
This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 1 of 24
KASUMI Algorithm Specification Version 1.0

ETSI/SAGE
Specification

Version: 1.0
Date: 23rd December 1999

Specification of the 3GPP Confidentiality and
Integrity Algorithms

Document 2: KASUMI Specification

 The KASUMI algorithm is the core of the standardised 3GPP
Confidentiality and Integrity algorithms.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 2 of 24
KASUMI Algorithm Specification Version 1.0

Blank Page

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 3 of 24
KASUMI Algorithm Specification Version 1.0

PREFACE

This specification has been prepared by the 3GPP Task Force, and gives a detailed
specification of the 3GPP Algorithm KASUMI. KASUMI is a block cipher that forms the
heart of the 3GPP confidentiality algorithm f8, and the 3GPP integrity algorithm f9.

This document is the second of four, which between them form the entire specification of the
3GPP Confidentiality and Integrity Algorithms:

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 1: Algorithm Specifications.

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 2: KASUMI Algorithm Specification.

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 3: Implementors’ Test Data.

• Specification of the 3GPP Confidentiality and Integrity Algorithms.
Document 4: Design Conformance Test Data.

The normative part of the specification of KASUMI is in the main body of this document.
The annexes to this document are purely informative. Annex 1 contains illustrations of
functional elements of the algorithm, while Annex 2 contains an implementation program
listing of the cryptographic algorithm specified in the main body of this document, written in
the programming language C.

Similarly the normative part of the specification of the f8 (confidentiality) and the f9
(integrity) algorithms is in the main body of Document 1. The annexes of those documents,
and Documents 3 and 4 above, are purely informative.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 4 of 24
KASUMI Algorithm Specification Version 1.0

Blank Page

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 5 of 24
KASUMI Algorithm Specification Version 1.0

TABLE OF CONTENTS

1. OUTLINE OF THE NORMATIVE PART ... 8

2. INTRODUCTORY INFORMATION... 8
2.1. Introduction... 8
2.2.Notation... 8
2.3.List of Functions and Variables.. 9

3. KASUMI OPERATION.. 10
3.1. Introduction... 10
3.2.Encryption... 10

4. COMPONENTS OF KASUMI ... 11
4.1.Function fi.. 11
4.2.Function FL... 11
4.3.Function FO .. 12
4.4.Function FI.. 12
4.5.S-boxes.. 13
4.6.Key Schedule.. 17

ANNEX 1 Figures of the KASUMI Algorithm... 19

ANNEX 2 Simulation Program Listing... 21
Header file ... 21
C Code... 21

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 6 of 24
KASUMI Algorithm Specification Version 1.0

REFERENCES

[1] 3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Security Architecture (3G TS 33.102 version 3.2.0)

[2] 3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3G Security; Cryptographic Algorithm Requirements; (3G TS
33.105 version 3.1.0)

[3] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 1: f8 and f9 specifications.

[4] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 2: KASUMI Specification.

[5] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 3: Implementors’ Test Data.

[6] Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 4: Design Conformance Test Data.

[7] Information technology – Security techniques – Message Authentication Codes
(MACs). ISO/IEC 9797-1:1999

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 7 of 24
KASUMI Algorithm Specification Version 1.0

NORMATIVE SECTION

This part of the document contains the normative specification of the KASUMI algorithm.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 8 of 24
KASUMI Algorithm Specification Version 1.0

1. OUTLINE OF THE NORMATIVE PART

Section 2 introduces the algorithm and describes the notation used in the subsequent sections.

Section 3 defines the algorithm structure and its operation.

Section 4 defines the basic components of the algorithm.

2. INTRODUCTORY INFORMATION

2.1. Introduction

Within the security architecture of the 3GPP system there are two standardised algorithms: A
confidentiality algorithm f8, and an integrity algorithm f9. These algorithms are fully
specified in a companion document[3]. Each of these algorithms is based on the KASUMI
algorithm that is specified here.

KASUMI is a block cipher that produces a 64-bit output from a 64-bit input under the control
of a 128-bit key.

2.2. Notation

2.2.1. Radix

We use the prefix 0x to indicate hexadecimal numbers.

2.2.2. Bit/Byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on
the left hand side and the least significant bit (or byte) on the right hand side. Where a
variable is broken down into a number of sub-strings, the left most (most significant) sub-
string consists of the most significant part of the original string and so on through to the least
significant.

For example if a 64-bit value X is subdivided into four 16-bit substrings P, Q, R, S we have:

 X = 0x0123456789ABCDEF

we have:

P = 0x0123, Q = 0x4567, R = 0x89AB, S = 0xCDEF.

In binary this would be:

X = 0000000100100011010001010110011110001001101010111100110111101111

with P = 0000000100100011
Q = 0100010101100111
R = 1000100110101011
S = 1100110111101111

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 9 of 24
KASUMI Algorithm Specification Version 1.0

2.2.3. Conventions

We use the assignment operator ‘=’ , as used in several programming languages.
When we write

<variable> = <expression>

we mean that <variable> assumes the value that <expression> had before the
assignment took place. For instance,

x = x + y + 3
means

(new value of x) becomes (old value of x) + (old value of y) + 3.

2.2.4. Subfunctions

KASUMI decomposes into a number of subfunctions (FL, FO, FI) which are used in
conjunction with associated sub-keys (KL, KO, KI) in a Feistel structure comprising a number
of rounds (and rounds within rounds for some subfunctions). Specific instances of the
function and/or keys are represented by XXi,j

 where i is the outer round number of KASUMI
and j is the inner round number.

For example the function FO comprises three rounds of the function FI , so we designate the
third round of FI in the fifth round of KASUMI as FI 5,3.

2.2.5. List of Symbols

= The assignment operator.

⊕ The bitwise exclusive-OR operation.

|| The concatenation of the two operands.

<<<n The left circular rotation of the operand by n bits.

ROL() The left circular rotation of the operand by one bit.

∩ The bitwise AND operation.

∪ The bitwise OR operation.

2.3. List of Functions and Variables

fi() The round function for the i th round of KASUMI

FI() A subfunction within KASUMI that translates a 16-bit input to a 16-bit output using
a 16-bit subkey.

FL() A subfunction within KASUMI that translates a 32-bit input to a 32-bit output using
a 32-bit subkey.

FO() A subfunction within KASUMI that translates a 32-bit input to a 32-bit output using
two 48-bit subkeys.

K A 128-bit key.

KL i,KOi,KI i subkeys used within the i th round of KASUMI.

S7[] An S-Box translating a 7-bit input to a 7-bit output.

S9[] An S-Box translating a 9-bit input to a 9-bit output.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 10 of 24
KASUMI Algorithm Specification Version 1.0

3. KASUMI OPERATION

3.1. Introduction

(See figure 1 in Annex 1)

KASUMI is a Feistel cipher with eight rounds. It operates on a 64-bit data block and uses a
128-bit key. In this section we define the basic eight-round operation. In section 4 we define
in detail the make-up of the round function f i().

3.2. Encryption

KASUMI operates on a 64-bit input I using a 128-bit key K to produce a 64-bit output
OUTPUT, as follows:

The input I is divided into two 32-bit strings L0 and R0, where

I = L0 || R0

Then for each integer i with 1
�

i �������	�
����
������

Ri = L i-1, L i = Ri-1 ⊕ f i(L i-1, RKi)

This constitutes the i th round function of KASUMI, where f i denotes the round function
with L i-1 and round key RKi as inputs (see section 4 below).

The result OUTPUT is equal to the 64-bit string (L8 || R8) offered at the end of the eighth
round. See figure 1 of Annex 1.

In the specifications for the f8 and f9 functions we represent this transformation by the term:

OUTPUT = KASUMI[I]K

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 11 of 24
KASUMI Algorithm Specification Version 1.0

4. COMPONENTS OF KASUMI

4.1. Function f i

(See figure 1 in Annex 1)

The function f i() takes a 32-bit input I and returns a 32-bit output O under the control of a
round key RKi, where the round key comprises the subkey triplet of (KL i, KOi, KI i). The
function itself is constructed from two subfunctions; FL and FO with associated subkeys KL i

(used with FL) and subkeys KOi and KI i (used with FO).

The f i() function has two different forms depending on whether it is an even round or an odd
round.

For rounds 1,3,5 and 7 we define:

f i(I ,RKi) = FO(FL(I , KL i), KOi, KI i)

and for rounds 2,4,6 and 8 we define:

f i(I ,Ki) = FL(FO(I , KOi, KI i), KL i)

i.e. For odd rounds the round data is passed through FL() and then FO(), whilst for even
rounds it is passed through FO() and then FL().

4.2. Function FL

(See figure 4 in Annex 1)

The input to the function FL comprises a 32-bit data input I and a 32-bit subkey KL i.
The subkey is split into two 16-bit subkeys, KL i,1 and KL i,2 where

KL i = KL i,1 || KL i,2.

The input data I is split into two 16-bit halves, L and R where I = L || R.

We define:

R ��� ⊕ ROL(L ∩ KL i,1)
L ��� ⊕ ROL(R ∪ KL i,2)

The 32-bit output value is (L � ���).

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 12 of 24
KASUMI Algorithm Specification Version 1.0

4.3. Function FO

(See figure 2 in Annex 1)

The input to the function FO comprises a 32-bit data input I and two sets of subkeys, a 48-bit
subkey KOi and 48-bit subkey KI i.

The 32-bit data input is split into two halves, L0 and R0 where I = L0 || R0.

The 48-bit subkeys are subdivided into three 16-bit subkeys where

KOi = KOi,1 || KOi,2 || KOi,3 and KI i = KI i,1 || KI i,2 || KI i,3.

Then for each integer j with 1 ≤ j ≤ 3 we define:

Rj = FI (L j-1 ⊕ KOi,j , KI i,j
) ⊕ Rj-1

L j = Rj-1

Finally we return the 32-bit value (L3 || R3).

4.4. Function FI

(See figure 3 in Annex 1. The thick and thin lines in this diagram are used to emphasise the
difference between the 9-bit and 7-bit data paths respectively).

The function FI takes a 16-bit data input I and 16-bit subkey KI i,j. The input I is split into
two unequal components, a 9-bit left half L0 and a 7-bit right half R0 where I = L0 || R0.

Similarly the key KI i,j is split into a 7-bit component KI i,j,1 and a 9-bit component KI i,j,2 where
KI i,j = KI i,j,1 || KI i,j,2.

The function uses two S-boxes, S7 which maps a 7-bit input to a 7-bit output, and S9 which
maps a 9-bit input to a 9-bit output. These are fully defined in section 4.5. It also uses two
additional functions which we designate ZE() and TR(). We define these as:

ZE(x) takes the 7-bit value x and converts it to a 9-bit value by adding two zero bits to
the most-significant end.

TR(x) takes the 9-bit value x and converts it to a 7-bit value by discarding the two most-
significant bits.

We define the following series of operations:

L1 = R0 R1 = S9[L0] ⊕ ZE(R0)

L2 = R1 ⊕ KI i,j,2 R2 = S7[L1] ⊕ TR(R1) ⊕ KI i,j,1

L3 = R2 R3 = S9[L2] ⊕ ZE(R2)

L4 = S7[L3] ⊕ TR(R3) R4 = R3

The function returns the 16-bit value (L4 || R4).

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 13 of 24
KASUMI Algorithm Specification Version 1.0

4.5. S-boxes

The two S-boxes have been designed so that they may be easily implemented in
combinational logic as well as by a look-up table. Both forms are given for each table.

The input x comprises either seven or nine bits with a corresponding number of bits in the
output y. We therefore have:

x = x8 || x7 || x6 || x5 || x4 || x3 || x2 || x1 || x0

and

y = y8 || y7 || y6 || y5 || y4 || y3 || y2 || y1 || y0

where the x8, y8 and x7,y7 bits only apply to S9, and the x0 and y0 bits are the least
significant bits.

In the logic equations:

x0x1x2 implies x0 ∩ x1 ∩ x2 where ∩ is the AND operator.
⊕ is the exclusive-OR operator.

Following the presentation of the logic equations and the equivalent look-up table an example
is given of the use of each.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 14 of 24
KASUMI Algorithm Specification Version 1.0

4.5.1. S7

Gate Logic :

y0 =x1x3⊕x4⊕x0x1x4⊕x5⊕x2x5⊕x3x4x5⊕x6⊕x0x6⊕x1x6⊕x3x6⊕x2x4x6⊕x1x5x6
 ⊕x4x5x6
y1 =x0x1⊕x0x4⊕x2x4⊕x5⊕x1x2x5⊕x0x3x5⊕x6⊕x0x2x6⊕x3x6⊕x4x5x6⊕1
y2 =x0⊕x0x3⊕x2x3⊕x1x2x4⊕x0x3x4⊕x1x5⊕x0x2x5⊕x0x6⊕x0x1x6⊕x2x6⊕x4x6⊕1
y3 =x1⊕x0x1x2⊕x1x4⊕x3x4⊕x0x5⊕x0x1x5⊕x2x3x5⊕x1x4x5⊕x2x6⊕x1x3x6
y4 =x0x2⊕x3⊕x1x3⊕x1x4⊕x0x1x4⊕x2x3x4⊕x0x5⊕x1x3x5⊕x0x4x5⊕x1x6⊕x3x6
 ⊕x0x3x6⊕x5x6⊕1
y5 =x2⊕x0x2⊕x0x3⊕x1x2x3⊕x0x2x4⊕x0x5⊕x2x5⊕x4x5⊕x1x6⊕x1x2x6⊕x0x3x6
 ⊕x3x4x6⊕x2x5x6⊕1
y6 =x1x2⊕x0x1x3⊕x0x4⊕x1x5⊕x3x5⊕x6⊕x0x1x6⊕x2x3x6⊕x1x4x6⊕x0x5x6

Decimal Table :

 54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,

 55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,

 53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,

 20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,

117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,

112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,

102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,

 64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3

Example:

If we have an input value = 38, then using the decimal table S7[38] = 58.

For the combinational logic we have:

38 = 01001102 ⇒ x6 = 0, x5=1, x4=0, x3=0, x2=1, x1=1, x0=0

which gives us:

y0 = 0⊕0⊕0⊕1⊕1⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0 = 0
y1 = 0⊕0⊕0⊕1⊕1⊕0⊕0⊕0⊕0⊕0⊕1 = 1
y2 = 0⊕0⊕0⊕0⊕0⊕1⊕0⊕0⊕0⊕0⊕0⊕1 = 0
y3 = 1⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0 = 1
y4 = 0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕1 = 1
y5 = 1⊕0⊕0⊕0⊕0⊕0⊕1⊕0⊕0⊕0⊕0⊕0⊕0⊕1 = 1
y6 = 1⊕0⊕0⊕1⊕0⊕0⊕0⊕0⊕0⊕0 = 0

Thus y = 01110102 = 58

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 15 of 24
KASUMI Algorithm Specification Version 1.0

4.5.2. S9

Gate Logic :

y0 = x0x2⊕x3⊕x2x5⊕x5x6⊕x0x7⊕x1x7⊕x2x7⊕x4x8⊕x5x8⊕x7x8⊕1
y1 = x1⊕x0x1⊕x2x3⊕x0x4⊕x1x4⊕x0x5⊕x3x5⊕x6⊕x1x7⊕x2x7⊕x5x8⊕1
y2 = x1⊕x0x3⊕x3x4⊕x0x5⊕x2x6⊕x3x6⊕x5x6⊕x4x7⊕x5x7⊕x6x7⊕x8⊕x0x8⊕1
y3 = x0⊕x1x2⊕x0x3⊕x2x4⊕x5⊕x0x6⊕x1x6⊕x4x7⊕x0x8⊕x1x8⊕x7x8
y4 = x0x1⊕x1x3⊕x4⊕x0x5⊕x3x6⊕x0x7⊕x6x7⊕x1x8⊕x2x8⊕x3x8
y5 = x2⊕x1x4⊕x4x5⊕x0x6⊕x1x6⊕x3x7⊕x4x7⊕x6x7⊕x5x8⊕x6x8⊕x7x8⊕1
y6 = x0⊕x2x3⊕x1x5⊕x2x5⊕x4x5⊕x3x6⊕x4x6⊕x5x6⊕x7⊕x1x8⊕x3x8⊕x5x8⊕x7x8
y7 = x0x1⊕x0x2⊕x1x2⊕x3⊕x0x3⊕x2x3⊕x4x5⊕x2x6⊕x3x6⊕x2x7⊕x5x7⊕x8⊕1
y8 = x0x1⊕x2⊕x1x2⊕x3x4⊕x1x5⊕x2x5⊕x1x6⊕x4x6⊕x7⊕x2x8⊕x3x8

Decimal Table :

167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,

183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,

175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,

 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,

165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,

501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,

232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,

344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,

487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,

475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,

363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,

439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,

465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,

173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,

280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,

132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,

 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,

 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,

 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,

185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,

 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,

336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,

 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,

414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,

266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,

311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,

485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,

312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,

284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,

 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,

438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,

 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 16 of 24
KASUMI Algorithm Specification Version 1.0

Example:

If we have an input value = 138, then using the decimal table S9[138] = 339.

For the combinational logic we have:

138 = 0100010102 ⇒ x8 = 0, x7 = 1, x6 = 0, x5=0, x4=0, x3=1, x2=0, x1=1, x0=0

which gives us:

y0 = 0⊕1⊕0⊕0⊕0⊕1⊕0⊕0⊕0⊕0⊕1 = 1
y1 = 1⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕1⊕0⊕0⊕1 = 1
y2 = 1⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕1 = 0
y3 = 0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0 = 0
y4 = 0⊕1⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0 = 1
y5 = 0⊕0⊕0⊕0⊕0⊕1⊕0⊕0⊕0⊕0⊕0⊕1 = 0
y6 = 0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕1⊕0⊕0⊕0⊕0 = 1
y7 = 0⊕0⊕0⊕1⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕1 = 0
y8 = 0⊕0⊕0⊕0⊕0⊕0⊕0⊕0⊕1⊕0⊕0 = 1

Thus y = 1010100112 = 339

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 17 of 24
KASUMI Algorithm Specification Version 1.0

4.6. Key Schedule

KASUMI has a 128-bit key K. Each round of KASUMI uses 128 bits of key that are derived
from K. Before the round keys can be calculated two 16-bit arrays Kj and Kj (j=1 to 8) are
derived in the following manner:

The 128-bit key K is subdivided into eight 16-bit values K1…K8 where

K = K1 || K2 || K3 ||…|| K8.

A second array of subkeys, Kj is derived from Kj by applying:

For each integer j with 1 ≤ j ≤ 8

Kj � Kj ⊕ Cj

Where Cj is the constant value defined in table 2.

The round subkeys are then derived from Kj and Kj in the manner defined in table 1.

Round number

1 2 3 4 5 6 7 8

KL i,1 K1<<<1 K2<<<1 K3<<<1 K4<<<1 K5<<<1 K6<<<1 K7<<<1 K8<<<1

KL i,2 K3 K4 K5 K6 K7 K8 K1 K2

KOi,1 K2<<<5 K3<<<5 K4<<<5 K5<<<5 K6<<<5 K7<<<5 K8<<<5 K1<<<5

KOi,2 K6<<<8 K7<<<8 K8<<<8 K1<<<8 K2<<<8 K3<<<8 K4<<<8 K5<<<8

KOi,3 K7<<<13 K8<<<13 K1<<<13 K2<<<13 K3<<<13 K4<<<13 K5<<<13 K6<<<13

KI i,1 K5 K6 K7 K8 K1 K2 K3 K4

KI i,2 K4 K5 K6 K7 K8 K1 K2 K3

KI i,3 K8 K1 K2 K3 K4 K5 K6 K7

Table 1. Round subkeys

C1 0x0123

C2 0x4567

C3 0x89AB

C4 0xCDEF

C5 0xFEDC

C6 0xBA98

C7 0x7654

C8 0x3210

Table 2. Constants

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 18 of 24
KASUMI Algorithm Specification Version 1.0

INFORMATIVE SECTION

This part of the document is purely informative and does not form part of the normative
specification of KASUMI.

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 19 of 24
KASUMI Algorithm Specification Version 1.0

ANNEX 1
Figures of the KASUMI Algorithm

C

Fig. 1: KASUMI

FO1FL1

FO3FL3

FO5FL5

FO7FL7

FO2 FL2

FO4 FL4

FO6 FL6

FO8 FL8

KL1 KO1, KI1

FIi1 KI i,1

KOi,1

FIi2 KI i,2

KOi,2

FIi3 KI i,3

KOi,3

S9

S9

zero-extend

zero-extend

truncate

KI i ,j,1 KI i,j,2

32 32
64

16 16
32 16

9 7

Fig.2: FO Function Fig.3: FI Function

Fig.4: FL Function

bitwise AND operation

bitwise OR operation

one bit left rotation

32
16 16

KL i,1

KL i ,2

KL6

KL8

KL7

KL2

KL5

KL4

KL3

KO2, KI2

KO3, KI3

KO4, KI4

KO5, KI5

KO6, KI6

KO7, KI7

KO8, KI8

truncate

S7

S7

L0

L8

R0

R8

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 20 of 24
KASUMI Algorithm Specification Version 1.0

KASUMI has a number of characteristics that may be exploited in a hardware implementation
and these are highlighted here.

• The simple key schedule is easy to implement in hardware.

• The S-Boxes have been designed so that they may be implemented by a small amount of
combinational logic rather than by large look-up tables.

• The S7-Box and S9-Box operations in the FI function may be carried out in parallel (see
alternative presentation in figure 5).

• The FI i,1 and FI i,2 operations may be carried out in parallel (see alternative presentation in
figure 6).

FI i,1 FI i,2

FI i,3

16 16
32

Fig.6: FO Function

S9

S9

16
9 7

Fig.5: FI Function

S7

S7

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 21 of 24
KASUMI Algorithm Specification Version 1.0

ANNEX 2
Simulation Program Listing

Header file

/*---
 * Kasumi.h
 ---/

typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;

void KeySchedule(u8 *key);
void Kasumi(u8 *data, int type);

C Code

/*---
 * Kasumi.c
 *---
 *
 * A sample implementation of KASUMI, the core algorithm for the
 * 3GPP Confidentiality and Integrity algorithms.
 *
 * This has been coded for clarity, not necessarily for efficiency.
 *
 * This will compile and run correctly on both Intel (little endian)
 * and Sparc (big endian) machines.
 *
 * Version 1.0 14 October 1999
 *
 ---/

#include "Kasumi.h"

/*--------- 16 bit rotate left --*/

#define ROL16(a,b) (u16)((a<<b)|(a>>(16-b)))

/*------- unions: used to remove "endian" issues ------------------------*/

typedef union {
u32 b32;
u16 b16[2];
u8 b8[4];

} DWORD;

typedef union {
u16 b16;
u8 b8[2];

} WORD;

/*-------- globals: The subkey arrays -----------------------------------*/

static u16 KLi1[8], KLi2[8];
static u16 KOi1[8], KOi2[8], KOi3[8];
static u16 KIi1[8], KIi2[8], KIi3[8];

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 22 of 24
KASUMI Algorithm Specification Version 1.0

/*---
 * FI()
 * The FI function (fig 3). It includes the S7 and S9 tables.
 * Transforms a 16-bit value.
 ---/
static u16 FI(u16 in, u16 subkey)
{

u16 nine, seven;
static u16 S7[] = {

54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,
55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,
53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,
20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,
117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,
112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,
102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,
64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3};

static u16 S9[] = {
167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,
183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,
175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,
 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,
165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,
501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,
232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,
344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,
487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,
475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,
363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,
439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,
465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,
173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,
280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,
132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,
 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,
 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,
 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,
185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,
 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,
336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,
 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,
414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,
266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,
311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,
485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,
312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,
284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,
 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,
438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,
 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};

/* The sixteen bit input is split into two unequal halves, *
 * nine bits and seven bits - as is the subkey */

nine = (u16)(in>>7);
seven = (u16)(in&0x7F);

/* Now run the various operations */

nine = (u16)(S9[nine] ^ seven);
seven = (u16)(S7[seven] ^ (nine & 0x7F));

seven ^= (subkey>>9);
nine ^= (subkey&0x1FF);

nine = (u16)(S9[nine] ^ seven);
seven = (u16)(S7[seven] ^ (nine & 0x7F));

in = (u16)((seven<<9) + nine);

return(in);
}

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 23 of 24
KASUMI Algorithm Specification Version 1.0

/*---
 * FO()
 * The FO() function.
 * Transforms a 32-bit value. Uses <index> to identify the
 * appropriate subkeys to use.
 ---/
static u32 FO(u32 in, int index)
{

u16 left, right;

/* Split the input into two 16-bit words */

left = (u16)(in>>16);
right = (u16) in;

/* Now apply the same basic transformation three times */

left ^= KOi1[index];
left = FI(left, KIi1[index]);
left ^= right;

right ^= KOi2[index];
right = FI(right, KIi2[index]);
right ^= left;

left ^= KOi3[index];
left = FI(left, KIi3[index]);
left ^= right;

in = (right<<16)+left;

return(in);
}

/*---
 * FL()
 * The FL() function.
 * Transforms a 32-bit value. Uses <index> to identify the
 * appropriate subkeys to use.
 ---/
static u32 FL(u32 in, int index)
{

u16 l, r, a, b;

/* split out the left and right halves */

l = (u16)(in>>16);
r = (u16)(in);

/* do the FL() operations */

a = (u16) (l & KLi1[index]);
r ^= ROL16(a,1);

b = (u16)(r | KLi2[index]);
l ^= ROL16(b,1);

/* put the two halves back together */

in = (l<<16) + r;

return(in);
}

This document is only for use within 3GPP

3GPP Confidentiality and Integrity Algorithms page 24 of 24
KASUMI Algorithm Specification Version 1.0

/*---
 * Kasumi()
 * the Main algorithm (fig 1). Apply the same pair of operations
 * four times. Transforms the 64-bit input.
 ---/
void Kasumi(u8 *data)
{

u32 left, right, temp;
DWORD *d;
int n;

/* Start by getting the data into two 32-bit words (endian corect) */

d = (DWORD*)data;
left = (d[0].b8[0]<<24)+(d[0].b8[1]<<16)+(d[0].b8[2]<<8)+(d[0].b8[3]);
right = (d[1].b8[0]<<24)+(d[1].b8[1]<<16)+(d[1].b8[2]<<8)+(d[1].b8[3]);

n = 0;
do{ temp = FL(left, n);

temp = FO(temp, n++);
right ^= temp;
temp = FO(right, n);
temp = FL(temp, n++);
left ^= temp;

}while(n<=7);

/* return the correct endian result */

d[0].b8[0] = (u8)(left>>24); d[1].b8[0] = (u8)(right>>24);
d[0].b8[1] = (u8)(left>>16); d[1].b8[1] = (u8)(right>>16);
d[0].b8[2] = (u8)(left>>8); d[1].b8[2] = (u8)(right>>8);
d[0].b8[3] = (u8)(left); d[1].b8[3] = (u8)(right);

}

/*---
 * KeySchedule()
 * Build the key schedule. Most "key" operations use 16-bit
 * subkeys so we build u16-sized arrays that are "endian" correct.
 ---/
void KeySchedule(u8 *k)
{

static u16 C[] = {
0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 };

u16 key[8], Kprime[8];
WORD *k16;
int n;

/* Start by ensuring the subkeys are endian correct on a 16-bit basis */

k16 = (WORD *)k;
for(n=0; n<8; ++n)

key[n] = (u16)((k16[n].b8[0]<<8) + (k16[n].b8[1]));

/* Now build the K’[] keys */

for(n=0; n<8; ++n)
Kprime[n] = (u16)(key[n] ^ C[n]);

/* Finally construct the various sub keys */

for(n=0; n<8; ++n)
{

KLi1[n] = ROL16(key[n],1);
KLi2[n] = Kprime[(n+2)&0x7];
KOi1[n] = ROL16(key[(n+1)&0x7],5);
KOi2[n] = ROL16(key[(n+5)&0x7],8);
KOi3[n] = ROL16(key[(n+6)&0x7],13);
KIi1[n] = Kprime[(n+4)&0x7];
KIi2[n] = Kprime[(n+3)&0x7];
KIi3[n] = Kprime[(n+7)&0x7];

}
}
/*---
 * e n d o f k a s u m i . c
 ---/

	TEXT: - Subject to a Restricted Usage Undertaking

