%%.*} :
${PWD/#$HOME/~}"; echo -ne “\007"'
fi
screen)
if [-e /etc/sysconfig/bash-prompt-screen]; then
PROMPT_COMMAND=/etc/sysconfig/bash-prompt-screen
else
PROMPT_COMMAND="'echo -ne
“\033_${USER}@${HOSTNAME%%. *} :
${PWD/#$HOME/~}"; echo -ne “\033\\"'

www.it-ebooks.info

http://www.it-ebooks.info/

fi

*)
[-e /etc/sysconfig/bash-prompt-default] &

PROMPT_COMMAND=/etc/sysconfig/bash-prompt-default

es)

ry
fi

r

esac

Turn on checkwinsize

shopt -s checkwinsize

[“$PST" = "\\s-\\V\\\$ ”] && PST1="[\u@\h \WJ\\$ "

You might want to have e.g. tty in prompt (e.g. more virtual machin

and console windows

If you want to do so, just add e.g.

if [“$PS1”], then

PST1="[\u@\h:\1 \WJ\\$ "

fi

to your custom modification shell script in /etc/profile.d/ directo

if ! shopt -q login_shell ; then # We're not a login shell

Need to redefine pathmunge, it get's undefined at the end of /etc/p

rofile

pathmunge () {
case “:${PATH}:" in
*UE1T)
*) "
if [“$2" = “after”] ; then
PATH=$PATH: $1
else
PATH=$1:$PATH
fi
esac

Only display echos from profile.d scripts if we are no login shell
and interactive - otherwise just process them to set envvars
for 1 in /etc/profile.d/*.sh; do
if [-r “$1" 1; then
if [“$PS1”]; then
.81
else
. $1 >/dev/null 2>&1

www.it-ebooks.info

http://www.it-ebooks.info/

fi

fi
done
unset 1
unset pathmunge
fi
vim:ts=4:sw=4
$

The default file sets a few environment variables, but notice that it doesn't use the export command to make them
global. Remember, the interactive shell startup file runs each time a new interactive shell starts; thus, any child shell will

automatically execute the interactive shell startup file.
You'll also notice that the /etc/bashrc file also executes the application-specific startup files located in the

/etc/profile.ddirectory.

Non-Interactive Shell

Finally, the last type of shell is a non-interactive shell. This is the shell that the system starts to execute a shell script. This is
different in that thereisn't a CLI prompt to worry about. However, there may still be specific startup commands you want to

run each time you start a script on your system.

To accommodate that situation, the bash shell provides the BASH_ENV environment variable. When the shell starts a non-
interactive shell process, it checks this environment variable for the name of a startup file to execute. If oneis present, the

shell executes the commands in the file. On our Linux distribution, this environment value is not set by default.

Variable Arrays

Areally cool feature of environment variables is that they can be used as arrays. An array is a variable that can hold multiple
values. Values can be referenced either individually or as a whole for the entire array.

To set multiple values for an environment variable, just list them in parentheses, with each value separated by a space:

$ mytest=(one two three four five)
$

Not much excitement there. If you try to display the array asa normal environment variable, you'll be disappointed:

$ echo $mytest
one
$

Only the first value in the array appears. To reference an individual array element, you must use a numerical index value,
which represents its place in the array. The numericvalue is enclosed in square brackets:

$ echo ${mytest[2]}
three
$

Caution
Environment variable arrays start with an index value of zero. This often gets confusing.

To display an entire array variable, you use the asterisk wildcard character as the index value:

$ echo ${mytest[*]}
one two three four five
$

You can also change the value of an individual index position:

www.it-ebooks.info

http://www.it-ebooks.info/

$ mytest[2]=seven

$ echo ${mytest[*]}

one two seven four five
$

You can even use the unset command to remove an individual value within the array, but be careful, as this gets tricky.
Watch this example:

$ unset mytest[2]

$ echo ${mytest[*]}
one two four five

$

$ echo ${mytest[2]}

$ echo ${mytest[3]}
four
$

This example uses the unset command to remove the value at index value 2. When you display the array, it appears that
the other index values just dropped down one. However, if you specifically display the data at index value 2, you'll see that

that location is empty.

Finally, you can remove the entire array just by using the array name in the unset command:

$ unset mytest
$ echo ${mytest[*]}

$

Sometimes variable arrays just complicate matters, so they're often not used in shell script programming. They're not very
portable to other shell environments, whichis a downside if you do lots of shell programming for different shells. There are a
couple of bash system environment variables that use arrays (such as BASH_VERSINFQ), but overall you probably won't run

into them very often.

Using Command Aliases

While not officially environment variables, shell command aliases behave in much the same manner. A command alias allows
you to create an alias name for common commands (along with their parameters) to help keep your typing to a minimum.

Most likely, your Linux distribution has already set some common command aliases for you. To see a list of the active
aliases, use the alias command with the -p parameter:

$ alias -p

alias 1.='1s -d .* --color=auto’

alias 11='1s -1 --color=auto’

alias 1ls='ls --color=auto’

alias vi=‘'vim’

alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot
--show-tilde’

$

Notice that on this Linux distribution, an alias is used to override the standard 1s command. It automatically provides the
--color parameter, indicating that the terminal supports color mode listings.

You can create your own aliases by using thealias command:
$ alias li=‘ls -il’

$ 11

total 32

www.it-ebooks.info

http://www.it-ebooks.info/

75 drwxr-xr-x.
79 drwxr-xr-x.
76 drwxr-xr-x.
80 drwxr-xr-x.
81 drwxr-xr-x.
78 drwxr-xr-x.
77 drwxr-xr-x.
82 drwxr-xr-x.

$

Onceyou define an alias value, you can useit at any time in your shell,including in shell scripts.

user user 4096 Sep 16 13:11 Desktop
user user 4096 Sep 20 15:40 Documents
user user 4096 Sep 15 13:30 Downloads
user user 4096 Sep 15 13:30 Music
user user 4096 Sep 15 13:30 Pictures
user user 4096 Sep 15 13:30 Public
user user 4096 Sep 15 13:30 Templates
user user 4096 Sep 15 13:30 Videos

N NN DNDNDNMNDNMNDN

Command aliases act like local environment variables. They're only valid for the shell process in which they're defined:
$ alias li=‘ls -il’

$ bash

$ 11

bash: 1i: command not found

$

Of course, nowyou know a way to solve that problem. The bash shell always reads the $HOME/ . bashr c startup file when
starting a newinteractive shell. This is a great place to put command alias statements (as was pointed out in the .bashrc

file comments).

Summary

This chapter examined the world of Linux environment variables. Global environment variables can be accessed from any
child process spawned by the process they're defined in. Local environment variables can only be accessed from the processin

which they're defined.

The Linux system uses both global and local environment variables to store information about the system environment.
You can access thisinformation from the shell command line interface, as well as within shell scripts. The bash shell uses the
system environment variables defined in the original Unix Bourne shell, as well as lots of new environment variables. The
PATH environment variable defines the search pattern the bash shell takes to find an executable command. You can modify
the PATH environment variable to add your own directories, or even the current directory symbol, to make running your
programs easier.

You can also create your own global and local environment variables for your own use. Once you create an environment
variable, it's accessible for the entire duration of your shell session.

There are several startup files that the bash shell executes when it starts up. These startup files can contain environment
variable definitions to set standard environment variables for each bash session. When you log in to the Linux system, the
bash shell accesses the /etc/profile startup file,and also three local startup files for each user, $HOME/ .bash_profile,
$HOME/ .bash_login,and $HOME/.profile.Users can customize these files to include environment variables and
startup scripts for their own use.

The bash shell also provides for environment variable arrays. These environment variables can contain multiple valuesin
asingle variable. You can access the values either individually by referencing an index value or as a whole by referencing the

entire environment variable array name.

Finally, the chapter discussed the use of command aliases. While not environment variables, command aliases behave
much like environment variables. They allow you to define an alias name for a command, along with its parameters. Instead
of having to typein a long command and parameters, you can just assign it to a simple alias and use the alias at any time in

your shell session.

The next chapter dives into the world of Linux file permissions. This is possibly the most difficult topic for novice Linux
users. However, to write good shell scripts, you need to understand how file permissions work and be able to use themin

your Linux system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6
Understanding Linux File Permissions

In This Chapter

* Understanding Linux security
* Decoding the permissions

* Working with Linux groups
No system is complete without some form of security. There must be a mechanism available to protect files from

unauthorized viewing or modification. The Linux system follows the Unix method of file permissions, allowing individual
users and groups access to files based on a set of security settings for each file and directory. This chapter discusses how to

use the Linux file security system to protect data when necessary and share data when desired.

Linux Security

The core of the Linux security system is the user account. Eachindividual who accesses a Linux system should have a unique user
account assigned. The permissions users have to objects on the system depend on the user account they log in with.

User permissions are tracked using a user ID (often called a UID), which is assigned to an account when it's created. The UID
isa numerical value, unique for each user. However, you don't log in to a Linux system using your UID. Instead, you use a
login name. The login name is an alphanumeric text string of eight characters or fewer that the user uses to log in to the

system (along with an associated password).

The Linux system uses special files and utilities to track and manage user accounts on the system. Before we can discuss
file permissions, we need to discuss how Linux handles user accounts. This section describes the files and utilities required for

user accounts so that you can understand how to use them when working with file permissions.

The /etc/passwd File

The Linux system uses a special file to match the login name to a corresponding UID value. This file is the /etc/passwd file.
The /etc/passwd file contains several pieces of information about the user. Here's what a typical /etc/passwd file looks

like on a Linux system:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbhin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:1p:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
news:x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin

www.it-ebooks.info

http://www.it-ebooks.info/

rpm:x:37:37::/var/lib/rpm:/sbin/nologin

vCsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin
mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin
smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin
apache:x:48:48:Apache:/var/www:/sbin/nologin
rpc:x:32:32:Rpcbind Daemon:/var/lib/rpcbind:/sbin/nologin
ntp:x:38:38::/etc/ntp:/sbin/nologin

nscd:x:28:28:NSCD Daemon:/:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin

dbus:x:81:81:System message bus:/:/sbin/nologin
avahi:x:70:70:Avahi daemon:/:/sbin/nologin
hsqldb:x:96:96::/var/lib/hsqldb:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin
nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin
haldaemon:x:68:68:HAL daemon:/:/sbin/nologin

xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin
gdm:x:42:42::/var/gdm:/sbin/nologin

rich:x:500:500:Rich Blum:/home/rich:/bin/bash
mama:x:501:501:Mama: /home/mama: /bin/bash
katie:x:502:502:katie:/home/katie:/bin/bash
jessica:x:503:503:Jessica:/home/jessica:/bin/bash
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

$

The root user account is the administrator for the Linux system and is always assigned UID 0. As you can see, the Linux
system creates lots of user accounts for various functions that aren't actual users. These are called system accounts. A system
account is a special account that services running on the system use to gain access to resources on the system. All services that

run in background mode need to belogged in to the Linux system under a system user account.

Before security became a big issue, these services often just logged in using the root user account. Unfortunately, if an
unauthorized person broke into one of these services, he instantly gained access to the system as the root user. To prevent
this, now just about every service that runsin background on a Linux server has its own user account to log in with. This way, if

atroublemaker does compromise a service, he still can't necessarily get access to the whole system.

Linux reserves UIDs below 500 for system accounts. Some services even require specific UIDs to work properly. When you
create accounts for normal users, most Linux systems assign the first available UID starting at 500 (although this is not

necessarily true for all Linux distributions).
You probably noticed that the /etc/passwd file contains lots more than just the login name and UID for the user. The

fields of the /etc/passwd file contain the following information:
* The login username
* The password for the user
* The numerical UID of the user account
* The numerical group ID (GID) of the user account
* Atext description of the user account (called the comment field)
* The location of the HOME directory for the user

® The default shell for the user

The password field in the /etc/passwd fileis set to an x. This doesn't mean that all of the user accounts have the same
password. In the old days of Linux, the /etc/passwd file contained an encrypted version of the user's password. However,
since lots of programs need to access the /etc/passwd file for user information, this became somewhat of a security
problem. With the advent of software that could easily decrypt encrypted passwords, the bad guys had a field day trying to

break user passwords stored in the /etc/passwd file. Linux developers needed to rethink that policy.

www.it-ebooks.info

http://www.it-ebooks.info/

Now, most Linux systems hold user passwords in a separate file (called the shadow file, located at /etc/shadow). Only
special programs (such as the login program) are allowed access to this file.

Asyou can see, the /etc/passwd fileis a standard text file. You can use any text editor to manually perform user
management functions (such as adding, modifying, or removing user accounts) directly in the /etc/passwd file. However,
this is an extremely dangerous practice. If the /etc/passwd file becomes corrupt, the system won't be able to read it, and it
will prevent anyone (even the root user) from logging in. Instead, it's safer to use the standard Linux user management

utilities to perform all user management functions.

The /etc/shadow File

The /etc/shadow file provides more control over how the Linux system manages passwords. Only the root user has access
to the /etc/shadow file, making it more secure than the /etc/passwd file.

The /etc/shadow file contains one record for each user account on the system. A record looks like this:

rich:1.FfcKOns$f1UgiyHQ25wrB/hykCn020:11627:0:99999:7: ::

There are nine fieldsin each /etc/shadow file record:
* The login name corresponding to the login namein the /etc/passwd file
* The encrypted password
* The number of days since January 1, 1970, that the password was last changed
* The minimum number of days before the password can be changed
* The number of days before the password must be changed
* The number of days before password expiration that the user is warned to change the password
* The number of days after a password expires before the account will be disabled
® The date (stored as the number of days since January 1, 1970) since the user account was disabled

* Afield reserved for future use
Using the shadow password system, the Linux system has much finer control over user passwords. It can control how
often a user must change his or her password, and when to disable the account if the password hasn't been changed.

Adding a New User

The primary tool used to add new users to your Linux systemis useradd. This command provides an easy way to createa
new user account and set up the user's HOME directory structure all at once. The useradd command uses a combination of
system default values and command line parameters to define a user account. To see the system default values used on your

Linux distribution, enter the useradd command with the -D parameter:
/usr/sbin/useradd -D
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes
#

Note

Some Linux distributions place the Linux user and group utilities in the
/usr/sbin directory, which may not be in your PATH environment variable. If
that's the case in your Linux distribution, either add the directory to your PATH or
use the absolute filepath to run it.

The -D parameter shows what defaults the useradd command uses if you don't specify them in the command line when

www.it-ebooks.info

http://www.it-ebooks.info/

creating a new user account. This example shows the following default values:
* The new user will be added to a common group with group ID 100.
* The new user will have a HOME account created in the directory /home/ Ioginname.
* The account will not be disabled when the password expires.
* The new account will not be set to expire at a set date.
* The new account will use the bash shell as the default shell.
* The system will copy the contents of the /etc/skel directory to the user's HOME directory.

* The system will create a file in the mail directory for the user account to receive mail.

The penultimate valueis interesting. The useradd command allows an administrator to create a default HOME directory
configuration and then uses that as a template to create the new user's HOME directory. This allows you to place default files
for the system in every new user's HOME directory automatically. In the Ubuntu Linux system, the /etc/skel directory has

the following files:

$ 1s -al /etc/skel

total 32

drwxr-xr-x 2 root root 4096 2010-04-29 08:26 .
drwxr-xr-x 135 root root 12288 2010-09-23 18:49 ..

-rw-r--r-- 1 root root 220 2010-04-18 21:51 .bash_logout
-rw-r--r-- 1 root root 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 root root 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 root root 675 2010-04-18 21:51 .profile

$

You should recognize these files from Chapter 5. These are the standard startup files for the bash shell environment. The
system automatically copies these default filesinto every user's HOME directory you create.
You can test this by creating a new user account using the default system parameters and then looking at the HOME

directory for the new user:

useradd -m test

1ls -al /home/test

total 24

drwxr-xr-x 2 test test 4096 2010-09-23 19:01

drwxr-xr-x 4 root root 4096 2010-09-23 19:01 ..

-rw-r--r-- 1 test test 220 2010-04-18 21:51 .bash_logout
-rw-r--r-- 1 test test 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 test test 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 test test 675 2010-04-18 21:51 .profile

#

By default, the useradd command doesn't create a HOME directory, but the -m command line option tellsit to create the
HOME directory. As you can see in the example, the useradd command created the new HOME directory, using the files

contained in the /etc/skel directory.

Note

To run the user account administration commands in this chapter, you either need
to be logged in as the special root user account or use the sudo command to run
the commands as the root user account.

If you want to override a default value or behavior when creating a new user, you can do that with command line
parameters. These are shown in Table 6.1.

Table 6.1 The useradd Command Line Parameters

www.it-ebooks.info

#c06_tbl_0001
#c06_tbl_anc_0001
http://www.it-ebooks.info/

Parameter Description

-c comment Add text to the new user's comment field.
-d home_dir Specify a different name for the home directory other than the login
name.

-e expire _date Specify a date, in YYYY-MM-DD format, when the account will expire.

-f Inactive days |Specify the number of days after a password expires when the account
will be disabled. A value of 0 disables the account as soon as the password
expires; a value of -1 disables this feature.

-g Initial group |Specify the group name or GID of the user's login group.

-G group . . . Specify one or more supplementary groups the user belongs to.

-k Copy the /etc/skel directory contentsinto the user's HOME directory
(must use -m as well).

-m Create the user's HOME directory.

-M Don't create a user's HOME directory (used if the default setting is to
create one).

-n Create a new group using the same name as the user's login name.

-r Create a system account

-p passwd Specify a default password for the user account.

-s shell Specify the default login shell.

-u uid Specify a unique UID for the account.

Asyou can see,you can override all of the system default values when creating a new user account just by using
command line parameters. However, if you find yourself having to override a value all the time, it's easier to just change the

system default value.
You can change the system default new user values by using the -D parameter, along with a parameter representing the

valueyou need to change. These parameters are shown in Table 6.2.

Table 6.2 The useradd Change Default Values Parameters

Parameter Description

-b default_home Change the location where users' HOME directories are created.

-e expiration_date |Change the expiration date on new accounts.

-f Inactive Change the number of days after a password has expired before the
account is disabled.

-g group Change the default group name or GID used.

-s shell Change the default login shell.

Changing the default valuesis a snap:

www.it-ebooks.info

#c06_tbl_0002
#c06_tbl_anc_0002
http://www.it-ebooks.info/

useradd -D -s /bin/tsch
useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/tsch
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes

#

Now, the useradd command will use the tsch shell as the default login shell for all new user accounts you create.

Removing a User

If you want to remove a user from the system, the userdel command is what you need. By default, the userdel command
removes only the user information from the /etc/passwd file. It doesn't remove any files the account owns on the system.

If you use the -r parameter, userdel will remove the user's HOME directory, along with the user's mail directory.
However, there may still be other files owned by the deleted user account on the system. This can be a problemin some
environments.

Here's an example of using the userdel command to remove an existing user account:
/usr/sbin/userdel -r test
1s -al /home/test

1s: cannot access /home/test: No such file or directory
#

After using the -r parameter, the user'sold /home/test directory no longer exists.

Caution

Be careful when using the -r parameter in an environment with lots of users. You never
know if a user had important files stored in his or her HOME directory that are used by
someone else or another program. Always check before removing a user's HOME directory!

Modifying a User

Linux provides a few different utilities for modifying the information for existing user accounts. Table 6.3 shows these
utilities.

Table 6.3 User Account Modification Utilities

Command | Description

usermod | Edits user account fields, as well as specifying primary and secondary group
membership

passwd Changes the password for an existing user

chpasswd |Reads a file of login name and password pairs, and updates the passwords

chage Changes the password's expiration date

chfn Changes the user account's comment information

www.it-ebooks.info

#c06_tbl_0003
#c06_tbl_anc_0003
http://www.it-ebooks.info/

‘chsh ‘ChangestheuseraccounEsdeFauksheu

Each of these utilities provides a specific function for changing information about user accounts. The following sections
describe each of these utilities.

usermod

The usermod command is the most robust of the user account modification utilities. It provides options for changing most
of the fieldsin the /etc/passwd file. To do that, you just need to use the command line parameter that corresponds to the
value you want to change. The parameters are mostly the same as the useradd parameters (such as - c to change the
comment field, - e to change the expiration date, and - g to change the default login group). However, there are a couple of

additional parameters that might come in handy:
* -1to changethelogin name of the user account
* -L to lock the account so the user can't log in
* -pto change the password for the account

® -Uto unlock the account so that the user can log in
The -L parameter is especially handy. Use this to lock an account so that a user can't log in without having to remove the

account and the user's data. To return the account to normal, just use the -U parameter.

passwd and chpasswd
A quick way to change just the password for a user is the passwd command:

passwd test

Changing password for user test.

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.
#

If you just use the passwd command by itself, it will change your own password. Any user in the system can change his or
her own password, but only the root user can change someone else's password.

The -e option is a handy way to force a user to change the password on the next log in. This allows you to set the user's
password to a simple value and then force them to change it to something harder that they can remember.

If you ever need to do a mass password change for lots of users on the system, the chpasswd command can be a
lifesaver. The chpasswd command reads a list of login name and password pairs (separated by a colon) from the standard
input automatically encrypts the password, and setsit for the user account. You can also use the redirection command to

redirect a file of userid:passwordpairsinto the command:
chpasswd < users.txt
#

chsh, chfn, and chage

The chsh, chfn,and chage utilities are specialized for specificaccount modification functions. The chsh command allows
you to quickly change the default login shell for a user. You must use the full pathname for the shell, and not just the shell

name:
chsh -s /bin/csh test
Changing shell for test.
Shell changed.
#

The chfn command provides a standard method for storing information in the comments field in the /etc/passwd file.
Instead of just inserting random text, such as names or nicknames, or even just leaving the comment field blank, the chfn

www.it-ebooks.info

http://www.it-ebooks.info/

command uses specificinformation used in the Unix finger command to store information in the comment field. The
finger command allows you to easily find information about people on your Linux system:

finger rich

Login: rich Name: Rich Blum
Directory: /home/rich Shell: /bin/bash
On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2
No mail.

No Plan.

#

Note

Because of security concerns, many Linux system administrators disable the
finger command on their systems.

If you use the chfn command with no parameters, it queries you for the appropriate values to enter in to the comment
field:

chfn test

Changing finger information for test.
Name []: Ima Test

Office []: Director of Technology
Office Phone []: (123)555-1234

Home Phone []: (123)555-9876

Finger information changed.
finger test

Login: test Name: Ima Test
Directory: /home/test Shell: /bin/csh
Office: Director of Technology Office Phone: (123)555-1234

Home Phone: (123)555-9876
Never logged in.

No mail.

No Plan.

#

If you now look at the entry in the /etc/passwd file, it looks like this:

grep test /etc/passwd

test:x:504:504:Ima Test,Director of Technology, (123)555-
1234,(123)555-9876: /home/test:/bin/csh

#

All of the finger information is neatly stored away in the /etc/passwd file entry.
Finally, the chage command helps you manage the password aging process for user accounts. There are several
parameters to set individual values, shown in Table 6.4.

Table 6.4 The chage Command Parameters

Parameter |Description

-d Set the number of days since the password was last changed.

www.it-ebooks.info

#c06_tbl_0004
#c06_tbl_anc_0004
http://www.it-ebooks.info/

-E Set the date the password will expire.

-1 Set the number of days of inactivity after the password expires to lock the
account.

-m Set the minimum number of days between password changes.

-W Set the number of days before the password expires that a warning message
appears.

The chage datevalues can be expressed using one of two methods:
*Adatein YYYY-MM-DD format

* Anumerical value representing the number of days since January 1, 1970

One neat feature of the chage command is that it allows you to set an expiration date for an account. Using this feature,
you can create temporary user accounts that automatically expire on a set date, without your having to remember to delete

them! Expired accounts are similar to locked accounts. The account still exists, but the user can't log in withiit.

Using Linux Groups

User accounts are great for controlling security for individual users, but they aren't so good at allowing groups of users to
share resources. To accomplish this, the Linux system uses another security concept, called groups.

Group permissions allow multiple users to share a common set of permissions for an object on the system, such as a file,
directory, or device (more on that later in the “Decoding File Permissions” section).

Linux distributions differ somewhat on how they handle default group memberships. Some Linux distributions create just
onegroup that containsall of the user accounts as members. You need to be careful if your Linux distribution does this, as
your files may be readable by all other users on the system. Other distributions create a separate user account for each user

to provide a little more security.

Eachgroup hasa unique GID, which, like UIDs, is a unique numerical value on the system. Along with the GID, each group
has a unique group name. There are a few group utilities you can use to create and manage your own groups on the Linux
system. This section discusses how group information is stored and how to use the group utilities to create new groups and

modify existing groups.

The /etc/group File

Just like user accounts, group information is stored in a file on the system. The /etc/group file contains information about
eachgroup used on the system. Here are a few examples from a typical /etc/group file on a Linux system:

root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon
sys:x:3:root,bin,adm
adm:x:4:root,adm,daemon
rich:x:500:

mama:x:501:
katie:x:502:
jessica:x:503:
mysqgl:x:27:

test:x:504:

Like UIDs, GIDs are assigned using a special format. Groups used for system accounts are assigned GIDs below 500, and
user groups are assigned GIDs starting at 500. The /etc/group file uses four fields:

* The group name
* The group password
*The GID

www.it-ebooks.info

http://www.it-ebooks.info/

* The list of user accounts that belong to the group

The group password allows a non-group member to temporarily become a member of the group by using the password.
This featureis not used all that commonly, but it does exist.

You should never add users to groups by editing the /etc/group file. Instead, use the usermod command (discussed
earlier in the “Linux Security” section) to add a user account to a group. Before you can add users to different groups, you
must create the groups.

Note

The list of user accounts is somewhat misleading. You'll notice that there are
several groups in the list that don't have any users listed. This isn't because they
don't have any members. When a user account uses a group as the default group in
the /etc/passwd file, the user account doesn't appear in the /etc/group file
as a member. This has caused confusion for more than one system administrator
over the years!

Creating New Groups
The groupadd command allows you to create new groups on your system:

/usr/sbin/groupadd shared

tail /etc/group

haldaemon:x:68:

xfs:x:43:

gdm:x:42:

rich:x:500:

mama:x:501:

katie:x:502:

jessica:x:503:

mysql:x:27:

test:x:504:

shared:x:505:

#

When you create anew group, there are no users assigned to it by default. The groupadd command doesn't provide an
option for adding user accounts to the group. Instead, to add new users, use the usermod command:

/usr/sbin/usermod -G shared rich

/usr/sbin/usermod -G shared test

tail /etc/group

haldaemon:x:68:

xfs:x:43:

gdm:x:42:

rich:x:500:

mama:Xx:501:

katie:x:502:

jessica:x:503:

mysql:x:27:

test:x:504:

shared:x:505:rich, test

#

www.it-ebooks.info

http://www.it-ebooks.info/

The shared group now has two members, test and rich. The -G parameter in usermod appends the new group to the list
of groups for the user account.

Note

If you change the user groups for an account that is currently logged into the
system, the user will have to log out then back in for the group changes to take
effect.

Caution

Be careful when assigning groups for user accounts. If you use the - g parameter, the
group name you specify replaces the default group for the user account. The -G
parameter adds the group to the list of groups the user belongs to, keeping the default
group intact.

Modifying Groups

Asyou can see from the /etc/group file, thereisn't too muchinformation about a group for you to modify. The groupmod
command allows you to change the GID (using the - g parameter) or the group name (using the -n parameter) of an existing

group:
/usr/sbin/groupmod -n sharing shared
tail /etc/group
haldaemon:x:68:
xfs:x:43:
gdm:x:42:
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysqgl:x:27:
test:x:504:
sharing:x:505:test,rich
#

When changing the name of a group, the GID and group members remain the same, only the group name changes.
Because all security permissions are based on the GID, you can change the name of a group as often as you wish without

adversely affecting file security.

Decoding File Permissions

Now that you know about users and groups, it's time to decode the cryptic file permissions you've seen when using the 1 s
command. This section describes how to decipher the permissions and where they come from.

Using File Permission Symbols

If you remember from Chapter 3, the 1s command allows you to see the file permissions for files, directories, and devices on
the Linux system:

$ 1s -1

total 68

-rw-rw-r-- 1 rich rich 50 2010-09-13 07:49 filel.gz
-rw-rw-r-- 1 rich rich 23 2010-09-13 07:50 file2
-rw-rw-r-- 1 rich rich 48 2010-09-13 07:56 file3

www.it-ebooks.info

http://www.it-ebooks.info/

-rw-rw-r-- 1 rich rich 34 2010-09-13 08:59 file4
-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
-rw-rw-r-- 1 rich rich 237 2010-09-18 13:58 myprog.c
drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test1
drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 test2

$

The first field in the output listing is a code that describes the permissions for the files and directories. The first character in
the field defines the type of the object:
* - forfiles

d for directories

* 1forlinks

c for character devices

b for block devices
* nfor network devices
After that, there are three sets of three characters. Each set of three characters defines an access permission triplet:

r for read permission for the object

w for write permission for the object
* x for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets relate the three levels of security for the object:
* The owner of the object

* The group that owns the object

* Everyone else on the system

This is broken down in Figure 6.1.

Figure 6.1 The Linux file permissions

-rwx‘rwxlr-xl 1richrich 4882 2010-09-18 13:58 myprog

permissions for everyone else

permissions for group members

permissions for the file owner

The easiest way to discuss this is to take an example and decode the file permissions one by one:

-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog

The filemyprog has the following sets of permissions:

rwx for the file owner (set to the login name rich)

rwx for the file group owner (set to the group name rich)

r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write, and execute the file (considered full permissions).
Likewise, members in the group rich can also read, write, and execute the file. However, anyone else not in the richgroup can
only read and execute the file; the wis replaced with a dash, indicating that write permissions are not assigned to this security

level.

www.it-ebooks.info

#c06_fig_0001
#c06_fig_anc_0001
http://www.it-ebooks.info/

Default File Permissions

You may be wondering about where these file permissions come from. The answer is umask. The umask command sets the
default permissions for any file or directory you create:

$ touch newfile

$ 1s -al newfile

-rW-r--r-- 1 rich rich 0 Sep 20 19:16 newfile
$

The touch command created the file using the default permissions assigned to my user account. The umask command
shows and sets the default permissions:

$ umask
0022
$

Unfortunately, the umask command setting isn't overtly clear, and trying to understand exactly how it works makes
things even muddier. The first digit represents a special security feature called the sticky bit. We'll talk moreabout that

later on in this chapter in the “Sharing Files” section.
The next three digits represent the octal values of the umask for a file or directory. To understand how umask works, you
first need to understand octal mode security settings.

Octal mode security settings take the three rwx permission values and convert them into a 3-bit binary value,
represented by asingle octal value. In the binary representation, each position is a binary bit. Thus, if the read permission is
the only permission set, the value becomes r - -, relating to a binary value of 100, indicating the octal value of 4. Table 6.5

shows the possible combinationsyou'll run into.

Table 6.5 Linux File Permission Codes

Permissions Binary Octal Descriptio

000

No permis¢

S 001 1 Execute-or
i 010 2 Write-only
- WX 011 3 Write and ¢
r 100 4 Read-only
e 101 5 Read and e
W - 110 6 Read and v
MWX 111 7 Read, write

Octal mode takes the octal permissions and lists three of them in order for the three security levels (user, group, and
everyone). Thus, the octal mode value 664 represents read and write permissions for the user and group, but read-only

permission for everyone else.

Now that you know about octal mode permissions, the umask value becomes even more confusing. The octal mode

www.it-ebooks.info

#c06_tbl_0005
#c06_tbl_anc_0005
http://www.it-ebooks.info/

shown for the default umask on my Linux system is 0022, but the file | created had an octal mode permission of 644. How did
that happen?

The umask value is just that, a mask. It masks out the permissions you don't want to give to the security level. Now we have
to diveinto some octal arithmetic to figure out the rest of the story.

The umask valueis subtracted from the full permission set for an object. The full permission for a file is mode 666
(read/write permission for all), but for a directory it's 777 (read/write/execute permission for all).

Thus, in the example, the file starts out with permissions 666, and the umask of 022 is applied, leaving a file permission of
644,

The umask valueis normally set in the /etc/profile startup file (see Chapter 5). You can specify a different default
umask setting using the umask command:

$ umask 026
$ touch newfile2

$ 1s -1 newfile2
-rW-r----- 1 rich rich 0 Sep 20 19:46 newfile2

By setting the umask value to 026, the default file permissions become 640, so the new file now s restricted to read-only
for the group members, and everyone else on the system has no permissions to the file.

The umask value also applies to making new directories:

$ mkdir newdir

$ 1s -1
drwxr-x--x 2 rich rich 4096 Sep 20 20:11 newdir/
$

Because the default permissions for a directory are 777, the resulting permissions from the umask are different from
those of a new file. The 026 umask value is subtracted from 777, leaving the 751 directory permission setting.

Changing Security Settings

If you've already created a file or directory and need to change the security settings on it, there are a few different utilities
available in Linux. This section shows you how to change the existing permissions, the default owner, and the default group

settings for a file or directory.

Changing Permissions
The chmod command allows you to change the security settings for files and directories. The format of the chmod command

is:

chmod options mode file
The mode parameter allows you to set the security settings using either octal or symbolic mode. The octal mode settings
are pretty straightforward; just use the standard three-digit octal code you want the file to have:

$ chmod 760 newfile
$ 1s -1 newfile

-rWXrw--- - 1 rich rich 0 Sep 20 19:16 newfile
$
The octal file permissions are automatically applied to the file indicated. The symbolic mode permissions are not so easy to
implement.

Instead of using the normal string of three sets of three characters, the chmod command takes a different approach. The
following is the format for specifying a permission in symbolic mode:
[ugoa..][[+-=][rwxXstugo..]
Makes perfectly good sense, doesn't it? The first group of characters defines to whom the new permissions apply:

u for the user

¢ gforthegroup

www.it-ebooks.info

http://www.it-ebooks.info/

o for others (everyone else)

a forall of the above
Next, a symbol is used to indicate whether you want to add the permission to the existing permissions (+), subtract the
permission from the existing permission (=), or set the permissions to the value (=).
Finally, the third symbol is the permission used for the setting. You may notice that there are more than the normal rwx
values here. The additional settings are:
* Xto assign execute permissions only if the object is a directory or if it already had execute permissions

s to set the UID or GID on execution

t to save program text

u to set the permissions to the owner's permissions

g to set the permissions to the group's permissions
L]

0 to set the permissions to the other's permissions

Using these permissions looks like this:

$ chmod o+r newfile

$ 1s -1 newfile

-rWXrw-r-- 1 rich rich 0 Sep 20 19:16 newfile
$

The o+r entry adds the read permission to whatever permissions the everyone security level already had.

$ chmod u-x newfile

$ 1s -1 newfile

-rW-rw-r-- 1 rich rich 0 Sep 20 19:16 newfile
$

The u-x entry removes the execute permission that the user already had. Note that the settings for the 1s command
indicate if a file has execution permissions by adding an asterisk to the file name.

The options parameters provide a few additional features to augment the behavior of the chmod command. The -R
parameter performs the file and directory changes recursively. You can use wildcard characters for the file name specified,

changing the permissions on multiple files with just one command.

Changing Ownership

Sometimes you need to change the owner of a file, such as when someone leaves an organization or a developer creates an
application that needs to be owned by a system account when it'sin production. Linux provides two commands for doing
that. The chown command makes it easy to change the owner of afile, and the chgrp command allows you to change the

default group of afile.

The format of the chown command is:

chown options owner[.group] file

You can specify either the login name or the numeric UID for the new owner of the file:

chown dan newfile

1s -1 newfile

-rW-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile
#

Simple. The chown command also allows you to change both the user and group of afile:

chown dan.shared newfile

1s -1 newfile

-rW-rw-r-- 1 dan shared 0 Sep 20 19:16 newfile
#

www.it-ebooks.info

http://www.it-ebooks.info/

If you really want to get tricky, you can just change the default group for afile:

chown .rich newfile

1s -1 newfile

-rW-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile
#

Finally, if your Linux system uses individual group names that match user login names, you can change both withjust one
entry:

chown test. newfile

1s -1 newfile

-rW-rw-r-- 1 test test 0 Sep 20 19:16 newfile
#

The chown command uses a few different option parameters. The -R parameter allows you to make changes recursively
through subdirectories and files, using a wildcard character. The -h parameter also changes the ownership of any files that are

symbolically linked to thefile.
Note

Only the root user can change the owner of a file. Any user can change the default
group of afile, but the user must be a member of the groups the file is changed
from and to.

The chgrp command provides an easy way to change just the default group for a file or directory:

$ chgrp shared newfile

$ 1s -1 newfile

-rW-rw-r-- 1 rich shared 0 Sep 20 19:16 newfile
$

Now any member in the shared group can write to the file. This is one way to share files on a Linux system. However,
sharing filesamong a group of people on the system can get tricky. The next section discusses how to do this.

Sharing Files

Asyou've probably already figured out, creating groups is the way to share access to files on the Linux system. However, for a
complete file-sharing environment, things are more complicated.

Asyou've already seen in the “Decoding File Permissions” section, when you create a new file, Linux assigns the file
permissions of the new file using your default UID and GID. To allow others access to the file, you need to either change the

security permissions for the everyone security group or assign the file a different default group that contains other users.
This can be a pain in a large environment if you want to create and share documents among several people. Fortunately,
there's a simple solution for how to solve this problem.

There are three additional bits of information that Linux stores for each file and directory:

*The setuserid (SUID): When a file is executed by a user, the program runs under the permissions of the file owner.
*The setgroup id (SGID): For a file, the program runs under the permissions of the file group. For a directory, new
files created in the directory use the directory group as the default group.
* The sticky bit: The file remains (sticks) in memory after the process ends.
The SGID bit isimportant for sharing files. By enabling the SGID bit, you can force all new files created in a shared
directory to be owned by the directory's group and now the individual user's group.
The SGID is set using the chmod command. It's added to the beginning of the standard three-digit octal value (making a
four-digit octal value), or you can use the symbol s in symbolic mode.

If you're using octal mode, you'll need to know the arrangement of the bits, shown in Table 6.6.

Table 6.6 The chmod SUID, SGID, and Sticky Bit Octal Values

Octal

Binary Description

www.it-ebooks.info

#c06_tbl_0006
#c06_tbl_anc_0006
http://www.it-ebooks.info/

000 0 All bits are cleared.

001 1 The sticky bit is set.

010 2 The SGID bit is set.

011 3 The SGID and sticky bits are set.

100 4 The SUID bit is set.

101 5 The SUID and sticky bits are set.

110 6 The SUID and SGID bits are set.

111 7 All bits are set.

So, to create a shared directory that always sets the directory group for all newfiles, all you need to do is set the SGID bit
for the directory:

$ mkdir testdir

$ 1Is -1

drwxrwxr-x 2 rich rich 4096 Sep 20 23:12 testdir/

$ chgrp shared testdir

$ chmod g+s testdir

$ 1Is -1
drwxrwsr-x 2 rich shared 4096 Sep 20 23:12 testdir/
$ umask 002

$ cd testdir

$ touch testfile

$ 1s -1

total 0

-rW-rw-r-- 1 rich shared 0 Sep 20 23:13 testfile
$

The first step is to create a directory that you want to share using the mkdir command. Next, the chgrp command is used
to change the default group for the directory to a group that contains the members who need to share files. Finally, the SGID

bit is set for the directory to ensure that any files created in the directory use the shared group name as the default group.

For this environment to work properly, all of the group members need to have their umask values set to make files
writable by group members. In the preceding example, the umask is changed to 002 so that the files are writable by the

group.

After all that's done, any member of the group can go to the shared directory and create a new file. As expected, the new
file uses the default group of the directory, not the user account's default group. Now any user in the shared group can

access this file.

Summary

This chapter discussed the command line commands you need to know to manage the Linux security on your system. Linux
uses a system of user IDs and group IDs to protect access to files, directories, and devices. Linux stores information about
user accountsin the /etc/passwd file and information about groupsin the /etc/group file. Each user is assigned a
unique numeric user ID, along with a text login name to identify the user in the system. Groups are also assigned unique
numerical group IDs, and text group names. Agroup can contain one or more users to allowed shared access to system

resources.

There are several commands available for managing user accountsand groups. The useradd command allows you to
create new user accounts, and the groupadd command allows you to create new group accounts. To modify an existing user

account, use the usermod command. Similarly, the groupmod command is used to modify group account information.
Linux uses a complicated system of bits to determine access permissions for files and directories. Each file contains three

www.it-ebooks.info

http://www.it-ebooks.info/

security levels of protection: the file's owner, a default group that has access to the file,and a level for everyone else on the
system. Each security level is defined by three access bits: read, write, and execute. The combination of three bits is often
referred to by the symbols rwx, for read, write, and execute. If a permission is denied, its symbol is replaced with a dash (such

asr - - for read-only permission).

The symbolic permissions are often referred to as octal values, with the three bits combined into one octal value and
three octal values representing the three security levels. The umask command is used to set the default security settings for
files and directories created on the system. The system administrator normally sets a default umask value in the

/etc/profile file, butyou can use the umask command to change your umask value at any time.

The chmod command is used to change security settings for files and directories. Only the file's owner can change
permissions for a file or directory. However, the root user can change the security settings for any file or directory on the

system. The chown and chgrp commands can be used to change the default owner and group of thefile.

Finally, the chapter closed out with a discussion on how to use the set GID bit to create a shared directory. The SGID bit
forces any new files or directories created in a directory to use the default group name of the parent directory, not that of

the user who created them. This provides an easy way to share files between users on the system.

Now that you're up to speed with file permissions, it's time to take a closer look at how to work with the actual filesystem
in Linux. The next chapter shows you how to create new partitions in Linux from the command line and then how to format

the new partitions so that they can be used in the Linux virtual directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7
Managing Filesystems

In This Chapter

* What is a filesystem?
® Linux filesystems

* Filesystem commands

When you're working with your Linux system, one of the decisions you'll need to make is what filesystems to use for the
storage devices. Most Linux distributions kindly provide a default filesystem for you at installation time, and most beginning

Linux users just use that by default without giving the topicanother thought.

While using the default filesystem choice isn't necessarily a bad thing, sometimes it helps to know the other options
available to you. This chapter discusses the different filesystem options you have availablein the Linux world and shows you

how to create and manage them from the Linux command line.

Exploring Linux Filesystems

Chapter 3 discussed how Linux uses a filesystemto store files and folders on a storage device. The filesystem provides a way
for Linux to bridge the gap between the onesand zeroes stored in the hard drive and the files and folders you work within

your applications.

Linux supports several types of filesystems to manage files and folders. Each filesystem implements the virtual directory
structure on storage devices using slightly different features. This section walks you through the strengths and weaknesses

of the more common filesystems used in the Linux environment.

The Basic Linux Filesystems

The original Linux system used a simple filesystem that mimicked the functionality of the Unix filesystem. This section
discusses the evolution of that filesystem.

The ext Filesystem

The original filesystem introduced with the Linux operating system is called the extended filesystem (or just ext for short). It
provides a basic Unix-like filesystem for Linux, using virtual directories to handle physical devices, and storing data in fixed-

length blocks on the physical devices.

The ext filesystem uses a system called inodes to track information about the files stored in the virtual directory. The inode
system creates a separate table on each physical device, called the inode table, to store the file information. Each stored file in
the virtual directory has an entry in the inode table. The extendedpart of the name comes from the additional data that it

tracks on each file, which consists of:
* The file name
* The file size
* The owner of the file
* The group the file belongs to
* Access permissions for the file

* Pointers to each disk block that contains data from the file

Linux references eachinode in the inode table using a unique number (called the inode number), assigned by the
filesystem as data files are created. The filesystem uses theinode number to identify the file rather than having to use the full

file name and path.

The ext2 Filesystem

The original ext filesystem had quite a few limitations, such as limiting files to only 2GB in size. Not too long after Linux was

www.it-ebooks.info

http://www.it-ebooks.info/

first introduced, the ext filesystem was upgraded to create the second extended filesystem, called ext2.
Asyou can guess, the ext2 filesystem is an expansion of the basic abilities of the ext filesystem, but maintains the same
structure. The ext2 filesystem expands the inode table format to track additional information about each file on the system.

The ext2 inode table adds the created, modified, and last accessed time values for files to help system administrators track
file access on the system. The ext2 filesystem also increases the maximum file size allowed to 2TB (then in later versions of

ext2, that was increased to 32TB) to help accommodate large files commonly found in database servers.

In addition to expanding theinode table, the ext2 filesystem also changed the way in which files are stored in the data
blocks. Acommon problem with the ext filesystem was that as a file is written to the physical device, the blocks used to store
the data tend to be scattered throughout the device (called fragmentation). Fragmentation of data blocks can reduce the

performance of the filesystem, as it takes longer to search the storage device to access all of the blocks for a specificfile.
The ext2 filesystem helps reduce fragmentation by allocating disk blocks in groups when you save a file. By grouping the
data blocks for a file, the filesystem doesn't have to search all over the physical device for the data blocks to read the file.

The ext2 filesystem was the default filesystem used in Linux distributions for many years, but it, too, had its limitations.
The inode table, while a nice feature that allows the filesystem to track additional information about files, can cause
problems that can be fatal to the system. Each time the filesystem stores or updates a file, it has to modify theinode table

with the newinformation. The problem is that this isn't always a fluid action.

If something should happen to the computer system between the file being stored and the inode table being updated,
the two would become out of sync. The ext2 filesystem is notorious for easily becoming corrupted due to system crashes and
power outages. Even if the file data is stored just fine on the physical device, if theinode table entry wasn't completed, the

ext2 filesystem wouldn't even know that the file existed!

It wasn't long before developers were exploring a different avenue of Linux filesystems.

Journaling Filesystems
Journaling filesystems provide a new level of safety to the Linux system. Instead of writing data directly to the storage device
and then updating theinode table, journaling filesystems write file changes into a temporary file (called the journal) first.
After data is successfully written to the storage device and theinode table, the journal entry is deleted.

If the system should crash or suffer a power outage before the data can be written to the storage device, the journaling
filesystem just reads through the journal file and processes any uncommitted data left over.

There are three different methods of journaling commonly used in Linux, each with different levels of protection. These
are shown in Table 7.1.

Table 7.1 Journaling Filesystem Methods

Method Description
Data mode Both inode and file data are journaled. Low risk of losing data, but poor
performance.

Ordered mode | Only inode data written to the journal, but not removed until file data is
successfully written. Good compromise between performance and safety.

Writeback mode | Only inode data written to the journal, no control over when the file data is
written. Higher risk of losing data, but still better than not using journaling.

The data mode journaling method is by far the safest for protecting data, but it is also the slowest. All of the data written
to astorage device must be written twice, once to the journal, then again to the actual storage device. This can cause poor

performance, especially for systems that do a lot of data writing.
Over the years, a few different journaling filesystems have appeared in Linux. The following sections describe the popular
Linux journaling filesystems available.

The Extended Linux Journaling Filesystems

The same group that developed the ext and ext2 filesystems as part of the Linux project also created journaling versions of
the filesystems. These journaling filesystems are compatible with the ext2 filesystem, and it's easy to convert back and forth

between them. There are currently two separate journaling filesystems based on the ext2 filesystem.

www.it-ebooks.info

#c07_tbl_0001
#c07_tbl_anc_0001
http://www.it-ebooks.info/

The ext3 Filesystem

The ext3filesystem was added to the Linux kernel in 2001, and up until recently was the default filesystem used by just about
all Linux distributions. It uses the sameinode table structure as the ext2 filesystem, but adds a journal file to each storage
device to journal the data written to the storage device.

By default, the ext3 filesystem uses the ordered mode method of journaling, only writing the inode information to the
journal file, but not removing it until the data blocks have been successfully written to the storage device. You can change
the journaling method used in the ext3 filesystem to either data or writeback modes with a simple command line option when

creating the filesystem.

While the ext3 filesystem added basicjournaling to the Linux filesystem, there were still a few things it lacked. For
example, the ext3 filesystem doesn't provide any recovery from accidental deletion of files, there's no built-in data
compression available (although there is a patch that can be installed separately that provides this feature), and the ext3
filesystem doesn't support encrypting files. For those reasons developersin the Linux project chose to continue work on

improving the ext3 filesystem.

The ext4 Filesystem

The result of expanding the ext3 filesystem was (as you probably guessed) the ext4filesystem. The ext4 filesystem was
officially supported in the Linux kernel in 2008, and is now the default filesystem used in most popular Linux distributions,

such as Fedora and Ubuntu.

In addition to supporting compression and encryption, the ext4 filesystem also supports a feature called extents.
Extents allocate space on a storage device in blocks, and only store the starting block location in the inode table. This helps

save spacein theinode table by not having to list all of the data blocks used to store data from the file.

The ext4 filesystem also incorporates block preallocation. If you want to reserve space on a storage device for a file that
you know will grow in size, with the ext4 filesystem it's possible to allocate all of the expected blocks for the file, not just the
blocks that physically exist. The ext4 filesystem fills in the reserved data blocks with zeroes, and knows not to allocate them

for any other file.

The Reiser Filesystem

In 2001, Hans Reiser created the first journaling filesystem for Linux, called ReiserFS. The ReiserFsS filesystem only supports
writeback journaling mode, writing only theinode table data to the journal file. Because it writes only the inode table data to

the journal, the ReiserFS filesystem is one of the fastest journaling filesystemsin Linux.

Two interesting featuresincorporated into the ReiserFsS filesystem are that you can resize an existing filesystem while it's
still active, and that it uses a technique called tailpacking, which stuffs data from one file into empty space in a data block from
another file. The active filesystem resizing feature is great if you have to expand an already created filesystem to

accommodate more data.

Warning

Because Hans Reiser's legal issues, the status of the ReiserFS filesystem is in question.
While the ReiserFS project is an open source project, Hans was the lead developer for the
project and is now in jail. No recent development has been done on the ReiserFS
filesystem, and it's not clear if anyone else will pick up development work for the project.
Given that other alternatives for journaling filesystems are now available, most new Linux
installations don't use the ReiserFsS filesystem. However, you may still run into an existing
Linux system that uses it.

The Journaled Filesystem

Possibly one of the oldest journaling filesystems around, the Journaled File System (JFS) was developed by IBMin 1990 for its
AlX flavor of Unix. However, it wasn't until its second version that it was ported to the Linux environment.

Note

The official IBM name of the second version of the JFS filesystem is JFS2, but most
Linux systems refer to it as just JFS.

The JFS filesystem uses the ordered journaling method, storing only theinode table data in the journal, but not
removing it until the actual file data is written to the storage device. This method is a compromise between the speed of the

www.it-ebooks.info

http://www.it-ebooks.info/

ReiserFS and the integrity of the data mode journaling method.
The JFS filesystem uses extent-based file allocation, allocating a group of blocks for each file written to the storage
device. This method provides for less fragmentation on the storage device.

Outside of the IBM Linux offerings, the JFS filesystem isn't popularly used, but you may run into it in your Linux journey.

The XFS Filesystem

The XFSjournaling filesystem is yet another filesystem originally created for a commercial Unix system that made its way into
the Linux world. Silicon Graphics Incorporated (SGI) originally created XFS in 1994 for its commercial IRIX Unix system. It was

released to the Linux environment for common use in 2002.

The XFS filesystem uses the writeback mode of journaling, which provides high performance but does introduce an
amount of risk because the actual dataisn't stored in the journal file. The XFS filesystem also allows online resizing of the

filesystem, similar to the ReiserFsS filesystem, except XFS filesystems can only be expanded and not shrunk.

Working with Filesystems

Linux provides a few different utilities that make it easier to work with filesystems from the command line. You can add new
filesystems or change existing filesystems from the comfort of your own keyboard. This section walks you through the

commands for interacting with filesystems from a command line environment.

Creating Partitions

To start out, you'll need to create a partitionon the storage device to contain the filesystem. The partition can be an entire
disk, or it can be a subset of a disk, that contains a portion of the virtual directory.

The fdisk utility is used to help you organize partitions on any storage device installed on the system. The fdisk
command is an interactive program that allows you to enter commands to walk through the steps of partitioning a hard

drive.

To start the fdisk command, you'll need to specify the device name of the storage device you want to partition:

$ sudo fdisk /dev/sdc

[sudo] password for rich:

Device contains neither a valid DOS partition table, nor Sun, SGI or
OSF disklabel

Building a new DOS disklabel with disk identifier Ox4beedc66.
Changes will remain in memory only, until you decide to write them.
After that, of course, the previous content won't be recoverable.

Warning: invalid flag 0x0000 of partition table 4 will be corrected
by w(rite)

WARNING: DOS-compatible mode is deprecated. It's strongly recommended
To switch off the mode (command ‘c’) and change display
units to sectors (command ‘u’).

Command (m for help):
If this is the First time you're partitioning the storage device, fdisk will give you a warning that there isn't a partition table
on the device.
The fdisk interactive command prompt usessingle letter commands to instruct fdisk what to do. Table 7.2 shows the
commands available at the fdisk command prompt.

Table 7.2 The fdisk Commands

‘Conunand ‘Descﬁpﬁon

www.it-ebooks.info

#c07_tbl_0002
#c07_tbl_anc_0002
http://www.it-ebooks.info/

a Toggles a flag indicating if the partition is bootable
b Edits the disklabel used by BSD Unix systems
C Toggles the DOS compatibility flag

d Deletes the partition

1 Lists the available partition types

m Displays the command options

n Adds a new partition

0 Creates a DOS partition table

P Displays the current partition table

q Quits without saving changes

S Creates a new disklabel for Sun Unix systems
t Changes the partition system ID

u Changes the storage units used

Y Verifies the partition table

w Writes the partition table to the disk

X Advanced functions

While this list may look intimidating, there are usually just a few basic commands that you'll normally use in day-to-day
work.

For starters, you can display the details of a storage device using the p command:

Command (m for help): p

Disk /dev/sdc: 5368 MB, 5368946688 bytes

255 heads, 63 sectors/track, 652 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: Ox4beedc66

Device Boot Start End Blocks Id System

Command (m for help):

The output shows that the storage device has 5368MB of space on it (5GB). The listing under the storage device details
shows if there are any existing partitions on the device. The listing in this example doesn't show any partitions, so the device is

not partitioned yet.

Next, you'll want to create a new partition on the storage device. Use the n command for that:

Command (m for help): n
Command action

www.it-ebooks.info

http://www.it-ebooks.info/

e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-652, default 1): 1
Last cylinder, +cylinders or +size{K,M,G} (1-652, default 652): +2G

Command (m for help):

Partitions can be created as either a primary partitionor an extended partition. Primary partitions can be formatted with a
filesystem directly, whereas extended partitions can only contain other primary partitions. The reason for extended
partitions is that there can only be four partitions on a single storage device. You can extend that by creating multiple
extended partitions, then creating primary partitions inside the extended partitions. This example creates a primary storage
device, assigns it as partition number 1 on the storage device, and then allocates 2GB of the storage device space to it. You can

see the results using the p command again:

Command (m for help): p

Disk /dev/sdc: 5368 MB, 5368946688 bytes

255 heads, 63 sectors/track, 652 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: Ox4beedc66

Device Boot Start End Blocks Id System
/dev/sdc 1 262 2104483+ 83 Linux

Command (m for help):

Now in the output there's a partition on the storage device (called /dev/sdc1). The Id entry defines how Linux treats
the partition. There are lots of partition types that fdisk allows you to create. Using the 1 command lists the different types
available. The default is type 83, which defines a Linux filesystem. If you want to create a partition for a different filesystem

(such as a Windows NTFS partition), just select a different partition type.
You can repeat the process to allocate the remaining space on the storage device to another Linux partition. After you've
created the partitions you want, use the w command to save the changes to the storage device:
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
$

Now that you have a partition on the storage device, you're ready to format it with a Linux filesystem.

Note

Sometimes the hardest part of creating a new disk partition is trying to find the
physical disk on your Linux system. Linux uses a standard format for assigning
device names to hard drives, but you need to be familiar with the format. For older
IDE drives, Linux uses /dev/hdx, where xis a letter based on the order the drive is
detected (a for the first drive, b for the second, and so on). For both the newer
SATA drives, and SCSI drives, Linux uses /dev/sdx, where xis a letter based on the

www.it-ebooks.info

http://www.it-ebooks.info/

order the drive is detected (again, a for the first drive, b for the second, and so
on). It's always a good idea to double-check to make sure you are referencing the
correct drive before formatting the partition!

Creating a Filesystem

Before you can store data on the partition, you must format it with a filesystem so that Linux can use it. Each filesystem type
uses its own command line program to format partitions. Table 7.3 lists the utilities used for the different filesystems

discussed in this chapter.

Table 7.3 Command Line Programs to Create Filesystems

Utility Purpose
mkefs Create an ext filesystem.
mke2fs Create an ext? filesystem.

mkfs.ext3 [Create an ext3 filesystem.

mkfs.ext4 |Create an ext4 filesystem.

mkreiserfs |Create a ReiserFS filesystem.

jfs_mkfs Create a JFS filesystem.

mkfs.xfs Create an XFS filesystem.

Each filesystem command has lots of command line options that allow you to customize just how the filesystem is created
in the partition. To see all of the command line options available, use the man command to display the manual pages for the
filesystem command (see Chapter 2). All of the filesystem commands allow you to create a default filesystem with just the

simple command with no options:
$ sudo mkfs.ext4 /dev/sdcT
[sudo] password for rich:
mke2fs 1.41.11 (14-Mar-2010)
Filesystem label=
0S type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
131648 inodes, 526120 blocks
26306 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=541065216
17 block groups
32768 blocks per group, 32768 fragments per group
7744 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912

Writing inode tables: done

www.it-ebooks.info

#c07_tbl_0003
#c07_tbl_anc_0003
http://www.it-ebooks.info/

Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 34 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

$

The new filesystem uses the ext4 filesystem type, which is the journaling filesystem in Linux. Notice that part of the

creation process was to create the newjournal.

After you create the filesystem for the partition, the next step is to mount it on a mount point in the virtual directory so
you can store data in the new filesystem. You can mount the new filesystem anywhere in your virtual directory where you

need the extra space.

$ sudo mkdir /mnt/testing

$ sudo mount -t ext4 /dev/sdbl /mnt/testing

$ 1s -al /mnt/testing

total 24

drwxr-xr-x 3 root root 4096 2010-09-25 19:25

drwxr-xr-x 3 root root 4096 2010-09-25 19:38

drwx------ 2 root root 16384 2010-09-25 19:25 lost+found

The mkdir command creates the mount point in the virtual directory, and the mount command adds the new hard drive
partition to the mount point. Now you can save new files and folders on the new partition!

Warning

This method of mounting a filesystem only temporarily mounts the filesystem. When you
reboot your Linux system, the filesystem won't be automatically mounted. To force Linux
to automatically mount the new filesystem at boot time, add the new filesystem to the
/etc/fstab file.
This chapter showed how to handle filesystems contained in physical storage devices. Linux also provides a couple of
different ways to create logical storage devices for filesystems. The next section examines how you can use a logical storage
device for your filesystems.

IF Things Go Wrong

Even with fancy journaling filesystems, things can go wrong if power is unexpectedly lost, or if a wayward application locks
up the system while file access is in progress. Fortunately, there are some command line tools available to help you make an
attempt to restore the filesystem back to order.

Each filesystem has its own recovery command for interacting with the filesystem. That has the potential of getting ugly,
asmore and more filesystems are available in the Linux environment, making for lots of individual commands you have to
know. Fortunately, there'sa common front-end program available that can determine the filesystem on the storage device

and use the appropriate filesystem recovery command based on the filesystem being recovered.
The fsck command is used to check and repair any type of Linux filesystem, including all of the ones discussed earlier in
this chapter — ext, ext2, ext3, ext4, ReiserFS, JFS, and XFS. The format of the command is:

fsck options filesystem
You can list multiple filesystem entries on the command line to check. Filesystems can be referenced using either the
device name, the mount point in the virtual directory, or a special Linux UUID value assigned to the filesystem.

The fsck command uses the /etc/fstab file to automatically determine the filesystem on a storage device that's
normally mounted on the system. If the storage device isn't normally mounted (such as if you just created a filesystemon a
new storage device, you'll need to use the -t command line option to specify the filesystem type. Table 7.4 lists the other

command line options available.

Table 7.4 The fsck Command Line Options

www.it-ebooks.info

#c07_tbl_0004
#c07_tbl_anc_0004
http://www.it-ebooks.info/

Option | Description

-a Automatically repair the filesystem if errors are detected.

-A Check all of the filesystems listed in the /etc/fstab file.

-C Display a progress bar for filesystems that support that feature (only ext2 and ext3).
-N Don't run the check, only display what checks would be performed.
-r Prompt to fix if errors found.

-R Skip the root filesystem if using the -A option.

-S If checking multiple filesystems, perform the checks one at a time.

-t Specify the filesystem type to check.

-T Don't show the header information when starting.
-V Produce verbose output during the checks.
-y Automatically repair the filesystem if errors detected.

You may notice that some of the command line options are redundant. That's part of the problem of trying to implement
a common front-end for multiple commands. Some of the individual filesystem repair commands have additional options
that can be used. If you need to do more advanced error checking, you'll need to check the man pages for the individual

filesystem repair tool to see if there are extended options specific to that filesystem.

Warning

You can run the fsck command on unmounted filesystems only. For most filesystems, you
can just unmount the filesystem to check it, then remount it when done. However,
because the root filesystem contains all of the core Linux commands and log files, you
can't unmount it on a running system.

This is a time where having a Linux LiveCD comes in handy! Just boot your system with the
LiveCD, and then run the fsck command on the root filesystem!

Logical Volume Managers

If you create your filesystems using standard partitions on hard drives, trying to add additional space to an existing
filesystem can be somewhat of a painful experience. You can only expand a partition to the extent of the available space on
the same physical hard drive. If there isn't any more space available on that hard drive, you're stuck having to get a larger hard

drive and manually moving the existing filesystem to the new drive.

What would come in handy is a way to dynamically add more space to an existing filesystem by just adding a partition
fromanother hard drive to the existing filesystem. The Linux Logical Volume Manager (LVM) software package allows you to
do just that. It provides an easy way for you to manipulate disk space on a Linux system without having to rebuild entire

filesystems.

The Logical Volume Management Layout

The core of logical volume management is how it handles the physical hard drive partitions installed on the system. In the
logical volume management world, hard drives are called physical volumes (PV). Each PV maps to a specific physical partition
created on a hard drive.

Multiple PV elements are pooled together to create a volume group (VG). The logical volume management system treats
the VG like a physical hard drive, but in reality the VG may consist of multiple physical partitions spread across multiple hard

drives. The VG provides a platform to create the logical partitions, which actually contain the filesystem.
The final layer in the structure is the (ogical volume (LV). The LV creates the partition environment for Linux to create a

www.it-ebooks.info

http://www.it-ebooks.info/

filesystem, acting similar to a physical hard disk partition as far as Linux is concerned. The Linux system treats the LV just like a
physical partition. You can format the LV using any one of the standard Linux filesystems, and then add it to the Linux virtual

directory at a mount point.

Figure 7.1 shows the basic layout of a typical Linux logical volume management environment.

Figure 7.1 The Logical Volume Management environment

Logical Volume 1 Logical Volume 2

Volume Group

Physical Physical Physical Physical Ph
Volume 1 Volume 2 Volume 3 Volume 4 Vol

partition partition partition partition pal
1 ? 1 2

Hard Drive 1 Hard Drive 2

The volume group shown in Figure 7.1 spans across three separate physical hard drives, covering five separate physical
partitions. Inside the volume group are two separate logical volumes. The Linux system treats each logical volume just like a
physical partition. Each logical volume can be formatted as an ext4 filesystem, and then mounted to a specific location in the

virtual directory.

Notice in Figure 7.1 that the third physical hard drive has an unused partition. Using logical volume management, you can
easily assign this unused partition to the existing volume group at a later time, and then either use it to create a new logical

volume or add it to expand one of the existing logical volumes when you need more space.

Likewise, if you add a new hard drive to the system, the local volume management system allows you to add it to the
existing volume group, and then create more space for one of the existing logical volumes, or start a new logical volume to

be mounted. That's a much better way of handling expanding filesystems!

The LVM in Linux

The Linux LVM was developed by Heinz Mauelshagen and released to the Linux community in 1998. It allows you to manage a
complete logical volume management environment in Linux using simple command line commands.

Two versions of Linux LVM are available:
*LVM1: The original LVM package released in 1998, and available in only the 2.4 Linux kernels. It provides only basic
Logical Volume Management features.
*LVM2: An updated version of the LVM, available in the 2.6 Linux kernels. It provides additional features over the
standard LVM1 features.
Most modern Linux distributions using the 2.6 kernel version provide support for LVM2. Besides the standard logical
volume management features, LVM2 provides a few other nice things for you to usein your Linux system.

Snapshots

The original Linux LVM allows you to copy an existing logical volume to another device while the logical volume is active. This
featureis called a snapshot. Snapshots are great for backing up important data that can't be locked due to high availability
requirements. Traditional backup methods usually lock files as they're being copied to the backup media. The snapshot allows
you to continue running mission critical Web or database servers while performing the copy. Unfortunately, LVM1 allows you

www.it-ebooks.info

#c07_fig_0001
#c07_fig_anc_0001
#c07_fig_0001
#c07_fig_0001
http://www.it-ebooks.info/

to create only a read-only snapshot. Once you create the snapshot you can't write to it.

LVM2 allows you to create a read-write snapshot of an active logical volume. With the read-write copy, you can remove
the original logical volume and mount the snapshot as a replacement. This feature is great for fast fail-overs, or for

experimenting with applications that modify data that may need to be restored if something fails.

Striping

Another interesting feature that LVM2 provides is striping. With striping, a logical volume is created across multiple physical
hard drives. When the Linux LVM writes a file to the logical volume, the data blocks in the file are spread across the multiple
hard drives. Each successive block of data is written to the next hard drive.

Striping helpsimprove disk performance, as Linux can write the multiple data blocks for a file to the multiple hard drives
simultaneously, rather than having to wait for a single hard drive to move the read/write head to different locations. This
improvement also applies to reading sequentially accessed files, as the LVM can read data from the multiple hard drives

simultaneously.

Warning

LVM striping is not the same as RAID striping. LVM striping doesn't provide a parity entry,
which creates the fault-tolerant environment. In fact, LVM striping may increase the
chance of a file being lost due to a hard drive failure. A single disk failure can result in
multiple logical volumes being inaccessible.

Mirroring

Just because you install a filesystem using LVM doesn't mean that things can't still go wrong in the filesystem. Just asin a
physical partition, LVM logical volumes are susceptible to power outages and disk crashes. Once a filesystem becomes
corrupt, there's always a possibility that you won't be able to recover it.

The LVM snapshot process provides some comfort knowing that you can create a backup copy of a logical volume at any
time, but for some environments that may not be enough. Systems that have lots of data changes, such as database servers,

may store hundreds or thousands of records since the last snapshot.

Asolution to this problem is the LVM mirror. Amirror is a complete copy of a logical volume that's updated in real time.
When you create the mirror logical volume, LVM synchronizes the original logical volume to the mirror copy. Depending on

the size of the original logical volume, this may take some time to complete.

Once the original synchronization is complete, LVM performs two writes for each write process in the filesystem — one to
the main logical volume and one to the mirrored copy. As you can guess, this process does slow down write performance on
the system. However, if the original logical volume should become corrupt for some reason, you have a complete up-to-date

copy at your fingertips!

Using the Linux LVM

Now that you've seen what the Linux LVM can do, this section discusses how to implement it to help organize the disk space on
your system. The Linux LVM package only provides command line programs for creating and managing all of the
components in the Logical Volume Management system. Some Linux distributions include graphical front-ends to the
command line commands, but for complete control of your LVM environment, it's best to get comfortable working directly

with the commands.

Defining Physical Volumes

The first step in the processis to convert the physical partitions on the hard drive into physical volume extents used by the
Linux LVM. Our friend the fdisk command will help us here. After creating the basic Linux partition, you need to change the

partition type using the t command:
Command (m for help): t
Selected partition 1
Hex code (type L to list codes): 8e
Changed system type of partition 1 to 8e (Linux LVM)

www.it-ebooks.info

http://www.it-ebooks.info/

Command (m for help): p

Disk /dev/sdc: 2147 MB, 2147992064 bytes

255 heads, 63 sectors/track, 261 cylinders

Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x4bc26133

Device Boot Start End Blocks Id System
/dev/sdc1 1 261 2096451 8e Linux LWM

Command (m for help):
The 8e partition type denotes that the partition will be used as part of a Linux LVM system and not as a direct filesystem,
asyou saw with the 83 partition type earlier.

The next step is to use the partition to create the actual physical volume. That's done using the pvcreate command:

$ sudo pvcreate /dev/sdc1
Physical volume “/dev/sdc1” successfully created
$

The pvcreate command defines the physical volume to use for the PV. It simply tags the partition as a physical volumein
the Linux LVM system. You can use the pvdisplay command to display a list of physical volumes you've created if you'd like

to seeyour progressalong the way.

Creating Volume Groups

The next step in the process is to create one or more volume groups from the physical volumes. There are no set rules for
how many volume groups you need to create for your system — you can add all of the available physical volumes to a single

volume group, or you can create multiple volume groups by combining different physical volumes.

To create the volume group from the command line, you need to use the vgcreate command. The vgcreate command
requires a few command line parameters to define the volume group name, as well as the name of the physical volumes

you're using to create the volume group:
$ sudo vgcreate Vol1 /dev/sdc1
Volume group “Vol1” successfully created
$

That's not all too exciting for output! If you'd like to see some details about the newly created volume group, use the
vgdisplay command:
$ sudo vgdisplay
--- Volume group ---

VG Name Vol1
System ID

Format 1vm2
Metadata Areas 1
Metadata Sequence No 1

VG Access read/write
VG Status resizable
MAX LV 0

Cur LV 0

Open LV 0

Max PV 0

www.it-ebooks.info

http://www.it-ebooks.info/

Cur PV

Act PV

VG Size

PE Size

Total PE

Alloc PE / Size
Free PE / Size
VG UUID

$

1

1

2.00 GB

4.00 mMB

511

0/0

511 / 2.00 GB
CyilHZ-Y840-8TUn-Wvti-4S6Q-bHHT-C113I0

This example creates a volume group named Vol 1, using the physical volume created on the /dev/sdc1 partition.

Now that you have one or more volume groups created, you're ready to create the logical volume.

Creating Logical Volumes

The logical volume is what the Linux system uses to emulate a physical partition, and holds the filesystem. The Linux system
handles the logical volumes just like a physical partition, allowing you to define filesystems in the logical volume and then

mount the filesystem into the virtual directory.

To create the logical volume, use the 1vcreate command. While you can usually get away without using command line
optionsin the other Linux LVM commands, the 1vcreate command requires at least some options to be entered. Table 7.5

shows the available command line options.

Table 7.5 The lvcreate Options

Option | Long Option Name |Description

-C --chunksize Specify the chunksize of the snapshot logical volume.

-C --contiguous Set or reset the contiguous allocation policy.

-1 --stripes Specify the number of stripes.

-1 --stripsize Specify the size of each stripe.

-1 --extents Specify the number of logical extents to allocate to a new logical
volume, or the percent of the logical extents to use.

-L --size Specify the disk size to allocate to a new logical volume.

--minor Specify the minor number of the device.

-m --mirrors Create a mirrored logical volume.

-M --persistent Make the minor number persistent.

-n --name Specify the name of the new logical volume.

-p --permission Set read/write permission for the logical volume.

-r --readahead Set read ahead sector count.

-R --regionsize Specify the size to divide the mirror regions into.

-S --snapshot Create a snapshot logical volume.

www.it-ebooks.info

#c07_tbl_0005
#c07_tbl_anc_0005
http://www.it-ebooks.info/

Set the first 1KB of data on the new logical volume to zeros.

2 [-zero

While the command line options may look intimidating, for most situations you can get by with a minimal amount of
options:
$ sudo lvcreate -1 100%FREE -n lvtest Vol1
Logical volume “lvtest” created
$

If you want to see the details of what you created, use the lvdisplay command:

$ sudo lvdisplay
--- Logical volume ---

LV Name /dev/Vol1/1vtest
VG Name Vol1

LV UUID usDxti-pAEj-fEIz-3kWV-LNAu-PFNx-2LGgNv
LV Write Access read/write

LV Status available

open 0

LV Size 2.00 GB

Current LE 511

Segments 1

Allocation inherit

Read ahead sectors auto

- currently set to 256

Block device 253:2

$

Now you can see just what you created! Notice that the volume group name (Vo1 1) is used to identify the volume group
to use when creating the new logical volume.

The -1 parameter defines how much of the available space on the volume group specified to use for the logical volume.
Notice that you can specify the value as a percent of the free space in the volume group. This example used all (100%) of the

free space for the new logical volume.

You can use the -1 parameter to specify the size as a percentage of the available space, or the - L parameter to specify the
actual size in bytes, kilobytes (KB), megabytes (MB), or gigabytes (GB). The -n parameter allows you to provide a name for the

logical volume (called 1vtest in this example).

Creating the Filesystem

After you run the lvcreate command, the logical volume exists but doesn't have a filesystem. To do that, you'll need to use
the appropriate command line program for the filesystem you want to create:

$ sudo mkfs.ext4 /dev/Vol1/lvtest

mke2fs 1.41.9 (22-Aug-2009)

Filesystem label=

0S type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

130816 inodes, 523264 blocks

26163 blocks (5.00%) reserved for the super user

www.it-ebooks.info

http://www.it-ebooks.info/

First data block=0
Maximum filesystem blocks=536870912
16 block groups
32768 blocks per group, 32768 fragments per group
8176 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912

Writing inode tables: done
Creating journal (8192 blocks): done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 21 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
$

After you've created the new filesystem, you can mount the volumein the virtual directory using the standard Linux
mount command, just as if it were a physical partition. The only difference is that you use a special path that identifies the

logical volume:

$ sudo mount /dev/Vol1l/lvtest test

$ cd test

$ 1s -al

total 24

drwxr-xr-x. 3 root root 4096 2010-09-17 17:36 .
drwx------ . 33 rich rich 4096 2010-09-17 17:37 ..
drwx------ . 2 root root 16384 2010-09-17 17:36 lost+found
$

Notice that the paths used in both themkfs.ext4 and mount commandsis a little odd. Instead of a physical partition
path, the pathuses the volume group name, along with the logical volume name. Once the filesystem is mounted, you can

access the new area in the virtual directory.

Modifying the LVM

Because the benefit of using the Linux LVM is to dynamically modify filesystems, you'd expect there to be some tools that
allowyou to do that. There are some tools available in Linux that allow you to modify the existing Logical Volume
Management configuration.

If you don't have access to a fancy graphical interface for managing your Linux LVM environment, all is not lost. You've
already seen some of the Linux LVM command line programsin action in this chapter. There are also a host of other command
line programs you can use to manage the LVM setup once you've installed it. Table 7.6 lists the common commands that are

availablein the Linux LVM package.

Table 7.6 The Linux LVM Commands

Command | Function

vgchange |Activate and deactivate a volume group

vgremove |Remove a volume group

vgextend |Add physical volumes to a volume group

vgreduce |Remove physical volumes from a volume group

www.it-ebooks.info

#c07_tbl_0006
#c07_tbl_anc_0006
http://www.it-ebooks.info/

lvexend |Increase the size of alogical volume

lvreduce |Decrease the size of a logical volume

Using these command line programs, you have full control over your Linux LVM environment.

Warning

Be careful when manually increasing or decreasing the size of a logical volume. The
filesystem stored in the logical volume will need to be manually fixed to handle the change
in size. Most filesystems include command line programs for reformatting the Ffilesystem,
such as the resize2fs program for the ext2 and ext3 filesystems.

Summary

Working with storage devices in Linux requires that you know a little bit about filesystems. Knowing how to create and work
with filesystems from the command line can come in handy as you work on Linux systems. This chapter discussed how to

handle filesystems from the Linux command line.

The Linux system is different from Windows in that it supports lots of different methods for storing filesand folders.
Each filesystem method has different features that make it ideal for different situations. Also, each filesystem method uses

different commands for interacting with the storage device.

Beforeyou can install a filesystem on a storage device, you must first prepare the device. The fdisk command is used to
partition storage devices to get them ready for the filesystem. When you partition the storage device you must define what
type of filesystem will be used on it.

After you partition a storage device, you can use one of several different filesystems for the partition. The most popular
Linux filesystems are ext3 and ext4. Both of these filesystems provide journaling filesystem features, making them less prone

to errors and problems if the Linux system should crash.

One limiting factor to creating filesystems directly on a storage device partition is that you can't easily change the size of
the filesystem if you run out of disk space. However, Linux supports logical volume management, a method of creating
virtual partitions across multiple storage devices. This method allows you to easily expand an existing filesystem without
having to completely rebuild it. The Linux LVM package provides command line commands to create logical volumes across
multiple storage devices to build filesystems on.

Now that you've seen the core Linux command line commands, it's close to time to start creating some shell script
programs. However, before you start coding there's one more element we need to discuss: editors. If you plan on writing
shell scripts, you'll need an environment in which to create your masterpieces. The next chapter discusses how to install and

manage software packages from the command line in different Linux environments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8
Installing Software

In This Chapter

®Installing software
® Using Debian packages

* Working with Red Hat packages

In the old days of Linux, installing software could be a painful experience. Fortunately, the Linux developers have made life a
little easier for us by bundling software into pre-built packages that are much easier to install. However, there's still a little
work on our part to get the software packages installed, especially if you want to do that from the command line. This
chapter takes a look at the various Package Management Systems available in Linux, and the command line tools used for

software installation, management, and removal.

Package Management Primer

Before diving into the world of Linux software package management, this chapter goes through a few of the basics first. Each
of the major Linux distributions utilizes some form of a Package Management System (PMS) to control installing software

applications and libraries. A PMS utilizes a database that keeps track of:
* What software packages are installed on the Linux system
* What files have been installed for each package

® Versions of each of the software packages installed

Software packages are stored on servers, called repositories, and are accessed across the Internet via PMS utilities running
on your local Linux system. You can use the PMS utilities to search for new software packages or even updates to software

packages already installed on the system.

Asoftware package will often have dependencies or other packages that must beinstalled first for the software to run
properly. The PMS utilities will detect these dependencies and offer to install any additionally needed software packages

beforeinstalling the desired package.

The downside to PMS is that there isn't a single standard utility. Whereas all of the bash shell commands discussed so far in
this book will work no matter which Linux distribution you use, this is not true with software package management.

The PMS utilities and their associated commands are vastly different between the various Linux distributions. The two
primary PMS base utilities commonly used in the Linux world are dpkg and rpm.

Debian-based distributions such as Ubuntu and Linux Mint use, at the base of their PMS utilities, the dpkg command. This
command interacts directly with the PMS on the Linux system and is used for installing, managing, and removing software
packages.

The Red Hat-based distributions, such as Fedora, openSUSE, and Mandriva, use the rpm command at the base of their
PMS. Similar to the dpkg command, the rpm command can list installed packages, install new packages, and remove existing
software.

Note that these two commands are the core of their respective PMS, not the entire PMS itself. Many Linux distributions
that use the dpkg or rpm methods have built additional specialty PMS utilities upon these base commands to help make your
life much easier. The Following sections walk through various PMS utility commands you'll run into in the popular Linux

distributions.

The Debian-Based Systems

The dpkg command is at the core of the Debian-based family of PMS tools. Other tools included in this PMS are:
* apt-get

apt-cache

aptitude

By far the most common command line tool is aptitude, and for good reason. The aptitude tool is essentially a front-end
for boththe apt toolsand dpkg. Whereas dpkg isa PMS tool, aptitude is a complete Package Management System.

Using the aptitude command at the command line will help you avoid common software installation problems, such as

www.it-ebooks.info

http://www.it-ebooks.info/

missing software dependencies, unstable system environments, and just a whole lot of unnecessary hassle. This section takes
alook at howto use the aptitude command tool from the Linux command line.

Managing Packages with aptitude

A common task faced by Linux system administrators is to determine what packages are already installed on the system.
Fortunately, aptitude has a handy interactive interface that makes this task an easy one.
At the shell prompt, type aptitude and press Enter. You will be thrown into aptitude's full-screen mode, asyou can see

in Figure 8.1.

Figure 8.1 The aptitude main window
File Edit View Search Terminal Help

Actions Undo Package Resolver Search Options Views Help

C-T: Menu 7: Help g: Quit wu: Update g: Download/Install/Remove Pkgs
aptitude 8.6.3 Will use 4,948kB of disk space DL Size: 1,927k

New Packages

- Installed Fackes {1535]

Naot Installed

::“.'I' {] = I_ & and

installed on your computer.

Use the arrow keys to maneuver around the menu. Select the menu option Installed Packages to see what packages are
installed. You will see several groups of software packages, such as editors, and so on. Anumber in parentheses follows each

group, whichindicates the number of packages the group contains.

Use the arrow keys to highlight a group and press Enter to see each subgroup of packages. You will then see the
individual package names and their version numbers. Use the Enter key on individual packages to get very detailed

information, such as the package's description, home page, size, maintainer, and so on.

When you're done viewing the installed packages, press q to quit the display. You can then go back to the arrow keys and
use Enter to toggle open or closed the packages and their subgroups. When you are all done, just press g multiple times

until you receive the pop-up screen “Really quit Aptitude?”

If you already know the packages on your system and want to quickly display detailed information about a particular
package, thereis no need to go into aptitude'sinteractive interface. You can use aptitude as a single command at the

command line:

aptitude show package name

Here's an example of displaying the details of the package grub2-theme-mint:

$ aptitude show grub2-theme-mint

www.it-ebooks.info

#c08_fig_0001
#c08_fig_anc_0001
http://www.it-ebooks.info/

Package: grub2-theme-mint

New: yes

State: installed

Automatically installed: no

Version: 1.0.3

Priority: optional

Section: misc

Maintainer: Clement Lefebvre <root@linuxmint.com>
Uncompressed Size: 442k

Description: Grub2 theme for Linux Mint
Grub2 theme for Linux Mint

Note

The aptitude showcommand does not indicate that the package is installed on the
system. It shows only detailed package information from the software repository.

One detail you cannot get withaptitude isa listing of all the files associated with a particular software package. To get
this list, you will need to go to the dpkg tool itself:

dpkg -L package name

Here's an example of using dpkg to list all of the files installed as part of the grub2-theme-mint package:

$

$ dpkg -L grub2-theme-mint

/.

/boot

/boot/boot

/boot/boot/grub
/boot/boot/grub/linuxmint.png

/boot/grub

/boot/grub/linuxmint.png

/usr

/usr/share

/usr/share/doc
/usr/share/doc/grub2-theme-mint
/usr/share/doc/grub2-theme-mint/changelog.gz
/usr/share/doc/grub2-theme-mint/copyright
/etc

/etc/grub.d

/etc/grub.d/06_mint_theme

$

You can also do the reverse—find what package a particular file belongs to:

dpkg --search absolute file name

Note that you need to use an absolute file reference for this to work:

$

www.it-ebooks.info

http://www.it-ebooks.info/

$ dpkg --search /boot/grub/linuxmint.png
grub2-theme-mint: /boot/grub/linuxmint.png

$
The output shows the linuxmint.png file was installed as part of the grub2-theme-mint package.

Installing Software Packages with aptitude

Now that you know more about listing software package information on your system, this section walks through a software
package install. First, you'll want to determine the package name to install. How do you find a particular software package?

Use the aptitude command with the search option:

aptitude search package name
The beauty of the search option is that you do not need to insert wildcards around package_name. Wildcards are implied.
Here'san example of using aptitude to look for the wine software package:

$

$ aptitude search wine

p gnome-wine-icon-theme - red variation of the GNOME-

v libkwineffects1-api -

p libkwineffectsla - library used by effects...

p gdwine - Qt4 GUI for wine (W.I.N.E)

p shiki-wine-theme - red variation of the Shiki-

p wine - Microsoft Windows Compatibility ...
p wine-dev - Microsoft Windows Compatibility ...
p wine-gecko - Microsoft Windows Compatibility ...
p winel.0 - Microsoft Windows Compatibility ...
p winel.0-dev - Microsoft Windows Compatibility ...
p winel1.0-gecko - Microsoft Windows Compatibility ...
p winel.2 - Microsoft Windows Compatibility ...
p winel.2-dbg - Microsoft Windows Compatibility ...
p wine1l.2-dev - Microsoft Windows Compatibility ...
p winel.2-gecko - Microsoft Windows Compatibility ...
p winefish - LaTeX Editor based on Bluefish

$

Notice that before each package nameis either a p or an i.1f you seean i u that means that the packageis currently
installed on your system. If you seeap v that meansit isavailable but not installed. As you can see from the preceding

listing, this system does not have wine currently installed on it, but the package is available from the software repository.
Installing a software package on a system from a repository using aptitude is as easy as this:
aptitude install package name

Once you find the software package name from the search option, just plug it into the aptitude command using the
install option:

$
$ sudo aptitude install wine
The following NEW packages will be installed:
cabextract{a} esound-clients{a} esound-common{a} gnome-exe-thumbnailer
{a}
icoutils{a} imagemagick{a} libaudio2{a} libaudiofileO{a} libcdt4{a}
libesd0{a} libgraph4{a} libgvc5{a} libilmbase6{a} libmagickcore3-extra

www.it-ebooks.info

http://linuxmint.png
http://www.it-ebooks.info/

{a}
libmpg123-0{a} libnetpbm10{a} libopenali{a} libopenexr6{a}
libpathplan4{a} libxdot4{a} netpbm{a} ttf-mscorefonts-installer{a}
ttf-symbol-replacement{a} winbind{a} wine winel.2{a} wine1.2-gecko{a}
0 packages upgraded, 27 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/27.6MB of archives. After unpacking 121MB will be used.
Do you want to continue? [Y/n/?] Y
Preconfiguring packages

All done, no errors.
All fonts downloaded and installed.
Updating fontconfig cache for /usr/share/fonts/truetype/msttcorefonts
Setting up winbind (2:3.5.4~dfsg-1ubuntu7) ...
* Starting the Winbind daemon winbind
[OK]
Setting up wine (1.2-Oubuntu5) ...
Setting up gnome-exe-thumbnailer (0.6-Oubuntu?l) ...
Processing triggers for libc-bin
ldconfig deferred processing now taking place

Note

Before the aptitude command in the preceding listing, the sudo command is
used. The sudo command allows you to run a command as the root user. You can
use the sudo command to run administrative tasks, such as installing software.

To check if the installation processed properly, just use the sear ch option again. This time you should seean i u listed in

front of the wine software package, indicating it isinstalled.

You may also notice that there are additional packages withthe i uin front of them. Thisis because aptitude
automatically resolved any necessary package dependencies for us and installs the needed additional library and software

packages. Thisis a wonderful featureincluded in many Package Management Systems.

Updating Software with aptitude

While aptitude helps protect you from problemsinstalling software, trying to coordinate a multiple-package update with
dependencies can get tricky. To safely update all of the software packages on a system with any new versionsin the

repository, use the safe-upgrade option:

aptitude safe-upgrade
Notice that this command doesn't take a software package name as an argument. That's because the safe-upgrade
option will upgrade all the installed packages to the most recent version available in the repository, which is safer for system

stabilization.

Here'sasample output fromrunning theaptitude safe-update command:

$

$ sudo aptitude safe-upgrade

The following packages will be upgraded:
evolution evolution-common evolution-plugins gsfonts libevolution
xserver-xorg-video-geode

www.it-ebooks.info

http://www.it-ebooks.info/

6 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 9,312kB of archives. After unpacking OB will be used.
Do you want to continue? [Y/n/?] Y
Get:1 http://us.archive.ubuntu.com/ubuntu/ maverick/main
libevolution 1386 2.30.3-1ubuntu4 [2,096kB]

Preparing to replace xserver-xorg-video-geode 2.11.9-2
(using .../xserver-xorg-video-geode_2.11.9-3_1386.deb) ...
Unpacking replacement xserver-xorg-video-geode ...
Processing triggers for man-db ...

Processing triggers for desktop-file-utils ...

Processing triggers for python-gmenu ...

Current status: 0 updates [-6].
$

There are also less conservative options for software upgrades that you can use:

aptitude full-upgrade

aptitude dist-upgrade

These options perform the same task, upgrading all of the software packages to the latest versions. Where they differ
from safe-upgrade is that they do not check dependencies between packages. The whole package dependency issue can
getreal ugly.If you're not exactly sure of the dependencies for the various packages, then stick with the safe-upgrade

option.

Note

Obviously, running aptitude's safe-upgrade option is something you should do on
aregular basis to keep your system up-to-date. However, it is especially important
to run it after a fresh distribution installation. Usually there are lots of security
patches and updates that are released since the last full release of a distribution.

Uninstalling Software with aptitude

Getting rid of software packages with aptitude is as easy as installing and upgrading them. The only real choice you have to
make is whether or not to keep the software's data and configuration files around afterwards.

To remove a software package, but not the data and configuration files, use the remove option of aptitude. To remove a
software package and the related data and configuration files, use the pur ge option:

$ sudo aptitude purge wine
[sudo] password for user:
The following packages will be REMOVED:
cabextract{u} esound-clients{u} esound-common{u} gnome-exe-thumbnailer
{u}
icoutils{u} imagemagick{u} libaudio2{u} libaudiofileO{u} libcdt4{u}
libesd0{u} libgraph4{u} libgvc5{u} libilmbase6{u} libmagickcore3-extra
{u}
libmpg123-0{u} libnetpbm10{u} libopenall{u} libopenexré6{u}
libpathplan4{u} libxdot4{u} netpbm{u} ttf-mscorefonts-installer{u}
ttf-symbol-replacement{u} winbind{u} wine{p} wine1.2{u} winel.2-gecko
{u}

www.it-ebooks.info

http://www.it-ebooks.info/

0 packages upgraded, 0 newly installed, 27 to remove and 6 not upgraded.
Need to get OB of archives. After unpacking 121MB will be freed.

Do you want to continue? [Y/n/?] Y

(Reading database ... 120968 files and directories currently installed.)
Removing ttf-mscorefonts-installer

Processing triggers for fontconfig ...
Processing triggers for ureadahead
Processing triggers for python-support

$

To seeif the package has been removed, you can usethe aptitude search option again.If you seea cin front of the
package name, it means the software has been removed, but the configuration files have not been purged from the system. A

p in front indicates the configuration files have also been removed.

The aptitude Repositories

The default software repository locations for aptitude are set up for you when you install your Linux distribution. The
repository locations are stored in the file /etc/apt/sources.list.

In many cases, you will never need to add/remove a software repository so you won't need to touch this file. However,
aptitude will only pull software from these repositories. Also, when searching for software to install or update, aptitude
will only check these repositories. If you need to include some additional software repositories for your PMS, this is the place

todoit.
Tip
The Linux distribution developers work hard to make sure package versions added to the
repositories don't conflict with one another. Usually it's safest to upgrade or install a
software package from the repository. Even if a newer version is available elsewhere, you

may want to hold off installing it until that version is available in your Linux distribution's
repository.

The following isan example of a sources.list file froman Ubuntu system:

$

$ cat /etc/apt/sources.list

#deb cdrom: [Ubuntu 10.10 _Maverick Meerkat_ - Alpha 1386
(20100921.1)1/ maverick main restricted

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade
to

newer versions of the distribution.

deb http://us.archive.ubuntu.com/ubuntu/ maverick main restricted
deb-src http://us.archive.ubuntu.com/ubuntu/ maverick main restricted

Major bug fix updates produced after the final release of the
distribution.

deb http://us.archive.ubuntu.com/ubuntu/ maverick-updates main
restricted

deb-src http://us.archive.ubuntu.com/ubuntu/ maverick-updates main

www.it-ebooks.info

http://www.it-ebooks.info/

restricted

This software is not part of Ubuntu, but is offered by third-party
developers who want to ship their latest software.

deb http://extras.ubuntu.com/ubuntu maverick main

deb-src http://extras.ubuntu.com/ubuntu maverick main

deb http://security.ubuntu.com/ubuntu maverick-security main restricted
deb-src http://security.ubuntu.com/ubuntu maverick-security main
restricted

deb http://security.ubuntu.com/ubuntu maverick-security universe
deb-src http://security.ubuntu.com/ubuntu maverick-security universe
deb http://security.ubuntu.com/ubuntu maverick-security multiverse
deb-src http://security.ubuntu.com/ubuntu maverick-security multiverse
$

First, notice that the file is full of helpful comments and warnings. The repository sources specified use the following
structure:

deb (or deb-src) address distribution name package type list
The deb or deb-src valueindicates the software package type. The deb value indicates it is a source of compiled
programs, whereas the deb-src valueindicates it is a source of source code.

The address entry is the software repository's Web address. The distribution_name entry is the name of this
particular software repository's distribution's version. In the example, the distribution name ismaverick. This does not
necessarily mean that the distribution you are running is Ubuntu's Maverick Meercat; it just means the Linux distribution is
using the Ubuntu Maverick Meercat software repositories! For example, in Linux Mint's sources. list file, you will see a

mix of Linux Mint and Ubuntu software repositories.
Finally, the package_type_list entry may be more than one word and indicates what type of packages the repository
hasin it. For example, you may see values such as main, restricted, universe, or partner.

When you need to add a software repository to your sources file, you can try to wing it yourself, but that more than
likely will cause problems. Often, software repository sites or various package developer sites will have an exact line of text
that you can copy from their Website and pasteinto your sources.list file.It's best to choose the safer route and just

copy/paste.
The front-end interface, aptitude, providesintelligent command line options for working with the Debian-based dpkg
utility. Now it's time to take a look at the Red Hat-based distributions' rpm utility and its various front-end interfaces.

The Red Hat-Based Systems

Like the Debian-based distributions, the Red Hat-based systems have several different front-end tools that are available. The
common ones are:
* yum:Used in Red Hat and Fedora

urpm: Used in Mandriva

zypper:Used in openSUSE

These front-ends are all based on the rpm command line tool. The following section discusses how to manage software
packages using these various rpm-based tools. The focus will be on yum, but information will also beincluded for zypper

and urpm.

Listing Installed Packages
To find out what is currently installed on your system, at the shell prompt type the following command:

yum list installed
Theinformation will probably whiz by you on the display screen, so it's best to redirect the installed software listing into
afile.You can then use themore or 1ess command (or a GUI editor) to look at the list in a controlled manner.

www.it-ebooks.info

http://www.it-ebooks.info/

yum list installed > installed_software

To list out the installed packages on your openSUSE or Mandriva distribution, see the commandsin Table 8.1.
Unfortunately, the urpmtool used in Mandriva cannot produce a currently installed software listing. Thus, you will need to

revert to the underlying rpmtool.

Table 8.1 How to List Installed Software with zypper and urpm

Distribution |Front-End Tool | Command

Mandriva urpm rpm -gqa > installed_software

openSUSE || zypper zipper search -I > installed_software

To find out detailed information for a particular software package, yum really shines. Not only will it give you a very
verbose description of the package, but with another simple command, you can see if the package is installed:

yum list xterm

Loaded plugins: langpacks, presto, refresh-packagekit

Adding en_US to language list

Available Packages

xterm.1686 261-2.fc14 fedora

#

yum list installed xterm

Loaded plugins: refresh-packagekit

Error: No matching Packages to list

#

The commands to list detailed software package information using urpmand zypper arein Table 8.2. You can acquirean
even more detailed set of package information from the repository, using the info option on the zypper command.

Table 8.2 How to See Various Package Details with zypper and urpm

Detail Type Front-End Tool |Command

Package Information |urpm urpmq -1 package _name

Installed? urpm rpm -q package_name

Package Information | zypper zypper search -s package name

Installed? zypper Same command, but look for an i in the Status column

Finally, if you need to find out what software package provides a particular file on your filesystem, the versatile yum can
do that, too! Just enter the command:
yum provides file name

Here's an example of trying to find what software provided the configuration file /etc/yum. conf:

#

yum provides /etc/yum.conf

Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
yum-3.2.28-5.fc14.noarch : RPM installer/updater

Repo : fedora

Matched from:

www.it-ebooks.info

#c08_tbl_0001
#c08_tbl_anc_0001
#c08_tbl_0002
#c08_tbl_anc_0002
http://www.it-ebooks.info/

Filename : /etc/yum.conf

yum-3.2.28-5.fc14.noarch : RPM installer/updater
Repo : installed

Matched from:

Other : Provides-match: /etc/yum.conf

#

yum checked two separate repositories: fedora and installed. From both, the answer is: the yum software package
provides this file!

Installing Software with yum
Installation of a software package using yumisincredibly easy. The following is the basic command for installing a software
package, all its needed libraries, and package dependencies from a repository:

yum install package name

Here's an example of installing the xterm package:

$ su -

Password:

yum install xterm

Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list

fedora/metalink | 20 kB 00:00

fedora | 4.3 kB 00:00

fedora/primary_db | 11 MB 01:57

updates/metalink | 16 kB 00:00

updates | 4.7 kB 00:00

updates/primary_db | 3.1 MB 00:30

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package xterm.i686 0:261-2.fc14 set to be installed

Installed:
xterm.1686 0:261-2.fc14

Complete!
#
#

Note

Before the yum command in the preceding listing, the su - command is used. This
command allows you to switch to the root user. On this Linux system, the # denotes
you are logged in as root. You should only switch to root user temporarily in order
to run administrative tasks, such as installing and updating software. The sudo

www.it-ebooks.info

http://www.it-ebooks.info/

command is another option as well.
You can also manually download an rpminstallation file and install it using yum. This is called a (ocal installation. The basic
command is:

yum localinstall package name.rpm

You can begin to see that one of yum's strengths is that it uses very logical and user-friendly commands.
Table 8.3 shows how to perform a package install withurpmand zypper.You should note that if you are not logged in
asroot, you will get a “command not found” error message using urpm.

Table 8.3 How to Install Software with zypper and urpm

Front-End Tool | Command

urpm urpmi package_name

zypper zypper install package_name

Updating Software with yum

In most Linux distributions, when you're working away in the GUI, you get those nice little notification icons telling you an
updateis needed. Here at the command line, it takes a little more work.

To see the list of all the available updates for your installed packages, type the following command:
yum list updates
It's always nice to get no response to this command because it meansyou have nothing to update! However, if you do
discover a particular software package needs updating, then typein the following command:
yum update package_name
If you'd like to update all the packages listed in the update list, just enter the following command:
yum update

Commands for updating software packages on Mandriva and openSUSE are listed in Table 8.4. When urpm s used, the
repository database will be automatically refreshed as well as software packages updated.

Table 8.4 How to Update Software with zypper & urpm

Front-End Tool | Command

urpm urpmi --auto-update --update

zypper zypper update

Uninstalling Software with yum
The yum tool also provides an easy way to uninstall software you no longer want on your system. Aswith aptitude, you
need to choose whether or not to keep the software package's data and configuration files.

To just remove the software package and keep any configuration and data files, use the following command:

yum remove package_name

To uninstall the software and all its files, use the erase option:

yum erase package_name
You will seeit is equally easy to remove software using urpmand zypper in Table 8.5. Both of these tools perform a

function similar to yum's erase option.

www.it-ebooks.info

#c08_tbl_0003
#c08_tbl_anc_0003
#c08_tbl_0004
#c08_tbl_anc_0004
#c08_tbl_0005
http://www.it-ebooks.info/

Table 8.5 How to Uninstall Software with zypper and urpm

Front-End Tool | Command

urpm urpme package_name

zypper zypper remove package_name

While life is considerably easier with PMS packages, it's not always problem free. Occasionally things do go wrong.
Fortunately, there's help.

Dealing with Broken Dependencies

Sometimes as multiple software packages get loaded, a software dependency for one package can get overwritten by the
installation of another package. This is called a broken dependency.

If this should happen on your system, first try the following command:

yum clean all
Then try to use the update option in the yum command. Sometimes, just cleaning up any misplaced files can help.
If that doesn't solve the problem, try the following command:

yum deplist package name

This command displays all the package's library dependencies and what software package provides them. Once you know
the libraries required for a package, you can then install them. Here's an example of determining the dependencies for the

xterm package:
yum deplist xterm
Loaded plugins: langpacks, presto, refresh-packagekit
Adding en_US to language list
Finding dependencies:
package: xterm.i1686 261-2.fc14
dependency: libutempter.so.0
provider: libutempter.i686 1.1.5-4.fc12
dependency: rtld(GNU_HASH)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21
dependency: libc.so.6(GLIBC_2.4)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21

dependency: /bin/sh

provider: bash.i686 4.1.7-3.fc14
dependency: 1ibICE.so.6

provider: 1ibICE.i686 1.0.6-2.fc13
dependency: libXmu.so.6

provider: libXmu.i686 1.0.5-2.fc13
dependency: libc.so.6(GLIBC_2.3)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21
dependency: libXaw.so.7

www.it-ebooks.info

#c08_tbl_anc_0005
http://www.it-ebooks.info/

provider: libXaw.i686 1.0.6-4.fc12
dependency: 1ibX11.s0.6

provider: 1ibX11.1686 1.3.4-3.fc14
dependency: libc.so.6(GLIBC 2.2)
provider: glibc.i686 2.12.90-17
provider: glibc.i686 2.12.90-21

#

If that doesn't solve your problem, you have one last tool:

yum update --skip-broken

The - -skip-broken option allows you to just ignore the package with the broken dependency and update the other
software packages. This may not help the broken package, but at least you can update the remaining packages on the system!

In Table 8.6, the commands to try for broken dependencies withurpm and zypper are listed. With zypper, thereis only
the one command to verify and fix a broken dependency. With ur pm, if the clean option does not work, you can skip updates

on the offensive package. To do this, you must add the name of the offending package to thefile /etc/urpmi/skip.list.

Table 8.6 Broken Dependencies with zypper and urpm

Front End Tool | Command

urpm urpmi --clean

zypper zypper verify

Yum Repositories

Just like the aptitude systems, yum has its software repositories set up at installation. For most purposes, these pre-
installed repositories will work just fine for your needs. But if and when the time comes that you need to install software
from a different repository, here are some things you will need to know.

Tip
A wise system administrator sticks with approved repositories. An approved repository is
one that is sanctioned by the distribution's official site. If you start adding unapproved

repositories, you lose the guarantee of stability. And you will be heading into broken
dependencies territory.

To see what repositories you are currently pulling software from, type in the following command:

yum repolist

If you don't find a repository you need software from, then you will need to do a little configuration file editing. The
yum repository definition files are located in /etc/yum. repos.d.You will need to add the proper URL and gain access to

any necessary encryption keys.

Good repository sites such as rpmfusion.org will lay out all the steps necessary to use them. Sometimes these repository
sites will offer an rpm file that you can download and install using the yum localinstall command. Theinstallation of

the rpm file will do all the repository setup work for you. Now that's convenient!

urpm calls its repositories media. The commands for looking at urpm media and zypper's repositories arein Table 8.7.
You will notice with both of these front-end tools that you do not edit a configuration file. Instead, to add media or a

repository, you just typein the command.

Table 8.7 zypper and urpm Repositories

Action Front-End Tool | Command

Display repository |urpm urpmq --list-media

www.it-ebooks.info

#c08_tbl_0006
#c08_tbl_anc_0006
http://rpmfusion.org
#c08_tbl_0007
#c08_tbl_anc_0007
http://www.it-ebooks.info/

Add repository urpm urpmi.addmedia path_name

Display repository |zypper zypper repos

Add repository zipper zypper addrepo path_name

Both Debian- and Red Hat-based systems use Package Management Systems to ease the process of managing software.
Now we are going to step out of the world of Package Management Systems and look at something a little more difficult,

installing directly from source code.

Installing from Source Code

Chapter 4 discussed tarball packages—how to create them using the tar command line command and how to unpack them.
Before the fancy rpmand dpkg tools, administrators had to know how to unpack and install software from tarballs.

If you work in the open source software environment much, there's a good chance you will still find software packed up
asa tarball. This section walks you through the process of unpacking and installing a tarball software package.

For this example, the software package sysstat will be used. The sysstat utility is a very nice software package that
provides a variety of system monitoring tools.

First, you will need to download the sysstat tarball to your Linux system. While you can often find the sysstat package
available on different Linux sites, it's usually best to go straight to the source of the program. In this case, it's the Website

http://sebastien.godard.pagesperso-orange.fr/.
If you click the Download link, you'll go to the page that contains the files for downloading. The current version at the
time of this writing is 9.1.5, and the distribution file nameis sysstat-9.1.5.tar.gz.

Click the link to download the file to your Linux system. Once you have downloaded the file, you can unpack it.

To unpack a software tarball, use the standard tar command:

#

tar -zxvf sysstat-9.1.5.tar.gz
sysstat-9.1.5/
sysstat-9.1.5/sar.c
sysstat-9.1.5/iostat.c
sysstat-9.1.5/sadc.c
sysstat-9.1.5/sa.h
sysstat-9.1.5/iconfig
sysstat-9.1.5/CHANGES
sysstat-9.1.5/COPYING
sysstat-9.1.5/CREDITS
sysstat-9.1.5/sa2.1in
sysstat-9.1.5/README
sysstat-9.1.5/crontab.sample
sysstat-9.1.5/nls/

S T U NS NI (U (UL UL (UL U (U (U Y

.5/nfsiostat.c
.5/sysstat-9.1.5.1sm
.5/cifsiostat.c
.5/nfsiostat.h
.5/cifsiostat.h
.5/sysstat-9.1.5.spec

sysstat-9.
sysstat-9.
sysstat-9.
sysstat-9.
sysstat-9.
sysstat-9.
it

Now that the tarball is unpacked and the files have neatly put themselvesinto a directory called sysstat-9.1.5,you

_ e S

can dive down into that directory and continue.

www.it-ebooks.info

http://sebastien.godard.pagesperso-orange.fr/
http://www.it-ebooks.info/

First, use the cd command to getinto the new directory and then list the contents of the directory:

$ cd sysstat-9.1.5

$ 1s

activity.c INSTALL prf_stats.h sysconfig.in

build ioconf.c pr_stats.c sysstat-9.1.5.1lsm
CHANGES ioconf.h pr_stats.h sysstat-9.1.5.spec
cifsiostat.c iostat.c rd_stats.c sysstat.cron.daily.in
cifsiostat.h iostat.h rd_stats.h sysstat.crond.in
common. c Makefile.in README sysstat.cron.hourly.in
common.h man sal.in sysstat.in

configure mpstat.c sa2.in sysstat.ioconf
configure.in mpstat.h sa_common.c sysstat.sysconfig.in
contrib nfsiostat.c sadc.c TODO

COPYING nfsiostat.h sadf.c version.in

CREDITS nls sadf.h xml

crontab.sample pidstat.c sa.h

FAQ pidstat.h sar.c

iconfig prf_stats.c sa_wrap.c

$

In the listing out of the directory, you should typically see a README or AAAREADME file. It is very important to read this
file. In the file will be the actual instructions you will need to finish the software's installation.

Following the advice contained in the README file, the next step isto configure sysstat for your system. This checks
your Linux system to ensureit has the proper library dependencies, in addition to the proper compiler to compile the source

code:
./configure
Check programs:

checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes

checking for ANSI C header files... (cached) yes
checking for dirent.h that defines DIR... yes

checking for library containing opendir... none required
checking ctype.h usability... yes

checking ctype.h presence... yes

checking for ctype.h... yes

checking errno.h usability... yes

Check library functions:
checking for strchr... yes
checking for strcspn... yes

checking for strspn... yes
checking for strstr... yes

www.it-ebooks.info

http://www.it-ebooks.info/

checking for sensors support... yes
Check configuration:

config.status: creating Makefile

Sysstat version: 9.1.5
Installation prefix: /usr/local

rc directory: /etc/rc.d

Init directory: /etc/rc.d/init.d
Configuration directory: /etc/sysconfig
Man pages directory: /usr/local/man
Compiler: gcc

Compiler flags: -g -02

#

If anything does go wrong, the configure step will display an error message explaining what's missing.

The next stageis to build the various binary files using the make command. The make command compiles the source code
and then the linker to create the final executable files for the package. As with the configure command, the make command

produces lots of output asit goes through the steps of compiling and linking all of the source code files:

make

gcc -o nfsiostat -g -02 -Wall -Wstrict-prototypes -pipe
-02 nfsiostat.o librdstats.a libsyscom.a -s
gcc -o cifsiostat.o -c -g -02 -Wall -Wstrict-prototypes -pipe
-02 -DSA_DIR=\"/var/log/sa\"
-DSADC_PATH=\"/usr/local/lib/sa/sadc\" cifsiostat.c
gcc -o cifsiostat -g -02 -Wall -Wstrict-prototypes -pipe
-02 cifsiostat.o librdstats.a libsyscom.a -s
#

When make is finished, you'll have the actual sysstat software program available in the directory! However, it's
somewhat inconvenient to have to run it from that directory. Instead, you'll want to install it in a common location on your
Linux system. To do that, you'll need to log in as the root user account (or use the sudo command if your Linux distribution

prefers),and then usethe install option of the make command:
make install
mkdir -p /usr/local/man/manT
mkdir -p /usr/local/man/man8
rm -f /usr/local/man/man8/sal.8%*
install -m 644 -g man man/sa1.8 /usr/local/man/man8
rm -f /usr/local/man/man8/sa2.8%*
install -m 644 -g man man/sa2.8 /usr/local/man/man8
rm -f /usr/local/man/man8/sadc.8%*
install -m 644 -g man man/sadc.8 /usr/local/man/man8
rm -f /usr/local/man/man1/sar.1*

www.it-ebooks.info

http://www.it-ebooks.info/

install -m 644 sysstat.sysconfig /etc/sysconfig/sysstat
install -m 644 CHANGES /usr/local/share/doc/sysstat-9.1.5
install -m 644 COPYING /usr/local/share/doc/sysstat-9.1.5
install -m 644 CREDITS /usr/local/share/doc/sysstat-9.1.5
install -m 644 README /usr/local/share/doc/sysstat-9.1.5
install -m 644 FAQ /usr/local/share/doc/sysstat-9.1.5
install -m 644 *,1sm /usr/local/share/doc/sysstat-9.1.5

#

Nowthe sysstat packageisinstalled on the system! While not quite as easy as installing a software package via a PMS,
installing software using tarballsis not that difficult.

Summary

This chapter discussed how to work with a software Package Management Systems (PMS) to install, update, or remove
software from the command line. While most of the Linux distributions use fancy GUI tools for software package

management, you can also perform package management from the command line.

The Debian-based Linux distributions use the dpkg utility to interface with the PMS from the command line. A front-end
to the dpkg utility is aptitude. It provides simple command line options for working with software packages in the dpkg
format.

The Red Hat-based Linux distributions are based on the rpm utility but use different front-end tools at the command
line.Red Hat and Fedora use yum for installing and managing software packages. The openSUSE distribution uses zypper
for managing software, while the Mandriva distribution uses urpm.

The chapter closed with a discussion on how to install software packages that are only distributed in source code tarballs.
The tar command allows you to unpack the source code files from the tarball, and then configure and make allowyou to

build the final executable program from the source code.
The next chapter takes a look at the different editors available in Linux distributions. As you get ready to start working on
shell scripts, it will come in handy to know what editors are available to use!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9
Working with Editors

In This Chapter

* Working with the vim editor
*Understanding emacs
® Getting comfortable with KDE

® Using the GNOME editor

Before you can start your shell scripting career, you'll need to know how to use at least one text editor in Linux. The more
you know about how to use these fancy features such as searching, cutting, and pasting, the quicker you'll be able to develop

your shell scripts. This chapter discusses the main text editors you'll seein the Linux world.

The vim Editor

If you're working in command line mode, you may want to become familiar with at least one text editor that operates in the
Linux console. The vieditor is the original editor used on Unix systems. It uses the console graphics mode to emulate a text-

editing window, allowing you to see the lines of your file, move around within the file, and insert, edit, and replace text.
While it is quite possibly the most complicated editor in the world (at least in the opinion of those who hate it), it provides
many features that have madeit a staple for Unix administrators for decades.

When the GNU Project ported the vieditor to the open source world, they chose to make some improvements to it.
Becauseit no longer resembled the original vieditor found in the Unix world, the developers also renamed it, to viimproved,

or vim.
To make life easier, almost all Linux distributions create an alias named (see Chapter 5) vi that points to the vim program:

$ alias vi
alias vi='vim’
$

This section walks you through the basics of using the vim editor to edit your text shell script files.

The Basics of vim
The vim editor works with data in a memory buffer. To start the vim editor, just type the vim command (or vi if there's an alias)

and the name of the file you want to edit:

$ vim myprog.c
If you start vim without a filename, or if the file doesn't exist, vim opens a new buffer area for editing. If you specify an
existing file on the command line, vim will read the entire contents of the file into a buffer area, where it is ready for editing,

as shown in Figure 9.1.

Figure 9.1 The vim main window

www.it-ebooks.info

#c09_fig_0001
#c09_fig_anc_0001
http://www.it-ebooks.info/

0 ® @ rich@rich-desktop: ~

File Edit View Terminal Help

Pinclude <stdio.h=

int main()

{ . -
int i;
int factorial = 1;
int number = 5;

for(i = 1; i <= number;: i++)
{

}

printf(“The factorial of %d is %d\n“, number, factorial);
return 8;

factorial = factorial * i;

"myprog.c” 16 lines, 237 characters

The vim editor detects the terminal type for the session (see Chapter 2) and uses a full-screen mode to use the entire
console window for the editor area.

The initial vim edit window shows the contents of the file (if there are any) along with a message line at the bottom of the
window. If the file contents don't take up the entire screen, vim places a tilde on lines that are not part of the file (as shown in

Figure 9.1).
The message line at the bottom indicates information about the edited file, depending on the status of the file, and the
default settingsin your viminstallation. If the file is new, the message [New File] appears.
The vim editor has two modes of operation:
*Normal mode
*Insert mode
When you first open afile (or start a new file) for editing, the vim editor enters normal mode. In normal mode, the vim
editor interprets keystrokes as commands (more on those later).
In insert mode, vim inserts every key you type at the current cursor location in the buffer. To enter insert mode, press thei

key.To get out of insert mode and go back into normal mode, press the Escape key on the keyboard.

In normal mode, you can move the cursor around the text area by using the arrow keys (as long as your terminal typeis
detected properly by vim). If you happen to be on a flaky terminal connection that doesn't have the arrow keys defined, all

hopeis not lost. The vim commands include commands for moving the cursor:
* hto move left one character
* j to move down oneline (the next line in the text)
* kto moveup oneline (the previous line in the text)

* 1 to move right one character
Moving around within large text files line by line can get tedious. Fortunately, vim provides a few commands to help
speed thingsalong:

www.it-ebooks.info

#c09_fig_anc_0001
#c09_fig_0001
http://www.it-ebooks.info/

PageDown (or Ctrl+F) to move forward one screen of data
PageUp (or Ctrl+B) to move backward one screen of data
G to move to the last line in the buffer

num Gto moveto the line number numin the buffer

* ggto move to thefirst linein the buffer

The vim editor has a special feature within normal mode called command line mode. The command line mode provides an
interactive command line where you can enter additional commands to control the actions in vim. To get to command line
mode, press the colon key in normal mode. The cursor moves to the message line, and a colon appears, waiting for you to

enter a command.

Within the command line mode are several commands for saving the buffer to the file and exiting vim:

* gto quitif no changes have been made to the buffer data

q! to quit and discard any changes made to the buffer data
w filenameto save the file under a different filename

w(q to save the buffer data to the file and quit

After seeing just a few basic vim commands you might understand why some people absolutely hate the vim editor. To be
ableto usevimto its fullest, you must know plenty of obscure commands. However, once you get a few of the basic vim
commands down, you can quickly edit files directly from the command line, no matter what type of environment you'rein.
Plus,once you get comfortable typing commands, it almost seems second-nature to type both data and editing commands,

and it becomes odd having to jump back to using a mouse!

Editing Data

While in insert mode, you can insert data into the buffer; however, sometimes you need to add or remove data after you've
already entered it into the buffer. While in normal mode, the vim editor provides several commands for editing the data in the

buffer. Table 9.1 lists some common editing commands for vim.

Table 9.1 vim Editing Commands

Command | Description

X Delete the character at the current cursor position.

dd Delete the line at the current cursor position.

dw Delete the word at the current cursor position.

ds$ Delete to the end of the line from the current cursor position.

J Delete the line break at the end of the line at the current cursor position (joins
lines).

u Undo the previous edit command.

a Append data after the current cursor position.

A Append data to the end of the line at the current cursor position.

r char Replace a single character at the current cursor position with char.

R text |Overwrite the data at the current cursor position with text, until you press Escape.

Some of the editing commands also allow you to use a numeric modifier to indicate how many times to perform the
command. For example, the command 2x deletes two characters, starting from the current cursor position, and the command

5dd deletes five lines, starting at the line from the current cursor position.

Caution

www.it-ebooks.info

#c09_tbl_0001
#c09_tbl_anc_0001
http://www.it-ebooks.info/

Be careful when trying to use the PC keyboard Backspace or Delete keys while in the vim
editor. The vim editor usually recognizes the Delete key as the functionality of the x
command, deleting the character at the current cursor location. Usually, the vim editor
doesn't recognize the Backspace key.

Copy and Paste

Astandard feature of modern editors is the ability to cut or copy data, then paste it elsewhere in the document. The vim
editor provides a way to do this.

Cutting and pasting is relatively easy. You've already seen the commands in Table 9.1 that can remove data from the
buffer. However, when vim removes data, it actually keeps it stored in a separate register. You can retrieve that data by using

the p command.

For example, you can use the dd command to delete a line of text, then move the cursor to the location in the buffer
where you want to placeit, and then use the p command. The p command inserts the text after the line at the current cursor
position. You can do this with any command that removes text.

Copying text is a little bit trickier. The copy command in vimis y (For yank). You can use the same second character with y as
with the d command (yw to yank a word, y$ to yank to the end of a line). After you yank the text, move the cursor to the
location where you want to place the text, and use the p command. The yanked text now appears at that location.

Yanking is tricky in that you can't see what happened because you're not affecting the text that you yank. You never
know for sure what you yanked until you paste it somewhere. But there's another feature in vim that helps you out with

yanking.

The visual mode highlights text as you move the cursor. You use visual mode to select text to yank for pasting. To enter
visual mode, move the cursor to the location where you want to start yanking, and press v. You'll notice that the text at the
cursor position is now highlighted. Next, move the cursor to cover the text you want to yank (you can even move down lines
to yank more than one line of text). Asyou move the cursor, vim highlights the text in the yank area. After you've covered the
text you want to copy, press they key to activate the yank command. Now that you've got the text in the register, just move

the cursor to where you want to paste, and use the p command.

Search and Substitute

You can easily search for data in the buffer using the vim search command. To enter a search string, press the forward slash (/)
key. The cursor goes to the message line, and vim displays a forward slash. Enter the text you want to find, and press the
Enter key. The vim editor responds with one of three actions:

®If the word appears after the current cursor location, it jumps to the first location where the text appears.
*|If the word doesn't appear after the current cursor location, it wraps around the end of the file to the first location
in the file where the text appears (and indicates this with a message).

® It produces an error message stating that the text was not found in the file.
To continue searching for the same word, press the forward slash character and then press the Enter key, or you can use
the n key, for next.
The substitute command allows you to quickly replace (substitute) one word for another in the text. To get to the
substitute command you must be in command line mode. The format for the substitute command is:

:s/old/new/
The vim editor jumps to the first occurrence of the text o1d and replaces it with the text new. There are a few
modifications you can make to the substitute command to substitute more than one occurrence of the text:

:s/old/new/gtoreplaceall occurrencesof oldin aline

:n,ms/old/new/g to replaceall occurrences of 01d between linenumbersnand m

:%s/0ld/new/g toreplaceall occurrences of 01d in the entire file

:%s/0ld/new/gc toreplace all occurrences of o1d in the entire file, but prompt for each occurrence

Asyou can see, for acommand line text editor, vim contains quite a few advanced features. Because every Linux
distribution includesit, it's a good idea to at least know the basics of the vim editor so that you can always edit scripts, no

matter where you are or what you have available.

The emacs Editor

The emacs editor is an extremely popular editor that appeared before even Unix was around. Developers liked it so much

www.it-ebooks.info

#c09_tbl_0001
http://www.it-ebooks.info/

they ported it to the Unix environment, and nowit's been ported to the Linux environment. The emacs editor started out life
asa console editor, much like vi, but has made the migration to the graphical world.

The emacs editor still provides the original console mode editor, but now it also has the ability to use a graphical X
Windows window to allow editing text in a graphical environment. Typically, when you start the emacs editor from a
command line, the editor will determine if you have an available X Window session and start in graphical mode. If you don't, it

will startin console mode.
This section describes both the console mode and graphical mode emacs editors so that you'll know how to use either one

if you want (or need) to.

Using emacs on the Console

The console mode version of emacs is another editor that uses lots of key commands to perform editing functions. The emacs
editor uses key combinationsinvolving the Control key (the Ctrl key on the PC keyboard) and the Meta key. In most PC
terminal emulator packages, the Meta key is mapped to the PC's Alt key. The official emacs documents abbreviate the Ctrl key
as C- and the Meta key as M-, Thus, if you enter a Ctrl-x key combination, the document shows C-x. This chapter will do the

same so asnot to confuseyou.

The Basics of emacs

To edit a file using emacs, from the command line, enter:

$ emacs myprog.c
The emacs console mode window appears with a short introduction and help screen. Don't be alarmed; as soon as you
press a key, emacs loads the file into the active buffer and displays the text, as shown in Figure 9.2.

Figure 9.2 Editing a file using the emacs editor in console mode
£ 98 rich@rich-desktop: ~

File Edit View Terminal Help
File Edit Options Buffers T
winclude <stdlo.n>

for(i = 1; 1 <= number; i++)

!
}

factorial = factorial * i:

printf{"The factorial of %d is %d\n", number, factorial});
return B:

-UU-:----F1 myprog.c

You'll notice that the top of the console mode window shows a typical menu bar. Unfortunately, you won't be able to use

www.it-ebooks.info

#c09_fig_0002
#c09_fig_anc_0002
http://www.it-ebooks.info/

the menu bar in console mode, only in graphical mode.

Note

If you have a graphical desktop but you prefer to use emacs in console mode
instead of X Windows mode, use the -nw option on the command line.

Unlike the vim editor, where you have to move into and out of insert mode to switch between entering commands and
inserting text, the emacs editor has only one mode. If you type a printable character, emacs inserts it at the current cursor

position. If you type a command, emacs executes the command.
To move the cursor around the buffer area, you can use the arrow keys and the PageUp and PageDown keys, assuming
that emacs detected your terminal emulator correctly. If not, there are commands for moving the cursor around:
* C-ptomoveup oneline (the previous line in the text).
* C-bto move left (back) one character.
* C-f to moveright (Forward) one character.
* C-nto movedown one line (the next line in the text).

There are also commands for making longer jumps with the cursor within the text:

M-f moves right (Forward) to the next word.

M-b moves left (backward) to the previous word.
* C-amovesto thebeginning of the current line.

C-e moves to the end of the current line.

M-a moves to the beginning of the current sentence.
M-e moves to the end of the current sentence.

M-v moves back one screen of data.

C-v moves forward one screen of data.

M-< to move the first line of the text.

* M->to move to the last line of the text.

There are several commands you should know for saving the editor buffer back into the file, and exiting emacs:
* C-x C-stosavethecurrent buffer contents to the file.
® C-zto exit emacsbut keep it running in your session so that you can come back to it.

®* C-x C-ctoexitemacsand stop the program.
You'll notice that two of these features require two key commands. The C-x command is called the extend command. This
provides yet another whole set of commands to work with.

Editing Data

The emacs editor is pretty robust about inserting and deleting text in the buffer. To insert text, just move the cursor to the
location where you want to insert the text and start typing. To delete text, emacs uses the Backspace key to delete the
character before the current cursor position and the Delete key to delete the character at the current cursor location.

The emacs editor also has commands for killing text. The difference between deleting text and killing text is that when you
kill text, emacs placesit in a temporary area where you can retrieve it (see the “Copying and Pasting” section). Deleted text is

gone forever.
There are a few commands for killing text in the buffer:
* M-Backspace to kill the word before the current cursor position
* M-d to kill the word after the current cursor position
* C-k tokill from the current cursor position to the end of the line

* M-k to kill from the current cursor position to the end of the sentence

The emacs editor also includes a fancy way of mass-killing text. Just move the cursor to the start of the area you want to
kill and press either the C-@ or C-Spacebar keys. Then move the cursor to the end of the area you want to kill and press the

C-w command keys. All of the text between the two locations is killed.
If you happen to make a mistake when killing text, the C-u command will undo the kill command, and return the data the

www.it-ebooks.info

http://www.it-ebooks.info/

stateit wasin beforeyou killed it.

Copying and Pasting
You've seen how to cut data from the emacs buffer area; nowit's time to see how to paste it somewhere else. Unfortunately,
if you use the vim editor, this process may confuse you when you use the emacs editor.

In an unfortunate coincidence, pasting data in emacs is called yanking. In the vim editor, copying is called yanking, which is
what makes this a difficult thing to remember if you happen to use both editors.

After you kill data using one of the kill commands, move the cursor to the location where you want to paste the data, and
use the C-y command. This yanks the text out of the temporary area and pastes it at the current cursor position. The C-y
command yanks the text from the last kill command. If you've performed multiple kill commands, you can cycle through

them using the M-y command.
To copy text, just yank it back into the same location you killed it from and then move to the new location and use the C-
y command again. You can yank text back as many times as you desire.

Searching and Replacing
Searching for text in the emacs editor isdone by using the C-s and C-r commands. The C-s command performs a forward
searchin the buffer area from the current cursor position to the end of the buffer, whereas the C-r command performs a
backward searchin the buffer area from the current cursor position to the start of the buffer.

When you enter either the C-s or C-r command, a prompt appears in the bottom line, querying you for the text to
search. There are two types of searches that emacs can perform.

In an incremental search, the emacs editor performs the text searchin real-time mode as you type the word. When you
type the first letter, it highlights all of the occurrences of that letter in the buffer. When you type the second letter, it
highlights all of the occurrences of the two-letter combination in the text, and so on until you complete the text you're

searching for.

In a non-incremental search, press the Enter key after the C-s or C-r commands. This locks the search query into the
bottom line area and allows you to type the search text in full before searching.

To replace an existing text string with a new text string, you have to use the M-x command. This command requires a text
command, along with parameters.

The text command isreplace-string. After typing the command, press the Enter key, and emacs will query you for the
existing text string. After entering that, press the Enter key again, and emacs will query you for the new replacement text

string.

Using Buffers in emacs
The emacs editor allows you to edit multiple files at the same time by having multiple buffer areas. You can load filesinto a

buffer and switch between buffers while editing.

To load a new fileinto a buffer while you're in emacs, use the C-x C-f key combination. This is the emacs Find a File mode.
It takes you to the bottom line in the window and allows you to enter the name of the file you want to start to edit. If you
don't know the name or location of the file, just press the Enter key. This brings up a file browser in the edit window, as shown

in Figure 9.3.

Figure 9.3 The emacs Find a File mode browser

www.it-ebooks.info

#c09_fig_0003
#c09_fig_anc_0003
http://www.it-ebooks.info/

2 ® @ rich@rich-desktop: ~

File Edit View Terminal Help

File Edit Options Buffers Tools Operate Mark Regexp Immediate Subdir

Py iu '
LILI

total used in directory 544 available 56310608

drwxr-xr-x 37 rich rich 40896 2010-10-67 19:38 .

drwxr-xr-x 4 root root 4096 2010-69-23 19:01 ..

drwx------ 2 rich rich 409 2019-89-22 12:180 .aptitud:

di SAATELL 1 rich rich 2831 2010-89-27 28:32 .bash history
-rW-r--r-- 1 rich rich 220 2016-85-10 18:36 .bash logout
-rw-r--r-- 1 rich rich 3163 2016-685-18 18:36 .bashrc

drwx------ 5 rich rich 4896 2810-18-87 19:27 .cache
drwx------ 3 rich rich 4096 2010-89-11 18:34 .complz
drwxr-xr-x 18 rich rich 4096 2010-89-11 18:32 .config
drwx------ 3 rich rich 489 20810-85-10 18:47 .dbus
druxr-xr-x 2 rich rich 4696 2010-89-22 12:18 .debtags
drwxr-xr-x 2 rich rich 4096 2010-89-11 18:31 Desktop
-W-r--r-- 1 rich rich 41 2010-18-87 19:27 .dmrc
drwxr-xr-x 2 rich rich 4096 2810-85-16 18:47 Document
drwxr-xr-x 2 rich rich 4896 2010-89-22 13:46 Download
3

drwxr-xr-x rich rich 40896 2010-18-87 19:38B .emacs.d
“TW=====- 1 rich rich 16 2010-85-18 18:47 .esd auth
-rw-r--r-- 1 rich rich 179 2010-85-18 18:36 examples.desktop
druxr-xr-x 2 rich rich 46896 2810-86-28 26:89 .fontconfig

lop LS

From here, you can browse to the file you want to edit. To traverse up a directory level, go to the double dot entry, and
press the Enter key. To traverse down a directory, go to the directory entry and press the Enter key. When you've found the

file you want to edit, just press the Enter key, and emacs will load it into a new buffer area.

You can list the active buffer areas by pressing the C-x C-b extended command combination. The emacs editor splits the
editor window and displays a list of buffers in the bottom window. There are always two buffers that emacs providesin

addition to your main editing buffer:
® Ascratch area called *scratch*

* Amessage area called *Messages*

The scratch area allows you to enter LISP programming commands as well as enter notes to yourself. The message area
shows messages generated by emacs while operating. If any errors occur while using emacs, they will appear in the message

area.

There are two ways to switch to a different buffer area in the window:
o C-x o to switchto the buffer listing window. Use the arrow keys to move to the buffer area you want and press the
Enter key.
®* C-x btotypeinthename of the buffer area you want to switchto.

When you select the option to switch to the buffer listing window, emacs will open the buffer areain the new window
area. The emacs editor allows you to have multiple windows open in a single session. The following section discusses how to

manage multiple windows in emacs.

Using Windows in Console Mode emacs

The console mode emacs editor was developed many years before the idea of graphical windows appeared. However, it was
advanced for its time, in that it could support multiple editing windows within the main emacs window.

You can split the emacs editing window into multiple windows by using one of two commands:

www.it-ebooks.info

#c09_fig_anc_0003
http://www.it-ebooks.info/

* C-x 2 splitsthe window horizontally into two windows.

* C-x 3splitsthe window vertically into two windows.

To move from one window to another, use the C-x o command. You'll notice that when you create a new window, emacs
uses the buffer area from the original window in the new window. Once you move into the new window, you can use the C-x

C-f command to load a newfile, or one of the commands to switch to a different buffer area in the new window.
To close awindow, move to it and use the C-x 0 (that's a zero) command. If you want to close all of the windows except

theoneyou'rein,usethe C-x 1 (that'sanumerical one) command.

Using emacs in X Windows
If you use emacs from an X Windows environment (such as the KDE or GNOME desktops), it will start in graphical mode, as
shown in Figure 9.4.

Figure 9.4 The emacs graphical window

www.it-ebooks.info

#c09_fig_0004
#c09_fig_anc_0004
http://www.it-ebooks.info/

I:‘: -*-.F:-_[l:l::}:'ljr:-g Places E.':r'-_:!:c-n'

D& ® emacs@rich-desktop

» Edit Options Buffers

s _ o AL0D0AEXKE
4 | |

int main()

{
int 1:;
int factorial
int number = 5:

"
=

for(i = 1; 1 <= number; i++)
{

factorial = factorial * i;

" printf("The “torial of %d is %d\n", number, factorial);

--:--- myprog.c Top L1 (C/1 Abbrev)----------c-n--.
ﬂelcame to GNU Emacs, one component of the GNU/Linux operatil
To follow a link, click Mouse-1 on it, or move to it and typ«
To quit a partially entered command, type Control-g.

Important Help menu items:

Emacs Tutorial Learn basic Emacs keystroke commands

Read the Emacs Manual View the Emacs manual using Info

(Non)Warranty GNU Emacs comes with ABSOLUTELY NO Wi
» Copying Conditions Conditions for redistributing and ch:

] richi@rich-desktop: ~ [Update Manager] & emacs@nch-desktop

If you've already used emacs in console mode, you should be fairly Familiar with the X Windows mode. All of the key
commands are available as menu bar items. The emacs menu bar contains the following items:

*File: Allows you to open files in the window, create new windows, close windows, save buffers, and print buffers.

*Edit: Allows you to cut and copy selected text to the clipboard, paste clipboard data to the current cursor position,
search for text, and replace text.

* Options: Provides settings for many more emacs features, such as highlighting, word wrap, cursor type, and setting
fonts.

® Buffers: Lists the current buffers available and allows you to easily switch between buffer areas.

*Tools: Provides access to the advanced featuresin emacs, such as the command line interface access, spell checking,
comparing text between files (called diff), sending an e-mail message, calendar, and the calculator.

* Help: Provides the emacs manual online for access to help on specific emacs functions.

In addition to the normal graphical emacs menu bar items, there is often a separate item specific to the file typein the
editor buffer. Figure 9.4 shows opening a C program, so emacs provided a C menu item, allowing advanced settings for

www.it-ebooks.info

#c09_fig_anc_0004
#c09_fig_0004
http://www.it-ebooks.info/

highlighting C syntax, and compiling, running, and debugging the code from a command prompt.

The graphical emacs window is an example of an older console application making the migration to the graphical world.
Now that many Linux distributions provide graphical desktops (even on servers that don't need them), graphical editors are
becoming more commonplace. Both of the popular Linux desktop environments (KDE and GNOME) have also provided

graphical text editors specifically for their environments, which are covered in the rest of this chapter.

The KDE Family of Editors

If you're using a Linux distribution that uses the KDE desktop (see Chapter 1), there are a couple of options for you when it
comes to text editors. The KDE project officially supports two different text editors:

® KWrite: Asingle-screen text-editing package

® Kate: A full-featured, multi-window text-editing package

Both of these editors are graphical text editors that contain many advanced features. The Kate editor provides more
advanced features, plus extra niceties not often found in standard text editors. This section describes each of the editors and

shows some of the features that you can use to help withyour shell script editing.

The KWrite Editor

The basic editor for the KDE environment is KWrite. It provides simple word-processing—style text editing, along with support
for code syntax highlighting and editing. The default KWrite editing window is shown in Figure 9.5.

Figure 9.5 The default KWrite window editing a shell script program
i (- factorialsh - KWrite v
File Edit View Tools Seftings Help

@ 3 d ©

Mew Open Save SaveAs Close Lirvdo

factorial=1
number=5
for {((i=l: 1 <= fnumber: i++ 1)
{
factorial="expr $tactorial * $1°

echo The factorial of $number is $factorial.|

Line; 11 Col: 45 INS LINE Bash factorial.sh

You can't tell from Figure 9.5, but the KWrite editor recognizes several types of programming languages and uses color
coding to distinguish constants, functions, and comments. Also, notice that the for loop has an icon that links the opening

www.it-ebooks.info

#c09_fig_0004
#c09_fig_0005
#c09_fig_anc_0005
#c09_fig_0005
http://www.it-ebooks.info/

and closing braces. This is called a folding marker. By clicking the icon, you can collapse the function into a single line. Thisis a
great feature when working through large applications.

The KWrite editing window provides full cut and paste capabilities, using the mouse and the arrow keys. As in a word
processor, you can highlight and cut (or copy) text anywhere in the buffer area and paste it at any other place.

To edit a file using KWrite, you can either select KWrite from the KDE menu system on your desktop (some Linux
distributions even create a Panel icon for it) or start it from the command line prompt:

$ kwrite factorial.sh

The kwr ite command has several command line parameters you can use to customize how it starts:

--stdin causes KWrite to read data from the standard input device instead of a file.
* --encoding specifies a character encoding type to use for the file.
* --line specifiesaline number in the file to start at in the editor window.

- -column specifies a column number in the file to start at in the editor window.
The KWrite editor provides both a menu bar and a toolbar at the top of the edit window, allowing you to select features
and change configuration settings of the KWrite editor.

The menu bar contains the following items:
*File to load, save, print, and export text from files.
® Edit to manipulate text in the buffer area.

* View to manage how the text appears in the editor window.
*Bookmarks for handling pointers to return to specific locations in the text (this option may need to be enabled in
the configurations).

* Tools contains specialized features to manipulate the text.
*Settings for configuring the way the editor handles text.

*Help for getting information about the editor and commands.
The Edit menu bar item provides commands for all of your text-editing needs. Instead of having to remember cryptic key
commands (which by the way, KWrite also supports), you can just select items in the Edit menu bar, as shown in Table 9.2.

Table 9.2 The KWrite Edit Menu Items

Item Description

Undo Reverses the last action or operation

Redo Reverses the last undo action

Cut Deletes the selected text and places it in the clipboard

Copy Copies the selected text to the clipboard

Copy as HTML Copies the selected text to the clipboard as HTML code

Paste Inserts the current contents of the clipboard at the current cursor
position

Select All Selects all text in the editor

Deselect Deselects any text that is currently selected

Overwrite Mode Toggles insert mode to overwrite mode, replacing text with new
typed text instead of just inserting the new text

Find Produces the Find Text dialog box, which allows you to customize a
text search

www.it-ebooks.info

#c09_tbl_0002
#c09_tbl_anc_0002
http://www.it-ebooks.info/

Find Next Repeats the last find operation forward in the buffer area

Find Previous Repeats the last find operation backwards in the buffer area

Replace Produces the Replace With dialog box, which allows you to customize
a text search and replace

Find Selected Finds the next occurrence of the selected text

Find Selected Backwards | Finds the previous occurrence of the selected text

Go to Line Produces the Goto dialog box, which allows you to enter a line
number. The cursor moves to the specified line

The Find feature has two modes—a normal mode, which can perform simple text searches, and a power searchand replace
mode, where you can do advanced searching and replacing if necessary. You toggle between the two modes using the green

arrow in the Find section, as shown in Figure 9.6.

Figure 9.6 The KWrite Find section

1 (- factorialsh - KWrite vl (a
File Edt View Tools Settings Halp
@ L
= H B QO
Mew Open Save Save Ag Cloge Lndo
factorial=l
numberss
for {((i=l: 1 <= fnumber: i++ })
{
factorial="expr §fTactorial * $1°
]
echo The Tactorial of Snumber is ffactorial
|
O F vil $ Py
Replace: w
Plain text v |+ Match case Options w
Line; 4 Col: & INS LINE Bash factonal.sh

The Find power mode allows you to search not only with words, but with a regular expression (discussed in Chapter 19)
for the search. There are a few other optionsyou can use to customize the search as well, indicating, for example, whether or

not to perform a case-sensitive search, or to look only for whole words instead of finding the text within words.
The Tools menu bar item provides several handy features for working with the text in the buffer area. Table 9.3 describes

www.it-ebooks.info

#c09_fig_0006
#c09_fig_anc_0006
#c09_tbl_0003
http://www.it-ebooks.info/

the tools available in KWrite.

Table 9.3 The KWrite Tools

Tool

Description

Read Only Mode

Locks the text so that no changes can be made while in the editor

Encoding

Sets the character set encoding used by the text

Spelling

Starts the spell-check program at the start of the text

Spelling (From cursor)

Starts the spell-check program from the current cursor position

Spellcheck Selection || Starts the spell-check program only on the selected section of text
Indent Increases the paragraph indentation by one
Unindent Decreases the paragraph indentation by one

Clean Indentation

Returns all paragraph indentation to the original settings

Align Forces the current line or the selected lines to return to the default
indentation settings

Uppercase Sets the selected text, or the character at the current cursor position,
to upper case

Lowercase Sets the selected text, or the character at the current cursor position,
to lower case

Capitalize Capitalizes the first letter of the selected text or the word at the
current cursor position

Join Lines Combines the selected lines, or the line at the current cursor position,

and the next line into one line

Word Wrap Document

Enable word wrapping in the text. If a line extends past the editor
window edge, the line continues on the next line

There are lots of tools for a simple text editor!

The Settings menu includes the Configure Editor dialog box, shown in Figure 9.7.

Figure 9.7 The KWrite Configure Editor dialog box

www.it-ebooks.info

#c09_tbl_0003
#c09_tbl_anc_0003
#c09_fig_0007
#c09_fig_anc_0007
http://www.it-ebooks.info/

i () Cconfigure - KWrite

. Appearance

Appearance

e"ls
¥

Dynamic Word Wrap

Fants & Colors

/

Ed-iling Borders
H | Show folding markers (if available)
0

Open/Save Show icon border

show line numbers

‘4 Show scrollbar marks
Extensions T

Advanced
Enable power user mode (KDE 3 moda)

show indentation lines

Highlight range betwzen selected brackets

« 0K || @ Cancal

The Configuration dialog box usesicons on the left side for you to select the feature in KWrite to configure. When you
select an icon, the right side of the dialog box shows the configuration settings for the feature.

The Appearance feature allows you to set several features that control how the text appearsin the text editor window.
You can enable word wrap, line numbers (great for programmers), and the folder markers from here. With the Fonts &
Colors feature, you can customize the complete color scheme for the editor, determining what colors to make each category

of text in the program code.

The Kate Editor

The Kate editor is the flagship editor for the KDE Project. It uses the same text editor as the KWrite application (so most of
those features are the same), but it incorporates lots of other featuresinto asingle package.

The first thing you'll notice when you start the Kate editor is that the editor doesn't start! Instead, you get a dialog box,
as shown in Figure 9.8.

Figure 9.8 The Kate session dialog box

www.it-ebooks.info

#c09_fig_anc_0007
#c09_fig_0008
#c09_fig_anc_0008
http://www.it-ebooks.info/

() session Chooser - Kate AEE |

L

=assion Name Opan Documents
Default Session 1

| Always use this choice

¥ New Session | = Open Session | Ed Quit

The Kate editor handles files in sessions. You can have multiple files open in a session, and you can have multiple sessions
saved. When you start Kate, it provides you with the choice of which session to return to. When you close your Kate session, it
remembers the documents you had open and displays them the next time you start Kate. This allows you to easily manage
files from multiple projects by using separate workspaces for each project.

After selecting a session, you'll see the main Kate editor window, shown in Figure 9.9.

Figure 9.9 The main Kate editing window

www.it-ebooks.info

#c09_fig_anc_0008
#c09_fig_0009
#c09_fig_anc_0009
http://www.it-ebooks.info/

() Defautt Session: factorial.c - Kate —
File Edt View Go Bookmarks Sessions Tools Settings Help

“H @« » H Hd O 9

Mew Open Back Forward Save Saveds — Cloge Undo Redc

2 SEECCC ¢ include <stdio. >
:
3 int maini)
3 N
int i;
;_' int factorial = 1;
% int number = 5;
fie] for(1i = 1; 1 <= number; 1++)
: N
w factorial = factorial * 1.
- }
=
[
- printf("The factorial of %d is %d'n“. number, fa
returm &;
Il
<|
Line; 17 Cal; 1 INS LINE factonal.c

& Terminal @& Find in Files

The left side frame shows the documents currently open in the session. You can switch between documents just by clicking
the document name. To edit a new file, click the Filesystem Browser tab on the left side. The left frame is now a full graphical

filesystem browser, allowing you to graphically browse to locate your files.

Agreat feature of the Kate editor is the built-in terminal window, shown in Figure 9.10.

Figure 9.10 The Kate built-in terminal window

www.it-ebooks.info

#c09_fig_anc_0009
#c09_fig_0010
#c09_fig_anc_0010
http://www.it-ebooks.info/

" Default Session: factorial.sh — Kate
File Edt View Go Bookmarks Sessions Jools Settings Help

° B ¢ » H KA O

Mew Open Back Forward Save Save As Cloge He

z factorial.c F
E Tactorial sh '
= factorial=l
[=] " =
8 number=5
for ((i=1; i <= $number; i++))
8 4
g
2 factorial="expr $factorial * $i°
@)
=
e echo The Tactorial of $number is $Tactorial
w
m
[T
E

[
Line: 1 Cal: 1 INS LINE factonal sh

richi@localhost;=/Docunents> ./ factorial.sh
The factorial of 5 is 1208
rich@localhost:~/Documents=

& Terminal @& Find in Files

The terminal tab at the bottom of the text editor window starts the built-in terminal emulator in Kate (using the KDE
Konsole terminal emulator). This feature horizontally splits the current editing window, creating a new window with Konsole
running in it. You can now enter command line commands, start programs, or check on system settings without having to

leave the editor! To close the terminal window, just type exit at the command prompt.
Asyou can tell from the terminal feature, Kate also supports multiple windows. The Window menu bar item provides
optionsto:

® Create a new Kate window using the current session
* Split the current window vertically to create a new window
* Split the current window horizontally to create a new window

® Close the current window
To set the configuration settings in Kate, select the Configure Kate item under the Settings menu bar item. The
Configuration dialog box, shown in Figure 9.11, appears.

Figure 9.11 The Kate configuration settings dialog box

www.it-ebooks.info

#c09_fig_anc_0010
#c09_fig_0011
#c09_fig_anc_0011
http://www.it-ebooks.info/

[2) " Configure — Kate

File |
S Application Session Management
) Geaneral !

New (1 Sessions |

- Document List Elements of Sessions
B - o Plugins

E - B Terminal v Include window configuration

E k= File Selectol
= - Editor Component Behavior on Application Startup

- .| Appearance

= Ty Fonts & Colors Start new session

B | Editing _

a kel Open/Save Load last-used session
(¥ . .

= L Extansions * Manually choose a session

e

4]

E‘ Behavior on Application Exit or Session
e Do not save session
=

& Save s255i0n
Ask user
H Help ¥ OK

You'll notice that the Editor settings area is exactly the same as for KWrite. This is because the two editors share the same
text editor engine. The Application settings area allows you to configure settings for the Kate items, such as controlling
sessions (shown in Figure 9.11), the documents list, and the filesystem browser. Kate also supports external plug-in

applications, which can be activated here.

The GNOME Editor

If you're working on a Linux system using the GNOME desktop environment, there's a graphical text editor that you can use
as well. The gedit text editor is a basic text editor, with a few advanced features thrown in just for fun. This section walks you

through the features of gedit and demonstrates how to useit for your shell script programming.

Starting gedit

Most GNOME desktop environments include gedit in the Accessories Panel menu item. If you can't find gedit there, you can
start it from the command line prompt:

$ gedit factorial.sh myprog.c

When you start gedit with multiple files, it loads all of the files into separate buffers and displays each one as a tabbed

www.it-ebooks.info

=watch

W Apply

#c09_fig_anc_0011
#c09_fig_0011
http://www.it-ebooks.info/

window within the main editor window, as shown in Figure 9.12.

Figure 9.12 The gedit main editor window

2 @ @ factorial.sh (~) - gedit

File Edit view Search Tools Documents Help

& aoren v Dlsave Q G
| |} Documents X factorial.sh % | myprog.c %
factorial.sh #!/bin/bash
mMyprog.c

factorial=1
number=5

for ((i=1; 1 <= $number: i++))

{
}

factorial="expr $factorial * $i

echo The factorial of $number is $factorial.

P

shy TabWidth: 8v Ln1l,Coall INS i

The left frame in the gedit main editor window shows the documents you're currently editing. The right side shows the
tabbed windows that contain the buffer text. If you hover your mouse pointer over each tab, a dialog box appears, showing

the full pathname of the file, the MIME type, and the character set encoding it uses.

Basic gedit Features

In addition to the editor windows, gedit uses both a menu bar and toolbar that allow you to set features and configure
settings. The toolbar provides quick access to menu bar items. The menu bar items available are:

*File for handling new files, saving existing files, and printing files

* Edit to manipulate text in the active buffer area and set the editor preferences

*View to set the editor features to display in the window and to set the text highlighting mode
®Search to find and replace text in the active editor buffer area

*Tools to access plug-in toolsinstalled in gedit

* Documents to manage files open in the buffer areas

® Help to access the full gedit manual

There shouldn't be anything too surprising here. The File menu provides the option Open Location, which allows you to
open a file from the network using the standard Uniform Resource Identifier (URI) format popular in the World Wide Web

www.it-ebooks.info

#c09_fig_0012
#c09_fig_anc_0012
http://www.it-ebooks.info/

world. This format identifies the protocol used to access the file (such as HTTP or FTP), the server where the file is located, and
the complete path on the server to access the file.

The Edit menu contains the standard cut, copy, and paste functions, along with a neat feature that allows you to easily
enter the date and time in the text in several different formats. The Search menu provides a standard find function, which
produces a dialog box where you can enter the text to find, along with the capability to select how the find should work
(matching case, matching the whole word, and the search direction). It also provides an incremental search feature, which

works in real-time mode, finding text as you type the characters of the word.

Setting Preferences

The Edit menu contains a Preferences item, which produces the gedit Preferences dialog box, shown in Figure 9.13.

Figure 9.13 The gedit Preferences dialog box

c — —

£ gedit Preferences

o Open : Ck
~ - view Editor Font & Colors Plugins :

B L T — ———————

| || Documents _
: Text Wrapping
factorial.sh «f Enable text wrapping
Myprog.c
o Do not split words over two lines
Line Numbers
Display line numbers
Current Line
Highlight current line Lial
Right Margin
Display right margin
Bracket Matching
Highlight matching bracket
-.ﬂ |
| Help | Close | INS

This is where you can customize the operation of the gedit editor. The Preferences dialog box contains five tabbed areas
for setting the features and behavior of the editor.

View

The View tab provides options for how gedit displays the text in the editor window:

* Text Wrapping: Determines how to handle long lines of text in the editor. The Enabling text wrapping option wraps
long lines to the next line of the editor. The Do Not Split Words Over Two Lines option prevents the auto-inserting

www.it-ebooks.info

#c09_fig_0013
#c09_fig_anc_0013
http://www.it-ebooks.info/

of hyphensinto long words, to prevent them being split between two lines.

°Line Numbers: Displays line numbers in the left margin in the editor window.

* Current Line: Highlights the line where the cursor is currently positioned, enabling you to easily find the cursor
position.

*Right Margin: Enables the right margin and allows you to set how many columns should bein the editor window.
The default value is 80 columns.

*Bracket Matching: When enabled, highlights bracket pairsin programming code, allowing you to easily match
bracketsin if-then statements, for and while loops, and other coding elements that use brackets.

The line-numbering and bracket-matching features provide an environment for programmers to troubleshoot code
that's not often found in text editors.

Editor

The Editor tab provides options for how the gedit editor handles tabs and indentation, along with how files are saved:
* Tab Stops: Sets the number of spaces skipped when you press the Tab key. The default value is eight. This feature
also includes a checkbox that, when selected, inserts spaces instead of a tab skip.
* Automatic Indentation: When enabled, causes gedit to automatically indent lines in the text for paragraphs and
code elements (suchas if-then statementsand loops).
*File Saving: Provides two features for saving files: whether or not to create a backup copy of the file when opened
in the edit window, and whether or not to automatically save the file at a preselected interval.
The auto-save featureis a great way to ensure that your changes are saved on a regular basis to prevent catastrophes
from crashes or power outages.

Font & Colors

The Font & Colors tab allows you to configure (not surprisingly) two items:
*Font: Allows you to select the default font of Monospace 10, or to select a customized font and font size froma
dialog box.
* Color Scheme: Allows you to select the default color scheme used for text, background, selected text, and
selection colors, or choose a custom color for each category.
The default colors for gedit normally match the standard GNOME desktop theme selected for the desktop. These colors
will change to match the scheme you select for the desktop.

Plug-ins
The Plugins tab provides control over the plug-ins used in gedit. Plug-ins are separate programs that can interface with gedit
to provide additional functionality. The Plugins tab is shown in Figure 9.14.

Figure 9.14 The gedit Plugins Preferences tab

www.it-ebooks.info

#c09_fig_0014
#c09_fig_anc_0014
http://www.it-ebooks.info/

gedit Preferences

a Open)
. - View Editor Font & Colors Plugins Ck

| ‘| Documents _ _
Active Plugins:

factonial.sh |
Change Case
myprog.c ¥ Changes the case of selected text.

Document Statistics
Analyzes the current document and re...

External Tools
Execute external commands and shell ...

"ﬂ .:'r

L5
3 File Browser Pane
' M3 Eacy file access from the side pane

Insert Date/Time rial.
Inserts current date and time at the cu...

Modelines
Emacs, Kate and Vim-style modelines ...

Python Console
Interactive Python console standing in ...

Nuirk Nnan ¥

. About Plugin |
. Help _ Close | INS

Several plug-ins are available for gedit, but not all of them are installed by default. Table 9.4 describes the plug-ins that
are currently available in gedit.

_BE . §

Table 9.4 The gedit Plug-ins

Plug-in Description

Change Case Changes the case of selected text

Document Statistics | Reports the number of words, lines, characters, and non-space characters

External Tools Provides a shell environment in the editor to execute commands and
scripts

File Browser Pane | Provides a simple file browser to make selecting files for editing easier

Insert Date/Time Inserts the current date and time in several formats at the current cursor
position
Modelines Provides emacs-style message lines at the bottom of the editor window

www.it-ebooks.info

#c09_fig_anc_0014
#c09_tbl_0004
#c09_tbl_anc_0004
http://www.it-ebooks.info/

Python Console Provides an interactive console at the bottom of the editor window for
entering commands using the Python programming language

Quick Open Opens files directly in the gedit edit window

Snippets Allows you to store often-used pieces of text for easy retrieval anywhere
in the text

Sort Quickly sorts the entire file or selected text

Spell Checker Provides dictionary spellchecking for the text file

Tag List Provides a list of commonly used strings you can easily enter into your
text

Plug-ins that are enabled show a checkmark in the checkbox next to their name. Some plug-ins, such as the External Tools
plug-in, also provide additional configuration features after you select them. It allows you to set a shortcut key to start the

terminal, where gedit displays output, and the command to use to start the shell session.

Unfortunately, not all plug-ins areinstalled in the same place in the gedit menu bar. Some plug-ins appear in the Tools
menu bar item (such as the Spell Checker and External Tools plug-ins), while others appear in the Edit menu bar item (such as

the Change Case and Insert Date/Time plug-ins).

Summary

When it comes to creating shell scripts, you'll need some type of text editor. Several popular text editors are available for the
Linux environment. The most popular editor in the Unix world, vi, has been ported to the Linux world as the vim editor. The
vim editor provides simple text editing from the console, using a rudimentary full-screen graphical mode. The vim editor
provides many advanced editor features, such as text searching and replacement.

Another popular Unix editor, emacs, has also made its way to the Linux world. The Linux version of emacs has both console
and an X Windows graphical mode, making it the bridge between the old world and the new. The emacs editor provides

multiple buffer areas, allowing you to edit multiple files simultaneously.

The KDE Project created two editors for use in the KDE desktop. The KWrite editor is a simple editor that provides the
basic text-editing features, along with a few advanced features such as syntax highlighting for programming code, line
numbering, and code folding. The Kate editor provides more advanced features for programmers. One great feature in Kate
is a built-in terminal window. You can open a command line interface session directly in the Kate editor without having to
open a separate terminal emulator window. The Kate editor also allows you to open multiple files, providing different

windows for each opened file.

The GNOME Project also provides a simple text editor for programmers. The gedit editor is a basic text editor that
provides some advanced features such as code syntax highlighting and line numbering, but it was designed to be a bare-
bones editor. To spruce up the gedit editor, developers created plug-ins, which expand the features available in gedit. Current

plug-insinclude a spell-checker, a terminal emulator, and a file browser.

This wraps up the background chapters on working with the command line in Linux. The next part of the book divesinto
the shell-scripting world. The next chapter starts off by showing you how to create a shell script fileand howto run it on your
Linux system. It will also show you the basics of shell scripts, allowing you to create simple programs by stringing multiple

commands together into a script you can run.

www.it-ebooks.info

http://www.it-ebooks.info/

Part Il
Shell Scripting Basics

In This Part
Chapter 10: Basic Script Building

Chapter 11: Using Structured Commands
Chapter 12: More Structured Commands
Chapter 13:Handling User Input
Chapter 14: Presenting Data

Chapter 15: Script Control

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10
Basic Script Building

In This Chapter

* Basic script building
* Using multiple commands

® Creating a script file

Now that we've covered the basics of the Linux system and the command line, it's time to start coding. This chapter discusses
the basics of writing shell scripts. You'll need to know these basic concepts before you can start writing your own shell script

masterpieces.

Using Multiple Commands

So far you've seen how to use the command lineinterface (CLI) prompt of the shell to enter commands and view the
command results. The key to shell scripts is the ability to enter multiple commands and process the results from each
command, even possibly passing the results of one command to another. The shell allows you to chain commands together

into asingle step.

If you want to run two commands together, you can enter them on the same prompt line, separated with a semicolon:

$ date ; who

Mon Feb 21 15:36:09 EST 2011

Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26

user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0)
$

Congratulations, you just wrote a shell script! This simple script uses just two bash shell commands. The date command
runs first, displaying the current date and time, followed by the output of the who command, showing who is currently
logged on to the system. Using this technique, you can string together as many commands as you wish, up to the maximum

command line character count of 255 characters.

While using this technique is fine for small scripts, it has a major drawback in that you have to enter the entire command at
the command prompt every time you want to run it. Instead of having to manually enter the commands onto a command
line, you can combine the commands into a simple text file. When you need to run the commands, just simply run the text file.

Creating a Script File

To place shell commandsin a text file, first you'll need to use a text editor (see Chapter 9) to create a file, then enter the
commands into thefile.

When creating a shell script file, you must specify the shell you are using in the first line of the file. The format for this is:

#!/bin/bash

In anormal shell script line, the pound sign (#) is used as a comment line. Acomment line in a shell script isn't processed by
the shell. However, the first line of a shell script file is a special case, and the pound sign followed by the exclamation point

tells the shell what shell to run the script under (yes, you can be using a bash shell and run your script using another shell).
After indicating the shell, commands are entered onto eachline of the file, followed by a carriage return. As mentioned,
comments can be added by using the pound sign. An example looks like this:

#!/bin/bash
This script displays the date and who's logged on

www.it-ebooks.info

http://www.it-ebooks.info/

date

who

And that's all thereis to it. You can use the semicolon and put both commands on the same line if you want to, butin a
shell script, you can list commands on separate lines. The shell will process commands in the order in which they appear in the

file.

Also notice that another line was included that starts with the pound symbol and adds a comment. Lines that start with
the pound symbol (other than the first #! line) aren't interpreted by the shell. This is a great way to leave comments for
yourself about what's happening in the script, so when you come back to it two years later you can easily remember what you

did.
Save this scriptin afile called test1,and you are almost ready. There are still a couple of things to do beforeyou can run
your new shell script file.

If you try running the file now, you'll be somewhat disappointed to see this:

$ testl
bash: test1: command not found
$

The first hurdle to jump is getting the bash shell to find your script file. If you remember from Chapter 5, the shell uses an
environment variable called PATH to find commands. A quick look at the PATH environment variable demonstrates our

problem:

$ echo $PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin
:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin $
The PATH environment variable is set to look for commands only in a handful of directories. To get the shell to find the
test1 script, we need to do one of two things:
® Add the directory where our shell script file is located to the PATH environment variable.

* Use an absolute or relative filepath to reference our shell script file in the prompt.
Tip
Some Linux distributions add the $HOME/bin directory to the PATH environment variable.

This creates a place in every user's HOME directory to place files where the shell can find
them to execute.

For this example, we'll use the second method to tell the shell exactly where the script file is located. Remember that to
reference afilein the current directory, you can use the single dot operator in the shell:

$./test1
bash: ./test1: Permission denied
$

Now the shell found the shell script file just fine, but there's another problem. The shell indicated that you don't have
permission to execute the file. A quick look at the file permissions should show what's going on here:

$ 1s -1 test1
-rW-r--r-- 1 user user 73 Sep 24 19:56 test1

$

When the new test 1 file was created, the umask value determined the default permission settings for the newfile.
Because the umask variable is set to 022 (see Chapter 6), the system created the file with only read/write permissions for the

file'sowner.

The next step is to give the file owner permission to execute the file, using the chmod command (see Chapter 6):

$ chmod u+x test1

$./testl
Mon Feb 21 15:38:19 EST 2011
Christine tty2 2011-02-21 15:26

www.it-ebooks.info

http://www.it-ebooks.info/

Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26
user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0) $
Success! Now all of the pieces are in the right places to execute the new shell script file.
Displaying Messages
Most shell commands produce their own output, which is displayed on the console monitor where the script is running. Many

times, however, you will want to add your own text messages to help the script user know what is happening within the script.
You can do this with the echo command. The echo command can display a simple text string if you add the string following

the command:

$ echo This is a test

This is a test

$

Notice that by default you don't need to use quotes to delineate the string you're displaying. However, sometimes this
can get tricky if you are using quotes within your string:

$ echo Let's see if this'll work

Lets see if thisll work

$

The echo command uses either double or single quotes to delineate text strings. If you use them within your string, you
need to use one type of quote within the text and the other type to delineate the string:

$ echo “This is a test to see if you're paying attention”
This is a test to see if you're paying attention

$ echo ‘Rich says “scripting is easy”.’

Rich says “scripting is easy”.

$

Now all of the quotation marks appear properly in the output.

You can add echo statements anywhere in your shell scripts where you need to display additional information:

$ cat testi

#!/bin/bash

This script displays the date and who's logged on
echo The time and date are:

date

echo “Let's see who's logged into the system:”

who

$

When you run this script, it produces the following output:

$./testl

The time and date are:

Mon Feb 21 15:41:13 EST 2011

Let's see who's logged into the system:

Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26
user tty7 2011-02-19 14:03 (:0)

www.it-ebooks.info

http://www.it-ebooks.info/

user pts/0 2011-02-21 15:21 (:0.0)
$

That's nice, but what if you want to echo a text string on the same line as a command output? You can use the -n
parameter for the echo statement to do that. Just change the first echo statement line to this:

n

echo -n “The time and date are:

You'll need to use quotes around the string to ensure that there's a space at the end of the echoed string. The command
output begins exactly where the string output stops. The output will now look like this:

$./testT

The time and date are: Mon Feb 21 15:42:23 EST 2011

Let's see who's logged into the system:

Christine tty2 2011-02-21 15:26
Samantha tty3 2011-02-21 15:26
Timothy tty1 2011-02-21 15:26

user tty7 2011-02-19 14:03 (:0)
user pts/0 2011-02-21 15:21 (:0.0)
$

Perfect! The echo command is a crucial piece of shell scripts that interact with users. You'll find yourself using it in many
situations, especially when you want to display the values of script variables. Let's look at that next.

Using Variables

Just running individual commands from the shell script is useful, but this has its limitations. Often you'll want to incorporate
other datain your shell commands to processinformation. You can do this by using variables. Variables allow you to
temporarily store information within the shell script for use with other commands in the script. This section shows how to use

variablesin your shell scripts.

Environment Variables

You've already seen one type of Linux variable in action. Chapter 5 described the environment variables available in the Linux
system. You can access these values from your shell scripts as well.

The shell maintains environment variables that track specific system information, such as the name of the system, the name
of the user logged in to the system, the user's system ID (called UID), the default home directory of the user, and the search
path used by the shell to find programs. You can display a complete list of active environment variables available by using

the set command:
$ set
BASH=/bin/bash

HOME=/home/Samantha
HOSTNAME=1ocalhost.localdomain
HOSTTYPE=1386

IFS=$%$' \t\n’
IMSETTINGS_INTEGRATE_DESKTOP=yes
IMSETTINGS_MODULE=none
LANG=en_US.utf8
LESSOPEN=" | /usr/bin/lesspipe.sh %s’
LINES=24

LOGNAME=Samantha

You can tap into these environment variables from within your scripts by using the environment variable's name

www.it-ebooks.info

http://www.it-ebooks.info/

preceded by a dollar sign. This is demonstrated in the following script:

$ cat test2

#!/bin/bash

display user information from the system.
echo “User info for userid: $USER”

echo UID: $UID

echo HOME: $HOME

$
The $USER, $UID,and $HOME environment variables are used to display the pertinent information about the logged-in

user. The output should look something like this:

$chmod u+x test2

$./test2

User info for userid: Samantha
UID: 1001

HOME: /home/Samantha

$$

Notice that the environment variables in the echo commands are replaced by their current values when the script is run.
Also notice that we were able to place the $USER system variable within the double quotation marks in the first string, and
the shell script was still able to figure out what we meant. There is a drawback to using this method, however. Look at what

happensin this example:

$ echo “The cost of the item is $15”

The cost of the item is 5

That is obviously not what was intended. Whenever the script sees a dollar sign within quotes, it assumes you're
referencing a variable. In this example the script attempted to display the variable $7 (which was not defined), and then the

number 5. To display an actual dollar sign, you must precede it with a backslash character:

$ echo “The cost of the item is \$15”
The cost of the item is $15

That's better. The backslash allowed the shell script to interpret the dollar sign as an actual dollar sign,and not a variable.
The next section shows how to create your own variablesin your scripts.

Note

You may also see variables referenced using the format ${variable}. The extra
braces around the variable name are often used to help identify the variable name
from the dollar sign.

User Variables

In addition to the environment variables, a shell script allows you to set and use your own variables within the script. Setting
variables allows you to temporarily store data and use it throughout the script, making the shell script more like a real

computer program.

User variables can be any text string of up to 20 letters, digits, or an underscore character. User variables are case
sensitive, so the variable Var 7is different from the variable var 7. This little rule often gets novice script programmers in

trouble.

Values are assigned to user variables using an equal sign. No spaces can appear between the variable, the equal sign, and
the value (another trouble spot for novices). Here are a few examples of assigning values to user variables:

var1=10

var2=-57

var3=testing

www.it-ebooks.info

http://www.it-ebooks.info/

var4="still more testing”
The shell script automatically determines the data type used for the variable value. Variables defined within the shell
script maintain their values throughout the life of the shell script but are deleted when the shell script completes.

Just like system variables, user variables can be referenced using the dollar sign:

$ cat test3

#1/bin/bash

testing variables

days=10

guest="Katie”

echo “$guest checked in $days days ago”
days=5

guest="Jessica”

echo “$guest checked in $days days ago”
$

Running the script produces the following output:

$ chmod u+x test3

$./test3

Katie checked in 10 days ago
Jessica checked in 5 days ago
$

Each time the variableis referenced, it produces the value currently assigned to it. It's important to remember that when
referencing a variable value you use the dollar sign, but when referencing the variable to assign a value to it, you do not use

the dollar sign. Here's an example of what | mean:

$ cat testd
#!/bin/bash
assigning a variable value to another variable

value1=10

value2=$valuel

echo The resulting value is $value2
$

When you use the value of the value7variablein the assignment statement, you must still use the dollar sign. This code
produces the following output:

$ chmod u+x test4

$./test4
The resulting value is 10
$

If you forget the dollar sign, and make the valueZ2 assignment line look like:

value2=value1
you get the following output:

$./test4
The resulting value is value
$

Without the dollar sign the shell interprets the variable name as a normal text string, which is most likely not what you
wanted.

www.it-ebooks.info

http://www.it-ebooks.info/

The Backtick

One of the most useful features of shell scripts is the lowly back quote character, usually called the backtick (‘) in the Linux
world. Be careful—this is not the normal single quotation mark character you are used to using for strings. Because it is not
used very often outside of shell scripts, you may not even know where to find it on your keyboard. You should become
familiar withit, because it's a crucial component of many shell scripts. Hint: On a U.S. keyboard, it is usually on the same key as

the tilde symbol (~).
The backtick allows you to assign the output of a shell command to a variable. While this doesn't seem like much, it is a
major building block in script programming.

You must surround the entire command line command with backtick characters:

testing="'date’

The shell runs the command within the backticks and assigns the output to the variable testing. Here's an example of
creating a variable using the output from a normal shell command:

$ cat testb

#!/bin/bash

using the backtick character

testing="'date’

echo “The date and time are: " $testing

$

The variable testing receives the output from the date command, and it is used in the echo statement to display it.
Running the shell script produces the following output:

$ chmod u+x test5

$./test5

The date and time are: Mon Jan 31 20:23:25 EDT 2011
$

That's not all that exciting in this example (you could just as easily just put the command in the echo statement), but once
you capture the command output in a variable, you can do anything with it.

Here's a popular example of how the backtick is used to capture the current date and use it to create a unique filename in
ascript:

#1/bin/bash

copy the /usr/bin directory listing to a log file
today="date +%y%m%d’

1s /usr/bin -al > log.$today

The today variableis assigned the output of a formatted date command. This is a common technique used to extract
dateinformation for log filenames. The +%y%m%d format instructs the date command to display the date as a two-digit year,

month, and day:

$ date +%y%m%d
110131
$

The script assigns the value to a variable, which is then used as part of a filename. The file itself contains the redirected
output (discussed later in the “Redirecting Input and Output” section) of a directory listing. After running the script, you

should see a newfilein your directory:

-rW-r--r-- 1 user user 769 Jan 31 10:15 log.110131

The log file appears in the directory using the value of the $today variable as part of the filename. The contents of the
log file are the directory listing from the /usr/bin directory. If the script is run the next day, the log filename will be

log.110201, thus creating a new file for the new day.

Redirecting Input and Output

There are times when you'd like to save the output from a command instead of just having it displayed on the monitor. The
bash shell provides a few different operators that allowyou to redirect the output of a command to an alternative

www.it-ebooks.info

http://www.it-ebooks.info/

location (such as a file). Redirection can be used for input as well as output, redirecting a file to a command for input. This
section describes what you need to do to use redirection in your shell scripts.

Output Redirection

The most basic type of redirection is sending output from a command to a file. The bash shell uses the greater-than symbol
(>) for this:

command > outputfile

Anything that would appear on the monitor from the command instead is stored in the output file specified:

$ date > test6

$ 1s -1 testé

-rW-r--r-- 1 user user 29 Feb 10 17:56 test6
$ cat test6

Thu Feb 10 17:56:58 EDT 2011

$

The redirect operator created the file test6 (using the default umask settings) and redirected the output from the date
command to the test6 file. If the output file already exists, the redirect operator overwrites the existing file with the new file

data:
$ who > testb6

$ cat testb
user pts/0 Feb 10 17:55
$

Now the contents of the testb6 file contain the output from the who command.

Sometimes, instead of overwriting the file's contents, you may need to append output from a command to an existing
file, For exampleif you're creating a log file to document an action on the system. In this situation, you can use the double

greater-than symbol (>>) to append data:
$ date >> test6
$ cat test6
user pts/0 Feb 10 17:55
Thu Feb 10 18:02:14 EDT 2011
$

The test6 filestill contains the original data from the who command processed earlier—plus now it contains the new
output fromthe date command.

Input Redirection

Input redirection is the opposite of output redirection. Instead of taking the output of a command and redirecting it to a
file,input redirection takes the content of a file and redirects it to a command.

Theinput redirection symbol is the less-than symbol (<):

command < inputfile

The easy way to remember this is that the command is always listed first in the command line, and the redirection symbol
“points” to the way the data is flowing. The less-than symbol indicates that the data is flowing from the input file to the

command.

Here's an example of using input redirection with the wc command:

$ wc < testé
2 11 60

www.it-ebooks.info

http://www.it-ebooks.info/

Thewc command provides a count of text in the data. By default, it produces three values:
* The number of lines in the text
* The number of words in the text

* The number of bytes in the text
By redirecting a text file to the wc command, you can get a quick count of the lines, words, and bytes in the file. The
example shows that there are 2 lines, 11 words, and 60 bytes in the test6 file.

There's another method of input redirection, called inline input redirection. This method allows you to specify the data for
input redirection on the command lineinstead of in a file. This may seem somewhat odd at first, but there are a few

applications for this process (such as those shown in the “Performing Math” section later).

Theinlineinput redirection symbol is the double less-than symbol (<<). Besides this symbol, you must specify a text
marker that delineates the beginning and end of the data used for input. You can use any string value for the text marker,

but it must be the same at the beginning of the data and the end of the data:

command << marker

data

marker

When using inline input redirection on the command line, the shell will prompt for data using the secondary prompt,
defined in the PS2 environment variable (see Chapter 5). Here's how this looks when you use it:

$ wc << EOF

> test string 1

> test string 2

> test string 3

> EOF

3 9 42

$

The secondary prompt continues to prompt for more data until you enter the string value for the text marker. Thewc
command performs the line, word, and byte counts of the data supplied by theinlineinput redirection.

Pipes

There are times when you need to send the output of one command to the input of another command. This is possible using

redirection, but somewhat clunky:
$ rpm -ga > rpm.list
$ sort < rpm.list
abrt-1.1.14-1.fc14.1686
abrt-addon-ccpp-1.1.14-1.fc14.1686
abrt-addon-kerneloops-1.1.14-1.fc14.1686
abrt-addon-python-1.1.14-1.fc14.1686
abrt-desktop-1.1.14-1.fc14.1686
abrt-gui-1.1.14-1.fc14.1686
abrt-1libs-1.1.14-1.fc14.1686
abrt-plugin-bugzilla-1.1.14-1.fc14.1686
abrt-plugin-logger-1.1.14-1.fc14.1686
abrt-plugin-runapp-1.1.14-1.fc14.1686
acl-2.2.49-8.fc14.1686

The rpm command manages the software packages installed on systems using the Red Hat Package Management system
(RPM), such as the Fedora system as shown. When used with the - qa parameters, it produces a list of the existing packages
installed, but not necessarily in any specificorder. If you're looking for a specific package, or group of packages, it can be

www.it-ebooks.info

http://www.it-ebooks.info/

difficult to find it using the output of the rpm command.

Using the standard output redirection, the output was redirected from the rpm command to a file, called rpm. list.
After the command finished, the rpm. 1ist file contained a list of all the installed software packages on my system. Next,
input redirection was used to send the contents of the rpm. 1ist file to the sort command to sort the package names

alphabetically.
That was useful, but again, a somewhat clunky way of producing the information. Instead of redirecting the output of a
command to a file, you can redirect the output to another command. This process is called piping.

Like the backtick ('), the symbol for piping is not used often outside of shell scripting. The symbol is two vertical lines, one
above the other. However, the pipe symbol often looks like a single vertical linein print (|). On a U.S. keyboard, it is usually

on the same key as the backslash (\). The pipe is put between the commands to redirect the output from one to the other:

command1 | command2

Don't think of piping as running two commands back to back. The Linux system actually runs both commands at the same
time, linking them together internally in the system. As the first command produces output, it's sent immediately to the

second command. No intermediate files or buffer areas are used to transfer the data.
Now, using piping you can easily pipe the output of the rpm command directly to the sort command to produce your
results:

$ rpm -ga | sort
abrt-1.1.14-1.fc14.1686
abrt-addon-ccpp-1.1.14-1.fc14.1686
abrt-addon-kerneloops-1.1.14-1.fc14.1686
abrt-addon-python-1.1.14-1.fc14.1686
abrt-desktop-1.1.14-1.fc14.1686
abrt-gui-1.1.14-1.fc14.1686
abrt-1libs-1.1.14-1.fc14.1686
abrt-plugin-bugzilla-1.1.14-1.fc14.1686
abrt-plugin-logger-1.1.14-1.fc14.1686
abrt-plugin-runapp-1.1.14-1.fc14.1686
acl-2.2.49-8.fc14.1686

Unlessyou're a (very) quick reader, you probably couldn't keep up with the output generated by this command. Because
the piping feature operatesin real time, as soon as the rpm command produces data, the sort command gets busy sorting it.
By the time the rpm command finishes outputting data, the sort command already has the data sorted and starts displaying

it on the monitor.

There's no limit to the number of pipesyou can usein a command.You can continue piping the output of commands to
other commands to refine your operation.

In this case, because the output of the sort command zooms by so quickly, you can use one of the text paging
commands (suchas less ormore) to force the output to stop at every screen of data:

$ rpm -ga | sort | more
This command sequence runs the rpm command, pipes the output to the sort command, and then pipesthat output
to themore command to display the data, stopping after every screen of information. This now lets you pause and read

what's on the display before continuing, as shown in Figure 10.1.

Figure 10.1 Using piping to send data to the more command

www.it-ebooks.info

#c10_fig_0001
#c10_fig_anc_0001
http://www.it-ebooks.info/

B\ user@localhost:~

File Edit View Search Terminal Help

abrt-1.1.14-1.fcl4.1i686
abrt-addon-ccpp-1.1.14-1.1c14.1686
abrt-addon-kerneloops-1.1.14-1.fcl4.1686
abrt-addon-python-1.1.14-1.fc14.1686
abrt-desktop-1.1.14-1.fcl4.1686
abrt-gui-1.1.14-1.fc14.1686
abrt-1libs-1.1.14-1.fcl4.1686
abrt-plugin-bugzilla-1.1.14-1.fc14.1686
abrt-plugin-logger-1.1.14-1.fc14.1686
abrt-plugin-runapp-1.1.14-1.fcl4. 1686
acl-2.2.49-8.Tcl4.1686
alsa-firmware-1.6.23-1.fcl4.noarch
alsa-1lib-1.8.23-2.fc14.1686
alsa-plugins-pulseaudio-1.8.22-1.fc13.1686
alsa-tools-firmware-1.8.23-1.fcl4.16B6
alsa-utils-1.8.23-3.fcl4.1686
anaconda-14.22-1.fcl14.1686
anaconda-yum-plugins-1.8-5.fcl2.noarch
anthy-9106h-15.fcl14.1686
apr-1.3.9-3.1cl3.1686
apr-util-1.3.10-1.fc14.1686
apr-util-ldap-1.3.16-1.fc14.1686
ar9l7e-firmware-2009.85.28-2.fcl3.noarch

To get even fancier, you can use redirection along with piping to save your output to afile:

$ rpm -ga | sort > rpm.list

$ more rpm.list

abrt-1.1.14-1.fc14.1686
abrt-addon-ccpp-1.1.14-1.fc14.1686
abrt-addon-kerneloops-1.1.14-1.fc14.1686
abrt-addon-python-1.1.14-1.fc14.1686
abrt-desktop-1.1.14-1.fc14.1686
abrt-gui-1.1.14-1.fc14.1686
abrt-libs-1.1.14-1.fc14.1686
abrt-plugin-bugzilla-1.1.14-1.fc14.1686
abrt-plugin-logger-1.1.14-1.fc14.1686
abrt-plugin-runapp-1.1.14-1.fc14.1686
acl-2.2.49-8.fc14.1686

As expected, the datain the rpm. 1ist fileis now sorted!
By far one of the most popular uses of piping is piping the results of commands that produce long output to themore
command. This is especially common with the 1s command, as shown in Figure 10.2.

Figure 10.2 Using the more command with the s command

www.it-ebooks.info

#c10_fig_anc_0001
#c10_fig_0002
#c10_fig_anc_0002
http://www.it-ebooks.info/

user@localhost:~

File Edit View Terminal Help
total 2276 B

drwxr-xr-x. 3 root root 4896 Sep 15 17:55 abrt
drwxr-xr-x. 4 root root 4896 Sep 14 26:44 acpl
=mw=r==r==. 1 root root 45 Sep 21 14:27 adjtime
-rw-r--r--. 1 root root 1512 May 24 08:32 aliases
-MW-r----- . 1 root smmsp 12288 Sep 14 208:43 aliases.db
drwxr-xr-x. 2 root root 4896 Sep 15 18:01 alsa
drwxr-xr-x. 2 root root 4096 Sep 15 18:16 alternatives
-MW-r--r--. 1 root root 541 Aug 13 089:53 anacrontab
-fw-r--r--. 1 root root 245 May 18 087:17 anthy-conf
-MW-r--r--. 1 root root 148 Sep 18 20808 asound.conf
sM==ssans 1 root root 1 Mar 19 2610 at.deny
drwxr=x-- 3 root root 4096 Sep 14 20:30 audisp
drwxr-x-- 2 root root 4896 Sep 14 20:30 audit
drwxr-xr-x. 4 root root 4996 Sep 15 17:53 avahi
drwxr-xr-x. 2 root root 46896 Sep 15 18:15 bash_completion.d
“MW=r==r=- 1 root root 2615 May 24 08:32 bashrc
drwxr-xr-x. 2 root root 4096 Aug 5 06:45 blkid
drwxr-xr-x. 2 root root 4896 Sep 15 18:082 bluetooth
drwxr-xr-x. 2 root root 4896 Sep 14 20:27 bonobo-activation
-m-r--r--. 1 root root 788 Aug 2 10:56 cgconfig.conf
-m-r--r--. 1 root root 1705 Aug 2 10:56 cqrules.conf
drwxr-xr-x. 2 root root 4896 Mar 4 2818 chkconfig.d

Thels -1command producesa long listing of all the filesin the directory. For directories with lots of files, this can be
quite a listing. By piping the output to the more command, you force the output to stop at the end of every screen of data.

Performing Math

Another feature crucial to any programming language is the ability to manipulate numbers. Unfortunately, for shell scripts
this process is a bit awkward. There a two different ways to perform mathematical operationsin your shell scripts.

The expr Command

Originally, the Bourne shell provided a special command that was used for processing mathematical equations. The expr
command allowed the processing of equations from the command line, but it is extremely clunky:

$ expr 1 +5
6

The expr command recognizes a few different mathematical and string operators, shown in Table 10.1.

Table 10.1 The expr Command Operators

Operator Description

ARG1 | ARG2 Return ARG1 if neither argument is null or zero; otherwise,
return ARG2.

ARG1 & ARG2 Return ARG1 if neither argument is null or zero; otherwise,
return 0.

www.it-ebooks.info

#c10_fig_anc_0002
#c10_tbl_0001
#c10_tbl_anc_0001
http://www.it-ebooks.info/

ARG1 < ARG2 Return 1 if ARG1 is less than ARG2; otherwise, return 0.

ARG1 <= ARG2 Return 1 if ARG1 is less than or equal to ARG2; otherwise,
return 0.

ARG1 = ARG2 Return 1 if ARG1 is equal to ARG2; otherwise, return 0.

ARG1 != ARG2 Return 1if ARG1 is not equal to ARG2; otherwise, return 0.

ARG1 >= ARG2 Return 1 if ARG1 is greater than or equal to ARG2; otherwise,
return 0.

ARG1 > ARG2 Return 1if ARG1 is greater than ARG2; otherwise, return 0.

ARG1 + ARG2 Return the arithmetic sum of ARG1 and ARG2.

ARG1 - ARG2 Return the arithmetic difference of ARG1 and ARG2.

ARG1 * ARG2 Return the arithmetic product of ARG1 and ARG2.

ARG1 / ARG2 Return the arithmetic quotient of ARG1 divided by ARG2.

ARG1 % ARG2 Return the arithmetic remainder of ARG1 divided by ARG2.

STRING : REGEXP Return the pattern match if REGEXP matches a pattern in
STRING.

match STRING REGEXP Return the pattern match if REGEXP matches a pattern in
STRING.

substr STRING POS LENGTH |Return the substring LENGTH charactersin length, starting at
position POS (starting at 1).

index STRING CHARS Return position in STRING where CHARS is found; otherwise,
return 0.

length STRING Return the numeric length of the string STRING.

+ TOKEN Interpret TOKEN as a string, even if it's a keyword.

(EXPRESSION) Return the value of EXPRESSION.

While the standard operators work fine in the expr command, the problem occurs when using them from a script or the
command line. Many of the expr command operators have other meanings in the shell (such as the asterisk). Using them in

the expr command produces odd results:

$ expr 5 * 2
expr: syntax error
$

To solve this problem, you need to use the shell escape character (the backslash) to identify any characters that may be
misinterpreted by the shell before being passed to the expr command:

$ expr 5 * 2
10
$

Now that's really starting to get ugly! Using the expr command in a shell script is equally cumbersome:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat testé6

#!/bin/bash

An example of using the expr command

var1=10

var2=20

var3=‘expr $var2 / $varl’

echo The result is $var3

To assign the result of a mathematical equation to a variable, you have to use the backtick character to extract the output
from the expr command:

$ chmod u+x test6

$./testb

The result is 2

$

Fortunately, the bash shell has an improvement for processing mathematical operators as you shall see in the next
section.

Using Brackets

The bash shell includes the expr command to stay compatible with the Bourne shell; however, it also provides a much easier
way of performing mathematical equations. In bash, when assigning a mathematical value to a variable, you can enclose the

mathematical equation using a dollar sign and square brackets ($[operation]):
$ var1=$[1 + 5]
$ echo $varf
6
$ var2 = $[$var1 * 2]
$ echo $var2
12
$

Using brackets makes shell math much easier than with the expr command. This same technigue also works in shell scripts:

$ cat test7

#!/bin/bash

var1=100

var2=50

var3=45

var4=$[$var1 * ($var2 - $var3)]
echo The final result is $var4
$

Running this script produces the output:

$ chmod u+x test7?

$./test7

The final result is 500
$

Also, notice that when using the square brackets method for calculating equations you don't need to worry about the
multiplication symbol, or any other characters, being misinterpreted by the shell. The shell knows that it's not a wildcard

character because it is within the square brackets.

There's one major limitation to performing mathin the bash shell script. Take a look at this example:

www.it-ebooks.info

http://www.it-ebooks.info/

$ cat test8

#!/bin/bash

var1=100

var2=45

var3=$[$var1 / $var2]

echo The final result is $var3
$

Now run it and see what happens:

$ chmod u+x test8

$./test8
The final result is 2
$

The bash shell mathematical operators support only integer arithmetic. This is a huge limitation if you're trying to do any
sort of real-world mathematical calculations.

Note

The z shell (zsh) provides full floating-point arithmetic operations. If you require
floating-point calculations in your shell scripts, you might consider checking out
the z shell (discussed in Chapter 22).

A Floating-Point Solution

There are several solutions for overcoming the bash integer limitation. The most popular solution uses the built-in bash
calculator, called bc.

The Basics of bc

The bash calculator is actually a programming language that allows you to enter floating-point expressions at a command
line and then interprets the expressions, calculates them, and returns the result. The bash calculator recognizes:

*Numbers (bothinteger and floating point)

®Variables (both simple variables and arrays)

* Comments (lines starting with a pound sign or the C language /* */ pair
* Expressions

* Programming statements (such as i f-then statements)

* Functions

You can access the bash calculator from the shell prompt using the bc command:

$ bc
bc 1.06.95

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundatio
n, Inc.

This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.

12 * 5.4

64.8

3.156 * (3 + 5)

25.248

quit

www.it-ebooks.info

http://www.it-ebooks.info/

$

The example starts out by entering the expression 12 * 5.4.The bash calculator returns the answer. Each subsequent
expression entered into the calculator is evaluated, and the result is displayed. To exit the bash calculator, you must enter

quit.
The floating-point arithmeticis controlled by a built-in variable called scale.You must set this value to the desired
number of decimal places you want in your answers or you won't get what you were looking for:

$ bc -q
3.44 /5
0
scale=4
3.44 /5
.6880
quit

$

The default value for the scalevariableiszero. Before the scalevalueis set, the bash calculator provides the answer to
zero decimal places. After you set the scalevariable value to four, the bash calculator displays the answer to four decimal

places. The - q command line parameter suppresses the lengthy welcome banner from the bash calculator.

In addition to normal numbers, the bash calculator also understands variables:

$ bc -q

var1=10

varl * 4

40

var2 = varl / 5
print var2

2

quit

$

Once avariable valueis defined, you can use the variable throughout the bash calculator session. The print statement
allows you to print variablesand numbers.

Using bc in Scripts

Now you may be wondering how the bash calculator is going to help you with floating-point arithmeticin your shell scripts.
Do you remember your friend the backtick character? Yes, you can use the backtick character to run a bc command and assign

the output to a variable! The basic format to use is this:

variable=‘'echo “options; expression” | bc’
The first portion, options,allowsyou to set variables. If you need to set more than one variable, separate them using
the semicolon. The expression parameter defines the mathematical expression to evaluate using bc. Here's a quick example of

doing thisin a script:
$ cat test9
#!/bin/bash
var1=‘echo “ scale=4; 3.44 / 5" | bc'’
echo The answer is $varf
$

This example sets the scale variable to four decimal places and then specifies a specific calculation for the expression.
Running this script produces the following output:

$ chmod u+x test9

www.it-ebooks.info

http://www.it-ebooks.info/

$./test9

The answer is .6880
$

Now that's fancy! You aren't limited to just using numbers for the expression value. You can also use variables defined in
the shell script:

$ cat test10

#!/bin/bash

var1=100

var2=45

var3=‘echo “scale=4; $var1l / $var2” | bc’
echo The answer for this is $var3

$

The script defines two variables, which are used within the expression sent to the bc command. Remember to use the
dollar sign to signify the value for the variables and not the variables themselves. The output of this script is as follows:

$./test10

The answer for this is 2.2222

$

And of course, once a valueis assigned to a variable, that variable can be used in yet another calculation:

$ cat test11

#!/bin/bash

var1=20

var2=3.14159

var3='echo “scale=4; $var1 * $var1” | bc’
vard='echo “scale=4; $var3 * $var2” | bc’
echo The final result is $var4

$

This method works fine for short calculations, but sometimes you need to get more involved withyour numbers. If you
have more than just a couple of calculations, it gets confusing trying to list multiple expressions on the same command line.
There's a solution to this problem. The bc command recognizesinput redirection, allowing you to redirect a file to the bc
command for processing. However, this also can get confusing, as you'd need to store your expressionsin a file.
The best method is to useinline input redirection, which allows you to redirect data directly from the command line. In the
shell script, you assign the output to avariable:
variable='bc << EOF
options
statements
expressions
EOF

I

The EOF text string indicates the beginning and end of the inline redirection data. Remember that the backtick characters
arestill needed to assign the output of the bc command to the variable.

Nowyou can place all of the individual bash calculator elements on separate lines in the script file. Here's an example of
using this techniquein a script:

$ cat test12
#!/bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

var1=10.46
var2=43.67
var3=33.2
vard=71

var5='bc << EOF
scale = 4

al = ($varl * $var2)
b1 = ($var3 * $var4)
al + b1

EOF

I

echo The final answer for this mess is $var5
$

Placing each option and expression on a separate linein your script makes things cleaner and easier to read and follow.
The EOF string indicates the start and end of the data to redirect to the bc command. Of course, you need to use the backtick

characters to indicate the command to assign to the variable.
You'll also notice in this example that you can assign variables within the bash calculator. It'simportant to remember that
any variables created within the bash calculator are valid only within the bash calculator and can't be used in the shell script.

Exiting the Script
So farin our sample scripts, we terminated things pretty abruptly. When we were done with our last command, we just ended

the script. There's a more elegant way of completing things available to us.

Every command that runsin the shell usesan exit statusto indicate to the shell thatit's done processing. The exit
statusis an integer value between 0and 255 that's passed by the command to the shell when the command finishes running.

You can capture this value and useit in your scripts.

Checking the exit Status

Linux provides the $? special variable that holds the exit status value from the last command that executed. You must view or
use the $? variable immediately after the command you want to check. It changes values to the exit status of the last

command executed by the shell:

$ date

Sat Jan 15 10:01:30 EDT 2011
$ echo $?

0

$

By convention, the exit status of a command that successfully completesis zero. If a command completes with an error,
then a positive integer valueis placed in the exit status:

$ asdfg

-bash: asdfg: command not found
$ echo $?

127

$

The invalid command returns an exit status of 127. There's not much of a standard convention to Linux error exit status
codes. However, there are a few guidelines you can use, as shown in Table 10.2.

Table 10.2 Linux Exit Status Codes

www.it-ebooks.info

#c10_tbl_0002
#c10_tbl_anc_0002
http://www.it-ebooks.info/

Code |Description

0 Successful completion of the command
1 General unknown error
2 Misuse of shell command

126 The command can't execute

127 Command not found

128 Invalid exit argument

128+x | Fatal error with Linux signal x

130 Command terminated with Ctrl+C

255 Exit status out of range

An exit status value of 126 indicates that the user didn't have the proper permissions set to execute the command:

$./myprog.c

-bash: ./myprog.c: Permission denied
$ echo $?

126

$

Another common error you'll encounter occurs if you supply an invalid parameter to a command:

$ date %t

date: invalid date ‘%t’
$ echo $?

1

$

This generates the general exit status code of one, indicating an unknown error occurred in the command.

The exit Command
By default, your shell script will exit with the exit status of the last command in your script:

$./test6

The result is 2
$ echo $?

0

$

You can change that to return your own exit status code. The exit command allows you to specify an exit status when
your script ends:

$ cat test13

#!/bin/bash

testing the exit status

var1=10

var2=30

www.it-ebooks.info

http://www.it-ebooks.info/

var3=$[$varl + var2]
echo The answer is $var3
exit 5

$

When you check the exit status of the script, you'll get the value used as the parameter of the exit command:

$ chmod u+x test13
$./test13

The answer is 40

$ echo $?

5

$

You can also use variablesin the exit command parameter:

$ cat test14

#!/bin/bash

testing the exit status
var1=10

var2=30

var3=$[$varl + var2]
exit $var3

$

When you run this command, it produces the following exit status:

$ chmod u+x test14

$./testl14
$ echo $?
40

$

You should be careful with this feature, however, as the exit status codes can only go up to 255. Watch what happens in
this example:

$ cat test14b

#!/bin/bash

testing the exit status

var1=10

var2=30

var3=$[$varl * var2]

echo The value is $var3

exit $var3

$

Now when you run it, you get the following:

$./test14b

The value is 300
$ echo $?

44

$

The exit status codeis reduced to fit in the 0 to 255 range. The shell does this by using modulo arithmetic. The modulo of a

www.it-ebooks.info

http://www.it-ebooks.info/

valueis the remainder after a division. The resulting number is the remainder of the specified number divided by 256. In the
case of 300 (the result value), the remainder is 44, which is what appears as the exit status code.

In Chapter 11,you'll see howyou can use the i f-then statement to check the error status returned by a command to see
if the command was successful or not.

Summary

The bash shell script allows you to string commands together into a script. The most basic way to create a script is to separate
multiple commands on the command line using a semicolon. The shell executes each command in order, displaying the output

of each command on the monitor.

You can also create a shell script file, placing multiple commands in the file for the shell to execute in order. The shell
script file must define the shell used to run the script. Thisis donein the first line of the script file, using the #! symbol,

followed by the full path of the shell.

Within the shell script you can reference environment variable values by using a dollar sign in front of the variable. You
can also define your own variables for use within the script, and assign values and even the output of a command by using

the backtick character. The variable value can be used within the script by placing a dollar sign in front of the variable name.

The bash shell allows you to redirect both the input and output of a command from the standard behavior. You can
redirect the output of any command from the monitor display to a file by using the greater-than symbol, followed by the
name of the file to capture the output. You can append output data to an existing file by using two greater-than symbols.

The less-than symbol is used to redirect input to a command. You can redirect input from a file to a command.

The Linux pipe command (the broken bar symbol) allows you to redirect the output of a command directly to theinput
of another command. The Linux system runs both commands at the same time, sending the output of the first command to

theinput of the second command without using any redirect files.

The bash shell provides a couple of ways for you to perform mathematical operationsin your shell scripts. The expr
command is a simple way to performinteger math. In the bash shell, you can also perform basic math calculations by
enclosing equations in square brackets, preceded by a dollar sign. To perform floating-point arithmetic, you need to utilize

the bc calculator command, redirecting input frominline data and storing the output in a user variable.

Finally, the chapter discussed how to use the exit statusin your shell script. Every command that runsin the shell produces
an exit status. The exit statusis an integer value between 0 and 255 that indicates if the command completed successfully, and
if not, what the reason may have been. An exit status of O indicates that the command completed successfully. You can use the

exit command in your shell script to declare a specific exit status upon the completion of your script.
So far in your shell scripts, things have proceeded in an orderly fashion from one command to the next. In the next
chapter, you'll see how you can use some logic flow control to alter which commands are executed within the script.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11
Using Structured Commands

In This Chapter

* Working with the if-then statement
* The if-then-else statement

* Nesting ifs

* The test command

* Compound condition testing

* Advanced if-then features

* The code command

[] .
Managing user accounts

In the shell scripts presented in Chapter 10, the shell processed eachindividual command in the shell script in the order it
appeared. This works out fine for sequential operations, where you want all of the commands to processin the proper order.

However, thisisn't how all programs operate.

Many programs require some sort of logic flow control between the commandsin the script. This means that the shell
executes certain commands given one set of circumstances, but it has the ability to execute other commands given a different
set of circumstances. There is a whole class of commands that allows the script to skip over or loop through commands based
on conditions of variable values or the result of other commands. These commands are generally referred to as structured

commands.

The structured commands allow you to alter the flow of operation of a program, executing some commands under some
conditions while skipping others under other conditions. There are quite a few structured commands available in the bash

shell, so we'll look at them individually. In this chapter, we look at the i f - then statement.

Working with the if-then Statement

The most basic type of structured command is the i f - then statement. The i f - then statement has the following format:

if command
then
commands
fi
Ifyou'reusing if-then statementsin other programming languages, this format may be somewhat confusing. In other
programming languages, the object after the if statement is an equation that is evaluated for a TRUE or FALSE value.

That's not how the bash shell i f statement works.

The bash shell if statement runs the command defined on the if line. If the exit status of the command (see Chapter 10)
iszero (the command completed successfully), the commands listed under the then section are executed. If the exit status of
the command is anything else, the then commands aren't executed, and the bash shell moves on to the next command in the

script.

Here's a simple example to demonstrate this concept:

$ cat test1
#!/bin/bash
testing the if statement
if date
then
echo “it worked”
fi

www.it-ebooks.info

http://www.it-ebooks.info/

This script uses the date command on the if line. If the command completes successfully, the echo statement should
display the text string. When you run this script from the command line, you'll get the following results:

$./test

Sat Jan 23 14:09:24 EDT 2011
it worked

$

The shell executed the date command listed on the if line. Since the exit status was zero, it also executed the echo
statement listed in the then section.

Here's another example:

$ cat test2
#!/bin/bash
testing a bad command
if asdfg
then
echo “it did not work”
fi
echo “we are outside of the if statement”
$
$./test2
./test2: line 3: asdfg: command not found
we are outside of the if statement
$

In this example, a command was deliberately used that will not work in the i f statement line. Because this is a bad
command, it will produce an exit status that's non-zero, and the bash shell skips the echo statement in the then section. Also
notice that the error message generated from running the command in the if statement still appearsin the output of the

script. There will be times when you won't want this to happen. Chapter 14 discusses how this can be avoided.

You are not limited to just one command in the then section. You can list commands just as in the rest of the shell script.
The bash shell treats the commands as a block, executing all of them when the command in the i f statement line returnsa

zero exit status or skipping all of them when the command returns a non-zero exit status:

$ cat test3
#!/bin/bash
testing multiple commands in the then section
testuser=rich
if grep $testuser /etc/passwd
then
echo The bash files for user $testuser are:
1s -a /home/$testuser/.b*
fi
The if statement line uses the grep comment to search the /etc/passwd file to seeif a specific username is currently
used on the system. If there's a user with that logon name, the script displays some text, and then lists the bash files in the

user's HOME directory:
$./test3
rich:x:500:500:Rich Blum:/home/rich:/bin/bash
The files for user rich are:
/home/rich/.bash_history /home/rich/.bash_profile
/home/rich/.bash_logout /home/rich/.bashrc

www.it-ebooks.info

http://www.it-ebooks.info/

$

However, if you set the testuservariable to a user that doesn't exist on the system, nothing happens:

$./test3
$

That's not all that exciting. It would be nice if we could display a little message saying that the username wasn't found on
the system. Well, we can, using another feature of the i f-then statement.

Note
You might see an alternative form of the if-then statement used in some scripts:

if command; then
commands
fi
By putting a semicolon at the end of the command to evaluate, you can include the

then statement on the same line, which looks more like how if-then statements
are handled in some other programming languages.

The if-then-else Statement

In the if-then statement, you have only one option of whether or not a command is successful. If the command returns a
non-zero exit status code, the bash shell just moves on to the next command in the script. In this situation, it would be nice to

be able to execute an alternate set of commands. That's exactly what the if-then-else statement s for.

Theif-then-else statement providesanother group of commands in the statement:

if command
then
commands
else
command's
fi
When the command in the if statement line returns with an exit status code of zero, the commands listed in the then
section are executed, just asin a normal if-then statement. When the command in the i f statement line returnsanon-

zero exit status code, the bash shell executes the commands in the el se section.

Now you can modify the test script to look like this:

$ cat test4d
#!/bin/bash
testing the else section
testuser=badtest
if grep $testuser /etc/passwd
then
echo The files for user $testuser are:
1Is -a /home/$testuser/.b*
else
echo “The user name $testuser does not exist on this system”
fi

$

$./test4

The user name badtest does not exist on this system
$

www.it-ebooks.info

http://www.it-ebooks.info/

That's more user-friendly. Just like the then section, the el se section can contain multiple commands. The fi statement
delineates the end of the else section.

(]]
Nesting ifs
Sometimes you must check for several situationsin your script code. Instead of having to write separate i f-then
statements, you can use an alternative version of the else section, called elif.

Theelif continues an else section withanother i f-then statement:

if commandi
then
command's
elif commandz
then
more commands
fi
The elif statement line provides another command to evaluate, similar to the original i f statement line. If the exit
status code fromthe elif command is zero, bash executes the commands in the second then statement section.

You can continue to string elif statements together, creating one huge if-then-elif conglomeration:

if command1
then

command set 1
elif commandz
then

command set 2
elif command3
then

command set 3
elif command4
then

command set 4
fi
Each block of commands is executed depending on which command returns the zero exit status code. Remember, the bash

shell will execute the i f statementsin order,and only the first one that returns a zero exit status will result in the then
section being executed. Later on in “The case Command” section, you'll see how to use the case command instead of having

to nest lots of if-then statements.

The test Command

So far,all you've seen in the if statement line are normal shell commands. You might be wondering if the bash i f-then
statement has the ability to evaluate any condition other than the exit status code of a command.

The answer is no, it can't. However, there's a neat utility available in the bash shell that helps you evaluate other things,
using the i f - then statement.

The test command provides a way to test different conditionsin an if-then statement. If the condition listed in the
test command evaluates to true, the test command exits with a zero exit status code, making the i f - then statement
behave in much the same way that i f - then statements work in other programming languages. If the condition is false, the

test command exits with a1, which causes the i f - then statement to fail.

The format of the test command is pretty simple:

test condition
The conditionis a series of parameters and values that the test command evaluates. When used in an if-then

statement, the test command looks like this:

www.it-ebooks.info

http://www.it-ebooks.info/

if test condition
then
command's
fi
The bash shell provides an alternative way of declaring the test command in an if-then statement:
if [condition]
then
command's
fi
The square brackets define the condition that's used in the test command. Be careful; you must have a space after the
first bracket and a space before the last bracket or you'll get an error message.

The test command can evaluate three classes of conditions:
* Numeric comparisons
[] . .
String comparisons
[] . .
File comparisons

The next sections describe how to use each of these classes of testsin your if-then statements.

Numeric Comparisons

The most common method for using the test command is to perform a comparison of two numericvalues. Table 11.1 shows
the list of condition parameters used for testing two values.

Table 11.1 The test Numeric Comparisons

Comparison | Description

n1 -eq n2 |Checkif n1isequalton2.

n1 -ge n2 |Checkif n1isgreater than or equal to n2.

n1 -gt n2 |Checkif n1isgreater than n2.

n1 -le n2 |Checkif n1islessthan or equal to n2.

n1 -1t n2 ||Checkif n1is less than n2.

n1 -ne n2 |Checkif n1isnotequalton2.

The numeric test conditions can be used to evaluate both numbers and variables. Here's an example of doing that:

$ cat test5

#!/bin/bash

using numeric test comparisons
val1=10

val2=11

if [$vall -gt 5]
then

echo “The test value $vall is greater than 5”
fi

www.it-ebooks.info

#c11_tbl_0001
#c11_tbl_anc_0001
http://www.it-ebooks.info/

if [$vall -eq $val2]
then

echo “The values are equal”
else

echo “The values are different”
fi
The first test condition:
if [$vall -gt 5]

tests if the value of the variable val7is greater than 5. The second test condition:

if [$vall -eq $val2]

tests if the value of the variable val7is equal to the value of the variable val2. Run the script and watch the results:

$./test5

The test value 10 is greater than 5
The values are different

$

Both of the numeric test conditions evaluated as expected.

There is a limitation to the test numeric conditions, however. Try this script:

$ cat testb
#!/bin/bash
testing floating point numbers
val1=' echo “scale=4; 10 / 3 " | bc’
echo “The test value is $val1l”
if [$vall -gt 3]
then

echo “The result is larger than 3"
fi
$
$./test6
The test value is 3.3333
./test6: line 5: [: 3.3333: integer expression expected
$

This example uses the bash calculator to produce a floating-point value, stored in the val7variable. Next, it uses the test
command to evaluate the value. Something obviously went wrong here.

In Chapter 10, you learned how to trick the bash shell into handling floating-point values; there's still a problem in this
script. The test command wasn't able to handle the floating-point value that was stored in the val7variable.

Remember that the only numbers the bash shell can handle are integers. When you utilize the ba