
Free Pascal
Reference guide

Reference guide for Free Pascal, version 3.2.2
Document version 3.2.2

March 2021

Michaël Van Canneyt

Contents

1 Pascal Tokens 12
1.1 Symbols . 12

1.2 Comments . 13

1.3 Reserved words . 14

1.3.1 Turbo Pascal reserved words . 14

1.3.2 Object Pascal reserved words . 15

1.3.3 Modifiers . 15

1.4 Identifiers . 16

1.5 Hint directives . 16

1.6 Numbers . 17

1.7 Labels . 19

1.8 Character strings . 19

2 Constants 21
2.1 Ordinary constants . 21

2.2 Typed constants . 22

2.3 Resource strings . 23

3 Types 25
3.1 Base types . 25

3.1.1 Ordinal types . 26

Integers . 26

Boolean types . 28

Enumeration types . 29

Subrange types . 30

Character types . 31

3.1.2 Real types . 31

3.2 Character types . 32

3.2.1 Char or AnsiChar . 32

3.2.2 WideChar . 32

3.2.3 Other character types . 32

1

CONTENTS

3.2.4 Single-byte String types . 32

Short strings . 33

Ansistrings . 34

Code page conversions . 36

RawByteString . 38

UTF8String . 38

3.2.5 Multi-byte String types . 38

UnicodeStrings . 38

WideStrings . 39

3.2.6 Constant strings . 39

3.2.7 PChar – Null terminated strings . 40

3.2.8 String sizes . 41

3.3 Structured Types . 41

Packed structured types . 41

3.3.1 Arrays . 43

Static arrays . 43

Dynamic arrays . 44

Dynamic array Type compatibility . 47

Dynamic array constructor . 48

Dynamic array constant expressions . 49

Packing and unpacking an array . 50

3.3.2 Record types . 50

Record layout and size . 51

Remarks and examples . 52

3.3.3 Set types . 53

3.3.4 File types . 53

3.4 Pointers . 54

3.5 Forward type declarations . 56

3.6 Procedural types . 56

3.7 Variant types . 61

3.7.1 Definition . 61

3.7.2 Variants in assignments and expressions . 62

3.7.3 Variants and interfaces . 63

3.8 Type aliases . 63

3.9 Managed types . 65

4 Variables 66
4.1 Definition . 66

4.2 Declaration . 66

4.3 Scope . 68

2

CONTENTS

4.4 Initialized variables . 68

4.5 Initializing variables using default . 70

4.6 Thread Variables . 71

4.7 Properties . 71

5 Objects 75
5.1 Declaration . 75

5.2 Abstract and sealed objects . 76

5.3 Fields . 77

5.4 Class or Static fields . 78

5.5 Constructors and destructors . 79

5.6 Methods . 80

5.6.1 Declaration . 80

5.6.2 Method invocation . 80

Normal static methods . 81

Virtual methods . 81

Abstract methods . 83

Class or static methods . 84

5.7 Visibility . 85

6 Classes 86
6.1 Class definitions . 86

6.2 Abstract and sealed classes . 90

6.3 Normal and static fields . 90

6.3.1 Normal fields/variables . 90

6.3.2 Class fields/variables . 91

6.4 Class instantiation . 93

6.5 Class destruction . 93

6.6 Methods . 94

6.6.1 Declaration . 94

6.6.2 Invocation . 95

6.6.3 Virtual methods . 95

6.6.4 Class methods . 96

6.6.5 Class constructors and destructors . 97

6.6.6 Static class methods . 98

6.6.7 Message methods . 100

6.6.8 Using inherited . 101

6.7 Properties . 102

6.7.1 Definition . 102

6.7.2 Indexed properties . 104

6.7.3 Array properties . 105

3

CONTENTS

6.7.4 Default properties . 106

6.7.5 Published properties . 107

6.7.6 Storage information . 107

6.7.7 Overriding and redeclaring properties . 108

6.8 Class properties . 110

6.9 Nested types, constants and variables . 111

7 Interfaces 114
7.1 Definition . 114

7.2 Interface identification: A GUID . 115

7.3 Interface implementations . 116

7.4 Interface inheritance . 117

7.5 Interface delegation . 118

7.6 Interfaces and COM . 121

7.7 CORBA and other Interfaces . 121

7.8 Reference counting . 122

8 Generics 123
8.1 Introduction . 123

8.2 Generic type definition . 123

8.3 Generic type specialization . 126

8.4 Generic type restrictions . 128

8.5 Delphi compatibility . 129

8.5.1 Syntax elements . 129

8.5.2 Record type restrictions . 130

8.5.3 Type overloads . 131

8.5.4 Name space considerations . 132

8.6 Type compatibility . 132

8.7 Using the default intrinsic . 134

8.8 A word about scope . 135

8.9 Operator overloading and generics . 139

9 Extended records 142
9.1 Definition . 142

9.2 Extended record enumerators . 144

9.3 Record operators . 146

10 Class, Record and Type helpers 149
10.1 Definition . 149

10.2 Restrictions on class helpers . 150

10.3 Restrictions on record helpers . 151

4

CONTENTS

10.4 Considerations for (simple) type helpers . 152

10.5 A note on scope and lifetime for record and type helpers 153

10.6 Inheritance . 155

10.7 Usage . 156

11 Objective-Pascal Classes 159
11.1 Introduction . 159

11.2 Objective-Pascal class declarations . 159

11.3 Formal declaration . 161

11.4 Allocating and de-allocating Instances . 163

11.5 Protocol definitions . 164

11.6 Categories . 165

11.7 Name scope and Identifiers . 166

11.8 Selectors . 167

11.9 The id type . 167

11.10Enumeration in Objective-C classes . 167

12 Expressions 169
12.1 Expression syntax . 170

12.2 Function calls . 171

12.3 Set constructors . 173

12.4 Value typecasts . 174

12.5 Variable typecasts . 175

12.6 Unaligned typecasts . 175

12.7 The @ operator . 176

12.8 Operators . 177

12.8.1 Arithmetic operators . 177

12.8.2 Logical operators . 178

12.8.3 Boolean operators . 178

12.8.4 String operators . 179

12.8.5 Dynamic array operators . 179

12.8.6 Set operators . 180

12.8.7 Relational operators . 182

12.8.8 Class operators . 182

13 Statements 186
13.1 Simple statements . 186

13.1.1 Assignments . 186

13.1.2 Procedure statements . 187

13.1.3 Goto statements . 188

13.2 Structured statements . 189

5

CONTENTS

13.2.1 Compound statements . 189

13.2.2 The Case statement . 190

13.2.3 The If..then..else statement . 192

13.2.4 The For..to/downto..do statement 193

13.2.5 The For..in..do statement . 195

13.2.6 The Repeat..until statement . 202

13.2.7 The While..do statement . 203

13.2.8 The With statement . 204

13.2.9 Exception Statements . 205

13.3 Assembler statements . 206

14 Using functions and procedures 207
14.1 Procedure declaration . 207

14.2 Function declaration . 208

14.3 Function results . 208

14.4 Parameter lists . 209

14.4.1 Value parameters . 209

14.4.2 Variable parameters . 210

14.4.3 Out parameters . 211

14.4.4 Constant parameters . 212

14.4.5 Open array parameters . 213

14.4.6 Array of const . 214

14.4.7 Untyped parameters . 216

14.4.8 Managed types and reference counts . 217

14.5 Function overloading . 221

14.6 Forward declared functions . 222

14.7 External functions . 223

14.8 Assembler functions . 224

14.9 Modifiers . 224

14.9.1 alias . 225

14.9.2 cdecl . 226

14.9.3 cppdecl . 226

14.9.4 export . 226

14.9.5 hardfloat . 226

14.9.6 inline . 226

14.9.7 interrupt . 227

14.9.8 iocheck . 227

14.9.9 local . 227

14.9.10 MS_ABI_Default . 227

14.9.11 MS_ABI_CDecl . 228

6

CONTENTS

14.9.12 MWPascal . 228

14.9.13 noreturn . 228

14.9.14 nostackframe . 228

14.9.15 overload . 228

14.9.16 pascal . 230

14.9.17 public . 230

14.9.18 register . 231

14.9.19 safecall . 231

14.9.20 saveregisters . 231

14.9.21 softfloat . 231

14.9.22 stdcall . 231

14.9.23 SYSV_ABI_Default . 231

14.9.24 SYSV_ABI_CDecl . 231

14.9.25 VectorCall . 231

14.9.26 varargs . 232

14.9.27 winapi . 232

14.10Unsupported Turbo Pascal modifiers . 232

15 Operator overloading 233
15.1 Introduction . 233

15.2 Operator declarations . 233

15.3 Assignment operators . 235

15.4 Arithmetic operators . 238

15.5 Comparison operator . 240

15.6 In operator . 242

15.7 Logical operators . 242

15.8 Inc/Dec operators . 244

15.9 The enumerator operator . 244

16 Programs, units, blocks 246
16.1 Programs . 246

16.2 Units . 247

16.3 Namespaces: Dotted Units . 249

16.4 Unit dependencies . 252

16.5 Blocks . 252

16.6 Scope . 254

16.6.1 Block scope . 254

16.6.2 Record scope . 254

16.6.3 Class scope . 254

16.6.4 Unit scope . 255

16.7 Libraries . 255

7

CONTENTS

17 Exceptions 257
17.1 The raise statement . 257

17.2 The try...except statement . 259

17.3 The try...finally statement . 260

17.4 Exception handling nesting . 261

17.5 Exception classes . 261

18 Using assembler 263
18.1 Assembler statements . 263

18.2 Assembler procedures and functions . 263

8

List of Tables

3.1 Predefined integer types . 26

3.2 Predefined integer types . 27

3.3 Integer constant type mapping . 27

3.4 Boolean types . 28

3.5 Supported Real types . 31

3.6 PChar pointer arithmetic . 40

3.7 String memory sizes . 41

9.1 Operator names . 147

12.1 Precedence of operators . 169

12.2 Binary arithmetic operators . 177

12.3 Unary arithmetic operators . 177

12.4 Logical operators . 178

12.5 Boolean operators . 178

12.6 Set operators . 180

12.7 Relational operators . 182

12.8 Class operators . 182

13.1 Allowed C constructs in Free Pascal . 187

14.1 Unsupported modifiers . 232

9

LIST OF TABLES

About this guide

This document serves as the reference for the Pascal language as implemented by the Free Pascal
compiler. It describes all Pascal constructs supported by Free Pascal, and lists all supported data
types. It does not, however, give a detailed explanation of the Pascal language: it is not a tuto-
rial. The aim is to list which Pascal constructs are supported, and to show where the Free Pascal
implementation differs from the Turbo Pascal or Delphi implementations.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language.
The Free Pascal compiler emulates these compilers in the appropriate mode of the compiler: certain
features are available only if the compiler is switched to the appropriate mode. When required for
a certain feature, the use of the -M command-line switch or {$MODE } directive will be indicated
in the text. More information about the various modes can be found in the user’s manual and the
programmer’s manual.

Earlier versions of this document also contained the reference documentation of the system unit and
objpas unit. This has been moved to the RTL reference guide.

Notations
Throughout this document, we will refer to functions, types and variables with typewriter font.
Files are referred to with a sans font: filename.

Syntax diagrams
All elements of the Pascal language are explained in syntax diagrams. Syntax diagrams are like flow
charts. Reading a syntax diagram means getting from the left side to the right side, following the
arrows. When the right side of a syntax diagram is reached, and it ends with a single arrow, this
means the syntax diagram is continued on the next line. If the line ends on two arrows pointing to
each other, then the diagram is ended.

Syntactical elements are written like this

-- syntactical elements are like this -�

Keywords which must be typed exactly as in the diagram:

-- keywords are like this -�

When something can be repeated, there is an arrow around it:

--
6
this can be repeated -�

When there are different possibilities, they are listed in rows:

-- First possibility
Second possibility

-�

Note, that one of the possibilities can be empty:

--

First possibility
Second possibility

-�

This means that both the first or second possibility are optional. Of course, all these elements can be
combined and nested.

10

LIST OF TABLES

About the Pascal language

The language Pascal was originally designed by Niklaus Wirth around 1970. It has evolved sig-
nificantly since that day, with a lot of contributions by the various compiler constructors (Notably:
Borland). The basic elements have been kept throughout the years:

• Easy syntax, rather verbose, yet easy to read. Ideal for teaching.

• Strongly typed.

• Procedural.

• Case insensitive.

• Allows nested procedures.

• Easy input/output routines built-in.

The Turbo Pascal and Delphi Pascal compilers introduced various features in the Pascal language,
most notably easier string handling and object orientedness. The Free Pascal compiler initially emu-
lated most of Turbo Pascal and later on Delphi. It emulates these compilers in the appropriate mode
of the compiler: certain features are available only if the compiler is switched to the appropriate
mode. When required for a certain feature, the use of the -M command-line switch or {$MODE }
directive will be indicated in the text. More information about the various modes can be found in the
user’s manual and the programmer’s manual.

11

Chapter 1

Pascal Tokens

Tokens are the basic lexical building blocks of source code: they are the “words” of the language:
characters are combined into tokens according to the rules of the programming language. There are
five classes of tokens:

reserved words These are words which have a fixed meaning in the language. They cannot be
changed or redefined.

identifiers These are names of symbols that the programmer defines. They can be changed and
re-used. They are subject to the scope rules of the language.

operators These are usually symbols for mathematical or other operations: +, -, * and so on.

separators This is usually white-space.

constants Numerical or character constants are used to denote actual values in the source code, such
as 1 (integer constant) or 2.3 (float constant) or “String constant” (a string: a piece of text).

In this chapter we describe all the Pascal reserved words, as well as the various ways to denote
strings, numbers, identifiers etc.

1.1 Symbols

Free Pascal allows all characters, digits and some special character symbols in a Pascal source file.

Recognised symbols

-- letter A...Z
a...z

-�

-- digit 0...9 -�

-- hex digit 0...9
A...F
a...f

-�

The following characters have a special meaning:

12

CHAPTER 1. PASCAL TOKENS

' + - * / = < > [] . , () : ^ @ { } $ # & %

and the following character pairs too:

<< >> ** <> >< <= >= := += -= *= /= (* *) (. .) //

When used in a range specifier, the character pair (. is equivalent to the left square bracket [.
Likewise, the character pair .) is equivalent to the right square bracket]. When used for comment
delimiters, the character pair (* is equivalent to the left brace { and the character pair *) is equiva-
lent to the right brace }. These character pairs retain their normal meaning in string expressions.

1.2 Comments

Comments are pieces of the source code which are completely discarded by the compiler. They exist
only for the benefit of the programmer, so he can explain certain pieces of code. For the compiler, it
is as if the comments were not present.

The following piece of code demonstrates a comment:

(* My beautiful function returns an interesting result *)
Function Beautiful : Integer;

The use of (* and *) as comment delimiters dates from the very first days of the Pascal language. It
has been replaced mostly by the use of { and } as comment delimiters, as in the following example:

{ My beautiful function returns an interesting result }
Function Beautiful : Integer;

The comment can also span multiple lines:

{
My beautiful function returns an interesting result,
but only if the argument A is less than B.

}
Function Beautiful (A,B : Integer): Integer;

Single line comments can also be made with the // delimiter:

// My beautiful function returns an interesting result
Function Beautiful : Integer;

The comment extends from the // character till the end of the line. This kind of comment was
introduced by Borland in the Delphi Pascal compiler.

Free Pascal supports the use of nested comments. The following constructs are valid comments:

(* This is an old style comment *)
{ This is a Turbo Pascal comment }
// This is a Delphi comment. All is ignored till the end of the line.

13

CHAPTER 1. PASCAL TOKENS

The following are valid ways of nesting comments:

{ Comment 1 (* comment 2 *) }
(* Comment 1 { comment 2 } *)
{ comment 1 // Comment 2 }
(* comment 1 // Comment 2 *)
// comment 1 (* comment 2 *)
// comment 1 { comment 2 }

The last two comments must be on one line. The following two will give errors:

// Valid comment { No longer valid comment !!
}

and

// Valid comment (* No longer valid comment !!

*)

The compiler will react with a “invalid character” error when it encounters such constructs, regardless
of the -Mtp switch.

Remark In TP and Delphi mode, nested comments are not allowed, for maximum compatibility with
existing code for those compilers.

1.3 Reserved words

Reserved words are part of the Pascal language, and as such, cannot be redefined by the programmer.
Throughout the syntax diagrams they will be denoted using a bold typeface. Pascal is not case
sensitive so the compiler will accept any combination of upper or lower case letters for reserved
words.

We make a distinction between Turbo Pascal and Delphi reserved words. In TP mode, only the Turbo
Pascal reserved words are recognized, but the Delphi ones can be redefined. By default, Free Pascal
recognizes the Delphi reserved words.

1.3.1 Turbo Pascal reserved words
The following keywords exist in Turbo Pascal mode

absolute
and
array
asm
begin
case
const
constructor
destructor
div
do
downto
else
end

file
for
function
goto
if
implementation
in
inherited
inline
interface
label
mod
nil
not

object
of
operator
or
packed
procedure
program
record
reintroduce
repeat
self
set
shl
shr

string
then
to
type
unit
until
uses
var
while
with
xor

14

CHAPTER 1. PASCAL TOKENS

1.3.2 Object Pascal reserved words
The reserved words of Object Pascal (used in Delphi or Objfpc mode) are the same as the Turbo
Pascal ones, with the following additional keywords:

as
class
dispinterface
except
exports

finalization
finally
initialization
inline
is

library
on
out
packed
property

raise
resourcestring
threadvar
try

1.3.3 Modifiers
The following is a list of all modifiers. They are not exactly reserved words in the sense that they can
be used as identifiers, but in specific places, they have a special meaning for the compiler, i. e., the
compiler considers them as part of the Pascal language.

absolute
abstract
alias
assembler
bitpacked
break
cdecl
continue
cppdecl
cvar
default
deprecated
dynamic
enumerator
experimental
export

external
far
far16
forward
generic
helper
implements
index
interrupt
iocheck
local
message
name
near
nodefault
noreturn

nostackframe
oldfpccall
otherwise
overload
override
pascal
platform
private
protected
public
published
read
register
reintroduce
result
safecall

saveregisters
softfloat
specialize
static
stdcall
stored
strict
unaligned
unimplemented
varargs
virtual
winapi
write

Remark Predefined types such as Byte, Boolean and constants such as maxint are not reserved words.
They are identifiers, declared in the system unit. This means that these types can be redefined in
other units. The programmer is however not encouraged to do this, as it will cause a lot of confusion.

Remark As of version 2.5.1 it is possible to use reserved words as identifiers by escaping them with a & sign.
This means that the following is possible

var
&var : integer;

begin
&var:=1;
Writeln(&var);

end.

however, it is not recommended to use this feature in new code, as it makes code less readable. It
is mainly intended to fix old code when the list of reserved words changes and encompasses a word
that was not yet reserved (See also section 1.4, page 16).

15

CHAPTER 1. PASCAL TOKENS

1.4 Identifiers

Identifiers denote programmer defined names for specific constants, types, variables, procedures
and functions, units, and programs. All programmer defined names in the source code – excluding
reserved words – are designated as identifiers.

Identifiers consist of between 1 and 127 significant characters (letters, digits and the underscore
character), of which the first must be a letter (a–z or A–Z), or an underscore (_). The following
diagram gives the basic syntax for identifiers.

Identifiers

-- identifier letter
_ 6 letter

digit
_

-�

Like Pascal reserved words, identifiers are case insensitive, that is, both

myprocedure;

and

MyProcedure;

refer to the same procedure.

Remark As of version 2.5.1 it is possible to specify a reserved word as an identifier by prepending it with an
ampersand (&). This means that the following is possible:

program testdo;

procedure &do;

begin
end;

begin
&do;

end.

The reserved word do is used as an identifier for the declaration as well as the invocation of the
procedure do.

1.5 Hint directives

Most identifiers (constants, variables, functions or methods, properties) can have a hint directive
appended to their definition:

Hint directives

16

CHAPTER 1. PASCAL TOKENS

-- hint directive
Deprecated

string constant
Experimental

Platform
Unimplemented

-�

Whenever an identifier marked with a hint directive is later encountered by the compiler, then a
warning will be displayed, corresponding to the specified hint.

deprecated The use of this identifier is deprecated, use an alternative instead. The deprecated key-
word can be followed by a string constant with a message. The compiler will show this mes-
sage whenever the identifier is encountered.

experimental The use of this identifier is experimental: this can be used to flag new features that
should be used with caution.

platform This is a platform-dependent identifier: it may not be defined on all platforms.

unimplemented This should be used on functions and procedures only. It should be used to signal
that a particular feature has not yet been implemented.

The following are examples:

Const
AConst = 12 deprecated;

var
p : integer platform;

Function Something : Integer; experimental;

begin
Something:=P+AConst;

end;

begin
Something;

end.

This would result in the following output:

testhd.pp(11,15) Warning: Symbol "p" is not portable
testhd.pp(11,22) Warning: Symbol "AConst" is deprecated
testhd.pp(15,3) Warning: Symbol "Something" is experimental

Hint directives can follow all kinds of identifiers: units, constants, types, variables, functions, proce-
dures and methods.

1.6 Numbers

Numbers are by default denoted in decimal notation. Real (or decimal) numbers are written using
engineering or scientific notation (e. g. 0.314E1).

For integer type constants, Free Pascal supports four formats:

17

CHAPTER 1. PASCAL TOKENS

1. Normal, decimal format (base 10). This is the standard format.

2. Hexadecimal format (base 16), in the same way as Turbo Pascal does. To specify a constant
value in hexadecimal format, prepend it with a dollar sign ($). Thus, the hexadecimal $FF
equals 255 decimal. Note that case is insignificant when using hexadecimal constants.

3. As of version 1.0.7, Octal format (base 8) is also supported. To specify a constant in octal
format, prepend it with an ampersand (&). For instance 15 is specified in octal notation as
&17.

4. Binary notation (base 2). A binary number can be specified by preceding it with a percent sign
(%). Thus, 255 can be specified in binary notation as %11111111.

The following diagrams show the syntax for numbers.

Numbers

-- hex digit sequence
6
hex digit -�

-- octal digit sequence
6
octal digit -�

-- bin digit sequence
6

1
0

-�

-- digit sequence
6
digit -�

-- unsigned integer digit sequence
$ hex digit sequence

& octal digit sequence
% bin digit sequence

-�

-- sign +
-

-�

-- unsigned real digit sequence
. digit sequence scale factor

-�

-- scale factor E
e sign

digit sequence -�

-- unsigned number unsigned real
unsigned integer

-�

-- signed number
sign

unsigned number -�

Remark Octal and Binary notation are not supported in TP or Delphi compatibility mode.

18

CHAPTER 1. PASCAL TOKENS

1.7 Labels

A label is a name for a location in the source code to which can be jumped to from another location
with a goto statement. A Label is a standard identifier or a digit sequence.

Label

-- label digit sequence
identifier

-�

Remark The -Sg or -Mtp switches must be specified before labels can be used. By default, Free Pascal
doesn’t support label and goto statements. The {$GOTO ON} directive can also be used to allow
use of labels and the goto statement.

The following are examples of valid labels:

Label
123,
abc;

1.8 Character strings

A character string (or string for short) is a sequence of zero or more characters (byte sized), enclosed
in single quotes, and on a single line of the program source code: no literal carriage return or linefeed
characters can appear in the string.

A character set with nothing between the quotes (’’) is an empty string.

Character strings

-- character string
6

quoted string
control string

-�

-- quoted string ’
6
string character ’ -�

-- string character Any character except ’ or CR
”

-�

-- control string
6
unsigned integer -�

The string consists of standard, 8-bit ASCII characters or Unicode (normally UTF-8 encoded) char-
acters. The control string can be used to specify characters which cannot be typed on a
keyboard, such as #27 for the escape character.

The single quote character can be embedded in the string by typing it twice. The C construct of
escaping characters in the string (using a backslash) is not supported in Pascal.

The following are valid string constants:

19

CHAPTER 1. PASCAL TOKENS

'This is a pascal string'
''
'a'
'A tabulator character: '#9' is easy to embed'

The following is an invalid string:

'the string starts here
and continues here'

The above string must be typed as:

'the string starts here'#13#10' and continues here'

or

'the string starts here'#10' and continues here'

on unices (including Mac OS X), and as

'the string starts here'#13' and continues here'

on a classic Mac-like operating system.

It is possible to use other character sets in strings: in that case the codepage of the source file must
be specified with the {$CODEPAGE XXX} directive or with the -Fc command line option for the
compiler. In that case the characters in a string will be interpreted as characters from the specified
codepage.

20

Chapter 2

Constants

Just as in Turbo Pascal, Free Pascal supports both ordinary and typed constants. They are declared
in a constant declaration block in a unit, program or class, function or procedure declaration (section
16.5, page 252).

2.1 Ordinary constants

Ordinary constants declarations are constructed using an identifier name followed by an “=” token,
and followed by an optional expression consisting of legal combinations of numbers, characters,
boolean values or enumerated values as appropriate. The following syntax diagram shows how to
construct a legal declaration of an ordinary constant.

Constant declaration

-- constant declaration
6
identifier = expression hintdirectives ; -�

The compiler must be able to evaluate the expression in a constant declaration at compile time. This
means that most of the functions in the Run-Time library cannot be used in a constant declaration.
Operators such as +, -, *, /, not, and, or, div, mod, ord, chr, sizeof, pi,
int, trunc, round, frac, odd can be used, however. For more information on expres-
sions, see chapter 12, page 169.

When a previously declared ordinary constant is used in the code, the compiler will insert the actual
value of the constant instead of the constant name. That is, the following two pieces of code are
entirely equivalent:

Const
One = 1;

begin
Writeln(One);

end.

The above will produce the same code as if one had written:

21

CHAPTER 2. CONSTANTS

begin
Writeln(1);

end.

Only constants of the following types can be declared:

• Ordinal types

• Set types

• Pointer types (but the only allowed value is Nil).

• Real types

• Char,

• String

The following are all valid constant declarations:

Const
e = 2.7182818; { Real type constant. }
a = 2; { Ordinal (Integer) type constant. }
c = '4'; { Character type constant. }
s = 'This is a constant string'; {String type constant.}
sc = chr(32)
ls = SizeOf(Longint);
P = Nil;
Ss = [1,2];

Assigning a value to an ordinary constant is not permitted. Thus, given the previous declaration, the
following will result in a compiler error:

s := 'some other string';

For string constants, the type of the string is dependent on some compiler switches. If a specific type
is desired, a typed constant should be used, as explained in the following section.

Prior to version 1.9, Free Pascal did not correctly support 64-bit constants. As of version 1.9, 64-bit
constants can be specified.

2.2 Typed constants

Sometimes it is necessary to specify the type of a constant, for instance for constants of complex
structures (defined later in the manual). Their definition is quite simple.

Typed constant declaration

--typed constant declaration
6
identifier : type = typed constant hintdirective ; -

- -�

22

CHAPTER 2. CONSTANTS

-- typed constant constant
address constant

array constant
record constant

procedural constant

-�

Contrary to ordinary constants, a value can be assigned to them at run-time. This is an old concept
from Turbo Pascal, which has been replaced with support for initialized variables: For a detailed
description, see section 4.4, page 68.

Support for assigning values to typed constants is controlled by the {$J} directive: it can be switched
off, but is on by default (for Turbo Pascal compatibility). Initialized variables are always allowed.

Remark It should be stressed that typed constants are automatically initialized at program start. This is also
true for local typed constants and initialized variables. Local typed constants are also initialized at
program start. If their value was changed during previous invocations of the function, they will retain
their changed value, i. e. they are not initialized each time the function is invoked.

2.3 Resource strings

A special kind of constant declaration block is the Resourcestring block. Resourcestring dec-
larations are much like constant string declarations: resource strings act as constant strings, but they
can be localized by means of a set of special routines in the objpas unit. A resource string declaration
block is only allowed in the Delphi or Objfpc modes.

The following is an example of a resourcestring definition:

Resourcestring

FileMenu = '&File...';
EditMenu = '&Edit...';

All string constants defined in the resourcestring section are stored in special tables. The strings in
these tables can be manipulated at runtime with some special mechanisms in the objpas unit.

Semantically, the strings act like ordinary constants; It is not allowed to assign values to them (except
through the special mechanisms in the objpas unit). However, they can be used in assignments or
expressions as ordinary string constants. The main use of the resourcestring section is to provide an
easy means of internationalization.

More on the subject of resourcestrings can be found in the Programmer’s Guide, and in the objpas
unit reference.

Remark Note that a resource string which is given as an expression will not change if the parts of the expres-
sion are changed:

resourcestring
Part1 = 'First part of a long string.';
Part2 = 'Second part of a long string.';
Sentence = Part1+' '+Part2;

If the localization routines translate Part1 and Part2, the Sentence constant will not be trans-
lated automatically: it has a separate entry in the resource string tables, and must therefore be
translated separately. The above construct simply says that the initial value of Sentence equals
Part1+’ ’+Part2.

23

../prog/prog.html

CHAPTER 2. CONSTANTS

Remark Likewise, when using resource strings in a constant array, only the initial values of the resource
strings will be used in the array: when the individual constants are translated, the elements in the
array will retain their original value.

resourcestring
Yes = 'Yes.';
No = 'No.';

Var
YesNo : Array[Boolean] of string = (No,Yes);
B : Boolean;

begin
Writeln(YesNo[B]);

end.

This will print “Yes.” or “No.” depending on the value of B, even if the constants Yes and No have
been localized by some localization mechanism.

24

Chapter 3

Types

All variables have a type. Free Pascal supports the same basic types as Turbo Pascal, with some extra
types from Delphi as well as some of its own.

The programmer can declare his own types, which is in essence defining an identifier that can be
used to denote this custom type when declaring variables further in the source code. Declaring a
type happens in a Type block (section 16.5, page 252), which is a collection of type declarations,
separated by semicolons:

Type declaration

-- type declaration identifier = type
hint directives

; -�

There are eight major kinds of types:

Types

-- type simple type
string type

structured type
pointer type

procedural type
generic type

specialized type
type alias

-�

Each of these cases will be examined separately.

3.1 Base types

The base or simple types of Free Pascal are the Delphi types. We will discuss each type separately.

25

CHAPTER 3. TYPES

Simple types

-- simple type ordinal type
real type

-�

-- real type real type identifier -�

3.1.1 Ordinal types
With the exception of floating point value types, all base types are ordinal types. Ordinal types have
the following characteristics:

1. Ordinal types are countable and ordered, i. e. it is, in principle, possible to start counting them
one by one, in a specified order. This property allows the operation of functions as Inc, Ord,
Dec on ordinal types to be defined.

2. Ordinal values have a smallest possible value. Trying to apply the Pred function on the
smallest possible value will generate a range check error if range checking is enabled.

3. Ordinal values have a largest possible value. Trying to apply the Succ function on the largest
possible value will generate a range check error if range checking is enabled.

Remark Int64 and QWord are considered ordinal types on 64-bit CPUs. On 32-bit types they have some
of the characteristics of ordinals, but they cannot be used e. g. in for loops.

Integers

A list of predefined integer types is presented in table (3.1).

Table 3.1: Predefined integer types

Name
Integer
Shortint
SmallInt
Longint
Longword
Int64
Byte
Word
Cardinal
QWord
ByteBool
WordBool
LongBool
QWordBool

The integer types, and their ranges and sizes, that are predefined in Free Pascal are listed in table
(3.2). Please note that the qword and int64 types are not true ordinals, so some Pascal constructs
will not work with these two integer types.

26

CHAPTER 3. TYPES

Table 3.2: Predefined integer types

Type Range Size in bytes
Byte 0 .. 255 1
Shortint -128 .. 127 1
Smallint -32768 .. 32767 2
Word 0 .. 65535 2
Integer either smallint or longint size 2 or 4
Cardinal longword 4
Longint -2147483648 .. 2147483647 4
Longword 0 .. 4294967295 4
Int64 -9223372036854775808 .. 9223372036854775807 8
QWord 0 .. 18446744073709551615 8

The integer type is an alias to the smallint type in the default Free Pascal mode. It is an alias for
the longint type in either Delphi or ObjFPC mode. The cardinal type is currently always mapped
to the longword type.

Remark The compiler decides on the type of an integer constant based on the value: An integer constant gets
the smallest possible signed type. The first match in table (3.3) is used.

Table 3.3: Integer constant type mapping

Range Type
-128..127 Shortint
128..255 Byte

-32768..32767 Smallint
32768..65535 Word

-2147483648..2147483647 longint
2147483648..4294967295 Cardinal (longword)

-9223372036854775808 .. 9223372036854775807 Int64

That means constants in the range -128..127 are mapped to shortint, constants in range 128..255 are
mapped to byte, etc. Constants in the range 2147483647..high(cardinal) are parsed as cardinals, and
all decimal constants which do not fit either of the above ranges are parsed as 64-bit integer constants.

Remark In newer Delphi versions, the longint type is platform and CPU dependent. This is not so in FPC,
where longint is 32-bit on all platforms.

As a pascal compiler, Free Pascal does automatic type conversion and upgrading in expressions
where different kinds of integer types are used:

1. Every platform has a “native” integer size, depending on whether the platform is 8-bit, 16-bit,
32-bit or 64-bit. E. g. on AVR this is 8-bit.

2. Every integer smaller than the “native” size is promoted to a signed version of the “native”
size. Integers equal to the “native” size keep their signedness.

3. The result of binary arithmetic operators (+, -, *, etc.) is determined in the following way:

(a) If at least one of the operands is larger than the native integer size, the result is chosen
to be the smallest type that encompasses the ranges of the types of both operands. This
means that mixing an unsigned with a smaller or equal in size signed will produce a
signed type that is larger than both of them.

27

CHAPTER 3. TYPES

(b) If both operands have the same signedness, the result is the same type as them. The only
exception is subtracting (−): in the case of unsigned − unsigned subtracting produces a
signed result in FPC (as in Delphi, but not in TP7).

(c) Mixing signed and unsigned operands of the “native” int size produces a larger signed
result. This means that mixing longint and longword on 32-bit platforms will produce
an int64. Similarly, mixing byte and shortint on 8-bit platforms (AVR) will produce a
smallint.

Boolean types

Free Pascal supports the Boolean type, with its two predefined possible values True and False.
These are the only two values that can be assigned to a Boolean type. Of course, any expression
that resolves to a boolean value, can also be assigned to a boolean type.

Table 3.4: Boolean types

Name Size Ord(True)
Boolean 1 1
Boolean16 2 1
Boolean32 4 1
Boolean64 8 1
ByteBool 1 Any nonzero value
WordBool 2 Any nonzero value
LongBool 4 Any nonzero value
QWordBool 8 Any nonzero value

In addition to the simple Boolean type, the additional Boolean16, Boolean32 and Boolean64
types exist. These are in fact integer types, which are assignment-compatible with the simple boolean
type. As an integer, the values for True and False are 1 and 0. This can be used to interface with
C code that defines a boolean of this size with values 0 and 1.

To make interfacing with C even easier, Free Pascal also supports the ByteBool, WordBool,
LongBool and QWordBool types. These are of type Byte, Word, Longint or Int64, but are
again assignment compatible with a Boolean. The only difference with the Boolean16/32/64
types is in what values are considered true or false: The value False is equivalent to 0 (zero) and
any nonzero value is considered True when converting to a boolean value. A boolean value of
True is converted to Not(0) in case it is assigned to a variable of type ByteBool, WordBool,
LongBool or QWordBool.

Assuming B to be of type Boolean, the following are valid assignments:

B := True;
B := False;
B := 1<>2; { Results in B := True }

Boolean expressions are also used in conditions.

Remark In Free Pascal, boolean expressions are by default always evaluated in such a way that when the
result is known, the rest of the expression will no longer be evaluated: this is called short-cut boolean
evaluation.

In the following example, the function Func will never be called, which may have strange side-
effects.

28

CHAPTER 3. TYPES

...
B := False;
A := B and Func;

Here Func is a function which returns a Boolean type.

This behavior is controllable by the {$B } compiler directive.

Enumeration types

Enumeration types are supported in Free Pascal. On top of the Turbo Pascal implementation, Free
Pascal allows also a C-style extension of the enumeration type, where a value is assigned to a partic-
ular element of the enumeration list.

Enumerated types

-- enumerated type (
6

identifier list
assigned enum list

,

) -�

-- identifier list
6
identifier

,
-�

-- assigned enum list
6

identifier := expression
identifier = expression

,

-�

(see chapter 12, page 169 for how to use expressions) When using assigned enumerated types, the
assigned elements must be in ascending numerical order in the list, or the compiler will complain.
The expressions used in assigned enumerated elements must be known at compile time. So the
following is a correct enumerated type declaration:

Type
Direction = (North, East, South, West);

A C-style enumeration type looks as follows:

Type
EnumType = (one, two, three, forty := 40,fortyone);

or you can use

Type
EnumType = (one, two, three, forty = 40,fortyone);

The latter notation is mandatory in mode DELPHI.

As a result, the ordinal number of forty is 40, and not 3, as it would be when the ’:= 40’ wasn’t
present. The ordinal value of fortyone is then 41, and not 4, as it would be when the assignment
wasn’t present. After an assignment in an enumerated definition the compiler adds 1 to the assigned
value to assign to the next enumerated value.

When specifying such an enumeration type, it is important to keep in mind that the enumerated
elements should be kept in ascending order. The following will produce a compiler error:

29

CHAPTER 3. TYPES

Type
EnumType = (one, two, three, forty := 40, thirty := 30);

It is necessary to keep forty and thirty in the correct order. When using enumeration types it is
important to keep the following points in mind:

1. The Pred and Succ functions cannot be used on this kind of enumeration types. Trying to
do this anyhow will result in a compiler error.

2. Enumeration types are stored using a default, independent of the actual number of values:
the compiler does not try to optimize for space. This behavior can be changed with the
{$PACKENUM n} compiler directive, which tells the compiler the minimal number of bytes
to be used for enumeration types. For instance

Type
{$PACKENUM 4}

LargeEnum = (BigOne, BigTwo, BigThree);
{$PACKENUM 1}

SmallEnum = (one, two, three);
Var S : SmallEnum;

L : LargeEnum;
begin

WriteLn ('Small enum : ',SizeOf(S));
WriteLn ('Large enum : ',SizeOf(L));

end.

will, when run, print the following:

Small enum : 1
Large enum : 4

More information can be found in the Programmer’s Guide, in the compiler directives section.

Subrange types

A subrange type is a range of values from an ordinal type (the host type). To define a subrange type,
one must specify its limiting values: the highest and lowest value of the type.

Subrange types

-- subrange type constant .. constant -�

Some of the predefined integer types are defined as subrange types:

Type
Longint = $80000000..$7fffffff;
Integer = -32768..32767;
shortint = -128..127;
byte = 0..255;
Word = 0..65535;

30

../prog/prog.html

CHAPTER 3. TYPES

Subrange types of enumeration types can also be defined:

Type
Days = (monday,tuesday,wednesday,thursday,friday,

saturday,sunday);
WorkDays = monday .. friday;
WeekEnd = Saturday .. Sunday;

Character types

A character type is also an ordinal type: characters are ordered, can be counted. There are 2 character
types:

AnsiChar This is a 1-byte character. The interpretation of the character depends on the codepage.

WideChar This is a 2-byte character. The interpretation of the character depends on the codepage.

Characters can be used in a loop, one can use prev and succ on it, as well as ord.

For more information on characters, see section 3.2, page 32.

3.1.2 Real types
Free Pascal uses the math coprocessor (or emulation) for all its floating-point calculations. The Real
native type is processor dependent, but it is either a Single or a Double. Only the IEEE floating
point types are supported, and these depend on the target processor and emulation options. The true
Turbo Pascal compatible types are listed in table (3.5).

Table 3.5: Supported Real types

Type Range Significant digits Size
Real platform dependant ??? 4 or 8
Single 1.5E-45 .. 3.4E38 7–8 4
Double 5.0E-324 .. 1.7E308 15–16 8
Extended 1.9E-4932 .. 1.1E4932 19–20 10
Comp -2E64+1 .. 2E63-1 19–20 8
Currency -922337203685477.5808 .. 922337203685477.5807 19–20 8

The Comp type is, in effect, a 64-bit integer and is not available on all target platforms. To get more
information on the supported types for each platform, refer to the Programmer’s Guide.

The currency type is a fixed-point real data type which is internally used as an 64-bit integer type
(automatically scaled with a factor 10000), this minimizes rounding errors. This type should be used
with care: when used in expressions using e.g. multiplication, the evaluation of the expression may
go wrong (losing precision) if intermediate results fall outside the currency range.

Note that not all float types are available on all platforms. The single float type is the only one
guaranteed to be available on all platforms that have floating point support (so e.g. AVR does not
have it). The double type is available on all platforms with coprocessor, and the extended type
is available on all Intel x86 processors, except on the Windows 64-bit platform. More details on
availability can be found in the Programmer’s Guide.

31

../prog/prog.html
../prog/prog.html

CHAPTER 3. TYPES

3.2 Character types

3.2.1 Char or AnsiChar
Free Pascal supports the type Char. A Char is exactly 1 byte in size, and contains one ASCII
character.

A character constant can be specified by enclosing the character in single quotes, as follows: ’a’ or
’A’ are both character constants.

A character can also be specified by its character value (commonly an ASCII code), by preceding the
ordinal value with the number symbol (#). For example specifying #65 would be the same as ’A’.

Also, the caret character (^) can be used in combination with a letter to specify a character with
ASCII value less than 27. Thus ^G equals #7 − G is the seventh letter in the alphabet. The compiler
is rather sloppy about the characters it allows after the caret, but in general one should assume only
letters.

When the single quote character must be represented, it should be typed two times successively, thus
’’’’ represents the single quote character.

To distinguish Char from WideChar, the system unit also defines the AnsiChar type, which is
the same as the char type. In future versions of FPC, the Char type may become an alias for either
WideChar or AnsiChar.

3.2.2 WideChar
Free Pascal supports the type WideChar. A WideChar is exactly 2 bytes in size, and contains one
UNICODE character in UTF-16 encoding.

A unicode character can be specified by its character value (an UTF-16 code), by preceding the
ordinal value with the number symbol (#).

A normal ansi (1-byte) character literal can also be used for a widechar, the compiler will automati-
cally convert it to a 2-byte UTF-16 character.

The following defines some greek characters (phi, omega):

Const
C3 : widechar = #$03A8;
C4 : widechar = #$03A9;

The same can be accomplished by typecasting a word to widechar:

Const
C3 : widechar = widechar($03A8);
C4 : widechar = widechar($03A9);

3.2.3 Other character types
Free Pascal defines some other character types in the system unit such as UCS2Char, UCS4Char,
UniCodeChar. However, no special support for these character types exists, they have been defined
for Delphi compatibility only.

3.2.4 Single-byte String types
Free Pascal supports the String type as it is defined in Turbo Pascal: a sequence of single-byte
characters with an optional size specification. It also supports ansistrings (with unlimited length) and

32

CHAPTER 3. TYPES

codepage information1 as in Delphi.

To declare a variable as a string, use the following type specification:

String Type

-- string type string
[unsigned integer]

type string
ansistring

(unsigned integer)

-�

If there is a size specifier (using square brackets), then its maximum value – indicating the maximum
size of the string – is 255. If there is a codepage specifier, (using round brackets) it indicates an
ansistring with associated code page information.

The meaning of a string declaration statement without size and code page indication is interpreted
differently depending on the {$H} switch:

var
A : String;

If no size and code page indication indication is present, the above declaration can declare an an-
sistring or a short string.

Whatever the actual type, single byte strings can be used interchangeably. The compiler always takes
care of the necessary type conversions. Note, however, that the result of an expression that contains
ansistrings and short strings will always be an ansistring.

Short strings

A string declaration declares a short string in the following cases:

1. If the $H switch is off: {$H-}, the string declaration will always be a short string declaration.

2. If the switch is on {$H+}, and there is a maximum length (the size) specifier, the declaration
is a short string declaration.

Short strings are always assumed to use the system code page. The predefined type ShortString
is defined as a string of size 255:

ShortString = String[255];

If the size of the string is not specified, 255 is taken as a default. The actual length of the string can
be obtained with the Length standard runtime routine. For example in

{$H-}

Type
NameString = String[10];
StreetString = String;

1As of version 3.0 of Free Pascal

33

CHAPTER 3. TYPES

NameString can contain a maximum of 10 characters. While StreetString can contain up to
255 characters.

Remark Short strings have a maximum length of 255 characters: when specifying a maximum length, the
maximum length may not exceed 255. If a length larger than 255 is attempted, then the compiler will
give an error message:

Error: string length must be a value from 1 to 255

For short strings, the length is stored in the character at index 0. Old Turbo Pascal code relies on this,
and it is implemented similarly in Free Pascal.

Despite this, to write portable code, it is best to set the length of a shortstring with the SetLength
call, and to retrieve it with the Length call. These functions will always work, whatever the internal
representation of the shortstrings or other strings in use: this allows easy switching between the
various string types.

Ansistrings

Ansistrings are strings that have no length limit, and have a code page associated with them2. They
are reference counted and are guaranteed to be null terminated.

Internally, an ansistring is treated as a pointer: the actual content of the string is stored on the heap,
as much memory as needed to store the string content is allocated.

If no codepage is given in the declaration, the system codepage is assumed. What codepage this is,
is determined by the DefaultSystemCodePage constant in the system unit.

This is all handled transparently, i. e. they can be manipulated as a normal short string. Ansistrings
can be defined using the predefined AnsiString type or using the string keyword in mode
{$H+}.

Remark The null-termination does not mean that null characters (char(0) or #0) cannot be used: the null-
termination is not used internally, but is there for convenience when dealing with external routines
that expect a null-terminated string (as most C routines do).

If the {$H} switch is on, then a string definition using the regular String keyword that doesn’t
contain a length specifier, will be regarded as an ansistring as well. If a length specifier is present, a
short string will be used, regardless of the {$H} setting.

If the string is empty (’’), then the internal pointer representation of the string pointer is Nil. If the
string is not empty, then the pointer points to a structure in heap memory.

The internal representation as a pointer, and the automatic null-termination make it possible to type-
cast an ansistring to a pchar. If the string is empty (so the pointer is Nil) then the compiler makes
sure that the typecast pchar will point to a null byte.

Assigning one ansistring to another doesn’t involve moving the actual string. A statement

S2:=S1;

results in the reference count of S2 being decreased with 1, The reference count of S1 is increased
by 1, and finally S1 (as a pointer) is copied to S2. This is a significant speed-up in the code.

If the reference count of a string reaches zero, then the memory occupied by the string is deallocated
automatically, and the pointer is set to Nil, so no memory leaks arise.

When an ansistring is declared, the Free Pascal compiler initially allocates just memory for a pointer,
not more. This pointer is guaranteed to be Nil, meaning that the string is initially empty. This is true
for local and global ansistrings or ansistrings that are part of a structure (arrays, records or objects).

2codepage was introduced in version 3.0 of Free Pascal

34

CHAPTER 3. TYPES

Remark Note that a function result in this regard is considered equivalent to a var parameter and hence will
not be initialized to Nil. As a consequence it may point to a legitimate non-Nil ansistring when
the function begins.

This does introduce an overhead. For instance, declaring

Var
A : Array[1..100000] of string;

Will copy the value Nil 100,000 times into A. When A goes out of scope, then the reference count
of the 100,000 strings will be decreased by 1 for each of these strings. All this happens invisible to
the programmer, but when considering performance issues, this is important.

Memory for the string content will be allocated only when the string is assigned a value. If the string
goes out of scope, then its reference count is automatically decreased by 1. If the reference count
reaches zero, the memory reserved for the string is released.

If a value is assigned to a character of a string that has a reference count greater than 1, such as in the
following statements:

S:=T; { reference count for S and T is now 2 }
S[I]:='@';

then a copy of the string is created before the assignment. This is known as copy-on-write semantics.
It is possible to force a string to have reference count equal to 1 with the UniqueString call:

S:=T;
R:=T; // Reference count of T is at least 3
UniqueString(T);
// Reference count of T is guaranteed 1

It’s recommended to do this e. g. when typecasting an ansistring to a PChar var and passing it to a C
routine that modifies the string.

The Length function must be used to get the length of an ansistring: the length is not stored at
character 0 of the ansistring. The construct

L:=ord(S[0]);

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

To set the length of an ansistring, the SetLength function must be used. Constant ansistrings have
a reference count of -1 and are treated specially, The same remark as for Length must be given:
The construct

L:=12;
S[0]:=Char(L);

which was valid for Turbo Pascal shortstrings, is no longer correct for Ansistrings. The compiler will
warn if such a construct is encountered.

Ansistrings are converted to short strings by the compiler if needed, this means that the use of an-
sistrings and short strings can be mixed without problems.

Ansistrings can be typecast to PChar or Pointer types:

Var P : Pointer;
PC : PChar;

35

CHAPTER 3. TYPES

S : AnsiString;

begin
S :='This is an ansistring';
PC:=Pchar(S);
P :=Pointer(S);

There is a difference between the two typecasts. When an empty ansistring is typecast to a pointer,
the pointer will be Nil. If an empty ansistring is typecast to a PChar, then the result will be a
pointer to a zero byte (an empty string).

The result of such a typecast must be used with care. In general, it is best to consider the result of
such a typecast as read-only, i. e. only suitable for passing to a procedure that needs a constant pchar
argument.

It is therefore not advisable to typecast one of the following:

1. Expressions.

2. Strings that have reference count larger than 1. In this case you should call Uniquestring
to ensure the string has reference count 1.

Code page conversions

Since strings have code page information associated with them, it is important to know which code
page a string uses:

• Short strings always use the system code page.

• Plain ansistrings use the system code page.

• Single byte strings with declared code page use that code page.

• The RawBytestring type has no code page information associated with it.

• Constant strings have the code page of the source file. If none is specified the system codepage
is used (CP_ACP).
See Programmer’s Guide, {$CODEPAGE } directive.

This code page is called the declared code page.

The compiler will convert the code page of strings as needed: When assigning a string, the actual
codepage of the source string will be converted to the declared code page of the target string if the
declared source and target code pages are different.

If a string with a declared page SOURCE_CP assigned to a string with declared code page DEST_CP,
in a file with code page CODE_CP then the following describes the mechanism:

• if (SOURCE_CP=CP_NONE) or (DEST_CP = CP_NONE), see RawByteString.

• if (CODE_CP <> CP_ACP), then if (DEST_CP = CP_ACP) and (SOURCE_CP = CODE_CP)
or vice versa, no conversion will occur, even if at run time DefaultSystemCodePage has
a different value from SOURCE_CP.
The reason for this “(CODE_CP <>CP_ACP)” condition is backward compatibility with previ-
ous FPC versions: While they did not support AnsiStrings with arbitrary code pages, they
did always reinterpret AnsiStrings according to the current value of the system code page.
Otherwise,

36

../prog/prog.html

CHAPTER 3. TYPES

• if (SOURCE_CP <> DEST_CP), the string data will be converted from codepage SOURCE_CP
to codepage DEST_CP before assignment, whereby CP_ACP will be interpreted as the current
value of DefaultSystemCodePage. Otherwise,

• if (SOURCE_CP = DEST_CP), no codepage conversion will be performed.

These rules mean that it is perfectly possible for an AnsiString variable to get a code page that
differs from its declared code page. E. g. in the third case SOURCE_CP could be CP_ACP, while
after the assignment it may have a dynamic code page equal to DefaultSystemCodePage.

Note: as mentioned above, whether or not a potential code page conversion happens only depends on
the declared code pages of the involved strings. This means that if you assign one AnsiString(X) to
another AnsiString(X) and the former’s dynamic code was different from X, the string data will not
be converted to code page X by the assignment.

All this means that in the following code:

{$h+}
uses sysutils;

Type
TString1 = Type String(1252);
TString2 = Type String(1251);

Var
A : TString1;
B : TString2;

begin
A:='123'+'345'+intToStr(123);
B:=A;
Writeln('B: "',B,'" : ',StringRefCount(B),' -> ',StringCodePage(B));
Writeln('A: "',A,'" : ',StringRefCount(A),' -> ',StringCodePage(A));

end.

This will print:

B: "123345123" : 1 -> 1251
A: "123345123" : 1 -> 1252

During the assignment of A to B, the contents of string A is converted to the codepage of string B.
Note that if a code page conversion takes place, the reference count mechanism is not used: a new
string will be allocated.

This automated conversion of code pages can slow down the code seriously, so care must be taken to
see to it that the code page conversions are limited to a minimum.

The code page of a string can be set explicitly using the SetCodePage routine of the system unit.
Calling this routine will convert the value of a string to the requested code page.

Remark Code page conversions can result in loss of data: if a certain character cannot be represented in the
target code page, the output for that character is undefined.

Remark When a string whose static code page equals the source file code page, to anything with code page
CP_ACP (i. e., a plain ansistring, shortstring, or pchar), no conversion will be performed either. No
code page conversion is done when s can result in loss of data: if a certain character cannot be
represented in the target code page, the output for that character is undefined.

Remark Code page support requires quite some helper routines, these are implemented in the unicodestring
manager. On windows, the system routines are used for this. On Unices, the cwstring unit

37

CHAPTER 3. TYPES

can be used to link to the C library and use the C library conversion support. Alternatively, the
fpwidestring unit contains a unicodestring manager implemented natively in Object Pascal.

RawByteString

The predefined RawByteString type is an ansistring string type without codepage information
(CP_NONE):

Type
RawByteString = type ansistring(CP_NONE);

It is treated specially in the sense that if the conversion routines encounter CP_NONE in a source or
target string, no code page conversion is performed, the code page of the source string is preserved.

For this reason, most single-byte string routines in the system and sysutils units use the RawByteString
type.

UTF8String

Single-byte code page strings can only store the characters available in that code page. Characters
that are not present in the code page, cannot be represented by that string. The UTF-8 unicode
encoding is an encoding that can be used with single-byte strings: The ASCII characters (ordinal
value <128) in this encoding map exactly to the CP_ACP encoding. This fact is used to define a
single byte string type that can contain all characters:

Type
UTF8String = type AnsiString(CP_UTF8);

The UTF8string string type can be used to represent all Unicode characters. This power comes as
a price, though. Since a unicode character may require several bytes to be represented in the UTF-8
encoding, there are two points to take care of when using UTF8String:

1. The character index – which retrieves a byte-sized char at a certain position – must be used
with care: the expression S[i] will not necessarily be a valid character for a string S of type
UTF8String.

2. The byte length of the string is not equal to the number of characters in the string. The standard
function length cannot be used to get the character length, it will always return the byte
length.

For all other code pages, the number of characters in a single-byte code page string is equal to the
byte length of the string.

3.2.5 Multi-byte String types
For multi-byte string types, the basic character has a size of at least 2. This means it can be used to
store a unicode character in UTF16 or UCS2 encoding.

UnicodeStrings

Unicodestrings (used to represent unicode character strings) are implemented in much the same way
as ansistrings: reference counted, null-terminated arrays, only they are implemented as arrays of
WideChars instead of regular Chars. A WideChar is a two-byte character (an element of a

38

CHAPTER 3. TYPES

DBCS: Double Byte Character Set). Mostly the same rules apply for UnicodeStrings as for
AnsiStrings. The compiler transparently converts UnicodeStrings to AnsiStrings and vice versa.

Similarly to the typecast of an Ansistring to a PChar null-terminated array of characters, a Uni-
codeString can be converted to a PUnicodeChar null-terminated array of characters. Note that
the PUnicodeChar array is terminated by 2 null bytes instead of 1, so a typecast to a pchar is not
automatic.

The compiler itself provides no support for any conversion from Unicode to ansistrings or vice versa.
The system unit has a unicodestring manager record, which can be initialized with some OS-specific
unicode handling routines. For more information, see the system unit reference.

A unicode string literal can be constructed in a similar manner as a widechar:

Const
ws2: unicodestring = 'phi omega : '#$03A8' '#$03A9;

WideStrings

The Widestring type (used to represent unicode character strings in COM applications) is imple-
mented in much the same way as Unicodestring on Windows, and on other platforms, they are
simply the same type. If interaction with COM is not required, the UnicodeString type should
be used.

On Windows, unlike UnicodeString, the WideString type is not reference counted, and are
allocated with a special windows function which allows them to be used for OLE automation. This
means they are implemented as null-terminated arrays of WideChars instead of regular Chars.
WideString obeys the same rules as for UnicodeStrings. Similar to unicodestrings, the com-
piler transparenty converts WideStrings to AnsiStrings and vice versa.

For typecasting and conversion, the same rules apply as for the UnicodeString type.

Note that on windows, because a WideString string is allocated using a special windows function,
the memory layout differs from UnicodeString. The length for instance is stored in bytes rather
than characters.

3.2.6 Constant strings
To specify a constant string, it must be enclosed in single-quotes, just as a Char type, only now more
than one character is allowed. Given that S is of type String, the following are valid assignments:

S := 'This is a string.';
S := 'One'+', Two'+', Three';
S := 'This isn't difficult!';
S := 'This is a weird character : '#145' !';

As can be seen, the single quote character is represented by 2 single-quote characters next to each
other. Strange characters can be specified by their character value (usually an ASCII code). The
example shows also that two strings can be added. The resulting string is just the concatenation
of the first with the second string, without spaces in between them. Strings can not be subtracted,
however.

Whether the constant string is stored as an ansistring or a short string depends on the settings of the
{$H} switch.

39

CHAPTER 3. TYPES

3.2.7 PChar – Null terminated strings
Free Pascal supports the Delphi implementation of the PChar type. PChar is defined as a pointer to
a Char type, but allows additional operations. The PChar type can be understood best as the Pascal
equivalent of a C-style null-terminated string, i. e. a variable of type PChar is a pointer that points
to an array of type Char, which is ended by a null-character (#0). Free Pascal supports initializing
of PChar typed constants, or a direct assignment. For example, the following pieces of code are
equivalent:

program one;
var P : PChar;
begin

P := 'This is a null-terminated string.';
WriteLn (P);

end.

Results in the same as

program two;
const P : PChar = 'This is a null-terminated string.';
begin

WriteLn (P);
end.

These examples also show that it is possible to write the contents of the string to a file of type
Text. The strings unit contains procedures and functions that manipulate the PChar type as in the
standard C library. Since it is equivalent to a pointer to a type Char variable, it is also possible to do
the following:

Program three;
Var S : String[30];

P : PChar;
begin

S := 'This is a null-terminated string.'#0;
P := @S[1];
WriteLn (P);

end.

This will have the same result as the previous two examples. Null-terminated strings cannot be added
as normal Pascal strings. If two PChar strings must be concatenated; the functions from the unit
strings must be used.

However, it is possible to do some pointer arithmetic. The operators + and - can be used to do
operations on PChar pointers. In table (3.6), P and Q are of type PChar, and I is of type Longint.

Table 3.6: PChar pointer arithmetic

Operation Result
P + I Adds I to the address pointed to by P.
I + P Adds I to the address pointed to by P.
P - I Subtracts I from the address pointed to by P.
P - Q Returns, as an integer, the distance between two addresses

(or the number of characters between P and Q)

40

../rtl/strings/index.html
../rtl/strings/index.html

CHAPTER 3. TYPES

3.2.8 String sizes
The memory occupied by a string depends on the string type. Some string types allocate the string
data in memory on the heap, others have the string data on the stack. Table table (3.7) summarizes
the memory usage of the various string types for the various string types. In the table, the following
symbolic constants are used:

1. L is the actual length of the string.

2. HS depends on the version of Free Pascal, but is 16 bytes as of Free Pascal 2.7.1.

3. UHS size is 8 bytes for all versions of Free Pascal.

4. On Windows, WHS size is 4 bytes for all versions of Free Pascal. On all other platforms, WHS
equals UHS because the WideString type equals the UnicodeString type.

Table 3.7: String memory sizes

String type Stack size heap size
Shortstring Declared length + 1 0
Ansistring Pointer size L + 1 + HS
Widestring Pointer size 2*(L + 1) + WHS
UnicodeString Pointer size 2*(L + 1) + UHS
Pchar Pointer size L+1

3.3 Structured Types

A structured type is a type that can hold multiple values in one variable. Structured types can be
nested to unlimited levels.

Structured Types

-- structured type array type
record type
object type
class type

class reference type
interface type

set type
file type

-�

Unlike Delphi, Free Pascal does not support the keyword Packed for all structured types. In the
following sections each of the possible structured types is discussed. It will be mentioned when a
type supports the packed keyword.

Packed structured types

When a structured type is declared, no assumptions should be made about the internal position of the
elements in the type. The compiler will lay out the elements of the structure in memory as it thinks

41

CHAPTER 3. TYPES

will be most suitable. That is, the order of the elements will be kept, but the location of the elements
are not guaranteed, and is partially governed by the $PACKRECORDS directive (this directive is
explained in the Programmer’s Guide).

However, Free Pascal allows controlling the layout with the Packed and Bitpacked keywords.
The meaning of these words depends on the context:

Bitpacked In this case, the compiler will attempt to align ordinal types on bit boundaries, as ex-
plained below.

Packed The meaning of the Packed keyword depends on the situation:

1. In MACPAS mode, it is equivalent to the Bitpacked keyword.

2. In other modes, with the $BITPACKING directive set to ON, it is also equivalent to the
Bitpacked keyword.

3. In other modes, with the $BITPACKING directive set to OFF, it signifies normal packing
on byte boundaries.

Packing on byte boundaries means that each new element of a structured type starts on a byte
boundary.

The byte packing mechanism is simple: the compiler aligns each element of the structure on the first
available byte boundary, even if the size of the previous element (small enumerated types, subrange
types) is less than a byte.

When using the bit packing mechanism, the compiler calculates for each ordinal type how many bits
are needed to store it. The next ordinal type is then stored on the next free bit. Non-ordinal types –
which include but are not limited to – sets, floats, strings, (bitpacked) records, (bitpacked) arrays,
pointers, classes, objects, and procedural variables, are stored on the first available byte boundary.

Note that the internals of the bitpacking are opaque: they can change at any time in the future. What
is more: the internal packing depends on the endianness of the platform for which the compilation is
done, and no conversion between platforms are possible. This makes bitpacked structures unsuitable
for storing on disk or transport over networks. The format is however the same as the one used by
the GNU Pascal Compiler, and the Free Pascal team aims to retain this compatibility in the future.

There are some more restrictions to elements of bitpacked structures:

• The address cannot be retrieved, unless the bit size is a multiple of 8 and the element happens
to be stored on a byte boundary.

• An element of a bitpacked structure cannot be used as a var parameter, unless the bit size is a
multiple of 8 and the element happens to be stored on a byte boundary.

To determine the size of an element in a bitpacked structure, there is the BitSizeOf function. It
returns the size – in bits – of the element. For other types or elements of structures which are not
bitpacked, this will simply return the size in bytes multiplied by 8, i. e., the return value is then the
same as 8*SizeOf.

The size of bitpacked records and arrays is limited:

• On 32 bit systems the maximal size is 229 bytes (512 MB).

• On 64 bit systems the maximal size is 261 bytes.

The reason is that the offset of an element must be calculated with the maximum integer size of the
system.

42

../prog/prog.html

CHAPTER 3. TYPES

3.3.1 Arrays
Free Pascal supports arrays as in Turbo Pascal. Multi-dimensional arrays and (bit)packed arrays are
also supported, as well as the dynamic arrays of Delphi:

Array types

-- array type
packed

bitpacked

array
[
6
ordinal type

,
]

of type -�

Static arrays

When the range of the array is included in the array definition, it is called a static array. Trying to
access an element with an index that is outside the declared range will generate a run-time error (if
range checking is on). The following is an example of a valid array declaration:

Type
RealArray = Array [1..100] of Real;

Valid indexes for accessing an element of the array are between 1 and 100, where the borders 1 and
100 are included. As in Turbo Pascal, if the array component type is in itself an array, it is possible
to combine the two arrays into one multi-dimensional array. The following declaration:

Type
APoints = array[1..100] of Array[1..3] of Real;

is equivalent to the declaration:

Type
APoints = array[1..100,1..3] of Real;

The functions High and Low return the high and low bounds of the leftmost index type of the array.
In the above case, this would be 100 and 1. You should use them whenever possible, since it improves
maintainability of your code. The use of both functions is just as efficient as using constants, because
they are evaluated at compile time.

When static array-type variables are assigned to each other, the contents of the whole array is copied.
This is also true for multi-dimensional arrays:

program testarray1;

Type
TA = Array[0..9,0..9] of Integer;

var
A,B : TA;
I,J : Integer;

begin
For I:=0 to 9 do

For J:=0 to 9 do
A[I,J]:=I*J;

43

CHAPTER 3. TYPES

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(A[I,J]:2,' ');
Writeln;
end;

B:=A;
Writeln;
For I:=0 to 9 do

For J:=0 to 9 do
A[9-I,9-J]:=I*J;

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(B[I,J]:2,' ');
Writeln;
end;

end.

The output of this program will be two identical matrices.

Dynamic arrays

As of version 1.1, Free Pascal also knows dynamic arrays: In that case the array range is omitted, as
in the following example:

Type
TByteArray = Array of Byte;

When declaring a variable of a dynamic array type, the initial length of the array is zero. The actual
length of the array must be set with the standard SetLength function, which will allocate the
necessary memory to contain the array elements on the heap.

The following example will set the length to 1000:

Var
A : TByteArray;

begin
SetLength(A,1000);

After a call to SetLength, valid array indexes are 0 to 999: the array index is always zero-based.

SetLength can also be used for multi-dimensional arrays. The following example will create a
“rectangular” array:

Var
A : Array of TByteArray;

begin
SetLength(A,10,100);

After a call to SetLength, valid array indexes are 0 to 9 for the first dimension, and 0 to 99 for the
second dimension.

In difference with static multi-dimensional arrays, dynamic arrays do not need to be “rectangular”,
i. e. the various elements can have different lengths:

44

CHAPTER 3. TYPES

var
a: array of array of array of LongInt;
i, j, k: LongInt;

begin
SetLength(a, 10, 5);
SetLength(a[5], 3);

for i := Low(a) to High(a) do
for j := Low(a[i]) to High(a[i]) do begin

SetLength(a[i, j], i * 10 + j);
for k := Low(a[i, j]) to High(a[i, j]) do

a[i, j, k] := i * 10000 + j * 100 + k;
end;

for i := Low(a) to High(a) do begin
for j := Low(a[i]) to High(a[i]) do begin

for k := Low(a[i, j]) to High(a[i, j]) do
Writeln(a[i, j, k]);

Writeln('-------');
end;
Writeln('=======');

end;
end.

Note that the length of the array is set in elements, not in bytes of allocated memory (although these
may be the same). The amount of memory allocated is the size of the array multiplied by the size
of 1 element in the array. The memory will be disposed of at the exit of the current procedure or
function.

It is also possible to resize the array: in that case, as much of the elements in the array as will fit in
the new size, will be kept. The array can be resized to zero, which effectively resets the variable.

At all times, trying to access an element of the array with an index that is not in the current length of
the array will generate a run-time error.

Dynamic arrays are reference counted: assignment of one dynamic array-type variable to another
will let both variables point to the same array. Contrary to ansistrings, an assignment to an element
of one array will be reflected in the other: there is no copy-on-write. Consider the following example:

Var
A,B : TByteArray;

begin
SetLength(A,10);
A[0]:=33;
B:=A;
A[0]:=31;

After the second assignment, the first element in B will also contain 31.

It can also be seen from the output of the following example:

program testarray1;

Type
TA = Array of array of Integer;

45

CHAPTER 3. TYPES

var
A,B : TA;
I,J : Integer;

begin
Setlength(A,10,10);
For I:=0 to 9 do

For J:=0 to 9 do
A[I,J]:=I*J;

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(A[I,J]:2,' ');
Writeln;
end;

B:=A;
Writeln;
For I:=0 to 9 do

For J:=0 to 9 do
A[9-I,9-J]:=I*J;

For I:=0 to 9 do
begin
For J:=0 to 9 do

Write(B[I,J]:2,' ');
Writeln;
end;

end.

The output of this program will be a matrix of numbers, and then the same matrix, mirrored.

As remarked earlier, dynamic arrays are reference counted: if in one of the previous examples A goes
out of scope and B does not, then the array is not yet disposed of: the reference count of A (and B) is
decreased with 1. As soon as the reference count reaches zero the memory, allocated for the contents
of the array, is disposed of.

The SetLength call will make sure the reference count of the returned array is 1, that is, if two dy-
namic array variables were pointing to the same memory they will no longer do so after the setlength
call:

program testunique;

Type
TA = array of Integer;

var
A,B : TA;
I : Integer;

begin
Setlength(A,10);
For I:=0 to 9 do

A[I]:=I;
B:=A;
SetLength(B,6);
A[0]:=123;
For I:=0 to 5 do

46

CHAPTER 3. TYPES

Writeln(B[I]);
end.

It is also possible to copy and/or resize the array with the standard Copy function, which acts as the
copy function for strings:

program testarray3;

Type
TA = array of Integer;

var
A,B : TA;
I : Integer;

begin
Setlength(A,10);
For I:=0 to 9 do

A[I]:=I;
B:=Copy(A,3,6);
For I:=0 to 5 do

Writeln(B[I]);
end.

The Copy function will copy six elements of the array to a new array. Starting at the element at
index 3 (i. e. the fourth element) of the array.

The Length function will return the number of elements in the array. The Low function on a
dynamic array will always return 0, and the High function will return the value Length-1, i. e.,
the value of the highest allowed array index.

Dynamic array Type compatibility

Object Pascal is a strictly typed language. Two technically distinct types are sometimes considered
assignment compatible (i. e. a value of one type can be assigned to a variable of another type) under
certain circumstances. Dynamic arrays are considered assignment compatible when they use the
same element type. That means that the following will compile:

{$mode objfpc}

Type
TA = Array of Integer;
TB = Array of Integer;

Var
A : TA;
B : TB;

begin
SetLength(A,1);
A[0]:=1;
B:=A;

end.

But the following will not, even though the integer and word types are assignment compatible:

47

CHAPTER 3. TYPES

{$mode objfpc}

Type
TA = Array of Word;
TB = Array of Integer;

Var
A : TA;
B : TB;

begin
SetLength(A,1);
A[0]:=1;
B:=A;

end.

Dynamic array constructor

As of version 3.0 of Free Pascal, Dynamic array types have a constructor. This is intrinsic, the
compiler provides it. Up to version 2.6.4, the only way to initialize a dynamic array was as follows:

Type
TIntegerArray = Array of Integer;

var
A : TIntegerArray;

begin
SetLength(A,3);
A[0]:=1;
A[1]:=2;
A[3]:=3;
Writeln(Length(A));

end.

As of version 3.0 of Free Pascal, an dynamic array can be initialized using a constructor-like syntax.
The constructor is called Create, and accepts as parameters a variable number of parameters of the
element type of the array type. This means the above initialization can now be done as:

Type
TIntegerArray = Array of Integer;

var
A : TIntegerArray;

begin
A:=TIntegerArray.Create(1,2,3);
Writeln(Length(A));

end.

Note that this will not work for dynamic arrays for which no type was created. That is, the following
will not work:

var

48

CHAPTER 3. TYPES

A : Array of Integer;

begin
A:=Array of Integer.Create(1,2,3);
Writeln(Length(A));

end.

This approach also works recursively for multi-dimensional arrays:

Type
TIntegerArray = Array of Integer;
TIntegerArrayArray = Array of TIntegerArray;

var
A : TIntegerArrayArray;

begin
A:=TIntegerArrayArray.Create(TIntegerArray.Create(1,2,3),

TIntegerArray.Create(4,5,6),
TIntegerArray.Create(7,8,9));

Writeln('Length ',length(A));
end.

However, since it is a constructor (code is run at run-time) it is not possible to use this in an initialized
variable syntax. That is, the following will not work:

Type
TIntegerArray = Array of Integer;

var
A : TIntegerArray = TIntegerArray.Create(1,2,3);

begin
Writeln('Length ',length(A));

end.

Dynamic array constant expressions

As of version 3.2 of the compiler, an array can be constructed using an array expression in an explicit
assignment or in an initialized variable. However, the expression is different. In an assignment
statement, it resembles a set expression, in an initializd variable, the same syntax as for a constant
array of fixed length must be used:

Type
TIntegerArray = Array of Integer;

var
A : TIntegerArray = (1,2,3);
B : TIntegerArray;

begin
B:=[3,4,5];

end.

49

CHAPTER 3. TYPES

Packing and unpacking an array

Arrays can be packed and bitpacked. Two array types which have the same index type and element
type, but which are differently packed are not assignment compatible.

However, it is possible to convert a normal array to a bitpacked array with the pack routine. The
reverse operation is possible as well; a bitpacked array can be converted to a normally packed array
using the unpack routine, as in the following example:

Var
foo : array ['a'..'f'] of Boolean

= (false, false, true, false, false, false);
bar : bitpacked array [42..47] of Boolean;
baz : array ['0'..'5'] of Boolean;

begin
pack(foo,'a',bar);
unpack(bar,baz,'0');

end.

More information about the pack and unpack routines can be found in the system unit reference.

3.3.2 Record types
Free Pascal supports fixed records and records with variant parts. The syntax diagram for a record
type is

Record types

-- record type
packed

bitpacked

record
field list

end -�

-- field list fixed fields

fixed fields ;
variant part ;

-�

-- fixed fields
6
identifier list : type

;
-�

-- variant part case
identifier :

ordinal type of
6
variant

;
-�

-- variant
6
constant

,
: (

field list
) -�

So the following are valid record type declarations:

Type
Point = Record

X,Y,Z : Real;
end;

RPoint = Record

50

CHAPTER 3. TYPES

Case Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

BetterRPoint = Record
Case UsePolar : Boolean of
False : (X,Y,Z : Real);
True : (R,theta,phi : Real);
end;

The variant part must be last in the record. The optional identifier in the case statement serves to
access the tag field value, which otherwise would be invisible to the programmer. It can be used to
see which variant is active at a certain time3. In effect, it introduces a new field in the record.

Remark It is possible to nest variant parts, as in:

Type
MyRec = Record

X : Longint;
Case byte of

2 : (Y : Longint;
case byte of
3 : (Z : Longint);
);

end;

Record layout and size

The layout and size of a record is influenced by five aspects:

• The size of its fields.

• The alignment requirements of the types of the fields, which are platform-dependent. Note that
the alignment requirements of a type inside a record may be different from those of a separate
variable of that type. Additionally, the location of a field inside a record may also influence its
type’s alignment requirements.

• The currently active {$ALIGN N} or {$PACKRECORDS N} setting (these settings override
each other, so the last one specified is the active one; note that these directives to not accept
exactly the same arguments, see the programmer’s manual for more information).

• The currently active {$CODEALIGN RECORDMIN=X} setting.

• The currently active {$CODEALIGN RECORDMAX=X} setting.

The layout and size of variant parts in records is determined by replacing them with a field whose
type is a record with as first element a field of the tag field type if an identifier was declared for this
tag field, followed by the elements of the biggest variant.

Field F2’s offset in a record is equal to the sum of the previous field F1’s offset and F1’s size, rounded
up to a multiple of F2’s required alignment. This required alignment is calculated as follows:

• The required alignment is set to the default alignment of the field’s type, possibly adjusted
based on the fact that this type occurs in a record and on the field’s location in the record.

3However, it is up to the programmer to maintain this field.

51

CHAPTER 3. TYPES

• If the required alignment is smaller than the currently active {$CODEALIGN RECORDMIN=X}
setting, it is changed to this X value.

• If the currently active {$ALIGN N} or {$PACKRECORDS N} setting is

– a numerical value: if the required alignment is larger than N, it is changed to N. I. e., if N
is 1, all fields will be placed right after each other.

– RESET or DEFAULT: the resulting required alignment is target dependent.

– C: the required alignment is adjusted according to the rules specified in the official ABI
for the current platform.

– POWER/POWERPC, MAC68K: the alignment value’s adjustment is determined by follow-
ing the official ABI rules for resp. the (Classic) Macintosh PowerPC or Macintosh 680x0
platforms.

The size of a record is equal to the sum of the record’s last field’s offset and this field’s size, rounded
up to a multiple of the record’s required alignment. The record’s required alignment is calculated as
follows:

• The required alignment is set to the alignment of the record’s field with the largest alignment,
as determined while laying out the record.

• If the current {$ALIGN N} or {$PACKRECORDS N} setting is different from C and the
required alignment is larger than than the currently active {$CODEALIGN RECORDMAX=X},
the required alignment is changed to X.

• If the current {$ALIGN N} or {$PACKRECORDS N} setting is equal to C, the required
alignment is determined by following the official ABI rules.

Remarks and examples

Free Pascal also supports a “packed record”, which is a record where all the elements are byte-
aligned. As a result, the two following declarations are equivalent:

{$PackRecords 1}
Trec2 = Record

A : Byte;
B : Word;
end;

{$PackRecords default}

and

Trec2 = Packed Record
A : Byte;
B : Word;
end;

Note the {$PackRecords Default} after the first declaration to restore the default setting!

Given the platform-dependent nature of how records are laid out in memory, the only way to ensure a
compatible layout across platforms (assuming that all fields are declared using a type with the same
meaning across these same platforms) is by using {$PACKRECORDS 1}.

In particular, if a typed file with records, produced by a Turbo Pascal program, must be read, then
chances are that attempting to read that file correctly will fail. The reason is that Free Pascal’s default

52

CHAPTER 3. TYPES

{$PACKRECORDS N} setting is not necessarily compatible with Turbo Pascal’s. It can be changed
to {$PACKRECORDS 1} or {$PACKRECORDS 2} depending on the setting used in the Turbo
Pascal program that create the file (although it may still fail with {$PACKRECORDS 2} due to
different type alignment requirements between 16 bit MSDOS and your current platform).

The same remark goes for Delphi: exchanging data is only guaranteed to be possible if both the
producer and consumer use a packed record, or if they are on the same platform and use the same
{$PACKRECORDS X} setting.

3.3.3 Set types
Free Pascal supports the set types as in Turbo Pascal. The prototype of a set declaration is:

Set Types

-- set type set of ordinal type -�

Each of the elements of SetTypemust be of type TargetType. TargetType can be any ordinal
type with a range between 0 and 255. A set can contain at most 256 elements. The following are
valid set declaration:

Type
Junk = Set of Char;
Days = (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

Var
WorkDays : Set of days;

Given these declarations, the following assignment is legal:

WorkDays := [Mon, Tue, Wed, Thu, Fri];

Several operations can be done on sets: taking unions or differences, adding or removing elements,
comparisons. These are documented in section 12.8.6, page 180

How the compiler stores sets depends on the mode and can be controlled with a directive. For more
information, see the programmer’s guide.

3.3.4 File types
File types are types that store a sequence of some base type, which can be any type except another file
type. It can contain (in principle) an infinite number of elements. File types are used commonly to
store data on disk. However, nothing prevents the programmer, from writing a file driver that stores
its data for instance in memory.

Here is the type declaration for a file type:

File types

-- file type file
of type identifier

-�

53

CHAPTER 3. TYPES

If no type identifier is given, then the file is an untyped file; it can be considered as equivalent to a file
of bytes. Untyped files require special commands to act on them (see Blockread, Blockwrite).
The following declaration declares a file of records:

Type
Point = Record

X,Y,Z : real;
end;

PointFile = File of Point;

Internally, files are represented by the FileRec record, which is declared in the Dos or SysUtils
units.

A special file type is the Text file type, represented by the TextRec record. A file of type Text
uses special input-output routines. The default Input, Output and StdErr file types are defined
in the system unit: they are all of type Text, and are opened by the system unit initialization code.

3.4 Pointers

Free Pascal supports the use of pointers. A variable of the pointer type contains an address in memory,
where the data of another variable may be stored. A pointer type can be defined as follows:

Pointer types

-- pointer type ˆ type identifier -�

As can be seen from this diagram, pointers are typed, which means that they point to a particular
kind of data. The type of this data must be known at compile time.

Dereferencing the pointer (denoted by adding ˆ after the variable name) behaves then like a variable.
This variable has the type declared in the pointer declaration, and the variable is stored in the address
that is pointed to by the pointer variable. Consider the following example:

Program pointers;
type

Buffer = String[255];
BufPtr = ^Buffer;

Var B : Buffer;
BP : BufPtr;
PP : Pointer;

etc..

In this example, BP is a pointer to a Buffer type; while B is a variable of type Buffer. B takes
256 bytes memory, and BP only takes 4 (or 8) bytes of memory: enough memory to store an address.

The expression

BP^

is known as the dereferencing of BP. The result is of type Buffer, so

54

CHAPTER 3. TYPES

BP^[23]

Denotes the 23rd character in the string pointed to by BP.

Remark Free Pascal treats pointers much the same way as C does. This means that a pointer to some type
can be treated as being an array of this type.

From this point of view, the pointer then points to the zeroeth element of this array. Thus the follow-
ing pointer declaration

Var p : ^Longint;

can be considered equivalent to the following array declaration:

Var p : array[0..Infinity] of Longint;

The difference is that the former declaration allocates memory for the pointer only (not for the array),
and the second declaration allocates memory for the entire array. If the former is used, the memory
must be allocated manually, using the Getmem function. The reference Pˆ is then the same as p[0].
The following program illustrates this maybe more clear:

program PointerArray;
var i : Longint;

p : ^Longint;
pp : array[0..100] of Longint;

begin
for i := 0 to 100 do pp[i] := i; { Fill array }
p := @pp[0]; { Let p point to pp }
for i := 0 to 100 do

if p[i]<>pp[i] then
WriteLn ('Ohoh, problem !')

end.

Free Pascal supports pointer arithmetic as C does. This means that, if P is a typed pointer, the
instructions

Inc(P);
Dec(P);

will increase, respectively decrease the address the pointer points to with the size of the type P is a
pointer to. For example

Var P : ^Longint;
...
Inc (p);

will increase P by 4, because 4 is the size of a longint. If the pointer is untyped, a size of 1 byte is
assumed (i. e. as if the pointer were a pointer to a byte: ˆbyte.)

Normal arithmetic operators on pointers can also be used, that is, the following are valid pointer
arithmetic operations:

var p1,p2 : ^Longint;
L : Longint;

begin
P1 := @P2;

55

CHAPTER 3. TYPES

P2 := @L;
L := P1-P2;
P1 := P1-4;
P2 := P2+4;

end.

Here, the value that is added or subtracted is multiplied by the size of the type the pointer points to.
In the previous example P1 will be decremented by 16 bytes, and P2 will be incremented by 16.

3.5 Forward type declarations

Programs often need to maintain a linked list of records. Each record then contains a pointer to the
next record (and possibly to the previous record as well). For type safety, it is best to define this
pointer as a typed pointer, so the next record can be allocated on the heap using the New call. In
order to do so, the record should be defined something like this:

Type
TListItem = Record

Data : Integer;
Next : ^TListItem;

end;

When trying to compile this, the compiler will complain that the TListItem type is not yet defined
when it encounters the Next declaration: This is correct, as the definition is still being parsed.

To be able to have the Next element as a typed pointer, a “Forward type declaration” must be
introduced:

Type
PListItem = ^TListItem;
TListItem = Record

Data : Integer;
Next : PTListItem;

end;

When the compiler encounters a typed pointer declaration where the referenced type is not yet known,
it postpones resolving the reference till later. The pointer definition is a “Forward type declaration”.

The referenced type should be introduced later in the same Type block. No other block may come
between the definition of the pointer type and the referenced type. Indeed, even the word Type
itself may not re-appear: in effect it would start a new type-block, causing the compiler to resolve all
pending declarations in the current block.

In most cases, the definition of the referenced type will follow immediately after the definition of
the pointer type, as shown in the above listing. The forward defined type can be used in any type
definition following its declaration.

Note that a forward type declaration is only possible with pointer types and classes, not with other
types.

3.6 Procedural types

Free Pascal has support for procedural types, although it differs a little from the Turbo Pascal or Del-
phi implementation of them. The type declaration remains the same, as can be seen in the following
syntax diagram:

56

CHAPTER 3. TYPES

Procedural types

-- procedural type function header
procedure header of object

is nested
; call modifiers

-�

-- function header function formal parameter list : result type -�

-- procedure header procedure formal parameter list -�

-- call modifiers register
cdecl

pascal
stdcall
safecall
inline

-�

For a description of formal parameter lists, see chapter 14, page 207. The two following examples
are valid type declarations:

Type TOneArg = Procedure (Var X : integer);
TNoArg = Function : Real;

var proc : TOneArg;
func : TNoArg;

One can assign the following values to a procedural type variable:

1. Nil, for both normal procedure pointers and method pointers.

2. A variable reference of a procedural type, i. e. another variable of the same type.

3. A global procedure or function address, with matching function or procedure header and call-
ing convention.

4. A method address.

Given these declarations, the following assignments are valid:

Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
...
Proc := @printit;
Func := @Pi;

From this example, the difference with Turbo Pascal is clear: In Turbo Pascal it isn’t necessary to
use the address operator (@) when assigning a procedural type variable, whereas in Free Pascal it is
required. In case the -MDelphi or -MTP switches are used, the address operator can be dropped.

Remark The modifiers concerning the calling conventions must be the same as the declaration; i. e. the
following code would give an error:

57

CHAPTER 3. TYPES

Type TOneArgCcall = Procedure (Var X : integer);cdecl;
var proc : TOneArgCcall;
Procedure printit (Var X : Integer);
begin

WriteLn (x);
end;
begin
Proc := @printit;
end.

Because the TOneArgCcall type is a procedure that uses the cdecl calling convention.

In case the is nested modified is added, then the procedural variable can be used with nested pro-
cedures. This requires that the sources be compiled in macpas or ISO mode, or that the nestedprocvars
modeswitch be activated:

{$modeswitch nestedprocvars}
program tmaclocalprocparam3;

type
tnestedprocvar = procedure is nested;

var
tempp: tnestedprocvar;

procedure p1(pp: tnestedprocvar);
begin

tempp:=pp;
tempp

end;

procedure p2(pp: tnestedprocvar);
var

localpp: tnestedprocvar;
begin

localpp:=pp;
p1(localpp)

end;

procedure n;
begin

writeln('calling through n')
end;

procedure q;

var qi: longint;

procedure r;
begin

if qi = 1 then
writeln('success for r')

else
begin
writeln('fail');

58

CHAPTER 3. TYPES

halt(1)
end

end;

begin
qi:= 1;
p1(@r);
p2(@r);
p1(@n);
p2(@n);

end;

begin
q;

end.

In case one wishes to assign methods of a class to a variable of procedural type, the procedural type
must be declared with the of object modifier.

The two following examples are valid type declarations for method procedural variables (also known
as event handlers because of their use in GUI design):

Type TOneArg = Procedure (Var X : integer) of object;
TNoArg = Function : Real of object;

var
oproc : TOneArg;
ofunc : TNoArg;

A method of the correct signature can be assigned to these functions. When called, Self will be
pointing to the instance of the object that was used to assign the method procedure.

The following object methods can be assigned to oproc and ofunc:

Type
TMyObject = Class(TObject)

Procedure DoX (Var X : integer);
Function DoY: Real;

end;

Var
M : TMyObject;

begin
oproc:=@M.DoX;
ofunc:=@M.DOY;

end;

When calling oproc and ofunc, Self will equal M.

This mechanism is sometimes called Delegation.

Remark When comparing two variables of type method, only the method’s address is compared, not the
instance pointer. That means that the following program will print True:

Type
TSomeMethod = Procedure of object;

59

CHAPTER 3. TYPES

TMyObject = Class(TObject)
Procedure DoSomething;

end;

Procedure TMyObject.DoSomething;

begin
Writeln('In DoSomething');

end;

var
X,Y : TMyObject;
P1,P2 : TSomeMethod;

begin
X:=TMyObject.Create;
Y:=TMyObject.Create;
P1:=@X.DoSomething;
P2:=@Y.DoSomething;
Writeln('Same method : ',P1=P2);

end.

If both pointers must be compared, a typecast to TMethod must be done, and both pointers should
be compared. TMethod is defined in the system unit as follows:

TMethod = record
Code : CodePointer;
Data : Pointer;

end;

The following program will therefore print False:

Type
TSomeMethod = Procedure of object;

TMyObject = Class(TObject)
Procedure DoSomething;

end;

Procedure TMyObject.DoSomething;

begin
Writeln('In DoSomething');

end;

var
X,Y : TMyObject;
P1,P2 : TMethod;

begin
X:=TMyObject.Create;
Y:=TMyObject.Create;
P1:=TMethod(@X.DoSomething);
P2:=TMethod(@Y.DoSomething);

60

CHAPTER 3. TYPES

Writeln('Same method : ',(P1.Data=P2.Data) and (P1.Code=P1.Code));
end.

3.7 Variant types

3.7.1 Definition
As of version 1.1, FPC has support for variants. For maximum variant support it is recommended to
add the variants unit to the uses clause of every unit that uses variants in some way: the variants
unit contains support for examining and transforming variants other than the default support offered
by the System or ObjPas units.

The type of a value stored in a variant is only determined at runtime: it depends what has been
assigned to the variant. Almost any simple type can be assigned to variants: ordinal types, string
types, int64 types.

Structured types such as sets, records, arrays, files, objects and classes are not assignment-compatible
with a variant, as well as pointers. Interfaces and COM or CORBA objects can be assigned to a
variant (basically because they are simply a pointer).

This means that the following assignments are valid:

Type
TMyEnum = (One,Two,Three);

Var
V : Variant;
I : Integer;
B : Byte;
W : Word;
Q : Int64;
E : Extended;
D : Double;
En : TMyEnum;
AS : AnsiString;
WS : WideString;

begin
V:=I;
V:=B;
V:=W;
V:=Q;
V:=E;
V:=En;
V:=D;
V:=AS;
V:=WS;

end;

And of course vice-versa as well.

A variant can hold an array of values: All elements in the array have the same type (but can be of
type “variant”). For a variant that contains an array, the variant can be indexed:

Program testv;

61

CHAPTER 3. TYPES

uses variants;

Var
A : Variant;
I : integer;

begin
A:=VarArrayCreate([1,10],varInteger);
For I:=1 to 10 do

A[I]:=I;
end.

For the explanation of VarArrayCreate, see Unit Reference.

Note that when the array contains a string, this is not considered an “array of characters”, and so the
variant cannot be indexed to retrieve a character at a certain position in the string.

3.7.2 Variants in assignments and expressions
As can be seen from the definition above, most simple types can be assigned to a variant. Likewise,
a variant can be assigned to a simple type: If possible, the value of the variant will be converted to
the type that is being assigned to. This may fail: Assigning a variant containing a string to an integer
will fail unless the string represents a valid integer. In the following example, the first assignment
will work, the second will fail:

program testv3;

uses Variants;

Var
V : Variant;
I : Integer;

begin
V:='100';
I:=V;
Writeln('I : ',I);
V:='Something else';
I:=V;
Writeln('I : ',I);

end.

The first assignment will work, but the second will not, as Something else cannot be converted
to a valid integer value. An EConvertError exception will be the result.

The result of an expression involving a variant will be of type variant again, but this can be assigned
to a variable of a different type – if the result can be converted to a variable of this type.

Note that expressions involving variants take more time to be evaluated, and should therefore be used
with caution. If a lot of calculations need to be made, it is best to avoid the use of variants.

When considering implicit type conversions (e. g. byte to integer, integer to double, char to string)
the compiler will ignore variants unless a variant appears explicitly in the expression.

62

../rtl/index.html

CHAPTER 3. TYPES

3.7.3 Variants and interfaces
Remark Dispatch interface support for variants is currently broken in the compiler.

Variants can contain a reference to an interface – a normal interface (descending from IInterface)
or a dispatchinterface (descending from IDispatch). Variants containing a reference to a dispatch
interface can be used to control the object behind it: the compiler will use late binding to perform
the call to the dispatch interface: there will be no run-time checking of the function names and
parameters or arguments given to the functions. The result type is also not checked. The compiler
will simply insert code to make the dispatch call and retrieve the result.

This means basically, that you can do the following on Windows:

Var
W : Variant;
V : String;

begin
W:=CreateOleObject('Word.Application');
V:=W.Application.Version;
Writeln('Installed version of MS Word is : ',V);

end;

The line

V:=W.Application.Version;

is executed by inserting the necessary code to query the dispatch interface stored in the variant W, and
execute the call if the needed dispatch information is found.

3.8 Type aliases

Type aliases are a way to give another name to a type, but can also be used to create real new types.
Which of the two depends on the way the type alias is defined:

Type aliases

-- type alias
type

identifier -�

The first case is just a means to give another name to a type:

Type
MyInteger = Integer;

This creates a new name to refer to the Integer type, but does not create an actual new type. That
is, two variables:

Var
A : MyInteger;
B : Integer;

63

CHAPTER 3. TYPES

Will actually have the same type from the point of view of the compiler (namely: Integer).

The above presents a way to make types platform independent, by only using the alias types, and then
defining these types for each platform individually. Any programmer who then uses these custom
types doesn’t have to worry about the underlying type size: it is opaque to him. It also allows to use
shortcut names for fully qualified type names. e. g. define system.longint as Olongint and
then redefine longint.

The alias is frequently seen to re-expose a type:

Unit A;

Interface

Uses B;

Type
MyType = B.MyType;

This construction is often seen after some refactoring, when moving some declarations from unit A
to unit B, to preserve backwards compatibility of the interface of unit A.

The second case is slightly more subtle:

Type
MyInteger = Type Integer;

This not only creates a new name to refer to the Integer type, but actually creates a new type. That
is, two variables:

Var
A : MyInteger;
B : Integer;

Will not have the same type from the point of view of the compiler. However, these two types will
be assignment compatible. That means that an assignment

A:=B;

will work.

The difference can be seen when examining type information:

If TypeInfo(MyInteger)<>TypeInfo(Integer) then
Writeln('MyInteger and Integer are different types');

The compiler function TypeInfo returns a pointer to the type information in the binary. Since the
two types MyInteger and Integer are different, they will generate different type information
blocks, and the pointers will differ.

There are three consequences of having different types:

1. That they have different typeinfo, hence different RTTI (Run-Time Type Information).

2. They can be used in function overloads, that is

Procedure MyProc(A : MyInteger); overload;
Procedure MyProc(A : Integer); overload;

64

CHAPTER 3. TYPES

will work. This will not work with a simple type alias.

3. They can be used in operator overloads, that is

Operator +(A,B : MyInteger) : MyInteger;

will work too.

3.9 Managed types

By default, pascal types are unmanaged. That means that variables must be explicitly initialized,
finalized, memory allocated and so on. However, in Object Pascal, several types are managed, which
means that the compiler initializes and finalizes variables of this type: this is necessary, for instance
for reference counted data types.

The following types are managed:

AnsiString They are initialized to Nil.

UnicodeString They are initialized to Nil.

WideString They are initialized to Nil.

Interface They are initialized to Nil.

Dynamic arrays They are initialized to Nil.

And any record or array whose elements contain managed types.

Class instances containing managed types are also initialized, but the class instance pointer itself is
not.

Variables of managed types will also be finalized: this means, in general, that their reference count
will be decreased at the latest at the end of the current scope.

Remark Note that no assumption should be made about the exact time of this finalization. All that is guaran-
teed that they are finalized when they go out of scope.

65

Chapter 4

Variables

4.1 Definition

Variables are explicitly named memory locations with a certain type. When assigning values to
variables, the Free Pascal compiler generates machine code to move the value to the memory location
reserved for this variable. Where this variable is stored depends on where it is declared:

• Global variables are variables declared in a unit or program, but not inside a procedure or func-
tion. They are stored in fixed memory locations, and are available during the whole execution
time of the program.

• Local variables are declared inside a procedure or function. Their value is stored on the pro-
gram stack, i. e. not at fixed locations.

The Free Pascal compiler handles the allocation of these memory locations transparently, although
this location can be influenced in the declaration.

The Free Pascal compiler also handles reading values from or writing values to the variables trans-
parently. But even this can be explicitly handled by the programmer when using properties.

Variables must be explicitly declared when they are needed. No memory is allocated unless a variable
is declared. Using a variable identifier (for instance, a loop variable) which is not declared first, is an
error which will be reported by the compiler.

4.2 Declaration

The variables must be declared in a variable declaration block of a unit or a procedure or function
(section 16.5, page 252). It looks as follows:

Variable declaration

-- variable declaration identifier : type
= expression

-

-

variable modifiers
hint directive ; -�

66

CHAPTER 4. VARIABLES

--variable modifiers
6

absolute integer expression
identifier

; export
; cvar

; external
string constant name string constant

hint directive

-

- -�

This means that the following are valid variable declarations:

Var
curterm1 : integer;

curterm2 : integer; cvar;
curterm3 : integer; cvar; external;

curterm4 : integer; external name 'curterm3';
curterm5 : integer; external 'libc' name 'curterm9';

curterm6 : integer absolute curterm1;

curterm7 : integer; cvar; export;
curterm8 : integer; cvar; public;
curterm9 : integer; export name 'me';
curterm10 : integer; public name 'ma';

curterm11 : integer = 1 ;

The difference between these declarations is as follows:

1. The first form (curterm1) defines a regular variable. The compiler manages everything by
itself.

2. The second form (curterm2) declares also a regular variable, but specifies that the assembler
name for this variable equals the name of the variable as written in the source.

3. The third form (curterm3) declares a variable which is located externally: the compiler will
assume memory is located elsewhere, and that the assembler name of this location is specified
by the name of the variable, as written in the source. The name may not be specified.

4. The fourth form is completely equivalent to the third, it declares a variable which is stored
externally, and explicitly gives the assembler name of the location. If cvar is not used, the
name must be specified.

5. The fifth form is a variant of the fourth form, only the name of the library in which the memory
is reserved is specified as well.

6. The sixth form declares a variable (curterm6), and tells the compiler that it is stored in the
same location as another variable (curterm1).

7. The seventh form declares a variable (curterm7), and tells the compiler that the assembler
label of this variable should be the name of the variable (case sensitive) and must be made
public. i. e. it can be referenced from other object files.

67

CHAPTER 4. VARIABLES

8. The eighth form (curterm8) is equivalent to the seventh: “public” is an alias for “export”.

9. The ninth and tenth form are equivalent: they specify the assembler name of the variable.

10. the eleventh form declares a variable (curterm11) and initializes it with a value (1 in the
above case).

Note that assembler names must be unique. It’s not possible to declare or export two variables with
the same assembler name. In particular, do not attempt to export variables with a public name that
starts with FPC_; the compiler uses some internal system routines with this name.

4.3 Scope

Variables, just as any identifier, obey the general rules of scope. In addition, initialized variables are
initialized when they enter scope:

• Global initialized variables are initialized once, when the program starts.

• Local initialized variables are initialized each time the procedure is entered.

Note that the behavior for local initialized variables is different from the one of a local typed constant.
A local typed constant behaves like a global initialized variable.

4.4 Initialized variables

By default, simple variables in Pascal are not initialized after their declaration. Any assumption that
they contain 0 or any other default value is erroneous: They can contain rubbish. To remedy this, the
concept of initialized variables exists. The difference with normal variables is that their declaration
includes an initial value, as can be seen in the diagram in the previous section.

Remark 2 exceptions to this rule exist:

1. Managed types are an exception to this rule: Managed types are always initialized with a
default value: in general this means setting the reference count to zero, or setting the pointer
value of the type to Nil. See section 3.9, page 65

2. Global variables are initialized with the equivalent of zero.

Note that the behavior of zeroing out certain variables can result in invalid content for variables:

Type
TWeekDays =

(monday,tuesday,wednesday,thursday,friday,saturday,sunday);
TWeekend = saturday..sunday;

var
W : TWeekend;

begin
Writeln(W);

end.

The above will result, when run, in an error:

68

CHAPTER 4. VARIABLES

Runtime error 107 at $000000000040024A
$000000000040024A
$000000000042BF70
$00000000004001D2

Therefore is is Highly recommended to always initialize variables before using them.

This can be easily done in the declaration of the variables. Given the declaration:

Var
S : String = 'This is an initialized string';

The value of the variable following will be initialized with the provided value. The following is an
even better way of doing this:

Const
SDefault = 'This is an initialized string';

Var
S : String = SDefault;

Initialization is often used to initialize arrays and records. For arrays, the initialized elements must
be specified, surrounded by round brackets, and separated by commas. The number of initialized
elements must be exactly the same as the number of elements in the declaration of the type. As an
example:

Var
tt : array [1..3] of string[20] = ('ikke', 'gij', 'hij');
ti : array [1..3] of Longint = (1,2,3);

For constant records, each element of the record that you wish to initialize must be specified in the
form Field: Value, separated by semicolons, and surrounded by round brackets.. You can omit
fields that you don’t wish to initialize, in fact you can skip all fields. If you skip fields, the compiler
will emit a warning.

As an example:

Type
Point = record

X,Y : Real
end;

Var
Origin : Point = (X:0.0; Y:0.0);
Partial : Point = (X:0.0);
Empty : Point = ();

The above declarations will result in the following warnings:

iv.pp(7,27) Warning: Some fields coming after "X" were not initialized
iv.pp(8,20) Warning: Some fields coming after "" were not initialized

The order of the fields in a constant record needs to be the same as in the type declaration, otherwise
a compile-time error will occur.

Remark It should be stressed that initialized variables are initialized when they come into scope, in difference
with typed constants, which are initialized at program start. This is also true for local initialized

69

CHAPTER 4. VARIABLES

variables. Local initialized variables are initialized whenever the routine is called. Any changes that
occurred in the previous invocation of the routine will be undone, because they are again initialized.

Remark Care should be taken when using initialized pointer types such as PChars. In the following exam-
ples, S is a pointer, pointing to a block of constant (read-only) program data. Assigning a character
in the string will therefore not work. Assigning S itself will of course work. The first routine will
give an error, the second not:

procedure foo1;
var

s: PChar = 'PChar';
begin

s[0] := 'a';
end;

procedure foo2;
var

s: PChar;
begin

s := 'PChar';
s[0] := 'a';

end;

4.5 Initializing variables using default

Some variables must be initialized because they contain managed types. For variables that are de-
clared in the var section of a function or in the main program, this happens automatically. For
variables that are allocated on the heap, this is not necessarily the case.

For this, the compiler contains the Default intrinsic. This function accepts a type identifier as the
argument, and will return a correctly initialized variable of that type. In essence, it will zero out the
whole variable.

The following gives an example of its use:

type
TRecord = record

i: LongInt;
s: AnsiString;

end;

var
i: LongInt;
o: TObject;
r: TRecord;

begin
i := Default(LongInt); // 0
o := Default(TObject); // Nil
r := Default(TRecord); // (i: 0; s: '')

end.

The case where a variable is allocated on the heap, is more interesting:

type
TRecord = record

70

CHAPTER 4. VARIABLES

i: LongInt;
s: AnsiString;

end;

var
i: ^LongInt;
o: ^TObject;
r: ^TRecord;

begin
i:=GetMem(SizeOf(Longint));
i^ := Default(LongInt); // 0
o:=GetMem(SizeOf(TObject));
o^ := Default(TObject); // Nil
r:=GetMem(SizeOf(TRecord));
r^ := Default(TRecord); // (i: 0; s: '')

end.

It works for all types, except the various file types (or complex types containing a file type).

Remark

• For generics, the use of Default is especially useful, since the type of a variable may not be
known during the declaration of a generic. For more information section 8.7, page 134.

• Function results are available as a Result identifier, and as such resemble variables. They
are not variables, but are treated as passed-by-reference parameters. They are therefore not
initialized.

4.6 Thread Variables

For a program which uses threads, the variables can be really global, i. e. the same for all threads, or
thread-local: this means that each thread gets a copy of the variable. Local variables (defined inside
a procedure) are always thread-local. Global variables are normally the same for all threads. A
global variable can be declared thread-local by replacing the var keyword at the start of the variable
declaration block with Threadvar:

Threadvar
IOResult : Integer;

If no threads are used, the variable behaves as an ordinary variable. If threads are used then a copy is
made for each thread (including the main thread). Note that the copy is made with the original value
of the variable, not with the value of the variable at the time the thread is started.

Threadvars should be used sparingly: There is an overhead for retrieving or setting the variable’s
value. If possible at all, consider using local variables; they are always faster than thread variables.

Threads are not enabled by default. For more information about programming threads, see the chapter
on threads in the Programmer’s Guide.

4.7 Properties

A global block can declare properties, just as they could be defined in a class. The difference is that
the global property does not need a class instance: there is only one instance of this property. Other

71

../prog/prog.html

CHAPTER 4. VARIABLES

than that, a global property behaves like a class property. The read/write specifiers for the global
property must also be regular procedures, not methods.

The concept of a global property is specific to Free Pascal, and does not exist in Delphi. ObjFPC
mode is required to work with properties.

The concept of a global property can be used to “hide” the location of the value, or to calculate the
value on the fly, or to check the values which are written to the property.

The declaration is as follows:

Properties

-- property definition identifier
property interface

property specifiers -�

-- property interface
property parameter list

: type identifier -

-

index integerconstant
-�

-- property parameter list [
6
parameter declaration

;
] -�

-- property specifiers
read specifier write specifier default specifier

-�

-- read specifier read field or function -�

-- write specifier write field or procedure -�

-- default specifier default
constant

nodefault

-�

-- field or procedure field identifier
procedure identifier

-�

-- field or function field identifier
function identifier

-�

The following is an example:

{$mode objfpc}
unit testprop;

Interface

Function GetMyInt : Integer;
Procedure SetMyInt(Value : Integer);

Property
MyProp : Integer Read GetMyInt Write SetMyInt;

Implementation

72

CHAPTER 4. VARIABLES

Uses sysutils;

Var
FMyInt : Integer;

Function GetMyInt : Integer;

begin
Result:=FMyInt;

end;

Procedure SetMyInt(Value : Integer);

begin
If ((Value mod 2)=1) then

Raise Exception.Create('MyProp can only contain even value');
FMyInt:=Value;

end;

end.

The read/write specifiers can be hidden by declaring them in another unit which must be in the uses
clause of the unit. This can be used to hide the read/write access specifiers for programmers, just as
if they were in a private section of a class (discussed below). For the previous example, this could
look as follows:

{$mode objfpc}
unit testrw;

Interface

Function GetMyInt : Integer;
Procedure SetMyInt(Value : Integer);

Implementation

Uses sysutils;

Var
FMyInt : Integer;

Function GetMyInt : Integer;

begin
Result:=FMyInt;

end;

Procedure SetMyInt(Value : Integer);

begin
If ((Value mod 2)=1) then

Raise Exception.Create('Only even values are allowed');
FMyInt:=Value;

73

CHAPTER 4. VARIABLES

end;

end.

The unit testprop would then look like:

{$mode objfpc}
unit testprop;

Interface

uses testrw;

Property
MyProp : Integer Read GetMyInt Write SetMyInt;

Implementation

end.

More information about properties can be found in chapter 6, page 86.

74

Chapter 5

Objects

5.1 Declaration

Free Pascal supports object oriented programming. In fact, most of the compiler is written using
objects. Here we present some technical questions regarding object oriented programming in Free
Pascal.

Objects should be treated as a special kind of record. The record contains all the fields that are
declared in the objects definition, and pointers to the methods that are associated to the objects’ type.

An object is declared just as a record would be declared; except that now, procedures and functions
can be declared as if they were part of the record. Objects can “inherit” fields and methods from
“parent” objects. This means that these fields and methods can be used as if they were included in
the objects declared as a “child” object.

Furthermore, a concept of visibility is introduced: fields, procedures and functions can be declared as
public, protected or private. By default, fields and methods are public, and are exported
outside the current unit.

Fields or methods that are declared private are only accessible in the current unit: their scope is
limited to the implementation of the current unit.

The prototype declaration of an object is as follows:

object types

--

packed
object

abstract
sealed

heritage 6
component list end -�

-- heritage (object type identifier) -�

-- component list
object visibility specifier

6
const definition

-

-

6
field definition

6
method definition

-�

-- field definition

class
var

identifier list : type ;
static;

-�

75

CHAPTER 5. OBJECTS

-- const definition const identifier = constant expression ; -�

-- object visibility specifier private
protected

public

-�

As can be seen, any visibility block can be specified multiple times, as often as needed..

The following is a valid definition of an object:

Type
TObj = object
Private

Caption : ShortString;
Public

Constructor init;
Destructor done;
Procedure SetCaption (AValue : String);
Function GetCaption : String;

end;

It contains a constructor/destructor pair, and a method to get and set a caption. The Caption field
is private to the object: it cannot be accessed outside the unit in which TObj is declared.

Remark In MacPas mode, the Object keyword is replaced by the class keyword for compatibility with
other pascal compilers available on the Mac. That means that objects cannot be used in MacPas
mode.

Remark Free Pascal also supports the packed object. This is the same as an object, only the elements (fields)
of the object are byte-aligned, just as in the packed record. The declaration of a packed object is
similar to the declaration of a packed record:

Type
TObj = packed object
Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Similarly, the {$PackRecords } directive acts on objects as well.

5.2 Abstract and sealed objects

An object can be declared as sealed. In that case, it is not possible to declare a descendent object.
The compiler will return an error if it encounters a declaration of a descendent:

Type
TMyClass = object Sealed

x : integer;
end;

TMyClass2 = object(TMyClass)

76

CHAPTER 5. OBJECTS

Y : Integer;
end;

begin
end.

This will result in the following error:

Error: Cannot create a descendant of the sealed class "TMyClass"

An abstract class is a class that cannot be used directly. Instead, a descendent class must always be
used. However, for Delphi compatibility, the compiler ignores this directive.

5.3 Fields

Object Fields are like record fields. They are accessed in the same way as a record field would be
accessed: by using a qualified identifier. Given the following declaration:

Type TAnObject = Object
AField : Longint;
Procedure AMethod;
end;

Var AnObject : TAnObject;

then the following would be a valid assignment:

AnObject.AField := 0;

Inside methods, fields can be accessed using the short identifier:

Procedure TAnObject.AMethod;
begin

...
AField := 0;
...

end;

Or, one can use the self identifier. The self identifier refers to the current instance of the object:

Procedure TAnObject.AMethod;
begin

...
Self.AField := 0;
...

end;

One cannot access fields that are in a private or protected sections of an object from outside the ob-
jects’ methods. If this is attempted anyway, the compiler will complain about an unknown identifier.

It is also possible to use the with statement with an object instance, just as with a record:

With AnObject do
begin
Afield := 12;
AMethod;
end;

77

CHAPTER 5. OBJECTS

In this example, between the begin and end, it is as if AnObject was prepended to the Afield
and Amethod identifiers. More about this in section 13.2.8, page 204.

5.4 Class or Static fields

An object can contain class or static fields: these fields are global to the object type, and act like
global variables, but are known only in the scope of the object. The difference between static and
class variables is purely the mode in which they work: The static keyword will always work, the
class keyword will need {$MODE DELPHI} or {$MODE OBJFPC}.

They can be referenced from within the objects methods, but can also be referenced from outside the
object by providing the fully qualified name.

For instance, the output of the following program:

{$mode objfpc}
type

cl=object
l : longint; static;
class var v : integer;

end;

var
cl1,cl2 : cl;

begin
Writeln('Static');
cl1.l:=2;
writeln(cl2.l);
cl2.l:=3;
writeln(cl1.l);
Writeln(cl.l);
Writeln('Class');
cl1.v:=4;
writeln(cl2.v);
cl2.v:=5;
writeln(cl1.v);
Writeln(cl.v);

end.

will be the following

Static
2
3
3
Class
4
5
5

Note that the last line of code references the object type itself (cl), and not an instance of the object
(cl1 or cl2).

78

CHAPTER 5. OBJECTS

5.5 Constructors and destructors

As can be seen in the syntax diagram for an object declaration, Free Pascal supports constructors and
destructors. The programmer is responsible for calling the constructor and the destructor explicitly
when using objects.

The declaration of a constructor or destructor is as follows:

Constructors and destructors

-- constructor declaration constructor header ; subroutine block -�

-- destructor declaration destructor header ; subroutine block -�

-- constructor header constructor identifier
qualified method identifier

-

- formal parameter list -�

-- destructor header destructor identifier
qualified method identifier

-

- formal parameter list -�

A constructor/destructor pair is required if the object uses virtual methods. The reason is that for an
object with virtual methods, some internal housekeeping must be done: this housekeeping is done by
the constructor1.

In the declaration of the object type, a simple identifier should be used for the name of the constructor
or destructor. When the constructor or destructor is implemented, a qualified method identifier should
be used, i. e. an identifier of the form objectidentifier.methodidentifier.

Free Pascal supports also the extended syntax of the New and Dispose procedures. In case a
dynamic variable of an object type must be allocated the constructor’s name can be specified in the
call to New. The New is implemented as a function which returns a pointer to the instantiated object.
Consider the following declarations:

Type
TObj = object;
Constructor init;
...
end;

Pobj = ^TObj;
Var PP : Pobj;

Then the following three calls are equivalent:

pp := new (Pobj,Init);

and

new(pp,init);

and also
1A pointer to the VMT must be set up.

79

CHAPTER 5. OBJECTS

new (pp);
pp^.init;

In the last case, the compiler will issue a warning that the extended syntax of new and dispose
must be used to generate instances of an object. It is possible to ignore this warning, but it’s better
programming practice to use the extended syntax to create instances of an object. Similarly, the
Dispose procedure accepts the name of a destructor. The destructor will then be called, before
removing the object from the heap.

In view of the compiler warning remark, the following chapter presents the Delphi approach to
object-oriented programming, and may be considered a more natural way of object-oriented pro-
gramming.

5.6 Methods

Object methods are just like ordinary procedures or functions, only they have an implicit extra pa-
rameter: self. Self points to the object with which the method was invoked. When implementing
methods, the fully qualified identifier must be given in the function header. When declaring methods,
a normal identifier must be given.

5.6.1 Declaration
The declaration of a method is much like a normal function or procedure declaration, with some ad-
ditional specifiers, as can be seen from the following diagram, which is part of the object declaration:

methods

-- method definition class function header
procedure header
constructor header
destructor header

; method directives -�

-- method directives
virtual ;

abstract ;
call modifiers ;

-�

from the point of view of declarations, Method definitions are normal function or procedure
declarations. Contrary to TP and Delphi, fields can be declared after methods in the same block, i. e.
the following will generate an error when compiling with Delphi or Turbo Pascal, but not with FPC:

Type
MyObj = Object

Field : Longint;
Procedure Doit;

end;

5.6.2 Method invocation
Methods are called just as normal procedures are called, only they have an object instance identifier
prepended to them (see also chapter 13, page 186). To determine which method is called, it is
necessary to know the type of the method. We treat the different types in what follows.

80

CHAPTER 5. OBJECTS

Normal static methods

Normal (static) methods are methods that have been declared without a abstract or virtual
keyword. When calling a static method, the declared (i. e. compile time) method of the object is
used. For example, consider the following declarations:

Type
TParent = Object

...
procedure Doit;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls:

Var
ParentA,ParentB : PParent;
Child : PChild;

begin
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Of the three invocations of Doit, only the last one will call TChild.Doit, the other two calls will
call TParent.Doit. This is because for static methods, the compiler determines at compile time
which method should be called. Since ParentB is of type TParent, the compiler decides that
it must be called with TParent.Doit, even though it will be created as a TChild. There may
be times when the method that is actually called should depend on the actual type of the object at
run-time. If so, the method cannot be a static method, but must be a virtual method.

Virtual methods

To remedy the situation in the previous section, virtual methods are created. This is simply done
by appending the method declaration with the virtual modifier. The descendent object can then
override the method with a new implementation by re-declaring the method (with the same parameter
list) using the virtual keyword.

Going back to the previous example, consider the following alternative declaration:

Type
TParent = Object

...

81

CHAPTER 5. OBJECTS

procedure Doit;virtual;
...
end;

PParent = ^TParent;
TChild = Object(TParent)

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls:

Var
ParentA,ParentB : PParent;
Child : PChild;

begin
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

Now, different methods will be called, depending on the actual run-time type of the object. For
ParentA, nothing changes, since it is created as a TParent instance. For Child, the situation
also doesn’t change: it is again created as an instance of TChild.

For ParentB however, the situation does change: Even though it was declared as a TParent, it is
created as an instance of TChild. Now, when the program runs, before calling Doit, the program
checks what the actual type of ParentB is, and only then decides which method must be called.
Seeing that ParentB is of type TChild, TChild.Doit will be called. The code for this run-time
checking of the actual type of an object is inserted by the compiler at compile time.

The TChild.Doit is said to override the TParent.Doit. It is possible to access the
TParent.Doit from within the varTChild.Doit, with the inherited keyword:

Procedure TChild.Doit;
begin

inherited Doit;
...

end;

In the above example, when TChild.Doit is called, the first thing it does is call TParent.Doit.
The inherited keyword cannot be used in static methods, only on virtual methods.

To be able to do this, the compiler keeps – per object type – a table with virtual methods: the VMT
(Virtual Method Table). This is simply a table with pointers to each of the virtual methods: each
virtual method has its fixed location in this table (an index). The compiler uses this table to look
up the actual method that must be used. When a descendent object overrides a method, the entry
of the parent method is overwritten in the VMT. More information about the VMT can be found in
Programmer’s Guide.

As remarked earlier, objects that have a VMT must be initialized with a constructor: the object
variable must be initialized with a pointer to the VMT of the actual type that it was created with.

82

../prog/prog.html

CHAPTER 5. OBJECTS

Abstract methods

An abstract method is a special kind of virtual method. A method that is declared abstract does
not have an implementation for this method. It is up to inherited objects to override and implement
this method.

From this it follows that a method can not be abstract if it is not virtual (this can be seen from the
syntax diagram). A second consequence is that an instance of an object that has an abstract method
cannot be created directly.

The reason is obvious: there is no method where the compiler could jump to! A method that is
declared abstract does not have an implementation for this method. It is up to inherited objects
to override and implement this method. Continuing our example, take a look at this:

Type
TParent = Object

...
procedure Doit;virtual;abstract;
...
end;

PParent=^TParent;
TChild = Object(TParent)

...
procedure Doit;virtual;
...
end;

PChild = ^TChild;

As it is visible, both the parent and child objects have a method called Doit. Consider now the
following declarations and calls:

Var
ParentA,ParentB : PParent;
Child : PChild;

begin
ParentA := New(PParent,Init);
ParentB := New(PChild,Init);
Child := New(PChild,Init);
ParentA^.Doit;
ParentB^.Doit;
Child^.Doit;

First of all, Line 3 will generate a compiler error, stating that one cannot generate instances of objects
with abstract methods: The compiler has detected that PParent points to an object which has an
abstract method. Commenting line 3 would allow compilation of the program.

Remark If an abstract method is overridden, the parent method cannot be called with inherited, since
there is no parent method; The compiler will detect this, and complain about it, like this:

testo.pp(32,3) Error: Abstract methods can't be called directly

If, through some mechanism, an abstract method is called at run-time, then a run-time error will
occur. (run-time error 211, to be precise)

83

CHAPTER 5. OBJECTS

Class or static methods

Class methods or methods declared with the static directive are methods that are global to the
object type. When called, the implicit “self” pointer is not available. This means that normal methods
cannot be called, and none of the fields of an object can be accessed. Class variables can be used,
however.

Class or static methods are regular methods, they can be assigned to a procedural variable.

The following program demonstrates all this. The commented-out statements will not compile.

{$APPTYPE CONSOLE}
{$IFDEF FPC}{$MODE DELPHI}{$H+}{$ENDIF}
type

TTest = object
const Epsylon = 100;
var f : integer;
class var cv1,cv2:integer;
procedure myproc;
class procedure testproc;
class procedure testproc2;static;
procedure testproc3; static;

end;

procedure TTest.myproc;
begin

cv1:=0;
f:=1;

end;

class procedure TTest.Testproc;
begin

cv1:=1;
// f:=1;

end;

class procedure TTest.Testproc2;
begin

cv1:=2;
// f:=1;

end;

procedure TTest.Testproc3;
begin

cv1:=3;
// f:=1;

end;

Var
P : Procedure;

begin
P:=@TTest.Myproc;
P:=@TTest.Testproc;

84

CHAPTER 5. OBJECTS

P:=@TTest.Testproc2;
P:=@TTest.Testproc3;

end.

Uncommenting one of the commented statements and trying to compile the resulting code will result
in a compiler error:

ocv.pp(32,6) Error: Only class methods, class properties and
class variables can be accessed in class methods

5.7 Visibility

For objects, three visibility specifiers exist: private, protected and public. If a visibil-
ity specifier is not specified, public is assumed. Both methods and fields can be hidden from a
programmer by putting them in a private section. The exact visibility rule is as follows:

Private All fields and methods that are in a private block, can only be accessed in the module
(i. e. unit or program) that contains the object definition. They can be accessed from inside the
object’s methods or from outside them e. g. from other objects’ methods, or global functions.

Protected Is the same as Private, except that the members of a Protected section are also
accessible to descendent types, even if they are implemented in other modules.

Public fields and methods are always accessible, from everywhere. Fields and methods in a public
section behave as though they were part of an ordinary record type.

85

Chapter 6

Classes

In the Delphi approach to Object Oriented Programming, everything revolves around the concept
of “Classes”. A class can be seen as a pointer to an object, or a pointer to a record, with methods
associated with it.

The difference between objects and classes is mainly that an object is allocated on the stack, as
an ordinary record would be, and that classes are always allocated on the heap. In the following
example:

Var
A : TSomeObject; // an Object
B : TSomeClass; // a Class

The main difference is that the variable A will take up as much space on the stack as the size of the
object (TSomeObject). The variable B, on the other hand, will always take just the size of a pointer
on the stack. The actual class data is on the heap.

From this, a second difference follows: a class must always be initialized through its constructor,
whereas for an object, this is not necessary. Calling the constructor allocates the necessary memory
on the heap for the class instance data.

Remark In earlier versions of Free Pascal it was necessary, in order to use classes, to put the objpas unit in the
uses clause of a unit or program. This is no longer needed as of version 0.99.12. As of this version,
the unit will be loaded automatically when the -MObjfpc or -MDelphi options are specified, or
their corresponding directives are used:

{$mode objfpc}
{$mode delphi}

In fact, the compiler will give a warning if it encounters the objpas unit in a uses clause.

6.1 Class definitions

The prototype declaration of a class is as follows:

Class types

-- class type class forward definition
class definition

-�

86

CHAPTER 6. CLASSES

-- class forward definition class -�

-- class definition
packed

class
abstract
sealed

heritage
-

-

6
component list end

-�

-- heritage (class type identifier
implemented interfaces

) -�

-- implemented interfaces
6
, interface identifier -�

-- component list
visibility specifier

6
field definition

-

-

6
const declaration part
type declaration part

variable declaration part
class variable declaration part

method definition
property definition

-�

-- class variable declaration part class variable declaration part -�

-- field definition identifier list : type ;
static;

-�

-- method definition
class

function header
procedure header
constructor header
desctuctor header

; -

-

virtual
dynamic ; abstract

override
message integer constant

string constant

; call modifiers ;
-�

-- class visibility specifier
strict

private
protected

public
published

-�

Remark In MacPas mode, the Object keyword is replaced by the class keyword for compatibility with
other pascal compilers available on the Mac. That means that in MacPas mode, the reserved word
“class” in the above diagram may be replaced by the reserved word “object”.

In a class declaration, as many visibility blocks as needed can be used: the various blocks can be
repeated, and there is no special order in which they must appear.

Methods are normal function or procedure declarations. As can be seen, the declaration of a class is
almost identical to the declaration of an object. The real difference between objects and classes is in
the way they are created (see further in this chapter).

The visibility of the different sections is as follows:

87

CHAPTER 6. CLASSES

Private All fields and methods that are in a private block, can only be accessed in the module
(i. e. unit) that contains the class definition. They can be accessed from inside the classes’
methods or from outside them (e. g. from other classes’ methods)

Strict Private All fields and methods that are in a strict private block, can only be accessed
from methods of the class itself. Other classes or descendent classes (even in the same unit)
cannot access strict private members.

Protected Is the same as Private, except that the members of a Protected section are also
accessible to descendent types, even if they are implemented in other modules.

Strict Protected Is the same as Protected, except that the members of a Protected section
are also accessible to other classes implemented in the same unit. Strict protected
members are only visible to descendent classes, not to other classes in the same unit.

Public sections are always accessible.

Published From a language perspective, this is the same as a Public section, but the compiler
generates also type information that is needed for automatic streaming of these classes if the
compiler is in the {$M+} state. Fields defined in a published section must be of class type.
Array properties cannot be in a published section.

In the syntax diagram, it can be seen that a class can list implemented interfaces. This feature will be
discussed in the next chapter.

Classes can contain Class methods: these are functions that do not require an instance. The Self
identifier is valid in such methods, but refers to the class pointer (the VMT).

Remark Like with functions and pointer types, sometimes a forward definition of a class is needed. A class
forward definition is simply the name of the class, with the keyword Class, as in the following
example:

Type
TClassB = Class;
TClassA = Class

B : TClassB;
end;

TClassB = Class
A : TClassA;

end;

When using a class forward definition, the class must be defined in the same unit, in the same section
(interface/implementation). It must not necessarily be defined in the same type section.

It is also possible to define class reference types:

Class reference type

-- class of classtype -�

Class reference types are used to create instances of a certain class, which is not yet known at compile
time, but which is specified at run time. Essentially, a variable of a class reference type contains a
pointer to the definition of the specified class. This can be used to construct an instance of the class
corresponding to the definition, or to check inheritance. The following example shows how it works:

88

CHAPTER 6. CLASSES

Type
TComponentClass = Class of TComponent;

Function CreateComponent(AClass: TComponentClass;
AOwner: TComponent): TComponent;

begin
// ...
Result:=AClass.Create(AOwner);
// ...

end;

This function can be passed a class reference of any class that descends from TComponent. The
following is a valid call:

Var
C : TComponent;

begin
C:=CreateComponent(TEdit,Form1);

end;

On return of the CreateComponent function, Cwill contain an instance of the class TEdit. Note
that the following call will fail to compile:

Var
C : TComponent;

begin
C:=CreateComponent(TStream,Form1);

end;

because TStream does not descend from TComponent, and AClass refers to a TComponent
class. The compiler can (and will) check this at compile time, and will produce an error.

References to classes can also be used to check inheritance:

TMinClass = Class of TMyClass;
TMaxClass = Class of TMyClassChild;

Function CheckObjectBetween(Instance : TObject) : boolean;

begin
If not (Instance is TMinClass)

or ((Instance is TMaxClass)
and (Instance.ClassType<>TMaxClass)) then

Raise Exception.Create(SomeError)
end;

The above example will raise an exception if the passed instance is not a descendent of TMinClass
or a descendent of TMaxClass.

More about instantiating a class can be found in section 6.4, page 93.

89

CHAPTER 6. CLASSES

6.2 Abstract and sealed classes

A class can be declared as sealed. In that case, it is not possible to declare a descendent class. The
compiler will return an error if it encounters a declaration of a descendent:

{$mode objfpc}
{$h+}

Type
TMyClass = Class Sealed

x : integer;
end;

TMyClass2 = Class(TMyClass)
Y : Integer;

end;

begin
end.

This will result in the following error:

Error: Cannot create a descendant of the sealed class "TMyClass"

An abstract class is a class that cannot be instantiated directly. Instead, a descendent class must
always be instantiated. However, for Delphi compatibility, the compiler ignores this directive.

6.3 Normal and static fields

. Classes can have fields. Depending on how they are defined, fields hold data specific to an instance
of a class or to the class as a whole. Whatever the way they were defined, fields observe the rules of
visibility just like any other member of the class.

6.3.1 Normal fields/variables
There are two ways to declare a normal field. The first one is the classical way, similar to a definition
in an object:

{$mode objfpc}
type

cl=class
l : longint;

end;
var

cl1,cl2 : cl;
begin

cl1:=cl.create;
cl2:=cl.create;
cl1.l:=2;
writeln(cl1.l);
writeln(cl2.l);

end.

90

CHAPTER 6. CLASSES

will be the following

2
0

The example demonstrates that values of fields are initialized with zero (or the equivalent of zero for
non ordinal types: empty string, empty array and so on).

The second way to declare a field (only available in more recent versions of Free Pascal) is using a
var block:

{$mode objfpc}
type

cl=class
var

l : longint;
end;

This definition is completely equivalent to the previous definition.

Remark As of version 3.0 of the compiler, the compiler can re-order the fields in memory if this leads to
better alignment and smaller instances. That means that in an instance, the fields do not necessarily
appear in the same order as in the declaration. RTTI generated for a class will reflect this change.

6.3.2 Class fields/variables
Similar to objects, a class can contain static fields or class variables: these fields or variables are
global to the class, and act like global variables, but are known only as part of the class. They can
be referenced from within the classes’ methods, but can also be referenced from outside the class by
providing the fully qualified name.

Again, there are two ways to define class variables. The first one is equivalent to the way it is done
in objects, using a static modifier:

For instance, the output of the following program is the same as the output for the version using an
object:

{$mode objfpc}
type

cl=class
l : longint;static;

end;
var

cl1,cl2 : cl;
begin

cl1:=cl.create;
cl2:=cl.create;
cl1.l:=2;
writeln(cl2.l);
cl2.l:=3;
writeln(cl1.l);
Writeln(cl.l);

end.

The output of this will be the following:

91

CHAPTER 6. CLASSES

2
3
3

Note that the last line of code references the class type itself (cl), and not an instance of the class
(cl1 or cl2).

In addition to the static field approach, in classes, a Class Var can be used. Similar to the way a
field can be defined in a variable block, a class variable can be declared in a class var block:

{$mode objfpc}
type

cl=class
class var

l : longint;
end;

This definition is equivalent to the previous one.

Note that a class variable is tied to a specific class. Descendent classes will refer to the same instance,
unless the variable is redeclared. The following program demonstrates this:

{$mode objfpc}
type

TA = class // base type
class var CODE: integer;

end;
TB = class(TA);
TC = class(TA);

begin
TA.Code:=0;
TB.Code:=1;
TC.Code:=2;
Writeln(Ta.Code:2,Tb.Code:2,Tc.code:2);

end.

The output of this program is:

2 2 2

Because it is tied to a class, it can be overridden in delphi mode:

$mode delphi}
type

TA = class // base type
class var CODE: integer;

end;
TB = class(TA)

Class var code : integer;
end;
TC = class(TA)

Class var code : integer;
end;

92

CHAPTER 6. CLASSES

begin
TA.Code:=0;
TB.Code:=1;
TC.Code:=2;
Writeln(Ta.Code:2,Tb.Code:2,Tc.code:2);

end.

It will print the following:

0 1 2

However, in OBJFPC mode it will not compile, and will give a duplicate identifier error.

6.4 Class instantiation

Classes must be created using one of their constructors (there can be multiple constructors). Remem-
ber that a class is a pointer to an object on the heap. When a variable of some class is declared, the
compiler just allocates room for this pointer, not the entire object. The constructor of a class returns a
pointer to an initialized instance of the object on the heap. So, to initialize an instance of some class,
one would do the following:

ClassVar := ClassType.ConstructorName;

The extended syntax of new and dispose can not be used to instantiate and destroy class instances:
That construct is reserved for use with objects only. Calling the constructor will provoke a call to
the virtual class method NewInstance, which, in its default implementation, calls GetMem, to
allocate enough space to hold the class instance data, and then zeroes out the memory.

After that, the constructor’s code is executed. The constructor has a pointer to its data, in Self.

Remark

• The {$PackRecords } directive also affects classes, i. e. the alignment in memory of the
different fields depends on the value of the {$PackRecords } directive.

• Just as for objects and records, a packed class can be declared. This has the same effect as on
an object, or record, namely that the elements are aligned on 1-byte boundaries, i. e. as close
as possible.

• SizeOf(class) will return the same as SizeOf(Pointer), since a class is a pointer
to an object. To get the size of the class instance data, use the TObject.InstanceSize
method.

• If an exception happens during an the execution of a constructor, the destructor will be called
automatically.

6.5 Class destruction

Class instances must be destroyed using the destructor. In difference with the constructor, there is no
choice in destructors: the destructor must have the name Destroy, it must override the Destroy
destructor declared in TObject, cannot have arguments, and the inherited destructor must always
be called.

Destroy will call FreeInstance, which, in its default implementation, calls FreeMem to re-
lease the memory occupied by the instance.

93

CHAPTER 6. CLASSES

To avoid calling a destructor on a Nil instance, it is best to call the Free method of TObject.
This method will check if Self is not Nil, and if so, then it calls Destroy. If Self equals Nil,
it will just exit.

Destroying an instance does not remove or Nil a reference to an instance:

Var
A : TComponent;

begin
A:=TComponent.Create;
A.Name:='MyComponent';
A.Free;
Writeln('A is still assigned: ',Assigned(A));

end.

After the call to Free, the variable A will not be Nil, the output of this program will be:

A is still assigned: TRUE

To make sure that the variable A is cleared after the destructor was called, the function FreeAndNil
from the SysUtils unit can be used. It will call Free and will then write Nil in the object pointer
(A in the above example):

Var
A : TComponent;

begin
A:=TComponent.Create;
A.Name:='MyComponent';
FreeAndNil(A);
Writeln('A is still assigned: ',Assigned(A));

end.

After the call to FreeAndNil, the variable A will contain Nil, the output of this program will be:

A is still assigned: FALSE

Remark if an exception happens during an the execution of a constructor, the destructor will be called auto-
matically.

6.6 Methods

6.6.1 Declaration
Declaration of methods in classes follows the same rules as method declarations in objects:

methods

-- method definition function header
procedure header
constructor header
destructor header

; method directives -�

94

CHAPTER 6. CLASSES

-- method directives
virtual

dynamic ; abstract
reintroduce ;

override ;
message constant expression

call modifiers ;
-�

The only differences are the override, reintroduce and message directives.

6.6.2 Invocation
Method invocation for classes is no different than for objects. The following is a valid method
invocation:

Var AnObject : TAnObject;
begin

AnObject := TAnObject.Create;
ANobject.AMethod;

6.6.3 Virtual methods
Classes have virtual methods, just as objects do. There is however a difference between the two.
For objects, it is sufficient to redeclare the same method in a descendent object with the keyword
virtual to override it. For classes, the situation is different: virtual methods must be overridden
with the override keyword. Failing to do so, will start a new batch of virtual methods, hiding the
previous one. The Inherited keyword will not jump to the inherited method, if Virtual was
used.

The following code is wrong:

Type
ObjParent = Class

Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)

Procedure MyProc; virtual;
end;

The compiler will produce a warning:

Warning: An inherited method is hidden by OBJCHILD.MYPROC

The compiler will compile it, but using Inherited can produce strange effects.

The correct declaration is as follows:

Type
ObjParent = Class

Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)

Procedure MyProc; override;
end;

95

CHAPTER 6. CLASSES

This will compile and run without warnings or errors.

If the virtual method should really be replaced with a method with the same name, then the reintroduce
keyword can be used:

Type
ObjParent = Class

Procedure MyProc; virtual;
end;
ObjChild = Class(ObjPArent)

Procedure MyProc; reintroduce;
end;

This new method is no longer virtual.

To be able to do this, the compiler keeps – per class type – a table with virtual methods: the VMT
(Virtual Method Table). This is simply a table with pointers to each of the virtual methods: each
virtual method has its fixed location in this table (an index). The compiler uses this table to look
up the actual method that must be used at runtime. When a descendent object overrides a method,
the entry of the parent method is overwritten in the VMT. More information about the VMT can be
found in Programmer’s Guide.

Remark The keyword “virtual” can be replaced with the “dynamic” keyword: dynamic methods behave the
same as virtual methods. Unlike in Delphi, in FPC the implementation of dynamic methods is equal
to the implementation of virtual methods.

6.6.4 Class methods
Class methods are identified by the keyword Class in front of the procedure or function declaration,
as in the following example:

Class Function ClassName : String;

Class methods are methods that do not have an instance (i. e. Self does not point to a class instance)
but which follow the scoping and inheritance rules of a class. They can be used to return information
about the current class, for instance for registration or use in a class factory. Since no instance is
available, no information available in instances can be used.

Class methods can be called from inside a regular method, but can also be called using a class
identifier:

Var
AClass : TClass; // AClass is of type "type of class"

begin
..
if CompareText(AClass.ClassName,'TCOMPONENT')=0 then
...

But calling them from an instance is also possible:

Var
MyClass : TObject;

begin

96

../prog/prog.html

CHAPTER 6. CLASSES

..
if MyClass.ClassNameis('TCOMPONENT') then
...

The reverse is not possible: Inside a class method, the Self identifier points to the VMT table of
the class. No fields, properties or regular methods are available inside a class method. Accessing a
regular property or method will result in a compiler error.

Note that class methods can be virtual, and can be overridden.

Class methods can be used as read or write specifiers for a regular property, but naturally, this property
will have the same value for all instances of the class, since there is no instance available in the class
method.

6.6.5 Class constructors and destructors
A class constructor or destructor can also be created. They serve to instantiate some class variables
or class properties which must be initialized before a class can be used. These constructors are called
automatically at program startup: The constructor is called before the initialization section of the unit
it is declared in, the destructor is called after the finalisation section of the unit it is declared in.

There are some caveats when using class destructors/constructors:

• There may be only one constructor per class. The name is arbitrary, but it can not have param-
eters.

• There may be only one destructor per class. The name is arbitrary, but it can not have parame-
ters.

• Neither constructor nor destructor can be virtual.

• The class constructor/destructor is called irrespective of the use of the class: even if a class is
never used, the constructor and destructor are called anyway.

• There is no guaranteed order in which the class constructors or destructors are called. For
nested classes, the only guaranteed order is that the constructors of nested classes are called
after the constructor of the encompassing class is called, and for the destructors the opposite
order is used.

The following program:

{$mode objfpc}
{$h+}

Type
TA = Class(TObject)
Private

Function GetA : Integer;
Procedure SetA(AValue : integer);

public
Class Constructor create;
Class Destructor destroy;
Property A : Integer Read GetA Write SetA;

end;

{Class} Function TA.GetA : Integer;

97

CHAPTER 6. CLASSES

begin
Result:=-1;

end;

{Class} Procedure TA.SetA(AValue : integer);

begin
//

end;

Class Constructor TA.Create;

begin
Writeln('Class constructor TA');

end;

Class Destructor TA.Destroy;

begin
Writeln('Class destructor TA');

end;

Var
A : TA;

begin
end.

Will, when run, output the following:

Class constructor TA
Class destructor TA

6.6.6 Static class methods
FPC knows static class methods in classes: these are class methods that have the Static keyword
at the end. These methods behave completely like regular procedures or functions. This means that:

• They do not have a Self parameter. As a result, they cannot access properties or fields or
regular methods.

• They cannot be virtual.

• They can be assigned to regular procedural variables.

Their use is mainly to include the method in the namespace of the class as opposed to having the
procedure in the namespace of the unit. Note that they do have access to all class variables, types etc,
meaning something like this is possible:

{$mode objfpc}
{$h+}

98

CHAPTER 6. CLASSES

Type
TA = Class(TObject)
Private

class var myprivatea : integer;
public

class Function GetA : Integer; static;
class Procedure SetA(AValue : Integer); static;

end;

Class Function TA.GetA : Integer;

begin
Result:=myprivateA;

end;

Class Procedure TA.SetA(AValue : integer);

begin
myprivateA:=AValue;

end;

begin
TA.SetA(123);
Writeln(TA.MyPrivateA);

end.

Which will output 123, when run.

In the implementation of a static class method, the Self identifier is not available. The method
behaves as if Self is hardcoded to the declared class, not the actual class with which it was called.
In regular class methods, Self contains the Actual class for which the method was called. The
following example makes this clear:

Type
TA = Class

Class procedure DoIt; virtual;
Class Procedure DoitStatic; static;

end;

TB = CLass(TA)
Class procedure DoIt; override;

end;

Class procedure TA.DOit;

begin
Writeln('TA.Doit : ',Self.ClassName);

end;

Class procedure TA.DOitStatic;

begin
Doit;

99

CHAPTER 6. CLASSES

Writeln('TA.DoitStatic : ',ClassName);
end;

Class procedure TB.DoIt;

begin
Inherited;
Writeln('TB.Doit : ',Self.ClassName);

end;

begin
Writeln('Through static method:');
TB.DoItStatic;
Writeln('Through class method:');
TB.Doit;

end.

When run, this example will print:

Through static method:
TA.Doit : TA
TA.DoitStatic : TA
Through class method:
TA.Doit : TB
TB.Doit : TB

For the static class method, even though it was called using TB, the class (Self, if it were available)
is set to TA, the class in which the static method was defined. For the class method, the class is set to
the actual class used to call the method (TB).

6.6.7 Message methods
New in classes are message methods. Pointers to message methods are stored in a special table,
together with the integer or string constant that they were declared with. They are primarily intended
to ease programming of callback functions in several GUI toolkits, such as Win32 or GTK. In dif-
ference with Delphi, Free Pascal also accepts strings as message identifiers. Message methods are
always virtual.

As can be seen in the class declaration diagram, message methods are declared with a Message
keyword, followed by an integer constant expression.

Additionally, they can take only one var argument (typed or not):

Procedure TMyObject.MyHandler(Var Msg); Message 1;

The method implementation of a message function is not different from an ordinary method. It is also
possible to call a message method directly, but this should not be done. Instead, the TObject.Dispatch
method should be used. Message methods are automatically virtual, i. e. they can be overridden in
descendent classes.

The TObject.Dispatch method can be used to call a message handler. It is declared in the
system unit and will accept a var parameter which must have at the first position a cardinal with the
message ID that should be called. For example:

Type

100

CHAPTER 6. CLASSES

TMsg = Record
MSGID : Cardinal;
Data : Pointer;

Var
Msg : TMSg;

MyObject.Dispatch (Msg);

In this example, the Dispatch method will look at the object and all its ancestors (starting at the
object, and searching up the inheritance class tree), to see if a message method with message MSGID
has been declared. If such a method is found, it is called, and passed the Msg parameter.

If no such method is found, DefaultHandler is called. DefaultHandler is a virtual method
of TObject that doesn’t do anything, but which can be overridden to provide any processing that
might be needed. DefaultHandler is declared as follows:

procedure DefaultHandler(var message);virtual;

In addition to the message method with a Integer identifier, Free Pascal also supports a message
method with a string identifier:

Procedure TMyObject.MyStrHandler(Var Msg); Message 'OnClick';

The working of the string message handler is the same as the ordinary integer message handler:

The TObject.DispatchStr method can be used to call a message handler. It is declared in
the system unit and will accept one parameter which must have at the first position a short string
with the message ID that should be called. For example:

Type
TMsg = Record

MsgStr : String[10]; // Arbitrary length up to 255 characters.
Data : Pointer;

Var
Msg : TMSg;

MyObject.DispatchStr (Msg);

In this example, the DispatchStr method will look at the object and all its ancestors (starting at
the object, and searching up the inheritance class tree), to see if a message method with message
MsgStr has been declared. If such a method is found, it is called, and passed the Msg parameter.

If no such method is found, DefaultHandlerStr is called. DefaultHandlerStr is a virtual
method of TObject that doesn’t do anything, but which can be overridden to provide any processing
that might be needed. DefaultHandlerStr is declared as follows:

procedure DefaultHandlerStr(var message);virtual;

6.6.8 Using inherited
In an overridden virtual method, it is often necessary to call the parent class’ implementation of
the virtual method. This can be done with the inherited keyword. Likewise, the inherited
keyword can be used to call any method of the parent class.

The first case is the simplest:

101

CHAPTER 6. CLASSES

Type
TMyClass = Class(TComponent)

Constructor Create(AOwner : TComponent); override;
end;

Constructor TMyClass.Create(AOwner : TComponent);

begin
Inherited;
// Do more things

end;

In the above example, the Inherited statement will call Create of TComponent, passing it
AOwner as a parameter: the same parameters that were passed to the current method will be passed
to the parent’s method. They must not be specified again: if none are specified, the compiler will
pass the same arguments as the ones received.

If no inherited method with the same name exists, the Inherited will have no effect in this case.
The presence of Inherited in this form can thus be interpreted as “call the overridden method if
it exists”.

The second case is slightly more complicated:

Type
TMyClass = Class(TComponent)

Constructor Create(AOwner : TComponent); override;
Constructor CreateNew(AOwner : TComponent; DoExtra : Boolean);

end;

Constructor TMyClass.Create(AOwner : TComponent);
begin

Inherited;
end;

Constructor TMyClass.CreateNew(AOwner : TComponent; DoExtra : Boolean);
begin

Inherited Create(AOwner);
// Do stuff

end;

The CreateNew method will first call TComponent.Create and will pass it AOwner as a
parameter. It will not call TMyClass.Create.

If no method with the given name exists in parent classes, the compiler will give an error.

Although the examples were given using constructors, the use of inherited is not restricted to
constructors, it can be used for any procedure or function or destructor as well.

6.7 Properties

6.7.1 Definition
Classes can contain properties as part of their fields list. A property acts like a normal field, i. e. its
value can be retrieved or set, but it allows to redirect the access of the field through functions and
procedures. They provide a means to associate an action with an assignment of or a reading from
a class “field”. This allows e. g. checking that a value is valid when assigning, or, when reading, it

102

CHAPTER 6. CLASSES

allows to construct the value on the fly. Moreover, properties can be read-only or write only. The
prototype declaration of a property is as follows:

Properties

-- property definition class property identifier
property interface

-

- property specifiers hintdirective -�

-- property interface
property parameter list

: type identifier -

-

index integerconstant
-�

-- property parameter list [
6
parameter declaration

;
] -�

-- property specifiers
read specifier write specifier

implements specifier

-

-

default specifier stored specifier defaultarraypropertyspecifier
-�

-- read specifier read field or method -�

-- write specifier write field or method -�

-- implements specifier implements
6
identifier

,
-�

-- default specifier default
constant

nodefault

-�

-- stored specifier stored constant
identifier

-�

-- field or method field identifier
method identifier

-�

-- defaultarraypropertyspecifier ; default -�

A read specifier is either the name of a field that contains the property, or the name of a
method function that has the same return type as the property type. In the case of a simple type, this
function must not accept an argument. In case of an array property, the function must accept a single
argument of the same type as the index. In case of an indexed property, it must accept a integer as an
argument.

A read specifier is optional, making the property write-only. Note that class methods cannot
be used as read specifiers.

A write specifier is optional: If there is no write specifier, the property is read-only.
A write specifier is either the name of a field, or the name of a method procedure that accepts as a
sole argument a variable of the same type as the property. In case of an array property, the procedure
must accept two arguments: the first argument must have the same type as the index, the second

103

CHAPTER 6. CLASSES

argument must be of the same type as the property. Similarly, in case of an indexed property, the first
parameter must be an integer.

The section (private, published) in which the specified function or procedure resides is irrel-
evant. Usually, however, this will be a protected or private method.

For example, given the following declaration:

Type
MyClass = Class

Private
Field1 : Longint;
Field2 : Longint;
Field3 : Longint;
Procedure Sety (value : Longint);
Function Gety : Longint;
Function Getz : Longint;
Public
Property X : Longint Read Field1 write Field2;
Property Y : Longint Read GetY Write Sety;
Property Z : Longint Read GetZ;
end;

Var
MyClass : TMyClass;

The following are valid statements:

WriteLn ('X : ',MyClass.X);
WriteLn ('Y : ',MyClass.Y);
WriteLn ('Z : ',MyClass.Z);
MyClass.X := 0;
MyClass.Y := 0;

But the following would generate an error:

MyClass.Z := 0;

because Z is a read-only property.

What happens in the above statements is that when a value needs to be read, the compiler inserts a call
to the various getNNN methods of the object, and the result of this call is used. When an assignment
is made, the compiler passes the value that must be assigned as a parameter to the various setNNN
methods.

Because of this mechanism, properties cannot be passed as var arguments to a function or procedure,
since there is no known address of the property (at least, not always).

6.7.2 Indexed properties
If the property definition contains an index, then the read and write specifiers must be a function and
a procedure. Moreover, these functions require an additional parameter : An integer parameter. This
allows to read or write several properties with the same function. For this, the properties must have
the same type. The following is an example of a property with an index:

{$mode objfpc}

104

CHAPTER 6. CLASSES

Type
TPoint = Class(TObject)
Private

FX,FY : Longint;
Function GetCoord (Index : Integer): Longint;
Procedure SetCoord (Index : Integer; Value : longint);

Public
Property X : Longint index 1 read GetCoord Write SetCoord;
Property Y : Longint index 2 read GetCoord Write SetCoord;
Property Coords[Index : Integer]:Longint Read GetCoord;

end;

Procedure TPoint.SetCoord (Index : Integer; Value : Longint);
begin

Case Index of
1 : FX := Value;
2 : FY := Value;

end;
end;

Function TPoint.GetCoord (INdex : Integer) : Longint;
begin

Case Index of
1 : Result := FX;
2 : Result := FY;

end;
end;

Var
P : TPoint;

begin
P := TPoint.create;
P.X := 2;
P.Y := 3;
With P do

WriteLn ('X=',X,' Y=',Y);
end.

When the compiler encounters an assignment to X, then SetCoord is called with as first parameter
the index (1 in the above case) and with as a second parameter the value to be set. Conversely, when
reading the value of X, the compiler calls GetCoord and passes it index 1. Indexes can only be
integer values.

6.7.3 Array properties
Array properties also exist. These are properties that accept an index, just as an array does. The
index can be one-dimensional, or multi-dimensional. In difference with normal (static or dynamic)
arrays, the index of an array property doesn’t have to be an ordinal type, but can be any type.

A read specifier for an array property is the name method function that has the same return
type as the property type. The function must accept as a sole argument a variable of the same type as
the index type. For an array property, one cannot specify fields as read specifiers.

A write specifier for an array property is the name of a method procedure that accepts two

105

CHAPTER 6. CLASSES

arguments: the first argument has the same type as the index, and the second argument is a parameter
of the same type as the property type. As an example, see the following declaration:

Type
TIntList = Class
Private

Function GetInt (I : Longint) : longint;
Function GetAsString (A : String) : String;
Procedure SetInt (I : Longint; Value : Longint;);
Procedure SetAsString (A : String; Value : String);

Public
Property Items [i : Longint] : Longint Read GetInt

Write SetInt;
Property StrItems [S : String] : String Read GetAsString

Write SetAsstring;
end;

Var
AIntList : TIntList;

Then the following statements would be valid:

AIntList.Items[26] := 1;
AIntList.StrItems['twenty-five'] := 'zero';
WriteLn ('Item 26 : ',AIntList.Items[26]);
WriteLn ('Item 25 : ',AIntList.StrItems['twenty-five']);

While the following statements would generate errors:

AIntList.Items['twenty-five'] := 1;
AIntList.StrItems[26] := 'zero';

Because the index types are wrong.

Array properties can be multi-dimensional:

Type
TGrid = Class
Private

Function GetCell (I,J : Longint) : String;
Procedure SetCell (I,J : Longint; Value : String);

Public
Property Cellcs [Row,Col : Longint] : String Read GetCell

Write SetCell;
end;

If there are N dimensions, then the types of the first N arguments of the getter and setter must
correspond to the types of the N index specifiers in the array property definition.

6.7.4 Default properties
Array properties can be declared as default properties. This means that it is not necessary to
specify the property name when assigning or reading it. In the previous example, if the definition of
the items property would have been

106

CHAPTER 6. CLASSES

Property Items[i : Longint]: Longint Read GetInt
Write SetInt; Default;

Then the assignment

AIntList.Items[26] := 1;

Would be equivalent to the following abbreviation.

AIntList[26] := 1;

Only one default property per class is allowed, but descendent classes can redeclare the default
property.

6.7.5 Published properties
Classes compiled in the {$M+} state (such as TPersistent from the classes unit) can have
a published section. For methods, fields and properties in the Published section, the compiler
generates RTTI information (Run Time Type Information), which can be used to query the defined
methods, fields and properties in the published section(s). The typinfo unit contains the necessary
routines to query this information, and this unit is used in the streaming system in FPC in the classes
unit.

The RTTI is generated regardless of what the read and write specifiers are: fields, functions/proce-
dures or indexed functions/procedures.

Only class-typed fields can be published. For properties, any simple property whose size is less
than or equal to a pointer, can be declared published: floats, integers, sets (with less than 32 distinct
elements), enumerated, classes or dynamic arrays (not array properties).

Although run-time type information is available for other types, these types cannot be used for a
property or field definition in a published section. The information is present to describe for example
arguments of procedures or functions.

6.7.6 Storage information
The compiler offers two specifiers to control whether a property is streamed using a streaming mech-
anism, such as the one implemented in the classes unit. These specifiers write extra information to
the generated RTTI, which is later used in the streaming system:

1. The stored specifier.

2. The default specifier and its counterpart nodefault.

These two specifiers are both evaluated to decide whether a property must be streamed.

The argument to the stored specifier should be either a boolean constant, a boolean field of the
class, or a parameterless function which returns a boolean result. If the argument of the stored
specifier evaluates to False, the property will not be streamed.

Remark Absence of a stored specifier is equivalent to stored True.

If the evaluation of Stored resulted in True, the default for a property is considered:

The default specifier can be specified for ordinal types and sets. Properties that have as value this
default value, will not be written to the stream by the streaming system, even if Stored is True.
The default value is stored in the RTTI that is generated for the class.

107

CHAPTER 6. CLASSES

String, floating-point and pointer properties have implicit default value of empty string, 0 or nil,
respectively. Ordinal and set properties have no implicit default value.

The nodefault specifier must be used to indicate that a property has no default value. The effect
is that the value of this property is always written to the stream when streaming the property, if stored
is True.

Remark

1. When the class is instantiated, the default value is not automatically applied to the property, it
is the responsibility of the programmer to do this in the constructor of the class.

2. The value -2147483648 cannot be used as a default value, as it is used internally to denote
nodefault.

3. It is not possible to specify a default for array properties.

4. It is not possible to specify the Stored directive for array properties.

5. All storage specifiers can be overridden in descendent classes.

property Test stored False;

6. The nodefault specifier can be used to override the implicit default specifier of string,
floating-point and pointer properties.

7. The streaming mechanism described here is the one implemented in the classes unit of the
RTL. Other streaming mechanisms can be implemented, and they can use the RTTI information
in a different way.

6.7.7 Overriding and redeclaring properties
Properties can be both overridden and redeclared in descendent classes.

Property redeclaration takes action if the property type is declared, otherwise it is property override.
The only difference is that property override replaces or extends the inherited modifiers with the new
modifiers, whereas property redeclaration hides all inherited modifiers that are not present in the
redeclaration. The type of the redeclared property does not have to be the same as the parent”s class
property type.

The example below demonstrates the difference between property override and redeclaration.

type
TAncestor = class
private

FP1 : Integer;
public

property P: integer Read FP1 write FP1;
end;

TP1 = class(TAncestor)
public

// property override
property P default 1;

end;

TPReadOnly = class(TAncestor)
public

108

CHAPTER 6. CLASSES

// property redeclaration
property P: integer Read FP1;

end;

TP1 extends property P with a default value, TPReadOnly redeclares property P as read-
only.

Remark TP1 should set the default value of P to 1 in its constructor.

In case of both property redeclaration and property override, the access to the getter and setter is
always static. I.e. property override acts only on the RTTI of the object and is not to be confused
with method override.

The keyword “inherited” can be used to refer to the parent definition of the property. For example
consider the following code:

type
TAncestor = class
private

FP1 : Integer;
public

property P: integer Read FP1 write FP1;
end;

TClassA = class(TAncestor)
private

procedure SetP(const AValue: char);
function getP : Char;

public
constructor Create;
property P: char Read GetP write SetP;

end;

procedure TClassA.SetP(const AValue: char);

begin
Inherited P:=Ord(AValue);

end;

procedure TClassA.GetP : char;

begin
Result:=Char((Inherited P) and $FF);

end;

TClassA redefines P as a character property instead of an integer property, but uses the parent”s P
property to store the value.

Care must be taken when using virtual get/set routines for a property: setting the inherited property
still observes the normal rules of inheritance for methods. Consider the following example:

type
TAncestor = class
private

procedure SetP1(const AValue: integer); virtual;
public

property P: integer write SetP1;

109

CHAPTER 6. CLASSES

end;

TClassA = class(TAncestor)
private

procedure SetP1(const AValue: integer); override;
procedure SetP2(const AValue: char);

public
constructor Create;
property P: char write SetP2;

end;

constructor TClassA.Create;
begin

inherited P:=3;
end;

In this case, when setting the inherited property P, the implementation TClassA.SetP1 will be
called, because the SetP1 method is overridden.

If the parent class implementation of SetP1 must be called, then this must be called explicitly:

constructor TClassA.Create;
begin

inherited SetP1(3);
end;

The redeclared ancestor properties are also available from inside and outside the descendant object
with a direct cast to the ancestor:

function GetP(const AClassA: TClassA): Integer;
begin

Result := TAncestor(AClassA).P;
end;

6.8 Class properties

Class properties are very much like global property definitions. They are associated with the class,
not with an instance of the class.

A consequence of this is that the storage for the property value must be a class var, not a regular field
or variable of the class: normal fields or variables are stored in an instance of the class.

Class properties can have a getter and setter method like regular properties, but these must be static
methods of the class.

That means that the following contains a valid class property definition:

TA = Class(TObject)
Private

class var myprivatea : integer;
class Function GetB : Integer; static;
class Procedure SetA(AValue : Integer); static;
class Procedure SetB(AValue : Integer); static;

public
Class property MyA : Integer Read MyPrivateA Write SetA;

110

CHAPTER 6. CLASSES

Class property MyA : Integer Read GetB Write SetB;
end;

The reason for the requirement is that a class property is associated to the particular class in which
it is defined, but not to descendent classes. Since class methods can be virtual, this would allow
descendent classes to override the method, making them unsuitable for class property access.

6.9 Nested types, constants and variables

A class definition can contain a type section, const section and a variable section. The type and
constant sections act as a regular type section as found in a unit or method/function/procedure imple-
mentation. The variables act as regular fields of the class, unless they are in a class var section,
in which case they act as if they were defined at the unit level, within the namespace of the class
(section 6.3, page 90).

However, the visibility of these sections does play a role: private and protected (strict or not) con-
stants, types and variables can only be used as far as their visibility allows.

Public types can be used outside the class, by their full name:

type
TA = Class(TObject)
Public

Type TEnum = (a,b,c);
Class Function DoSomething : TEnum;

end;

Class Function TA.DoSomething : TEnum;

begin
Result:=a;

end;

var
E : TA.TEnum;

begin
E:=TA.DoSomething;

end.

Whereas

type
TA = Class(TObject)
Strict Private

Type TEnum = (a,b,c);
Public

Class Function DoSomething : TEnum;
end;

Class Function TA.DoSomething : TEnum;

begin
Result:=a;

111

CHAPTER 6. CLASSES

end;

var
E : TA.TEnum;

begin
E:=TA.DoSomething;

end.

Will not compile and will return an error:

tt.pp(20,10) Error: identifier idents no member "TEnum"

Note that for writeable constants, the same rules apply as for class variables with regard to scope and
overriding in descendents:

{$mode delphi}{$J+}
type

TA = class // base type
const CODE: integer = 99;

end;
TB = class(TA);
TC = class(TA);

begin
TA.Code:=0;
TB.Code:=1;
TC.Code:=2;
Writeln(Ta.Code:2,Tb.Code:2,Tc.code:2);

end.

Will write

2 2 2

But

{$mode delphi}{$J+}
type

TA = class // base type
const CODE: integer = -99;

end;
TB = class(TA)

const code : integer = -98;
end;
TC = class(TA)

Const code : integer = -97;
end;

begin
TA.Code:=0;
TB.Code:=1;
TC.Code:=2;
Writeln(Ta.Code:2,Tb.Code:2,Tc.code:2);

end.

112

CHAPTER 6. CLASSES

Will write

0 1 2

113

Chapter 7

Interfaces

7.1 Definition

As of version 1.1, FPC supports interfaces. Interfaces are an alternative to multiple inheritance
(where a class can have multiple parent classes) as implemented for instance in C++. An interface
is basically a named set of methods and properties: a class that implements the interface provides
all the methods as they are enumerated in the Interface definition. It is not possible for a class to
implement only part of the interface: it is all or nothing.

Interfaces can also be ordered in a hierarchy, exactly as classes: an interface definition that inherits
from another interface definition contains all the methods from the parent interface, as well as the
methods explicitly named in the interface definition. A class implementing an interface must then
implement all members of the interface as well as the methods of the parent interface(s).

An interface can be uniquely identified by a GUID. GUID is an acronym for Globally Unique Iden-
tifier, a 128-bit integer guaranteed always to be unique1. Especially on Windows systems, the GUID
of an interface can and must be used when using COM.

The definition of an Interface has the following form:

Interface type

-- Interface
heritage [’ GUID ’] component list

end -�

-- heritage (interface type identifier) -�

-- component list
6

method definition
property definition

-�

Along with this definition the following must be noted:

• Interfaces can only be used in DELPHI mode or in OBJFPC mode.

• There are no visibility specifiers. All members are public (indeed, it would make little sense
to make them private or protected).

1In theory, of course.

114

CHAPTER 7. INTERFACES

• The properties declared in an interface can only have methods as read and write specifiers.

• There are no constructors or destructors. Instances of interfaces cannot be created directly:
instead, an instance of a class implementing the interface must be created.

• Only calling convention modifiers may be present in the definition of a method. Modifiers
as virtual, abstract or dynamic, and hence also override cannot be present in the
interface definition.

The following are examples of interfaces:

IUnknown = interface ['{00000000-0000-0000-C000-000000000046}']
function QueryInterface(const iid : tguid;out obj) : longint;
function _AddRef : longint;
function _Release : longint;

end;
IInterface = IUnknown;

IMyInterface = Interface
Function MyFunc : Integer;
Function MySecondFunc : Integer;

end;

As can be seen, the GUID identifying the interface is optional.

7.2 Interface identification: A GUID

An interface can be identified by a GUID. This is a 128-bit number, which is represented in a text
representation (a string literal):

['{HHHHHHHH-HHHH-HHHH-HHHH-HHHHHHHHHHHH}']

Each H character represents a hexadecimal number (0–9, A–F). The format contains 8-4-4-4-12 num-
bers. A GUID can also be represented by the following record, defined in the objpas unit (included
automatically when in DELPHI or OBJFPC mode):

PGuid = ^TGuid;
TGuid = packed record

case integer of
1 : (

Data1 : DWord;
Data2 : word;
Data3 : word;
Data4 : array[0..7] of byte;

);
2 : (

D1 : DWord;
D2 : word;
D3 : word;
D4 : array[0..7] of byte;

);
3 : ({ uuid fields according to RFC4122 }

time_low : dword;

115

CHAPTER 7. INTERFACES

time_mid : word;
time_hi_and_version : word;
clock_seq_hi_and_reserved : byte;
clock_seq_low : byte;
node : array[0..5] of byte;
);

end;

A constant of type TGUID can be specified using a string literal:

{$mode objfpc}
program testuid;

Const
MyGUID : TGUID = '{10101010-1010-0101-1001-110110110110}';

begin
end.

Normally, the GUIDs are only used in Windows, when using COM interfaces. More on this in the
next section.

7.3 Interface implementations

When a class implements an interface, it should implement all methods of the interface. If a method
of an interface is not implemented, then the compiler will give an error. For example:

Type
IMyInterface = Interface

Function MyFunc : Integer;
Function MySecondFunc : Integer;

end;

TMyClass = Class(TInterfacedObject,IMyInterface)
Function MyFunc : Integer;
Function MyOtherFunc : Integer;

end;

Function TMyClass.MyFunc : Integer;

begin
Result:=23;

end;

Function TMyClass.MyOtherFunc : Integer;

begin
Result:=24;

end;

will result in a compiler error:

Error: No matching implementation for interface method
"IMyInterface.MySecondFunc:LongInt" found

116

CHAPTER 7. INTERFACES

Normally, the names of the methods that implement an interface, must equal the names of the meth-
ods in the interface definition. The compiler will look for matching methods in all visible methods:
the methods of the class, and in parent classes methods with visibility protected or higher.

However, it is possible to provide aliases for methods that make up an interface: that is, the compiler
can be told that a method of an interface is implemented by an existing method with a different name.
This is done as follows:

Type
IMyInterface = Interface

Function MyFunc : Integer;
end;

TMyClass = Class(TInterfacedObject,IMyInterface)
Function MyOtherFunction : Integer;
Function IMyInterface.MyFunc = MyOtherFunction;

end;

This declaration tells the compiler that the MyFunc method of the IMyInterface interface is
implemented in the MyOtherFunction method of the TMyClass class.

7.4 Interface inheritance

It is possible to let one interface be a descendent from another interface:

IParentInterface = interface
['{0F78D56E-85A6-4024-98D7-720D7C7B9573}']
procedure Foo;

end;

IChildInterface = interface(IParentInterface)
['{1AB2EB85-6843-462E-8CE4-32ECC065011E}']
procedure Bar;

end;

IChildInterface will have two methods: foo and bar. Any class implementing this interface
will therefore need to implement both interfaces:

TImplementor = class(TInterfacedObject, IChildInterface)
public

procedure Foo;
procedure Bar;

end;

procedure TImplementor.Foo;
begin

end;

procedure TImplementor.Bar;
begin

end;

117

CHAPTER 7. INTERFACES

Note that when a class declares a child interface, it can be assigned to a variable with the child
interface. Given the above declarations, the following will compile:

var
Child: IChildInterface;

begin
Child := TImplementor.Create;

But this does not imply that it automatically also is assignment compatible with a variable with the
type of parent interface. The following will not compile:

var
Parent: IParentInterface;

begin
Parent := TImplementor.Create;

To make this compile, it is necessary to declare the class as:

TImplementor = class(TInterfacedObject,
IParentInterface,
IChildInterface)

public
procedure Foo;
procedure Bar;

end;

The reason for this is that although the class actually implements the methods of IParentInterface,
the compiler checks only actually declared interfaces when checking assignment compatibility: all
declared interfaces are put in a table and only the contents of this table is checked.

The same check is performed at runtime: the compiler generates a table of all interfaces a class
declares, and this table is checked at runtime. That means that although the following will compile
if only IChildInterface is declared:

ParentImplementorInstance := (TImplementor.Create as IParentInterface);

it will still fail with a run-time error:

home:~> ./ti
An unhandled exception occurred at $0000000000411A27:
EInvalidCast: Invalid type cast
$0000000000411A27

7.5 Interface delegation

Sometimes, the methods of an interface are implemented by a helper (or delegate) object, or the class
instance has obtained an interface pointer for this interface and that should be used. This can be for
instance when an interface must be added to a series of totally unrelated classes: the needed interface
functionality is added to a separate class, and each of these classes uses an instance of the helper
class to implement the functionality.

118

CHAPTER 7. INTERFACES

In such a case, it is possible to instruct the compiler that the interface is not implemented by the object
itself, but actually resides in a helper class or interface. This can be done with the implements
property modifier.

If the class has a pointer to the desired interface, the following will instruct the compiler that when
the IMyInterface interface is requested, it should use the reference in the field:

type
IMyInterface = interface

procedure P1;
end;

TMyClass = class(TInterfacedObject, IMyInterface)
private

FMyInterface: IMyInterface; // interface type
public

property MyInterface: IMyInterface
read FMyInterface implements IMyInterface;

end;

The interface should not necessarily be in a field, any read identifier can be used.

If the interface is implemented by a delegate object, (a helper object that actually implements the
interface) then it can be used as well with the implements keyword:

{$interfaces corba}
type

IMyInterface = interface
procedure P1;

end;

// NOTE: Interface must be specified here
TDelegateClass = class(TObject, IMyInterface)
private

procedure P1;
end;

TMyClass = class(TInterfacedObject, IMyInterface)
private

FMyInterface: TDelegateClass; // class type
property MyInterface: TDelegateClass

read FMyInterface implements IMyInterface;
end;

Note that in difference with Delphi, the delegate class must explicitly specify the interface: the
compiler will not search for the methods in the delegate class, it will simply check if the delegate
class implements the specified interface.

It is possible to implement multiple interfaces using a single delegated object:

{$interfaces corba}
type

IMyInterface = interface
procedure P1;

end;
IMyInterface1 = interface

119

CHAPTER 7. INTERFACES

procedure P2;
end;

// NOTE: Interface must be specified here
TDelegateClass = class(TObject, IMyInterface,IMyInterface1)
private

procedure P1;
procedure P2;

end;

TMyClass = class(TInterfacedObject, IMyInterface, IMyInterface1)
private

FMyInterface: TDelegateClass; // class type
property MyInterface: TDelegateClass

read FMyInterface implements IMyInterface,IMyInterface1;
end;

It is not possible to mix method resolution and interface delegation. That means, it is not possible
to implement part of an interface through method resolution and implement part of the interface
through delegation. The following attempts to implement IMyInterface partly through method
resolution (P1), and partly through delegation. The compiler will not accept the following code:

{$interfaces corba}
type

IMyInterface = interface
procedure P1;
procedure P2;

end;

TMyClass = class(TInterfacedObject, IMyInterface)
FI : IMyInterface;

protected
procedure IMyInterface.P1 = MyP1;
procedure MyP1;
property MyInterface: IMyInterface read FI implements IMyInterface;

end;

The compiler will throw an error:

Error: Interface "IMyInterface" can't be delegated by "TMyClass",
it already has method resolutions

However, it is possible to implement one interface through method resolution, and another through
delegation:

{$interfaces corba}
type

IMyInterface = interface
procedure P1;

end;

IMyInterface2 = interface
procedure P2;

120

CHAPTER 7. INTERFACES

end;

TMyClass = class(TInterfacedObject,
IMyInterface, IMyInterface2)

FI2 : IMyInterface2;
protected

procedure IMyInterface.P1 = MyP1;
procedure MyP1;

public
property MyInterface: IMyInterface2

read FI2 implements IMyInterface2;
end;

Note that interface delegation can be used to specify that a class implements parent interfaces:

IGMGetFileName = interface(IUnknown)
['{D3ECCB42-A563-4cc4-B375-79931031ECBA}']
function GetFileName: String; stdcall;
property FileName: String read GetFileName;

end;

IGMGetSetFileName = Interface(IGMGetFileName)
['{ECFB879F-86F6-41a3-A685-0C899A2B5BCA}']
procedure SetFileName(const Value: String); stdcall;
property FileName: String read GetFileName write SetFileName;

end;

TIntfDelegator = class(TInterfacedObject, IGMGetFileName, IGMGetSetFileName)
protected
FGetSetFileName: IGMGetSetFileName;
public
constructor Create;
destructor Destroy; override;
property Implementor: IGMGetSetFileName read FGetSetFileName

implements IGMGetFileName, IGMGetSetFileName;
end;

7.6 Interfaces and COM

When using interfaces on Windows which should be available to the COM subsystem, the calling
convention should be stdcall – this is not the default Free Pascal calling convention, so it should
be specified explicitly.

COM does not know properties. It only knows methods. So when specifying property definitions
as part of an interface definition, be aware that the properties will only be known in the Free Pascal
compiled program: other Windows programs will not be aware of the property definitions.

7.7 CORBA and other Interfaces

COM is not the only architecture where interfaces are used. CORBA knows interfaces, UNO (the
OpenOffice API) uses interfaces, and Java as well. These languages do not know the IUnknown

121

CHAPTER 7. INTERFACES

interface used as the basis of all interfaces in COM. It would therefore be a bad idea if an inter-
face automatically descended from IUnknown if no parent interface was specified. Therefore, a
directive {$INTERFACES} was introduced in Free Pascal: it specifies what the parent interface is
of an interface, declared without parent. More information about this directive can be found in the
Programmer’s Guide.

Note that COM interfaces are by default reference counted, because they descend from IUnknown.

Corba interfaces are identified by a simple string so they are assignment compatible with strings
and not with TGUID. The compiler does not do any automatic reference counting for the CORBA
interfaces, so the programmer is responsible for any reference bookkeeping.

7.8 Reference counting

All COM interfaces use reference counting. This means that whenever an interface is assigned to a
variable, its reference count is updated. Whenever the variable goes out of scope, the reference count
is automatically decreased. When the reference count reaches zero, usually the instance of the class
that implements the interface, is freed.

Care must be taken with this mechanism. The compiler may or may not create temporary variables
when evaluating expressions, and assign the interface to a temporary variable, and only then assign
the temporary variable to the actual result variable. No assumptions should be made about the number
of temporary variables or the time when they are finalized – this may (and indeed does) differ from
the way other compilers (e. g. Delphi) handle expressions with interfaces. E. g. a type cast is also an
expression:

Var
B : AClass;

begin
// ...
AInterface(B.Intf).testproc;
// ...

end;

Assume the interface intf is reference counted. When the compiler evaluates B.Intf, it creates
a temporary variable. This variable may be released only when the procedure exits: it is therefore
invalid to e. g. free the instance B prior to the exit of the procedure, since when the temporary variable
is finalized, it will attempt to free B again.

Additionally, function results may point to a non-nil valid COM interface on entry: this is because
the function result is treated as a var parameter.

122

../prog/prog.html

Chapter 8

Generics

8.1 Introduction

Generics are templates for generating other types. These can be classes, objects, interfaces and even
functions, arrays, records. It is a concept that comes from C++, where it is deeply integrated in the
language. As of version 2.2, Free Pascal also officially has support for templates or Generics. They
are implemented as a kind of macro which is stored in the unit files that the compiler generates, and
which is replayed as soon as a generic class is specialized.

Creating and using generics is a 2-phase process.

1. The definition of the generic is defined as a new type: this is a code template, a macro which
can be replayed by the compiler at a later stage.

2. A generic type is specialized: this defines a second type, which is a specific implementation of
the generic type: the compiler replays the macro which was stored when the generic type was
defined.

There are several units distributed with free pascal that implement generic containers and classes.
For example the fgl unit.

8.2 Generic type definition

A generic type definition is much like a type definition, with the exception that it contains a list of
placeholders for types, as can be seen in the following syntax diagram:

Generic class types

-- generic type generic identifier < template list > = generic type ; -�

-- template list
6
identifier list

;
-�

123

CHAPTER 8. GENERICS

-- identifier list
6
identifier

, :
6
type identifier

,
class

interface
object
record

-�

-- generic type class type
object type

interface type
procedural type

record type
array type

-�

For classes, objects, procedural types and extended records, the generic type declaration should be
followed by a type implementation. It is the same as a normal class implementation with a single
exception, namely that any identifier with the same name as one of the template identifiers must be a
type identifier.

So, the generic type declaration is much like a normal type declaration, except that there is an as yet
unknown type present. The unknown types are listed in the placeholder list, and they are unknown
until the class is specialized.

The following is a valid generic class definition:

Type
generic TList<_T>=class(TObject)
Public

type
TCompareFunc = function(const Item1, Item2: _T): Integer;

var
data : _T;

procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

This class could be followed by an implementation as follows:

procedure TList.Add(item: _T);
begin

data:=item;
end;

procedure TList.Sort(compare: TCompareFunc);
begin

if compare(data, 20) <= 0 then
halt(1);

end;

There are some noteworthy things about this declaration and implementation:

1. There is a single placeholder _T. It will be substituted by a type identifier when the generic
class is specialized. The identifier _T may not be used for anything else than a type place-
holder. This means that the following would be invalid:

124

CHAPTER 8. GENERICS

procedure TList.Sort(compare: TCompareFunc);

Var
_t : integer;

begin
// do something.

end;

2. The local type block contains a single type TCompareFunc. Note that the actual type is not
yet known inside the generic class definition: the definition contains a reference to the place-
holder _T. All other identifier references must be known when the generic class is defined, not
when the generic class is specialized.

3. The local variable block is equivalent to the following:

generic TList<_T>=class(TObject)
Public

type
TCompareFunc = function(const Item1, Item2: _T): Integer;

Public
data : _T;
procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

4. Note that the type parameter names in declaration and implementation must be the same.

Not only generic classes can be defined, but also other types:

{$mode objfpc}
{$INTERFACES CORBA}
type

generic PlanarCoordinate<t> = record
x,y : t;

end;

TScreenCoordinate = specialize PLanarCoordinate<word>;
TDiscreteCoordinate = specialize PlanarCoordinate<integer>;
TRealCoordinate = specialize PlanarCoordinate<extended>;

generic TDistanceFunction<t> = function (x,y : t) : Extended of object;

TScreenDistance = specialize TDistanceFunction<word>;
TDiscreteDistance = specialize TDistanceFunction<integer>;
TRealDistance = specialize TDistanceFunction<Extended>;

generic TArray<t> = array of t;

TMyIntegerArray = specialize TArray<integer>;

generic IList<_T> = Interface
Function GetItem(AIndex : Integer) : _T;

125

CHAPTER 8. GENERICS

Procedure SetItem(AIndex : Integer; AValue : _T);
Function GetCount : Integer;
Property Items [AIndex : Integer] : _T Read GetItem Write SetItem;
Property Count : Integer Read GetCount;

end;

generic TList<_T>=class(TObject, specialize IList<_T>)
public type

TCompareFunc = function(const Item1, Item2: _T): Integer;
Function GetItem(AIndex : Integer) : _T;
Procedure SetItem(AIndex : Integer; AValue : _T);
Function GetCount : Integer;

Public
data : _T;
procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

generic TPointSet<t> = array of specialize PlanarCoordinate<t>;

TScreenPointSet = specialize TPointSet<word>;
TDiscretePointSet = specialize TPointSet<integer>;
TRealPointSet = specialize TPointSet<extended>;

Remark A word on visibility: the template types T or _T are available as strict private types. That means that
the types are not available in the descendent classes, unless they are made available through some
protected or private mechanism, as in the following example:

generic TList<_T>=class(TObject)
public type

TItemType = _T;
end;

8.3 Generic type specialization

Once a generic type is defined, it can be used to generate other types: this is like replaying the
definition of the types, with the template placeholders filled in with actual type definitions.

This can be done in any Type definition block. The specialized type looks as follows:

Specialized type

-- specialized type specialize identifier < type identifier list > -�

-- type identifier list
6
identifier

,
-�

Which is a very simple definition. Given the declaration of TList in the previous section, the
following would be a valid type definition:

126

CHAPTER 8. GENERICS

Type
TPointerList = specialize TList<Pointer>;
TIntegerList = specialize TList<Integer>;

As of version 3.0 of Free Pascal, the specialize keyword can also be used in a variable declaration:

Var
P : specialize TList<Pointer>;

The specialize keyword is part of the specialized type, so when using fully qualified names, the
specialize keyword must be after the unit name and parent type names.

The type in the specialize statement must be known, except in another generic type definition. Given
the two generic class definitions:

type
Generic TMyFirstType<T1> = Class(TMyObject);
Generic TMySecondType<T2> = Class(TMyOtherObject);

Then the following specialization is not valid:

type
TMySpecialType = specialize TMySecondType<TMyFirstType>;

because the type TMyFirstType is a generic type, and thus not fully defined. The compiler will
complain:

Error: Generics cannot be used as parameters when specializing generics

However, the following is allowed:

type
TA = specialize TMyFirstType<Atype>;
TB = specialize TMySecondType<TA>;

because TA is already fully defined when TB is specialized.

However, the specialize keyword can be used in another generic type definition as shown in the
example above:

generic TList<_T>=class(TObject, specialize IList<_T>)

and

generic TPointSet<t> = array of specialize PlanarCoordinate<t>;

In these definitions, the specialization is only performed when the generic type itself is specialized,
and at that time, the types are known.

Remark It is not possible to make a forward definition of a class which is a specialization of a generic, i.e.
the following will not compile:

TMyClass = Class;

// Other declarations

TMyClass = specialize TList<T>;

127

CHAPTER 8. GENERICS

8.4 Generic type restrictions

The diagram in section 8.1, page 123 shows that the type template list can have extra specifiers for
the types. This is especially useful for object types: if the template type must descend from a certain
class, then this can be specified in the template list:

{$mode objfpc}
{$h+}
uses sysutils, classes;

Type
generic TList<_T : TComponent> = class(TObject)
public

Type TCompareFunc = function(const Item1, Item2: _T): Integer;
Public

data : _T;
procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

Given the above definition, the following will compile:

TPersistentList = specialize TList<TComponent>;

But this will not compile

TPersistentList = specialize TList<TPersistent>;

The compiler will return an error:

Error: Incompatible types: got "TPersistent" expected "TComponent"

Multiple types can be grouped together:

Type
generic TList<Key1,Key2 : TComponent; Value1 : TObject> = class(TObject)

Additionally, it is possible to specify more than one type identifier for class and interface type re-
strictions. If a class is specified, then the type used for the template must be equal to or descend from
the indicated type:

Type
generic TList<T: TComponent, IEnumerable> = class(TObject)

A class used to specialize Tmust descend from TComponent and must implement IEnumerable.

If an interface is specified, then the template type must implement at least this interface, but it can
also be a descendent interface from this interface:

Type
generic TGenList<T: IEnumerable> = class(TObject)

IMyEnum = Interface (IEnumerable)
Procedure DoMy;

128

CHAPTER 8. GENERICS

end;

TList = specialize TGenList<IMyEnum>;
TSomeList = Specialize TGenList<TList>;

Multiple interfaces can be specified, in that case the class type must implement all listed interfaces:
It is possible to mix one class name with several interface names.

If no type restrictions are in effect, the compiler will assume that template types are not assignment
compatible.

This is specially important when the generic class contains overloaded methods. Given the following
generic type declaration:

type
generic TTest<T1, T2> = class

procedure Test(aArg: LongInt);
procedure Test(aArg: T1);
procedure Test(aArg: T2);

end;

Specializing the above will compile if T1 and T2 are of two different types and neither is also
LongInt. The following will compile:

T1 = specialize TTest<String, TObject>;

But the following two will not compile:

T2 = specialize TTest<String, String>;

or

T2 = specialize TTest<String, Longint>;

8.5 Delphi compatibility

FPC’s generics support is implemented somewhat different from Delphi. In this section the main
differences are highlighted.

8.5.1 Syntax elements
The syntax shown in the syntax diagrams is the syntax required in the ObjFPC mode of the compiler.
However, in Delphi mode, the specialize and generic keywords must not be used, as shown
in the following example:

Type
TTest<T> = Class(TObject)
Private

FObj : T;
Public

Property Obj : T Read FObj Write FObj;
end;

TIntegerTest = TTest<Integer>;

129

CHAPTER 8. GENERICS

In difference with Mode Objfpc, the template type names must be repeated in method definitions.

Type
TTest<T> = Class(TObject)
Private

FObj : T;
Public

Procedure DoIt;
Property Obj : T Read FObj Write FObj;

end;

Procedure TTest<T>.DoIt;

begin
end;

This requirement is directly related to the generic type overload capability mentioned in the next
section.

8.5.2 Record type restrictions
In Delphi mode, the record type restrictions will also allow the use of simple types:

Type
TList<_T : record> = class(TObject)
public

Type TCompareFunc = function(const Item1, Item2: _T): Integer;
Public

data : _T;
procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

TIntList = TList<Integer>;

The restriction is enforced when specializing the type. That means that the mode active when spe-
cializing a type determines whether a simple type can be used or not: if the restriction to record
was compiled using ObjFPC mode, code written in Delphi mode can specialize it with a simple type
anyway.

for example:

unit tg;

interface

{$mode objfpc}

Type
generic TList<_T : record> = class(TObject)
public

Type TCompareFunc = function(const Item1, Item2: _T): Integer;
Public

data : _T;

130

CHAPTER 8. GENERICS

procedure Add(item: _T);
procedure Sort(compare: TCompareFunc);

end;

implementation

generic procedure TList<_T>.Add(item: _T);

begin

end;

generic procedure TList<_T>.Sort(compare: TCompareFunc);

begin
end;

end.

can be used in {$MODE Delphi} for:

{$mode delphi}
uses tg;

Type
TIntList = TList<Integer>;

begin
end.

8.5.3 Type overloads
Delphi mode allows generic type overloads. This means that it is possible to declare the same generic
class with different template type lists. The following declarations are therefore possible:

Type
TTest<T> = Class(TObject)
Private

FObj : T;
Public

Property Obj : T Read FObj Write FObj;
end;

TTest<T,S> = Class(TObject)
Private

FObj1 : T;
FObj2 : S;

Public
Property Obj1 : T Read FObj1 Write FObj1;
Property Obj2 : S Read FObj2 Write FObj2;

end;

131

CHAPTER 8. GENERICS

8.5.4 Name space considerations
In Delphi mode, the generics do not interfere with the namespace for variables, this means that the
following will also compile:

Type
TTest<T> = Class(TObject)
Private

FObj : T;
Public

Property Obj : T Read FObj Write FObj;
end;

Var
TTest : Integer;

However, this does not work for constants and functions.

8.6 Type compatibility

Whenever a generic class is specialized, this results in a new, distinct type. These types are assign-
ment compatible if the same template types are used.

Take the following generic definition:

{$mode objfpc}
unit ua;

interface

type
Generic TMyClass<T> = Class(TObject)

Procedure DoSomething(A : T; B : INteger);
end;

Implementation

Procedure TMyClass.DoSomething(A : T; B : Integer);

begin
// Some code.

end;

end.

And the following specializations:

{$mode objfpc}
unit ub;

interface

uses ua;

132

CHAPTER 8. GENERICS

Type
TB = Specialize TMyClass<string>;

implementation

end.

the following specializations is identical, but appears in a different unit:

{$mode objfpc}
unit uc;

interface

uses ua;

Type
TB = Specialize TMyClass<string>;

implementation

end.

The following will then compile:

{$mode objfpc}
unit ud;

interface

uses ua,ub,uc;

Var
B : ub.TB;
C : uc.TB;

implementation

begin
B:=C;

end.

The types ub.TB and uc.TB are assignment compatible. It does not matter that the types are defined
in different units. They could be defined in the same unit as well:

{$mode objfpc}
unit ue;

interface

uses ua;

Type
TB = Specialize TMyClass<string>;

133

CHAPTER 8. GENERICS

TC = Specialize TMyClass<string>;

Var
B : TB;
C : TC;

implementation

begin
B:=C;

end.

Each specialization of a generic class with the same types as parameters is a new, distinct type, but
these types are assignment compatible if the template types used to specialize them are equal.

If the specialization is with a different template type, the types are still distinct, but no longer assign-
ment compatible. i. e. the following will not compile:

{$mode objfpc}
unit uf;

interface

uses ua;

Type
TB = Specialize TMyClass<string>;
TC = Specialize TMyClass<integer>;

Var
B : TB;
C : TC;

implementation

begin
B:=C;

end.

When compiling, an error will result:

Error: Incompatible types: got "TMyClass<System.LongInt>"
expected "TMyClass<System.ShortString>"

8.7 Using the default intrinsic

When writing generic routines, sometimes a variable must be initialized whose type is not known
during the declaration of the generic. This is where the Default intrinsic (section 4.5, page 70)
also comes into play. Given the following generic declaration:

type

134

CHAPTER 8. GENERICS

generic TTest<T> = class
procedure Test;

end;

The following code will correctly initialize the variable myt during specialization:

procedure TTest.Test;
var

myt: T;
begin

// will have the correct Default if class is specialized
myt := Default(T);

end;

8.8 A word about scope

It should be stressed that all identifiers other than the template placeholders should be known when
the generic class is declared. At the same time, nothing can be assumed about the template type
(unless a restriction is placed on it).

This works in several ways.

In the absence of type restrictions, the generic code cannot make assumptions about the template
type T. Consider the following unit:

unit ts;

interface
{$modeswitch advancedrecords}

type
PListEl = ^TListEl;
TListEl = packed record

Prev, Next: PListEl;
end;

implementation

type
generic LstEnumerator<T> = record
private

lst, lst_save: T;
public

constructor Create(const Value: T);
function MoveNext: boolean;

end;

function LstEnumerator.MoveNext: boolean;
begin

Result:=lst <> nil;
if Result then

lst:=lst^.next;
end;

135

CHAPTER 8. GENERICS

constructor LstEnumerator.Create(const Value: T);
begin

lst:= Value;
lst_save := nil;

end;

Type
TMyListEnum = specialize LstEnumerator<TListEl>;

end.

The compiler will throw an error because when it compiles the generic definition, it cannot verify
that

lst:=lst^.next;

is correct. lst is of type T, but the compiler does not (yet) know what T is, and hence cannot know
it has a field next.

This problem can be solved with type restrictions:

unit ts;
{$mode delphi}
interface

type
TListEl = class

Prev, Next: TListEl;
end;

TMyRecord1 = Class(TListEl)
MyField : String;

end;

TMyRecord2 = Class(TListEl)
MyInteger : Integer;

end;

implementation

type
TLstEnumerator<T : TListEl> = class
private

lst, lst_save: T;
public

constructor Create(const Value: T);
function MoveNext: boolean;

end;

function TLstEnumerator<T>.MoveNext: boolean;
begin

Result:=lst <> T(nil);
if Result then

136

CHAPTER 8. GENERICS

lst:=T(lst.next);
end;

constructor TLstEnumerator<t>.Create(const Value: T);
begin

lst:= Value;
lst_save := T(nil);

end;

Type
TMyRecord1Enum = TLstEnumerator<TMyRecord1>;
TMyRecord2Enum = TLstEnumerator<TMyRecord2>;

Here, the compiler knows that lst is at least of type TListEl, and hence contains members Prev
and Next.

Beside the template type, all other types used in the generic declaration must be known. This means
that a type identifier with the same name must exist. The following unit will produce an error:

{$mode objfpc}
unit myunit;

interface

type
Generic TMyClass<T> = Class(TObject)

Procedure DoSomething(A : T; B : TSomeType);
end;

Type
TSomeType = Integer;
TSomeTypeClass = specialize TMyClass<TSomeType>;

Implementation

Procedure TMyClass.DoSomething(A : T; B : TSomeType);

begin
// Some code.

end;

end.

The above code will result in an error, because the type TSomeType is not known when the decla-
ration is parsed:

home: >fpc myunit.pp
myunit.pp(8,47) Error: Identifier not found "TSomeType"
myunit.pp(11,1) Fatal: There were 1 errors compiling module, stopping

A second way in which this is visible, is the following. Assume a unit

{$mode objfpc}
unit mya;

137

CHAPTER 8. GENERICS

interface

type
Generic TMyClass<T> = Class(TObject)

Procedure DoSomething(A : T);
end;

Implementation

Procedure DoLocalThings;

begin
Writeln('mya.DoLocalThings');

end;

Procedure TMyClass.DoSomething(A : T);

begin
DoLocalThings;

end;

end.

The compiler will not allow to compile this unit, since the DoLocalThings function will not be
visible when the generic type is specialized:

Error: Global Generic template references static symtable

Now, if the unit is modified, and the DoLocalThings function is moved to the interface section,
the unit will compile. When using this generic in a program:

{$mode objfpc}
program myb;

uses mya;

procedure DoLocalThings;

begin
Writeln('myb.DoLocalThings');

end;

Type
TB = specialize TMyClass<Integer>;

Var
B : TB;

begin
B:=TB.Create;
B.DoSomething(1);

end.

138

CHAPTER 8. GENERICS

Despite the fact that generics act as a macro which is replayed at specialization time, the reference
to DoLocalThings is resolved when TMyClass is defined, not when TB is defined. This means
that the output of the program is:

home: >fpc -S2 myb.pp
home: >myb
mya.DoLocalThings

This behavior is dictated by safety and necessity:

1. A programmer specializing a class has no way of knowing which local procedures are used, so
he cannot accidentally “override” it.

2. A programmer specializing a class has no way of knowing which local procedures are used, so
he cannot implement it either, since he does not know the parameters.

3. If implementation procedures are used as in the example above, they cannot be referenced from
outside the unit. They could be in another unit altogether, and the programmer has no way of
knowing he should include them before specializing his class.

8.9 Operator overloading and generics

Operator overloading (chapter 15, page 233) and generics are closely related. Imagine a generic class
that has the following definition:

{$mode objfpc}
unit mya;

interface

type
Generic TMyClass<T> = Class(TObject)

Function Add(A,B : T) : T;
end;

Implementation

Function TMyClass.Add(A,B : T) : T;

begin
Result:=A+B;

end;

end.

When the compiler replays the generics macro, the addition must be possible. For a specialization
like this:

TMyIntegerClass = specialize TMyClass<integer>;

This is not a problem, as the Add method would become:

Procedure TMyIntegerClass.Add(A,B : Integer) : Integer;

139

CHAPTER 8. GENERICS

begin
Result:=A+B;

end;

The compiler knows how to add two integers, so this code will compile without problems. But the
following code:

Type
TComplex = record
Re,Im : Double;

end;

Type
TMyIntegerClass = specialize TMyClass<TComplex>;

Will not compile, unless the addition of two TComplex types is defined. This can be done using
record operators:

{$modeswitch advancedrecords}
uses mya;

Type
TComplex = record

Re,Im : Double;
class operator +(a,b : TComplex) : TComplex;

end;

class operator TComplex.+ (a,b : TComplex) : TComplex;

begin
Result.re:=A.re+B.re;
Result.im:=A.im+B.im;

end;

Type
TMyComplexClass = specialize TMyClass<TComplex>;

begin
// Code here

end.

Currently, due to an implementation restriction, it will not work using a global operator, i. e. the
following does not work yet:

uses mya;

Type
TComplex = record

Re,Im : Double;
end;

operator + (a,b : TComplex) : TComplex;

140

CHAPTER 8. GENERICS

begin
Result.re:=A.re+B.re;
Result.im:=A.im+B.im;

end;

Type
TMyComplexClass = specialize TMyClass<TComplex>;

begin
// Code here

end.

Support for this construct is expected in a future version of Free Pascal.

141

Chapter 9

Extended records

9.1 Definition

Extended records are in many ways equivalent to objects and to a lesser extent to classes: they are
records which have methods associated with them, and properties. Like objects, when defined as a
variable they are allocated on the stack. They do not need to have a constructor. Extended records
have limitations over objects and classes in that they do not allow inheritance and polymorphism. It
is impossible to create a descendant record of a record1.

Why then introduce extended records ? They were introduced by Delphi 2005 to support one of the
features introduced by .NET. Delphi deprecated the old TP style of objects, and re-introduced the
features of .NET as extended records. Free Pascal aims to be Delphi compatible, so extended records
are allowed in Free Pascal as well, but only in Delphi mode.

If extended records are desired in ObjFPC mode, then a mode switch must be used:

{$mode objfpc}
{$modeswitch advancedrecords}

Compatibility is not the only reason for introducing extended records. There are some practical
reasons for using methods or properties in records:

1. It is more in line with an object-oriented approach to programming: the type also contains any
methods that work on it.

2. In contrast with a procedural approach, putting all operations that work on a record in the
record itself, allows an IDE to show the available methods on the record when it is displaying
code completion options.

Defining an extended record is much like defining an object or class:

extended record type

--

packed
record

6
component list end -�

1although it can be enhanced using record helpers, more about this in the chapter on record helpers.

142

CHAPTER 9. EXTENDED RECORDS

-- component list
record visibility specifier

6
field definition

-

-

6
record method definition

6
property definition

-

-

6
recordoperator definition

variant part -�

-- field definition identifier list : type ; -�

-- record visibility specifier
strict

private

public

-�

-- record method definition function header
procedure header

;
call modifiers ;

-�

-- record operator definition class -
- operator definition -�

Some of the restrictions when compared to classes or objects are obvious from the syntax diagram:

• No inheritance of records.

• No published and protected section exists.

• Constructors or destructors cannot be defined.

• Class methods (if one can name them so) require the static keyword.

• Methods cannot be virtual or abstract – this is a consequence of the fact that there is no inheri-
tance.

Other than that the definition much resembles that of a class or object, except that operators can be
defined in an extended record.

Remark In the case of a variant record, the Case keyword implicitly starts a var section, meaning class
variables or methods are not allowed in the variant part of the record.

The following are few examples of valid extended record definitions:

TTest1 = record
a : integer;
function Test(aRecurse: Boolean): Integer;

end;

TTest2 = record
private

A,b : integer;
public

procedure setA(AValue : integer);
property SafeA : Integer Read A Write SetA;

end;

TTest3 = packed record

143

CHAPTER 9. EXTENDED RECORDS

private
fA,fb : byte;
procedure setA(AValue : Integer);
function geta : integer;

public
property A : Integer Read GetA Write SetA;

end;

TTest4 = record
private

a : Integer;
protected

function getp : integer;
public

b : string;
procedure setp (aValue : integer);
property p : integer read Getp Write SetP;

public
case x : integer of

1 : (Q : string[10]);
2 : (S : String[10]);

end;

Note that it is possible to specify a visibility for the members of the record. This is particularly useful
for example when creating an interface to a C library: the actual fields can be declared hidden, and
more “pascal” like properties can be exposed which act as the actual fields. The TTest3 record
definition shows that the packed directive can be used in extended records. Extended records have
the same memory layout as their regular counterparts: the methods and properties are not part of the
record structure in memory.

The TTest4 record definition in the above examples shows that the extended record still has the
ability to define a variant part. As with the regular record, the variant part must come last. It cannot
contain methods.

9.2 Extended record enumerators

Extended records can have an enumerator. To this end, a function returning an enumerator record
must be defined in the extended record:

{$mode objfpc}
{$modeswitch advancedrecords}
type

TIntArray = array[0..3] of Integer;

TEnumerator = record
private

FIndex: Integer;
FArray: TIntArray;
function GetCurrent: Integer;

public
function MoveNext: Boolean;
property Current: Integer read GetCurrent;

end;

144

CHAPTER 9. EXTENDED RECORDS

TMyArray = record
F: array[0..3] of Integer;
function GetEnumerator: TEnumerator;

end;

function TEnumerator.MoveNext: Boolean;
begin

inc(FIndex);
Result := FIndex < Length(FArray);

end;

function TEnumerator.GetCurrent: Integer;
begin

Result := FArray[FIndex];
end;

function TMyArray.GetEnumerator: TEnumerator;
begin

Result.FArray := F;
Result.FIndex := -1;

end;

After these definitions, the following code will compile and enumerate all elements in F:

var
Arr: TMyArray;
I: Integer;

begin
for I in Arr do

WriteLn(I);
end.

The same effect can be achieved with the enumerator operator:

{$mode objfpc}
{$modeswitch advancedrecords}
type

TIntArray = array[0..3] of Integer;

TEnumerator = record
private

FIndex: Integer;
FArray: TIntArray;
function GetCurrent: Integer;

public
function MoveNext: Boolean;
property Current: Integer read GetCurrent;

end;

TMyArray = record
F: array[0..3] of Integer;

end;

145

CHAPTER 9. EXTENDED RECORDS

function TEnumerator.MoveNext: Boolean;
begin

inc(FIndex);
Result := FIndex < Length(FArray);

end;

function TEnumerator.GetCurrent: Integer;
begin

Result := FArray[FIndex];
end;

operator Enumerator(const A: TMyArray): TEnumerator;
begin

Result.FArray := A.F;
Result.FIndex := -1;

end;

This will allow the code to run as well.

9.3 Record operators

Operator overloading is treated in detail in the chapter on operator overloading chapter 15, page 233.
However, since Delphi implemented operator overloading as part of advanced records, a few words
need to be said about it here.

As can be seen in the syntax diagram for extended records, FPC supports the Delphi syntax for
operators on extended records. This syntax is available in both ObjFPC and Delphi mode.

In objfpc mode, the operators must be defined with their symbolic names, just as regular operator
overloads:

{$mode objfpc}
{$modeswitch advancedrecords}

Type
TComplex = record

Re,Im : Double;
class operator +(a,b : TComplex) : TComplex;

end;

class operator TComplex.+ (a,b : TComplex) : TComplex;
begin

Result.re:=A.re+B.re;
Result.im:=A.im+B.im;

end;

The operators work just as they would if they were defined using the regular FPC syntax for operators,
but this syntax is of course limited to record types. Note that they have the class keyword prefixed,
and have the record type name prepended in the implementation.

As indicated above, in ObjFPC mode, the operators must be indicated with their symbol names.
By contrast, in Delphi mode, the names of the operators can also be used, similar to the syntax in
Delphi:

{$mode delphi}

146

CHAPTER 9. EXTENDED RECORDS

Type
TComplex = record

Re,Im : Double;
class operator add(a,b : TComplex) : TComplex;

end;

class operator TComplex.add (a,b : TComplex) : TComplex;
begin

Result.re:=A.re+B.re;
Result.im:=A.im+B.im;

end;

This is of course because the syntax must be compatible with Delphi.

Below is a table that links the symbolic operator names to the plain-text name. Note that some FPC
operators do not have an equivalent usin a Delphi name.

Table 9.1: Operator names

Symbol Name
+ add or positive
- subtract or negative
* multiply
/ divide
** (no equivalent)
>< (no equivalent)
= equal
< lessthan
<= lessthanorequal
> greaterthan
>= greaterthanorequal
<> notequal
:= implicit
in in
shr rightshift
shl leftshift
div intdivide
mod modulus
and bitwiseand or logicaland
or bitwiseor or logicalor
xor bitwisexor
not logicalnot

For example, the power operator (**) can be used in Delphi mode using its symbolic name:

{$mode delphi}
{$modeswitch advancedrecords}

Type
TComplex = record

Re,Im : Double;
class operator **(a,b : TComplex) : TComplex;

end;

147

CHAPTER 9. EXTENDED RECORDS

class operator TComplex.** (a,b : TComplex) : TComplex;
begin

Result.re:=-B.re;
Result.im:=-B.im;

end;

Var
a,b : TComplex;

begin
a:=a**b;

end.

More information on operator overloading can be found in the chapter on operator overloading chap-
ter 15, page 233.

148

Chapter 10

Class, Record and Type helpers

10.1 Definition

Class, record and type helpers can be used to add methods to an existing class, record or simple type,
without making a derivation of the class or re-declaring the record.

For a record or a simple type, the type helper acts as if record or the simple type is a class, and
methods are declared for it. Inside the methods, Self will refer to the value of the record or simple
type.

For classes, the effect is like inserting a method in the method table of the class. If the helper
declaration is in the current scope of the code, then the methods and properties of the helper can be
used as if they were part of the class declaration for the class or record that the helper extends.

The syntax diagram for a class, record or type helper is presented below:

Helper type

-- class
record
type

helper
(basehelper)

for Identifier
6
helper component list -

- end hint modifiers -�

-- helper component list method definition
property definition

-�

The diagram shows that a helper definition looks very much like a regular class definition. It simply
declares some extra constructors, methods, properties and fields for a class: the class, record or
simple type for which the helper is an extension is indicated after the for keyword.

Since an enumerator for a class is obtained through a regular method, class helpers can also be used
to override the enumerators for the class.

As can be seen from the syntax diagram, it is possible to create descendants of helpers: the helpers
can form a hierarchy of their own, allowing to override methods of a parent helper. They also have
visibility specifiers, just like records and classes.

As in an instance of the class, the Self identifier in a method of a class helper refers to the class
instance (not the helper instance). For a record, it refers to the record.

149

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

The following is a simple class helper for the TObject class, which provides an alternate version
of the standard ToString method.

TObjectHelper = class helper for TObject
function AsString(const aFormat: String): String;

end;

function TObjectHelper.AsString(const aFormat: String): String;
begin

Result := Format(aFormat, [ToString]);
end;

var
o: TObject;

begin
Writeln(o.AsString('The object''s name is %s'));

end.

Remark The helper modifier is only a modifier just after the class or record keywords. That means
that the first member of a class or record cannot be named helper. A member of a class or record
can be called helper, it just cannot be the first one, unless it is escaped with a &, as for all identifiers
that match a keyword.

Remark Support for type helpers requires the use of Delphi mode or the use of a typehelpersmodeswitch
in other modes:

{$MODESWITCH TYPEHELPERS}

Remark Support for record helpers requires the use of Delphi mode or the use of a advancedrecords
modeswitch in other modes:

{$MODESWITCH ADVANCEDRECORDS}

10.2 Restrictions on class helpers

It is not possible to extend a class with any method or property. There are some restrictions on the
possibilities:

• Destructors or class destructors are not allowed.

• Class constructors are not allowed.

• Class helpers cannot descend from record helpers, and cannot extend record types.

• Field definitions are not allowed. Neither are class fields.

• Properties that refer to a field are not allowed. This is in fact a consequence of the previous
item.

• Abstract methods are not allowed.

• Virtual methods of the class cannot be overridden. They can be hidden by giving them the
same name or they can be overloaded using the overload directive.

• Unlike for regular procedures or methods, the overload specifier must be explicitly used
when overloading methods from a class in a class helper. If overload is not used, the extended
type’s method is hidden by the helper method (as for regular classes).

150

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

The following modifies the previous example by overloading the ToString method:

TObjectHelper = class helper for TObject
function ToString(const aFormat: String): String; overload;

end;

function TObjectHelper.ToString(const aFormat: String): String;
begin

Result := Format(aFormat, [ToString]);
end;

var
o: TObject;

begin
Writeln(o.ToString('The object''s name is %s'));

end.

10.3 Restrictions on record helpers

Records do not offer the same possibilities as classes do. This reflects on the possibilities when
creating record helpers. Below the restrictions on record helpers are enumerated:

• A record helper cannot be used to extend a class. The following will fail:

TTestHelper = record helper for TObject
end;

• Inside a helper’s declaration the methods/fields of the extended record can’t be accessed in e. g.
a property definition. They can be accessed in the implementation, of course. This means that
the following will not compile:

TTest = record
Test: Integer;

end;

TTestHelper = record helper for TTest
property AccessTest: Integer read Test;

end;

• Record helpers can only access public fields (in case an extended record with visibility speci-
fiers is used).

• Inheritance of record helpers is only allowed in ObjFPC mode; In Delphi mode, it is not
allowed.

• Record helpers can only descend from other record helpers, not from class helpers.

• Unlike class helpers, a descendent record helper must extend the same record type.

• In Delphi mode, it is not possible to call the extended record’s method using inherited. It
is possible to do so in ObjFPC mode. The following code needs ObjFPC mode to compile:

type
TTest = record

151

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

function Test(aRecurse: Boolean): Integer;
end;

TTestHelper = record helper for TTest
function Test(aRecurse: Boolean): Integer;

end;

function TTest.Test(aRecurse: Boolean): Integer;
begin

Result := 1;
end;

function TTestHelper.Test(aRecurse: Boolean): Integer;
begin

if aRecurse then
Result := inherited Test(False)

else
Result := 2;

end;

10.4 Considerations for (simple) type helpers

For simple types, the rules are pretty much the same as for records, plus there are some extra require-
ments:

• Support for type helpers needs to be activated using the modeswitch typehelpers:

{$modeswitch typehelpers}

This modeswitch is enabled by default only in mode Delphi and DelphiUnicode.

• In Delphi (and DelphiUnicode) mode, for stricter Delphi compatibility, the record helpers must
be used instead of a type helper.

• The modes ObjFPC and MacPas use type helper, but the modeswitch TypeHelpers must be
used.

• The following types are not supported:

– All file types (Text, file of ...)

– Procedural variables

– Types like records, classes, Objective C classes, C++ classes, objects and interfaces are
forbidden as well, the class helper must be used for classes. That means that for instance,
the following will fail:

TTestHelper = type helper for TObject
end;

This of course means that all other simple types are supported.

• Type helpers can implement constructors.

• Inheritance of record helpers is only allowed in ObjFPC mode; In Delphi mode, it is not
allowed.

152

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

• Type helpers can only descend from other type helpers, not from class or record helpers.

• A descendent type helper must extend the same type.

The following gives an idea of the possibilities:

{$mode objfpc}
{$modeswitch typehelpers}

type
TLongIntHelper = type helper for LongInt

constructor create(AValue: LongInt);
class procedure Test; static;
procedure DoPrint;

end;

constructor TLongIntHelper.create(AValue: LongInt);

begin
Self:=Avalue;
DoPrint;

end;

class procedure TLongIntHelper.Test;

begin
Writeln('Test');

end;

procedure TLongIntHelper.DoPrint;

begin
Writeln('Value :',Self);

end;

var
i: LongInt;

begin
I:=123;
i.Test;
$12345678.Test;
LongInt.Test;
I:=123;
i.DoPrint;
$12345678.DoPrint;

end.

10.5 A note on scope and lifetime for record and type helpers

For classes, the lifetime of an instance of a class is explicitly managed by the programmer. It is
therefore clear what the Self parameter means and when it is valid.

Records and other simple types are allocated on the stack, which means they go out of scope when
the function, procedure or method in which they are used, exits.

153

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

Combined with the fact that helper methods are type compatible to class methods, and can therefore
be used as event handlers, this can lead to surprising situations: The data pointer in a helper method
is set to the address of the variable.

Consider the following example:

{$mode objfpc}
{$modeswitch typehelpers}
uses

Classes;

type
TInt32Helper = type helper for Int32

procedure Foo(Sender: TObject);
end;

procedure TInt32Helper.Foo(Sender: TObject);
begin

Writeln(Self);
end;

var
i: Int32 = 10;
m: TNotifyEvent;

begin
m := @i.Foo;
WriteLn('Data : ',PtrUInt(TMethod(m).Data));
m(nil);

end.

This will print something like (the actual value for data may differ):

Data : 6848896
10

The variable i is still in scope when m is called.

But changing the code to

{$mode objfpc}
{$modeswitch typehelpers}
uses

Classes;

type
TInt32Helper = type helper for Int32

procedure Foo(Sender: TObject);
end;

procedure TInt32Helper.Foo(Sender: TObject);
begin

Writeln(Self);
end;

Function GetHandler :TNotifyEvent;

154

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

var
i: Int32 = 10;

begin
Result:=@i.foo;

end;

Var
m: TNotifyEvent;

begin
m := GetHandler;
WriteLn(PtrUInt(TMethod(m).Data));
m(nil);

end.

The output will be:

140727246638796
0

The actual output will depend on the architecture, but the point is that i is no longer in scope, making
the output of its value meaningless, and possibly even leading to access violations and program
crashes.

10.6 Inheritance

As noted in the previous section, it is possible to create descendants of helper classes. Since only
the last helper class in the current scope can be used, it is necessary to descend a helper class from
another one if methods of both helpers must be used. More on this in a subsequent section.

A descendent of a class helper can extend a different class than its parent. The following is a valid
class helper for TMyObject:

TObjectHelper = class helper for TObject
procedure SomeMethod;

end;

TMyObject = class(TObject)
end;

TMyObjectHelper = class helper(TObjectHelper) for TMyObject
procedure SomeOtherMethod;

end;

The TMyObjectHelper extends TObjectHelper, but does not extend the TObject class, it
only extends the TMyObject class.

Since records know no inheritance, it is obvious that descendants of record helpers can only extend
the same record.

Remark For maximum delphi compatibility, it is impossible to create descendants of record helpers in Delphi
mode.

155

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

10.7 Usage

Once a helper class is defined, its methods can be used whenever the helper class is in scope. This
means that if it is defined in a separate unit, then this unit should be in the uses clause wherever the
methods of the helper class are used.

Consider the following unit:

{$mode objfpc}
{$h+}
unit oha;

interface

Type
TObjectHelper = class helper for TObject

function AsString(const aFormat: String): String;
end;

implementation

uses sysutils;

function TObjectHelper.AsString(const aFormat: String): String;

begin
Result := Format(aFormat, [ToString]);

end;

end.

Then the following will compile:

Program Example113;

uses oha;

{ Program to demonstrate the class helper scope. }

Var
o : TObject;

begin
O:=TObject.Create;
Writeln(O.AsString('O as a string : %s'));

end.

But, if a second unit (ohb) is created:

{$mode objfpc}
{$h+}
unit ohb;

interface

156

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

Type
TAObjectHelper = class helper for TObject

function MemoryLocation: String;
end;

implementation

uses sysutils;

function TAObjectHelper.MemoryLocation: String;

begin
Result := format('%p',[pointer(Self)]);

end;

end.

And is added after the first unit in the uses clause:

Program Example113;

uses oha,ohb;

{ Program to demonstrate the class helper scope. }

Var
o : TObject;

begin
O:=TObject.Create;
Writeln(O.AsString('O as a string : %s'));
Writeln(O.MemoryLocation);

end.

Then the compiler will complain that it does not know the method “AsString”. This is because the
compiler stops looking for class helpers as soon as the first class helper is encountered. Since the
ohb unit comes last in the uses clause, the compiler will only use TAObjectHelper as the class
helper.

The solution is to re-implement unit ohb:

{$mode objfpc}
{$h+}
unit ohc;

interface

uses oha;

Type
TAObjectHelper = class helper(TObjectHelper) for TObject

function MemoryLocation: String;
end;

implementation

157

CHAPTER 10. CLASS, RECORD AND TYPE HELPERS

uses sysutils;

function TAObjectHelper.MemoryLocation: String;

begin
Result := format('%p',[pointer(Self)]);

end;

end.

And after replacing unit ohb with ohc, the example program will compile and function as expected.

Note that it is not enough to include a unit with a class helper once in a project; The unit must be
included whenever the class helper is needed.

158

Chapter 11

Objective-Pascal Classes

11.1 Introduction

The preferred programming language to access Mac OS X system frameworks is Objective-C. In
order to fully realize the potential offered by system interfaces written in that language, a variant of
Object Pascal exists in the Free Pascal compiler that tries to offer the same functionality as Objective-
C. This variant is called Objective-Pascal.

The compiler has mode switches to enable the use of these Objective-C-related constructs. There
are two kinds of Objective-C language features, discerned by a version number: Objective-C 1.0 and
Objective-C 2.0.

The Objective-C 1.0 language features can be enabled by adding a modeswitch to the source file:

{$modeswitch objectivec1}

or by using the -Mobjectivec1 command line switch of the compiler.

The Objective-C 2.0 language features can be enabled using a similar modewitch:

{$modeswitch objectivec2}

or the command-line option -Mobjectivec2.

The Objective-C 2.0 language features are a superset of the Objective-C 1.0 language features, and
therefore the latter switch automatically implies the former. Programs using Objective-C 2.0 lan-
guage features will only work on Mac OS X 10.5 and later.

The fact that objective-C features are enabled using mode switches rather than actual syntax modes,
means they can be used in combination with every general syntax mode (fpc, objfpc, tp, delphi, mac-
pas). Note that a {$Mode } directive switch will reset the mode switches, so the {$modeswitch
} statement should be located after it.

11.2 Objective-Pascal class declarations

Objective-C or -Pascal classes are declared much as Object Pascal classes are declared, but they use
the objcclass keyword:

Objective C Class types

159

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

-- objcclass
external

name string constant

-

-

heritage

6
component list

class visibility specifier

end
-�

-- heritage (
objective-Cclass type identifier implemented protocols

) -�

-- implemented protocols
6
protocol identifier

,
-�

-- component list
visibility specifier

6
field definition

-

-

6
class variable declaration part

method definition
property definition

-�

-- class variable declaration part class variable declaration part -�

-- field definition identifier list : type ;
static;

-�

-- method definition
class

function header
procedure header

; -

-

override
message string constant

;
-�

-- class visibility specifier

strict
private

protected
public

-�

As can be seen, the syntax is roughly equivalent to Object Pascal syntax, with some extensions.

In order to use Objective-C classes, an external modifier exists: this indicates to the compiler that the
class is implemented in an external object file or library, and that the definition is meant for import
purposes. The following is an example of an external Objective-C class definition:

NSView = objcclass external(NSResponder)
private

_subview : id;
public

function initWithFrame(rect : NSRect): id;
message 'initWithFrame:';

procedure addSubview(aview: NSView);

160

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

message 'addSubview:';
procedure setAutoresizingMask(mask: NSUInteger);

message 'setAutoresizingMask:';
procedure setAutoresizesSubviews(flag: LongBool);

message 'setAutoresizesSubviews:';
procedure drawRect(dirtyRect: NSRect);

message 'drawRect:';
end;

As can be seen, the class definition is not so different from an Object Pascal class definition; Only the
message directive is more prominently present: each Objective-C or Objective-Pascal method must
have a message name associated with it. In the above example, no external name was specified for
the class definition, meaning that the Pascal identifier is used as the name for the Objective-C class.
However, since Objective-C is not so strict in its naming conventions, sometimes an alias must be
created for an Objective-C class name that doesn’t obey the Pascal identifier rules.

The following example defines an Objective-C class which is implemented in Pascal:

MyView = objcclass(NSView)
public

data : Integer;
procedure customMessage(dirtyRect: NSRect);

message 'customMessage';
procedure drawRect(dirtyRect: NSRect); override;

end;

The absence of the external keyword tells the compiler that the methods must be implemented
later in the source file: it will be treated much like a regular object pascal class. Note the presence
of the override directive: in Objective-C, all methods are virtual. In Object Pascal, overrid-
ing a virtual method must be done through the override directive. This has been extended to
Objective-C classes: it allows the compiler to verify the correctness of the definition.

Unless the class is implementing the method of a protocol (more about this in a subsequent section),
one of message or override is expected: all methods are virtual, and either a new method is
started (or re-introduced), or an existing is overridden. Only in the case of a method that is part of a
protocol, the method can be defined without message or override.

Note that the Objective-C class declaration may or may not specify a parent class. In Object Pas-
cal, omitting a parent class will automatically make the new class a descendant of TObject. In
Objective-C, this is not the case: the new class will be a new root class. However, Objective-C does
have a class which fulfills the function of generic root class: NSObject, which can be considered
the equivalent of TObject in Object Pascal. It has other root classes, but in general, Objective-
Pascal classes should descend from NSObject. If a new root class is constructed anyway, it must
implement the NSObjectProtocol – just as the NSObject class itself does.

Finally, Objective-Pascal classes can have properties, but these properties are only usable in Pascal
code: the compiler currently does not export the properties in a way that makes them usable from
Objective-C.

11.3 Formal declaration

Object Pascal has the concept of Forward declarations. Objective-C takes this concept a bit further: it
allows to declare a class which is defined in another unit. This has been dubbed “Formal declaration”
in Objective-Pascal. Looking at the syntax diagram, the following is a valid declaration:

MyExternalClass = objcclass external;

161

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

This is a formal declaration. It tells the compiler that MyExternalClass is an Objective-C class
type, but that there is no declaration of the class members. The type can be used in the remainder of
the unit, but its use is restricted to storage allocation (in a field or method parameter definition) and
assignment (much like a pointer).

As soon as the class definition is encountered, the compiler can enforce type compatibility.

The following unit uses a formal declaration:

unit ContainerClass;

{$mode objfpc}
{$modeswitch objectivec1}

interface

type
MyItemClass = objcclass external;

MyContainerClass = objcclass
private
item: MyItemClass;
public
function getItem: MyItemClass; message 'getItem';

end;

implementation

function MyContainerClass.getItem: MyItemClass;
begin

result:=item; // Assignment is OK.
end;

end.

A second unit can contain the actual class declaration:

unit ItemClass;

{$mode objfpc}
{$modeswitch objectivec1}

interface

type
MyItemClass = objcclass(NSObject)
private

content : longint;
public

function initWithContent(c: longint): MyItemClass;
message 'initWithContent:';

function getContent: longint;
message 'getContent';

end;

162

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

implementation

function MyItemClass.initWithContent(c: longint):
MyItemClass;

begin
content:=c;
result:=self;

end;

function MyItemClass.getContent: longint;
begin

result:=content;
end;

end.

If both units are used in a program, the compiler knows what the class is and can verify the correctness
of some assignments:

Program test;

{$mode objfpc}
{$modeswitch objectivec1}

uses
ItemClass, ContainerClass;

var
c: MyContainerClass;
l: longint;

begin
c:=MyContainerClass.alloc.init;
l:=c.getItem.getContent;

end.

11.4 Allocating and de-allocating Instances

The syntax diagram of Objective-C classes shows that the notion of constructor and destructor is not
supported in Objective-C. New instances are created in a 2-step process:

1. Call the “alloc” method (send an “alloc” message): This is a class method of NSObject,
and returns a pointer to memory for the new instance. The use of alloc is a convention in
Objective-C.

2. Send an “initXXX” message. By convention, all classes have one or more “InitXXX” methods
that initializes all fields in the instance. This method will return the final instance pointer,
which may be Nil.

The following code demonstrates this:

var
obj: NSObject;

begin

163

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

// First allocate the memory.
obj:=NSObject.alloc;
// Next, initialise.
obj:=obj.init;
// Always check the result !!
if (Obj=Nil) then

// Some error;

By convention, the initXXX method will return Nil if initialization of some fields failed, so it is
imperative that the result of the function is tested.

Similarly, no privileged destructor exists; By convention, the dealloc method fulfills the cleanup
of the instances. This method can be overridden to perform any cleanup necessary. Like Destroy, it
should never be called directly, instead, the releasemethod should be called instead: All instances
in Objective-C are reference counted, and release will only call dealloc if the reference count
reaches zero.

11.5 Protocol definitions

In Objective-C, protocols play the role that interfaces play in Object Pascal, but there are some
differences:

• Protocol methods can be marked optional, i. e. the class implementing the protocol can decide
not to implement these methods.

• Protocols can inherit from multiple other protocols.

Objective-C classes can indicate which protocols they implement in the class definition, as could be
seen in the syntax diagram for Objective-C classes.

The following diagram shows how to declare a protocol. It starts with the objcprotocol keyword:

Protocol type

-- objcprotocol
external

name string constant
heritage

-

- protocol method list end -�

-- heritage (
6
protocol type identifier

,
) -�

-- protocol method list
6 required

optional

method definition -�

As in the case of Objective-Pascal classes, the external specifier tells the compiler that the decla-
ration is an import of a protocol defined elsewhere. For methods, almost the same rules apply as for
methods in the Objective-Pascal class declarations. The exception is that message specifiers must be
present.

The required and optional specifiers before a series of method declarations are optional. If
none is specified, required is assumed. The following is a definition of a protocol:

164

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

type
MyProtocol = objccprotocol

// default is required
procedure aRequiredMethod;

message 'aRequiredMethod';
optional

procedure anOptionalMethodWithPara(para: longint);
message 'anOptionalMethodWithPara:';

procedure anotherOptionalMethod;
message 'anotherOptionalMethod';

required
function aSecondRequiredMethod: longint;

message 'aSecondRequiredMethod';
end;

MyClassImplementingProtocol = objcclass(NSObject,MyProtocol)
procedure aRequiredMethod;
procedure anOptionalMethodWithPara(para: longint);
function aSecondRequiredMethod: longint;

end;

Note that in the class declaration, the message specifier was omitted. The compiler (and runtime) can
deduce it from the protocol definition.

11.6 Categories

Similar to class helpers in Object Pascal, Objective-C has Categories. Categories allow to extend
classes without actually creating a descendant of these classes. However, Objective-C categories
provide more functionality than a class helper:

1. In Object Pascal, only one helper class can be in scope (the last one). In Objective-C, multiple
categories can be in scope at the same time for a particular class.

2. In Object Pascal, a helper method cannot change an existing method present in the original
class (but it can hide a method). In Objective-C, a category can also replace existing methods
in another class rather than only add new ones. Since all methods are virtual in Objective-C,
this also means that this method changes for all classes that inherit from the class in which the
method was replaced (unless they override it).

3. Object Pascal helpers cannot be used to add interfaces to existing classes. By contrast, an
Objective-C category can also implement protocols.

The definition of an objective-C class closely resembles a protocol definition, and is started with the
objccategory keyword:

Category type

-- objccategory
external

name string constant
heritage

-

- category method list end -�

165

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

-- heritage (Objective Class type identifier
6
protocol type identifier

,
) -�

-- category method list
6

method definition
reintroduce

-�

Note again the possibility of an alias for externally defined categories: Objective-C 2.0 allows an
empty category name. Note that the reintroduce modifier must be used if an existing method is
being replaced rather than that a new method is being added.

When replacing a method, calling “inherited” will not call the original method of the class, but instead
will call the parent class’ implementation of the method.

The following is an example of a category definition:

MyProtocol = objcprotocol
procedure protocolmethod; message 'protocolmethod';

end;

MyCategory = objccategory(NSObject,MyProtocol)
function hash: cuint; reintroduce;
procedure protocolmethod; // from MyProtocol.
class procedure newmethod; message 'newmethod';

end;

Note that this declaration replaces the Hash method of every class that descends from NSObject
(unless it specifically overrides it).

11.7 Name scope and Identifiers

In Object Pascal, each identifier must be unique in its namespace: the unit. In Objective-C, this need
not be the case and each type identifier must be unique among its kind: classes, protocols, categories,
fields or methods. This is shown in the definitions of the basic protocol and class of Objective-C:
Both protocol and class are called NSObject.

When importing Objective-C classes and protocols, the Objective-Pascal names of these types must
conform to the Object Pascal rules, and therefore must have distinct names. Likewise, names that are
valid identifiers in Objective-C may be reserved words in Object Pascal. They also must be renamed
when imported.

To make this possible, the External and “message” modifiers allow to specify a name: this is the
name of the type or method as it exists in Objective-C:

NSObjectProtocol = objcprotocol external name 'NSObject'
function _class: pobjc_class; message name 'class';

end;

NSObject = objcclass external (NSObjectProtocol)
function _class: pobjc_class;
class function classClass: pobjc_class; message 'class';

end;

166

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

11.8 Selectors

A Selector in Objective-C can be seen as an equivalent to a procedural type in Object Pascal.

In difference with the procedural type, Objective-C has only one selector type: SEL. It is defined in
the objc unit – which is automatically included in the uses clause of any unit compiled with the
objectivec1 modeswitch.

To assign a value to a variable of type SEL, the objcselector method must be used:

{$modeswitch objectivec1}
var

a: SEL;
begin

a:=objcselector('initiWithWidth:andHeight:');
a:=objcselector('myMethod');

end.

The objc unit contains methods to manipulate and use the selector.

11.9 The id type

The id type is special in Objective-C/Pascal. It is much like the pointer type in Object Pascal,
except that it is a real class. It is assignment-compatible with instances of every objcclass and
objcprotocol type, in two directions:

1. variables of any objcclass/objcprotocol type can be assigned to a variable of the type
id.

2. variables of type id can be assigned to variables of any particular objcclass/objcprotocol
type.

No explicit typecast is required for either of these assignments.

Additionally, any Objective-C method declared in an objcclass or objccategory that is in
scope can be called when using an id-typed variable.

If, at run time, the actual objcclass instance stored in the id-typed variable does not respond to
the sent message, the program will terminate with a run time error: much like the dispatch mechanism
for variants under MS-Windows.

When there are multiple methods with the same Pascal identifier, the compiler will use the standard
overload resolution logic to pick the most appropriate method. In this process, it will behave as if all
objcclass/objccategorymethods in scope have been declared as global procedures/functions
with the overload specifier. Likewise, the compiler will print an error if it cannot determine which
overloaded method to call.

In such cases, a list of all methods that could be used to implement the call will be printed as a hint.

To resolve the error, an explicit type cast must be used to tell the compiler which objcclass type
contains the needed method.

11.10 Enumeration in Objective-C classes

Fast enumeration in Objective-C is a construct which allows to enumerate the elements in a Cocoa
container class in a generic way. It is implemented using a for-in loop in Objective-C.

167

CHAPTER 11. OBJECTIVE-PASCAL CLASSES

This has been translated to Objective-Pascal using the existing for-in loop mechanism. Therefore,
the feature behaves identically in both languages. Note that it requires the Objective-C 2.0 mode
switch to be activated.

The following is an example of the use of for-in:

{$mode delphi}
{$modeswitch objectivec2}

uses
CocoaAll;

var
arr: NSMutableArray;
element: NSString;
pool: NSAutoreleasePool;
i: longint;

begin
pool:=NSAutoreleasePool.alloc.init;
arr:=NSMutableArray.arrayWithObjects(

NSSTR('One'),
NSSTR('Two'),
NSSTR('Three'),
NSSTR('Four'),
NSSTR('Five'),
NSSTR('Six'),
NSSTR('Seven'),
nil);

i:=0;
for element in arr do

begin
inc(i);
if i=2 then
continue;

if i=5 then
break;

if i in [2,5..10] then
halt(1);

NSLog(NSSTR('element: %@'),element);
end;

pool.release;
end.

168

Chapter 12

Expressions

Expressions occur in assignment statements or in tests.

Expressions are built of two components: operators and their operands. Most operators are binary,
i. e. require two operands. Binary operators occur always between the operands (as in X/Y). Few
operators are unary, i. e. require only one operand. A unary operator occurs always before the
operand, as in -X.

An expression resolves into a value of a certain type. The resulting type is determined by the types
of the values in the expression and the operators in the expression.

When using multiple operands in an expression, the precedence rules of table (12.1) are used.

Table 12.1: Precedence of operators

Operator Precedence Category
Not, unary +, unary -, @, ** Highest (first) Unary operators, power
*, /, div, mod, and, shl, shr, as, <<, >> Second Multiplying operators
+, -, or, xor, >< Third Adding operators
=, <>, <, >, <=, >=, in, is Lowest (Last) relational operators

When determining the precedence, the compiler uses the following rules:

1. In operations with unequal precedences the operands belong to the operator with the high-
est precedence. For example, in 5*3+7, the multiplication is higher in precedence than the
addition, so it is ievaluated first. The result would be 22.

2. If parentheses are used in an expression, their contents is evaluated first. Thus, 5*(3+7)
would result in 50.

3. Otherwise, binary operators of the same precedence are left-associative. 5 * 3 div 7 will
evaluate to 2 and not 0.

Remark The order in which expressions of the same precedence are evaluated is not guaranteed to be left-to-
right. In general, no assumptions on which subexpression is evaluated first should be made in such a
case.

The compiler will decide which subexpression to evaluate first based on optimization rules. Thus, in
the following expression:

a := g(3) + f(2);

169

CHAPTER 12. EXPRESSIONS

f(2) may be executed before g(3). This behavior is distinctly different from Delphi or Turbo
Pascal.

If one expression must be executed before the other, it is necessary to split up the statement using
temporary results:

e1 := g(3);
a := e1 + f(2);

A notable exception to this behavior is the evaluation of boolean expressions: if short-circuit boolean
evaluation is enabled (the default) then the compiler will evaluate from left to right, but will still
respect precedence, i. e. in parts with equal precedence the left operand will always be evaluated
before the right one. Thus, the following example:

True or True and False

will evaluate to True, because it is equivalent to

True or (True and False)

12.1 Expression syntax

An expression applies relational operators to simple expressions. Simple expressions are a series of
terms (what a term is, is explained below), joined by adding operators.

Expressions

-- expression simple expression
<
<=
>
>=
=
<>
in
is

simple expression
-�

-- simple expression
6

term
+
-

or
xor

-�

The following are valid expressions:

GraphResult<>grError
(DoItToday=Yes) and (DoItTomorrow=No);
Day in Weekend

And here are some simple expressions:

170

CHAPTER 12. EXPRESSIONS

A + B
-Pi
ToBe or NotToBe

Terms consist of factors, connected by multiplication operators.

Terms

-- term
6

factor
*
/

div
mod
and
shl
shr
as

-�

Here are some valid terms:

2 * Pi
A Div B
(DoItToday=Yes) and (DoItTomorrow=No);

Factors are all other constructions:

Factors

-- factor (expression)
variable reference

function call
unsigned constant

not factor
sign factor

set constructor
value typecast
address factor

-�

-- unsigned constant unsigned number
character string

constant identifier
Nil

-�

12.2 Function calls

Function calls are part of expressions (although, using extended syntax, they can be statements too).
They are constructed as follows:

171

CHAPTER 12. EXPRESSIONS

Function calls

-- function call function identifier
method designator

qualified method designator
variable reference

actual parameter list
-�

-- actual parameter list (

6
expression

,

) -�

The variable reference must be a procedural type variable reference. A method designator can
only be used inside the method of an object. A qualified method designator can be used outside
object methods too. The function that will get called is the function with a declared parameter list
that matches the actual parameter list. This means that

1. The number of actual parameters must equal the number of declared parameters (unless default
parameter values are used).

2. The types of the parameters must be compatible. For variable reference parameters, the pa-
rameter types must be exactly the same.

If no matching function is found, then the compiler will generate an error. Which error depends –
among other things – on whether the function is overloaded or not: i. e. multiple functions with the
same name, but different parameter lists.

There are cases when the compiler will not execute the function call in an expression. This is the
case when assigning a value to a procedural type variable, as in the following example in Delphi or
Turbo Pascal mode:

Type
FuncType = Function: Integer;

Var A : Integer;
Function AddOne : Integer;
begin

A := A+1;
AddOne := A;

end;
Var F : FuncType;

N : Integer;
begin

A := 0;
F := AddOne; { Assign AddOne to F, Don't call AddOne}
N := AddOne; { N := 1 !!}

end.

In the above listing, the assignment to F will not cause the function AddOne to be called. The
assignment to N, however, will call AddOne.

Sometimes, the call is desired, for instance in recursion in that case, the call must be forced. This can
be done by adding the parenthesis to the function name:

function rd : char;

172

CHAPTER 12. EXPRESSIONS

var
c : char;

begin
read(c);
if (c='\') then

c:=rd();
rd:=c;

end;

var ch : char;

begin
ch:=rd;
writeln(ch);

end.

The above will read a character and print it. If the input is a backslash, a second character is read.

A problem with this syntax is the following construction:

If F = AddOne Then
DoSomethingHorrible;

Should the compiler compare the addresses of F and AddOne, or should it call both functions, and
compare the result? In fpc and objfpc mode this is solved by considering a procedural variable
as equivalent to a pointer. Thus the compiler will give a type mismatch error, since AddOne is
considered a call to a function with integer result, and F is a pointer.

How then, should one check whether F points to the function AddOne? To do this, one should use
the address operator @:

If F = @AddOne Then
WriteLn ('Functions are equal');

The left hand side of the boolean expression is an address. The right hand side also, and so the
compiler compares two addresses. How to compare the values that both functions return ? By adding
an empty parameter list:

If F()=Addone then
WriteLn ('Functions return same values ');

Remark that this last behavior is not compatible with Delphi syntax. Switching on Delphi mode
will allow you to use Delphi syntax.

12.3 Set constructors

When a set-type constant must be entered in an expression, a set constructor must be given. In
essence this is the same thing as when a type is defined, only there is no identifier to identify the set
with. A set constructor is a comma separated list of expressions, enclosed in square brackets.

Set constructors

173

CHAPTER 12. EXPRESSIONS

-- set constructor [

6
set group

,

] -�

-- set group expression
.. expression

-�

All set groups and set elements must be of the same ordinal type. The empty set is denoted by [],
and it can be assigned to any type of set. A set group with a range [A..Z] makes all values in the
range a set element. The following are valid set constructors:

[today,tomorrow]
[Monday..Friday,Sunday]
[2, 3*2, 6*2, 9*2]
['A'..'Z','a'..'z','0'..'9']

Remark If the first range specifier has a bigger ordinal value than the second, the resulting set will be empty,
e. g., [’Z’..’A’] denotes an empty set. One should be careful when denoting a range.

12.4 Value typecasts

Sometimes it is necessary to change the type of an expression, or a part of the expression, to be able
to be assignment compatible. This is done through a value typecast. The syntax diagram for a value
typecast is as follows:

Typecasts

-- value typecast type identifier (expression) -�

Value typecasts cannot be used on the left side of assignments, as variable typecasts. Here are some
valid typecasts:

Byte('A')
Char(48)
boolean(1)
longint(@Buffer)

In general, the type size of the expression and the size of the type cast must be the same. However, for
ordinal types (byte, char, word, boolean, enumerates) this is not so, they can be used interchangeably.
That is, the following will work, although the sizes do not match.

Integer('A');
Char(4875);
boolean(100);
Word(@Buffer);

This is compatible with Delphi or Turbo Pascal behavior.

174

CHAPTER 12. EXPRESSIONS

12.5 Variable typecasts

A variable can be considered a single factor in an expression. It can therefore be typecast as well. A
variable can be typecast to any type, provided the type has the same size as the original variable.

It is a bad idea to typecast integer types to real types and vice versa. It’s better to rely on type
assignment compatibility and using some of the standard type changing functions.

Note that variable typecasts can occur on either side of an assignment, i. e. the following are both
valid typecasts:

Var
C : Char;
B : Byte;

begin
B:=Byte(C);
Char(B):=C;

end;

Pointer variables can be typecast to procedural types, but not to method pointers.

A typecast is an expression of the given type, which means the typecast can be followed by a qualifier:

Type
TWordRec = Packed Record

L,H : Byte;
end;

Var
P : Pointer;
W : Word;
S : String;

begin
TWordRec(W).L:=$FF;
TWordRec(W).H:=0;
S:=TObject(P).ClassName;

12.6 Unaligned typecasts

A special typecast is the Unaligned typecast of a variable or expression. This is not a real typecast,
but is rather a hint for the compiler that the expression may be misaligned (i. e. not on an aligned
memory address). Some processors do not allow direct access to misaligned data structures, and
therefore must access the data byte per byte.

Typecasting an expression with the unaligned keyword signals the compiler that it should access the
data byte per byte.

Note that the compiler assumes that access to all fields/elements of packed data structures is un-
aligned.

Example:

program me;

175

CHAPTER 12. EXPRESSIONS

Var
A : packed Array[1..20] of Byte;
I : LongInt;

begin
For I:=1 to 20 do

A[I]:=I;
I:=PInteger(Unaligned(@A[13]))^;

end.

12.7 The @ operator

The address operator @ returns the address of a variable, procedure or function. It is used as follows:

Address factor

-- addressfactor @ variable reference
procedure identifier
function identifier

qualified method identifier

-�

The @ operator returns a typed pointer if the $T switch is on. If the $T switch is off then the address
operator returns an untyped pointer, which is assignment compatible with all pointer types. The type
of the pointer is ˆT, where T is the type of the variable reference. For example, the following will
compile

Program tcast;
{$T-} { @ returns untyped pointer }

Type art = Array[1..100] of byte;
Var Buffer : longint;

PLargeBuffer : ^art;

begin
PLargeBuffer := @Buffer;

end.

Changing the {$T-} to {$T+} will prevent the compiler from compiling this. It will give a type
mismatch error.

By default, the address operator returns an untyped pointer: applying the address operator to a func-
tion, method, or procedure identifier will give a pointer to the entry point of that function. The result
is an untyped pointer.

This means that the following will work:

Procedure MyProc;

begin
end;

176

CHAPTER 12. EXPRESSIONS

Var
P : PChar;

begin
P:=@MyProc;

end;

By default, the address operator must be used if a value must be assigned to a procedural type
variable. This behavior can be avoided by using the -Mtp or -MDelphi switches, which result in a
more compatible Delphi or Turbo Pascal syntax.

12.8 Operators

Operators can be classified according to the type of expression they operate on. We will discuss them
type by type.

12.8.1 Arithmetic operators
Arithmetic operators occur in arithmetic operations, i. e. in expressions that contain integers or reals.
There are two kinds of operators: Binary and unary arithmetic operators. Binary operators are listed
in table (12.2), unary operators are listed in table (12.3).

Table 12.2: Binary arithmetic operators

Operator Operation
+ Addition
- Subtraction
* Multiplication
** Exponentiation
/ Division
Div Integer division
Mod Remainder

With the exception of Div and Mod, which accept only integer expressions as operands, all operators
accept real and integer expressions as operands.

Remark The exponentiation operator (**) is available for overloading (chapter 15, page 233), but is not
defined on any of the standard Pascal types (floats and/or integers).

For binary operators, the result type will be integer if both operands are integer type expressions. If
one of the operands is a real type expression, then the result is real.

As an exception, division (/) results always in real values.

Table 12.3: Unary arithmetic operators

Operator Operation
+ Sign identity
- Sign inversion

177

CHAPTER 12. EXPRESSIONS

For unary operators, the result type is always equal to the expression type. The division (/) and Mod
operator will cause run-time errors if the second argument is zero.

The sign of the result of a Mod operator is the same as the sign of the left side operand of the Mod
operator. In fact, the Mod operator is equivalent to the following operation:

I mod J = I - (I div J) * J

But it executes faster than the right hand side expression.

12.8.2 Logical operators
Logical operators act on the individual bits of ordinal expressions. Logical operators require operands
that are of an integer type, and produce an integer type result. The possible logical operators are listed
in table (12.4).

Table 12.4: Logical operators

Operator Operation
not Bitwise negation (unary)
and Bitwise and
or Bitwise or
xor Bitwise xor
shl Bitwise shift to the left
shr Bitwise shift to the right
<< Bitwise shift to the left (same as shl)
>> Bitwise shift to the right (same as shr)

The following are valid logical expressions:

A shr 1 { same as A div 2, but faster}
Not 1 { equals -2 }
Not 0 { equals -1 }
Not -1 { equals 0 }
B shl 2 { same as B * 4 for integers }
1 or 2 { equals 3 }
3 xor 1 { equals 2 }

12.8.3 Boolean operators
Boolean operators can be considered as logical operations on a type with 1 bit size. Therefore the
shl and shr operations have little sense. Boolean operators can only have boolean type operands,
and the resulting type is always boolean. The possible operators are listed in table (12.5)

Table 12.5: Boolean operators

Operator Operation
not logical negation (unary)
and logical and
or logical or
xor logical xor

178

CHAPTER 12. EXPRESSIONS

Remark By default, boolean expressions are evaluated with short-circuit evaluation. This means that from
the moment the result of the complete expression is known, evaluation is stopped and the result is
returned. For instance, in the following expression:

B := True or MaybeTrue;

The compiler will never look at the value of MaybeTrue, since it is obvious that the expression will
always be True. As a result of this strategy, if MaybeTrue is a function, it will not get called !
(This can have surprising effects when used in conjunction with properties)

12.8.4 String operators
There is only one string operator: +. Its action is to concatenate the contents of the two strings
(or characters) it acts on. One cannot use + to concatenate null-terminated (PChar) strings. The
following are valid string operations:

'This is ' + 'VERY ' + 'easy !'
Dirname+'\'

The following is not:

Var
Dirname : PChar;

...
Dirname := Dirname+'\';

Because Dirname is a null-terminated string.

Note that if all strings in a string expressions are short strings, the resulting string is also a short
string. Thus, a truncation may occur: there is no automatic upscaling to ansistring.

If all strings in a string expression are ansistrings, then the result is an ansistring.

If the expression contains a mix of ansistrings and shortstrings, the result is an ansistring.

The value of the {$H} switch can be used to control the type of constant strings; by default, they are
short strings (and thus limited to 255 characters).

12.8.5 Dynamic array operators
There is only one dynamic array operator: +. This operator is available in Delphi mode, but must be
enabled explicily using the modeswitch arrayoperators in objfpc mode:

{$mode objfpc}
{$modeswitch arrayoperators}

When enabled, its action is similar to the concation for strings: to concatenate the contents of the
two arrays it acts on. The array element type must of course be identical for both arrays, i.e. the
following will work:

{$mode objfpc}
{$modeswitch arrayoperators}
var

a,b, c : array of byte;

179

CHAPTER 12. EXPRESSIONS

begin
a:=[0,1,2];
b:=[3,4,5];
c:=a+b;
writeln('C has ',length(c),' elements');

But the following will not work:

{$mode objfpc}
{$modeswitch arrayoperators}

var
b, c : array of byte;
a : array of integer;

begin
a:=[0,1,2];
b:=[3,4,5];
c:=a+b;
writeln('C has ',length(c),' elements');

The compiler will give an error when compiling this code.

12.8.6 Set operators
The following operations on sets can be performed with operators: union, difference, symmetric
difference, inclusion and intersection. Elements can be added or removed from the set with the
Include or Exclude operators. The operators needed for this are listed in table (12.6).

Table 12.6: Set operators

Operator Action
+ Union
- Difference
* Intersection
>< Symmetric difference
<= Contains
>= Left hand side set is a superset of the one on the right
include include an element in the set
exclude exclude an element from the set
in check whether an element is in a set

The set type of the operands must be the same, or an error will be generated by the compiler.

The following program gives some valid examples of set operations:

Type
Day = (mon,tue,wed,thu,fri,sat,sun);
Days = set of Day;

Procedure PrintDays(W : Days);
Const

180

CHAPTER 12. EXPRESSIONS

DayNames : array [Day] of String[3]
= ('mon','tue','wed','thu',

'fri','sat','sun');
Var

D : Day;
S : String;

begin
S:='';
For D:=Mon to Sun do

if D in W then
begin
If (S<>'') then S:=S+',';
S:=S+DayNames[D];
end;

Writeln('[',S,']');
end;

Const
WorkWeek = [mon,tue,wed,thu,fri];
WeekEnd = [sat,sun];

Var
W : Days;

begin
W:=[mon,tue]+[wed,thu,fri]; // equals [mon,tue,wed,thu,fri]
PrintDays(W);
W:=[mon,tue,wed]-[wed]; // equals [mon,tue]
PrintDays(W);
W:=[mon,tue,wed]-[wed,thu]; // also equals [mon,tue]
PrintDays(W);
W:=[mon,tue,wed]*[wed,thu,fri]; // equals [wed]
PrintDays(W);
W:=[mon,tue,wed]><[wed,thu,fri]; // equals [mon,tue,thu,fri]
PrintDays(W);
if [mon,tue]<=WorkWeek then

Writeln('Must work on monday and tuesday');
if Weekend>=[sun] then

Writeln('Can rest on sunday');
end.

As can be seen, the union is equivalent to a binary OR, while the intersection is equivalent to a binary
AND, and the symmetric difference equals a XOR operation.

The Include and Exclude operations are equivalent to a union or a difference with a set of one
element. Thus,

Include(W,wed);

is equivalent to

W:=W+[wed];

and

181

CHAPTER 12. EXPRESSIONS

Exclude(W,wed);

is equivalent to

W:=W-[wed];

The In operation results in a True if the left operand (an element) is included of the right operand
(a set), the result will be False otherwise.

12.8.7 Relational operators
The relational operators are listed in table (12.7)

Table 12.7: Relational operators

Operator Action
= Equal
<> Not equal
< Strictly less than
> Strictly greater than
<= Less than or equal
>= Greater than or equal
in Element of

Normally, left and right operands must be of the same type. There are some notable exceptions,
where the compiler can handle mixed expressions:

1. Integer and real types can be mixed in relational expressions.

2. If the operator is overloaded, and an overloaded version exists whose arguments types match
the types in the expression.

3. Short-, Ansi- and widestring types can be mixed.

Comparing strings is done on the basis of their character code representation.

When comparing pointers, the addresses to which they point are compared. This also is true for
PChar type pointers. To compare the strings the PChar point to, the StrComp function from the
strings unit must be used. The in returns True if the left operand (which must have the same
ordinal type as the set type, and which must be in the range 0..255) is an element of the set which is
the right operand, otherwise it returns False.

12.8.8 Class operators
Class operators are slightly different from the operators above in the sense that they can only be used
in class expressions which return a class. There are only two class operators, as can be seen in table
(12.8).

Table 12.8: Class operators

Operator Action
is Checks class type
as Conditional typecast

182

CHAPTER 12. EXPRESSIONS

An expression containing the is operator results in a boolean type. The is operator can only be
used with a class reference or a class instance. The usage of this operator is as follows:

Object is Class

This expression is completely equivalent to

Object.InheritsFrom(Class)

If Object is Nil, False will be returned.

The following are examples:

Var
A : TObject;
B : TClass;

begin
if A is TComponent then ;
If A is B then;

end;

The as operator performs a conditional typecast. It results in an expression that has the type of the
class:

Object as Class

This is equivalent to the following statements:

If Object=Nil then
Result:=Nil

else if Object is Class then
Result:=Class(Object)

else
Raise Exception.Create(SErrInvalidTypeCast);

Note that if the object is nil, the as operator does not generate an exception.

The following are some examples of the use of the as operator:

Var
C : TComponent;
O : TObject;

begin
(C as TEdit).Text:='Some text';
C:=O as TComponent;

end;

The as and is operators also work on interfaces (both COM and CORBA). They can be used to
check whether an interface also implements another interface as in the following example:

{$mode objfpc}

uses

183

CHAPTER 12. EXPRESSIONS

SysUtils;

type
IMyInterface1 = interface

['{DD70E7BB-51E8-45C3-8CE8-5F5188E19255}']
procedure Bar;

end;

IMyInterface2 = interface
['{7E5B86C4-4BC5-40E6-A0DF-D27DBF77BCA0}']
procedure Foo;

end;

TMyObject = class(TInterfacedObject, IMyInterface1, IMyInterface2)
procedure Bar;
procedure Foo;

end;

procedure TMyObject.Bar;
begin

end;

procedure TMyObject.Foo;
begin

end;

var
i: IMyInterface1;

begin
i := TMyObject.Create;
i.Bar;
Writeln(BoolToStr(i is IMyInterface2, True)); // prints true
Writeln(BoolToStr(i is IDispatch, True)); // prints false
(i as IMyInterface2).Foo;

end.

Additionally, the is operator can be used to check if a class implements an interface, and the as
operator can be used to typecast an interface back to the class:

{$mode objfpc}
var

i: IMyInterface;
begin

i := TMyObject.Create;
Writeln(BoolToStr(i is TMyObject,True)); // prints true
Writeln(BoolToStr(i is TObject,True)); // prints true
Writeln(BoolToStr(i is TAggregatedObject,True)); // prints false
(i as TMyObject).Foo;

end.

Although the interfaces must be COM interfaces, the typecast back to a class will only work if the
interface comes from an Object Pascal class. It will not work on interfaces obtained from the system

184

CHAPTER 12. EXPRESSIONS

by COM.

185

Chapter 13

Statements

The heart of each algorithm are the actions it takes. These actions are contained in the statements of
a program or unit. Each statement can be labeled and jumped to (within certain limits) with Goto
statements. This can be seen in the following syntax diagram:

Statements

-- statement
label : simple statement

structured statement
asm statement

-�

A label can be an identifier or an integer digit.

13.1 Simple statements

A simple statement cannot be decomposed in separate statements. There are basically four kinds of
simple statements:

Simple statements

-- simple statement assignment statement
procedure statement

goto statement
raise statement

-�

Of these statements, the raise statement will be explained in the chapter on Exceptions (chapter 17,
page 257)

13.1.1 Assignments
Assignments give a value to a variable, replacing any previous value the variable might have had:

186

CHAPTER 13. STATEMENTS

Assignments

-- assignment statement variable reference
function identifier

:=
+=
-=
*=
/=

expression -�

In addition to the standard Pascal assignment operator (:=), which simply replaces the value of the
variable with the value resulting from the expression on the right of the := operator, Free Pascal
supports some C-style constructions. All available constructs are listed in table (13.1).

Table 13.1: Allowed C constructs in Free Pascal

Assignment Result
a += b Adds b to a, and stores the result in a.
a -= b Subtracts b from a, and stores the result in a.
a *= b Multiplies a with b, and stores the result in a.
a /= b Divides a through b, and stores the result in a.

For these constructs to work, the -Sc command-line switch must be specified.

Remark These constructions are just for typing convenience, they don’t generate different code. Here are
some examples of valid assignment statements:

X := X+Y;
X+=Y; { Same as X := X+Y, needs -Sc command line switch}
X/=2; { Same as X := X/2, needs -Sc command line switch}
Done := False;
Weather := Good;
MyPi := 4* Tan(1);

Keeping in mind that the dereferencing of a typed pointer results in a variable of the type the pointer
points to, the following are also valid assignments:

Var
L : ^Longint;
P : PPChar;

begin
L^:=3;
P^^:='A';

Note the double dereferencing in the second assignment.

13.1.2 Procedure statements
Procedure statements are calls to subroutines. There are different possibilities for procedure calls:

• A normal procedure call.

187

CHAPTER 13. STATEMENTS

• An object method call (fully qualified or not).

• Or even a call to a procedural type variable.

All types are present in the following diagram:

Procedure statements

-- procedure statement procedure identifier
method identifier

qualified method identifier
variable reference

actual parameter list
-�

The Free Pascal compiler will look for a procedure with the same name as given in the procedure
statement, and with a declared parameter list that matches the actual parameter list. The following
are valid procedure statements:

Usage;
WriteLn('Pascal is an easy language !');
Doit();

Remark When looking for a function that matches the parameter list of the call, the parameter types should
be assignment-compatible for value and const parameters, and should match exactly for parameters
that are passed by reference.

13.1.3 Goto statements
Free Pascal supports the goto jump statement. Its prototype syntax is

Goto statement

-- goto statement goto label -�

When using goto statements, the following must be kept in mind:

1. The jump label must be defined in the same block as the Goto statement.

2. Jumping from outside a loop to the inside of a loop or vice versa can have strange effects.

3. To be able to use the Goto statement, the -Sg compiler switch must be used, or {$GOTO
ON} must be used.

Remark In iso or macpas mode, or with the modeswitch “nonlocalgoto”, the compiler will also allow non-
local gotos.

Goto statements are considered bad practice and should be avoided as much as possible. It is always
possible to replace a goto statement by a construction that doesn’t need a goto, although this
construction may not be as clear as a goto statement. For instance, the following is an allowed goto
statement:

188

CHAPTER 13. STATEMENTS

label
jumpto;

...
Jumpto :

Statement;
...
Goto jumpto;
...

13.2 Structured statements

Structured statements can be broken into smaller simple statements, which should be executed re-
peatedly, conditionally or sequentially:

Structured statements

-- structured statement compound statement
conditional statement
repetitive statement

with statement
exception statement

-�

Conditional statements come in two flavors:

Conditional statements

-- conditional statement case statement
if statement

-�

Repetitive statements come in four flavors:

Repetitive statements

-- repetitive statement for statement
for in statement

repeat statement
while statement

-�

The following sections deal with each of these statements.

13.2.1 Compound statements
Compound statements are a group of statements, separated by semicolons, that are surrounded by
the keywords Begin and End. The last statement – before the End keyword – doesn’t need to

189

CHAPTER 13. STATEMENTS

be followed by a semicolon, although it is allowed. A compound statement is a way of grouping
statements together, executing the statements sequentially. They are treated as one statement in cases
where Pascal syntax expects one statement, such as in if...then...else statements.

Compound statements

-- compound statement begin
6
statement

;
end -�

13.2.2 The Case statement
Free Pascal supports the case statement. Its syntax diagram is

Case statement

-- case statement case expression of
6
case

; else part ;
end -�

-- case
6
constant

.. constant
,

: statement -�

-- else part else
otherwise

statementlist -�

The constants appearing in the various case parts must be known at compile-time, and can be of
the following types: enumeration types, Ordinal types (including chars) or string types. The case
expression must be also of this type, or a compiler error will occur. All case constants must have the
same type.

The compiler will evaluate the case expression. If one of the case constants’ value matches the
value of the expression, the statement that follows this constant is executed. After that, the program
continues after the final end.

If none of the case constants match the expression value, the statement list after the else or
otherwise keyword is executed. This can be an empty statement list. If no else part is present,
and no case constant matches the expression value, program flow continues after the final end.

The case statements can be compound statements (i. e. a Begin..End block), but for the else case
multiple statements are allowed (as can be seen in the syntax diagram). You may enclose them in an
extra Begin..End block, but it is not necessary.

Remark Contrary to Turbo Pascal, duplicate case labels are not allowed in Free Pascal, so the following code
will generate an error when compiling:

Var i : integer;
...
Case i of
3 : DoSomething;
1..5 : DoSomethingElse;

end;

190

CHAPTER 13. STATEMENTS

The compiler will generate a Duplicate case label error when compiling this, because the 3
also appears (implicitly) in the range 1..5. This is similar to Delphi syntax.

The following are valid case statements:

Case C of
'a' : WriteLn ('A pressed');
'b' : WriteLn ('B pressed');
'c' : WriteLn ('C pressed');

else
WriteLn ('unknown letter pressed : ',C);

end;

Or

Case C of
'a','e','i','o','u' : WriteLn ('vowel pressed');
'y' : WriteLn ('This one depends on the language');

else
WriteLn ('Consonant pressed');

end;

Case Number of
1..10 : WriteLn ('Small number');
11..100 : WriteLn ('Normal, medium number');

else
WriteLn ('HUGE number');

end;

The else clause can contain multiple statements:

Case Number of
1..10 : WriteLn ('Small number');
11..100 : WriteLn ('Normal, medium number');

else
WriteLn ('HUGE number');
Writeln('How did we get this much ?');

end;

Free Pascal allows the use of strings as case labels, and in that case the case variable must also
be a string. When using string types, the case variable and the various labels are compared in a
case-sensitive way.

Case lowercase(OS) of
'windows',
'dos' : WriteLn ('Microsoft platform);
'macos',
'darwin' : Writeln('Apple platform');
'linux',
'freebsd',
'netbsd' : Writeln('Community platform');

else
WriteLn ('Other platform');

end;

191

CHAPTER 13. STATEMENTS

The case with strings is equivalent to a series of if then else statements, no optimizations are
performed.

However, ranges are allowed, and are the equivalent of an

if (value>=beginrange) and (value<=endrange) then
begin
end;

13.2.3 The If..then..else statement
The If .. then .. else.. prototype syntax is

If then statements

-- if statement if expression then statement
else statement

-�

The expression between the if and then keywords must have a Boolean result type. If the
expression evaluates to True then the statement following the then keyword is executed.

If the expression evaluates to False, then the statement following the else keyword is executed,
if it is present.

Some points to note:

• Be aware of the fact that the boolean expression by default will be short-cut evaluated, meaning
that the evaluation will be stopped at the point where the outcome is known with certainty.

• Also, before the else keyword, no semicolon (;) is allowed, but all statements can be com-
pound statements.

• In nested If.. then .. else constructs, some ambiguity may arise as to which else
statement pairs with which if statement. The rule is that the else keyword matches the first
if keyword (searching backwards) not already matched by an else keyword.

For example:

If exp1 Then
If exp2 then

Stat1
else

stat2;

Despite its appearance, the statement is syntactically equivalent to

If exp1 Then
begin
If exp2 then

Stat1
else

stat2
end;

192

CHAPTER 13. STATEMENTS

and not to

{ NOT EQUIVALENT }
If exp1 Then

begin
If exp2 then

Stat1
end

else
stat2;

If it is this latter construct which is needed, the begin and end keywords must be present. When in
doubt, it is better to add them.

The following is a valid statement:

If Today in [Monday..Friday] then
WriteLn ('Must work harder')

else
WriteLn ('Take a day off.');

13.2.4 The For..to/downto..do statement
Free Pascal supports the For loop construction. A for loop is used in case one wants to calculate
something a fixed number of times. The prototype syntax is as follows:

For statement

-- for statement for control variable := initial value to
downto

-

- final value do statement -�

-- control variable variable identifier -�

-- initial value expression -�

-- final value expression -�

Here, Statement can be a compound statement. When the For statement is encountered, the
control variable is initialized with the initial value, and is compared with the final value. What
happens next depends on whether to or downto is used:

1. In the case To is used, if the initial value is larger than the final value then Statement will
never be executed.

2. In the case DownTo is used, if the initial value is less than the final value then Statement
will never be executed.

After this check, the statement after Do is executed. After the execution of the statement, the control
variable is increased or decreased by 1, depending on whether To or Downto is used. The control
variable must be an ordinal type, no other types can be used as counters in a loop.

Remark

193

CHAPTER 13. STATEMENTS

• Free Pascal always calculates the upper bound exactly once before initializing the counter
variable with the initial value.

• It is not allowed to change (i. e. assign a value to) the value of a loop variable inside the loop.

• The value of the loop variable is undefined after a loop has completed or if a loop is not
executed at all. However, if the loop was terminated prematurely with an exception or a break
or goto statement, the loop variable retains the value it had when the loop was exited.

• For nested procedures, a loop variable must be a local variable. If you declare a loop variable
outside the nested procedure where the loop is, the compiler will complain. It is however
allowed to use a global variable in a procedure.

• The compiler does not expliticly forbid jumping with a goto statement into a for loop block,
but doing so will result in unpredictable behaviour.

The following are valid loops:

For Day := Monday to Friday do Work;
For I := 100 downto 1 do

WriteLn ('Counting down : ',i);
For I := 1 to 7*dwarfs do KissDwarf(i);

The following will generate an error:

For I:=0 to 100 do
begin
DoSomething;
I:=I*2;
end;

because the loop variable I cannot be assigned to inside the loop.

The following will also generate an error:

program test;

{$ifdef fpc}
{$mode delphi}
{$h+}
{$endif}

procedure Proc;
var

i: integer;
procedure Nested;

begin
for i := 1 to 2 do ;

end;

begin
end;

begin
end.

194

CHAPTER 13. STATEMENTS

because the variable I is not defined in Nested and it’s not a global variable either.

But the following will compile:

program test;

{$ifdef fpc}
{$mode delphi}
{$h+}
{$endif}

var
i: integer;

procedure Nested;

begin
for i := 1 to 2 do ;

end;

begin
end.

If the statement is a compound statement, then the Break and Continue system routines can be
used to jump to the end or just after the end of the For statement. Note that Break and Continue
are not reserved words and therefore can be overloaded.

13.2.5 The For..in..do statement
As of version 2.4.2, Free Pascal supports the For..in loop construction. A for..in loop is used
in case one wants to calculate something a fixed number of times with an enumerable loop variable.
The prototype syntax is as follows:

For statement

-- for in statement for control variable in enumerable do statement -�

-- control variable variable identifier -�

-- enumerable enumerated type
expression

-�

Here, Statement can be a compound statement. The enumerable must be an expression that
consists of a fixed number of elements: the loop variable will be made equal to each of the elements
in turn and the statement following the do keyword will be executed.

The enumerable expression can be one of five cases:

1. An enumeration type identifier. The loop will then be over all elements of the enumeration
type. The control variable must be of the enumeration type.

2. A set value. The loop will then be over all elements in the set, the control variable must be of
the base type of the set.

195

CHAPTER 13. STATEMENTS

3. An array value. The loop will be over all elements in the array, and the control variable must
have the same type as an element in the array. As a special case, a string is regarded as an array
of characters.

4. An enumerable class, object, or extended record instance. This is an instance of any structured
type that supports the IEnumerator and IEnumerable interfaces. In this case, the control
variable’s type must equal the type of the IEnumerator.GetCurrent return value.

5. Any type for which an enumerator operator is defined. The enumerator operator must
return a structured type that implements the IEnumerator interface. The type of the control
variable’s type must equal the type of the enumerator’s GetCurrent return value type.

The simplest case of the for..in loop is using an enumerated type:

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
d : TWeekday;

begin
for d in TWeekday do

writeln(d);
end.

This will print all week days to the screen.

The above for..in construct is equivalent to the following for..to construct:

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
d : TWeekday;

begin
for d:=Low(TWeekday) to High(TWeekday) do

writeln(d);
end.

A second case of for..in loop is when the enumerable expression is a set, and then the loop will
be executed once for each element in the set:

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
Week : set of TWeekDay

= [monday, tuesday, wednesday, thursday, friday];
d : TWeekday;

begin

196

CHAPTER 13. STATEMENTS

for d in Week do
writeln(d);

end.

This will print the names of the week days to the screen. Note that the variable d is of the same type
as the base type of the set.

The above for..in construct is equivalent to the following for..to construct:

Type
TWeekDay = (monday, tuesday, wednesday, thursday,

friday,saturday,sunday);

Var
Week : set of TWeekDay

= [monday, tuesday, wednesday, thursday, friday];

d : TWeekday;

begin
for d:=Low(TWeekday) to High(TWeekday) do

if d in Week then
writeln(d);

end.

The third possibility for a for..in loop is when the enumerable expression is an array:

var
a : Array[1..7] of string

= ('monday','tuesday','wednesday','thursday',
'friday','saturday','sunday');

Var
S : String;

begin
For s in a do

Writeln(s);
end.

This will also print all days in the week, and is equivalent to

var
a : Array[1..7] of string

= ('monday','tuesday','wednesday','thursday',
'friday','saturday','sunday');

Var
i : integer;

begin
for i:=Low(a) to high(a) do

Writeln(a[i]);
end.

197

CHAPTER 13. STATEMENTS

A string type is equivalent to an array of char, and therefore a string can be used in a
for..in loop. The following will print all letters in the alphabet, each letter on a line:

Var
c : char;

begin
for c in 'abcdefghijklmnopqrstuvwxyz' do

writeln(c);
end.

Note that multi-dimensional arrays are also supported:

uses
SysUtils;

type
TTestStringArray = array[0..10] of String;

Var
TwoD : array[0..3] of TTestStringArray;

var
i,j : integer;
S : String;

begin
for i:=0 to 3 do

for j:=0 to 10 do
TwoD[i,J]:=Format('%.2dx%.2d',[i,j]);

for S in twod do
Writeln(S);

end.

This will loop over all dimensions from left to right.

The fourth possibility for a for..in loop is using classes. A class can implement the IEnumerable
interface, which is defined as follows:

IEnumerable = interface(IInterface)
function GetEnumerator: IEnumerator;

end;

The actual return type of the GetEnumerator must not necessarily be an IEnumerator inter-
face, instead, it can be a class which implements the methods of IEnumerator:

IEnumerator = interface(IInterface)
function GetCurrent: TObject;
function MoveNext: Boolean;
procedure Reset;
property Current: TObject read GetCurrent;

end;

The Current property and the MoveNext method must be present in the class returned by the
GetEnumerator method. The actual type of the Current property need not be a TObject.
When encountering a for..in loop with a class instance as the “in” operand, the compiler will
check each of the following conditions:

198

CHAPTER 13. STATEMENTS

• Whether the class in the enumerable expression implements a method GetEnumerator

• Whether the result of GetEnumerator is a class with the following method:

Function MoveNext : Boolean

• Whether the result of GetEnumerator is a class with the following read-only property:

Property Current : AType;

The type of the property must match the type of the control variable of the for..in loop.

Neither the IEnumerator nor the IEnumerable interfaces must actually be declared by the enu-
merable class: the compiler will detect whether these interfaces are present using the above checks.
The interfaces are only defined for Delphi compatibility and are not used internally. (it would also
be impossible to enforce their correctness).

The Classes unit contains a number of classes that are enumerable:

TFPList Enumerates all pointers in the list.

TList Enumerates all pointers in the list.

TCollection Enumerates all items in the collection.

TStringList Enumerates all strings in the list.

TComponent Enumerates all child components owned by the component.

Thus, the following code will also print all days in the week:

{$mode objfpc}
uses classes;

Var
Days : TStrings;
D : String;

begin
Days:=TStringList.Create;
try

Days.Add('Monday');
Days.Add('Tuesday');
Days.Add('Wednesday');
Days.Add('Thursday');
Days.Add('Friday');
Days.Add('Saturday');
Days.Add('Sunday');
For D in Days do

Writeln(D);
Finally

Days.Free;
end;

end.

Note that the compiler enforces type safety: declaring D as an integer will result in a compiler error:

199

CHAPTER 13. STATEMENTS

testsl.pp(20,9) Error: Incompatible types: got "AnsiString" expected "LongInt"

The above code is equivalent to the following:

{$mode objfpc}
uses classes;

Var
Days : TStrings;
D : String;
E : TStringsEnumerator;

begin
Days:=TStringList.Create;
try

Days.Add('Monday');
Days.Add('Tuesday');
Days.Add('Wednesday');
Days.Add('Thursday');
Days.Add('Friday');
Days.Add('Saturday');
Days.Add('Sunday');
E:=Days.getEnumerator;
try

While E.MoveNext do
begin
D:=E.Current;
Writeln(D);
end;

Finally
E.Free;

end;
Finally

Days.Free;
end;

end.

Both programs will output the same result.

The fifth and last possibility to use a for..in loop can be used to enumerate almost any type,
using the enumerator operator. The enumerator operator must return a class that has the same
signature as the IEnumerator approach above. The following code will define an enumerator for
the Integer type:

Type

TEvenEnumerator = Class
FCurrent : Integer;
FMax : Integer;
Function MoveNext : Boolean;
Property Current : Integer Read FCurrent;

end;

Function TEvenEnumerator.MoveNext : Boolean;

200

CHAPTER 13. STATEMENTS

begin
FCurrent:=FCurrent+2;
Result:=FCurrent<=FMax;

end;

operator enumerator(i : integer) : TEvenEnumerator;

begin
Result:=TEvenEnumerator.Create;
Result.FMax:=i;

end;

var
I : Integer;
m : Integer = 4;

begin
For I in M do

Writeln(i);
end.

The loop will print all nonzero even numbers smaller or equal to the enumerable. (2 and 4 in the case
of the example).

Care must be taken when defining enumerator operators: the compiler will find and use the first
available enumerator operator for the enumerable expression. For classes this also means that the
GetEnumerator method is not even considered. The following code will define an enumerator
operator which extracts the object from a stringlist:

{$mode objfpc}
uses classes;

Type
TDayObject = Class

DayOfWeek : Integer;
Constructor Create(ADayOfWeek : Integer);

end;

TObjectEnumerator = Class
FList : TStrings;
FIndex : Integer;
Function GetCurrent : TDayObject;
Function MoveNext: boolean;
Property Current : TDayObject Read GetCurrent;

end;

Constructor TDayObject.Create(ADayOfWeek : Integer);

begin
DayOfWeek:=ADayOfWeek;

end;

Function TObjectEnumerator.GetCurrent : TDayObject;
begin

201

CHAPTER 13. STATEMENTS

Result:=FList.Objects[Findex] as TDayObject;
end;

Function TObjectEnumerator.MoveNext: boolean;

begin
Inc(FIndex);
Result:=(FIndex<FList.Count);

end;

operator enumerator (s : TStrings) : TObjectEnumerator;

begin
Result:=TObjectEnumerator.Create;
Result.Flist:=S;
Result.FIndex:=-1;

end;

Var
Days : TStrings;
D : String;
O : TdayObject;

begin
Days:=TStringList.Create;
try

Days.AddObject('Monday',TDayObject.Create(1));
Days.AddObject('Tuesday',TDayObject.Create(2));
Days.AddObject('Wednesday',TDayObject.Create(3));
Days.AddObject('Thursday',TDayObject.Create(4));
Days.AddObject('Friday',TDayObject.Create(5));
Days.AddObject('Saturday',TDayObject.Create(6));
Days.AddObject('Sunday',TDayObject.Create(7));
For O in Days do

Writeln(O.DayOfWeek);
Finally

Days.Free;
end;

end.

The above code will print the day of the week for each day in the week.

If a class is not enumerable, the compiler will report an error when it is encountered in a for...in
loop.

Remark Like the for..to loop, it is not allowed to change (i. e. assign a value to) the value of a loop
control variable inside the loop.

13.2.6 The Repeat..until statement
The repeat statement is used to execute a statement until a certain condition is reached. The
statement will be executed at least once. The prototype syntax of the Repeat..until statement
is

202

CHAPTER 13. STATEMENTS

Repeat statement

-- repeat statement repeat
6
statement

;
until expression -�

This will execute the statements between repeat and until up to the moment when Expression
evaluates to True. Since the expression is evaluated after the execution of the statements, they
are executed at least once.

Be aware of the fact that the boolean expression Expressionwill be short-cut evaluated by default,
meaning that the evaluation will be stopped at the point where the outcome is known with certainty.

The following are valid repeat statements

repeat
WriteLn ('I =',i);
I := I+2;

until I>100;

repeat
X := X/2

until x<10e-3;

Note that the last statement before the until keyword does not need a terminating semicolon, but
it is allowed.

The Break and Continue system routines can be used to jump to the end or just after the end of
the repeat .. until statement. Note that Break and Continue are not reserved words and
therefore can be overloaded.

13.2.7 The While..do statement
A while statement is used to execute a statement as long as a certain condition holds. In difference
with the repeat loop, this may imply that the statement is never executed.

The prototype syntax of the While..do statement is

While statements

-- while statement while expression do statement -�

This will execute Statement as long as Expression evaluates toTrue. Since Expression is
evaluated before the execution of Statement, it is possible that Statement isn’t executed at all.
Statement can be a compound statement.

Be aware of the fact that the boolean expression Expressionwill be short-cut evaluated by default,
meaning that the evaluation will be stopped at the point where the outcome is known with certainty.

The following are valid while statements:

I := I+2;
while i<=100 do

203

CHAPTER 13. STATEMENTS

begin
WriteLn ('I =',i);
I := I+2;
end;

X := X/2;
while x>=10e-3 do

X := X/2;

They correspond to the example loops for the repeat statements.

If the statement is a compound statement, then the Break and Continue reserved words can
be used to jump to the end or just after the end of the While statement. Note that Break and
Continue are not reserved words and therefore can be overloaded.

13.2.8 The With statement
The with statement serves to access the elements of a record or object or class, without having to
specify the element’s name each time. The syntax for a with statement is

With statement

-- with statement
6
variable reference

,
do statement -�

The variable reference must be a variable of a record, object or class type. In the with statement,
any variable reference, or method reference is checked to see if it is a field or method of the record
or object or class. If so, then that field is accessed, or that method is called. Given the declaration:

Type
Passenger = Record

Name : String[30];
Flight : String[10];

end;

Var
TheCustomer : Passenger;

The following statements are completely equivalent:

TheCustomer.Name := 'Michael';
TheCustomer.Flight := 'PS901';

and

With TheCustomer do
begin
Name := 'Michael';
Flight := 'PS901';
end;

The statement

204

CHAPTER 13. STATEMENTS

With A,B,C,D do Statement;

is equivalent to

With A do
With B do
With C do
With D do Statement;

This also is a clear example of the fact that the variables are tried last to first, i. e., when the compiler
encounters a variable reference, it will first check if it is a field or method of the last variable. If not,
then it will check the last-but-one, and so on. The following example shows this;

Program testw;
Type AR = record

X,Y : Longint;
end;
PAR = ^Ar;

Var S,T : Ar;
begin

S.X := 1;S.Y := 1;
T.X := 2;T.Y := 2;
With S,T do

WriteLn (X,' ',Y);
end.

The output of this program is

2 2

Showing thus that the X,Y in the WriteLn statement match the T record variable.

Remark When using a With statement with a pointer, or a class, it is not permitted to change the pointer or
the class in the With block. With the definitions of the previous example, the following illustrates
what it is about:

Var p : PAR;

begin
With P^ do
begin
// Do some operations
P:=OtherP;
X:=0.0; // Wrong X will be used !!
end;

The reason the pointer cannot be changed is that the address is stored by the compiler in a temporary
register. Changing the pointer won’t change the temporary address. The same is true for classes.

13.2.9 Exception Statements
Free Pascal supports exceptions. Exceptions provide a convenient way to program error and error-
recovery mechanisms, and are closely related to classes. Exception support is explained in chapter
17, page 257

205

CHAPTER 13. STATEMENTS

13.3 Assembler statements

An assembler statement allows to insert assembler code right in the Pascal code.

Assembler statements

-- asm statement asm assembler code end
registerlist

-�

-- registerlist [
6
stringconstant

,
] -�

More information about assembler blocks can be found in the Programmer’s Guide. The register list
is used to indicate the registers that are modified by an assembler statement in the assembler block.
The compiler stores certain results in the registers. If the registers are modified in an assembler
statement, the compiler should, sometimes, be told about it. The registers are denoted with their Intel
names for the I386 processor, i. e., ’EAX’, ’ESI’ etc... As an example, consider the following
assembler code:

asm
Movl $1,%ebx
Movl $0,%eax
addl %eax,%ebx

end ['EAX','EBX'];

This will tell the compiler that it should save and restore the contents of the EAX and EBX registers
when it encounters this asm statement.

Free Pascal supports various styles of assembler syntax. By default, AT&T syntax is assumed for the
80386 and compatibles platform. The default assembler style can be changed with the {$asmmode
xxx} switch in the code, or the -R command-line option. More about this can be found in the
Programmer’s Guide.

206

../prog/prog.html
../prog/prog.html

Chapter 14

Using functions and procedures

Free Pascal supports the use of functions and procedures. It supports

• Function overloading, i. e. functions with the same name but different parameter lists.

• Const parameters.

• Open arrays (i. e. arrays without bounds).

• Variable number of arguments as in C.

• Return-like construct as in C, through the Exit keyword.

Remark In many of the subsequent paragraphs the words procedure and function will be used inter-
changeably. The statements made are valid for both, except when indicated otherwise.

14.1 Procedure declaration

A procedure declaration defines an identifier and associates it with a block of code. The procedure
can then be called with a procedure statement.

Procedure declaration

-- procedure declaration procedure header ; subroutine block ; -�

-- procedure header procedure identifier
qualified method identifier

-

- formal parameter list
modifiers

hintdirectives -�

-- subroutine block block
external directive

asm block
forward

-�

See section 14.4, page 209 for the list of parameters. A procedure declaration that is followed by a
block implements the action of the procedure in that block. The following is a valid procedure:

207

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Procedure DoSomething (Para : String);
begin

Writeln ('Got parameter : ',Para);
Writeln ('Parameter in upper case : ',Upper(Para));

end;

Note that it is possible that a procedure calls itself.

14.2 Function declaration

A function declaration defines an identifier and associates it with a block of code. The block of
code will return a result. The function can then be called inside an expression, or with a procedure
statement, if extended syntax is on.

Function declaration

-- function declaration function header ; subroutine block ; -�

-- function header function identifier
qualified method identifier

-

- formal parameter list : result type
modifiers

hintdirectives -�

-- subroutine block block
external directive

asm block
forward

-�

The result type of a function can be any previously declared type. contrary to Turbo Pascal, where
only simple types could be returned.

14.3 Function results

The result of a function can be set by setting the result variable: this can be the function identifier or,
(only in ObjFPC or Delphi mode) the special Result identifier:

Function MyFunction : Integer;

begin
MyFunction:=12; // Return 12

end;

In Delphi or ObjFPC mode, the above can also be coded as:

Function MyFunction : Integer;

begin
Result:=12;

end;

208

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

As an extension to Delphi syntax, the ObjFPC mode also supports a special extension of the Exit
procedure:

Function MyFunction : Integer;

begin
Exit(12);

end;

The Exit call sets the result of the function and jumps to the final End of the function declaration
block. It can be seen as the equivalent of the C return instruction.

Remark Function results are treated as pass-by-reference parameters. That is especially important for man-
aged types: The function result may be non-nil on entry, and set to a valid instance of the type.

14.4 Parameter lists

When arguments must be passed to a function or procedure, these parameters must be declared in the
formal parameter list of that function or procedure. The parameter list is a declaration of identifiers
that can be referred to only in that procedure or function’s block.

Parameters

-- formal parameter list (
6
parameter declaration

;
) -�

-- parameter declaration value parameter
variable parameter

out parameter
constant parameter

out parameter

-�

Constant parameters, out parameters and variable parameters can also be untyped parameters if
they have no type identifier.

As of version 1.1, Free Pascal supports default values for both constant parameters and value pa-
rameters, but only for simple types. The compiler must be in OBJFPC or DELPHI mode to accept
default values.

14.4.1 Value parameters
Value parameters are declared as follows:

Value parameters

-- value parameter identifier list :
array of

parameter type

identifier : type identifier = default parameter value

-�

209

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

When parameters are declared as value parameters, the procedure gets a copy of the parameters
that the calling statement passes. Any modifications to these parameters are purely local to the
procedure’s block, and do not propagate back to the calling block.

A block that wishes to call a procedure with value parameters must pass assignment compatible
parameters to the procedure. This means that the types should not match exactly, but can be converted
to the actual parameter types. This conversion code is inserted by the compiler itself.

Care must be taken when using value parameters: value parameters makes heavy use of the stack,
especially when using large parameters. The total size of all parameters in the formal parameter list
should be below 32K for portability’s sake (the Intel version limits this to 64K).

Open arrays can be passed as value parameters. See section 14.4.5, page 213 for more information
on using open arrays.

For a parameter of a simple type (i. e. not a structured type), a default value can be specified. This can
be an untyped constant. If the function call omits the parameter, the default value will be passed on
to the function. For dynamic arrays or other types that can be considered as equivalent to a pointer,
the only possible default value is Nil.

The following example will print 20 on the screen:

program testp;

Const
MyConst = 20;

Procedure MyRealFunc(I : Integer = MyConst);

begin
Writeln('Function received : ',I);

end;

begin
MyRealFunc;

end.

14.4.2 Variable parameters
Variable parameters are declared as follows:

Variable parameters

-- variable parameter var identifier list
:

array of
type identifier

-�

When parameters are declared as variable parameters, the procedure or function accesses immedi-
ately the variable that the calling block passed in its parameter list. The procedure gets a pointer to
the variable that was passed, and uses this pointer to access the variable’s value. From this, it follows
that any changes made to the parameter, will propagate back to the calling block. This mechanism
can be used to pass values back in procedures. Because of this, the calling block must pass a pa-
rameter of exactly the same type as the declared parameter’s type. If it does not, the compiler will
generate an error.

210

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Variable and constant parameters can be untyped. In that case the variable has no type, and hence is
incompatible with all other types. However, the address operator can be used on it, or it can be passed
to a function that has also an untyped parameter. If an untyped parameter is used in an assignment,
or a value must be assigned to it, a typecast must be used.

File type variables must always be passed as variable parameters.

Open arrays can be passed as variable parameters. See section 14.4.5, page 213 for more information
on using open arrays.

Remark

• Note that default values are not supported for variable parameters. This would make little sense
since it defeats the purpose of being able to pass a value back to the caller.

• A function result is internally treated as a variable parameter, and may have a non-zero (or
non-nil) initial value. This is especially important for managed types.

14.4.3 Out parameters
Out parameters (output parameters) are declared as follows:

Out parameters

-- out parameter out identifier list
:

array of
type identifier

-�

The purpose of an out parameter is to pass values back to the calling routine: the variable is passed
by reference. The initial value of the parameter on function entry is discarded, and should not be
used.

If a variable must be used to pass a value to a function and retrieve data from the function, then a
variable parameter must be used. If only a value must be retrieved, a out parameter can be used.

Needless to say, default values are not supported for out parameters.

The difference of out parameters and parameters by reference is very small (however, see below
for managed types): the former gives the compiler more information about what happens to the
arguments when passed to the procedure: it knows that the variable does not have to be initialized
prior to the call. The following example illustrates this:

Procedure DoA(Var A : Integer);

begin
A:=2;
Writeln('A is ',A);

end;

Procedure DoB(Out B : Integer);

begin
B:=2;
Writeln('B is ',B);

end;

211

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Var
C,D : Integer;

begin
DoA(C);
DoB(D);

end.

Both procedures DoA and DoB do practically the same. But DoB’s declaration gives more informa-
tion to the compiler, allowing it to detect that D does not have to initialized before DoB is called.
Since the parameter A in DoA can receive a value as well as return one, the compiler notices that C
was not initialized prior to the call to DoA:

home: >fpc -S2 -vwhn testo.pp
testo.pp(19,8) Hint: Variable "C" does not seem to be initialized

This shows that it is better to use out parameters when the parameter is used only to return a value.

Remark Out parameters are only supported in Delphi and ObjFPC mode. For the other modes, out is a
valid identifier.

Remark For managed types (reference counted types), using Out parameters incurs some overhead: the
compiler must be sure that the value is correctly initialized (i. e. has a reference count of zero (0)).
This initialization is normally done by the caller.

14.4.4 Constant parameters
In addition to variable parameters and value parameters Free Pascal also supports Constant parame-
ters. A constant parameter can be specified as follows:

Constant parameters

--constant parameter const identifier list
:

array of
type identifier

identifier : type identifier = default parameter value

-

- -�

Specifying a parameter as Constant is giving the compiler a hint that the contents of the parameter
will not be changed by the called routine. This allows the compiler to perform optimizations which
it could not do otherwise, and also to perform certain checks on the code inside the routine: namely,
it can forbid assignments to the parameter. Furthermore a const parameter cannot be passed on to
another function that requires a variable parameter: the compiler can check this as well. The main
use for this is reducing the stack size, hence improving performance, and still retaining the semantics
of passing by value...

Remark Contrary to Delphi, no assumptions should be made about how const parameters are passed to
the underlying routine. In particular, the assumption that parameters with large size are passed by
reference is not correct. For this the constref parameter type should be used, which is available
as of version 2.5.1 of the compiler.

An exception is the stdcall calling convention: for compatibility with COM standards, large const
parameters are passed by reference.

212

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Remark Note that specifying const is a contract between the programmer and the compiler. It is the
programmer who tells the compiler that the contents of the const parameter will not be changed
when the routine is executed, it is not the compiler who tells the programmer that the parameter will
not be changed.

This is particularly important and visible when using refcounted types. For such types, the (invisible)
incrementing and decrementing of any reference count is omitted when const is used. Doing so
often allows the compiler to omit invisible try/finally frames for these routines.

As a side effect, the following code will produce not the expected output:

Var
S : String = 'Something';

Procedure DoIt(Const T : String);

begin
S:='Something else';
Writeln(T);

end;

begin
DoIt(S);

end.

Will write

Something else

This behavior is by design.

Constant parameters can also be untyped. See section 14.4.2, page 210 for more information about
untyped parameters.

As for value parameters, constant parameters can get default values.

Open arrays can be passed as constant parameters. See section 14.4.5, page 213 for more information
on using open arrays.

14.4.5 Open array parameters
Free Pascal supports the passing of open arrays, i. e. a procedure can be declared with an array
of unspecified length as a parameter, as in Delphi. Open array parameters can be accessed in the
procedure or function as an array that is declared with starting index 0, and last element index
High(parameter). For example, the parameter

Row : Array of Integer;

would be equivalent to

Row : Array[0..N-1] of Integer;

Where N would be the actual size of the array that is passed to the function. N-1 can be calculated
as High(Row).

Specifically, if an empty array is passed, then High(Parameter) returns -1, while low(Parameter)
returns 0.

213

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Open parameters can be passed by value, by reference or as a constant parameter. In the latter cases
the procedure receives a pointer to the actual array. In the former case, it receives a copy of the array.
In a function or procedure, open arrays can only be passed to functions which are also declared with
open arrays as parameters, not to functions or procedures which accept arrays of fixed length. The
following is an example of a function using an open array:

Function Average (Row : Array of integer) : Real;
Var I : longint;

Temp : Real;
begin

Temp := Row[0];
For I := 1 to High(Row) do

Temp := Temp + Row[i];
Average := Temp / (High(Row)+1);

end;

As of FPC 2.2, it is also possible to pass partial arrays to a function that accepts an open array. This
can be done by specifying the range of the array which should be passed to the open array.

Given the declaration

Var
A : Array[1..100];

the following call will compute and print the average of the 100 numbers:

Writeln('Average of 100 numbers: ',Average(A));

But the following will compute and print the average of the first and second half:

Writeln('Average of first 50 numbers: ',Average(A[1..50]));
Writeln('Average of last 50 numbers: ',Average(A[51..100]));

14.4.6 Array of const
In Object Pascal or Delphi mode, Free Pascal supports the Array of Const construction to pass
parameters to a subroutine.

This is a special case of the Open array construction, where it is allowed to pass any expression
in an array to a function or procedure. The expression must have a simple result type: structures
cannot be passed as an argument. This means that all ordinal, float or string types can be passed, as
well as pointers, classes and interfaces (since the latter two are actually pointers).

The elements of the array of const are converted to a special variant record:

Type
PVarRec = ^TVarRec;
TVarRec = record

case VType : Ptrint of
vtInteger : (VInteger: Longint);
vtBoolean : (VBoolean: Boolean);
vtChar : (VChar: Char);
vtWideChar : (VWideChar: WideChar);
vtExtended : (VExtended: PExtended);
vtString : (VString: PShortString);

214

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

vtPointer : (VPointer: Pointer);
vtPChar : (VPChar: PChar);
vtObject : (VObject: TObject);
vtClass : (VClass: TClass);
vtPWideChar : (VPWideChar: PWideChar);
vtAnsiString : (VAnsiString: Pointer);
vtCurrency : (VCurrency: PCurrency);
vtVariant : (VVariant: PVariant);
vtInterface : (VInterface: Pointer);
vtWideString : (VWideString: Pointer);
vtInt64 : (VInt64: PInt64);
vtQWord : (VQWord: PQWord);

end;

Therefore, inside the procedure body, the array of const argument is equivalent to an open
array of TVarRec:

Procedure Testit (Args: Array of const);

Var I : longint;

begin
If High(Args)<0 then

begin
Writeln ('No aguments');
exit;
end;

Writeln ('Got ',High(Args)+1,' arguments :');
For i:=0 to High(Args) do

begin
write ('Argument ',i,' has type ');
case Args[i].vtype of

vtinteger :
Writeln ('Integer, Value :',args[i].vinteger);

vtboolean :
Writeln ('Boolean, Value :',args[i].vboolean);

vtchar :
Writeln ('Char, value : ',args[i].vchar);

vtextended :
Writeln ('Extended, value : ',args[i].VExtended^);

vtString :
Writeln ('ShortString, value :',args[i].VString^);

vtPointer :
Writeln ('Pointer, value : ',Longint(Args[i].VPointer));

vtPChar :
Writeln ('PChar, value : ',Args[i].VPChar);

vtObject :
Writeln ('Object, name : ',Args[i].VObject.Classname);

vtClass :
Writeln ('Class reference, name :',Args[i].VClass.Classname);

vtAnsiString :
Writeln ('AnsiString, value :',AnsiString(Args[I].VAnsiString);

else
Writeln ('(Unknown) : ',args[i].vtype);

215

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

end;
end;

end;

In code, it is possible to pass an arbitrary array of elements to this procedure:

S:='Ansistring 1';
T:='AnsiString 2';
Testit ([]);
Testit ([1,2]);
Testit (['A','B']);
Testit ([TRUE,FALSE,TRUE]);
Testit (['String','Another string']);
Testit ([S,T]) ;
Testit ([P1,P2]);
Testit ([@testit,Nil]);
Testit ([ObjA,ObjB]);
Testit ([1.234,1.234]);
TestIt ([AClass]);

If the procedure is declared with the cdecl modifier, then the compiler will pass the array as a C
compiler would pass it. This, in effect, emulates the C construct of a variable number of arguments,
as the following example will show:

program testaocc;
{$mode objfpc}

Const
P : PChar = 'example';
Fmt : PChar =

'This %s uses printf to print numbers (%d) and strings.'#10;

// Declaration of standard C function printf:
procedure printf (fm : pchar; args : array of const);cdecl; external 'c';

begin
printf(Fmt,[P,123]);

end.

Remark Note that this is not true for Delphi, so code relying on this feature will not be portable.

Remark Note that there is no support for DWord (or cardinal) arguments in array of const. They
are converted to vtInteger/vtLongint. This is for Delphi compatibility, and the compiler will
ignore any resulting range checks when in mode Delphi.

14.4.7 Untyped parameters
Variable, Out and constant parameters can be untyped. In that case the variable has no type in the
procedure of function, and hence is incompatible with all other types: The compiler simply passes
the address of the passed variable to the routine, so all that is available in the called routine is an
address, with no type information attached to it. This is also true for const parameters.

Using an analogy

procedure Something(const Data; Len: cint);

216

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Is equivalent to the following C/C++ declaration:

void Something(void* Data; int Len);

This means pretty much all that one can do in the routine is use the address operator or pass the
argument to another function that has also an untyped parameter.

Inside a routine with an untyped parameter, if the untyped parameter is used in an expression, or a
value must be assigned to it a typecast must always be used.

The following example shows this:

{$mode objfpc}
uses types;

procedure doit(const d);

begin
Writeln('As integer: ',PInteger(@D)^);
Writeln('As Byte : ',PByte(@D)^);

end;

Var
D : Integer;

begin
D:=$0FFFFFF0;
DoIt(D);

end.

This will write:

As integer: 268435440
As Byte : 240

Note that because an address is needed, no constant expressions can be passed to the function or
procedure, i. e. given the above definition, the following will not work:

DoIt($0FFFFFF0);

This will result in the following error:

Error: Variable identifier expected

14.4.8 Managed types and reference counts
Some types (Unicodestring, Ansistring, interfaces, dynamic arrays) are treated somewhat specially
by the compiler: the data has a reference count which is increased or decreased depending on how
many reference to the data exists.

The qualifiers for parameters in function or procedure calls influence what happens to the reference
count of the managed types:

• nothing (pass by value): the reference count of the parameter is increased on entry and de-
creased on exit.

217

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

• out: the reference count of the value that is passed in is decreased by 1, and the variable that’s
passed into the procedure is initialized to “empty” (usually Nil, but that is an implementation
detail which should not be relied on).

• var nothing happens to the reference count. A reference to the original variable is passed
in, and changing it or reading it has exactly the same effect as changing/reading the original
variable.

• const this case is slightly tricky. Nothing happens to the reference count because you can
pass non-values here. In particular, you can pass a class implementing an interface rather than
the interface itself which can cause the class to be freed unexpectedly.

Remark The function result is internally treated as a var parameter to the function, and the same rules as for
var parameters apply.

The following example demonstrates the dangers:

{$mode objfpc}

Type
ITest = Interface

Procedure DoTest(ACount : Integer);
end;

TTest = Class(TInterfacedObject,ITest)
Procedure DoTest(ACount : Integer);
Destructor destroy; override;

end;

Destructor TTest.Destroy;

begin
Writeln('Destroy called');

end;

Procedure TTest.DoTest(ACount : Integer);

begin
Writeln('Test ',ACount,' : ref count: ',RefCount);

end;

procedure DoIt1(x: ITest; ACount : Integer);

begin
// Reference count is increased
x.DoTest(ACount);
// And decreased

end;

procedure DoIt2(const x: ITest; ACount : Integer);

begin
// No change to reference count.
x.DoTest(ACount);

end;

218

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Procedure Test1;

var
y: ITest;

begin
y := TTest.Create;
// Ref. count is 1 at this point.
y.DoTest(1);
// Calling DoIT will increase reference count and decrease on exit.
DoIt1(y,2);
// Reference count is still one.
y.DoTest(3);

end;

Procedure Test2;

var
Y : TTest;

begin
Y := TTest.Create; // no count on the object yet
// Ref. count is 0 at this point.
y.DoTest(3);
// Ref count will remain zero.
DoIt2(y,4);
Y.DoTest(5);
Y.Free;

end;

Procedure Test3;

var
Y : TTest;

begin
Y := TTest.Create; // no count on the object yet
// Ref. count is 0 at this point.
y.DoTest(6);
// Ref count will remain zero.
DoIt1(y,7);
y.DoTest(8);

end;

begin
Test1;
Test2;
Test3;

end.

The output of this example is:

Test 1 : ref count: 1
Test 2 : ref count: 2
Test 3 : ref count: 1

219

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Destroy called
Test 3 : ref count: 0
Test 4 : ref count: 0
Test 5 : ref count: 0
Destroy called
Test 6 : ref count: 0
Test 7 : ref count: 1
Destroy called
Test 8 : ref count: 0

As can be seen, in test3, the reference count is decreased from 1 to 0 at the end of the DoIt call,
causing the instance to be freed before the call returns.

The following small program demonstrates the reference counts used in strings:

{$mode objfpc}
{$H+}

// Auxiliary function to extract reference count.
function SRefCount(P : Pointer) : integer;

Type
PAnsiRec = ^TAnsiRec;
TAnsiRec = Record

CodePage : TSystemCodePage;
ElementSize : Word;

{$ifdef CPU64}
{ align fields }

Dummy : DWord;
{$endif CPU64}

Ref : SizeInt;
Len : SizeInt;

end;

begin
if P=Nil then

Result:=0
else

Result:=PAnsiRec(P-SizeOf(TAnsiRec))^.Ref;
end;

Procedure ByVar(Var S : string);

begin
Writeln('By var, ref count : ',SRefCount(Pointer(S)));

end;

Procedure ByConst(Const S : string);

begin
Writeln('Const, ref count : ',SRefCount(Pointer(S)));

end;

Procedure ByVal(S : string);

220

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

begin
Writeln('Value, ref count : ',SRefCount(Pointer(S)));

end;

Function FunctionResult(Var S : String) : String;

begin
Writeln('Function argument, ref count : ',SRefCount(Pointer(S)));
Writeln('Function result, ref count : ',SRefCount(Pointer(Result)));

end;

Var
S,T : String;

begin
S:='Some string';
Writeln('Constant : ',SrefCount(Pointer(S)));
UniqueString(S);
Writeln('Unique : ',SRefCount(Pointer(S)));
T:=S;
Writeln('After Assign : ',SRefCount(Pointer(S)));
ByVar(S);
ByConst(S);
ByVal(S);
UniqueString(S);
T:=FunctionResult(S);
Writeln('After function : ',SRefCount(Pointer(S)));

end.

14.5 Function overloading

Function overloading simply means that the same function is defined more than once, but each time
with a different formal parameter list. The parameter lists must differ at least in one of its elements
type. When the compiler encounters a function call, it will look at the function parameters to decide
which one of the defined functions it should call. This can be useful when the same function must be
defined for different types.

For example, in a hypothetical RTL, the Random procedure could be defined as:

Random(Max : Longint);
Random(Max : Double);
Random(Max,Ofsset : Longint);

When the compiler encounters a call to the Random function, it will first search which function it
should use. It therefore checks the parameters in a function call, and looks if there is a function
definition which matches the specified parameter list. If the compiler finds such a function, a call is
inserted to that function. If no such function is found, a compiler error is generated.

Functions that have a cdecl modifier cannot be overloaded. (Technically, because this modifier
prevents the mangling of the function name by the compiler).

Prior to version 1.9 of the compiler, the overloaded functions needed to be in the same unit. Now the
compiler will continue searching in other units if it doesn’t find a matching version of an overloaded
function in one unit, and if the overload keyword is present.

221

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

If the overload keyword is not present, then all overloaded versions must reside in the same unit,
and if it concerns methods part of a class, they must be in the same class, i. e. the compiler will not
look for overloaded methods in parent classes if the overload keyword was not specified.

Remark Note that if you redefine (and overload) compiler internal functions, the original compiler functions
are no longer available. This is for instance the case with Inc() and Dec()

14.6 Forward declared functions

A function can be declared without having it followed by its implementation, by having it followed
by the forward procedure. The effective implementation of that function must follow later in
the module. The function can be used after a forward declaration as if it had been implemented
already. The following is an example of a forward declaration.

Program testforward;
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn ('In second. Calling first...');
First (1);

end;
Procedure First (n : longint);
begin

WriteLn ('First received : ',n);
end;
begin

Second;
end.

A function can be forward declared only once. Likewise, in units, it is not allowed to have a forward
declared function of a function that has been declared in the interface part. The interface declaration
counts as a forward declaration. The following unit will give an error when compiled:

Unit testforward;
interface
Procedure First (n : longint);
Procedure Second;
implementation
Procedure First (n : longint); forward;
Procedure Second;
begin

WriteLn ('In second. Calling first...');
First (1);

end;
Procedure First (n : longint);
begin

WriteLn ('First received : ',n);
end;
end.

Reversely, functions declared in the interface section cannot be declared forward in the implementa-
tion section. Logically, since they already have been declared.

222

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.7 External functions

The external modifier can be used to declare a function that resides in an external object file. It
allows to use the function in some code, and at linking time, the object file containing the implemen-
tation of the function or procedure must be linked in.

External directive

-- external directive external
string constant

name string constant
index integer constant

-�

It replaces, in effect, the function or procedure code block. As an example:

program CmodDemo;
{$Linklib c}
Const P : PChar = 'This is fun !';
Function strlen (P : PChar) : Longint; cdecl; external;
begin

WriteLn ('Length of (',p,') : ',strlen(p))
end.

Remark The parameters in the declaration of the external function should match exactly the ones in the
declaration in the object file.

If the external modifier is followed by a string constant:

external 'lname';

Then this tells the compiler that the function resides in library “lname”. The compiler will then
automatically link this library to the program.

The name that the function has in the library can also be specified:

external 'lname' name 'Fname';

This tells the compiler that the function resides in library “lname”, but with name “Fname”. The
compiler will then automatically link this library to the program, and use the correct name for the
function. Under WINDOWS and OS/2, the following form can also be used:

external 'lname' Index Ind;

This tells the compiler that the function resides in library “lname”, but with index Ind. The compiler
will then automatically link this library to the program, and use the correct index for the function.

Finally, the external directive can be used to specify the external name of the function:

external name 'Fname';
{$L myfunc.o}

This tells the compiler that the function has the name “Fname”. The correct library or object file (in
this case myfunc.o) must still be linked, ensuring that the function “Fname” is indeed included in the
linking stage.

223

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.8 Assembler functions

Functions and procedures can be completely implemented in assembly language. To indicate this,
use the assembler keyword:

Assembler functions

-- asm block assembler ; declaration part asm statement -�

Contrary to Delphi, the assembler keyword must be present to indicate an assembler function. For
more information about assembler functions, see the chapter on using assembler in the Programmer’s
Guide.

14.9 Modifiers

A function or procedure declaration can contain modifiers. Here we list the various possibilities:

Modifiers

-- modifiers
6
; public

name string constant
export

alias : string constant
interrupt
noreturn
iocheck

call modifiers

-�

-- call modifiers cdecl
cppdecl
hardfloat

inline
local

mwpascal
ms_abi_default
ms_abi_cdecl
nostackframe

overload
pascal
register
safecall

saveregisters
softfloat
stdcall

sysv_abi_default
sysv_abi_cdecl

vectorcall
varargs

-�

224

../prog/prog.html
../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

Free Pascal doesn’t support all Turbo Pascal modifiers (although it parses them for compatibility),
but does support a number of additional modifiers. They are used mainly for assembler and reference
to C object files.

14.9.1 alias
The alias modifier allows the programmer to specify a different name for a procedure or function.
This is mostly useful for referring to this procedure from assembly language constructs or from
another object file. As an example, consider the following program:

Program Aliases;

Procedure Printit;[public, alias:'DOIT'];
begin

WriteLn ('In Printit (alias : "DOIT")');
end;

Procedure myprint; external name 'DOIT';

begin

asm
call myprint

end;

end.

Remark The specified alias is inserted straight into the assembly code, thus it is case sensitive.

The alias modifier does not make the symbol public to other modules, unless the routine is also
declared in the interface part of a unit, or the public modifier is used to force it as public. Consider
the following:

unit testalias;

interface

procedure testroutine;

implementation

procedure testroutine;alias:'ARoutine';
begin

WriteLn('Hello world');
end;

end.

This will make the routine testroutine available publicly to external object files under the label
name ARoutine.

Remark The alias directive is considered deprecated. Please use the public name directive. See section
14.9.17, page 230.

225

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.9.2 cdecl
The cdecl modifier can be used to declare a function that uses a C type calling convention. This
must be used when accessing functions residing in an object file generated by standard C compilers,
but must also be used for Pascal functions that are to be used as callbacks for C libraries.

The cdecl modifier allows to use C function in the code. For external C functions, the object file
containing the C implementation of the function or procedure must be linked in. As an example:

program CmodDemo;
{$LINKLIB c}
Const P : PChar = 'This is fun !';
Function StrLen(P: PChar): Longint;cdecl; external name 'strlen';
begin

WriteLn ('Length of (',p,') : ',StrLen(p));
end.

When compiling this, and linking to the C-library, the strlen function can be called throughout the
program. The external directive tells the compiler that the function resides in an external object
file or library with the “strlen” name (see 14.7).

Remark The parameters in our declaration of the C function should match exactly the ones in the declaration
in C.

For functions that are not external, but which are declared using cdecl, no external linking is
needed. These functions have some restrictions, for instance the array of const construct can
not be used (due the way this uses the stack). On the other hand, the cdecl modifier allows these
functions to be used as callbacks for routines written in C, as the latter expect the “cdecl” calling
convention.

14.9.3 cppdecl
The cppdecl modifier can be used to declare a function that uses a C++ type calling convention.
This must be used when accessing functions residing in an object file generated by standard C++
compilers, but must also be used for Pascal functions that are to be used as callbacks for C++ libraries.

Note that linking to C++ support is experimental at best, so this should be used with extreme care.

14.9.4 export
The export modifier is used to export names when creating a shared library or an executable
program. This means that the symbol will be publicly available, and can be imported from other
programs. For more information on this modifier, consult the section on “Making libraries” in the
Programmer’s Guide.

14.9.5 hardfloat
The hardfloat modifier is used to indicate that the compiler must use a calling convention that
passes certain floating point parameters in VFP registers. (Used on ARM only)

14.9.6 inline
Procedures that are declared inline are copied to the places where they are called. This has the
effect that there is no actual procedure call, the code of the procedure is just copied to where the

226

../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

procedure is needed, this results in faster execution speed if the function or procedure is used a lot.
It is obvious that inlining large functions does not make sense.

By default, inline procedures are not allowed. Inline code must be enabled using the command-
line switch -Si or {$inline on} directive.

Remark

1. inline is only a hint for the compiler. This does not automatically mean that all calls are
inlined; sometimes the compiler may decide that a function simply cannot be inlined, or that a
particular call to the function cannot be inlined. If so, the compiler will emit a warning.

2. In old versions of Free Pascal, inline code was not exported from a unit. This meant that when
calling an inline procedure from another unit, a normal procedure call will be performed. Only
inside units, Inline procedures are really inlined. As of version 2.0.2, inline works across
units.

3. Recursive inline functions are not allowed. i. e. an inline function that calls itself is not allowed.

14.9.7 interrupt
The interrupt keyword is used to declare a routine which will be used as an interrupt handler.
On entry to this routine, all the registers will be saved and on exit, all registers will be restored and
an interrupt or trap return will be executed (instead of the normal return from subroutine instruction).

On platforms where a return from interrupt does not exist, the normal exit code of routines will be
done instead. For more information on the generated code, consult the Programmer’s Guide.

14.9.8 iocheck
The iocheck keyword is used to declare a routine which causes generation of I/O result checking
code within a {$IOCHECKS ON} block whenever it is called.

The result is that if a call to this procedure is generated, the compiler will insert I/O checking code if
the call is within a {$IOCHECKS ON} block.

This modifier is intended for RTL internal routines, not for use in application code.

14.9.9 local
The local modifier allows the compiler to optimize the function: a local function cannot be in the
interface section of a unit: it is always in the implementation section of the unit. From this it follows
that the function cannot be exported from a library.

On Linux, the local directive results in some optimizations. On Windows, it has no effect. It was
introduced for Kylix compatibility.

14.9.10 MS_ABI_Default
The MS_ABI_Default modifier is used to indicate that the compiler must use the Microsoft ver-
sion of the x86-64 calling convention. This is the default calling convention Win64, and is only
supported on x86-64.

227

../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.9.11 MS_ABI_CDecl
The MS_ABI_CDecl modifier is used to indicate that the compiler must use the Microsoft version
of the x86-64 calling convention, with the exception that ’array of const’ are interpreted as cdecl
varargs parameters, instead of the regular pascal array of const.

14.9.12 MWPascal
The MWPascalmodifier is used to indicate that the compiler must use the Metrowerks Pascal calling
convention. This calling convention behaves the same as cdecl, except that const record parameters
are passed by reference instead of by value. Supported on all platforms.

14.9.13 noreturn
The noreturn modifier can be used to tell the compiler the procedure does not return. This infor-
mation can used by the compiler to avoid emitting warnings about uninitialized variables or results
not being set.

In the following example, the compiler will not emit a warning that the result may not be set in
function f:

procedure do_halt;noreturn;
begin

halt(1);
end;

function f(i : integer) : integer ;

begin
if (i<0) then

do_halt
else

result:=i;
end;

14.9.14 nostackframe
The nostackframe modifier can be used to tell the compiler it should not generate a stack frame
for this procedure or function. By default, a stack frame is always generated for each procedure or
function, but the compiler will omit it if it can.

For asm routines (pure assembler) this directive can be used to omit generating a stack frame.

One should be extremely careful when using this modifier: most procedures or functions need a stack
frame. Particularly for debugging they are needed.

14.9.15 overload
The overload modifier tells the compiler that this function is overloaded. It is mainly for Delphi
compatibility, as in Free Pascal, all functions and procedures can be overloaded without this modifier.

There is only one case where the overloadmodifier is mandatory: if a function must be overloaded
that resides in another unit. Both functions must be declared with the overload modifier: the
overload modifier tells the compiler that it should continue looking for overloaded versions in
other units.

228

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

The following example illustrates this. Take the first unit:

unit ua;

interface

procedure DoIt(A : String); overload;

implementation

procedure DoIt(A : String);

begin
Writeln('ua.DoIt received ',A)

end;

end.

And a second unit, which contains an overloaded version:

unit ub;

interface

procedure DoIt(A : Integer); overload;

implementation

procedure DoIt(A : integer);

begin
Writeln('ub.DoIt received ',A)

end;

end.

And the following program, which uses both units:

program uab;

uses ua,ub;

begin
DoIt('Some string');

end.

When the compiler starts looking for the declaration of DoIt, it will find one in the ub unit. Without
the overload directive, the compiler would give an argument mismatch error:

home: >fpc uab.pp
uab.pp(6,21) Error: Incompatible type for arg no. 1:
Got "Constant String", expected "SmallInt"

With the overload directive in place at both locations, the compiler knows it must continue search-
ing for an overloaded version with matching parameter list. Note that both declarations must have

229

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

the overload modifier specified; it is not enough to have the modifier in unit ub. This is to prevent
unwanted overloading: the programmer who implemented the ua unit must mark the procedure as
fit for overloading.

14.9.16 pascal
The pascal modifier can be used to declare a function that uses the classic Pascal type calling
convention (passing parameters from left to right). For more information on the Pascal calling con-
vention, consult the Programmer’s Guide.

14.9.17 public
The Public keyword is used to declare a function globally in a unit. This is useful if the function
should not be accessible from the unit file (i. e. another unit/program using the unit doesn’t see the
function), but must be accessible from the object file. As an example:

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

First := 0;
end;
Function Second : Real; [Public];
begin

Second := 1;
end;
end.

If another program or unit uses this unit, it will not be able to use the function Second, since it
isn’t declared in the interface part. However, it will be possible to access the function Second at the
assembly-language level, by using its mangled name (see the Programmer’s Guide).

The public modifier can also be followed by a name directive to specify the assembler name, as
follows:

Unit someunit;
interface
Function First : Real;
Implementation
Function First : Real;
begin

First := 0;
end;
Function Second : Real; Public name 'second';
begin

Second := 1;
end;
end.

The assembler symbol as specified by the “public name” directive will be “second”, in all lowercase
letters.

230

../prog/prog.html
../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.9.18 register
The register keyword is used for compatibility with Delphi. In version 1.0.x of the compiler, this
directive has no effect on the generated code. As of the 1.9.X versions, this directive is supported.
For the Intel i386 platform, the first three arguments are passed in registers EAX, EDX and ECX.
For other platforms, this keyword has no effect, the default platform ABI calling convention is used.
In general, the use of this directive is not recommended, unless you know what you’re doing.

14.9.19 safecall
The safecall modifier ressembles closely the stdcall modifier. It sends parameters from right
to left on the stack. Additionally, the called procedure saves and restores all registers.

More information about this modifier can be found in the Programmer’s Guide, in the section on the
calling mechanism and the chapter on linking.

14.9.20 saveregisters
The saveregisters modifier tells the compiler that all CPU registers should be saved prior to
calling this routine. Which CPU registers are saved, depends entirely on the CPU.

14.9.21 softfloat
The softfloat modifier makes sense only on the ARM architecture. Tells the compiler to se
the (platform-specific) calling convention for passing floating point values when software-emulated
floating point support is active. (Not supported on all platforms: currently only ARM).

14.9.22 stdcall
The stdcall modifier pushes the parameters from right to left on the stack, it also aligns all the
parameters to a default alignment.

More information about this modifier can be found in the Programmer’s Guide, in the section on the
calling mechanism and the chapter on linking.

14.9.23 SYSV_ABI_Default
The SYS_ABI_Defaultmodifier is used to indicate that the compiler must use the x86-64-specific
calling convention that conforms to the System V AMD64 ABI This is the default calling convention
all x86-64 platforms except Win64, and is only supported on x86-64.

14.9.24 SYSV_ABI_CDecl
The SYSV_ABI_CDecl modifier is used to indicate that the compiler must use the x86-64-specific
calling convention that conforms to the System V AMD64 ABI, with the exception that ’array of
const’ are interpreted as cdecl varargs parameters, instead of the regular pascal array of const.

14.9.25 VectorCall
The VectorCall modifier is used to indicate that the compiler must use vector call calling con-
vention. This is a variant of the MS_ABI_Default calling convention that passes certain floating
point parameters in vector registers. only supported on on x86-64 CPUs.

231

../prog/prog.html
../prog/prog.html

CHAPTER 14. USING FUNCTIONS AND PROCEDURES

14.9.26 varargs
This modifier can only be used together with the cdecl modifier, for external C procedures. It
indicates that the procedure accepts a variable number of arguments after the last declared variable.
These arguments are passed on without any type checking. It is equivalent to using the array of
const construction for cdecl procedures, without having to declare the array of const. The
square brackets around the variable arguments do not need to be used when this form of declaration
is used.

The following declarations are two ways of referring to the same function in the C library:

Function PrintF1(fmt : pchar); cdecl; varargs;
external 'c' name 'printf';

Function PrintF2(fmt : pchar; Args : Array of const); cdecl;
external 'c' name 'printf';

But they must be called differently:

PrintF1('%d %d\n',1,1);
PrintF2('%d %d\n',[1,1]);

14.9.27 winapi
This modifier allows you to specify the native calling conventions for the current platform: the com-
piler will then select the correct calling convention depending on the OS architecture: stdcall on
windows-i386 and cdecl on all other platforms.

The following example demonstrates this:

function libusb_init(var ctx:plibusb_context):integer;winapi;external libusb1;

14.10 Unsupported Turbo Pascal modifiers

The modifiers that exist in Turbo Pascal, but aren’t supported by Free Pascal, are listed in table (14.1).

Table 14.1: Unsupported modifiers

Modifier Why not supported ?
Near Free Pascal is a 32-bit compiler.
Far Free Pascal is a 32-bit compiler.

The compiler will give a warning when it encounters these modifiers, but will otherwise completely
ignore them.

232

Chapter 15

Operator overloading

15.1 Introduction

Free Pascal supports operator overloading. This means that it is possible to define the action of some
operators on self-defined types, and thus allow the use of these types in mathematical expressions.

In addition, operator overloading can be used for some special actions that are strictly speaking not
operators in the mathematical sense of the word. This is true for the procedures Inc and Dec (which
are usable as a procedure only) and for implicit and explicit assignment (:= and typecasting). The
enumerator operator (to define an enumerable series for a type) is also part of this class of operators.

Defining the action of an operator is much like the definition of a function or procedure, only there
are some restrictions on the possible definitions, as will be shown in the subsequent.

Operator overloading is, in essence, a powerful notational tool; but it is also not more than that, since
the same results can be obtained with regular function calls. When using operator overloading, it is
important to keep in mind that some implicit rules may produce some unexpected results. This will
be indicated.

There are 2 ways to declare operator overloads. The first way is the original way as implemented in
Free Pascal, and is the most powerful. It is discussed in this chapter. There is also a second way,
which can only be implemented for Advanced (or extended) records, it is discussed in the chapter on
extended records.

15.2 Operator declarations

To define the action of an operator is much like defining a function:

Operator definitions

-- operator definition operator assignment operator definition
arithmetic operator definition

comparison operator definition
logical operator definition
other operator definition

-

- result identifier : result type ; subroutine block -�

233

CHAPTER 15. OPERATOR OVERLOADING

-- assignment operator definition :=
explicit

(value parameter) -�

-- arithmetic operator definition +
-
*
/
**
><

(parameter list) -�

-- comparision operator definition =
<
<=
>
>=
<>
in

(parameter list) -�

-- logical operator definition and
or

xor
not

(parameter list) -�

-- other operator definition enumerator
inc
dec

(parameter list) -�

The parameter list for a comparison operator or an arithmetic operator must always contain two
parameters, with the exception of the unary minus or plus, where only one parameter is needed. The
result type of the comparison operator(s) must be Boolean.

User-defined simple types can be used for operators, as well as records and arrays. There are some
limitations on operator overloading:

• This way of declaring operators is only supported in ObjFPC and FPC modes.

• It is not possible to define operators on classes.

• The + and - operators cannot be defined on enumerated types.

• When the ArrayOperators modeswitch is in effect:

{$modeSwitch ArrayOperators}

then the + operator cannot be overloaded on dynamic arrays, because it is handled internally
by the compiler.

Remark When compiling in Objfpc mode, the result identifier may be dropped. The result can then be
accessed through the standard Result symbol.

If the result identifier is dropped and the compiler is not in one of these modes, a syntax error will
occur.

The statement block contains the necessary statements to determine the result of the operation. It
can contain arbitrary large pieces of code; it is executed whenever the operation is encountered in
some expression. The result of the statement block must always be defined; error conditions are not
checked by the compiler, and the code must take care of all possible cases, throwing a run-time error
if some error condition is encountered.

234

CHAPTER 15. OPERATOR OVERLOADING

In the following, the three types of operator definitions will be examined. As an example, throughout
this chapter the following type will be used to define overloaded operators on:

type
complex = record

re : real;
im : real;

end;

This type will be used in all examples.

The sources of the Run-Time Library contain two units that heavily use operator overloading:

ucomplex This unit contains a complete calculus for complex numbers.

matrix This unit contains a complete calculus for matrices.

15.3 Assignment operators

The assignment operator defines the action of a assignment of one type of variable to another. The
result type must match the type of the variable at the left of the assignment statement, the single
parameter to the assignment operator must have the same type as the expression at the right of the
assignment operator.

This system can be used to declare a new type, and define an assignment for that type. For instance,
to be able to assign a newly defined type “Complex”

Var
C,Z : Complex; // New type complex

begin
Z:=C; // assignments between complex types.

end;

The following assignment operator would have to be defined:

Operator := (C : Complex) z : complex;

To be able to assign a real type to a complex type as follows:

var
R : real;
C : complex;

begin
C:=R;

end;

the following assignment operator must be defined:

Operator := (r : real) z : complex;

As can be seen from this statement, it defines the action of the operator := with at the right a real
expression, and at the left a complex expression.

An example implementation of this could be as follows:

235

CHAPTER 15. OPERATOR OVERLOADING

operator := (r : real) z : complex;

begin
z.re:=r;
z.im:=0.0;

end;

As can be seen in the example, the result identifier (z in this case) is used to store the result of the
assignment. When compiling in Delphi mode or ObjFPC mode, the use of the special identifier
Result is also allowed, and can be substituted for the z, so the above would be equivalent to

operator := (r : real) z : complex;

begin
Result.re:=r;
Result.im:=0.0;

end;

The assignment operator is also used to convert types from one type to another. The compiler will
consider all overloaded assignment operators till it finds one that matches the types of the left hand
and right hand expressions. If no such operator is found, a “type mismatch” error is given.

Remark The assignment operator is not commutative; the compiler will never reverse the role of the two
arguments. In other words, given the above definition of the assignment operator, the following is
not possible:

var
R : real;
C : complex;

begin
R:=C;

end;

If the reverse assignment should be possible then the assignment operator must be defined for that as
well. (This is not so for reals and complex numbers.)

Remark The assignment operator is also used in implicit type conversions. This can have unwanted effects.
Consider the following definitions:

operator := (r : real) z : complex;
function exp(c : complex) : complex;

Then the following assignment will give a type mismatch:

Var
r1,r2 : real;

begin
r1:=exp(r2);

end;

The mismatch occurs because the compiler will encounter the definition of the exp function with
the complex argument. It implicitly converts r2 to a complex, so it can use the above exp function.
The result of this function is a complex, which cannot be assigned to r1, so the compiler will give

236

CHAPTER 15. OPERATOR OVERLOADING

a “type mismatch” error. The compiler will not look further for another exp which has the correct
arguments.

It is possible to avoid this particular problem by specifying

r1:=system.exp(r2);

When doing an explicit typecast, the compiler will attempt an implicit conversion if an assignment
operator is present. That means that

Var
R1 : T1;
R2 : T2;

begin
R2:=T2(R1);

Will be handled by an operator

Operator := (aRight: T1) Res: T2;

However, an Explicit operator can be defined, and then it will be used instead when the compiler
encounters a typecast.

The reverse is not true: In a regular assignment, the compiler will not consider explicit assignment
operators.

Given the following definitions:

uses
sysutils;

type
TTest1 = record

f: LongInt;
end;
TTest2 = record

f: String;
end;
TTest3 = record

f: Boolean;
end;

It is possible to create assignment operators:

operator := (aRight: TTest1) Res: TTest2;
begin

Writeln('Implicit TTest1 => TTest2');
Res.f := IntToStr(aRight.f);

end;

operator := (aRight: TTest1) Res: TTest3;
begin

Writeln('Implicit TTest1 => TTest3');
Res.f := aRight.f <> 0;

end;

237

CHAPTER 15. OPERATOR OVERLOADING

But one can also define typecasting operators:

operator Explicit(aRight: TTest2) Res: TTest1;
begin

Writeln('Explicit TTest2 => TTest1');
Res.f := StrToIntDef(aRight.f, 0);

end;

operator Explicit(aRight: TTest1) Res: TTest3;
begin

Writeln('Explicit TTest1 => TTest3');
Res.f := aRight.f <> 0;

end;

Thus, the following code

var
t1: TTest1;
t2: TTest2;
t3: TTest3;

begin
t1.f := 42;
// Implicit
t2 := t1;
// theoretically explicit, but implicit op will be used,
// because no explicit operator is defined
t2 := TTest2(t1);
// the following would not compile,
// no assignment operator defined (explicit one won't be used here)
//t1 := t2;
// Explicit
t1 := TTest1(t2);
// first explicit (TTest2 => TTest1) then implicit (TTest1 => TTest3)
t3 := TTest1(t2);
// Implicit
t3 := t1;
// explicit
t3 := TTest3(t1);

end.

will produce the following output:

Implicit TTest1 => TTest2
Implicit TTest1 => TTest2
Explicit TTest2 => TTest1
Explicit TTest2 => TTest1
Implicit TTest1 => TTest3
Implicit TTest1 => TTest3
Explicit TTest1 => TTest3

15.4 Arithmetic operators

Arithmetic operators define the action of a binary operator. Possible operations are:

238

CHAPTER 15. OPERATOR OVERLOADING

multiplication To multiply two types, the * multiplication operator must be overloaded.

division To divide two types, the / division operator must be overloaded.

addition To add two types, the + addition operator must be overloaded. Note that the + can not be
used for dynamic arrays, as this is an internal compiler operation for array concatenation (see
also the modeswitch ARRAYOPERATORS).

subtraction To subtract two types, the - subtraction operator must be overloaded.

exponentiation To exponentiate two types, the ** exponentiation operator must be overloaded.

Unary minus is used to take the negative of the argument following it.

Symmetric Difference To take the symmetric difference of 2 structures, the >< operator must be
overloaded.

The definition of an arithmetic operator takes two parameters, except for unary minus, which needs
only one parameter. The first parameter must be of the type that occurs at the left of the operator, the
second parameter must be of the type that is at the right of the arithmetic operator. The result type
must match the type that results after the arithmetic operation.

To compile an expression as

var
R : real;
C,Z : complex;

begin
C:=R*Z;

end;

One needs a definition of the multiplication operator as:

Operator * (r : real; z1 : complex) z : complex;

begin
z.re := z1.re * r;
z.im := z1.im * r;

end;

As can be seen, the first operator is a real, and the second is a complex. The result type is complex.

Multiplication and addition of reals and complexes are commutative operations. The compiler, how-
ever, has no notion of this fact so even if a multiplication between a real and a complex is defined,
the compiler will not use that definition when it encounters a complex and a real (in that order). It is
necessary to define both operations.

So, given the above definition of the multiplication, the compiler will not accept the following state-
ment:

var
R : real;
C,Z : complex;

begin
C:=Z*R;

end;

239

CHAPTER 15. OPERATOR OVERLOADING

Since the types of Z and R don’t match the types in the operator definition.

The reason for this behavior is that it is possible that a multiplication is not always commutative.
E. g. the multiplication of a (n,m) with a (m,n) matrix will result in a (n,n) matrix, while the
multiplication of a (m,n) with a (n,m) matrix is a (m,m) matrix, which needn’t be the same in
all cases.

15.5 Comparison operator

The comparison operator can be overloaded to compare two different types or to compare two equal
types that are not basic types. If the operands are not simple types, the result type of a comparison
operator need not always be a boolean, but then they cannot be used in an if, repeat or while
statement.

The comparison operators that can be overloaded are:

equal to (=) To determine if two variables are equal.

unequal to (<>) To determine if two variables are different.

less than (<) To determine if one variable is less than another.

greater than (>) To determine if one variable is greater than another.

greater than or equal to (>=) To determine if one variable is greater than or equal to another.

less than or equal to (<=) To determine if one variable is greater than or equal to another.

If there is no separate operator for unequal to (<>), then, to evaluate a statement that contains the
unequal to operator, the compiler uses the equal to operator (=), and negates the result. The opposite
is not true: if no “equal to” but an “unequal to” operator exists, the compiler will not use it to evaluate
an expression containing the equal (=) operator.

As an example, the following operator allows to compare two complex numbers:

operator = (z1, z2 : complex) b : boolean;

the above definition allows comparisons of the following form:

Var
C1,C2 : Complex;

begin
If C1=C2 then

Writeln('C1 and C2 are equal');
end;

The comparison operator definition needs two parameters, with the types that the operator is meant
to compare. Here also, the compiler doesn’t apply commutativity: if the two types are different, then
it is necessary to define two comparison operators.

In the case of complex numbers, it is, for instance necessary to define 2 comparisons: one with the
complex type first, and one with the real type first.

Given the definitions

operator = (z1 : complex;r : real) b : boolean;
operator = (r : real; z1 : complex) b : boolean;

240

CHAPTER 15. OPERATOR OVERLOADING

the following two comparisons are possible:

Var
R,S : Real;
C : Complex;

begin
If (C=R) or (S=C) then
Writeln ('Ok');

end;

Note that the order of the real and complex type in the two comparisons is reversed.

The following example shows that the result type does not need to be a boolean:

Type
TMyRec = record a,b : integer; end;

operator = (x,y : TMyRec) r : string;

begin
if (x.a=y.a) and (x.b=y.b) then

R:='equal'
else

R:='differ';
end;

var
x,y : TMyRec;

begin
x.a:=1;
y.a:=1;
Writeln(x=y);
x.a:=2;
y.a:=3;
Writeln(x=y);

end.

When executed, this example will print

equal
differ

obviously, a statement as

if (x=y) then
writeln('Equal');

Will not compile, since the if statement needs a boolean check:

Error: Incompatible types: got "ShortString" expected "Boolean"

241

CHAPTER 15. OPERATOR OVERLOADING

15.6 In operator

As of version 2.6 of Free pascal, the In operator can be overloaded as well. The first argument of
the in operator must be the operand on the left of the in keyword. The following overloads the in
operator for records:

{$mode objfpc}{$H+}

type
TMyRec = record A: Integer end;

operator in (const A: Integer; const B: TMyRec): boolean;
begin

Result := A = B.A;
end;

var
R: TMyRec;

begin
R.A := 10;
Writeln(1 in R); // false
Writeln(10 in R); // true

end.

The in operator can also be overloaded for other types than ordinal types, as in the following exam-
ple:

{$mode objfpc}{$H+}

type
TMyRec = record A: Integer end;

operator in (const A: TMyRec; const B: TMyRec): boolean;
begin

Result := A.A = B.A;
end;

var
S,R: TMyRec;

begin
R.A := 10;
S.A:=1;
Writeln(S in R); // false
Writeln(R in R); // true

end.

15.7 Logical operators

Logical operators and, or, xor and not can be overloaded. These operators are normally used on
simple types in two different ways:

1. As boolean operators, in which case the result is a boolean (except for not)

242

CHAPTER 15. OPERATOR OVERLOADING

2. As bitwise operators, in which case the result is an ordinal type.

When overloading these operators, the result type is not restricted. This means you can define the
operators as boolean logic operators:

Type
Rec = record

a,b : Boolean;
end;

Operator and (r1,r2 : Rec) z : boolean;

begin
z:=(R1.a and R2.a) or (R1.b and r2.b);

end;

Operator or (r1,r2 : Rec) z : Boolean;

begin
z:=(R1.a or R2.a) and (R1.b or r2.b)

end;

Operator xor (r1,r2 : Rec) z : Boolean;

begin
z:=(R1.a xor R2.a) and (R1.b xor r2.b)

end;

Operator not (r1 : Rec) z : rec;

begin
z.A:=not R1.a;
z.B:=not R1.b;

end;

var
r1,r2 : Rec;

begin
Writeln(r1 and r2);
Writeln(r1 or r2);
Writeln(r1 xor r2);
Writeln((not r1).a);

end.

But it is also possible to have different return types:

Operator and (r1,r2 : Rec) z : string;

begin
Str(Ord((R1.a and R2.a) or (R1.b and r2.b)),Z);

end;

243

CHAPTER 15. OPERATOR OVERLOADING

The compiler will always check the return type to determine the final type of an expression, and
assignments will be checked for type safety.

15.8 Inc/Dec operators

The Inc and Dec procedures are – for optimization purposes – compiler intrinsics. They can be
overridden in the usual manner by declaring a procedure:

procedure Inc(var s : String);

begin
Inc(S,'.');

end;

procedure Inc(var s : String; T : String);

begin
S:=S+T;

end;

But because they are compiler intrinsics, they can also be implemented as operators for custom types:

operator Inc (s,T : String) : z : string;

begin
Z:=S+T;

end;

15.9 The enumerator operator

The enumerator operator can be used to define an enumerator for any type. It must return a class,
object, or extended record that has the same signature as the IEnumerator interface. Note that this
operator is not recognized by the compiler under the Delphi syntax mode.

The following code will define an enumerator for the Integer type:

Type
TEvenEnumerator = Class

FCurrent : Integer;
FMax : Integer;
Function MoveNext : Boolean;
Property Current : Integer Read FCurrent;

end;

Function TEvenEnumerator.MoveNext : Boolean;

begin
FCurrent:=FCurrent+2;
Result:=FCurrent<=FMax;

end;

244

CHAPTER 15. OPERATOR OVERLOADING

operator enumerator(i : integer) : TEvenEnumerator;

begin
Result:=TEvenEnumerator.Create;
Result.FMax:=i;

end;

var
I : Integer;
m : Integer = 4;

begin
For I in M do

Writeln(i);
end.

The loop will print all nonzero even numbers smaller or equal to the enumerable. (2 and 4 in the case
of the example).

More about enumerators and the enumerator operator can be found in the section 13.2.5, page 195.

245

Chapter 16

Programs, units, blocks

A Pascal program can consist of modules called units. A unit can be used to group pieces of code
together, or to give someone code without giving the sources. Both programs and units consist of
code blocks, which are mixtures of statements, procedures, and variable or type declarations.

16.1 Programs

A Pascal program consists of the program header, followed possibly by a “uses” clause, and a block.

Programs

-- program program header ;
uses clause

block . -�

-- program header program identifier
(program parameters)

-�

-- program parameters identifier list -�

-- uses clause uses
6
identifier

in string literal
,

; -�

The program header is provided for backwards compatibility, and is ignored by the compiler.

The uses clause serves to identify all units that are needed by the program. All identifiers which are
declared in the interface section of the units in the uses clause are added to the known identifiers of
the program. The system unit doesn’t have to be in this list, since it is always loaded by the compiler.

The order in which the units appear is significant, it determines in which order they are initialized.
Units are initialized in the same order as they appear in the uses clause. Identifiers are searched in the
opposite order, i. e. when the compiler searches for an identifier, then it looks first in the last unit in
the uses clause, then the last but one, and so on. This is important in case two units declare different
types with the same identifier.

The compiler will look for compiled versions or source versions of all units in the uses clause in the
unit search path. If the unit filename was explicitly mentioned using the in keyword, the source is
taken from the filename specified:

246

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

program programb;

uses unita in '..\unita.pp';

unita is searched in the parent directory of the current working directory of the compiler. You can
add a {$UNITPATH ..} directive to make sure that the unit will be found no matter where the
compiler’s current working directory is.

When the compiler looks for unit files, it adds the extension .ppu to the name of the unit. On LINUX
and in operating systems where filenames are case sensitive when looking for a unit, the following
mechanism is used:

1. The unit is first looked for in the original case.

2. The unit is looked for in all-lowercase letters.

3. The unit is looked for in all-uppercase letters.

Additionally, If a unit name is longer than 8 characters, the compiler will first look for a unit name
with this length, and then it will truncate the name to 8 characters and look for it again. For compat-
ibility reasons, this is also true on platforms that support long file names.

Note that the above search is performed in each directory in the search path.

The program block contains the statements that will be executed when the program is started. Note
that these statements need not necessarily be the first statements that are executed: the initialization
code of the units may also contain statements that are executed prior to the program code.

The structure of a program block is discussed below.

16.2 Units

A unit contains a set of declarations, procedures and functions that can be used by a program or
another unit. The syntax for a unit is as follows:

Units

-- unit unit header interface part implementation part -
-

initialization part finalization part
begin

6
statement

;

end . -�

-- unit header unit
.

?unit identifier
hint directives

; -�

-- interface part interface
uses clause 6 constant declaration part

type declaration part
variable declaration part
property declaration part
procedure headers part

-�

247

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

-- procedure headers part procedure header
function header

;
call modifiers ;

-�

-- implementation part implementation
uses clause

declaration part -�

-- initialization part initialization
6
statement

;
-�

-- finalization part finalization
6
statement

;
-�

As can be seen from the syntax diagram, a unit always consists of a interface and an implementation
part. Optionally, there is an initialization block and a finalization block, containing code that will be
executed when the program is started, and when the program stops, respectively.

Both the interface part or implementation part can be empty, but the keywords Interface and
implementation must be specified. The following is a completely valid unit;

unit a;

interface

implementation

end.

The interface part declares all identifiers that must be exported from the unit. This can be constant,
type or variable identifiers, and also procedure or function identifier declarations. The interface part
cannot contain code that is executed: only declarations are allowed. The following is a valid interface
part:

unit a;

interface

uses b;

Function MyFunction : SomeBType;

Implementation

The type SomeBType is defined in unit b.

All functions and methods that are declared in the interface part must be implemented in the imple-
mentation part of the unit, except for declarations of external functions or procedures. If a declared
method or function is not implemented in the implementation part, the compiler will give an error,
for example the following:

unit unita;

interface

Function MyFunction : Integer;

248

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

implementation

end.

Will result in the following error:

unita.pp(5,10) Error: Forward declaration not solved "MyFunction:SmallInt;"

The implementation part is primarily intended for the implementation of the functions and procedures
declared in the interface part. However, it can also contain declarations of its own: the declarations
inside the implementation part are not accessible outside the unit.

The initialization and finalization part of a unit are optional.

The initialization block is used to initialize certain variables or execute code that is necessary for the
correct functioning of the unit. The initialization parts of the units are executed in the order that the
compiler loaded the units when compiling a program. They are executed before the first statement of
the program is executed.

The finalization part of the units are executed in the reverse order of the initialization execution. They
are used for instance to clean up any resources allocated in the initialization part of the unit, or during
the lifetime of the program. The finalization part is always executed in the case of a normal program
termination: whether it is because the final end is reached in the program code or because a Halt
instruction was executed somewhere.

In case the program stops during the execution of the initialization blocks of one of the units, only
the units that were already initialized will be finalized. Note that in difference with Delphi, in Free
Pascal a finalization block can be present without an Initialization block. That means
the following will compile in Free Pascal, but not in Delphi.

Finalization
CleanupUnit;

end.

An initialization section by itself (i. e. without finalization) may simply be replaced by a statement
block. That is, the following:

Initialization
InitializeUnit;

end.

is completely equivalent to

Begin
InitializeUnit;

end.

16.3 Namespaces: Dotted Units

As can be seen in the syntax diagram for a unit, a unit name can contain dots. This means that the
units can be organized in namespaces.

So, the following is a correct unit declaration:

unit a.b;

249

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

interface

Function C : integer;

implementation

Function C : integer;

begin
Result:=1;

end;

end.

The unit can be used as follows:

program d;

uses a.b;

begin
Writeln(c);

end.

When resolving symbols, unit scopes always take precedence over symbols inside units.

Given the following units:

unit myunit;

interface

var
test: record

a: longint;
end;

implementation

initialization
test.a:=2;

end.

and

unit myunit.test;

interface

var
a: longint;

implementation

initialization

250

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

a:=1;
end.

The following program will resolve myunit.test.a to the variable a in unit myunit.test:

uses
myunit, myunit.test;

begin
Writeln('myunit.test.a : ',myunit.test.a);

end.

So it will print:

myunit.test.a : 1

Reversing the order of the units will not change this:

uses
myunit.test, myunit;

begin
Writeln('myunit.test.a : ',myunit.test.a);

end.

will also print

myunit.test.a : 1

Similarly, the following program will resolve myunit.test.a to the variable a in unit myunit.test:

uses
myunit.test, myunit;

begin
Writeln('a : ',a);

end.

it will print:

a : 1

Similarly, the following program will resolve test.a to the variable test.a in unit myunit:

uses
myunit.test, myunit;

begin
Writeln('test.a : ',test.a);

end.

will print

test.a : 2

251

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

16.4 Unit dependencies

When a program uses a unit (say unitA) and this units uses a second unit, say unitB, then the program
depends indirectly also on unitB. This means that the compiler must have access to unitB when
trying to compile the program. If the unit is not present at compile time, an error occurs.

Note that the identifiers from a unit on which a program depends indirectly, are not accessible to the
program. To have access to the identifiers of a unit, the unit must be in the uses clause of the program
or unit where the identifiers are needed.

Units can be mutually dependent, that is, they can reference each other in their uses clauses. This is
allowed, on the condition that at least one of the references is in the implementation section of the
unit. This also holds for indirect mutually dependent units.

If it is possible to start from one interface uses clause of a unit, and to return there via uses clauses
of interfaces only, then there is circular unit dependence, and the compiler will generate an error. For
example, the following is not allowed:

Unit UnitA;
interface
Uses UnitB;
implementation
end.

Unit UnitB
interface
Uses UnitA;
implementation
end.

But this is allowed:

Unit UnitA;
interface
Uses UnitB;
implementation
end.
Unit UnitB
implementation
Uses UnitA;
end.

Because UnitB uses UnitA only in its implementation section.

In general, it is a bad idea to have unit interdependencies, even if it is only in implementation sections.

16.5 Blocks

Units and programs are made of blocks. A block is made of declarations of labels, constants, types,
variables and functions or procedures. Blocks can be nested in certain ways, i. e., a procedure or
function declaration can have blocks in themselves. A block looks like the following:

Blocks

252

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

-- block declaration part statement part -�

-- declaration part
6 label declaration part

constant declaration part
resourcestring declaration part

type declaration part
variable declaration part

threadvariable declaration part
procedure/function declaration part

-�

-- label declaration part label
6
label

,
; -�

-- constant declaration part const
6

constant declaration
typed constant declaration

-�

-- resourcestring declaration part resourcestring
6
string constant declaration -

- -�

-- type declaration part type
6
type declaration -�

-- variable declaration part var
6
variable declaration -�

-- threadvariable declaration part threadvar
6
variable declaration -�

-- procedure/function declaration part
6

procedure declaration
function declaration

constructor declaration
destructor declaration

-�

-- statement part compound statement -�

Labels that can be used to identify statements in a block are declared in the label declaration part of
that block. Each label can only identify one statement.

Constants that are to be used only in one block should be declared in that block’s constant declaration
part.

Variables that are to be used only in one block should be declared in that block’s variable declaration
part.

Types that are to be used only in one block should be declared in that block’s type declaration part.

Lastly, functions and procedures that will be used in that block can be declared in the procedure/-
function declaration part.

These four declaration parts can be intermixed, there is no required order other than that you cannot
use (or refer to) identifiers that have not yet been declared.

After the different declaration parts comes the statement part. This contains any actions that the block
should execute. All identifiers declared before the statement part can be used in that statement part.

253

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

16.6 Scope

Identifiers are valid from the point of their declaration until the end of the block in which the dec-
laration occurred. The range where the identifier is known is the scope of the identifier. The exact
scope of an identifier depends on the way it was defined.

16.6.1 Block scope
The scope of a variable declared in the declaration part of a block, is valid from the point of dec-
laration until the end of the block. If a block contains a second block, in which the identifier is
redeclared, then inside this block, the second declaration will be valid. Upon leaving the inner block,
the first declaration is valid again. Consider the following example:

Program Demo;
Var X : Real;
{ X is real variable }
Procedure NewDeclaration
Var X : Integer; { Redeclare X as integer}
begin
// X := 1.234; {would give an error when trying to compile}
X := 10; { Correct assignment}

end;
{ From here on, X is Real again}
begin
X := 2.468;

end.

In this example, inside the procedure, X denotes an integer variable. It has its own storage space,
independent of the variable X outside the procedure.

16.6.2 Record scope
The field identifiers inside a record definition are valid in the following places:

1. To the end of the record definition.

2. Field designators of a variable of the given record type.

3. Identifiers inside a With statement that operates on a variable of the given record type.

16.6.3 Class scope
A component identifier (one of the items in the class’ component list) is valid in the following places:

1. From the point of declaration to the end of the class definition.

2. In all descendent types of this class, unless it is in the private part of the class declaration.

3. In all method declaration blocks of this class and descendent classes.

4. In a With statement that operators on a variable of the given class’s definition.

Note that method designators are also considered identifiers.

254

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

16.6.4 Unit scope
All identifiers in the interface part of a unit are valid from the point of declaration, until the end of
the unit. Furthermore, the identifiers are known in programs or units that have the unit in their uses
clause.

Identifiers from indirectly dependent units are not available. Identifiers declared in the implementa-
tion part of a unit are valid from the point of declaration to the end of the unit.

The system unit is automatically used in all units and programs. Its identifiers are therefore always
known, in each Pascal program, library or unit.

The rules of unit scope imply that an identifier of a unit can be redefined. To have access to an
identifier of another unit that was redeclared in the current unit, precede it with that other units name,
as in the following example:

unit unitA;
interface
Type

MyType = Real;
implementation
end.
Program prog;
Uses UnitA;

{ Redeclaration of MyType}
Type MyType = Integer;
Var A : Mytype; { Will be Integer }

B : UnitA.MyType { Will be real }
begin
end.

This is especially useful when redeclaring the system unit’s identifiers.

16.7 Libraries

Free Pascal supports making of dynamic libraries (DLLs under Win32 and OS/2) through the use of
the Library keyword.

A Library is just like a unit or a program:

Libraries

-- library library header ;
uses clause

block . -�

-- library header library identifier -�

By default, functions and procedures that are declared and implemented in library are not available
to a programmer that wishes to use this library.

In order to make functions or procedures available from the library, they must be exported in an
exports clause:

255

CHAPTER 16. PROGRAMS, UNITS, BLOCKS

Exports clause

-- exports clause exports exports list ; -�

-- exports list
6
exports entry

,
-�

-- exports entry identifier
index integer constant name string constant

-

- -�

Under Win32, an index clause can be added to an exports entry. An index entry must be a positive
number larger or equal than 1, and less than MaxInt.

Optionally, an exports entry can have a name specifier. If present, the name specifier gives the exact
name (case sensitive) by which the function will be exported from the library.

If neither of these constructs is present, the functions or procedures are exported with the exact names
as specified in the exports clause.

256

Chapter 17

Exceptions

Exceptions provide a convenient way to program error and error-recovery mechanisms, and are
closely related to classes. Exception support is based on three constructs:

Raise statements. To raise an exception. This is usually done to signal an error condition. It is
however also usable to abort execution and immediately return to a well-known point in the
executable.

Try ... Except blocks. These block serve to catch exceptions raised within the scope of the block,
and to provide exception-recovery code.

Try ... Finally blocks. These block serve to force code to be executed irrespective of an exception
occurrence or not. They generally serve to clean up memory or close files in case an exception
occurs. The compiler generates many implicit Try ... Finally blocks around proce-
dure, to force memory consistency.

Remark Because exceptions use classes, you need one of the object pascal modes to be able to use them:

{$MODE OBJFPC}

Or

{$MODE DELPHI}

17.1 The raise statement

The raise statement is as follows:

Raise statement

-- raise statement raise
exception instance

exception address

-�

-- exception address at exception address
, address expression

-�

257

CHAPTER 17. EXCEPTIONS

This statement will raise an exception. If it is specified, the exception instance must be an initialized
instance of any class, which is the raise type. The exception address and frame are optional. If they
are not specified, the compiler will provide the address by itself. If the exception instance is omitted,
then the current exception is re-raised. This construct can only be used in an exception handling
block (see further).

Remark Control never returns after an exception block. The control is transferred to the first try...finally
or try...except statement that is encountered when unwinding the stack. If no such statement
is found, the Free Pascal Run-Time Library will generate a run-time error 217 (see also section 17.5,
page 261). The exception address will be printed by the default exception handling routines.

As an example: The following division checks whether the denominator is zero, and if so, raises an
exception of type EDivException

Type EDivException = Class(Exception);
Function DoDiv (X,Y : Longint) : Integer;
begin

If Y=0 then
Raise EDivException.Create ('Division by Zero would occur');

Result := X Div Y;
end;

The class Exception is defined in the Sysutils unit of the rtl. (section 17.5, page 261)

Remark Although the Exception class is used as the base class for exceptions throughout the code, this
is just an unwritten agreement: the class can be of any type, and need not be a descendent of the
Exception class.

Of course, most code depends on the unwritten agreement that an exception class descends from
Exception.

The following code shows how to omit an error reporting routine from the stack shown in the excep-
tion handler:

{$mode objfpc}
uses sysutils;

procedure error(Const msg : string);

begin
raise exception.create(Msg) at

get_caller_addr(get_frame),
get_caller_frame(get_frame);

end;

procedure test2;

begin
error('Error');

end;

begin
test2;

end.

The program, when run, will show a backtrace as follows:

An unhandled exception occurred at $00000000004002D3 :

258

CHAPTER 17. EXCEPTIONS

Exception : Error
$00000000004002D3 line 15 of testme.pp
$00000000004002E6 line 19 of testme.pp

Line 15 is in procedure Test2, not in Error, which actually raised the exception.

17.2 The try...except statement

A try...except exception handling block is of the following form:

Try..except statement

-- try statement try statement list except exceptionhandlers end -�

-- statement list
6
statement

;
-�

-- exceptionhandlers

6
exception handler

; else statement list
statement list

-�

-- exception handler on
identifier :

class type identifier do statement -�

If no exception is raised during the execution of the statement list, then all statements in the
list will be executed sequentially, and the except block will be skipped, transferring program flow to
the statement after the final end.

If an exception occurs during the execution of the statement list, the program flow will be
transferred to the except block. Statements in the statement list between the place where the exception
was raised and the exception block are ignored.

In the exception handling block, the type of the exception is checked, and if there is an exception
handler where the class type matches the exception object type, or is a parent type of the exception
object type, then the statement following the corresponding Do will be executed. The first matching
type is used. After the Do block was executed, the program continues after the End statement.

The identifier in an exception handling statement is optional, and declares an exception object. It
can be used to manipulate the exception object in the exception handling code. The scope of this
declaration is the statement block following the Do keyword.

If none of the On handlers matches the exception object type, then the statement list after else is
executed. If no such list is found, then the exception is automatically re-raised. This process allows
to nest try...except blocks.

If, on the other hand, the exception was caught, then the exception object is destroyed at the end of
the exception handling block, before program flow continues. The exception is destroyed through a
call to the object’s Destroy destructor.

As an example, given the previous declaration of the DoDiv function, consider the following

Try
Z := DoDiv (X,Y);

Except

259

CHAPTER 17. EXCEPTIONS

On EDivException do Z := 0;
end;

If Y happens to be zero, then the DoDiv function code will raise an exception. When this happens,
program flow is transferred to the except statement, where the Exception handler will set the value
of Z to zero. If no exception is raised, then program flow continues past the last end statement. To
allow error recovery, the Try ... Finally block is supported. A Try...Finally block
ensures that the statements following the Finally keyword are guaranteed to be executed, even if
an exception occurs.

17.3 The try...finally statement

A Try..Finally statement has the following form:

Try...finally statement

-- trystatement try statement list finally finally statements end -�

-- finally statements statementlist -�

If no exception occurs inside the statement List, then the program runs as if the Try, Finally
and End keywords were not present, unless an exit command is given: an exit command first exe-
cutes all statements in the finally blocks before actually exiting.

If, however, an exception occurs, the program flow is immediately transferred from the point where
the exception was raised to the first statement of the Finally statements.

All statements after the finally keyword will be executed, and then the exception will be automatically
re-raised. Any statements between the place where the exception was raised and the first statement
of the Finally Statements are skipped.

As an example consider the following routine:

Procedure Doit (Name : string);
Var F : Text;
begin

Assign (F,Name);
Rewrite (name);
Try

... File handling ...
Finally

Close(F);
end;

end;

If during the execution of the file handling an exception occurs, then program flow will continue at
the close(F) statement, skipping any file operations that might follow between the place where
the exception was raised, and the Close statement. If no exception occurred, all file operations will
be executed, and the file will be closed at the end.

Note that an Exit statement enclosed by a try .. finally block, will still execute the finally
block. Reusing the previous example:

260

CHAPTER 17. EXCEPTIONS

Procedure Doit (Name : string);
Var

F : Text;
B : Boolean;

begin
B:=False;
Assign (F,Name);
Rewrite (name);
Try

// ... File handling ...
if B then

exit; // Stop processing prematurely
// More file handling

Finally
Close(F);

end;
end;

The file will still be closed, even if the processing ends prematurely using the Exit statement.

17.4 Exception handling nesting

It is possible to nest Try...Except blocks with Try...Finally blocks. Program flow will be
done according to a lifo (last in, first out) principle: The code of the last encountered Try...Except
or Try...Finally block will be executed first. If the exception is not caught, or it was a finally
statement, program flow will be transferred to the last-but-one block, ad infinitum.

If an exception occurs, and there is no exception handler present which handles this exception, then
a run-time error 217 will be generated. When using the SysUtils unit, a default handler is installed
which will show the exception object message, and the address where the exception occurred, after
which the program will exit with a Halt instruction.

17.5 Exception classes

The sysutils unit contains a great deal of exception handling. It defines the base exception class,
Exception

Exception = class(TObject)
private

fmessage : string;
fhelpcontext : longint;

public
constructor create(const msg : string);
constructor createres(indent : longint);
property helpcontext : longint read fhelpcontext write fhelpcontext;
property message : string read fmessage write fmessage;

end;
ExceptClass = Class of Exception;

And uses this declaration to define quite a number of exceptions, for instance:

{ mathematical exceptions }

261

CHAPTER 17. EXCEPTIONS

EIntError = class(Exception);
EDivByZero = class(EIntError);
ERangeError = class(EIntError);
EIntOverflow = class(EIntError);
EMathError = class(Exception);

The SysUtils unit also installs an exception handler. If an exception is unhandled by any exception
handling block, this handler is called by the Run-Time library. Basically, it prints the exception
address, and it prints the message of the Exception object, and exits with an exit code of 217. If the
exception object is not a descendent object of the Exception object, then the class name is printed
instead of the exception message.

It is recommended to use the Exception object or a descendant class for all raise statements,
since then the message field of the exception object can be used.

262

Chapter 18

Using assembler

Free Pascal supports the use of assembler in code, but not inline assembler macros. To have more
information on the processor specific assembler syntax and its limitations, see the Programmer’s
Guide.

18.1 Assembler statements

The following is an example of assembler inclusion in Pascal code.

...
Statements;
...
Asm

the asm code here
...

end;
...
Statements;

The assembler instructions between the Asm and end keywords will be inserted in the assembler
generated by the compiler. Conditionals can be used in assembler code, the compiler will recognize
them, and treat them as any other conditionals.

18.2 Assembler procedures and functions

Assembler procedures and functions are declared using the Assembler directive. This permits the
code generator to make a number of code generation optimizations.

The code generator does not generate any stack frame (entry and exit code for the routine) if it
contains no local variables and no parameters. In the case of functions, ordinal values must be
returned in the accumulator. In the case of floating point values, these depend on the target processor
and emulation options.

263

../prog/prog.html
../prog/prog.html

Index

Abstract, 83
abstract, 76
Address, 176
Alias, 225
Ansistring, 34, 39
Array, 43, 213, 214

Constructor, 48
Dynamic, 44
Of const, 214
Static, 43

array, 61
Array constructor, 48
Asm, 206
Assembler, 206, 224, 263

block, 252
Boolean, 28

Case, 190
cdecl, 226
Char, 32
Class, 86, 96
Class helpers, 149
Classes, 86
CodePage, 34, 36

Conversion, 36
COM, 61, 121
Comments, 13
Comp, 31
Const, 23

String, 23
Constants, 21

Ordinary, 21
String, 19, 22, 39
Typed, 22

Constructor, 79, 93, 173
CORBA, 61, 121
cppdecl, 226
Currency, 31

Delphi
Compatibility, 129
Syntax, 129
Type overloads, 131

Destructor, 79, 93

Directives
Hint, 16

Dispatch, 100
DispatchStr, 101
Double, 31

else, 190, 192
except, 259, 261
Exception, 257
Exceptions, 257

Catching, 257, 259
Classes, 261
Handling, 260, 261
Raising, 257

export, 226
Expression, 203
Expressions, 169
Extended, 31
Extended records, 142
External, 223
external, 67, 223

Fields, 50, 77
File, 53
finally, 260, 261
For, 193, 195

downto, 193
in, 195
to, 193

Forward, 56, 222
Function, 208
Functions, 207

Assembler, 224, 263
External, 223
Forward, 222
Modifiers, 224
Overloaded, 221

generic, 124
Generics, 123

Overloads, 131
Type Restrictions, 128

hardfloat, 226
Hint directives, 16

264

INDEX

Identifiers, 16
If, 192
index, 104, 223
Inherited, 95
inherited, 82, 109
inline, 226
interface, 114
Interfaces, 61, 63, 114

COM, 121
CORBA, 121
Implementations, 116

interrupt, 227
iocheck, 227

Labels, 19
Libraries, 255
library, 255
local, 227

Message, 100
message, 100
Methods, 80, 94

Abstract, 83
Class, 96
Message, 100
Static, 81, 98
Virtual, 81, 83, 95

Modifiers, 15, 224, 232
Alias, 225
cdecl, 226
cppdecl, 226
export, 226
hardfloat, 226
inline, 226
interrupt, 227
iocheck, 227
local, 227
MS_ABI_CDecl, 228
MS_ABI_Default, 227
MWPascal, 228
noreturn, 228
nostackframe, 228
overload, 228
pascal, 230
public, 230
register, 231
safecall, 231
saveregisters, 231
softfloat, 231
stdcall, 231
SYSV_ABI_CDecl, 231
SYSV_ABI_Default, 231
varargs, 232
VectorCall, 231

winapi, 232
MS_ABI_CDecl, 228
MS_ABI_Default, 227
MWPascal, 228

name, 223
noreturn, 228
nostackframe, 228
Numbers, 17

Binary, 18
Decimal, 18
Hexadecimal, 18
Octal, 18
Real, 17

object, 75
Objective-Pascal, 159
Objective-Pascal Classes, 159
Objects, 75
Objects, abstract, 76
Objects, sealed, 76
Operators, 21, 40, 55, 169, 176, 177

Arithmetic, 177, 238
Assignment, 235
Binary, 238
Boolean, 178
Comparison, 240
Dynamic arrays, 179
Logical, 178
Relational, 182
Set, 180
String, 179
Unary, 177

operators, 233
otherwise, 190
overload, 228
overloading

operators, 233
Override, 96
override, 82

Packed, 50, 76, 93
Parameters, 209

Constant, 209, 212
Open Array, 213, 214
Out, 211
Reference counted, 217
Untyped, 216
Untypes, 209
Value, 209
Var, 104, 209, 210

pascal, 230
PChar, 35, 39
Pointer, 54

265

INDEX

Private, 85, 88, 104
strict, 88

private, 76
Procedural, 56
Procedure, 56, 207
Procedures, 207
program, 246
Properties, 71, 102

Array, 105
Indexed, 104

Property, 97, 103
Protected, 85, 88
Public, 85, 88
public, 76, 230
Published, 88, 104
PUnicodeChar, 39

Raise, 257
Rawbytestring, 38
Read, 103
Real, 31
Record, 50

Constant, 69
Record helpers, 149
register, 231
reintroduce, 96
Repeat, 202
Reserved words, 14

Delphi, 15
Modifiers, 15
Turbo Pascal, 14

Resourcestring, 23

safecall, 231
saveregisters, 231
Scope, 35, 46, 68, 75, 85, 87, 254

block, 254
Class, 254
record, 254
unit, 255

sealed, 76
Self, 80, 97
Set, 53
Shortstring, 33
Single, 31
softfloat, 231
specialize, 126
Statements, 186

Assembler, 206, 263
Assignment, 186
Case, 190
Compound, 189
Exception, 205
For, 193, 195

Goto, 188
if, 192
Loop, 193, 195, 202, 203
Procedure, 187
Repeat, 202
Simple, 186
Structured, 189
While, 203
With, 204

Static class methods, 98
stdcall, 231
String, 19

Ansistring, 34
CodePage, 34
Codepage, 36
Constant, 39
Multi-byte, 38
RawByteString, 38
ShortString, 33
Single-byte string, 32
UnicodeString, 38
UTF8String, 38
WideString, 39

Symbols, 12
Syntax diagrams, 10
SYSV_ABI_CDecl, 231
SYSV_ABI_Default, 231

Text, 53
then, 192
Thread Variables, 71
Threadvar, 71
Tokens, 12

Comments, 13
Identifiers, 16
Numbers, 17
Reserved words, 14
Strings, 19
Symbols, 12

try, 260, 261
Type, 25

Compatibility, 28, 47, 64, 132, 174, 176,
210

Generics, 123, 124
Helpers, 149
Restrictions, 128
Specializing, 126
Type overloads, 131

Typecast, 34, 35, 39, 174, 175
Unaligned, 175
Value, 174
Variable, 175

Types, 25
Ansistring, 34

266

INDEX

Array, 43, 44
Base, 25
Boolean, 28
Char, 31, 32
Class, 86
Class helpers, 149
Constructor, 48
Enumeration, 29
Extended record, 142
File, 53
Forward declaration, 56
Integer, 26
Object, 75
Ordinal, 26
PChar, 35, 40
Pointer, 40, 54
Procedural, 56
Rawbytestring, 38
Real, 31
Record, 50
Record helpers, 149
Reference counted, 34, 36, 38, 44, 46, 122
Set, 53
ShortString, 33
String, 32
Structured, 41
Subrange, 30
Type helpers, 149
UnicodeString, 38
UTF8String, 38
Variant, 61
Widestring, 39

Unicodestring, 38
unit, 247, 255
uses, 246
UTF8String, 38

Var, 66
varargs, 232
Variable, 66
Variables, 66

Initialized, 22, 68, 70
Variant, 61
VectorCall, 231
Virtual, 79, 81, 95, 100
Visibility, 75, 85, 114

Private, 75, 88
Protected, 88
Public, 75, 88
Published, 88
Strict Private, 88
Strict Protected, 88

While, 203
WideChar, 32
Widestring, 39
winapi, 232
With, 204
Write, 103

267

	Pascal Tokens
	Symbols
	Comments
	Reserved words
	Turbo Pascal reserved words
	Object Pascal reserved words
	Modifiers

	Identifiers
	Hint directives
	Numbers
	Labels
	Character strings

	Constants
	Ordinary constants
	Typed constants
	Resource strings

	Types
	Base types
	Ordinal types
	Integers
	Boolean types
	Enumeration types
	Subrange types
	Character types

	Real types

	Character types
	Char or AnsiChar
	WideChar
	Other character types
	Single-byte String types
	Short strings
	Ansistrings
	Code page conversions
	RawByteString
	UTF8String

	Multi-byte String types
	UnicodeStrings
	WideStrings

	Constant strings
	PChar – Null terminated strings
	String sizes

	Structured Types
	Packed structured types
	Arrays
	Static arrays
	Dynamic arrays
	Dynamic array Type compatibility
	Dynamic array constructor
	Dynamic array constant expressions
	Packing and unpacking an array

	Record types
	Record layout and size
	Remarks and examples

	Set types
	File types

	Pointers
	Forward type declarations
	Procedural types
	Variant types
	Definition
	Variants in assignments and expressions
	Variants and interfaces

	Type aliases
	Managed types

	Variables
	Definition
	Declaration
	Scope
	Initialized variables
	Initializing variables using default
	Thread Variables
	Properties

	Objects
	Declaration
	Abstract and sealed objects
	Fields
	Class or Static fields
	Constructors and destructors
	Methods
	Declaration
	Method invocation
	Normal static methods
	Virtual methods
	Abstract methods
	Class or static methods

	Visibility

	Classes
	Class definitions
	Abstract and sealed classes
	Normal and static fields
	Normal fields/variables
	Class fields/variables

	Class instantiation
	Class destruction
	Methods
	Declaration
	Invocation
	Virtual methods
	Class methods
	Class constructors and destructors
	Static class methods
	Message methods
	Using inherited

	Properties
	Definition
	Indexed properties
	Array properties
	Default properties
	Published properties
	Storage information
	Overriding and redeclaring properties

	Class properties
	Nested types, constants and variables

	Interfaces
	Definition
	Interface identification: A GUID
	Interface implementations
	Interface inheritance
	Interface delegation
	Interfaces and COM
	CORBA and other Interfaces
	Reference counting

	Generics
	Introduction
	Generic type definition
	Generic type specialization
	Generic type restrictions
	Delphi compatibility
	Syntax elements
	Record type restrictions
	Type overloads
	Name space considerations

	Type compatibility
	Using the default intrinsic
	A word about scope
	Operator overloading and generics

	Extended records
	Definition
	Extended record enumerators
	Record operators

	Class, Record and Type helpers
	Definition
	Restrictions on class helpers
	Restrictions on record helpers
	Considerations for (simple) type helpers
	A note on scope and lifetime for record and type helpers
	Inheritance
	Usage

	Objective-Pascal Classes
	Introduction
	Objective-Pascal class declarations
	Formal declaration
	Allocating and de-allocating Instances
	Protocol definitions
	Categories
	Name scope and Identifiers
	Selectors
	The id type
	Enumeration in Objective-C classes

	Expressions
	Expression syntax
	Function calls
	Set constructors
	Value typecasts
	Variable typecasts
	Unaligned typecasts
	The @ operator
	Operators
	Arithmetic operators
	Logical operators
	Boolean operators
	String operators
	Dynamic array operators
	Set operators
	Relational operators
	Class operators

	Statements
	Simple statements
	Assignments
	Procedure statements
	Goto statements

	Structured statements
	Compound statements
	The Case statement
	The If..then..else statement
	The For..to/downto..do statement
	The For..in..do statement
	The Repeat..until statement
	The While..do statement
	The With statement
	Exception Statements

	Assembler statements

	Using functions and procedures
	Procedure declaration
	Function declaration
	Function results
	Parameter lists
	Value parameters
	Variable parameters
	Out parameters
	Constant parameters
	Open array parameters
	Array of const
	Untyped parameters
	Managed types and reference counts

	Function overloading
	Forward declared functions
	External functions
	Assembler functions
	Modifiers
	alias
	cdecl
	cppdecl
	export
	hardfloat
	inline
	interrupt
	iocheck
	local
	MS_ABI_Default
	MS_ABI_CDecl
	MWPascal
	noreturn
	nostackframe
	overload
	pascal
	public
	register
	safecall
	saveregisters
	softfloat
	stdcall
	SYSV_ABI_Default
	SYSV_ABI_CDecl
	VectorCall
	varargs
	winapi

	Unsupported Turbo Pascal modifiers

	Operator overloading
	Introduction
	Operator declarations
	Assignment operators
	Arithmetic operators
	Comparison operator
	In operator
	Logical operators
	Inc/Dec operators
	The enumerator operator

	Programs, units, blocks
	Programs
	Units
	Namespaces: Dotted Units
	Unit dependencies
	Blocks
	Scope
	Block scope
	Record scope
	Class scope
	Unit scope

	Libraries

	Exceptions
	The raise statement
	The try...except statement
	The try...finally statement
	Exception handling nesting
	Exception classes

	Using assembler
	Assembler statements
	Assembler procedures and functions

