
Free Pascal :
Reference guide.

Reference guide for Free Pascal, version 2.6.0
Document version 2.6

December 2011

Michaël Van Canneyt

Contents

1 Pascal Tokens 10
1.1 Symbols . 10

1.2 Comments . 11

1.3 Reserved words . 12

1.3.1 Turbo Pascal reserved words . 12

1.3.2 Free Pascal reserved words . 13

1.3.3 Object Pascal reserved words . 13

1.3.4 Modifiers . 13

1.4 Identifiers . 14

1.5 Hint directives . 14

1.6 Numbers . 15

1.7 Labels . 17

1.8 Character strings . 17

2 Constants 19
2.1 Ordinary constants . 19

2.2 Typed constants . 20

2.3 Resource strings . 21

3 Types 22
3.1 Base types . 22

3.1.1 Ordinal types . 23

Integers . 23

Boolean types . 24

Enumeration types . 25

Subrange types . 26

3.1.2 Real types . 27

3.2 Character types . 27

3.2.1 Char . 27

3.2.2 Strings . 28

3.2.3 Short strings . 28

1

CONTENTS

3.2.4 Ansistrings . 29

3.2.5 UnicodeStrings . 31

3.2.6 WideStrings . 31

3.2.7 Constant strings . 31

3.2.8 PChar - Null terminated strings . 31

3.3 Structured Types . 32

Packed structured types . 33

3.3.1 Arrays . 34

Static arrays . 34

Dynamic arrays . 35

Packing and unpacking an array . 37

3.3.2 Record types . 38

3.3.3 Set types . 42

3.3.4 File types . 42

3.4 Pointers . 43

3.5 Forward type declarations . 45

3.6 Procedural types . 45

3.7 Variant types . 47

3.7.1 Definition . 47

3.7.2 Variants in assignments and expressions . 48

3.7.3 Variants and interfaces . 48

4 Variables 50
4.1 Definition . 50

4.2 Declaration . 50

4.3 Scope . 52

4.4 Initialized variables . 52

4.5 Thread Variables . 53

4.6 Properties . 53

5 Objects 57
5.1 Declaration . 57

5.2 Fields . 58

5.3 Static fields . 59

5.4 Constructors and destructors . 60

5.5 Methods . 61

5.5.1 Declaration . 61

5.5.2 Method invocation . 62

Static methods . 62

Virtual methods . 63

Abstract methods . 64

2

CONTENTS

5.6 Visibility . 65

6 Classes 66
6.1 Class definitions . 66

6.2 Class instantiation . 70

6.3 Methods . 70

6.3.1 Declaration . 70

6.3.2 invocation . 71

6.3.3 Virtual methods . 71

6.3.4 Class methods . 72

6.3.5 Message methods . 73

6.3.6 Using inherited . 74

6.4 Properties . 75

6.4.1 Definition . 75

6.4.2 Indexed properties . 77

6.4.3 Array properties . 78

6.4.4 Default properties . 79

6.4.5 Storage information . 79

6.4.6 Overriding properties . 80

6.5 Nested types and variables . 81

7 Interfaces 82
7.1 Definition . 82

7.2 Interface identification: A GUID . 83

7.3 Interface implementations . 84

7.4 Interfaces and COM . 85

7.5 CORBA and other Interfaces . 85

7.6 Reference counting . 85

8 Generics 87
8.1 Introduction . 87

8.2 Generic class definition . 87

8.3 Generic class specialization . 89

8.4 A word about scope . 90

9 Extended records 93
9.1 Definition . 93

9.2 Extended record enumerators . 95

10 Class and record helpers 98
10.1 Definition . 98

10.2 Restrictions on class helpers . 99

3

CONTENTS

10.3 Restrictions on record helpers . 100

10.4 Inheritance . 101

10.5 Usage . 101

11 Objective-Pascal Classes 104
11.1 Introduction . 104

11.2 Objective-Pascal class declarations . 104

11.3 Formal declaration . 106

11.4 Allocating and de-allocating Instances . 108

11.5 Protocol definitions . 109

11.6 Categories . 110

11.7 Name scope and Identifiers . 111

11.8 Selectors . 112

11.9 The id type . 112

11.10Enumeration in Objective-C classes . 112

12 Expressions 114
12.1 Expression syntax . 115

12.2 Function calls . 116

12.3 Set constructors . 118

12.4 Value typecasts . 118

12.5 Variable typecasts . 119

12.6 Unaligned typecasts . 120

12.7 The @ operator . 120

12.8 Operators . 121

12.8.1 Arithmetic operators . 121

12.8.2 Logical operators . 122

12.8.3 Boolean operators . 123

12.8.4 String operators . 123

12.8.5 Set operators . 123

12.8.6 Relational operators . 125

12.8.7 Class operators . 126

13 Statements 128
13.1 Simple statements . 128

13.1.1 Assignments . 128

13.1.2 Procedure statements . 129

13.1.3 Goto statements . 130

13.2 Structured statements . 131

13.2.1 Compound statements . 131

13.2.2 The Case statement . 132

4

CONTENTS

13.2.3 The If..then..else statement . 133

13.2.4 The For..to/downto..do statement 134

13.2.5 The For..in..do statement . 135

13.2.6 The Repeat..until statement . 142

13.2.7 The While..do statement . 143

13.2.8 The With statement . 144

13.2.9 Exception Statements . 145

13.3 Assembler statements . 145

14 Using functions and procedures 147
14.1 Procedure declaration . 147

14.2 Function declaration . 148

14.3 Function results . 148

14.4 Parameter lists . 149

14.4.1 Value parameters . 149

14.4.2 Variable parameters . 150

14.4.3 Out parameters . 151

14.4.4 Constant parameters . 152

14.4.5 Open array parameters . 153

14.4.6 Array of const . 154

14.5 Function overloading . 156

14.6 Forward defined functions . 157

14.7 External functions . 158

14.8 Assembler functions . 159

14.9 Modifiers . 159

14.9.1 alias . 160

14.9.2 cdecl . 160

14.9.3 export . 161

14.9.4 inline . 161

14.9.5 interrupt . 161

14.9.6 iocheck . 162

14.9.7 local . 162

14.9.8 nostackframe . 162

14.9.9 overload . 162

14.9.10 pascal . 163

14.9.11 public . 163

14.9.12 register . 164

14.9.13 safecall . 164

14.9.14 saveregisters . 165

14.9.15 softfloat . 165

5

CONTENTS

14.9.16 stdcall . 165

14.9.17 varargs . 165

14.10Unsupported Turbo Pascal modifiers . 165

15 Operator overloading 166
15.1 Introduction . 166

15.2 Operator declarations . 166

15.3 Assignment operators . 167

15.4 Arithmetic operators . 169

15.5 Comparision operator . 170

16 Programs, units, blocks 172
16.1 Programs . 172

16.2 Units . 173

16.3 Unit dependencies . 175

16.4 Blocks . 176

16.5 Scope . 177

16.5.1 Block scope . 177

16.5.2 Record scope . 178

16.5.3 Class scope . 178

16.5.4 Unit scope . 178

16.6 Libraries . 179

17 Exceptions 181
17.1 The raise statement . 181

17.2 The try...except statement . 182

17.3 The try...finally statement . 183

17.4 Exception handling nesting . 184

17.5 Exception classes . 184

18 Using assembler 185
18.1 Assembler statements . 185

18.2 Assembler procedures and functions . 185

6

List of Tables

3.1 Predefined integer types . 23

3.2 Predefined integer types . 24

3.3 Boolean types . 24

3.4 Supported Real types . 27

3.5 PChar pointer arithmetic . 32

12.1 Precedence of operators . 114

12.2 Binary arithmetic operators . 121

12.3 Unary arithmetic operators . 122

12.4 Logical operators . 122

12.5 Boolean operators . 123

12.6 Set operators . 124

12.7 Relational operators . 125

12.8 Class operators . 126

13.1 Allowed C constructs in Free Pascal . 129

14.1 Unsupported modifiers . 165

7

LIST OF TABLES

About this guide

This document serves as the reference for the Pascal langauge as implemented by the Free Pascal
compiler. It describes all Pascal constructs supported by Free Pascal, and lists all supported data
types. It does not, however, give a detailed explanation of the Pascal language: it is not a tuto-
rial. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal or Delphi implementations.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language.
The Free Pascal compiler emulates these compilers in the appropriate mode of the compiler: certain
features are available only if the compiler is switched to the appropriate mode. When required for
a certain feature, the use of the -M command-line switch or {$MODE } directive will be indicated
in the text. More information about the various modes can be found in the user’s manual and the
programmer’s manual.

Earlier versions of this document also contained the reference documentation of the system unit and
objpas unit. This has been moved to the RTL reference guide.

Notations
Throughout this document, we will refer to functions, types and variables with typewriter font.
Files are referred to with a sans font: filename.

Syntax diagrams
All elements of the Pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the
arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this
means the syntax diagram is continued on the next line. If the line ends on 2 arrows pointing to each
other, then the diagram is ended.

Syntactical elements are written like this

-- syntactical elements are like this -�

Keywords which must be typed exactly as in the diagram:

-- keywords are like this -�

When something can be repeated, there is an arrow around it:

--
6
this can be repeated -�

When there are different possibilities, they are listed in rows:

-- First possibility
Second possibility

-�

Note, that one of the possibilities can be empty:

--

First possibility
Second possibility

-�

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

8

LIST OF TABLES

About the Pascal language

The language Pascal was originally designed by Niklaus Wirth around 1970. It has evolved sig-
nificantly since that day, with a lot of contributions by the various compiler constructors (Notably:
Borland). The basic elements have been kept throughout the years:

• Easy syntax, rather verbose, yet easy to read. Ideal for teaching.

• Strongly typed.

• Procedural.

• Case insensitive.

• Allows nested procedures.

• Easy input/output routines built-in.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language,
most notably easier string handling and object orientedness. The Free Pascal compiler initially emu-
lated most of Turbo Pascal and later on Delphi. It emulates these compilers in the appropriate mode
of the compiler: certain features are available only if the compiler is switched to the appropriate
mode. When required for a certain feature, the use of the -M command-line switch or {$MODE }
directive will be indicated in the text. More information about the various modes can be found in the
user’s manual and the programmer’s manual.

9

Chapter 1

Pascal Tokens

Tokens are the basic lexical building blocks of source code: they are the ’words’ of the language:
characters are combined into tokens according to the rules of the programming language. There are
five classes of tokens:

reserved words These are words which have a fixed meaning in the language. They cannot be
changed or redefined.

identifiers These are names of symbols that the programmer defines. They can be changed and
re-used. They are subject to the scope rules of the language.

operators These are usually symbols for mathematical or other operations: +, -, * and so on.

separators This is usually white-space.

constants Numerical or character constants are used to denote actual values in the source code, such
as 1 (integer constant) or 2.3 (float constant) or ’String constant’ (a string: a piece of text).

In this chapter we describe all the Pascal reserved words, as well as the various ways to denote
strings, numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special character symbols in a Pascal source file.

Recognised symbols

-- letter A...Z
a...z

-�

-- digit 0...9 -�

-- hex digit 0...9
A...F
a...f

-�

The following characters have a special meaning:

10

CHAPTER 1. PASCAL TOKENS

+ - * / = < > [] . , () : ^ @ { } $ # & %

and the following character pairs too:

<< >> ** <> >< <= >= := += -= *= /= (* *) (. .) //

When used in a range specifier, the character pair (. is equivalent to the left square bracket [.
Likewise, the character pair .) is equivalent to the right square bracket]. When used for comment
delimiters, the character pair (* is equivalent to the left brace { and the character pair *) is equiva-
lent to the right brace }. These character pairs retain their normal meaning in string expressions.

1.2 Comments

Comments are pieces of the source code which are completely discarded by the compiler. They exist
only for the benefit of the programmer, so he can explain certain pieces of code. For the compiler, it
is as if the comments were not present.

The following piece of code demonstrates a comment:

(* My beautiful function returns an interesting result *)
Function Beautiful : Integer;

The use of (* and *) as comment delimiters dates from the very first days of the Pascal language. It
has been replaced mostly by the use of { and } as comment delimiters, as in the following example:

{ My beautiful function returns an interesting result }
Function Beautiful : Integer;

The comment can also span multiple lines:

{
My beautiful function returns an interesting result,
but only if the argument A is less than B.

}
Function Beautiful (A,B : Integer): Integer;

Single line comments can also be made with the // delimiter:

// My beautiful function returns an interesting result
Function Beautiful : Integer;

The comment extends from the // character till the end of the line. This kind of comment was
introduced by Borland in the Delphi Pascal compiler.

Free Pascal supports the use of nested comments. The following constructs are valid comments:

(* This is an old style comment *)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

11

CHAPTER 1. PASCAL TOKENS

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }
(* comment 1 // Comment 2 *)
// comment 1 (* comment 2 *)
// comment 1 { comment 2 }

The last two comments must be on one line. The following two will give errors:

// Valid comment { No longer valid comment !!
}

and

// Valid comment (* No longer valid comment !!

*)

The compiler will react with a ’invalid character’ error when it encounters such constructs, regardless
of the -Mtp switch.

Remark: In TP and Delphi mode, nested comments are not allowed, for maximum compatibility with
existing code for those compilers.

1.3 Reserved words

Reserved words are part of the Pascal language, and as such, cannot be redefined by the programmer.
Throughout the syntax diagrams they will be denoted using a bold typeface. Pascal is not case
sensitive so the compiler will accept any combination of upper or lower case letters for reserved
words.

We make a distinction between Turbo Pascal and Delphi reserved words. In TP mode, only the Turbo
Pascal reserved words are recognised, but the Delphi ones can be redefined. By default, Free Pascal
recognises the Delphi reserved words.

1.3.1 Turbo Pascal reserved words
The following keywords exist in Turbo Pascal mode

absolute
and
array
asm
begin
case
const
constructor
destructor
div
do
downto
else
end

file
for
function
goto
if
implementation
in
inherited
inline
interface
label
mod
nil
not

object
of
on
operator
or
packed
procedure
program
record
reintroduce
repeat
self
set
shl

shr
string
then
to
type
unit
until
uses
var
while
with
xor

12

CHAPTER 1. PASCAL TOKENS

1.3.2 Free Pascal reserved words
On top of the Turbo Pascal reserved words, Free Pascal also considers the following as reserved
words:

dispose
exit

false
new

true

1.3.3 Object Pascal reserved words
The reserved words of Object Pascal (used in Delphi or Objfpc mode) are the same as the Turbo
Pascal ones, with the following additional keywords:

as
class
dispinterface
except
exports

finalization
finally
initialization
inline
is

library
on
out
packed
property

raise
resourcestring
threadvar
try

1.3.4 Modifiers
The following is a list of all modifiers. They are not exactly reserved words in the sense that they can
be used as identifiers, but in specific places, they have a special meaning for the compiler, i.e., the
compiler considers them as part of the Pascal language.

absolute
abstract
alias
assembler
cdecl
cppdecl
default
export

external
far
far16
forward
index
local
name
near

nostackframe
oldfpccall
override
pascal
private
protected
public
published

read
register
reintroduce
safecall
softfloat
stdcall
virtual
write

Remark: Predefined types such as Byte, Boolean and constants such as maxint are not reserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in
other units. The programmer is however not encouraged to do this, as it will cause a lot of confusion.

Remark: As of version 2.5.1 it is possible to use reserved words as identifiers by escaping them with a & sign.
This means that the following is possible

var
&var : integer;

begin
&var:=1;
Writeln(&var);

end.

however, it is not recommended to use this feature in new code, as it makes code less readable. It
is mainly intended to fix old code when the list of reserved words changes and encompasses a word
that was not yet reserved (See also section 1.4, page 14).

13

CHAPTER 1. PASCAL TOKENS

1.4 Identifiers

Identifiers denote programmer defined names for specific constants, types, variables, procedures
and functions, units, and programs. All programmer defined names in the source code –excluding
reserved words– are designated as identifiers.

Identifiers consist of between 1 and 127 significant characters (letters, digits and the underscore
character), of which the first must be a letter (a-z or A-Z), or an underscore (_). The following
diagram gives the basic syntax for identifiers.

Identifiers

-- identifier letter
_ 6 letter

digit
_

-�

Like Pascal reserved words, identifiers are case insensitive, that is, both

myprocedure;

and

MyProcedure;

refer to the same procedure.

Remark: As of version 2.5.1 it is possible to specify a reserved word as an identifier by prepending it with an
ampersand (&). This means that the following is possible:

program testdo;

procedure &do;

begin
end;

begin
&do;

end.

The reserved word do is used as an identifier for the declaration as well as the invocation of the
procedure ’do’.

1.5 Hint directives

Most identifiers (constants, variables, functions or methods, properties) can have a hint directive
appended to their definition:

Hint directives

14

CHAPTER 1. PASCAL TOKENS

-- hintdirective
Deprecated

Experimental
Platform

Unimplemented

-�

Whenever an identifier marked with a hint directive is later encountered by the compiler, then a
warning will be displayed, corresponding to the specified hint.

deprecated The use of this identifier is deprecated, use an alternative instead.

experimental The use of this identifier is experimental: this can be used to flag new features that
should be used with caution.

platform This is a platform-dependent identifier: it may not be defined on all platforms.

unimplemented This should be used on functions and procedures only. It should be used to signal
that a particular feature has not yet been implemented.

The following are examples:

Const
AConst = 12 deprecated;

var
p : integer platform;

Function Something : Integer; experimental;

begin
Something:=P+AConst;

end;

begin
Something;

end.

This would result in the following output:

testhd.pp(11,15) Warning: Symbol "p" is not portable
testhd.pp(11,22) Warning: Symbol "AConst" is deprecated
testhd.pp(15,3) Warning: Symbol "Something" is experimental

Hint directives can follow all kinds of identifiers: units, constants, types, variables, functions, proce-
dures and methods.

1.6 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scientific notation (e.g. 0.314E1).

For integer type constants, Free Pascal supports 4 formats:

1. Normal, decimal format (base 10). This is the standard format.

15

CHAPTER 1. PASCAL TOKENS

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF
equals 255 decimal. Note that case is insignificant when using hexadecimal constants.

3. As of version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with an ampersand (&). For instance 15 is specified in octal notation as
&17.

4. Binary notation (base 2). A binary number can be specified by preceding it with a percent sign
(%). Thus, 255 can be specified in binary notation as %11111111.

The following diagrams show the syntax for numbers.

Numbers

-- hex digit sequence
6
hex digit -�

-- octal digit sequence
6
octal digit -�

-- bin digit sequence
6

1
0

-�

-- digit sequence
6
digit -�

-- unsigned integer digit sequence
$ hex digit sequence

& octal digit sequence
% bin digit sequence

-�

-- sign +
-

-�

-- unsigned real digit sequence
. digit sequence scale factor

-�

-- scale factor E
e sign

digit sequence -�

-- unsigned number unsigned real
unsigned integer

-�

-- signed number
sign

unsigned number -�

Remark: Octal and Binary notation are not supported in TP or Delphi compatibility mode.

16

CHAPTER 1. PASCAL TOKENS

1.7 Labels

A label is a name for a location in the source code to which can be jumped to from another location
with a goto statement. A Label is a standard identifier or a digit sequence.

Label

-- label digit sequence
identifier

-�

Remark: The -Sg or -Mtp switches must be specified before labels can be used. By default, Free Pascal
doesn’t support label and goto statements. The {$GOTO ON} directive can also be used to allow
use of labels and the goto statement.

The following are examples of valid labels:

Label
123,
abc;

1.8 Character strings

A character string (or string for short) is a sequence of zero or more characters (byte sized), enclosed
in single quotes, and on a single line of the program source code: no literal carriage return or linefeed
characters can appear in the string.

A character set with nothing between the quotes (’’) is an empty string.

Character strings

-- character string
6

quoted string
control string

-�

-- quoted string ’
6
string character ’ -�

-- string character Any character except ’ or CR
”

-�

-- control string
6
unsigned integer -�

The string consists of standard, 8-bit ASCII characters or Unicode (normally UTF-8 encoded) char-
acters. The control string can be used to specify characters which cannot be typed on a
keyboard, such as #27 for the escape character.

The single quote character can be embedded in the string by typing it twice. The C construct of
escaping characters in the string (using a backslash) is not supported in Pascal.

The following are valid string constants:

17

CHAPTER 1. PASCAL TOKENS

’This is a pascal string’
’’
’a’
’A tabulator character: ’#9’ is easy to embed’

The following is an invalid string:

’the string starts here
and continues here’

The above string must be typed as:

’the string starts here’#13#10’ and continues here’

or

’the string starts here’#10’ and continues here’

on unices (including Mac OS X), and as

’the string starts here’#13’ and continues here’

on a classic Mac-like operating system.

It is possible to use other character sets in strings: in that case the codepage of the source file must
be specified with the {$CODEPAGE XXX} directive or with the -Fc command line option for the
compiler. In that case the characters in a string will be interpreted as characters from the specified
codepage.

18

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both ordinary and typed constants.

2.1 Ordinary constants

Ordinary constants declarations are constructed using an identifier name followed by an "=" token,
and followed by an optional expression consisting of legal combinations of numbers, characters,
boolean values or enumerated values as appropriate. The following syntax diagram shows how to
construct a legal declaration of an ordinary constant.

Constant declaration

-- constant declaration
6
identifier = expression hintdirectives ; -�

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operators such as +, -, *, /, not, and, or, div, mod, ord, chr, sizeof, pi,
int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chapter 12, page 114.

Only constants of the following types can be declared:

• Ordinal types

• Set types

• Pointer types (but the only allowed value is Nil).

• Real types

• Char,

• String

The following are all valid constant declarations:

19

CHAPTER 2. CONSTANTS

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c = ’4’; { Character type constant. }
s = ’This is a constant string’; {String type constant.}
sc = chr(32)
ls = SizeOf(Longint);
P = Nil;
Ss = [1,2];

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := ’some other string’;

For string constants, the type of the string is dependent on some compiler switches. If a specific type
is desired, a typed constant should be used, as explained in the following section.

Prior to version 1.9, Free Pascal did not correctly support 64-bit constants. As of version 1.9, 64-bit
constants can be specified.

2.2 Typed constants

Sometimes it is necessary to specify the type of a constant, for instance for constants of complex
structures (defined later in the manual). Their definition is quite simple.

Typed constant declaration

--typed constant declaration
6
identifier : type = typed constant hintdirective ; -

- -�

-- typed constant constant
address constant

array constant
record constant

procedural constant

-�

Contrary to ordinary constants, a value can be assigned to them at run-time. This is an old concept
from Turbo Pascal, which has been replaced with support for initialized variables: For a detailed
description, see section 4.4, page 52.

Support for assigning values to typed constants is controlled by the {$J} directive: it can be switched
off, but is on by default (for Turbo Pascal compatibility). Initialized variables are always allowed.

Remark: It should be stressed that typed constants are automatically initialized at program start. This is also
true for local typed constants and initialized variables. Local typed constants are also initialized at
program start. If their value was changed during previous invocations of the function, they will retain
their changed value, i.e. they are not initialized each time the function is invoked.

20

CHAPTER 2. CONSTANTS

2.3 Resource strings

A special kind of constant declaration block is the Resourcestring block. Resourcestring dec-
larations are much like constant string declarations: resource strings act as constant strings, but they
can be localized by means of a set of special routines in the objpas unit. A resource string declaration
block is only allowed in the Delphi or Objfpc modes.

The following is an example of a resourcestring definition:

Resourcestring

FileMenu = ’&File...’;
EditMenu = ’&Edit...’;

All string constants defined in the resourcestring section are stored in special tables. The strings in
these tables can be manipulated at runtime with some special mechanisms in the objpas unit.

Semantically, the strings act like ordinary constants; It is not allowed to assign values to them (except
through the special mechanisms in the objpas unit). However, they can be used in assignments or
expressions as ordinary string constants. The main use of the resourcestring section is to provide an
easy means of internationalization.

More on the subject of resourcestrings can be found in the Programmer’s Guide, and in the objpas
unit reference.

Remark: Note that a resource string which is given as an expression will not change if the parts of the expres-
sion are changed:

resourcestring
Part1 = ’First part of a long string.’;
Part2 = ’Second part of a long string.’;
Sentence = Part1+’ ’+Part2;

If the localization routines translate Part1 and Part2, the Sentence constant will not be trans-
lated automatically: it has a separate entry in the resource string tables, and must therefor be trans-
lated separately. The above construct simply says that the initial value of Sentence equals Part1+’
’+Part2.

Remark: Likewise, when using resource strings in a constant array, only the initial values of the resource
strings will be used in the array: when the individual constants are translated, the elements in the
array will retain their original value.

resourcestring
Yes = ’Yes.’;
No = ’No.’;

Var
YesNo : Array[Boolean] of string = (No,Yes);
B : Boolean;

begin
Writeln(YesNo[B]);

end.

This will print ’Yes.’ or ’No.’ depending on the value of B, even if the constants Yes and No have
been localized by some localization mechanism.

21

file:../prog/prog.html

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some
extra types from Delphi. The programmer can declare his own types, which is in essence defining an
identifier that can be used to denote this custom type when declaring variables further in the source
code.

Type declaration

-- type declaration identifier = type ; -�

There are 7 major type classes :

Types

-- type simple type
string type

structured type
pointer type

procedural type
generic type

specialized type
type identifier

-�

The last case, type identifier, is just a means to give another name to a type. This presents a way to
make types platform independent, by only using these types, and then defining these types for each
platform individually. Any programmer who then uses these custom types doesn’t have to worry
about the underlying type size: it is opaque to him. It also allows to use shortcut names for fully
qualified type names. e.g. define system.longint as Olongint and then redefine longint.

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each type separately.

22

CHAPTER 3. TYPES

Simple types

-- simple type ordinal type
real type

-�

-- real type real type identifier -�

3.1.1 Ordinal types
With the exception of int64, qword and Real types, all base types are ordinal types. Ordinal types
have the following characteristics:

1. Ordinal types are countable and ordered, i.e. it is, in principle, possible to start counting them
one by one, in a specified order. This property allows the operation of functions as Inc, Ord,
Dec on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to apply the Pred function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply the Succ function on the largest
possible value will generate a range check error if range checking is enabled.

Integers

A list of pre-defined integer types is presented in table (3.1).

Table 3.1: Predefined integer types

Name
Integer
Shortint
SmallInt
Longint
Longword
Int64
Byte
Word
Cardinal
QWord
Boolean
ByteBool
WordBool
LongBool
Char

The integer types, and their ranges and sizes, that are predefined in Free Pascal are listed in table
(3.2). Please note that the qword and int64 types are not true ordinals, so some Pascal constructs
will not work with these two integer types.

23

CHAPTER 3. TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0 .. 255 1
Shortint -128 .. 127 1
Smallint -32768 .. 32767 2
Word 0 .. 65535 2
Integer either smallint or longint size 2 or 4
Cardinal longword 4
Longint -2147483648 .. 2147483647 4
Longword 0 .. 4294967295 4
Int64 -9223372036854775808 .. 9223372036854775807 8
QWord 0 .. 18446744073709551615 8

The integer type maps to the smallint type in the default Free Pascal mode. It maps to either a
longint in either Delphi or ObjFPC mode. The cardinal type is currently always mapped to the
longword type.

Remark: All decimal constants which do no fit within the -2147483648..2147483647 range are silently and
automatically parsed as 64-bit integer constants as of version 1.9.0. Earlier versions would convert it
to a real-typed constant.

Free Pascal does automatic type conversion in expressions where different kinds of integer types are
used.

Boolean types

Free Pascal supports the Boolean type, with its two pre-defined possible values True and False.
These are the only two values that can be assigned to a Boolean type. Of course, any expression
that resolves to a boolean value, can also be assigned to a boolean type.

Table 3.3: Boolean types

Name Size Ord(True)
Boolean 1 1
ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value

Free Pascal also supports the ByteBool, WordBool and LongBool types. These are of type
Byte, Word or Longint, but are assignment compatible with a Boolean: the value False is
equivalent to 0 (zero) and any nonzero value is considered True when converting to a boolean value.
A boolean value of True is converted to -1 in case it is assigned to a variable of type LongBool.

Assuming B to be of type Boolean, the following are valid assignments:

B := True;
B := False;
B := 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

24

CHAPTER 3. TYPES

Remark: In Free Pascal, boolean expressions are by default always evaluated in such a way that when the
result is known, the rest of the expression will no longer be evaluated: this is called short-cut boolean
evaluation.

In the following example, the function Func will never be called, which may have strange side-
effects.

...
B := False;
A := B and Func;

Here Func is a function which returns a Boolean type.

This behaviour is controllable by the {$B } compiler directive.

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free
Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

Enumerated types

-- enumerated type (
6

identifier list
assigned enum list

,

) -�

-- identifier list
6
identifier

,
-�

-- assigned enum list
6
identifier := expression

,
-�

(see chapter 12, page 114 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

A C-style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40,fortyone);

As a result, the ordinal number of forty is 40, and not 3, as it would be when the ’:= 40’ wasn’t
present. The ordinal value of fortyone is then 41, and not 4, as it would be when the assignment
wasn’t present. After an assignment in an enumerated definition the compiler adds 1 to the assigned
value to assign to the next enumerated value.

When specifying such an enumeration type, it is important to keep in mind that the enumerated
elements should be kept in ascending order. The following will produce a compiler error:

25

CHAPTER 3. TYPES

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

It is necessary to keep forty and thirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. The Pred and Succ functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in a compiler error.

2. Enumeration types are stored using a default, independent of the actual number of values:
the compiler does not try to optimize for space. This behaviour can be changed with the
{$PACKENUM n} compiler directive, which tells the compiler the minimal number of bytes
to be used for enumeration types. For instance

Type
{$PACKENUM 4}

LargeEnum = (BigOne, BigTwo, BigThree);
{$PACKENUM 1}

SmallEnum = (one, two, three);
Var S : SmallEnum;

L : LargeEnum;
begin

WriteLn (’Small enum : ’,SizeOf(S));
WriteLn (’Large enum : ’,SizeOf(L));

end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in the Programmer’s Guide, in the compiler directives section.

Subrange types

A subrange type is a range of values from an ordinal type (the host type). To define a subrange type,
one must specify its limiting values: the highest and lowest value of the type.

Subrange types

-- subrange type constant .. constant -�

Some of the predefined integer types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

26

file:../prog/prog.html

CHAPTER 3. TYPES

Subrange types of enumeration types can also be defined:

Type
Days = (monday,tuesday,wednesday,thursday,friday,

saturday,sunday);
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

3.1.2 Real types
Free Pascal uses the math coprocessor (or emulation) for all its floating-point calculations. The Real
native type is processor dependent, but it is either Single or Double. Only the IEEE floating point
types are supported, and these depend on the target processor and emulation options. The true Turbo
Pascal compatible types are listed in table (3.4).

Table 3.4: Supported Real types

Type Range Significant digits Size
Real platform dependant ??? 4 or 8
Single 1.5E-45 .. 3.4E38 7-8 4
Double 5.0E-324 .. 1.7E308 15-16 8
Extended 1.9E-4932 .. 1.1E4932 19-20 10
Comp -2E64+1 .. 2E63-1 19-20 8
Currency -922337203685477.5808 .. 922337203685477.5807 19-20 8

The Comp type is, in effect, a 64-bit integer and is not available on all target platforms. To get more
information on the supported types for each platform, refer to the Programmer’s Guide.

The currency type is a fixed-point real data type which is internally used as an 64-bit integer type
(automatically scaled with a factor 10000), this minimalizes rounding errors.

3.2 Character types

3.2.1 Char
Free Pascal supports the type Char. A Char is exactly 1 byte in size, and contains one ASCII
character.

A character constant can be specified by enclosing the character in single quotes, as follows : ’a’ or
’A’ are both character constants.

A character can also be specified by its character value (commonly an ASCII code), by preceding the
ordinal value with the number symbol (#). For example specifying #65 would be the same as ’A’.

Also, the caret character (^) can be used in combination with a letter to specify a character with
ASCII value less than 27. Thus ^G equals #7 - G is the seventh letter in the alphabet. The compiler
is rather sloppy about the characters it allows after the caret, but in general one should assume only
letters.

When the single quote character must be represented, it should be typed two times successively, thus
”” represents the single quote character.

27

file:../prog/prog.html

CHAPTER 3. TYPES

3.2.2 Strings
Free Pascal supports the String type as it is defined in Turbo Pascal: a sequence of characters with
an optional size specification. It also supports ansistrings (with unlimited length) as in Delphi.

To declare a variable as a string, use the following type specification:

String Type

-- string type string
[unsigned integer]

-�

If there is a size specifier, then its maximum value - indicating the maximum size of the string - is
255.

The meaning of a string declaration statement without size indicator is interpreted differently de-
pending on the {$H} switch. If no size indication is present, the above declaration can declare an
ansistring or a short string.

Whatever the actual type, ansistrings and short strings can be used interchangeably. The compiler
always takes care of the necessary type conversions. Note, however, that the result of an expression
that contains ansistrings and short strings will always be an ansistring.

3.2.3 Short strings
A string declaration declares a short string in the following cases:

1. If the switch is off: {$H-}, the string declaration will always be a short string declaration.

2. If the switch is on {$H+}, and there is a maximum length (the size) specifier, the declaration
is a short string declaration.

The predefined type ShortString is defined as a string of size 255:

ShortString = String[255];

If the size of the string is not specified, 255 is taken as a default. The actual length of the string can
be obtained with the Length standard runtime routine. For example in

{$H-}

Type
NameString = String[10];
StreetString = String;

NameString can contain a maximum of 10 characters. While StreetString can contain up to
255 characters.

Remark: Short strings have a maximum length of 255 characters: when specifying a maximum length, the
maximum length may not exceed 255. If a length larger than 255 is attempted, then the compiler will
give an error message:

Error: string length must be a value from 1 to 255

28

CHAPTER 3. TYPES

For short strings, the length is stored in the character at index 0. Old Turbo Pascal code relies on this,
and it is implemented similarly in Free Pascal. Despite this, to write portable code, it is best to set
the length of a shortstring with the SetLength call, and to retrieve it with the Length call. These
functions will always work, whatever the internal representation of the shortstrings or other strings
in use: this allows easy switching between the various string types.

3.2.4 Ansistrings
Ansistrings are strings that have no length limit. They are reference counted and are guaranteed to
be null terminated. Internally, an ansistring is treated as a pointer: the actual content of the string is
stored on the heap, as much memory as needed to store the string content is allocated.

This is all handled transparantly, i.e. they can be manipulated as a normal short string. Ansistrings
can be defined using the predefined AnsiString type.

Remark: The null-termination does not mean that null characters (char(0) or #0) cannot be used: the null-
termination is not used internally, but is there for convenience when dealing with external routines
that expect a null-terminated string (as most C routines do).

If the {$H} switch is on, then a string definition using the regular String keyword and that doesn’t
contain a length specifier, will be regarded as an ansistring as well. If a length specifier is present, a
short string will be used, regardless of the {$H} setting.

If the string is empty (”), then the internal pointer representation of the string pointer is Nil. If the
string is not empty, then the pointer points to a structure in heap memory.

The internal representation as a pointer, and the automatic null-termination make it possible to type-
cast an ansistring to a pchar. If the string is empty (so the pointer is Nil) then the compiler makes
sure that the typecasted pchar will point to a null byte.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement

S2:=S1;

results in the reference count of S2 being decreased with 1, The reference count of S1 is increased
by 1, and finally S1 (as a pointer) is copied to S2. This is a significant speed-up in the code.

If the reference count of a string reaches zero, then the memory occupied by the string is deallocated
automatically, and the pointer is set to Nil, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be Nil, meaning that the string is initially empty. This is true
for local and global ansistrings or ansistrings that are part of a structure (arrays, records or objects).

This does introduce an overhead. For instance, declaring

Var
A : Array[1..100000] of string;

Will copy the value Nil 100,000 times into A. When A goes out of scope, then the reference count
of the 100,000 strings will be decreased by 1 for each of these strings. All this happens invisible to
the programmer, but when considering performance issues, this is important.

Memory for the string content will be allocated only when the string is assigned a value. If the string
goes out of scope, then its reference count is automatically decreased by 1. If the reference count
reaches zero, the memory reserved for the string is released.

If a value is assigned to a character of a string that has a reference count greater than 1, such as in the
following statements:

S:=T; { reference count for S and T is now 2 }

29

CHAPTER 3. TYPES

S[I]:=’@’;

then a copy of the string is created before the assignment. This is known as copy-on-write semantics.
It is possible to force a string to have reference count equal to 1 with the UniqueString call:

S:=T;
R:=T; // Reference count of T is at least 3
UniqueString(T);
// Reference count of T is quaranteed 1

It’s recommended to do this e.g. when typecasting an ansistring to a PChar var and passing it to a C
routine that modifies the string.

The Length function must be used to get the length of an ansistring: the length is not stored at
character 0 of the ansistring. The construct

L:=ord(S[0]);

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

To set the length of an ansistring, the SetLength function must be used. Constant ansistrings have
a reference count of -1 and are treated specially, The same remark as for Length must be given:
The construct

L:=12;
S[0]:=Char(L);

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecasted to PChar or Pointer types:

Var P : Pointer;
PC : PChar;
S : AnsiString;

begin
S :=’This is an ansistring’;
PC:=Pchar(S);
P :=Pointer(S);

There is a difference between the two typecasts. When an empty ansistring is typecasted to a pointer,
the pointer will be Nil. If an empty ansistring is typecasted to a PChar, then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result of
such a typecast as read-only, i.e. only suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore not advisable to typecast one of the following:

1. Expressions.

2. Strings that have reference count larger than 1. In this case you should call Uniquestring
to ensure the string has reference count 1.

30

CHAPTER 3. TYPES

3.2.5 UnicodeStrings
Unicodestrings (used to represent unicode character strings) are implemented in much the same way
as ansistrings: reference counted, null-terminated arrays, only they are implemented as arrays of
WideChars instead of regular Chars. A WideChar is a two-byte character (an element of
a DBCS: Double Byte Character Set). Mostly the same rules apply for WideStrings as for
AnsiStrings. The compiler transparantly converts WideStrings to AnsiStrings and vice versa.

Similarly to the typecast of an Ansistring to a PChar null-terminated array of characters, a Uni-
codeString can be converted to a PUnicodeChar null-terminated array of characters. Note that
the PUnicodeChar array is terminated by 2 null bytes instead of 1, so a typecast to a pchar is not
automatic.

The compiler itself provides no support for any conversion from Unicode to ansistrings or vice versa.
The system unit has a unicodestring manager record, which can be initialized with some OS-specific
unicode handling routines. For more information, see the system unit reference.

3.2.6 WideStrings
Widestrings (used to represent unicode character strings in COM applications) are implemented in
much the same way as unicodestrings. Unlike the latter, they are not reference counted, and on
Windows, they are allocated with a special windows function which allows them to be used for OLE
automation. This means they are implemented as null-terminated arrays of WideChars instead
of regular Chars. A WideChar is a two-byte character (an element of a DBCS: Double Byte
Character Set). Mostly the same rules apply for WideStrings as for AnsiStrings. Similar to
unicodestrings, the compiler transparantly converts WideStrings to AnsiStrings and vice versa.

For typecasting and conversion, the same rules apply as for the unicodestring type.

3.2.7 Constant strings
To specify a constant string, it must be enclosed in single-quotes, just as a Char type, only now more
than one character is allowed. Given that S is of type String, the following are valid assignments:

S := ’This is a string.’;
S := ’One’+’, Two’+’, Three’;
S := ’This isn’’t difficult !’;
S := ’This is a weird character : ’#145’ !’;

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their character value (usually an ASCII code). The
example shows also that two strings can be added. The resulting string is just the concatenation of
the first with the second string, without spaces in between them. Strings can not be substracted,
however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{$H} switch.

3.2.8 PChar - Null terminated strings
Free Pascal supports the Delphi implementation of the PChar type. PChar is defined as a pointer to
a Char type, but allows additional operations. The PChar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i.e. a variable of type PChar is a pointer that points
to an array of type Char, which is ended by a null-character (#0). Free Pascal supports initializing

31

CHAPTER 3. TYPES

of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var P : PChar;
begin

P := ’This is a null-terminated string.’;
WriteLn (P);

end.

Results in the same as

program two;
const P : PChar = ’This is a null-terminated string.’;
begin

WriteLn (P);
end.

These examples also show that it is possible to write the contents of the string to a file of type
Text. The strings unit contains procedures and functions that manipulate the PChar type as in the
standard C library. Since it is equivalent to a pointer to a type Char variable, it is also possible to do
the following:

Program three;
Var S : String[30];

P : PChar;
begin

S := ’This is a null-terminated string.’#0;
P := @S[1];
WriteLn (P);

end.

This will have the same result as the previous two examples. Null-terminated strings cannot be added
as normal Pascal strings. If two PChar strings must be concatenated; the functions from the unit
strings must be used.

However, it is possible to do some pointer arithmetic. The operators + and - can be used to do
operations on PChar pointers. In table (3.5), P and Q are of type PChar, and I is of type Longint.

Table 3.5: PChar pointer arithmetic

Operation Result
P + I Adds I to the address pointed to by P.
I + P Adds I to the address pointed to by P.
P - I Substracts I from the address pointed to by P.
P - Q Returns, as an integer, the distance between 2 addresses

(or the number of characters between P and Q)

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Stuctured types can be
nested to unlimited levels.

32

file:../rtl/strings/index.html
file:../rtl/strings/index.html

CHAPTER 3. TYPES

Structured Types

-- structured type array type
record type
object type
class type

class reference type
interface type

set type
file type

-�

Unlike Delphi, Free Pascal does not support the keyword Packed for all structured types. In the
following sections each of the possible structured types is discussed. It will be mentioned when a
type supports the packed keyword.

Packed structured types

When a structured type is declared, no assumptions should be made about the internal position of the
elements in the type. The compiler will lay out the elements of the structure in memory as it thinks
will be most suitable. That is, the order of the elements will be kept, but the location of the elements
are not guaranteed, and is partially governed by the $PACKRECORDS directive (this directive is
explained in the Programmer’s Guide).

However, Free Pascal allows controlling the layout with the Packed and Bitpacked keywords.
The meaning of these words depends on the context:

Bitpacked In this case, the compiler will attempt to align ordinal types on bit boundaries, as ex-
plained below.

Packed The meaning of the Packed keyword depends on the situation:

1. In MACPAS mode, it is equivalent to the Bitpacked keyword.

2. In other modes, with the $BITPACKING directive set to ON, it is also equivalent to the
Bitpacked keyword.

3. In other modes, with the $BITPACKING directive set to OFF, it signifies normal packing
on byte boundaries.

Packing on byte boundaries means that each new element of a structured type starts on a byte
boundary.

The byte packing mechanism is simple: the compiler aligns each element of the structure on the first
available byte boundary, even if the size of the previous element (small enumerated types, subrange
types) is less than a byte.

When using the bit packing mechanism, the compiler calculates for each ordinal type how many bits
are needed to store it. The next ordinal type is then stored on the next free bit. Non-ordinal types
- which include but are not limited to - sets, floats, strings, (bitpacked) records, (bitpacked) arrays,
pointers, classes, objects, and procedural variables, are stored on the first available byte boundary.

Note that the internals of the bitpacking are opaque: they can change at any time in the future. What
is more: the internal packing depends on the endianness of the platform for which the compilation is
done, and no conversion between platforms are possible. This makes bitpacked structures unsuitable
for storing on disk or transport over networks. The format is however the same as the one used by
the GNU Pascal Compiler, and the Free Pascal team aims to retain this compatibility in the future.

33

file:../prog/prog.html

CHAPTER 3. TYPES

There are some more restrictions to elements of bitpacked structures:

• The address cannot be retrieved, unless the bit size is a multiple of 8 and the element happens
to be stored on a byte boundary.

• An element of a bitpacked structure cannot be used as a var parameter, unless the bit size is a
multiple of 8 and the element happens to be stored on a byte boundary.

To determine the size of an element in a bitpacked structure, there is the BitSizeOf function. It
returns the size - in bits - of the element. For other types or elements of structures which are not
bitpacked, this will simply return the size in bytes multiplied by 8, i.e., the return value is then the
same as 8*SizeOf.

The size of bitpacked records and arrays is limited:

• On 32 bit systems the maximal size is 229 bytes (512 MB).

• On 64 bit systems the maximal size is 261 bytes.

The reason is that the offset of an element must be calculated with the maximum integer size of the
system.

3.3.1 Arrays
Free Pascal supports arrays as in Turbo Pascal. Multi-dimensional arrays and (bit)packed arrays are
also supported, as well as the dynamic arrays of Delphi:

Array types

-- array type
packed

bitpacked

array
[
6
ordinal type

,
]

of type -�

Static arrays

When the range of the array is included in the array definition, it is called a static array. Trying to
access an element with an index that is outside the declared range will generate a run-time error (if
range checking is on). The following is an example of a valid array declaration:

Type
RealArray = Array [1..100] of Real;

Valid indexes for accessing an element of the array are between 1 and 100, where the borders 1 and
100 are included. As in Turbo Pascal, if the array component type is in itself an array, it is possible
to combine the two arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

is equivalent to the declaration:

Type
APoints = array[1..100,1..3] of Real;

34

CHAPTER 3. TYPES

The functions High and Low return the high and low bounds of the leftmost index type of the array.
In the above case, this would be 100 and 1. You should use them whenever possible, since it improves
maintainability of your code. The use of both functions is just as efficient as using constants, because
they are evaluated at compile time.

When static array-type variables are assigned to each other, the contents of the whole array is copied.
This is also true for multi-dimensional arrays:

program testarray1;

Type
TA = Array[0..9,0..9] of Integer;

var
A,B : TA;
I,J : Integer;

begin
For I:=0 to 9 do

For J:=0 to 9 do
A[I,J]:=I*J;

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(A[I,J]:2,’ ’);
Writeln;
end;

B:=A;
Writeln;
For I:=0 to 9 do

For J:=0 to 9 do
A[9-I,9-J]:=I*J;

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(B[I,J]:2,’ ’);
Writeln;
end;

end.

The output of this program will be 2 identical matrices.

Dynamic arrays

As of version 1.1, Free Pascal also knows dynamic arrays: In that case the array range is omitted, as
in the following example:

Type
TByteArray = Array of Byte;

When declaring a variable of a dynamic array type, the initial length of the array is zero. The actual
length of the array must be set with the standard SetLength function, which will allocate the
necessary memory to contain the array elements on the heap. The following example will set the
length to 1000:

Var

35

CHAPTER 3. TYPES

A : TByteArray;

begin
SetLength(A,1000);

After a call to SetLength, valid array indexes are 0 to 999: the array index is always zero-based.

Note that the length of the array is set in elements, not in bytes of allocated memory (although these
may be the same). The amount of memory allocated is the size of the array multiplied by the size
of 1 element in the array. The memory will be disposed of at the exit of the current procedure or
function.

It is also possible to resize the array: in that case, as much of the elements in the array as will fit in
the new size, will be kept. The array can be resized to zero, which effectively resets the variable.

At all times, trying to access an element of the array with an index that is not in the current length of
the array will generate a run-time error.

Dynamic arrays are reference counted: assignment of one dynamic array-type variable to another
will let both variables point to the same array. Contrary to ansistrings, an assignment to an element
of one array will be reflected in the other: there is no copy-on-write. Consider the following example:

Var
A,B : TByteArray;

begin
SetLength(A,10);
A[0]:=33;
B:=A;
A[0]:=31;

After the second assignment, the first element in B will also contain 31.

It can also be seen from the output of the following example:

program testarray1;

Type
TA = Array of array of Integer;

var
A,B : TA;
I,J : Integer;

begin
Setlength(A,10,10);
For I:=0 to 9 do

For J:=0 to 9 do
A[I,J]:=I*J;

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(A[I,J]:2,’ ’);
Writeln;
end;

B:=A;
Writeln;
For I:=0 to 9 do

36

CHAPTER 3. TYPES

For J:=0 to 9 do
A[9-I,9-J]:=I*J;

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(B[I,J]:2,’ ’);
Writeln;
end;

end.

The output of this program will be a matrix of numbers, and then the same matrix, mirrorred.

As remarked earlier, dynamic arrays are reference counted: if in one of the previous examples A goes
out of scope and B does not, then the array is not yet disposed of: the reference count of A (and B) is
decreased with 1. As soon as the reference count reaches zero the memory, allocated for the contents
of the array, is disposed of.

It is also possible to copy and/or resize the array with the standard Copy function, which acts as the
copy function for strings:

program testarray3;

Type
TA = array of Integer;

var
A,B : TA;
I : Integer;

begin
Setlength(A,10);
For I:=0 to 9 do

A[I]:=I;
B:=Copy(A,3,6);
For I:=0 to 5 do

Writeln(B[I]);
end.

The Copy function will copy 6 elements of the array to a new array. Starting at the element at index
3 (i.e. the fourth element) of the array.

The Length function will return the number of elements in the array. The Low function on a
dynamic array will always return 0, and the High function will return the value Length-1, i.e., the
value of the highest allowed array index.

Packing and unpacking an array

Arrays can be packed and bitpacked. 2 array types which have the same index type and element type,
but which are differently packed are not assignment compatible.

However, it is possible to convert a normal array to a bitpacked array with the pack routine. The
reverse operation is possible as well; a bitpacked array can be converted to a normally packed array
using the unpack routine, as in the following example:

Var
foo : array [’a’..’f’] of Boolean

37

CHAPTER 3. TYPES

= (false, false, true, false, false, false);
bar : packed array [42..47] of Boolean;
baz : array [’0’..’5’] of Boolean;

begin
pack(foo,’a’,bar);
unpack(bar,baz,’0’);

end.

More information about the pack and unpack routines can be found in the system unit reference.

3.3.2 Record types
Free Pascal supports fixed records and records with variant parts. The syntax diagram for a record
type is

Record types

-- record type
packed

bitpacked

record
field list

end -�

-- field list fixed fields

fixed fields ;
variant part ;

-�

-- fixed fields
6
identifier list : type

;
-�

-- variant part case
identifier :

ordinal type identifier of
6
variant

;
-�

-- variant
6
constant , : (

field list
) -�

So the following are valid record type declarations:

Type
Point = Record

X,Y,Z : Real;
end;

RPoint = Record
Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

38

CHAPTER 3. TYPES

The variant part must be last in the record. The optional identifier in the case statement serves to
access the tag field value, which otherwise would be invisible to the programmer. It can be used to
see which variant is active at a certain time1. In effect, it introduces a new field in the record.

Remark: It is possible to nest variant parts, as in:

Type
MyRec = Record

X : Longint;
Case byte of

2 : (Y : Longint;
case byte of
3 : (Z : Longint);
);

end;

By default the size of a record is the sum of the sizes of its fields, each size of a field is rounded up
to a power of two. If the record contains a variant part, the size of the variant part is the size of the
biggest variant, plus the size of the tag field type if an identifier was declared for it. Here also, the
size of each part is first rounded up to two. So in the above example:

• SizeOf would return 24 for Point,

• It would result in 24 for RPoint

• Finally, 26 would be the size of BetterRPoint.

• For MyRec, the value would be 12.

If a typed file with records, produced by a Turbo Pascal program, must be read, then chances are that
attempting to read that file correctly will fail. The reason for this is that by default, elements of a
record are aligned at 2-byte boundaries, for performance reasons.

This default behaviour can be changed with the {$PACKRECORDS N} switch. Possible values for
N are 1, 2, 4, 16 or Default. This switch tells the compiler to align elements of a record or object
or class that have size larger than n on n byte boundaries.

Elements that have size smaller or equal than n are aligned on natural boundaries, i.e. to the first
power of two that is larger than or equal to the size of the record element.

The keyword Default selects the default value for the platform that the code is compiled for (cur-
rently, this is 2 on all platforms) Take a look at the following program:

Program PackRecordsDemo;
type

{$PackRecords 2}
Trec1 = Record
A : byte;
B : Word;

end;

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

1However, it is up to the programmer to maintain this field.

39

CHAPTER 3. TYPES

{$PackRecords 2}
Trec3 = Record

A,B : byte;
end;

{$PackRecords 1}
Trec4 = Record

A,B : Byte;
end;

{$PackRecords 4}
Trec5 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;

end;

{$PackRecords 8}
Trec6 = Record

A : Byte;
B : Array[1..3] of byte;
C : byte;
end;

{$PackRecords 4}
Trec7 = Record

A : Byte;
B : Array[1..7] of byte;
C : byte;

end;

{$PackRecords 8}
Trec8 = Record

A : Byte;
B : Array[1..7] of byte;
C : byte;
end;

Var rec1 : Trec1;
rec2 : Trec2;
rec3 : TRec3;
rec4 : TRec4;
rec5 : Trec5;
rec6 : TRec6;
rec7 : TRec7;
rec8 : TRec8;

begin
Write (’Size Trec1 : ’,SizeOf(Trec1));
Writeln (’ Offset B : ’,Longint(@rec1.B)-Longint(@rec1));
Write (’Size Trec2 : ’,SizeOf(Trec2));
Writeln (’ Offset B : ’,Longint(@rec2.B)-Longint(@rec2));
Write (’Size Trec3 : ’,SizeOf(Trec3));
Writeln (’ Offset B : ’,Longint(@rec3.B)-Longint(@rec3));
Write (’Size Trec4 : ’,SizeOf(Trec4));
Writeln (’ Offset B : ’,Longint(@rec4.B)-Longint(@rec4));
Write (’Size Trec5 : ’,SizeOf(Trec5));

40

CHAPTER 3. TYPES

Writeln (’ Offset B : ’,Longint(@rec5.B)-Longint(@rec5),
’ Offset C : ’,Longint(@rec5.C)-Longint(@rec5));

Write (’Size Trec6 : ’,SizeOf(Trec6));
Writeln (’ Offset B : ’,Longint(@rec6.B)-Longint(@rec6),

’ Offset C : ’,Longint(@rec6.C)-Longint(@rec6));
Write (’Size Trec7 : ’,SizeOf(Trec7));
Writeln (’ Offset B : ’,Longint(@rec7.B)-Longint(@rec7),

’ Offset C : ’,Longint(@rec7.C)-Longint(@rec7));
Write (’Size Trec8 : ’,SizeOf(Trec8));
Writeln (’ Offset B : ’,Longint(@rec8.B)-Longint(@rec8),

’ Offset C : ’,Longint(@rec8.C)-Longint(@rec8));
end.

The output of this program will be :

Size Trec1 : 4 Offset B : 2
Size Trec2 : 3 Offset B : 1
Size Trec3 : 2 Offset B : 1
Size Trec4 : 2 Offset B : 1
Size Trec5 : 8 Offset B : 4 Offset C : 7
Size Trec6 : 8 Offset B : 4 Offset C : 7
Size Trec7 : 12 Offset B : 4 Offset C : 11
Size Trec8 : 16 Offset B : 8 Offset C : 15

And this is as expected:

• In Trec1, since B has size 2, it is aligned on a 2 byte boundary, thus leaving an empty byte
between A and B, and making the total size 4. In Trec2, B is aligned on a 1-byte boundary,
right after A, hence, the total size of the record is 3.

• For Trec3, the sizes of A,B are 1, and hence they are aligned on 1 byte boundaries. The same
is true for Trec4.

• For Trec5, since the size of B – 3 – is smaller than 4, B will be on a 4-byte boundary, as this
is the first power of two that is larger than its size. The same holds for Trec6.

• For Trec7, B is aligned on a 4 byte boundary, since its size – 7 – is larger than 4. However, in
Trec8, it is aligned on a 8-byte boundary, since 8 is the first power of two that is greater than
7, thus making the total size of the record 16.

Free Pascal supports also the ’packed record’, this is a record where all the elements are byte-aligned.
Thus the two following declarations are equivalent:

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords 2}

and

Trec2 = Packed Record
A : Byte;
B : Word;
end;

Note the {$PackRecords 2} after the first declaration !

41

CHAPTER 3. TYPES

3.3.3 Set types
Free Pascal supports the set types as in Turbo Pascal. The prototype of a set declaration is:

Set Types

-- set type set of ordinal type -�

Each of the elements of SetTypemust be of type TargetType. TargetType can be any ordinal
type with a range between 0 and 255. A set can contain at most 255 elements. The following are
valid set declaration:

Type
Junk = Set of Char;

Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
WorkDays : Set of days;

Given these declarations, the following assignment is legal:

WorkDays := [Mon, Tue, Wed, Thu, Fri];

The compiler stores small sets (less than 32 elements) in a Longint, if the type range allows it. This
allows for faster processing and decreases program size. Otherwise, sets are stored in 32 bytes.

Several operations can be done on sets: taking unions or differences, adding or removing elements,
comparisons. These are documented in section 12.8.5, page 123

3.3.4 File types
File types are types that store a sequence of some base type, which can be any type except another file
type. It can contain (in principle) an infinite number of elements. File types are used commonly to
store data on disk. However, nothing prevents the programmer, from writing a file driver that stores
its data for instance in memory.

Here is the type declaration for a file type:

File types

-- file type file
of type

-�

If no type identifier is given, then the file is an untyped file; it can be considered as equivalent to a file
of bytes. Untyped files require special commands to act on them (see Blockread, Blockwrite).
The following declaration declares a file of records:

Type
Point = Record

X,Y,Z : real;
end;

PointFile = File of Point;

42

CHAPTER 3. TYPES

Internally, files are represented by the FileRec record, which is declared in the Dos or SysUtils
units.

A special file type is the Text file type, represented by the TextRec record. A file of type Text
uses special input-output routines. The default Input, Output and StdErr file types are defined
in the system unit: they are all of type Text, and are opened by the system unit initialization code.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an address in memory,
where the data of another variable may be stored. A pointer type can be defined as follows:

Pointer types

-- pointer type ˆ type identifier -�

As can be seen from this diagram, pointers are typed, which means that they point to a particular
kind of data. The type of this data must be known at compile time.

Dereferencing the pointer (denoted by adding ˆ after the variable name) behaves then like a variable.
This variable has the type declared in the pointer declaration, and the variable is stored in the address
that is pointed to by the pointer variable. Consider the following example:

Program pointers;
type

Buffer = String[255];
BufPtr = ^Buffer;

Var B : Buffer;
BP : BufPtr;
PP : Pointer;

etc..

In this example, BP is a pointer to a Buffer type; while B is a variable of type Buffer. B takes
256 bytes memory, and BP only takes 4 (or 8) bytes of memory: enough memory to store an address.

The expression

BP^

is known as the dereferencing of BP. The result is of type Buffer, so

BP^[23]

Denotes the 23-rd character in the string pointed to by BP.

Remark: Free Pascal treats pointers much the same way as C does. This means that a pointer to some type
can be treated as being an array of this type.

From this point of view, the pointer then points to the zeroeth element of this array. Thus the follow-
ing pointer declaration

Var p : ^Longint;

43

CHAPTER 3. TYPES

can be considered equivalent to the following array declaration:

Var p : array[0..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If the former is used, the memory
must be allocated manually, using the Getmem function. The reference Pˆ is then the same as p[0].
The following program illustrates this maybe more clear:

program PointerArray;
var i : Longint;

p : ^Longint;
pp : array[0..100] of Longint;

begin
for i := 0 to 100 do pp[i] := i; { Fill array }
p := @pp[0]; { Let p point to pp }
for i := 0 to 100 do

if p[i]<>pp[i] then
WriteLn (’Ohoh, problem !’)

end.

Free Pascal supports pointer arithmetic as C does. This means that, if P is a typed pointer, the
instructions

Inc(P);
Dec(P);

Will increase, respectively decrease the address the pointer points to with the size of the type P is a
pointer to. For example

Var P : ^Longint;
...
Inc (p);

will increase P with 4, because 4 is the size of a longint. If the pointer is untyped, a size of 1 byte is
assumed (i.e. as if the pointer were a pointer to a byte: ˆbyte.)

Normal arithmetic operators on pointers can also be used, that is, the following are valid pointer
arithmetic operations:

var p1,p2 : ^Longint;
L : Longint;

begin
P1 := @P2;
P2 := @L;
L := P1-P2;
P1 := P1-4;
P2 := P2+4;

end.

Here, the value that is added or substracted is multiplied by the size of the type the pointer points to.
In the previous example P1 will be decremented by 16 bytes, and P2 will be incremented by 16.

44

CHAPTER 3. TYPES

3.5 Forward type declarations

Programs often need to maintain a linked list of records. Each record then contains a pointer to the
next record (and possibly to the previous record as well). For type safety, it is best to define this
pointer as a typed pointer, so the next record can be allocated on the heap using the New call. In
order to do so, the record should be defined something like this:

Type
TListItem = Record

Data : Integer;
Next : ^TListItem;

end;

When trying to compile this, the compiler will complain that the TListItem type is not yet defined
when it encounters the Next declaration: This is correct, as the definition is still being parsed.

To be able to have the Next element as a typed pointer, a ’Forward type declaration’ must be intro-
duced:

Type
PListItem = ^TListItem;
TListItem = Record

Data : Integer;
Next : PTListItem;

end;

When the compiler encounters a typed pointer declaration where the referenced type is not yet known,
it postpones resolving the reference till later. The pointer definition is a ’Forward type declaration’.

The referenced type should be introduced later in the same Type block. No other block may come
between the definition of the pointer type and the referenced type. Indeed, even the word Type
itself may not re-appear: in effect it would start a new type-block, causing the compiler to resolve all
pending declarations in the current block.

In most cases, the definition of the referenced type will follow immediatly after the definition of
the pointer type, as shown in the above listing. The forward defined type can be used in any type
definition following its declaration.

Note that a forward type declaration is only possible with pointer types and classes, not with other
types.

3.6 Procedural types

Free Pascal has support for procedural types, although it differs a little from the Turbo Pascal or Del-
phi implementation of them. The type declaration remains the same, as can be seen in the following
syntax diagram:

Procedural types

-- procedural type function header
procedure header of object ; call modifiers

-�

-- function header function formal parameter list : result type -�

-- procedure header procedure formal parameter list -�

45

CHAPTER 3. TYPES

-- call modifiers register
cdecl

pascal
stdcall
safecall
inline

-�

For a description of formal parameter lists, see chapter 14, page 147. The two following examples
are valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNoArg;

One can assign the following values to a procedural type variable:

1. Nil, for both normal procedure pointers and method pointers.

2. A variable reference of a procedural type, i.e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

4. A method address.

Given these declarations, the following assignments are valid:

Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
...
Proc := @printit;
Func := @Pi;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’t necessary to
use the address operator (@) when assigning a procedural type variable, whereas in Free Pascal it is
required. In case the -MDelphi or -MTP switches are used, the address operator can be dropped.

Remark: The modifiers concerning the calling conventions must be the same as the declaration; i.e. the
following code would give an error:

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
begin
Proc := @printit;
end.

Because the TOneArgCcall type is a procedure that uses the cdecl calling convention.

46

CHAPTER 3. TYPES

3.7 Variant types

3.7.1 Definition
As of version 1.1, FPC has support for variants. For maximum variant support it is recommended to
add the variants unit to the uses clause of every unit that uses variants in some way: the variants
unit contains support for examining and transforming variants other than the default support offered
by the System or ObjPas units.

The type of a value stored in a variant is only determined at runtime: it depends what has been
assigned to the variant. Almost any simple type can be assigned to variants: ordinal types, string
types, int64 types.

Structured types such as sets, records, arrays, files, objects and classes are not assignment-compatible
with a variant, as well as pointers. Interfaces and COM or CORBA objects can be assigned to a
variant (basically because they are simply a pointer).

This means that the following assignments are valid:

Type
TMyEnum = (One,Two,Three);

Var
V : Variant;
I : Integer;
B : Byte;
W : Word;
Q : Int64;
E : Extended;
D : Double;
En : TMyEnum;
AS : AnsiString;
WS : WideString;

begin
V:=I;
V:=B;
V:=W;
V:=Q;
V:=E;
V:=En;
V:=D:
V:=AS;
V:=WS;

end;

And of course vice-versa as well.

A variant can hold an array of values: All elements in the array have the same type (but can be of
type ’variant’). For a variant that contains an array, the variant can be indexed:

Program testv;

uses variants;

Var
A : Variant;

47

CHAPTER 3. TYPES

I : integer;

begin
A:=VarArrayCreate([1,10],varInteger);
For I:=1 to 10 do

A[I]:=I;
end.

For the explanation of VarArrayCreate, see Unit Reference.

Note that when the array contains a string, this is not considered an ’array of characters’, and so the
variant cannot be indexed to retrieve a character at a certain position in the string.

3.7.2 Variants in assignments and expressions
As can be seen from the definition above, most simple types can be assigned to a variant. Likewise,
a variant can be assigned to a simple type: If possible, the value of the variant will be converted to
the type that is being assigned to. This may fail: Assigning a variant containing a string to an integer
will fail unless the string represents a valid integer. In the following example, the first assignment
will work, the second will fail:

program testv3;

uses Variants;

Var
V : Variant;
I : Integer;

begin
V:=’100’;
I:=V;
Writeln(’I : ’,I);
V:=’Something else’;
I:=V;
Writeln(’I : ’,I);

end.

The first assignment will work, but the second will not, as Something else cannot be converted
to a valid integer value. An EConvertError exception will be the result.

The result of an expression involving a variant will be of type variant again, but this can be assigned
to a variable of a different type - if the result can be converted to a variable of this type.

Note that expressions involving variants take more time to be evaluated, and should therefore be used
with caution. If a lot of calculations need to be made, it is best to avoid the use of variants.

When considering implicit type conversions (e.g. byte to integer, integer to double, char to string)
the compiler will ignore variants unless a variant appears explicitly in the expression.

3.7.3 Variants and interfaces
Remark: Dispatch interface support for variants is currently broken in the compiler.

Variants can contain a reference to an interface - a normal interface (descending from IInterface)
or a dispatchinterface (descending from IDispatch). Variants containing a reference to a dispatch

48

file:../rtl/index.html

CHAPTER 3. TYPES

interface can be used to control the object behind it: the compiler will use late binding to perform
the call to the dispatch interface: there will be no run-time checking of the function names and
parameters or arguments given to the functions. The result type is also not checked. The compiler
will simply insert code to make the dispatch call and retrieve the result.

This means basically, that you can do the following on Windows:

Var
W : Variant;
V : String;

begin
W:=CreateOleObject(’Word.Application’);
V:=W.Application.Version;
Writeln(’Installed version of MS Word is : ’,V);

end;

The line

V:=W.Application.Version;

is executed by inserting the necessary code to query the dispatch interface stored in the variant W, and
execute the call if the needed dispatch information is found.

49

Chapter 4

Variables

4.1 Definition

Variables are explicitly named memory locations with a certain type. When assigning values to
variables, the Free Pascal compiler generates machine code to move the value to the memory location
reserved for this variable. Where this variable is stored depends on where it is declared:

• Global variables are variables declared in a unit or program, but not inside a procedure or func-
tion. They are stored in fixed memory locations, and are available during the whole execution
time of the program.

• Local variables are declared inside a procedure or function. Their value is stored on the pro-
gram stack, i.e. not at fixed locations.

The Free Pascal compiler handles the allocation of these memory locations transparantly, although
this location can be influenced in the declaration.

The Free Pascal compiler also handles reading values from or writing values to the variables transparantly.
But even this can be explicitly handled by the programmer when using properties.

Variables must be explicitly declared when they are needed. No memory is allocated unless a variable
is declared. Using a variable identifier (for instance, a loop variable) which is not declared first, is an
error which will be reported by the compiler.

4.2 Declaration

The variables must be declared in a variable declaration section of a unit or a procedure or function.
It looks as follows:

Variable declaration

-- variable declaration identifier : type
= expression

-

-

variable modifiers
hintdirective ; -�

50

CHAPTER 4. VARIABLES

--variable modifiers
6

absolute integer expression
identifier

; export
; cvar

; external
string constant name string constant

hintdirective

-

- -�

This means that the following are valid variable declarations:

Var
curterm1 : integer;

curterm2 : integer; cvar;
curterm3 : integer; cvar; external;

curterm4 : integer; external name ’curterm3’;
curterm5 : integer; external ’libc’ name ’curterm9’;

curterm6 : integer absolute curterm1;

curterm7 : integer; cvar; export;
curterm8 : integer; cvar; public;
curterm9 : integer; export name ’me’;
curterm10 : integer; public name ’ma’;

curterm11 : integer = 1 ;

The difference between these declarations is as follows:

1. The first form (curterm1) defines a regular variable. The compiler manages everything by
itself.

2. The second form (curterm2) declares also a regular variable, but specifies that the assembler
name for this variable equals the name of the variable as written in the source.

3. The third form (curterm3) declares a variable which is located externally: the compiler will
assume memory is located elsewhere, and that the assembler name of this location is specified
by the name of the variable, as written in the source. The name may not be specified.

4. The fourth form is completely equivalent to the third, it declares a variable which is stored
externally, and explicitly gives the assembler name of the location. If cvar is not used, the
name must be specified.

5. The fifth form is a variant of the fourth form, only the name of the library in which the memory
is reserved is specified as well.

6. The sixth form declares a variable (curterm6), and tells the compiler that it is stored in the
same location as another variable (curterm1).

7. The seventh form declares a variable (curterm7), and tells the compiler that the assembler
label of this variable should be the name of the variable (case sensitive) and must be made
public. i.e. it can be referenced from other object files.

51

CHAPTER 4. VARIABLES

8. The eighth form (curterm8) is equivalent to the seventh: ’public’ is an alias for ’export’.

9. The ninth and tenth form are equivalent: they specify the assembler name of the variable.

10. the elevents form declares a variable (curterm11) and initializes it with a value (1 in the
above case).

Note that assembler names must be unique. It’s not possible to declare or export 2 variables with the
same assembler name.

4.3 Scope

Variables, just as any identifier, obey the general rules of scope. In addition, initialized variables are
initialized when they enter scope:

• Global initialized variables are initialized once, when the program starts.

• Local initialized variables are initialized each time the procedure is entered.

Note that the behaviour for local initialized variables is different from the one of a local typed con-
stant. A local typed constant behaves like a global initialized variable.

4.4 Initialized variables

By default, variables in Pascal are not initialized after their declaration. Any assumption that they
contain 0 or any other default value is erroneous: They can contain rubbish. To remedy this, the
concept of initialized variables exists. The difference with normal variables is that their declaration
includes an initial value, as can be seen in the diagram in the previous section.

Given the declaration:

Var
S : String = ’This is an initialized string’;

The value of the variable following will be initialized with the provided value. The following is an
even better way of doing this:

Const
SDefault = ’This is an initialized string’;

Var
S : String = SDefault;

Initialization is often used to initialize arrays and records. For arrays, the initialized elements must
be specified, surrounded by round brackets, and separated by commas. The number of initialized
elements must be exactly the same as the number of elements in the declaration of the type. As an
example:

Var
tt : array [1..3] of string[20] = (’ikke’, ’gij’, ’hij’);
ti : array [1..3] of Longint = (1,2,3);

For constant records, each element of the record should be specified, in the form Field: Value,
separated by semicolons, and surrounded by round brackets. As an example:

52

CHAPTER 4. VARIABLES

Type
Point = record

X,Y : Real
end;

Var
Origin : Point = (X:0.0; Y:0.0);

The order of the fields in a constant record needs to be the same as in the type declaration, otherwise
a compile-time error will occur.

Remark: It should be stressed that initialized variables are initialized when they come into scope, in difference
with typed constants, which are initialized at program start. This is also true for local initialized
variables. Local initialized are initialized whenever the routine is called. Any changes that occurred
in the previous invocation of the routine will be undone, because they are again initialized.

4.5 Thread Variables

For a program which uses threads, the variables can be really global, i.e. the same for all threads, or
thread-local: this means that each thread gets a copy of the variable. Local variables (defined inside
a procedure) are always thread-local. Global variables are normally the same for all threads. A
global variable can be declared thread-local by replacing the var keyword at the start of the variable
declaration block with Threadvar:

Threadvar
IOResult : Integer;

If no threads are used, the variable behaves as an ordinary variable. If threads are used then a copy is
made for each thread (including the main thread). Note that the copy is made with the original value
of the variable, not with the value of the variable at the time the thread is started.

Threadvars should be used sparingly: There is an overhead for retrieving or setting the variable’s
value. If possible at all, consider using local variables; they are always faster than thread variables.

Threads are not enabled by default. For more information about programming threads, see the chapter
on threads in the Programmer’s Guide.

4.6 Properties

A global block can declare properties, just as they could be defined in a class. The difference is that
the global property does not need a class instance: there is only 1 instance of this property. Other
than that, a global property behaves like a class property. The read/write specifiers for the global
property must also be regular procedures, not methods.

The concept of a global property is specific to Free Pascal, and does not exist in Delphi. ObjFPC
mode is required to work with properties.

The concept of a global property can be used to ’hide’ the location of the value, or to calculate the
value on the fly, or to check the values which are written to the property.

The declaration is as follows:

Properties

-- property definition identifier
property interface

property specifiers -�

53

file:../prog/prog.html

CHAPTER 4. VARIABLES

-- property interface
property parameter list

: type identifier -

-

index integerconstant
-�

-- property parameter list [
6
parameter declaration

;
] -�

-- property specifiers
read specifier write specifier default specifier

-�

-- read specifier read field or function -�

-- write specifier write field or procedure -�

-- default specifier default
constant

nodefault

-�

-- field or procedure field identifier
procedure identifier

-�

-- field or function field identifier
function identifier

-�

The following is an example:

{$mode objfpc}
unit testprop;

Interface

Function GetMyInt : Integer;
Procedure SetMyInt(Value : Integer);

Property
MyProp : Integer Read GetMyInt Write SetMyInt;

Implementation

Uses sysutils;

Var
FMyInt : Integer;

Function GetMyInt : Integer;

begin
Result:=FMyInt;

end;

Procedure SetMyInt(Value : Integer);

begin

54

CHAPTER 4. VARIABLES

If ((Value mod 2)=1) then
Raise Exception.Create(’MyProp can only contain even value’);

FMyInt:=Value;
end;

end.

The read/write specifiers can be hidden by declaring them in another unit which must be in the uses
clause of the unit. This can be used to hide the read/write access specifiers for programmers, just as
if they were in a private section of a class (discussed below). For the previous example, this could
look as follows:

{$mode objfpc}
unit testrw;

Interface

Function GetMyInt : Integer;
Procedure SetMyInt(Value : Integer);

Implementation

Uses sysutils;

Var
FMyInt : Integer;

Function GetMyInt : Integer;

begin
Result:=FMyInt;

end;

Procedure SetMyInt(Value : Integer);

begin
If ((Value mod 2)=1) then

Raise Exception.Create(’Only even values are allowed’);
FMyInt:=Value;

end;

end.

The unit testprop would then look like:

{$mode objfpc}
unit testprop;

Interface

uses testrw;

Property
MyProp : Integer Read GetMyInt Write SetMyInt;

55

CHAPTER 4. VARIABLES

Implementation

end.

More information about properties can be found in chapter 6, page 66.

56

Chapter 5

Objects

5.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is written using
objects. Here we present some technical questions regarding object oriented programming in Free
Pascal.

Objects should be treated as a special kind of record. The record contains all the fields that are
declared in the objects definition, and pointers to the methods that are associated to the objects’ type.

An object is declared just as a record would be declared; except that now, procedures and functions
can be declared as if they were part of the record. Objects can ”inherit” fields and methods from
”parent” objects. This means that these fields and methods can be used as if they were included in
the objects declared as a ”child” object.

Furthermore, a concept of visibility is introduced: fields, procedures and functions can be declared as
public, protected or private. By default, fields and methods are public, and are exported
outside the current unit.

Fields or methods that are declared private are only accessible in the current unit: their scope is
limited to the implementation of the current unit.

The prototype declaration of an object is as follows:

object types

--

packed
object

heritage 6
component list end -�

-- heritage (object type identifier) -�

-- component list
object visibility specifier

6
field definition

-

-

6
method definition

-�

-- field definition identifier list : type ;
static;

-�

57

CHAPTER 5. OBJECTS

-- object visibility specifier private
protected

public

-�

As can be seen, as many private and public blocks as needed can be declared.

The following is a valid definition of an object:

Type
TObj = object
Private

Caption : ShortString;
Public

Constructor init;
Destructor done;
Procedure SetCaption (AValue : String);
Function GetCaption : String;

end;

It contains a constructor/destructor pair, and a method to get and set a caption. The Caption field
is private to the object: it cannot be accessed outside the unit in which TObj is declared.

Remark: In MacPas mode, the Object keyword is replaced by the class keyword for compatibility with
other pascal compilers available on the Mac. That means that objects cannot be used in MacPas
mode.

Remark: Free Pascal also supports the packed object. This is the same as an object, only the elements (fields)
of the object are byte-aligned, just as in the packed record. The declaration of a packed object is
similar to the declaration of a packed record :

Type
TObj = packed object
Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Similarly, the {$PackRecords } directive acts on objects as well.

5.2 Fields

Object Fields are like record fields. They are accessed in the same way as a record field would be
accessed : by using a qualified identifier. Given the following declaration:

Type TAnObject = Object
AField : Longint;
Procedure AMethod;
end;

Var AnObject : TAnObject;

then the following would be a valid assignment:

AnObject.AField := 0;

58

CHAPTER 5. OBJECTS

Inside methods, fields can be accessed using the short identifier:

Procedure TAnObject.AMethod;
begin

...
AField := 0;
...

end;

Or, one can use the self identifier. The self identifier refers to the current instance of the object:

Procedure TAnObject.AMethod;
begin

...
Self.AField := 0;
...

end;

One cannot access fields that are in a private or protected sections of an object from outside the ob-
jects’ methods. If this is attempted anyway, the compiler will complain about an unknown identifier.

It is also possible to use the with statement with an object instance, just as with a record:

With AnObject do
begin
Afield := 12;
AMethod;
end;

In this example, between the begin and end, it is as if AnObject was prepended to the Afield
and Amethod identifiers. More about this in section 13.2.8, page 144.

5.3 Static fields

When the {$STATIC ON} directive is active, then an object can contain static fields: these fields
are global to the object type, and act like global variables, but are known only as part of the object.
They can be referenced from within the objects methods, but can also be referenced from outside the
object by providing the fully qualified name.

For instance, the output of the following program:

{$static on}
type

cl=object
l : longint;static;

end;
var

cl1,cl2 : cl;
begin

cl1.l:=2;
writeln(cl2.l);
cl2.l:=3;
writeln(cl1.l);
Writeln(cl.l);

end.

59

CHAPTER 5. OBJECTS

will be the following

2
3
3

Note that the last line of code references the object type itself (cl), and not an instance of the object
(cl1 or cl2).

5.4 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports constructors and
destructors. The programmer is responsible for calling the constructor and the destructor explicitly
when using objects.

The declaration of a constructor or destructor is as follows:

Constructors and destructors

-- constructor declaration constructor header ; subroutine block -�

-- destructor declaration destructor header ; subroutine block -�

-- constructor header constructor identifier
qualified method identifier

-

- formal parameter list -�

-- destructor header destructor identifier
qualified method identifier

-

- formal parameter list -�

A constructor/destructor pair is required if the object uses virtual methods. The reason is that for an
object with virtual methods, some internal housekeeping must be done: this housekeeping is done by
the constructor1.

In the declaration of the object type, a simple identifier should be used for the name of the constuctor
or destructor. When the constructor or destructor is implemented, a qualified method identifier should
be used, i.e. an identifier of the form objectidentifier.methodidentifier.

Free Pascal supports also the extended syntax of the New and Dispose procedures. In case a
dynamic variable of an object type must be allocated the constructor’s name can be specified in the
call to New. The New is implemented as a function which returns a pointer to the instantiated object.
Consider the following declarations:

Type
TObj = object;
Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

1A pointer to the VMT must be set up.

60

CHAPTER 5. OBJECTS

Then the following 3 calls are equivalent:

pp := new (Pobj,Init);

and

new(pp,init);

and also

new (pp);
pp^.init;

In the last case, the compiler will issue a warning that the extended syntax of new and dispose
must be used to generate instances of an object. It is possible to ignore this warning, but it’s better
programming practice to use the extended syntax to create instances of an object. Similarly, the
Dispose procedure accepts the name of a destructor. The destructor will then be called, before
removing the object from the heap.

In view of the compiler warning remark, the following chapter presents the Delphi approach to
object-oriented programming, and may be considered a more natural way of object-oriented pro-
gramming.

5.5 Methods

Object methods are just like ordinary procedures or functions, only they have an implicit extra pa-
rameter : self. Self points to the object with which the method was invoked. When implementing
methods, the fully qualified identifier must be given in the function header. When declaring methods,
a normal identifier must be given.

5.5.1 Declaration
The declaration of a method is much like a normal function or procedure declaration, with some ad-
ditional specifiers, as can be seen from the following diagram, which is part of the object declaration:

methods

-- method definition function header
procedure header
constructor header
desctuctor header

; method directives -�

-- method directives
virtual ;

abstract ;
call modifiers ;

-�

from the point of view of declarations, Method definitions are normal function or procedure
declarations. Contrary to TP and Delphi, fields can be declared after methods in the same block, i.e.
the following will generate an error when compiling with Delphi or Turbo Pascal, but not with FPC:

61

CHAPTER 5. OBJECTS

Type
MyObj = Object

Procedure Doit;
Field : Longint;

end;

5.5.2 Method invocation
Methods are called just as normal procedures are called, only they have an object instance identifier
prepended to them (see also chapter 13, page 128). To determine which method is called, it is
necessary to know the type of the method. We treat the different types in what follows.

Static methods

Static methods are methods that have been declared without a abstract or virtual keyword.
When calling a static method, the declared (i.e. compile time) method of the object is used. For
example, consider the following declarations:

Type
TParent = Object

...
procedure Doit;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls:

Var
ParentA,ParentB : PParent;
Child : PChild;

begin
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Of the three invocations of Doit, only the last one will call TChild.Doit, the other two calls will
call TParent.Doit. This is because for static methods, the compiler determines at compile time
which method should be called. Since ParentB is of type TParent, the compiler decides that
it must be called with TParent.Doit, even though it will be created as a TChild. There may
be times when the method that is actually called should depend on the actual type of the object at
run-time. If so, the method cannot be a static method, but must be a virtual method.

62

CHAPTER 5. OBJECTS

Virtual methods

To remedy the situation in the previous section, virtual methods are created. This is simply done
by appending the method declaration with the virtual modifier. The descendent object can then
override the method with a new implementation by re-declaring the method (with the same parameter
list) using the virtual keyword.

Going back to the previous example, consider the following alternative declaration:

Type
TParent = Object

...
procedure Doit;virtual;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls :

Var
ParentA,ParentB : PParent;
Child : PChild;

begin
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Now, different methods will be called, depending on the actual run-time type of the object. For
ParentA, nothing changes, since it is created as a TParent instance. For Child, the situation
also doesn’t change: it is again created as an instance of TChild.

For ParentB however, the situation does change: Even though it was declared as a TParent, it is
created as an instance of TChild. Now, when the program runs, before calling Doit, the program
checks what the actual type of ParentB is, and only then decides which method must be called.
Seeing that ParentB is of type TChild, TChild.Doit will be called. The code for this run-time
checking of the actual type of an object is inserted by the compiler at compile time.

The TChild.Doit is said to override the TParent.Doit. It is possible to acces the TParent.Doit
from within the varTChild.Doit, with the inherited keyword:

Procedure TChild.Doit;
begin

inherited Doit;
...

end;

63

CHAPTER 5. OBJECTS

In the above example, when TChild.Doit is called, the first thing it does is call TParent.Doit.
The inherited keyword cannot be used in static methods, only on virtual methods.

To be able to do this, the compiler keeps - per object type - a table with virtual methods: the VMT
(Virtual Method Table). This is simply a table with pointers to each of the virtual methods: each
virtual method has its fixed location in this table (an index). The compiler uses this table to look
up the actual method that must be used. When a descendent object overrides a method, the entry
of the parent method is overwritten in the VMT. More information about the VMT can be found in
Programmer’s Guide.

As remarked earlier, objects that have a VMT must be initialized with a constructor: the object
variable must be initialized with a pointer to the VMT of the actual type that it was created with.

Abstract methods

An abstract method is a special kind of virtual method. A method that is declared abstract does
not have an implementation for this method. It is up to inherited objects to override and implement
this method.

From this it follows that a method can not be abstract if it is not virtual (this can be seen from the
syntax diagram). A second consequence is that an instance of an object that has an abstract method
cannot be created directly.

The reason is obvious: there is no method where the compiler could jump to ! A method that is
declared abstract does not have an implementation for this method. It is up to inherited objects
to override and implement this method. Continuing our example, take a look at this:

Type
TParent = Object

...
procedure Doit;virtual;abstract;
...
end;

PParent=^TParent;
TChild = Object(TParent)

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls :

Var
ParentA,ParentB : PParent;
Child : PChild;

begin
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

64

file:../prog/prog.html

CHAPTER 5. OBJECTS

First of all, Line 3 will generate a compiler error, stating that one cannot generate instances of objects
with abstract methods: The compiler has detected that PParent points to an object which has an
abstract method. Commenting line 3 would allow compilation of the program.

Remark: If an abstract method is overridden, the parent method cannot be called with inherited, since
there is no parent method; The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can’t be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-time error will
occur. (run-time error 211, to be precise)

5.6 Visibility

For objects, 3 visibility specifiers exist : private, protected and public. If a visibility speci-
fier is not specified, public is assumed. Both methods and fields can be hidden from a programmer
by putting them in a private section. The exact visibility rule is as follows:

Private All fields and methods that are in a private block, can only be accessed in the module
(i.e. unit or program) that contains the object definition. They can be accessed from inside the
object’s methods or from outside them e.g. from other objects’ methods, or global functions.

Protected Is the same as Private, except that the members of a Protected section are also
accessible to descendent types, even if they are implemented in other modules.

Public fields and methods are always accessible, from everywhere. Fields and methods in a public
section behave as though they were part of an ordinary record type.

65

Chapter 6

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around the concept
of ’Classes’. A class can be seen as a pointer to an object, or a pointer to a record, with methods
associated with it.

The difference between objects and classes is mainly that an object is allocated on the stack, as
an ordinary record would be, and that classes are always allocated on the heap. In the following
example:

Var
A : TSomeObject; // an Object
B : TSomeClass; // a Class

The main difference is that the variable A will take up as much space on the stack as the size of the
object (TSomeObject). The variable B, on the other hand, will always take just the size of a pointer
on the stack. The actual class data is on the heap.

From this, a second difference follows: a class must always be initialized through its constructor,
whereas for an object, this is not necessary. Calling the constructor allocates the necessary memory
on the heap for the class instance data.

Remark: In earlier versions of Free Pascal it was necessary, in order to use classes, to put the objpas unit in the
uses clause of a unit or program. This is no longer needed as of version 0.99.12. As of this version,
the unit will be loaded automatically when the -MObjfpc or -MDelphi options are specified, or
their corresponding directives are used:

{$mode objfpc}
{$mode delphi}

In fact, the compiler will give a warning if it encounters the objpas unit in a uses clause.

6.1 Class definitions

The prototype declaration of a class is as follows:

Class types

--

packed
class

heritage
6
component list

end -�

66

CHAPTER 6. CLASSES

-- heritage (class type identifier
implemented interfaces

) -�

-- implemented interfaces
6
, interface identifier -�

-- component list
visibility specifier

6
field definition

-

-

6
const declaration part
type declaration part

variable declaration part
class variable declaration part

method definition
property definition

-�

-- class variable declaration part class variable declaration part -�

-- field definition identifier list : type ;
static;

-�

-- method definition
class

function header
procedure header

constructor header
desctuctor header

; -

-

virtual
dynamic ; abstract

override
message integer constant

string constant

; call modifiers ;
-�

-- class visibility specifier

strict
private

protected
public

published

-�

Remark: In MacPas mode, the Object keyword is replaced by the class keyword for compatibility with
other pascal compilers available on the Mac. That means that in MacPas mode, the reserved word
’class’ in the above diagram may be replaced by the reserved word ’object’.

In a class declaration, as many private, protected, published and public blocks as
needed can be used: the various blocks can be repeated, and there is no special order in which
they must appear.

Methods are normal function or procedure declarations. As can be seen, the declaration of a class is
almost identical to the declaration of an object. The real difference between objects and classes is in
the way they are created (see further in this chapter).

The visibility of the different sections is as follows:

Private All fields and methods that are in a private block, can only be accessed in the module
(i.e. unit) that contains the class definition. They can be accessed from inside the classes’
methods or from outside them (e.g. from other classes’ methods)

67

CHAPTER 6. CLASSES

Strict Private All fields and methods that are in a strict private block, can only be accessed
from methods of the class itself. Other classes or descendent classes (even in the same unit)
cannot access strict private members.

Protected Is the same as Private, except that the members of a Protected section are also
accessible to descendent types, even if they are implemented in other modules.

Public sections are always accessible.

Published Is the same as a Public section, but the compiler generates also type information that
is needed for automatic streaming of these classes if the compiler is in the {$M+} state. Fields
defined in a published section must be of class type. Array properties cannot be in a
published section.

In the syntax diagram, it can be seen that a class can list implemented interfaces. This feature will be
discussed in the next chapter.

Classes can contain Class methods: these are functions that do not require an instance. The Self
identifier is valid in such methods, but refers to the class pointer (the VMT).

Similar to objects, if the {$STATIC ON} directive is active, then a class can contain static fields:
these fields are global to the class, and act like global variables, but are known only as part of the
class. They can be referenced from within the classes’ methods, but can also be referenced from
outside the class by providing the fully qualified name.

For instance, the output of the following program:

{$mode objfpc}
{$static on}
type

cl=class
l : longint;static;

end;
var

cl1,cl2 : cl;
begin

cl1:=cl.create;
cl2:=cl.create;
cl1.l:=2;
writeln(cl2.l);
cl2.l:=3;
writeln(cl1.l);
Writeln(cl.l);

end.

will be the following

2
3
3

Note that the last line of code references the class type itself (cl), and not an instance of the class
(cl1 or cl2).

It is also possible to define class reference types:

Class reference type

68

CHAPTER 6. CLASSES

-- class of classtype -�

Class reference types are used to create instances of a certain class, which is not yet known at compile
time, but which is specified at run time. Essentially, a variable of a class reference type contains a
pointer to the definition of the speficied class. This can be used to construct an instance of the class
corresponding to the definition, or to check inheritance. The following example shows how it works:

Type
TComponentClass = Class of TComponent;

Function CreateComponent(AClass: TComponentClass;
AOwner: TComponent): TComponent;

begin
// ...
Result:=AClass.Create(AOwner);
// ...

end;

This function can be passed a class reference of any class that descends from TComponent. The
following is a valid call:

Var
C : TComponent;

begin
C:=CreateComponent(TEdit,Form1);

end;

On return of the CreateComponent function, Cwill contain an instance of the class TEdit. Note
that the following call will fail to compile:

Var
C : TComponent;

begin
C:=CreateComponent(TStream,Form1);

end;

because TStream does not descend from TComponent, and AClass refers to a TComponent
class. The compiler can (and will) check this at compile time, and will produce an error.

References to classes can also be used to check inheritance:

TMinClass = Class of TMyClass;
TMaxClass = Class of TMyClassChild;

Function CheckObjectBetween(Instance : TObject) : boolean;

begin
If not (Instance is TMinClass)

or ((Instance is TMaxClass)
and (Instance.ClassType<>TMaxClass)) then

Raise Exception.Create(SomeError)
end;

69

CHAPTER 6. CLASSES

The above example will raise an exception if the passed instance is not a descendent of TMinClass
or a descendent if TMaxClass.

More about instantiating a class can be found in the next section.

6.2 Class instantiation

Classes must be created using one of their constructors (there can be multiple constructors). Remem-
ber that a class is a pointer to an object on the heap. When a variable of some class is declared, the
compiler just allocates room for this pointer, not the entire object. The constructor of a class returns a
pointer to an initialized instance of the object on the heap. So, to initialize an instance of some class,
one would do the following :

ClassVar := ClassType.ConstructorName;

The extended syntax of new and dispose can not be used to instantiate and destroy class instances.
That construct is reserved for use with objects only. Calling the constructor will provoke a call to
getmem, to allocate enough space to hold the class instance data. After that, the constuctor’s code
is executed. The constructor has a pointer to its data, in Self.

Remark:

• The {$PackRecords } directive also affects classes, i.e. the alignment in memory of the
different fields depends on the value of the {$PackRecords } directive.

• Just as for objects and records, a packed class can be declared. This has the same effect as on
an object, or record, namely that the elements are aligned on 1-byte boundaries, i.e. as close
as possible.

• SizeOf(class) will return the same as SizeOf(Pointer), since a class is a pointer
to an object. To get the size of the class instance data, use the TObject.InstanceSize
method.

6.3 Methods

6.3.1 Declaration
Declaration of methods in classes follows the same rules as method declarations in objects:

methods

-- method definition function header
procedure header
constructor header
desctuctor header

; method directives -�

-- method directives
virtual ;

abstract ;
reintroduce ;

message constant expression

call modifiers ;
-�

70

CHAPTER 6. CLASSES

6.3.2 invocation
Method invocation for classes is no different than for objects. The following is a valid method
invocation:

Var AnObject : TAnObject;
begin

AnObject := TAnObject.Create;
ANobject.AMethod;

6.3.3 Virtual methods
Classes have virtual methods, just as objects do. There is however a difference between the two.
For objects, it is sufficient to redeclare the same method in a descendent object with the keyword
virtual to override it. For classes, the situation is different: virtual methods must be overridden
with the override keyword. Failing to do so, will start a new batch of virtual methods, hiding the
previous one. The Inherited keyword will not jump to the inherited method, if Virtual was
used.

The following code is wrong:

Type
ObjParent = Class

Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)

Procedure MyProc; virtual;
end;

The compiler will produce a warning:

Warning: An inherited method is hidden by OBJCHILD.MYPROC

The compiler will compile it, but using Inherited can produce strange effects.

The correct declaration is as follows:

Type
ObjParent = Class

Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)

Procedure MyProc; override;
end;

This will compile and run without warnings or errors.

If the virtual method should really be replaced with a method with the same name, then the reintroduce
keyword can be used:

Type
ObjParent = Class

Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)

Procedure MyProc; reintroduce;
end;

71

CHAPTER 6. CLASSES

This new method is no longer virtual.

To be able to do this, the compiler keeps - per class type - a table with virtual methods: the VMT
(Virtual Method Table). This is simply a table with pointers to each of the virtual methods: each
virtual method has its fixed location in this table (an index). The compiler uses this table to look
up the actual method that must be used at runtime. When a descendent object overrides a method,
the entry of the parent method is overwritten in the VMT. More information about the VMT can be
found in Programmer’s Guide.

Remark: The keyword ’virtual’ can be replaced with the ’dynamic’ keyword: dynamic methods behave the
same as virtual methods. Unlike in Delphi, in FPC the implementation of dynamic methods is equal
to the implementation of virtual methods.

6.3.4 Class methods
Class methods are identified by the keyword Class in front of the procedure or function declaration,
as in the following example:

Class Function ClassName : String;

Class methods are methods that do not have an instance (i.e. Self does not point to a class instance)
but which follow the scoping and inheritance rules of a class. They can be used to return information
about the current class, for instance for registration or use in a class factory. Since no instance is
available, no information available in instances can be used.

Class methods can be called from inside a regular method, but can also be called using a class
identifier:

Var
AClass : TClass;

begin
..
if CompareText(AClass.ClassName,’TCOMPONENT’)=0 then
...

But calling them from an instance is also possible:

Var
MyClass : TObject;

begin
..
if MyClass.ClassNameis(’TCOMPONENT’) then
...

The reverse is not possible: Inside a class method, the Self identifier points to the VMT table of
the class. No fields, properties or regular methods are available inside a class method. Accessing a
regular property or method will result in a compiler error.

Note that class methods can be virtual, and can be overridden.

Class methods cannot be used as read or write specifiers for a property.

72

file:../prog/prog.html

CHAPTER 6. CLASSES

6.3.5 Message methods
New in classes are message methods. Pointers to message methods are stored in a special table,
together with the integer or string constant that they were declared with. They are primarily intended
to ease programming of callback functions in several GUI toolkits, such as Win32 or GTK. In dif-
ference with Delphi, Free Pascal also accepts strings as message identifiers. Message methods are
always virtual.

As can be seen in the class declaration diagram, message methods are declared with a Message
keyword, followed by an integer constant expression.

Additionally, they can take only one var argument (typed or not):

Procedure TMyObject.MyHandler(Var Msg); Message 1;

The method implementation of a message function is not different from an ordinary method. It is also
possible to call a message method directly, but this should not be done. Instead, the TObject.Dispatch
method should be used. Message methods are automatically virtual, i.e. they can be overridden in
descendent classes.

The TObject.Dispatch method can be used to call a message handler. It is declared in the
system unit and will accept a var parameter which must have at the first position a cardinal with the
message ID that should be called. For example:

Type
TMsg = Record

MSGID : Cardinal;
Data : Pointer;

Var
Msg : TMSg;

MyObject.Dispatch (Msg);

In this example, the Dispatch method will look at the object and all its ancestors (starting at the
object, and searching up the inheritance class tree), to see if a message method with message MSGID
has been declared. If such a method is found, it is called, and passed the Msg parameter.

If no such method is found, DefaultHandler is called. DefaultHandler is a virtual method
of TObject that doesn’t do anything, but which can be overridden to provide any processing that
might be needed. DefaultHandler is declared as follows:

procedure DefaultHandler(var message);virtual;

In addition to the message method with a Integer identifier, Free Pascal also supports a message
method with a string identifier:

Procedure TMyObject.MyStrHandler(Var Msg); Message ’OnClick’;

The working of the string message handler is the same as the ordinary integer message handler:

The TObject.DispatchStr method can be used to call a message handler. It is declared in
the system unit and will accept one parameter which must have at the first position a short string
with the message ID that should be called. For example:

Type
TMsg = Record

MsgStr : String[10]; // Arbitrary length up to 255 characters.
Data : Pointer;

73

CHAPTER 6. CLASSES

Var
Msg : TMSg;

MyObject.DispatchStr (Msg);

In this example, the DispatchStr method will look at the object and all its ancestors (starting at
the object, and searching up the inheritance class tree), to see if a message method with message
MsgStr has been declared. If such a method is found, it is called, and passed the Msg parameter.

If no such method is found, DefaultHandlerStr is called. DefaultHandlerStr is a virtual
method of TObject that doesn’t do anything, but which can be overridden to provide any processing
that might be needed. DefaultHandlerStr is declared as follows:

procedure DefaultHandlerStr(var message);virtual;

In addition to this mechanism, a string message method accepts a self parameter:

Procedure StrMsgHandler(Data: Pointer;
Self: TMyObject); Message ’OnClick’;

When encountering such a method, the compiler will generate code that loads the Self parameter
into the object instance pointer. The result of this is that it is possible to pass Self as a parameter to
such a method.

Remark: The type of the Self parameter must be of the same class as the class the method is defined in.

6.3.6 Using inherited
In an overridden virtual method, it is often necessary to call the parent class’ implementation of
the virtual method. This can be done with the inherited keyword. Likewise, the inherited
keyword can be used to call any method of the parent class.

The first case is the simplest:

Type
TMyClass = Class(TComponent)

Constructor Create(AOwner : TComponent); override;
end;

Constructor TMyClass.Create(AOwner : TComponent);

begin
Inherited;
// Do more things

end;

In the above example, the Inherited statement will call Create of TComponent, passing it
AOwner as a parameter: the same parameters that were passed to the current method will be passed
to the parent’s method. They must not be specified again: if none are specified, the compiler will
pass the same arguments as the ones received.

The second case is slightly more complicated:

Type
TMyClass = Class(TComponent)

Constructor Create(AOwner : TComponent); override;

74

CHAPTER 6. CLASSES

Constructor CreateNew(AOwner : TComponent; DoExtra : Boolean);
end;

Constructor TMyClass.Create(AOwner : TComponent);
begin

Inherited;
end;

Constructor TMyClass.CreateNew(AOwner : TComponent; DoExtra : Boolean);
begin

Inherited Create(AOwner);
// Do stuff

end;

The CreateNew method will first call TComponent.Create and will pass it AOwner as a
parameter. It will not call TMyClass.Create.

Although the examples were given using constructors, the use of inherited is not restricted to
constructors, it can be used for any procedure or function or destructor as well.

6.4 Properties

6.4.1 Definition
Classes can contain properties as part of their fields list. A property acts like a normal field, i.e. its
value can be retrieved or set, but it allows to redirect the access of the field through functions and
procedures. They provide a means to associate an action with an assignment of or a reading from
a class ’field’. This allows e.g. checking that a value is valid when assigning, or, when reading, it
allows to construct the value on the fly. Moreover, properties can be read-only or write only. The
prototype declaration of a property is as follows:

Properties

-- property definition class property identifier
property interface

-

- property specifiers hintdirective -�

-- property interface
property parameter list

: type identifier -

-

index integerconstant
-�

-- property parameter list [
6
parameter declaration

;
] -�

-- property specifiers
read specifier write specifier

implements specifier

-

-

default specifier stored specifier defaultarraypropertyspecifier
-�

-- read specifier read field or method -�

-- write specifier write field or method -�

75

CHAPTER 6. CLASSES

-- implements specifier implements identifier -�

-- default specifier default
constant

nodefault

-�

-- stored specifier stored constant
identifier

-�

-- field or method field identifier
method identifier

-�

-- defaultarraypropertyspecifier ; default -�

A read specifier is either the name of a field that contains the property, or the name of a
method function that has the same return type as the property type. In the case of a simple type, this
function must not accept an argument. In case of an array property, the function must accept a single
argument of the same type as the index. In case of an indexed property, it must accept a integer as an
argument.

A read specifier is optional, making the property write-only. Note that class methods cannot
be used as read specifiers.

A write specifier is optional: If there is no write specifier, the property is read-only.
A write specifier is either the name of a field, or the name of a method procedure that accepts as a sole
argument a variable of the same type as the property. In case of an array property, the procedure must
accept 2 arguments: the first argument must have the same type as the index, the second argument
must be of the same type as the property. Similarly, in case of an indexed property, the first parameter
must be an integer.

The section (private, published) in which the specified function or procedure resides is irrel-
evant. Usually, however, this will be a protected or private method.

For example, given the following declaration:

Type
MyClass = Class

Private
Field1 : Longint;
Field2 : Longint;
Field3 : Longint;
Procedure Sety (value : Longint);
Function Gety : Longint;
Function Getz : Longint;
Public
Property X : Longint Read Field1 write Field2;
Property Y : Longint Read GetY Write Sety;
Property Z : Longint Read GetZ;
end;

Var
MyClass : TMyClass;

The following are valid statements:

76

CHAPTER 6. CLASSES

WriteLn (’X : ’,MyClass.X);
WriteLn (’Y : ’,MyClass.Y);
WriteLn (’Z : ’,MyClass.Z);
MyClass.X := 0;
MyClass.Y := 0;

But the following would generate an error:

MyClass.Z := 0;

because Z is a read-only property.

What happens in the above statements is that when a value needs to be read, the compiler inserts a call
to the various getNNN methods of the object, and the result of this call is used. When an assignment
is made, the compiler passes the value that must be assigned as a paramater to the various setNNN
methods.

Because of this mechanism, properties cannot be passed as var arguments to a function or procedure,
since there is no known address of the property (at least, not always).

6.4.2 Indexed properties
If the property definition contains an index, then the read and write specifiers must be a function and
a procedure. Moreover, these functions require an additional parameter : An integer parameter. This
allows to read or write several properties with the same function. For this, the properties must have
the same type. The following is an example of a property with an index:

{$mode objfpc}
Type

TPoint = Class(TObject)
Private

FX,FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);

Public
Property X : Longint index 1 read GetCoord Write SetCoord;
Property Y : Longint index 2 read GetCoord Write SetCoord;
Property Coords[Index : Integer]:Longint Read GetCoord;

end;

Procedure TPoint.SetCoord (Index : Integer; Value : Longint);
begin

Case Index of
1 : FX := Value;
2 : FY := Value;

end;
end;

Function TPoint.GetCoord (INdex : Integer) : Longint;
begin

Case Index of
1 : Result := FX;
2 : Result := FY;

end;
end;

77

CHAPTER 6. CLASSES

Var
P : TPoint;

begin
P := TPoint.create;
P.X := 2;
P.Y := 3;
With P do

WriteLn (’X=’,X,’ Y=’,Y);
end.

When the compiler encounters an assignment to X, then SetCoord is called with as first parameter
the index (1 in the above case) and with as a second parameter the value to be set. Conversely, when
reading the value of X, the compiler calls GetCoord and passes it index 1. Indexes can only be
integer values.

6.4.3 Array properties
Array properties also exist. These are properties that accept an index, just as an array does. Only
now the index doesn’t have to be an ordinal type, but can be any type.

A read specifier for an array property is the name method function that has the same return
type as the property type. The function must accept as a sole arguent a variable of the same type as
the index type. For an array property, one cannot specify fields as read specifiers.

A write specifier for an array property is the name of a method procedure that accepts two
arguments: the first argument has the same type as the index, and the second argument is a parameter
of the same type as the property type. As an example, see the following declaration:

Type
TIntList = Class
Private

Function GetInt (I : Longint) : longint;
Function GetAsString (A : String) : String;
Procedure SetInt (I : Longint; Value : Longint;);
Procedure SetAsString (A : String; Value : String);

Public
Property Items [i : Longint] : Longint Read GetInt

Write SetInt;
Property StrItems [S : String] : String Read GetAsString

Write SetAsstring;
end;

Var
AIntList : TIntList;

Then the following statements would be valid:

AIntList.Items[26] := 1;
AIntList.StrItems[’twenty-five’] := ’zero’;
WriteLn (’Item 26 : ’,AIntList.Items[26]);
WriteLn (’Item 25 : ’,AIntList.StrItems[’twenty-five’]);

While the following statements would generate errors:

78

CHAPTER 6. CLASSES

AIntList.Items[’twenty-five’] := 1;
AIntList.StrItems[26] := ’zero’;

Because the index types are wrong.

6.4.4 Default properties
Array properties can be declared as default properties. This means that it is not necessary to
specify the property name when assigning or reading it. In the previous example, if the definition of
the items property would have been

Property Items[i : Longint]: Longint Read GetInt
Write SetInt; Default;

Then the assignment

AIntList.Items[26] := 1;

Would be equivalent to the following abbreviation.

AIntList[26] := 1;

Only one default property per class is allowed, and descendent classes cannot redeclare the default
property.

6.4.5 Storage information
The stored specifier should be either a boolean constant, a boolean field of the class, or a parameter-
less function which returns a boolean result. This specifier has no result on the class behaviour. It
is an aid for the streaming system: the stored specifier is specified in the RTTI generated for a class
(it can only be streamed if RTTI is generated), and is used to determine whether a property should
be streamed or not: it saves space in a stream. It is not possible to specify the ’Stored’ directive for
array properties.

The default specifier can be specified for ordinal types and sets. It serves the same purpose as the
stored specifier: properties that have as value their default value, will not be written to the stream by
the streaming system. The default value is stored in the RTTI that is generated for the class. Note
that

1. When the class is instantiated, the default value is not automatically applied to the property, it
is the responsability of the programmer to do this in the constructor of the class.

2. The value 2147483648 cannot be used as a default value, as it is used internally to denote
nodefault.

3. It is not possible to specify a default for array properties.

The nodefault specifier (nodefault) must be used to indicate that a property has no default value.
The effect is that the value of this property is always written to the stream when streaming the
property.

79

CHAPTER 6. CLASSES

6.4.6 Overriding properties
Properties can be overridden in descendent classes, just like methods. The difference is that for
properties, the overriding can always be done: properties should not be marked ’virtual’ so they can
be overridden, they are always overridable (in this sense, properties are always ’virtual’). The type
of the overridden property does not have to be the same as the parents class property type.

Since they can be overridden, the keyword ’inherited’ can also be used to refer to the parent definition
of the property. For example consider the following code:

type
TAncestor = class
private

FP1 : Integer;
public

property P: integer Read FP1 write FP1;
end;

TClassA = class(TAncestor)
private

procedure SetP(const AValue: char);
function getP : Char;

public
constructor Create;
property P: char Read GetP write SetP;

end;

procedure TClassA.SetP(const AValue: char);

begin
Inherited P:=Ord(AValue);

end;

procedure TClassA.GetP : char;

begin
Result:=Char((Inherited P) and $FF);

end;

TClassA redefines P as a character property instead of an integer property, but uses the parents P
property to store the value.

Care must be taken when using virtual get/set routines for a property: setting the inherited property
still observes the normal rules of inheritance for methods. Consider the following example:

type
TAncestor = class
private

procedure SetP1(const AValue: integer); virtual;
public

property P: integer write SetP1;
end;

TClassA = class(TAncestor)
private

procedure SetP1(const AValue: integer); override;

80

CHAPTER 6. CLASSES

procedure SetP2(const AValue: char);
public

constructor Create;
property P: char write SetP2;

end;

constructor TClassA.Create;
begin

inherited P:=3;
end;

In this case, when setting the inherited property P, the implementation TClassA.SetP1 will be
called, because the SetP1 method is overridden.

If the parent class implementation of SetP1 must be called, then this must be called explicitly:

constructor TClassA.Create;
begin

inherited SetP1(3);
end;

6.5 Nested types and variables

81

Chapter 7

Interfaces

7.1 Definition

As of version 1.1, FPC supports interfaces. Interfaces are an alternative to multiple inheritance
(where a class can have multiple parent classes) as implemented for instance in C++. An interface
is basically a named set of methods and properties: a class that implements the interface provides
all the methods as they are enumerated in the Interface definition. It is not possible for a class to
implement only part of the interface: it is all or nothing.

Interfaces can also be ordered in a hierarchy, exactly as classes: an interface definition that inherits
from another interface definition contains all the methods from the parent interface, as well as the
methods explicitly named in the interface definition. A class implementing an interface must then
implement all members of the interface as well as the methods of the parent interface(s).

An interface can be uniquely identified by a GUID. GUID is an acronym for Globally Unique Iden-
tifier, a 128-bit integer guaranteed always to be unique1. Especially on Windows systems, the GUID
of an interface can and must be used when using COM.

The definition of an Interface has the following form:

Interface type

-- Interface
heritage [’ GUID ’] component list

end -�

-- heritage (interface type identifier) -�

-- component list
6

method definition
property definition

-�

Along with this definition the following must be noted:

• Interfaces can only be used in DELPHI mode or in OBJFPC mode.

• There are no visibility specifiers. All members are public (indeed, it would make little sense
to make them private or protected).

1In theory, of course.

82

CHAPTER 7. INTERFACES

• The properties declared in an interface can only have methods as read and write specifiers.

• There are no constructors or destructors. Instances of interfaces cannot be created directly:
instead, an instance of a class implementing the interface must be created.

• Only calling convention modifiers may be present in the definition of a method. Modifiers
as virtual, abstract or dynamic, and hence also override cannot be present in the
interface definition.

The following are examples of interfaces:

IUnknown = interface [’{00000000-0000-0000-C000-000000000046}’]
function QueryInterface(const iid : tguid;out obj) : longint;
function _AddRef : longint;
function _Release : longint;

end;
IInterface = IUnknown;

IMyInterface = Interface
Function MyFunc : Integer;
Function MySecondFunc : Integer;

end;

As can be seen, the GUID identifying the interface is optional.

7.2 Interface identification: A GUID

An interface can be identified by a GUID. This is a 128-bit number, which is represented in a text
representation (a string literal):

[’{HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH}’]

Each H character represents a hexadecimal number (0-9,A-F). The format contains 8-4-4-4-12 num-
bers. A GUID can also be represented by the following record, defined in the objpas unit (included
automatically when in DELPHI or OBJFPC mode):

PGuid = ^TGuid;
TGuid = packed record

case integer of
1 : (

Data1 : DWord;
Data2 : word;
Data3 : word;
Data4 : array[0..7] of byte;

);
2 : (

D1 : DWord;
D2 : word;
D3 : word;
D4 : array[0..7] of byte;

);
end;

A constant of type TGUID can be specified using a string literal:

83

CHAPTER 7. INTERFACES

{$mode objfpc}
program testuid;

Const
MyGUID : TGUID = ’{10101010-1010-0101-1001-110110110110}’;

begin
end.

Normally, the GUIDs are only used in Windows, when using COM interfaces. More on this in the
next section.

7.3 Interface implementations

When a class implements an interface, it should implement all methods of the interface. If a method
of an interface is not implemented, then the compiler will give an error. For example:

Type
IMyInterface = Interface

Function MyFunc : Integer;
Function MySecondFunc : Integer;

end;

TMyClass = Class(TInterfacedObject,IMyInterface)
Function MyFunc : Integer;
Function MyOtherFunc : Integer;

end;

Function TMyClass.MyFunc : Integer;

begin
Result:=23;

end;

Function TMyClass.MyOtherFunc : Integer;

begin
Result:=24;

end;

will result in a compiler error:

Error: No matching implementation for interface method
"IMyInterface.MySecondFunc:LongInt" found

Normally, the names of the methods that implement an interface, must equal the names of the meth-
ods in the interface definition.

However, it is possible to provide aliases for methods that make up an interface: that is, the compiler
can be told that a method of an interface is implemented by an existing method with a different name.
This is done as follows:

Type

84

CHAPTER 7. INTERFACES

IMyInterface = Interface
Function MyFunc : Integer;

end;

TMyClass = Class(TInterfacedObject,IMyInterface)
Function MyOtherFunction : Integer;
// The following fails in FPC.
Function IMyInterface.MyFunc = MyOtherFunction;

end;

This declaration tells the compiler that the MyFunc method of the IMyInterface interface is
implemented in the MyOtherFunction method of the TMyClass class.

7.4 Interfaces and COM

When using interfaces on Windows which should be available to the COM subsystem, the calling
convention should be stdcall - this is not the default Free Pascal calling convention, so it should
be specified explicitly.

COM does not know properties. It only knows methods. So when specifying property definitions
as part of an interface definition, be aware that the properties will only be known in the Free Pascal
compiled program: other Windows programs will not be aware of the property definitions.

7.5 CORBA and other Interfaces

COM is not the only architecture where interfaces are used. CORBA knows interfaces, UNO (the
OpenOffice API) uses interfaces, and Java as well. These languages do not know the IUnknown
interface used as the basis of all interfaces in COM. It would therefore be a bad idea if an inter-
face automatically descended from IUnknown if no parent interface was specified. Therefore, a
directive {$INTERFACES} was introduced in Free Pascal: it specifies what the parent interface is
of an interface, declared without parent. More information about this directive can be found in the
Programmer’s Guide.

Note that COM interfaces are by default reference counted, because they descend from IUnknown.

Corba interfaces are identified by a simple string so they are assignment compatible with strings
and not with TGUID. The compiler does not do any automatic reference counting for the CORBA
interfaces, so the programmer is responsible for any reference bookkeeping.

7.6 Reference counting

All COM interfaces use reference counting. This means that whenever an interface is assigned to
a variable, it’s reference count is updated. Whenever the variable goes out of scope, the reference
count is automatically decreased. When the reference count reaches zero, usually the instance of the
class that implements the interface, is freed.

Care must be taken with this mechanism. The compiler may or may not create temporary variables
when evaluating expressions, and assign the interface to a temporary variable, and only then assign
the temporary variable to the actual result variable. No assumptions should be made about the number
of temporary variables or the time when they are finalized - this may (and indeed does) differ from
the way other compilers (e.g. Delphi) handle expressions with interfaces. E.g. a type cast is also an
expression:

85

file:../prog/prog.html

CHAPTER 7. INTERFACES

Var
B : AClass;

begin
// ...
AInterface(B.Intf).testproc;
// ...

end;

Assume the interface intf is reference counted. When the compiler evaluates B.Intf, it creates a
temporary variable. This variable may be released only when the procedure exits: it is therefor invalid
to e.g. free the instance B prior to the exit of the procedure, since when the temporary variable is
finalized, it will attempt to free B again.

86

Chapter 8

Generics

8.1 Introduction

Generics are templates for generating classes. It is a concept that comes from C++, where it is deeply
integrated in the language. As of version 2.2, Free Pascal also officially has support for templates or
Generics. They are implemented as a kind of macro which is stored in the unit files that the compiler
generates, and which is replayed as soon as a generic class is specialized.

Currently, only generic classes can be defined. Later, support for generic records, functions and
arrays may be introduced.

Creating and using generics is a 2-phase process.

1. The definition of the generic class is defined as a new type: this is a code template, a macro
which can be replayed by the compiler at a later stage.

2. A generic class is specialized: this defines a second class, which is a specific implementation
of the generic class: the compiler replays the macro which was stored when the generic class
was defined.

8.2 Generic class definition

A generic class definition is much like a class definition, with the exception that it contains a list of
placeholders for types, and can contain a series of local variable blocks or local type blocks, as can
be seen in the following syntax diagram:

Generic class types

-- generic type generic identifier < template list > = generic class ; -�

-- template list
6
identifier

,
-�

-- generic class
packed

class
heritage

6
local type block

local variable block
component list

-�

87

CHAPTER 8. GENERICS

-- local type block type visibility specifier
6
type declaration ; -�

-- local variable block var visibility specifier
6
variable declaration ; -�

The generic class declaration should be followed by a class implementation. It is the same as a
normal class implementation with a single exception, namely that any identifier with the same name
as one of the template identifiers must be a type identifier.

The generic class declaration is much like a normal class declaration, except for the local variable
and local type block. The local type block defines types that are type placeholders: they are not
actualized until the class is specialized.

The local variable block is just an alternate syntax for ordinary class fields. The reason for introducing
is the introduction of the Type block: just as in a unit or function declaration, a class declaration can
now have a local type and variable block definition.

The following is a valid generic class definition:

Type
generic TList<_T>=class(TObject)

type public
TCompareFunc = function(const Item1, Item2: _T): Integer;

var public
data : _T;

procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

This class could be followed by an implementation as follows:

procedure TList.Add(item: _T);
begin

data:=item;
end;

procedure TList.Sort(compare: TCompareFunc);
begin

if compare(data, 20) <= 0 then
halt(1);

end;

There are some noteworthy things about this declaration and implementation:

1. There is a single placeholder _T. It will be substituted by a type identifier when the generic
class is specialized. The identifier _T may not be used for anything else than a placehoder.
This means that the following would be invalid:

procedure TList.Sort(compare: TCompareFunc);

Var
_t : integer;

begin

88

CHAPTER 8. GENERICS

// do something.
end;

2. The local type block contains a single type TCompareFunc. Note that the actual type is not
yet known inside the generic class definition: the definition contains a reference to the place-
holder _T. All other identifier references must be known when the generic class is defined, not
when the generic class is specialized.

3. The local variable block is equivalent to the following:

generic TList<_T>=class(TObject)
type public

TCompareFunc = function(const Item1, Item2: _T): Integer;
Public

data : _T;
procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

4. Both the local variable block and local type block have a visibility specifier. This is optional;
if it is omitted, the current visibility is used.

8.3 Generic class specialization

Once a generic class is defined, it can be used to generate other classes: this is like replaying the
definition of the class, with the template placeholders filled in with actual type definitions.

This can be done in any Type definition block. The specialized type looks as follows:

Specialized type

-- specialized type specialize identifier < type identifier list > -�

-- type identifier list
6
identifier

,
-�

Which is a very simple definition. Given the declaration of TList in the previous section, the
following would be a valid type definition:

Type
TPointerList = specialize TList<Pointer>;
TIntegerList = specialize TList<Integer>;

The following is not allowed:

Var
P : specialize TList<Pointer>;

that is, a variable cannot be directly declared using a specialization.

The type in the specialize statement must be known. Given the 2 generic class definitions:

89

CHAPTER 8. GENERICS

type
Generic TMyFirstType<T1> = Class(TMyObject);
Generic TMySecondType<T2> = Class(TMyOtherObject);

Then the following specialization is not valid:

type
TMySpecialType = specialize TMySecondType<TMyFirstType>;

because the type TMyFirstType is a generic type, and thus not fully defined. However, the fol-
lowing is allowed:

type
TA = specialize TMyFirstType<Atype>;
TB = specialize TMySecondType<TA>;

because TA is already fully defined when TB is specialized.

Note that 2 specializations of a generic type with the same types in a placeholder are not assignment
compatible. In the following example:

type
TA = specialize TList<Pointer>;
TB = specialize TList<Pointer>;

variables of types TA and TB cannot be assigned to each other, i.e the following assignment will be
invalid:

Var
A : TA;
B : TB;

begin
A:=B;

Remark: It is not possible to make a forward definition of a generic class. The compiler will generate an error
if a forward declaration of a class is later defined as a generic specialization.

8.4 A word about scope

It should be stressed that all identifiers other than the template placeholders should be known when
the generic class is declared. This works in 2 ways. First, all types must be known, that is, a type
identifier with the same name must exist. The following unit will produce an error:

unit myunit;

interface

type
Generic TMyClass<T> = Class(TObject)

Procedure DoSomething(A : T; B : TSomeType);
end;

90

CHAPTER 8. GENERICS

Type
TSomeType = Integer;
TSomeTypeClass = specialize TMyClass<TSomeType>;

Implementation

Procedure TMyClass.DoSomething(A : T; B : TSomeType);

begin
// Some code.

end;

end.

The above code will result in an error, because the type TSomeType is not known when the decla-
ration is parsed:

home: >fpc myunit.pp
myunit.pp(8,47) Error: Identifier not found "TSomeType"
myunit.pp(11,1) Fatal: There were 1 errors compiling module, stopping

The second way in which this is visible, is the following. Assume a unit

unit mya;

interface

type
Generic TMyClass<T> = Class(TObject)

Procedure DoSomething(A : T);
end;

Implementation

Procedure DoLocalThings;

begin
Writeln(’mya.DoLocalThings’);

end;

Procedure TMyClass.DoSomething(A : T);

begin
DoLocalThings;

end;

end.

and a program

program myb;

91

CHAPTER 8. GENERICS

uses mya;

procedure DoLocalThings;

begin
Writeln(’myb.DoLocalThings’);

end;

Type
TB = specialize TMyClass<Integer>;

Var
B : TB;

begin
B:=TB.Create;
B.DoSomething(1);

end.

Despite the fact that generics act as a macro which is replayed at specialization time, the reference
to DoLocalThings is resolved when TMyClass is defined, not when TB is defined. This means
that the output of the program is:

home: >fpc -S2 myb.pp
home: >myb
mya.DoLocalThings

This is dictated by safety and necessity:

1. A programmer specializing a class has no way of knowing which local procedures are used, so
he cannot accidentally ’override’ it.

2. A programmer specializing a class has no way of knowing which local procedures are used, so
he cannot implement it either, since he does not know the parameters.

3. If implementation procedures are used as in the example above, they cannot be referenced from
outside the unit. They could be in another unit altogether, and the programmer has no way of
knowing he should include them before specializing his class.

92

Chapter 9

Extended records

9.1 Definition

Extended records are in many ways equivalent to objects and to a lesser extent to classes: they are
records which have methods associated with them, and properties. Like objects, when defined as a
variable they are allocated on the stack. They do not need to have a constructor. Extended records
have limitations over objects and classes in that they do not allow inheritance and polymorphism. It
is impossible to create a descendant record of a record1.

Why then introduce extended records ? They were introduced by Delphi 2005 to support one of
the features introduced by .NET. Delphi no longer supports the old TP style of objects, and so re-
introduced the features of .NET as extended records. Free Pascal aims to be Delphi compatible, so
extended records are allowed in Free Pascal as well, but only in Delphi mode.

If extended records are desired in ObjFPC mode, then a mode switch must be used:

{$mode objfpc}
{$modeswitch advancedrecords}

Compatibility is not the only reason for introducing extended records. There are some practical
reasons for using methods or properties in records:

1. It is more in line with an object-oriented approach to programming: the type also contains any
methods that work on it.

2. In contrast with a procedural approach, putting all operations that work on a record in the
record itself, allows an IDE to show the available methods on the record when it is displaying
code completion options.

Defining an extended record is much as defining an object or class:

extended record type

--

packed
record

6
component list end -�

1although it can be enhanced using record helpers, more about this in the chapter on record helpers.

93

CHAPTER 9. EXTENDED RECORDS

-- component list
record visibility specifier

6
field definition

-

-

6
record method definition

6
property definition

variant part -�

-- field definition identifier list : type ; -�

-- record visibility specifier private
protected

public

-�

-- record method definition function header
procedure header

;
call modifiers ;

-�

Some of the restrictions when compared to classes or objects are obvious from the syntax diagram:

• No inheritance of records.

• No published section exists.

• Constructors or destructors cannot be defined.

• Methods cannot be virtual or abstract - this is a consequence of the fact that there is no inheri-
tance.

Other than that the definition much resembles that of a class or object.

The following are few examples of valid extended record definitions:

TTest1 = record
a : integer;
function Test(aRecurse: Boolean): Integer;

end;

TTest2 = record
private

A,b : integer;
public

procedure setA(AValue : integer);
property SafeA : Integer Read A Write SetA;

end;

TTest3 = packed record
private

fA,fb : byte;
procedure setA(AValue : Integer);
function geta : integer;

public
property A : Integer Read GetA Write SetA;

end;

TTest4 = record
private

94

CHAPTER 9. EXTENDED RECORDS

a : Integer;
protected

function getp : integer;
public

b : string;
procedure setp (aValue : integer);
property p : integer read Getp Write SetP;

public
case x : integer of

1 : (Q : string);
2 : (S : String);

end;

Note that it is possible to specify a visibility for the members of the record. This is particularly useful
for example when creating an interface to a C library: the actual fields can be declared hidden, and
more ’pascal’ like properties can be exposed which act as the actual fields. The TTest3 record
definition shows that the packed directive can be used in extended records. Extended records have
the same memory layout as their regular counterparts: the methods and properties are not part of the
record structure in memory.

The TTest4 record definition in the above examples shows that the extended record still has the
ability to define a variant part. As with the regular record, the variant part must come last. It cannot
contain methods.

9.2 Extended record enumerators

Extended records can have an enumerator. To this end, a function returning an enumerator record
must be defined in the extended record:

type
TIntArray = array[0..3] of Integer;

TEnumerator = record
private

FIndex: Integer;
FArray: TIntArray;
function GetCurrent: Integer;

public
function MoveNext: Boolean;
property Current: Integer read GetCurrent;

end;

TMyArray = record
F: array[0..3] of Integer;
function GetEnumerator: TEnumerator;

end;

function TEnumerator.MoveNext: Boolean;
begin

inc(FIndex);
Result := FIndex < Length(FArray);

end;

95

CHAPTER 9. EXTENDED RECORDS

function TEnumerator.GetCurrent: Integer;
begin

Result := FArray[FIndex];
end;

function TMyArray.GetEnumerator: TEnumerator;
begin

Result.FArray := F;
Result.FIndex := -1;

end;

After these definitions, the following code will compile and enumerate all elements in F:

var
Arr: TMyArray;
I: Integer;

begin
for I in Arr do

WriteLn(I);
end.

The same effect can be achieved with the enumerator operator:

type
TIntArray = array[0..3] of Integer;

TEnumerator = record
private

FIndex: Integer;
FArray: TIntArray;
function GetCurrent: Integer;

public
function MoveNext: Boolean;
property Current: Integer read GetCurrent;

end;

TMyArray = record
F: array[0..3] of Integer;

end;

function TEnumerator.MoveNext: Boolean;
begin

inc(FIndex);
Result := FIndex < Length(FArray);

end;

function TEnumerator.GetCurrent: Integer;
begin

Result := FArray[FIndex];
end;

operator Enumerator(const A: TMyArray): TEnumerator;
begin

Result.FArray := A.F;

96

CHAPTER 9. EXTENDED RECORDS

Result.FIndex := -1;
end;

This will allow the code to run as well.

97

Chapter 10

Class and record helpers

10.1 Definition

Class and record helpers can be used to add methods to an existing class or record, without making a
derivation of the class or re-declaring the record. The effect is like inserting a method in the method
table of the class. If the helper declaration is in the current scope of the code, then the methods and
properties of the helper can be used as if they were part of the class declaration for the class or record
that the helper extends.

The syntax diagram for a class or record helper is presented below.

Helper type

-- class
record

helper
(basehelper))

for Identifier
6
helper component list -

- end hint modifiers -�

-- helper component list method definition
property definition

-�

The diagram shows that a helper definition looks very much like a regular class definition. It simply
declares some extra constructors, properties and fields for a class: the class or record type for which
the helper is an extension is indicated after the for keyword. Since an enumerator for a class is
obtained through a regular method, class helpers can also be used to override the enumerators.

As can be seen from the syntax diagram, it is possible to create descendents of helpers: the helpers
can form a hierarchy of their own, allowing to override methods of a parent helper. They also have
visibility specifiers, just like records and classes.

The following is a simple class helper for the TObject class, which provides an alternate version
of the standard ToString method.

TObjectHelper = class helper for TObject
function AsString(const aFormat: String): String;

end;

function TObjectHelper.AsString(const aFormat: String): String;
begin

98

CHAPTER 10. CLASS AND RECORD HELPERS

Result := Format(aFormat, [ToString]);
end;

var
o: TObject;

begin
Writeln(o.AsString(’The object’’s name is %s’));

end.

Remark: The helper modifier is only a modifier just after the class or record keywords. That means
that the first member of a class or record cannot be named helper. A member of a class or record
can be called helper, it just cannot be the first one.

10.2 Restrictions on class helpers

It is not possible to extend a class with any method or property. There are some restrictions on the
possibilities:

• Destructors or class destructurs are not allowed.

• Class constructors are not allowed.

• Record helpers cannot implement constructors.

• Field definitions are not allowed. Neither are class fields.

• Properties that refer to a field are not allowed. This is in fact a consequence of the previous
item.

• Abstract methods are not allowed.

• Virtual methods of the class cannot be overridden. They can be hidden by giving them the
same name or they can be overloaded using the overload directive.

• Unlike for regular procedures or methods, the overload specifier must be explicitly used
when overloading methods in class helpers.

The following modifies the previous example by overloading the ToString method:

TObjectHelper = class helper for TObject
function ToString(const aFormat: String): String; overload;

end;

function TObjectHelper.ToString(const aFormat: String): String;
begin

Result := Format(aFormat, [ToString]);
end;

var
o: TObject;

begin
Writeln(o.ToString(’The object’’s name is %s’));

end.

99

CHAPTER 10. CLASS AND RECORD HELPERS

10.3 Restrictions on record helpers

Records do not offer the same possibilities as classes do. This reflects on the possibilities when
creating record helpers. Below the restrictions on record helpers are enumerated:

• A record helper cannot be used to extend a class. The following will fail:

TTestHelper = record helper for TObject
end;

• Record helpers cannot implement constructors.

• Inside a helper’s declaration the methods/fields of the extended record can’t be accessed in e.g.
a property definition. They can be accessed in the implementation, of course. This means that
the following will not compile:

TTest = record
Test: Integer;

end;

TTestHelper = record helper for TTest
property AccessTest: Integer read Test;

end;

• Record helpers can only access public fields (in case an extended record with visibility speci-
fiers is used).

• Inheritance of record helpers is only allowed in ObjFPC mode; In Delphi mode, it is not
allowed.

• Record helpers can only descend from other record helpers, not from class helpers.

• Unlike class helpers, a descendent record helper must extend the same record type.

• In Delphi mode, it is not possible to call the extended record’s method using inherited. It
is possible to do so in ObjFPC mode. The following code needs ObjFPC mode to compile:

type
TTest = record

function Test(aRecurse: Boolean): Integer;
end;

TTestHelper = record helper for TTest
function Test(aRecurse: Boolean): Integer;

end;

function TTest.Test(aRecurse: Boolean): Integer;
begin

Result := 1;
end;

function TTestHelper.Test(aRecurse: Boolean): Integer;
begin

if aRecurse then
Result := inherited Test(False)

else
Result := 2;

end;

100

CHAPTER 10. CLASS AND RECORD HELPERS

10.4 Inheritance

As noted in the previous section, it is possible to create descendents of helper classes. Since only
the last helper class in the current scope can be used, it is necessary to descend a helper class from
another one if methods of both helpers must be used. More on this in a subsequent section.

A descendent of a class helper can extend a different class than its parent. The following is a valid
class helper for TMyObject:

TObjectHelper = class helper for TObject
procedure SomeMethod;

end;

TMyObject = class(TObject)
end;

TMyObjectHelper = class helper(TObjectHelper) for TMyObject
procedure SomeOtherMethod;

end;

The TMyObjectHelper extends TObjectHelper, but does not extend the TObject class, it
only extends the TMyObject class.

Since records know no inheritance, it is obvious that descendants of record helpers can only extend
the same record.

Remark: For maximum delphi compatibility, it is impossible to create descendants of record helpers in Delphi
mode.

10.5 Usage

Once a helper class is defined, its methods can be used whenever the helper class is in scope. This
means that if it is defined in a separate unit, then this unit should be in the uses clause wherever the
methods of the helper class are used.

Consider the following unit:

{$mode objfpc}
{$h+}
unit oha;

interface

Type
TObjectHelper = class helper for TObject

function AsString(const aFormat: String): String;
end;

implementation

uses sysutils;

function TObjectHelper.AsString(const aFormat: String): String;

begin

101

CHAPTER 10. CLASS AND RECORD HELPERS

Result := Format(aFormat, [ToString]);
end;

end.

Then the following will compile:

Program Example113;

uses oha;

{ Program to demonstrate the class helper scope. }

Var
o : TObject;

begin
O:=TObject.Create;
Writeln(O.AsString(’O as a string : %s’));

end.

But, if a second unit (ohb) is created:

{$mode objfpc}
{$h+}
unit ohb;

interface

Type
TAObjectHelper = class helper for TObject

function MemoryLocation: String;
end;

implementation

uses sysutils;

function TAObjectHelper.MemoryLocation: String;

begin
Result := format(’%p’,[pointer(Self)]);

end;

end.

And is added after the first unit in the uses clause:

Program Example113;

uses oha,ohb;

{ Program to demonstrate the class helper scope. }

102

CHAPTER 10. CLASS AND RECORD HELPERS

Var
o : TObject;

begin
O:=TObject.Create;
Writeln(O.AsString(’O as a string : %s’));
Writeln(O.MemoryLocation);

end.

Then the compiler will complain that it does not know the method ’AsString’. This is because the
compiler stops looking for class helpers as soon as the first class helper is encountered. Since the
ohb unit comes last in the uses clause, the compiler will only use TAObjectHelper as the class
helper.

The solution is to re-implement unit ohb:

{$mode objfpc}
{$h+}
unit ohc;

interface

uses oha;

Type
TAObjectHelper = class helper(TObjectHelper) for TObject

function MemoryLocation: String;
end;

implementation

uses sysutils;

function TAObjectHelper.MemoryLocation: String;

begin
Result := format(’%p’,[pointer(Self)]);

end;

end.

And after replacing unit ohb with ohc, the example program will compile and function as expected.

Note that it is not enough to include a unit with a class helper once in a project; The unit must be
included whenever the class helper is needed.

103

Chapter 11

Objective-Pascal Classes

11.1 Introduction

The preferred programming language to access Mac OS X system frameworks is Objective-C. In
order to fully realize the potential offered by system interfaces written in that language, a variant of
Object Pascal exists in the Free Pascal compiler that tries to offer the same functionality as Objective-
C. This variant is called Objective-Pascal.

The compiler has mode switches to enable the use of these Objective-C-related constructs. There
are 2 kinds of Objective-C language features, discerned by a version number: Objective-C 1.0 and
Objective-C 2.0.

The Objective-C 1.0 language features can be enabled by adding a modeswitch to the source file:

{$modeswitch objectivec1}

or by using the -Mobjectivec1 command line switch of the compiler.

The Objective-C 2.0 language features can be enabled using a similar modewitch:

{$modeswitch objectivec2}

or the command-line option -Mobjectivec2.

The Objective-C 2.0 language features are a superset of the Objective-C 1.0 language features, and
therefor the latter switch automatically implies the former. Programs using Objective-C 2.0 language
features will only work on Mac OS X 10.5 and later.

The fact that objective-C features are enabled using mode switches rather than actual syntax modes,
means they can be used in combination with every general syntax mode (fpc, objfpc, tp, delphi, mac-
pas). Node that a {$Mode } directive switch will reset the mode switches, so the {$modeswitch
} statement should be located after it.

11.2 Objective-Pascal class declarations

Objective-C or -Pascal classes are declared much as Object Pascal classes are declared, but they use
the objcclass keyword:

Objective C Class types

104

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

-- objcclass
external

name string constant

-

-

heritage
6

component list
class visibility specifier

end
-�

-- heritage (
objective-Cclass type identifier implemented protocols

) -�

-- implemented protocols
6
protocol identifier

,
-�

-- component list
visibility specifier

6
field definition

-

-

6
class variable declaration part

method definition
property definition

-�

-- class variable declaration part class variable declaration part -�

-- field definition identifier list : type ;
static;

-�

-- method definition
class

function header
procedure header

; -

-

override
message string constant

;
-�

-- class visibility specifier

strict
private

protected
public

-�

As can be seen, the syntax is rougly equivalent to Object Pascal syntax, with some extensions.

In order to use Objective-C classes, an external modifier exists: this indicates to the compiler that the
class is implemented in an external object file or library, and that the definition is meant for import
purposes. The following is an example of an external Objective-C class definition:

NSView = objcclass external(NSResponder)
private

_subview : id;
public

function initWithFrame(rect : NSRect): id;
message ’initWithFrame:’;

procedure addSubview(aview: NSView);

105

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

message ’addSubview:’;
procedure setAutoresizingMask(mask: NSUInteger);

message ’setAutoresizingMask:’;
procedure setAutoresizesSubviews(flag: LongBool);

message ’setAutoresizesSubviews:’;
procedure drawRect(dirtyRect: NSRect);

message ’drawRect:’;
end;

As can be seen, the class definition is not so different from an Object Pascal class definition; Only the
message directive is more prominently present: each Objective-C or Objective-Pascal method must
have a message name associated with it. In the above example, no external name was specified for
the class definition, meaning that the Pascal identifier is used as the name for the Objective-C class.
However, since Objective-C is not so strict in its naming conventions, sometimes an alias must be
created for an Objective-C class name that doesn’t obey the Pascal identifier rules.

The following example defines an Objective-C class which is implemented in Pascal:

MyView = objcclass(NSView)
public

data : Integer;
procedure customMessage(dirtyRect: NSRect);

message ’customMessage’;
procedure drawRect(dirtyRect: NSRect); override;

end;

The absence of the external keyword tells the compiler that the methods must be implemented
later in the source file: it will be treated much like a regular object pascal class. Note the presence
of the override directive: in Objective-C, all methods are virtual. In Object Pascal, overrid-
ing a virtual method must be done through the override directive. This has been extended to
Objective-C classes: it allows the compiler to verify the correctness of the definition.

Unless the class is implementing the method of a protocol (more about this in a subsequent section),
one of message or override is expected: all methods are virtual, and either a new method is
started (or re-introduced), or an existing is overridden. Only in the case of a method that is part of a
protocol, the method can be defined without message or override.

Note that the Objective-C class declaration may or may not specify a parent class. In Object Pas-
cal, omitting a parent class will automatically make the new class a descendant of TObject. In
Objective-C, this is not the case: the new class will be a new root class. However, Objective-C does
have a class which fullfills the function of generic root class: NSObject, which can be considered
the equivalent of TObject in Object Pascal. It has other root classes, but in general, Objective-
Pascal classes should descend from NSObject. If a new root class is constructed anyway, it must
implement the NSObjectProtocol - just as the NSObject class itself does.

Finally, objective-Pascal classes can have properties, but these properties are only usable in Pascal
code: the compiler currently does not export the properties in a way that makes them usable from
Objective-C.

11.3 Formal declaration

Object Pascal has the concept of Forward declarations. Objective-C takes this concept a bit further: it
allows to declare a class which is defined in another unit. This has been dubbed ’Formal declaration’
in Objective-Pascal. Looking at the syntax diagram, the following is a valid declaration:

MyExternalClass = objcclass external;

106

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

This is a formal declaration. It tells the compiler that MyExternalClass is an Objective-C class
type, but that there is no declaration of the class members. The type can be used in the remainder of
the unit, but its use is restricted to storage allocation (in a field or method parameter definition) and
assignment (much like a pointer).

As soon as the class definition is encountered, the compiler can enforce type compatibility.

The following unit uses a formal declaration:

unit ContainerClass;

{$mode objfpc}
{$modeswitch objectivec1}

interface

type
MyItemClass = objcclass external;

MyContainerClass = objcclass
private
item: MyItemClass;
public
function getItem: MyItemClass; message ’getItem’;

end;

implementation

function MyContainerClass.getItem: MyItemClass;
begin

result:=item; // Assignment is OK.
end;

end.

A second unit can contain the actual class declaration:

unit ItemClass;

{$mode objfpc}
{$modeswitch objectivec1}

interface

type
MyItemClass = objcclass(NSObject)
private

content : longint;
public

function initWithContent(c: longint): MyItemClass;
message ’initWithContent:’;

function getContent: longint;
message ’getContent’;

end;

107

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

implementation

function MyItemClass.initWithContent(c: longint):
MyItemClass;

begin
content:=c;
result:=self;

end;

function MyItemClass.getContent: longint;
begin

result:=content;
end;

end.

If both units are used in a program, the compiler knows what the class is and can verify the correctness
of some assignments:

Program test;

{$mode objfpc}
{$modeswitch objectivec1}

uses
ItemClass, ContainerClass;

var
c: MyContainerClass;
l: longint;

begin
c:=MyContainerClass.alloc.init;
l:=c.getItem.getContent;

end.

11.4 Allocating and de-allocating Instances

The syntax diagram of Objective-C classes shows that the notion of constructor and destructor is not
supported in Objective-C. New instances are created in a 2-step process:

1. Call the ’alloc’ method (send an ’alloc’ message): This is a class method of NSObject,
and returns a pointer to memory for the new instance. The use of alloc is a convention in
Objective-C.

2. Send an ’initXXX’ message. By convention, all classes have one or more ’InitXXX’ methods
that initializes all fields in the instance. This method will return the final instance pointer,
which may be Nil.

The following code demonstrates this:

var
obj: NSObject;

begin

108

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

// First allocate the memory.
obj:=NSObject.alloc;
// Next, initialise.
obj:=obj.init;
// Always check the result !!
if (Obj=Nil) then

// Some error;

By convention, the initXXX method will return Nil if initialization of some fields failed, so it is
imperative that the result of the function is tested.

Similarly, no privileged destructor exists; By convention, the dealloc method fullfills the cleanup
of the instances. This method can be overridden to perform any cleanup necessary. Like Destroy, it
should never be called directly, instead, the releasemethod should be called instead: All instances
in Objective-C are reference counted, and release will only call dealloc if the reference count
reaches zero.

11.5 Protocol definitions

In Objective-C, protocols play the role that interfaces play in Object Pascal, but there are some
differences:

• Protocol methods can be marked optional, i.e. the class implementing the protocol can decide
not to implement these methods.

• Protocols can inherit from multiple other protocols.

Objective-C classes can indicate which protocols they implement in the class definition, as could be
seen in the syntax diagram for Objective-C classes.

The following diagram shows how to declare a protocol. It starts with the objcprotocol keyword:

Protocol type

-- objcprotocol
external

name string constant
heritage

-

- protocol method list end -�

-- heritage (
6
protocol type identifier

,
) -�

-- protocol method list
6 required

optional

method definition -�

As in the case of objective-Pascal classes, the external specifier tells the compiler that the decla-
ration is an import of a protocol defined elsewhere. For methods, almost the same rules apply as for
methods in the Objective-Pascal class declarations. The exception is that message specifiers must be
present.

The required and optional specifiers before a series of method declarations are optional. If
none is specified, required is assumed. The following is a definition of a protocol:

109

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

type
MyProtocol = objccprotocol

// default is required
procedure aRequiredMethod;

message ’aRequiredMethod’;
optional

procedure anOptionalMethodWithPara(para: longint);
message ’anOptionalMethodWithPara:’;

procedure anotherOptionalMethod;
message ’anotherOptionalMethod’;

required
function aSecondRequiredMethod: longint;

message ’aSecondRequiredMethod’;
end;

MyClassImplementingProtocol = objcclass(NSObject,MyProtocol)
procedure aRequiredMethod;
procedure anOptionalMethodWithPara(para: longint);
function aSecondRequiredMethod: longint;

end;

Note that in the class declaration, the message specifier was omitted. The compiler (and runtime) can
deduce it from the protocol definition.

11.6 Categories

Similar to class helpers in Object Pascal, Objective-C has Categories. Categories allow to extend
classes without actually creating a descendant of these classes. However, Objective-C categories
provide more functionality than a class helper:

1. In Object Pascal, only 1 helper class can be in scope (the last one). In Objective-C, multiple
categories can be in scope at the same time for a particular class.

2. In Object Pascal, a helper method cannot change an existing method present in the original
class. In Objective-C, a category can also replace existing methods in another class rather than
only add new ones. Since all methods are virtual in Objective-C, this also means that this
method changes for all classes that inherit from the class in which the method was replaced
(unless they override it).

3. Object Pascal helpers cannot be used to add interfaces to existing classes. By contrast, an
Objective-C category can also implement protocols.

The definition of an objective-C class closely resembles a protocol definition, and is started with the
objccategory keyword:

Category type

-- objccategory
external

name string constant
heritage

-

- category method list end -�

110

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

-- heritage (Objective Class type identifier
6
protocol type identifier

,
) -�

-- category method list
6

method definition
reintroduce

-�

Note again the possibility of an alias for externally defined categories: objective-C 2.0 allows an
empty category name. Note that the reintroduce modifier must be used if an existing method is
being replaced rather than that a new method is being added.

When replacing a method, calling ’inherited’ will not call the original method of the class, but instead
will call the parent class’ implementation of the method.

The following is an example of a category definition:

MyProtocol = objcprotocol
procedure protocolmethod; message ’protocolmethod’;

end;

MyCategory = objccategory(NSObject,MyProtocol)
function hash: cuint; reintroduce;
procedure protocolmethod; // from MyProtocol.
class procedure newmethod; message ’newmethod’;

end;

Note that this declaration replaces the Hash method of every class that descends from NSObject
(unless it specifically overrides it).

11.7 Name scope and Identifiers

In Object Pascal, each identifier must be unique in it’s namespace: the unit. In Objective-C, this need
not be the case and each type identifier must be unique among its kind: classes, protocols, categories,
fields or methods. This is shown in the definitions of the basic protocol and class of Objective-C:
Both protocol and class are called NSObject.

When importing Objective-C classes and protocols, the Objective-Pascal names of these types must
conform to the Object Pascal rules, and therefor must have distinct names. Likewise, names that are
valid identifiers in Objective-C may be reserved words in Object Pascal. They also must be renamed
when imported.

To make this possible, the External and ’message’ modifiers allow to specify a name: this is the
name of the type or method as it exists in Objective-C:

NSObjectProtocol = objcprotocol external name ’NSObject’
function _class: pobjc_class; message name ’class’;

end;

NSObject = objcclass external (NSObjectProtocol)
function _class: pobjc_class;
class function classClass: pobjc_class; message ’class’;

end;

111

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

11.8 Selectors

A Selector in Objective-C can be seen as an equivalent to a procedural type in Object Pascal.

In difference with the procedural type, Objective-C has only 1 selector type: SEL. It is defined in
the objc unit - which is automatically included in the uses clause of any unit compiled with the
objectivec1 modeswitch.

To assign a value to a variable of type SEL, the objcselector method must be used:

{$modeswitch objectivec1}
var

a: SEL;
begin

a:=objcselector(’initiWithWidth:andHeight:’);
a:=objcselector(’myMethod’);

end.

The objc unit contains methods to manipulate and use the selector.

11.9 The id type

The id type is special in Objective-C/Pascal. It is much like the pointer type in Object Pascal,
except that it is a real class. It is assignment-compatible with instances of every objcclass and
objcprotocol type, in two directions:

1. variables of any objcclass/objcprotocol type can be assigned to a variable of the type
id.

2. variables of type id can be assigned to variables of any particular objcclass/objcprotocol
type.

No explicit typecast is required for either of these assignments.

Additionally, any Objective-C method declared in an objcclass or objccategory that is in
scope can be called when using an id-typed variable.

If, at run time, the actual objcclass instance stored in the id-typed variable does not respond to
the sent message, the program will terminate with a run time error: much like the dispatch mechanism
for variants under MS-Windows.

When there are multiple methods with the same Pascal identifier, the compiler will use the standard
overload resolution logic to pick the most appropriate method. In this process, it will behave as if all
objcclass/objccategorymethods in scope have been declared as global procedures/functions
with the overload specifier. Likewise, the compiler will print an error if it cannot determine which
overloaded method to call.

In such cases, a list of all methods that could be used to implement the call will be printed as a hint.

To resolve the error, an explicit type cast must be used to tell the compiler which objcclass type
contains the needed method.

11.10 Enumeration in Objective-C classes

Fast enumeration in Objective-C is a construct which allows to enumerate the elements in a Cocoa
container class in a generic way. It is implemented using a for-in loop in Objective-C.

112

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

This has been translated to Objective-Pascal using the existing for-in loop mechanism. Therefor,
the feature behaves identically in both languages. Note that it requires the Objective-C 2.0 mode
switch to be activated.

The following is an example of the use of for-in:

{$mode delphi}
{$modeswitch objectivec2}

uses
CocoaAll;

var
arr: NSMutableArray;
element: NSString;
pool: NSAutoreleasePool;
i: longint;

begin
pool:=NSAutoreleasePool.alloc.init;
arr:=NSMutableArray.arrayWithObjects(

NSSTR(’One’),
NSSTR(’Two’),
NSSTR(’Three’),
NSSTR(’Four’),
NSSTR(’Five’),
NSSTR(’Six’),
NSSTR(’Seven’),
nil);

i:=0;
for element in arr do

begin
inc(i);
if i=2 then
continue;

if i=5 then
break;

if i in [2,5..10] then
halt(1);

NSLog(NSSTR(’element: %@’),element);
end;

pool.release;
end.

113

Chapter 12

Expressions

Expressions occur in assignments or in tests. Expressions produce a value of a certain type. Expres-
sions are built with two components: operators and their operands. Usually an operator is binary, i.e.
it requires 2 operands. Binary operators occur always between the operands (as in X/Y). Sometimes
an operator is unary, i.e. it requires only one argument. A unary operator occurs always before the
operand, as in -X.

When using multiple operands in an expression, the precedence rules of table (12.1) are used.

Table 12.1: Precedence of operators

Operator Precedence Category
Not, @ Highest (first) Unary operators
* / div mod and shl shr as << >> Second Multiplying operators
+ - or xor Third Adding operators
< <> < > <= >= in is Lowest (Last) relational operators

When determining the precedence, the compiler uses the following rules:

1. In operations with unequal precedences the operands belong to the operator with the high-
est precedence. For example, in 5*3+7, the multiplication is higher in precedence than the
addition, so it is executed first. The result would be 22.

2. If parentheses are used in an expression, their contents is evaluated first. Thus, 5*(3+7)
would result in 50.

Remark: The order in which expressions of the same precedence are evaluated is not guaranteed to be left-
to-right. In general, no assumptions on which expression is evaluated first should be made in such a
case. The compiler will decide which expression to evaluate first based on optimization rules. Thus,
in the following expression:

a := g(3) + f(2);

f(2) may be executed before g(3). This behaviour is distinctly different from Delphi or Turbo
Pascal.

If one expression must be executed before the other, it is necessary to split up the statement using
temporary results:

114

CHAPTER 12. EXPRESSIONS

e1 := g(3);
a := e1 + f(2);

Remark: The exponentiation operator (**) is available for overloading, but is not defined on any of the
standard Pascal types (floats and/or integers).

12.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions are a series of
terms (what a term is, is explained below), joined by adding operators.

Expressions

-- expression simple expression
*
<=
>
>=
=
<>
in
is

simple expression
-�

-- simple expression
6

term
+
-

or
xor

-�

The following are valid expressions:

GraphResult<>grError
(DoItToday=Yes) and (DoItTomorrow=No);
Day in Weekend

And here are some simple expressions:

A + B
-Pi
ToBe or NotToBe

Terms consist of factors, connected by multiplication operators.

Terms

115

CHAPTER 12. EXPRESSIONS

-- term
6

factor
*
/

div
mod
and
shl
shr
as

-�

Here are some valid terms:

2 * Pi
A Div B
(DoItToday=Yes) and (DoItTomorrow=No);

Factors are all other constructions:

Factors

-- factor (expression)
variable reference

function call
unsigned constant

not factor
sign factor

set constructor
value typecast
address factor

-�

-- unsigned constant unsigned number
character string

constant identifier
Nil

-�

12.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can be statements too).
They are constructed as follows:

Function calls

-- function call function identifier
method designator

qualified method designator
variable reference

actual parameter list
-�

-- actual parameter list (

6
expression

,

) -�

116

CHAPTER 12. EXPRESSIONS

The variable reference must be a procedural type variable reference. A method designator can
only be used inside the method of an object. A qualified method designator can be used outside
object methods too. The function that will get called is the function with a declared parameter list
that matches the actual parameter list. This means that

1. The number of actual parameters must equal the number of declared parameters (unless default
parameter values are used).

2. The types of the parameters must be compatible. For variable reference parameters, the pa-
rameter types must be exactly the same.

If no matching function is found, then the compiler will generate an error. Which error depends -
among other things - on whether the function is overloaded or not: i.e. multiple functions with the
same name, but different parameter lists.

There are cases when the compiler will not execute the function call in an expression. This is the
case when assigning a value to a procedural type variable, as in the following example in Delphi or
Turbo Pascal mode:

Type
FuncType = Function: Integer;

Var A : Integer;
Function AddOne : Integer;
begin

A := A+1;
AddOne := A;

end;
Var F : FuncType;

N : Integer;
begin

A := 0;
F := AddOne; { Assign AddOne to F, Don’t call AddOne}
N := AddOne; { N := 1 !!}

end.

In the above listing, the assigment to F will not cause the function AddOne to be called. The
assignment to N, however, will call AddOne.

A problem with this syntax is the following construction:

If F = AddOne Then
DoSomethingHorrible;

Should the compiler compare the addresses of F and AddOne, or should it call both functions, and
compare the result? In fpc and objfpc mode this is solved by considering a procedural variable
as equivalent to a pointer. Thus the compiler will give a type mismatch error, since AddOne is
considered a call to a function with integer result, and F is a pointer.

How then, should one check whether F points to the function AddOne? To do this, one should use
the address operator @:

If F = @AddOne Then
WriteLn (’Functions are equal’);

117

CHAPTER 12. EXPRESSIONS

The left hand side of the boolean expression is an address. The right hand side also, and so the
compiler compares 2 addresses. How to compare the values that both functions return ? By adding
an empty parameter list:

If F()=Addone then
WriteLn (’Functions return same values ’);

Remark that this last behaviour is not compatible with Delphi syntax. Switching on Delphi mode
will allow you to use Delphi syntax.

12.3 Set constructors

When a set-type constant must be entered in an expression, a set constructor must be given. In
essence this is the same thing as when a type is defined, only there is no identifier to identify the set
with. A set constructor is a comma separated list of expressions, enclosed in square brackets.

Set constructors

-- set constructor [

6
set group

,

] -�

-- set group expression
.. expression

-�

All set groups and set elements must be of the same ordinal type. The empty set is denoted by [],
and it can be assigned to any type of set. A set group with a range [A..Z] makes all values in the
range a set element. The following are valid set constructors:

[today,tomorrow]
[Monday..Friday,Sunday]
[2, 3*2, 6*2, 9*2]
[’A’..’Z’,’a’..’z’,’0’..’9’]

Remark: If the first range specifier has a bigger ordinal value than the second, the resulting set will be empty,
e.g., [’Z’..’A’] denotes an empty set. One should be careful when denoting a range.

12.4 Value typecasts

Sometimes it is necessary to change the type of an expression, or a part of the expression, to be able
to be assignment compatible. This is done through a value typecast. The syntax diagram for a value
typecast is as follows:

Typecasts

-- value typecast type identifier (expression) -�

118

CHAPTER 12. EXPRESSIONS

Value typecasts cannot be used on the left side of assignments, as variable typecasts. Here are some
valid typecasts:

Byte(’A’)
Char(48)
boolean(1)
longint(@Buffer)

In general, the type size of the expression and the size of the type cast must be the same. However, for
ordinal types (byte, char, word, boolean, enumerates) this is not so, they can be used interchangeably.
That is, the following will work, although the sizes do not match.

Integer(’A’);
Char(4875);
boolean(100);
Word(@Buffer);

This is compatible with Delphi or Turbo Pascal behaviour.

12.5 Variable typecasts

A variable can be considered a single factor in an expression. It can therefore be typecast as well. A
variable can be typecast to any type, provided the type has the same size as the original variable.

It is a bad idea to typecast integer types to real types and vice versa. It’s better to rely on type
assignment compatibility and using some of the standard type changing functions.

Note that variable typecasts can occur on either side of an assignment, i.e. the following are both
valid typecasts:

Var
C : Char;
B : Byte;

begin
B:=Byte(C);
Char(B):=C;

end;

Pointer variables can be typecasted to procedural types, but not to method pointers.

A typecast is an expression of the given type, which means the typecast can be followed by a qualifier:

Type
TWordRec = Packed Record

L,H : Byte;
end;

Var
P : Pointer;
W : Word;
S : String;

begin
TWordRec(W).L:=$FF;

119

CHAPTER 12. EXPRESSIONS

TWordRec(W).H:=0;
S:=TObject(P).ClassName;

12.6 Unaligned typecasts

A special typecast is the Unaligned typecast of a variable or expression. This is not a real typecast,
but is rather a hint for the compiler that the expression may be misaligned (i.e. not on an aligned
memory address). Some processors do not allow direct access to misaligned data structures, and
therefor must access the data byte per byte.

Typecasting an expression with the unaligned keyword signals the compiler that it should access the
data byte per byte.

Example:

program me;

Var
A : packed Array[1..20] of Byte;
I : LongInt;

begin
For I:=1 to 20 do

A[I]:=I;
I:=PInteger(Unaligned(@A[13]))^;

end.

12.7 The @ operator

The address operator @ returns the address of a variable, procedure or function. It is used as follows:

Address factor

-- addressfactor @ variable reference
procedure identifier
function identifier

qualified method identifier

-�

The @ operator returns a typed pointer if the $T switch is on. If the $T switch is off then the address
operator returns an untyped pointer, which is assigment compatible with all pointer types. The type
of the pointer is ˆT, where T is the type of the variable reference. For example, the following will
compile

Program tcast;
{$T-} { @ returns untyped pointer }

Type art = Array[1..100] of byte;
Var Buffer : longint;

PLargeBuffer : ^art;

120

CHAPTER 12. EXPRESSIONS

begin
PLargeBuffer := @Buffer;

end.

Changing the {$T-} to {$T+} will prevent the compiler from compiling this. It will give a type
mismatch error.

By default, the address operator returns an untyped pointer: applying the address operator to a func-
tion, method, or procedure identifier will give a pointer to the entry point of that function. The result
is an untyped pointer.

This means that the following will work:

Procedure MyProc;

begin
end;

Var
P : PChar;

begin
P:=@MyProc;

end;

By default, the address operator must be used if a value must be assigned to a procedural type
variable. This behaviour can be avoided by using the -Mtp or -MDelphi switches, which result in
a more compatible Delphi or Turbo Pascal syntax.

12.8 Operators

Operators can be classified according to the type of expression they operate on. We will discuss them
type by type.

12.8.1 Arithmetic operators
Arithmetic operators occur in arithmetic operations, i.e. in expressions that contain integers or reals.
There are 2 kinds of operators : Binary and unary arithmetic operators. Binary operators are listed in
table (12.2), unary operators are listed in table (12.3).

Table 12.2: Binary arithmetic operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
/ Division
Div Integer division
Mod Remainder

With the exception of Div and Mod, which accept only integer expressions as operands, all operators
accept real and integer expressions as operands.

121

CHAPTER 12. EXPRESSIONS

For binary operators, the result type will be integer if both operands are integer type expressions. If
one of the operands is a real type expression, then the result is real.

As an exception, division (/) results always in real values.

Table 12.3: Unary arithmetic operators

Operator Operation
+ Sign identity
- Sign inversion

For unary operators, the result type is always equal to the expression type. The division (/) and Mod
operator will cause run-time errors if the second argument is zero.

The sign of the result of a Mod operator is the same as the sign of the left side operand of the Mod
operator. In fact, the Mod operator is equivalent to the following operation :

I mod J = I - (I div J) * J

But it executes faster than the right hand side expression.

12.8.2 Logical operators
Logical operators act on the individual bits of ordinal expressions. Logical operators require operands
that are of an integer type, and produce an integer type result. The possible logical operators are listed
in table (12.4).

Table 12.4: Logical operators

Operator Operation
not Bitwise negation (unary)
and Bitwise and
or Bitwise or
xor Bitwise xor
shl Bitwise shift to the left
shr Bitwise shift to the right
<< Bitwise shift to the left (same as shl)
>> Bitwise shift to the right (same as shr)

The following are valid logical expressions:

A shr 1 { same as A div 2, but faster}
Not 1 { equals -2 }
Not 0 { equals -1 }
Not -1 { equals 0 }
B shl 2 { same as B * 4 for integers }
1 or 2 { equals 3 }
3 xor 1 { equals 2 }

122

CHAPTER 12. EXPRESSIONS

12.8.3 Boolean operators
Boolean operators can be considered as logical operations on a type with 1 bit size. Therefore the
shl and shr operations have little sense. Boolean operators can only have boolean type operands,
and the resulting type is always boolean. The possible operators are listed in table (12.5)

Table 12.5: Boolean operators

Operator Operation
not logical negation (unary)
and logical and
or logical or
xor logical xor

Remark: By default, boolean expressions are evaluated with short-circuit evaluation. This means that from
the moment the result of the complete expression is known, evaluation is stopped and the result is
returned. For instance, in the following expression:

B := True or MaybeTrue;

The compiler will never look at the value of MaybeTrue, since it is obvious that the expression will
always be True. As a result of this strategy, if MaybeTrue is a function, it will not get called !
(This can have surprising effects when used in conjunction with properties)

12.8.4 String operators
There is only one string operator: +. Its action is to concatenate the contents of the two strings
(or characters) it acts on. One cannot use + to concatenate null-terminated (PChar) strings. The
following are valid string operations:

’This is ’ + ’VERY ’ + ’easy !’
Dirname+’\’

The following is not:

Var
Dirname : PChar;

...
Dirname := Dirname+’\’;

Because Dirname is a null-terminated string.

Note that if all strings in a string expressions are short strings, the resulting string is also a short
string. Thus, a truncation may occur: there is no automatic upscaling to ansistring.

If all strings in a string expression are ansistrings, then the result is an ansistring.

If the expression contains a mix of ansistrings and shortstrings, the result is an ansistring.

The value of the {$H} switch can be used to control the type of constant strings; by default, they are
short strings (and thus limited to 255 characters).

12.8.5 Set operators
The following operations on sets can be performed with operators: union, difference, symmetric
difference, inclusion and intersection. Elements can be added or removed from the set with the

123

CHAPTER 12. EXPRESSIONS

Include or Exclude operators. The operators needed for this are listed in table (12.6).

Table 12.6: Set operators

Operator Action
+ Union
- Difference
* Intersection
>< Symmetric difference
<= Contains
include include an element in the set
exclude exclude an element from the set
in check wether an element is in a set

The set type of the operands must be the same, or an error will be generated by the compiler.

The following program gives some valid examples of set operations:

Type
Day = (mon,tue,wed,thu,fri,sat,sun);
Days = set of Day;

Procedure PrintDays(W : Days);
Const

DayNames : array [Day] of String[3]
= (’mon’,’tue’,’wed’,’thu’,

’fri’,’sat’,’sun’);
Var

D : Day;
S : String;

begin
S:=’’;
For D:=Mon to Sun do

if D in W then
begin
If (S<>’’) then S:=S+’,’;
S:=S+DayNames[D];
end;

Writeln(’[’,S,’]’);
end;

Var
W : Days;

begin
W:=[mon,tue]+[wed,thu,fri]; // equals [mon,tue,wed,thu,fri]
PrintDays(W);
W:=[mon,tue,wed]-[wed]; // equals [mon,tue]
PrintDays(W);
W:=[mon,tue,wed]-[wed,thu]; // also equals [mon,tue]
PrintDays(W);
W:=[mon,tue,wed]*[wed,thu,fri]; // equals [wed]
PrintDays(W);

124

CHAPTER 12. EXPRESSIONS

W:=[mon,tue,wed]><[wed,thu,fri]; // equals [mon,tue,thu,fri]
PrintDays(W);

end.

As can be seen, the union is equivalent to a binary OR, while the intersection is equivalent to a binary
AND, and the summetric difference equals a XOR operation.

The Include and Exclude operations are equivalent to a union or a difference with a set of 1
element. Thus,

Include(W,wed);

is equivalent to

W:=W+[wed];

and

Exclude(W,wed);

is equivalent to

W:=W-[wed];

The In operation results in a True if the left operand (an element) is included of the right operand
(a set), the result will be False otherwise.

12.8.6 Relational operators
The relational operators are listed in table (12.7)

Table 12.7: Relational operators

Operator Action
= Equal
<> Not equal
< Stricty less than
> Strictly greater than
<= Less than or equal
>= Greater than or equal
in Element of

Normally, left and right operands must be of the same type. There are some notable exceptions,
where the compiler can handle mixed expressions:

1. Integer and real types can be mixed in relational expressions.

2. If the operator is overloaded, and an overloaded version exists whose arguments types match
the types in the expression.

3. Short-, Ansi- and widestring types can be mixed.

125

CHAPTER 12. EXPRESSIONS

Comparing strings is done on the basis of their character code representation.

When comparing pointers, the addresses to which they point are compared. This also is true for
PChar type pointers. To compare the strings the PChar point to, the StrComp function from the
strings unit must be used. The in returns True if the left operand (which must have the same
ordinal type as the set type, and which must be in the range 0..255) is an element of the set which is
the right operand, otherwise it returns False.

12.8.7 Class operators
Class operators are slightly different from the operators above in the sense that they can only be used
in class expressions which return a class. There are only 2 class operators, as can be seen in table
(12.8).

Table 12.8: Class operators

Operator Action
is Checks class type
as Conditional typecast

An expression containing the is operator results in a boolean type. The is operator can only be
used with a class reference or a class instance. The usage of this operator is as follows:

Object is Class

This expression is completely equivalent to

Object.InheritsFrom(Class)

If Object is Nil, False will be returned.

The following are examples:

Var
A : TObject;
B : TClass;

begin
if A is TComponent then ;
If A is B then;

end;

The as operator performs a conditional typecast. It results in an expression that has the type of the
class:

Object as Class

This is equivalent to the following statements:

If Object=Nil then
Result:=Nil

else if Object is Class then
Result:=Class(Object)

else
Raise Exception.Create(SErrInvalidTypeCast);

126

CHAPTER 12. EXPRESSIONS

Note that if the object is nil, the as operator does not generate an exception.

The following are some examples of the use of the as operator:

Var
C : TComponent;
O : TObject;

begin
(C as TEdit).Text:=’Some text’;
C:=O as TComponent;

end;

127

Chapter 13

Statements

The heart of each algorithm are the actions it takes. These actions are contained in the statements of
a program or unit. Each statement can be labeled and jumped to (within certain limits) with Goto
statements. This can be seen in the following syntax diagram:

Statements

-- statement
label : simple statement

structured statement
asm statement

-�

A label can be an identifier or an integer digit.

13.1 Simple statements

A simple statement cannot be decomposed in separate statements. There are basically 4 kinds of
simple statements:

Simple statements

-- simple statement assignment statement
procedure statement

goto statement
raise statement

-�

Of these statements, the raise statement will be explained in the chapter on Exceptions (chapter 17,
page 181)

13.1.1 Assignments
Assignments give a value to a variable, replacing any previous value the variable might have had:

128

CHAPTER 13. STATEMENTS

Assignments

-- assignment statement variable reference
function identifier

:=
+=
-=
*=
/=

expression -�

In addition to the standard Pascal assignment operator (:=), which simply replaces the value of the
varable with the value resulting from the expression on the right of the := operator, Free Pascal
supports some C-style constructions. All available constructs are listed in table (13.1).

Table 13.1: Allowed C constructs in Free Pascal

Assignment Result
a += b Adds b to a, and stores the result in a.
a -= b Substracts b from a, and stores the result in a.
a *= b Multiplies a with b, and stores the result in a.
a /= b Divides a through b, and stores the result in a.

For these constructs to work, the -Sc command-line switch must be specified.

Remark: These constructions are just for typing convenience, they don’t generate different code. Here are
some examples of valid assignment statements:

X := X+Y;
X+=Y; { Same as X := X+Y, needs -Sc command line switch}
X/=2; { Same as X := X/2, needs -Sc command line switch}
Done := False;
Weather := Good;
MyPi := 4* Tan(1);

Keeping in mind that the dereferencing of a typed pointer results in a variable of the type the pointer
points to, the following are also valid assignments:

Var
L : ^Longint;
P : PPChar;

begin
L^:=3;
P^^:=’A’;

Note the double dereferencing in the second assignment.

13.1.2 Procedure statements
Procedure statements are calls to subroutines. There are different possibilities for procedure calls:

• A normal procedure call.

129

CHAPTER 13. STATEMENTS

• An object method call (fully qualified or not).

• Or even a call to a procedural type variable.

All types are present in the following diagram:

Procedure statements

-- procedure statement procedure identifier
method identifier

qualified method identifier
variable reference

actual parameter list
-�

The Free Pascal compiler will look for a procedure with the same name as given in the procedure
statement, and with a declared parameter list that matches the actual parameter list. The following
are valid procedure statements:

Usage;
WriteLn(’Pascal is an easy language !’);
Doit();

Remark: When looking for a function that matches the parameter list of the call, the parameter types should
be assignment-compatible for value and const parameters, and should match exactly for parameters
that are passed by reference.

13.1.3 Goto statements
Free Pascal supports the goto jump statement. Its prototype syntax is

Goto statement

-- goto statement goto label -�

When using goto statements, the following must be kept in mind:

1. The jump label must be defined in the same block as the Goto statement.

2. Jumping from outside a loop to the inside of a loop or vice versa can have strange effects.

3. To be able to use the Goto statement, the -Sg compiler switch must be used, or {$GOTO
ON} must be used.

Goto statements are considered bad practice and should be avoided as much as possible. It is always
possible to replace a goto statement by a construction that doesn’t need a goto, although this
construction may not be as clear as a goto statement. For instance, the following is an allowed goto
statement:

130

CHAPTER 13. STATEMENTS

label
jumpto;

...
Jumpto :

Statement;
...
Goto jumpto;
...

13.2 Structured statements

Structured statements can be broken into smaller simple statements, which should be executed re-
peatedly, conditionally or sequentially:

Structured statements

-- structured statement compound statement
conditional statement
repetitive statement

with statement
exception statement

-�

Conditional statements come in 2 flavours :

Conditional statements

-- conditional statement case statement
if statement

-�

Repetitive statements come in 3 flavours:

Repetitive statements

-- repetitive statement for statament
repeat statement
while statement

-�

The following sections deal with each of these statements.

13.2.1 Compound statements
Compound statements are a group of statements, separated by semicolons, that are surrounded by
the keywords Begin and End. The last statement - before the End keyword - doesn’t need to
be followed by a semicolon, although it is allowed. A compound statement is a way of grouping
statements together, executing the statements sequentially. They are treated as one statement in cases
where Pascal syntax expects 1 statement, such as in if...then...else statements.

131

CHAPTER 13. STATEMENTS

Compound statements

-- compound statement begin
6
statement

;
end -�

13.2.2 The Case statement
Free Pascal supports the case statement. Its syntax diagram is

Case statement

-- case statement case expression of
6
case

; else part ;
end -�

-- case
6
constant

.. constant
,

: statement -�

-- else part else
otherwise

statementlist -�

The constants appearing in the various case parts must be known at compile-time, and can be of the
following types : enumeration types, Ordinal types (except boolean), and chars. The case expression
must be also of this type, or a compiler error will occur. All case constants must have the same type.

The compiler will evaluate the case expression. If one of the case constants’ value matches the
value of the expression, the statement that follows this constant is executed. After that, the program
continues after the final end.

If none of the case constants match the expression value, the statement list after the else or
otherwise keyword is executed. This can be an empty statement list. If no else part is present,
and no case constant matches the expression value, program flow continues after the final end.

The case statements can be compound statements (i.e. a Begin..End block).

Remark: Contrary to Turbo Pascal, duplicate case labels are not allowed in Free Pascal, so the following code
will generate an error when compiling:

Var i : integer;
...
Case i of
3 : DoSomething;
1..5 : DoSomethingElse;

end;

The compiler will generate a Duplicate case label error when compiling this, because the 3
also appears (implicitly) in the range 1..5. This is similar to Delphi syntax.

The following are valid case statements:

Case C of
’a’ : WriteLn (’A pressed’);

132

CHAPTER 13. STATEMENTS

’b’ : WriteLn (’B pressed’);
’c’ : WriteLn (’C pressed’);

else
WriteLn (’unknown letter pressed : ’,C);

end;

Or

Case C of
’a’,’e’,’i’,’o’,’u’ : WriteLn (’vowel pressed’);
’y’ : WriteLn (’This one depends on the language’);

else
WriteLn (’Consonant pressed’);

end;

Case Number of
1..10 : WriteLn (’Small number’);
11..100 : WriteLn (’Normal, medium number’);

else
WriteLn (’HUGE number’);

end;

13.2.3 The If..then..else statement
The If .. then .. else.. prototype syntax is

If then statements

-- if statement if expression then statement
else statement

-�

The expression between the if and then keywords must have a Boolean result type. If the
expression evaluates to True then the statement following the then keyword is executed.

If the expression evaluates to False, then the statement following the else keyword is executed,
if it is present.

Some points to note:

• Be aware of the fact that the boolean expression by default will be short-cut evaluated, meaning
that the evaluation will be stopped at the point where the outcome is known with certainty.

• Also, before the else keyword, no semicolon (;) is allowed, but all statements can be com-
pound statements.

• In nested If.. then .. else constructs, some ambiguity may araise as to which
else statement pairs with which if statement. The rule is that the else keyword matches
the first if keyword (searching backwards) not already matched by an else keyword.

For example:

If exp1 Then
If exp2 then

133

CHAPTER 13. STATEMENTS

Stat1
else

stat2;

Despite its appearance, the statement is syntactically equivalent to

If exp1 Then
begin
If exp2 then

Stat1
else

stat2
end;

and not to

{ NOT EQUIVALENT }
If exp1 Then

begin
If exp2 then

Stat1
end

else
stat2;

If it is this latter construct which is needed, the begin and end keywords must be present. When in
doubt, it is better to add them.

The following is a valid statement:

If Today in [Monday..Friday] then
WriteLn (’Must work harder’)

else
WriteLn (’Take a day off.’);

13.2.4 The For..to/downto..do statement
Free Pascal supports the For loop construction. A for loop is used in case one wants to calculate
something a fixed number of times. The prototype syntax is as follows:

For statement

-- for statement for control variable := initial value to
downto

-

- final value do statement -�

-- control variable variable identifier -�

-- initial value expression -�

-- final value expression -�

134

CHAPTER 13. STATEMENTS

Here, Statement can be a compound statement. When the For statement is encountered, the
control variable is initialized with the initial value, and is compared with the final value. What
happens next depends on whether to or downto is used:

1. In the case To is used, if the initial value is larger than the final value then Statement will
never be executed.

2. In the case DownTo is used, if the initial value is less than the final value then Statement
will never be executed.

After this check, the statement after Do is executed. After the execution of the statement, the control
variable is increased or decreased with 1, depending on whether To or Downto is used. The control
variable must be an ordinal type, no other types can be used as counters in a loop.

Remark: Free Pascal always calculates the upper bound before initializing the counter variable with the initial
value.

Remark: It is not allowed to change (i.e. assign a value to) the value of a loop variable inside the loop.

The following are valid loops:

For Day := Monday to Friday do Work;
For I := 100 downto 1 do

WriteLn (’Counting down : ’,i);
For I := 1 to 7*dwarfs do KissDwarf(i);

The following will generate an error:

For I:=0 to 100 do
begin
DoSomething;
I:=I*2;
end;

because the loop variable I cannot be assigned to inside the loop.

If the statement is a compound statement, then the Break and Continue reserved words can be
used to jump to the end or just after the end of the For statement.

13.2.5 The For..in..do statement
As of version 2.4.2, Free Pascal supports the For..in loop construction. A for..in loop is used
in case one wants to calculate something a fixed number of times with an enumerable loop variable.
The prototype syntax is as follows:

For statement

-- for in statement for control variable in enumerable do statement -�

-- control variable variable identifier -�

-- enumerable enumerated type
expression

-�

135

CHAPTER 13. STATEMENTS

Here, Statement can be a compound statement. The enumerable must be an expression that
consists of a fixed number of elements: the loop variable will be made equal to each of the elements
in turn and the statement following the do keyword will be executed.

The enumerable expression can be one of 5 cases:

1. An enumeration type identifier. The loop will then be over all elements of the enumeration
type. The control variable must be of the enumeration type.

2. A set value. The loop will then be over all elements in the set, the control variable must be of
the base type of the set.

3. An array value. The loop will be over all elements in the array, and the control variable must
have the same type as an element in the array. As a special case, a string is regarded as an array
of characters.

4. An enumeratable class instance. This is an instance of a class that supports the IEnumerator
and IEnumerable interfaces. In this case, the control variable’s type must equal the type of
the IEnumerator.GetCurrent return value.

5. Any type for which an enumerator operator is defined. The enumerator operator must
return a class that implements the IEnumerator interface. The type of the control variable’s
type must equal the type of the enumerator class GetCurrent return value type.

The simplest case of the for..in loop is using an enumerated type:

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
d : TWeekday;

begin
for d in TWeekday do

writeln(d);
end.

This will print all week days to the screen.

The above for..in construct is equivalent to the following for..to construct:

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
d : TWeekday;

begin
for d:=Low(TWeekday) to High(TWeekday) do

writeln(d);
end.

A second case of for..in loop is when the enumerable expression is a set, and then the loop will
be executed once for each element in the set:

136

CHAPTER 13. STATEMENTS

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
Week : set of TWeekDay

= [monday, tuesday, wednesday, thursday, friday];
d : TWeekday;

begin
for d in Week do

writeln(d);
end.

This will print the names of the week days to the screen. Note that the variable d is of the same type
as the base type of the set.

The above for..in construct is equivalent to the following for..to construct:

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
Week : set of TWeekDay

= [monday, tuesday, wednesday, thursday, friday];

d : TWeekday;

begin
for d:=Low(TWeekday) to High(TWeekday) do

if d in Week then
writeln(d);

end.

The third possibility for a for..in loop is when the enumerable expression is an array:

var
a : Array[1..7] of string

= (’monday’,’tuesday’,’wednesday’,’thursday’,
’friday’,’saturday’,’sunday’);

Var
S : String;

begin
For s in a do

Writeln(s);
end.

This will also print all days in the week, and is equivalent to

var
a : Array[1..7] of string

= (’monday’,’tuesday’,’wednesday’,’thursday’,

137

CHAPTER 13. STATEMENTS

’friday’,’saturday’,’sunday’);

Var
i : integer;

begin
for i:=Low(a) to high(a) do

Writeln(a[i]);
end.

A string type is equivalent to an array of char, and therefor a string can be used in a
for..in loop. The following will print all letters in the alphabet, each letter on a line:

Var
c : char;

begin
for c in ’abcdefghijklmnopqrstuvwxyz’ do

writeln(c);
end.

The fourth possibility for a for..in loop is using classes. A class can implement the IEnumerable
interface, which is defined as follows:

IEnumerable = interface(IInterface)
function GetEnumerator: IEnumerator;

end;

The actual return type of the GetEnumerator must not necessarily be an IEnumerator inter-
face, instead, it can be a class which implements the methods of IEnumerator:

IEnumerator = interface(IInterface)
function GetCurrent: TObject;
function MoveNext: Boolean;
procedure Reset;
property Current: TObject read GetCurrent;

end;

The Current property and the MoveNext method must be present in the class returned by the
GetEnumerator method. The actual type of the Current property need not be a TObject.
When encountering a for..in loop with a class instance as the ’in’ operand, the compiler will
check each of the following conditions:

• Whether the class in the enumerable expression implements a method GetEnumerator

• Whether the result of GetEnumerator is a class with the following method:

Function MoveNext : Boolean

• Whether the result of GetEnumerator is a class with the following read-only property:

Property Current : AType;

The type of the property must match the type of the control variable of the for..in loop.

138

CHAPTER 13. STATEMENTS

Neither the IEnumerator nor the IEnumerable interfaces must actually be declared by the enu-
merable class: the compiler will detect whether these interfaces are present using the above checks.
The interfaces are only defined for Delphi compatibility and are not used internally. (it would also
be impossible to enforce their correctness).

The Classes unit contains a number of classes that are enumerable:

TFPList Enumerates all pointers in the list.

TList Enumerates all pointers in the list.

TCollection Enumerates all items in the collection.

TStringList Enumerates all strings in the list.

TComponent Enumerates all child components owned by the component.

Thus, the following code will also print all days in the week:

{$mode objfpc}
uses classes;

Var
Days : TStrings;
D : String;

begin
Days:=TStringList.Create;
try

Days.Add(’Monday’);
Days.Add(’Tuesday’);
Days.Add(’Wednesday’);
Days.Add(’Thursday’);
Days.Add(’Friday’);
Days.Add(’Saturday’);
Days.Add(’Sunday’);
For D in Days do

Writeln(D);
Finally

Days.Free;
end;

end.

Note that the compiler enforces type safety: declaring D as an integer will result in a compiler error:

testsl.pp(20,9) Error: Incompatible types: got "AnsiString" expected "LongInt"

The above code is equivalent to the following:

{$mode objfpc}
uses classes;

Var
Days : TStrings;
D : String;
E : TStringsEnumerator;

139

CHAPTER 13. STATEMENTS

begin
Days:=TStringList.Create;
try

Days.Add(’Monday’);
Days.Add(’Tuesday’);
Days.Add(’Wednesday’);
Days.Add(’Thursday’);
Days.Add(’Friday’);
Days.Add(’Saturday’);
Days.Add(’Sunday’);
E:=Days.getEnumerator;
try

While E.MoveNext do
begin
D:=E.Current;
Writeln(D);
end;

Finally
E.Free;

end;
Finally

Days.Free;
end;

end.

Both programs will output the same result.

The fifth and last possibility to use a for..in loop can be used to enumerate almost any type,
using the enumerator operator. The enumerator operator must return a class that has the same
signature as the IEnumerator approach above. The following code will define an enumerator for
the Integer type:

Type

TEvenEnumerator = Class
FCurrent : Integer;
FMax : Integer;
Function MoveNext : Boolean;
Property Current : Integer Read FCurrent;

end;

Function TEvenEnumerator.MoveNext : Boolean;

begin
FCurrent:=FCurrent+2;
Result:=FCurrent<=FMax;

end;

operator enumerator(i : integer) : TEvenEnumerator;

begin
Result:=TEvenEnumerator.Create;
Result.FMax:=i;

140

CHAPTER 13. STATEMENTS

end;

var
I : Integer;
m : Integer = 4;

begin
For I in M do

Writeln(i);
end.

The loop will print all nonzero even numbers smaller or equal to the enumerable. (2 and 4 in the case
of the example).

Care must be taken when defining enumerator operators: the compiler will find and use the first
available enumerator operator for the enumerable expression. For classes this also means that the
GetEnumerator method is not even considered. The following code will define an enumerator
operator which extracts the object from a stringlist:

{$mode objfpc}
uses classes;

Type
TDayObject = Class

DayOfWeek : Integer;
Constructor Create(ADayOfWeek : Integer);

end;

TObjectEnumerator = Class
FList : TStrings;
FIndex : Integer;
Function GetCurrent : TDayObject;
Function MoveNext: boolean;
Property Current : TDayObject Read GetCurrent;

end;

Constructor TDayObject.Create(ADayOfWeek : Integer);

begin
DayOfWeek:=ADayOfWeek;

end;

Function TObjectEnumerator.GetCurrent : TDayObject;
begin

Result:=FList.Objects[Findex] as TDayObject;
end;

Function TObjectEnumerator.MoveNext: boolean;

begin
Inc(FIndex);
Result:=(FIndex<FList.Count);

end;

operator enumerator (s : TStrings) : TObjectEnumerator;

141

CHAPTER 13. STATEMENTS

begin
Result:=TObjectEnumerator.Create;
Result.Flist:=S;
Result.FIndex:=-1;

end;

Var
Days : TStrings;
D : String;
O : TdayObject;

begin
Days:=TStringList.Create;
try

Days.AddObject(’Monday’,TDayObject.Create(1));
Days.AddObject(’Tuesday’,TDayObject.Create(2));
Days.AddObject(’Wednesday’,TDayObject.Create(3));
Days.AddObject(’Thursday’,TDayObject.Create(4));
Days.AddObject(’Friday’,TDayObject.Create(5));
Days.AddObject(’Saturday’,TDayObject.Create(6));
Days.AddObject(’Sunday’,TDayObject.Create(7));
For O in Days do

Writeln(O.DayOfWeek);
Finally

Days.Free;
end;

end.

The above code will print the day of the week for each day in the week.

If a class is not enumerable, the compiler will report an error when it is encountered in a for...in
loop.

Remark: Like the for..to loop, it is not allowed to change (i.e. assign a value to) the value of a loop control
variable inside the loop.

13.2.6 The Repeat..until statement
The repeat statement is used to execute a statement until a certain condition is reached. The
statement will be executed at least once. The prototype syntax of the Repeat..until statement
is

Repeat statement

-- repeat statement repeat
6
statement

;
until expression -�

This will execute the statements between repeat and until up to the moment when Expression
evaluates to True. Since the expression is evaluated after the execution of the statements, they
are executed at least once.

142

CHAPTER 13. STATEMENTS

Be aware of the fact that the boolean expression Expressionwill be short-cut evaluated by default,
meaning that the evaluation will be stopped at the point where the outcome is known with certainty.

The following are valid repeat statements

repeat
WriteLn (’I =’,i);
I := I+2;

until I>100;

repeat
X := X/2

until x<10e-3;

Note that the last statement before the until keyword does not need a terminating semicolon, but
it is allowed.

The Break and Continue reserved words can be used to jump to the end or just after the end of
the repeat .. until statement.

13.2.7 The While..do statement
A while statement is used to execute a statement as long as a certain condition holds. In difference
with the repeat loop, this may imply that the statement is never executed.

The prototype syntax of the While..do statement is

While statements

-- while statement while expression do statement -�

This will execute Statement as long as Expression evaluates toTrue. Since Expression is
evaluated before the execution of Statement, it is possible that Statement isn’t executed at all.
Statement can be a compound statement.

Be aware of the fact that the boolean expression Expressionwill be short-cut evaluated by default,
meaning that the evaluation will be stopped at the point where the outcome is known with certainty.

The following are valid while statements:

I := I+2;
while i<=100 do

begin
WriteLn (’I =’,i);
I := I+2;
end;

X := X/2;
while x>=10e-3 do

X := X/2;

They correspond to the example loops for the repeat statements.

If the statement is a compound statement, then the Break and Continue reserved words can be
used to jump to the end or just after the end of the While statement.

143

CHAPTER 13. STATEMENTS

13.2.8 The With statement
The with statement serves to access the elements of a record or object or class, without having to
specify the element’s name each time. The syntax for a with statement is

With statement

-- with statement
6
variable reference

,
do statement -�

The variable reference must be a variable of a record, object or class type. In the with statement,
any variable reference, or method reference is checked to see if it is a field or method of the record
or object or class. If so, then that field is accessed, or that method is called. Given the declaration:

Type
Passenger = Record

Name : String[30];
Flight : String[10];

end;

Var
TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustomer.Name := ’Michael’;
TheCustomer.Flight := ’PS901’;

and

With TheCustomer do
begin
Name := ’Michael’;
Flight := ’PS901’;
end;

The statement

With A,B,C,D do Statement;

is equivalent to

With A do
With B do
With C do
With D do Statement;

This also is a clear example of the fact that the variables are tried last to first, i.e., when the compiler
encounters a variable reference, it will first check if it is a field or method of the last variable. If not,
then it will check the last-but-one, and so on. The following example shows this;

144

CHAPTER 13. STATEMENTS

Program testw;
Type AR = record

X,Y : Longint;
end;
PAR = ^Ar;

Var S,T : Ar;
begin

S.X := 1;S.Y := 1;
T.X := 2;T.Y := 2;
With S,T do

WriteLn (X,’ ’,Y);
end.

The output of this program is

2 2

Showing thus that the X,Y in the WriteLn statement match the T record variable.

Remark: When using a With statement with a pointer, or a class, it is not permitted to change the pointer or
the class in the With block. With the definitions of the previous example, the following illustrates
what it is about:

Var p : PAR;

begin
With P^ do
begin
// Do some operations
P:=OtherP;
X:=0.0; // Wrong X will be used !!
end;

The reason the pointer cannot be changed is that the address is stored by the compiler in a temporary
register. Changing the pointer won’t change the temporary address. The same is true for classes.

13.2.9 Exception Statements
Free Pascal supports exceptions. Exceptions provide a convenient way to program error and error-
recovery mechanisms, and are closely related to classes. Exception support is explained in chapter
17, page 181

13.3 Assembler statements

An assembler statement allows to insert assembler code right in the Pascal code.

Assembler statements

-- asm statement asm assembler code end
registerlist

-�

145

CHAPTER 13. STATEMENTS

-- registerlist [
6
stringconstant

,
] -�

More information about assembler blocks can be found in the Programmer’s Guide. The register list
is used to indicate the registers that are modified by an assembler statement in the assembler block.
The compiler stores certain results in the registers. If the registers are modified in an assembler
statement, the compiler should, sometimes, be told about it. The registers are denoted with their
Intel names for the I386 processor, i.e., ’EAX’, ’ESI’ etc... As an example, consider the following
assembler code:

asm
Movl $1,%ebx
Movl $0,%eax
addl %eax,%ebx

end [’EAX’,’EBX’];

This will tell the compiler that it should save and restore the contents of the EAX and EBX registers
when it encounters this asm statement.

Free Pascal supports various styles of assembler syntax. By default, AT&T syntax is assumed for the
80386 and compatibles platform. The default assembler style can be changed with the {$asmmode
xxx} switch in the code, or the -R command-line option. More about this can be found in the
Programmer’s Guide.

146

file:../prog/prog.html
file:../prog/prog.html

Chapter 14

Using functions and procedures

Free Pascal supports the use of functions and procedures. It supports

• Function overloading, i.e. functions with the same name but different parameter lists.

• Const parameters.

• Open arrays (i.e. arrays without bounds).

• Variable number of arguments as in C.

• Return-like construct as in C, through the Exit keyword.

Remark: In many of the subsequent paragraphs the words procedure and function will be used inter-
changeably. The statements made are valid for both, except when indicated otherwise.

14.1 Procedure declaration

A procedure declaration defines an identifier and associates it with a block of code. The procedure
can then be called with a procedure statement.

Procedure declaration

-- procedure declaration procedure header ; subroutine block ; -�

-- procedure header procedure identifier
qualified method identifier

-

- formal parameter list
modifiers

hintdirectives -�

-- subroutine block block
external directive

asm block
forward

-�

See section 14.4, page 149 for the list of parameters. A procedure declaration that is followed by a
block implements the action of the procedure in that block. The following is a valid procedure :

147

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Procedure DoSomething (Para : String);
begin

Writeln (’Got parameter : ’,Para);
Writeln (’Parameter in upper case : ’,Upper(Para));

end;

Note that it is possible that a procedure calls itself.

14.2 Function declaration

A function declaration defines an identifier and associates it with a block of code. The block of
code will return a result. The function can then be called inside an expression, or with a procedure
statement, if extended syntax is on.

Function declaration

-- function declaration function header ; subroutine block ; -�

-- function header function identifier
qualified method identifier

-

- formal parameter list : result type
modifiers

hintdirectives -�

-- subroutine block block
external directive

asm block
forward

-�

The result type of a function can be any previously declared type. contrary to Turbo Pascal, where
only simple types could be returned.

14.3 Function results

The result of a function can be set by setting the result variable: this can be the function identifier or,
(only in ObjFPC or Delphi mode) the special Result identifier:

Function MyFunction : Integer;

begin
MyFunction:=12; // Return 12

end;

In Delphi or ObjFPC mode, the above can also be coded as:

Function MyFunction : Integer;

begin
Result:=12;

end;

148

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

As an extension to Delphi syntax, the ObjFPC mode also supports a special extension of the Exit
procedure:

Function MyFunction : Integer;

begin
Exit(12);

end;

The Exit call sets the result of the function and jumps to the final End of the function declaration
block. It can be seen as the equivalent of the C return instruction.

14.4 Parameter lists

When arguments must be passed to a function or procedure, these parameters must be declared in the
formal parameter list of that function or procedure. The parameter list is a declaration of identifiers
that can be referred to only in that procedure or function’s block.

Parameters

-- formal parameter list (
6
parameter declaration

;
) -�

-- parameter declaration value parameter
variable parameter

out parameter
constant parameter

out parameter

-�

Constant parameters, out parameters and variable parameters can also be untyped parameters if
they have no type identifier.

As of version 1.1, Free Pascal supports default values for both constant parameters and value pa-
rameters, but only for simple types. The compiler must be in OBJFPC or DELPHI mode to accept
default values.

14.4.1 Value parameters
Value parameters are declared as follows:

Value parameters

-- value parameter identifier list :
array of

parameter type

identifier : type identifier = default parameter value

-�

149

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

When parameters are declared as value parameters, the procedure gets a copy of the parameters
that the calling statement passes. Any modifications to these parameters are purely local to the
procedure’s block, and do not propagate back to the calling block.

A block that wishes to call a procedure with value parameters must pass assignment compatible
parameters to the procedure. This means that the types should not match exactly, but can be converted
to the actual parameter types. This conversion code is inserted by the compiler itself.

Care must be taken when using value parameters: value parameters makes heavy use of the stack,
especially when using large parameters. The total size of all parameters in the formal parameter list
should be below 32K for portability’s sake (the Intel version limits this to 64K).

Open arrays can be passed as value parameters. See section 14.4.5, page 153 for more information
on using open arrays.

For a parameter of a simple type (i.e. not a structured type), a default value can be specified. This can
be an untyped constant. If the function call omits the parameter, the default value will be passed on
to the function. For dynamic arrays or other types that can be considered as equivalent to a pointer,
the only possible default value is Nil.

The following example will print 20 on the screen:

program testp;

Const
MyConst = 20;

Procedure MyRealFunc(I : Integer = MyConst);

begin
Writeln(’Function received : ’,I);

end;

begin
MyRealFunc;

end.

14.4.2 Variable parameters
Variable parameters are declared as follows:

Variable parameters

-- variable parameter var identifier list
:

array of
type identifier

-�

When parameters are declared as variable parameters, the procedure or function accesses immediatly
the variable that the calling block passed in its parameter list. The procedure gets a pointer to the
variable that was passed, and uses this pointer to access the variable’s value. From this, it follows that
any changes made to the parameter, will propagate back to the calling block. This mechanism can be
used to pass values back in procedures. Because of this, the calling block must pass a parameter of
exactly the same type as the declared parameter’s type. If it does not, the compiler will generate an
error.

150

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Variable and constant parameters can be untyped. In that case the variable has no type, and hence is
incompatible with all other types. However, the address operator can be used on it, or it can be passed
to a function that has also an untyped parameter. If an untyped parameter is used in an assigment, or
a value must be assigned to it, a typecast must be used.

File type variables must always be passed as variable parameters.

Open arrays can be passed as variable parameters. See section 14.4.5, page 153 for more information
on using open arrays.

Note that default values are not supported for variable parameters. This would make little sense since
it defeats the purpose of being able to pass a value back to the caller.

14.4.3 Out parameters
Out parameters (output parameters) are declared as follows:

Out parameters

-- out parameter out identifier list
:

array of
type identifier

-�

The purpose of an out parameter is to pass values back to the calling routine: the variable is passed
by reference. The initial value of the parameter on function entry is discarded, and should not be
used.

If a variable must be used to pass a value to a function and retrieve data from the function, then a
variable parameter must be used. If only a value must be retrieved, a out parameter can be used.

Needless to say, default values are not supported for out parameters.

The difference of out parameters and parameters by reference is very small: the former gives the
compiler more information about what happens to the arguments when passed to the procedure: it
knows that the variable does not have to be initialized prior to the call. The following example
illustrates this:

Procedure DoA(Var A : Integer);

begin
A:=2;
Writeln(’A is ’,A);

end;

Procedure DoB(Out B : Integer);

begin
B:=2;
Writeln(’B is ’,B);

end;

Var
C,D : Integer;

begin

151

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

DoA(C);
DoB(D);

end.

Both procedures DoA and DoB do practically the same. But DoB’s declaration gives more informa-
tion to the compiler, allowing it to detect that D does not have to initialized before DoB is called.
Since the parameter A in DoA can receive a value as well as return one, the compiler notices that C
was not initialized prior to the call to DoA:

home: >fpc -S2 -vwhn testo.pp
testo.pp(19,8) Hint: Variable "C" does not seem to be initialized

This shows that it is better to use out parameters when the parameter is used only to return a value.

Remark: Out parameters are only supported in Delphi and ObjFPC mode. For the other modes, out is a
valid identifier.

14.4.4 Constant parameters
In addition to variable parameters and value parameters Free Pascal also supports Constant parame-
ters. A constant parameter can be specified as follows:

Constant parameters

--constant parameter const identifier list
:

array of
type identifier

identifier : type identifier = default parameter value

-

- -�

Specifying a parameter as Constant is giving the compiler a hint that the contents of the parameter
will not be changed by the called routine. This allows the compiler to perform optimizations which
it could not do otherwise, and also to perform certain checks on the code inside the routine: namely,
it can forbid assignments to the parameter. Furthermore a const parameter cannot be passed on to
another function that requires a variable parameter: the compiler can check this as well. The main
use for this is reducing the stack size, hence improving performance, and still retaining the semantics
of passing by value...

Remark: Contrary to Delphi, no assumptions should be made about how const parameters are passed to
the underlying routine. In particular, the assumption that parameters with large size are passed by
reference is not correct. For this the constref parameter type should be used, which is available
as of version 2.5.1 of the compiler.

An exception is the stdcall calling convention: for compatibility with COM standards, large const
parameters are passed by reference.

Remark: Note that specifying const is a contract between the programmer and the compiler. It is the
programmer who tells the compiler that the contents of the const parameter will not be changed
when the routine is executed, it is not the compiler who tells the programmer that the parameter will
not be changed.

This is particularly important and visible when using refcounted types. For such types, the (invisible)
incrementing and decrementing of any reference count is omitted when const is used. Doing so
often allows the compiler to omit invisible try/finally frames for these routines.

As a side effect, the following code will produce not the expected output:

152

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Var
S : String = ’Something’;

Procedure DoIt(Const T : String);

begin
S:=’Something else’;
Writeln(T);

end;

begin
DoIt(S);

end.

Will write

Something else

This behaviour is by design.

Constant parameters can also be untyped. See section 14.4.2, page 150 for more information about
untyped parameters.

As for value parameters, constant parameters can get default values.

Open arrays can be passed as constant parameters. See section 14.4.5, page 153 for more information
on using open arrays.

14.4.5 Open array parameters
Free Pascal supports the passing of open arrays, i.e. a procedure can be declared with an array
of unspecified length as a parameter, as in Delphi. Open array parameters can be accessed in the
procedure or function as an array that is declared with starting index 0, and last element index
High(parameter). For example, the parameter

Row : Array of Integer;

would be equivalent to

Row : Array[0..N-1] of Integer;

Where N would be the actual size of the array that is passed to the function. N-1 can be calculated
as High(Row).

Specifically, if an empty array is passed, then High(Parameter) returns -1, while low(Parameter)
returns 0.

Open parameters can be passed by value, by reference or as a constant parameter. In the latter cases
the procedure receives a pointer to the actual array. In the former case, it receives a copy of the array.
In a function or procedure, open arrays can only be passed to functions which are also declared with
open arrays as parameters, not to functions or procedures which accept arrays of fixed length. The
following is an example of a function using an open array:

Function Average (Row : Array of integer) : Real;
Var I : longint;

Temp : Real;
begin

153

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Temp := Row[0];
For I := 1 to High(Row) do

Temp := Temp + Row[i];
Average := Temp / (High(Row)+1);

end;

As of FPC 2.2, it is also possible to pass partial arrays to a function that accepts an open array. This
can be done by specifying the range of the array which should be passed to the open array.

Given the declaration

Var
A : Array[1..100];

the following call will compute and print the average of the 100 numbers:

Writeln(’Average of 100 numbers: ’,Average(A));

But the following will compute and print the average of the first and second half:

Writeln(’Average of first 50 numbers: ’,Average(A[1..50]));
Writeln(’Average of last 50 numbers: ’,Average(A[51..100]));

14.4.6 Array of const
In Object Pascal or Delphi mode, Free Pascal supports the Array of Const construction to pass
parameters to a subroutine.

This is a special case of the Open array construction, where it is allowed to pass any expression
in an array to a function or procedure. The expression must have a simple result type: structures
cannot be passed as an argument. This means that all ordinal, float or string types can be passed, as
well as pointers, classes and interfaces.

The elements of the array of const are converted to a a special variant record:

Type
PVarRec = ^TVarRec;
TVarRec = record

case VType : Ptrint of
vtInteger : (VInteger: Longint);
vtBoolean : (VBoolean: Boolean);
vtChar : (VChar: Char);
vtWideChar : (VWideChar: WideChar);
vtExtended : (VExtended: PExtended);
vtString : (VString: PShortString);
vtPointer : (VPointer: Pointer);
vtPChar : (VPChar: PChar);
vtObject : (VObject: TObject);
vtClass : (VClass: TClass);
vtPWideChar : (VPWideChar: PWideChar);
vtAnsiString : (VAnsiString: Pointer);
vtCurrency : (VCurrency: PCurrency);
vtVariant : (VVariant: PVariant);
vtInterface : (VInterface: Pointer);
vtWideString : (VWideString: Pointer);

154

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

vtInt64 : (VInt64: PInt64);
vtQWord : (VQWord: PQWord);

end;

Therefor, inside the procedure body, the array of const argument is equivalent to an open array
of TVarRec:

Procedure Testit (Args: Array of const);

Var I : longint;

begin
If High(Args)<0 then

begin
Writeln (’No aguments’);
exit;
end;

Writeln (’Got ’,High(Args)+1,’ arguments :’);
For i:=0 to High(Args) do

begin
write (’Argument ’,i,’ has type ’);
case Args[i].vtype of

vtinteger :
Writeln (’Integer, Value :’,args[i].vinteger);

vtboolean :
Writeln (’Boolean, Value :’,args[i].vboolean);

vtchar :
Writeln (’Char, value : ’,args[i].vchar);

vtextended :
Writeln (’Extended, value : ’,args[i].VExtended^);

vtString :
Writeln (’ShortString, value :’,args[i].VString^);

vtPointer :
Writeln (’Pointer, value : ’,Longint(Args[i].VPointer));

vtPChar :
Writeln (’PChar, value : ’,Args[i].VPChar);

vtObject :
Writeln (’Object, name : ’,Args[i].VObject.Classname);

vtClass :
Writeln (’Class reference, name :’,Args[i].VClass.Classname);

vtAnsiString :
Writeln (’AnsiString, value :’,AnsiString(Args[I].VAnsiString);

else
Writeln (’(Unknown) : ’,args[i].vtype);

end;
end;

end;

In code, it is possible to pass an arbitrary array of elements to this procedure:

S:=’Ansistring 1’;
T:=’AnsiString 2’;
Testit ([]);
Testit ([1,2]);

155

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Testit ([’A’,’B’]);
Testit ([TRUE,FALSE,TRUE]);
Testit ([’String’,’Another string’]);
Testit ([S,T]) ;
Testit ([P1,P2]);
Testit ([@testit,Nil]);
Testit ([ObjA,ObjB]);
Testit ([1.234,1.234]);
TestIt ([AClass]);

If the procedure is declared with the cdecl modifier, then the compiler will pass the array as a C
compiler would pass it. This, in effect, emulates the C construct of a variable number of arguments,
as the following example will show:

program testaocc;
{$mode objfpc}

Const
P : PChar = ’example’;
Fmt : PChar =

’This %s uses printf to print numbers (%d) and strings.’#10;

// Declaration of standard C function printf:
procedure printf (fm : pchar; args : array of const);cdecl; external ’c’;

begin
printf(Fmt,[P,123]);

end.

Remark that this is not true for Delphi, so code relying on this feature will not be portable.

14.5 Function overloading

Function overloading simply means that the same function is defined more than once, but each time
with a different formal parameter list. The parameter lists must differ at least in one of its elements
type. When the compiler encounters a function call, it will look at the function parameters to decide
which one of the defined functions it should call. This can be useful when the same function must be
defined for different types. For example, in the RTL, the Dec procedure could be defined as:

...
Dec(Var I : Longint;decrement : Longint);
Dec(Var I : Longint);
Dec(Var I : Byte;decrement : Longint);
Dec(Var I : Byte);
...

When the compiler encounters a call to the Dec function, it will first search which function it should
use. It therefore checks the parameters in a function call, and looks if there is a function definition
which matches the specified parameter list. If the compiler finds such a function, a call is inserted to
that function. If no such function is found, a compiler error is generated.

Functions that have a cdecl modifier cannot be overloaded. (Technically, because this modifier
prevents the mangling of the function name by the compiler).

156

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Prior to version 1.9 of the compiler, the overloaded functions needed to be in the same unit. Now the
compiler will continue searching in other units if it doesn’t find a matching version of an overloaded
function in one unit, and if the overload keyword is present.

If the overload keyword is not present, then all overloaded versions must reside in the same unit,
and if it concerns methods part of a class, they must be in the same class, i.e. the compiler will not
look for overloaded methods in parent classes if the overload keyword was not specified.

14.6 Forward defined functions

A function can be declared without having it followed by its implementation, by having it followed
by the forward procedure. The effective implementation of that function must follow later in
the module. The function can be used after a forward declaration as if it had been implemented
already. The following is an example of a forward declaration.

Program testforward;
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn (’In second. Calling first...’);
First (1);

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
begin

Second;
end.

A function can be defined as forward only once. Likewise, in units, it is not allowed to have a forward
declared function of a function that has been declared in the interface part. The interface declaration
counts as a forward declaration. The following unit will give an error when compiled:

Unit testforward;
interface
Procedure First (n : longint);
Procedure Second;
implementation
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn (’In second. Calling first...’);
First (1);

end;
Procedure First (n : longint);
begin

WriteLn (’First received : ’,n);
end;
end.

Reversely, functions declared in the interface section cannot be declared forward in the implementa-
tion section. Logically, since they already have been declared.

157

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.7 External functions

The external modifier can be used to declare a function that resides in an external object file. It
allows to use the function in some code, and at linking time, the object file containing the implemen-
tation of the function or procedure must be linked in.

External directive

-- external directive external
string constant

name string constant
index integer constant

-�

It replaces, in effect, the function or procedure code block. As an example:

program CmodDemo;
{$Linklib c}
Const P : PChar = ’This is fun !’;
Function strlen (P : PChar) : Longint; cdecl; external;
begin

WriteLn (’Length of (’,p,’) : ’,strlen(p))
end.

Remark: The parameters in the declaration of the external function should match exactly the ones in the
declaration in the object file.

If the external modifier is followed by a string constant:

external ’lname’;

Then this tells the compiler that the function resides in library ’lname’. The compiler will then
automatically link this library to the program.

The name that the function has in the library can also be specified:

external ’lname’ name ’Fname’;

This tells the compiler that the function resides in library ’lname’, but with name ’Fname’. The
compiler will then automatically link this library to the program, and use the correct name for the
function. Under WINDOWS and OS/2, the following form can also be used:

external ’lname’ Index Ind;

This tells the compiler that the function resides in library ’lname’, but with index Ind. The compiler
will then automatically link this library to the program, and use the correct index for the function.

Finally, the external directive can be used to specify the external name of the function :

external name ’Fname’;
{$L myfunc.o}

This tells the compiler that the function has the name ’Fname’. The correct library or object file (in
this case myfunc.o) must still be linked, ensuring that the function ’Fname’ is indeed included in the
linking stage.

158

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.8 Assembler functions

Functions and procedures can be completely implemented in assembly language. To indicate this,
use the assembler keyword:

Assembler functions

-- asm block assembler ; declaration part asm statement -�

Contrary to Delphi, the assembler keyword must be present to indicate an assembler function. For
more information about assembler functions, see the chapter on using assembler in the Programmer’s
Guide.

14.9 Modifiers

A function or procedure declaration can contain modifiers. Here we list the various possibilities:

Modifiers

-- modifiers
6
; public

name string constant
export

alias : string constant
interrupt
iochecks

call modifiers

-�

-- call modifiers cdecl
inline
local

nostackframe
overload
pascal
register
safecall

saveregisters
softfloat
stdcall
varargs

-�

Free Pascal doesn’t support all Turbo Pascal modifiers (although it parses them for compatibility),
but does support a number of additional modifiers. They are used mainly for assembler and reference
to C object files.

159

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.9.1 alias
The alias modifier allows the programmer to specify a different name for a procedure or function.
This is mostly useful for referring to this procedure from assembly language constructs or from
another object file. As an example, consider the following program:

Program Aliases;

Procedure Printit;alias : ’DOIT’;
begin

WriteLn (’In Printit (alias : "DOIT")’);
end;
begin

asm
call DOIT
end;

end.

Remark: The specified alias is inserted straight into the assembly code, thus it is case sensitive.

The alias modifier does not make the symbol public to other modules, unless the routine is also
declared in the interface part of a unit, or the public modifier is used to force it as public. Consider
the following:

unit testalias;

interface

procedure testroutine;

implementation

procedure testroutine;alias:’ARoutine’;
begin

WriteLn(’Hello world’);
end;

end.

This will make the routine testroutine available publicly to external object files under the label
name ARoutine.

Remark: The alias directive is considered deprecated. Please use the public name directive. See section
14.9.11, page 163.

14.9.2 cdecl
The cdecl modifier can be used to declare a function that uses a C type calling convention. This
must be used when accessing functions residing in an object file generated by standard C compilers,
but must also be used for Pascal functions that are to be used as callbacks for C libraries.

The cdecl modifier allows to use C function in the code. For external C functions, the object file
containing the C implementation of the function or procedure must be linked in. As an example:

program CmodDemo;

160

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

{$LINKLIB c}
Const P : PChar = ’This is fun !’;
Function StrLen(P: PChar): Longint;cdecl; external name ’strlen’;
begin

WriteLn (’Length of (’,p,’) : ’,StrLen(p));
end.

When compiling this, and linking to the C-library, the strlen function can be called throughout the
program. The external directive tells the compiler that the function resides in an external object
file or library with the ’strlen’ name (see 14.7).

Remark: The parameters in our declaration of the C function should match exactly the ones in the declaration
in C.

For functions that are not external, but which are declared using cdecl, no external linking is
needed. These functions have some restrictions, for instance the array of const construct can
not be used (due the way this uses the stack). On the other hand, the cdecl modifier allows these
functions to be used as callbacks for routines written in C, as the latter expect the ’cdecl’ calling
convention.

14.9.3 export
The export modifier is used to export names when creating a shared library or an executable
program. This means that the symbol will be publicly available, and can be imported from other
programs. For more information on this modifier, consult the section on “Making libraries” in the
Programmer’s Guide.

14.9.4 inline
Procedures that are declared inline are copied to the places where they are called. This has the
effect that there is no actual procedure call, the code of the procedure is just copied to where the
procedure is needed, this results in faster execution speed if the function or procedure is used a lot.
It is obvious that inlining large functions does not make sense.

By default, inline procedures are not allowed. Inline code must be enabled using the command-
line switch -Si or {$inline on} directive.

Remark:

1. inline is only a hint for the compiler. This does not automatically mean that all calls are
inlined; sometimes the compiler may decide that a function simply cannot be inlined, or that a
particular call to the function cannot be inlined. If so, the compiler will emit a warning.

2. In old versions of Free Pascal, inline code was not exported from a unit. This meant that when
calling an inline procedure from another unit, a normal procedure call will be performed. Only
inside units, Inline procedures are really inlined. As of version 2.0.2, inline works accross
units.

3. Recursive inline functions are not allowed. i.e. an inline function that calls itself is not allowed.

14.9.5 interrupt
The interrupt keyword is used to declare a routine which will be used as an interrupt handler.
On entry to this routine, all the registers will be saved and on exit, all registers will be restored and
an interrupt or trap return will be executed (instead of the normal return from subroutine instruction).

161

file:../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

On platforms where a return from interrupt does not exist, the normal exit code of routines will be
done instead. For more information on the generated code, consult the Programmer’s Guide.

14.9.6 iocheck
The iocheck keyword is used to declare a routine which causes generation of I/O result checking
code within a {$IOCHECKS ON} block whenever it is called.

The result is that if a call to this procedure is generated, the compiler will insert I/O checking code if
the call is within a {$IOCHECKS ON} block.

This modifier is intended for RTL internal routines, not for use in applicaton code.

14.9.7 local
The local modifier allows the compiler to optimize the function: a local function cannot be in the
interface section of a unit: it is always in the implementation section of the unit. From this it follows
that the function cannot be exported from a library.

On Linux, the local directive results in some optimizations. On Windows, it has no effect. It was
introduced for Kylix compatibility.

14.9.8 nostackframe
The nostackframe modifier can be used to tell the compiler it should not generate a stack frame
for this procedure or function. By default, a stack frame is always generated for each procedure or
function.

One should be extremely careful when using this modifier: most procedures or functions need a stack
frame. Particularly for debugging they are needed.

14.9.9 overload
The overload modifier tells the compiler that this function is overloaded. It is mainly for Delphi
compatibility, as in Free Pascal, all functions and procedures can be overloaded without this modifier.

There is only one case where the overloadmodifier is mandatory: if a function must be overloaded
that resides in another unit. Both functions must be declared with the overload modifier: the
overload modifier tells the compiler that it should continue looking for overloaded versions in
other units.

The following example illustrates this. Take the first unit:

unit ua;

interface

procedure DoIt(A : String); overload;

implementation

procedure DoIt(A : String);

begin
Writeln(’ua.DoIt received ’,A)

162

file:../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

end;

end.

And a second unit, which contains an overloaded version:

unit ub;

interface

procedure DoIt(A : Integer); overload;

implementation

procedure DoIt(A : integer);

begin
Writeln(’ub.DoIt received ’,A)

end;

end.

And the following program, which uses both units:

program uab;

uses ua,ub;

begin
DoIt(’Some string’);

end.

When the compiler starts looking for the declaration of DoIt, it will find one in the ub unit. Without
the overload directive, the compiler would give an argument mismatch error:

home: >fpc uab.pp
uab.pp(6,21) Error: Incompatible type for arg no. 1:
Got "Constant String", expected "SmallInt"

With the overload directive in place at both locations, the compiler knows it must continue search-
ing for an overloaded version with matching parameter list. Note that both declarations must have
the overload modifier specified; it is not enough to have the modifier in unit ub. This is to prevent
unwanted overloading: the programmer who implemented the ua unit must mark the procedure as
fit for overloading.

14.9.10 pascal
The pascal modifier can be used to declare a function that uses the classic Pascal type calling
convention (passing parameters from left to right). For more information on the Pascal calling con-
vention, consult the Programmer’s Guide.

14.9.11 public
The Public keyword is used to declare a function globally in a unit. This is useful if the function
should not be accessible from the unit file (i.e. another unit/program using the unit doesn’t see the

163

file:../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

function), but must be accessible from the object file. As an example:

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

First := 0;
end;
Function Second : Real; [Public];
begin

Second := 1;
end;
end.

If another program or unit uses this unit, it will not be able to use the function Second, since it
isn’t declared in the interface part. However, it will be possible to access the function Second at the
assembly-language level, by using its mangled name (see the Programmer’s Guide).

The public modifier can also be followed by a name directive to specify the assembler name, as
follows:

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

First := 0;
end;
Function Second : Real; Public name ’second’;
begin

Second := 1;
end;
end.

The assembler symbol as specified by the ’public name’ directive will be ’second’, in all lowercase
letters.

14.9.12 register
The register keyword is used for compatibility with Delphi. In version 1.0.x of the compiler, this
directive has no effect on the generated code. As of the 1.9.X versions, this directive is supported.
The first three arguments are passed in registers EAX,ECX and EDX.

14.9.13 safecall
The safecall modifier ressembles closely the stdcall modifier. It sends parameters from right
to left on the stack. Additionally, the called procedure saves and restores all registers.

More information about this modifier can be found in the Programmer’s Guide, in the section on the
calling mechanism and the chapter on linking.

164

file:../prog/prog.html
file:../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.9.14 saveregisters
The saveregisters modifier tells the compiler that all CPU registers should be saved prior to
calling this routine. Which CPU registers are saved, depends entirely on the CPU.

14.9.15 softfloat
The softfloat modifier makes sense only on the ARM architecture.

14.9.16 stdcall
The stdcall modifier pushes the parameters from right to left on the stack, it also aligns all the
parameters to a default alignment.

More information about this modifier can be found in the Programmer’s Guide, in the section on the
calling mechanism and the chapter on linking.

14.9.17 varargs
This modifier can only be used together with the cdecl modifier, for external C procedures. It
indicates that the procedure accepts a variable number of arguments after the last declared variable.
These arguments are passed on without any type checking. It is equivalent to using the array of
const construction for cdecl procedures, without having to declare the array of const. The
square brackets around the variable arguments do not need to be used when this form of declaration
is used.

The following declarations are 2 ways of referring to the same function in the C library:

Function PrintF1(fmt : pchar); cdecl; varargs;
external ’c’ name ’printf’;

Function PrintF2(fmt : pchar; Args : Array of const); cdecl;
external ’c’ name ’printf’;

But they must be called differently:

PrintF1(’%d %d\n’,1,1);
PrintF2(’%d %d\n’,[1,1]);

14.10 Unsupported Turbo Pascal modifiers

The modifiers that exist in Turbo Pascal, but aren’t supported by Free Pascal, are listed in table (14.1).

Table 14.1: Unsupported modifiers

Modifier Why not supported ?
Near Free Pascal is a 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

The compiler will give a warning when it encounters these modifiers, but will otherwise completely
ignore them.

165

file:../prog/prog.html

Chapter 15

Operator overloading

15.1 Introduction

Free Pascal supports operator overloading. This means that it is possible to define the action of some
operators on self-defined types, and thus allow the use of these types in mathematical expressions.

Defining the action of an operator is much like the definition of a function or procedure, only there
are some restrictions on the possible definitions, as will be shown in the subsequent.

Operator overloading is, in essence, a powerful notational tool; but it is also not more than that, since
the same results can be obtained with regular function calls. When using operator overloading, it is
important to keep in mind that some implicit rules may produce some unexpected results. This will
be indicated.

15.2 Operator declarations

To define the action of an operator is much like defining a function:

Operator definitions

-- operator definition operator assignment operator definition
arithmetic operator definition

comparision operator definition

-

- result identifier : result type ; subroutine block -�

-- assignment operator definition := (value parameter) -�

-- arithmetic operator definition +
-
*
/
**

(parameter list) -�

-- comparision operator definition =
<
<=
>
>=

(parameter list) -�

166

CHAPTER 15. OPERATOR OVERLOADING

The parameter list for a comparision operator or an arithmetic operator must always contain 2 pa-
rameters, with the exception of the unary minus, where only 1 parameters is needed. The result type
of the comparision operator must be Boolean.

Remark: When compiling in Delphi mode or Objfpc mode, the result identifier may be dropped. The
result can then be accessed through the standard Result symbol.

If the result identifier is dropped and the compiler is not in one of these modes, a syntax error will
occur.

The statement block contains the necessary statements to determine the result of the operation. It
can contain arbitrary large pieces of code; it is executed whenever the operation is encountered in
some expression. The result of the statement block must always be defined; error conditions are not
checked by the compiler, and the code must take care of all possible cases, throwing a run-time error
if some error condition is encountered.

In the following, the three types of operator definitions will be examined. As an example, throughout
this chapter the following type will be used to define overloaded operators on :

type
complex = record

re : real;
im : real;

end;

This type will be used in all examples.

The sources of the Run-Time Library contain 2 units that heavily use operator overloading:

ucomplex This unit contains a complete calculus for complex numbers.

matrix This unit contains a complete calculus for matrices.

15.3 Assignment operators

The assignment operator defines the action of a assignent of one type of variable to another. The
result type must match the type of the variable at the left of the assignment statement, the single
parameter to the assignment operator must have the same type as the expression at the right of the
assignment operator.

This system can be used to declare a new type, and define an assignment for that type. For instance,
to be able to assign a newly defined type ’Complex’

Var
C,Z : Complex; // New type complex

begin
Z:=C; // assignments between complex types.

end;

The following assignment operator would have to be defined:

Operator := (C : Complex) z : complex;

To be able to assign a real type to a complex type as follows:

167

CHAPTER 15. OPERATOR OVERLOADING

var
R : real;
C : complex;

begin
C:=R;

end;

the following assignment operator must be defined:

Operator := (r : real) z : complex;

As can be seen from this statement, it defines the action of the operator := with at the right a real
expression, and at the left a complex expression.

An example implementation of this could be as follows:

operator := (r : real) z : complex;

begin
z.re:=r;
z.im:=0.0;

end;

As can be seen in the example, the result identifier (z in this case) is used to store the result of the
assignment. When compiling in Delphi mode or ObjFPC mode, the use of the special identifier
Result is also allowed, and can be substituted for the z, so the above would be equivalent to

operator := (r : real) z : complex;

begin
Result.re:=r;
Result.im:=0.0;

end;

The assignment operator is also used to convert types from one type to another. The compiler will
consider all overloaded assignment operators till it finds one that matches the types of the left hand
and right hand expressions. If no such operator is found, a ’type mismatch’ error is given.

Remark: The assignment operator is not commutative; the compiler will never reverse the role of the two
arguments. In other words, given the above definition of the assignment operator, the following is
not possible:

var
R : real;
C : complex;

begin
R:=C;

end;

If the reverse assignment should be possible then the assigment operator must be defined for that as
well. (This is not so for reals and complex numbers.)

Remark: The assignment operator is also used in implicit type conversions. This can have unwanted effects.
Consider the following definitions:

168

CHAPTER 15. OPERATOR OVERLOADING

operator := (r : real) z : complex;
function exp(c : complex) : complex;

Then the following assignment will give a type mismatch:

Var
r1,r2 : real;

begin
r1:=exp(r2);

end;

The mismatch occurs because the compiler will encounter the definition of the exp function with
the complex argument. It implicitly converts r2 to a complex, so it can use the above exp function.
The result of this function is a complex, which cannot be assigned to r1, so the compiler will give
a ’type mismatch’ error. The compiler will not look further for another exp which has the correct
arguments.

It is possible to avoid this particular problem by specifying

r1:=system.exp(r2);

An experimental solution for this problem exists in the compiler, but is not enabled by default. Maybe
someday it will be.

15.4 Arithmetic operators

Arithmetic operators define the action of a binary operator. Possible operations are:

multiplication To multiply two types, the * multiplication operator must be overloaded.

division To divide two types, the / division operator must be overloaded.

addition To add two types, the + addition operator must be overloaded.

substraction To substract two types, the - substraction operator must be overloaded.

exponentiation To exponentiate two types, the ** exponentiation operator must be overloaded.

Unary minus is used to take the negative of the argument following it.

Symmetric Difference To take the symmetric difference of 2 structures, the >< operator must be
overloaded.

The definition of an arithmetic operator takes two parameters, except for unary minus, which needs
only 1 parameter. The first parameter must be of the type that occurs at the left of the operator, the
second parameter must be of the type that is at the right of the arithmetic operator. The result type
must match the type that results after the arithmetic operation.

To compile an expression as

var
R : real;
C,Z : complex;

begin
C:=R*Z;

end;

169

CHAPTER 15. OPERATOR OVERLOADING

One needs a definition of the multiplication operator as:

Operator * (r : real; z1 : complex) z : complex;

begin
z.re := z1.re * r;
z.im := z1.im * r;

end;

As can be seen, the first operator is a real, and the second is a complex. The result type is complex.

Multiplication and addition of reals and complexes are commutative operations. The compiler, how-
ever, has no notion of this fact so even if a multiplication between a real and a complex is defined,
the compiler will not use that definition when it encounters a complex and a real (in that order). It is
necessary to define both operations.

So, given the above definition of the multiplication, the compiler will not accept the following state-
ment:

var
R : real;
C,Z : complex;

begin
C:=Z*R;

end;

Since the types of Z and R don’t match the types in the operator definition.

The reason for this behaviour is that it is possible that a multiplication is not always commutative.
E.g. the multiplication of a (n,m) with a (m,n) matrix will result in a (n,n) matrix, while the
mutiplication of a (m,n) with a (n,m) matrix is a (m,m) matrix, which needn’t be the same in all
cases.

15.5 Comparision operator

The comparision operator can be overloaded to compare two different types or to compare two equal
types that are not basic types. The result type of a comparision operator is always a boolean.

The comparision operators that can be overloaded are:

equal to (=) To determine if two variables are equal.

less than (<) To determine if one variable is less than another.

greater than (>) To determine if one variable is greater than another.

greater than or equal to (>=) To determine if one variable is greater than or equal to another.

less than or equal to (<=) To determine if one variable is greater than or equal to another.

There is no separate operator for unequal to (<>). To evaluate a statement that contains the unequal
to operator, the compiler uses the equal to operator (=), and negates the result.

As an example, the following operator allows to compare two complex numbers:

operator = (z1, z2 : complex) b : boolean;

170

CHAPTER 15. OPERATOR OVERLOADING

the above definition allows comparisions of the following form:

Var
C1,C2 : Complex;

begin
If C1=C2 then

Writeln(’C1 and C2 are equal’);
end;

The comparision operator definition needs 2 parameters, with the types that the operator is meant to
compare. Here also, the compiler doesn’t apply commutativity: if the two types are different, then it
is necessary to define 2 comparision operators.

In the case of complex numbers, it is, for instance necessary to define 2 comparsions: one with the
complex type first, and one with the real type first.

Given the definitions

operator = (z1 : complex;r : real) b : boolean;
operator = (r : real; z1 : complex) b : boolean;

the following two comparisions are possible:

Var
R,S : Real;
C : Complex;

begin
If (C=R) or (S=C) then
Writeln (’Ok’);

end;

Note that the order of the real and complex type in the two comparisions is reversed.

171

Chapter 16

Programs, units, blocks

A Pascal program can consist of modules called units. A unit can be used to group pieces of code
together, or to give someone code without giving the sources. Both programs and units consist of
code blocks, which are mixtures of statements, procedures, and variable or type declarations.

16.1 Programs

A Pascal program consists of the program header, followed possibly by a ’uses’ clause, and a block.

Programs

-- program program header ;
uses clause

block . -�

-- program header program identifier
(program parameters)

-�

-- program parameters identifier list -�

-- uses clause uses
6
identifier

,
; -�

The program header is provided for backwards compatibility, and is ignored by the compiler.

The uses clause serves to identify all units that are needed by the program. All identifiers which are
declared in the interface section of the units in the uses clause are added to the known identifiers of
the program. The system unit doesn’t have to be in this list, since it is always loaded by the compiler.

The order in which the units appear is significant, it determines in which order they are initialized.
Units are initialized in the same order as they appear in the uses clause. Identifiers are searched in the
opposite order, i.e. when the compiler searches for an identifier, then it looks first in the last unit in
the uses clause, then the last but one, and so on. This is important in case two units declare different
types with the same identifier.

When the compiler looks for unit files, it adds the extension .ppu to the name of the unit. On LINUX
and in operating systems where filenames are case sensitive when looking for a unit, the following
mechanism is used:

172

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

1. The unit is first looked for in the original case.

2. The unit is looked for in all-lowercase letters.

3. The unit is looked for in all-uppercase letters.

Additionally, If a unit name is longer than 8 characters, the compiler will first look for a unit name
with this length, and then it will truncate the name to 8 characters and look for it again. For compat-
ibility reasons, this is also true on platforms that support long file names.

Note that the above search is performed in each directory in the search path.

The program block contains the statements that will be executed when the program is started. Note
that these statements need not necessarily be the first statements that are executed: the initialization
code of the units may also contain statements that are executed prior to the program code.

The structure of a program block is discussed below.

16.2 Units

A unit contains a set of declarations, procedures and functions that can be used by a program or
another unit. The syntax for a unit is as follows:

Units

-- unit unit header interface part implementation part -
-

initialization part
finalization part

begin
6
statement

;

end . -�

-- unit header unit unit identifier ; -�

-- interface part interface
uses clause 6 constant declaration part

type declaration part
procedure headers part

-�

-- procedure headers part procedure header
function header

;
call modifiers ;

-�

-- implementation part implementation
uses clause

declaration part -�

-- initialization part initialization
6
statement

;
-�

-- finalization part finalization
6
statement

;
-�

173

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

As can be seen from the syntax diagram, a unit always consists of a interface and an implementation
part. Optionally, there is an initialization block and a finalization block, containing code that will be
executed when the program is started, and when the program stops, respectively.

Both the interface part or implementation part can be empty, but the keywords Interface and
implementation must be specified. The following is a completely valid unit;

unit a;

interface

implementation

end.

The interface part declares all identifiers that must be exported from the unit. This can be constant,
type or variable identifiers, and also procedure or function identifier declarations. The interface part
cannot contain code that is executed: only declarations are allowed. The following is a valid interface
part:

unit a;

interface

uses b;

Function MyFunction : SomeBType;

Implementation

The type SomeBType is defined in unit b.

All functions and methods that are declared in the interface part must be implemented in the imple-
mentation part of the unit, except for declarations of external functions or procedures. If a declared
method or function is not implemented in the implementation part, the compiler will give an error,
for example the following:

unit unita;

interface

Function MyFunction : Integer;

implementation

end.

Will result in the following error:

unita.pp(5,10) Error: Forward declaration not solved "MyFunction:SmallInt;"

The implementation part is primarily intended for the implementation of the functions and procedures
declared in the interface part. However, it can also contain declarations of it’s own: the declarations
inside the implementation part are not accessible outside the unit.

The initialization and finalization part of a unit are optional.

174

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

The initialization block is used to initialize certain variables or execute code that is necessary for the
correct functioning of the unit. The initialization parts of the units are executed in the order that the
compiler loaded the units when compiling a program. They are executed before the first statement of
the program is executed.

The finalization part of the units are executed in the reverse order of the initialization execution. They
are used for instance to clean up any resources allocated in the initialization part of the unit, or during
the lifetime of the program. The finalization part is always executed in the case of a normal program
termination: whether it is because the final end is reached in the program code or because a Halt
instruction was executed somewhere.

In case the program stops during the execution of the initialization blocks of one of the units, only
the units that were already initialized will be finalized. Note that if a finalization block is
present, an Initialization block must be present, but it can be empty:

Initialization

Finalization
CleanupUnit;

end.

An initialization section by itself (i.e. without finalization) may simply be replaced by a statement
block. That is, the following:

Initialization
InitializeUnit;

end.

is completely equivalent to

Begin
InitializeUnit;

end.

16.3 Unit dependencies

When a program uses a unit (say unitA) and this units uses a second unit, say unitB, then the program
depends indirectly also on unitB. This means that the compiler must have access to unitB when
trying to compile the program. If the unit is not present at compile time, an error occurs.

Note that the identifiers from a unit on which a program depends indirectly, are not accessible to the
program. To have access to the identifiers of a unit, the unit must be in the uses clause of the program
or unit where the identifiers are needed.

Units can be mutually dependent, that is, they can reference each other in their uses clauses. This is
allowed, on the condition that at least one of the references is in the implementation section of the
unit. This also holds for indirect mutually dependent units.

If it is possible to start from one interface uses clause of a unit, and to return there via uses clauses
of interfaces only, then there is circular unit dependence, and the compiler will generate an error. For
example, the following is not allowed:

Unit UnitA;
interface
Uses UnitB;
implementation

175

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

end.

Unit UnitB
interface
Uses UnitA;
implementation
end.

But this is allowed :

Unit UnitA;
interface
Uses UnitB;
implementation
end.
Unit UnitB
implementation
Uses UnitA;
end.

Because UnitB uses UnitA only in its implentation section.

In general, it is a bad idea to have unit interdependencies, even if it is only in implementation sections.

16.4 Blocks

Units and programs are made of blocks. A block is made of declarations of labels, constants, types,
variables and functions or procedures. Blocks can be nested in certain ways, i.e., a procedure or
function declaration can have blocks in themselves. A block looks like the following:

Blocks

-- block declaration part statement part -�

-- declaration part
6 label declaration part

constant declaration part
resourcestring declaration part

type declaration part
variable declaration part

threadvariable declaration part
procedure/function declaration part

-�

-- label declaration part label
6
label

,
; -�

-- constant declaration part const
6

constant declaration
typed constant declaration

-�

-- resourcestring declaration part resourcestring
6
string constant declaration -

- -�

176

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

-- type declaration part type
6
type declaration -�

-- variable declaration part var
6
variable declaration -�

-- threadvariable declaration part threadvar
6
variable declaration -�

-- procedure/function declaration part
6

procedure declaration
function declaration

constructor declaration
destructor declaration

-�

-- statement part compound statement -�

Labels that can be used to identify statements in a block are declared in the label declaration part of
that block. Each label can only identify one statement.

Constants that are to be used only in one block should be declared in that block’s constant declaration
part.

Variables that are to be used only in one block should be declared in that block’s variable declaration
part.

Types that are to be used only in one block should be declared in that block’s type declaration part.

Lastly, functions and procedures that will be used in that block can be declared in the procedure/-
function declaration part.

These 4 declaration parts can be intermixed, there is no required order other than that you cannot use
(or refer to) identifiers that have not yet been declared.

After the different declaration parts comes the statement part. This contains any actions that the block
should execute. All identifiers declared before the statement part can be used in that statement part.

16.5 Scope

Identifiers are valid from the point of their declaration until the end of the block in which the dec-
laration occurred. The range where the identifier is known is the scope of the identifier. The exact
scope of an identifier depends on the way it was defined.

16.5.1 Block scope
The scope of a variable declared in the declaration part of a block, is valid from the point of declara-
tion until the end of the block. If a block contains a second block, in which the identfier is redeclared,
then inside this block, the second declaration will be valid. Upon leaving the inner block, the first
declaration is valid again. Consider the following example:

Program Demo;
Var X : Real;
{ X is real variable }
Procedure NewDeclaration

177

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

Var X : Integer; { Redeclare X as integer}
begin
// X := 1.234; {would give an error when trying to compile}
X := 10; { Correct assigment}

end;
{ From here on, X is Real again}
begin
X := 2.468;

end.

In this example, inside the procedure, X denotes an integer variable. It has its own storage space,
independent of the variable X outside the procedure.

16.5.2 Record scope
The field identifiers inside a record definition are valid in the following places:

1. To the end of the record definition.

2. Field designators of a variable of the given record type.

3. Identifiers inside a With statement that operates on a variable of the given record type.

16.5.3 Class scope
A component identifier (one of the items in the class’ component list) is valid in the following places:

1. From the point of declaration to the end of the class definition.

2. In all descendent types of this class, unless it is in the private part of the class declaration.

3. In all method declaration blocks of this class and descendent classes.

4. In a With statement that operators on a variable of the given class’s definition.

Note that method designators are also considered identifiers.

16.5.4 Unit scope
All identifiers in the interface part of a unit are valid from the point of declaration, until the end of
the unit. Furthermore, the identifiers are known in programs or units that have the unit in their uses
clause.

Identifiers from indirectly dependent units are not available. Identifiers declared in the implementa-
tion part of a unit are valid from the point of declaration to the end of the unit.

The system unit is automatically used in all units and programs. Its identifiers are therefore always
known, in each Pascal program, library or unit.

The rules of unit scope imply that an identifier of a unit can be redefined. To have access to an
identifier of another unit that was redeclared in the current unit, precede it with that other units name,
as in the following example:

unit unitA;
interface
Type

178

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

MyType = Real;
implementation
end.
Program prog;
Uses UnitA;

{ Redeclaration of MyType}
Type MyType = Integer;
Var A : Mytype; { Will be Integer }

B : UnitA.MyType { Will be real }
begin
end.

This is especially useful when redeclaring the system unit’s identifiers.

16.6 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Win32 and OS/2) trough the use of
the Library keyword.

A Library is just like a unit or a program:

Libraries

-- library library header ;
uses clause

block . -�

-- library header library identifier -�

By default, functions and procedures that are declared and implemented in library are not available
to a programmer that wishes to use this library.

In order to make functions or procedures available from the library, they must be exported in an
exports clause:

Exports clause

-- exports clause exports exports list ; -�

-- exports list
6
exports entry

,
-�

-- exports entry identifier
index integer constant name string constant

-

- -�

Under Win32, an index clause can be added to an exports entry. An index entry must be a positive
number larger or equal than 1, and less than MaxInt.

179

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

Optionally, an exports entry can have a name specifier. If present, the name specifier gives the exact
name (case sensitive) by which the function will be exported from the library.

If neither of these constructs is present, the functions or procedures are exported with the exact names
as specified in the exports clause.

180

Chapter 17

Exceptions

Exceptions provide a convenient way to program error and error-recovery mechanisms, and are
closely related to classes. Exception support is based on 3 constructs:

Raise statements. To raise an exeption. This is usually done to signal an error condition. It is
however also usable to abort execution and immediatly return to a well-known point in the
executable.

Try ... Except blocks. These block serve to catch exceptions raised within the scope of the block,
and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective of an exception
occurrence or not. They generally serve to clean up memory or close files in case an exception
occurs. The compiler generates many implicit Try ... Finally blocks around proce-
dure, to force memory consistency.

17.1 The raise statement

The raise statement is as follows:

Raise statement

-- raise statement raise
exception instance

at address expression

-�

This statement will raise an exception. If it is specified, the exception instance must be an initialized
instance of any class, which is the raise type. The exception address is optional. If it is not specified,
the compiler will provide the address by itself. If the exception instance is omitted, then the current
exception is re-raised. This construct can only be used in an exception handling block (see further).

Remark: Control never returns after an exception block. The control is transferred to the first try...finally
or try...except statement that is encountered when unwinding the stack. If no such statement
is found, the Free Pascal Run-Time Library will generate a run-time error 217 (see also section 17.5,
page 184). The exception address will be printed by the default exception handling routines.

As an example: The following division checks whether the denominator is zero, and if so, raises an
exception of type EDivException

181

CHAPTER 17. EXCEPTIONS

Type EDivException = Class(Exception);
Function DoDiv (X,Y : Longint) : Integer;
begin

If Y=0 then
Raise EDivException.Create (’Division by Zero would occur’);

Result := X Div Y;
end;

The class Exception is defined in the Sysutils unit of the rtl. (section 17.5, page 184)

Remark: Although the Exception class is used as the base class for exceptions throughout the code, this
is just an unwritten agreement: the class can be of any type, and need not be a descendent of the
Exception class.

Of course, most code depends on the unwritten agreement that an exception class descends from
Exception.

17.2 The try...except statement

A try...except exception handling block is of the following form :

Try..except statement

-- try statement try statement list except exceptionhandlers end -�

-- statement list
6
statement

;
-�

-- exceptionhandlers

6
exception handler

; else statement list
statement list

-�

-- exception handler on
identifier :

class type identifier do statement -�

If no exception is raised during the execution of the statement list, then all statements in the
list will be executed sequentially, and the except block will be skipped, transferring program flow to
the statement after the final end.

If an exception occurs during the execution of the statement list, the program flow will be
transferred to the except block. Statements in the statement list between the place where the exception
was raised and the exception block are ignored.

In the exception handling block, the type of the exception is checked, and if there is an exception
handler where the class type matches the exception object type, or is a parent type of the exception
object type, then the statement following the corresponding Do will be executed. The first matching
type is used. After the Do block was executed, the program continues after the End statement.

The identifier in an exception handling statement is optional, and declares an exception object. It
can be used to manipulate the exception object in the exception handling code. The scope of this
declaration is the statement block following the Do keyword.

If none of the On handlers matches the exception object type, then the statement list after else is
executed. If no such list is found, then the exception is automatically re-raised. This process allows
to nest try...except blocks.

182

CHAPTER 17. EXCEPTIONS

If, on the other hand, the exception was caught, then the exception object is destroyed at the end of
the exception handling block, before program flow continues. The exception is destroyed through a
call to the object’s Destroy destructor.

As an example, given the previous declaration of the DoDiv function, consider the following

Try
Z := DoDiv (X,Y);

Except
On EDivException do Z := 0;

end;

If Y happens to be zero, then the DoDiv function code will raise an exception. When this happens,
program flow is transferred to the except statement, where the Exception handler will set the value
of Z to zero. If no exception is raised, then program flow continues past the last end statement. To
allow error recovery, the Try ... Finally block is supported. A Try...Finally block
ensures that the statements following the Finally keyword are guaranteed to be executed, even if
an exception occurs.

17.3 The try...finally statement

A Try..Finally statement has the following form:

Try...finally statement

-- trystatement try statement list finally finally statements end -�

-- finally statements statementlist -�

If no exception occurs inside the statement List, then the program runs as if the Try, Finally
and End keywords were not present.

If, however, an exception occurs, the program flow is immediatly transferred from the point where
the excepion was raised to the first statement of the Finally statements.

All statements after the finally keyword will be executed, and then the exception will be automatically
re-raised. Any statements between the place where the exception was raised and the first statement
of the Finally Statements are skipped.

As an example consider the following routine:

Procedure Doit (Name : string);
Var F : Text;
begin

Try
Assign (F,Name);
Rewrite (name);
... File handling ...

Finally
Close(F);

end;

183

CHAPTER 17. EXCEPTIONS

If during the execution of the file handling an execption occurs, then program flow will continue at
the close(F) statement, skipping any file operations that might follow between the place where
the exception was raised, and the Close statement. If no exception occurred, all file operations will
be executed, and the file will be closed at the end.

17.4 Exception handling nesting

It is possible to nest Try...Except blocks with Try...Finally blocks. Program flow will be
done according to a lifo (last in, first out) principle: The code of the last encountered Try...Except
or Try...Finally block will be executed first. If the exception is not caught, or it was a finally
statement, program flow will be transferred to the last-but-one block, ad infinitum.

If an exception occurs, and there is no exception handler present which handles this exception, then
a run-time error 217 will be generated. When using the SysUtils unit, a default handler is installed
which will show the exception object message, and the address where the exception occurred, after
which the program will exit with a Halt instruction.

17.5 Exception classes

The sysutils unit contains a great deal of exception handling. It defines the base exception class,
Exception

Exception = class(TObject)
private

fmessage : string;
fhelpcontext : longint;

public
constructor create(const msg : string);
constructor createres(indent : longint);
property helpcontext : longint read fhelpcontext write fhelpcontext;
property message : string read fmessage write fmessage;

end;
ExceptClass = Class of Exception;

And uses this declaration to define quite a number of exceptions, for instance:

{ mathematical exceptions }
EIntError = class(Exception);
EDivByZero = class(EIntError);
ERangeError = class(EIntError);
EIntOverflow = class(EIntError);
EMathError = class(Exception);

The SysUtils unit also installs an exception handler. If an exception is unhandled by any exception
handling block, this handler is called by the Run-Time library. Basically, it prints the exception
address, and it prints the message of the Exception object, and exits with an exit code of 217. If the
exception object is not a descendent object of the Exception object, then the class name is printed
instead of the exception message.

It is recommended to use the Exception object or a descendant class for all raise statements,
since then the message field of the exception object can be used.

184

Chapter 18

Using assembler

Free Pascal supports the use of assembler in code, but not inline assembler macros. To have more
information on the processor specific assembler syntax and its limitations, see the Programmer’s
Guide.

18.1 Assembler statements

The following is an example of assembler inclusion in Pascal code.

...
Statements;
...
Asm

the asm code here
...

end;
...
Statements;

The assembler instructions between the Asm and end keywords will be inserted in the assembler
generated by the compiler. Conditionals can be used in assembler code, the compiler will recognise
them, and treat them as any other conditionals.

18.2 Assembler procedures and functions

Assembler procedures and functions are declared using the Assembler directive. This permits the
code generator to make a number of code generation optimizations.

The code generator does not generate any stack frame (entry and exit code for the routine) if it
contains no local variables and no parameters. In the case of functions, ordinal values must be
returned in the accumulator. In the case of floating point values, these depend on the target processor
and emulation options.

185

file:../prog/prog.html
file:../prog/prog.html

Index

Abstract, 64
Address, 120
Alias, 160
Ansistring, 29, 31
Array, 34, 153, 154

Dynamic, 35
Of const, 154
Static, 34

array, 47
Asm, 145
Assembler, 145, 159, 185

block, 176
Boolean, 24

Case, 132
cdecl, 160
Char, 27
Class, 66, 72
Class helpers, 98
Classes, 66
COM, 47, 85
Comments, 11
Comp, 27
Const, 21

String, 21
Constants, 19

Ordinary, 19
String, 17, 19, 31
Typed, 20

Constructor, 60, 70, 118
CORBA, 47, 85
Currency, 27

Destructor, 60
Directives

Hint, 14
Dispatch, 73
DispatchStr, 73
Double, 27

else, 132, 133
except, 182, 184
Exception, 181
Exceptions, 181

Catching, 181, 182

Classes, 184
Handling, 183, 184
Raising, 181

export, 161
Expression, 142, 143
Expressions, 114
Extended, 27
Extended records, 93
External, 158
external, 51, 158

Fields, 38, 58
File, 42
finally, 183, 184
For, 134, 135

downto, 134
in, 135
to, 134

Forward, 45, 157
Function, 148
Functions, 147

Assembler, 159, 185
External, 158
Forward, 157
Modifiers, 159
Overloaded, 156

Generics, 87

Hint directives, 14

Identifiers, 14
If, 133
index, 77, 158
Inherited, 71
inherited, 63, 80
inline, 161
interface, 82
Interfaces, 47, 48, 82

COM, 85
CORBA, 85
Implementations, 84

interrupt, 161
iocheck, 162

Labels, 17

186

INDEX

Libraries, 179
library, 179
local, 162

Message, 73
message, 73
Methods, 61, 70

Abstract, 64
Class, 72
Message, 73
Static, 62
Virtual, 63, 64, 71

Modifiers, 13, 159, 165
Alias, 160
cdecl, 160
export, 161
inline, 161
nostackframe, 162
overload, 162
pascal, 163
public, 163
register, 164
safecall, 164
saveregisters, 165
softfloat, 165
stdcall, 165
varargs, 165

Mofidiers
interrupt, 161
iocheck, 162
local, 162

name, 158
nostackframe, 162
Numbers, 15

Binary, 16
Decimal, 15
Hexadecimal, 16
Octal, 16
Real, 15

object, 57
Objective-Pascal, 104
Objective-Pascal Classes, 104
Objects, 57
Operators, 19, 32, 44, 114, 120, 121

Arithmetic, 121, 169
Assignment, 167
Binary, 169
Boolean, 123
Comparison, 170
Logical, 122
Relational, 125
Set, 123

String, 123
Unary, 122

operators, 166
otherwise, 132
overload, 162
overloading

operators, 166
Override, 71
override, 63

Packed, 38, 39, 58, 70
Parameters, 149

Constant, 149, 152
Open Array, 153, 154
Out, 151
Untypes, 149
Value, 149
Var, 77, 149, 150

pascal, 163
PChar, 30, 31
Pointer, 43
Private, 65, 67, 76

strict, 68
private, 58
Procedural, 45
Procedure, 45, 147
Procedures, 147
program, 172
Properties, 53, 75

Array, 78
Indexed, 77

Property, 72, 75
Protected, 65, 68
Public, 65, 68
public, 58, 163
Published, 68, 76
PUnicodeChar, 31

Raise, 181
Read, 76
Real, 27
Record, 38

Constant, 52
Record helpers, 98
register, 164
reintroduce, 71
Repeat, 142
Reserved words, 12

Delphi, 13
Free Pascal, 13
Modifiers, 13
Turbo Pascal, 12

Resourcestring, 21

187

INDEX

safecall, 164
saveregisters, 165
Scope, 29, 37, 52, 57, 65, 67, 177

block, 177
Class, 178
record, 178
unit, 178

Self, 61, 72, 74
Set, 42
Shortstring, 28
Single, 27
softfloat, 165
Statements, 128

Assembler, 145, 185
Assignment, 128
Case, 132
Compound, 131
Exception, 145
For, 134, 135
Goto, 130
if, 133
Loop, 134, 135, 142, 143
Procedure, 129
Repeat, 142
Simple, 128
Structured, 131
While, 143
With, 144

stdcall, 165
String, 17
Symbols, 10
Syntax diagrams, 8

Text, 42
then, 133
Thread Variables, 53
Threadvar, 53
Tokens, 10

Comments, 11
Identifiers, 14
Numbers, 15
Reserved words, 12
Strings, 17
Symbols, 10

try, 183, 184
Type, 22
Typecast, 29–31, 118–120

Unaligned, 120
Value, 118
Variable, 119

Types, 22
Ansistring, 29
Array, 34, 35
Base, 22

Boolean, 24
Char, 27
Class, 66
Class helpers, 98
Enumeration, 25
Extended record, 93
File, 42
Forward declaration, 45
Integer, 23
Object, 57
Ordinal, 23
PChar, 30, 31
Pointer, 31, 43
Procedural, 45
Real, 27
Record, 38
Record helpers, 98
Reference counted, 29, 31, 35, 37, 85
Set, 42
String, 28
Structured, 32
Subrange, 26
Unicodestring, 31
Variant, 47
Widestring, 31

Unicodestring, 31
unit, 173, 178
uses, 172

Var, 50
varargs, 165
Variable, 50
Variables, 50

Initialized, 20, 52
Variant, 47
Virtual, 60, 63, 71, 73
Visibility, 57, 65, 82

Private, 57, 67
Protected, 68
Public, 57, 68
Published, 68
Strict Private, 68

While, 143
Widestring, 31
With, 144
Write, 76

188

	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Turbo Pascal reserved words
	Free Pascal reserved words
	Object Pascal reserved words
	Modifiers

	Identifiers
	Hint directives
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants
	Resource strings

	Types
	Base types
	Ordinal types
	Integers
	Boolean types
	Enumeration types
	Subrange types

	Real types

	Character types
	Char
	Strings
	Short strings
	Ansistrings
	UnicodeStrings
	WideStrings
	Constant strings
	PChar - Null terminated strings

	Structured Types
	Packed structured types
	Arrays
	Static arrays
	Dynamic arrays
	Packing and unpacking an array

	Record types
	Set types
	File types

	Pointers
	Forward type declarations
	Procedural types
	Variant types
	Definition
	Variants in assignments and expressions
	Variants and interfaces

	Variables
	Definition
	Declaration
	Scope
	Initialized variables
	Thread Variables
	Properties

	Objects
	Declaration
	Fields
	Static fields
	Constructors and destructors
	Methods
	Declaration
	Method invocation
	Static methods
	Virtual methods
	Abstract methods

	Visibility

	Classes
	Class definitions
	Class instantiation
	Methods
	Declaration
	invocation
	Virtual methods
	Class methods
	Message methods
	Using inherited

	Properties
	Definition
	Indexed properties
	Array properties
	Default properties
	Storage information
	Overriding properties

	Nested types and variables

	Interfaces
	Definition
	Interface identification: A GUID
	Interface implementations
	Interfaces and COM
	CORBA and other Interfaces
	Reference counting

	Generics
	Introduction
	Generic class definition
	Generic class specialization
	A word about scope

	Extended records
	Definition
	Extended record enumerators

	Class and record helpers
	Definition
	Restrictions on class helpers
	Restrictions on record helpers
	Inheritance
	Usage

	Objective-Pascal Classes
	Introduction
	Objective-Pascal class declarations
	Formal declaration
	Allocating and de-allocating Instances
	Protocol definitions
	Categories
	Name scope and Identifiers
	Selectors
	The id type
	Enumeration in Objective-C classes

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	Variable typecasts
	Unaligned typecasts
	The @ operator
	Operators
	Arithmetic operators
	Logical operators
	Boolean operators
	String operators
	Set operators
	Relational operators
	Class operators

	Statements
	Simple statements
	Assignments
	Procedure statements
	Goto statements

	Structured statements
	Compound statements
	The Case statement
	The If..then..else statement
	The For..to/downto..do statement
	The For..in..do statement
	The Repeat..until statement
	The While..do statement
	The With statement
	Exception Statements

	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Function results
	Parameter lists
	Value parameters
	Variable parameters
	Out parameters
	Constant parameters
	Open array parameters
	Array of const

	Function overloading
	Forward defined functions
	External functions
	Assembler functions
	Modifiers
	alias
	cdecl
	export
	inline
	interrupt
	iocheck
	local
	nostackframe
	overload
	pascal
	public
	register
	safecall
	saveregisters
	softfloat
	stdcall
	varargs

	Unsupported Turbo Pascal modifiers

	Operator overloading
	Introduction
	Operator declarations
	Assignment operators
	Arithmetic operators
	Comparision operator

	Programs, units, blocks
	Programs
	Units
	Unit dependencies
	Blocks
	Scope
	Block scope
	Record scope
	Class scope
	Unit scope

	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

