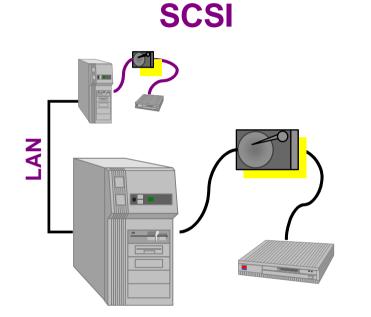
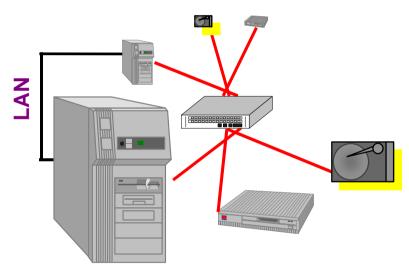
# **Fibre Channel Overview**




## What is Fibre Channel?

- A high-speed interface that can be used to connect workstations, mainframes, supercomputers, storage devices and peripherals
- A transport mechanism that supports a variety of upper level protocols, such as IP, SCSI, IPI, HIPPI, and ATM
- An interconnect standard that provides throughput of over 100 MB/s




# **I/O Channel Comparison**



- Single host connection
- Up to 15 peripherals
- Up to 12 meters total
- Parallel interface
- 160 MB/sec





- Multiple host connectivity
- 126 per loop; 16 million per switched fabric
- Up to 10 kilometers per segment
- Serial interface
- 200 MB/sec

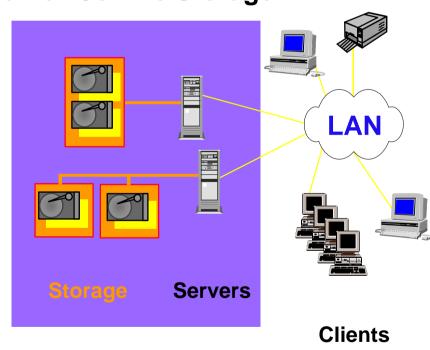


## What Is It Useful For?

- High Performance Storage Connections
- High Performance LAN Connections
- Multi-Purpose I/O for Data Intensive Workgroups
- Clustering Connections
- Storage Area Networking



# **Why Implement Fibre Channel?**


- Scalability
  - Supports loop & fabric topologies
- Flexibility
  - Longer cable distances
  - Easier moves and adds
  - Multiple Initiators
  - Multiple Protocols

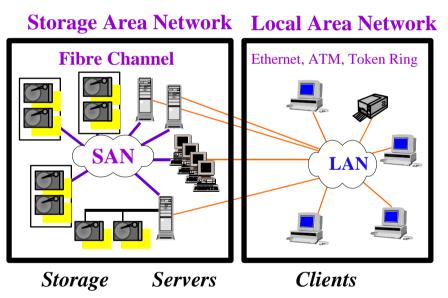
- Availability
  - Multiple redundant paths
  - Multiple protocols support failover and load balancing
- Performance
  - High bandwidths
  - Low latency



### **Traditional Enterprise Model**

#### Traditional Server-Centric Storage




- "Islands of storage" behind each server have created performance bottlenecks and LAN congestion
- Scalability comes at a high price
- SCSI has failed to evolve



# **The Storage Area Network**

- Complementary network to the LAN
  - Storage traffic is off-loaded to fail-safe I/O channel
- Servers and storage are network resources
  - Provides improved performance and scalability
- Tremendous flexibility to optimize price/performance
  - Topology, number of nodes, distance, performance

#### **Networked Storage**





## **Fibre Channel Topologies**

### Switched Fabric

Arbitrated Loop

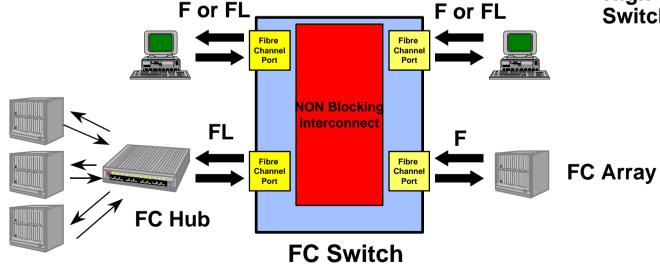
Point-to-Point



# **Fibre Channel: Switched Fabric**

- Multiple simultaneous full-bandwidth connections
- Can support devices with varying data link speeds
- Higher cost per port

F-Port

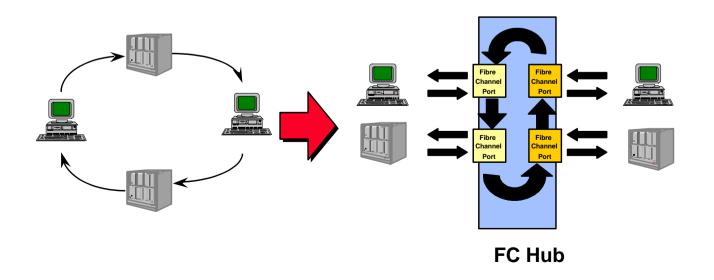

•200 MB/sec (full-duplex)

•Point-to-Point Protocol

**FL-Port** 

•Arbitrated Loop

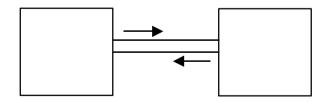
•High Connectivity to a Single Switch Port





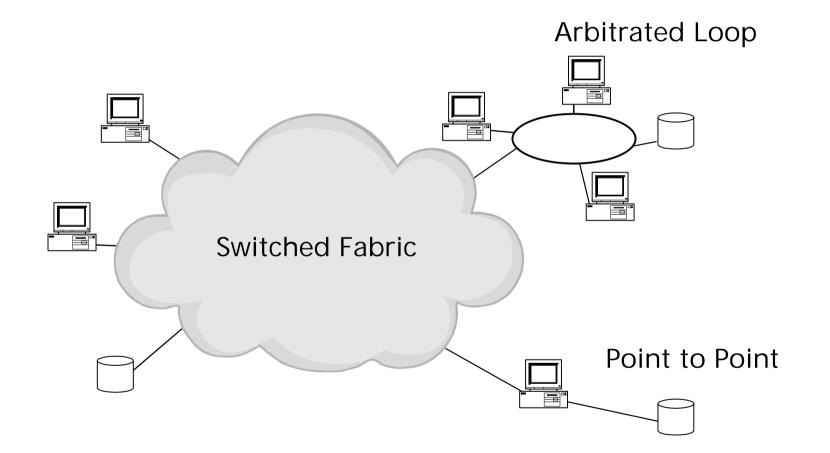

### **Fibre Channel: Arbitrated Loop**

- Logical Loop, Physical Loop
  - Low Cost
  - Simple
  - From 2 to 126 nodes


- Logical Loop, Physical Point-to-Point
  - Essentially Half-Duplex
  - Shared bandwidth
  - Improved Fault Isolation






### **Fibre Channel: Point-to-Point**

- Two devices
- Both devices must use the same data link speed
- Both devices must support the same cabling scheme





# **Mixed Topology Networks**





### **Classes of Service**

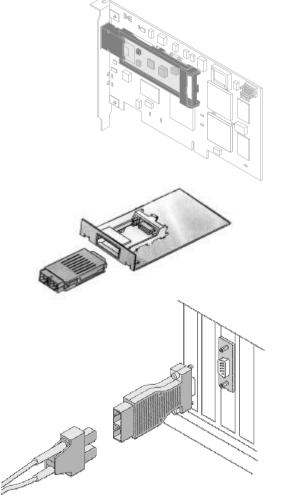
- Class 1: Connection or dedicated service with guaranteed delivery
- Class 2: Connectionless service with guaranteed delivery
- Class 3: Connectionless datagram service
- Intermix: Class 1 connections, but unused bandwidth used for connectionless services



### Fibre Channel Media

- **Optical fiber Dual SC Connectors** 
  - 62.5/125 micrometer multi-mode Up to 125 meters
  - 50/125 micrometer multi-mode
  - 9/125 micrometer single-mode
- Up to 500 meters
- Up to 10Km
- Copper DB9 or HSSDC Connectors
  - Twinax Cable Up to 30 meters

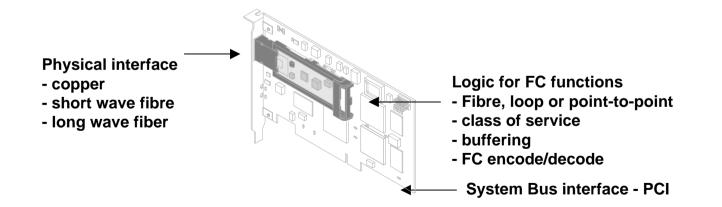
*Cable distance limitations represent the node to node length,* not the total end-to-end distance




## **Interchangeable Media**

- Gigabaud Link Module (GLM)
  - Interchangeable interface

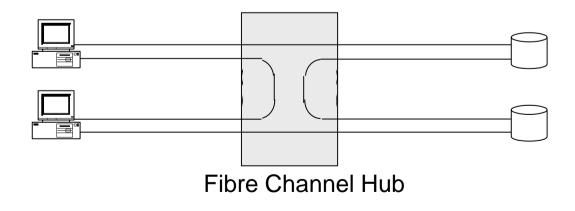
Gigabit Interface Converters (GBIC)
Hot swappable interface


- Media Interface Adapters (MIA)
  - Converts Copper DB9 Connections to Multimode Fiber Optic





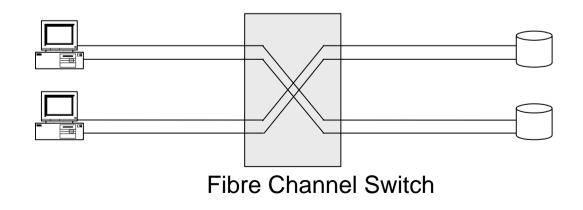
### **Host Bus Adapters**


- Provide fibre channel connection to servers and storage
- Require appropriate bus connection and operating system dependant software drivers
- Arbitrated Loop and direct fabric attach
- Media type
- Fibre channel physical interface FC1 and FC2
- On board data buffer





# **Arbitrated Loop Hubs**


- Isolate and protect the loop from defective nodes and configuration changes
- Act as repeaters
- Allow "hot swapping" of storage devices, servers, or clients without destroying loop integrity
- Provide centralized point of management





### **Fabric Switches**

- Provide port to port switching
- Generally non-blocking
- Multiple switches cascaded to provide larger fabric
- Port Types
  - F-Port (direct fabric attach devices)
  - E-Port ("expansion port" for cascading switches)
  - G-Port (functions as either E or F Port)
  - + FL-Port (allows attachment or one or more arbitrated loop devices or hubs)





# **Disk Storage Devices**

- Disk Drives
  - Dual Ported
  - 9GB --> 18GB --> 36GB
  - Hot pluggable backplane connectors
- JBOD's
  - 2 to 10 drive bays
  - Generally dual ported
  - Hot plugGable drive bays
  - Moderate to high availability features

- Drive Arrays
  - Fibre Channel front end
  - Fibre Channel or SCSI back end (drives)
  - Generally dual ported
  - Moderate to high availability features
- Array Controllers
  - Support multiple Fibre Channel JBOD's



### **Other Devices**

- FC/SCSI Bridges
  - Allow attachment of legacy SCSI devices
- Media
  - Cables
  - MIA's
  - GBIC's

- Tape Drives
  - Expected announcements later this year
  - Ongoing standards work to facilitate tape back-up over Fibre Channel

