
SoX(3) Sound eXchange SoX(3)

NAME
libsox − SoX, an audio file-format and effect library

SYNOPSIS
#include <sox.h>

int sox_format_init(void);

sox_format_t sox_open_read(const char *path, const sox_signalinfo_t *info, const char *filetype);

sox_format_t sox_open_write(sox_bool (*overwrite_permitted)(const char *filename), const char *path, const sox_signalinf

sox_size_t sox_read(sox_format_tft, sox_ssample_t *buf, sox_size_tlen);

sox_size_t sox_write(sox_format_tft, sox_ssample_t *buf, sox_size_tlen);

int sox_close(sox_format_tft);

int sox_seek(sox_format_tft, sox_size_toffset, int whence);

sox_effect_handler_t const *sox_find_effect(char const *name);

void sox_create_effect(sox_effect_teffp, sox_effect_handler_t const *e);

ccfile.c -o file lsox

DESCRIPTION
libsox is a library of sound sample file format readers/writers and sound effects processors. It is mainly
developed for use by SoX but is useful for any sound application.

sox_format_init function performs some required initialization related to all file format handlers.If com-
piled with dynamic library support then this will detect and initialize all external libraries. This should be
called before any other file operations are performed.

sox_open_inputfunction opens the file for reading whose name is the string pointed to bypathand asso-
ciates an sox_format_t with it. Ifinfo is non-NULL then it will be used to specify the data format of the
input file. This is normally only needed for headerless audio files since the information is not stored in the
file. If filetypeis non-NULL then it will be used to specify the file type. If this is not specified then the file
type is attempted to be derived by looking at the file header and/or the filename extension. A special name
of "-" can be used to read data from stdin.

sox_open_outputfunction opens the file for writing whose name is the string pointed to bypathand asso-
ciates an sox_format_t with it. Ifinfo is non-NULL then it will be used to specify the data format of the
output file. Since most file formats can write data in different data formats, this generally has to be speci-
fied. The info structure from the input format handler can be specified to copy data over in the same format.
If commentis non-NULL, it will be written in the file header for formats that support comments. Iffiletype
is non-NULL then it will be used to specify the file type. If this is not specified then the file type is
attempted to be derived by looking at the filename extension. A special name of "-" can be used to write
data to stdout.

The functionsox_readreadslen samples in tobuf using the format handler specified byft. All data read is
converted to 32-bit signed samples before being placed in tobuf. The value oflen is specified in total sam-
ples. If its value is not evenly divisable by the number of channels, undefined behavior will occur.

The functionsox_write writes len samples frombuf using the format handler specified byft. Data inbuf
must be 32-bit signed samples and will be converted during the write process. The value oflen is specified
in total samples. If its value is not evenly divisable by the number of channels, undefined behavior will
occur.

The sox_closefunction dissociates the namedsox_format_tfrom its underlying file or set of functions. If
the format handler was being used for output, any buffered data is written first.

sox_format_quitefunction performs some required cleanup related to all file format handlers.

The functionsox_find_effectfinds effect name, returning a pointer to itssox_effect_handler_tif it exists,
and NULL otherwise.

libsox July27, 2008 1



SoX(3) Sound eXchange SoX(3)

The functionsox_create_effectinstantiates an effect into asox_effect_tgiven a sox_effect_handler_t *.
Any missing methods are automatically set to the correspondingnothing method.

Thesox_update_effectfunction copies input and output signal info into effect structures. Theeffect_mask
parameter is the return value of the previous call to this function; for the first call, pass 0. The function
returns the updated effect mask.

SoX includes skeleton C files to assist you in writing new formats (skelform.c) and effects (skeleff.c). sox.c
itself is a good starting point for new programs. Note that new formats can often just deal with the header
and then use raw.c’s routines for reading and writing.

RETURN VALUE
Upon successful completionsox_open_inputand sox_open_outputreturn ansox_format_t(which is a
pointer). Otherwise,NULL is returned. TODO: Need a way to return reason for failures. Currently, relies
onsox_warnto print information.

sox_readandsox_write return the number of samples successfully read or written. If an error occurs, or
the end-of-file is reached, the return value is a short item count or SOX_EOF. TODO: sox_readdoes not
distiguish between end-of-file and error. Need an feof() and ferror() concept to determine which occured.

Upon successful completionsox_closereturns 0. Otherwise, SOX_EOF is returned. In either case, any fur-
ther access (including another call tosox_close()) to the handler results in undefined behavior. TODO:
Need a way to return reason for failures. Currently, relies on sox_warn to print information.

Upon successful completionsox_seekreturns 0. Otherwise, SOX_EOF is returned. TODO Need to set a
global error and implement sox_tell.

ERRORS
TODO

INTERNALS
SoX’s formats and effects operate on an internal buffer format of signed 32-bit longs. The data processing
routines are called with buffers of these samples, and buffer sizes which refer to the number of samples pro-
cessed, not the number of bytes. File readers translate the input samples to signed 32-bit integers and return
the number of samples read. For example, data in linear signed byte format is left-shifted 24 bits.

This does cause problems in processing the data.For example:
*obuf++ = (*ibuf++ + *ibuf++)/2;

would not mix down left and right channels into one monophonic channel, because the resulting samples
would overflow 32 bits. Instead,the ‘‘avg’’ effects must use:

*obuf++ = *ibuf++/2 + *ibuf++/2;

Stereo data is stored with the left and right speaker data in successive samples. Quadraphonicdata is stored
in this order: left front, right front, left rear, right rear.

FORMATS
A format is responsible for translating between sound sample files and an internal buffer. The internal
buffer is store in signed longs with a fixed sampling rate.The format operates from two data structures: a
format structure, and a private structure.

The format structure contains a list of control parameters for the sample: sampling rate, data size (8, 16, or
32 bits), encoding (unsigned, signed, floating point, etc.), number of sound channels.It also contains other
state information: whether the sample file needs to be byte-swapped, whether sox_seek() will work, its suf-
fix, its file stream pointer, its format pointer, and theprivatestructure for theformat .

The privatearea is just a preallocated data array for theformat to use however it wishes. Itshould have a
defined data structure and cast the array to that structure. See voc.c for the use of a private data area.Voc.c
has to track the number of samples it writes and when finishing, seek back to the beginning of the file and
write it out. The private area is not very large. The‘‘ echo’’ effect has to malloc() a much larger area for its
delay line buffers.

A format has 6 routines:

libsox July27, 2008 2



SoX(3) Sound eXchange SoX(3)

startread Setup the format parameters, or read in a data header, or do what needs to be
done.

read Given a buffer and a length: read up to that many samples, transform them into
signed long integers, and copy them into the buffer. Return the number of samples
actually read.

stopread Dowhat needs to be done.

startwrite Setup the format parameters, or write out a data header, or do what needs to be
done.

write Given a buffer and a length: copy that many samples out of the buffer, convert
them from signed longs to the appropriate data, and write them to the file. If it
can’t write out all the samples, fail.

stopwrite Fixup any file header, or do what needs to be done.

EFFECTS
An effects loop has one input and one output stream. It has 5 routines.

getopts iscalled with a character string argument list for the effect.

start iscalled with the signal parameters for the input and output streams.

flow is called with input and output data buffers, and (by reference) the input and output
data buffer sizes. It processes the input buffer into the output buffer, and sets the
size variables to the numbers of samples actually processed.It is under no obliga-
tion to read from the input buffer or write to the output buffer during the same call.
If the call returns SOX_EOF then this should be used as an indication that this
effect will no longer read any data and can be used to switch to drain mode sooner.

drain iscalled after there are no more input data samples.If the effect wishes to gener-
ate more data samples it copies the generated data into a given buffer and returns
the number of samples generated. If it fills the buffer, it will be called again, etc.
The echo effect uses this to fade away.

stop iscalled when there are no more input samples to process.stopmay generate out-
put samples on its own. Seeecho.c for how to do this, and see that what it does is
absolutely bogus.

LINKING
The method of linking against libsox and libsfx depends on how SoX was built on your system. For a static
build, just link against the libraries as normal. For a dynamic build, you should use libtool to link with the
correct linker flags. See the libtool manual for details; basically, you use it as:

libtool --mode=link gcc -o prog /path/to/libsox.la /path/to/libsfx.la

BUGS
This manual page is both incomplete and out of date.

SEE ALSO
sox(1), soxformat(7), soxeffect(7)

example*.c in the SoX source distribution.

LICENSE
Copyright 1991 Lance Norskog and Sundry Contributors. Copyright 1998−2007 by Chris Bagwell and
SoX Contributors.

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1, or (at your
option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

libsox July27, 2008 3



SoX(3) Sound eXchange SoX(3)

ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See
the GNU Lesser General Public License for more details.

AUTHORS
Chris Bagwell (cbagwell@users.sourceforge.net). Otherauthors and contributors are listed in the
AUTHORS file that is distributed with the source code.

libsox July27, 2008 4


