Specification of the Exim Mail
Transfer Agent

Exim Maintainers

Specification of the Exim Mail Transfer Agent

Author: Exim Maintainers

Copyright ' 2018 University of Cambridge
Revision4.91 15 Apr 2018

Contents

1. INTFOAUCTION ...t 1
1.1 EXIM dOCUMENTATION ..o 1
1.2 FTP @nd WED SITES ..ot 2
1.3 MaUING LISES .ttt n s 2
1.4 BUQ FEPOIS ...ttt bbbt b bt b b r e 3
1.5 Where to find the EXim diStriDULIONcoooiiiiii s 3
1.6 LIMITALIONS ..ot b ettt bbbt b nen s 4
1.7 RUN tiMe CONFIGUIATION ... 4
1.8 CalliNg INTEITACE ..ot 4
1.9 TEIMINOIOGY ..ottt b b s e et n e ens 4

2. INCOrPOrated COUER ..ottt b e nr e 6

3. How Exim receives and delivers mail ... 8
3.1 OVerall PhIlOSOPRNY ...ttt 8
3.2 POICY CONTIO ...ttt e e 8
3.3 USEI FIHEIS et b e et n e 8
3.4 Message identifiCatiON ... e 9
3.5 RECEIVING MA| ..ot 9
3.6 Handling an inCOMING MESSAJEccvrirrerieiiirierierieee ettt e 10
3.7 Life Of @ MESSAYEevieeeeieiiieie ettt b e ne e 10
3.8 Processing an address for delIVEIY ..o 11
3.9 Processing an address for VErifiCation ... 12
3.10 Running an individu@l FOULETcoiiiiiieiieseeee e 12
3.11 Duplicate addrESSESccuiiiiiiiieieierese e 13
3.12 Router PreCONITIONSccoiiirieeieerese et 13
3.13 Delivery in detail ..o e 14
3.14 Retry MECNANISIM ..o ne e 15
3.15 Temporary delivery failure ... 15
3.16 Permanent delivery failure ..o 15
3.17 Failures to deliver DOUNCE MESSAGESccoovrieririeiriiereeeee e 16

4. Building and installing EXim ... 17
4.1 UNPACKING oottt b e e e n e 17
4.2 Multiple machine architectures and operating SYStemscccocvireirienineneieienenees 17
4.3 PCRE TIDFAIY ..ottt 17
4.4 DBM lIBIAri©S ..ottt ne e 17
4.5 Pre-building CONfIQUIALIONcoviiiieiiiee e 18
T GRS TU oTo o] 4 (o) g oo} 0 1Y/ () ISP 19
4.7 Including TLS/SSL encryption SUPPOITccoiirieirieirieeeeeesie e 19
4.8 USE OF TCPWIAPPETS ..viueeueeiiriinteseee ettt sttt sttt e et s s eae bt n e e e seenenne e 20
4.9 Including SUPPOIT fOr IPVBcooeee s 20
4.10 Dynamically loaded lookup module SUPPOITccciiirereieiineseeeee e 21
4.11 The DUIldING PrOCESSeouiiiirieiieieieie sttt ene e 21
4.12 OUtPUL frOM “MAKE” ..ottt 21
4.13 Overriding build-time options fOr EXiM ... 21
4.14 OS-sSpeCific NEAUET fIlES ..o e 23
4.15 Overriding build-time options for the MONItOr ... 23
4.16 Installing Exim binaries and SCriPLScoviriririieiiser e 24
4.17 Installing info dOCUMENTALIONc.ooiiiiiiiie e 25
4.18 Setting up the SPOOI AIFECIONYcoecuiiiiiriee e 25
o RS 1= 1] o TSP OSSO P PRSPRPROIN 25

iii

4.20 Replacing another MTA With EXIM ..o 26

4.21 UPGrading EXIM ..o 27
4.22 Stopping the Exim daemon 0N SOIariS ... 27
. The EXim command liN@ccoooiiii e 28
5.1 Setting options by Program NAME ..o 28
5.2 Trusted and admin USEISccoiiiririeieeinie et ne e 28
5.3 Command lIN€ OPLIONSeouiiiiiiiire bbb 29
. The Exim run time configuration filecooo e 51
6.1 Using a different configuration fileccooiiiinn s 51
6.2 Configuration file FOrmMat ... 52
6.3 File inclusions in the configuration file ... 53
6.4 Macros in the configuration file ... 53
6.5 MaCIrO SUDSTITULION ... 53
6.6 RedefiNiNg MACIOSooiiiiiiee ettt 54
6.7 OVerriding MACKO VAIUEScccouiiiiiirieiiieiriee ettt 54
6.8 Example Of MACIO USAJE ..ottt 54
6.9 BUIIIN MACIOS ... 54
6.10 Conditional skips in the configuration file ... 55
6.11 COmMMON OPLON SYNEAX ...ecviiiiiiiiiiriee bbb 55
6.12 BOO0IEAN OPLIONS ..ottt 55
B.13 INTEYET VAIUES ...t n e 56
6.14 OCtal INTEGET VAIUES ...ttt 56
6.15 Fixed POiNt NUMDEISocuiiiiieiiiee e 56
B.16 TIME INTEIVAISeoeeeiie e e ne e 56
B.17 STNG VAIUES ...ttt bbb 56
6.18 EXPANAEA SIINGS ..ot n e 57
6.19 User and group NAMESccccoiiiiirieieieene et r e sn s nne e 57
6.20 LISt CONSIIUCTION ...eveiiiiiiiiiteeee ettt ne e 57
6.21 Changing liSt SEPAratOrS ... 57
6.22 EMPLty HEMS N [ISTS ..o 58
6.23 Format of driver configurations ..o 58
. The default configuration file ... 60
7.1 Main configuration SEHINGScooiiiiie s 60
7.2 ACL CONFIQUIALION ..ottt 63
7.3 Router CONfIQUIAtION ..ot 66
7.4 Transport CONFIGUIALIONc.ooiiiiiiire bbb 68
7.5 DefaUlt rerY FUIE ..o bbb 69
7.6 Rewriting CoNfigUIatioN ... 69
7.7 Authenticators configuration ... 69
. Reqgular @XPreSSIONS ... 71
. File and database I00KUPS ... 72
9.1 Examples of different I00KUP SYNTaXxccocoriiiiinniiceeee e 72
9.2 LOOKUP YPES .vitiieieisiestest ettt n et b b nn e n e n e 73
9.3 Single-Key I00KUP TYPESooviiiiiieirierie et 73
9.4 QuEry-Style I0OKUD TYPES ...ooiiiiiiieirieerie et 75
9.5 Temporary €rrors iN IOOKUPScuriiirieieeiriesiesieseeese et 76
9.6 Default values in single-Key I00KUPS ... 76
9.7 Partial matching in single-Key l00OKUPScccoiriiiiieiceneneseeees e 77
9.8 LOOKUP CACKING ..ottt nne s 78

9.9 QUOLING IOOKUP LA ...t 78
9.10 MOre @abOut ANSADccoiiieeie e 79
9.11 Dnsdb [00KUP MOGIfIEISovieiiieirieisieeeer e 79
9.12 Pseudo dnsdb reCord tYPESooiiiieiiiiiiieriee e 80
9.13 Multiple dNSAD I0OKUPScveueiiiiiiieieeeesie e 81
9.14 More about LDAP ... e 81
9.15 Format Of LDAP QUETIES ..ottt 81
.16 LDAP QUOLING ..ttt e en e nn e n e 82
9.17 LDAP CONNECLIONS ...ttt ne e 82
9.18 LDAP authentication and control information ... 83
9.19 Format of data returned by LDAP ... 85
9.20 MOre aboUt NISH ...t 85
9.21 SQIL IOOKUPS ..ttt b et b et ne bt eb et e e b sbe e 86
9.22 More about MySQL, PostgreSQL, Oracle, InterBase, and Redisc..cccceevevvrvnnnens 86
9.23 Specifying the server in the QUETY ..o 87
9.24 Special MySQL fEAUIEScccoiiiiiriereeree e 87
9.25 Special POStgreSQL fEAtUIESccovueiiiiicireeieee e 88
9.26 More about SQLITEciiiiiiiieeere e 88
9.27 MOre about REAIScciiiiiiieeiins e 88
10. Domain, host, address, and local part lists ... 89
10.1 EXPANSION OF lISTS ..uiieiiiiiiiee e 89
10.2 Negated iteMS IN lISTScoveieeeeiei e 89
10.3 File NAmMES IN lISIS ..o e 90
10.4 An Isearch file is not an out-0f-liNe liSt ... 90
10.5 NAMEA [ISTS ..o r e r e 90
10.6 Named lists compared With Macroscceoeiiininiic e 91
10.7 Named [ISt CACNING ..oovoiiii s 91
10.8 DOMAIN lISTS ..ottt n e 92
T0.9 HOSTLISTS ...t n e n e 94
10.10 Special host list PAEINSciiiiiii e 94
10.11 Host list patterns that match by IP address ... 94
10.12 Host list patterns for single-key lookups by host addresscccoeviiiniiiccnee, 95
10.13 Host list patterns that match by host name ... 96
10.14 Behaviour when an IP address or name cannot be foundccoconiiniinciinne. 97
10.15 Mixing wildcarded host names and addresses in host lists ..o 97
10.16 Temporary DNS errors when looking up host informationc.cceeiiiiincine. 98
10.17 Host list patterns for single-key lookups by host name ..., 98
10.18 Host list patterns for query-style I00KUPScccoeriiicinicnreeee e 98
10.19 AAreSS lISES ...t 99
10.20 Case of letters in address liStS ..o 101
10.21 LOCAI PAT LISTS ..t 101
11, STHNG EXPANSIONS ...t b et e bt see e 102
11.1 Literal text in expanded SIHNGSccooiiiiiiceee s 102
11.2 Character escape sequences in expanded Stringscccoveierrinnennenseieneennns 102
11.3 Testing StriNg EXPaANSIONScoviirieeeireeeriee et n e 102
11.4 Forced expansion failure ... 103
11.5 EXPANSION ITEBIMS ..o 103
11.6 EXPANSION OPEIAtOrSccoiviiiiriiiee et 115
11.7 EXPaNnSIoN CONAITIONSoviiiiiiiiiiee e 121
11.8 Combining expansion CONAItIONS ..o 128
11.9 EXPanSion Variables ... 128
12, Embedded Perl e 148

12.1 Setting up SO Perl Can De USEA ..o 148

12.2 Calling Perl SUDFOULINEScoiiiiiiieee e 148
12.3 Calling Exim functions from Perl ..o 149
12.4 Use of standard output and error by Perl ... 149
13. Starting the daemon and the use of network interfacesc..ccccoeervivrene. 150
13.1 Starting a listening daemon ... 150
13.2 Special IP [istening addreSSES ..o 151
13.3 Overriding local_interfaces and daemon_smip_portsccccovrnrenncincieneicnnns 151
13.4 Support for the submissions (aka SSMTP or SMTPS) protocolcccccceveiirccnnee 151
13.5 IPV6 QddreSs SCOPESooveiiiiriiriiitee ettt e 152
13.6 DiSADIING IPVB ...t 152
13.7 Examples of starting a listening daemon ... 152
13.8 Recognizing the 10Cal NOSL ..o 153
13.9 Delivering t0 @ remote NOST ..o 153
14. Main configUIAtioNccoooiiiiii e 154
141 MISCEIIANEOUS ...t 154
14.2 EXIM PATAMETEIS ..o 154
14.3 Privilege CONTIOISoooiieecee s 154
LI o To o 1o T IR TSRS PSSP PR PSRRI 155
14.5 FrOZEN MESSAGESoiiiiiieieiii sttt et n e 155
14.6 Data I00KUPS ..o 155
14,7 MESSAQGE IUS ...ttt n et n e 155
14.8 Embedded Perl STartup ... 155
T4.9 D@EBIMON ...ttt e et b e e e e n e n s 155
14.10 RESOUICE CONIIOL ... 156
14,11 POICY CONTIOIS ..o 156
14.12 CalloUt CACNE ... bbbt 157
TA.18 TS ettt b bbb b e b e bt b et b e e 157
14.14 Local USer NANAING ..o 157
14.15 All incoming messages (SMTP and non-SMTP) ... 158
14.16 NON-SMTP iNCOMING MESSAJESeeueriruiiriiirieirieeriee ettt 158
14.17 INCOMING SMTP MESSAJES ...uviviuiiriiieierieeesie sttt 158
14.18 SMTP EXIENSIONS ..ottt ettt 158
14.19 ProcesSing MESSAGESccccovririirierieirieee sttt nr e sn e 159
14.20 SYSIEM FIEE ..t 159
14.21 Routing and delIVEIYoe i 159
14.22 Bounce and warning MESSAJESccocurrerrerreririresreseeieeesre s e se e snesseeenes 160
14.23 Alphabetical list of Main OPLIONSccviriicc e 160
15. Generic options fOr FOULEIS ..o 208
16. The @CCEPT FOUREE ... 222
17. The dNSIOOKUP FOURET ..o 223
17.1 Problems With DNS [0OKUPSc.couruiririiriiirieicienieesiee e 223
17.2 Declining addresses by dNnSIOOKUPccooveieiiiinincice s 223
17.3 Private options for ANSIOOKUPccvrriririiiineeee e 224
17.4 Effect of qualify_single and search_parents ... 226
18. The ipliteral FOUTEr ... 227
19. The iPlOOKUP FOULETooiieee e 228

Vi

20. The MANUAIFOULE FOUTEKooeeeiiieeeeee ettt ettt e e e e s ettt e e e e saeeraaeeeeessesarseeeeeeesenanns 230

20.1 Private options for ManualroUE ..o 230
20.2 Routing rules in FOULE_IISTcciiiieiiiieseiee e 231
20.3 Routing rules in route_datacooeieeirireieieceeeeee e 232
20.4 Format of the list Of NOSES ..o 232
20.5 Format of 0N NOSE IEM ..o 233
20.6 How the list Of NOSES IS USEAocviiieiiicice e 233
20.7 HOW the OPLiONS @re USEAcccciiiiiieieirieiiesieeees e 234
20.8 Manualroute EXamIPIEScceeiiiiiieieesere e 234
21. The qUEryprogram FOURETcooiiiiiiriieiee et 237
22, TRE redir@Ct FOUTEN ... e 239
22.1 RedireCtion dat@cccoiiiieiee e 239
22.2 Forward files and address Verification ... 239
22.3 Interpreting redireCtion datacccooeireriieieee e 240
22.4 ltems in a non-filter redireCtion liStccocoiriiiiir e 240
22.5 Redirecting t0 @ local MailDOXccveiviiiiiiieieeee e 240
22.6 Special items in redireCtion lISIS ... 241
22.7 DUPIICAIE QAAIESSES ..ot 243
22.8 Repeated redireCtion eXPanSION ... 243
22.9 Errors in redireCtion lISTS ..o 243
22.10 Private options for the redireCt roULEr ..o 243
23. Environment for running local tranSPorts ... 252
23.1 CONCUITENT AEIIVEIIES ...ttt 252
23.2 UIAS @NA GIAS ..ottt 252
23.3 Current and home AIrECIONEScccoiiriiiicireeere e 253
23.4 Expansion variables derived from the address ... 253
24. Generic options fOr traNSPOILS ..o 254
25. Address batching in local transSports ... 261
26. The appendfile tranSPOrtooo e 263
26.1 The file and direCtory OPtIONS ... 263
26.2 Private options for appendfile ... 264
26.3 Operational details for apPendingcccoeoerriirrernee e 273
26.4 Operational details for delivery to a New file ... 275
26.5 Maldir AEIVEIY ...t 275
26.6 Using tags t0 reCord MESSAJE SIZEScecerveieeeriirienieieeeee et 276
26.7 Using @ MaildirSize fil@ccooiiiiiee e 277
26.8 MalIStOre A IVEIY ..o 277
26.9 Non-special NeW file deIIVEIY ... 277
27. The autoreply tranNSPOIT ..o 278
27.1 Private options for QUIOIEPIY ..o 278
28. The IMPp tranSPOIT ... 281
29. The PIPe trANSPOIT ... 283
29.1 CONCUITENT AEIIVEIY ..ot 283

29.2 Returned Status and aAtacc.eeeeeeiiiieceeee ettt e et e e et e e e e ree e e e e e eesarnreees 283

29.3 HOW the COMMEANGA IS FUNueiiiiieceeee e 284
29.4 Environment variabIES ..o 285
29.5 Private options fOr PIPEcoreiriiiriirieeee e 285
29.6 Using an external local delivery agent ... 290
30. The SMP tFANSPOIT ..o e 292
30.1 Multiple messages on a single CONNECLIONcooeierererinereee e 292
30.2 Use of the $host and $host_address variables ..., 292
30.3 Use of $tls_cipher and $tIs_peerdn ... 292
30.4 Private options fOr SMIP ..o 292
30.5 How the limits for the number of hosts to try are used ..o 303
31, AdAress FEWHITINGccooiiiiiiec e n e 305
31.1 Explicitly configured address reWritingc.cccoeerrenneineineineesee e 305
31.2 When does rewriting Nappen? ... 305
31.3 Testing the rewriting rules that apply on iNPUL ... 306
31.4 REWIITING TUIES ..o 306
31.5 REWTrItING PALIEINS ... 307
31.6 Rewriting replaCemeENtS ..o 308
31.7 ReWrItING fIAgS ...veeeieeeieeie e 308
31.8 Flags specifying which headers and envelope addresses to rewritec.c..c....... 308
31.9 The SMTP-time rewriting flagcccoeoreiree e 308
31.10 Flags controlling the rewriting ProCESScccvirireririirireresees e 309
31.11 Rewriting €XamMPIES ..o 309
32. Retry configuration ... 311
32.1 Changing retry FUIES ..ot 311
32.2 FOrmat Of retry FUIES ... 311
32.3 Choosing which retry rule to use for address €rrorscocvceveveiercesereresie e 312
32.4 Choosing which retry rule to use for host and message errorscccceeveevrerereenene 312
32.5 Retry rules for SPECIfIC EITOIS ..o 313
32.6 Retry rules for specified SENAErS ..o 314
32.7 REtry Parameters ..o 315
32.8 Retry rule eXamples ... 315
32.9 Timeout Of retry dataccooreee e 316
32.10 LoNG-term failUresc.ooeieiiiiiee e 316
32.11 Deliveries that work intermittently ... 317
33. SMTP authentication ... s 318
33.1 Generic options for authentiCators ..o 319
33.2 The AUTH parameter on MAIL cOmMmMaNdScccooeireninineieiseseseeeeee e 321
33.3 Authentication on an EXim SEIVEr ... 321
33.4 Testing server authentiCationcccoiiiireiee e 322
33.5 Authentication by an EXim Client ... 323
34. The plaintext authenticator ... 324
34.1 PlainteXt OPLIONS ..o 324
34.2 USiNg PlainteXt iN @ SEIVET ..o 324
34.3 The PLAIN authentication mechaniSm ... 324
34.4 The LOGIN authentication mechanism ... 325
34.5 Support for different kinds of authentication ... 326
34.6 Using plaintext in @ CHENT ..o 326

35. The cram_md5 authenticatorcco e 328

35.1 USIiNG Cram_mdS5 @S @ SEIVETcoeiieiiirieiierieieeee et 328
35.2 Using cram_md5 @S @ ClIENT ..o 328
36. The cyrus_sasl authentiCatorcooiii s 330
36.1 USING CYrUS_SASI @S @ SEIVEccueiieiiiriecierieeeee e 330
37. The dovecot authenticatorooo i 332
38. The gsasl authenticatoroo i 333
38.1 gsasl auth variabIEscc.o i 334
39. The heimdal_gssapi authenticator ... 335
39.1 heimdal_gssapi auth variables ... 335
40. The spa authentiCator ... 336
40.1 USING SPA @S @ SEIVET ..ottt see et ss et r e n et esesb s sn e e s n e e ens 336
40.2 USING SPA @S @ CHENT ..o s 336
41. The tls @UthentiCator ... 338
42. Encrypted SMTP connections using TLS/SSLccoooiiinniccreeeenes 339
42.1 Support for the “submissions” (aka “ssmtp” and “smtps”) protocolccceceuneee. 339
42.2 OPeNnSSL VS GNUTLS ..ot 339
42.3 GnuTLS parameter COMPULALIONcc.oiiiiiiriiee e 340
42.4 Requiring specific ciphers in OpenSSL ... 341
42.5 Requiring specific ciphers or other parameters in GNUTLS ... 342
42.6 Configuring an Exim server to Use TLS ... 343
42.7 Requesting and verifying client certificates ... 344
42.8 RevoKed CErtifiCAteSsooiiiieiiieirieeie e 345
42.9 Configuring an Exim client to use TLS ... 345
42.10 Use of TLS Server Name INdiCationccocoreiniinnineiiesceese e 346
42.11 Multiple messages on the same encrypted TCP/IP connectionc.ccccoeveneee. 347
42.12 Certificates and all that ... 348
42.13 Certificate CRAINScooiieiice e 348
42.14 Self-signed CertifiCates ... 348
4215 DANE ..ot b bbbt 349
43. AcCeSS CONEIOI ISTSooiiii e 352
43.1 TESHNG ACLS ..ottt bbb b e 352
43.2 Specifying When ACLS @re USEAccooiiiriiirieerieereee e 352
43.3 The NON-SIMTP ACLS ..ot 353
43.4 The SMTP CONNECE ACL ..o 353
43.5 The EHLO/HELQO ACL ..ottt 353
43.6 THE DATA ACLS ...ttt bbb 353
43.7 The SMTP DKIM ACL ...ttt 354
43.8 The SMTP MIME ACL ..ot 354
43.9 The SMTP PRDR ACL ..ottt 354
43.10 The QUIT ACL .ottt bbb 354
43.11 The NOt-QUIT ACL ..ot 355

43.12 FINAING QN ACL 10 USE ..ottt 355

43.13 ACL retUrn COOES ..ottt ettt 356
43.14 UNSEt ACL OPLIONS ...eiiiiiiiieeeiee ettt 356
43.15 Data for MeSSage ACLS ..ot e 357
43.16 Data for NON-MeSSAFE ACLSooviiiiiiieieerieee e 357
43.17 FOrmat Of @n ACL ... 357
4318 ACL VEIDS ...ttt ettt 358
43.19 ACL VArI@DIES ...ooceieieiiieeee et 359
43.20 Condition and MOdifier ProCESSINGccvrueeririiriririeerre e 360
43.21 ACL MOGIfIEIS ...ttt 361
43.22 Use of the control MOGIfIEr ..o 365
43.23 Summary of message fiXup CONTIOL ..o 369
43.24 Adding header iNeS iN ACLS ..o 369
43.25 Removing header liN€S iN ACLS ..o 370
43.26 ACL CONAITIONS ...ttt et bbb 371
43.27 USING DINS ISIS ..ottt 375
43.28 Specifying the IP address for a DNS list I0OKUP ...c.coovevievienieieisceeeeee e 376
43.29 DNS lists keyed 0n dOmMain NAMES ... 376
43.30 Multiple explicit keys for @ DNS liStccooiiiiiiiieeeeee e 377
43.31 Data returned by DNS SISccooiiiiiiice e 377
43.32 Variables set from DNS lIStSccocoiiiiiiiiiceee e 378
43.33 Additional matching conditions for DNS liStScccoeviriiniiniieeeeceeee 378
43.34 Negated DNS matching CONditioNS ..o 379
43.35 Handling multiple DNS records from a DNS liStccccovviiviieinsceeeece e 379
43.36 Detailed information from merged DNS [iStScccoiiiiiiniinciceceree 380
43.37 DNS it @nd IPVBocooiiiiieiieeeee et 381
43.38 Rate [imiting iNCOMING MESSAGESecirveeririiriiieieeere e 381
43.39 Ratelimit options for what is being measured ... 382
43.40 Ratelimit update MOAEScooiieiiiiriiee s 383
43.41 Ratelimit options for handling fast Clients ... 383
43.42 Limiting the rate of different eVents ... 384
43.43 USING rate lIMItINGcooeieiiiiee e s 384
43.44 Address VErfICAtION ..o 385
43.45 Callout VErfICAtION ..o 386
43.46 Additional parameters for CalloUtsc.ccoiiiriiiiiiin e 387
43.47 Callout CACNING ...eiuiiiiiiieie bbb 389
43.48 Sender address verification reporting ..o 389
43.49 Redirection While VErfYiNg ..o 390
43.50 Client SMTP authorization (CSA) ... 390
43.51 Bounce address tag validation ..o 391
43.52 Using an ACL to control relaying ..o 392
43.53 Checking a relay configuration ... 393
44. Content scanning at ACL time ... 394
44.1 SCANNING fOF VIFUSESeouiiiiieeieceees ettt 394
44.2 Scanning with SpamAssassin and RSpPamdcccoeirrinninneineicneeeee e 398
44.3 Calling SpamAssassin from an EXim ACL ... 400
44.4 Scanning MIME Parts ..o 401
44.5 Scanning with regular EXPreSSiONS ... 404
45. Adding a local scan function to EXim ... 405
45.1 Building Exim to use a local scan function ... 405
45.2 AP Or 10CAI_SCAN() weerrieriiirieirieierieieres ettt 405
45.3 Configuration options for 10Cal_SCaN()ceovrveieriririreree e 406
45.4 Available EXim variables ... 407
45.5 Structure of header lINES ..o 409

45.6 Structure of reCipient ITEMS ..o 409
45.7 Available EXIM fUNCHONScoiiiiee e 410
45.8 More about Exim’s memory handling ... 414
46. System-wide message filtering ... 415
46.1 SpecCifying a SyStem fIEr ..o 415
46.2 Testing @ SYStem fIHEr ... 415
46.3 Contents Of @ SYStem filler ... 415
46.4 Additional variable for system filters ... 416
46.5 Defer, freeze, and fail commands for system filters ... 416
46.6 Adding and removing headers in a system filter ... 417
46.7 Setting an errors address in a system filter ... 417
46.8 Per-address filering ... 418
47. MeSSAQE PrOCESSINGcceiiiiiieiiiiiriee ettt r e et b e r s e e st ne e eneas 419
47.1 Submission mode for Non-local MESSAPESccccvrvreririririrrere e 419
47.2 LiNE ENAINGS ..eovieieeiieteiteieeeee ettt e et b e b e et n e n e 420
47.3 UNQUAlIfied adArESSES ..ottt 420
47.4 The UUCP FrOm lINE ..ot 421
47.5 Resent- NEAdEr lINES ... 421
47.6 The Auto-Submitted: header lINe ... 422
47.7 The BCC: NAUEI lINE ..o s 422
47.8 The Date: header lINE ... s 422
47.9 The Delivery-date: header lINe ..o 422
47.10 The Envelope-10: header liNe ..o 422
4711 The From: header lINE ... 422
4712 The Message-ID: header liN ..o 423
47.13 The Received: header liNE ... 423
47.14 The References: header liNE ... 423
47.15 The Return-path: header liNe ..o 423
47.16 The Sender: Neader liNE ..o 423
47.17 Adding and removing header lines in routers and transportsc.ccccecveevereenne 424
47.18 CoNnStructed adArESSEScciiieiirieiieieerieere et 425
47.19 Case Of I0CAl PAIScoerieirieirieireeeee et 426
47.20 DOtS iN 10CAI PATS ...oveeiececieeertee s 426
47.21 ReWriting @ddrESSEScccoiiiiirieieeecesie e 426
48. SIMTP PrOCESSINGcooiiiiiiiiiiriiieie ettt b e b ettt bese e s et es 427
48.1 Outgoing SMTP and LMTP over TCP/IP ... 427
48.2 Errors in outgoing SIMTP ... 428
48.3 Incoming SMTP messages over TCP/IP ... 429
48.4 Unrecognized SMTP COMMANGASccooiiiiiiiriiirieesieerese e 431
48.5 Syntax and protocol errors in SMTP commands ..o 431
48.6 Use of non-mail SMTP COMMANGSccoiiiiiiirireereeeeeee e 431
48.7 The VRFY and EXPN COMMANAScociiiiiiiiiieeceseee s 431
48.8 The ETRN COMMEANG ..o 431
48.9 INCOMING 10CAI SMTP ..o 432
48.10 Outgoing batChed SIMTP ..o 432
48.11 Incoming batChed SIMTP ..o 433
49. Customizing bounce and warning mMeSSAQgescccorirrirriinenenee s 434
49.1 Customizing DOUNCE MESSAQEScirvrviiriiirieireere e 434
49.2 Customizing Warning MESSAGEScccceereruereruererirerieieresiesessesessesesseesse e sessessssesesseessns 435

Xi

50. Some common configuration settings ... 436

50.1 Sending mail 10 @ SMart NOST ..o 436
50.2 Using Exim to handle mailing lISTScoiiiiiiininiee e 436
50.3 Syntax errors in Mailing liStScccoireiiirec s 436
50.4 Re-expansion of Mailing lISTS ... 437
50.5 Closed MailiNg lSTSc.ciriiiiiee e 437
50.6 Variable Envelope Return Paths (VERP) ... 438
50.7 Virtual dOMAINS ..o 439
50.8 Multiple USer MaIIDOXEScccoiiiiiieeeirre e 440
50.9 Simplified vacation ProCESSINGcccoreirririririeererierese e 441
50.10 Taking copies Of Mallcoiiiie e 441
50.11 Intermittently connected NOSIS ..o 441
50.12 Exim on the upstream SEerver NOST ... 441
50.13 Exim on the intermittently connected client hOSt ... 442
51. Using Exim as a non-queueing client ... 443
52, LOG fIlES ... e 445
52.1 Where the 10gS are WIItEENccooiiiiiiieeeee e 445
52.2 Logging to local files that are periodically “Cycled” ... 446
52.3 Datestamped 10Q fil€S ..o 446
52.4 LOQQING 10 SYSIOQ ..eueiuiriiiiieeeeeie e 447
52.5 LOQ lINE FIAGS .uiieeiiieiiiiecie et 448
52.6 L0ogging MesSSage rECEPLIONccciriiiiieiieir e 448
52.7 LOQQING AEIVEIIES ...t 449
52.8 DiscCarded dElIIVEIIES ..o 450
52.9 Deferred deliVEIES ..ot 450
52.10 DeliVery failUres ..o 450
52.11 FaKE EIVEIIES ... 451
52.12 COMPIELION .ot 451
52.13 Summary of Fields iN LOg LINES ..o 451
52.14 OFher 10g ENIIES ..o 452
52.15 Reducing or increasing what iS 10ggedcccoiiiiiiiininerciee e 452
52.16 MESSAGE 100 .eieiieieiieiisieri e 457
53, EXiM ULIITIES ..o 458
53.1 Finding out what Exim processes are doing (exiwhat)ccccoviiineiiinininciiene 458
53.2 Selective queue liStiNg (EXIGQIEP) -« veerreerrrerriririererieresiereriee et 458
53.3 Summarizing the qUEUE (EXIQSUMIM)ccieiiiririreiriereeie e 459
53.4 Extracting specific information from the 10g (EXIGrep)c.cccvevneineinnennesseee 460
53.5 Selecting messages by various criteria (EXiPICK)cccuererrrireiineierieereesereseseeee 460
53.6 Cycling 10g files (EXICYCIO) ...oveerreririririeirieirieeree e 461
53.7 Mall statistiCS (EXIMSTALS)cccviiiireeeirere e 461
53.8 Checking access policy (exim_CheCKacCess)cccumirrrireiineiereereesesesese e 462
53.9 Making DBM files (exim_dbmbuild) ..o 462
53.10 Finding individual retry times (EXINEXL)ccoevrirereriererere e 463
53.11 Hints database maintenancCe ... 463
53.12 eXIM_AUMPAD ...t 464
53,13 eXIM_tIAYAD ..o 464
53,14 @XIM_TIXAD .o 465
53.15 Mailbox maintenance (XiM_lOCK)courerrriiriririeiere e 465
54. The EXimM MONITOLcooiii e 467
54.1 RuNNing the MONITOK ..o 467

54.2 The SIHPCNAITS ..o e 467

54.3 Main aCtioN DUTIONSc.oiviiiiiiiirie et 468
54.4 THE 10g AISPIAY ...eeveeeiiriiiteieee e 468
54.5 The QUEUE QISPIAY ...coiriiiiiieeeiiei e 469
54.6 THE QUEUE MENU ...oueiiiiiiieeeeee et r e e 469
55. Security considerations ... 472
55.1 Building a more “hardened” EXimM ... 472
55.2 ROOT PrIVIIEE ..t 472
55.3 Running EXim Without PrivilEgecceiiiiieceee e 474
55.4 Delivering 10 10Cal fil€S ..o 475
55.5 Running local COMMANGSccooiiiiiiieereeee e 475
55.6 Trust in configuration data ... 475
55.7 IPVA SOUICE FOULING ..eeiviiiieieiisiisiesi et 476
55.8 The VRFY, EXPN, and ETRN commands in SMTP ... 476
55.9 PrIVIIEJEA USEIS ...t 476
55.10 SPOOI FIES ..t 476
55.11 USE Of @rgV[0] ...eeeeciiieiieeieeieee ettt 477
55.12 Use of %f FOrmattingccooeeiiiieee e 477
55.13 Embedded EXim path ... 477
55.14 Dynamic MOAUIE QIrECIONYcooiiieiieirieieriee e 477
55.15 USE Of SPIINLI() eeeeeiiieiiieeee e 477
55.16 Use of debug_printf() and 10g_Wrte()cccoeverrerrinniircreee e 477
55.17 Use of strcat() and SrCPY() «oeeoeeerererereirieirieereeieres et 477
56. Format of SPOOIfiles ..o 478
56.1 Format of the -H file ..o 478
56.2 Format of the -D fil€coeiiee e 482
57. DKIM @Nd SPF ...ttt 483
57.1 DKIM (DomainKeys ldentified Mail)ccovriiiiniiiceeese e 483
57.2 Signing OUIJOING MESSAQFES -...cerveereririeiirieierieie sttt sae e se e e s e sbe e s 483
57.3 Verifying DKIM signatures in inCOmMINg Malilcccoceoriiniineineieneeeeesee e 485
57.4 SPF (Sender Policy Framework) ..o 489
B58. PrOXIES ...t n e 491
58.1 INDOUNG PrOXIES ..ottt 491
58.2 OUIDOUNG PrOXIES ...ecuiiiiiiiiiieieisieisie sttt 491
58.3 LOGGING ettt e R r e r e n e 492
59. InternationaliSationoo i 493
59.1 MTA OPEIALIONS ..ottt bbb r e nen e 493
59.2 MDA OPEIALIONS ...ttt b e e nen e 493
B0. EVENTS ... et r e n e 495
61. Adding new drivers or IOOKUP tYPES ... 497
OPHONS INAEX ...ttt e et e ettt nb e 498
Variables INAEX ... 505
CONCEPT INAEX ...ttt b e b ettt ne e 507

1. Introduction

Exim isamail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable con guration

adjustments.

Con guration les currently exist for the following operating systems: AlX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-
UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunO$4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and Unixware. Some of these operating systems are no longer current and cannot
easily be tested, so the con guration les may no longer work in practice.

There are also con guration les for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the le NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the le LICENCE.

The use, supply or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of the program, which revolve around the free provision of a service
that enhances the quality of personal communications. The author of Exim regards indiscriminate
mass-mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, | could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. | am grateful to them al. The
distribution now contains a le called ACKNOWLEDGMENTS, in which | have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim speci cation applies to version 4.91 of Exim. Substantive changes from the
4.90 edition are marked in some renditions of the document; this paragraph is so marked if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
the manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An easier discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server (Second edition, 2007), pub-
lished by UIT Cambridge (http://www.uit.co.uk/exim-book/).

This book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O¢Reilly, covers Exim 3, and many things have
changed in Exim 4.)

If you are using a Debian distribution of Exim, you will nd information about Debian-speci ¢
featuresin the le/usr/share/doc/exim4-base/README.Debian. The command man update-exim.conf
is another source of Debian-speci ¢ information.

1 Introduction (1)

As the program develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most signi cant digit of the fractional part of the version
number changes. Speci cations of new features that are not yet in this manual are placed in the le
doc/NewStuff in the Exim distribution.

Some features may be classi ed as experimental . These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in the le doc/experimental.txt.

All changes to the program (whether new features, bug xes, or other kinds of change) are noted
briefly in the le called doc/ChangeLog.

This speci cation itself is available as an ASCII le in doc/spec.txt S0 that it can easily be searched
with atext editor. Other lesin the doc directory are:

OptionLists.txt list of all optionsin aphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 aman page of Exim¢s command line options
experimental.txt documentation of experimental features
filter.txt speci cation of the Iter language
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3to release 4
openssl.txt installing a current OpenSSL release

The main speci cation and the speci cation of the ltering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Section below tells you how to get hold of these.

1.2 FTP and web sites

The primary site for Exim source distributions is the exim.org FTP site, available over HTTPS, HTTP
and FTP. These services, and the exim.or g website, are hosted at the University of Cambridge.

As well as Exim distribution tar les, the Exim web site contains a number of differently formatted
versions of the documentation. A recent addition to the online information is the Exim wiki
(http://wiki.exim.org), which contains what used to be a separate FAQ, as well as various other
examples, tips, and know-how that have been contributed by Exim users.

The wiki site should always redirect to the correct place, which is currently provided by GitHub, and
is open to editing by anyone with a GitHub account.

An Exim Bugzilla exists at https://bugs.exim.org. You can use this to report bugs, and also to add
itemsto the wish list. Please search rst to check that you are not duplicating a previous entry.

Please do not ask for con guration help in the bug-tracker.

1.3 Mailing lists
The following Exim mailing lists exist:

exim-announce @ exim.org Moderated, low volume announcements list
exim-users @ exim.org General discussion list

exim-dev@exim.org Discussion of bugs, enhancements, etc.
exim-cvs @exim.org Automated commit messages from the VCS

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
viathe mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-speci ¢ mailing list pkg-exim4-users @lists.alioth.debian.org via
this web page:

http://lists.alioth.debian.or g/mailman/listinfo/pkg-exim4-user s
Please ask Debian-speci ¢ questions on this list and not on the general Exim lists.

2 Introduction (1)

1.4 Bug reports

Reports of obvious bugs can be emailed to bugs@exim.org or reported via the Bugzilla
(https://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the best
thing to do isto post a message to the exim-dev mailing list and have it discussed.

1.5 Where to find the Exim distribution
The master distribution site for the Exim distribution is
https://downloads.exim.or g/
The serviceisavailable over HTTPS, HTTP and FTP. We encourage people to migrate to HTTPS.

The content served at https://downloads.exim.org/ is identicd to the content served at
https://ftp.exim.org/pub/exim and fip://ftp.exim.org/pub/exim.

If accessing via a hostname containing fip, then the le references that follow are relative to the exim
directories at these sites. If accessing via the hostname downloads then the subdirectories described
here are top-level directories.

There are now quite a number of independent mirror sites around the world. Those that | know about
arelisted in the le called Mirrors.

Within the top exim directory there are subdirectories caled exim3 (for previous Exim 3 distri-
butions), exim4 (for the latest Exim 4 distributions), and Testing for testing versions. In the exim4
subdirectory, the current release can aways be found in lescalled

exim-n.nn.tar.xz
exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The three les contain identical data;
the only difference is the type of compression.

The.xz leisusualy the smallest, whilethe.gz leisthe most portableto old systems.

The distributions will be PGP signed by an individual key of the Release Coordinator. This key will
have a uid containing an email address in the exim.org domain and will have signatures from other
people, including other Exim maintainers. We expect that the key will be in the "strong set" of PGP
keys. There should be a trust path to that key from Nigel Metheringham¢s PGP key, a version of
which can be found in the release directory in the le nigel-pubkey.asc. All keys used will be available
in public keyserver pools, such as pool.sks-keyservers.net.

At time of last update, releases were being made by Jeremy Harris and signed with key
OxBCES58C8CE41F32DF. Other recent keys used for signing are those of Heiko Schlittermann,
0x26101B62F69376CE, and of Phil Pennock, 0x4D1E900E14C1CC04.

The signatures for the tar bundles are in:

exim-n.nn.tar.xz.asc
exim-n.nn.tar.gz.asc
exim-n.nn.tar.bz2.asc

For each released version, the log of changes is made separately available in a separate le in the
directory ChangeLogs <0 that it is possible to nd out what has changed without having to download
the entire distribution.

The main distribution contains ASCII versions of this speci cation and other documentation; other
formats of the documents are available in separate lesinside the exim4 directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

3 Introduction (1)

These tar les contain only the doc directory, not the complete distribution, and are also available in
.bz2 and .xz forms.

1.6 Limitations

» Eximisdesigned for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP bang paths, though simple two-component bang paths can
be converted by a straightforward rewriting con guration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

e Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically quali ed with a con gured domain value. Con guration
options specify from which remote systems unquali ed addresses are acceptable. These are then
quali ed on arrival.

* The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to les and pipes, optionally in batched SMTP format; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

» Eximisnot designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages delivered into les (that is, off Exim¢s queue) and subsequently
passed on to the dial-in hosts by other means.

» Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.7 Run time configuration

Exim¢s run time con gurationisheld in asingle text lethat is divided into a number of sections. The
entriesin this le consist of keywords and values, in the style of Smail 3 con guration les. A default
con guration le which is suitable for simple online installations is provided in the distribution, and
is described in chapter [7] below.

1.8 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,

Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages on the queue) do so in Exim¢s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. ChapterE documents al

Exim¢s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages on the queue can be done via certain privileged command line options. There is
also an optiona monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Eximés command line administration options.

1.9 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message, and is separated from the header (see below) by ablank line.

When a message cannot be delivered, it is normaly returned to the sender in a delivery failure
message or a non-delivery report (NDR). The term bounce is commonly used for this action, and
the error reports are often called bounce messages. Thisis a convenient shorthand for delivery failure

4 Introduction (1)

error report . Such messages have an empty sender address in the messageds envelope (see below) to
ensure that they cannot themselves give rise to further bounce messages.

The term defaulr appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the con guration. It may also qualify an action which is taken unless a
con guration setting speci es otherwise.

The term defer is used when the delivery of a message to a speci ¢ destination cannot immediately
take place for some reason (a remote host may be down, or a user¢s local mailbox may be full). Such
deliveries are deferred until alater time.

The word domain is sometimes used to mean all but the rst component of a host¢s name. It is not
used in that sense here, where it normally refersto the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The header of a message isthe rst part of a message¢s text, consisting of a number of lines, each of
which has a name such as From:, To:, Subject:, €tc. Long header lines can be split over severa text
lines by indenting the continuations. The header is separated from the body by ablank line.

The term local part, which is taken from RFC 2822, is used to refer to that part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a le or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. Asfar as Exim is concerned, all hosts
other than the host it is running on are remote.

Return path is another name that is used for the sender address in a messageds envelope.

The term queue is used to refer to the set of messages awaiting delivery, because this term is in
widespread use in the context of MTAs. However, in Eximés case the reality is more like a pool than a
gueue, because there is normally no ordering of waiting messages.

Theterm queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAS, and aso relates to the
command rung, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for adirectory in which Exim keeps the messages on its queue that
is, those that it isin the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a spool directory by some people. In the Exim documen-
tation, spool isawaysusedinthe rst sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

* Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright * University of Cambridge. The source to PCRE is no
longer shipped with Exim, so you will need to use the version of PCRE shipped with your system,
or obtain and install the full version of the library from
ftp://ftp.csx.cam.ac.uk/pub/softwar e/programming/pcre.

» Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright ' 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein¢s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained from http://www.pobox.com/~djb/cdb.html. This implemen-
tation borrows some code from Dan Bernstein¢s implementation (which has no license
restrictions applied to it).

» Client support for Microsoftts Secure Password Authentication is provided by code contributed by
Marc Prudthommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

» Support for calling the Cyrus pwcheck and saslauthd daemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright ' 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modi cation, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name Carnegie Mellon University must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Of ce of Technology Transfer
Carnegie Méellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer@andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by Computing Services at Carnegie
Mellon University (http://www.cmu.edu/computing/.

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIESWITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

» The Exim Monitor program, which is an X-Window application, includes modi ed versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears bel ow, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts | nstitute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in al copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without speci c, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

* The DMARC implementation uses the OpenDMARC library which is Copyrighted by The Trusted
Domain Project. Portions of Exim source which use OpenDMARC derived code are indicated in
the respective source les. The full OpenDMARC license is provided in the LICENSE.opendmarc

le contained in the distributed source code.

» Many people have contributed code fragments, some large, some small, that were not covered by

any speci c licence requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work ef ciently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for speci ¢ domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAS being abused as open relays by misguided individuals who
send out vast amounts of unsolicited junk, and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

» Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control Lists (ACLS). Each list is a series of statements that may either grant or deny
access. ACL s can be used at several placesin the SMTP dia ogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or_regjecting individual
recipients or the entire message, respectively, at these two points (see chapter . Denia of access
resultsin an SMTP error code.

* An ACL isdso available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the

message.

» When a message has been received, either from aremote host or from the local host, but before the
nal acknowledgment has been sent, alocally supplied C function called local_scan() can berunto
inspect the message and decide whether to accept it or not (see chapter @ If the message is
accepted, the list of recipients can be modi ed by the function.

» Using the local_scan() mechanism is another way of calling external scanner software. The SA-
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

» After a message has been accepted, a further checking mechanism is available in the form of the
system filter (See chapter 46). Thisruns at the start of every delivery process.

3.3 User filters

In a conventional Exim con guration, users are able to run private Iters by setting up appropriate
JSorward lesin their home directories. See chapter about the redirect router) for the con guration
needed to support this, and the separate document entitled Exim’s interfaces to mail filtering for user
details. Two different kinds of Itering are available:

» Sieve ltersarewritten in the standard Itering language that is de ned by RFC 3028.

o Exim lters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User Itersarerun as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16VDhn- 0001bo- D3. Each part is a sequence
of letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct le names, and the names of
les in those systems are not aways case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versionsrelied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

» The rst six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this eld contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

» After the rst hyphen, the next six characters are the id of the process that received the message.
» There are two different possibilities for the nal two characters.

(1) If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive le systems), the units are 1/1000 of a second.

(2) If localhost_number is set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this caseisin units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user¢s MUA), there are severa possibilities:

« If the process runs Exim with the -bm option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

* |If the process runs Exim with the -bS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. Thisis so-caled batch SMTP format, but it isn¢t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

 If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipeis normally used for passing data between the local process and the Exim
process. Thisis real SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLsfor SMTP commands are used for this form of submission.

* A local process may also make a TCP/IP call to the hosté¢s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specialy. It treats al such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default quali cation domain (which can be set by the qualify_domain
con guration option). For local or batch SMTPR, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (trusted

9 Receiving and delivering mail (3)

users) to specify a different sender address unconditionally, or all users to specify certain forms of
different sender address. The -f option or the SMTP MAIL command is used to specify these different
addresses. Seesectlonfor details of trusted users, and the untrusted_set_sender option for a way
of alowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL, if oneis de ned. Messages received using SMTP (either over TCP/IPR, or interacting with
alocal process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients, or the entire message, can be rejected if local policy require-
ments are not met. The local_scan() function (see chapter % isrun for all incoming messages.

Exim can be con gured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, hew messages wait on the queue until a queue runner process picks them up. However, in
standard con gurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writestwo lesin its spool directory. The rst contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool les consist of the message id, followed by - Hfor the le
containing the envelope and header, and - D for the data le.

By default all these message les are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of lesin adirectory
gets large; to improve performance in such cases, the split_spool_directory option can be used. This
causes Exim to split up the input lesinto 62 sub-directories whose names are single letters or digits.
When thisis done, the queue is processed one sub-directory at atime instead of al at once, which can
improve overall performance even when there are not enough les in each directory to affect le
system performance.

The envelope information consists of the address of the messageds sender and the addresses of the
recipients. Thisinformation is entirely separate from any addresses contained in the header lines. The
status of the message includes alist of recipients who have already received the message. The format
of the rst spool leisdescribed in chapter 5E|

Address rewriting that is speci ed in the rewrite section of the con guration (see chapter BES done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
viaaliasing), these new addresses are rewritten as soon as they are generated. At thetime amessageis
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters|15 and Z»

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed for example, when a message can neither be delivered to its recipi-

ents nor returned to its sender, the message is marked frozen on the spool, and no more deliveries

are attempted.

An administrator can thaw such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

There are options called ignore _bounce errors after and timeout_frozen_after, which discard
frozen messages after a certain time. The rst applies only to frozen bounces, the second to any
frozen messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log le. Thisincludes successful, unsuccessful, and delayed deliveries for each recipient (see chapter

10 Receiving and delivering mail (3)

. The log lines are aso written to a separate message log le for each message. These logs are
solely for the benet of the administrator, and are normally deleted along with the spool les when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message _logs; this might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the rst spool le, aong with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal le, whose name is the message id followed by - J. At the end of a delivery run, if there are
some addresses |eft to be tried again later, the rst spool le (the - H le) is updated to indicate which
these are, and the journal leis then deleted. Updating the spool leis done by writing anew le and
renaming it, to minimize the possibility of data loss.

Should the system or the program crash after a successful delivery but before the spool |e has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal le and updates the spool le before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Run time options specify which
ones are actually used for delivering messages.

Each driver that is speci ed in the run time con guration is an instance of that particular driver type.
Multiple instances are alowed; for example, you can set up severa different smep transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one speci ¢ con guration of the driver), and the generic driver name
when discussing the driver¢s featuresin general.

A router i1s adriver that operates on an address, either determining how its delivery should happen, by
assigning it to a speci ¢ transport, or converting the address into one or more new addresses (for
example, via an alias le). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Eximds spool to some destination.
There are two kinds of transport: for a local transport, the destination is a le or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
speci ¢ transport as a result of successful routing. If a message has severa recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each con gured router instance in turn, subject to certain
preconditions, until a router accepts the address or speci es that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in amessage is processed in asmall con guration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
thisis only an example. You can con gure Eximds routers in many different ways, and there may be
any number of routersin a con guration.

The rst router that is speci ed in a con guration is often one that handles addresses in domains that
are not recognized specially by the local host. These are typically addresses for arbitrary domains on
the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do nor match. Typicaly, this
is arouter that looks up domainsin the DNSin order to nd the hosts to which this address routes. If
it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
con gured to fail the address.

The second router is reached only when the domain is recognized as one that belongs to the local
host. This router does redirection also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

11 Receiving and delivering mail (3)

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The nal router in many con gurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to seeif the local part is the name of alogin account,
or it may look up the local part in a le or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

Aswell as being used to decide how to deliver to an address, Eximds routers are also used for address
verification. Veri cation can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and
-bvs command line options.

When an address is being veri ed, the routers are run in verify mode . This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a con guration in which the rst router
sends all messages to a message-scanning program, unless they have been previously scanned. Thus,
the rst router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such arouter, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

* accept. The router accepts the address, and either assignsit to a transport, or generates one or more
child addresses. Processing the original address ceases, unless the unseen option is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). When unseen is set, the address is passed to the next router.
Normally, however, an accept return marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the rst
router by default. It is possible to change this by setting the redirect_router option to specify
which router to start at for child addresses. Unlike pass router (see below) the router speci ed by
redirect_router may be anywhere in the router con guration.

» pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default the address is passed to the next router, but this can be changed
by setting the pass router option. However, (unlike redirect_router) the named router must be
below the current router (to avoid loops).

* decline: The router declines to accept the address because it does not recognizeit at al. By default,
the address is passed to the next router, but this can be prevented by setting the no_more option.
When no_more is set, al the remaining routers are skipped. In effect, no_more converts decline
into fail.

* fail: Therouter determines that the address should fail, and queues it for the generation of a bounce
message. There isno further processing of the origina address unless unseen is set on the router.

» defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It istried again next time the message is considered for delivery.

 error. Thereis some error in the router (for example, a syntax error in its con guration). The action
isasfor defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is unrouteable address, but you

12 Receiving and delivering mail (3)

can set your own message by making use of the cannot_route_message option. This can be set for
any router; the value from the last router that saw the addressis used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a fail
facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports,
and discards any duplicates that it nds. During this check, local parts are treated as case-sensitive.
This happens only when actually delivering a message; when testing routers with -bt, all the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order_in which they are tested.
Theindividual con guration options are described in more detail in chapter

» The local_part_prex and local_part_suf x options can specify that the local parts handled by
the router may or must have certain pre xes and/or suf xes. If a mandatory af x (pre x or suf x)
is not present, the router is skipped. These conditions are tested rst. When an af x is present, it
is removed from the local part before further processing, including the evaluation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If the verify option is set false, the router is skipped
when Exim is verifying an address. Setting the verify option actually sets two options, verify
sender and verify_recipient, which independently control the use of the router for sender and
recipient veri cation. You can set these options directly if you want a router to be used for only one
type of veri cation. Note that cutthrough delivery is classed as a recipient veri cation for this
purpose.

» |f theaddress test option is set false, the router is skipped when Exim is run with the -bt option to
test an address routing. This can be helpful when the rst router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

* Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this. Again, cutthrough delivery counts as a veri cation.

 Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see the expn option).

* If thedomainsoption is set, the domain of the address must be in the set of domainsthat it de nes.

* If the local_parts option is set, the local part of the address must be in the set of local parts that it
denes. If local_part_prex or local_part_suf x isin use, the pre x or suf x isremoved from the
local part before this check. If you want to do precondition tests on local parts that include af xes,
you can do so by using a condition option (see below) that uses the variables $local_part, $local_
part_prefix, and $local_part_suffix as necessary.

* If the check_local_user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local_user_uid and
8local_user_gid and the user¢s home directory is placed in $home; these values can be used in the
remaining preconditions.

 If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of $home. If this expansion were l€eft till later, the value of $home as set by check _local _user
would be used in subsequent tests. Having two different values of $home in the same router could
lead to confusion.

13 Receiving and delivering mail (3)

If the senders option is set, the envelope sender address must be in the set of addresses that it
de nes.

If therequire_lesoption is set, the existence or non-existence of speci ed lesistested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter [11]

Note that require_les comes near the end of the list, so you cannot use it to check for the existence
of a lein which to lookup up a domain, local part, or sender. However, as these options are al
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_les option is intended for checking les that the router may be going to use internally, or
which are needed by a speci ¢ transport (for example, .procmailrc).

3.13 Delivery in detail
When a message is to be delivered, the sequence of eventsisasfollows:

If asystem-wide Iter leis speci ed, the message is passed to it. The Iter may add recipients to
the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system Iter leisthe same as for Exim user
Iter les, described in the separate document entitled Exim’s interfaces to mail filtering. (Note:
Sieve cannot be used for system Iter les)

Some additional features are available in system Iters see chapter @or details. Note that a
message is passed to the system Iter only once per delivery attempt, however many recipients it
has. However, if there are several ddlivery attempts because one or more addresses could not be
immediately delivered, the system Iter is run each time. The Iter condition rst_delivery can be
used to detect the rst run of the system lIter.

Each recipient addressis offered to each con gured router in turn, subject to its preconditions, until
oneisableto handleit. If no router can handle the address, that is, if they all decline, the addressis
failed. Because routers can be targeted at particular domains, several locally handled domains can
be processed entirely independently of each other.

A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or Iter les). New addresses are fed back into this process from the top, but in
order to avoid loops, arouter ignores any address which has an identically-named ancestor that was
processed by itself.

When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be con gured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to a le or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (the Exim user), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by the remote_max_parallel option. The order in which deliveries are done is not de ned,
except that al local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are aways attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in a lter le).

14 Receiving and delivering mail (3)

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host_has reached its retry time, no delivery is attempted, whether in a
gueue run or not. See chapter|32/for details of retry strategies.

 If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
con gured to send copies of bounce messages to other addresses.

 If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addressesis said to be deferred.

» When al the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool les and message log are deleted, though the message log can optionally be
preserved if required.

3.14 Retry mechanism

Exim¢s mechanism for retrying messages that fail to get delivered at the rst attempt is the queue
runner process. You must either run an Exim daemon that uses the -g option with a time interval to
start queue runners at regular intervals, or use some other means (such as cron) to start them. If you
do not arrange for queue runners to be run, messages that fail temporarily at the rst attempt will

remain on your queue for ever. A queue runner process works its way through the queue, one message
at a time, trying each delivery that has passed its retry time. You can run severa queue runners at
once.

Exim uses a set of con gured rules to determine when next to retry the failing address (see chapter
. These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS les are unavailable, or if a mailbox ison a le
system where the user is over quota. Exim can be con gured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If ahost is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly bene cial. Whenever a delivery to

aremote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a con guration limit as to the

maximum number in any one connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or al of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter for details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benet of programsthat try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
messageds envelope. For incoming SMTP messages, this is the address given in the MAIL command.

15 Receiving and delivering mail (3)

However, when an address is expanded via a forward or alias le, an aternative address can be
speci ed for delivery failures of the generated addresses. For a mailing list expansion (see section
50.2) it is common to direct bounce messages to the manager of the list.

3.17 Failures to deliver bounce messages
If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left on the queue, but it is frozen, awaiting the attention of an

administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (see timeout_frozen_after and ignore_bounce _errors_after).

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar e which, when unpacked, creates a directory with the
name of the current release (for example, exim-4.91) into which the following les are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU Genera Public Licence

Makefile top-level make le

NOTICE conditions for the use of Exim

README list of les, directories and simple build instructions

Other les whose hames begin with README may also be present. The following subdirectories are
created:

Local an empty directory for local con guration les
oS OS-speci ¢ les

doc documentation les

exim_monitor source lesfor the Exim monitor

scripts scripts used in the build process

sre remaining source les

util independent utilities

The main utility programs are contained in the src directory, and are built with the Exim binary. The
util directory contains afew optional scriptsthat may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source les. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symboalic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary. A C99-capable compiler will be required for the build.

4.3 PCRE library

Exim no longer has an embedded PCRE library as the vast majority of modern systems include PCRE
as a system library, although you may need to install the PCRE or PCRE development package for
your operating system. If your system has a normal PCRE installation the Exim build process will
need no further con guration. If the library or the headers are in an unusual location you will need to
either set the PCRE_LIBS and INCLUDE directives appropriately, or set PCRE_CONFIG=yes to use
the installed pcre-config command. If your operating system has no PCRE support then you will need
to obtain and build the current PCRE from
ftp://ftp.csx.cam.ac.uk/pub/softwar e/programming/pcre/. More information on PCRE is available
at http://www.pcre.org/.

4.4 DBM libraries

Even if you do not use any DBM lesin your con guration, Exim still needs a DBM library in order
to operate, because it uses indexed les for its hints databases. Unfortunately, there are a number of
DBM librariesin existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM con guration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they

17 Building and installing Exim (4)

contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent rel eases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for naming the les they use. When a program
opens a le called dbmfile, there are several possibilities:

(D) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two les
called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on asingle le. If used viaits ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the le name isused unmodi ed.

(3) TheBerkeley DB package, if called viaits ndbm compatibility interface, operateson asingle le
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on asingle le caled dbmfile; the
programmer¢s interface is somewhat different to the traditional ndbm interface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a while,
but the latest versions are now numbered 4.x. Maintenance of some of the earlier releases has
ceased. All versions of Berkeley DB can be obtained from http://www.sleepycat.com/.

(6) Yet another DBM library, called tdb, is available from http://download.sour cefor ge.net/tdb. It
hasits own interface, and also operates on asingle le.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE DB in an appropriate con guration le
(typically Local/Makefile). For example:

USE _DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

At the lowest level, the build-time con guration sets none of these options, thereby assuming an
interface of type (1). However, some operating system con guration les (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
con guration les for Cygwin set USE_GDBM. Anything you set in Local/Makefile, however, over-
rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, asin one of these lines:

DBMLIB = -1db
DBMLIB = -1tdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library¢s header le may aso not be in the default path. You may need to set INCLUDE to
specify where the header leis, and to specify the path to the library more fully in DBMLIB, asin
this example:

| NCLUDE=-1/usr/local/include/db-4.1
DBMLI B=/ usr/ 1l ocal /i b/db-4.1/1i bdb. a

There is further detailed discussion about the various DBM librariesin the le doc/dbm.discuss.txt in
the Exim distribution.

4.5 Pre-building configuration

Before building Exim, a local con guration le that speci es options independent of any operating
system has to be created with the name Local/Makefile. A template for this leis supplied as the le
sre/EDITME, and it contains full descriptions of all the option settings therein. These descriptions are

18 Building and installing Exim (4)

therefore not repeated here. If you are building Exim for the rst time, the simplest thing to do isto
copy src/EDITME to Local/Makefile, then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the run time con guration le (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of le
names, Exim uses the rst of them that exists.

There are afew other parameters that can be speci ed either at build time or at run time, to enable the
same binary to be used on a number of different machines. However, if the locations of Eximés spool
directory and log le directory (if not within the spool directory) are xed, it is recommended that
you specify them in Local/Makefile instead of at run time, so that errors detected early in Exim¢s
execution (such as amalformed con guration |€) can be logged.

Eximgs interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

W TH_CONTENT_SCAN=yes
inyour Local/Makefile. For details of the facilities themselves, see chapter @l

If you are going to build the Exim monitor, a similar con guration process is required. The le
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

This is al the con guration that is needed in straightforward cases for known operating systems.
However, the building processis set up so that it is easy to override options that are set by default or
by operating-system-speci ¢ con quration les, for example to change the name of the C compiler,
which defaults to gcc. See secti on‘@ below for details of how to do this.

4.6 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_

mechanism, it decodes them, and translates them into a speci ed character set (default is set at build
time). Thetrandation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from http://www.gnu.or g/softwar e/libiconv/) can be installed
on such systems to remedy this de ciency, as well as on systems that do not supply iconv() at al.
After installing libiconv, you should add

HAVE_| CONV=yes
to your Local/Makefile and rebuild Exim.

4.7 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support legacy clients that expect to start a TLS session immediately on
connection to a non-standard port (see the tls_on_connect_ports runtime option and the -tls-on-
connect command line option).

If you want to build Exim with TLS support, you must rst install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

If OpenSSL isinstalled, you should set
SUPPORT_TLS=yes
TLS LIBS=-1ssl -lcrypto

19 Building and installing Exim (4)

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
les. For example:

SUPPORT_TLS=yes
TLS LI BS=-L/usr/local/openssl/lib -Issl -lcrypto
TLS_ | NCLUDE=-1/usr /1 ocal / openssl /i ncl ude/

If you have pkg-config available, then instead you can just use:

SUPPORT_TLS=yes
USE_OPENSSL_PC=openssil

If GnuTLSisinstaled, you should set

SUPPORT_TLS=yes
USE_GNUTLS=yes
TLS LIBS=-Ignutls -ltasnl -l gcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include les. For
example:

SUPPORT_TLS=yes

USE_CGNUTLS=yes

TLS LIBS=-L/usr/gnu/lib -lgnutls -ltasnl -1gcrypt
TLS | NCLUDE=- | / usr/ gnu/i ncl ude

If you have pkg-config available, then instead you can just use:

SUPPORT_TLS=yes
USE_GNUTLS=yes
USE_GNUTLS PC=gnutl s

You do not need to set TLS INCLUDE if the relevant directory is already speci ed in INCLUDE.
Details of how to con gure Exim to make use of TLS are given in chapter

4.8 Use of tcpwrappers

Exim can be linked with the zcpwrappers library in order to check incoming SMTP calls using the
tepwrappers control les. This may be a convenient alternative to Eximés own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the le tepd.h to be available at compile time,

and also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS _EXIM. For example, if tepwrappers isinstalled in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0O -1/usr/local /include
EXTRALI BS_EXI M=-L/usr/local/lib -l1wap

in Local/Makefile. The daemon name to use in the tepwrappers control lesis exim . For example,
theline

exim: LOCAL 192.168.1. .friendly.domain.exanple

in your /etc/hosts.allow le alows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. The daemon name
used by tepwrappers can be changed at build time by setting TCP_WRAPPERS DAEMON_NAME
in Local/Makefile, or by setting tcp_wrappers daemon_name in the congure le. Consult the
tepwrappers documentation for further details.

4.9 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Setting HAVE | PV6=YES in
Local/Makefile causes the |Pv6 code to be included; it may also be necessary to set IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library les.

20 Building and installing Exim (4)

Two different types of DNS record for handling IPv6 addresses have been de ned. AAAA records
(analogousto A records for I1Pv4) arein use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to experimental . Exim used to have a compile
option for including A6 record support but this has now been withdrawn.

4.10 Dynamically loaded lookup module support

On some platforms, Exim supports not compiling all lookup types directly into the main binary,
instead putting some into external modules which can be loaded on demand. This permits packagers
to build Exim with support for lookups with extensive library dependencies without requiring all
usersto install all of those dependencies. Most, but not all, lookup types can be built this way.

Set LOOKUP_MODULE_DI Rto the directory into which the modules will be installed; Exim will only
load modules from that directory, as a security measure. You will need to set CFLAGS _DYNAM C if
not aready de ned for your OS; see OS/Makefile-Linux for an example. Some other requirements for
adjusting EXTRALI BS may also be necessary, see sre/EDITME for details.

Then, for each module to be loaded dynamically, de ne the relevant LOOKUP_<lookup_type> flagsto
have the value "2" instead of "yes". For example, this will build in Isearch but load sglite and mysql
support on demand:

LOOKUP_LSEARCH=yes
LOOKUP_SQLI TE=2
LOOKUP_MYSQL=2

4.11 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-Sun0S5-5.8-sparc
is created. Symbolic links to relevant source les areinstalled in the build directory.

If this is the rst time make has been run, it calls a script that builds a make le inside the build
directory, using the con guration les from the Local directory. The new make le is then passed to
another instance of make. This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if con gured), a number of utility programs,
and nally Exim itself. The command make makefi | e can be used to force arebuild of the make
lein the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README le
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

4.12 Output from “make”

The output produced by the make process for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling make like this:

FULLECHO="' nmke -e

The value of FULLECHO defaultsto @, the flag character that suppresses command reflection in
make. When you ask for the full output, it is given in addition to the short output.

4.13 Overriding build-time options for Exim

The main make le that is created at the beginning of the building process consists of the concat-
enation of a number of les which set con guration values, followed by a xed set of make instruc-

21 Building and installing Exim (4)

tions. If avalue is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The lesthat are concatenated are, in order:

OS/Makefile-Default
OS/Makefile-<ostype>
Local/Makefile
Local/Makefile-<ostype>
Local/Makefile-<archtype>
Local/Makefile-<ostype>-<archtype>
OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local les are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from the uname command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to nd out what values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not al) are
mentioned below. If there is something that needs changing, review the contents of this le and the
contents of the make le for your operating system (OS/Makefile-<ostype>) 10 see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in OS/Makefile-
<ostype>, or to add any new de nitions, you do not need to change the original les. Instead, you
should make the changes by putting the new values in an appropriate Local le. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is called cc rather than gcc. Also, the
compiler must be called with the option -std1, to make it recognize some of the features of Standard
C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a le called Local/Makefile-OSF 1 containing the lines

CC=cc

CFLAGS=-stdl

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile.

Keeping all your local con guration settings separate from the distributed les makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of |e lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of le and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

LOOKUP_LDAP=yes
LOOKUP_NI S=yes
LOOKUP_NI SPLUS=yes

and similar settings apply to the other lookup types. They are dl listed in src/EDITME. In many cases
the relevant include les and interface libraries need to be installed before compiling Exim. However,

there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include les or libraries are required. When alookup type is not included in the

binary, attempts to con gure Exim to use it cause run time con guration errors.

Many systems now use a tool called pkg-config to encapsulate information about how to compile
against a library; Exim has some initial support for being able to use pkg-con g for lookups and

22 Building and installing Exim (4)

authenticators. For any given make le variable which starts LOOKUP_ or AUTH_, you can add a new
variable with the _PC suf x in the name and assign as the value the name of the package to be
queried. The results of querying via the pkg-config command will be added to the appropriate
Make le variables with += directives, so your version of make will need to support that syntax. For
instance:

LOOKUP_SQLI TE=yes

LOOKUP_SQLI TE_PC=sqgl ite3
AUTH_GSASL=yes

AUTH _GSASL_PC=l i bgsasl

AUTH_HEI MDAL _GSSAPI =yes

AUTH_HEI MDAL_GSSAPI _PC=hei ndal - gssapi

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXI M_PERL=perl .o
must be de ned in Local/Makefile. Details of thisfacility are given in chapter

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default:

X11=/ usr/ X11R6
XI NCLUDE=- | $(X11) /i ncl ude
XLFLAGS=- L$(X11)/1i b

These are overridden in some of the operating-system conguration les. For example, in
OS/Makefile-SunOS5 thereis

X11=/ usr/ openw n
Xl NCLUDE=- | $(X11) /i ncl ude
XLFLAGS=-L$(X11)/lib -R$(X11)/Ilib

If you need to override the default setting for your operating system, place a de nition of al three of
these variables into your Local/Makefile-<ostype> le.

If you need to add any extra libraries to the link steps, these can be put in a variable caled
EXTRALIBS, which appears in all the link commands, but by default is not de ned. In contrast,
EXTRALIBS_EXIM isused only on the command for linking the main Exim binary, and not for any
associated utilities.

There is dso DBMLIB, which appears in the link commands for binaries that use DBM functions
(see al'so section @) Finaly, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

The make le copes with rebuilding Exim correctly if any of the conguration les are edited.
However, if an optional con guration le is deleted, it is necessary to touch the associated non-
optiona le (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.14 OS-specific header files

The OS directory contains a number of les with names of the form os.h-<ostype>. These are
system-speci ¢ C header les that should not normally need to be changed. There is a list of macro

settings that are recognized in the le OS/os.configuring, which should be consulted if you are porting
Exim to a new operating system.

4.15 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the les that
areinvolved are

23 Building and installing Exim (4)

OS/eximon.conf-Default
OS/eximon.conf-<ostype>
Local/eximon.conf
Local/eximon.conf-<ostype>
Local/eximon.conf-<archtype>
Local/eximon.conf-<ostype>-<archtype>

Aswith Exim itself, the na three les need not exist, and in this case the OS/eximon.conf-<ostype>
le is aso optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting

EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at run time.

4.16 Installing Exim binaries and scripts

The command nmake i nstall runs the exim_install script with no arguments. The script copies
binaries and utility scripts into the directory whose name is speci ed by the BIN_DIRECTORY
setting in Local/Makefile. The install script copies les only if they are newer than the les they are
going to replace. The Exim binary is required to be owned by root and have the seruid bit set, for
normal con gurations. Therefore, you must run nake install asroot so that it can set up the
Exim binary in this way. However, in some special situations (for example, if ahost is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see chapter [55 for
details).

Exim¢s run time con guration le is named by the CONFIGURE_FILE setting in Local/Makefile. |f
this names a single le, and the le does not exist, the default con guration le src/configure.default
is copied there by the installation script. If arun time con guration le already exists, it is left alone.
If CONFIGURE_FILE is a colon-separated list, naming severa aternative les, no default is
installed.

One change is made to the default con guration le when it is installed: the default con guration
contains a router that references a system aliases le. The path to this leis set to the value speci ed
by SYSTEM_ALIASES FILE in Local/Makefile (/etc/aliases by default). If the system aiases le
does not exist, the installation script creates it, and outputs a comment to the user.

The created le contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yoursis one of these, and change Exim¢s
con guration if necessary.

The default con guration uses the local host¢s name as the only local domain, and is set up to do local

deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
les in userst home directories are supported, but no NIS or NIS+ support is con gured. Domains

other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the le system. You can do this by a command such as

make DESTDI R=/ sone/directory/ install

This has the effect of pre-pending the speci ed directory to al the le paths, except the name of the
system aliases le that appears in the default con guration. (If a default alias leis created, its name
is modi ed.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Running make install does not copy the Exim 4 conversion script convert4r4. You will probably run
this only onceif you are upgrading from Exim 3. None of the documentation lesin the doc directory
are copied, except for the info les when you have set INFO_DIRECTORY, as described in section
below.

For the utility programs, old versions are renamed by adding the suf x .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example exim-4.91-1. The script then arranges for a symbolic

24 Building and installing Exim (4)

link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name exim is never absent from the directory (as seen by other processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make | NSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-SunGs5-5.5.1-sparc; ../scripts/eximinstall -n)
There are two other options that can be supplied to the installation script.

» -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

* -no_symlink bypasses the setting up of the symbolic link exim to the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:
make | NSTALL ARG=-no_syniink install

The installation script can aso be given arguments specifying which les are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make | NSTALL_ARG="-no_sym ink exim install

4.17 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source
of Exim¢s documentation is not included in the main distribution. Instead it is available separately
from the ftp site (see section .

If you have de ned INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documen-
tation is found in the source tree, running make i nstal | automatically builds the info les and
installs them.

4.18 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.19 Testing

Having installed Exim, you can check that the run time con guration le is syntacticaly valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim-bV

If there are any errors in the con guration le, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which
drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exi m - bt <local username>
should verify that it recognizes alocal mailbox, and

exi m - bt <remote address>

25 Building and installing Exim (4)

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exi m-v postnaster @our. domai n. exanpl e
From user @our. domai n. exanpl e

To: postmaster @our. donai n. exanpl e
Subj ect: Testing Exim

This is a test nessage.
D

The -v option causes Exim to output some veri cation of what it is doing. In this case you should see
copies of three log lines, one for the messageds arrival, one for its delivery, and one containing
Completed .

If you encounter problems, look at Eximés log les (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Eximd¢s spool, you can force a delivery with
debugging turned on by a command of the form

exim-d - M<exim-message-id>

You must be root or an admin user in order to do this. The -d option produces rather alot of output,
but you can cut this down to speci ¢ areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (Seethe -d optionin chapterﬁfor more details.)

One speci ¢ problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the sticky bit set on it. By default, Exim triesto
create alock le before writing to a mailbox le, and if it cannot create the lock le, the delivery is
deferred. You can get round this either by setting the sticky bit on the directory, or by setting a
speci ¢ group for local deliveries and allowing that group to create les in the directory (see the
comments above the local_delivery transport in the default con guration |€). Another approach is to
con gure Exim not to use lock les, but just to rely on fenrl() locking instead. However, you should
do this only if all user agents also use fentl() locking. For further discussion of locking issues, see
chapter

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -0X option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is aready running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the run time con guration, all other
le and directory names that Exim uses can be atered, in order to keep it entirely clear of the
production version.

4.20 Replacing another MTA with Exim

Building and installing Exim for the rst time does not of itself put it in genera use. The name by

which the system¢s MTA is called by mail user agents is either /usr/sbin/sendmail, or
/usr/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing le and making /usr/sbin/sendmail or /usr/lib/sendmail a symbolic link to the

exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It isthen necessary to stop and restart the mailer daemon, if oneis running.

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the le /etc/mail/mailer.conf instead of setting up a symbolic link
asjust described. A typical example of the contents of this lefor running Exim is as follows:

sendmai | /fusr/eximbin/exim
send- mai | /fusr/eximbin/exim

26 Building and installing Exim (4)

mai | g [usr/eximbin/exim-bp
newal i ases fusr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim installation is
live . Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim¢s ltering capabilities, you should make the document entitled Exim’s interface
to mail filtering available to them.

4.21 Upgrading Exim
If you are aready running Exim on your host, building and installing a new version automatically
makes it available to MUAS, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. Theinstall script does not modify an existing runtime con guration le.
4.22 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solarisis

/[etc/init.d/ sendmail stop
If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text sendmail ; thisis not present because the actual
program name (that is, exim) is given by the ps command with these options. A solution is to
replace the line that nds the processid with something like

pi d=' cat /var/spool /exinf exi m daenon. pi d’

to obtain the daemonds pid directly from the lethat Exim savesitin.

Note, however, that stopping the daemon does not stop Exim . Messages can still be received from
local processes, and if automatic delivery is con gured (the normal case), deliveries will still occur.

27 Building and installing Exim (4)

5. The Exim command line

Exim¢s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are al'so some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailg, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
Thisfeatureisfor compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked to /usr/sbin/sendmail or /usr/lib/sendmail.

If Exim is called under the name rsmip it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messagesin
batched SMTP format.

If Exim is called under the name rmail it behaves asif the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name rung it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be
started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail¢s alias
le. Exim does not have the concept of a single alias le, but can be congured to run a given
command if called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases Exim user and Exim group mean the user and group de ned
by EXIM_USER and EXIM_GROUP in Local/Makefile or set by the exim_user and exim_group
options. These do not necessarily have to use the name exim .

» Thetrusted users are root, the Exim user, any user listed in the trusted _users con guration option,
and any user whose current group or any supplementary group is one of those listed in the trusted_
groups con guration option. Note that the Exim group is not automatically trusted.

Trusted users are aways permitted to use the -f option or a leading From line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and -f
options below). See the untrusted_set_sender option for a way of permitting non-trusted users to
set envel ope senders.

For atrusted user, there is never any check on the contents of the From: header line, and a Sender:
line is never added. Furthermore, any existing Sender: line in incoming local (non-TCP/IP) mess-
agesis not removed.

Trusted users may aso specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim¢s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other values
that are available to trusted users.

» The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in the admin_groups con guration option. The current group does not have to be one
of these groups.

28 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging outpui.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin users
unless queue list_requires admin is set false.

Warning: If you con gure your system so that admin users are able to edit Eximds con guration le,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter[g]

5.3 Command line options

Exim¢s command line options are described in alphabetical order below. If none of the options that
Speci es a speci ¢ action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a speci ¢ format, or listing the queue) are present, and there is at least one
argument on the command line, -bm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

--version
Thisoptionisan aiasfor -bV and causes version information to be displayed.

-Ac
-Am
These options are used by Sendmail for selecting con guration les and are ignored by Exim.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SM TP connections. Usually the -bd option
is combined with the -g<time> option, to specify that the daemon should also initiate periodic
gueue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host¢s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
speci ¢ interfaces. Chapter ontai ns a description of the options that control this.

When a listening daemon is started without the use of -oX (that is, without overriding the normal
con guration), it writes its process id to a le caled exim-daemon.pid in Exim¢s spool directory.

This location can be overridden by setting PID_FILE_PATH in Local/Makefile. The le is written
while Exim is still running as root.

29 The Exim command line (5)

When -0X is used on the command line to start a listening daemon, the processid is not written to
the normal pid le path. However, -oP can be used to specify a path on the command line if a pid
leisrequired.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim¢s con guration le, or any lethat isincorporated into it by means of the .include
facility, is changed, and also whenever a new version of Exim isinstalled. It is not necessary to do
this when other les that are referenced from the con guration (for example, alias les) are
changed, because these are reread each time they are used.

-bdf
This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is speci ed.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible les. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes in Local/Makefile, it tries to load the libreadline
library dynamically whenever the -be option is used without command line arguments. If success-
ful, it uses the readline() function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. Asin
Exim¢s run time con guration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the con guration le (for example, $qualify_domain) are available, but no
message-speci ¢ values (such as $message_exim_id) are set, because no message is being pro-
cessed (but see -bem and -M set).

Note: If you use this mechanism to test lookups, and you change the data les or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

Macro processing is done on lines before string-expansion: new macros can be de ned and macros
will be expanded. Because macros in the cong le are often used for secrets, those are only
available to admin users.

-bem <filename>
This option operates like -be except that it must be followed by the name of a le. For example:

exi m-bem/tnp/testnessage

The leisread as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-speci ¢ variables such as $message_size and
Sheader_from: are available. However, no Received: header is added to the message. If the -t
option is set, recipients are read from the headers in the normal way, and are shown in the
$recipients variable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (just like -be).

-bF <filename>
This option is the same as -bf except that it assumes that the lter being tested is a system lter.
The additional commands that are available only in system lters are recognized.

-bf <filename>
This option runs Exim in user Iter testing mode; the le isthe Iter le to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
Iter, an empty le can be supplied.

If you want to test a system Iter le, use -bF instead of -bf. You can use both -bF and -bf on the
same command, in order to test asystem Iter and auser Iter in the same run. For example:

exim-bF /system filter -bf /user/filter </test/nessage

30 The Exim command line (5)

This is helpful when the system Iter adds header lines or sets Iter variables that are used by the
user lter.

If thetest Iter le does not begin with one of the special lines

ExXimfilter
Sieve filter

it is taken to be a normal .forward le, and is tested for validity under that interpretation. See
sections[22.4 tofor adescription of the possible contents of non- Iter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of Iter
testing are given in the separate document entitled Exim’s interfaces to mail filtering.

When testing a lter le, the envelope sender can be set by the -f option, or by a From line at
the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domain>
This sets the domain of the recipient address when a Iter leis being tested by means of the -bf
option. The default isthe value of $qualify_domain.

-bfl <local part>
This setsthe local part of the recipient address when a Iter leis being tested by means of the -bf
option. The default is the username of the process that calls Exim. A local part should be speci ed
with any prex or suf x stripped, because that is how it appears to the Iter when a message is
actually being delivered.

-bfp <prefix>
This sets the prex of the local part of the recipient address when a Iter leis being tested by
means of the -bf option. The default is an empty pre x.

-bfs <suffix>
This sets the suf x of the local part of the recipient address when a Iter le is being tested by
means of the -bf option. The default is an empty suf x.

-bh <IP address>
This option runs afake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after afull stop. For example:

exim-bh 10.9.8.7.1234
exim-bh fe80::a00: 20ff: fe86: a061. 5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value of $sender_host_address after conversion to the canonical form is
f e80: 0000: 0000: 0a00: 20ff: f e86: a061. 5678.

Comments as to what is going on are written to the standard error le. These include lines
beginning with LOG for anything that would have been logged. This facility is provided for
testing con guration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls using -bh.

Warning 1: You can test features of the con guration that rely on ident (RFC 1413) information
by using the -oMt option. However, Exim cannot actually perform an ident callout when testing
using -bh because there is no incoming SM TP connection.

Warning 2: Address veri cation callouts (see section are also skipped when testing using
-bh. If you want these callouts to occur, use -bhc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log les. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. The -oMi option can be used to specify a speci ¢ IP interface and port if this
is important, and -oMaa and -oMai can be used to set parameters as if the SMTP session were
authenticated.

31 The Exim command line (5)

The exim_checkaccess utility is a packaged version of -bh whose output just states whether a
given recipient address from a given host is acceptable or not. See section .

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested with -bh. Instead, you should use a specialized SMTP test program such as swaks
(http://jetmore.or g/john/code/#swaks).

-bhc <IP address>
This option operates in the same way as -bh, except that address veri cation callouts are per-
formed if required. Thisincludes consulting and updating the callout cache database.

-bi
Sendmail interprets the -bi option as a request to rebuild its alias le. Exim does not have the
concept of a single aias le, and so it cannot mimic this behaviour. However, cals to
/ust/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make les, so
the option must be recognized.

If -bi is encountered, the command speci ed by the bi_command con guration option is run,
under the uid and gid of the caller of Exim. If the -0A option is used, its value is passed to the
command as an argument. The command set by bi_command may not contain arguments. The
command can use the exim_dbmbuild utility, or some other means, to rebuild adias lesif thisis
required. If the bi_command option is not set, calling Exim with -bi isano-op.

-bl:help
We shall provide various options starting - bl : for querying Exim for information. The output of
many of these will be intended for machine consumption. This one is not. The -bl:help option
asks Exim for a synopsis of supported options beginning - bl : . Use of any of these options shall
cause Exim to exit after producing the requested output.

-bl:dscp
This option causes Exim to emit an alphabetically sorted list of all recognised DSCP names.

-bl:sieve
This option causes Exim to emit an alphabetically sorted list of all supported Sieve protocol
extensions on stdout, one per line. This is anticipated to be useful for ManageSieve (RFC 5804)
implementations, in providing that protocol¢s SI EVE capability response line. As the precise list
may depend upon compile-time build options, which this option will adapt to, this is the only way
to guarantee a correct response.

-bm
This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the standard input. The recipients are given as the command arguments (except when -t is also
present see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unquali ed (have no domain), they are quali ed by the values
of the qualify_domain or qualify_recipient options, as appropriate. The -bng option (see below)
provides away of suppressing thisfor special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See chapter |43/ for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the -oex option setting see below.

The format of the message must be as de ned in RFC 2822, except that, for compatibility with
Sendmail and Smail, aline in one of the forms

From sender Fri Jan 5 12:55 GVI' 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative speci cation of the format of this

32 The Exim command line (5)

line. Exim recognizes it by matching against the regular expression de ned by the uucp_from_
pattern option, which can be changed if necessary.

The speci ed sender istreated asif it were given as the argument to the -f option, but if a-f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bmalwar e <filename>
This debugging option causes Exim to scan the given le or directory (depending on the used
scanner interface), using the malware scanning framework. The option of av_scanner influences
this option, so if av_scanner ¢s value is dependent upon an expansion then the expansion should
have defaults which apply to this invocation. ACLs are not invoked, so if av_scanner references
an ACL variable then that variable will never be populated and -bmalwar e will fail.

Exim will have changed working directory before resolving the lename, so using fully quali ed
pathnames is advisable. Exim will be running as the Exim user when it tries to open the le, rather
than as the invoking user. This option requires admin privileges.

The -bmalware option will not be extended to be more generally useful, there are better tools
for le-scanning. This option exists to help administrators verify their Exim and AV scanner
con guration.

-bng
By default, Exim automatically quali es unquali ed addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This quali cation applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are quali ed using
qualify_domain, and recipient addresses using qualify_recipient (which defaults to the value of
qualify_domain).

Sometimes, quali cation is not wanted. For example, if -bS (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unquali ed addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The -bnq option suppresses all quali cation of unquali ed addresses in messages that originate on
the local host. When this is used, unquali ed addresses in the envelope provoke errors (causing
message rejection) and unguali ed addresses in header lines are | eft alone.

-bP
If this option is given with no arguments, it causes the values of all Exim¢s main con guration
options to be written to the standard output. The values of one or more speci ¢ options can be
requested by giving their names as arguments, for example:

exim-bP qualify_domai n hol d_domai ns

However, any option setting that is preceded by the word hide in the con guration le is not
shown in full, except to an admin user. For other users, the output is asin this example:

mysql _servers = <val ue not di spl ayabl e>

If con g is given as an argument, the con g is output, as it was parsed, any include le resolved,
any comment removed.

If cong_le is given as an argument, the name of the run time con guration le is output.
(con gure_leworkstoo, for backward compatibility.) If alist of con guration leswas supplied,
the value that is output hereis the name of the le that was actually used.

If the -n flag is given, then for most modes of -bP operation the name will not be output.

If log_le path or pid_le path are given, the names of the directories where log les and
daemon pid les are written are output, respectively. If these values are unset, log les are written
in a sub-directory of the spool directory called log, and the pid le iswritten directly into the spool
directory.

If -bP isfollowed by a name preceded by +, for example,

33 The Exim command line (5)

exim-bP +l ocal domai ns

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it nds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim-bP transport |ocal _delivery

The generic driver options are output rst, followed by the driver¢s private options. A list of the
names of drivers of a particular type can be obtained by using one of the words router_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by using routers, transports, or authenticators.

If environment is given as an argument, the set of environment variables is output, line by line.
Using the -n flag suppresses the value of the variables.

If invoked by an admin user, then macro, macro_list and macros are available, similarly to the
drivers. Because macros are sometimes used for storing passwords, this option is restricted. The
output format is one item per line.

For the "-bP macro <name>" form, if no such macro isfound the exit status will be nonzero.

_bp
This option requests a listing of the contents of the mail queue on the standard output. If the -bp
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However, the queue list_requires admin option can be set
false to allow any user to see the queue.

Each message on the queue is displayed asin the following example:

25m 2. 9K 0t 5C6f - 0000c8- 00 <al i ce@wonder | and. fict. exanpl e>
red. ki ng@ ooki ng-gl ass. fict.exanple
<ot her addr esses>

The rst line contains the length of time the message has been on the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identi er for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as <> . If the message was submitted locally by an untrusted user who overrode the
default sender address, the user¢s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text *** frozen *** is
displayed at the end of thisline.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
guent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses viaan alias or forward le, the
original is displayed with a D only when deliveries for al of its child addresses are complete.

-bpa
This option operates like -bp, but in addition it shows delivered addresses that were generated
from the origina top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with +D instead of just D .

-bpc
This option counts the number of messages on the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue_list_requires admin is set false.

-bpr
This option operates like -bp, but the output is not sorted into chronological order of message
arrival. This can speed it up when there are lots of messages on the queue, and is particularly
useful if the output is going to be post-processed in away that doesnét need the sorting.

-bpra
This option is a combination of -bpr and -bpa.

34 The Exim command line (5)

-bpru
This option is a combination of -bpr and -bpu.

-bpu
This option operates like -bp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by arouter with the one_time option set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim-brt bach. conp. nus. exanmpl e
Retry rule: *.conp.nus.exanple F,2h,15m F, 4d, 30m

See chapterfor adescription of Eximds retry rules. The rst argument, which is required, can be
a complete address in the form local_part@domain, or it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the rst argument, the second is tried. This ties in with Exim¢s behaviour when looking
for retry rules for remote hosts if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a speci ¢ delivery error, asused in

setting up retry rules, can be given. For example:

exim-brt haydn. conp. nus. exanpl e quota_3d
Retry rule: *@aydn.conp. nus. exanpl e quota_3d F, 1h, 15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully quali ed
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chapterfor further details.

-bS
This option is used for batched SMTP input, which is an aternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message¢s envelope from SMTP
commands on the standard input, but generates no responses. If the caller istrusted, or untrusted_
set_sender is set, the sendersin the SMTP MAIL commands are believed; otherwise the sender is
awaysthe caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see chapter . Unquali ed addresses are automatically
quali ed using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used

Some other SMTP commands are recognized in the input. HELO and EHL O act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section

-bs
This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
dened in ACLs (see chapter are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

35 The Exim command line (5)

In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unquali ed addresses are automatically
quali ed using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

The -bs option is also used to run Exim from inetd, as an aternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called from inetd, the source of the mail is assumed to be remote, and the comments
above concerning senders and quali cation do not apply. In this situation, Exim behaves in exactly

the same way as it does when receiving a message viathe listening daemon.

-bt
This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If atest fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database |ookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as root and there are security issues.

Each address is handled as if it were the recipient address of a message (compare the -bv option).
It is passed to the routers and the result is written to the standard output. However, any router that
has no_address test set is bypassed. This can make -bt easier to use for genuine routing tests if
your rst router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code O is given only when all addresses
succeed.

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the con guration makes
any tests on the sender address of a message, you can use the -f option to set an appropriate sender
when running -bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditions using -bt. The -N option
provides a possible way of doing such tests.

-bV
This option causes Exim to write the current version number, compilation number, and compi-
lation date of the exim binary to the standard output. It also lists the DBM library that is being
used, the optional modules (such as speci ¢ lookup types), the drivers that are included in the
binary, and the name of the run time con guration lethat isin use.

As part of its operation, -bV causes Exim to read and syntax check its con guration le. However,
thisis a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb¢s arguments is not. You cannot rely on -bV
alone to discover (for example) al the typos in the con guration; some redlistic testing is needed.
The-bh and -N options provide more dynamic testing facilities.

-bv
This option runs Exim in address veri cation mode, in which each argument is taken as a recipient
address to be veri ed by the routers. (This does not involve any veri cation callouts). During
normal operation, veri cation happens mostly as a consegquence processing a verify condition in
an ACL (see chapter . If you want to test an entire ACL, possibly including callouts, see the
-bh and -bhc options.

36 The Exim command line (5)

If veri cation fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database |ookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be veri ed.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as exim and there are security issues.

Veri cation differs from address testing (the -bt option) in that routers that have no_verify set are
skipped, and if the address is accepted by a router that has fail_verify set, veri cation fails. The
addressisveri ed asarecipient if -bv is used; to test veri cation for a sender address, -bvs should
be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was veri ed or not, and giving a reason in the latter case. Without -v, generating more than one
address by redirection causes veri cation to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall veri cation to succeed.

When -v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Veri cation may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code O is given only when all addresses
succeed.

If any of the routers in the con guration makes any tests on the sender address of a message, you
should use the -f option to set an appropriate sender when running -bv tests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts like -bv, but veri es the address as a sender rather than a recipient address. This
affects any rewriting and quali cation that might happen.

-bw
This option runs Exim as a daemon, awaiting incoming SMTP connections, similarly to the -bd
option. All port speci cations on the command-line and in the con guration le are ignored.
Queue-running may not be speci ed.

In this mode, Exim expects to be passed a socket as fd O (stdin) which is listening for connections.
This permits the system to start up and have inetd (or equivalent) listen on the SMTP ports,
starting an Exim daemon for each port only when the rst connection is received.

If the option is given as -bw<time> then the time is a timeout, after which the daemon will exit,
which should cause inetd to listen once more.

-C <filelist>
This option causes Exim to nd the run time con guration le from the given list instead of from
the list speci ed by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just asingle le name, but it can be a colon-separated list of names. In this case, the rst le that
exists is used. Failure to open an existing le stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caler other than root, and the list is different from the compiled-in
list, Exim gives up its root privilege immediately, and runs with the real and effective uid and gid
set to those of the caller. However, if a TRUSTED_CONFIG LIST Ile is dened in
Local/Makefile, that le containsalist of full pathnames, one per line, for con guration leswhich
are trusted. Root privilege is retained for any con guration le so listed, aslong asthe caler isthe
Exim user (or the user speci ed in the CONFIGURE_OWNER option, if any), and as long as the
con guration leis not writeable by inappropriate users or groups.

Leaving TRUSTED_CONFIG_LIST unset precludes the possibility of testing a con guration
using -C right through message reception and delivery, even if the caller is root. The reception

37 The Exim command line (5)

works, but by that time, Exim is running as the Exim user, so when it re-executes to regain
privilege for the delivery, the use of -C causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message on the queue, using -odq, and
another to do the delivery, using -M).

If ALT_CONFIG_PREFIX isdened in Local/Makefile, it Speci es a pre x string with which any
le named in a-C command line option must start. In addition, the |e name must not contain the
sequence/ . . /. However, if the value of the -C option isidentical to the value of CONFIGURE _
FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; whenitisunset, any le name can be used with -C.

ALT_CONFIG_PREFIX can be used to con ne alternative con guration les to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary con guration le.

The -C facility is useful for ensuring that con guration les are syntactically correct, but cannot be
used for test deliveries, unless the caler is privileged, or unless it is an exotic con guration that
does not require privilege. No check is made on the owner or group of the les speci ed by this
option.

-D<macro>=<value>
This option can be used to override macro de nitions in the con guration le (see section G.E
However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_OPTION is dened in Local/Makefile, the use of -D is completely disabled, and
its use causes an immediate error exit.

If WHITELIST_D_MACROS is de ned in Local/Makefile then it should be a colon-separated list
of macros which are considered safe and, if -D only supplies macros from this list, and the values
are acceptable, then Exim will not give up root privilege if the caller is root, the Exim run-time
user, or the CONFIGURE_OWNER, if set. This is a transition mechanism and is expected to be
removed in the future. Acceptable values for the macros satisfy the regexp: [A- Za-z0-9 /. -
1%

The entire option (including equals sign if present) must al be within one command line item. -D
can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exi m-DABC ...

exi m - DABC= . ..
To include spaces in a macro de nition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim’-D ABC = sonet hi ng’

-D may be repeated up to 10 times on a command line. Only macro names up to 22 letters long can
be set.

-d<debug options>
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users¢ Iter les should be protected. If a non-admin user uses -d,
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When -d is used, -v is assumed. If -d is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For example, -d+ Iter adds Iter debugging,
whereas -d-all+ Iter selects only Iter debugging. Note that no spaces are alowed in the debug
setting. The available debugging categories are:

acl ACL interpretation
aut h authenticators
del i ver general delivery logic

38 The Exim command line (5)

dns DNS lookups (see a so resolver)

dnsbl DNSblack list (akaRBL) code

exec argumentsfor execv() calls

expand detailed debugging for string expansions
filter Iter handling

hi nt s_I ookup hints data lookups

host _| ookup all types of name-to-1P address handling

i dent ident lookup

interface lists of local interfaces

lists matching thingsin lists

| oad system load checks

| ocal _scan can be used by local_scan() (see chapter
| ookup general lookup code and all lookups
menory memory handling

pid add pid to debug output lines
process_info setting info for the process log
queue_run queue runs

receive general message reception logic

resol ver turn on the DNS resolver¢s debugging output
retry retry handling

rewite address rewriting

route address routing

ti mestanp add timestamp to debug output lines

tls TLSlogic

transport transports

uid changes of uid/gid and looking up uid/gid
verify address veri cation logic

al | amost al of the above (see below), and also -v

Theal | option excludes menory when used as +al | , but includes it for - al | . The reason for
this is that +al | is something that people tend to use when generating debug output for Exim
maintainers. If +menory is included, an awful lot of output that is very rarely of interest is
generated, so it now has to be explicitly requested. However, - al | does turn everything off.

The r esol ver option produces output only if the DNS resolver was compiled with DEBUG
enabled. This is not the case in some operating systems. Also, unfortunately, debugging output
from the DNS resolver is written to stdout rather than stderr.

The default (-d with no argument) omitsexpand, fil ter,i nterface,| oad, menory, pi d,
resol ver,andti mest anp. However, the pi d selector is forced when debugging is turned on
for a daemon, which then passesit on to any re-executed Exims. Exim also automatically adds the
pid to debug lines when several remote deliveries are run in parallel.

Theti mest anp selector causes the current time to be inserted at the start of al debug output
lines. This can be useful when trying to track down delaysin processing.

If the debug_print option is set in any driver, it produces output whenever any debugging is
selected, or if -v isused.

-dd<debug options>
This option behaves exactly like -d except when used on a command that starts a daemon process.
In that case, debugging is turned off for the subprocesses that the daemon creates. Thus, it is useful
for monitoring the behaviour of the daemon without creating as much output as full debugging
does.

-dropcr
This is an obsolete option that is now a no-op. It used to affect the way Exim handled CR and LF
charactersin incoming messages. What happens now is described in section

-E
This option speci es that an incoming message is a locally-generated delivery failure report. It is
used internally by Exim when handling delivery failures and is not intended for external use. Its

39 The Exim command line (5)

-ex

only effect is to stop Exim generating certain messages to the postmaster, as otherwise message

cascades could occur in some situations. As part of the same option, a message id may follow the

characters -E. If it does, the log entry for the receipt of the new message contains the id, following
R=, asacross-reference.

There are a number of Sendmail options starting with -oe which seem to be called by various
programs without the leading o in the option. For example, the vacation program uses -eq. Exim
treats all options of the form -ex as synonymous with the corresponding -oex options.

-F <string>

This option sets the sender¢s full name for use when a locally-generated message is being
accepted. In the absence of this option, the userds gecos entry from the password data is used. As
users are generally permitted to alter their gecos entries, no security considerations are involved.
White space between -F and the <string> is optional .

-f <address>

-G

This option sets the address of the envelope sender of a locally-generated message (also known as
the return path). The option can normally be used only by a trusted user, but untrusted_set
sender can be set to alow untrusted users to useit.

Processes running as root or the Exim user are always trusted. Other trusted users are de ned by
the trusted_users or trusted_groups options. In the absence of -f, or if the caler is not trusted,
the sender of alocal messageis set to the caller¢slogin name at the default qualify domain.

There is one exception to the restriction on the use of -f; an empty sender can be speci ed by any
user, trusted or not, to create a message that can never provoke a bounce. An empty sender can be
speci ed either as an empty string, or as a pair of angle brackets with nothing between them, asin
these examples of shell commands:

exim-f <> user @onain
exim-f "" user @onain

In addition, the use of -f is not restricted when testing a lter le with -bf or when testing or
verifying addresses using the -bt or -bv options.

Allowing untrusted users to change the sender address does not of itself make it possible to send
anonymous mail. Exim still checks that the From: header refersto the local user, and if it does not,
it adds a Sender: header, though this can be overridden by setting no_local_from_check.

White space between -f and the <address> is optional (that is, they can be given as two arguments
or one combined argument). The sender of a locally-generated message can also be set (when
permitted) by an initial From linein the message see the description of -bm above but if -f
isalso present, it overrides From .

This option is equivalent to an ACL applying:
control = suppress_|local _fixups

for every message received. Note that Sendmail will complain about such bad formatting, where
Exim silently just doesnot x it up. Thismay changein future.

Asthis affects audit information, the caller must be a trusted user to use this option.

-h <number>

This option is accepted for compatibility with Sendmail, but has no effect. (In Sendmail it over-
rides the hop count obtained by counting Received: headers.)

This option, which has the same effect as -oi, speci es that a dot on a line by itself should not
terminate an incoming, non-SMTP message. | can nd no documentation for this option in Solaris
2.4 Sendmail, but the mailx command in Solaris 2.4 usesit. See adso -ti.

40 The Exim command line (5)

-L <tag>
This option is equivalent to setting syslog_processname in the cong le and setting log_le_
path to sysl og. Its use is restricted to administrators. The con guration le has to be read and
parsed, to determine access rights, before this is set and takes effect, so early con guration le
errors will not honour this flag.

The tag should not be longer than 32 characters.

-M <message id> <message id> ...
This option requests Exim to run a delivery attempt on each message in turn. If any of the
messages are frozen, they are automatically thawed before the delivery attempt. The settings of
queue_domains, queue_smtp_domains, and hold_domains are ignored.

Retry hints for any of the addresses are overridden Exim tries to deliver even if the normal retry
time has not yet been reached. This option requires the caller to be an admin user. However, there
is an option called prod_requires_admin which can be set false to relax this restriction (and also
the same requirement for the -q, -R, and -S options).

The deliveries happen synchronously, that is, the original Exim process does not terminate until all
the delivery attempts have nished. No output is produced unless there is a serious error. If you
want to see what is happening, use the -v option as well, or inspect Exim¢s main log.

-Mar <message id> <address> <address> ...
This option requests Exim to add the addresses to the list of recipients of the message (ar for
add recipients). The rst argument must be a message id, and the remaining ones must be email
addresses. However, if the message is active (in the middle of a delivery attempt), it is not atered.
This option can be used only by an admin user.

-MC <transport> <hostname> <sequence number> <message id>
This option is not intended for use by external callers. It is used internally by Exim to invoke
another instance of itself to deliver a waiting message using an existing SMTP connection, which
is passed as the standard input. Details are given in chapter 48 This must be the nal option, and
the caller must be root or the Exim user in order to useit.

-MCA
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option. It signi es that the connection to the remote host has been authenticated.

-MCD
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option. It signi es that the remote host supports the ESMTP DSN extension.

-MCG <queue name>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option. It signi es that an alternate queue is used, named by the following argument.

-MCK
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option. It signi esthat a remote host supports the ESMTP CHUNKING extension.

-MCP
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option. It signi es that the server to which Exim is connected supports pipelining.

-MCQ <process id> <pipe fd>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option when the origina delivery was started by a queue runner. It passes on the
processid of the queue runner, together with the le descriptor number of an open pipe. Closure of
the pipe signals the nal completion of the sequence of processes that are passing messages
through the same SM TP connection.

41 The Exim command line (5)

-MCS
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option, and passes on the fact that the SMTP SIZE option should be used on
messages delivered down the existing connection.

-MCT
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -M C option, and passes on the fact that the host to which Exim is connected supports
TLSencryption.

-M Ct <IP address> <port> <cipher>
This option is not intended for use by external callers. It is used internally by Exim in conjunction
with the -MC option, and passes on the fact that the connection is being proxied by a parent
process for handling TL S encryption. The arguments give the local address and port being proxied,
and the TL S cipher.

-Mc <message id> <message id> ...

This option requests Exim to run a delivery attempt on each message in turn, but unlike the -M
option, it does check for retry hints, and respects any that are found. This option is not very useful
to externa callers. It is provided mainly for internal use by Exim when it needs to re-invoke itself
in order to regain root privilege for a delivery (see chapter . However, -M ¢ can be useful when
testing, in order to run a delivery that respects retry times and other options such as hold_domains
that are overridden when -M is used. Such a delivery does not count as a queue run. If you want to
run a speci ¢ delivery as if in a queue run, you should use -q with a message id argument. A
distinction between gqueue run deliveries and other deliveriesis made in one or two places.

-Mes <message id> <address>
This option requests Exim to change the sender address in the message to the given address, which
must be a fully quali ed address or <> (es for edit sender). There must be exactly two
arguments. The rst argument must be a message id, and the second one an email address.
However, if the message is active (in the middle of a delivery attempt), its status is not altered.
This option can be used only by an admin user.

-Mf <message id> <message id> ...
This option requests Exim to mark each listed message as frozen. This prevents any delivery
attempts taking place until the message is thawed , either manually or as a result of the auto_
thaw con guration option. However, if any of the messages are active (in the middle of a delivery
attempt), their status is not altered. This option can be used only by an admin user.

-Mg <message id> <message id> ...
This option requests Exim to give up trying to deliver the listed messages, including any that are
frozen. However, if any of the messages are active, their status is not altered. For non-bounce
messages, a delivery error message is sent to the sender, containing the text cancelled by adminis-
trator . Bounce messages are just discarded. This option can be used only by an admin user.

-Mmad <message id> <message id> ...
This option requests Exim to mark all the recipient addresses in the messages as already delivered
(mad for mark all delivered). However, if any message is active (in the middle of a delivery
attempt), its statusis not altered. This option can be used only by an admin user.

-Mmd <message id> <address> <address> ...
This option requests Exim to mark the given addresses as aready delivered (md for mark
delivered). The rst argument must be a message id, and the remaining ones must be email
addresses. These are matched to recipient addresses in the message in a case-sensitive manner. |If
the message is active (in the middle of a delivery attempt), its status is not altered. This option can
be used only by an admin user.

-Mrm <message id> <message id> ...
This option requests Exim to remove the given messages from the queue. No bounce messages are
sent; each message is simply forgotten. However, if any of the messages are active, their statusis
not atered. This option can be used only by an admin user or by the user who originally caused
the message to be placed on the queue.

42 The Exim command line (5)

-Mset <message id>

This option is useful only in conjunction with -be (that is, when testing string expansions). Exim
loads the given message from its spool before doing the test expansions, thus setting message-
speci ¢ variables such as $message_size and the header variables. The $recipients variable is made
available. This feature is provided to make it easier to test expansions that make use of these
variables. However, this option can be used only by an admin user. See aso -bem.

-Mt <message id> <message id> ...

This option requests Exim to thaw any of the listed messages that are frozen, so that delivery
attempts can resume. However, if any of the messages are active, their status is not altered. This
option can be used only by an admin user.

-Mvb <message id>

This option causes the contents of the message body (-D) spool le to be written to the standard
output. This option can be used only by an admin user.

-Mvc <message id>

This option causes a copy of the complete message (header lines plus body) to be written to the
standard output in RFC 2822 format. This option can be used only by an admin user.

-Mvh <message id>

This option causes the contents of the message headers (-H) spool le to be written to the standard
output. This option can be used only by an admin user.

-MvI <message id>

-m

-N

This option causes the contents of the message log spool le to be written to the standard output.
This option can be used only by an admin user.

Thisis apparently a synonym for -om that is accepted by Sendmail, so Exim treats it that way too.

This is a debugging option that inhibits delivery of a message at the transport level. It implies -v.
Exim goes through many of the motions of delivery it just doesn¢t actually transport the mess-
age, but instead behaves as if it had successfully done so. However, it does not make any updates
to the retry database, and the log entries for deliveries are flagged with *> rather than =>.

Because -N discards any message to which it applies, only root or the Exim user are allowed to use
it with -bd, -q, -R or -M. In other words, an ordinary user can use it only when supplying an
incoming message to which it will apply. Although transportation never fails when -N is set, an
address may be deferred because of a con guration problem on a transport, or a routing problem.
Once -N has been used for a delivery attempt, it sticks to the message, and applies to any subse-
quent delivery attempts that may happen for that message.

This option is interpreted by Sendmail to mean no aiasing . For normal modes of operation, it is
ignored by Exim. When combined with -bP it makes the output more terse (suppresses option
names, environment values and con g pretty printing).

-0 <data>

Thisoption isinterpreted by Sendmail to meanset opti on. Itisignored by Exim.

-0A <file name>

This option is used by Sendmail in conjunction with -bi to specify an aternative alias le name.
Exim handles -bi differently; see the description above.

-0B <n>

This is a debugging option which limits the maximum number of messages that can be delivered
down one SMTP connection, overriding the value set in any smip transport. If <n> is omitted, the
limitissetto 1.

-odb

This option applies to al modes in which Exim accepts incoming messages, including the listen-
ing daemon. It requests background delivery of such messages, which means that the accepting

43 The Exim command line (5)

process automatically starts a delivery process for each message received, but does not wait for the
delivery processesto nish.

When all the messages have been received, the reception process exits, leaving the delivery pro-
cesses to nish in their own time. The standard output and error streams are closed at the start of
each delivery process. Thisisthe default action if none of the -od options are present.

If one of the queueing options in the con guration le (queue only or queue only le, for
example) is in effect, -odb overrides it if queue only override is set true, which is the default
setting. If queue_only_overrideis set false, -odb has no effect.

-odf
This option requests foreground (synchronous) delivery when Exim has accepted a locally-
generated message. (For the daemon it is exactly the same as -odb.) A delivery process is auto-
matically started to deliver the message, and Exim waits for it to complete before proceeding.

The original Exim reception process does not nish until the delivery process for the nal message
has ended. The standard error stream is left open during deliveries.

However, like -odb, this option has no effect if queue only override is false and one of the
gueueing options in the con guration leisin effect.

If there is atemporary delivery error during foreground delivery, the message is |eft on the queue
for later delivery, and the original reception process exits. See chapterfor away of setting up a
restricted con guration that never queues messages.

-odi
This option is synonymous with -odf. It is provided for compatibility with Sendmail.

-odqg
This option applies to al modes in which Exim accepts incoming messages, including the listen-
ing daemon. It speci esthat the accepting process should not automatically start a delivery process
for each message received. Messages are placed on the queue, and remain there until a subsequent
gueue runner process encounters them. There are several con guration options (such as queue
only) that can be used to queue incoming messages under certain conditions. This option overrides
al of them and also -odgs. It aways forces queueing.

-odgs
This option is a hybrid between -odb/-odi and -odg. However, like -odb and -odi, this option has
no effect if queue_only_override isfalse and one of the queueing optionsin the con guration le
isin effect.

When -odgs does operate, a delivery process is started for each incoming message, in the back-
ground by default, but in the foreground if -odi is also present. The recipient addresses are routed,
and local deliveries are done in the normal way. However, if any SMTP deliveries are required,
they are not done at this time, so the message remains on the queue until a subsequent queue
runner process encounters it. Because routing was done, Exim knows which messages are waiting
for which hosts, and so a number of messages for the same host can be sent in a single SMTP
connection. The queue_smtp_domains con guration option has the same effect for speci ¢
domains. See also the -qq option.

-oee
If an error is detected while a non-SMTP message is being received (for example, a malformed
address), the error is reported to the sender in amail message.

Provided this error message is successfully sent, the Exim receiving process exits with a return
code of zero. If not, the return code is 2 if the problem is that the origina message has no
recipients, or 1 for any other error. Thisis the default -oex option if Exim is called as rmail.

-0em
Thisisthe same as -oee, except that Exim always exits with a non-zero return code, whether or not
the error message was successfully sent. This is the default -oex option, unless Exim is called as
rmail.

44 The Exim command line (5)

_Oep
If an error is detected while a non-SMTP message is being received, the error is reported by
writing a message to the standard error le (stderr). Thereturn codeis 1 for al errors.

_0&1
This option is supported for compatibility with Sendmail, but has the same effect as -oep.

-0ew
This option is supported for compatibility with Sendmail, but has the same effect as -oem.

-Oi
This option, which has the same effect as -i, speci es that a dot on a line by itself should not
terminate an incoming, non-SM TP message. Otherwise, a single dot does terminate, though Exim
does no specia processing for other lines that start with adot. This option is set by default if Exim
is called as rmail. See also -ti.

-oitrue
This option is treated as synonymous with -oi.

-oM a <host address>
A number of options starting with -oM can be used to set values associated with remote hosts on
locally-submitted messages (that is, messages not received over TCP/IP). These options can be
used by any caller in conjunction with the -bh, -be, -bf, -bF, -bt, or -bv testing options. In other
circumstances, they areignored unlessthe caller is trusted.

The -oMa option sets the sender host address. This may include a port number at the end, after a
full stop (period). For example:

exim-bs -ova 10.9.8.7.1234

An alternative syntax is to enclose the |P address in square brackets, followed by a colon and the
port number:

exim-bs -oMa [10.9.8.7]:1234

The IP addressis placed in the $sender_host_address variable, and the port, if present, in $sender_
host_port. If both -oMa and -bh are present on the command line, the sender host IP address is
taken from whichever oneislast.

-oM aa <name>
See -oM a above for general remarks about the -oM options. The -oM aa option sets the value of
$sender_host_authenticated (the authenticator name). See chapter (33 for a discussion of SMTP
authentication. This option can be used with -bh and -bs to set up an authenticated SMTP session
without actually using the SMTP AUTH command.

-oMai <string>
See -oM a above for genera remarks about the -oM options. The -oMai option sets the value of
Sauthenticated_id (the id that was authenticated). This overrides the default value (the caller¢s
login id, except with -bh, where there is no default) for messages from local sources. See chapter
for adiscussion of authenticated ids.

-oMas <address>
See -oMa above for genera remarks about the -oM options. The -oMas option sets the
authenticated sender value in $authenticated_sender. |t overrides the sender address that is created
from the caller¢s login id for messages from local sources, except when -bh is used, when there is
no default. For both -bh and -bs, an authenticated sender that is speci ed on a MAIL command
overrides this value. See chapter|33 for a discussion of authenticated senders.

-oMi <interface address>
See -oM a above for general remarks about the -oM options. The -oMi option sets the IP interface
address value. A port number may be included, using the same syntax as for -oMa. The interface
addressis placed in $received_ip_address and the port number, if present, in $received_port.

45 The Exim command line (5)

-OMm <message reference>
See -oM a above for general remarks about the -oM options. The -oMm option sets the message
reference, e.g. message-id, and is logged during delivery. This is useful when some kind of audit
trail is required to tie messages together. The format of the message reference is checked and will
abort if the format is invalid. The option will only be accepted if exim is running in trusted mode,
not as any regular user.

The best example of a message reference is when Exim sends a bounce message. The message
reference is the message-id of the original message for which Exim is sending the bounce.

-OMr <protocol name>
See -oMa above for general remarks about the -oM options. The -oMr option sets the received
protocol value that is stored in $received_protocol. However, it does not apply (and is ignored)
when -bh or -bs is used. For -bh, the protocol is forced to_one of the standard SMTP protocol
names (see the description of $received_protocol in section . For -bs, the protocol is aways
local- followed by one of those same names. For -bS (batched SMTP) however, the protocol can
be set by -oMr. Repeated use of this option is not supported.

-0M s <host name>
See -oM a above for general remarks about the -oM options. The -oM s option sets the sender host
name in $sender_host_name. When this option is present, Exim does not attempt to look up a host
name from an IP address; it uses the name it is given.

-OMt <ident string>
See -oM a above for general remarks about the -oM options. The -oMt option sets the sender ident
value in $sender_ident. The default setting for local callers is the login id of the calling process,
except when -bh is used, when there is no default.

-om
In Sendmail, this option means me too , indicating that the sender of a message should receive a
copy of the message if the sender appears in an alias expansion. Exim always does this, so the
option does nothing.

-00
Thisoption isignored. In Sendmail it speci es old style headers, whatever that means.

-0P <path>
This option is useful only in conjunction with -bd or -q with atime value. The option speci es the
le to which the process id of the daemon is written. When -0X is used with -bd, or when -g with
atime is used without -bd, this is the only way of causing Exim to write a pid le, because in
those cases, the normal pid leisnot used.

-or <time>
This option sets a timeout value for incoming non-SMTP messages. If it is not set, Exim will wait
forever for the standard input. The value can also be set by the receive_timeout option. The
format used for specifying times is described in secti on

-0S <time>
This option sets a timeout value for incoming SMTP messages. The timeout appliesto each SMTP
command and block of data. The value can also be set by the smtp_receive _timeout option; it
defaultsto 5 minutes. The format used for specifying timesis described in section|6.16

-ov
This option has exactly the same effect as -v.

-0X <number or string>
This option is relevant only when the -bd (start listening daemon) option is also given. It controls
which ports and interfaces the daemon uses. Details of the syntax, and how it interacts with
con guration le options, are given in chapter 1E‘When -0X is used to start a daemon, no pid le
iswritten unless -oP is also present to specify apid le name.

46 The Exim command line (5)

_pd
This option applies when an embedded Perl interpreter is linked with Exim (see chapter . It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to be
delayed until it is needed.

_ps
This option applies when an embedded Perl interpreter is linked with Exim (see chapter . It
overrides the setting of the perl_at_start option, forcing the starting of the interpreter to occur as
soon as Exim is started.

-p<rval>:<sval>
For compatibility with Sendmail, this option is equivaent to

- oM <rval> - oMb <sval>

It sets the incoming protocol and host name (for trusted callers). The host name and its colon can
be omitted when only the protocol is to be set. Note the Exim already has two private options, -pd
and -ps, that refer to embedded Perl. It is therefore impossible to set a protocol value of d or s
using this option (but that does not seem a real limitation). Repeated use of this option is not
supported.

This option is normally restricted to admin users. However, there is a con guration option called
prod_requires admin which can be set false to relax this restriction (and aso the same require-
ment for the -M, -R, and -S options).

If other commandline options do not specify an action, the -q option starts one queue runner
process. This scans the queue of waiting messages, and runs a delivery process for each one in
turn. It waits for each delivery process to nish before starting the next one. A delivery process
may not actually do any deliveries if the retry times for the addresses have not been reached. Use
-gf (see below) if you want to override this.

If the delivery process spawns other processes to deliver other messages down passed SMTP
connections, the queue runner waits for theseto nish before proceeding.

When all the queued messages have been considered, the original queue runner process terminates.
In other words, a single pass is made over the waiting mail, one message at atime. Use -q with a
time (see below) if you want this to be repeated periodically.

Exim processes the waiting messages in an unpredictable order. It isn¢t very random, but it is
likely to be different each time, which is all that matters. If one particular message screws up a
remote MTA, other messages to the same MTA have a chance of getting through if they get tried
rst.

It is possible to cause the messages to be processed in lexical message id order, which is essen-
tially the order in which they arrived, by setting the queue_run_in_order option, but this is not
recommended for normal use.

-0<qflags>
The -q option may be followed by one or more flag letters that change its behaviour. They are all
optional, but if more than one is present, they must appear in the correct order. Each flag is
described in a separate item below.

-qg...
An option starting with -qg requests a two-stage queue run. In the rst stage, the queue is scanned

asif the queue_smtp_domains option matched every domain. Addresses are routed, local deliver-
ies happen, but no remote transports are run.

The hints database that remembers which messages are waiting for speci ¢ hosts is updated, as if

delivery to those hosts had been deferred. After this is complete, a second, normal queue scan
happens, with routing and delivery taking place as normal. Messages that are routed to the same
host should mostly be delivered down a single SMTP connection because of the hints that were set
up during the rst queue scan. This option may be useful for hosts that are connected to the

Internet intermittently.

47 The Exim command line (5)

-q[qli...
If the i flag is present, the queue runner runs delivery processes only for those messages that

havenct previously been tried. (i stands for initial delivery .) This can be helpful if you are putting
messages on the queue using -odg and want a queue runner just to process the new messages.

-q[q][i]f...
If one fflag is present, adelivery attempt is forced for each non-frozen message, whereas without f

only those non-frozen addresses that have passed their retry times are tried.

-q[q][i]ff...
If ffis present, addlivery attempt is forced for every message, whether frozen or not.

-q[al(iTCfCeI!
The! (the letter €ell) flag speci es that only local deliveries are to be done. If a message requires
any remote deliveries, it remains on the queue for later delivery.

-q[al[T[f[fI1[1[G<name>[/<time>]]]
If the G flag and a name is present, the queue runner operates on the gueue with the given name
rather than the default queue. The name should not contain a/ character. For a periodic queue run
(see below) append to the name a dash and atime value.

If other commandline options specify an action, a -¢G<name> option will specify a queue to
operate on. For example:

exim-bp -qCGuaranti ne
mai | g - gGquar anti ne
exi m - gCof f peak -Rf @peci al . domai n. exanpl e

-0<qflags> <start id> <end id>
When scanning the queue, Exim can be made to skip over messages whose ids are lexically less
than a given value by following the -q option with a starting message id. For example:

exi m -q Ot 5C6f-0000c8-00

Messages that arrived earlier than 0t 5C6f - 0000¢ 8- 00 are not inspected. If a second message
id is given, messages whose ids are lexically greater than it are also skipped. If the sameid is given
twice, for example,

exi m-qg Ot 5C6f-0000c8-00 Ot 5C6f-0000c8-00

just one delivery process is started, for that message. This differs from -M in that retry data is
respected, and it also differs from -Mc in that it counts as a delivery from a queue run. Note that
the selection mechanism does not affect the order in which the messages are scanned. There are
also other ways of selecting speci ¢ sets of messages for delivery in aqueuerun see-R and -S.

-Q<qflags><time>
When a time value is present, the -q option causes Exim to run as a daemon, starting a queue
runner process at intervals speci ed by the given time value (whose format is described in section
6.16). This form of the -q option is commonly combined with the -bd option, in which case a
single daemon process handles both functions. A common way of starting up a combined daemon
at system boot time is to use acommand such as

[usr/ exi m bin/exim-bd -g30m

Such a daemon listens for incoming SMTP calls, and also starts a queue runner process every 30
minutes.

When a daemon is started by -q with atime value, but without -bd, no pid le iswritten unless one
isexplicitly requested by the -oP option.

-QR<rsflags> <string>
This option is synonymous with -R. It is provided for Sendmail compatibility.

-QS<rsflags> <string>
This option is synonymous with -S.

48 The Exim command line (5)

-R<rsflags> <string>
The <rsflags> may be empty, in which case the white space before the string is optional, unless the
string is f, ff, r, rf, or rff, which are the possible values for <rsflags>. White space is required if
<rsflags> is not empty.

This option is similar to -g with no time value, that is, it causes Exim to perform a single queue
run, except that, when scanning the messages on the queue, Exim processes only those that have at
least one undelivered recipient address containing the given string, which is checked in a case-
independent way. If the <rsflags> start with r, <string> is interpreted as a regular expression;
otherwiseit isalitera string.

If you want to do periodic queue runs for messages with speci ¢ recipients, you can combine -R
with -q and atime value. For example:

exi m-9g25m -R @peci al . domai n. exanpl e

This example does a queue run for messages with recipientsin the given domain every 25 minutes.
Any additional flags that are speci ed with -q are applied to each queue run.

Once amessage is selected for delivery by this mechanism, al its addresses are processed. For the
rst selected message, Exim overrides any retry information and forces a delivery attempt for each
undelivered address. This means that if delivery of any address in the rst message is successful,
any existing retry information is deleted, and so delivery attempts for that address in subsequently
selected messages (which are processed without forcing) will run. However, if delivery of any
address does not succeed, the retry information is updated, and in subsequently selected messages,
the failing address will be skipped.

If the <rsflags> contain f or ff, the delivery forcing applies to all selected messages, not just the
rst; frozen messages are included when ff is present.

The -R option makes it straightforward to initiate delivery of all messages to a given domain after
a host has been down for some time. When the SMTP command ETRN is accepted by its ACL
(see chapter, its default effect is to run Exim with the -R option, but it can be con gured to run
an arbitrary command instead.

-r
Thisis adocumented (for Sendmail) obsol ete aternative name for -f.

-S<rsflags> <string>
This option acts like -R except that it checks the string against each messagets sender instead of
against the recipients. If -R isalso set, both conditions must be met for a message to be selected. If
either of the options has f or ff in its flags, the associated action is taken.

-Tqt <times>
This is an option that is exclusively for use by the Exim testing suite. It is not recognized when
Exim is run normally. It alows for the setting up of explicit queue times so that various
warning/retry features can be tested.

-t
When Exim is receiving a locally-generated, non-SMTP message on its standard input, the -t
option causes the recipients of the message to be obtained from the 7o:, Cc:, and Bcc: header lines
in the message instead of from the command arguments. The addresses are extracted before any
rewriting takes place and the Bcc: header line, if present, is then removed.

If the command has any arguments, they specify addresses to which the message is not to be
delivered. That is, the argument addresses are removed from the recipients list obtained from the
headers. This is compatible with Smail 3 and in accordance with the documented behaviour of
several versions of Sendmail, as described in man pages on a number of operating systems (e.g.
Solaris 8, IRIX 6.5, HP-UX 11). However, some versions of Sendmail add argument addresses to
those obtained from the headers, and the O¢Reilly Sendmail book documentsit that way. Exim can
be made to add argument addresses instead of subtracting them by setting the option extract_
addresses remove_argumentsfalse.

49 The Exim command line (5)

If there are any Resent- header lines in the message, Exim extracts recipients from all Resent-To:,
Resent-Cc:, and Resent-Bec: header lines instead of from 7o:, Cc:, and Bec:. Thisis for compati-
bility with Sendmail and other MTAs. (Prior to release 4.20, Exim gave an error if -t was used in
conjunction with Resent- header lines.)

RFC 2822 talks about different sets of Resent- header lines (for when a message is resent several
times). The RFC also speci es that they should be added at the front of the message, and separated
by Received: lines. It is not at al clear how -t should operate in the present of multiple sets, nor
indeed exactly what constitutes a set. In practice, it seems that MUAS do not follow the RFC.
The Resent- lines are often added at the end of the header, and if a message is resent more than
once, it iscommon for the original set of Resent- headers to be renamed as X-Resent- when anew
set is added. This removes any possible ambiguity.

-ti
This option is exactly equivalent to -t -i. It is provided for compatibility with Sendmail.

-tls-on-connect
This option is available when Exim is compiled with TLS support. It forces all incoming SMTP
connections to behave as if the incoming port is listed in the tls_on_connect_ports option. See
section@land chapter@for further details.

-U
Sendmail uses this option for initial message submission, and its documentation states that in
future releases, it may complain about syntactically invalid messages rather than xing them when
thisflag is not set. Exim ignores this option.

-V
This option causes Exim to write information to the standard error stream, describing what it is
doing. In particular, it shows the log lines for receiving and delivering a message, and if an SMTP
connection is made, the SMTP dialogue is shown. Some of the log lines shown may not actually
be written to the log if the setting of log_selector discards them. Any relevant selectors are shown
with each log line. If none are shown, the logging is unconditional .

-X
AlIX uses -x for a private purpose (mail from a local mail program has National Language
Support extended characters in the body of the mail item). It sets -x when calling the MTA from
its mail command. Exim ignores this option.

-X <logfile>
Thisoption isinterpreted by Sendmail to cause debug information to be sent to the named le. It is
ignored by Exim.

-z <log-line>
This option writes its argument to Eximés log le. Use is restricted to administrators; the intent is
for operational notes. Quotes should be used to maintain a multi-word item as a single argument,
under most shells.

50 The Exim command line (5)

6. The Exim run time configuration file

Exim uses a single run time con guration le that is read whenever an Exim binary is executed. Note
that in normal operation, this happens frequently, because Exim is designed to operate in a distributed
manner, without central control.

If a syntax error is detected while reading the con guration le, Exim writes a message on the
standard error, and exits with a non-zero return code. The message is aso written to the panic log.
Note: Only simple syntax errors can be detected at this time. The values of any expanded options are
not checked until the expansion happens, even when the expansion does not actually alter the string.

The name of the con guration le is compiled into the binary for security reasons, and is speci ed
by the CONFIGURE_FILE compilation option. In most con gurations, this speci es a single le.
However, it is permitted to give a colon-separated list of 1e names, in which case Exim uses the rst
existing lein thelist.

The run time con guration le must be owned by root or by the user that is speci ed at compile time
by the CONFIGURE_OWNER option (if set). The con guration le must not be world-writeable,
or group-writeable unless its group is the root group or the one speci ed at compile time by the
CONFIGURE_GROUP option.

Warning: In a conventional con guration, where the Exim binary is setuid to root, anybody who is
able to edit the run time con guration le has an easy way to run commands as root. If you specify a
user or group in the CONFIGURE_OWNER or CONFIGURE_GROUP options, then that user and/or
any users who are members of that group will trivially be able to obtain root privileges.

Up to Exim version 4.72, the run time con guration le was also permitted to be writeable by the
Exim user and/or group. That has been changed in Exim 4.73 since it offered a simple privilege
escalation for any attacker who managed to compromise the Exim user account.

A default con guration le, which will work correctly in simple situations, is provided in the le
src/configure.default. If CONFIGURE_FILE de nesjust one le name, the installation process copies
the default con guration to a new le of that name if it did not previously exist. If CONFIGURE_
FILE is alist, no default is automatically installed. Chapter El is a walk-through discussion of the
default con guration.

6.1 Using a different configuration file

A one-off alternate con guration can be speci ed by the -C command line option, which may specify
asingle leor alist of les. However, when -C is used, Exim gives up its root privilege, unless called
by root (or unless the argument for -C isidentical to the built-in value from CONFIGURE_FILE), or
islisted in the TRUSTED_CONFIG_LIST le and the caller is the Exim user or the user speci ed in
the CONFIGURE_OWNER setting. -C is useful mainly for checking the syntax of con guration les
before installing them. No owner or group checks are done on a con guration le speci ed by -C, if
root privilege has been dropped.

Even the Exim user is not trusted to specify an arbitrary con guration le with the -C option to be
used with root privileges, unless that leis listed in the TRUSTED_CONFIG_LIST le. This locks
out the possibility of testing a con guration using -C right through message reception and delivery,
even if the caller is root. The reception works, but by that time, Exim is running as the Exim user, so
when it re-execs to regain privilege for the delivery, the use of -C causes privilege to be lost. However,
root can test reception and delivery using two separate commands (one to put a message on the queue,
using -odq, and another to do the delivery, using -M).

If ALT_CONFIG_PREFIX isde ned in Local/Makefile, it Speci es apre x string with which any le
named in a -C command line option must start. In addition, the le name must not contain the
sequence /. ./ . Thereis no default setting for ALT_CONFIG_PREFIX; when it is unset, any le
name can be used with -C.

One-off changes to a con guration can be speci ed by the -D command line option, which de nes
and overrides values for macros used inside the con guration le. However, like -C, the use of this
option by a non-privileged user causes Exim to discard itsroot privilege. If DISABLE_D_OPTION is

51 The runtime configuration file (6)

de ned in Local/Makefile, the use of -D is completely disabled, and its use causes an immediate error
exit.

The WHITELIST_D_MACROS option in Local/Makefile permits the binary builder to declare certain
macro names trusted, such that root privilege will not necessarily be discarded. WHITELIST D_
MACROS de nes a colon-separated list of macros which are considered safe and, if -D only supplies
macros from this list, and the values are acceptable, then Exim will not give up root privilege if the
caller is root, the Exim run-time user, or the CONFIGURE_OWNER, if set. This is a transition
mechanism and is expected to be removed in the future. Acceptable values for the macros satisfy the
regexp: \[A-Za-z0-9 /.-1*%

Some sites may wish to use the same Exim binary on different machines that share a le system, but
to use different con guration les on each machine. If CONFIGURE_FILE USE NODE is de ned
in Local/Makefile, Exim rst looks for a le whose name is the con guration le name followed by a
dot and the machine¢s node name, as obtained from the uname() function. If this le does not exist,
the standard name is tried. This processing occurs for each le name in the list given by
CONFIGURE_FILE or -C.

In some esoteric situations different versions of Exim may be run under different effective uids and
the CONFIGURE_FILE_USE_EUID is de ned to help with this. See the comments in src/EDITME
for details.

6.2 Configuration file format

Exim¢s con guration le is divided into a number of different parts. General option settings must
always appear at the start of the le. The other parts are all optional, and may appear in any order.
Each part other than the rst is introduced by the word begin followed by at least one literal space,
and the name of the part. The optional parts are:

* ACL: Access control listsfor controlling incoming SMTP mail (see chapter@.

* authenticators: Con guration settings for the authenticator drivers. These are concerned with the
SMTP AUTH command (see chapter .

 routers. Con guration settings for the router drivers. Routers process addresses and determine how
the message is to be delivered (see chapters .

* transports. Con guration settings for the transport drivers. Transports de ne mechanisms for copy-
ing messages to destinations (see chapters B0).

» retry. Retry rules, for use when a message cannot be delivered immediately. If there is no retry
section, or if it is empty (that is, no retry rules are de ned), Exim will not retry deliveries. In this
situation, temporary errors are treated the same as permanent errors. Retry rules are discussed in
chapter|f’>l_§r

» rewrite: Global address rewriting rules, for use when a message arrives and when new addresses
are generated during delivery. Rewriting is discussed in chapter .

* local_scan: Private options for the local_scan() function. If you want to use this feature, you must
set

LOCAL_SCAN _HAS OPTI ONS=yes
in Local/Makefile before building Exim. Details of the local_scan() facility are given in chapter
Leading and trailing white space in con guration linesis always ignored.

Blank linesin the le, and lines starting with a # character (ignoring leading white space) are treated
as comments and are ignored. Note: A # character other than at the beginning of alineis not treated
specialy, and does not introduce a comment.

Any non-comment line can be continued by ending it with a backslash. Note that the genera rule for
white space means that trailing white space after the backslash and leading white space at the start of
continuation lines is ignored. Comment lines beginning with # (but not empty lines) may appear in
the middle of a sequence of continuation lines.

52 The runtime configuration file (6)

A convenient way to create a con guration le is to start from the default, which is supplied in
src/configure.default, and add, delete, or change settings as required.

The ACLSs, retry rules, and rewriting rules have their own syntax which is described in chapters,
and respectively. The other parts of the conguration le have some syntactic items in
common, and these are described below, from section @I onwards. Before that, the inclusion,
macro, and conditional facilities are described.

6.3 File inclusions in the configuration file
You can include other lesinside Eximds run time con guration le by using this syntax:

. i ncl ude <file name>
.include_if_exists <file name>

on a line by itself. Double quotes round the le name are optional. If you use the rst form, a
con guration error occurs if the le does not exist; the second form does nothing for non-existent
les. The rst form allows a relative name. It is resolved relative to the directory of the including le.
For the second form an absolute le nameis required.

Includes may be nested to any depth, but remember that Exim reads its con guration le often, soitis
agood idea to keep them to a minimum. If you change the contents of an included le, you must HUP
the daemon, because an included leisread only when the con guration itself is read.

The processing of inclusions happens early, at a physical line level, so, like comment lines, an
inclusion can be used in the middle of an option setting, for example:

hosts | ookup = a.b.c \
.include /sone/file

Include processing happens after macro processing (see below). Its effect isto process the lines of the
included le asif they occurred inline where the inclusion appears.

6.4 Macros in the configuration file

If aline in the main part of the con guration (that is, before the rst begin line) begins with an
upper case letter, it is taken as a macro de nition, and must be of the form

<name> = <rest of line>

The name must consist of letters, digits, and underscores, and need not all be in upper case, though
that is recommended. The rest of the line, including any continuations, is the replacement text, and
has leading and trailing white space removed. Quotes are not removed. The replacement text can
never end with abackdash character, but this doesn¢t seem to be a serious limitation.

Macros may also be de ned between router, transport, authenticator, or ACL de nitions. They may
not, however, be de ned within an individual driver or ACL, or in the local_scan, retry, or rewrite
sections of the con guration.

6.5 Macro substitution

Once a macro is de ned, all subsequent lines in the le (and any included les) are scanned for the
macro name; if there are several macros, the line is scanned for each in turn, in the order in which the
macros are de ned. The replacement text is not re-scanned for the current macro, though it is scanned
for subsequently de ned macros. For this reason, a macro name may not contain the name of a
previously de ned macro as a substring. You could, for example, de ne

ABCD XYZ = <something>
ABCD = <something else>

but putting the de nitions in the opposite order would provoke a con guration error. Macro expansion
is applied to individual physical lines from the le, before checking for line continuation or le
inclusion (see above). If aline consists solely of a macro name, and the expansion of the macro is

53 The runtime configuration file (6)

empty, the line is ignored. A macro at the start of a line may turn the line into a comment line or a
. i ncl ude line.

6.6 Redefining macros
Once de ned, the value of a macro can be rede ned later in the con guration (or in an included le).
Rede nition is speci ed by using == instead of =. For example:

MAC = initial value

MAC == updat ed val ue

Rede nition does not alter the order in which the macros are applied to the subsequent lines of the
con guration le. It is still the same order in which the macros were originally de ned. All that
changes is the macro¢s value. Rede nition makes it possible to accumulate values. For example:

MAC = initial value

MAC == MAC and sonet hi ng added

This can be helpful in situations where the con guration leis built from anumber of other les.

6.7 Overriding macro values

The values set for macros in the con guration e can be overridden by the -D command line option,
but Exim gives up its root privilege when -D is used, unless called by root or the Exim user. A
de nition on the command line using the -D option causes all de nitions and rede nitions within the
le to be ignored.

6.8 Example of macro usage

As an example of macro usage, consider a con guration where aliases are looked up in a MySQL
database. It helps to keep the le less cluttered if long strings such as SQL statements are de ned
separately as macros, for example:

ALI AS QUERY = sel ect mail box from user where \
I ogi n="${quot e_nysql : $l ocal _part}’;

This can then be used in a redirect router setting like this:
data = ${l ookup nysql { ALI AS_QUERY}}

In earlier versions of Exim macros were sometimes used for domain, host, or address lists. In Exim 4
these are handled better by named lists see section EO.S..

6.9 Builtin macros

Exim de nes some macros depending on facilities available, which may differ due to build-time
de nitions and from one release to another. All of these macros start with an underscore. They can be
used to conditionally include parts of a con guration (see below).

The following classes of macros are de ned:

_HAVE * build-time de nes

_DRI VER_RQUTER_* router drivers

_ DRI VER_TRANSPORT _* transport drivers

_DRI VER_AUTHENTI CATCR _* authenticator drivers
_OPT_MAI N_* main con g options
_OPT_ROUTERS _* generic router options
_OPT_TRANSPORTS_* generic transport options
_OPT_AUTHENTI CATORS_* generic authenticator options
_OPT_RQUTER * _* private router options

54 The runtime configuration file (6)

_OPT_TRANSPORT _*_* private transport options
_OPT_AUTHENTI CATOR _* _* private authenticator options

Usean exim -bP macros command to get the list of macros.

6.10 Conditional skips in the configuration file

You can use the directives . i f def , . i fndef,.elifdef,.elifndef,.else,and. endif to
dynamically include or exclude portions of the con guration le. The processing happens whenever
the leisread (that is, when an Exim binary starts to run).

The implementation is very simple. Instances of the rst four directives must be followed by text that
includes the names of one or macros. The condition that is tested is whether or not any macro
substitution has taken place in the line. Thus:

i fdef AAA

message_size |limt = 50M
. el se

nmessage _size |limt = 100M
.endif

sets a message size limit of 50M if the macro AAA is dened (or A or AA), and 100M otherwise. If
there is more than one macro named on the line, the condition is true if any of them are de ned. That
is,itisan or condition. To obtain an and condition, you need to use nested . i f def s.

Although you can use a macro expansion to generate one of these directives, it is not very useful,
because the condition there was a macro substitution in thisline will aways be true.

Text following . el se and . endi f isignored, and can be used as comment to clarify complicated
nestings.

6.11 Common option syntax

For the main set of options, driver options, and local_scan() options, each setting ison aline by itself,
and starts with a name consisting of lower-case letters and underscores. Many options require a data
value, and in these cases the name must be followed by an equals sign (with optiona white space) and
then the value. For example:

qual i fy_domai n = nydonai n. exanpl e. com

Some option settings may contain sensitive data, for example, passwords for accessing databases. To
stop non-admin users from using the -bP command line option to read these values, you can precede
the option settings with the word hide . For example:

hi de nmysqgl servers = | ocal host/users/adm n/ secret-password
For non-admin users, such options are displayed like this:
mysqgl _servers = <val ue not di spl ayabl e>
If hide isused on adriver option, it hides the value of that option on all instances of the same driver.

The following sections describe the syntax used for the different data types that are found in option
settings.

6.12 Boolean options

Options whose type is given as boolean are on/off switches. There are two different ways of specify-
ing such options. with and without a data value. If the option name is speci ed on its own without
data, the switch is turned on; if it is preceded by no_ or not_ the switch is turned off. However,
boolean options may be followed by an equals sign and one of the words true, fase, yes, or
no , as an alternative syntax. For example, the following two settings have exactly the same effect:

gueue_only
gueue_only = true

55 The runtime configuration file (6)

The following two lines also have the same (opposite) effect:

no_queue_only
gueue_only = fal se

You can use whichever syntax you prefer.

6.13 Integer values

If an option@s type is given as integer , the value can be given in decimal, hexadecimal, or octal. If it
starts with a digit greater than zero, a decimal number is assumed. Otherwise, it is treated as an octal
number unless it starts with the characters 0x, in which case the remainder is interpreted as a
hexadecima number.

If an integer value isfollowed by the letter K, it is multiplied by 1024; if it is followed by the letter M,
it ismultiplied by 1024x1024; if by the letter G, 1024x1024x1024. When the values of integer option
settings are output, values which are an exact multiple of 1024 or 1024x1024 are sometimes, but not
always, printed using the letters K and M. The printing style is independent of the actual input format
that was used.

6.14 Octal integer values

If an optionds type is given as octa integer, its value is always interpreted as an octal number,
whether or not it starts with the digit zero. Such options are always output in octal.

6.15 Fixed point numbers

If an optionds type is given as xed-point , its value must be a decimal integer, optionally followed
by adecimal point and up to three further digits.

6.16 Time intervals

A time interval is speci ed as a sequence of numbers, each followed by one of the following letters,
with no intervening white space:

s seconds
m minutes
h hours

d days

w weeks

For example, 3h50m speci es 3 hours and 50 minutes. The values of time intervals are output in the
same format. Exim does not restrict the values; it is perfectly acceptable, for example, to specify
90m instead of 1h30m .

6.17 String values

If an option¢stype is speci ed as string , the value can be speci ed with or without double-quotes. If

it does not start with a double-quote, the value consists of the remainder of the line plus any continu-
ation lines, starting at the rst character after any leading white space, with trailing white space
removed, and with no interpretation of the characters in the string. Because Exim removes comment
lines (those beginning with #) at an early stage, they can appear in the middle of a multi-line string.
The following two settings are therefore equivalent:

trusted_users = uucp: mai l

trusted_users = uucp:\
This conment line is ignored
mai |

If a string does start with a double-quote, it must end with a closing double-quote, and any backslash
characters other than those used for line continuation are interpreted as escape characters, as follows:

56 The runtime configuration file (6)

\\ single backslash

\n newline

\'r carriage return

\ 't tab

\ <octal digits> up to 3 octal digits specify one character

\ X<hex digits> up to 2 hexadecimal digits specify one character

If a backdlash is followed by some other character, including a double-quote character, that character
replaces the pair.

Quoting is necessary only if you want to make use of the backslash escapes to insert specia charac-
ters, or if you need to specify a value with leading or trailing spaces. These cases are rare, so quoting
is amost never needed in current versions of Exim. In versions of Exim before 3.14, quoting was
required in order to continue lines, so you may come across older con guration les and examples
that apparently quote unnecessarily.

6.18 Expanded strings

Some strings in the con guration le are subjected to string expansion, by which means various parts
of the string may be changed according to the circumstances (see chapter . The input syntax for
such strings is as just described; in particular, the handling of backslashes in quoted stringsis done as
part of the input process, before expansion takes place. However, backslash is also an escape charac-
ter for the expander, so any backslashes that are required for that reason must be doubled if they are
within a quoted con guration string.

6.19 User and group names

User and group names are speci ed as strings, using the syntax described above, but the strings are
interpreted specially. A user or group name must either consist entirely of digits, or be a name that
can be looked up using the getpwnam() or getgrnam() function, as appropriate.

6.20 List construction

The data for some con guration optionsis alist of items, with colon as the default separator. Many of
these options are shown with type string list in the descriptions later in this document. Others are
listed as domain list, host list, address list, or local part list. Syntacticaly, they are al the
same; however, those other than string list are subject to particular kinds of interpretation, as
described in chapter .

In al these cases, the entire list is treated as a single string as far as the input syntax is concerned. The
trusted_userssetting in section‘above isan example. If acolonisactually needed in anitemin a
list, it must be entered as two colons. Leading and trailing white space on each item in alist is
ignored. This makes it possible to include items that start with a colon, and in particular, certain forms
of 1Pv6 address. For example, the list

| ocal _interfaces = 127.0.0.1 : ::::1
contains two | P addresses, the |Pv4 address 127.0.0.1 and the |Pv6 address ::1.

Note: Although leading and trailing white space is ignored in individual list items, it is not ignored
when parsing the list. The space after the rst colon in the example above is necessary. If it were not
there, the list would be interpreted as the two items 127.0.0.1:: and 1.

6.21 Changing list separators

Doubling colons in IPv6 addresses is an unwelcome chore, so a mechanism was introduced to allow
the separator character to be changed. If a list begins with a left angle bracket, followed by any
punctuation character, that character is used instead of colon as the list separator. For example, the list
above can be rewritten to use a semicolon separator like this:

| ocal _interfaces = <; 127.0.0.1 ; ::1

57 The runtime configuration file (6)

This facility applies to all lists, with the exception of thelist inlog_le path. It is recommended that
the use of non-colon separators be con ned to circumstances where they really are needed.

It is also possible to use newline and other control characters (those with code values less than 32,
plus DEL) as separators in lists. Such separators must be provided literally at the time the list is
processed. For options that are string-expanded, you can write the separator using a normal escape
sequence. This will be processed by the expander before the string is interpreted as a list. For
example, if a newline-separated list of domains is generated by a lookup, you can process it directly
by aline such asthis:

domai ns = <\n ${l ookup nysql{..... 1}

This avoids having to change the list separator in such data. You are unlikely to want to use a control
character as a separator in an option that is not expanded, because the value is literal text. However, it
can be done by giving the value in quotes. For example:

| ocal interfaces = "<\n 127.0.0.1 \n ::1"

Unlike printing character separators, which can be included in list items by doubling, it is not possible
to include a control character as datawhen it is set as the separator. Two such characters in succession
areinterpreted as enclosing an empty list item.

6.22 Empty items in lists

An empty item at the end of alist is aways ignored. In other words, trailing separator characters are
ignored. Thus, thelistin

senders = user @onain :

contains only asingle item. If you want to include an empty string as oneitem in alist, it must not be
the last item. For example, this list contains three items, the second of which is empty:

senders = userl@omain : : user2@lomain

Note: There must be white space between the two colons, as otherwise they are interpreted as
representing a single colon data character (and the list would then contain just one item). If you want
to specify alist that contains just one, empty item, you can do it asin this example:

senders = :

Inthis case, the rstitem is empty, and the second is discarded becauseit is at the end of thelist.

6.23 Format of driver configurations

There are separate parts in the con guration for de ning routers, transports, and authenticators. In
each part, you are de ning a number of driver instances, each with its own set of options. Each driver
instance is de ned by a sequence of lineslikethis:

<instance name>.
<option>

<option>
In the following example, the instance name is localuser, and it is followed by three options settings:

| ocal user:
driver = accept
check_I ocal _user
transport = | ocal _delivery

For each driver instance, you specify which Exim code module it uses by the setting of the driver
option and (optionally) some con guration settings. For example, in the case of transports, if you

want a transport to deliver with SMTP you would use the smip driver; if you want to deliver to alocal
le you would use the appendfile driver. Each of the drivers is described in detail in its own separate
chapter later in this manual.

58 The runtime configuration file (6)

You can have severa routers, transports, or authenticators that are based on the same underlying
driver (each must have a different instance name).

The order in which routers are de ned is important, because addresses are passed to individual routers
one by one, in order. The order in which transports are de ned does not matter at al. The order in
which authenticators are de ned is used only when Exim, as a client, is searching them to nd one
that matches an authentication mechanism offered by the server.

Within a driver instance de nition, there are two kinds of option: generic and private. The generic
options are those that apply to all drivers of the same type (that is, all routers, all transports or al
authenticators). The driver option is a generic option that must appear in every de nition. The private
options are special for each driver, and none need appear, because they al have default values.

The options may appear in any order, except that the driver option must precede any private options,
since these depend on the particular driver. For this reason, it is recommended that driver always be
the rst option.

Driver instance names, which are used for reference in log entries and el sewhere, can be any sequence
of letters, digits, and underscores (starting with a letter) and must be unique among drivers of the
same type. A router and a transport (for example) can each have the same name, but no two router
instances can have the same name. The name of a driver instance should not be confused with the
name of the underlying driver module. For example, the con guration lines:

renot e_snt p:
driver = snmp

create an instance of the smip transport driver whose name is remote_smtp. The same driver code can
be used more than once, with different instance names and different option settings each time. A
second instance of the smzp transport, with different options, might be de ned thus:

speci al _snt p:
driver = smp
port = 1234
comrand_timeout = 10s

The names remote_smtp and special_smip would be used to reference these transport instances from
routers, and these names would appear in log lines.

Comment lines may be present in the middle of driver speci cations. The full list of option settings

for any particular driver instance, including all the defaulted values, can be extracted by making use
of the -bP command line option.

59 The runtime configuration file (6)

7. The default configuration file

The default con guration le supplied with Exim as src/configure.default is suf cient for a host with
simple mail requirements. As an introduction to the way Exim is con gured, this chapter walks
through the default con guration, giving brief explanations of the settings. Detailed descriptions of
the options are given in subsequent chapters. The default con guration le itself contains extensive
comments about ways you might want to modify the initial settings. However, note that there are
many options that are not mentioned at all in the default con guration.

7.1 Main configuration settings

The main (global) con guration option settings must always come rst in the le. The rst thing
youtll seeinthe le, after someinitial comments, istheline

primary_host nane =

This is a commented-out setting of the primary_hostname option. Exim needs to know the of cial,

fully quali ed name of your host, and this is where you can specify it. However, in most cases you do

not need to set this option. When it is unset, Exim uses the uname() system function to obtain the host
name.

The rst three non-comment con guration lines are as follows:

domai nlist | ocal donains = @
domai nlist relay_to_domains =
host | i st relay fromhosts = 127.0.0.1

These are not, in fact, option settings. They are de nitions of two named domain lists and one named
host list. Exim alows you to give names to lists of domains, hosts, and email addresses, in order to
make it easier to manage the con guration le (see section 1(.5). |

The rst line denes a domain list called local_domains; this is used later in the con guration to
identify domains that are to be delivered on the local host.

There is just one item in this list, the string @ . This is a special form of entry which means the
name of the local host. Thus, if the loca host is caled a.host.example, mail to
any.user@a.host.example 1S expected to be delivered locally. Because the local host¢s name is refer-
enced indirectly, the same con guration le can be used on different hosts.

The second line de nes adomain list called relay_to_domains, but the list itself is empty. Later in the
con guration we will come to the part that controls mail relaying through the local host; it allows
relaying to any domainsin thislist. By default, therefore, no relaying on the basis of amail domain is
permitted.

The third line de nes a host list called relay_from_hosts. Thislist is used later in the con guration to
permit relaying from any host or IP address that matches the list. The default contains just the IP
address of the IPv4 loopback interface, which means that processes on the local host are able to
submit mail for relaying by sending it over TCP/IP to that interface. No other hosts are permitted to
submit messages for relaying.

Just to be sure therets no misunderstanding: at this point in the con guration we aren¢t actually setting
up any controls. We are just de ning some domains and hosts that will be used in the controls that are
speci ed later.

The next two con guration lines are genuine option settings:

acl _sntp_rcpt
acl _sntp_data

acl _check_rcpt
acl _check _data

These options specify Access Control Lists (ACLS) that are to be used during an incoming SMTP
session for every recipient of a message (every RCPT command), and after the contents of the
message have been received, respectively. The names of the lists are acl_check_rcpt and
acl_check_data, and we will come to their de nitions below, in the ACL section of the con guration.
The RCPT ACL controls which recipients are accepted for an incoming message if a con guration

60 The default configuration file (7)

does not provide an ACL to check recipients, no SMTP mail can be accepted. The DATA ACL allows
the contents of a message to be checked.

Two commented-out option settings are next:

av_scanner = cland:/tnp/cland
spand_address = 127.0.0.1 783

These are example settings that can be used when Exim is compiled with the content-scanning
extension. The rst speci es the interface to the virus scanner, and the second speci es the interface
to SpamAssassin. Further details are given in chapter @

Three more commented-out option settings follow:

tls_advertise hosts = *
tls certificate = /etc/ssl/eximecrt
tls_privatekey = [etc/ssl/exi mpem

These are example settings that can be used when Exim is compiled with support for TLS (aka SSL)
as described in section The rst one speci esthe list of clients that are allowed to use TLS when
connecting to this server; in this case the wildcard means al clients. The other options specify where
Exim should nd its TLS certi cate and private key, which together prove the server¢s identity to any
clients that connect. More details are given in chapter |42

Another two commented-out option settings follow:

daenmon_smp_ports = 25 : 465 : 587
tls_on_connect _ports = 465

These options provide better support for roaming users who wish to use this server for message
submission. They are not much use unless you have turned on TLS (as described in the previous
paragraph) and authentication (about which more in section . Mail submission from mail clients
(MUAS) should be separate from inbound mail to your domain (MX delivery) for various good
reasons (eg, ability to impose much saner TLS protocol and ciphersuite requirements without un-
intended consequences). RFC 6409 (previously 4409) speci es use of port 587 for SMTP
Submission, which uses STARTTLS, so thisisthe submission port. RFC 8314 speci es use of port
465 as the submissions protocol, which should be used in preference to 587. You should aso
consider deploying SRV records to help clients nd these ports. Older names for submissions are
smtps and ssmtp.

Two more commented-out options settings follow:

qualify_domain =
qualify_recipient =

The rst of these speci es adomain that Exim uses when it constructs a complete email address from
alocal login name. This is often needed when Exim receives a message from alocal process. If you
do not set qualify_domain, the value of primary_hostname is used. If you set both of these options,
you can have different quali cation domains for sender and recipient addresses. If you set only the
rst one, its value is used in both cases.

The following line must be uncommented if you want Exim to recognize addresses of the form
user@[10.11.12.13] that is, with a domain literal (an IP address within square brackets) instead of a
named domain.

allow domain literals

The RFCs 4till require this form, but many people think that in the modern Internet it makes little
sense to permit mail to be sent to speci ¢ hosts by quoting their I1P addresses. This ancient format has
been used by people who try to abuse hosts by using them for unwanted relaying. However, some
people believe there are circumstances (for example, messages addressed to postmaster) where
domain literals are still useful.

The next con guration lineis akind of trigger guard:
never _users = root

61 The default configuration file (7)

It speci es that no delivery must ever be run as the root user. The normal convention is to set up root
as an alias for the system administrator. This setting is a guard against dlips in the con guration. The
list of users speci ed by never_usersis not, however, the complete list; the build-time con guration
in Local/Makefile has an option called FIXED_NEVER_USERS specifying a list that cannot be
overridden. The contents of never_users are added to this list. By default FIXED_NEVER_USERS
also speci esroot.

When a remote host connects to Exim in order to send mail, the only information Exim has about the
host¢s identity isits |P address. The next con guration line,

host | ookup = *

speci es that Exim should do a reverse DNS lookup on all incoming connections, in order to get a
host name. This improves the quality of the logging information, but if you feel it is too expensive,
you can remove it entirely, or restrict the lookup to hosts on nearby networks. Note that it is not
aways possible to nd a host name from an IP address, because not al DNS reverse zones are
maintained, and sometimes DNS servers are unreachable.

The next two lines are concerned with ident callbacks, as de ned by RFC 1413 (hence their names):

rfcldal3 hosts = *
rfcldal13 _query_tinmeout = 0s

These settings cause Exim to avoid ident callbacks for all incoming SMTP calls. Few hosts offer
RFC1413 service these days; calls have to be terminated by a timeout and this needlessly delays the
startup of an incoming SMTP connection. If you have hosts for which you trust RFC1413 and need
thisinformation, you can change this.

This line enables an ef ciency SMTP option. It is negotiated by clients and not expected to cause
problems but can be disabled if needed.

prdr_enable = true

When Exim receives messages over SMTP connections, it expects all addresses to be fully quali ed
with a domain, as required by the SMTP de nition. However, if you are running a server to which
simple clients submit messages, you may nd that they send unquali ed addresses. The two
commented-out options:

sender _unqualified_hosts =
recipient_unqualified_hosts =

show how you can specify hosts that are permitted to send unquali ed sender and recipient addresses,
respectively.
The log_selector option is used to increase the detail of logging over the default:

| og_selector = +sntp_protocol _error +sntp_syntax_error \
+tls certificate verified

The percent_hack_domains option is also commented out:
percent _hack_domai ns =

It provides a list of domains for which the percent hack is to operate. This is an almost obsolete
form of explicit email routing. If you do not know anything about it, you can safely ignore thistopic.

The next two settings in the main part of the default con guration are concerned with messages that
have been frozen on Eximds queue. When a message is frozen, Exim no longer continues to try to
deliver it. Freezing occurs when a bounce message encounters a permanent failure because the sender
address of the original message that caused the bounce is invalid, so the bounce cannot be delivered.
This is probably the most common case, but there are also other conditions that cause freezing, and
frozen messages are not always bounce messages.

i gnore_bounce_errors_after = 2d
ti meout _frozen_ after = 7d

62 The default configuration file (7)

The rst of these options speci es that failing bounce messages are to be discarded after 2 days on the
gueue. The second speci es that any frozen message (whether a bounce message or not) is to be
timed out (and discarded) after a week. In this con guration, the rst setting ensures that no failing
bounce message ever lasts aweek.

Exim queues it¢s messages in a spool directory. If you expect to have large queues, you may consider
using this option. It splits the spool directory into subdirectories to avoid le system degradation from
many les in a single directory, resulting in better performance. Manual manipulation of queued
messages becomes more complex (though fortunately not often needed).

split_spool _directory = true

In an ideal world everybody follows the standards. For non-ASCI1 messages RFC 2047 is a standard,
allowing a maximum line length of 76 characters. Exim adheres that standard and won¢t process
messages which violate this standard. (Even ${rfc2047:...} expansions will fail.) In particular, the
Exim maintainers have had multiple reports of problems from Russian administrators of issues until
they disable this check, because of some popular, yet buggy, mail composition software.

check _rfc2047 length = fal se

If you need to be strictly RFC compliant you may wish to disable the 8BITMIME advertisement. Use
this, if you exchange mails with systems that are not 8-bit clean.

accept _8bitmne = fal se

Libraries you use may depend on speci ¢ environment settings. This imposes a security risk (e.g.

PATH). There are two lists. keep_environment for the variables to import as they are, and add_
environment for variables we want to set to a xed value. Note that TZ is handled separately, by the

$%timezone%$ runtime option and by the TIMEZONE_DEFAULT buildtime option.

keep_envi ronment = ~LDAP
add_environnment = PATH=/usr/bin::/bin

7.2 ACL configuration
In the default con guration, the ACL section follows the main con guration. It starts with the line
begi n acl

and it contains the de nitions of two ACLS, caled acl_check_rcpt and acl_check_data, that were
referenced in the settings of acl_smtp_rcpt and acl_smtp_data above.

The rst ACL is used for every RCPT command in an incoming SMTP message. Each RCPT
command speci es one of the messageds recipients. The ACL statements are considered in order, until
the recipient address is either accepted or rejected. The RCPT command is then accepted or rejected,
according to the result of the ACL processing.

acl _check_rcpt:
Thisline, consisting of a name terminated by a colon, marks the start of the ACL, and namesiit.
accept hosts =:

This ACL statement accepts the recipient if the sending host matches the list. But what does that
strange list mean? It doesndt actually contain any host names or IP addresses. The presence of the
colon puts an empty item in the list; Exim matches this only if the incoming message did not come
from a remote host, because in that case, the remote hostname is empty. The colon is important.
Without it, the list itself is empty, and can never match anything.

What this statement is doing is to accept unconditionally all recipients in messages that are submitted
by SMTP from local processes using the standard input and output (that is, not using TCFP/IP). A
number of MUAS operate in this manner.

Restricted characters in address
+l ocal _domai ns

N R RV

63 The default configuration file (7)

deny nessage
donai ns
| ocal parts

Restricted characters in address
| +| ocal _donai ns
AT 2 M @B] o AR LS

These statements are concerned with local parts that contain any of the characters @ , '/,

|, or dots in unusual places. Although these characters are entirely legal in local parts (|n the case
of @ and leading dots, only if correctly quoted), they do not commonly occur in Internet mail
addresses.

deny nmessage
domai ns
| ocal _parts

The rst three have in the past been associated with explicitly routed addresses (percent is still

sometimes used see the percent_hack_domains option). Addresses containing these characters are
regularly tried by spammers in an attempt to bypass relaying restrictions, and also by open relay
testing programs. Unless you really need them it is safest to reject these characters at this early stage.
This con guration is heavy-handed in rejecting these characters for all messages it accepts from

remote hosts. Thisis a deliberate policy of being as safe as possible.

The rst rule above is stricter, and is applied to messages that are addressed to one of the local
domains handled by this host. Thisisimplemented by the rst condition, which restricts it to domains
that are listed in the local_domains domain list. The + character is used to indicate areference to a
named list. In this con guration, there is just one domain in local_domains, but in general there may
be many.

The second condition on the rst statement uses two regular expressions to block local parts that
begin with a dot or contain @, %, !, /, or |. If you have local accounts that include these
characters, you will have to modify thisrule.

Empty components (two dotsin arow) are not valid in RFC 2822, but Exim allows them because they
have been encountered in practice. (Consider the common convention of local parts constructed as
first-initial.second-initial.family-name when applied to someone like the author of Exim, who has

no second initial.) However, alocal part starting with a dot or containing /../ can cause trouble if it

is used as part of a le name (for example, for a mailing list). This is also true for local parts that

contain slashes. A pipe symbol can also be troublesome if the local part is incorporated unthinkingly
into a shell command line.

The second rule above applies to all other domains, and is less strict. This allows your own users to
send outgoing messages to sites that use dashes and vertical bars in their local parts. It blocks local
parts that begin with a dot, slash, or vertical bar, but allows these characters within the local part.
However, the sequence /../ is barred. The use of @, %, and ! is blocked, as before. The
motivation here is to prevent your users (or your userst viruses) from mounting certain kinds of attack
on remote sites.

accept Ilocal _parts
domai ns

post mast er
+l ocal _donai ns

This statement, which has two conditions, accepts an incoming address if the local part is postmaster
and the domain is one of those listed in the local_domains domain list. The + character is used to
indicate a reference to a named list. In this con guration, there is just one domain in local_domains,
but in general there may be many.

The presence of this statement means that mail to postmaster is never blocked by any of the subse-
guent tests. This can be helpful while sorting out problems in cases where the subsequent tests are
incorrectly denying access.

require verify = sender

This statement requires the sender address to be veri ed before any subsequent ACL statement can be
used. If veri cation fails, the incoming recipient address is refused. Veri cation consists of trying to
route the address, to see if a bounce message could be delivered to it. In the case of remote addresses,
basic veri cation checks only the domain, but callouts can be used for more veri cation if required.
Section discusses the details of address veri cation.

accept hosts
control

+rel ay_from hosts
subni ssi on

64 The default configuration file (7)

This statement accepts the address if the message is coming from one of the hosts that are de ned as
being alowed to relay through this host. Recipient veri cation is omitted here, because in many cases
the clients are dumb MUAs that do not cope well with SMTP error responses. For the same reason,
the second line speci es submission mode for messages that are accepted. This is described in
detail in section h; it causes Exim to X messages that are de cient in some way, for example,
because they lack a Date: header line. If you are actualy relaying out from MTAS, you should
probably add recipient veri cation here, and disable submission mode.

*

subm ssi on

accept authenticated
control

This statement accepts the address if the client host has authenticated itself. Submission mode is again
speci ed, on the grounds that such messages are most likely to come from MUAs. The default
con guration does not dene any authenticators, though it does include some nearly complete
commented-out examples described in This means that no client can in fact authenticate until you
complete the authenticator de nitions.

requi re nessage
donai ns

relay not pernmitted
+l ocal _domains : +relay_to_donains

This statement rejects the address if its domain is neither alocal domain nor one of the domains for
which thishost isarelay.

require verify = recipient
This statement requires the recipient address to be veri ed; if veri cation fails, the address is rejected.

deny nmessage = rej ected because $sender _host _address \

isin a black list at $dnslist_domai n\n\
$dnsli st _text

dnslists = bl ack.list.exanple

#

warn dnslists = bl ack.list.exanple

add_header = X-Warning: $sender_host _address is in \

a black list at $dnslist_domain

| og_message = found in $dnslist_domain

These commented-out lines are examples of how you could con gure Exim to check sending hosts
against a DNS black list. The rst statement rejects messages from blacklisted hosts, whereas the
second just inserts a warning header line.

require verify = csa

This commented-out line is an example of how you could turn on client SMTP authorization (CSA)
checking. Such checks do DNS lookups for special SRV records.

accept

The nal statement in the rst ACL unconditionally accepts any recipient address that has success-
fully passed all the previoustests.

acl _check_dat a:

This line marks the start of the second ACL, and names it. Most of the contents of this ACL are
commented out:

deny mal war e = *
nmessage = This nmessage contains a virus \
($nal war e_nane) .

These lines are examples of how to arrange for messages to be scanned for viruses when Exim has
been compiled with the content-scanning extension, and a suitable virus scanner is installed. If the
message is found to contain avirus, it is rejected with the given custom error message.

warn spam
message

nobody
X- Spam score: $spam scor e\ n\

65 The default configuration file (7)

X- Spam score_int: $spam score_int\n\
X- Spam bar: $spam bar\ n\
X-Spam report: $spamreport

These lines are an example of how to arrange for messages to be scanned by SpamAssassin when
Exim has been compiled with the content-scanning extension, and SpamAssassin has been installed.
The SpamAssassin check is run with nobody as its user parameter, and the results are added to the
message as a series of extra header line. In this case, the message is not rejected, whatever the spam
score.

accept
This nal linein the DATA ACL accepts the message unconditionally.

7.3 Router configuration
The router con guration comes next in the default con guration, introduced by the line
begin routers

Routers are the modules in Exim that make decisions about where to send messages. An address is
passed to each router in turn, until it is either accepted, or failed. This means that the order in which
you de ne the routers matters. Each router is fully described in its own chapter later in this manual.
Here we give only brief overviews.

domain_literal:

driver = ipliteral

domai ns = !+l ocal _donmai ns
transport = renote_sntp

This router is commented out because the majority of sites do not want to support domain litera
addresses (those of the form user@/10.9.8.7]). If you uncomment this router, you also need to
uncomment the setting of allow_domain_literalsin the main part of the con guration.

dnsl ookup:
driver = dnsl ookup
domai ns = ! +l ocal _donmai ns

transport = renote_sntp
ignore target _hosts = 0.0.0.0 : 127.0.0.0/8
no_nor e

The rst uncommented router handles addresses that do not involve any local domains. This is
speci ed by theline

domains = ! +l ocal _donai ns

The domains option lists the domains to which this router applies, but the exclamation mark is a
negation sign, so the router is used only for domains that are not in the domain list called
local_domains (which was dened at the start of the conguration). The plus sign before
local_domains indicates that it is referring to a named list. Addresses in other domains are passed on
to the following routers.

The name of the router driver is dnslookup, and is speci ed by the driver option. Do not be confused
by the fact that the name of this router instance is the same as the name of the driver. The instance
name is arbitrary, but the name set in the driver option must be one of the driver modules that isin
the Exim binary.

The dnslookup router routes addresses by looking up their domains in the DNS in order to obtain a
list of hosts to which the address is routed. If the router succeeds, the address is queued for the
remote_smip transport, as speci ed by the transport option. If the router does not nd the domain in
the DNS, no further routers are tried because of the no_more setting, so the address fails and is
bounced.

The ignore target_hosts option speci es a list of |P addresses that are to be entirely ignored. This
option is present because a number of cases have been encountered where MX records in the DNS

66 The default configuration file (7)

point to host names whose IP addresses are 0.0.0.0 or are in the 127 subnet (typically 127.0.0.1).
Completely ignoring these I P addresses causes Exim to fail to route the email address, so it bounces.
Otherwise, Exim would log a routing problem, and continue to try to deliver the message periodically
until the address timed out.

system al i ases:
driver = redirect
al | ow fai
al | ow_defer
data = ${| ookup{$l ocal _part}lsearch{/etc/aliases}}
user = exim
file_transport
pi pe_transport

address _file
addr ess_pi pe

Control reaches this and subsequent routers only for addresses in the local domains. This router
checks to see whether the local part is de ned as an dlias in the /etc/aliases e, and if so, redirects it
according to the data that it looks up from that le. If no datais found for the local part, the value of
the data option is empty, causing the address to be passed to the next router.

/Jetc/aliases 1S a conventional name for the system aliases le that is often used. That is why it is
referenced by from the default con guration le. However, you can change this by setting SYSTEM_
ALIASES FILE in Local/Makefile before building Exim.

user f orwar d:
driver = redirect
check | ocal _user

local _part_suffix = +* : -*

local _part_suffix_optional
file = $hone/.forward

allowfilter
no_verify
no_expn
check_ancest or
file_transport address _file
pi pe_transport addr ess_pi pe
reply_transport = address_reply

This is the most complicated router in the default con guration. It is another redirection router, but
this time it is looking for forwarding data set up by individual users. The check _local_user setting
speci es a check that the local part of the address is the login name of alocal user. If it is not, the
router is skipped. The two commented options that follow check _local_user, namely:

local _part_suffix = +* : -*
|l ocal _part_suffix_optional

show how you can specify the recognition of local part suf xes. If the rst is uncommented, a suf x
beginning with either a plus or a minus sign, followed by any sequence of characters, isremoved from
the local part and placed in the variable $local_part_suffix. The second suf x option speci es that the
presence of a suf x in the local part is optional. When a suf x is present, the check for alocal login
uses the local part with the suf x removed.

When alocal user account is found, the le called .forward in the user¢s home directory is consulted.
If it does not exist, or is empty, the router declines. Otherwise, the contents of .forward are interpreted
as redirection data (see chapter |22 for more details).

Traditional .forward les contain just alist of addresses, pipes, or les. Exim supports this by default.
However, if allow_ Iter isset (it is commented out by default), the contents of the le are interpreted
asaset of Exim or Sieve ltering instructions, provided the le beginswith #Exim lter or #Sieve
Iter , respectively. User ltering is discussed in the separate document entitled Exim’s interfaces to
mail filtering.

The no_verify and no_expn options mean that this router is skipped when verifying addresses, or
when running as a consequence of an SMTP EXPN command. There are two reasons for doing this:

67 The default configuration file (7)

(1) Whether or not alocal user has a.forward leis not really relevant when checking an address
for validity; it makes sense not to waste resources doing unnecessary work.

(2) More importantly, when Exim is verifying addresses or handling an EXPN command during an
SMTP session, it is running as the Exim user, not as root. The group is the Exim group, and no
additional groups are set up. It may therefore not be possible for Exim to read userst .forward

les at thistime.

The setting of check _ancestor prevents the router from generating a new address that is the same as
any previous address that was redirected. (This works round a problem concerning a bad interaction
between aliasing and forwarding see section .

The nal three option settings specify the transports that are to be used when forwarding generates a
direct delivery to a le, or to a pipe, or sets up an auto-reply, respectively. For example, if a.forward
le contains

a. not her @l sewher e. exanpl e, /hone/spqr/archive
the delivery to /home/spgr/archive is done by running the address_ le transport.

| ocal user:
driver = accept
check | ocal user

local _part_suffix = +* : -*
local part_suffix_optional
transport = | ocal delivery

The nal router sets up delivery into local mailboxes, provided that the local part is the name of a
local login, by accepting the address and assigning it to the local_delivery transport. Otherwise, we
have reached the end of the routers, so the address is bounced. The commented suf x settings ful |
the same purpose as they do for the userforward router.

7.4 Transport configuration

Transports de ne mechanisms for actually delivering messages. They operate only when referenced
from routers, so the order in which they are dened does not matter. The transports section of the
con guration starts with

begin transports
One remote transport and four local transports are de ned.

renot e_snt p:
driver = sntp
hosts_try_prdr = *

This transport is used for delivering messages over SMTP connections. The list of remote hosts
comes from the router. The hosts try prdr option enables an ef ciency SMTP option. It is nego-

tiated between client and server and not expected to cause problems but can be disabled if needed. All
other options are defaulted.

| ocal _delivery:
driver = appendfile
file = /var/mil/$l ocal _part
del i very_date_add
envel ope_t o_add
return_path_add
group = mail
nmode = 0660
This appendyfile transport is used for local delivery to user mailboxes in traditional BSD mailbox
format. By default it runs under the uid and gid of the local user, which requires the sticky bit to be set

on the /var/mail directory. Some systems use the alternative approach of running mail deliveries under
a particular group instead of using the sticky bit. The commented options show how this can be done.

68 The default configuration file (7)

Exim adds three headers to the message as it delivers it: Delivery-date:, Envelope-to: and Return-
path:. This action is requested by the three similarly-named options above.

addr ess_pi pe:
driver = pipe
ret urn_out put

This transport is used for handling deliveries to pipes that are generated by redirection (aliasing or
userst .forward les). The return_output option speci es that any output on stdout or stderr gener-
ated by the pipe isto be returned to the sender.

address_file:
driver = appendfile
delivery_date_add
envel ope_t o_add
return_path_add

This transport is used for handling deliveries to les that are generated by redirection. The name of
the leisnot speci ed in thisinstance of appendfile, because it comes from the redirect router.

address_reply:
driver = autoreply

Thistransport is used for handling automatic replies generated by userst Iter les.

7.5 Default retry rule

The retry section of the con guration |e contains rules which affect the way Exim retries deliveries
that cannot be completed at the rst attempt. It isintroduced by the line

begin retry
In the default con guration, thereisjust one rule, which appliesto al errors:
* * F, 2h, 15m G, 16h, 1h, 1. 5; F, 4d, 6h

This causes any temporarily failing address to be retried every 15 minutes for 2 hours, then at
intervals starting at one hour and increasing by afactor of 1.5 until 16 hours have passed, then every 6
hours up to 4 days. If an address is not delivered after 4 days of temporary failure, it is bounced. The
time is measured from rst failure, not from the time the message was received.

If the retry section is removed from the con guration, or is empty (that is, if no retry rules are
de ned), Exim will not retry deliveries. Thisturns temporary errorsinto permanent errors.

7.6 Rewriting configuration
The rewriting section of the con guration, introduced by
begin rewite

contains rules for rewriting addresses in messages as they arrive. There are no rewriting rules in the
default con guration le.

7.7 Authenticators configuration
The authenticators section of the con guration, introduced by
begi n aut henticators

de nes mechanisms for the use of the SMTP AUTH command. The default con guration le contains
two commented-out example authenticators which support plaintext username/password authenti-
cation using the standard PLAIN mechanism and the traditional but non-standard LOGIN mechanism,
with Exim acting as the server. PLAIN and LOGIN are enough to support most MUA software.

The example PLAIN authenticator looks like this:

69 The default configuration file (7)

#PLAI N

driver
server_set _id
server_pronpts ;
server _condition Aut hentication is not yet configured
server_advertise_condition = ${if def:tls_in_cipher }

pl ai nt ext
$aut h2

HHHHH

And the example LOGIN authenticator looks like this:

#LOG N:

driver = pl ai nt ext

server_set id = $aut hl

server_pronpts = <| Usernane: | Password:

server_condition = Authentication is not yet configured
server_advertise_condition = ${if def:tls_in_cipher }

The server_set_id option makes Exim remember the authenticated username in $authenticated_id,
which can be used later in ACLs or routers. The server_prompts option con gures the plaintext
authenticator so that it implements the details of the speci ¢ authentication mechanism, i.e. PLAIN or
LOGIN. The server_advertise _condition setting controls when Exim offers authentication to clients;
in the examples, thisis only when TLS or SSL has been started, so to enable the authenticators you
also need to add support for TLS as described in secti on

The server_condition setting de nes how to verify that the username and password are correct. In the
examples it just produces an error message. To make the authenticators work, you can use a string
expansion expression like one of the examplesin chapter

Beware that the sequence of the parameters to PLAIN and LOGIN differ; the usercode and password
arein different positions. Chapter covers both.

70 The default configuration file (7)

8. Regular expressions

Exim supports the use of regular expressions in many of its options. It uses the PCRE regular
expression library; this provides regular expression matching that is compatible with Perl 5. The
syntax and semantics of regular expressions is discussed in online Perl manpages, in many Perl
reference books, and also in Jeffrey Friedl¢s Mastering Regular Expressions, which is published by
O¢Reilly (see http://www.or eilly.com/catal og/r egex2/).

The documentation for the syntax and semantics of the regular expressions that are supported by
PCRE is included in the PCRE distribution, and no further description is included here. The PCRE
functions are called from Exim using the default option settings (that is, with no PCRE options set),
except that the PCRE_CASELESS option is set when the matching is required to be case-insensitive.

In most cases, when a regular expression is required in an Exim con guration, it has to start with a
circumflex, in order to distinguish it from plain text or an ends with wildcard. In this example of a
con guration setting, the second item in the colon-separated list is a regular expression.

domains = a.b.c : M\d{3} : *.y.z:

The doubling of the backdash is required because of string expansion that precedes interpretation
see section |11.1) for more discussion of this issue, and a way of avoiding the need for doubling
backslashes. The regular expression that is eventually used in this example contains just one
backslash. The circumflex is included in the regular expression, and has the normal effect of
anchoring it to the start of the string that is being matched.

There are, however, two cases where a circumflex is not required for the recognition of a regular
expression: these are the match condition in a string expansion, and the matches condition in an
Exim Iter le. In these cases, the relevant string is aways treated as a regular expression; if it does
not start with a circumflex, the expression is not anchored, and can match anywhere in the subject
string.

In all cases, if you want a regular expression to match at the end of a string, you must code the $
metacharacter to indicate this. For example:

domai ns = M\ d{3}\\.exampl e
matches the domain 123.example, but it also matches 123.example.com. You need to use:
domai ns = M\ d{3}\\.exanple\$

if you want example to be the top-level domain. The backslash before the $ is needed because string
expansion also interprets dollar characters.

71 Regular expressions (8)

9. File and database lookups

Exim can be con gured to look up datain les or databases as it processes messages. Two different
kinds of syntax are used:

(1) A string that is to be expanded may contain explicit lookup requests. These cause parts of the
string to be replaced by data that is obtained from the lookup. Lookups of this type are con-
ditional expansion items. Different results can be de ned for the cases of lookup success and
failure. See chapter where string expansions are described in detail. The key for the lookup
is speci ed as part of the string expansion.

(2) Lists of domains, hosts, and email addresses can contain lookup requests as a way of avoiding
excessively long linear lists. In this case, the data that is returned by the lookup is often (but not
always) discarded; whether the lookup succeeds or failsiswhat really counts. These kinds of list
are described in chapter The key for the lookup is given by the context in which the list is
expanded.

String expansions, lists, and lookups interact with each other in such a way that there is no order in
which to describe any one of them that does not involve references to the others. Each of these three
chapters makes more sense if you have read the other two rst. If you are reading this for the rst
time, be aware that some of it will make alot more sense after you have read chapters and

9.1 Examples of different lookup syntax

It is easy to confuse the two different kinds of lookup, especially as the lists that may contain the
second kind are always expanded before being processed as lists. Therefore, they may also contain
lookups of the rst kind. Be careful to distinguish between the following two examples:

domai n

${| ookup{ $sender _host _addr ess}| search{/sone/file}}
domai n I

s =
s = | search;/sone/file

The rst uses a string expansion, the result of which must be a domain list. No strings have been
speci ed for a successful or a failing lookup; the defaults in this case are the looked-up data and an
empty string, respectively. The expansion takes place before the string is processed as a list, and the
le that is searched could contain lines like this:

192. 168. 3. 4: donmmi nl: domai n2: . ..
192.168.1.9: dommi n3: domai n4: . ..

When the lookup succeeds, the result of the expansion isalist of domains (and possibly other types of
item that are allowed in domain lists).

In the second example, the lookup is a single item in a domain list. It causes Exim to use a lookup to
see if the domain that is being processed can be found in the le. The le could contains lines like
this:

domai nl:
domai n2:
Any datathat follows the keysis not relevant when checking that the domain matches the list item.

It is possible, though no doubt confusing, to use both kinds of lookup a once. Consider a le
containing lines like this:

192. 168.5.6: |search;/another/file

If the value of $sender_host_address is 192.168.5.6, expansion of the rst domains setting above
generates the second setting, which therefore causes a second lookup to occur.

The rest of this chapter describes the different lookup types that are available. Any of them can be
used in any part of the con guration where alookup is permitted.

72 File and database lookups (9)

9.2 Lookup types
Two different types of datalookup are implemented:

The single-key type requires the speci cation of a le in which to look, and a single key to search
for. The key must be a non-empty string for the lookup to succeed. The lookup type determines
how the leis searched.

The query-style type accepts a generaized database query. No particular key value is assumed by
Exim for query-style lookups. You can use whichever Exim variables you need to construct the
database query.

The code for each lookup type isin a separate source lethat isincluded in the binary of Exim only if
the corresponding compile-time option is set. The default settings in sre/EDITME are:

LOOKUP_DBMryes
LOOKUP_LSEARCH=yes

which means that only linear searching and DBM lookups are included by default. For some types of
lookup (e.g. SQL databases), you need to install appropriate libraries and header les before building
Exim.

9.3 Single-key lookup types

The following single-key lookup types are implemented:

cdb: The given leis searched as a Constant DataBase |e, using the key string without a terminat-
ing binary zero. The cdb format is designed for indexed les that are read frequently and never
updated, except by total re-creation. As such, it is particularly suitable for large les containing
aliases or other indexed data referenced by an MTA. Information about cdb can be found in severa
places:

http://lwww.pobox.com/~djb/cdb.html
ftp://ftp.cor pit.ru/pub/tinycdb/
http://packages.debian.or g/stable/utils/freecdb.html

A cdb distribution is not needed in order to build Exim with cdb support, because the code for
reading cdb lesisincluded directly in Exim itself. However, no means of building or testing cdb
lesis provided with Exim, so you need to obtain a cdb distribution in order to do this.

dbm: Calls to DBM library functions are used to extract data from the given DBM le by looking
up the record with the given key. A terminating binary zero is included in the key that is passed to
the DBM library. See section|4.4{for a discussion of DBM libraries.

For all versions of Berkeley DB, Exim uses the DB_HASH style of database when building DBM
les using the exim_dbmbuild utility. However, when using Berkeley DB versions 3 or 4, it opens
existing databases for reading with the DB_UNKNOWN option. This enables it to handle any of
the types of database that the library supports, and can be useful for accessing DBM les created
by other applications. (For earlier DB versions, DB_HASH is always used.)

dbmjz: This is the same as dbm, except that the lookup key is interpreted as an Exim list; the
elements of the list are joined together with ASCIlI NUL characters to form the lookup key. An
example usage would be to authenticate incoming SMTP calls using the passwords from Cyrus
SASLGs Jetc/sasldb2 |e with the gsasl authenticator or Exim¢s own cram_md5 authenticator.

dbmnz: This is the same as dbm, except that a terminating binary zero is not included in the key
that is passed to the DBM library. You may need this if you want to look up datain les that are
created by or shared with some other application that does not use terminating zeros. For example,
you need to use dbmnz rather than dbm if you want to authenticate incoming SMTP calls using the
passwords from Courierds /etc/userdbshadow.dat le. Eximes utility program for creating DBM
les (exim_dbmbuild) includes the zeros by default, but has an option to omit them (see section

39.

dsearch: The given le must be a directory; thisis searched for an entry whose name is the key by
caling the Istat() function. The key may not contain any forward slash characters. If Istat() suc-

73 File and database lookups (9)

ceeds, the result of the lookup is the name of the entry, which may be a le, directory, symbolic
link, or any other kind of directory entry. An example of how this lookup can be used to support
virtual domainsisgivenin sectioni50.7

iplsearch: The given leis atext le containing keys and data. A key is terminated by a colon or
white space or the end of the line. The keys in the le must be IP addresses, or 1P addresses with
CIDR masks. Keys that involve IPv6 addresses must be enclosed in quotes to prevent the rst
internal colon being interpreted as a key terminator. For example:

1.2.3.4: data for 1.2.3.4
192. 168. 0. 0/ 16: data for 192.168.0.0/ 16
"abcd: : cdab": data for abcd::cdab

"abcd: abcd: : /32" data for abcd: abcd::/32

The key for an iplsearch 1ookup must be an IP address (without a mask). The le is searched
linearly, using the CIDR masks where present, until a matching key is found. The rst key that
matches is used; there is no attempt to nd a best match. Apart from the way the keys are
matched, the processing for ipisearch isthe same asfor Isearch.

Warning 1. Unlike most other single-key lookup types, a le of data for iplsearch can not be
turned into aDBM or cdb le, because those lookup types support only literal keys.

Warning 2: In ahost list, you must always use net-iplsearch so that the implicit key is the host¢s IP
address rather than its name (see section\lO.lZ).

Isearch: The given leisatext lethat issearched linearly for aline beginning with the search key,
terminated by a colon or white space or the end of the line. The search is case-insensitive; that is,
upper and lower case letters are treated as the same. The rst occurrence of the key that isfound in
the leisused.

White space between the key and the colon is permitted. The remainder of the line, with leading
and trailing white space removed, is the data. This can be continued onto subsequent lines by
starting them with any amount of white space, but only a single space character is included in the
data at such ajunction. If the data begins with a colon, the key must be terminated by a colon, for
example:

baduser: :fail:

Empty lines and lines beginning with # are ignored, even if they occur in the middle of an item.
This is the traditional textual format of alias les. Note that the keys in an Isearch le are litera
strings. There is no wildcarding of any kind.

In most Isearch les, keys are not required to contain colons or # characters, or white space.

However, if you need this feature, it is available. If a key begins with a doublequote character, it is
terminated only by a matching quote (or end of line), and the normal escaping rules apply to its
contents (see section . An optional colon is permitted after quoted keys (exactly as for
unquoted keys). Thereis no specia handling of quotes for the data part of an Isearch line.

nis: The given leisthe name of a NIS map, and a NIS lookup is done with the given key, without
aterminating binary zero. There is a variant called nis0O which does include the terminating binary
zero in the key. This is reportedly needed for Sun-style alias les. Exim does not recognize NIS
aliases; the full map names must be used.

wildlsearch or nwildlsearch: These search a le linearly, like Isearch, but instead of being
interpreted as a literal string, each key in the le may be wildcarded. The difference between these
two lookup types is that for wildlsearch, each key in the le is string-expanded before being used,
whereas for nwildlsearch, no expansion takes place.

Like Isearch, the testing is done case-insensitively. However, keys in the le that are regular
expressions can be made case-sensitive by the use of (- i) within the pattern. The following forms
of wildcard are recognized:

(1) The string may begin with an asterisk to mean endswith . For example:

74 File and database lookups (9)

*. a.b.c data for anything.a.b.c
*fish data for anythingfish

(2) The string may begin with a circumflex to indicate a regular expression. For example, for
wildlsearch:

M MNMd+H . a\l.b\N data for <digits>. a.b

Note the use of \ N to disable expansion of the contents of the regular expression. If you are
using nwildlsearch, where the keys are not string-expanded, the equivalent entry is:

Md+\.a\l.b data for <digits> a.b

The case-insensitive flag is set at the start of compiling the regular expression, but it can be
turned off by using (-i) at an appropriate point. For example, to make the entire pattern
case-sengitive:

A(?-i)\d+H\ . a\l. b data for <digits>. a.b

If the regular expression contains white space or colon characters, you must either quote it
(see Isearch above), or represent these characters in other ways. For example, \ s can be used
for white space and \ x3A for a colon. This may be easier than quoting, because if you quote,
you have to escape al the backslashes inside the quotes.

Note: It is not possible to capture substrings in a regular expression match for later use,
because the results of all lookups are cached. If alookup is repeated, the result is taken from
the cache, and no actual pattern matching takes place. The values of all the numeric variables
are unset after a(n)wildlsearch match.

(3) Although | cannot see it being of much use, the general matching function that is used to
implement (n)wildlsearch means that the string may begin with alookup name terminated by
asemicolon, and followed by lookup data. For example:

cdb;/sonme/file data for keys that match the file
The data that is obtained from the nested lookup is discarded.

Keys that do not match any of these patterns are interpreted literally. The continuation rules for the
data are the same as for Isearch, and keys may be followed by optional colons.

Warning: Unlike most other single-key lookup types, a le of data for (n)wildlsearch can not be
turned into aDBM or cdb le, because those lookup types support only literal keys.

9.4 Query-style lookup types

The supported query-style lookup types are listed below. Further details about many of them are given
in later sections.

dnsdb: This does a DNS search for one or more records whose domain names are given in the
supplied query. The resulting data is the contents of the records. See section

ibase: This does alookup in an InterBase database.

Idap: This does an LDAP lookup using a query in the form of a URL, and returns attributes from
a single entry. There is a variant called idapm that permits values from multiple entries to be
returned. A third variant called [dapdn returns the Distinguished Name of a single entry instead of
any attribute values. See secti on

mysql: The format of the query is an SQL statement that is passed to a MySQL database. See
section .

nisplus: This does a NIS+ lookup using a query that can specify the name of the eld to be
returned. Seesection‘9.2§]

oracle: The format of the query is an SQL statement that is passed to an Oracle database. See
section .

75 File and database lookups (9)

* passwd is aquery-style lookup with queries that are just user names. The lookup calls getpwnam()
to interrogate the system password data, and on success, the result string is the same as you would
get from an Isearch lookup on a traditional /etc/passwd file, though with * for the password value.
For example:

*.42:42: King Rat:/hone/kr:/bin/bash

* pgsql: The format of the query is an SQL statement that is passed to a PostgreSQL database. See
secti on.9.2i|.

 redis: The format of the query is either a simple get or simple set, passed to a Redis database. See
section .

» sqlite: The format of the query is a le name followed by an SQL statement that is passed to an
SQL ite database. See section|9.26

 festdb: This is a lookup type that is used for testing Exim. It is not likely to be useful in normal
operation.

» whoson: Whoson (http://whoson.sourceforge.net) is a protocol that alows a server to check
whether a particular (dynamically alocated) IP address is currently allocated to a known (trusted)
user and, optionally, to obtain the identity of the said user. For SMTP servers, Whoson was popular
at one time for POP before SMTP authentication, but that approach has been superseded by
SMTP authentication. In Exim, Whoson can be used to implement POP before SMTP checking
using ACL statements such as

require condition =\
${| ookup whoson {$sender _host address}{yes}{no}}

The query consists of asingle |P address. The value returned is the name of the authenticated user,
which is stored in the variable $value. However, in this example, the datain $value is not used; the
result of the lookup is one of the xed strings yes or no.

9.5 Temporary errors in lookups

Lookup functions can return temporary error codes if the lookup cannot be completed. For example,
an SQL or LDAP database might be unavailable. For this reason, it is not advisable to use a lookup
that might do thisfor critical options such as alist of local domains.

When a lookup cannot be completed in a router or transport, delivery of the message (to the relevant
address) is deferred, as for any other temporary error. In other circumstances Exim may assume the
lookup has failed, or may give up altogether.

9.6 Default values in single-key lookups

In this context, a default value is avalue speci ed by the administrator that is to be used if alookup
fails.

Note: This section applies only to single-key lookups. For query-style lookups, the facilities of the
guery language must be used. An attempt to specify a default for a query-style lookup provokes an
error.

If * isadded to asingle-key lookup type (for example, Isearch*) and the initial lookup fails, the key
* islooked upinthe leto provide a default value. See also the section on partial matching below.

Alternatively, if *@ is added to a single-key lookup type (for example dbom* @) then, if the initial
lookup fails and the key contains an @ character, a second lookup is done with everything before the
last @ replaced by *. This makes it possible to provide per-domain defaults in aias les that include
the domains in the keys. If the second lookup fails (or doesndt take place because thereisno @ in the
key), * islooked up. For example, a redirect router might contain:

data = ${| ookup{ $l ocal _part @domai n}| search*@/etc/ m x-al i ases}}
Suppose the address that is being processed is jane @ eyre.example. Exim 10oks up these keys, in this
order:

76 File and database lookups (9)

j ane@yre. exanpl e
*@yre. exanmpl e

The datais taken from whichever key it nds rst. Note: In an isearch le, this does not mean the rst
of these keysin the le. A complete scan is done for each key, and only if it is not found at all does
Exim move on to try the next key.

9.7 Partial matching in single-key lookups

The normal operation of a single-key lookup is to search the le for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is useful to be able to
do partial matching. In this case, information in the le that has a key starting with *. is matched by
any domain that ends with the components that follow the full stop. For example, if akey in a DBM
leis

* dates.fict.exanmple

then when partial matching is enabled this is matched by (amongst others) 2001.dates.fict.example
and 1984.dates.fict.example. 1t is also matched by dates.fict.example, if that does not appear as a
separate key inthe le.

Note: Partial matching is not available for query-style lookups. It is aso not available for any lookup
itemsin addresslists (see section‘lo.lg).

Partial matching is implemented by doing a series of separate lookups using keys constructed by
modifying the original subject key. This means that it can be used with any of the single-key lookup
types, provided that partial matching keys beginning with a special pre x (default *.) are included
in the data le. Keys in the le that do not begin with the pre x are matched only by unmodi ed
subject keys when partial matchingisin use.

Partial matching is requested by adding the string partia- to the front of the name of a single-key
lookup type, for example, partial-dbm. When this is done, the subject key is rst looked up unmodi-
ed; if that fails, *. is added at the start of the subject key, and it is looked up again. If that fails,
further lookups are tried with dot-separated components removed from the start of the subject key,
one-by-one, and *. added on the front of what remains.

A minimum number of two non-* components are required. This can be adjusted by including a
number before the hyphen in the search type. For example, partial 3-Isearch speci es a minimum of
three non-* components in the modi ed keys. Omitting the number is equivalent to partial2- . If the
subject key is 2250.dates.fict.example then the following keys are looked up when the minimum
number of non-* componentsis two:

2250. dates. fict. exanpl e
* 2250. dates.fict.exanple
* dates.fict.exanple

* fict.exanple

As soon as one key in the sequence is successfully looked up, the lookup nishes.

Theuse of *. asthe partial matching pre x is a default that can be changed. The motivation for this
feature is to alow Exim to operate with le formats that are used by other MTAs. A different pre x
can be supplied in parentheses instead of the hyphen after partial . For example:

domai ns = partial (.)lsearch;/sone/file

In this example, if the domain is a.b.c, the sequence of lookupsisa. b. c,.a. b.c,and. b. c (the
default minimum of 2 non-wild components is unchanged). The pre x may consist of any punctuation
characters other than a closing parenthesis. It may be empty, for example:

domai ns = partial 1()cdb;/sone/file
For this example, if the domainisa.b.c, the sequence of lookupsisa. b. c,b. ¢c,andc.

77 File and database lookups (9)

If partialO is speci ed, what happens at the end (when the lookup with just one non-wild com-
ponent has failed, and the original key is shortened right down to the null string) depends on the
pre x:

« If the pre x has zero length, the whole lookup fails.

 If the prex has length 1, a lookup for just the prex is done. For example, the nal lookup for
partialO(.) isfor. aone.

» Otherwise, if the pre x ends in a dot, the dot is removed, and the remainder is looked up. With the
default pre x, therefore, the nal lookup isfor * onits own.

» Otherwise, the whole pre x islooked up.

If the search typeendsin * or *@ (see section 9@ove), the search for an ultimate default that
this implies happens after all partial lookups have failed. If partialO is speci ed, adding * to the
search type has no effect with the default pre x, because the * key is aready included in the
sequence of partial lookups. However, there might be a use for lookup types such as
partial O(.)Isearch* .

The use of * in lookup partial matching differs from its use as a wildcard in domain lists and the
like. Partial matching works only in terms of dot-separated components; a key such as
*fict.exanpl einadatabase leis useless, because the asterisk in a partial matching subject key
is always followed by a dot.

9.8 Lookup caching

Exim caches all lookup results in order to avoid needless repetition of lookups. However, because
(apart from the daemon) Exim operates as a collection of independent, short-lived processes, this
caching applies only within asingle Exim process. There is no inter-process lookup caching facility.

For single-key lookups, Exim keeps the relevant |es open in case there is another lookup that needs
them. In some types of con guration this can lead to many les being kept open for messages with
many recipients. To avoid hitting the operating system limit on the number of simultaneously open
les, Exim closes the least recently used le when it needs to open more les than its own internal
limit, which can be changed viathe lookup_open_max option.

The single-key lookup les are closed and the lookup caches are flushed at strategic points during
delivery for example, after all routing is complete.

9.9 Quoting lookup data

When data from an incoming message is included in a query-style lookup, there is the possibility of
specia characters in the data messing up the syntax of the query. For example, a NIS+ query that
contains

[name=$! ocal _part]

will be broken if the local part happens to contain a closing square bracket. For NIS+, data can be
enclosed in double quotes like this:

[name="$l ocal _part"]

but this still leaves the problem of a double quote in the data. The rule for NIS+ is that double quotes
must be doubled. Other lookup types have different rules, and to cope with the differing requirements,
an expansion operator of the following form is provided:

${ quot e_<I ookup-type>: <string>}
For example, the safest way to write the NIS+ query is

[name="${quot e_ni spl us: $l ocal _part}"]
See chapter |11 for full coverage of string expansions. The quote operator can be used for all lookup
types, but has no effect for single-key lookups, since no quoting is ever needed in their key strings.

78 File and database lookups (9)

9.10 More about dnsdb

The dnsdb 1ookup type uses the DNS as its database. A simple query consists of a record type and a
domain name, separated by an equals sign. For example, an expansion string could contain:

${I1 ookup dnsdb{nx=a. b. exanpl e} {$val ue}fail}

If the lookup succeeds, the result is placed in $value, which in this case is used on its own as the
result. If the lookup does not succeed, the f ai | keyword causes a forced expansion failure see
section 11.Z|for an explanation of what this means.

The supported DNS record types are A, CNAME, MX, NS, PTR, SOA, SPF, SRV, TLSA and TXT,
and, when Exim is compiled with IPv6 support, AAAA. If notypeisgiven, TXT is assumed.

For any record type, if multiple records are found, the data is returned as a concatenation, with
newline as the default separator. The order, of course, depends on the DNS resolver. You can specify
a different separator character between multiple records by putting a right angle-bracket followed
immediately by the new separator at the start of the query. For example:

${I ookup dnsdb{>: a=host 1. exanpl e}}

It is permitted to specify a space as the separator character. Further white space isignored. For lookup
types that return multiple elds per record, an alternate eld separator can be speci ed using acomma
after the main separator character, followed immediately by the eld separator.

When the type is PTR, the data can be an | P address, written as normal; inversion and the addition of
in-addr.ar pa or ip6.ar pa happens automatically. For example:

${1 ookup dnsdb{ptr=192. 168. 4. 5}{ $val ue}fail}

If the data for a PTR record is not a syntactically valid |P address, it is not altered and nothing is
added.

For an MX lookup, both the preference value and the host name are returned for each record,
separated by a space. For an SRV lookup, the priority, weight, port, and host name are returned for
each record, separated by spaces. The eld separator can be modi ed as above.

For TXT records with multiple items of data, only the rst item is returned, unless a eld separator is
speci ed. To concatenate items without a separator, use a semicolon instead. For SPF records the
default behaviour is to concatenate multiple items without using a separator.

${1 ookup dnsdb{>\n,: txt=a.b.exanple}}
${| ookup dnsdb{>\n; txt=a.b.exanple}}
${| ookup dnsdb{spf=exanpl e. org}}

It is permitted to specify a space as the separator character. Further white space isignored.

For an SOA lookup, while no result is obtained the lookup is redone with successively more leading
components dropped from the given domain. Only the primary-nameserver eld is returned unless a
eld separator is speci ed.

${I ookup dnsdb{>:,; soa=a.b.exanple.con}}

9.11 Dnsdb lookup modifiers

Modi ers for dnsdb lookups are given by optional keywords, each followed by a comma, that may
appear before the record type.

The dnsdb lookup fails only if all the DNS lookups fail. If there is a temporary DNS error for any
of them, the behaviour is controlled by a defer-option modi er. The possible keywords are
defer_strict, defer_never, and defer_lax . With strict behaviour, any temporary DNS error
causes the whole lookup to defer. With never behaviour, atemporary DNS error isignored, and the
behaviour is as if the DNS lookup failed to nd anything. With lax behaviour, all the queries are
attempted, but a temporary DNS error causes the whole lookup to defer only if none of the other
lookups succeed. The default is lax , so the following lookups are equivalent:

79 File and database lookups (9)

${| ookup dnsdb{defer_I| ax, a=one. host. com two. host. con}}
${| ookup dnsdb{a=one. host.com two. host. con}}

Thus, in the default case, as long as at least one of the DNS lookups yields some data, the lookup
succeeds.

Use of DNSSEC is controlled by a dnssec modi er. The possible keywords are dnssec_strict ,
dnssec_lax , and dnssec_never . With strict or lax DNSSEC information is requested with the
lookup. With strict a response from the DNS resolver that is not labelled as authenticated data is
treated as equivalent to atemporary DNS error. The default is never .

See also the $lookup_dnssec_authenticated variable.

Timeout for the dnsdb lookup can be controlled by a retrans modi er. The form is retrans VAL
where VAL is an Exim time speci cation (e.g. 5s). The default value is set by the main con gur-
ation option dns_retrans.

Retries for the dnsdb lookup can be controlled by a retry modi er. The form if retry VAL where
VAL isaninteger. The default count is set by the main con guration option dns retry.

Dnsdb lookup results are cached within a single process (and its children). The cache entry lifetimeis
limited to the smallest time-to-live (TTL) value of the set of returned DNS records.

9.12 Pseudo dnsdb record types

By default, both the preference value and the host name are returned for each M X record, separated
by a space. If you want only host names, you can use the pseudo-type MXH:

${| ookup dnsdb{nxh=a. b. exanpl e}}
In this case, the preference values are omitted, and just the host names are returned.

Another pseudo-type is ZNS (for zone NS). It performs a lookup for NS records on the given
domain, but if none are found, it removes the rst component of the domain name, and tries again.
This process continues until NS records are found or there are no more components left (or thereisa
DNS error). In other words, it may return the name servers for atop-level domain, but it never returns
the root name servers. If there are no NS records for the top-level domain, the lookup fails. Consider
these examples:

${I ookup dnsdb{zns=xxx. quercite.cont}
${1 ookup dnsdb{zns=xxx. edu}}

Assuming that in each case there are no NS records for the full domain name, the rst returns the
name servers for quer cite.com, and the second returns the name servers for edu.

You should be careful about how you use this lookup because, unless the top-level domain does not
exist, the lookup aways returns some host names. The sort of use to which this might be put is for
seeing if the name servers for a given domain are on a blacklist. You can probably assume that the
name servers for the high-level domains such as com or co.uk are not going to be on such alist.

A third pseudo-type is CSA (Client SMTP Authorization). This looks up SRV records according to
the CSA rules, which are described in section.43.5§] Although dnsdb supports SRV |ookups directly,
this is not suf cient because of the extra parent domain search behaviour of CSA. The result of a
successful lookup such as:

${| ookup dnsdb {csa=$sender_hel o_nane}}

has two space-separated elds. an authorization code and a target host name. The authorization code
can be Y for yes, N for no, X for explicit authorization required but absent, or ? for
unknown.

The pseudo-type A+ performs an AAAA and then an A lookup. All results are returned; defer
processing (see below) is handled separately for each lookup. Example:

${| ookup dnsdb {>;, at=$sender_hel o_nane}}

80 File and database lookups (9)

9.13 Multiple dnsdb lookups

In the previous sections, dnsdb |ookups for a single domain are described. However, you can specify a
list of domains or IP addressesin a single dnsdb lookup. Thelist is speci ed in the normal Exim way,
with colon as the default separator, but with the ability to change this. For example:

${| ookup dnsdb{one. domai n. com t wo. domai n. cont}
${| ookup dnsdb{a=one. host.com two. host. con}}
${1 ookup dnsdb{ptr = <; 1.2.3.4 ; 4.5.6.8}}

In order to retain backwards compatibility, there is one special case: if the lookup type is PTR and no
change of separator is speci ed, Exim looks to see if the rest of the string is precisely one IPv6
address. In this case, it does not treat it asalist.

The data from each lookup is concatenated, with newline separators by default, in the same way that
multiple DNS records for a single item are handled. A different separator can be speci ed, as
described above.

9.14 More about LDAP

The origina LDAP implementation came from the University of Michigan; this has become Open
LDAP, and there are now two different releases. Another implementation comes from Netscape, and
Solaris 7 and subsequent releases contain inbuilt LDAP support. Unfortunately, though these are all
compatible at the lookup function level, their error handling is different. For this reason it is necessary
to set a compile-time variable when building Exim with LDARP, to indicate which LDAP library isin
use. One of the following should appear in your Local/Makefile:

LDAP_LI B_TYPE=UM CH GAN
LDAP_LI B_TYPE=OPENLDAP1
LDAP_LI B_TYPE=OPENLDAP2
LDAP_LI B_TYPE=NETSCAPE
LDAP_LI B_TYPE=SOLARI S

If LDAP_LIB_TYPE is not set, Exim assumes OPENLDAP1, which has the same interface as the
University of Michigan version.

There are three LDAP lookup types in Exim. These behave dlightly differently in the way they handle
the results of aquery:

* Idap requires the result to contain just one entry; if there are more, it gives an error.

* Ildapdn aso requires the result to contain just one entry, but it is the Distinguished Name that is
returned rather than any attribute values.

* Ildapm permits the result to contain more than one entry; the attributes from all of them are
returned.

For ldap and Ildapm, if a query nds only entries with no attributes, Exim behaves as if the entry did
not exist, and the lookup fails. The format of the data returned by a successful lookup is described in
the next section. First we explain how L DAP queries are coded.

9.15 Format of LDAP queries

An LDAP query takes the form of a URL as de ned in RFC 2255. For example, in the con guration
of aredirect router one might have this setting:

data = ${| ookup |dap \
{lI dap:///cn=$%l ocal _part, o=Uni versity%0of %20Canbri dge, \
c=UK?mai | box?base?}}

The URL may begin with | dap or | daps if your LDAP library supports secure (encrypted) LDAP
connections. The second of these ensures that an encrypted TLS connection is used.

With suf ciently modern LDAP libraries, Exim supports forcing TLS over regular LDAP connec-
tions, rather than the SSL-on-connect | daps. Seetheldap_start_tls option.

81 File and database lookups (9)

Starting with Exim 4.83, the initialization of LDAP with TLSis more tightly controlled. Every part of
the TLS con guration can be con gured by settings in exim.conf. Depending on the version of the
client libraries installed on your system, some of the initialization may have required setting options
in Jetc/ldap.conf or ~/.Idaprc to get TLS working with self-signed certi cates. This revealed a nuance
where the current UID that exim was running as could affect which cong les it read. With Exim
4.83, these methods become optional, only taking effect if not speci cally set in exim.conf.

9.16 LDAP quoting

Two levels of quoting are required in LDAP queries, the rst for LDAP itself and the second because
the LDAP query is represented as a URL. Furthermore, within an LDAP query, two different kinds of
guoting are required. For this reason, there are two different LDAP-speci ¢ quoting operators.

The quote |dap operator is designed for use on strings that are part of Iter speci cations.
Conceptually, it rst doesthe following conversions on the string:

* = \2A
(= \28
) = \29
\ => \5C

in accordance with RFC 2254. The resulting string is then quoted according to the rules for URLS,
that is, al non-alphanumeric characters except

s - _ () *+
are converted to their hex values, preceded by a percent sign. For example:
${quote_| dap: a(bc)*, a<yz>; }
yields
%20a%%C28bc % C29%% C2 A% CY20a%3Cy z YBEY3BYR0
Removing the URL quoting, thisis (with aleading and atrailing space):
a\ 28bc\ 29\ 2A, a<yz>;

The quote_Idap_dn operator is designed for use on strings that are part of base DN speci cationsin
gueries. Conceptualy, it rst converts the string by inserting a backdash in front of any of the
following characters:

, "N < >

It also inserts a backslash before any leading spaces or # characters, and before any trailing spaces.
(These rules are in RFC 2253.) The resulting string is then quoted according to the rules for URLSs.
For example:

${quote_| dap_dn: a(bc)*, a<yz>; }
yields
9% CY¥20a(be) * %6 CYR CY20a % CYBCy z % CYBEYH CYBBYH CYR20
Removing the URL quoting, thisis (with atrailing space):
\ a(bc)*\, a\l<yz\>\;\
There are some further comments about quoting in the section on LDAP authentication below.

9.17 LDAP connections

The connection to an LDAP server may either be over TCP/IP, or, when OpenLDAP isin use, viaa
Unix domain socket. The example given above does not specify an LDAP server. A server that is
reached by TCP/IP can be speci ed in a query by starting it with

| dap: // <host nane>: <port>/. ..

82 File and database lookups (9)

If the port (and preceding colon) are omitted, the standard LDAP port (389) is used. When no server
is speci ed in a query, alist of default serversis taken from the Idap_default_servers con guration
option. This supplies a colon-separated list of servers which are tried in turn until one successfully
handles a query, or there is a serious error. Successful handling either returns the requested data, or
indicates that it does not exist. Serious errors are syntactical, or multiple values when only a single
value is expected. Errors which cause the next server to be tried are connection failures, bind failures,
and timeouts.

For each server name in the list, a port number can be given. The standard way of specifying a host
and port is to use a colon separator (RFC 1738). Because Idap_default_serversis a colon-separated
list, such colons have to be doubled. For example

| dap_default_servers = | dapl. exanpl e. com : 145: | dap2. exanpl e. com

If Idap_default_serversis unset, a URL with no server name is passed to the LDAP library with no
server name, and the library¢s default (normally the local host) is used.

If you are using the OpenLDAP library, you can connect to an LDAP server using a Unix domain
socket instead of a TCP/IP connection. Thisis speci ed by using | dapi instead of | dap in LDAP
queries. What follows here applies only to OpenLDAP. If Exim is compiled with a different LDAP
library, thisfeatureis not available.

For this type of connection, instead of a host name for the server, a pathname for the socket is
required, and the port number is not relevant. The pathname can be speci ed either as an item in
Idap_default_servers, or inlinein the query. In the former case, you can have settings such as

| dap_default _servers = /tnp/l dap. sock : backup. | dap. your. domain

When the pathname is given in the query, you have to escape the slashes as %2F to t in with the
LDAP URL syntax. For example:

${1 ookup | dap {I dapi://9%RFt np%2FI dap. sock/ o=. ..

When Exim processes an LDAP lookup and nds that the hostname isreally a pathname, it uses the
Unix domain socket code, even if the query actually speci es | dap or | daps. In particular, ho
encryption is used for a socket connection. This behaviour means that you can use a setting of Idap_
default_servers such as in the example above with traditional | dap or | daps queries, and it will
work. First, Exim tries a connection via the Unix domain socket; if that fails, it tries a TCP/IP
connection to the backup host.

If an explicit | dapi type is given in a query when a host name is speci ed, an error is diagnosed.
However, if there are moreitemsin Idap_default_servers, they are tried. In other words:

» Using apathnamewith | dap or | daps forces the use of the Unix domain interface.
» Using | dapi with a host name causes an error.

Using | dapi with no host or path in the query, and no setting of Idap_default_servers, does
whatever the library does by default.

9.18 LDAP authentication and control information

The LDAP URL syntax provides no way of passing authentication and other control information to
the server. To make this possible, the URL in an LDAP query may be preceded by any number of
<name>=<value> Settings, separated by spaces. If a value contains spaces it must be enclosed in
double quotes, and when double quotes are used, backslash is interpreted in the usual way inside
them. The following names are recognized:

DEREFERENCE set the dereferencing parameter

NETTI ME set atimeout for a network operation

USER set the DN, for authenticating the LDAP bind
PASS set the password, likewise

REFERRALS set thereferrals parameter

SERVERS Set alternate server list for this query only

83 File and database lookups (9)

S| ZE set the limit for the number of entries returned
TI ME set the maximum waiting time for a query

The value of the DEREFERENCE parameter must be one of the words never, searching,
nding, or aways. The value of the REFERRALS parameter must be follow (the default) or
nofollow . The latter stops the LDAP library from trying to follow referrals issued by the LDAP

server.

The name CONNECT is an obsolete name for NETTIME, retained for backwards compatibility. This
timeout (speci ed as a number of seconds) is enforced from the client end for operations that can
be carried out over a network. Speci cally, it applies to network connections and calls to the
Idap_result() function. If the value is greater than zero, it is used if LDAP_OPT_NETWORK _
TIMEOUT is dened in the LDAP headers (OpenLDAP), or if LDAP_X_OPT_CONNECT_
TIMEOUT is dened in the LDAP headers (Netscape SDK 4.1). A value of zero forces an explicit
setting of no timeout for Netscape SDK; for OpenLDAP no action is taken.

The TIME parameter (also a number of seconds) is passed to the server to set a server-side limit on
the time taken to complete a search.

The SERVERS parameter allows you to specify an alternate list of I1dap servers to use for an individ-
ua lookup. The global Idap_default_servers option provides a default list of Idap servers, and a
single lookup can specify a single |dap server to use. But when you need to do alookup with alist of
servers that is different than the default list (maybe different order, maybe a completely different set
of servers), the SERVERS parameter allows you to specify this aternate list (colon-separated).

Here is an example of an LDAP query in an Exim lookup that uses some of these values. Thisis a
singleline, folded to t on the page:

${1 ookup | dap
{user ="cn=manager, o=Uni versity of Canbridge, c=UK" pass=secr et
| dap:///o=Uni versit yo%20of ¥20Canbr i dge, c=UK?sn?sub?(cn=f 00) }
{$val ue}fail}

The encoding of spaces as %20 is a URL thing which should not be done for any of the auxiliary data.
Exim con guration settings that include lookups which contain password information should be
preceded by hide to prevent non-admin users from using the -bP option to see their values.

The auxiliary data items may be given in any order. The default is no connection timeout (the system
timeout is used), no user or password, no limit on the number of entries returned, and no time limit on
queries.

When a DN is quoted in the USER= setting for LDAP authentication, Exim removes any URL
guoting that it may contain before passing it LDAP. Apparently some libraries do this for themselves,
but some do not. Removing the URL quoting has two advantages:

* It makesit possible to use the same quote_|dap_dn expansion for USER= DNs as with DNsinside
actual queries.

* It permits spaces inside USER= DNSs.

For example, a setting such as
USER=cn=${ quot e_| dap_dn: $1}

should work even if $1 contains spaces.

Expanded data for the PASS= value should be quoted using the quote expansion operator, rather than
the LDAP quote operators. The only reason this eld needs quoting isto ensure that it conformsto the
Exim syntax, which does not allow unquoted spaces. For example:

PASS=${ quot e: $3}

The LDAP authentication mechanism can be used to check passwords as part of SMTP authenti-
cation. See the [dapauth expansion string condition in chapter

84 File and database lookups (9)

9.19 Format of data returned by LDAP

The Ildapdn 10okup type returns the Distinguished Name from a single entry as a sequence of values,
for example

cn=manager, o=Uni versity of Canbri dge, c=UK

The Idap 10okup type generates an error if more than one entry matches the search Iter, whereas
Idapm permits this case, and inserts a newline in the result between the data from different entries. It
is possible for multiple values to be returned for both Idap and ldapm, but in the former case you
know that whatever values are returned all came from a single entry in the directory.

In the common case where you specify a single attribute in your LDAP query, the result is not quoted,
and does not contain the attribute name. If the attribute has multiple values, they are separated by
commas. Any commacthat is part of an attribute¢s value is doubl ed.

If you specify multiple attributes, the result contains space-separated, quoted strings, each preceded
by the attribute name and an equals sign. Within the quotes, the quote character, backslash, and
newline are escaped with backslashes, and commas are used to separate multiple values for the
attribute. Any commas in attribute values are doubled (permitting treatment of the values as a comma-
separated list). Apart from the escaping, the string within quotes takes the same form as the output
when asingle attribute is requested. Specifying no attributes is the same as specifying all of an entry¢s
attributes.

Here are some examples of the output format. The rst line of each pair is an LDAP query, and the
second is the data that is returned. The attribute called attr1 has two values, one of them with an
embedded comma, whereas attr 2 has only one value. Both attributes are derived from attr (they have
SUP attr in their schema de nitions).

| dap:/// o=base?attr 1?sub?(ui d=fred)
val uel. 1, val uel, , 2

| dap:/// o=base?attr2?sub?(ui d=fred)
val ue two

| dap:/// o=base?attr?sub?(ui d=fred)
val uel. 1, val uel, , 2, val ue two

| dap:///o=base?attrl, attr2?sub?(ui d=fred)
attrl="val uel. 1, val uel,,h 2" attr2="val ue two"

| dap:/// o=base??sub?(ui d=fr ed)
obj ectCl ass="top" attrl="valuel.1, valuel,,h 2" attr2="val ue two"

You can make use of Exim@s -be option to run expansion tests and thereby check the results of LDAP
lookups. The extract operator in string expansions can be used to pick out individual elds from data

that consists of key=value pairs. The listextract operator should be used to pick out individual values
of attributes, even when only a single value is expected. The doubling of embedded commas allows
you to use the returned data as a comma separated list (using the "<," syntax for changing the input
list separator).

9.20 More about NIS+

NIS+ queries consist of a NIS+ indexed name followed by an optional colon and eld name. If thisis
given, the result of a successful query is the contents of the named eld; otherwise the result consists
of a concatenation of field-name=field-value pairs, separated by spaces. Empty values and values
containing spaces are quoted. For example, the query

[name=nyl1456] , passwd. org_dir
might return the string

85 File and database lookups (9)

nane=ngl456 passwd="" ui d=999 gi d=999 gcos="Martin Guerre"
honme=/ hone/ ng1456 shel | =/ bi n/ bash shadow=""

(split over two lines here to t on the page), whereas
[nane=ng1456] , passwd. org_di r: gcos
would just return
Martin Querre

with no quotes. A NIS+ lookup fails if NIS+ returns more than one table entry for the given indexed
key. The effect of the quote _nisplus expansion operator is to double any quote characters within the
text.

9.21 SQL lookups

Exim can support lookups in InterBase, MySQL, Oracle, PostgreSQL, Redis, and SQL ite databases.
Queries for these databases contain SQL statements, so an example might be

${| ookup nysql {sel ect mail box fromusers where id="userx’}\
{$val ue}fail}

If the result of the query contains more than one eld, the data for each eld in the row is returned,
preceded by its name, so the result of

${1 ookup pgsql {sel ect hone, nanme from users where id="userx’ }\
{$val ue}}

might be
hone=/ hone/ userx nane="M ster X'

Empty values and values containing spaces are double quoted, with embedded quotes escaped by a
backslash. If the result of the query contains just one eld, the value is passed back verbatim, without
a eld name, for example:

M ster X

If the result of the query yields more than one row, it is all concatenated, with a newline between the
data for each row.

9.22 More about MySQL, PostgreSQL, Oracle, InterBase, and Redis

If any MySQL, PostgreSQL, Oracle, InterBase or Redis lookups are used, the mysqgl_servers, pgsql_
servers, oracle servers, ibase servers, or redis servers option (as appropriate) must be set to a
colon-separated list of server information. (For MySQL and PostgreSQL, the global option need not
be set if all queries contain their own server information see section 9.23)) For all but Redis each
item in the list is a slash-separated list of four items. host name, database name, user name, and
password. In the case of Oracle, the host name eld is used for the service name, and the database
name eld is not used and should be empty. For example:

hi de oracl e_servers = oracle. pl c. exanpl e/ / user x/ abcdwxyz

Because password data is sensitive, you should always precede the setting with hide, to prevent
non-admin users from obtaining the setting viathe -bP option. Here is an example where two MySQL
servers are listed:

hi de nysql _servers = | ocal host/users/root/secret:\
ot her host / user s/ root/ ot hersecr et

For MySQL and PostgreSQL, a host may be speci ed as <name>.<port> but because this is a
colon-separated list, the colon has to be doubled. For each query, these parameter groups are tried in
order until a connection is made and a query is successfully processed. The result of a query may be
that no data is found, but that is still a successful query. In other words, the list of servers provides a
backup facility, not alist of different placesto look.

86 File and database lookups (9)

For Redis the global option need not be speci ed if all queries contain their own server information
see section If speci ed, the option must be set to a colon-separated list of server information.
Each iteminthelist is a slash-separated list of three items: host, database number, and password.

() Thehost isrequired and may be either an IPv4 address and optional port number (separated by a
colon, which needs doubling due to the higher-level list), or a Unix socket pathname enclosed in
parentheses

(2) The database number is optional; if present that number is selected in the backend
(3) The password isoptional; if present it is used to authenticate to the backend

The quote_mysqgl, quote_pgsgl, and quote_or acle expansion operators convert newline, tab, carriage
return, and backspace to \n, \t, \r, and \b respectively, and the characters single-quote, double-quote,
and backdash itself are escaped with backslashes.

The quote_redis expansion operator escapes whitespace and backslash characters with a backslash.

9.23 Specifying the server in the query

For MySQL, PostgreSQL and Redis lookups (but not currently for Oracle and InterBase), it is poss-
ible to specify alist of serverswith an individual query. Thisis done by starting the query with

ser ver s=serverl:server2:server3:...,
Each item in the list may take one of two forms:

(1) If it contains no slashes it is assumed to be just a host name. The appropriate global option
(mysgl_servers or pgsql_servers) is searched for a host of the same name, and the remaining
parameters (database, user, password) are taken from there.

(2) If it contains any slashes, it is taken as a complete parameter set.

Thelist of serversis used in exactly the same way as the global list. Once a connection to a server has
happened and a query has been successfully executed, processing of the lookup ceases.

This feature is intended for use in master/dave situations where updates are occurring and you want
to update the master rather than a slave. If the master isin the list as a backup for reading, you might
have a global setting like this:

nmysql _servers = sl avel/ db/ nane/ pw. \
sl ave2/ db/ nane/ pw. \
mast er / db/ nanme/ pw

In an updating lookup, you could then write:
${I ookup nysql {servers=master; UPDATE ...} }

That query would then be sent only to the master server. If, on the other hand, the master is not to be
used for reading, and so is not present in the global option, you can still update it by a query of this
form:

${1 ookup pgsql {servers=mast er/ db/ name/ pw; UPDATE ...} }

9.24 Special MySQL features

For MySQL, an empty host name or the use of localhost in mysqgl_servers causes a connection to
the server on the local host by means of a Unix domain socket. An alternate socket can be speci ed in
parentheses. An option group name for MySQL option les can be speci ed in square brackets; the
default valueis exim . The full syntax of each itemin mysgl_serversis:

<hostname>::<port>(<socket name>)[<option group>|/<database>I<user>/<password>

Any of the four sub-parts of the rst eld can be omitted. For normal use on the local host it can be
left blank or set to just localhost .

No database need be supplied but if it is absent here, it must be given in the queries.

87 File and database lookups (9)

If aMySQL query isissued that does not request any data (an insert, update, or delete command), the
result of the lookup is the number of rows affected.

Warning: This can be midleading. If an update does not actually change anything (for example,
setting a eld to the value it already has), the result is zero because no rows are affected.

9.25 Special PostgreSQL features

PostgreSQL lookups can also use Unix domain socket connections to the database. This is usually
faster and costs less CPU time than a TCP/IP connection. However it can be used only if the mail
server runs on the same machine as the database server. A con guration line for PostgreSQL via Unix
domain sockets looks like this:

hi de pgsql _servers = (/tnp/.s. PGSQL. 5432)/ db/ user/ password :

In other words, instead of supplying a host name, a path to the socket is given. The path name is
enclosed in parentheses so that its slashes aren¢t visually confused with the delimiters for the other
server parameters.

If a PostgreSQL query isissued that does not request any data (an insert, update, or delete command),
the result of the lookup is the number of rows affected.

9.26 More about SQLite

SQLite is different to the other SQL lookups because a le name is required in addition to the SQL

guery. An SQL.ite database isa single le, and there is nho daemon as in the other SQL databases. The
interface to Exim requires the name of the le, as an absolute path, to be given at the start of the
guery. It is separated from the query by white space. This means that the path name cannot contain
white space. Here is alookup expansion example:

${| ookup sqlite {/sone/thing/sqlitedb \
sel ect nane from aliases where id="userx’;}}

In alist, the syntax is similar. For example:

domai nlist relay to _domains = sqlite;/sone/thing/sqlitedb \
select * fromrelays where ip="$sender _host _address’;

The only character affected by the quote _sglite operator is a single quote, which it doubles.

The SQLite library handles multiple simultaneous accesses to the database internaly. Multiple
readers are permitted, but only one process can update at once. Attempts to access the database while
it is being updated are rejected after a timeout period, during which the SQLite library waits for the
lock to be released. In Exim, the default timeout is set to 5 seconds, but it can be changed by means of
the sglite_lock_timeout option.

9.27 More about Redis
Redisisanon-SQL database. Commands are simple get and set. Examples:

${| ookup redi s{set keynane ${quote_redis:objval ue plus}}}
${1 ookup redi s{get keynane}}

As of release 4.91, "lightweight" support for Redis Cluster is available. Requiresredis serverslist to
contain al the serversin the cluster, all of which must be reachable from the running exim instance. If
the cluster has master/slave replication, the list must contain all the master and slave servers.

When the Redis Cluster returns a "MOVED" response to a query, Exim does not immediately follow
the redirection but treats the response as a DEFER, moving on to the next server in the redis servers
list until the correct server is reached.

88 File and database lookups (9)

10. Domain, host, address, and local part lists

A number of Exim con guration options contain lists of domains, hosts, email addresses, or local
parts. For example, the hold_domains option contains a list of domains whase delivery is currently
suspended. These lists are also used as datain ACL statements (see chapter , and as arguments to
expansion conditions such as match_domain.

Each item in one of these lists is a pattern to be matched against a domain, host, email address, or
local part, respectively. In the sections below, the different types of pattern for each case are
described, but rst we cover some general facilities that apply to all four kinds of list.

Note that other parts of Exim use a string list which does not support al the complexity available in
domain, host, address and local part lists.

10.1 Expansion of lists
Each list is expanded as asingle string before it is used.

Exception: the router headers_remove option, where list-item splitting is done before string-
expansion.

The result of expansion must be alist, possibly containing empty items, which is split up into separate
items for matching. By default, colon is the separator character, but this can be varied if necessary.
See sections [6.20] and [6.22) for details of the list syntax; the second of these discusses the way to
specify empty list items.

If the string expansion is forced to fail, Exim behaves as if the item it is testing (domain, host,
address, or local part) is not in the list. Other expansion failures cause temporary errors.

If aniteminalistisaregular expression, backsashes, dollars and possibly other special charactersin
the expression must be protected against misinterpretation by the string expander. The easiest way to
do thisisto use the\ N expansion feature to indicate that the contents of the regular expression should
not be expanded. For example, in an ACL you might have:

deny senders = \ N\ d{8}\w@ *\. baddonai n\. exanpl e$\ N : \
${| ookup{ $donai n} | sear ch{/ badsender s/ bydonmai n} }

The rstitem is aregular expression that is protected from expansion by \ N, whereas the second uses
the expansion to obtain alist of unwanted senders based on the receiving domain.

10.2 Negated items in lists

Items in a list may be positive or negative. Negative items are indicated by a leading exclamation
mark, which may be followed by optional white space. A list denes a set of items (domains, etc).
When Exim processes one of these lists, it is trying to nd out whether a domain, host, address, or
local part (respectively) isin the set that is de ned by the list. It works like this:

Thelist is scanned from l€eft to right. If a positive item is matched, the subject that is being checked is
in the set; if a negative item is matched, the subject is not in the set. If the end of the list is reached
without the subject having matched any of the patterns, it is in the set if the last item was a negative
one, but not if it was a positive one. For example, thelistin

domai nlist relay_to domains = la.b.c : *.b.c

matches any domain ending in .b.c except for a.b.c. Domains that match neither a.b.c nor *.b.c do not
match, because the last item in the list is positive. However, if the setting were

domai nlist relay_to _domains = !la.b.c

then all domains other than a.b.c would match because the last item in the list is negative. In other
words, alist that ends with a negative item behaves asif it had an extraitem : * on the end.

Another way of thinking about positive and negative items in lists is to read the connector as or
after apositiveitem and as and after a negative item.

89 Domain, host, and address lists (10)

10.3 File names in lists

If anitem in adomain, host, address, or local part list is an absolute le name (beginning with a dlash
character), each line of the le is read and processed as if it were an independent item in the list,
except that further e names are not allowed, and no expansion of the data from the le takes place.
Empty linesin the le areignored, and the |e may also contain comment lines:

» For domain and host lists, if a# character appears anywherein aline of the le, it and al following
characters are ignored.

» Because local parts may legitimately contain # characters, a comment in an address list or local
part list leisrecognized only if # is preceded by white space or the start of the line. For example:

not #conment @&. y. z # but this is a comment

Putting a le name in alist has the same effect as inserting each line of the le as an item in the list
(blank lines and comments excepted). However, there is one important difference: the leisread each
timethelist is processed, so if its contents vary over time, Exim¢s behaviour changes.

If a le name is preceded by an exclamation mark, the sense of any match within the le isinverted.
For example, if

hol d_domai ns = !/etc/ nohol d- domai ns
and the le contains the lines

la.b.c
* b.c

then a.b.c isin the set of domains de ned by hold_domains, whereas any domain matching *. b. c
is not.

10.4 An Isearch file is not an out-of-line list

As will be described in the sections that follow, lookups can be used in lists to provide indexed
methods of checking list membership. There has been some confusion about the way Isearch 100kups
work in lists. Because an Isearch le contains plain text and is scanned sequentialy, it is sometimes
thought that it is allowed to contain wild cards and other kinds of non-constant pattern. Thisis not the
case. The keysin an Isearch le are dways xed strings, just as for any other single-key lookup type.

If you want to use a le to contain wild-card patterns that form part of alist, just give the |e name
on its own, without a search type, as described in the previous section. You could also use the
wildlsearch or nwildlsearch, but there is no advantage in doing this.

10.5 Named lists

A list of domains, hosts, email addresses, or local parts can be given a name which is then used to
refer to the list elsewhere in the con guration. This is particularly convenient if the same list is
required in severa different places. It also alows lists to be given meaningful names, which can
improve the readability of the con guration. For example, it is conventional to de ne a domain list
called local_domains for al the domains that are handled locally on a host, using a con guration line
such as

domai nli st | ocal _donains = | ocal host: ny. dom exanpl e

Named lists are referenced by giving their name preceded by a plus sign, so, for example, arouter that
isintended to handle local domains would be con gured with the line

domai ns = +l ocal _donai ns

The rst router in a con guration is often one that handles al domains except the local ones, using a
con guration with anegated item like this:

dnsl ookup:
driver = dnsl ookup
domains = ! +l ocal donmi ns

90 Domain, host, and address lists (10)

transport = renote_sntp
no_nore

The four kinds of named list are created by con guration lines starting with the words domainlist,
hostlist, addresdlist, or localpartlist, respectively. Then there follows the name that you are de ning,
followed by an equals sign and the list itself. For example:

host 1 i st relay_fromhosts = 192.168.23.0/24 : ny.friend. exanpl e
addresslist bad _senders = cdb;/etc/badsenders

A named list may refer to other named lists:

domai nli st doml
domai nli st donk
domai nli st donB

first.exanple : second. exanpl e
+doml : third. exanpl e
fourth.exanple : +don2 : fifth. exanple

Warning: If the last item in a referenced list is a negative one, the effect may not be what you
intended, because the negation does not propagate out to the higher level. For example, consider:

la. b
+donml : *.Db

The second list speci es either inthe dom1 list or *.b . The rst list speci esjust not a.b , so the
domain x.y matchesit. That means it matches the second list aswell. The effect is not the same as

domainlist don2 =la.b: *.b
where x.y does not match. It¢s best to avoid negation altogether in referenced listsif you can.

domai nli st doml
domai nli st donR

Named lists may have a performance advantage. When Exim is routing an address or checking an
incoming message, it caches the result of tests on named lists. So, if you have a setting such as

domai ns = +l ocal _donmai ns

on severa of your routers or in several ACL statements, the actual test is done only for the rst one.
However, the caching works only if there are no expansions within the list itself or any sublists that it
references. In other words, caching happens only for lists that are known to be the same each time
they are referenced.

By default, there may be up to 16 named lists of each type. This limit can be extended by changing a
compile-time variable. The use of domain and host lists is recommended for concepts such as local
domains, relay domains, and relay hosts. The default con guration is set up like this.

10.6 Named lists compared with macros

At rst sight, named lists might seem to be no different from macros in the con guration le.
However, macros are just textual substitutions. If you write

ALI ST = hostl : host2
aut h_advertise hosts = ! ALI ST

it probably won¢t do what you want, because that is exactly the same as
aut h_advertise hosts = 'hostl : host2
Notice that the second host name is not negated. However, if you use a host list, and write

hostlist alist = hostl : host2
auth_advertise hosts = ! +ali st

the negation applies to the whole list, and so that is equivalent to
auth_advertise hosts = 'hostl : !host2

10.7 Named list caching

While processing a message, Exim caches the result of checking a named list if it is sure that the list
is the same each time. In practice, this means that the cache operates only if the list contains no $

91 Domain, host, and address lists (10)

characters, which guarantees that it will not change when it is expanded. Sometimes, however, you
may have an expanded list that you know will be the same each time within a given message. For
example:

domai nli st special _domains =\
${| ookup{ $sender _host _addr ess}cdb{/sone/fil e}}

This provides alist of domains that depends only on the sending host¢s IP address. If this domain list
is referenced a number of times (for example, in several ACL lines, or in several routers) the result of
the check is not cached by default, because Exim does not know that it is going to be the same list
each time.

By appending _cache todonai nl i st you can tell Exim to go ahead and cache the result anyway.
For example:

domai nl i st _cache speci al _domai ns = ${| ookup{. ..

If you do this, you should be absolutely sure that caching is going to do the right thing in all cases.
When in doubt, leave it out.

10.8 Domain lists

Domain lists contain patterns that are to be matched against a mail domain. The following types of
item may appear in domain lists:

* If apattern consists of asingle @ character, it matches the local host name, as set by the primary_
hostname option (or defaulted). This makes it possible to use the same con guration le on
several different hosts that differ only in their names.

» If apattern consists of the string @] it matches an |P address enclosed in square brackets (asin an
email address that contains a domain literal), but only if that IP address is recognized as local for
email routing purposes. The local_interfaces and extra_local_interfaces options can be used to
control which of a host¢s several |P addresses are treated as local. In today(s Internet, the use of
domain literalsis controversial.

 If apattern consists of the string @rx_any it matches any domain that has an MX record pointing
to the local host or to any host that is listed in hosts treat_as local. The items @rx_pri mary
and @x_secondary are similar, except that the rst matches only when a primary MX target is
the local host, and the second only when no primary MX target is the local host, but a secondary
MX target is. Primary means an MX record with the lowest preference value there may of
course be more than one of them.

The MX lookup that takes place when matching a pattern of this type is performed with the
resolver options for widening names turned off. Thus, for example, a single-component domain
will not be expanded by adding the resolver¢s default domain. See the qualify_single and search_
parents options of the dnslookup router for a discussion of domain widening.

Sometimes you may want to ignore certain |P addresses when using one of these patterns. You can
specify this by following the pattern with /i gnor e=<ip list>, where <ip list> is a list of IP
addresses. These addresses are ignored when processing the pattern (compare the ignore target
hosts option on arouter). For example:

domai ns = @x_any/ignore=127.0.0.1

This example matches any domain that has an MX record pointing to one of the local host¢s IP
addresses other than 127.0.0.1.

The list of IP addresses is in fact processed by the same code that processes host lists, so it may
contain CIDR-coded network speci cations and it may also contain negative items.

Because the list of IP addresses is a sublist within a domain list, you have to be careful about
delimiters if there is more than one address. Like any other list, the default delimiter can be
changed. Thus, you might have:

92 Domain, host, and address lists (10)

domai ns = @mx_any/ignore=<;127.0.0.1;0.0.0.0 : \
an. ot her. domain :

30 that the sublist uses semicolons for delimiters. When | Pv6 addresses are involved, it is easiest to
change the delimiter for the main list aswell:

domai ns = <? @mx_any/ignore=<;127.0.0.1;::1 ? \
an.other.domain ? ...

If a pattern starts with an asterisk, the remaining characters of the pattern are compared with the
terminating characters of the domain. The use of * in domain lists differs from its use in partia
matching lookups. In a domain list, the character following the asterisk need not be a dot, whereas
partial matching works only in terms of dot-separated components. For example, adomain list item
such as* key. ex matches donkey.ex aswell as cipher.key.ex.

If a pattern starts with a circumflex character, it is treated as a regular expression, and matched
against the domain using a regular expression matching function. The circumflex is treated as part
of the regular expression. Email domains are case-independent, so this regular expression match is
by default case-independent, but you can make it case-dependent by starting it with (?-1i).
References to descriptions of the syntax of regular expressions are given in chapter |8

Warning: Because domain lists are expanded before being processed, you must escape any
backslash and dollar characters in the regular expression, or use the special \ N sequence (see
chapter to specify that it is not to be expanded (unless you really do want to build a regular
expression by expansion, of course).

If a pattern starts with the name of a single-key lookup type followed by a semicolon (for example,
dbm; or Isearch;), the remainder of the pattern must be a le name in a suitable format for the
lookup type. For example, for cdb; it must be an absolute path:

domai ns = cdb;/etc/nail/l ocal _domai ns. cdb

The appropriate type of lookup is done on the le using the domain name as the key. In most cases,
the data that islooked up is not used; Exim isinterested only in whether or not the key is present in
the le. However, when a lookup is used for the domains option on a router or a domains
condition in an ACL statement, the data is preserved in the $domain_data variable and can be
referred to in other router options or other statements in the same ACL.

Any of the single-key lookup type names may be preceded by parti al <n>- , where the <n> is
optional, for example,

domains = partial -dbm/partial /domai ns

This causes partial matching logic to be invoked; a description of how this works is given in
section|9.7]

Any of the single-key lookup types may be followed by an asterisk. This causes a default lookup
for a key consisting of a single asterisk to be done if the original lookup fails. This is not a useful
feature when using a domain list to select particular domains (because any domain would match),
but it might have value if the result of the lookup is being used via the $domain_data expansion
variable.

If the pattern starts with the name of a query-style lookup type followed by a semicolon (for
example, nisplus, or Idap;), the remainder of the pattern must be an appropriate query for the
lookup type, as described in chapter|§r For example:

hol d_domai ns = nysql ; sel ect domain from holdlist \
where domain = ' ${quote_nysql : $domai n}’ ;

In most cases, the data that is looked up is not used (so for an SQL query, for example, it doesnct
matter what eld you select). Exim is interested only in whether or not the query succeeds.
However, when a lookup is used for the domains option on a router, the data is preserved in the
Sdomain_data variable and can be referred to in other options.

If none of the above cases apply, a caseless textual comparison is made between the pattern and the
domain.

93 Domain, host, and address lists (10)

Here is an example that uses several different kinds of pattern:

domai nli st funny_domains =\
@: \
[ib.unseen.edu : \
* foundation.fict.exanmple : \
\NM[1-2]\d{3}\.fict\.exanpl e$\ N : \
parti al - dbm / opt/ dat a/ pengui n/ book : \
ni s; domai ns. bynanme : \
ni spl us; [name=$donai n, st at us=l ocal], dormai ns. org_di r

There are obvious processing trade-offs among the various matching modes. Using an asterisk is
faster than a regular expression, and listing a few names explicitly probably istoo. The use of a le or
database lookup is expensive, but may be the only option if hundreds of names are required. Because
the patterns are tested in order, it makes sense to put the most commonly matched patterns earlier.

10.9 Host lists

Host lists are used to control what remote hosts are alowed to do. For example, some hosts may be
alowed to use the loca host as a relay, and some may be permitted to use the SMTP ETRN
command. Hosts can be identi ed in two different ways, by name or by IP address. In a host list,
some types of pattern are matched to a host name, and some are matched to an IP address. You need
to be particularly careful with this when single-key lookups are involved, to ensure that the right value
isbeing used as the key.

10.10 Special host list patterns

If ahost list item is the empty string, it matches only when no remote host isinvolved. Thisisthe case
when a message is being received from a local process using SMTP on the standard input, that is,
when a TCP/IP connection is not used.

The specia pattern * in ahost list matches any host or no host. Neither the IP address nor the name
is actually inspected.

10.11 Host list patterns that match by IP address

If an IPv4 host calls an IPv6 host and the call is accepted on an IPv6 socket, the incoming address
actually appearsinthe IPv6 host as: : f f f f : <vdaddress>. When such an address is tested against a
host list, it is converted into a traditional IPv4 address rst. (Not all operating systems accept |Pv4

calls on |Pv6 sockets, as there have been some security concerns.)

The following types of pattern in ahost list check the remote host by inspecting its | P address:

* If the pattern is a plain domain name (not a regular expression, not starting with *, not a lookup of
any kind), Exim calls the operating system function to nd the associated |P address(es). Exim
uses the newer getipnodebyname() function when available, otherwise gethostbyname(). This typi-
cally causes a forward DNS lookup of the name. The result is compared with the |P address of the
subject host.

If there is a temporary problem (such as a DNS timeout) with the host name lookup, a temporary
error occurs. For example, if the list is being used in an ACL condition, the ACL gives a defer
response, usually leading to a temporary SMTP error code. If no IP address can be found for the
host name, what happens is described in section below.

* If the pattern is @, the primary host name is substituted and used as a domain name, as just
described.

» If the pattern is an IP address, it is matched against the IP address of the subject host. 1Pv4
addresses are given in the normal dotted-quad notation. IPv6 addresses can be given in colon-
separated format, but the colons have to be doubled so as not to be taken as item separators when
the default list separator is used. IPv6 addresses are recognized even when Exim is compiled

94 Domain, host, and address lists (10)

without IPv6 support. This means that if they appear in ahost list on an IPv4-only host, Exim will
not treat them as host names. They are just addresses that can never match a client host.

« If the patternis @[] , it matches the IP address of any IP interface on the local host. For example,
if the local host is an Pv4 host with one interface address 10.45.23.56, these two ACL statements
have the same effect:

127.0.0.1 : 10.45.23.56
Q]

« If the pattern is an IP address followed by a slash and a mask length (for example 10.11.42.0/24), it
is matched against the IP address of the subject host under the given mask. This allows, an entire
network of hosts to be included (or excluded) by a single item. The mask uses CIDR notation; it
speci es the number of address bits that must match, starting from the most signi cant end of the
address.

Note: The mask is nor a count of addresses, nor is it the high number of arange of addresses. It is
the number of bits in the network portion of the address. The above example speci es a 24-bit
netmask, so it matches all 256 addresses in the 10.11.42.0 network. An item such as

192. 168. 23. 236/ 31

matches just two addresses, 192.168.23.236 and 192.168.23.237. A mask value of 32 for an IPv4
address isthe same as no mask at al; just a single address matches.

accept hosts
accept hosts

Here is another example which shows an IPv4 and an IPv6 network:
reci pient_unqualified hosts = 192.168.0.0/16: \
3ffe::ffff::836f::::/48
The doubling of list separator characters applies only when these items appear inline in a host list.
It is not required when indirecting viaa le. For example:
reci pient_unqualified hosts = /opt/exinfungual nets
could make use of a le containing

172.16.0.0/ 12
3ffe:ffff:836f::/48

to have exactly the same effect as the previous example. When listing I1Pv6 addresses inling, it is
usually more convenient to use the facility for changing separator characters. This list contains the
same two networks:

reci pient _unqualified_hosts = <; 172.16.0.0/12; \
ffe:ffff:836f::/48

The separator is changed to semicolon by theleading <; at the start of the list.

10.12 Host list patterns for single-key lookups by host address

When a host isto be identi ed by a single-key lookup of its complete | P address, the pattern takes this
form:

net - <single-key-search-type>; <search-data>
For example:
host s_I ookup = net-cdb;/hosts-by-ip.db

The text form of the IP address of the subject host is used as the lookup key. IPv6 addresses are
converted to an unabbreviated form, using lower case letters, with dots as separators because colon is
the key terminator in Isearch les. [Colons can in fact be used in keysin Isearch les by quoting the
keys, but thisis afacility that was added later.] The data returned by the lookup is not used.

Single-key lookups can also be performed using masked | P addresses, using patterns of this form:

net <number>- <single-key-search-type>; <search-data>

95 Domain, host, and address lists (10)

For example:
net 24- dbm / net wor ks. db

The IP address of the subject host is masked using <number> as the mask length. A textual string is
constructed from the masked value, followed by the mask, and this is used as the lookup key. For
example, if the host¢s IP address is 192.168.34.6, the key that is looked up for the above example is
192.168.34.0/24 .

When an IPv6 address is converted to a string, dots are normally used instead of colons, so that keys
in Isearch les need not contain colons (which terminate Isearch keys). This was implemented some

time before the ability to quote keys was made available in Isearch les. However, the more recently

implemented iplsearch lesdo require colonsin IPv6 keys (notated using the quoting facility) so asto

distinguish them from 1Pv4 keys. For this reason, when the lookup type is iplsearch, |Pv6 addresses
are converted using colons and not dots. In al cases, full, unabbreviated 1Pv6 addresses are always
used.

Ideally, it would be nice to tidy up this anomalous situation by changing to colonsin all cases, given
that quoting is now available for Isearch. However, this would be an incompatible change that might
break some existing con gurations.

Warning: Specifying net32- (for an |Pv4 address) or net128- (for an 1Pv6 address) is not the same as
specifying just net- without a number. In the former case the key strings include the mask value,
whereasin the latter case the IP address is used on its own.

10.13 Host list patterns that match by host name

There are severa types of pattern that require Exim to know the name of the remote host. These are
either wildcard patterns or lookups by name. (If a complete hostname is given without any
wildcarding, it isused to nd an | P address to match against, as described in section 10.11 above.)

If the remote host name is not aready known when Exim encounters one of these patterns, it has to be
found from the IP address. Although many sites on the Internet are conscientious about maintaining
reverse DNS data for their hosts, there are also many that do not do this. Consequently, a name cannot
always be found, and this may lead to unwanted effects. Take care when con guring host lists with
wildcarded name patterns. Consider what will happen if a name cannot be found.

Because of the problems of determining host names from | P addresses, matching against host names
is not as common as matching against 1P addresses.

By default, in order to nd a host name, Exim rst does areverse DNS lookup; if no nameisfound in
the DNS, the system function (gethostbyaddr() or getipnodebyaddr() if available) is tried. The order
in which these lookups are done can be changed by setting the host_lookup_order option. For
security, once Exim has found one or more names, it looks up the IP addresses for these names and
compares them with the IP address that it started with. Only those names whose |P addresses match
are accepted. Any other names are discarded. If no names are left, Exim behaves as if the host name
cannot be found. In the most common case there is only one name and one | P address.

There are some options that control what happens if a host name cannot be found. These are
described in section bel ow.

As aresult of aiasing, hosts may have more than one name. When processing any of the following
types of pattern, al the host¢s names are checked:

» If a pattern starts with * the remainder of the item must match the end of the host name. For
example, *. b. ¢ matches all hosts whose names end in .b.c. This special simple form is provided
because this is a very common requirement. Other kinds of wildcarding require the use of aregular
expression.

» If the item starts with ~ it is taken to be a regular expression which is matched against the host
name. Host names are case-independent, so this regular expression match is by default case-
independent, but you can make it case-dependent by starting it with (?-i) . References to descrip-
tions of the syntax of regular expressions are given in chapter @ For example,

96 Domain, host, and address lists (10)

A(alb)\.c\.d$

is a regular expression that matches either of the two hosts a.c.d or b.c.d. When a regular
expression is used in a host list, you must take care that backslash and dollar characters are not
misinterpreted as part of the string expansion. The smplest way to do thisisto use\ Nto mark that
part of the string as non-expandable. For example:

sender _unqual i fi ed_hosts = \N'(a|b)\.c\.d$\N :

Warning: If you want to match a complete host name, you must include the $ terminating
metacharacter in the regular expression, as in the above example. Without it, a match at the start of
the host nameisall that is required.

10.14 Behaviour when an IP address or name cannot be found

While processing a host list, Exim may need to look up an IP address from_a name (see section
10.11), or it may need to look up a host name from an IP address (see section[10.13). In either case,
the behaviour when it failsto nd the information it is seeking is the same.

Note: This section applies to permanent lookup failures. It does not apply to temporary DNS errors,
whose handling is described in the next section.

Exim parses ahost list from left to right. If it encounters a permanent lookup failure in any itemin the
host list before it has found a match, Exim treats it as a failure and the default behavior is as if the
host does not match the list. This may not always be what you want to happen. To change Exim¢s
behaviour, the special items +i ncl ude_unknown or +i gnor e_unknown may appear in the list
(at top level they are not recognized in an indirected le).

e |If any item that follows +i ncl ude_unknown requires information that cannot found, Exim
behaves asif the host does match the list. For example,

host reject_connection = +i nclude_unknown: *. eneny. ex

rejects connections from any host whose name matches * . enerny. ex, and also any hosts whose
name it cannot nd.

« If any item that follows +i gnor e_unknown requires information that cannot be found, Exim
ignores that item and proceeds to the rest of the list. For example:

accept hosts = +ignhore_unknown : friend.exanmple : \
192.168.4.5

accepts from any host whose name is friend.example and from 192.168.4.5, whether or not its host
name can be found. Without +i gnor e_unknown, if no name can be found for 192.168.4.5, it is
rejected.

Both +i ncl ude_unknown and +i gnor e_unknown may appear in the same list. The effect of
each one lasts until the next, or until the end of thelist.

10.15 Mixing wildcarded host names and addresses in host lists

This section explains the host/ip processing logic with the same concepts as the previous section, but
speci cally addresses what happens when awildcarded hostname is one of the itemsin the hostlist.

 If you have name lookups or wildcarded host hames and |P addresses in the same host list, you
should normally put the IP addresses rst. For example, in an ACL you could have:

accept hosts = 10.9.8.7 : *.friend. exanpl e

The reason you normally would order it this way lies in the left-to-right way that Exim processes
lists. It can test 1P addresses without doing any DNS lookups, but when it reaches an item that
requires a host name, it failsif it cannot nd a host name to compare with the pattern. If the above
list is given in the opposite order, the accept statement fails for a host whose name cannot be
found, even if its IP addressis 10.9.8.7.

97 Domain, host, and address lists (10)

 If you really do want to do the name check rst, and still recognize the IP address, you can rewrite
the ACL likethis:

accept hosts
accept hosts

= *. friend. exanpl e

= 10.9.8.7

If the rst accept fails, Exim goes on to try the second one. See chapter or details of ACLs.
Alternatively, you can use +i gnhor e_unknown, which was discussed in depth in the rst
example in this section.

10.16 Temporary DNS errors when looking up host information

A temporary DNS lookup failure normally causes a defer action (except when dns again_means _
nonexist converts it into a permanent error). However, host lists can include +i gnor e_def er and
+i ncl ude_def er, analogous to +i gnor e_unknown and +i ncl ude_unknown, as described
in the previous section. These options should be used with care, probably only in non-critical host
lists such as whitelists.

10.17 Host list patterns for single-key lookups by host name
If apattern is of the form

<single-key-search-type>;<search-data>
for example

dbm / host/ accept/1i st

a single-key lookup is performed, using the host name as its key. If the lookup succeeds, the host
matches the item. The actual datathat islooked up is not used.

Reminder: With this kind of pattern, you must have host names as keys in the le, not |P addresses.
If you want to do lookups based on IP addresses, you must precede the search type with net- (see
section . There is, however, no reason why you could not use two items in the same list, one
doing an address lookup and one doing a name lookup, both using the same le.

10.18 Host list patterns for query-style lookups

If apatternis of the form
<query-style-search-type>,<query>

the query is obeyed, and if it succeeds, the host matches the item. The actual datathat islooked up is
not used. The variables $sender_host_address and $sender_host_name can be used in the query. For
example:

hosts_| ookup = pgsql;\
select ip fromhostlist where ip="$sender_host address’

The value of $sender_host_address for an |Pv6 address contains colons. You can use the sg expansion
item to change this if you need to. If you want to use masked IP addresses in database queries, you
can use the mask expansion operator.

If the query contains areference to $sender_host_name, Exim automatically looks up the host name if
it has not already done so. (See section for commentson nding host names.)

Historical note: prior to release 4.30, Exim would always attempt to nd a host name before running

the query, unless the search type was preceded by net - . Thisis no longer the case. For backwards
compatibility, net - is still recognized for query-style lookups, but its presence or absence has no
effect. (Of course, for single-key lookups, net - is important. Seesection\lO.lZ)

98 Domain, host, and address lists (10)

10.19 Address lists

Address lists contain patterns that are matched against mail addresses. There is one specia case to be
considered: the sender address of a bounce message is always empty. You can test for this by provid-
ing an empty item in an address list. For example, you can set up arouter to process bounce messages
by using this option setting:

senders = :

The presence of the colon creates an empty item. If you do not provide any data, the list is empty and
matches nothing. The empty sender can also be detected by a regular expression that matches an
empty string, and by a query-style lookup that succeeds when $sender_address is empty.

Non-empty itemsin an address list can be straightforward email addresses. For example:
senders = j bc@skone. exanpl e : hs@nacreon. exanpl e

A certain amount of wildcarding is permitted. If a pattern contains an @ character, but is not a regular
expression and does hot begin with a semicolon-terminated lookup type (described below), the local
part of the subject address is compared with the local part of the pattern, which may start with an
asterisk. If the local parts match, the domain is checked in exactly the same way as for a pattern in a
domain list. For example, the domain can be wildcarded, refer to a named list, or be alookup:

deny senders = *@. spanm ng.site:\
*@hostil e domains:\
bozo@artial -1search;/list/of/dodgy/sites:\
*@lbm / bad/ domai ns. db

If alocal part that begins with an exclamation mark is required, it has to be speci ed using a regular
expression, because otherwise the exclamation mark is treated as a sign of negation, asis standard in
lists.

If anon-empty pattern that is not a regular expression or alookup does not contain an @ character, it
is matched against the domain part of the subject address. The only two formats that are recognized
this way are a literal domain, or a domain pattern that starts with *. In both these cases, the effect is
the same asif * @preceded the pattern. For example:

deny senders = eneny.domain : *.eneny.domnain

The following kinds of more complicated address list pattern can match any address, including the
empty address that is characteristic of bounce message senders:

o If (after expansion) a pattern starts with ~, a regular expression match is done against the
complete address, with the pattern as the regular expression. You must take care that backslash and
dollar characters are not misinterpreted as part of the string expansion. The simplest way to do this
isto use\ Nto mark that part of the string as non-expandable. For example:

deny senders = \N‘.*this.*@xanple\.conB\N : \
\ N\ d{ 8} . +@panhaus. exanpl e$\ N :

The \ N sequences are removed by the expansion, so these items do indeed start with ~ by the
time they are being interpreted as address patterns.

» Complete addresses can be looked up by using a pattern that starts with a lookup type terminated
by a semicolon, followed by the data for the lookup. For example:

deny senders = cdb;/etc/bl ocked. senders : \
nysql ; sel ect address from bl ocked where \
addr ess=" ${ quot e_nysql : $sender _addr ess}’

Both query-style and single-key lookup types can be used. For a single-key lookup type, Exim uses
the compl ete address as the key. However, empty keys are not supported for single-key lookups, so
a match against the empty address always fails. This restriction does not apply to query-style
lookups.

99 Domain, host, and address lists (10)

Partial matching for single-key lookups (section cannot be used, and is ignored if speci ed,
with an entry being written to the panic log. However, you can con gure lookup defaults, as
described in section but thisis useful only for the *@ type of default. For example, with this
lookup:

accept senders = Isearch*@/sone/file
the le could contains lineslike this:

user 1@onai nl. exanpl e
* @onai n2. exanpl e

and for the sender address nimrod @ jaeger.example, the sequence of keysthat aretried is:

ni nt od@ aeger . exanpl e
* @ aeger . exanpl e
*

Warning 1. Do not include a line keyed by * in the le, because that would mean that every
address matches, thus rendering the test useless.

Warning 2: Do not confuse these two kinds of item:

dbmr @/ sone/file
*@bm /sone/file

The rst does a whole address lookup, with defaulting, as just described, because it starts with a
lookup type. The second matches the local part and domain independently, as described in a bullet
point below.

deny recipients
deny recipients

The following kinds of address list pattern can match only non-empty addresses. If the subject
address is empty, a match against any of these pattern types always fails.

o If a patern starts with @@ followed by a single-key lookup item (for example,
@ sear ch;/some/ fil e), the address that is being checked is split into a local part and a
domain. The domain is looked up in the le. If it is not found, there is no match. If it isfound, the
data that is looked up from the leistreated as a colon-separated list of local part patterns, each of
which is matched against the subject local part in turn.

The lookup may be a partial one, and/or one involving a search for a default keyed by * (see
section [9.6). The local part patterns that are looked up can be regular expressions or begin with
* , or even be further lookups. They may aso be independently negated. For example, with

deny senders = @@bm/etc/reject-by-domin
the data from which the DBM leisbuilt could contain lines like
baddormai n. com !postnmaster : *
to reject all senders except postmaster from that domain.

If alocal part that actually begins with an exclamation mark is required, it has to be speci ed using

a regular expression. In Isearch les, an entry may be split over several lines by indenting the

second and subsequent lines, but the separating colon must still be included at line breaks. White
space surrounding the colonsisignored. For example:

aol .com spamerl : spamer2 : ~[0-9]+$:
spamrer 3 : spammer4

Asin all colon-separated listsin Exim, a colon can be included in an item by doubling.

If the last item in the list starts with a right angle-bracket, the remainder of the item is taken as a
new key to look up in order to obtain a continuation list of local parts. The new key can be any
sequence of characters. Thus one might have entrieslike

aol .com spanmerl : spamer 2 : >*
Xyz.com spamer3 : >*
*: A\ d{ 8} $

100 Domain, host, and address lists (10)

in a le that was searched with @@dbm*, to specify a match for 8-digit local parts for all

domains, in addition to the speci ¢ local parts listed for each domain. Of course, using this feature
costs another lookup each time a chain is followed, but the effort needed to maintain the data is
reduced.

It is possible to construct loops using this facility, and in order to catch them, the chains may be no
more than fty itemslong.

» The @@<lookup> style of item can also be used with a query-style lookup, but in this case, the
chaining facility is not available. The lookup can only return asingle list of local parts.

Warning: Thereis an important difference between the address list itemsin these two examples:

sender s
sender s

+ny_|i st
*@nmy_list

In the rst one, my_| i st is a named address list, whereas in the second example it is a nhamed
domain list.

10.20 Case of letters in address lists

Domains in email addresses are aways handled caselessly, but for local parts case may be signi cant
on some systems (see caseful_local_part for how Exim deals with this when routing addresses).
However, RFC 2505 (Anti-Spam Recommendations for SMTP MTAs) suggests that matching of
addresses to blocking lists should be done in a case-independent manner. Since most address lists in
Exim are used for this kind of control, Exim attempts to do this by default.

The domain portion of an address is always |lowercased before matching it to an addresslist. The local
part is lowercased by default, and any string comparisons that take place are done caselessly. This
means that the datain the address list itself, in lesincluded as plain le names, and in any lethat is
looked up using the @@ mechanism, can be in any case. However, the keysin lesthat are looked
up by a search type other than Isearch (which works caselessly) must be in lower case, because these
lookups are not case-independent.

To allow for the possibility of caseful address list matching, if an item in an address list is the string
+caseful , the original case of the local part is restored for any comparisons that follow, and string
comparisons are no longer case-independent. This does not affect the domain, which remainsin lower
case. However, although independent matches on the domain alone are still performed caselessly,
regular expressions that match against an entire address become case-sensitive after +caseful has
been seen.

10.21 Local part lists

Case-sengitivity in local part lists is handled in the same way as for address lists, as just described.
The +caseful item can be used if required. In a setting of the local_parts option in a router with
caseful_local_part set false, the subject is lowercased and the matching is initially case-insensitive.
In this case, +caseful will restore case-sensitive matching in the local part list, but not elsewhere in
the router. If caseful local _part is set true in a router, matching in the local_parts option is case-
sensitive from the start.

If alocal part list isindirected to a le (see section comments are handled in the same way as

address lists they are recognized only if the # is preceded by white space or the start of the line.

Otherwise, local part lists are matched in the same way as domain lists, except that the special items
that refer to the local host (@ @], @x_any, @x_pri mary, and @x_secondary) are not
recognized. Refer to section[10.8/for details of the other available item types.

101 Domain, host, and address lists (10)

11. String expansions

Many strings in Exim@s run time con guration are expanded before use. Some of them are expanded
every time they are used; others are expanded only once.

When a string is being expanded it is copied verbatim from left to right except when a dollar or
backslash character is encountered. A dollar speci es the start of a portion of the string that is
interpreted and replaced as described below in section E onwards. Backslash is used as an escape
character, as described in the following section.

Whether a string is expanded depends upon the context. Usually this is solely dependent upon the
option for which a value is sought; in this documentation, options for which string expansion is
performed are marked with after the data type. ACL rules always expand strings. A couple of
expansion conditions do not expand some of the brace-delimited branches, for security reasons.

11.1 Literal text in expanded strings

An uninterpreted dollar can be included in an expanded string by putting a backslash in front of it. A
backslash can be used to prevent any special character being treated specially in an expansion,
including backslash itself. If the string appears in quotes in the con guration le, two backslashes are
required because the quotes themselves cause interpretation of backslashes when the string isread in
(see section .

A portion of the string can speci ed as non-expandable by placing it between two occurrences of \ N.
This is particularly useful for protecting regular expressions, which often contain backslashes and
dollar signs. For example:

deny senders = \N'"\ d{8}[a-z] @one\.site\.exanpl e$\ N

On encountering the rst\ N, the expander copies subsequent characters without interpretation until it
reaches the next \ N or the end of the string.

11.2 Character escape sequences in expanded strings

A backslash followed by one of the letters n, r, or t in an expanded string is recognized as an
escape sequence for the character newline, carriage return, or tab, respectively. A backslash followed
by up to three octal digits is recognized as an octal encoding for a single character, and a backslash
followed by x and up to two hexadecimal digitsis a hexadecimal encoding.

These escape sequences are also recognized in quoted strings when they are read in. Their interpret-
ation in expansions as well is useful for unquoted strings, and for other cases such as looked-up
strings that are then expanded.

11.3 Testing string expansions

Many expansions can be tested by calling Exim with the -be option. This takes the command argu-
ments, or lines from the standard input if there are no arguments, runs them through the string
expansion code, and writes the results to the standard output. Variables based on con guration values
are set up, but since no message is being processed, variables such as $local_part have no value.
Nevertheless the -be option can be useful for checking out le and database lookups, and the use of
expansion operators such as sg, substr and nhash.

Exim gives up its root privilege when it is called with the -be option, and instead runs under the uid
and gid it was called with, to prevent users from using -be for reading les to which they do not have
access.

If you want to test expansions that include variables whose values are taken from a message, there are
two other options that can be used. The -bem option is like -be except that it is followed by a le
name. The leisread as a message before doing the test expansions. For example:

exim-bem/tnp/test. message ' $h_subject:’

102 String expansions (11)

The -Mset option is used in conjunction with -be and is followed by an Exim message identi er. For
example:

exim-be -Mset 1G ABW 0004W5-LQ ' $reci pi ents’

This loads the message from Eximds spool before doing the test expansions, and is therefore restricted
to admin users.

11.4 Forced expansion failure

A number of expansions that are described in the following section have alternative true and false
substrings, enclosed in brace characters (which are sometimes called curly brackets). Which of the
two strings is used depends on some condition that is evaluated as part of the expansion. If, instead of
a false substring, the word fail is used (not in braces), the entire string expansion fails in a way
that can be detected by the code that requested the expansion. This is caled forced expansion
failure, and its consequences depend on the circumstances. In some cases it is no different from any
other expansion failure, but in others a different action may be taken. Such variations are mentioned
in the documentation of the option that is being expanded.

11.5 Expansion items

The following items are recognized in expanded strings. White space may be used between sub-items
that are keywords or substrings enclosed in braces inside an outer set of braces, to improve read-
ability. Warning: Within braces, white spaceis signi cant.

$<variable name> or ${<variable name>}
Substitute the contents of the named variable, for example:

$l ocal _part
${ domai n}

The second form can be used to separate the name from subsequent al phanumeric characters. This
form (using braces) is available only for variables; it does nor apply to message headers. The
names of the variables are given in section below. If the name of a non-existent variable is
given, the expansion fails.

H<op>:<string>}
The string is rst itself expanded, and then the operation speci ed by <op> is applied to it. For
example:

${1c:$l ocal part}

The string starts with the rst character after the colon, which may be leading white space. A list
of operators is given in section below. The operator notation is used for simple expansion
items that have just one argument, because it reduces the number of braces and therefore makes
the string easier to understand.

$bheader _<header name>: or $bh_<header name>:
Thisitem inserts basic header lines. It is described with the header expansion item below.

Hacl{<name>}{<arg>}...}

The name and zero to nine argument strings are rst expanded separately. The expanded argu-

ments are assigned to the variables $acl_argl to $acl_arg9 in order. Any unused are made empty.
The variable $acl_narg is set to the number of arguments. The named ACL (see chapter is
caled and may use the variables; if another acl expansion is used the values are restored after it
returns. If the ACL sets avalue using a"message =" modi er and returns accept or deny, the value
becomes the result of the expansion. If no message is set and the ACL returns accept or deny the
expansion result is an empty string. If the ACL returns defer the result is a forced-fail. Otherwise
the expansion fails.

103 String expansions (11)

Hauthresults{<authserv-id>}}
This item returns a string suitable for insertion as an Authentication-Results" header line. The
given <authserv-id> is included in the result; typically this will be a domain name identifying the
system performing the authentications. Methods that might be present in the result include:

none
i prev
aut h
spf
dki m

Example use (as an ACL modi er):
add_header = :at_start:${authresults {$primary_host nane}}
Thisis safe even if no authentication results are available.

${certextract{<field>}{ <certificate>}{<string2>}{ <string3>}}
The <certificate> must be a variable of type certi cate. The eld name is expanded and used to
retrieve the relevant eld from the certi cate. Supported elds are:

ver si on

seri al _nunber

subj ect RFC4514 DN
i ssuer RFC4514 DN
not bef ore time

not af t er time

sig_al gorithm

si ghature

subj _al t nane tagged list
ocsp_uri list

crl _uri list

If the eld isfound, <string2> is expanded, and replaces the whole item; otherwise <string3> is
used. During the expansion of <string2> the variable $value contains the value that has been
extracted. Afterwards, it is restored to any previous value it might have had.

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} isalso omitted, the value that was extracted is used.

Some eld names take optional modi ers, appended and separated by commas.

The eld selectors marked as "RFC4514" above output a Distinguished Name string which is not
quite parseable by Exim as a comma-separated tagged list (the exceptions being elements contain-
ing commas). RDN elements of a single type may be selected by amodi er of the type label; if so
the expansion result is a list (newline-separated by default). The separator may be changed by
another modi er of a right angle-bracket followed immediately by the new separator. Recognised
RDN type labelsinclude "CN", "O", "OU" and "DC".

The eld selectors marked as "time" above take an optional modi er of "int" for which the result
is the number of seconds since epoch. Otherwise the result is a human-readable string in the
timezone selected by the main "timezone" option.

The eld selectors marked as "list" above return a list, newline-separated by default, (embedded
separator characters in elements are doubled). The separator may be changed by a modi er of a
right angle-bracket followed immediately by the new separator.

The eld selectors marked as "tagged" above prex each list element with a type string and an
equals sign. Elements of only one type may be selected by a modi er which is one of "dns’, "uri"
or "mail"; if so the element tags are omitted.

If not otherwise noted eld values are presented in human-readable form.

104 String expansions (11)

HdIfunc{<file>H{ <function>}{<arg>}{<arg>}...}
This expansion dynamically loads and then calls alocally-written C function. This functionality is
available only if Exim is compiled with

EXPAND_DLFUNC=yes

set in Local/Makefile. Once loaded, Exim remembers the dynamically loaded object so that it
doesndt reload the same object le in the same Exim process (but of course Exim does start new
processes frequently).

There may be from zero to eight arguments to the function. When compiling aloca function that
isto be called in thisway, local_scan.h should be included. The Exim variables and functions that
are dened by that API are also available for dynamically loaded functions. The function itself
must have the following type:

int dlfunction(uschar **yield, int argc, uschar *argv[])

Where uschar is atypedef for unsi gned char in local_scan.h. The function should return
one of the following values:

OK: Success. The string that is placed in the variable yield is put into the expanded string that is
being built.

FAI L: A non-forced expansion failure occurs, with the error message taken from yield, if it is set.

FAI L_FORCED: A forced expansion failure occurs, with the error message taken from yield if it is
Set.

ERROR: Same as FAI L, except that a panic log entry is written.

When compiling a function that is to be used in this way with gcc, you need to add -shared to the
gcc command. Also, in the Exim build-time con guration, you must add -export-dynamic to
EXTRALIBS.

Henv{<key>}{<string I>H{<string2>}}
The key is rst expanded separately, and leading and trailing white space removed. This is then
searched for as a name in the environment. If a variable is found then its value is placed in $value
and <string 1> is expanded, otherwise <string2> is expanded.

Instead of { <string2>} theword fail (not in curly brackets) can appear, for example:
${ env{ USER} { $val ue} fail }

This forces an expansion failure (see section [11.4); {<stringl>} must be present for fail to be
recognized.

If {<string2>} isomitted an empty string is substituted on search failure. If {<stringI>} is omitted
the search result is substituted on search success.

The environment is adjusted by the keep_environment and add_environment main section
options.

H extract{<key>}{<string I>}{<string2>}{ <string3>}}
The key and <string1> are rst expanded separately. Leading and trailing white space is removed
from the key (but not from any of the strings). The key must not be empty and must not consist
entirely of digits. The expanded <string /> must be of the form:

<keyl> = <valuel> <key2> = <value2> ...

where the equals signs and spaces (but not both) are optional. If any of the values contain white
space, they must be enclosed in double quotes, and any values that are enclosed in double quotes
are subject to escape processing as described in section The expanded <string1> is searched
for the value that corresponds to the key. The search is case-insensitive. If the key is found,
<string2> is expanded, and replaces the whole item; otherwise <string3> is used. During the
expansion of <string2> the variable $value contains the value that has been extracted. Afterwards,
it isrestored to any previous value it might have had.

105 String expansions (11)

If {<string3>} is omitted, the item is replaced by an empty string if the key is not found. If
{<string2>} is also omitted, the value that was extracted is used. Thus, for example, these two
expansions areidentical, and yield 2001 :

${extract{gi d}{ui d=1984 gi d=2001}}
${extract{gid}{ui d=1984 gi d=2001}{ $val ue}}

Instead of {<string3>} theword fail (not in curly brackets) can appear, for example:
${extract{Z}{A=... B=...}{$value} fail }

This forces an expansion failure (see section [11.4); { <string2>} must be present for fail to be
recognized.

${extract{<number>}{<separators>}{<string 1>}{<string2>}{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from leading and trailing
white space, which is ignored. This is what distinguishes this form of extract from the previous
kind. It behaves in the same way, except that, instead of extracting a named eld, it extracts from
<string 1> the eld whose number is given as the rst argument. You can use $value in <string2>
orfail instead of <string3> as before.

The €elds in the string are separated by any one of the characters in the separator string. These
may include space or tab characters. The rst eld is numbered one. If the number is negative, the
elds are counted from the end of the string, with the rightmost one numbered -1. If the number
given is zero, the entire string is returned. If the modulus of the number is greater than the number
of eldsin the string, the result is the expansion of <string3>, or the empty string if <string3> is
not provided. For example:

${extract{2}{:}{x:42:99: & Mail er::/bin/bash}}
yields 42, and
${extract{-4}{:}{x:42:99: & Mail er::/bin/bash}}

yields 99. Two successive separators mean that the eld between them is empty (for example,
the fth eld above).

¥ Iter{<string>}{<condition>}}
After expansion, <string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way. For each item in this list, its value is place in $item, and then the
condition is evaluated. If the condition is true, $item is added to the output as an item in anew list;
if the condition is false, the item is discarded. The separator used for the output list is the same as
the one used for the input, but a separator setting is not included in the output. For example:

${filter{a:b:c}{'eq{Sitent{b}}}
yields a: c. At the end of the expansion, the value of $item is restored to what it was before. See
also the map and reduce expansion items.

H hash{<string I>}{ <string2>}H{ <string3>}}
This is a textual hashing function, and was the rst to be implemented in early versions of Exim.
In current releases, there are other hashing functions (numeric, MD5, and SHA-1), which are
described below.

The rst two strings, after expansion, must be numbers. Call them <m> and <n>. If you are using
xed values for these numbers, that is, if <stringl> and <string2> do not change when they are
expanded, you can use the simpler operator notation that avoids some of the braces:

${ hash_<n>_<np: <stri ng>}

The second number is optional (in both notations). If <n> is greater than or equal to the length of

the string, the expansion item returns the string. Otherwise it computes a new string of length <n>
by applying a hashing function to the string. The new string consists of characters taken from the
rst <m> characters of the string

abcdef ghi j kIl mopqr st uvwxyz ABCDEFGHI JKLMNOPQARSTUVWKYZ0123456789

106 String expansions (11)

If <m>isnot present the value 26 is used, so that only lower case |etters appear. For example:

$hash{3}{nonty}} yields j ng
$hash{5}{rmonty}} yields nonty
$hash{4}{62}{nonty python}} vyieds f bW

$header _<header name>: or $h_<header name>:
$bheader _<header name>: or $bh_<header name>:
$rheader _<header name>: or $rh_<header name>:
Substitute the contents of the named message header line, for example

$header _repl y-to:

The newline that terminates a header line is not included in the expansion, but internal newlines
(caused by splitting the header line over several physical lines) may be present.

The difference between rheader, bheader, and header isin the way the data in the header line is
interpreted.

» rheader gives the origina raw content of the header line, with no processing at al, and
without the removal of leading and trailing white space.

» bheader removes leading and trailing white space, and then decodes base64 or quoted-printable
MIME words within the header text, but does no character set trandation. If decoding of what
looks super cidly likeaMIME word fails, the raw string is returned. If decoding produces a
binary zero character, it is replaced by a question mark thisiswhat Exim does for binary zeros
that are actually received in header lines.

» header triesto trandlate the string as decoded by bheader to a standard character set. Thisis an
attempt to produce the same string as would be displayed on a user¢s MUA. If trandlation fails,
the bheader string is returned. Tranglation is attempted only on operating systems that support
the iconv() function. This is indicated by the compile-time macro HAVE_ICONV in a system
Make le or in Local/Makefile.

Ina Iter le, the target character set for header can be speci ed by a command of the following
form:

headers charset "UTF-8"

This command affects all referencesto $h_ (or $header_) expansions in subsequently obeyed Iter
commands. In the absence of this command, the target character set in a Iter is taken from the
setting of the headers charset option in the runtime con guration. The value of this option
defaults to the value of HEADERS CHARSET in Local/Makefile. The ultimate default is ISO-
8859-1.

Header names follow the syntax of RFC 2822, which states that they may contain any printing
characters except space and colon. Consequently, curly brackets do not terminate header names,
and should not be used to enclose them as if they were variables. Attempting to do so causes a
syntax error.

Only header lines that are common to all copies of a message are visible to this mechanism. These
are the original header lines that are received with the message, and any that are added by an ACL
statement or by a system Iter. Header lines that are added to a particular copy of a message by a
router or transport are not accessible.

For incoming SM TP messages, no header lines are visible in ACL s that are obeyed before the data
phase compl etes, because the header structure is not set up until the message is received. They are
visble in DKIM, PRDR and DATA ACLs. Header lines that are added in a RCPT ACL (for
example) are saved until the message¢s incoming header lines are available, at which point they are
added. When any of the above ACLs ar running, however, header lines added by earlier ACLs are
visible.

Upper case and lower case letters are synonymous in header names. If the following character is
white space, the terminating colon may be omitted, but thisis not recommended, because you may
then forget it when it is needed. When white space terminates the header name, this white space is

107 String expansions (11)

included in the expanded string. If the message does not contain the given header, the expansion
item is replaced by an empty string. (See the def condition in secti onh for a means of testing
for the existence of a header.)

If there is more than one header with the same name, they are all concatenated to form the
substitution string, up to a maximum length of 64K. Unless rheader is being used, leading and
trailing white space is removed from each header before concatenation, and a completely empty
header isignored. A newline character is then inserted between non-empty headers, but there is no
newline at the very end. For the header and bheader expansion, for those headers that contain
lists of addresses, acomma is also inserted at the junctions between headers. This does not happen
for therheader expansion.

Hhmac{<hashname>}{<secret>}{<string>}}
This function uses cryptographic hashing (either MD5 or SHA-1) to convert a shared secret and
some text into a message authentication code, as speci ed in RFC 2104. This differs from
${nd5: secret _text...} or ${shal: secret _text...} in that the hmac step adds a
signature to the cryptographic hash, allowing for authentication that is not possible with MD5 or
SHA-1 aone. The hash name must expand to either nd5 or shal at present. For example:

${ hmac{ mi5} {sonesecret}{$pri mary_host name $tod_I og}}
For the hostname mail.example.com and time 2002-10-17 11:30:59, this produces:
dd97e3ba5d1a61b5006108f 8¢8252953

As an example of how this might be used, you might put in the main part of an Exim
con guration:

SPAMSCAN_SECRET=cohgheeLei 2t hahw
In arouter or atransport you could then have:

headers_add =\
X- Spam Scanned: ${primary_host nane} ${nessage_exi m.id} \
${ hmac{ nd5} { SPAVSCAN_SECRET}\
{${primary_host nane}, ${ nessage_exi m i d}, $h_nmessage-id: }}

Then given a message, you can check where it was scanned by looking at the X-Spam-Scanned:
header line. If you know the secret, you can check that this header line is authentic by recomputing
the authentication code from the host name, message ID and the Message-id: header line. This can
be done using Exim¢s -be option, or by other means, for example by using the himac_md5_hex()
function in Perl.

Hif <condition> {<stringI>H{<string2>}}
If <condition> istrue, <stringI> is expanded and replaces the whole item; otherwise <string2> is
used. The available conditions are described in section|11. ﬂ below. For example:

${if eq {$local _part}{postmaster} {yes}{no} }

The second string need not be present; if it is not and the condition is not true, the item is replaced
with nothing. Alternatively, the word fail may be present instead of the second string (without

any curly brackets). In this case, the expansion is forced to fail if the condition is not true (see
section.

If both strings are omitted, the result is the string t r ue if the condition is true, and the empty
string if the condition is false. This makes it less cumbersome to write custom ACL and router
conditions. For example, instead of

condition = ${if >{$acl _mi}{3}{true}{fal se}}
you can use
condition = ${if >{$acl _mi}{3}}

Himapfolder{<foldername>}}
This item converts a (possibly multilevel, or with non-ASCII characters) folder speci cation to a
Maildir name for lesystem use. For information on internationalisation support see

108 String expansions (11)

Hlength{<string I>}{<string2>}}
The length item is used to extract the initial portion of a string. Both strings are expanded, and the
rst one must yield a number, <n>, say. If you are using a xed value for the number, that is, if
<string 1> does not change when expanded, you can use the simpler operator notation that avoids
some of the braces:

${l engt h_<n>: <string>}

The result of thisitem is either the rst <n> characters or the whole of <s#ring2>, whichever isthe
shorter. Do not confuse length with strlen, which gives the length of a string.

${listextr act{ <number>}{<string I>H{<string2>}{<string3>}}
The <number> argument must consist entirely of decimal digits, apart from an optional leading
minus, and leading and trailing white space (which isignored).

After expansion, <stringl> isinterpreted as alist, colon-separated by default, but the separator can
be changed in the usual way.

The rst eld of thelist is numbered one. If the number is negative, the elds are counted from the
end of the list, with the rightmost one numbered -1. The numbered element of the list is extracted
and placed in $value, then <string2> is expanded as the resuilt.

If the modulus of the number is zero or greater than the number of eldsin the string, the result is
the expansion of <string3>.

For example:

${listextract{2}{x:42:99}}
yields 42, and

${listextract{-3}{<, x,42,99,& Miler,,/bin/bash}{result: $val ue}}
yields result: 42 .

If {<string3>} is omitted, an empty string is used for string3. If {<szring2>} is aso omitted, the
value that was extracted isused. You can usef ai | instead of {<string3>} asin astring extract.

Hlookup{<key>} <search type> {<file>} {<string 1>} {<string2>}}
Thisisthe rst of one of two different types of lookup item, which are both described in the next
item.

Hlookup <search type> {<query>} {<string 1>} {<string2>}}
The two forms of lookup item specify data lookups in les and databases, as discussed in chapter
|§, The rst form is used for single-key lookups, and the second is used for query-style lookups.
The <key>, <file>, and <query> strings are expanded before use.

If there is any white space in a lookup item which is part of a Iter command, a retry or rewrite
rule, arouting rule for the manualroute router, or any other place where white space is signi cant,
the lookup item must be enclosed in double quotes. The use of data lookups in userst Iter les
may be locked out by the system administrator.

If the lookup succeeds, <stringl> is expanded and replaces the entire item. During its expansion,
the variable $value contains the data returned by the lookup. Afterwards it reverts to the value it
had previously (at the outer level it is empty). If the lookup fails, <string2> is expanded and
replaces the entire item. If {<string2>} is omitted, the replacement is the empty string on failure.
If <string2> is provided, it can itself be a nested lookup, thus providing a mechanism for looking
up adefault value when the original lookup fails.

If anested lookup is used as part of <stringl>, $value contains the data for the outer lookup while
the parameters of the second lookup are expanded, and also while <string2> of the second lookup
is expanded, should the second lookup fail. Instead of { <string2>} theword fail can appear, and
in this case, if the lookup fails, the entire expansion is forced to fail (see section|11.4). If both
{<stringl>} and {<string2>} are omitted, the result is the looked up value in the case of a
successful lookup, and nothing in the case of failure.

109 String expansions (11)

For single-key lookups, the string partia is permitted to precede the search type in order to do
partial matching, and * or * @ may follow a search type to request default lookups if the key does
not match (see secti ons and|9.7]for details).

If apartial search is used, the variables $1 and $2 contain the wild and non-wild parts of the key
during the expansion of the replacement text. They return to their previous values at the end of the
lookup item.

This example looks up the postmaster aliasin the conventional alias le:
${| ookup {postmaster} |search {/etc/aliases} {$val ue}}

This example uses NIS+ to look up the full name of the user corresponding to the local part of an
address, forcing the expansion to fail if it is not found:

${| ookup ni splus {[name=$l ocal _part], passwd. org_dir:gcos} \
{$val ue}fail}

Hmap{<string I>}{<string2>}}
After expansion, <stringl> isinterpreted as alist, colon-separated by default, but the separator can
be changed in the usua way. For each item in this list, its value is place in $irem, and then
<string2> is expanded and added to the output as an item in a new list. The separator used for the
output list is the same as the one used for the input, but a separator setting is not included in the
output. For example:

${map{a: b:c}{[Sitem}} ${map{<- x-y-z}{(Sitem}}

expandsto[a]:[b]:[c] (x)-(y)-(z).Attheend of the expansion, the value of $item is
restored to what it was before. See also the Iter and reduce expansion items.

$ nhash{<string I>H{ <string2>}{<string3>}}
The three strings are expanded; the rst two must yield numbers. Call them <n> and <m>. If you
are using xed values for these numbers, that is, if <stringl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${ nhash_<n>_<np: <stri ng>}

The second number is optional (in both notations). If there is only one number, the result is a
number in the range 0 <n>-1. Otherwise, the string is processed by a div/mod hash function that
returns two numbers, separated by a slash, in the ranges 0 to <n>-1 and 0 to <m>-1, respectively.
For example,

${nhash{8} {64} {supercalifragilisticexpialidocious}}
returns the string 6/33.

H perl{<subroutine>}{<arg>}{<arg>}...}
This item is available only if Exim has been built to include an embedded Perl interpreter. The
subroutine name and the arguments are rst separately expanded, and then the Perl subroutine is
called with those arguments. No additional arguments need be given; the maximum number per-
mitted, including the name of the subroutine, is nine.

The return value of the subroutine is inserted into the expanded string, unless the return value is
undef. In that case, the expansion fails in the same way as an explicit fail on alookup item. The
return value is a scalar. Whatever you return is evaluated in a scalar context. For example, if you
return the name of a Perl vector, the return valueis the size of the vector, not its contents.

If the subroutine exits by calling Perl¢s die function, the expansion fails with the error message
that was passed to die. More details of the embedded Per| facility are given in chapter

The redirect router has an option called forbid_ Iter_perl which locks out the use of this expan-
sionitemin lter les.

¥ prvs{<address>}{<secret>}{<keynumber>}}
The rst argument is a complete email address and the second is secret keystring. The third
argument, specifying a key number, is optional. If absent, it defaults to 0. The result of the
expansion is a prvs-signed email address, to be typicaly used with the return_path option on an

110 String expansions (11)

smtp transport as part of_a bounce address tag validation (BATV) scheme. For more discussion and
an example, see section

${prvscheck{<address>}{<secret>}{<string>}}
This expansion item is the complement of the prvs item. It is used for checking prvs-signed
addresses. If the expansion of the rst argument does not yield a syntactically valid prvs-signed
address, the whole item expands to the empty string. When the rst argument does expand to a
syntactically valid prvs-signed address, the second argument is expanded, with the prvs-decoded
version of the address and the key number extracted from the address in the variables $prvscheck_
address and $prvscheck_keynum, respectively.

These two variables can be used in the expansion of the second argument to retrieve the secret.
The validity of the prvs-signed address is then checked against the secret. The result is stored in
the variable $prvscheck_result, which is empty for failureor 1 for success.

The third argument is optional; if it ismissing, it defaults to an empty string. This argument is now
expanded. If the result is an empty string, the result of the expansion is the decoded version of the
address. This is the case whether or not the signature was valid. Otherwise, the result of the
expansion is the expansion of the third argument.

All three variables can be used in the expansion of the third argument. However, once the expan-
sion is complete, only $prvscheck_result remains set. For more discussion and an example, see
sectionﬁ

Hread le{<file name>}{<eol string>}}
The le name and end-of-line string are rst expanded separately. The le is then read, and its
contents replace the entire item. All newline characters in the le are replaced by the end-of-line
string if it is present. Otherwise, newlines are left in the string. String expansion is not applied to
the contents of the le. If you want this, you must wrap the item in an expand operator. If the le
cannot be read, the string expansion fails.

The redirect router has an option called forbid_Iter_read le which locks out the use of this
expansionitemin lter les.

${readsocket{ <name>} <request>}{ <options>}{<eol string>}{<fail string>}}
This item inserts data from a Unix domain or TCP socket into the expanded string. The minimal
way of using it uses just two arguments, as in these examples.

${readsocket {/ socket/ nane}{request string}}
${readsocket {i net: sonme. host: 1234} {request string}}

For a Unix domain socket, the rst substring must be the path to the socket. For an Internet socket,

the rst substring must containi net : followed by a host name or IP address, followed by a colon

and a port, which can be a number or the name of a TCP port in /etc/services. An |P address may
optionally be enclosed in square brackets. Thisis best for |Pv6 addresses. For example:

${readsocket {inet:[::1]:1234}{request string}}

Only a single host name may be given, but if looking it up yields more than one IP address, they
are each tried in turn until a connection is made. For both kinds of socket, Exim makes a connec-
tion, writes the request string unless it is an empty string; and no terminating NUL is ever sent)
and reads from the socket until an end-of- le is read. A timeout of 5 seconds is applied.
Additional, optional arguments extend what can be done. Firstly, you can vary the timeout. For
example:

${readsocket {/ socket/ name}{request string}{3s}}

The third argument is a list of options, of which the rst element is the timeout and must be
present if the argument is given. Further elements are options of form name=value. One option
type is currently recognised, de ning whether (the default) or not a shutdown is done on the
connection after sending the request. Example, to not do so (preferred, eg. by some webservers):

${readsocket {/ socket/ name} {request string}{3s: shutdown=no}}

111 String expansions (11)

A fourth argument allows you to change any newlines that are in the data that is read, in the same
way asfor read le (see above). This example turns them into spaces:

${readsocket{inet:127.0.0.1: 3294} {request string}{3s}{ }}

Aswith all expansions, the substrings are expanded before the processing happens. Errorsin these
sub-expansions cause the expansion to fail. In addition, the following errors can occur:

 Failureto create asocket |e descriptor;
* Failure to connect the socket;
 Failure to write the request string;

» Timeout on reading from the socket.

By default, any of these errors causes the expansion to fail. However, if you supply a fth sub-
string, it is expanded and used when any of the above errors occurs. For example:

${readsocket {/ socket/ nane}{request string}{3s}{\n}\
{socket failure}}

You can test for the existence of a Unix domain socket by wrapping this expansion in ${i f
exi st s, but there is a race condition between that test and the actual opening of the socket, so it
is safer to use the fth argument if you want to be absolutely sure of avoiding an expansion error
for a non-existent Unix domain socket, or afailure to connect to an Internet socket.

The redirect router has an option called forbid_ Iter_readsocket which locks out the use of this
expansionitemin lter les.

Hreduce{<string I>}{ <string2>}{<string3>}}

This operation reduces alist to asingle, scalar string. After expansion, <stringl> isinterpreted asa
list, colon-separated by default, but the separator can be changed in the usual way. Then <string2>
is expanded and assigned to the $value variable. After this, each item in the <stringl> list is
assigned to $item in turn, and <string3> is expanded for each of them. The result of that expansion
is assigned to $value before the next iteration. When the end of the list is reached, the nal value

of $value is added to the expansion output. The reduce expansion item can be used in a number of
ways. For example, to add up alist of numbers:

${reduce {<, 1,2, 3}{0}{${eval: $val ue+$iten}}}
The result of that expansion would be 6. The maximum of alist of numbers can be found:
${reduce {3:0:9:4:6}{0}{S{if >{Siten{Sval ue}{Siten}{Svalue}}}}

At the end of a reduce expansion, the values of $irem and $value are restored to what they were
before. See also the Iter and map expansion items.

$rheader _<header name>: or $rh_<header name>:
Thisitem inserts raw header lines. It is described with the header expansion item above.

Hrun{<command> <args>}{<string I>}{<string2>}}
The command and its arguments are rst expanded as one string. The string is split apart into
individual arguments by spaces, and then the command is run in a separate process, but under the
same uid and gid. Asin other command executions from Exim, ashell is not used by default. If the
command requires a shell, you must explicitly codeit.

Since the arguments are split by spaces, when there is a variable expansion which has an empty
result, it will cause the situation that the argument will simply be omitted when the program is
actually executed by Exim. If the script/program requires a speci ¢ number of arguments and the
expanded variable could possibly result in this empty expansion, the variable must be quoted. This
ismore dif cult if the expanded variable itself could result in a string containing quotes, because it
would interfere with the quotes around the command arguments. A possible guard against thisisto
wrap the variable in the sg operator to change any quote marks to some other character.

The standard input for the command exists, but is empty. The standard output and standard error
are set to the same e descriptor. If the command succeeds (gives a zero return code) <stringl> is

112 String expansions (11)

expanded and replaces the entire item; during this expansion, the standard output/error from the
command is in the variable $value. If the command fails, <string2>, if present, is expanded and
used. Once again, during the expansion, the standard output/error from the command is in the
variable $value.

If <string2> is absent, the result is empty. Alternatively, <string2> can be the word fail (not in
braces) to force expansion failure if the command does not succeed. If both strings are omitted, the
result is contents of the standard output/error on success, and nothing on failure.

The standard output/error of the command is put in the variable $value. In this ACL example, the
output of acommand is logged for the admin to troubleshoot:

${run{/usr/bin/id}{yes}{no}}
Qut put of id: $val ue

warn condition
| og_nessage

If the command requires shell idioms, such as the > redirect operator, the shell must be invoked
directly, such as with:

${run{/bin/bash -c "/usr/bin/id >/tnp/id"}{yes}{yes}}

The return code from the command is put in the variable $runrc, and this remains set afterwards,
soina Iter leyou can do thingslikethis:

if "${run{x y z}{}}$runrc" is 1 then ...
elif $runrc is 2 then ...

endi f
If execution of the command fails (for example, the command does not exist), the return code is
127 the same code that shells use for non-existent commands.

Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

The redirect router has an option called forbid_ Iter_run which locks out the use of this expan-
sionitemin lter les.

H s <subject>}{ <regex>}{<replacement>}}
This item works like Perl¢s substitution operator (s) with the global (/g) option; hence its name.
However, unlike the Perl equivalent, Exim does not modify the subject string; instead it returns the
modi ed string for insertion into the overall expansion. The item takes three arguments. the
subject string, aregular expression, and a substitution string. For example:

${sg{ abcdef abcdef }{abc}{xyz}}

yields xyzdefxyzdef . Because al three arguments are expanded before use, if any $, } or \
characters are required in the regular expression or in the substitution string, they have to be
escaped. For example:

${sg{abcdef }{"(...)(...)\$}{\$2\$1}}
yields defabc, and
${sg{1=A 4=D 3=C}{\N(\d+) =\ N} { K\ $1=}}

yields K1=A K4=D K3=C . Note the use of \ N to protect the contents of the regular expression
from string expansion.

H sort{<string>H{ <comparator>}{<extractor>}}
After expansion, <string> is interpreted as a list, colon-separated by default, but the separator can
be changed in the usual way. The <comparator> argument is interpreted as the operator of a
two-argument expansion condition. The numeric operators plus ge, gt, le, It (and ~i variants) are
supported. The comparison should return true when applied to two values if the rst value should
sort before the second value. The <extractor> expansion is applied repeatedly to elements of the
list, the element being placed in $item, to give values for comparison.

113 String expansions (11)

The item result is a sorted list, with the original list separator, of the list elements (in full) of the
original.

Examples:

${sort{3:2:1:4}{<}{Sitent}
sorts alist of numbers, and

${sort {${1 ookup dnsdb{>:,, nk=exanple.con}}} {<} {${listextract{1}{<,$itent}}}
will sort an MX lookup into priority order.

Hsubstr{<string I>}H{<string2>}{<string3>}}
The three strings are expanded; the rst two must yield numbers. Call them <n> and <m>. If you
are using xed values for these numbers, that is, if <stringl> and <string2> do not change when
they are expanded, you can use the simpler operator notation that avoids some of the braces:

${substr_<n>_<np: <stri ng>}

The second number is optional (in both notations). If it is absent in the simpler format, the
preceding underscore must aso be omitted.

The substr item can be used to extract more genera substrings than length. The rst number, <n>,
isastarting offset, and <m> is the length required. For example

${substr{3}{2}{$l ocal _part}}

If the starting offset is greater than the string length the result is the null string; if the length plus
starting offset is greater than the string length, the result is the right-hand part of the string, starting
from the given offset. The rst character in the string has offset zero.

The substr expansion item can take negative offset values to count from the right-hand end of its
operand. The last character is offset -1, the second-last is offset -2, and so on. Thus, for example,

${substr{-5}{2}{1234567}}

yields 34 . If the absolute value of a negative offset is greater than the length of the string, the
substring starts at the beginning of the string, and the length is reduced by the amount of over-
shoot. Thus, for example,

${substr{-5}{2}{12}}
yields an empty string, but

${substr{-3}{2}{12}}
yields 1.

When the second number is omitted from substr, the remainder of the string is taken if the offset
is positive. If it is negative, all characters in the string preceding the offset point are taken. For
example, an offset of -1 and no length, as in these semantically identical examples:

${substr_-1: abcde}
${substr{-1}{abcde}}

yields all but the last character of the string, that is, abcd .

Htr{<subject>}{<characters>}{<replacements>}}
This item does single-character trandation on its subject string. The second argument is a list of
characters to be trandlated in the subject string. Each matching character is replaced by the corre-
sponding character from the replacement list. For example

${tr{abcdea}{ac}{13}}

yields 1b3del. If there are duplicates in the second character string, the last occurrenceis used. If
the third string is shorter than the second, its last character is replicated. However, if it is empty, no
tranglation takes place.

114 String expansions (11)

11.6 Expansion operators

For expansion items that perform transformations on a single argument string, the operator notation
is used because it is simpler and uses fewer braces. The substring is rst expanded before the
operation is applied to it. The following operations can be performed:

$address.<string>}
The string is interpreted as an RFC 2822 address, as it might appear in a header line, and the
effective address is extracted from it. If the string does not parse successfully, the result is empty.

${addresses: <string>}
The string (after expansion) isinterpreted as alist of addresses in RFC 2822 format, such as can be
found in a To: or Cc: header line. The operative address (local-part@domain) is extracted from
each item, and the result of the expansion is a colon-separated list, with appropriate doubling of
colons should any happen to be present in the email addresses. Syntactically invalid RFC2822
address items are omitted from the output.

It is possible to specify a character other than colon for the output separator by starting the string
with > followed by the new separator character. For example:

${addresses: >& Chi ef <ceo@p. stairs>, sec@ase.nent (dogsbody)}

expands to ceo@ip. st ai rs&sec@ase. nent. The string is expanded rst, so if the
expanded string starts with >, it may change the output separator unintentionally. This can be
avoided by setting the output separator explicitly:

${ addresses: >: $h_from}

Compare the address (singular) expansion item, which extracts the working address from a single
RFC2822 address. See the Iter, map, and reduce items for ways of processing lists.

To clarify "list of addressesin RFC 2822 format" mentioned above, Exim follows a strict interpret-
ation of header line formatting. Exim parses the bare, unquoted portion of an email address and if
it ndsacomma, treatsit as an email address separator. For the example header line:

From =?i so-8859-27?Q?Last =2C _Fi r st ?= <user @xanpl e. conp

The rst example below demonstrates that Q-encoded email addresses are parsed properly if it is
given the raw header (in this example, $r header _f rom). It does not see the comma because
it¢s still encoded as "=2C". The second example below is passed the contents of
$header _from , meaning it gets de-mimed. Exim sees the decoded "," so it treats it as two
email addresses. The third example shows that the presence of a comma is skipped when it is
quoted.

exim-be ’${addresses: From \

=?i so0- 8859- 2?Q?Last =2C_Fi r st ?= <user @xanpl e. conp}’

user @xanpl e. com

exim -be ' ${addresses: From Last, First <user@xanple.conp}’
Last: user @xanpl e. com

exim -be ' ${addresses: From "Last, First" <user @xanple.conp}’
user @xanpl e. com

H base32:<digits>}
The string must consist entirely of decimal digits. The number is converted to base 32 and output
as a (empty, for zero) string of characters. Only lowercase letters are used.

$base32d:<base-32 digits>}
The string must consist entirely of base-32 digits. The number is converted to decimal and output
asastring.

H base62: <digits>}
The string must consist entirely of decimal digits. The number is converted to base 62 and output

as a string of six characters, including leading zeros. In the few operating environments where
Exim uses base 36 instead of base 62 for its message identi ers (because those systems do not

115 String expansions (11)

have case-sensitive le names), base 36 is used by this operator, despite its name. Note: Just to be
absolutely clear: thisis not base64 encoding.

${base62d:<base-62 digits>}
The string must consist entirely of base-62 digits, or, in operating environments where Exim uses
base 36 instead of base 62 for its message identi ers, base-36 digits. The number is converted to
decimal and output as a string.

H baseb4: <string>}
This operator converts a string into one that is base64 encoded.

If the string is a single variable of type certi cate, returns the base64 encoding of the DER form of
the certi cate.

${baseb4d: <string>}
This operator converts a base64-encoded string into the un-coded form.

${domain:<string>}
The string is interpreted as an RFC 2822 address and the domain is extracted from it. If the string
does not parse successfully, the result is empty.

¥ escape: <string>}
If the string contains any non-printing characters, they are converted to escape sequences starting
with a backslash. Whether characters with the most signi cant hit set (so-called 8-bit characters)
count as printing or not is controlled by the print_topbitchars option.

$ escapeBbit: <string>}
If the string contains and characters with the most signi cant bit set, they are converted to escape
sequences starting with a backslash. Backslashes and DEL characters are also converted.

Heval:<string>} and ${eval 10: <string>}
These items supports simple arithmetic and bitwise logical operations in expansion strings. The
string (after expansion) must be a conventional arithmetic expression, but it is limited to basic
arithmetic operators, bitwise logical operators, and parentheses. All operations are carried out
using integer arithmetic. The operator priorities are as follows (the same as in the C programming
language):
highest: not (~), negate (-)
multiply (*), divide (/), remainder (%)
plus (+), minus (-)
shift-left (<<), shift-right (>>)
and (&)
xor (M)
lowest: or (])

Binary operators with the same priority are evaluated from left to right. White space is permitted
before or after operators.

For eval, numbers may be decimal, octal (starting with 0) or hexadecimal (starting with 0x).
For eval10, al numbers are taken as decimal, even if they start with a leading zero; hexadecimal
numbers are not permitted. This can be useful when processing numbers extracted from dates or
times, which often do have leading zeros.

A number may be followed by K, M or G to multiply it by 1024, 1024*1024 or
1024* 1024* 1024, respectively. Negative numbers are supported. The result of the computationis a
decimal representation of the answer (without K, M or G). For example:

${eval : 1+1} yields 2
${eval : 1+2*3} yields 7
${eval : (1+2)*3} yields 9
${eval : 2+429%5} yields 4
${ eval : 0xc&5} yields 4
${ eval : Oxc| 5} yields 13
${ eval : Oxc”5} yields 9

116 String expansions (11)

${ eval : Oxc>>1} yields 6

${ eval : Oxc<<1} yields 24
${ eval : ~25580x1234} yields 4608
${eval : - (~25580x1234)} vyields-4608

Asamore redlistic example, in an ACL you might have
deny message = Too many bad recipients

condition = \
${if and { \
{>{$rcpt_count}{10}} \

\

L \
{$reci pi ents_count} \
{${eval : $rcpt_count/2}} \

\

}
Hyes}{no}}

The condition is true if there have been more than 10 RCPT commands and fewer than half of
them have resulted in avalid recipient.

H expand: <string>}
The expand operator causes a string to be expanded for a second time. For example,

${ expand: ${| ookup{ $domai n} dbn{/ sone/fil e} {$val ue}}}

rst looks up a string in a le while expanding the operand for expand, and then re-expands what
it has found.

${from_utf8:<string>}
The world is slowly moving towards Unicode, although there are no standards for email yet.
However, other applications (including some databases) are starting to store datain Unicode, using
UTF-8 encoding. This operator converts from a UTF-8 string to an 1 SO-8859-1 string. UTF-8 code
values greater than 255 are converted to underscores. The input must be avalid UTF-8 string. If it
isnot, the result is an unde ned sequence of bytes.

Unicode code points with values less than 256 are compatible with ASCII and 1SO-8859-1 (also
known as Latin-1). For example, character 169 is the copyright symbol in both cases, though the
way it is encoded is different. In UTF-8, more than one byte is needed for characters with code
values greater than 127, whereas | SO-8859-1 is a single-byte encoding (but thereby limited to 256
characters). This makes trandation from UTF-8 to 1SO-8859-1 straightforward.

$hash_<n>_ <m>:<string>}
The hash operator is a simpler interface to the hashing function that can be used when the two
parameters are xed numbers (as opposed to strings that change when expanded). The effect is the
same as

${ hash{<n>}{<np}{<string>}}

See the description of the general hash item above for details. The abbreviation h can be used
when hash is used as an operator.

H hex2b64: <hexstring>}
This operator converts a hex string into one that is base64 encoded. This can be useful for
processing the output of the MD5 and SHA-1 hashing functions.

$ hexquote: <string>}
This operator converts non-printable characters in a string into a hex escape form. Byte values
between 33 (1) and 126 (~) inclusive are left asis, and other byte values are converted to \ x NN, for
example abyte value 127 is converted to \ x 7f .

Hipvedenor m:<string>}
This expands an IPv6 address to a full eight-element colon-separated set of hex digits including
leading zeroes. A trailing ipv4-style dotted-decimal set is converted to hex. Pure 1Pv4 addresses
are converted to 1Pv4-mapped | Pv6.

117 String expansions (11)

Hipvenor m:<string>}
This converts an 1Pv6 address to canonical form. Leading zeroes of groups are omitted, and the
longest set of zero-valued groups is replaced with a double colon. A trailing ipv4-style dotted-
decimal set is converted to hex. Pure IPv4 addresses are converted to |Pv4-mapped 1 Pv6.

${Ic:<string>}
Thisforcesthe lettersin the string into lower-case, for example:

${lc: $l ocal _part}

${length_<number>:<string>}
The length operator is a simpler interface to the length function that can be used when the
parameter isa xed number (as opposed to a string that changes when expanded). The effect is the
same as

${1 engt h{ <nunber >} {<string>}}

See the description of the general length item above for details. Note that length is not the same as
strlen. The abbreviation | can be used when length is used as an operator.

Hlistcount: <string>}
The string isinterpreted as alist and the number of itemsis returned.

${listhamed: <name>} and ${listnamed_<type>:<name>}
The name is interpreted as a named list and the content of the list is returned, expanding any
referenced lists, re-quoting as needed for colon-separation. If the optional type is given it must be
one of "a', "d", "h" or "I" and selects address-, domain-, host- or localpart- lists to search among
respectively. Otherwise all types are searched in an unde ned order and the rst matching list is
returned.

$Hlocal_part:<string>}
The string is interpreted as an RFC 2822 address and the local part is extracted from it. If the
string does not parse successfully, the result is empty.

${mask:<IP address>I<bit count>}
If the form of the string to be operated on is not an IP address followed by a slash and an integer
(that is, a network address in CIDR notation), the expansion fails. Otherwise, this operator con-
verts the IP address to binary, masks off the least signi cant bits according to the bit count, and
converts the result back to text, with mask appended. For example,

${mask: 10. 111. 131. 206/ 28}

returns the string 10.111.131.192/28 . Since this operation is expected to be mostly used for
looking up masked addresses in les, the result for an IPv6 address uses dots to separate com-
ponents instead of colons, because colon terminates a key string in Isearch les. So, for example,

${mask: 3ffe: ffff:836f:0a00: 000a: 0800: 200a: c031/ 99}
returns the string

3ffe.ffff.836f.0a00. 000a. 0800. 2000. 0000/ 99
Lettersin IPv6 addresses are always output in lower case.

Hmd5:<string>}
The md5 operator computes the MD5 hash value of the string, and returns it as a 32-digit hexa-
decimal number, in which any letters are in lower case.

If the string is a single variable of type certi cate, returns the MD5 hash ngerprint of the
certi cate.

${nhash_<n> <m>:<string>}
The nhash operator is a smpler interface to the numeric hashing function that can be used when
the two parameters are xed numbers (as opposed to strings that change when expanded). The
effect isthe same as

${ nhash{<n>}{<np}{<string>}}

118 String expansions (11)

See the description of the general nhash item above for details.

${quote: <string>}
The quote operator puts its argument into double quotes if it is an empty string or contains
anything other than letters, digits, underscores, dots, and hyphens. Any occurrences of double
guotes and backslashes are escaped with a backslash. Newlines and carriage returns are converted
to\ n and\ r, respectively For example,

${ quot e: ab" *" cd}
becomes
"ab\"*\"cd"

The place where this is useful is when the argument is a substitution from a variable or a message
header.

$quote local_part:<string>}
This operator is like quote, except that it quotes the string only if required to do so by the rules of
RFC 2822 for quoting local parts. For example, a plus sign would not cause quoting (but it would
for quote). If you are creating a new email address from the contents of $local_part (or any other
unknown data), you should always use this operator.

${quote <lookup-type>:<string>}
This operator applies lookup-speci ¢ quoting rules to the string. Each guery-style lookup type has
its own quoting rules which are described with the lookups in chapter |9, For example,

${quote_ | dap:two * two}
returns
t wo%209%b C2A%20t wo

For single-key lookup types, no quoting is ever necessary and this operator yields an unchanged
string.

$randint:<n>}
This operator returns a somewhat random number which is less than the supplied number and is at
least 0. The quality of this randomness depends on how Exim was built; the values are not suitable
for keying material. If Exim is linked against OpenSSL then RAND_pseudo_bytes() is used. If
Exim is linked against GnuTLS then gnutls rnd(GNUTLS_RND_NONCE) is used, for versions
of GnuTLS with that function. Otherwise, the implementation may be arc4random(), random()
seeded by srandomdev() or srandom(), or a custom implementation even weaker than random().

Hreverse ip:<ipaddr>}
This operator reverses an |P address; for |Pv4 addresses, the result is in dotted-quad decimal form,
while for |Pv6 addresses the result is in dotted-nibble hexadecimal form. In both cases, thisis the
"natural” form for DNS. For example,

${reverse_i p:192.0. 2. 4}
${reverse_i p: 2001: 0db8: c42: 9: 1: abcd: 192. 0. 2. 127}

returns

4.2.0.192
f.7.2.0.0.0.0.c.d.c.b.a.1.0.0.0.9.0.0.0.2.4.¢.0.8.b.d.0.1.0.0.2

Hrfc2047:<string>}
This operator encodes text according to the rules of RFC 2047. This is an encoding that is used in
header lines to encode non-ASCII characters. It is assumed that the input string is in the encoding
speci ed by the headers _charset option, which getsits default at build time. If the string contains
only charactersin the range 33 126, and no instances of the characters

?=()<>@, ; :\" .1 _

it is not modi ed. Otherwise, the result is the RFC 2047 encoding of the string, using as many
encoded words as necessary to encode all the characters.

119 String expansions (11)

Hrfc2047d:<string>}
This operator decodes strings that are encoded as per RFC 2047. Binary zero bytes are replaced
by question marks. Characters are converted into the character set de ned by headers charset.
Overlong RFC 2047 words are not recognized unless check_rfc2047_length is set false.

Note: If you use $header _xxx: (or $h_xxx:) to access a header line, RFC 2047 decoding is done
automatically. You do not need to use this operator as well.

${rxquote:<string>}
The rxquote operator inserts a backslash before any non-alphanumeric characters in its argument.
Thisis useful when substituting the values of variables or headersinside regular expressions.

${shal:<string>}
The shal operator computes the SHA-1 hash value of the string, and returns it as a 40-digit
hexadecimal number, in which any letters are in upper case.

If the string is a single variable of type certi cate, returns the SHA-1 hash ngerprint of the
certi cate.

${sha256: <string>}
The sha256 operator computes the SHA-256 hash value of the string and returns it as a 64-digit
hexadecimal number, in which any letters are in upper case.

If the string is a single variable of type certi cate, returns the SHA-256 hash ngerprint of the
certi cate.

${sha3:<srring>}

$sha3_<n>:<string>}
The sha3 operator computes the SHA3-256 hash value of the string and returns it as a 64-digit
hexadecimal number, in which any letters are in upper case.

If a number is appended, separated by an underbar, it speci es the output length. Values of 224,
256, 384 and 512 are accepted; with 256 being the default.

The sha3 expansion item is only supported if Exim has been compiled with GnuTLS 3.5.0 or later,

or OpenSSL 1.1.1 or later. The macro "_CRYPTO_HASH_SHA3" will be dened if it is
supported.

Hstat:<string>}
The string, after expansion, must be a le path. A call to the stat() function is made for this path. If
stat() fails, an error occurs and the expansion fails. If it succeeds, the data from the stat replaces
the item, as a series of <name>=<value> pairs, where the values are all numerical, except for the
value of smode. The names are: mode (giving the mode as a 4-digit octal number), smode
(giving the mode in symbolic format as a 10-character string, as for the Is command), inode,
device, links, uid, gid, size, atime, mtime, and ctime. You can extract individual
elds using the extract expansion item.

The use of the stat expansion in userst Iter les can be locked out by the system administrator.
Warning: The le size may be incorrect on 32-bit systemsfor leslarger than 2GB.

${str2b64: <string>}
Now deprecated, a synonym for the base64 expansion operator.

Hstrlen:<string>}
Theitem is replace by the length of the expanded string, expressed as a decima number. Note: Do
not confuse strlen with length.

H{substr_<start>_<length>:<string>}
The substr operator is a ssimpler interface to the substr function that can be used when the two
parameters are xed numbers (as opposed to strings that change when expanded). The effect is the
same as

${substr{<start>}{<l ength>}{<string>}}

120 String expansions (11)

See the description of the general substr item above for details. The abbreviation s can be used
when substr is used as an operator.

${time_eval:<string>}
Thisitem converts an Exim time interval such as 2d4h5minto a number of seconds.

${time_interval:<string>}
The argument (after sub-expansion) must be a sequence of decimal digits that represents an inter-
val of time as a number of seconds. It is converted into a number of larger units and output in
Exim¢s normal time format, for example, 1w3d4h2n®6s.

Huc:<string>}
Thisforces the letters in the string into upper-case.

Hutf8clean: <string>}
This replaces any invalid utf-8 sequence in the string by the character ?.

$utf8_domain_to_alabel:<string>}

${utf8_domain_from_alabel:<string>}

${utf8 localpart_to_alabel:<string>}

${utf8 localpart_from_alabel:<string>}
These convert EAI mail name components between UTF-8 and a-label forms. For information on
internationalisation support see(59.

11.7 Expansion conditions

The following conditions are available for testing by the ${if construct while expanding strings:

I<condition>
Preceding any condition with an exclamation mark negates the result of the condition.

<symbolic operator> {<string I>}{<string2>}
There are anumber of symbolic operators for doing numeric comparisons. They are:

= equal

== equal

> greater

>= greater or equal

< less

<= less or equal
For example:

${if >{$nmessage_si ze}{ 10M

Note that the general negation operator provides for inequality testing. The two strings must take
the form of optionally signed decimal integers, optionally followed by one of the letters K, M

or G (in ether upper or lower case), signifying multiplication by 1024, 1024*1024 or
1024* 1024* 1024, respectively. As a special case, the numerical value of an empty string is taken
as zero.

In all cases, arelative comparator OP is testing if <stringl> OP <string2>; the above example is
checking if $message_size islarger than 10M, not if 10M is larger than $message_size.

acl {{<name>H{<argl>H{<arg2>}...}

The name and zero to nine argument strings are rst expanded separately. The expanded argu-

ments are assigned to the variables $acl_argl to $acl_arg9 in order. Any unused are made empty.
The variable $acl_narg is set to the number of arguments. The named ACL (see chapter is
caled and may use the variables; if another acl expansion is used the values are restored after it
returns. If the ACL sets a value using a "message =" modi er the variable $value becomes the
result of the expansion, otherwise it is empty. If the ACL returns accept the condition is true; if
deny, false. If the ACL returns defer the result is aforced-fail.

121 String expansions (11)

bool {<string>}
This condition turns a string holding a true or false representation into a boolean state. It parses
true, false, yes and no (case-insensitively); also integer numbers map to true if non-zero,
falseif zero. An empty string is treated as false. Leading and trailing whitespace is ignored; thus a
string consisting only of whitespace is false. All other string values will result in expansion failure.

When combined with ACL variables, this expansion condition will let you make decisions in one
place and act on those decisions in another place. For example:

${if bool {$acl _m privil eged_sender}

bool_lax {<string>}
Like bool, this condition turns a string into a boolean state. But where bool accepts a strict set of
strings, bool_lax uses the same loose de nition that the Router condition option uses. The empty
string and the values false, no and 0 map to fase, al others map to true. Leading and
trailing whitespace isignored.

Note that where bool{00} isfalse, bool_lax{00} istrue.

crypteq {<string>}{<string2>}
This condition is included in the Exim binary if it is built to support any authentication mechan-
isms (see chapter . Otherwise, it is necessary to dene SUPPORT_CRYPTEQ in
Local/Makefile to get crypteq included in the binary.

The crypteq condition has two arguments. The rst is encrypted and compared against the second,
which is already encrypted. The second string may be in the LDAP form for storing encrypted
strings, which starts with the encryption type in curly brackets, followed by the data. If the second
string does not begin with { it is assumed to be encrypted with crypz() or crypt16() (see below),
since such strings cannot begin with { . Typicaly this will be a eld from a password le. An
example of an encrypted string in LDAP formis:

{ md5} CY9r zUYh03PK3k6DJi €09g==

If such a string appears directly in an expansion, the curly brackets have to be quoted, because they
are part of the expansion syntax. For example:

${if crypteq {test}{\{nd5\}CY9rzUYhO3PK3k6DJi e09g==}{yes}{no}}
The following encryption types (whose names are matched case-independently) are supported:

* {md5} computes the MD5 digest of the rst string, and expresses this as printable characters to
compare with the remainder of the second string. If the length of the comparison string is 24,
Exim assumes that it is base64 encoded (as in the above example). If the length is 32, Exim
assumes that it is a hexadecimal encoding of the MD5 digest. If the length not 24 or 32, the
comparison fails.

» {shal} computes the SHA-1 digest of the rst string, and expresses this as printable characters
to compare with the remainder of the second string. If the length of the comparison string is 28,
Exim assumes that it is base64 encoded. If the length is 40, Exim assumes that it is a hexadeci-
mal encoding of the SHA-1 digest. If the length is not 28 or 40, the comparison fails.

» {crypt} callsthe crypt() function, which traditionally used to use only the rst eight characters
of the password. However, in modern operating systems this is no longer true, and in many
cases the entire password is used, whatever its length.

» {crypt16} callsthe crypt16() function, which was originally created to use up to 16 characters
of the password in some operating systems. Again, in modern operating systems, more charac-
ters may be used.

Exim has its own version of crypt16(), which isjust a double call to crypt(). For operating systems
that have their own version, setting HAVE_CRYPT16 in Local/Makefile when building Exim
causes it to use the operating system version instead of its own. This option is set by default in the
OS-dependent Makefile for those operating systems that are known to support crypt16().

Some years after Eximds crypt16() was implemented, a user discovered that it was not using the
same algorithm as some operating systems¢ versions. It turns out that as well as crypt16() thereisa

122 String expansions (11)

function called bigcrypt() in some operating systems. This may or may not use the same algorithm,
and both of them may be different to Eximds built-in crypt16().

However, since there is now a move away from the traditional crypz() functions towards using
SHA1 and other algorithms, tidying up this area of Exim is seen as very low priority.

If you do not put a encryption type (in curly brackets) in a crypteq comparison, the default is
usually either {crypt} or {crypt 16}, as determined by the setting of DEFAULT_CRYPT in
Local/Makefile. The default default is{ cr ypt } . Whatever the default, you can always use either
function by specifying it explicitly in curly brackets.

def:<variable name>
The def_condition must be followed by the name of one of the expansion variables de ned in
snectionlll.gr The condition istrueif the variable does not contain the empty string. For example:

${if def:sender_ident {from $sender_ident}}

Note that the variable name is given without a leading $ character. If the variable does not exigt,
the expansion fails.

def:header _<header name>: or def:h_<header name>:
This condition is true if a message is being processed and the named header exists in the message.
For example,

${if def:header_reply-to:{$h_reply-to:}{$h_from}}

Note: No $ appears before header__ or h_in the condition, and the header name must be termin-
ated by a colon if white space does not follow.

eq {<string>}{<string2>}

eqi {<string1>}{<string2>}
The two substrings are rst expanded. The condition is true if the two resulting strings are identi-
cal. For eq the comparison includes the case of letters, whereas for eqi the comparison is case-
independent.

exists {<file name>}
The substring is rst expanded and then interpreted as an absolute path. The condition istrueif the
named le (or directory) exists. The existence test is done by calling the szat() function. The use of
theexiststest in userst Iter les may belocked out by the system administrator.

rst_delivery
This condition, which has no data, is true during a message¢s rst delivery attempt. It is false
during any subsequent delivery attempts.

forall{<a list>}{<a condition>}

forany{<a list>}{<a condition>}
These conditions iterate over alist. The rst argument is expanded to form the list. By default, the
list separator is a colon, but it can be changed by the normal method. The second argument is
interpreted as a condition that is to be applied to each item in the list in turn. During the interpret-
ation of the condition, the current list item is placed in avariable called $item.

» For forany, interpretation stops if the condition is true for any item, and the result of the whole
condition istrue. If the condition isfalse for all itemsin thelist, the overall condition is false.

» For forall, interpretation stops if the condition is false for any item, and the result of the whole
condition isfalse. If the condition istrue for al itemsin thelist, the overal condition istrue.

Note that negation of forany means that the condition must be false for al items for the overall
condition to succeed, and negation of forall means that the condition must be false for at least one
item. In this example, the list separator is changed to acomma:

${if forany{<, $recipients}{match{$item{ user3@}{yes}{no}}

The value of $irem is saved and restored while forany or forall is being processed, to enable these
expansion items to be nested.

To scan anamed list, expand it with the listnamed operator.

123 String expansions (11)

ge {<string I>}{<string2>}

gei {<stringI>}{<string2>}
The two substrings are rst expanded. The condition is true if the rst string is lexically greater
than or equal to the second string. For ge the comparison includes the case of letters, whereas for
gei the comparison is case-independent.

ot {<stringI>H{<string2>}

oti {<stringI>H{<string2>}
The two substrings are rst expanded. The condition is true if the rst string is lexicaly greater
than the second string. For gt the comparison includes the case of letters, whereas for gti the
comparison is case-independent.

inlist {<string I>}{<string2>}

inlisti {<string I>}{<string2>}
Both strings are expanded; the second string is treated as alist of simple strings; if the rst string is
amember of the second, then the condition is true.

These are simpler to use versions of the more powerful forany condition. Examples, and the
forany equivalents:

${if inlist{needl e}{foo: needl e: bar}}

${if forany{foo: needle: bar}{eq{$iten}{needle}}}
${if inlisti{Needle}{fOo: NeeDLE: bAr}}

${if forany{fOo: NeeDLE: bAr}{eqi {$iten}{Needl e}}}

isip {<string>}

isip4 {<string>}

iSip6 {<string>}
The substring is rst expanded, and then tested to seeif it has the form of an IP address. Both |1Pv4
and IPv6 addresses are valid for isip, whereas isip4 and isip6 test speci cally for IPv4 or IPv6
addresses.

For an 1Pv4 address, the test is for four dot-separated components, each of which consists of from
one to three digits. For an IPv6 address, up to eight colon-separated components are permitted,
each containing from one to four hexadecimal digits. There may be fewer than eight components if
an empty component (adjacent colons) is present. Only one empty component is permitted.

Note: The checks used to be just on the form of the address; actual humerical values were not
considered. Thus, for example, 999.999.999.999 passed the | Pv4 check. Thisis no longer the case.

The main use of these tests is to distinguish between IP addresses and host names, or between
IPv4 and IPv6 addresses. For example, you could use

${if isipd{$sender_host_address}. ..
to test which IP version an incoming SMTP connection is using.

Idapauth {<Idap query>}

This condition supports user authentication using LDAP. See section for details of how to use
LDAP in lookups and the syntax of queries. For this use, the query must contain a user name and
password. The query itself is not used, and can be empty. The condition is true if the password is
not empty, and the user name and password are accepted by the LDAP server. An empty password
is regjected without calling LDAP because LDAP binds with an empty password are considered
anonymous regardless of the username, and will succeed in most con gurations. See chapter
for details of SMTP authentication, and chapter for an example of how this can be used.

le {<stringI1>}{<string2>}

lel {<stringI>}{<string2>}
The two substrings are rst expanded. The condition is true if the rst string is lexically less than
or equal to the second string. For le the comparison includes the case of |etters, whereas for lei the
comparison is case-independent.

124 String expansions (11)

It {<stringI>}{<string2>}

Iti {<string I>}{<string2>}
The two substrings are rst expanded. The condition is true if the rst string is lexically less than
the second string. For It the comparison includes the case of |etters, whereas for Iti the comparison
is case-independent.

match {<string 1>} <string2>}
The two substrings are rst expanded. The second is then treated as a regular expression and
applied to the rst. Because of the pre-expansion, if the regular expression contains dollar, or
backslash characters, they must be escaped. Care must also be taken if the regular expression
contains braces (curly brackets). A closing brace must be escaped so that it is not taken as a
premature termination of <string2>. The easiest approach is to use the \ N feature to disable
expansion of the regular expression. For example,

${if match {$local part}{\N\d{3}\ N}
If the whole expansion string is in double quotes, further escaping of backslashesis also required.

The condition is true if the regular expression match succeeds. The regular expression is not
required to begin with a circumflex metacharacter, but if there is no circumflex, the expression is
not anchored, and it may match anywhere in the subject, not just at the start. If you want the
pattern to match at the end of the subject, you must include the $ metacharacter at an appropriate
point.

At the start of an if expansion the values of the numeric variable substitutions $7 etc. are remem-
bered. Obeying a match condition that succeeds causes them to be reset to the substrings of that
condition and they will have these values during the expansion of the success string. At the end of
the if expansion, the previous values are restored. After testing a combination of conditions using
or, the subsequent values of the numeric variables are those of the condition that succeeded.

match_address {<string I>}{<string2>}
See match_local_part.

match_domain {<string I>}{<string2>}
See match_local_part.

match_ip {<stringI>}{<string2>}
This condition matches an IP address to a list of |P address patterns. It must be followed by two
argument strings. The rst (after expansion) must be an IP address or an empty string. The second
(not expanded) is a restricted host list that can match only an IP address, not a host name. For
example:

${if match_i p{$sender_host _address}{1.2.3.4:5.6.7.8}{...}{...}}
The speci ¢ types of host list item that are permitted in thelist are:
* AnIP address, optionally with a CIDR mask.

* A single asterisk, which matches any | P address.

e An empty item, which matches only if the IP address is empty. This could be useful for testing
for alocally submitted message or one from speci ¢ hostsin asingle test such as

${if match_i p{$sender_host _address}{:4.3.2.1:...}{...}{...}}
wherethe rstiteminthelist isthe empty string.
* Theitem @[] matches any of the local host¢s interface addresses.

» Single-key lookups are assumed to be like net- style lookupsin host lists, even if net - is not
speci ed. There is never any attempt to turn the IP address into a host name. The most common
type of linear search for match_ip islikely to be iplsearch, in which the le can contain CIDR
masks. For example:

${if match_i p{$sender_host _address}{i pl search;/sonme/file}...

125 String expansions (11)

It is of course possible to use other kinds of lookup, and in such a case, you do need to specify
thenet - prex if you want to specify a speci ¢ address mask, for example:

${if match_i p{$sender _host _address}{net 24-dbm /sone/file}...

However, unless you are combining a match_ip condition with others, it is just as easy to use
the fact that alookup isitself a condition, and write:

${| ookup{ ${ mask: $sender _host _address/ 24}}dbm{/a/file}...

Note that <string2> is not itself subject to string expansion, unless Exim was built with the
EXPAND_LISTMATCH_RHS option.

Consult section for further details of these patterns.

match_local_part {<string I>}{<string2>}
This condition, together with match_address and match_domain, make it possible to test
domain, address, and local part lists within expansions. Each condition requires two arguments. an
item and alist to match. A trivial exampleis:

${if match_domain{a.b.c}{x.y.z:a.b.c:p.q.r}{yes}{no}}

In each case, the second argument may contain any of the allowable items for a list of the
appropriate type. Also, because the second argument is a standard form of list, it is possible to
refer to anamed list. Thus, you can use conditions like this:

${if match_donai n{ $domai n}{+l ocal _domai ns}{...

For address lists, the matching starts off caselessly, but the +casef ul item can be used, asin al
address lists, to cause subsequent items to have their local parts matched casefully. Domains are
always matched caselesdly.

Note that <string2> is not itself subject to string expansion, unless Exim was built with the
EXPAND_LISTMATCH_RHS option.

Note: Host lists are not supported in this way. This is because hosts have two identities: a name
and an IP address, and it is not clear how to specify cleanly how such atest would work. However,
| P addresses can be matched using match_ip.

pam {<stringI>:<string2>:...}
Pluggable Authentication Modules (http://www.kernel.org/pub/linux/libs/pam/) are a facility
that is available in the latest releases of Solaris and in some GNU/Linux distributions. The Exim
support, which is intended for use in conjunction with the SMTP AUTH command, is available
only if Exim is compiled with

SUPPORT_PAMryes

in Local/Makefile. You probably need to add -lpam to EXTRALIBS, and in some releases of
GNU/Linux -ldl is also needed.

The argument string is rst expanded, and the result must be a colon-separated list of strings.
Leading and trailing white space isignored. The PAM module is initialized with the service name
exim and the user name taken from the rst item in the colon-separated data string (<string1>).
The remaining items in the data string are passed over in response to requests from the authenti-
cation function. In the smple case there will only be one request, for a password, so the data
consists of just two strings.

There can be problems if any of the strings are permitted to contain colon characters. In the usual
way, these have to be doubled to avoid being taken as separators. If the data is being inserted from
a variable, the sg expansion item can be used to double any existing colons. For example, the
con guration of aLOGIN authenticator might contain this setting:

server_condition = ${if pan{$authl: ${sg{Sauth2}{:}{::}}}}
For a PLAIN authenticator you could use:
server_condition = ${if pan{$auth2: ${sg{Sauth3}{:}{::}}}}

126 String expansions (11)

In some operating systems, PAM authentication can be done only from a process running as root.
Since Exim is running as the Exim user when receiving messages, this means that PAM cannot be
used directly in those systems. A patched version of the pam_unix module that comes with the
Linux PAM package is available from http://www.e-admin.de/pam_exim/. The patched module
allows one specia uid/gid combination, in addition to root, to authenticate. If you build the
patched module to allow the Exim user and group, PAM can then be used from an Exim
authenticator.

pwcheck {<string1>:<string2>}
This condition supports user authentication using the Cyrus pwcheck daemon. This is one way of
making it possible for passwords to be checked by a process that is not running as root. Note: The
use of pwcheck is now deprecated. Its replacement is saslauthd (see below).

The pwcheck support is not included in Exim by default. You need to specify the location of the
pwcheck daemonds socket in Local/Makefile before building Exim. For example:

CYRUS PWCHECK SOCKET=/ var/ pwcheck/ pwcheck

You do not need to install the full Cyrus software suite in order to use the pwcheck daemon. You
can compile and install just the daemon alone from the Cyrus SASL library. Ensure that exim isthe
only user that has access to the /var/pwcheck directory.

The pwcheck condition takes one argument, which must be the user name and password, separ-
ated by a colon. For example, in aLOGIN authenticator con guration, you might have this:

server_condition = ${if pwcheck{$aut hl: $aut h2}}
Again, for a PLAIN authenticator con guration, this would be:
server_condition = ${if pwcheck{%$aut h2: $aut h3}}

queue_running
This condition, which has no data, is true during delivery attempts that are initiated by gqueue
runner processes, and false otherwise.

radius {<authentication string>}
Radius authentication (RFC 2865) is supported in a similar way to PAM. You must set RADIUS _
CONFIG_FILE in Local/Makefile to specify the location of the Radius client con guration lein
order to build Exim with Radius support.

With just that one setting, Exim expects to be linked with the radiusclient library, using the
original API. If you are using release 0.4.0 or later of thislibrary, you need to set

RADI US_LI B_TYPE=RADI USCLI ENTNEW

in Local/Makefile when building Exim. You can also link Exim with the libradius library that
comes with FreeBSD. To do this, set

RADI US_LI B_TYPE=RADLI B

in Local/Makefile, in addition to setting RADIUS _CONFIGURE_FILE. You may also have to
supply a suitable setting in EXTRALIBS so that the Radius library can be found when Exim is
linked.

The string speci ed by RADIUS CONFIG_FILE is expanded and passed to the Radius client
library, which calls the Radius server. The condition is true if the authentication is successful. For
example:

server_condition = ${if radi us{<arguments>}}

saslauthd {{<user>}{<password>}{<service>}{<realm>}}
This condition supports user authentication using the Cyrus saslauthd daemon. This replaces the
older pwcheck daemon, which is now deprecated. Using this daemon is one way of making it
possible for passwords to be checked by a process that is not running as root.

The saslauthd support is not included in Exim by default. You need to specify the location of the
sadlauthd daemonds socket in Local/Makefile before building Exim. For example:

127 String expansions (11)

CYRUS_SASLAUTHD_SOCKET=/ var / st at e/ sasl aut hd/ nux

You do not need to install the full Cyrus software suite in order to use the saslauthd daemon. You
can compile and install just the daemon alone from the Cyrus SASL library.

Up to four arguments can be supplied to the saslauthd condition, but only two are mandatory. For
example:

server_condition = ${if sasl aut hd{{%$aut hl}{$aut h2}}}

The service and the realm are optiona (which is why the arguments are enclosed in their own set
of braces). For details of the meaning of the service and realm, and how to run the daemon, consult
the Cyrus documentation.

11.8 Combining expansion conditions

Severa conditions can be tested at once by combining them using the and and or combination
conditions. Note that and and or are complete conditions on their own, and precede their lists of
sub-conditions. Each sub-condition must be enclosed in braces within the overall braces that contain
the list. No repetition of if is used.

or {{<condI>}{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if any one of the sub-
conditionsis true. For example,

${if or {{eq{$local part}{spqgr}}{eq{Sdonmai n}{testing.com}}...

When a true sub-condition is found, the following ones are parsed but not evaluated. If there are
several match sub-conditions the values of the numeric variables afterwards are taken from the
rst one that succeeds.

and {{<condI>}{<cond2>}...}
The sub-conditions are evaluated from left to right. The condition is true if all of the sub-
conditions are true. If there are several match sub-conditions, the values of the numeric variables
afterwards are taken from the last one. When a false sub-condition is found, the following ones are
parsed but not eval uated.

11.9 Expansion variables

This section contains an aphabetical list of al the expansion variables. Some of them are available
only when Exim is compiled with speci ¢ options such as support for TLS or the content scanning
extension.

$0, $1, etc

When a match expansion condition succeeds, these variables contain the captured substrings
identi ed by the regular expression during subsequent processing of the success string of the
containing if expansion item. In the expansion condition case they do not retain their values
afterwards; in fact, their previous values are restored at the end of processing an if item. The
numerical variables may also be set externally by some other matching process which precedes the
expansion of the string. For example, the commands available in Exim lter les include an if
command with its own regular expression matching condition.

Sacl_argl, $acl_arg2, etc
Within an acl condition, expansion condition or expansion item any arguments are copied to these
variables, any unused variables being made empty.

$acl_c...
Values can be placed in these variables by the set modi er in an ACL. They can be given any name
that starts with $acl_c and is at least six characters long, but the sixth character must be either a
digit or an underscore. For example: $acl_c5, $acl_c_mycount. The values of the $acl_c... vari-
ables persist throughout the lifetime of an SMTP connection. They can be used to pass information
between ACLs and between different invocations of the same ACL. When a message is received,

128 String expansions (11)

the values of these variables are saved with the message, and can be accessed by Iters, routers,
and transports during subsequent delivery.

Sacl_m...
These variables are like the $acl_c... variables, except that their values are reset after a message
has been received. Thus, if several messages are received in one SMTP connection, $acl_m...
values are not passed on from one message to the next, as $acl_c... values are. The $acl_m...
variables are al'so reset by MAIL, RSET, EHLO, HELO, and after starting a TLS session. When a
message is received, the values of these variables are saved with the message, and can be accessed
by lters, routers, and transports during subsequent delivery.

Sacl_narg
Within an acl condition, expansion condition or expansion item this variable has the number of
arguments.

Sacl_verify_message
After an address veri cation has failed, this variable contains the failure message. It retains its
value for use in subsequent modi ers. The message can be preserved by coding like this:

warn !verify = sender
set acl _nD = $acl verify_nessage

You can use $acl_verify_message during the expansion of the message or log_message modi ers,
to include information about the veri cation failure.

Saddress_data
This variable is set by means of the address data option in routers. The value then remains with
the address while it is processed by subsequent routers and eventually a transport. If the transport
is handling multiple addresses, the value from the rst address is used. See chapter or more
details. Note: The contents of $address_data are visiblein user Iter les.

If $address_data is set when the routers are called from an ACL to verify a recipient address, the
nal valueis till in the variable for subsequent conditions and modi ers of the ACL statement. If
routing the address caused it to be redirected to just one address, the child address is also routed as
part of the veri cation, and in this case the nal value of $address_data is from the child¢s routing.

If $address_data is set when the routers are called from an ACL to verify a sender address, the
nal value is aso preserved, but this time in $sender_address_data, 1o distinguish it from data
from arecipient address.

In both cases (recipient and sender veri cation), the value does not persist after the end of the
current ACL statement. If you want to preserve these values for longer, you can save them in ACL
variables.

Saddress._file
When, as aresult of aiasing, forwarding, or Itering, a message is directed to a speci ¢ le, this
variable holds the name of the le when the transport is running. At other times, the variable is
empty. For example, using the default con guration, if user r2d2 has a.forward |e containing

/ hone/ r 2d2/ savemai |

then when the address_file transport is running, $address_file contains the text string
/ home/ r 2d2/ savemai | . For Sieve lters, the value may be inbox or arelative folder name.
It is then up to the transport con guration to generate an appropriate absolute path to the relevant
le.

$address_pipe
When, as aresult of aliasing or forwarding, a message is directed to a pipe, this variable holds the
pipe command when the transport is running.

Sauthl $auth3
These variables are used in SMTP authenticators (see chapters . Elsawhere, they are empty.

129 String expansions (11)

Sauthenticated_id
When a server successfully authenticates a client it may be con gured to preserve some of the
authentication information in the variable $authenticated_id (see chapter . For example, a
user/password authenticator con guration might preserve the user name for use in the routers.
Note that thisis not the same information that is saved in $sender_host_authenticated.

When a message is submitted locally (that is, not over a TCP connection) the value of
Sauthenticated_id is normally the login name of the calling process. However, a trusted user can
override this by means of the -oMai command line option.

This second case also sets up inforamtion used by the $authresults expansion item.

Sauthenticated_fail_id
When an authentication attempt fails, the variable $authenticated_fail_id will contain the failed
authentication id. If more than one authentication id is attempted, it will contain only the last one.
The variable is available for processing in the ACL¢s, generally the quit or notquit ACL. A mess-
age to alocal recipient could still be accepted without requiring authentication, which means this
variable could aso be visiblein all of the ACL¢s aswell.

Sauthenticated_sender
When acting as a server, Exim takes note of the AUTH= parameter on an incoming SMTP MAIL
command if it believes the sender is suf ciently trusted, as described in section 33.2.{Unless the
data is the string <>, it is set as the authenticated sender of the message, and the value is
available during delivery in the $authenticated_sender variable. If the sender is not trusted, Exim
accepts the syntax of AUTH=, but ignores the data.

When a message is submitted locally (that is, not over a TCP connection), the value of
Sauthenticated_sender is an address constructed from the login name of the calling process and
$qualify_domain, except that a trusted user can override this by means of the -oM as command line
option.

Sauthentication_failed
This variable isset to 1 in an Exim server if a client issues an AUTH command that does not
succeed. Otherwise it is set to 0. This makes it possible to distinguish between did not try to
authenticate ($sender_host_authenticated is empty and Sauthentication_failed is set to 0) and
tried to authenticate but failed ($sender_host_authenticated is empty and $authentication_failed
is set to 1). Failure includes any negative response to an AUTH command, including (for
example) an attempt to use an unde ned mechanism.

Sav_failed
This variable is available when Exim is compiled with the content-scanning extension. It is set to
0 by default, but will be set to 1 if any problem occurs with the virus scanner (speci ed by av_
scanner) during the ACL malware condition.

Sbody_linecount
When a message is being received or delivered, this variable contains the number of lines in the
messageds body. See also $message_linecount.

Sbody_zerocount
When a message is being received or delivered, this variable contains the number of binary zero
bytes (ASCII NULS) in the message¢s body.

Sbounce_recipient
Thisis set to the recipient address of a bounce message while Exim is creating it. It is useful if a
customized bounce message text leisin use (see chapter

$bounce_return_size_limit
This contains the value set in the bounce_return_size limit option, rounded up to a multiple of
1000. It is useful when a customized error message text leisin use (see chapter

$caller_gid
The real group id under which the process that called Exim was running. This is not the same as
the group id of the originator of a message (see $originator_gid). 1f Exim re-execs itself, this
variable in the new incarnation normally contains the Exim gid.

130 String expansions (11)

Scaller _uid
The real user id under which the process that called Exim was running. This is not the same as the
user id of the originator of a message (see $originator_uid). If Exim re-execs itself, thisvariable in
the new incarnation normally contains the Exim uid.

Scallout_address
After acallout for veri cation, spamd or malware daemon service, the address that was connected
to.

Scompile_number
The building process for Exim keeps a count of the number of times it has been compiled. This
serves to distinguish different compilations of the same version of the program.

$config_dir
The directory name of the main con guration le. That is, the content of $config_file with the last
component stripped. The value does not contain the trailing slash. If $config_file does not contain a
dash, $config_diris".".

$config_file
The name of the main con guration le Exim isusing.

$dkim_verify_status
Results of DKIM veri cation. For details see section $7.3.]

$dkim_cur_signer
$dkim_verify_reason
$dkim_domain
$dkim_identity
Sdkim_selector
$dkim_algo
$dkim_canon_body
$dkim_canon_headers
$dkim_copiedheaders
$dkim_bodylength
$dkim_created
$dkim_expires
Sdkim_headernames
$dkim_key_testing
$dkim_key_nosubdomains
$dkim_key_srvtype
$dkim_key_granularity
$dkim_key_notes
$dkim_key_length

These variables are only available within the DKIM ACL. For details see section|57.3

$dkim_signers
When a message has been received this variable contains a colon-separated list of signer domains
and identities for the message. For details see section 57.3r

Sdnslist_domain

Sdnslist_matched

Sdnslist_text

Sdnslist_value
When a DNS (black) list lookup succeeds, these variables are set to contain the following data
from the lookup: the list¢s domain name, the key that was looked up, the contents of any associated
TXT record, and the value from the main A record. See section for more details.

$domain
When an address is being routed, or delivered on its own, this variable contains the domain.
Uppercase |etters in the domain are converted into lower case for $domain.

Global address rewriting happens when a message is received, so the value of $domain during
routing and delivery is the value after rewriting. $domain is set during user ltering, but not during

131 String expansions (11)

system lItering, because a message may have many recipients and the system lIter is called just
once.

When more than one address is being delivered at once (for example, several RCPT commandsin
one SMTP delivery), $domain is set only if they al have the same domain. Transports can be
restricted to handling only one domain at a time if the value of $domain is required at transport
time thisisthe default for local transports. For further details of the environment in which local
transports are run, see chapter

At the end of adelivery, if all deferred addresses have the same domain, it is set in $domain during
the expansion of delay_warning_condition.

The $domain variable is also used in some other circumstances:

* When an ACL is running for a RCPT command, $domain contains the domain of the recipient
address. The domain of the sender address is in $sender_address_domain a both MAIL time
and at RCPT time. $domain is not normally set during the running of the MAIL ACL. However,
if the sender address is veri ed with a callout during the MAIL ACL, the sender domain is
placed in $domain during the expansions of hosts, interface, and port in the smizp transport.

* When arewrite item is being processed (see chapter , $domain contains the domain portion
of the addressthat is being rewritten; it can be used in the expansion of the replacement address,
for example, to rewrite domains by le lookup.

» With one important exception, whenever a domain list is being scanned, $domain contains the
subject domain. Exception: When a domain list in a sender_domains condition in an ACL is
being processed, the subject domain is in $sender_address_domain and not in $domain. It
works this way so that, in a RCPT ACL, the sender domain list can be dependent on the
recipient domain (which iswhat isin $domain at thistime).

* When the smtp_etrn_command option is being expanded, $domain contains the complete
argument of the ETRN command (see section v :

Sdomain_data
When the domains option on a router matches a domain by means of a lookup, the data read by
the lookup is available during the running of the router as $domain_data. In addition, if the driver
routes the address to a transport, the value is available in that transport. If the transport is handling
multiple addresses, the value from the rst addressis used.

$domain_data is dso set when the domains condition in an ACL matches a domain by means of a
lookup. The data read by the lookup is available during the rest of the ACL statement. In all other
situations, this variable expands to nothing.

Sexim_gid
This variable contains the numerical value of the Exim group id.

Sexim_path
This variable contains the path to the Exim binary.

Sexim_uid
This variable contains the numerical value of the Exim user id.

Sexim_version
This variable contains the version string of the Exim build. The rst character is a major version
number, currently 4. Then after a dot, the next group of digits is a minor version number. There
may be other characters following the minor version.

Sheader_<name>
This is not strictly an expansion variable. It is expansion syntax for inserting the message header
line with the given name. Note that the name must be terminated by colon or white space, because
it may contain awide variety of characters. Note also that braces must not be used.

Sheaders_added
Within an ACL this variable contains the headers added so far by the ACL modi er add_header
(section[43.24). The headers are a newline-separated list.

132 String expansions (11)

Shome
When the check_local_user option is set for arouter, the user¢s home directory is placed in $home
when the check succeeds. In particular, this means it is set during the running of users¢ Iter les.
A router may also explicitly set a home directory for use by a transport; this can be overridden by
a setting on the transport itself.

When running a lter test via the -bf option, $home is set to the value of the environment variable
HOME, which is subject to the keep_environment and add_environment main con g options.

Shost
If a router assigns an address to a transport (any transport), and passes a list of hosts with the
address, the value of $host when the transport starts to run is the name of the rst host on the list.
Note that this applies both to local and remote transports.

For the smip transport, if there is more than one host, the value of $host changes as the transport
works its way through the list. In particular, when the smip transport_is expanding its options for
encryption using TLS, or for specifying atransport Iter (see chapter $host contains the name
of the host to which it is connected.

When used in the client part of an authenticator con guration (see chapter @ S$host contains the
name of the server to which the client is connected.

Shost_address
This variable is set to the remote host¢s | P address whenever $host is set for a remote connection.
It is also set to the IP address that is being checked when the ignore_target_hosts option is being
processed.

Shost_data
If a hosts condition in an ACL is satis ed by means of alookup, the result of the lookup is made
available in the $host_data variable. This alows you, for example, to do things like this:

deny hosts = net-lsearch;/sone/file
nessage = $host_data

Shost_lookup_deferred
This variable normally contains 0, as does $host_lookup_failed. \When a message comes from a
remote host and there is an attempt to look up the host¢s name from its I P address, and the attempt
is not successful, one of these variablesissetto 1.

« If the lookup receives a de nite negative response (for example, a DNS lookup succeeded, but
no records were found), $host_lookup_failed issetto 1.

 If thereisany kind of problem during the lookup, such that Exim cannot tell whether or not the
host name is de ned (for example, a timeout for a DNS lookup), $host_lookup_deferred is set
to 1.

Looking up a host¢s name from its IP address consists of more than just a single reverse lookup.
Exim checks that a forward lookup of at least one of the names it receives from a reverse lookup
yields the original IP address. If thisis not the case, Exim does not accept the looked up name(s),
and $host_lookup_failed is set to 1. Thus, being able to nd a name from an IP address (for
example, the existence of a PTR record in the DNS) is not suf cient on its own for the success of a
host name lookup. If the reverse lookup succeeds, but there is a lookup problem such as a timeout
when checking the result, the name is not accepted, and $host_lookup_deferred is set to 1. See
also $sender_host_name.

Performing these checks sets up information used by the $authresults expansion item.

Shost_lookup_failed
See $host_lookup_deferred.

Shost_port
This variable is set to the remote host¢s TCP port whenever $host is set for an outbound
connection.

133 String expansions (11)

Sinitial_cwd
This variable contains the full path name of the initial working directory of the current Exim
process. This may differ from the current working directory, as Exim changes this to "/" during
early startup, and to $spool_directory later.

Sinode
The only time this variable is set is while expanding the directory_ le option in the appendfile
transport. The variable contains the inode number of the temporary le which is about to be
renamed. It can be used to construct a unique name for the le.

Sinterface_address
Thisis an obsolete name for $received_ip_address.

Sinterface_port
Thisis an obsolete name for $received_port.

Sitem
This variable is used during the expansion of forall and forany conditions (see section|11.7), and
Iter, map, and reduce items (see section j In other circumstances, it is empty.

Sldap_dn
This variable, which is available only when Exim is compiled with LDAP support, contains the
DN from the last entry in the most recently successful LDAP lookup.

Sload_average
This variable contains the system load average, multiplied by 1000 so that it is an integer. For
example, if the load average is 0.21, the value of the variable is 210. The value is recomputed
every time the variable is referenced.

Slocal_part
When an address is being routed, or delivered on its own, this variable contains the local part.
When a number of addresses are being delivered together (for example, multiple RCPT commands
inan SMTP session), $local_part isnot set.

Global address rewriting happens when a message is received, so the value of $local_part during
routing and delivery is the value after rewriting. $local_part is set during user Itering, but not
during system lItering, because a message may have many recipients and the system lter is called
just once.

If alocal part prex or suf x has been recognized, it is not included in the value of $local_part
during routing and subsequent delivery. The values of any pre x or suf x are in $local_part_prefix
and $local_part_suffix, respectively.

When a message is being delivered to a le, pipe, or autoreply transport as a result of aiasing or
forwarding, $local_part is set to the local part of the parent address, not to the le name or
command (see $address_file and $address_pipe).

When an ACL is running for a RCPT command, $local_part contains the local part of the recipi-
ent address.

When arewrite item is being processed (see chapter, Slocal_part contains the local part of the
address that is being rewritten; it can be used in the expansion of the replacement address, for
example.

In all cases, al quoting isremoved from the local part. For example, for both the addresses

"abc: xyz" @est. exanpl e
abc\: xyz@ est . exanpl e

the value of $local_part is
abc: xyz

If you use $local_part to create another address, you should always wrap it inside a quoting
operator. For example, in aredirect router you could have:

data = ${quote_l ocal _part: $l ocal _part} @ew. domai n. exanpl e

134 String expansions (11)

Note: The value of $local_part is normally lower cased. If you want to process local partsin a
case-dependent manner in arouter, you can set the caseful_local_part option (see chapter.

8local_part_data
When the local_parts option on a router matches alocal part by means of alookup, the data read
by the lookup is available during the running of the router as $local_part_data. In addition, if the
driver routes the address to a transport, the value is available in that transport. If the transport is
handling multiple addresses, the value from the rst address is used.

$local_part_data is also set when the local_parts condition in an ACL matches a local part by
means of alookup. The data read by the lookup is available during the rest of the ACL statement.
In all other situations, this variable expands to nothing.

Slocal_part_prefix
When an address is being routed or delivered, and a speci ¢ prex for the local part was
recognized, it is available in this variable, having been removed from $local_part.

Slocal_part_suffix
When an address is being routed or delivered, and a speci ¢ suf x for the local part was
recognized, it isavailable in this variable, having been removed from $local_part.

Slocal_scan_data
This variable contains the text returned by the local_scan() function when a message is received.
See chapter @ for more details.

Slocal_user_gid
See $local_user_uid.

Slocal_user _uid
This variable and $local_user_gid are set to the uid and gid after the check _local _user router
precondition succeeds. This means that their values are available for the remaining preconditions
(senders, require_les, and condition), for the address data expansion, and for any router-
speci ¢ expansions. At all other times, the values in these variables are (uid_t)(-1) and

(gid_t)(-1),respectively.

$localhost_number
This contains the expanded value of the localhost_number option. The expansion happens after
the main options have been read.

Slog_inodes
The number of freeinodes in the disk partition where Exim¢s log les are being written. The value
is recalculated whenever the variable is referenced. If the relevant |e system does not have the
concept of inodes, the value of is-1. See also the check_log_inodes option.

Slog_space
The amount of free space (as a number of kilobytes) in the disk partition where Eximds log les
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to nd the amount of free space (only true for experimental
systems), the space valueis -1. See also the check_log_space option.

Slookup_dnssec_authenticated
This variable is set after a DNS lookup done by a dnsdb lookup expansion, dnslookup router or
smtp transport. It will be empty if DNSSEC was not requested, no if the result was not labelled
as authenticated data and yes if it was. Results that are labelled as authoritative answer that
match the dns_trust_aa con guration variable count also as authenticated data.

$mailstore_basename
This variable is set only when doing deliveries in mailstore format in the appendjfile transport.
During the expansion of the mailstore prex, mailstore_suf x, message prex, and message
suf x options, it contains the basename of the les that are being written, that is, the name without
the .tmp, .env,or .msg suf x. At al other times, this variable is empty.

135 String expansions (11)

$Smalware_name
This variable is available when Exim is compiled with the content-scanning extension. It is set to
the name of the virus that was found when the ACL malwar e condition istrue (see section44.

Smax_received_linelength
This variable contains the number of bytes in the longest line that was received as part of the
message, hot counting the line termination character(s). It is not valid if the spool les
wireformat option is used.

$message_age
This variable is set at the start of a delivery attempt to contain the number of seconds since the
message was received. It does not change during a single delivery attempt.

S$message_body
This variable contains the initial portion of a message¢s body while it is being delivered, and is
intended mainly for usein Iter les. The maximum number of characters of the body that are put
into the variable is set by the message _body_visible con guration option; the default is 500.

By default, newlines are converted into spaces in $message_body, to make it easier to search for
phrases that might be split over a line break. However, this can be disabled by setting message
body_newlinesto be true. Binary zeros are always converted into spaces.

$message_body_end
This variable contains the nal portion of a messagets body while it is being delivered. The format
and maximum size are asfor $message_body.

Smessage_body_size
When a message is being delivered, this variable contains the size of the body in bytes. The count
starts from the character after the blank line that separates the body from the header. Newlines are
included in the count. See al'so $message_size, $body_linecount, and $body_zerocount.

If the spool le is wireformat (see the spool_les wireformat main option) the CRLF line-
terminators are included in the count.

Smessage_exim_id
When a message is being received or delivered, this variable contains the unique message id that is
generated and used by Exim to identify the message. An id is not created for a message until after
its header has been successfully received. Note: Thisis not the contents of the Message-ID: header
ling; it isthelocal id that Exim assigns to the message, for example: 1BXTI K- 0001y O VA.

Smessage_headers
This variable contains a concatenation of all the header lines when a message is being processed,
except for lines added by routers or transports. The header lines are separated by newline charac-
ters. Their contents are decoded in the same way as a header line that is inserted by bheader.

Smessage_headers_raw
This variable is like $message_headers except that no processing of the contents of header linesis
done.

Smessage_id
Thisisan old name for $message_exim_id. It is now deprecated.

Smessage_linecount
This variable contains the total number of lines in the header and body of the message. Compare
$body_linecount, which is the count for the body only. During the DATA and content-scanning
ACLs, $message_linecount contains the number of lines received. Before delivery happens (that is,
before Iters, routers, and transports run) the count is increased to include the Received: header
line that Exim standardly adds, and a so any other header lines that are added by ACLs. The blank
line that separates the message header from the body is not counted.

As with the special case of $message_size, during the expansion of the append le transport¢s
maildir_tag option in maildir format, the value of $message_linecount is the precise size of the
number of newlines in the le that has been written (minus one for the blank line between the
header and the body).

136 String expansions (11)

Here is an example of the use of thisvariablein a DATA ACL:

deny nessage Too many |ines in nmessage header
condi tion \
${if <{250}{${eval: $nessage_| i necount - $body_linecount}}}

Inthe MAIL and RCPT ACLs, the value is zero because at that stage the message has not yet been
received.

Thisvariableisnot valid if the spool__les wireformat option is used.

$message_size
When a message is being processed, this variable contains its size in bytes. In most cases, the size
includes those headers that were received with the message, but not those (such as Envelope-to:)
that are added to individual deliveries as they are written. However, there is one specia case:
during the expansion of the maildir_tag option in the appendfile transport while doing a delivery
in maildir format, the value of $message_size is the precise size of the le that has been written.
See also $message_body_size, $body_linecount, and $body_zerocount.

While running a per message ACL (mail/rcpt/predata), $message_size contains the size supplied
on the MAIL command, or -1 if no size was given. The value may not, of course, be truthful.

Smime_xxx
A number of variables whose names start with $mime_are available when Exim is compiled with
the content-scanning extension. For details, see section

$n0 $n9
These variables are counters that can be incremented by means of the add command in lter les.

Soriginal_domain
When atop-level address is being processed for delivery, this contains the same value as $domain.
However, if a child address (for example, generated by an alias, forward, or Iter le) is being
processed, this variable contains the domain of the original address (lower cased). This differs
from $parent_domain only when there is more than one level of aliasing or forwarding. When
more than one address is being delivered in a single transport run, $original_domain is not set.

If anew address is created by means of a deliver command in a system lter, it is set up with an
arti cial parent address. This hasthelocal part system-filter and the default qualify domain.

Soriginal_local_part
When a top-level address is being processed for delivery, this contains the same value as $local_
part, unless a prex or suf x was removed from the local part, because $original_local_part
always contains the full local part. When a child address (for example, generated by an dlias,
forward, or Iter le) is being processed, this variable contains the full local part of the origina
address.

If the router that did the redirection processed the local part case-insensitively, the value in
Soriginal_local_part is in lower case. This variable differs from $parent_local_part only when
there is more than one level of aliasing or forwarding. When more than one address is being
delivered in asingle transport run, $original_local_part isnot set.

If anew address is created by means of a deliver command in a system lter, it is set up with an
arti cial parent address. This hasthelocal part system-filter and the default qualify domain.

Soriginator_gid
This variable contains the value of $caller_gid that was set when the message was received. For
messages received via the command line, thisis the gid of the sending user. For messages received
by SMTP over TCP/IP, thisis normally the gid of the Exim user.

Soriginator_uid
The value of $caller_uid that was set when the message was received. For messages received via
the command line, this is the uid of the sending user. For messages received by SMTP over
TCP/IP, thisis normally the uid of the Exim user.

137 String expansions (11)

Sparent_domain
This variable is similar to $original_domain (see above), except that it refers to the immediately
preceding parent address.

Sparent_local_part
Thisvariable is similar to $original_local_part (See above), except that it refers to the immediately
preceding parent address.

$pid
This variable contains the current processid.

$pipe_addresses
This is not an expansion variable, but is mentioned here because the string $pi pe_addr esses
is handled specially in the command speci cation for the pipe transport (chapter @ and in
transport Iters (described under transport_Iter in chapter 24).|It cannot be used in genera
expansion strings, and provokes an unknown variable error if encountered.

Sprimary_hostname
This variable contains the value set by primary_hostname in the con guration le, or read by the
uname() function. If uname() returns a single-component name, Exim calls gethostbyname() (or
getipnodebyname() where available) in an attempt to acquire a fully quali ed host name. See also
$smitp_active_hostname.

Sproxy_external_address

Sproxy_external_port

Sproxy_local_address

$proxy_local_port

Sproxy_session
These variables are only available when built with Proxy Protocol or SOCK S5 support. For details
see chapter @

Sprdr_requested
This variable is set to yes if PRDR was requested by the client for the current message, other-
wise no.

$prvscheck_address
This variable is used in conjunction with the prvscheck expansion item, which is described in
sections and|43.51‘

$prvscheck_keynum
This variable is used in conjunction with the prvscheck expansion item, which is described in
sections and|43.51‘

$prvscheck_result
This variable is used in conjunction with the prvscheck expansion item, which is described in

sections and |43.51‘

Squalify_domain
The value set for the qualify_domain option in the con guration le.

Squalify_recipient
The value set for the qualify_recipient option in the con guration le, or if not set, the value of
Squalify_domain.

$queue_name
The name of the spool queue in use; empty for the default queue.

Srept_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands received for the current message. If thisvariable is used in a RCPT ACL, its value includes
the current command.

Srept_defer_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with atemporary (4xx) response.

138 String expansions (11)

$rept_fail_count
When a message is being received by SMTP, this variable contains the number of RCPT com-
mands in the current message that have previously been rejected with a permanent (5xx) response.

S$received _count
This variable contains the number of Received: header lines in the message, including the one
added by Exim (so its value is always greater than zero). It is available in the DATA ACL, the
non-SMTP ACL, and while routing and delivering.

Sreceived_for
If there is only a single recipient address in an incoming message, this variable contains that
address when the Received: header line is being built. The value is copied after recipient rewriting
has happened, but before the local_scan() function is run.

Sreceived_ip_address
As soon as an Exim server starts processing an incoming TCP/IP connection, this variable is set to
the address of the local IP interface, and $received_port is set to the local port number. (The
remote |P address and port are in $sender_host_address and $sender_host_port.) When testing
with -bh, the port value is -1 unlessit has been set using the -oMi command line option.

Aswell as being useful in ACLs (including the connect ACL), these variable could be used, for
example, to make the le name for a TLS certi cate depend on which interface and/or port is
being used for the incoming connection. The values of $received_ip_address and $received_port
are saved with any messages that are received, thus making these variables available at delivery
time. For outbound connections see $sending_ip_address.

Sreceived_port
See $received_ip_address.

Sreceived_protocol
When a message is being processed, this variable contains the name of the protocol by which it
was received. Most of the names used by Exim are de ned by RFCs 821, 2821, and 3848. They
start with smtp (the client used HELO) or esmtp (the client used EHLO). This can be followed
by s for secure (encrypted) and/or a for authenticated. Thus, for example, if the protocol is set
to esmtpsa, the message was received over an encrypted SMTP connection and the client was
successfully authenticated.

Exim uses the protocol name smtps for the case when encryption is automatically set up on
connection without the use of STARTTLS (seetls_on_connect_ports), and the client uses HELO
to initiate the encrypted SMTP session. The name smtps is also used for the rare situation where
the client initially uses EHLO, sets up an encrypted connection using STARTTLS, and then uses
HEL O afterwards.

The -oMr option provides a way of specifying a custom protocol name for messages that are
injected locally by trusted callers. This is commonly used to identify messages that are being
re-injected after some kind of scanning.

Sreceived_time
This variable contains the date and time when the current message was received, as a number of
seconds since the start of the Unix epoch.

Srecipient_data
This variable is set after an indexing lookup success in an ACL recipients condition. It contains
the data from the lookup, and the value remains set until the next recipients test. Thus, you can do
things like this:

require recipients = cdb*@/sone/file
deny some further test involving $r eci pi ent _dat a

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for alookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

139 String expansions (11)

Srecipient_verify_failure
In an ACL, when a recipient veri cation fails, this variable contains information about the failure.
It is set to one of the following words:

e qudify : The address was unquali ed (no domain), and the message was neither local nor
came from an exempted host.

» route: Routing failed.

* mail : Routing succeeded, and a callout was attempted; rejection occurred at or before the
MAIL command (that is, oninitial connection, HELO, or MAIL).

* recipient : The RCPT command in a callout was rejected.
e postmaster : The postmaster check in a callout was rejected.

The main use of this variable is expected to be to distinguish between regjections of MAIL and
rejections of RCPT.

Srecipients
This variable contains a list of envelope recipients for a message. A comma and a space separate
the addresses in the replacement text. However, the variable is not generally available, to prevent
exposure of Bce recipients in unprivileged userst Iter les. You can use $recipients only in these
cases.

(1) Inasystem lter le.

(2) Inthe ACLs associated with the DATA command and with non-SMTP messages, that is, the
ACLs dened by acl_smtp_predata, acl_smtp_data, acl_smtp_mime, acl_not_smtp_
start, acl_not_smtp, and acl_not_smtp_mime.

(3) Fromwithin alocal_scan() function.

Srecipients_count
When a message is being processed, this variable contains the number of envelope recipients that
came with the message. Duplicates are not excluded from the count. While a message is being
received over SMTP, the number increases for each accepted recipient. It can be referenced in an
ACL.

Sregex_match_string
This variable is set to contain the matching regular expression after a regex ACL condition has
matched (see section .

Sregexl, $regex2, €tc
When a regex or mime _regex ACL condition succeeds, these variables contain the captured
substringsidenti ed by the regular expression.

Sreply_address
When a message is being processed, this variable contains the contents of the Reply-To: header
lineif one exists and it is not empty, or otherwise the contents of the From: header line. Apart from
the removal of leading white space, the value is not processed in any way. In particular, no RFC
2047 decoding or character code trandlation takes place.

Sreturn_path

When a message is being delivered, this variable contains the return path the sender eld that
will be sent as part of the envelope. It is not enclosed in <> characters. At the start of routing an
address, $return_path has the same value as $sender_address, but if, for example, an incoming
message to a mailing list has been expanded by a router which speci es a different address for
bounce messages, $return_path subsequently contains the new bounce address, whereas $sender_
address always contains the original sender address that was received with the message. In other
words, $sender_address contains the incoming envelope sender, and $return_path contains the
outgoing envelope sender.

Sreturn_size_limit
Thisis an obsolete name for $bounce_return_size_limit.

140 String expansions (11)

Srouter_name
During the running of arouter this variable contains its name.

Srunrc
This variable contains the return code from a command that is run by the ${run...} expansion item.
Warning: In a router or transport, you cannot assume the order in which option values are
expanded, except for those preconditions whose order of testing is documented. Therefore, you
cannot reliably expect to set $runrc by the expansion of one option, and use it in another.

$self_hostname
When an address is routed to a supposedly remote host that turns out to be the local host, what
happens is controlled by the self generic router option. One of its values causes the address to be
passed to another router. When this happens, $self_hostname is set to the name of the local host
that the original router encountered. In other circumstances its contents are null.

$sender_address
When a message is being processed, this variable contains the sender¢s address that was received
in the message¢s envelope. The case of letters in the address is retained, in both the local part and
the domain. For bounce messages, the value of this variable is the empty string. See also $return_
path.

$sender_address_data
If $address_data is set when the routers are called from an ACL to verify a sender address, the
nal value is preserved in $sender_address_data, to distinguish it from data from a recipient
address. The value does not persist after the end of the current ACL statement. If you want to
preserveit for longer, you can saveit in an ACL variable.

$sender_address_domain
The domain portion of $sender_address.

$sender_address_local_part
Thelocal part portion of $sender_address.

$sender_data
This variable is set after a lookup success in an ACL senders condition or in a router senders
option. It contains the data from the lookup, and the value remains set until the next senders test.
Thus, you can do things like this:

require senders = cdb*@/sone/file
deny some further test involving $sender _dat a

Warning: This variable is set only when a lookup is used as an indexing method in the address
list, using the semicolon syntax as in the example above. The variable is not set for alookup that is
used as part of the string expansion that all such lists undergo before being interpreted.

Ssender_fullhost

When a message is received from a remote host, this variable contains the host name and IP
addressin asingle string. It ends with the IP address in square brackets, followed by a colon and a
port number if the logging of ports is enabled. The format of the rest of the string depends on
whether the host issued a HELO or EHLO SMTP command, and whether the host name was
veri ed by looking up its IP address. (Looking up the I P address can be forced by the host_lookup
option, independent of veri cation.) A plain host name at the start of the string is a veri ed host
name; if thisis not present, veri cation either failed or was not requested. A host name in parenth-
eses isthe argument of aHEL O or EHLO command. Thisis omitted if it isidentical to the veri ed
host name or to the host¢s I P address in square brackets.

$sender_helo_dnssec
This boolean variable is true if a successful HELO veri cation was done using DNS information
the resolver library stated was authenticated data.

$sender_helo_name
When a message is received from a remote host that has issued a HELO or EHLO command, the
argument of that command is placed in this variable. It isalso set if HELO or EHLO is used when
amessage isreceived using SMTP locally viathe -bs or -bS options.

141 String expansions (11)

$sender_host_address
When a message is received from a remote host using SMTR, this variable contains that host¢s IP
address. For locally non-SMTP submitted messages, it is empty.

$sender_host_authenticated
This variable contains the name (not the public name) of the authenticator driver that successfully
authenticated the client from which the message was received. It is empty if there was no success-
ful authentication. See also $authenticated_id.

$sender_host_dnssec
If an attempt to populate $sender_host_name has been made (by reference, hosts lookup or
otherwise) then this boolean will have been set true if, and only if, the resolver library states that
both the reverse and forward DNS were authenticated data. At all other times, this variable is false.

Itislikely that you will need to coerce DNSSEC support on in the resolver library, by setting:
dns_dnssec_ok =1

Exim does not perform DNSSEC validation itself, instead leaving that to a validating resolver (e.g.
unbound, or bind with suitable con guration).

If you have changed host_lookup_order so that bydns is not the rst mechanism in the list, then
this variable will be false.

This requires that your system resolver library support EDNSO (and that DNSSEC flags exist in
the system headers). If the resolver silently drops al EDNSO options, then this will have no effect.
OpenBSD¢s asr resolver is known to currently ignore EDNSO, documented in CAVEATS of
asr_run(3).

$sender_host_name
When a message is received from a remote hogt, this variable contains the host¢s name as obtained
by looking up its I P address. For messages received by other means, this variable is empty.

If the host name has not previously been looked up, a reference to $sender_host_name triggers a
lookup (for messages from remote hosts). A looked up name is accepted only if it leads back to the
original IP address via a forward lookup. If either the reverse or the forward lookup failsto nd

any data, or if the forward lookup does not yield the original IP address, $sender_host_name
remains empty, and $host_lookup_failed issetto 1.

However, if either of the lookups cannot be completed (for example, there is a DNS timeout),
Shost_lookup_deferred issetto 1, and $host_lookup_failed remainssetto 0.

Once $host_lookup_failed is set to 1, Exim does not try to look up the host name again if there
is a subsequent reference to $sender_host_name in the same Exim process, but it does try again if
$host_lookup_deferredissetto 1.

Exim does not automatically look up every calling host¢s name. If you want maximum ef ciency,
you should arrange your con guration so that it avoids these lookups altogether. The lookup
happens only if one or more of the following are true:

* A string containing $sender_host_name is expanded.

» The caling host matches the list in host_lookup. In the default con guration, this option is set
to *, so it must be changed if lookups are to be avoided. (In the code, the default for host_
lookup is unset.)

» Exim needs the host name in order to test an item in a host list. The items that require this are
described in sections|10.1§ and 10.1?[

» The calling host matches helo_try verify _hosts or helo_verify_hosts. In this case, the host
name is required to compare with the name quoted in any EHLO or HELO commands that the
client issues.

* The remote host issues a EHLO or HELO command that quotes one of the domains in helo_
lookup_domains. The default value of thisoptionis

hel o_| ookup_domains = @: @]

142 String expansions (11)

which causes a lookup if aremote host (incorrectly) gives the server¢s name or IP address in an
EHLO or HELO command.

$sender_host_port
When a message is received from a remote hogt, this variable contains the port number that was

used on the remote host.

$sender_ident
When a message is received from a remote host, this variable contains the identi cation received

in response to an RFC 1413 request. When a message has been received localy, this variable
contains the login name of the user that called Exim.

$sender_rate_xxx
A number of variables whose names begin $sender_rate_ are set as part of the ratelimit ACL

condition. Details are given in section

$sender_rcvhost
This is provided speci cally for use in Received: headers. It starts with either the veri ed host

name (as obtained from areverse DNS lookup) or, if there is no veri ed host name, the |P address
in square brackets. After that there may be text in parentheses. When the rst item is a veri ed
host name, the rst thing in the parentheses is the IP address in square brackets, followed by a
colon and a port number if port logging is enabled. When the rst item is an | P address, the port is
recorded as port=xxxx inside the parentheses.

There may also be items of the form helo=xxxx if HELO or EHLO was used and its argument
was not identical to the real host name or |P address, and ident=xxxx if an RFC 1413 ident string
isavailable. If al three items are present in the parentheses, a newline and tab are inserted into the
string, to improve the formatting of the Received: header.

$sender_verify_failure
In an ACL, when a sender veri cation fails, this variable contains information about the failure.

The details are the same as for $recipient_verify_failure.

$sending_ip_address
This variable is set whenever an outgoing SMTP connection to another host has been set up. It
contains the 1P address of the local interface that is being used. This is useful if a host that has
more than one I P address wants to take on different personalities depending on which one is being
used. For incoming connections, see $received_ip_address.

$sending_port
This variable is set whenever an outgoing SMTP connection to another host has been set up. It

contains the local port that is being used. For incoming connections, see $received_port.

$smip_active_hostname
During an incoming SMTP session, this variable contains the value of the active host name, as

speci ed by the smtp_active_hostname option. The value of $smtp_active_hostmame is saved
with any message that is received, so its value can be consulted during routing and delivery.

Ssmip_command
During the processing of an incoming SMTP command, this variable contains the entire command.

This makes it possible to distinguish between HELO and EHLO in the HELO ACL, and also to
distinguish between commands such as these:

MAI L FROM <>
MAI L FROM <>

For a MAIL command, extra parameters such as SIZE can be inspected. For a RCPT command,
the address in $smtp_command is the original address before any rewriting, whereas the values in
$local_part and $domain are taken from the address after SMTP-time rewriting.

Ssmip_command_argument
While an ACL is running to check an SMTP command, this variable contains the argument, that is,

the text that follows the command name, with leading white space removed. Following the intro-

143 String expansions (11)

duction of $smitp_command, this variable is somewhat redundant, but is retained for backwards
compatibility.

$smitp_command_history
A comma-separated list (with no whitespace) of the most-recent SMTP commands received, in
time-order left to right. Only alimited number of commands are remembered.

$smtp_count_at_connection_start

This variable is set greater than zero only in processes spawned by the Exim daemon for handling
incoming SMTP connections. The name is deliberately long, in order to emphasize what the
contents are. When the daemon accepts a new connection, it increments this variable. A copy of
the variable is passed to the child process that handles the connection, but its value is xed, and

never changes. It is only an approximation of how many incoming connections there actually are,
because many other connections may come and go while a single connection is being processed.
When a child process terminates, the daemon decrements its copy of the variable.

$sn0 $sn9
These variables are copies of the values of the $n0 $n9 accumulators that were current at the end
of the system lIter le. This alows a system lIter le to set values that can be tested in users¢
Iter les. For example, a system Iter could set a value indicating how likely it is that a message
isjunk mail.

$spam_xxx
A number of variables whose names start with $spam are available when Exim is compiled with
the content-scanning extension. For details, see section

$spf_header_comment
$spf_received
Sspf_result
$spf_result_guessed
$spf_smtp_comment
These variables are only available if Exim is built with SPF support. For details see section .

$spool_directory
The name of Exim¢s spool directory.

$spool_inodes
The number of free inodes in the disk partition where Exim¢s spool les are being written. The
value is recalculated whenever the variable is referenced. If the relevant le system does not have
the concept of inodes, the value of is-1. See aso the check_spool_inodes option.

$spool_space
The amount of free space (as a number of kilobytes) in the disk partition where Exim¢s spool les
are being written. The value is recalculated whenever the variable is referenced. If the operating
system does not have the ability to nd the amount of free space (only true for experimental
systems), the space valueis-1. For example, to check in an ACL that there is at least 50 megabytes
free on the spool, you could write:

condition = ${if > {$spool _space} {50000} }
See also the check_spool_space option.

Sthisaddress
This variable is set only during the processing of the foranyaddress command in a Iter le. Its
use is explained in the description of that command, which can be found in the separate document
entitled Exim’s interfaces to mail filtering.

$tls_in_bits
Contains an approximation of the TLS cipher¢s bit-strength on the inbound connection; the mean-
ing of this depends upon the TLS implementation used. If TLS has not been negotiated, the value
will be 0. The value of thisis automatically fed into the Cyrus SASL authenticator when acting as
aserver, to specify the "external SSF"' (a SASL term).

144 String expansions (11)

The deprecated $tls_bits variable refers to the inbound side except when used in the context of an
outbound SMTP delivery, when it refers to the outbound.

$tls_out_bits
Contains an approximation of the TL S cipher¢s bit-strength on an outbound SMTP connection; the
meaning of this depends upon the TLS implementation used. If TLS has not been negotiated, the
value will be 0.

$tls_in_ourcert
This variable refers to the certi cate presented to the peer of an inbound connection when the
message was received. It is only useful as the argument of a certextract expansion item, md5,
shal or sha256 operator, or adef condition.

Note: Under versions of OpenSSL preceding 1.1.1, when alist of more than one le is used for
tls_certi cate, thisvariableis not reliable.

$tls_in_peercert
This variable refers to the certi cate presented by the peer of an inbound connection when the
message was received. It is only useful as the argument of a certextract expansion item, md5,
shal or sha256 operator, or a def condition. If certi cate veri cation fails it may refer to afailing
chain element which is not the leaf.

$tls_out_ourcert
This variable refers to the certi cate presented to the peer of an outbound connection. It is only
useful as the argument of a certextract expansion item, md5, shal or sha256 operator, or a def
condition.

$tls_out_peercert
This variable refers to the certi cate presented by the peer of an outbound connection. It is only
useful as the argument of a certextract expansion item, md5, shal or sha256 operator, or a def
condition. If certi cate veri cation fails it may refer to a failing chain element which is not the
leaf.

$tls_in_certificate_verified
Thisvariableissetto 1 if aTLS certi cate was veri ed when the message was received, and 0
otherwise.

The deprecated $1ls_certificate_verified variable refers to the inbound side except when used in the
context of an outbound SMTP delivery, when it refers to the outbound.

Stls_out_certificate_verified
Thisvariableisset to 1 if a TLS certi cate was veri ed when an outbound SMTP connection
was made, and O otherwise.

S$tls_in_cipher
When amessage is received from a remote host over an encrypted SMTP connection, this variable
is set to the cipher suite that was negotiated, for example DES-CBC3-SHA. In other circum-
stances, in particular, for message received over unencrypted connections, the variable is empty.
Testing $tls_in_cipher for emptiness is one way of distinguishing between encrypted and non-
encrypted connections during ACL processing.

The deprecated $tls_cipher variable is the same as $tls_in_cipher during message reception, but in
the context of an outward SMTP delivery taking place viathe smip transport becomes the same as
$tls_out_cipher.

Stls_out_cipher
This variable is cleared before any outgoing SMTP_connection is made, and then set to the
outgoing cipher suite if oneis negotiated. See chapterfor details of TLS support and chapter
for details of the smzp transport.

$tls_out_dane
DANE active status. See section

145 String expansions (11)

S$tls_in_ocsp
When a message is received from a remote client connection the result of any OCSP request from
the client is encoded in this variable:

0 OCSP proof was not requested (default val ue)
1 No response to request

2 Response not verified

3 Verification failed

4 Verification succeeded

$tls_out_ocsp
When a message is sent to a remote host connection the result of any OCSP request made is
encoded in this variable. See $tls_in_ocsp for values.

$tls_in_peerdn
When a message is received from a remote host over an encrypted SMTP connection, and Exim is
con gured to request a certi cate from the client, the value of the Distinguished Name of the
certi cate is made available in the $tls_in_peerdn during subsequent processing. If certi cate
veri cation failsit may refer to afailing chain element which is not the leaf.

The deprecated $tls_peerdn variable refers to the inbound side except when used in the context of
an outbound SMTP delivery, when it refers to the outbound.

$tls_out_peerdn
When a message is being delivered to a remote host over an encrypted SMTP connection, and
Exim is con gured to request a certi cate from the server, the value of the Distinguished Name of
the certi cate is made available in the $tis_out_peerdn during subsequent processing. If certi cate
veri cation failsit may refer to afailing chain element which is not the leaf.

$tls_in_sni
When aTLS session is being established, if the client sends the Server Name Indication extension,
the value will be placed in this variable. If the variable appears in tIs_certi cate then this option
and some others, described in EZ.lO, will be re-expanded early in the TLS session, to permit a
different certi cate to be presented (and optionally a different key to be used) to the client, based
upon the value of the SNI extension.

The deprecated $rls_sni variable refers to the inbound side except when used in the context of an
outbound SMTP delivery, when it refers to the outbound.

$tls_out _sni
During outbound SMTP deliveries, this variable reflects the value of the tls_sni option on the
transport.

Stls_out_tlsa_usage
Bit eld of TLSA record types found. See section 42.15.]

$tod_bsdinbox
The time of day and the date, in the format required for BSD-style mailbox les, for example: Thu
Oct 17 17:14:09 1995.

$tod_epoch
The time and date as a number of seconds since the start of the Unix epoch.

Stod_epoch_l
The time and date as a number of microseconds since the start of the Unix epoch.

$tod_full
A full version of the time and date, for example: Wed, 16 Oct 1995 09:51:40 +0100. The timezone
is always given as a numerical offset from UTC, with positive values used for timezones that are
ahead (east) of UTC, and negative values for those that are behind (west).

Stod_log
The time and date in the format used for writing Eximd¢s log les, for example: 1995-10-12
15:32:29, but without a timezone.

146 String expansions (11)

Stod_logfile
This variable contains the date in the format yyyymmdd. This is the format that is used for
datestamping log leswhenlog_le path contains the %O flag.

$tod_zone
This variable contains the numerical value of the local timezone, for example: -0500.

$tod_zulu
This variable contains the UTC date and time in Zulu format, as speci ed by 1SO 8601, for
example: 20030221154023Z.

Stransport_name
During the running of atransport, this variable contains its name.

$value
This variable contains the result of an expansion lookup, extraction operation, or external com-
mand, as described above. It is also used during areduce expansion.

$verify_mode
While arouter or transport is being run in verify mode or for cutthrough delivery, contains "'S" for
sender-veri cation or "R" for recipient-veri cation. Otherwise, empty.

Sversion_number
The version number of Exim.

Swarn_message_delay
This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section

Swarn_message_recipients

This variable is set only during the creation of a message warning about a delivery delay. Details
of its use are explained in section[49.2

147 String expansions (11)

12. Embedded Perl

Exim can be built to include an embedded Perl interpreter. When this is done, Perl subroutines can be
called as part of the string expansion process. To make use of the Perl support, you need version 5.004
or later of Perl installed on your system. To include the embedded interpreter in the Exim binary,
include the line

EXIM PERL = perl.o
inyour Local/Makefile and then build Exim in the normal way.

12.1 Setting up so Perl can be used

Access to Perl subroutinesis via a global con guration option caled perl_startup and an expansion
string operator ${perl ...}. If there is no perl_startup option in the Exim con guration le then no
Perl interpreter is started and there is almost no overhead for Exim (since none of the Perl library will
be paged in unless used). If thereisaperl_startup option then the associated value is taken to be Perl
code which is executed in anewly created Perl interpreter.

The value of perl_startup is not expanded in the Exim sense, so you do not need backslashes before
any characters to escape special meanings. The option should usually be something like

perl _startup = do '/etc/eximpl’

where /etc/exim.pl is Perl code which de nes any subroutines you want to use from Exim. Exim can
be con gured either to start up a Perl interpreter as soon asiit is entered, or to wait until the rst time
it is needed. Starting the interpreter at the beginning ensures that it is done while Exim still has its
setuid privilege, but can impose an unnecessary overhead if Perl is not in fact used in a particular run.
Also, note that this does not mean that Exim is necessarily running as root when Perl is called at a
later time. By default, the interpreter is started only when it is needed, but this can be changed in two

ways.
e Setting perl_at_start (a boolean option) in the con guration requests a startup when Exim is
entered.

» The command line option -ps also requests a startup when Exim is entered, overriding the setting
of perl_at_start.

Thereisaso acommand line option -pd (for delay) which suppresses the initial startup, even if perl_
at_start isset.

» To provide more security executing Perl code via the embedded Perl interpreter, the perl
taintmode option can be set. This enables the taint mode of the Perl interpreter. You are encour-
aged to set this option to atrue value. To avoid breaking existing installations, it defaults to false.

12.2 Calling Perl subroutines

When the con guration le includes a perl_startup option you can make use of the string expansion
item to call the Perl subroutines that are de ned by the perl_startup code. The operator is used in any
of the following forms:

${ perl{foo}}
${ perl {foo}{argunent}}
${perl {foo}{argunent 1} {argunment2} ... }

which calls the subroutine foo with the given arguments. A maximum of eight arguments may be
passed. Passing more than this results in an expansion failure with an error message of the form

Too many argunents passed to Perl subroutine "foo" (nax is 8)

The return value of the Perl subroutine is evaluated in a scalar context before it is passed back to
Exim to be inserted into the expanded string. If the return value is undef, the expansion is forced to
fail in the same way as an explicit fail on an if or lookup item. If the subroutine aborts by obeying
Perl¢s die function, the expansion fails with the error message that was passed to die.

148 Embedded Perl (12)

12.3 Calling Exim functions from Perl

Within any Perl code called from Exim, the function Exim::expand_string() is available to call back
into Eximés string expansion function. For example, the Perl code

my $lp = Exi m:expand_string(’ $l ocal _part’);

makes the current Exim $local_part available in the Perl variable $Ip. Note those are single quotes
and not double quotes to protect against $local_part being interpolated as a Perl variable.

If the string expansion is forced to fail by a fail item, the result of Exim::expand_string() is undef.
If there is a syntax error in the expansion string, the Perl call from the original expansion string fails
with an appropriate error message, in the sasme way asif die were used.

Two other Exim functions are available for use from within Perl code. Exim::debug_write() writes a
string to the standard error stream if Exim¢s debugging is enabled. If you want a newline at the end,
you must supply it. Exim::log_write() writes a string to Exim¢s main log, adding aleading timestamp.
In this case, you should not supply aterminating newline.

12.4 Use of standard output and error by Perl

You should not write to the standard error or output streams from within your Perl code, as it is not
de ned how these are set up. In versions of Exim before 4.50, it is possible for the standard output or
error to refer to the SMTP connection during message reception via the daemon. Writing to this
stream is certain to cause chaos. From Exim 4.50 onwards, the standard output and error streams are
connected to /dev/null in the daemon. The chaos is avoided, but the output islost.

The Perl warn statement writes to the standard error stream by default. Calls to warn may be
embedded in Perl modules that you use, but over which you have no control. When Exim starts up the
Perl interpreter, it arranges for output from the warn statement to be written to the Exim main log.
You can change this by including appropriate Perl magic somewhere in your Perl code. For example,
to discard war n output completely, you need this:

$SIG _WARN _} = sub { };
Whenever a warn is obeyed, the anonymous subroutine is called. In this example, the code for the

subroutine is empty, so it does nothing, but you can include any Perl code that you like. The text of
the warn message is passed as the rst subroutine argument.

149 Embedded Perl (12)

13. Starting the daemon and the use of network interfaces

A host that is connected to a TCP/IP network may have one or more physical hardware network
interfaces. Each of these interfaces may be con gured as one or more logical interfaces, which are
the entities that a program actually works with. Each of these logical interfaces is associated with an
IP address. In addition, TCP/IP software supports loopback interfaces (127.0.0.1 in IPv4 and ::1in
IPv6), which do not use any physical hardware. Exim requires knowledge about the host¢s interfaces
for use in three different circumstances:

(1) When alistening daemon is started, Exim needs to know which interfaces and ports to listen on.

(2) When Exim isrouting an address, it needs to know which | P addresses are associated with local
interfaces. Thisis required for the correct processing of MX lists by removing the local host and
others with the same or higher priority values. Also, Exim needs to detect cases when an address
is routed to an IP address that in fact belongs to the local host. Unless the self router option or
the allow_localhost option of the smtp transport is set (as appropriate), thisis treated as an error
situation.

(3) When Exim connects to a remote host, it may need to know which interface to use for the
outgoing connection.

Exim¢s default behaviour is likely to be appropriate in the vast majority of cases. If your host has only
one interface, and you want al its | P addresses to be treated in the same way, and you are using only
the standard SM TP port, you should not need to take any special action. The rest of this chapter does

not apply to you.
In a more complicated situation you may want to listen only on certain interfaces, or on different

ports, and for this reason there are a number of options that can be used to influence Exim¢s behav-
iour. The rest of this chapter describes how they operate.

When a message is received over TCP/IP, the interface and port that were actually used are set in
Sreceived_ip_address and $received_port.

13.1 Starting a listening daemon

When a listening daemon is started (by means of the -bd command line option), the interfaces and
ports on which it listens are controlled by the following options:

» daemon_smtp_ports contains a list of default ports or service names. (For backward compati-
bility, this option can also be speci ed in the singular.)

* local_interfaces contains list of interface |P addresses on which to listen. Each item may option-
ally also specify aport.

The default list separator in both casesis a colon, but this can be changed as described in section .
When |Pv6 addresses are involved, it is usually best to change the separator to avoid having to double
all the colons. For example:

| ocal interfaces = <; 127.0.0.1 ; \
192.168.23.65 ; \
N A
3ffe:ffff:836f::fe86:a061

There are two different formats for specifying a port along with an IP addressin local _interfaces:

(1) The port is added onto the address with a dot separator. For example, to listen on port 1234 on
two different | P addresses:

| ocal _interfaces = <; 192.168. 23.65.1234 ; \
3ffe:ffff:.836f::fe86:a061.1234

(2) The IP address is enclosed in square brackets, and the port is added with a colon separator, for
example:

150 Starting the daemon (13)

| ocal _interfaces = <; [192.168.23.65]:1234 ; \
[3ffe:ffff:836f::fe86:a061]:1234

When a port is not speci ed, the value of daemon_smtp_portsis used. The default setting contains
just one port:

daenon_smtp _ports = sntp

If more than one port is listed, each interface that does not have its own port speci ed listens on all of
them. Ports that are listed in daemon_smtp_ports can be identi ed either by name (dened in
Jetc/services) or by number. However, when ports are given with individual IP addresses in local _
interfaces, only numbers (not names) can be used.

13.2 Special IP listening addresses

The addresses 0.0.0.0 and ::0 are treated specialy. They are interpreted as all IPv4 interfaces and
al 1Pv6 interfaces, respectively. In each case, Exim tells the TCP/IP stack to listen on al IPvx
interfaces instead of setting up separate listening sockets for each interface. The default value of
local_interfacesis

| ocal _interfaces = 0.0.0.0
when Exim is built without |Pv6 support; otherwiseit is:
local _interfaces = <; ::0; 0.0.0.0

Thus, by default, Exim listens on all available interfaces, on the SMTP port.

13.3 Overriding local_interfaces and daemon_smtp_ports

The -0X command line option can be used to override the values of daemon_smtp_ports and/or
local_interfaces for a particular daemon instance. Another way of doing this would be to use macros
and the -D option. However, -0X can be used by any admin user, whereas modi cation of the runtime
con guration by -D is allowed only when the caller is root or exim.

The value of -oX is alist of items. The default colon separator can be changed in the usua way if
required. If there are any items that do not contain dots or colons (that is, are not |P addresses), the
value of daemon_smtp_ports is replaced by the list of those items. If there are any items that do
contain dots or colons, the value of local_interfacesis replaced by those items. Thus, for example,

-0X 1225
overrides daemon_smtp_ports, but leaveslocal_inter faces unchanged, whereas
-0X 192.168.34.5. 1125

overrides local_interfaces, leaving daemon_smtp_ports unchanged. (However, since local_inter-
faces now contains no items without ports, the value of daemon_smtp_portsis no longer relevant in
this example.)

13.4 Support for the submissions (aka SSMTP or SMTPS) protocol

Exim supports the use of TLS-on-connect, used by mail clientsin the submissions protocol, histori-
cally aso known as SMTPS or SSMTP. For some years, IETF Standards Track documents only
blessed the STARTTL S-based Submission service (port 587) while common practice was to support
the same feature set on port 465, but using TLS-on-connect. If your installation needs to provide
service to mail clients (Mail User Agents, MUAS) then you should provide service on both the 587
and the 465 TCP ports.

If the tls_on_connect_ports option is set to a list of port numbers or service names, connections to
those ports must rst establish TLS, before proceeding to the application layer use of the SMTP
protocol.

The common use of this option is expected to be

151 Starting the daemon (13)

tls_on_connect _ports = 465

per RFC 8314. There is also a command line option -tls-on-connect, which forces all ports to behave
in this way when a daemon is started.

Warning: Setting tls_on_connect_ports does not of itself cause the daemon to listen on those ports.
You must still specify them in daemon_smtp_ports, local_interfaces, or the -oX option. (This is
because tls on_connect_ports applies to inetd connections as well as to connections via the
daemon.)

13.5 IPv6 address scopes

IPv6 addresses have scopes, and a host with multiple hardware interfaces can, in principle, have the

same link-local IPv6 address on different interfaces. Thus, additional information is needed, over and
above the IP address, to distinguish individual interfaces. A convention of using a percent sign
followed by something (often the interface name) has been adopted in some cases, leading to
addresses like this:

fe80::202: b3ff: fe03: 45c1%t hO

To accommodate this usage, a percent sign followed by an arbitrary string is allowed at the end of an
IPv6 address. By default, Exim calls getaddrinfo() to convert a textual 1Pv6 address for actual use.
This function recognizes the percent convention in operating systems that support it, and it processes
the address appropriately. Unfortunately, some older libraries have problems with getaddrinfo(). |f

| PV6_USE_|I NET_PTON=yes

is set in Local/Makefile (or an OS-dependent Make le) when Exim is built, Exim uses inet_pton() to
convert atextual 1Pv6 address for actual use, instead of getaddrinfo(). (Before version 4.14, it dways
used this function.) Of course, this means that the additional functionality of getaddrinfo()
recognizing scoped addresses islost.

13.6 Disabling IPv6

Sometimes it happens that an Exim binary that was compiled with 1Pv6 support is run on a host
whose kernel does not support IPv6. The binary will fall back to using 1Pv4, but it may waste
resources looking up AAAA records, and trying to connect to 1Pv6 addresses, causing delays to mail
delivery. If you set the disable_ipv6 option true, even if the Exim binary has IPv6 support, no IPv6
activities take place. AAAA records are never looked up, and any IPv6 addresses that are listed in
local_interfaces, data for the manualroute router, etc. are ignored. If IP literals are enabled, the
ipliteral router declinesto handle I Pv6 literal addresses.

On the other hand, when IPv6 is in use, there may be times when you want to disable it for certain
hosts or domains. You can use the dns_ipv4_lookup option to globally suppress the lookup of AAAA
records for speci ed domains, and you can use the ignore_target_hosts generic router option to
ignore IPv6 addresses in an individual router.

13.7 Examples of starting a listening daemon
The default case in an I1Pv6 environment is

daenmon_smtp_ports = sntp
| ocal interfaces = <; ::0; 0.0.0.0

This speci es listening on the smtp port on al IPv6 and 1Pv4 interfaces. Either one or two sockets
may be used, depending on the characteristics of the TCP/IP stack. (This is complicated and messy;
for more information, read the comments in the daemon.c source le.)

To specify listening on ports 25 and 26 on all interfaces:
daenmon_smntp_ports = 25 . 26
(leaving local_interfaces at the default setting) or, more explicitly:

152 Starting the daemon (13)

| ocal interfaces = <; ::0.25 ;o ::0.26 \
0.0.0.0.25 ; 0.0.0.0.26

To listen on the default port on al 1Pv4 interfaces, and on port 26 on the IPv4 loopback address only:
| ocal interfaces = 0.0.0.0 : 127.0.0.1.26

To specify listening on the default port on speci ¢ interfaces only:
| ocal _interfaces = 10.0.0.67 : 192. 168. 34. 67

War ning: Such a setting excludes listening on the loopback interfaces.

13.8 Recognizing the local host

The local_interfaces option is al'so used when Exim needs to determine whether or not an IP address
refers to the local host. That is, the IP addresses of al the interfaces on which a daemon is listening
are always treated aslocal.

For this usage, port numbers in local_interfaces are ignored. If either of the items 0.0.0.0 or ::0 are
encountered, Exim gets a complete list of available interfaces from the operating system, and extracts
the relevant (that is, IPv4 or 1Pv6) addresses to use for checking.

Some systems set up large numbers of virtual interfaces in order to provide many virtual web servers.
In this situation, you may want to listen for email on only a few of the available interfaces, but
nevertheless treat all interfaces as local when routing. You can do this by setting extra_local_inter-
faces to a list of IP addresses, possibly including the all wildcard values. These addresses are
recognized as local, but are not used for listening. Consider this example:

| ocal _interfaces = <; 127.0.0.1 ; ::1 ; \
192. 168.53. 235 ; \
3ffe:2101: 12: 1: a00: 20ff: f e86: a061

extra local interfaces = <; ::0; 0.0.0.0

The daemon listens on the loopback interfaces and just one IPv4 and one IPv6 address, but all
available interface addresses are treated as local when Exim is routing.

In some environments the local host name may be in an MX list, but with an IP address that is not
assigned to any local interface. In other cases it may be desirable to treat other host names as if they
referred to the local host. Both these cases can be handled by setting the hosts treat_as local option.
This contains host names rather than IP addresses. When a host is referenced during routing, either
viaan MX record or directly, it is treated as the local host if its name matches hosts treat_as local,
or if any of its |P addresses match local _interfaces or extra local_interfaces.

13.9 Delivering to a remote host

Delivery to aremote host is handled by the smtp transport. By default, it allows the system¢s TCP/IP
functions to choose which interface to use (if there is more than one) when connecting to a remote
host. However, the interface option can be set to specify which interface is used. See the description
of the smtp transport in chapter |30/ for more details.

153 Starting the daemon (13)

14. Main configuration

The rst part of the run time con guration |e contains three types of item:

« Macro de nitions: These lines start with an upper case letter. See section 6.4 for details of macro
processing.

 Named list denitions: These lines start with one of the_words domainlist, hostlist,

addresdlist , or localpartlist . Their use is described in section 11@.5. ,

* Main conguration settings: Each setting occupies one line of the le (with possible continu-
ations). If any setting is preceded by the word hide, the -bP command line option displays its
value to admin users only. See section for a description of the syntax of these option settings.

This chapter speci es al the main con guration options, along with their types and default values.

For ease of nding a particular option, they appear in alphabetical order in section below.
However, because there are now so many options, they are rst listed briefly in functional groups, as
an aid to nding the name of the option you are looking for. Some options are listed in more than one

group.

14.1 Miscellaneous

bi_command
debug_store
disable_ipv6
keep_malformed
localhost_number
message _body_newlines
message _body_visible
mua_wrapper
print_topbitchars
spool_wireformat
timezone

14.2 Exim parameters

exim_group
exim_path

exim_user
primary_hostname
split_spool_directory
spool_directory

14.3 Privilege controls

admin_groups
commandline_checks require admin
deliver_drop_privilege
local_from_check
local_from_prex
local_from_suf x
local_sender_retain
never_users
prod_requires admin
queue list_requires_ admin
trusted_groups
trusted_users

to run for -bi command line option
do extrainternal checks

do no IPv6 processing

for broken les should not happen
for unique message ids in clusters
retain newlinesin $message_body
how much to show in $message_body
runin MUA wrapper mode

top-bit characters are printing

use wire-format spool data leswhen possible
force time zone

override compiled-in value
override compiled-in value
override compiled-i