

Java

™

 Foundation Classes:
Now and the Future

April 1997

A White Paper

JavaSoft
2550 Garcia Avenue
Mountain View, CA 94043 U.S.A.
1-800-JAVASOFT
512-434-1591

 Java

™

 Foundation Classes:
Now and the Future

April 1997

A White Paper

JavaSoft
2550 Garcia Avenue
Mountain View, CA 94043 U.S.A.
1-800-JAVASOFT
512-434-1591

i

Contents

Executive Summary . 1

History of Java Foundation Classes . 3

The Challenge of a Portable GUI Library 3

AWT 1.0 — Write Once, Run Anywhere 4

Internet Foundation Classes . 5

JFC — A Comprehensive Set of Classes and Services 5

Current JFC Features . 6

Pure Java — Ensuring Portability . 8

Java — A Commitment To Open Standards 9

JFC — Expanding On A Solid Foundation 9

Drag and Drop . 10

New Java Foundation Classes Components 10

Pluggable Look and Feel . 12

2D Graphics API . 12

Accessibility Features for the Physically Challenged 13

ii

Java™ Foundation Classes: Now and the Future

—

April 1997

Current JFC Features Delivered in JDK 1.1 14

An In depth Look . 14

JavaBeans Compliant . 14

Lightweight UI Framework . 15

Delegation Event Model . 16

Printing . 17

Data Transfer/Clipboard . 19

Desktop Colors . 19

Graphics & Image Enhancements . 20

Mouseless Operation . 21

Popup Menu . 21

ScrollPane Container . 22

Summary . 23

Please
Recycle

Copyright 1997 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, JavaSoft, the Java Coffee Cup logo, Write Once, Run Anywhere, JDK, JavaBeans and 100% Pure
Java are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.

Netscape is a trademark of Netscape Communications Corporation.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement
OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR
52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100 Etatis-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, JavaSoft, the Java Coffee Cup logo, Write Once, Run Anywhere, JDK, JavaBeans, et 100% Pure Java
sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres
pays.

L'interface d'utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L'ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU'ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S'APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

0

1

Java

™

 Foundation Classes:
Now and the Future

Executive Summary

In 1995, Java

™

 technology shook the World Wide Web with a network-centric,
object-oriented language that provided client side processing for otherwise
static pages. Many Web developers used Java to animate sites and loved it.
Java’s graphical user interface library, the Abstract Window Toolkit (AWT),
fulfilled a key role in the creation of dynamic Web pages.

Early adopters of Java technology have recognized its significant productivity
advantages. Java is an excellent implementation of object-oriented technology
which makes it easier to learn. Java enables any application to be portable to
any Java-enabled platform without the additional cost of development or
maintenance—no extra effort is expended to create the port. This is a huge
advantage for developers and system architects that use the Java develop-
ment platform.

Java has evolved quickly and now transcends the browser, its initial runtime
environment. Today, businesses worldwide are standardizing on Java as their
primary development and deployment platform. The Java Virtual Machine
(JVM) is rapidly being incorporated into operating systems and hardware
devices to provide a common meta-platform for applications.

The Java Developer’s Kit (JDK

™

) release 1.1 introduces the first installation of
the most significant cross-platform graphical user interface technology since
the advent of windowing systems: the Java Foundation Classes (JFC).

Java Foundation Classes extends the original AWT by adding a comprehensive
set of graphical user interface class libraries that is completely portable and
delivered as part of the Java platform. In addition, JFC will also include many
of the key features found in Netscape’s Internet Foundation Classes. Since the
JFC is core to the Java platform, it eliminates the need to download special
classes at runtime and is compatible with all AWT-based applications.JFC’s
continually evolving new features include a rich suite of high-level
components and services that are fully and uniquely cross-platform
compatible, and offer significant performance improvements. With the JFC,

2

Java™ Foundation Classes: Now and the Future

—

April 1997

developers can create and deploy large scale, mission-critical intranet , Internet
and Crossware applications. And because Java is an open, standard technology,
a broad complement of third party tools and components are available to
enhance application development.

The JFC raises the bar for GUI functionality in Java and delivers a rich API
with a growing set of components and services to develop commercial-grade
applications.

Figure 1

The Java Foundation Classes

The Java Foundation Classes includes many new, easy-to-use and sophisticated
features that are designed together to offer the following key advantages over
other frameworks:

•

JFC is core to the Java platform and reduces the need for bundled classes.

•

All new JFC components are JavaBeans

™

.

•

No framework lock-in. Developers can easily bring in other third party
components to enhance their JFC applications.

•

Components are cross-platform.

•

Enhanced services promote development of feature rich applications.

•

JFC subclasses are fully customizable and fully extendible.

•

JFC subclasses are fully customizable and fully extendible.

JDK 1.1

Peerless Components

2D API Accessability Pluggable
Look & Feel Drag & Drop

History of Java Foundation Classes

3

History of Java Foundation Classes

The Abstract Window Toolkit (AWT) provided developers with a rudimentary
library for building applications and applets. Applets are Java applications that
are executed from inside a browser instead of being launched and run from the
native operating system. Designed for simple, web-centric tasks, developers
encountered limitations with the AWT when attempting to create modern,
sophisticated client applications.

Although the AWT was limited in scope, it did offer two important features for
all applets and applications:

•

100% portability from a single set of source code

•

Assumed a native look and feel on the deployment platforms

The AWT delivered on the promise of a standards-based platform that adapted
to the user desktop. It also provided a good starting point for graphical Java
development with room for improvements, some evolutionary and some
revolutionary.

The Challenge of a Portable GUI Library

The technical issues surrounding cross-platform compatibility have plagued
software developers for years. Many vendors have attempted to solve this
seemingly simple problem by making applications independent of their
windowing systems. Most implementations involved “lowest common
denominator” approachesand used proprietary libraries. None offered an open
solution. With the AWT, Java solved this portable GUI environment problem in
the most elegant and simple way possible.

There are many different approaches to implementing a portable GUI class
library or environment. A common approach is to layer an API or class library
on top of the native toolkit. Alternatively, other portable GUI environments
contain a single toolkit and then emulate the native look and feel on each
platform. The first approach has the desired look and feel, but applications
often do not work consistently across platforms. The later approach enables
applications to work consistently but their emulation never fully captures the
correct look and feel on all platforms.

4

Java™ Foundation Classes: Now and the Future

—

April 1997

The AWT uses the layered toolkit model where each Java component creates a
native component. The JDK refers to this as the “peer” model. Each Java
component class “wraps” the peer or native implementation. This can increase
complexity because many native components maintain their own state. More
challenges arise at the toolkit level. Each native toolkit has a completely
different event model and contains a distinct set of native components.

For users, differences in native appearance can have a radical and negative
effect on the look and behavior of an application. Problems can arise when
applications designed and developed for one platform are deployed on a
different windowing system. Components such as the scrollbar can exhibit
inconsistent behavior across platforms. Changes to minimum sizes, shading
and colors, and fonts can result in unusable user interfaces for applications that
are otherwise healthy. Since cross platform capabilities are one of the
compelling reasons for developing with Java, the cross platform capabilities of
the GUI had to be improved.

AWT 1.0 — Write Once, Run Anywhere

™

AWT 1.0 had several strengths and weaknesses. It’s biggest strength was that
with it, an application/applet could be written once and run anywhere—a
single set of source code, 100% portability. No other toolkit or language has
been able to match AWT’s breadth of deployment platforms while supporting
native look and feel.

Many seasoned GUI developers have complained that the AWT’s peer model
was too restrictive in rendering and event handling, and that because of this, it
was difficult to extend or override different aspects of the component. It was
also prone to problems if the idiosyncrasies of a platform were not
implemented properly. Generally speaking, the peer model was viewed as
unacceptable if Java was to truly act as a metaplatform that would guarantee
cross platform support.

Nevertheless, the peer model played an important role in the acceptance of the
AWT. It enabled Java’s AWT to be brought to market quickly and provided
true native look and feel. In fact, browsers are moving users toward a more
universal look and feel on all platforms and soon, users will expect this
uniformity. However, in 1995 the market was much more dogmatic about the
appearance of applications and would have almost certainly rejected the AWT
if it had not provided native look and feel.

JFC — A Comprehensive Set of Classes and Services

5

In retrospect, AWT 1.0 was a good initial step that enabled applet
development. It provided the initial foundation upon which further releases of
the AWT could build and eventually improved. The API was simple and clean,
and enabled developers to come up to speed quickly. The AWT shielded
developers from each platform’s idiosyncrasies and yet was 100% portable
with a native look and feel. Finally, the AWT enabled the early Java adopters to
deliver applets and applications on any Java enabled platform with one set of
source code and no “porting”.

Internet Foundation Classes

To address the needs of developers who wanted to create commercial
applications that behave and appear identical across all platforms, Netscape
created the Internet Foundation Classes (IFC). While IFC was a robust
framework which delivered many important functionalities to the
development community, Java developers demanded a single industry
standard solution.

As a result, Sun, Netscape

™

, and IBM joined force to create Java Foundation
Classes which provides a single GUI component and services solution. Java
Foundation Classes builds on top of the existing AWT by integrating the best
of new Sun technologies and Netscape’s Internet Foundation Classes.

JFC — A Comprehensive Set of Classes and Services

With JDK 1.1, the web-centric AWT GUI toolkit becomes part of a
comprehensive set of GUI classes and services called The Java Foundation
Classes. The Java Foundation Classes, a superset of the AWT, provides a robust
infrastructure for creating commercial quality intranet and Internet applets and
applications. The JFC is the result of developer and end user feedback and
provides a significant advance in the development of client applications
written in Java.

The JFC released in JDK 1.1 provides a wide range of new features that enable
Java developers to be more productive while delivering applications that are
fully integrated into the desktop environment. The JFC contains a powerful,
mature delegation event model, printing, clipboard support, a lightweight UI
framework and is 100% JavaBeans compliant. The new capabilities of JFC make

6

Java™ Foundation Classes: Now and the Future

—

April 1997

Java a platform that will support the most sophisticated enterprise
applications. Development of commercial applications using Java is now both
possible and attractive.

Java and the AWT freed developers from being tied to a specific or proprietary
platform for GUI application development and deployment. Today, the JFC
provides the core set of classes and services enabling applications to scale from
the desktop to the enterprise and across multiple platforms. Java developers
will find the additions and improvements to the toolkit greatly enhance their
ability to deliver 100% Java applications quickly and provide reliability and
cross-platform consistency.

The release of JFC with JDK 1.1 is only a starting point. JFC will be extended to
encompass an even wider range of components and services which will
support the development of even richer Java applications. The JFC strategic
roadmap intends to build on this solid foundation with new functionality
that will continue to deliver a new generation of applications to a new era
of computing.

Current JFC Features

GUI developers expect baseline functionality to create professional quality
applications. The AWT, while best suited for applet development, provided
little integration into the desktop environment and even less functionality for
creating large scale applications. JFC, introduced in JDK 1.1, delivers a more
robust framework for GUI development. It also delivers the baseline
components and frameworks that developers expect from the Java platform.

With JFC, JavaSoft placed a great emphasis on quality, fixing many of the
platform inconsistencies which existed in the AWT. While it is recognized that
the peer model of the AWT was limited in its scope, it was necessary to correct
existing problems and to help customers deploy existing applications reliably.
In particular, the Win32 native implementation was 100% re-written in order to
provide a more robust base for the JFC going forward. Although newly
introduced, JFC is based on a mature, consistent, and widely known set of
classes and services.

Current features of the Java Foundation Classes are:

•

JavaBeans Compliant

•

Lightweight UI Framework

JFC — A Comprehensive Set of Classes and Services

7

•

Delegation Event Model

•

Printing

•

Data Transfer/Clipboard

•

Desktop Colors Integration

•

Graphics & Image Enhancements

•

Mouseless Operation

•

Popup Menu

•

ScrollPane Container

JavaBeans has played an important role in the JFC. The JavaBeans specification
defines a standard component architecture for visual and non-visual
components. All JFC components in JDK release 1.1 are JavaBean compliant,
which means they have a consistent API and a standard event handling
mechanism. This standard property and event model lends itself well to
component reuse and interoperability. JavaBeans also ensures easy integration
of standard components and frameworks with RAD tools and GUI builders.

As described earlier, the peer model has certain limitations. While native look
and feel is still important, a universal look and feel is also becoming
increasingly more desirable. The Lightweight UI Framework enables
components to be peerless, or lightweight, and completely written in Java. This
new framework will enable component developers to create and deliver a wide
range of third party components that will work consistently across platforms
while remaining completely portable. The lightweight UI also enables Java
developers to easily create stunning user interfaces.

The new event model is especially well suited to visual development
environments and development of distributed and multicast applications.
The new delegation event model in the JFC extends the previous single
method implementation of the AWT. Before large conditional statements were
required to determine an event’s type or origin. Now, events are class specific
and can be “sent to” or “delegated” directly to the object that can handle the
request. This provides a large degree of flexibility when handling the many
different types of events generated by a GUI application.

Operating system vendors are currently integrating Java’s Virtual Machine
directly into the OS which will shift deployment from webcentric browsers to
applications, provide a common metaplatform from IBM MVS to Microsoft

8

Java™ Foundation Classes: Now and the Future

—

April 1997

Windows, and provide a more consistent, flexible, and reliable operating
environment than a browser. Once this is accomplished and applications based
on release 1.1 are in operation, users will no longer have to view the future of
the desktop windowing environment through a single vendor’s eyes.
Innovation will expand as the time-to-market for application decreases.

In summary, JavaBeans, lightweight components, and the delegation event
model provide a stronger infrastructure which enables larger and more
complex applications to be built more easily and in less time. The remaining
features such as popup menus, desktop colors, mouseless operation, and
printing all allow Java applications to be seamlessly integrated into the native
windowing environment. Collectively, these additions to the core Java GUI
toolkit are designed to result in feature-rich, high-performance applications.

100% Pure Java

™

 — Ensuring Portability

It is important that both applications and applets should be written completely
in Java to preserve cross-platform capability. Today, as customers mix and
match different desktop systems developers cannot assume a single
deployment platform. It’s also important that Java applications and applets do
not rely on any proprietary technologies. Some operating system vendors
attempt to “capture” their developers by providing proprietary technologies as
a part of the Java development tools, thus limiting the deployment of created
Java applications or applets to a single platform. Developing exclusively using
the native toolkit, or “100% Pure Java” frees the developer from these concerns
and lets them take advantage of the full benefits of the Java platform. Of
course, the native toolkit must support all the capabilities that developers
require and take full advantage of whatever native environment they are on.

“100% Pure Java” means the application is written completely in Java and does
not rely on any external class libraries or native code. Third party technologies
can be used but their technology must be part of the application or applet
download in order for the software to be “100% Pure Java.” This works well
for third party components that are typically small in size with few classes. It
becomes a problem with large third party frameworks.

Although there is a growing third party market for additions to the Java
platform, an obvious need arose in the Java development community. Initially,
AWT was intended to support only a limited set of GUI components. It was
expected that the market would provide the higher-level components. The Java
development community has overwhelmingly asked for the additional

JFC — Expanding On A Solid Foundation

9

components to be delivered as part of the JDK. Why? So applications can more
easily be “100% Pure Java.” Java developers do not want to deliver these
additional components along with their applets and applications. With JFC,
much of this additional functionality has been incorporated into the Java
platform, thus improving overall performance and appeal of Java applications
and applets.

Java — A Commitment To Open Standards

Recently, other companies have announced or delivered specifications and
class libraries to the Java development community. Although their apparent
enthusiasm for the Java platform is certainly understandable, such offerings
can cause confusion in the marketplace. JavaSoft has endeavored to cultivate
relationships with other technology providers in order to provide an open
standard for all Java developers. This collaboration is evident in many of the
specifications now available for review. JFC represents the demands of Java
stakeholders and is a high quality development environment that makes high
performance, network-centric applications a reality.

It is important to remember that all specifications from JavaSoft have been
made available to the larger Java development community for comment and
do not reflect the views or position of a single vendor. Once these specifications
have been implemented the technology will become part of the JDK and will
exist on every Java platform. This is why it is important for Java applications
and applets remain “100% Pure Java.”

JFC — Expanding On A Solid Foundation

The JFC represents a significant introduction of new functionality to the Java
development environment. The release of these classes with JDK 1.1 marks the
beginning of major enhancements that will continue to improve the
completeness and functionality of Java GUI applications.

Additions to the Java Foundation Classes will soon incorporate several features
that further enhance a developer’s ability to deliver scaleable, commercial-
grade applications. These new features will be made available to developers as
they are completed over the next few months and then rolled into the next
release of the JDK. New features will include:

•

Drag and Drop

10

Java™ Foundation Classes: Now and the Future

—

April 1997

•

New High-Level Components

•

Pluggable Look and Feel

•

2D API

•

Accessibility Features for the Physically Challenged

•

Additional new features continually being added

Drag and Drop

The Drag and Drop specification is available in the JDK 1.1 documentation and
will soon be released as an update to the JFC. Drag and Drop (D&D)
functionality as part of the core JFC class library means it will be available on
all Java platforms in a consistent and supported fashion. It will significantly
improve application interoperability by enabling D&D between Java
applications and non-Java applications.

The generic, platform-independent implementation of D&D will enable objects
to be dragged and dropped from one application to another. This update will
support D&D between two Java applications, but more importantly, it will
support D&D between a Java application and a native application. This means
a user running the application on UNIX will be able to D&D to a Motif
application and then run the same code on Microsoft-Windows and D&D to
native application running there. D&D support makes it much easier to
introduce Java applications to the enterprise.

New Java Foundation Classes Components

Working closely with Netscape and IBM, JavaSoft will soon release an
expanded set of components written in 100% Pure Java that will enable
applications to be more fully integrated into the native environments. These
new high-level components will be available on all platforms as part of the
standard Java platform, thereby eliminating the need to download extra
classes. In addition, new JFC components will carry two important attributes:
all components will be both lightweight and peerless, thus facilitating a
customizable look and feel without relying on native windowing systems or
adding system overhead, and improving the deployment of applications will
be simplified.

JFC — Expanding On A Solid Foundation

11

This comprehensive set of new high-level components will allow developers to
create sophisticated professional-quality applets and applications using core
JDK 1.1 functionality. The following components will be included with JFC:

•

Tree View

•

List View

•

Table View

•

Toolbar

•

Pane Splitter

•

Tabbed Folder

•

List

•

Multi-column

•

Supports Images

•

Progress Bar

•

Slider

•

Styled Text

•

Support import/export of HTML and Rich Text Format

•

Font Chooser

•

Color Chooser

•

File Chooser

•

Custom Cursors

•

Tool Tips

•

Generic Button and MenuItem

•

Support Images, Check marks

•

StatusBar

•

SpinBox

•

ComboBox

•

Drop down ComboBox

•

Drop down ListBox

• Composable Button

12 Java™ Foundation Classes: Now and the Future—April 1997

• Multimedia Controls
• MovieSlider
• AudioController
• MovieController
• Properties
• AudioGauge
• MidiPanel

Pluggable Look and Feel

Native look and feel was once the mantra of cross-platform developers. Since
all applications on a platform had a common look, all new applications were
assumed to require that user interface. Or so it seemed until World Wide Web
came along. Now, users are familiar with and excited by the rich and unique
user interfaces delivered through browsers. The rigor with which user
interfaces were designed in the past has been replaced with the requirement
for effective and reliable clients.

Pluggable look and feel will increase the reliability and consistency of
applications and applets deployed across platforms. The “pluggable” look and
feel will provide an easy yet powerful mechanism for individualizing an
application’s visual personality without having to subclass the entire
component set. This will increase user acceptance of network computer (NC)
replacement of PCs as users will select an operating environment they are
comfortable with.

To further enhance a user’s visual experience, an entire application’s GUI will
be able to switch from one look and feel to a different one at runtime. This
feature will give users the ability to switch without restarting the application.
This is significant since users will want to work in a GUI that is familiar to
them, even if they are using a network computer.

2D Graphics API

The existing graphic capabilities of Java will be extended with new classes.
New graphical capabilities will promote the development of visually rich
applications. The Java 2D API extends the JFC’s strengths by enabling
developers to incorporate high-quality graphics into their applications and
applets. The Java 2D API will extend the java.awt and java.awt.image core

JFC — Expanding On A Solid Foundation 13

class libraries. By extending the existing classes, the Java 2D API maintains
compatibility for existing programs and allows programs to seamlessly
integrate the features provided by JFC. This is one of many evolutionary
additions to the Java platform which ensures that existing code co-exists and
benefits from these new enhancements.

The Java 2D API provides a subclass of the AWT Graphics class, Graphics2D,
with additional features for specifying fancy paint styles, defining complex
shapes, and controlling the rendering process. The Java 2D API treats paths,
text, and images uniformly; they can all be rotated, scaled, skewed, and
composited using the new Graphics2D class.

The Java 2D API will:

• Enable the path to be specified to define complex shapes.

• Enable text to be drawn, transformed, used as a clipping path, and
composited just like any other graphic element.

• Provide text layout facilities that handle most common cases, including text
strings with mixed fonts, mixed languages, and bidirectional text.

• Provide a full range of features for handling images with several new
classes including: BufferedImage, Tile, Channel, ComponentColorModel and
ColorSpace.

• Enable the control of how graphics primitives are rendered by specifying a
set of attributes that allows characteristics such as the stroke width, join
types, and color and texture fills.

This means better performing, more sophisticated visual applications for
scientific, engineering, and business users.

Accessibility Features for the Physically Challenged

JFC introduces new capabilities to the Java platform that deliver benefits to end
users. Many physically challenged users are prevented from using applications
because developers did not integrate with the necessary accessibility
functionality. The JFC Accessibility API enables Java applications to scale to
encompass the physically challenged users. Two of the most important features
are Screen Readers and Screen Magnifiers.

14 Java™ Foundation Classes: Now and the Future—April 1997

The Screen Reader creates an off screen representation of the GUI components
enabling the information to be provided via a text to speech and/or a Braille
terminal. The user can then interact with the GUI through the alternate
computer input and output device.

The Screen Magnifier enables the user to adjust the magnification of the
screen from 1 to 16 times the normal size. Event tracking and screen
content knowledge enable the user to more easily navigate the interface.
Font smoothing and text highlighting act in concert to create a clearer
picture which renders the content more easily read and understood.

Accessibility features will be easily integrated into existing Java applications
and will ensure an even broader audience for information in a networked age.

Current JFC Features Delivered in JDK 1.1

An In depth Look

JFC provides significant new capabilities for Java developers. With the JDK 1.1
release, JFC embraces the new JavaBeans component model, introduces a new
high-performance UI framework, improves event handling, enables printing
support, supports keyboard navigation, and introduces popup menu and scroll
pane components. JFC delivers a wish list of features that make Java the most
compelling development platform available.

JavaBeans Compliant

JavaBeans is an architecture and platform neutral API for creating and using
dynamic Java components. JavaBeans enhances the Java platform by allowing
richer, more dynamic interaction. JavaBeans allow developers to define
independent components that can be used and re-used in a variety of
combinations to compose new applications. JavaBeans will be supported inside
browsers and in standalone applications.

JavaBeans components can be GUI widgets, non-visual functions and services,
applets and or scale applications. Each of these components can be built by
different developers at separate times. JavaBeans components do not need to
be part of the same application build. Instead, they communicate dynamically.

Current JFC Features Delivered in JDK 1.1 15

By delivering JFC as JavaBeans, developers will be able to create Java
applications and applets that interoperate with legacy applications, can be
created with visual development environments, and can be distributed easily
across the network.

Lightweight UI Framework

In AWT release 1.0, peer-based components (Button, Label, etc.) could not be
easily extended or have their look and feel overridden. Many developers
created their own components by deriving new ones from java.awt.Canvas and
specialized containers were derived from java.awt.Panel. The problem with
this approach was that each Canvas or Panel derived component was “heavy-
weight”, meaning it required a native window which is rendered opaquely.
Opaque windows can cause problems for those wanting to layer components
on top of each other, since they completely cover the components behind them.
Additional overhead occurs when developers create their own classes—the
applet or application must download additional classes to perform what
should be a standard task. JFC solves these problems by introducing a
lightweight framework that radically improves the performance and
appearance of Java applications.

Lightweight components are completely transparent because they do not
require a native window. This means that they can be written entirely in Java
and do not carry with them any overhead from the native windowing system.
Lightweight components also provide a consistent look and feel across all
platforms. It also allows for a new class of GUI components such as tool tips
without significant overhead.

It is remarkably easy to take advantage of this new framework in existing
applications and applets. To convert existing Canvas and Panel based
components into Lightweight components, a developer needs only to change
the superclass from Canvas to Component and from Panel to Container. When
the paint() method is called, all rendering will be performed within the
parent’s Graphic context and transparent areas can be left unrendered thus
enabling the background to show through.

Advantages of the new lightweight UI framework are:

• improved runtime performance for GUI applications

• improved “time to load” for applets with fewer classes to download

16 Java™ Foundation Classes: Now and the Future—April 1997

• easy conversion of existing AWT components to JFC lightweight
components

Delegation Event Model

The event model in AWT 1.0 was quite simple. All events were passed up the
inheritance hierarchy forcing objects to catch and process events by subclassing
and overriding either the handleEvent() or action() methods. Complex if-then-
else conditional logic was required in the top level object to determine which
object triggered an event. This was not scalable and was ill-suited to high-
performance distributed applications.

With JFC, the callback-style delegation event model is elegant yet powerful.
Events are identified by their class instead of their ID and are either
propagated or delegated from an event “Source” to and event “Listener.” Only
objects interested in a particular event need deal with the event and no super-
event handler is required. This is also a better way of passing events to
distributed objects.

The new event hierarchy is defined by the package java.awt.event. Each
derived class from java.util.EventObject is now unique because of the data it
holds. There are no longer public data fields, all event data is accessed through
a standard set/get JavaBeans compliant interface. However, some derived
Event classes still contain an ID to help objects distinguish between events
within a specific group of events.

The real power behind the new model is the enabling of an object to delegate
or “fire” an event to a specific listener or set of listeners. When a source object
wishes to delegate a specific event type, it must first define a set of methods
that enable the listener object(s) to register with the source. These methods
take the form of set<EventType>Listener for single-cast and/or
add<EventType>Listener for multi-cast delegation.

Any object desiring to be a “Listener” of a specific event type must implement
the <EventType>Listener interface for that event type. The “Listener” interface
is typically defined by only a few methods, which makes it easy to implement
the interface. For example, a new Lightweight component may wish to send an
“ActionEvent” when the user clicks on the component. The creator of the
component would define an event registration method call addActionListener()
which enables any object implementing the ActionListener interface to register
as a consumer of ActionEvents.

Current JFC Features Delivered in JDK 1.1 17

Additionally, a new language feature called “Inner Classes” has been added in
JDK 1.1 which makes creating listener objects much more convenient. With
Inner Classes, you can create a listener class on the fly within the body of
another class.

The following example uses Inner classes to hook the action of pushing a
button to closing a Frame:

public class MyFrame extends Frame {
 public MyFrame(String title) {
 super(title);

 Button button = new Button(“Close”);
 ActionListener action = new ActionListener() {
 public actionPerformed(ActionEvent e) { close(); }
 };
 button.addActionListener(action);

 add(“Center”, button);
 pack();
 }

 public void close() {
 hide();
 }
 }

Printing

Until now Java applications have not been able to send text or graphics to
a printer. Native code could be used to print text but then the application/
applet was no longer portable, which did not solve the problem of printing
graphics. This limitation has made it difficult for Java applications to be truly
integrated into the native environment. JFC eliminates these barriers by
introducing printer support that can be easily integrated into existing
applications and makes the Java platform ready for a wide range of
commercial software applications.

18 Java™ Foundation Classes: Now and the Future—April 1997

JFC has made it simple to add printing to any Java application or applet. To
send content or graphics to the printer, a call is made to a Frame object’s
paint() method with a new type of Graphics context. This special context is
derived from the Graphics class and implements the java.awt.PrintGraphics
interface. It is obtained from the newly implemented PrintJob class.

The PrintJob class encapsulates all the printing functionality. A call method call
to getPrintJob in the java.awt.Toolkit package displays a platform specific
dialog, allowing the user to enter typical printing information such as, print
name, number of pages, etc.

The returned PrintJob object contains the Graphics context which can be used
to call a component’s paint() method. This sends all the rendering information
to the printer. The underlying JFC implementation takes care of translating
those calls to the appropriate print device. Sometimes it is necessary to print
the entire GUI hierarchy; this can be accomplished with a call to printAll().

The following code is an example of a method that handles a print request:

public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 if (cmd.equals(“print”)) {
 PrintJob pjob = getToolkit().getPrintJob(this,
 “Printing Test”, null);

 if (pjob != null) {
 Graphics pg = pjob.getGraphics();

 if (pg != null) {
 canvas.printAll(pg);
 pg.dispose(); // flush page
 }
 pjob.end();

 }
 }
 }

Current JFC Features Delivered in JDK 1.1 19

Data Transfer/Clipboard

JDK release 1.1 now has full clipboard support. It enables dynamic data types
to be created, registered, and transferred from both within and across process
space boundaries. This means that any object can be transferred within an
application and also to other applications. It also supports data transfer
between Java and non-Java applications by enabling access to the “system
clipboard.” Java applications can now be easily rolled out to endusers with a
high degree of interoperability with existing applications. This increases the
overall acceptance of the Java platform.

The new API is centered around the “transferable” objects. A transferable
object must be able to provide a list of formats, called “data flavors”. It must
also be able to return the data (in the form of an Object reference) when
requested in a particular flavor. The data transfer architecture introduced in 1.1
is a key enabling technology for the upcoming drag and drop functionality.

Desktop Colors

An important aspect of an application’s integration into the desktop
environment is its ability to adhere to the system color scheme, such as those
offered by Windows95 or CDE. Although some applications achieve a unique
look or personality through a distinct set of colors, most applications change
their colors when a user selects a new desktop scheme. Developers will need to
implement a new class in their applications, but Java applications will now be
further indistinguishable from native applications.

In previous releases of the AWT this was not possible. JFC in JDK release 1.1
introduced a new class java.awt.SystemColor to handle the dynamic changes in
desktop color scheme. The SystemColor class is derived from java.awt.Color
and defines “symbolic” colors for backgrounds highlights, shadows, etc. The
following code demonstrates how a lightweight component can use the
symbolic colors to render itself:

// draw highlight left and top
g.setColor(SystemColor.controlLtHighlight);
g.drawLine(0, 0, 0, mySize.height);
g.drawLine(0, 0, mySize.width, 0);

// drawbackground
g.setColor(SystemColor.control);
g.fillRect(1,1, mySize.width-2, mySize.height-2);

20 Java™ Foundation Classes: Now and the Future—April 1997

// draw shadow bottom and right
g.setColor(SystemColor.controlDkShadow);
g.drawLine(0, mySize.height-1, mySize.width-1, mySize.height-1);
g.drawLine(mySize.width-1, 0, mySize.width-1, mySize.height-1);

Graphics & Image Enhancements

The JFC enhances the graphical capabilities available for creating truly high-
performance financial, business, and engineering vertical applications.

While certain problems did exist with graphics handling in AWT, these have
been corrected with the JFC. For example, in AWT 1.0 the graphics clipping
area could only be set to an ever decreasing area. Developers found themselves
creating a temporary graphics object, setting a clipping area, calling the
drawing methods and then disposing of the object. The JFC adds a new class
“Shape” and several new clipping methods, most important of which is
setClip. It allows developers to set the clipping area to any size and does not
maintain a relationship to the previously set clipping area.

The AWT 1.0 did not offer an easy way to render a subset of an image or a
mechanism for flipping the image horizontally or vertically, a typical
requirement when working with labels. JFC corrects this with addition of two
new drawImage methods. Each drawImage method requires a source and
destination rectangle definition and uses the pixels from the original unscaled
image to draw into the Graphics object. The following line of code
demonstrates the scaling the 100x100 pixel area down to a 50x50 area:

g.drawImage(myImage, 10, 10, 110, 110, 0, 0, 50, 50, this);

Creating images on the fly is much more flexible and offers better performance
than retrieving images from files. In release 1.0 an image could be created
from an array of pixels. The pixels were converted into a screen representation
and as long as the image was drawn at the same scale it ignored any
changes to the original array. Several new methods have been added to
the MemoryImageSource class giving the developer a finer grain of control
and easier animation capability.

Current JFC Features Delivered in JDK 1.1 21

The final area improved in the JFC with respect to image handling came
directly from the request of developers input. Several enhancements were
made to the PixelGrabber class. This class now enables developers to get the
original ColorModel for the image, retrieve the size of the buffer needed for the
image, and start and stop grab operations before the image is loaded.

Mouseless Operation

Two important aspects of a GUI are second nature to most users: keyboard
navigation and accelerators on menus. For data entry applications, keyboard
traversal is a requirement. It is common to use the “tab” key to move from
component to component in a standard user interface, and the “control” keys
to perform accelerated actions or short cuts, like <control>C to copy text. JFC
based applications now take advantage of keyboard traversal transparently.

Components can now be “tabbable”, they can request and transfer focus, and
can be notified when they gain or lose focus. To better support menu short cuts
a new class, java.awt.MenuShortcut has been added. Additional methods and
constructors have been added to the MenuItem and MenuBar classes to handle
the new class. The short cut keys apply to the “command” key on the
Macintosh and the <control> keys on UNIX® and Microsoft-Windows.

The benefits of mouseless operation are:

• Ideally suited for data entry and operational applications typical of
terminal-based applications

• Ensures higher user acceptance of Java applications

• Supports power user navigation

Popup Menu

Popup menus (also known as “context menus”) are now a very common
UI element in modern GUIs (Win95, CDE, etc.). The JFC introduces a
new component that makes it easy to enable the creation and display of
popup menus.

Popup menus are created by simply allocating a new PopupMenu object and
adding MenuItem objects to it, much like you would create a MenuBar menu.
When the popup event is fired (right-button click on MS Windows, middle-

22 Java™ Foundation Classes: Now and the Future—April 1997

button click on UNIX) a single method is called to assign the popup menu to a
component and display it. This enables a single popup menu to be used by
many different components. Here is a simple one item popup menu:

// Create and add the popup
popup = new PopupMenu(“Edit”);

mi = new MenuItem(“Cut”);
mi.addActionListener(this);
popup.add(mi);

add(popup); // add popup menu to applet

enableEvents(AWTEvent.MOUSE_EVENT_MASK);
.
.
.
// The activation code
public void processMouseEvent(MouseEvent e) {

if (e.isPopupTrigger()) {
popup.show(e.getComponent(), e.getX(), e.getY());
}
super.processMouseEvent(e);
}

Popup Menus will enable :

• user control of object attributes at runtime

• easier application navigation

• better enduser acceptance of applications

ScrollPane Container

In the AWT 1.0, the task of implementing all scrolling behavior is left to the
developer. Only a basic Scrollbar class is provided which must be managed by
the application, meaning the application must catch the scrollbar events and
then take the appropriate action to update the contents being scrolled. This
made applications slow and unreliable across platforms. This was a problem
for virtually any scrolling function.

Summary 23

Not only is this a general burden to developers who are accustomed to better
support for this in toolkits, but it is also a serious performance problem, since
there is a round trip (native->java->native) for each individual scroll event that
occurs, and the application must respond to the event and move its contents
using slower Java draw/move operations. This is particularly noticeable
during the event-intensive scroll-drag operations. The result was slow
applications prone to flickering and unreliable actions.

To resolve this problem, a ScrollPane class has been added to the JFC.
ScrollPane provides a container that implements automatic scrolling for a
single component child and supports three modes for its scrollbars: “when
needed”, “always”, and “never”. The introduction of the ScrollPane container
greatly simplifies the task of displaying information in a fixed area.

Summary
The Java Foundations Classes delivered with JDK 1.1 casts Java GUI
development in a new light. The JFC is a complete GUI toolkit that
dramatically extends the original AWT with a comprehensive set of classes
and services.

The JFC is a scalable, robust and open technology that enables developers to
create and deploy commercial-grade intranet and Internet applications. Even
as components and services grow, JFC promotes ease of use and facilitates
rapid application development. JFC is delivered as core Java technology, which
means it is available on all Java platforms. This results in faster application
downloads, more reliable applications, and simplified application deployment.

The JFC will continue to expand with plans in-process to include a rich
complement of high-level components that will enhance the user’s visual
experience and improve productivity. New application services are slated for
JFC that will further integrate Java applications into the desktop environment.

• Drag and Drop

• New High-Level Components

• Pluggable Look and Feel

• The Java 2D API

• Accessibility Features for the Physically Challenged

24 Java™ Foundation Classes: Now and the Future—April 1997

The Java Foundation Classes empowers developers on all platforms, and
brings the future of portable GUI development here today. Write Once, Run
Anywhere.

JavaSoft
2550 Garcia Avenue
Mountain View, CA 94043
1-800-JAVASOFT
512-434-1591

For U.S. Sales Office locations, call:
800 821-4643
In California:
800 821-4642

Australia: (02) 844 5000
Belgium: 32 2 716 7911
Canada: 416 477-6745
Finland: +358-0-525561
France: (1) 30 67 50 00
Germany: (0) 89-46 00 8-0
Hong Kong: 852 802 4188
Italy: 039 60551
Japan: (03) 5717-5000
Korea: 822-563-8700
Latin America: 415 688-9464
The Netherlands: 033 501234
New Zealand: (04) 499 2344
Nordic Countries: +46 (0) 8 623 90 00
PRC: 861-849 2828
Singapore: 224 3388
Spain: (91) 5551648
Switzerland: (1) 825 71 11
Taiwan: 2-514-0567
UK: 0276 20444

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Intercontinental Sales: 415 688-9000

WPR-0002-01

Printed in USA

