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Abstract

We discuss G! smoothness conditions for rectangular and triangular Gre-
gory patches. We then incorporate these G' conditions into a surface fitting
algorithm. Knowledge of the patch type is inconsequential to the formulation
of the G! conditions, hence the term agnostic G Gregory surfaces.
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1 Introduction

Surfaces are used for many modeling purposes, ranging from car bodies or airplane
fuselages to objects in animated movies or interactive games. Depending on the
application at hand, different surface types are used, such as spline surfaces (Farin
[1]) for the first two examples and subdivision surfaces (Peters and Reif [2]) for the
last two.

Spline surfaces cover a model with rectangular patches, which can create problems in
areas where triangular shapes are needed. Subdivision surfaces have potential prob-
lems because direct evaluation is possibly slow (Stam [3]). For this reason, several
authors have studied polynomial or rational polynomial approximation subdivision
surfaces (Peters [4], Loop et al. [5, 6]).
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In this paper, we investigate spline-like surfaces which cover a model by a mix of
triangular and rectangular patches. These are rational polynomial patches, first
investigated by J. Gregory [7] in rectangular form and by Walton and Meek [8] in
triangular form. Our surfaces are G', meaning they have continuous tangent planes
everywhere. This is in contrast to spline surfaces, which are typically second order
differentiable, or C2.

First we introduce rectangular and triangular Gregory surfaces. Next we introduce
our G' conditions. We then incorporate these G' conditions into a surface fitting
algorithm.

2 Rectangular Gregory Surfaces

A bicubic Bézier patch is given by a control net
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and, for a point b(u,v) on the patch:
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where the parametric domain is given by 0 < u,v < 1. The 3D points b;; form a
control net which determines the shape of the patch.

A “bicubic’! Gregory patch (Chiyokura and Kimura [9]) is given by a control net
of the same structure but with variable interior control points
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The superscript 10 identifies Gregory control points with greater influence on the
boundaries where u varies, and likewise, the superscript 01 identifies Gregory points



Figure 1: Orange control points: A bicubic rectangular Gregory patch. Green
control points: a quartic triangular Gregory patch. Control points are connected to
the boundaries to which they yield more influence.

with more influence on the boundaries where v varies. Figure 1 illustrates a bicubic
Gregory patch.

The eight interior control points might come from cross boundary continuity condi-
tions. In that context, we will be interested in the degree 3 x 1 surface formed by
the two rows of control points along each edge, called the tangent ribbon. Thus the
tangent ribbon defines the tangent plane along the boundary. The ribbons along
v =0 and v =1 are given by control points
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respectively. The ribbons along v = 0 and v = 1 are given by control points
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respectively. Figure 2 (left) illustrates a tangent ribbon for a bicubic Bézier patch.

3 Triangular Gregory Surfaces

A quartic triangular Bézier patch is given by the control net
boso

!The so-called bicubic Gregory patch is rational and degree seven in both u and v.



Figure 2: Tangent ribbons for a bicubic rectangular patch (left) and a quartic tri-
angular patch with a cubic boundary curve (right).
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and, for a point b(u,v,w) on the the patch:
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where the parametric domain is given by barycentric coordinates u + v + w = 1.

A triangular Gregory patch (Walton and Meek [8]) is given by a control net of the
same structure but with variable interior control points
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The superscript 101 identifies a Gregory control point with more influence on the
(u, 0, w) boundary, the superscript 110 identifies a Gregory point with more influence
on the (u,v,0) boundary, and the superscript 011 identifies a Gregory point with
more influence on the (0,v,w) boundary. Figure 1 illustrates a quartic triangular
Gregory patch.

Here we will use a special quartic patch in which the three quartic boundary curves



are degree elevated cubics. (This point will be revisited in Sections 4 and 5.) Let
the cubic representation of these boundary curves be as follows.
€030
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Now the tangent ribbons are defined as follows. The ribbon along u = 0 is given by
control points
Co30 €120
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The ribbon along v = 0 is given by control points
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The ribbon along w = 0 is given by control points
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Figure 2 (right) illustrates a tangent ribbon for such a Bézier triangle.

The main observation in this paper is that the above triangular and rectangular G
Gregory ribbons have exactly the same structure. As a consequence, they can be
utilized for G' surface constructions without a need to know what kind of patch one
is dealing with — hence the term “agnostic.”

4 G' Conditions

When different surface patches (such as bicubic Bézier ones) are joined together,
this is mostly achieved by making them differentiable, or C'. Sometimes this is not
feasible, and one settles for tangent plane continuity, or G!. For an outline of these
different concepts, see (Farin [1]).

We give a brief outline of a set of G' conditions for two bicubic Bézier patches.
Let the two patches have a common boundary curve q(t) with control polygon
do,d1,92,93- Let patch 1 have an adjacent row of control points pg, p1, P2, p3. For
patch 2, we assume a row rg,ri,re, r3. Schematically:



Po Qo To

P1 q1 11 (1)
P2 q2 I2
P3s q3 r3

For patch 1, all tangent plane information may be obtained from the tangent ribbon
formed by the p; and q;. For patch 2, the tangent ribbon is given by the q; and r;.

In order for the two patches to share a common tangent plane at qg, there must be
numbers Ag, po such that

(1= X0)Po + Aoro = (1 — po)ao + pod- (2)
Similarly, a common tangent plane at q3 necessitates the existence of numbers A1, 11
such that

(1= A)ps + Air3 = (1 — p1)q2 + p193. (3)
Then, po, q1, o, qo form the tangent plane at qg, and ps, qs, r3, q2 form the tangent
plane at qs.
Conditions for G! continuity have been developed (Farin [1]) which require that
the tangent ribbons satisfy linear functions A(t) = (1 — t)\g + tA; and p(t) =
(1 — t)po + tp1. Express the common boundary as a quartic q(t), obtained from
degree elevating the cubic q(¢). Let
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then G continuity is achieved if

(1= A@)P(E) +AO)r(t) = (1 = p()a’(t) + p(t)q*(2).

Some elementary algebra now leads to a set of G' conditions between the two
patches:
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Despite the simplicity of these conditions, they have not received much attention
in the literature. An exception is work by Tong and Kim [10]. What is somewhat



surprising in our context is the fact that the above G' conditions were developed
for polynomial patches but they work equally well for rational Gregory patches.

G' conditions which use more general functions than the linear ones above are
conceivable; for this work, we did not pursue that added generality.

5 G' Surface Fitting

Suppose we are given data: a point set with associated normal vectors and a con-
nectivity grouping them into triangular and quadrilateral faces. See Figure 3 for
two illustrations. Our goal is to create a triangular or rectangular Gregory patch
over each face such that the overall surface is G'. The rectangular patches will be
bicubic Gregory patches and the triangular patches will be quartic Gregory patches
with degree elevated cubics as boundary curves.

We proceed as follows.

1. Build patch boundaries as cubic Bézier curves. We use Piper’s point-
normal interpolation method [11] which is also used by Vlachos et al. [12] in the
context of so-called PN patches. Let p; and p; be two connected data points with
associated normals n; and n;. We desire a cubic Bézier curve connecting p; and
pj, being perpendicular to n; at p; and to n; at p;. We form auxiliary points
¢; = (2p; + p;j)/3 and ¢; = (p; + 2p;)/3. Our final Bézier points are

by = pi,
by = projection of ¢; onto plane [p;,n;],
by = projection of c; onto plane [p;,n;,
b = p;.

2. Estimate tangent ribbons along the boundary curves. Let us refer to the
schematic of (1). Suppose we wish to estimate a ribbon for patch 1, meaning we
are given qo,q1,q2,qs as well as pg, p3. We need to find estimates for ps and ps,
namely p$ and p§. If patch 1 is a triangular patch, it will be quartic, and we must
adjust the tangent ribbon length at the boundary curve ends, namely define

Po = (o +3po)/4 and p3 = (a3 + 3p3)/4.

To unify the following presentation, if the patch is rectangular let pp = po and
P3s = p3. Then the estimates are defined as

P; =dq1+2(Po—9qo)/3+ (P3—q3)/3,
PS5 =dq2+ (Po—qo0)/3+2(P3 —a3)/3,

Estimates, r{ and r$, for patch 2 follow similarly.



3. Determine geometry parameters. At g there must exist numbers Ay and
uo such that (2) is met. Since by construction the four points Py, qo,To,q1 are
coplanar, this amounts to solving an overdetermined linear system which has an
exact solution. We repeat by using ps, s, T3, q2 and (3) for finding A\; and p;.

4. Enforce G! continuity across interior boundary curves. The two tangent
ribbons from step 2 will not ensure G continuity between patch 1 and patch 2. But
we can adjust p1, p2 and ry, ro such that this is the case. Consider the underdeter-
mined linear system Ax = u in (4) for the four unknowns p1, p2, r1,r2. (The points
Po, P3, o, rs must be replaced by po, Ps, To, I's, respectively.) We do have an initial
guess
x® = [P‘fv r{, p5, r%:IT

for the unknowns from our ribbon estimation, and a solution to (4) is readily found
by using an auxiliary linear system

AATd = u — Ax®, (5)
then the final solution is given by

x =x°+ ATd. (6)

Note that A has full row rank since q is truly a cubic.? This approach to solving

an underdetermined linear system is taken from Boehm and Prautzsch [13]. The
explicit solution may be expressed using the matrix AT (AA™)~!, which is the Moore-
Penrose pseudoinverse to (4), thus explaining why we in fact minimize the distance

to our initial guess x°.3

We use least squares to solve (5) for reasons of numerical stability.

5. Load Gregory patches with tangent ribbon data. Points pi, po, ri, ro
must be stored in the appropriate Gregory point position. In addition, the common
boundary control polygons must be recorded, which is q for a rectangular patch
and q for a triangular patch. If a boundary has no neighbor, then simply load the
boundary curve and guess interior points computed in steps 1 and 2.

6 Examples

We demonstrate our G' construction using two examples. Example 1 is a symmetric
data set; Example 2 exhibits very little symmetry.

Figure 3 shows the input data: data points, given normals, and data connectivity.

The boundary curves are shown in Figure 4. They are generated according to step
1 above.

2Tae-wan Kim, private communication 2011
3A reviewer kindly pointed this out to us.



Figure 3: Input data. Left: Example 1, right: Example 2.

Figure 4: Patch boundary curves. Left: Example 1, right: Example 2.

The initial guesses for the control nets are shown in Figure 5. This follows step 2
above. Note that the resulting surface is only GV.

The results of the G' construction of steps 3 and 4 are shown in Figure 6. All
creases which resulted from step 2 are now eliminated. The Example 2 surface still
has some shape defects that were introduced by the initial guess, however, it is G'.

7 Conclusion

We presented a framework for the construction of G Gregory surfaces. This frame-
work handles rectangular surfaces in the same manner as triangular ones, based on
the concept of cubic tangent ribbons.
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Figure 5: Initial guesses. Left: Example 1, right: Example 2.

C ©

Figure 6: Final G' surfaces. Left: Example 1, right: Example 2.

More work is needed, however:

1. Piper’s boundary curve generation method is very ad hoc and does not always
yield good results. Walton and Meek [8] suggest a more involved method; a combi-
nation of ideas from that paper with Piper’s might yield more satisfying shapes.

2. Our tangent ribbon estimator may be too simplistic. While any tangent ribbon
estimate will ultimately lead to a G surface, its shape does depend on the estimate.
In cases such as approximating subdivision surfaces, additional data are available
which may be utilized.

3. Our G' conditions utilize linear functions A(¢) and su(t). More research might
lead to more suitable (higher degree?) functions.
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