

Managed, Digital Fibre Channel Hub

LH5000 Training

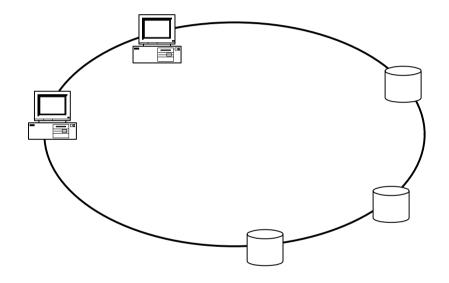
Training Peter Höhl

Agenda

- **Fibre Channel Overview**
- Why Loop Management
- Digital Hub LH5010
- Management Module
- Hub Installation
- Troubleshooting Fibre Channel

2/26/99

Managing Fibre Channel Loops

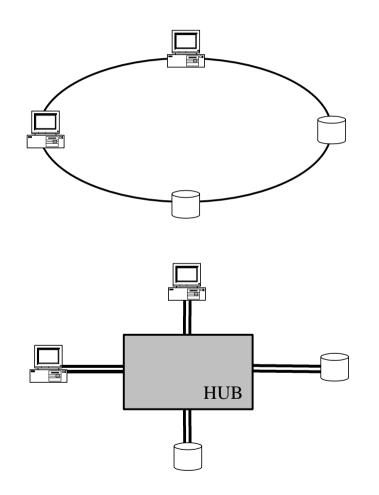


Why Manage a Loop?

- Stability
- Performance
- Security

Loop Physiology

- All Devices act as Peers
- Each Device Analyzes and Acts on Every Piece of Information


Arbitrated Loop

- Advantages
 - Inexpensive
 - Supports virtually all available FC components
- Disadvantages
 - Shared Bandwidth
 - Break in physical media can affect all devices on loop
 - Errors or fault conditions are propagated throughout the loop

The Role of the Hub

- Provides easy to manage star topology
- Cable breaks do not affect overall loop operation
- Devices easily added or removed
- Provides a central point of management

Making Loops Robust

Problem Areas Today

- Cascading of hubs increases signal jitter and induces errors
- Frequent LIP's degrade performance
- A single faulty port can make entire loop unusable
- No way to isolate errors or faults to the offending device

Eliminating Signal Jitter

Problem

- Jitter is incurred any time a signal passes through physical media such as cables, connectors, circuit boards etc...
- Existing analog repeater technology cannot eliminate jitter resulting in accumulated signal degradation through each hub port in a cascade configuration

Solution

 Digital hubs use digital technology and elastic buffers to regenerate signal and eliminate jitter

Result

Unlimited cascading is possible with no signal degradation

Controlling LIP's

Problem

- LIP's (calls for the loop to re-initiallize using the Loop Initialization Procedure) are made by devices under certain defined error conditions
- LIP's ensure that all devices on loop are aware of all other devices on the loop, but LIP's take time
- Some legacy devices produce numerous LIP's

Solution

 Digital hub technology can bypass unnecessary LIP's and shield downstream devices from LIP generating faults

Result

Maximum feasible loop performance maintained

Avoiding Loop Downtime

Problem

- LIP F8 characters are generated by devices seeing faulty signal
- LIP F8's flood the loop blocking valid traffic

Solution

 New hub technology can bypass ports generating LIP F8's until the problem is resolved

Result

 Loop integrity is maintained allowing valid traffic to continue

Isolating Faults in the Loop

Problem

 Because every device repeats characters given it, faults are difficult to isolate to the offending device so that it can be reconfigured, repaired or replaced

Solution

 New managed hubs collect data on a per-port basis, allowing administrators to quickly see which ports are generating errors.

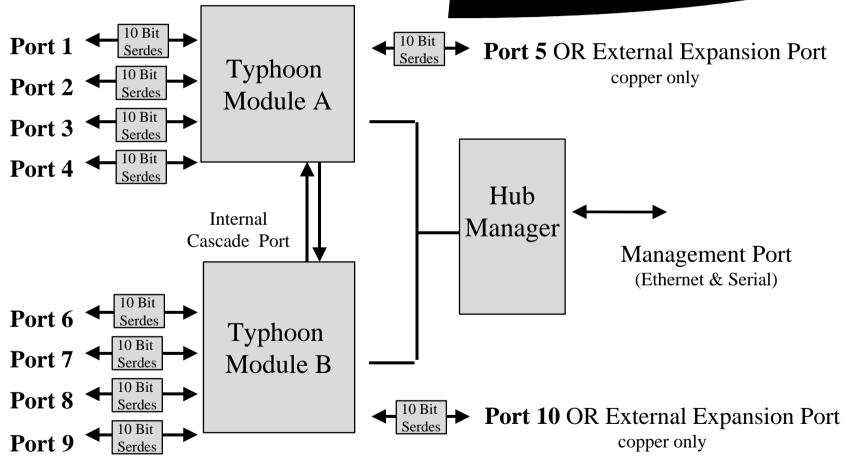
Result

 Faults can be quickly isolated to offending device allowing quicker resolution and increased uptime.

Emulex

LH5000 Hub

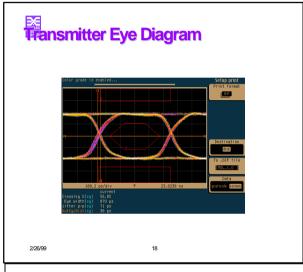
LH5000 Digital Arbitrated Loop Hub

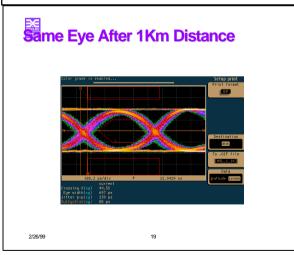


A New Standard for Arbitrated Loop Management

- The Only Digital Re-timing Hub
- Highest Port Density Available
- Zero Signal Jitter
- Loop Integrity Features
- Management via
 - Web Browser
 - SNMP
 - Telnet/Console

LH5000 - Architecture


Why Digital?


- Eliminates signal jitter
- Allows additional loop integrity features
 - LIP insertion/deletion
 - Clock balancing
 - Word fill
- Allows signal monitoring
 - Error conditions
 - Bit error reporting
 - Signal quality
 - Usage statistics

LH5000 is the only digital re-timing hub to include the elastic buffer necessary to be fully re-timing

EMULEX NETWORK SYSTEMS

Jitter Eye Patterns

- Jitter is incurred any time a signal passes through physical media such as cables, connectors, circuit boards, etc..
- Types of Jitter
 - Random Jitter (noise)
 - Deterministic Jitter (pattern dependent)
- Reaction of devices to jitter
 - Jitter transfer
 - Jitter generation
- Port hardware types
 - retimer (no jitter transfer)
 - Repeater (both types of jitter)

LH5000 - Configuration

■ Two Models

- **DB9** Ten Port All Copper
- GBIC Eight GBIC Ports Plus Two Copper Ports
- Highest Density Hub in Industry
 - 20 Ports in a 19" Rack
 - 1U half rack modular design
 - 10 ports (9 $^{1}/_{2}$ " wide $^{1}/_{2}$ rack)
 - Front Access 8, Rear Access 2
 - 20 ports in a 19" Rack
 - Front Access 16, Rear Access 4

LH5000 Features

- Jitterless transmissions
- Automatic Clock Speed Matching
- Limitless Cascading
- Programmable Automatic LIP Generation
 - upon port insertion
- Programmable Lip F8 bypass
 - Retains loop operation around faults
- Character Validation
 - Corrects invalid characters
- Synchronous Cut-in/Cut-out
 - Sends only complete FC words

LH5000 - Management Interface

- 3 Included management interfaces allow access from most user environments
 - Command Line Interface (Direct RS232 console or Telnet connection)
 - Embedded Web Server (Allows management from any connected device running a Web Browser)
 - SNMP MIB (Allows the interface of any SNMP compliant management utility, i.e. HP-Openview)

Local Console Port

■ RS232C

- RJ12 to DB9 or DB25
- Default Configuration (possible)
 - 9600 bps (2400, 4800, 192K)
 - 8 bits (6, 7)
 - None Parity (odd, even)
 - Remote Echo
 - Xon/Xoff (11/13)
 - Software I/O Flow Control ON
- ANSI-type Terminal (soft copy)

Commente Entre interrace

- Commands (show, change, monitor, etc.)
- ANSI Editing Keys (Arrow keys on PC)
- LOG-ON Process
 - # (Access)
 - Local > (CMDS)
 - SU (Super-user)

Remote Telnet Facility

- Log into Hub Manager via Etherner
- Uses same CLI commands, passwords, edit keys
- Only one concurrent console connection (local or remote)
- Limitations
 - Must have IP before logging on
 - Must log off before change of IP/System name (reboot)
 - No startup post results
- Log on Command > Telnet ___.__. (IP address)
 - Use remote echo

Web Management

- DHub contains HTTP web server
- Displays HTML screens
- Supports most newer browsers (e.g. Netscape 3.x, Explorer 3.x)
- Available from Windows, Apple or Unix
- On Line help documentation
- Multiple clients concurrently
- Can be logically arranged in bookmarks
 - Create bookmark defaults to DHMXXXXXX (XXXXX = last 6 digits of MAC address) OR Network Name
- Log on process
 - Http://<IP address)

Interface Comparison

- Local Console
 - Advantages
 - No LAN required
 - Post diagnostics
 - No IP required
 - Disadvantages
 - Must have terminal
 - Must be local
 - CLI only

- Telnet
 - Advantages
 - Accessed from anywhere
 - No utility required (available on Windows)
 - Disadvantages
 - Need IP
 - Uses CLI

- Web Interface
 - Advantages
 - Available anywhere
 - Any browser
 - GUI interface
 - Familiar feel
 - On Line help
 - Auto Reload
 - Interface can be updated
 - Disadvantages
 - Need IP
 - No immediate post results

Digital Hub - Management Features

- Programmable Port Characteristics
 - Forced port bypass
 - Bypass during error burst (per port or global setting)
 - Bypass hysterisis (per port or global setting)
 - Automatic LIP F8 bypass (per port or global setting)
 - Automatic LIP insertion (per port or global setting)
- Statistics on a Per Port Basis
 - Port bypass count
 - Bit error count / rate
 - Invalid transmission words
 - View loop status and event logs

Digital Hub - Management Features

Hub Management

- Configure as one 10-port or two 5-port loops
- Set IEEE address or establish acquisition method
- Provide device name
- Set security passwords
- View network status and event logs
- Complete local of on-line help facilities

LH5000 Installation

Unpacking

- Hub
- USA power cord
- Manual / CD
- RJ12 cable
- DB9 connector
- DB25 connector
- Feet

Options

- LH5KIT
 - 4 nut retainers (clip on nuts, Tinnerman nuts)
 - 4 rack screws
 - 8 hub screws
- LC200-E
 - Cascading Cable (.5 Meter)

Management Installation - Console

- Attach console cable
- Attach ANSI/soft copy compatible terminal
 - terminal
 - Hyperterminal
 - PC
 - Kermit PC
 - Tip, Unix
- Log on (can be changed)
 - # access
- Local >SU (allows changes)
 - password > system
- Set IP if needed

Management Installation - Telnet

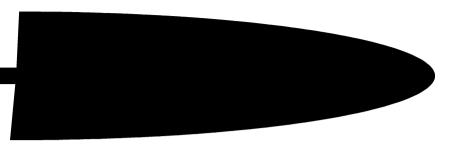
- Attach LAN cable (10base)
 - LED green = power; yellow = LAN activity
- Configure IP
 - Local console
 - ARP/Ping (see attached)
 - Subsequently can configure for DHCP or BOOTP
- Use terminal on TCP LAN
 - Unix most terminals automatically provide Telnet
 - PC Use
- Telnet <IP address>
- Log on

Management Installation - Web Interface

- Attached LAN cable (10BaseT)
- Configure IP
- Select Browser
- HTTP://<IP address>
- Browse
- Password for changes:
 - SU (user name)
 - System (password)

 Once prompted will not ask again during same sees

(once prompted will not ask again during same session)

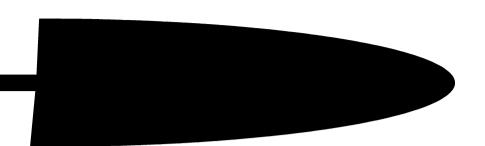


Manager Updating

- Contains
 - Runtime firmware (aka software)
 - Loader diagnostic firmware
 - HTML pages
- Naming
 - Software/firmware combined (DHMFLASH.SYS)
 - HTML pages DHMPAGE.SYS
- Load Method
 - TFTP

- Set Up
 - Web page will lead to reload
 - CLI Command
 - Change server load TFTP software <name>
 - Init
- Factory Default
 - Resets all manager and hub parameters; include IP address
 - Use button, web or CLI (init default)

Troubleshooting

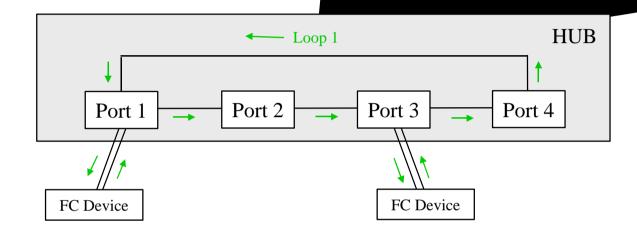

Common Physical Layer Problems

Bad cable

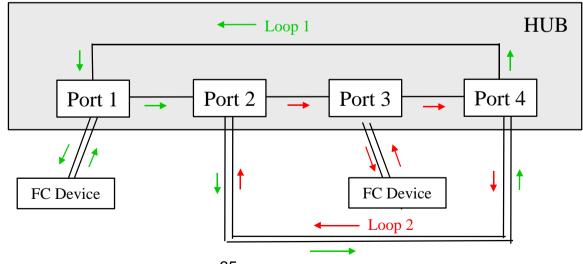
- Many I/O timeouts
- Slow performance
- Unstable link -- many LIPs
- No Link LED indication (potentially on only one side of link)
- Loose MIA
 - Symptoms similar to bad cable
 - May happen if connector is not screwed down
- End device set for incorrect topology
 - Driver configured for point to point but connected to hub port

EMULEX
NETWORK
SYSTEMS

Invalid Cabling

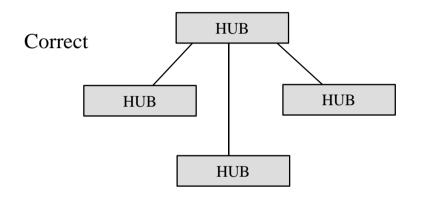


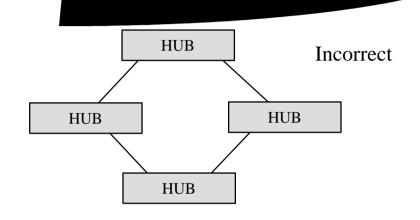
- Hub looped back to itself
 - Results in multiple loops within hub
 - Some ports cannot see other ports
- Invalid cascade configurations
 - Results in multiple loops between the hubs
 - Some ports cannot see other ports

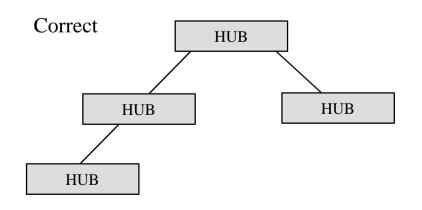


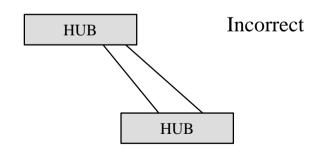
Invalid Cabling

Correct




Incorrect





Invalid Cabling

- LED does not turn from Amber to plugged in
 - Bad Cable
 - Replace Cable
 - End Device is not functioning properly
 - Check status indicators or device management applications for end device to determine proper operation and configuration
 - End Device is not a loop device
 - Replace end device
 - End device set for incorrect topology
 - Reset Topology

- LED does not turn from Amber to Green when device is plugged in (Cont.)
 - End device is different speed than Hub
 - Replace or reconfigure end device
 - End device is broadcasting LIP F8's
 - Repair or replace bad cable
 - Repair or replace end device
 - Turn off LIP F8 Bypass Feature (LED will turn green, but Loop operation will be hampered)

- Neither Green nor Amber LED appears next to a port
 - The port is set as disabled by Hub Manager
 - Use Manager to return to enabled state
 - No GBIC, GBIC fault, or GBIC improperly seated
 - Add GBIC
 - Reseat or replace GBIC
 - The LED is not functioning
 - Return to factory for repair

- Two Devices cannot see each ot though both have green LED's
 - Invalid Cabling
 - Correct the cabling error
 - Hub is set for "two separate 5-port hub" operation
 - Look for flashing power LED (Green LED on e-net conn.)
 - Use manager to change setting
 - Move devices onto same row of connectors
 - Device incompatibility
 - Replace or reconfigure end devices

Troubleshooting Tips

- Isolating bad components
 - Insert Loopback in hub and see if LED turns Green
 - Insert Loopback in end devices and see if Loop goes active (indications vary by device)
 - Connect device to device without hub and see if they communicate
 - Swap components
 - Hub Ports
 - Cables
 - Host Adapters or other end device components (does problem follow a component as it moves)

Troubleshooting Tips

- Console Port
 - Unit will print POST results and load status when reset or powered on
 - <esc> <esc> required to wake up com port for input
- Ethernet
 - Look for blinking activity light (amber LED on e-net connector)
 - Use console port to test ping
 - Examine power on messages via console port for any POST failures
 - Delete IP entry from ARP table before assigning new IP address.

EMULEX
NETWORK
SYSTEMS

Emulex Technical Support

- How to contact us:
 - + Phone: (800) 854-7112 or (800) 854-8270 (24 hr)
 - Fax: (714) 513-8269
 - + e-mail: tech_support@emulex.com
 - Web: www.emulex.com
- What to prepare before you call:
 - Versions of all Emulex software and firmware
 - LED activity
 - Web access to status, properties, hub diagnostics

