Secure Programming for Linux and Unix HOWTO

David A. Wheeler
v3.010 Edition
Copyright © 1999, 2000, 2001, 2002, 2003 David A. Wheeler

v3.010, 3 March 2003

This book provides a set of design and implementation guidelines for writing secure programs for Linux and
Unix systems. Such programs include application programs used as viewers of remote data, web applicatiol
(including CGI scripts), network servers, and setuid/setgid programs. Specific guidelines for C, C++, Java,
Perl, PHP, Python, Tcl, and Ada95 are included. For a current version of the book, see

http://www.dwheeler.com/secure—programs

This book is Copyright (C) 1999-2003 David A. Wheeler. Permission is granted to copy, distribute and/or
modify this book under the terms of the GNU Free Documentation License (GFDL), Version 1.1 or any later
version published by the Free Software Foundation; with the invariant sections being “"About the Author",
with no Front—-Cover Texts, and no Back—Cover texts. A copy of the license is included in the section entitles
"GNU Free Documentation License". This book is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE.

http://www.dwheeler.com/secure-programs

Secure Programming for Linux and Unix HOWTO

Table of Contents

Chapter 2. BaCKQIOUNG...........ccoo ittt abanaaaaaee £

2.1.History of Unix, Linux, andOpenSourcel FreeSoftware..............cccccoeeiii, 4
o 0 T T PR y

2.5. Typesof SECUIEPIOQIAIMS.cee e 13
2.6, PAIANOIAS B VITEUE. ... ceeeeeeee ettt ettt et et e et e et e e et et e e e e et e e e e e e e e e e e e e e ernns 14

Chapter 3. Summary of Linux and UniX SeCUrity FEAtUIES.............oceivviiiiiiieiiee e, 19
BT I (0T ST Y =N 2!

I I a0 Yol Yot AN L] oYU (TR RT 20

3.1.2. POSIXCAPRADIILIESeceeeeiiirieie e e e e e e ettt e e e ettt et aaaeaaaaans 21
3.1.3.Proces<CreationandManipUIALIONuvvuuueirreiieeiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeereeeeeeaeeeaeees 21
I 1 [T TPT 2

3.2.1 . FilesysStemOD]ECIALIIIDULES. .. .uvvviveiieeiieiiieeeeee ettt et e et e aaaaaaaaaaas 22
3.2.2.CreationTime INItIAl VAIUES.........coieeeiieiieee ettt e e e e e et e e e et e e e e e 24
3.2.3.ChangingAccessCONrOlALIDULES.ccooeee e 24
3.2.4.UsiNg ACCESSCONIIOIAIIIDULES.uuiiiiiiiiiiiiiiiiiiiiiiiii e e e e e eeeeeeeeeeeeeeees 25
3.2.5. FilesSyStemHIEIarCRY.........ooviiiiiieeeeee e 25
R TSV (=] 1.\ | = OO U TP U SRR PPPP 2F
3.4.S0cketsaNANEtWOrK CONNECHIONS. . .. ccieeri ettt e e ettt e e et e e e e e s e e e e e e e e e e s et e e e s eebaeeseebanaens 26
TR 110 [T PP PPPPPPPP 2
3.6. QUOASANALIMIES . ..evvvutieeieeeee ettt ee e e e e e e e e e e et e e e e e e e e e eeeae s e e eeeeeee e e s saab s aeeeeesssesssaannsaeaeeeeessssrnnnns 28

3.7.DynamicallyLinKed LIDIAIES.ccvveiiiiiiieiiiiieeeeeee ettt 28
IS I N E Lo L1 TR 2

Chapter 4. SECUNTY REQUITEIMEINTS.uuuuuuuuuuuiuuutuuttuuttauteasreasreaaeeaeee——er——esseesessessssssssssssesssssssessssssssssesssnesseeeeees 31
4.1. CommMONCIItErIAINIIOAUCTION ceee i eeee ettt ettt ettt et e et e et e e e e e e e e e e s eeaeeeanreeneeeenas 31

4.2. SecurityEnvironmenBnNdODJECHIVES..........coooii i 33

Secure Programming for Linux and Unix HOWTO

Table of Contents

Chapter 4. Security Requirements
4.3. SecurityFUNCtionalityREQUITEIMENES.uuuervrerirrrreriereseereeeeeeeeeeeseeeeeeeeeeeeereeeerrerreerrreerrereerareeeeees 34
4.4, SecurityAssuranceleasureREQUITEIMENES.uuuuurrurrerrrrrresrrrresesereseeeseeeeeeereerrererrerrrrrrrrrrerreeeeee 35

Chapter 5. Validate All INDUL........ooo i 37
oI B O e T aTa =T aTe (1A T TR 3¢

5.2 ENVIFONMENIAIIADIES. . ..ottt ettt e et e et e et e et e et e e e e e e e e 39
5.2.1.SomeEnvironmentVariablesare DangerOuUS..............uuuvuururuirurerrirrirerrrsrrsnerrsrreerrerree—————— 39

5.2.2.EnvironmentVariable StorageFormatis Dangerous..............oocvvvvvviiiiiiiiiiiiiiieeeeeeeeeeeee 40
5.2.3.The Solution = EXIraCtANAETASE. .. c.vuteeeeee ettt e e e e e et e e e e ettt e e e e e e e e eeareeanaees 40

5.2.4.Don'tLet UsersSetTheir Own EnvironmentVariables...........ccouueveiiieiiiiiiieiieeeeeeeeeeeeen, 41
oGl 1 (=X B 1YY o] 1] (0 PRSP 4z
LN 1L AN P2 T T 4
LI ST 1[0 O a1 (=] 1= 4¢
5.6.Web-Based\pplication Inputs(EspeciallyCGI Scripts)
LA @) 1T o 0] 0T (PSPPSR 4r
5.8. HumanLanguageLocale)SeleCtion.............ouuvviiiiiiiii e, 45
5.8.1.HOW LOCAIESAIESEIECLEA.vvn it e e e et e e e e et e e e e eaaaeeaes 46
5.8.2.1.0Cale SUPPOIMECRANISIMIS. .. .uvvvvviiiiiiiiiieeiieeeeeee et e e e e e e et e aaeaaaaaaaaaaaaaaas 46
5.8.3.LQAIVAIUEBS.......cceiieeeeeeeee s 47
LRSI 3 =10 1 (0 1 L= 47
5.9. CharaCtEIENCOUING. . .uuvvvverrrerreereeeeeeeieeeeeeeeeeeeeee e et e et ettt e ettt ettt e e te ittt et etaattaetaaeeaaaaaaaaaaeaaaaaaaaaaaaaaaaaaaaaans 48
5.9.1.Introductionto CharaCteENCOAINGc.cevviiiiiiiiiiiiieeeeeeeeee e 48
5.9.2.INtrodUCIONIO UTE=8.....coeuuiiiiiiiiiieee et e e et e e e e e e e s e et e e e e e e e s eebba e e eeenaas 48
5.9.3.UTFE=8SECUNLYISSUBS.......ettiiiiiiiieeieeeeeeee e, 49
5.9.4. UTFE=8LEQalValUES.........ooviiiiiiiiiee e 50
5.9 5. UTE =8 REIAIEAISSUES.uueiieitiieeeite ettt e e et e e e e e e e e et e e e s et e e s s et e e s s et e e e eeaanaens 51
5.10.PreventCross—sitdVlalicious Contenton INPUL.............uuuuuuuuurruiiiiieiireererrrrerreerrerrseereeee————————— 51
5.11.Filter HTML/URIs ThatMay BE Re—PreSented.............uuvururuuiriiiriiriiierirnsrnssrssresesrrerreeseeeee.. 51
5.11.1.Removeor Forbid SOMEHTML DALA.......uoiiiiuieiieiiie e 52
Lot 0 2 T Voo o [T [I N Y I 7 - RS 52
5.11.3.ValidatingHTML DaAta........cccuviiiiiiiiiiiiiiieieieeeeee ettt 52
5.11.4 Validating HypertexXtLinks (URIS/URLS)..........uuuuuuuiriieiireirnsisesrsesrsssseessessssessesseesreseeeeeee. 54
5.11.5.0therHTML taQS.......cciieiiieiieeeee e, 58
D11 6. REIAIEAISSUES.ottt ettt e et e e et e et et e e e e eab e e e eaba e e e seaan e ereataaeeeens 58
5.12.ForbidHTTP GET To PerformNON=—QUEIIES.........uuueeiieeeeeieeeiiieeeee e e e e e e e e e e e e e e e 59
LT G T O T U1 01 1=] e AN 60

5.14.Limit Valid Input Time andLoadLeVel..............ccoeeiiiiiiiiii e, 61

Chapter 6. AVOid BUfEr OVEITIOW.uuuiiiiiiiiiiiiiiiiiiiiiiti bbb ssssssssssssssssssssessssssssssesssnnsseneeees 62
B.1.DANGEIIN G/l . i ——————————————————————— 62
6.2. LIbrary SOIULIONSIN C/CH. . uuuuuuuiiuiiiiiiriisssseseessssssssseseesseeseeereeseerereeeteerererteeraeraretarettereretareaareeaeeess 64
6.2.1.StandardC Library SOIULIODcooieiieeiee e ee e anesanannnes 64
6.2.2.StaticandDynamicallyAllocatedBUSferS...........ooooiiiiiiiii 65
6.2.3.SCPYANASEIICAL. ... ——— 66
(ST 1 oY 111 o PP 6

I T O e =) (0 =Y € 11010 (03 = 1= VPSPPSR PPRPPPPR 67
6.2.6.Libsafe

Secure Programming for Linux and Unix HOWTO

Table of Contents

Chapter 6. Avoid Buffer Overflow
SO A1 a1 o I o] 7= T T 69
6.3.CompilationSolutioNSIN C/CH+ ... 69
(SR IO (1Y = T o [= Lo [PRSP 70

Chapter 7. Structure Program Internals and APPIrOACK............uuuuuiiiuiiiiiiiiiiiiiiiieiiieeieeereeererereereeeseereeeeeeeeee 71

7.1.Follow GoodSoftwareEngineeringPrinciplesfor SecurePrograms...........cccceeeeeeeeeeeeeeceeeeeeeen, 71
RS Y o0 1= | A=Y A1) =10 < RO 72

AR T Y-\ (= TSR 8
7. 10.AVOI0 RACECONAIIONS ... e eeteeereeeeet e eeet e et e e et et et e e et e e et e e e e e e et re e et eeea e ree s eeetreeanseeetareesnseennarees 80

7.10.1.SequencindNON—AtOMIC) PrOBIEMS........uuuiuiiiiiiiiiiiiiiiiiiiirerreereeeeeeeeeseeees e eeeeeereereeeeeeees 81
Z.00.2.L0CKING. ... e ———————————————— 8¢
7.11. TrustOnly TrustworthyChannelS.........coooeiiiii s 89
7.12.SetupaTrustedPath....... ... ———————— 91
7.13.UselnternalConsistency=CheckiNGOdE.ccceeiiiiiiiiiiiicecc e 92
A Y= L [T ST Y0 10 0= 92
7.15.PreventCross—Sitd XSS)MaliCiOUS CONLENL.......ccceviiiiiiiiiiiiiieeeeeeeeeeee e, 92

7.15.1. Explanationof the ProbIEM.........uueieiiiiiiiiiieeeeeeeeeeeeeee e 92
7.15.2.Solutionsto CrosS—=SitaVIaliCIOUS CONLENL. ... vvveeeeee e e e et e et e et e e e e e e e e eeeaeeens 93

7. 16, FOI SEMANTICALLACKS. . e vt eeee ettt ettt et et et et et e et e et et e e e e eeaeeennns 96
7.17.Be Carefulwith DataTVPES......ccooei e 97

Chapter 8. Carefully Call Out t0 Other RESOUICESuvuuiieiriiiiiiiieireeriereeeereeereeeeeeeseeeererrrrererrrerrerrrreerreraee 98

8.1.Call Only SafeLibrary ROULINES.uuuureirieiiieeiieeieeeeeeeeeeeeeeeeeeseeeeeeeeeesseeeeeeeeeeaeeeeeeeeeeaeeeaeeeaeeeaeeees 98
8.2. Limit Call=0ULSIO VAL VAIUES ... ettt ettt e et et e et e e e e e e e e e e e e eenneeenn 98

oI m F= 10 | 1] Y[= To A= = o1 (=) £ TR 98
8.4.Call Only Interfacedntendedfor Programmers.............coooeeeieiii e, 101
8.5. CheCKAIll SYSteMCAIl REIUINSuuuuuuiiiiiiiiiiiiietiaatiaataastaaeeaseaaaeaasaessessesssssssssssssssssssssssssssssssnseees 101
8.6. AVOId USINGVIOIK(2). ... uuvvuuueuutiuitiittisiesttsstssssessssssssssssssssssssssssssssssessssssssssessssessesssessseeseeesaeeeeeeeeees 101

8.7. CounterWebBugsWhenRetrievingEmbeddedContent.............uvvvviveeiviriiieiiieeireeieerereereeeeeeees 102
8.8. Hide SenSitiVEINTOIMIBLION. eeeeeeee ettt ettt et e et e et e et e e e e e e e e e e eeaareeaereeaeeeenns 103

Secure Programming for Linux and Unix HOWTO

Table of Contents

9.3. HandleFull/UNreSPONSIVEDULPUL.........eevviiiiiirieeeieeeeeeeeeeeeee e e e e et e e e e e e e et e e e e e e e e e e e e e e e e e e e aaaaeaaaaaaaaaaaeeas 104
9.4. Control DataFormatting(FormatStringS/FOrmatation)................uveeeereereereeeereereereeeereeeeeeeeeeeen. 104
9.5. ControlCharacteENCOAINGIN OULPUL........cvviiiiiiiiiiiiei ettt 106
9.6.Preventinclude/ConfigurationFile ACCESS.......ovvviiiiiiiiiiiieieeeee e 107

Chapter 10.Language—SPECIHIdSSUES.cciiiii bbb e e e s eseees st sssasessssssssssssssssseeeseeeeeees 109
O D O O TSR 10

L0, 2 P oIl ettt e e e e 11

L0, 3. PYENOMN. ..t e e a et e e 11

10.4.Shell ScriptingLanguage$shandcshDerivatiVES)...........uuueuuuivieiireiiiriieeieeeireeeeereeereeereeeeeeee. 113
TR o TSP UPR 11

IO N T = 7= 11
O R0 o] TP 11
IO TN = | 12

Chapter 11. SPECIAITOPICS. .vvvuuvrurrurtrrrirrrrrerrsrrsseressseeseeeseeeeeeeereeeer————t——etttettttttttttttttttttttettaetaaataaeaaaaeaaaeaeeaaaeees 124
T =TT Y0 KSR 12
11.2. AuthenticatingontheWeh ... 124

11.2.1.Authenticatingon the Web: LOgQingIN..........uuvueiuiiiririieiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeees 126
11.2.2.Authenticatingon the Web: Subsequenm\ctions.............cccovvvviveiii 127
11.2.3.Authenticatingon the Web: LogdingOUL...........uuuuuruuriiiiiiieiireeererreseeeereereeeeeeeeeereereeeereees 128
IR T aTe fo 00 N T T =] £ 129
11.4.SpeciallyProtectSecret§PasswordandKeys)in USErMemOry.........coooeeeeeeeeeeeeeeeicccccnns 130
11.5.CryptographicAlgorithmsandProtOCOIS..........coovviiiiiiiiiceeeeeeeee e, 131
11.5.1.Cryptographi@PrOtOCOIS.coiieeieeee bbb e e s eesessssssssssnssnnenees 132
11.5.2.SymmetricKey ENncryptionAIGOItRMS........uvuiviiiiiiiiieiieiieeeieeeieeeeeeee e e e e ea e 133
11.5.3.PUblicKeY AlQOTItNMS.cvviiiiiiiiiieeeeeeeeee e, 134
11.5.4.CryptographiddashAIgorithmS.........cooooiiiii s 135
S S a1 (=To 1AV O aT=Tod (1 o [P 135
11.5.6.RandomizedMessageéiuthenticationMode (RMAC)..........uuuvrrrverrrireiirerirreererreerreereeene 136
11.5.7.0therCryptographidSSUES.......covvviiiiiiieiiceeeeeeeeee e 136

L11.6.USINGPAM. ...ttt e e e e e e et e e e e e e e e e e b e e e e e e e e e e e —a et e e e e e e aaaaararaaaaas 137
A o 1o | LR 13

R IRV a T o 1YY O TR 13¢
129, WIIE AUAIL RECOIAS. . .cve ettt ettt e et e e et e et e et e e et e et e e e et e e e eeenans 139

11.10.PhYSICAIEMISSIONSccceei ettt anebaaebnaeaarranrre 140
I Y T | F2 T AT 0 10 E TP 140

Secure Programming for Linux and Unix HOWTO

Table of Contents

AppendiX B. ACKNOWIEAQEMENTS.coiiiiiiiiiiiiit ettt e et e e e e s 154
Appendix C. About the DOcUMENtatiONLICENSE:........ccoiuriiieiiiiiieeiiiei ettt 155
Appendix D. GNU Free DOCUMENtatiONLICENSE.uuvrieiiiiiieeiiiiiee ettt e e ettt e et e e 157
APPENdiX E. ENOOISEIMENLS. .. .cciitiiiiiiiiiii ettt ettt e e ekt e e et e e e et e e e e e b et e e e anbneeeean 163
AppendiX F. ADOUL the AULNOL.oviiiiii it e e e 164

Chapter 1. Introduction

A wise man attacks the city of the mighty and
pulls down the stronghold in which they trust.
Proverbs 21:22 (NIV)

This book describes a set of guidelines for writing secure programs on Linux and Unix systems. For purpose
of this book, a “secure program" is a program that sits on a security boundary, taking input from a source tt
does not have the same access rights as the program. Such programs include application programs used a:
viewers of remote data, web applications (including CGI scripts), network servers, and setuid/setgid
programs. This book does not address modifying the operating system kernel itself, although many of the
principles discussed here do apply. These guidelines were developed as a survey of ““lessons learned" fron
various sources on how to create such programs (along with additional observations by the author),
reorganized into a set of larger principles. This book includes specific guidance for a number of languages,
including C, C++, Java, Perl, PHP, Python, Tcl, and Ada95.

You can find the master copy of this book at http://www.dwheeler.com/secure—programs. This book is also
part of the Linux Documentation Project (LDP) at http://www.tldp.org It's also mirrored in several other
places. Please note that these mirrors, including the LDP copy and/or the copy in your distribution, may be
older than the master copy. I'd like to hear comments on this book, but please do not send comments until
you've checked to make sure that your comment is valid for the latest version.

This book does not cover assurance measures, software engineering processes, and quality assurance
approaches, which are important but widely discussed elsewhere. Such measures include testing, peer revi
configuration management, and formal methods. Documents specifically identifying sets of development
assurance measures for security issues include the Common Criteria (CC, [CC 1999]) and the Systems
Security Engineering Capability Maturity Model [SSE-CMM 1999]. Inspections and other peer review
techniques are discussed in [Wheeler 1996]. This book does briefly discuss ideas from the CC, but only as «
organizational aid to discuss security requirements. More general sets of software engineering processes at
defined in documents such as the Software Engineering Institute's Capability Maturity Model for Software
(SW-CMM) [Paulk 1993a, 1993b] and ISO 12207 [ISO 12207]. General international standards for quality
systems are defined in ISO 9000 and ISO 9001 [ISO 9000, 9001].

This book does not discuss how to configure a system (or network) to be secure in a given environment. Thi
is clearly necessary for secure use of a given program, but a great many other documents discuss secure
configurations. An excellent general book on configuring Unix-like systems to be secure is Garfinkel [1996].
Other books for securing Unix-like systems include Anonymous [1998]. You can also find information on
configuring Unix-like systems at web sites such as http://www.unixtools.com/security.html. Information on
configuring a Linux system to be secure is available in a wide variety of documents including Fenzi [1999],
Seifried [1999], Wreski [1998], Swan [2001], and Anonymous [1999]. Geodsoft [2001] describes how to
harden OpenBSD, and many of its suggestions are useful for any Unix-like system. Information on auditing
existing Unix-like systems are discussed in Mookhey [2002]. For Linux systems (and eventually other
Unix-like systems), you may want to examine the Bastille Hardening System, which attempts to ““harden" o
“tighten" the Linux operating system. You can learn more about Bastille at http://www.bastille=linux.org; it
is available for free under the General Public License (GPL). Other hardening systems include grsecurity. F
Windows 2000, you might want to look at Cox [2000]. The U.S. National Security Agency (NSA) maintains &
set of security recommendation guides at http://nsal.www.conxion.com, including the 60 Minute Network
Security Guide." If you're trying to establish a public key infrastructure (PKI) using open source tools, you
might want to look at the Open Source PKI Book. More about firewalls and Internet security is found in
[Cheswick 1994].

Chapter 1. Introduction 1

http://www.dwheeler.com/secure-programs
http://www.tldp.org
http://www.unixtools.com/security.html
http://www.bastille-linux.org
http://www.grsecurity.net
http://nsa1.www.conxion.com
http://ospkibook.sourceforge.net

Secure Programming for Linux and Unix HOWTO

Configuring a computer is only part of Security Management, a larger area that also covers how to deal with
viruses, what kind of organizational security policy is needed, business continuity plans, and so on. There al
international standards and guidance for security management. ISO 13335 is a five—part technical report
giving guidance on security management [ISO 13335]. ISO/IEC 17799:2000 defines a code of practice [ISO
17799]; its stated purpose is to give high—level and general ““recommendations for information security
management for use by those who are responsible for initiating, implementing or maintaining security in thei
organization." The document specifically identifies itself as "a starting point for developing organization
specific guidance." It also states that not all of the guidance and controls it contains may be applicable, and
that additional controls not contained may be required. Even more importantly, they are intended to be broa
guidelines covering a number of areas. and not intended to give definitive details or "how-tos". It's worth
noting that the original signing of ISO/IEC 17799:2000 was controversial; Belgium, Canada, France,
Germany, Italy, Japan and the US voted against its adoption. However, it appears that these votes were
primarily a protest on parliamentary procedure, not on the content of the document, and certainly people are
welcome to use ISO 17799 if they find it helpful. More information about ISO 17799 can be found in NIST's
ISO/IEC 17799:2000 FAQ. ISO 17799 is highly related to BS 7799 part 1 and 2; more information about BS
7799 can be found at http://www.xisec.com/fag.htm. ISO 17799 is currently under revision. It's important to
note that none of these standards (ISO 13335, ISO 17799, or BS 7799 parts 1 and 2) are intended to be a
detailed set of technical guidelines for software developers; they are all intended to provide broad guidelines
in a number of areas. This is important, because software developers who simply only follow (for example)
ISO 17799 will generally not produce secure software — developers need much, much, much more detail th
ISO 17799 provides.

The Commonly Accepted Security Practices & Recommendations (CASPR) project at http://www.caspr.org
trying to distill information security knowledge into a series of papers available to all (under the GNU FDL
license, so that future document derivatives will continue to be available to all). Clearly, security managemel
needs to include keeping with patches as vulnerabilities are found and fixed. Beattie [2002] provides an
interesting analysis on how to determine when to apply patches contrasting risk of a bad patch to the risk of
intrusion (e.g., under certain conditions, patches are optimally applied 10 or 30 days after they are released

If you're interested in the current state of vulnerabilities, there are other resources available to use. The CVE
at http://cve.mitre.org gives a standard identifier for each (widespread) vulnerability. The paper
SecurityTracker Statistics analyzes vulnerabilities to determine what were the most common vulnerabilities.
The Internet Storm Center at http://isc.incidents.org/ shows the prominence of various Internet attacks arour
the world.

This book assumes that the reader understands computer security issues in general, the general security m
of Unix-like systems, networking (in particular TCP/IP based networks), and the C programming language.
This book does include some information about the Linux and Unix programming model for security. If you
need more information on how TCP/IP based networks and protocols work, including their security protocols
consult general works on TCP/IP such as [Murhammer 1998].

When | first began writing this document, there were many short articles but no books on writing secure
programs. There are now two other books on writing secure programs. One is ~"Building Secure Software" k
John Viega and Gary McGraw [Viega 2002]; this is a very good book that discusses a number of important
security issues, but it omits a large number of important security problems that are instead covered here.
Basically, this book selects several important topics and covers them well, but at the cost of omitting many
other important topics. The Viega book has a little more information for Unix—like systems than for Windows
systems, but much of it is independent of the kind of system. The other book is ““Writing Secure Code" by
Michael Howard and David LeBlanc [Howard 2002]. The title of this other book is misleading; the book is
solely about writing secure programs for Windows, and is basically worthless if you are writing programs for
any other system. This shouldn't be surprising; it's published by Microsoft press, and its copyright is owned |

Chapter 1. Introduction 2

http://csrc.nist.gov/publications/secpubs/otherpubs/reviso-faq.pdf
http://www.xisec.com/faq.htm
http://www.caspr.org
http://securitytracker.com/learn/securitytracker-stats-2002.pdf

Secure Programming for Linux and Unix HOWTO

Microsoft. If you are trying to write secure programs for Microsoft's Windows systems, it's a good book.
Another useful source of secure programming guidance_is the The Open Web Application Security Project
(OWASP) Guide to Building Secure Web Applications and Web Services; it has more on process, and less

specifics than this book, but it has useful material in it.

This book covers all Unix-like systems, including Linux and the various strains of Unix, and it particularly
stresses Linux and provides details about Linux specifically. There's some material specifically on Windows
CE, and in fact much of this material is not limited to a particular operating system. If you know relevant
information not already included here, please let me know.

This book is copyright (C) 1999-2002 David A. Wheeler and is covered by the GNU Free Documentation
License (GFDL); see Appendix C and Appendix D for more information.

Chapter 2 discusses the background of Unix, Linux, and security. Chapter 3 describes the general Unix and
Linux security model, giving an overview of the security attributes and operations of processes, filesystem
objects, and so on. This is followed by the meat of this book, a set of design and implementation guidelines
for developing applications on Linux and Unix systems. The book ends with conclusions in Chapter 12,
followed by a lengthy bibliography and appendixes.

The design and implementation guidelines are divided into categories which | believe emphasize the
programmer's viewpoint. Programs accept inputs, process data, call out to other resources, and produce
output, as shown in Figure 1-1; notionally all security guidelines fit into one of these categories. I've
subdivided "“process data" into structuring program internals and approach, avoiding buffer overflows (whicl
in some cases can also be considered an input issue), language-specific information, and special topics. Tt
chapters are ordered to make the material easier to follow. Thus, the book chapters giving guidelines discus
validating all input (Chapter 5), avoiding buffer overflows (Chapter 6), structuring program internals and
approach (Chapter 7), carefully calling out to other resources (Chapter 8), judiciously sending information
back (Chapter 9), language—specific information (Chapter 10), and finally information on special topics such
as how to acquire random numbers (Chapter 11).

Figure 1-1. Abstract View of a Program

Program
Input Output

—p| ProcessData |
(Struc ture Program Intermals,
Avoid Buffer Overflow,
Language-Specific Issuves, &
Special Topics)

Call-out to
other

programs

Chapter 1. Introduction 3

http://www.owasp.org/guide
http://www.owasp.org/guide

Chapter 2. Background

| issued an order and a search was made, and it
was found that this city has a long history of
revolt against kings and has been a place of
rebellion and sedition.

Ezra 4:19 (NIV)

2.1. History of Unix, Linux, and Open Source / Free Software

2.1.1. Unix

In 1969-1970, Kenneth Thompson, Dennis Ritchie, and others at AT&T Bell Labs began developing a small
operating system on a little—used PDP-7. The operating system was soon christened Unix, a pun on an ear
operating system project called MULTICS. In 1972-1973 the system was rewritten in the programming
language C, an unusual step that was visionary: due to this decision, Unix was the first widely—used operatil
system that could switch from and outlive its original hardware. Other innovations were added to Unix as
well, in part due to synergies between Bell Labs and the academic community. In 1979, the ““seventh editiol
(V7) version of Unix was released, the grandfather of all extant Unix systems.

After this point, the history of Unix becomes somewhat convoluted. The academic community, led by
Berkeley, developed a variant called the Berkeley Software Distribution (BSD), while AT&T continued
developing Unix under the names “System IlI" and later " System V". In the late 1980's through early 1990
the “wars" between these two major strains raged. After many years each variant adopted many of the key
features of the other. Commercially, System V won the ““standards wars" (getting most of its interfaces into
the formal standards), and most hardware vendors switched to AT&T's System V. However, System V ende
up incorporating many BSD innovations, so the resulting system was more a merger of the two branches. Tl
BSD branch did not die, but instead became widely used for research, for PC hardware, and for
single—purpose servers (e.g., many web sites use a BSD derivative).

The result was many different versions of Unix, all based on the original seventh edition. Most versions of
Unix were proprietary and maintained by their respective hardware vendor, for example, Sun Solaris is a
variant of System V. Three versions of the BSD branch of Unix ended up as open source: FreeBSD
(concentrating on ease—of-installation for PC-type hardware), NetBSD (concentrating on many different
CPU architectures), and a variant of NetBSD, OpenBSD (concentrating on security). More general
information about Unix history can be found at http://www.datametrics.com/tech/unix/uxhistry/brf=hist.htm,
http://perso.wanadoo.fr/levenez/unix, and http://www.crackmonkey.org/unix.html. Much more information
about the BSD history can be found in [McKusick 1999] and

ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD—current/src/share/misc/bsd—family-tree.

A slightly old but interesting advocacy piece that presents arguments for using Unix-like systems (instead o
Microsoft's products) is John Kirch's paper ~"Microsoft Windows NT Server 4.0 versus UNIX".

2.1.2. Free Software Foundation
In 1984 Richard Stallman's Free Software Foundation (FSF) began the GNU project, a project to create a fr

version of the Unix operating system. By free, Stallman meant software that could be freely used, read,
modified, and redistributed. The FSF successfully built a vast number of useful components, including a C

Chapter 2. Background 4

http://www.datametrics.com/tech/unix/uxhistry/brf-hist.htm
http://perso.wanadoo.fr/levenez/unix
http://www.crackmonkey.org/unix.html
ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-current/src/share/misc/bsd-family-tree
http://web.archive.org/web/20010801155417/www.unix-vs-nt.org/kirch

Secure Programming for Linux and Unix HOWTO

compiler (gcc), an impressive text editor (emacs), and a host of fundamental tools. However, in the 1990's
FSF was having trouble developing the operating system kernel [FSF 1998]; without a kernel their dream of
completely free operating system would not be realized.

2.1.3. Linux

In 1991 Linus Torvalds began developing an operating system kernel, which he named “"Linux" [Torvalds
1999]. This kernel could be combined with the FSF material and other components (in particular some of the
BSD components and MIT's X-windows software) to produce a freely—modifiable and very useful operating
system. This book will term the kernel itself the “"Linux kernel" and an entire combination as “"Linux". Note
that many use the term “"GNU/Linux" instead for this combination.

In the Linux community, different organizations have combined the available components differently. Each
combination is called a “distribution”, and the organizations that develop distributions are called
““distributors"”. Common distributions include Red Hat, Mandrake, SUSE, Caldera, Corel, and Debian. There
are differences between the various distributions, but all distributions are based on the same foundation: the
Linux kernel and the GNU glibc libraries. Since both are covered by ““copyleft” style licenses, changes to
these foundations generally must be made available to all, a unifying force between the Linux distributions &
their foundation that does not exist between the BSD and AT&T—-derived Unix systems. This book is not
specific to any Linux distribution; when it discusses Linux it presumes Linux kernel version 2.2 or greater an
the C library glibc 2.1 or greater, valid assumptions for essentially all current major Linux distributions.

2.1.4. Open Source / Free Software

Increased interest in software that is freely shared has made it increasingly necessary to define and explain
A widely used term is ““open source software", which is further defined in [OSI 1999]. Eric Raymond [1997,
1998] wrote several seminal articles examining its various development processes. Another widely—used tel
is “free software", where the ““free" is short for ““freedom": the usual explanation is ~“free speech, not free
beer." Neither phrase is perfect. The term " free software" is often confused with programs whose executabl
are given away at no charge, but whose source code cannot be viewed, modified, or redistributed. Converse
the term “open source" is sometime (ab)used to mean software whose source code is visible, but for which
there are limitations on use, modification, or redistribution. This book uses the term ““open source" for its
usual meaning, that is, software which has its source code freely available for use, viewing, modification, an
redistribution; a more detailed definition is contained in_ the Open Source Definition. In some cases, a
difference in motive is suggested; those preferring the term ““free software" wish to strongly emphasize the
need for freedom, while those using the term may have other motives (e.g., higher reliability) or simply wish
to appear less strident. For information on this definition of free software, and the motivations behind it, can

be found at http://www.fsf.org.

Those interested in reading advocacy pieces for open source software and free software should see

http://www.opensource.org and http://www.fsf.org. There are other documents which examine such software
for example, Miller [1995] found that the open source software were noticeably more reliable than proprietar
software (using their measurement technique, which measured resistance to crashing due to random input).

2.1.5. Comparing Linux and Unix
This book uses the term ““Unix—like" to describe systems intentionally like Unix. In particular, the term

“Unix-like" includes all major Unix variants and Linux distributions. Note that many people simply use the
term “Unix" to describe these systems instead. Originally, the term ““Unix" meant a particular product

Chapter 2. Background 5

http://www.opensource.org/osd.html
http://www.fsf.org
http://www.opensource.org
http://www.fsf.org

Secure Programming for Linux and Unix HOWTO

developed by AT&T. Today, the Open Group owns the Unix trademark, and it defines Unix as ““the
worldwide Single UNIX Specification".

Linux is not derived from Unix source code, but its interfaces are intentionally like Unix. Therefore, Unix
lessons learned generally apply to both, including information on security. Most of the information in this
book applies to any Unix-like system. Linux—specific information has been intentionally added to enable
those using Linux to take advantage of Linux's capabilities.

Unix-like systems share a number of security mechanisms, though there are subtle differences and not all
systems have all mechanisms available. All include user and group ids (uids and gids) for each process and
filesystem with read, write, and execute permissions (for user, group, and other). See Thompson [1974] and
Bach [1986] for general information on Unix systems, including their basic security mechanisms. Chapter 3
summarizes key security features of Unix and Linux.

2.2. Security Principles

There are many general security principles which you should be familiar with; one good place for general
information on information security is the Information Assurance Technical Framework (IATF) [NSA 2000].
NIST has identified high—level ““generally accepted principles and practices" [Swanson 1996]. You could als
look at a general textbook on computer security, such as [Pfleeger 1997]. NIST Special Publication 800-27
describes a number of good engineering principles (although, since they're abstract, they're insufficient for
actually building secure programs — hence this book); you can get a copy at

http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf. A few security principles are summarized
here.

Often computer security objectives (or goals) are described in terms of three overall objectives:

 Confidentiality (also known as secrecy), meaning that the computing system's assets can be read or
by authorized parties.

« Integrity, meaning that the assets can only be modified or deleted by authorized parties in authorizec
ways.

« Availability, meaning that the assets are accessible to the authorized parties in a timely manner (as
determined by the systems requirements). The failure to meet this goal is called a denial of service.

Some people define additional major security objectives, while others lump those additional goals as specia
cases of these three. For example, some separately identify non-repudiation as an objective; this is the abil
to “prove" that a sender sent or receiver received a message (or both), even if the sender or receiver wishe
deny it later. Privacy is sometimes addressed separately from confidentiality; some define this as protecting
the confidentiality of a user (e.qg., their identity) instead of the data. Most objectives require identification and
authentication, which is sometimes listed as a separate objective. Often auditing (also called accountability)
identified as a desirable security objective. Sometimes “access control" and “authenticity" are listed
separately as well. For example, The U.S. Department of Defense (DoD), in DoD directive 3600.1 defines
““information assurance" as “information operations (I0O) that protect and defend information and informatio
systems by ensuring their availability, integrity, authentication, confidentiality, and nonrepudiation. This
includes providing for restoration of information systems by incorporating protection, detection, and reaction
capabilities."

In any case, it is important to identify your program's overall security objectives, no matter how you group
them together, so that you'll know when you've met them.

Chapter 2. Background 6

http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf

Secure Programming for Linux and Unix HOWTO

Sometimes these objectives are a response to a known set of threats, and sometimes some of these object
are required by law. For example, for U.S. banks and other financial institutions, there's a new privacy law
called the “"Gramm-Leach-Bliley" (GLB) Act. This law mandates disclosure of personal information shared
and means of securing that data, requires disclosure of personal information that will be shared with third
parties, and directs institutions to give customers a chance to opt out of data sharing. [Jones 2000]

There is sometimes conflict between security and some other general system/software engineering principle
Security can sometimes interfere with ““ease of use"”, for example, installing a secure configuration may take
more effort than a "trivial" installation that works but is insecure. Often, this apparent conflict can be
resolved, for example, by re-thinking a problem it's often possible to make a secure system also easy to ust
There's also sometimes a conflict between security and abstraction (information hiding); for example, some
high-level library routines may be implemented securely or not, but their specifications won't tell you. In the
end, if your application must be secure, you must do things yourself if you can't be sure otherwise — yes, the
library should be fixed, but it's your users who will be hurt by your poor choice of library routines.

A good general security principle is ““defense in depth"; you should have numerous defense mechanisms
(layers") in place, designed so that an attacker has to defeat multiple mechanisms to perform a successful
attack.

2.3. Why do Programmers Write Insecure Code?

Many programmers don't intend to write insecure code — but do anyway. Here are a number of purported
reasons for this. Most of these were collected and summarized by Aleph One on Bugtraq (in a posting on
December 17, 1998):

« There is no curriculum that addresses computer security in most schools. Even when there is a
computer security curriculum, they often don't discuss how to write secure programs as a whole.
Many such curriculum only study certain areas such as cryptography or protocols. These are
important, but they often fail to discuss common real-world issues such as buffer overflows, string
formatting, and input checking. | believe this is one of the most important problems; even those
programmers who go through colleges and universities are very unlikely to learn how to write secure
programs, yet we depend on those very people to write secure programs.

* Programming books/classes do not teach secure/safe programming techniques. Indeed, until recentl
there were no books on how to write secure programs at all (this book is one of those few).

* No one uses formal verification methods.

e C is an unsafe language, and the standard C library string functions are unsafe. This is particularly
important because C is so widely used — the ““simple" ways of using C permit dangerous exploits.

» Programmers do not think ““multi-user."

* Programmers are human, and humans are lazy. Thus, programmers will often use the ““easy" appro
instead of a secure approach — and once it works, they often fail to fix it later.

« Most programmers are simply not good programmers.

« Most programmers are not security people; they simply don't often think like an attacker does.

« Most security people are not programmers. This was a statement made by some Bugtraq contributol
but it's not clear that this claim is really true.

« Most computer security models are terrible.

» There is lots of ““broken" legacy software. Fixing this software (to remove security faults or to make i
work with more restrictive security policies) is difficult.

« Consumers don't care about security. (Personally, | have hope that consumers are beginning to care
about security; a computer system that is constantly exploited is neither useful nor user—friendly.
Also, many consumers are unaware that there's even a problem, assume that it can't happen to then

Chapter 2. Background 7

Secure Programming for Linux and Unix HOWTO

or think that that things cannot be made better.)
 Security costs extra development time.
 Security costs in terms of additional testing (red teams, etc.).

2.4. Is Open Source Good for Security?

There's been a lot of debate by security practitioners about the impact of open source approaches on securi
One of the key issues is that open source exposes the source code to examination by everyone, both the
attackers and defenders, and reasonable people disagree about the ultimate impact of this situation. (Note -
you can get the latest version of this essay by going to the main website for this book,

http://www.dwheeler.com/secure—programs.

2.4.1. View of Various Experts
First, let's exampine what security experts have to say.

Bruce Schneier is a well-known expert on computer security and cryptography. He argues that smart
engineers should ““demand open source code for anything related to security” [Schneier 1999], and he also
discusses some of the preconditions which must be met to make open source software secure. Vincent Rijn
a developer of the winning Advanced Encryption Standard (AES) encryption algorithm, believes that the ope
source nature of Linux provides a superior vehicle to making security vulnerabilities easier to spot and fix,
“Not only because more people can look at it, but, more importantly, because the model forces people to
write more clear code, and to adhere to standards. This in turn facilitates security review" [Rijmen 2000].

Elias Levy (Alephl) is the former moderator of one of the most popular security discussion groups — Bugtrac
He discusses some of the problems in making open source software secure in his article "Is Open Source

Really More Secure than Closed?". His summary is:

So does all this mean Open Source Software is no better than closed source software when it

comes to security vulnerabilities? No. Open Source Software certainly does have the potential

to be more secure than its closed source counterpart. But make no mistake, simply being open
source is no guarantee of security.

Whitfield Diffie is the co—inventor of public—key cryptography (the basis of all Internet security) and chief
security officer and senior staff engineer at Sun Microsystems. In his 2003 article Risky business: Keeping
security a secret, he argues that proprietary vendor's claims that their software is more secure because it's
secret is nonsense. He identifies and then counters two main claims made by proprietary vendors: (1) that
release of code benefits attackers more than anyone else because a lot of hostile eyes can also look at
open-source code, and that (2) a few expert eyes are better than several random ones. He first notes that v
giving programmers access to a piece of software doesn't guarantee they will study it carefully, there is a
group of programmers who can be expected to care deeply: Those who either use the software personally ¢
work for an enterprise that depends on it. "In fact, auditing the programs on which an enterprise depends fol
its own security is a natural function of the enterprise's own information—security organization." He then
counters the second argument, noting that "As for the notion that open source's usefulness to opponents
outweighs the advantages to users, that argument flies in the face of one of the most important principles in
security: A secret that cannot be readily changed should be regarded as a vulnerability." He closes noting th

"It's simply unrealistic to depend on secrecy for security in computer software. You may be
able to keep the exact workings of the program out of general circulation, but can you prevent
the code from being reverse—engineered by serious opponents? Probably not."

Chapter 2. Background 8

http://www.dwheeler.com/secure-programs
http://www.securityfocus.com/commentary/19
http://www.securityfocus.com/commentary/19
http://zdnet.com.com/2100-1107-980938.html
http://zdnet.com.com/2100-1107-980938.html

Secure Programming for Linux and Unix HOWTO

John Viega's article "The Myth of Open Source Security" also discusses issues, and summarizes things this
way:

Open source software projects can be more secure than closed source projects. However, the
very things that can make open source programs secure —— the availability of the source code,
and the fact that large numbers of users are available to look for and fix security holes —— can
also lull people into a false sense of security.

Michael H. Warfield's "Musings on open source security" is very positive about the impact of open source
software on security. In contrast, Fred Schneider doesn't believe that open source helps security, saying "tt

is no reason to believe that the many eyes inspecting (open) source code would be successful in identifying
bugs that allow system security to be compromised" and claiming that ““bugs in the code are not the doming
means of attack" [Schneider 2000]. He also claims that open source rules out control of the construction
process, though in practice there is such control — all major open source programs have one or a few officia
versions with ““owners" with reputations at stake. Peter G. Neumann discusses “open—box" software (in
which source code is available, possibly only under certain conditions), saying = Will open—box software
really improve system security? My answer is not by itself, although the potential is considerable" [Neumanr
2000]. TruSecure Corporation, under sponsorship by Red Hat (an open source company), has developed a
paper on why they believe open source is more effective for security [TruSecure 2001]. Natalie Walker
Whitlock's IBM DeveloperWorks article discusses the pros and cons as well. Brian Witten, Carl Landwehr,
and Micahel Caloyannides [Witten 2001] published in IEEE Software an article tentatively concluding that
having source code available should work in the favor of system security; they note:

“We can draw four additional conclusions from this discussion. First, access to source code
lets users improve system security —— if they have the capability and resources to do so.
Second, limited tests indicate that for some cases, open source life cycles produce systems
that are less vulnerable to nonmalicious faults. Third, a survey of three operating systems
indicates that one open source operating system experienced less exposure in the form of
known but unpatched vulnerabilities over a 12—-month period than was experienced by either
of two proprietary counterparts. Last, closed and proprietary system development models face
disincentives toward fielding and supporting more secure systems as long as less secure
systems are more profitable. Notwithstanding these conclusions, arguments in this important
matter are in their formative stages and in dire need of metrics that can reflect security
delivered to the customer.”

Scott A. Hissam and Daniel Plakosh's ~"Trust and Vulnerability in Open Source Software" discuss the pluse:
and minuses of open source software. As with other papers, they note that just because the software is ope
review, it should not automatically follow that such a review has actually been performed. Indeed, they note
that this is a general problem for all software, open or closed - it is often questionable if many people
examine any given piece of software. One interesting point is that they demonstrate that attackers can learn
about a vulnerability in a closed source program (Windows) from patches made to an OSS/FS program
(Linux). In this example, Linux developers fixed a vulnerability before attackers tried to attack it, and
attackers correctly surmised that a similar problem might be still be in Windows (and it was). Unless OSS/F¢
programs are forbidden, this kind of learning is difficult to prevent. Therefore, the existance of an OSS/FS
program can reveal the vulnerabilities of both the OSS/FS and proprietary program performing the same
function - but at in this example, the OSS/FS program was fixed first.

Chapter 2. Background 9

http://dev-opensourceit.earthweb.com/news/000526_security.html
http://www.linuxworld.com/linuxworld/lw-1998-11/lw-11-ramparts.html
http://www-106.ibm.com/developerworks/linux/library/l-oss.html?open&I=252,t=gr,p=SeclmpOS
http://www-106.ibm.com/developerworks/linux/library/l-oss.html?open&I=252,t=gr,p=SeclmpOS
http://www.ics.uci.edu/~wscacchi/Papers/New/IEE_hissam.pdf

Secure Programming for Linux and Unix HOWTO

2.4.2. Why Closing the Source Doesn't Halt Attacks

It's been argued that a system without source code is more secure because, since there's less information
available for an attacker, it should be harder for an attacker to find the vulnerabilities. This argument has a
number of weaknesses, however, because although source code is extremely important when trying to add
new capabilities to a program, attackers generally don't need source code to find a vulnerability.

First, it's important to distinguish between ““destructive" acts and " “constructive" acts. In the real world, it is
much easier to destroy a car than to build one. In the software world, it is much easier to find and exploit a
vulnerability than to add new significant new functionality to that software. Attackers have many advantages
against defenders because of this difference. Software developers must try to have no security—relevant
mistakes anywhere in their code, while attackers only need to find one. Developers are primarily paid to get
their programs to work... attackers don't need to make the program work, they only need to find a single
weakness. And as I'll describe in a moment, it takes less information to attack a program than to modify one

Generally attackers (against both open and closed programs) start by knowing about the general kinds of
security problems programs have. There's no point in hiding this information; it's already out, and in any cas
defenders need that kind of information to defend themselves. Attackers then use techniques to try to find
those problems; I'll group the techniques into ““dynamic" techniques (where you run the program) and "stat
technigues (where you examine the program's code — be it source code or machine code).

In ““dynamic" approaches, an attacker runs the program, sending it data (often problematic data), and sees
the programs' response indicates a common vulnerability. Open and closed programs have no difference he
since the attacker isn't looking at code. Attackers may also look at the code, the ““static" approach. For oper
source software, they'll probably look at the source code and search it for patterns. For closed source softw:
they might search the machine code (usually presented in assembly language format to simplify the task) fo
essentially the same patterns. They might also use tools called “~"decompilers" that turn the machine code b
into source code and then search the source code for the vulnerable patterns (the same way they would sec
for vulnerabilities in open source software). See Flake [2001] for one discussion of how closed code can still
be examined for security vulnerabilities (e.g., using disassemblers). This point is important: even if an attack
wanted to use source code to find a vulnerability, a closed source program has no advantage, because the

attacker can use a disassembler to re—create the source code of the product.

Non-developers might ask ""if decompilers can create source code from machine code, then why do
developers say they need source code instead of just machine code?" The problem is that although develoy
don't need source code to find security problems, developers do need source code to make substantial
improvements to the program. Although decompilers can turn machine code back into a ““source code" of
sorts, the resulting source code is extremely hard to modify. Typically most understandable names are lost,
instead of variables like ““grand_total" you get ~"x123123", instead of methods like ““display_warning" you
get f123124", and the code itself may have spatterings of assembly in it. Also, ALL_comments and desig
information are lost. This isn't a serious problem for finding security problems, because generally you're
searching for patterns indicating vulnerabilities, not for internal variable or method names. Thus, decompiler
can be useful for finding ways to attack programs, but aren't helpful for updating programs.

Thus, developers will say ““source code is vital" when they intend to add functionality), but the fact that the
source code for closed source programs is hidden doesn't protect the program very much.

Chapter 2. Background 10

Secure Programming for Linux and Unix HOWTO

2.4.3. Why Keeping Vulnerabilities Secret Doesn't Make Them Go Away

Sometimes it's noted that a vulnerability that exists but is unknown can't be exploited, so the system
“practically secure." In theory this is true, but the problem is that once someone finds the vulnerability, the
finder may just exploit the vulnerability instead of helping to fix it. Having unknown vulnerabilities doesn't
really make the vulnerabilities go away; it simply means that the vulnerabilities are a time bomb, with no way
to know when they'll be exploited. Fundamentally, the problem of someone exploiting a vulnerability they
discover is a problem for both open and closed source systems.

One related claim sometimes made (though not as directly related to OSS/FS) is that people should not pos
warnings about vulnerabilities and discuss them. This sounds good in theory, but the problem is that attacke
already distribute information about vulnerabilities through a large number of channels. In short, such
approaches would leave defenders vulnerable, while doing nothing to inhibit attackers. In the past, compani
actively tried to prevent disclosure of vulnerabilities, but experience showed that, in general, companies didr
fix vulnerabilities until they were widely known to their users (who could then insist that the vulnerabilities be
fixed). This is all part of the argument for ~“full disclosure." Gartner Group has a blunt commentary in a
CNET.com article titled “"Commentary: Hype is the real issue — Tech News." They stated:

The comments of Microsoft's Scott Culp, manager of the company's security response center,
echo a common refrain in a long, ongoing battle over information. Discussions of morality
regarding the distribution of information go way back and are very familiar. Several centuries
ago, for example, the church tried to squelch Copernicus' and Galileo's theory of the sun

being at the center of the solar system... Culp's attempt to blame "information security
professionals” for the recent spate of vulnerabilities in Microsoft products is at best
disingenuous. Perhaps, it also represents an attempt to deflect criticism from the company that
built those products... [The] efforts of all parties contribute to a continuous process of
improvement. The more widely vulnerabilities become known, the more quickly they get

fixed.

2.4.4. How OSS/FS Counters Trojan Horses

It's sometimes argued that open source programs, because there's no enforced control by a single company
permit people to insert Trojan Horses and other malicious code. Trojan horses can be inserted into open
source code, true, but they can also be inserted into proprietary code. A disgruntled or bribed employee can
insert malicious code, and in many organizations it's much less likely to be found than in an open source
program. After all, no one outside the organization can review the source code, and few companies review
their code internally (or, even if they do, few can be assured that the reviewed code is actually what is used)
And the notion that a closed—source company can be sued later has little evidence; nearly all licenses discle
all warranties, and courts have generally not held software development companies liable.

Borland's InterBase server is an interesting case in point. Some time between 1992 and 1994, Borland insel
an intentional “"back door" into their database server, ““InterBase". This back door allowed any local or remc
user to manipulate any database object and install arbitrary programs, and in some cases could lead to
controlling the machine as “‘root". This vulnerability stayed in the product for at least 6 years — no one else
could review the product, and Borland had no incentive to remove the vulnerability. Then Borland released i
source code on July 2000. The "Firebird" project began working with the source code, and uncovered this
serious security problem with InterBase in December 2000. By January 2001 the CERT announced the
existence of this back door_as CERT advisory CA-2001-01. What's discouraging is that the backdoor can b
easily found simply by looking at an ASCII dump of the program (a common cracker trick). Once this
problem was found by open source developers reviewing the code, it was patched quickly. You could argue

Chapter 2. Background 11

http://www.cert.org/advisories/CA-2001-01.html

Secure Programming for Linux and Unix HOWTO

that, by keeping the password unknown, the program stayed safe, and that opening the source made the
program less secure. | think this is nonsense, since ASCII dumps are trivial to do and well-known as a
standard attack technique, and not all attackers have sudden urges to announce vulnerabilities — in fact, the
no way to be certain that this vulnerability has not been exploited many times. It's clear that after the source
was opened, the source code was reviewed over time, and the vulnerabilities found and fixed. One way to
characterize this is to say that the original code was vulnerable, its vulnerabilities became easier to exploit
when it was first made open source, and then finally these vulnerabilities were fixed.

2.4.5. Other Advantages

The advantages of having source code open extends not just to software that is being attacked, but also
extends to vulnerability assessment scanners. Vulnerability assessment scanners intentionally look for
vulnerabilities in configured systems. A recent Network Computing evaluation found that the best scanner
(which, among other things, found the most legitimate vulnerabilities) was Nessus, an open source scanner
[Forristal 2001].

2.4.6. Bottom Line

So, what's the bottom line? | personally believe that when a program began as closed source and is then fir:
made open source, it often starts less secure for any users (through exposure of vulnerabilities), and over til
(say a few years) it has the potential to be much more secure than a closed program. If the program began .
open source software, the public scrutiny is more likely to improve its security before it's ready for use by
significant numbers of users, but there are several caveats to this statement (it's not an ironclad rule). Just
making a program open source doesn't suddenly make a program secure, and just because a program is of
source does not guarantee security:

« First, people have to actually review the code. This is one of the key points of debate — will people
really review code in an open source project? All sorts of factors can reduce the amount of review:
being a niche or rarely—used product (where there are few potential reviewers), having few
developers, and use of a rarely—used computer language. Clearly, a program that has a single
developer and no other contributors of any kind doesn't have this kind of review. On the other hand,
program that has a primary author and many other people who occasionally examine the code and
contribute suggests that there are others reviewing the code (at least to create contributions). In
general, if there are more reviewers, there's generally a higher likelihood that someone will identify a
flaw - this is the basis of the ““many eyeballs" theory. Note that, for example, the OpenBSD project
continuously examines programs for security flaws, so the components in its innermost parts have
certainly undergone a lengthy review. Since OSS/FS discussions are often held publicly, this level of
review is something that potential users can judge for themselves.

One factor that can particularly reduce review likelihood is not actually being open source. Some
vendors like to posture their “disclosed source" (also called ““source available") programs as being
open source, but since the program owner has extensive exclusive rights, others will have far less
incentive to work "“for free" for the owner on the code. Even open source licenses which have
unusually asymmetric rights (such as the MPL) have this problem. After all, people are less likely to
voluntarily participate if someone else will have rights to their results that they don't have (as Bruce
Perens says, “"'who wants to be someone else's unpaid employee?"). In particular, since the reviewe
with the most incentive tend to be people trying to modify the program, this disincentive to participate
reduces the number of ““eyeballs". Elias Levy made this mistake in his article about open source
security; his examples of software that had been broken into (e.g., TIS's Gauntlet) were not, at the
time, open source.

Chapter 2. Background 12

Secure Programming for Linux and Unix HOWTO

Second, at least some of the people developing and reviewing the code must know how to write
secure programs. Hopefully the existence of this book will help. Clearly, it doesn't matter if there are
“many eyeballs" if none of the eyeballs know what to look for. Note that it's not necessary for
everyone to know how to write secure programs, as long as those who do know how are examining
the code changes.

Third, once found, these problems need to be fixed quickly and their fixes distributed. Open source
systems tend to fix the problems quickly, but the distribution is not always smooth. For example, the
OpenBSD developers do an excellent job of reviewing code for security flaws — but they don't always
report the identified problems back to the original developer. Thus, it's quite possible for there to be «
fixed version in one system, but for the flaw to remain in another. | believe this problem is lessening
over time, since no one “downstream" likes to repeatedly fix the same problem. Of course, ensuring
that security patches are actually installed on end—user systems is a problem for both open source a
closed source software.

Another advantage of open source is that, if you find a problem, you can fix it immediately. This really
doesn't have any counterpart in closed source.

In short, the effect on security of open source software is still a major debate in the security community,
though a large number of prominent experts believe that it has great potential to be more secure.

2.5. Types of Secure Programs

Many different types of programs may need to be secure programs (as the term is defined in this book). Sor
common types are:

Application programs used as viewers of remote data. Programs used as viewers (such as word
processors or file format viewers) are often asked to view data sent remotely by an untrusted user (tl
request may be automatically invoked by a web browser). Clearly, the untrusted user's input should
not be allowed to cause the application to run arbitrary programs. It's usually unwise to support
initialization macros (run when the data is displayed); if you must, then you must create a secure
sandbox (a complex and error—prone task that almost never succeeds, which is why you shouldn't
support macros in the first place). Be careful of issues such as buffer overflow, discussed in Chapter
6, which might allow an untrusted user to force the viewer to run an arbitrary program.

Application programs used by the administrator (root). Such programs shouldn't trust information tha
can be controlled by non—-administrators.

Local servers (also called daemons).

Network—accessible servers (sometimes called network daemons).

Web-based applications (including CGI scripts). These are a special case of network—accessible
servers, but they're so common they deserve their own category. Such programs are invoked
indirectly via a web server, which filters out some attacks but nevertheless leaves many attacks that
must be withstood.

Applets (i.e., programs downloaded to the client for automatic execution). This is something Java is
especially famous for, though other languages (such as Python) support mobile code as well. There
are several security viewpoints here; the implementer of the applet infrastructure on the client side hi
to make sure that the only operations allowed are ““safe" ones, and the writer of an applet has to dez:
with the problem of hostile hosts (in other words, you can't normally trust the client). There is some
research attempting to deal with running applets on hostile hosts, but frankly I'm skeptical of the valu
of these approaches and this subject is exotic enough that | don't cover it further here.

setuid/setgid programs. These programs are invoked by a local user and, when executed, are
immediately granted the privileges of the program's owner and/or owner's group. In many ways thes

Chapter 2. Background 13

Secure Programming for Linux and Unix HOWTO

are the hardest programs to secure, because so many of their inputs are under the control of the
untrusted user and some of those inputs are not obvious.

This book merges the issues of these different types of program into a single set. The disadvantage of this
approach is that some of the issues identified here don't apply to all types of programs. In particular,
setuid/setgid programs have many surprising inputs and several of the guidelines here only apply to them.
However, things are not so clear—cut, because a particular program may cut across these boundaries (e.g.,
CGl script may be setuid or setgid, or be configured in a way that has the same effect), and some programs
divided into several executables each of which can be considered a different ““type" of program. The
advantage of considering all of these program types together is that we can consider all issues without trying
to apply an inappropriate category to a program. As will be seen, many of the principles apply to all program
that need to be secured.

There is a slight bias in this book toward programs written in C, with some notes on other languages such a
C++, Perl, PHP, Python, Ada95, and Java. This is because C is the most common language for implementir
secure programs on Unix-like systems (other than CGI scripts, which tend to use languages such as Perl,
PHP, or Python). Also, most other languages' implementations call the C library. This is not to imply that C i
somehow the ““best" language for this purpose, and most of the principles described here apply regardless
the programming language used.

2.6. Paranoia is a Virtue

The primary difficulty in writing secure programs is that writing them requires a different mind-set, in short,
a paranoid mind-set. The reason is that the impact of errors (also called defects or bugs) can be profoundly
different.

Normal non—-secure programs have many errors. While these errors are undesirable, these errors usually
involve rare or unlikely situations, and if a user should stumble upon one they will try to avoid using the tool
that way in the future.

In secure programs, the situation is reversed. Certain users will intentionally search out and cause rare or
unlikely situations, in the hope that such attacks will give them unwarranted privileges. As a result, when
writing secure programs, paranoia is a virtue.

2.7. Why Did | Write This Document?

One question I've been asked is ““why did you write this book"? Here's my answer: Over the last several ye:
I've noticed that many developers for Linux and Unix seem to keep falling into the same security pitfalls,
again and again. Auditors were slowly catching problems, but it would have been better if the problems
weren't put into the code in the first place. | believe that part of the problem was that there wasn't a single,
obvious place where developers could go and get information on how to avoid known pitfalls. The
information was publicly available, but it was often hard to find, out—of-date, incomplete, or had other
problems. Most such information didn't particularly discuss Linux at all, even though it was becoming widely
used! That leads up to the answer: | developed this book in the hope that future software developers won't
repeat past mistakes, resulting in more secure systems. You can see a larger discussion of this at

http://www.linuxsecurity.com/feature_stories/feature_story—6.html.

A related question that could be asked is ““why did you write your own book instead of just referring to other
documents"? There are several answers:

Chapter 2. Background 14

http://www.linuxsecurity.com/feature_stories/feature_story-6.html

Secure Programming for Linux and Unix HOWTO

» Much of this information was scattered about; placing the critical information in one organized
document makes it easier to use.

« Some of this information is not written for the programmer, but is written for an administrator or user.

» Much of the available information emphasizes portable constructs (constructs that work on all
Unix-like systems), and failed to discuss Linux at all. It's often best to avoid Linux—unique abilities
for portability's sake, but sometimes the Linux—unique abilities can really aid security. Even if
non-Linux portability is desired, you may want to support the Linux—unigue abilities when running
on Linux. And, by emphasizing Linux, | can include references to information that is helpful to
someone targeting Linux that is not necessarily true for others.

2.8. Sources of Design and Implementation Guidelines

Several documents help describe how to write secure programs (or, alternatively, how to find security
problems in existing programs), and were the basis for the guidelines highlighted in the rest of this book.

For general—purpose servers and setuid/setgid programs, there are a number of valuable documents (thoug
some are difficult to find without having a reference to them).

Matt Bishop [1996, 1997] has developed several extremely valuable papers and presentations on the topic,
and in fact he has a web page dedicated to the topic at http://olympus.cs.ucdavis.edu/~bishop/secprog.html
AUSCERT has released a programming checklist [AUSCERT 1996], based in part on chapter 23 of Garfinks
and Spafford's book discussing how to write secure SUID and network programs [Garfinkel 1996]. Galvin
[1998a] described a simple process and checklist for developing secure programs; he later updated the
checklist in Galvin [1998b)]. Sitaker [1999] presents a list of issues for the “"Linux security audit" team to
search for. Shostack [1999] defines another checklist for reviewing security—sensitive code. The NCSA
[NCSA] provides a set of terse but useful secure programming guidelines. Other useful information sources
include the Secure Unix Programming FAQ [Al=Herbish 1999], the Security—Audit's Frequently Asked
Questions [Graham 1999], and Ranum [1998]. Some recommendations must be taken with caution, for
example, the BSD setuid(7) man page [Unknown] recommends the use of access(3) without noting the
dangerous race conditions that usually accompany it. Wood [1985] has some useful but dated advice in its
““Security for Programmers" chapter. Bellovin [1994] includes useful guidelines and some specific examples
such as how to restructure an ftpd implementation to be simpler and more secure. FreeBSD provides some
guidelines FreeBSD [1999] [Quintero 1999] is primarily concerned with GNOME programming guidelines,
but it includes a section on security considerations. [Venema 1996] provides a detailed discussion (with
examples) of some common errors when programming secure programs (widely—known or predictable
passwords, burning yourself with malicious data, secrets in user—accessible data, and depending on other
programs). [Sibert 1996] describes threats arising from malicious data. Michael Bacarella's article The Peon
Guide To Secure System Development provides a nice short set of guidelines.

There are many documents giving security guidelines for programs using the Common Gateway Interface

(CGI) to interface with the web. These include Van Biesbrouck [1996], Gundavaram [unknown]. [Garfinkle
1997] Kim [1996], Phillips [1995], Stein [1999], [Peteanu 2000], and [Advosys 2000].

There are many documents specific to a language, which are further discussed in the language—specific
sections of this book. For example, the Perl distribution includes perlsec(1), which describes how to use Per
more securely. The Secure Internet Programming site at http://www.cs.princeton.edu/sip is interested in
computer security issues in general, but focuses on mobile code systems such as Java, ActiveX, and
JavaScript; Ed Felten (one of its principles) co—wrote a book on securing Java ([McGraw 1999]) which is
discussed in Section 10.6. Sun's security code guidelines provide some guidelines primarily for Java and C;

is available at http://java.sun.com/security/seccodeguide.html.

Chapter 2. Background 15

http://olympus.cs.ucdavis.edu/~bishop/secprog.html
ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist
http://www.oreilly.com/catalog/puis
http://www.sunworld.com/swol-04-1998/swol-04-security.html
http://www.sunworld.com/swol-04-1998/swol-04-security.html
http://www.sunworld.com/sunworldonline/swol-08-1998/swol-08-security.html
http://www.pobox.com/~kragen/security-holes.html
http://www.homeport.org/~adam/review.html
http://www.ncsa.uiuc.edu/General/Grid/ACES/security/programming
http://www.whitefang.com/sup/
http://lsap.org/faq.txt
http://www.clark.net/pub/mjr/pubs/pdf/
http://www.homeport.org/~adam/setuid.7.html
http://www.research.att.com/~smb/talks
http://www.freebsd.org/security/security.html
http://developer.gnome.org/doc/guides/programming-guidelines/book1.html
http://www.fish.com/security/murphy.html
http://www.fish.com/security/maldata.html
http://m.bacarella.com/papers/secsoft/html
http://m.bacarella.com/papers/secsoft/html
http://www.csclub.uwaterloo.ca/u/mlvanbie/cgisec
http://language.perl.com/CPAN/doc/FAQs/cgi/perl-cgi-faq.html
http://webreview.com/wr/pub/97/08/08/bookshelf
http://webreview.com/wr/pub/97/08/08/bookshelf
http://www.eekim.com/pubs/cgibook
http://www.go2net.com/people/paulp/cgi-security/safe-cgi.txt
http://www.w3.org/Security/Faq/www-security-faq.html
http://members.home.net/razvan.peteanu
http://advosys.ca/tips/web-security.html
http://www.perl.com/pub/doc/manual/html/pod/perlsec.html
http://www.cs.princeton.edu/sip
http://www.securingjava.com
http://java.sun.com/security/seccodeguide.html

Secure Programming for Linux and Unix HOWTO

Yoder [1998] contains a collection of patterns to be used when dealing with application security. It's not reall
a specific set of guidelines, but a set of commonly—used patterns for programming that you may find useful.
The Schmoo group maintains a web page linking to information on how to write secure code at

http://www.shmoo.com/securecode.

There are many documents describing the issue from the other direction (i.e., “"how to crack a system"). On
example is McClure [1999], and there's countless amounts of material from that vantage point on the Interne
There are also more general documents on computer architectures on how attacks must be developed to
exploit them, e.g., [LSD 2001]. The Honeynet Project has been collecting information (including statistics) or
how attackers actually perform their attacks; see their website at http://project.honeynet.org for more
information.

There's also a large body of information on vulnerabilities already identified in existing programs. This can b
a useful set of examples of ““what not to do," though it takes effort to extract more general guidelines from tt
large body of specific examples. There are mailing lists that discuss security issues; one of the most
well-known is Bugtraqg, which among other things develops a list of vulnerabilities. The CERT Coordination
Center (CERT/CC) is a major reporting center for Internet security problems which reports on vulnerabilities
The CERT/CC occasionally produces advisories that provide a description of a serious security problem anc
its impact, along with instructions on how to obtain a patch or details of a workaround; for more information
see http://www.cert.org. Note that originally the CERT was a small computer emergency response team, bu
officially "CERT" doesn't stand for anything now. The Department of Engrgy's Computer Incident Advisory
Capability (CIAC) also reports on vulnerabilities. These different groups may identify the same vulnerabilitie:
but use different names. To resolve this problem, MITRE supports the Common Vulnerabilities and
Exposures (CVE) list which creates a single unique identifier (""'name") for all publicly known vulnerabilities
and security exposures identified by others;_see http://www.cve.mitre.org. NIST's ICAT is a searchable
catalog of computer vulnerabilities, categorizing each CVE vulnerability so that they can be searched and
compared later; see http://csrc.nist.gov/icat.

This book is a summary of what | believe are the most useful and important guidelines. My goal is a book th
a good programmer can just read and then be fairly well prepared to implement a secure program. No single
document can really meet this goal, but | believe the attempt is worthwhile. My objective is to strike a balanc
somewhere between a ““complete list of all possible guidelines" (that would be unending and unreadable) al
the various “short" lists available on-line that are nice and short but omit a large number of critical issues.
When in doubt, | include the guidance; | believe in that case it's better to make the information available to
everyone in this ““one stop shop" document. The organization presented here is my own (every list has its
own, different structure), and some of the guidelines (especially the Linux—-unique ones, such as those on
capabilities and the FSUID value) are also my own. Reading all of the referenced documents listed above a
well is highly recommended, though | realize that for many it's impractical.

2.9. Other Sources of Security Information

There are a vast number of web sites and mailing lists dedicated to security issues. Here are some other
sources of security information:

 Securityfocus.com has a wealth of general security-related news and information, and hosts a numk
of security-related mailing lists. See their website for information on how to subscribe and view their
archives. A few of the most relevant mailing lists on SecurityFocus are:

¢ The “Bugtraq" mailing list is, as noted above, a “*full disclosure moderated mailing list for
the detailed discussion and announcement of computer security vulnerabilities: what they are

Chapter 2. Background 16

http://www.shmoo.com/securecode
http://project.honeynet.org
http://SecurityFocus.com/forums/bugtraq/faq.html
http://www.cert.org
http://ciac.llnl.gov/ciac
http://ciac.llnl.gov/ciac
http://www.cve.mitre.org
http://csrc.nist.gov/icat
http://www.securityfocus.com

Secure Programming for Linux and Unix HOWTO

how to exploit them, and how to fix them."
¢ The ““secprog" mailing list is a moderated mailing list for the discussion of secure software
development methodologies and techniques. | specifically monitor this list, and | coordinate
with its moderator to ensure that resolutions reached in SECPROG (if | agree with them) are
incorporated into this document.
¢ The “vuln—-dev" mailing list discusses potential or undeveloped holes.
« IBM's ““developerWorks: Security" has a library of interesting articles. You can learn more from
http://www.ibm.com/developer/security.
* For Linux—specific security information, a good source is LinuxSecurity.com. If you're interested in
auditing Linux code, places to see include the Linux Security—Audit Project FAQ and Linux Kernel
Auditing Project are dedicated to auditing Linux code for security issues.

Of course, if you're securing specific systems, you should sign up to their security mailing lists (e.g.,
Microsoft's, Red Hat's, etc.) so you can be warned of any security updates.

2.10. Document Conventions

System manual pages are referenced in the format name(number), where number is the section number of
manual. The pointer value that means “does not point anywhere" is called NULL; C compilers will convert
the integer 0 to the value NULL in most circumstances where a pointer is needed, but note that nothing in th
C standard requires that NULL actually be implemented by a series of all-zero bits. C and C++ treat the
character "\0' (ASCII 0) specially, and this value is referred to as NIL in this book (this is usually called
“NUL", but "NUL" and "NULL" sound identical). Function and method names always use the correct case,
even if that means that some sentences must begin with a lower case letter. | use the term “Unix-like" to
mean Unix, Linux, or other systems whose underlying models are very similar to Unix; | can't say POSIX,
because there are systems such as Windows 2000 that implement portions of POSIX yet have vastly differe
security models.

An attacker is called an attacker", ““cracker", or "adversary", and not a ~“hacker". Some journalists
mistakenly use the word ““hacker" instead of attacker"; this book avoids this misuse, because many Linux
and Unix developers refer to themselves as ““hackers" in the traditional non—evil sense of the term. To man
Linux and Unix developers, the term ““hacker" continues to mean simply an expert or enthusiast, particularly
regarding computers. It is true that some hackers commit malicious or intrusive actions, but many other
hackers do not, and it's unfair to claim that all hackers perform malicious activities. Many other glossaries ar
books note that not all hackers are attackers. For example, the Industry Advisory Council's Information
Assurance (lA) Special Interest Group (SIG)'s Information Assurance Glossary defines hacker as “"A persor
who delights in having an intimate understanding of the internal workings of computers and computer
networks. The term is misused in a negative context where “cracker' should be used." The Jargon File has &
long and complicate definition for hacker, starting with A person who enjoys exploring the details of
programmable systems and how to stretch their capabilities, as opposed to most users, who prefer to learn
only the minimum necessary."; it notes although some people use the term to mean A malicious meddler
who tries to discover sensitive information by poking around”, it also states that this definition is deprecated
and that the correct term for this sense is ““cracker".

This book uses the “new" or ““logical" quoting system, instead of the traditional American quoting system:
quoted information does not include any trailing punctuation if the punctuation is not part of the material
being quoted. While this may cause a minor loss of typographical beauty, the traditional American system
causes extraneous characters to be placed inside the quotes. These extraneous characters have no effect c
prose but can be disastrous in code or computer commands. | use standard American (not British) spelling;
I've yet to meet an English speaker on any continent who has trouble with this.

Chapter 2. Background 17

http://www.ibm.com/developer/security
http://www.linuxsecurity.com
http://www.linuxhelp.org/lsap.shtml
http://www.lkap.org
http://www.lkap.org
http://www.iaconline.org/sig_infoassure.html
http://www.catb.org/~esr/jargon
http://www.catb.org/~esr/jargon/html/entry/hacker.html

Secure Programming for Linux and Unix HOWTO

Chapter 2. Background

18

Chapter 3. Summary of Linux and Unix Security
Features

Discretion will protect you, and understanding
will guard you.
Proverbs 2:11 (NIV)

Before discussing guidelines on how to use Linux or Unix security features, it's useful to know what those
features are from a programmer's viewpoint. This section briefly describes those features that are widely
available on nearly all Unix-like systems. However, note that there is considerable variation between
different versions of Unix-like systems, and not all systems have the abilities described here. This chapter
also notes some extensions or features specific to Linux; Linux distributions tend to be fairly similar to each
other from the point—of-view of programming for security, because they all use essentially the same kernel
and C library (and the GPL-based licenses encourage rapid dissemination of any innovations). It also notes
some of the security—relevant differences between different Unix implementations, but please note that this
isn't an exhaustive list. This chapter doesn't discuss issues such as implementations of mandatory access
control (MAC) which many Unix-like systems do not implement. If you already know what those features
are, please feel free to skip this section.

Many programming guides skim briefly over the security—relevant portions of Linux or Unix and skip
important information. In particular, they often discuss ““how to use" something in general terms but gloss
over the security attributes that affect their use. Conversely, there's a great deal of detailed information in th
manual pages about individual functions, but the manual pages sometimes obscure key security issues with
detailed discussions on how to use each individual function. This section tries to bridge that gap; it gives an
overview of the security mechanisms in Linux that are likely to be used by a programmer, but concentrating
specifically on the security ramifications. This section has more depth than the typical programming guides,
focusing specifically on security—related matters, and points to references where you can get more details.

First, the basics. Linux and Unix are fundamentally divided into two parts: the kernel and ““user space". Mos
programs execute in user space (on top of the kernel). Linux supports the concept of “kernel modules", whi
is simply the ability to dynamically load code into the kernel, but note that it still has this fundamental
division. Some other systems (such as the HURD) are “~“microkernel" based systems; they have a small kerl
with more limited functionality, and a set of ““user" programs that implement the lower-level functions
traditionally implemented by the kernel.

Some Unix-like systems have been extensively modified to support strong security, in particular to support
U.S. Department of Defense requirements for Mandatory Access Control (level B1 or higher). This version ¢
this book doesn't cover these systems or issues; | hope to expand to that in a future version. More detailed
information on some of them is available elsewhere, for example, details on SGI's “"Trusted IRIX/B" are

available in NSA's Final Evaluation Reports (FERS).

When users log in, their usernames are mapped to integers marking their ““"UID" (for “user id") and the
“GID"s (for “group id") that they are a member of. UID 0 is a special privileged user (role) traditionally
called ““root"; on most Unix-like systems (including Unix) root can overrule most security checks and is use
to administrate the system. On some Unix systems, GID 0 is also special and permits unrestricted access tc
resources at the group level [Gay 2000, 228]; this isn't true on other systems (such as Linux), but even in th
systems group 0 is essentially all-powerful because so many special system files are owned by group 0.
Processes are the only ““subjects"” in terms of security (that is, only processes are active objects). Processe
access various data objects, in particular filesystem objects (FSOs), System V Interprocess Communication
(IPC) objects, and network ports. Processes can also set signals. Other security—relevant topics include quc

Chapter 3. Summary of Linux and Unix Security Features 19

http://www.radium.ncsc.mil/tpep/library/fers/index.html

Secure Programming for Linux and Unix HOWTO

and limits, libraries, auditing, and PAM. The next few subsections detail this.

3.1. Processes

In Unix-like systems, user—level activities are implemented by running processes. Most Unix systems suppc
a “thread" as a separate concept; threads share memory inside a process, and the system scheduler actua
schedules threads. Linux does this differently (and in my opinion uses a better approach): there is no essen
difference between a thread and a process. Instead, in Linux, when a process creates another process it ca
choose what resources are shared (e.g., memory can be shared). The Linux kernel then performs optimizati
to get thread—-level speeds; see clone(2) for more information. It's worth noting that the Linux kernel
developers tend to use the word ““task", not ““thread" or ““process", but the external documentation tends to
use the word process (so I'll use the term ““process" here). When programming a multi-threaded applicatior
it's usually better to use one of the standard thread libraries that hide these differences. Not only does this
make threading more portable, but some libraries provide an additional level of indirection, by implementing
more than one application—level thread as a single operating system thread; this can provide some improve
performance on some systems for some applications.

3.1.1. Process Attributes
Here are typical attributes associated with each process in a Unix-like system:

* RUID, RGID - real UID and GID of the user on whose behalf the process is running

* EUID, EGID - effective UID and GID used for privilege checks (except for the filesystem)

» SUID, SGID - Saved UID and GID; used to support switching permissions ““on and off" as discusse
below. Not all Unix-like systems support this, but the vast majority do (including Linux and Solaris);
if you want to check if a given system implements this option in the POSIX standard, you can use
sysconf(2) to determine if _POSIX_SAVED_IDS is in effect.

 supplemental groups — a list of groups (GIDs) in which this user has membership. In the original
version 7 Unix, this didn't exist — processes were only a member of one group at a time, and a speci
command had to be executed to change that group. BSD added support for a list of groups in each
process, which is more flexible, and this addition is now widely implemented (including by Linux and
Solaris).

» umask — a set of bits determining the default access control settings when a new filesystem object is
created; see umask(2).

 scheduling parameters — each process has a scheduling policy, and those with the default policy
SCHED_OTHER have the additional parameters nice, priority, and counter. See
sched_setscheduler(2) for more information.

« limits — per—process resource limits (see below).

« filesystem root — the process' idea of where the root filesystem ("/") begins; see chroot(2).

Here are less—common attributes associated with processes:

* FSUID, FSGID - UID and GID used for filesystem access checks; this is usually equal to the EUID
and EGID respectively. This is a Linux—unique attribute.

« capabilities — POSIX capability information; there are actually three sets of capabilities on a process:
the effective, inheritable, and permitted capabilities. See below for more information on POSIX
capabilities. Linux kernel version 2.2 and greater support this; some other Unix-like systems do too,
but it's not as widespread.

Chapter 3. Summary of Linux and Unix Security Features 20

Secure Programming for Linux and Unix HOWTO

In Linux, if you really need to know exactly what attributes are associated with each process, the most
definitive source is the Linux source code, in particular /usr/include/linux/sched.h's definition of
task_struct.

The portable way to create new processes it use the fork(2) call. BSD introduced a variant called vfork(2) as
an optimization technique. The bottom line with vfork(2) is simple: don't use it if you can avoid it. See
Section 8.6 for more information.

Linux supports the Linux—unique clone(2) call. This call works like fork(2), but allows specification of which
resources should be shared (e.g., memory, file descriptors, etc.). Various BSD systems implement an rfork(
system call (originally developed in Plan9); it has different semantics but the same general idea (it also crea
a process with tighter control over what is shared). Portable programs shouldn't use these calls directly, if
possible; as noted earlier, they should instead rely on threading libraries that use such calls to implement
threads.

This book is not a full tutorial on writing programs, so | will skip widely—available information handling
processes. You can see the documentation for wait(2), exit(2), and so on for more information.

3.1.2. POSIX Capabilities

POSIX capabilities are sets of bits that permit splitting of the privileges typically held by root into a larger set
of more specific privileges. POSIX capabilities are defined by a draft IEEE standard; they're not unique to
Linux but they're not universally supported by other Unix—like systems either. Linux kernel 2.0 did not
support POSIX capabilities, while version 2.2 added support for POSIX capabilities to processes. When Lint
documentation (including this one) says " “requires root privilege", in nearly all cases it really means ““require
a capability" as documented in the capability documentation. If you need to know the specific capability
required, look it up in the capability documentation.

In Linux, the eventual intent is to permit capabilities to be attached to files in the filesystem; as of this writing
however, this is not yet supported. There is support for transferring capabilities, but this is disabled by defau
Linux version 2.2.11 added a feature that makes capabilities more directly useful, called the ““capability
bounding set". The capability bounding set is a list of capabilities that are allowed to be held by any process
on the system (otherwise, only the special init process can hold it). If a capability does not appear in the
bounding set, it may not be exercised by any process, no matter how privileged. This feature can be used tc
for example, disable kernel module loading. A sample tool that takes advantage of this is LCAP at

http://pweb.netcom.com/~spoaon/icap/.

More information about POSIX capabilities is available at
ftp://linux.kernel.org/pub/linux/libs/security/linux=privs.

3.1.3. Process Creation and Manipulation

Processes may be created using fork(2), the non—-recommended vfork(2), or the Linux—unique clone(2); all ¢
these system calls duplicate the existing process, creating two processes out of it. A process can execute a
different program by calling execve(2), or various front—ends to it (for example, see exec(3), system(3), and

popen(3)).
When a program is executed, and its file has its setuid or setgid bit set, the process' EUID or EGID

(respectively) is usually set to the file's value. This functionality was the source of an old Unix security
weakness when used to support setuid or setgid scripts, due to a race condition. Between the time the kern

Chapter 3. Summary of Linux and Unix Security Features 21

http://pweb.netcom.com/~spoon/lcap/
ftp://linux.kernel.org/pub/linux/libs/security/linux-privs

Secure Programming for Linux and Unix HOWTO

opens the file to see which interpreter to run, and when the (now-set-id) interpreter turns around and reope
the file to interpret it, an attacker might change the file (directly or via symbolic links).

Different Unix-like systems handle the security issue for setuid scripts in different ways. Some systems, suc
as Linux, completely ignore the setuid and setgid bits when executing scripts, which is clearly a safe
approach. Most modern releases of SysVr4 and BSD 4.4 use a different approach to avoid the kernel race
condition. On these systems, when the kernel passes the name of the set-id script to open to the interpretel
rather than using a pathname (which would permit the race condition) it instead passes the filename /dev/fd,
This is a special file already opened on the script, so that there can be no race condition for attackers to
exploit. Even on these systems | recommend against using the setuid/setgid shell scripts language for secul
programs, as discussed below.

In some cases a process can affect the various UID and GID values; see setuid(2), seteuid(2), setreuid(2), ¢
the Linux—unique setfsuid(2). In particular the saved user id (SUID) attribute is there to permit trusted
programs to temporarily switch UIDs. Unix-like systems supporting the SUID use the following rules: If the
RUID is changed, or the EUID is set to a value not equal to the RUID, the SUID is set to the new EUID.
Unprivileged users can set their EUID from their SUID, the RUID to the EUID, and the EUID to the RUID.

The Linux—unique FSUID process attribute is intended to permit programs like the NFS server to limit
themselves to only the filesystem rights of some given UID without giving that UID permission to send
signals to the process. Whenever the EUID is changed, the FSUID is changed to the new EUID value; the
FSUID value can be set separately using setfsuid(2), a Linux—unique call. Note that non—-root callers can on
set FSUID to the current RUID, EUID, SEUID, or current FSUID values.

3.2. Files

On all Unix-like systems, the primary repository of information is the file tree, rooted at ~*/". The file tree is a
hierarchical set of directories, each of which may contain filesystem objects (FSOs).

In Linux, filesystem objects (FSOs) may be ordinary files, directories, symbolic links, named pipes (also
called first=in first—outs or FIFOs), sockets (see below), character special (device) files, or block special
(device) files (in Linux, this list is given in the find(1) command). Other Unix—like systems have an identical
or similar list of FSO types.

Filesystem objects are collected on filesystems, which can be mounted and unmounted on directories in the
file tree. A filesystem type (e.g., ext2 and FAT) is a specific set of conventions for arranging data on the disk
to optimize speed, reliability, and so on; many people use the term ““filesystem" as a synonym for the
filesystem type.

3.2.1. Filesystem Object Attributes

Different Unix-like systems support different filesystem types. Filesystems may have slightly different sets o
access control attributes and access controls can be affected by options selected at mount time. On Linux, t
ext2 filesystems is currently the most popular filesystem, but Linux supports a vast number of filesystems.
Most Unix-like systems tend to support multiple filesystems too.

Most filesystems on Unix-like systems store at least the following:

» owning UID and GID - identifies the ““owner" of the filesystem object. Only the owner or root can
change the access control attributes unless otherwise noted.

Chapter 3. Summary of Linux and Unix Security Features 22

Secure Programming for Linux and Unix HOWTO

 permission bits — read, write, execute bits for each of user (owner), group, and other. For ordinary
files, read, write, and execute have their typical meanings. In directories, the “read" permission is
necessary to display a directory's contents, while the ““execute" permission is sometimes called
““search" permission and is necessary to actually enter the directory to use its contents. In a director
“write" permission on a directory permits adding, removing, and renaming files in that directory; if
you only want to permit adding, set the sticky bit noted below. Note that the permission values of
symbolic links are never used; it's only the values of their containing directories and the linked-to file
that matter.

« sticky" bit — when set on a directory, unlinks (removes) and renames of files in that directory are
limited to the file owner, the directory owner, or root privileges. This is a very common Unix
extension and is specified in the Open Group's Single Unix Specification version 2. Old versions of
Unix called this the ““save program text" bit and used this to indicate executable files that should sta)
in memory. Systems that did this ensured that only root could set this bit (otherwise users could have
crashed systems by forcing ““everything" into memory). In Linux, this bit has no effect on ordinary
files and ordinary users can modify this bit on the files they own: Linux's virtual memory
management makes this old use irrelevant.

« setuid, setgid — when set on an executable file, executing the file will set the process' effective UID o
effective GID to the value of the file's owning UID or GID (respectively). All Unix-like systems
support this. In Linux and System V systems, when setgid is set on a file that does not have any
execute privileges, this indicates a file that is subject to mandatory locking during access (if the
filesystem is mounted to support mandatory locking); this overload of meaning surprises many and is
not universal across Unix-like systems. In fact, the Open Group's Single Unix Specification version :
for chmod(3) permits systems to ignore requests to turn on setgid for files that aren't executable if
such a setting has no meaning. In Linux and Solaris, when setgid is set on a directory, files created i
the directory will have their GID automatically reset to that of the directory's GID. The purpose of
this approach is to support “project directories": users can save files into such specially—set
directories and the group owner automatically changes. However, setting the setgid bit on directories
is not specified by standards such as the Single Unix Specification [Open Group 1997].

« timestamps — access and modification times are stored for each filesystem object. However, the
owner is allowed to set these values arbitrarily (see touch(1)), so be careful about trusting this
information. All Unix-like systems support this.

The following attributes are Linux—unique extensions on the ext2 filesystem, though many other filesystems
have similar functionality:

e immutable bit — no changes to the filesystem object are allowed; only root can set or clear this bit.
This is only supported by ext2 and is not portable across all Unix systems (or even all Linux
filesystems).

« append-only bit — only appending to the filesystem object are allowed; only root can set or clear this
bit. This is only supported by ext2 and is not portable across all Unix systems (or even all Linux
filesystems).

Other common extensions include some sort of bit indicating ~“cannot delete this file".

Many of these values can be influenced at mount time, so that, for example, certain bits can be treated as
though they had a certain value (regardless of their values on the media). See mount(1) for more informatiol
about this. These bits are useful, but be aware that some of these are intended to simplify ease—of-use and
aren't really sufficient to prevent certain actions. For example, on Linux, mounting with ““noexec" will disable
execution of programs on that file system; as noted in the manual, it's intended for mounting filesystems
containing binaries for incompatible systems. On Linux, this option won't completely prevent someone from
running the files; they can copy the files somewhere else to run them, or even use the command

Chapter 3. Summary of Linux and Unix Security Features 23

Secure Programming for Linux and Unix HOWTO

“lib/ld-linux.s0.2" to run the file directly.

Some filesystems don't support some of these access control values; again, see mount(1) for how these
filesystems are handled. In particular, many Unix-like systems support MS—-DOS disks, which by default
support very few of these attributes (and there's not standard way to define these attributes). In that case,
Unix-like systems emulate the standard attributes (possibly implementing them through special on—disk
files), and these attributes are generally influenced by the mount(1) command.

It's important to note that, for adding and removing files, only the permission bits and owner of the file's
directory really matter unless the Unix-like system supports more complex schemes (such as POSIX ACLS)
Unless the system has other extensions, and stock Linux 2.2 doesn't, a file that has no permissions in its
permission bits can still be removed if its containing directory permits it. Also, if an ancestor directory permit:
its children to be changed by some user or group, then any of that directory's descendants can be replaced
that user or group.

The draft IEEE POSIX standard on security defines a technique for true ACLs that support a list of users an
groups with their permissions. Unfortunately, this is not widely supported nor supported exactly the same wze
across Unix-like systems. Stock Linux 2.2, for example, has neither ACLs nor POSIX capability values in th
filesystem.

It's worth noting that in Linux, the Linux ext2 filesystem by default reserves a small amount of space for the
root user. This is a partial defense against denial-of-service attacks; even if a user fills a disk that is shared
with the root user, the root user has a little space left over (e.qg., for critical functions). The default is 5% of th
filesystem space; see mke2fs(8), in particular its "—m" option.

3.2.2. Creation Time Initial Values

At creation time, the following rules apply. On most Unix systems, when a new filesystem object is created
via creat(2) or open(2), the FSO UID is set to the process' EUID and the FSO's GID is set to the process'
EGID. Linux works slightly differently due to its FSUID extensions; the FSO's UID is set to the process'
FSUID, and the FSO GID is set to the process' FSGUID; if the containing directory's setgid bit is set or the
filesystem's "GRPID" flag is set, the FSO GID is actually set to the GID of the containing directory. Many
systems, including Sun Solaris and Linux, also support the setgid directory extensions. As noted earlier, this
special case supports project" directories: to make a ““project” directory, create a special group for the
project, create a directory for the project owned by that group, then make the directory setgid: files placed
there are automatically owned by the project. Similarly, if a new subdirectory is created inside a directory
with the setgid bit set (and the filesystem GRPID isn't set), the new subdirectory will also have its setgid bit
set (so that project subdirectories will ““do the right thing".); in all other cases the setgid is clear for a new file
This is the rationale for the ““user—private group"” scheme (used by Red Hat Linux and some others). In this
scheme, every user is a member of a ““private" group with just themselves as members, so their defaults ca
permit the group to read and write any file (since they're the only member of the group). Thus, when the file’
group membership is transferred this way, read and write privileges are transferred too. FSO basic access
control values (read, write, execute) are computed from (requested values & ~ umask of process). New files
always start with a clear sticky bit and clear setuid bit.

3.2.3. Changing Access Control Attributes

You can set most of these values with chmod(2), fchmod(2), or chmod(1) but see also chown(1), and
chgrp(1). In Linux, some of the Linux—unique attributes are manipulated using chattr(1).

Chapter 3. Summary of Linux and Unix Security Features 24

Secure Programming for Linux and Unix HOWTO

Note that in Linux, only root can change the owner of a given file. Some Unix-like systems allow ordinary
users to transfer ownership of their files to another, but this causes complications and is forbidden by Linux.
For example, if you're trying to limit disk usage, allowing such operations would allow users to claim that
large files actually belonged to some other “victim".

3.2.4. Using Access Control Attributes

Under Linux and most Unix-like systems, reading and writing attribute values are only checked when the file
is opened; they are not re-checked on every read or write. Still, a large number of calls do check these
attributes, since the filesystem is so central to Unix-like systems. Calls that check these attributes include
open(2), creat(2), link(2), unlink(2), rename(2), mknod(2), symlink(2), and socket(2).

3.2.5. Filesystem Hierarchy

Over the years conventions have been built on “what files to place where". Where possible, please follow
conventional use when placing information in the hierarchy. For example, place global configuration
information in /etc. The Filesystem Hierarchy Standard (FHS) tries to define these conventions in a logical
manner, and is widely used by Linux systems. The FHS is an update to the previous Linux Filesystem
Structure standard (FSSTND), incorporating lessons learned and approaches from Linux, BSD, and System
systems. See http://www.pathname.com/fhs for more information about the FHS. A summary of these
conventions is in hier(5) for Linux and hier(7) for Solaris. Sometimes different conventions disagree; where
possible, make these situations configurable at compile or installation time.

I should note that the FHS has been adopted hy the Linux Standard Base which is developing and promotin
set of standards to increase compatibility among Linux distributions and to enable software applications to ri
on any compliant Linux system.

3.3. System V IPC

Many Unix-like systems, including Linux and System V systems, support System V interprocess
communication (IPC) objects. Indeed System V IPC is required by the Open Group's Single UNIX
Specification, Version 2 [Open Group 1997]. System V IPC objects can be one of three kinds: System V
message queues, semaphore sets, and shared memory segments. Each such object has the following attrik

« read and write permissions for each of creator, creator group, and others.
« creator UID and GID - UID and GID of the creator of the object.
« owning UID and GID - UID and GID of the owner of the object (initially equal to the creator UID).

When accessing such objects, the rules are as follows:

« if the process has root privileges, the access is granted.

« if the process' EUID is the owner or creator UID of the object, then the appropriate creator permissio
bit is checked to see if access is granted.

« if the process' EGID is the owner or creator GID of the object, or one of the process' groups is the
owning or creating GID of the object, then the appropriate creator group permission bit is checked fo
access.

« otherwise, the appropriate ““other" permission bit is checked for access.

Chapter 3. Summary of Linux and Unix Security Features 25

http://www.pathname.com/fhs
http://www.linuxbase.org

Secure Programming for Linux and Unix HOWTO

Note that root, or a process with the EUID of either the owner or creator, can set the owning UID and ownin
GID and/or remove the object. More information is available in ipc(5).

3.4. Sockets and Network Connections

Sockets are used for communication, particularly over a network. Sockets were originally developed by the
BSD branch of Unix systems, but they are generally portable to other Unix-like systems: Linux and System
variants support sockets as well, and socket support is required by the Open Group's Single Unix Specificat
[Open Group 1997]. System V systems traditionally used a different (incompatible) network communication
interface, but it's worth noting that systems like Solaris include support for sockets. Socket(2) creates an
endpoint for communication and returns a descriptor, in a manner similar to open(2) for files. The parameter
for socket specify the protocol family and type, such as the Internet domain (TCP/IP version 4), Novell's IPX
or the “"Unix domain". A server then typically calls bind(2), listen(2), and accept(2) or select(2). A client
typically calls bind(2) (though that may be omitted) and connect(2). See these routine's respective man pag
for more information. It can be difficult to understand how to use sockets from their man pages; you might
want to consult other papers such as Hall "Beej" [1999] to learn how these calls are used together.

The “Unix domain sockets" don't actually represent a network protocol; they can only connect to sockets or
the same machine. (at the time of this writing for the standard Linux kernel). When used as a stream, they a
fairly similar to named pipes, but with significant advantages. In particular, Unix domain socket is
connection-oriented; each new connection to the socket results in a new communication channel, a very
different situation than with named pipes. Because of this property, Unix domain sockets are often used
instead of named pipes to implement IPC for many important services. Just like you can have unnamed pipe
you can have unnamed Unix domain sockets using socketpair(2); unnamed Unix domain sockets are useful
for IPC in a way similar to unnamed pipes.

There are several interesting security implications of Unix domain sockets. First, although Unix domain
sockets can appear in the filesystem and can have stat(2) applied to them, you can't use open(2) to open th
(you have to use the socket(2) and friends interface). Second, Unix domain sockets can be used to pass file
descriptors between processes (not just the file's contents). This odd capability, not available in any other IP
mechanism, has been used to hack all sorts of schemes (the descriptors can basically be used as a limited
version of the ““capability" in the computer science sense of the term). File descriptors are sent using
sendmsg(2), where the msg (message)'s field msg_control points to an array of control message headers (f
msg_controllen must specify the number of bytes contained in the array). Each control message is a struct
cmsghdr followed by data, and for this purpose you want the cmsg_type set to SCM_RIGHTS. A file
descriptor is retrieved through recvmsg(2) and then tracked down in the analogous way. Frankly, this featur:
is quite baroque, but it's worth knowing about.

Linux 2.2 and later supports an additional feature in Unix domain sockets: you can acquire the peer's
““credentials” (the pid, uid, and gid). Here's some sample code:

[* fd= file descriptor of Unix domain socket connected
to the client you wish to identify */

struct ucred cr;
int cl=sizeof(cr);

if (getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &cr, &cl)==0) {

printf("Peer's pid=%d, uid=%d, gid=%d\n",
cr.pid, cr.uid, cr.gid);

Chapter 3. Summary of Linux and Unix Security Features 26

Secure Programming for Linux and Unix HOWTO

Standard Unix convention is that binding to TCP and UDP local port numbers less than 1024 requires root
privilege, while any process can bind to an unbound port number of 1024 or greater. Linux follows this
convention, more specifically, Linux requires a process to have the capability CAP_NET_BIND_SERVICE tc
bind to a port number less than 1024; this capability is normally only held by processes with an EUID of 0.
The adventurous can check this in Linux by examining its Linux's source; in Linux 2.2.12, it's file
lusr/src/linux/net/ipv4/af_inet.c, function inet_bind().

3.5. Signals

Signals are a simple form of “interruption” in the Unix-like OS world, and are an ancient part of Unix. A
process can set a ~'signal" on another process (say using kill(1) or kill(2)), and that other process would
receive and handle the signal asynchronously. For a process to have permission to send an arbitrary signal
some other process, the sending process must either have root privileges, or the real or effective user ID of
sending process must equal the real or saved set—user—ID of the receiving process. However, some signals
be sent in other ways. In particular, SIGURG can be delivered over a network through the TCP/IP
out-of-band (OOB) message.

Although signals are an ancient part of Unix, they've had different semantics in different implementations.
Basically, they involve questions such as ““what happens when a signal occurs while handling another
signal"? The older Linux libc 5 used a different set of semantics for some signal operations than the newer
GNU libc libraries. Calling C library functions is often unsafe within a signal handler, and even some system
calls aren't safe; you need to examine the documentation for each call you make to see if it promises to be ¢
to call inside a signal. For more information, see the glibc FAQ (on some systems a local copy is available a
/usr/doc/glibc—*/FAQ).

For new programs, just use the POSIX signal system (which in turn was based on BSD work); this set is
widely supported and doesn't have some of the problems that some of the older signal systems did. The
POSIX signal system is based on using the sigset_t datatype, which can be manipulated through a set of
operations: sigemptyset(), sigfillset(), sigaddset(), sigdelset(), and sigismember(). You can read about these
sigsetops(3). Then use sigaction(2), sigprocmask(2), sigpending(2), and sigsuspend(2) to set up an manipu
signal handling (see their man pages for more information).

In general, make any signal handlers very short and simple, and look carefully for race conditions. Signals,
since they are by nature asynchronous, can easily cause race conditions.

A common convention exists for servers: if you receive SIGHUP, you should close any log files, reopen and
reread configuration files, and then re—open the log files. This supports reconfiguration without halting the
server and log rotation without data loss. If you are writing a server where this convention makes sense, ple
support it.

Michal Zalewski [2001] has written an excellent tutorial on how signal handlers are exploited, and has
recommendations for how to eliminate signal race problems. | encourage looking at his summary for more
information; here are my recommendations, which are similar to Michal's work:

* Where possible, have your signal handlers unconditionally set a specific flag and do nothing else.

« If you must have more complex signal handlers, use only calls specifically designated as being safe
for use in signal handlers. In particular, don't use malloc() or free() in C (which on most systems arer
protected against signals), nor the many functions that depend on them (such as the printf() family al
syslog()). You could try to ““wrap" calls to insecure library calls with a check to a global flag (to
avoid re—entry), but | wouldn't recommend it.

Chapter 3. Summary of Linux and Unix Security Features 27

Secure Programming for Linux and Unix HOWTO

« Block signal delivery during all non—atomic operations in the program, and block signal delivery
inside signal handlers.

3.6. Quotas and Limits

Many Unix-like systems have mechanisms to support filesystem quotas and process resource limits. This
certainly includes Linux. These mechanisms are particularly useful for preventing denial of service attacks; t
limiting the resources available to each user, you can make it hard for a single user to use up all the system
resources. Be careful with terminology here, because both filesystem quotas and process resource limits ha
“hard" and ““soft" limits but the terms mean slightly different things.

You can define storage (filesystem) quota limits on each mountpoint for the number of blocks of storage
and/or the number of unique files (inodes) that can be used, and you can set such limits for a given user or
given group. A ““hard" quota limit is a never—-to—exceed limit, while a ““soft" quota can be temporarily
exceeded. See quota(l), quotactl(2), and quotaon(8).

The rlimit mechanism supports a large number of process quotas, such as file size, number of child process
number of open files, and so on. There is a ““soft" limit (also called the current limit) and a ““hard limit" (also
called the upper limit). The soft limit cannot be exceeded at any time, but through calls it can be raised up tc
the value of the hard limit. See getrlimit(2), setrlimit(2), and getrusage(2), sysconf(3), and ulimit(1). Note tha
there are several ways to set these limits, including the PAM module pam_limits.

3.7. Dynamically Linked Libraries

Practically all programs depend on libraries to execute. In most modern Unix—like systems, including Linux,
programs are by default compiled to use dynamically linked libraries (DLLS). That way, you can update a
library and all the programs using that library will use the new (hopefully improved) version if they can.

Dynamically linked libraries are typically placed in one a few special directories. The usual directories includ
llib, /usr/lib, /lib/security for PAM modules, /usr/X11R6/lib for X-windows, and

/usr/local/lib. You should use these standard conventions in your programs, in particular, except

during debugging you shouldn't use value computed from the current directory as a source for dynamically
linked libraries (an attacker may be able to add their own choice "library" values).

There are special conventions for naming libraries and having symbolic links for them, with the result that yc
can update libraries and still support programs that want to use old, non—backward—compatible versions of
those libraries. There are also ways to override specific libraries or even just specific functions in a library
when executing a particular program. This is a real advantage of Unix-like systems over Windows-like
systems; | believe Unix-like systems have a much better system for handling library updates, one reason th
Unix and Linux systems are reputed to be more stable than Windows—based systems.

On GNU glibc—-based systems, including all Linux systems, the list of directories automatically searched
during program start—up is stored in the file /etc/ld.so.conf. Many Red Hat-derived distributions don't
normally include /usr/local/lib in the file /etc/ld.so.conf. | consider this a bug, and adding

/usr/local/lib to /etc/ld.so.conf is a common "fix" required to run many programs on Red

Hat—derived systems. If you want to just override a few functions in a library, but keep the rest of the library,
you can enter the names of overriding libraries (.o files) in /etc/ld.so.preload; these ““preloading”

libraries will take precedence over the standard set. This preloading file is typically used for emergency
patches; a distribution usually won't include such a file when delivered. Searching all of these directories at

Chapter 3. Summary of Linux and Unix Security Features 28

Secure Programming for Linux and Unix HOWTO

program start—up would be too time—consuming, so a caching arrangement is actually used. The program
Idconfig(8) by default reads in the file /etc/ld.so.conf, sets up the appropriate symbolic links in the dynamic
link directories (so they'll follow the standard conventions), and then writes a cache to /etc/ld.so.cache that's
then used by other programs. So, lIdconfig has to be run whenever a DLL is added, when a DLL is removed,
or when the set of DLL directories changes; running Idconfig is often one of the steps performed by package
managers when installing a library. On start-up, then, a program uses the dynamic loader to read the file
/etc/ld.so.cache and then load the libraries it needs.

Various environment variables can control this process, and in fact there are environment variables that per
you to override this process (so, for example, you can temporarily substitute a different library for this
particular execution). In Linux, the environment variable LD_LIBRARY_PATH is a colon—-separated set of
directories where libraries are searched for first, before the standard set of directories; this is useful when
debugging a new library or using a nonstandard library for special purposes, but be sure you trust those whe
can control those directories. The variable LD _PRELOAD lists object files with functions that override the
standard set, just as /etc/ld.so.preload does. The variable LD_DEBUG, displays debugging information; if se
to “all", voluminous information about the dynamic linking process is displayed while it's occurring.

Permitting user control over dynamically linked libraries would be disastrous for setuid/setgid programs if
special measures weren't taken. Therefore, in the GNU glibc implementation, if the program is setuid or setc
these variables (and other similar variables) are ignored or greatly limited in what they can do. The GNU glit
library determines if a program is setuid or setgid by checking the program's credentials; if the UID and EUIL
differ, or the GID and the EGID differ, the library presumes the program is setuid/setgid (or descended from
one) and therefore greatly limits its abilities to control linking. If you load the GNU glibc libraries, you can
see this; see especially the files elf/rtld.c and sysdeps/generic/dl-sysdep.c. This means that if you cause the
UID and GID to equal the EUID and EGID, and then call a program, these variables will have full effect.
Other Unix-like systems handle the situation differently but for the same reason: a setuid/setgid program
should not be unduly affected by the environment variables set. Note that graphical user interface toolkits
generally do permit user control over dynamically linked libraries, because executables that directly invoke
graphical user inteface toolkits should never, ever, be setuid (or have other special privileges) at all. For mol
about how to develop secure GUI applications, see Section 7.4.4.

For Linux systems, you can get more information from my document, the Program Library HOWTO.

3.8. Audit

Different Unix-like systems handle auditing differently. In Linux, the most common ““audit" mechanism is
syslogd(8), usually working in conjunction with klogd(8). You might also want to look at wtmp(5), utmp(5),
lastlog(8), and acct(2). Some server programs (such as the Apache web server) also have their own audit tr
mechanisms. According to the FHS, audit logs should be stored in /var/log or its subdirectories.

3.9. PAM

Sun Solaris and nearly all Linux systems use the Pluggable Authentication Modules (PAM) system for
authentication. PAM permits run—time configuration of authentication methods (e.g., use of passwords, sma
cards, etc.). See Section 11.6 for more information on using PAM.

Chapter 3. Summary of Linux and Unix Security Features 29

http://www.dwheeler.com/program-library

Secure Programming for Linux and Unix HOWTO
3.10. Specialized Security Extensions for Unix—like Systems

A vast amount of research and development has gone into extending Unix—like systems to support security
needs of various communities. For example, several Unix-like systems have been extended to support the
U.S. military's desire for multilevel security. If you're developing software, you should try to design your
software so that it can work within these extensions.

FreeBSD has a new system call, jail(2). The jail system call supports sub—partitioning an environment into
many virtual machines (in a sense, a “super—chroot"); its most popular use has been to provide virtual
machine services for Internet Service Provider environments. Inside a jail, all processes (even those owned
root) have the the scope of their requests limited to the jail. When a FreeBSD system is booted up after a fre
install, no processes will be in jail. When a process is placed in a jalil, it, and any descendants of that proces
created will be in that jail. Once in a jail, access to the file name-space is restricted in the style of chroot(2)
(with typical chroot escape routes blocked), the ability to bind network resources is limited to a specific IP
address, the ability to manipulate system resources and perform privileged operations is sharply curtailed, a
the ability to interact with other processes is limited to only processes inside the same jail. Note that each ja
is bound to a single IP address; processes within the jail may not make use of any other IP address for
outgoing or incoming connections.

Some extensions available in Linux, such as POSIX capabilities and special mount-time options, have
already been discussed. Here are a few of these efforts for Linux systems for creating restricted execution
environments; there are many different approaches. The U.S. National Security Agency (NSA) has develope
Security—Enhanced Linux (Flask), which supports defining a security policy in a specialized language and
then enforces that policy. The Medusa DS9 extends Linux by supporting, at the kernel level, a user—space
authorization server. LIDS protects files and processes, allowing administrators to “"lock down" their system
The "Rule Set Based Access Control" system, RSBAC is based on the Generalized Framework for Access
Control (GFAC) by Abrams and LaPadula and provides a flexible system of access control based on severa
kernel modules. Subterfugue is a framework for ““observing and playing with the reality of software"; it can
intercept system calls and change their parameters and/or change their return values to implement sandbox
tracers, and so on; it runs under Linux 2.4 with no changes (it doesn't require any kernel modifications). Jan
is a security tool for sandboxing untrusted applications within a restricted execution environment. Some hav
even used User—mode Linux, which implements “"Linux on Linux", as a sandbox implementation. Because
there are so many different approaches to implementing more sophisticated security models, Linus Torvalds
has requested that a generic approach be developed so different security policies can be inserted; for more

information about this, see http://mail.wirex.com/mailman/listinfo/linux—security—module.

There are many other extensions for security on various Unix-like systems, but these are really outside the
scope of this document.

Chapter 3. Summary of Linux and Unix Security Features 30

http://docs.freebsd.org/44doc/papers/jail/jail.html
http://www.nsa.gov/selinux
http://medusa.fornax.sk
http://www.lids.org
http://www.rsbac.de
http://subterfugue.org
http://www.cs.berkeley.edu/~daw/janus
http://user-mode-linux.sourceforge.net
http://mail.wirex.com/mailman/listinfo/linux-security-module

Chapter 4. Security Requirements

You will know that your tent is secure; you will

take stock of your property and find nothing

missing.

Job 5:24 (NIV)

Before you can determine if a program is secure, you need to determine exactly what its security requireme
are. Thankfully, there's an international standard for identifying and defining security requirements that is
useful for many such circumstances: the Common Criteria [CC 1999], standardized as ISO/IEC 15408:1999
The CC is the culmination of decades of work to identify information technology security requirements. Ther
are other schemes for defining security requirements and evaluating products to see if products meet the
requirements, such as NIST FIPS-140 for cryptographic equipment, but these other schemes are generally
focused on a specialized area and won't be considered further here.

This chapter briefly describes the Common Criteria (CC) and how to use its concepts to help you informally
identify security requirements and talk with others about security requirements using standard terminology.
The language of the CC is more precise, but it's also more formal and harder to understand; hopefully the te
in this section will help you "get the jist".

Note that, in some circumstances, software cannot be used unless it has undergone a CC evaluation by an
accredited laboratory. This includes certain kinds of uses in the U.S. Department of Defense (as specified b
NSTISSP Number 11, which requires that before some products can be used they must be evaluated or ent
evaluation), and in the future such a requirement may also include some kinds of uses for software in the U.
federal government. This section doesn't provide enough information if you plan to actually go through a CC
evaluation by an accredited laboratory. If you plan to go through a formal evaluation, you need to read the re
CC, examine various websites to really understand the basics of the CC, and eventually contract a lab
accredited to do a CC evaluation.

4.1. Common Criteria Introduction

First, some general information about the CC will help understand how to apply its concepts. The CC's
official name is "The Common Criteria for Information Technology Security Evaluation”, though it's normally
just called the Common Criteria. The CC document has three parts: the introduction (that describes the CC
overall), security functional requirements (that lists various kinds of security functions that products might
want to include), and security assurance requirements (that lists various methods of assuring that a product
secure). There is also a related document, the "Common Evaluation Methodology" (CEM), that guides
evaluators how to apply the CC when doing formal evaluations (in particular, it amplifies what the CC mean:
in certain cases).

Although the CC is International Standard ISO/IEC 15408:1999, it is outrageously expensive to order the C(
from ISO. Hopefully someday 1SO will follow the lead of other standards organizations such as the IETF anc
the W3C, which freely redistribute standards. Not surprisingly, IETF and W3C standards are followed more
often than many 1SO standards, in part because I1SO's fees for standards simply make them inaccessible to
most developers. (I don't mind authors being paid for their work, but ISO doesn't fund most of the standards
development work — indeed, many of the developers of ISO documents are volunteers — so ISO's indefensil
fees only line their own pockets and don't actually aid the authors or users at all.) Thankfully, the CC
developers anticipated this problem and have made sure that the CC's technical content is freely available t
all; you can download the CC's technical content from http://csrc.nist.gov/cc/ccv20/cev2list.htm Even those
doing formal evaluation processes usually use these editions of the CC, and not the ISO versions; there's

Chapter 4. Security Requirements 31

http://csrc.nist.gov/cc/ccv20/ccv2list.htm

Secure Programming for Linux and Unix HOWTO

simply no good reason to pay ISO for them.

Although it can be used in other ways, the CC is typically used to create two kinds of documents, a
“Protection Profile" (PP) or a “"Security Target" (ST). A ““protection profile" (PP) is a document created by
group of users (for example, a consumer group or large organization) that identifies the desired security
properties of a product. Basically, a PP is a list of user security requirements, described in a very specific we
defined by the CC. If you're building a product similar to other existing products, it's quite possible that there
are one or more PPs that define what some users believe are necessary for that kind of product (e.g., an
operating system or firewall). A ““security target" (ST) is a document that identifies what a product actually
does, or a subset of it, that is security—relevant. An ST doesn't need to meet the requirements of any particu
PP, but an ST could meet the requirements of one or more PPs.

Both PPs and STs can go through a formal evaluation. An evaluation of a PP simply ensures that the PP m¢
various documentation rules and sanity checks. An ST evaluation involves not just examining the ST
document, but more importantly it involves evaluating an actual system (called the “target of evaluation", or
TOE). The purpose of an ST evaluation is to ensure that, to the level of the assurance requirements specifie
by the ST, the actual product (the TOE) meets the ST's security functional requirements. Customers can the
compare evaluated STs to PPs describing what they want. Through this comparison, consumers can detern
if the products meet their requirements — and if not, where the limitations are.

To create a PP or ST, you go through a process of identifying the security environment, namely, your
assumptions, threats, and relevant organizational security policies (if any). From the security environment,
you derive the security objectives for the product or product type. Finally, the security requirements are
selected so that they meet the objectives. There are two kinds of security requirements: functional
requirements (what a product has to be able to do), and assurance requirements (measures to inspire
confidence that the objectives have been met). Actually creating a PP or ST is often not a simple straight lin
as outlined here, but the final result needs to show a clear relationship so that no critical point is easily
overlooked. Even if you don't plan to write an ST or PP, the ideas in the CC can still be helpful; the process
identifying the security environment, objectives, and requirements is still helpful in identifying what's really
important.

The vast majority of the CC's text is used to define standardized functional requirements and assurance
requirements. In essence, the majority of the CC is a ““chinese menu" of possible security requirements that
someone might want. PP authors pick from the various options to describe what they want, and ST authors
pick from the options to describe what they provide.

Since many people might have difficulty identifying a reasonable set of assurance requirements, so
pre—created sets of assurance requirements called ““evaluation assurance levels" (EALSs) have been define
ranging from 1 to 7. EAL 2 is simply a standard shorthand for the set of assurance requirements defined for
EAL 2. Products can add additional assurance measures, for example, they might choose EAL 2 plus some
additional assurance measures (if the combination isn't enough to achieve a higher EAL level, such a
combination would be called "EAL 2 plus"). There are mutual recognition agreements signed between many
of the world's nations that will accept an evaluation done by an accredited laboratory in the other countries ¢
long as all of the assurance measures taken were at the EAL 4 level or less.

If you want to actually write an ST or PP, there's an open source software program that can help you, called
the “"CC Toolbox". It can make sure that dependencies between requirements are met, suggest common
requirements, and help you quickly develop a document, but it obviously can't do your thinking for you. The
specification of exactly what information must be in a PP or ST are in CC part 1, annexes B and C
respectively.

Chapter 4. Security Requirements 32

Secure Programming for Linux and Unix HOWTO

If you do decide to have your product (or PP) evaluated by an accredited laboratory, be prepared to spend
money, spend time, and work throughout the process. In particular, evaluations require paying an accreditec
lab to do the evaluation, and higher levels of assurance become rapidly more expensive. Simply believing
your product is secure isn't good enough; evaluators will require evidence to justify any claims made. Thus,
evaluations require documentation, and usually the available documentation has to be improved or develop:
to meet CC requirements (especially at the higher assurance levels). Every claim has to be justified to some
level of confidence, so the more claims made, the stronger the claims, and the more complicated the design
the more expensive an evaluation is. Obviously, when flaws are found, they will usually need to be fixed.
Note that a laboratory is paid to evaluate a product and determine the truth. If the product doesn't meet its
claims, then you basically have two choices: fix the product, or change (reduce) the claims.

It's important to discuss with customers what's desired before beginning a formal ST evaluation; an ST that
includes functional or assurance requirements not truly needed by customers will be unnecessarily expensi\
to evaluate, and an ST that omits hecessary requirements may not be acceptable to the customers (becaus
necessary piece won't have been evaluated). PPs identify such requirements, but make sure that the PP
accurately reflects the customer's real requirements (perhaps the customer only wants a part of the
functionality or assurance in the PP, or has a different environment in mind, or wants something else insteac
for the situations where your product will be used). Note that an ST need not include every security feature i
a product; an ST only states what will be (or has been) evaluated. A product that has a higher EAL rating is
not necessarily more secure than a similar product with a lower rating or no rating; the environment might be
different, the evaluation may have saved money and time by not evaluating the other product at a higher lev
or perhaps the evaluation missed something important. Evaluations are not proofs; they simply impose a
defined minimum bar to gain confidence in the requirements or product.

4.2. Security Environment and Objectives

The first step in defining a PP or ST is identify the ““security environment". This means that you have to
consider the physical environment (can attackers access the computer hardware?), the assets requiring
protection (files, databases, authorization credentials, and so on), and the purpose of the TOE (what kind of
product is it? what is the intended use?).

In developing a PP or ST, you'd end up with a statement of assumptions (who is trusted? is the network or
platform benign?), threats (that the system or its environment must counter), and organizational security
policies (that the system or its environment must meet). A threat is characterized in terms of a threat agent
(who might perform the attack?), a presumed attack method, any vulnerabilities that are the basis for the
attack, and what asset is under attack.

You'd then define a set of security objectives for the system and environment, and show that those objective
counter the threats and satisfy the policies. Even if you aren't creating a PP or ST, thinking about your
assumptions, threats, and possible policies can help you avoid foolish decisions. For example, if the compui
network you're using can be sniffed (e.g., the Internet), then unencrypted passwords are a foolish idea in mc
circumstances.

For the CC, you'd then identify the functional and assurance requirements that would be met by the TOE, ar
which ones would be met by the environment, to meet those security objectives. These requirements would
selected from the ““chinese menu" of the CC's possible requirements, and the next sections will briefly
describe the major classes of requirements. In the CC, requirements are grouped into classes, which are
subdivided into families, which are further subdivided into components; the details of all this are in the CC
itself if you need to know about this. A good diagram showing how this works is in the CC part 1, figure 4.5,
which | cannot reproduce here.

Chapter 4. Securit