
Oracle Berkeley DB

Installation and Build
Guide

11g Release 2
Library Version 11.2.5.2

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:

Published 6/10/2011

6/10/2011 DB Installation Guide Page iii

Table of Contents
Preface .. ix

Conventions Used in this Book .. ix
For More Information ... ix

Contact Us ... ix
1. Introduction .. 1

Installation Overview .. 1
Supported Platforms .. 1

2. System Installation Notes .. 3
File utility /etc/magic information ... 3

Magic information ... 3
Big-endian magic information ... 4
Little-endian magic information .. 7

Building with multiple versions of Berkeley DB .. 9
3. Debugging Applications .. 11

Introduction to debugging .. 11
Compile-time configuration .. 11
Run-time error information ... 12
Reviewing Berkeley DB log files ... 12

Augmenting the Log for Debugging ... 15
Extracting Committed Transactions and Transaction Status 16
Extracting Transaction Histories ... 16
Extracting File Histories .. 16
Extracting Page Histories ... 16
Other log processing tools ... 16

4. Building Berkeley DB for Android ... 18
Migrating from SQLite to Berkeley DB .. 19
Configuration options .. 20

5. Building Berkeley DB for Windows .. 22
Building Berkeley DB for 32 bit Windows .. 22

Visual C++ .NET 2010 .. 22
Visual C++ .NET 2008 .. 22
Visual C++ .NET 2005 .. 23
Build results .. 23

Building Berkeley DB for 64-bit Windows .. 23
x64 build with Visual Studio 2005 or newer ... 23

Building Berkeley DB with Cygwin ... 24
Building the C++ API ... 24
Building the C++ STL API ... 24
Building the Java API .. 24
Building the C# API .. 25
Building the SQL API ... 25

Binary Compatibility With SQLite ... 26
Setting Preprocessor Flags .. 26
Enabling Extensions ... 26
Disabling Log Checksums ... 26
Building the JDBC Driver ... 27

6/10/2011 DB Installation Guide Page iv

Using the JDBC Driver .. 27
Downloading JDBC Sample Code .. 28
Modifying Sample Code .. 28
Building and Running the JDBC Sample code 28

Building the ODBC Driver ... 29
Configuring Your System ... 29
Building the Library ... 29
Installing the Library ... 30
Testing the ODBC Install ... 30

Using the ADO.NET Driver .. 30
Building the Tcl API .. 30
Distributing DLLs ... 31
Additional build options ... 32
Building a small memory footprint library ... 32
Running the test suite under Windows ... 33

Building the software needed by the tests .. 33
Visual Studio 2005 or newer .. 33

Running the test suite under Windows ... 33
Building the software needed by the SQL tests .. 34

Visual Studio 2005 or newer .. 34
Windows notes .. 34
Windows FAQ .. 35

6. Building Berkeley DB for Windows Mobile .. 37
Building for Windows Mobile ... 37

Building Berkeley DB for Windows Mobile ... 37
Visual Studio 2005 .. 37
Build results .. 37

Changing Build Configuration Type ... 37
Building Berkeley DB for different target platforms 38

Visual Studio 2005 .. 38
BDB SQL Notes ... 39

Windows Mobile notes ... 39
Windows Mobile FAQ ... 39

7. Building Berkeley DB for UNIX/POSIX ... 42
Building for UNIX/POSIX ... 42

Building the Berkeley DB SQL Interface .. 42
Configuring Berkeley DB .. 43
Configuring the SQL Interface ... 49

Changing Compile Options ... 50
Enabling Extensions ... 51
Building the JDBC Driver ... 52
Using the JDBC Driver .. 52

Downloading JDBC Sample Code .. 52
Modifying Sample Code .. 52
Building and Running the JDBC Sample code 53

Building the ODBC Driver ... 53
Configuring Your System ... 53
Building the Library ... 54
Testing the ODBC Driver ... 54

6/10/2011 DB Installation Guide Page v

Building the BFILE extension .. 54
Building a small memory footprint library ... 55
Changing compile or load options ... 56
Installing Berkeley DB ... 57
Dynamic shared libraries .. 58
Running the test suite under UNIX .. 60

Building SQL Test Suite on Unix ... 60
Architecture independent FAQ ... 61
AIX .. 63
FreeBSD .. 65
Apple iOS (iPhone OS) ... 65
IRIX ... 66
Linux .. 66
Mac OS X .. 67
QNX ... 68
SCO ... 69
Solaris .. 69
SunOS ... 71

8. Building Berkeley DB for VxWorks ... 72
Building for VxWorks 5.4 and 5.5 ... 72

Building With Tornado 2.0 or Tornado 2.2 ... 72
Building for VxWorks 6.x .. 73

Building With Wind River Workbench using the Makefile 73
VxWorks notes .. 74

Building and Running the Demo Program .. 74
Building and Running the Utility Programs .. 74
VxWorks 5.4/5.5: shared memory .. 75
VxWorks 5.4/5.5: building a small memory footprint library 75
Support for Replication Manager .. 75

VxWorks FAQ .. 75
9. Upgrading Berkeley DB 11.2.5.1 applications to Berkeley DB 11.2.5.2 79

Introduction ... 79
SQLite Interface Upgrade ... 79
32bit/64bit Compatibility on Windows ... 79
Read Only flag for DBT .. 79

New Flag .. 79
Dynamic Environment Configuration ... 79

New Functions .. 79
Deprecated Functions ... 80

Exclusive Transactions in the SQL Layer .. 80
Group Membership in Repmgr .. 80

Upgrading ... 81
New Functions .. 81
Modified Functions .. 82
New Events ... 82
Removed Functions .. 82
New Parameters ... 82
New Structure .. 82

Heap Access Method ... 83

6/10/2011 DB Installation Guide Page vi

New Functions .. 83
Modified Functions .. 83
New Definition ... 83

Enabling Transaction Snapshots in the SQL Layer ... 83
New Pragmas ... 83

2SITE_STRICT Enabled by Default in Replication .. 83
Enabling Replication in the SQL Layer ... 83

New Pragmas ... 84
Repmgr Message Channels ... 84

New Functions .. 84
Sequence Support in the SQL Layer ... 85

New Functions .. 85
Berkeley DB X/Open Compliant XA Resource Manager 85

Constraints .. 85
New Flag .. 86
Modified Function .. 86

Hot Backup Changes .. 86
Berkeley DB Library Version 11.2.5.2 Change Log .. 86

Database or Log File On-Disk Format Changes .. 86
New Features ... 86
Database Environment Changes ... 87
Concurrent Data Store Changes ... 87
Access Method Changes ... 87
SQL API Changes ... 88
C API Changes .. 89
Tcl-specific API Changes .. 89
C#-specific API Changes .. 89
Replication Changes ... 90
Locking Subsystem Changes .. 91
Logging Subsystem Changes .. 91
Memory Pool Subsystem Changes ... 91
Mutex Subsystem Changes .. 91
Transaction Subsystem Changes ... 92
Test Suite Changes .. 92
Utility Changes ... 92
Configuration, Documentation, Sample Apps, Portability and Build Changes 92
Example Changes .. 93
Miscellaneous Bug Fixes .. 93
Deprecated Features .. 93
Known Bugs ... 93

10. Upgrading Berkeley DB 11.2.5.0 applications to Berkeley DB 11.2.5.1 94
Introduction ... 94
DPL Applications must be recompiled .. 94
Source Tree Rearranged ... 94
SQLite Interface Upgrade ... 94
Mod_db4 Support Discontinued .. 94
Berkeley DB Library Version 11.2.5.1 Change Log .. 94

Database or Log File On-Disk Format Changes .. 94
New Features ... 94

6/10/2011 DB Installation Guide Page vii

Database Environment Changes ... 96
Concurrent Data Store Changes ... 96
Access Method Changes ... 96
API Changes ... 97
SQL-Specific API Changes ... 97
Tcl-Specific API Changes .. 97
Java-Specific API Changes .. 98
C#-Specific API Changes .. 98
Direct Persistence Layer (DPL), Bindings and Collections API 99
Replication Changes ... 99
Locking Subsystem Changes .. 100
Logging Subsystem Changes .. 100
Memory Pool Subsystem Changes .. 100
Mutex Subsystem Changes .. 100
Transaction Subsystem Changes .. 101
Test Suite Changes ... 101
Utility Changes ... 101
Configuration, Documentation, Sample Apps, Portability, and Build Changes 101
Example Changes ... 102
Miscellaneous Bug Fixes ... 102
Deprecated Features ... 102
Known Bugs .. 102

11. Upgrading Berkeley DB 4.8 applications to Berkeley DB 11.2.5.0 103
Introduction .. 103
db_sql Renamed to db_sql_codegen ... 103
DB_REP_CONF_NOAUTOINIT Replaced ... 103
Support for Multiple Client-to-Client Peers ... 103
Cryptography Support .. 103
DB_NOSYNC Flag to Flush Files ... 104
Dropped Support .. 104
Changing Stack Size .. 104
Berkeley DB 11g Release 2 Change Log ... 104

Changes between 11.2.5.0.26 and 11.2.5.0.32 .. 104
Changes between 11.2.5.0.21 and 11.2.5.0.26 .. 106
Changes between 4.8 and 11.2.5.0.21 .. 107

Database or Log File On-Disk Format Changes 107
New Features ... 107
Database Environment Changes ... 108
Access Method Changes ... 109
Locking Subsystem Changes .. 110
Logging Subsystem Changes .. 110
Memory Pool Subsystem Changes ... 110
Mutex Subsystem Changes .. 110
Tcl-specific API Changes .. 111
C#-specific API Changes .. 111
API Changes ... 111
Replication Changes ... 111
Transaction Subsystem Changes ... 112
Utility Changes ... 112

6/10/2011 DB Installation Guide Page viii

Example Changes .. 113
Deprecated Features .. 113
Configuration, Documentation, Sample Apps, Portability and Build
Changes .. 113

Known Bugs .. 114
12. Upgrading Berkeley DB 4.7 applications to Berkeley DB 4.8 115

Introduction .. 115
Registering DPL Secondary Keys .. 115
Minor Change in Behavior of DB_MPOOLFILE->get ... 115
Dropped Support for fcntl System Calls ... 115
Upgrade Requirements ... 116
Berkeley DB 4.8.28 Change Log .. 116

Changes between 4.8.26 and 4.8.28: .. 116
Known bugs in 4.8 ... 116
Changes between 4.8.24 and 4.8.26: .. 116
Changes between 4.8.21 and 4.8.24: .. 117
Changes between 4.7 and 4.8.21: .. 117
Database or Log File On-Disk Format Changes: 117
New Features: ... 117
Database Environment Changes: .. 118
Concurrent Data Store Changes: .. 118
General Access Method Changes: ... 118
Btree Access Method Changes: .. 119
Hash Access Method Changes: .. 119
Queue Access Method Changes: .. 120
Recno Access Method Changes: ... 120
C-specific API Changes: .. 120
C++-specific API Changes: ... 120
Java-specific API Changes: .. 120
Direct Persistence Layer (DPL), Bindings and Collections API: 121
Tcl-specific API Changes: .. 122
RPC-specific Client/Server Changes: ... 122
Replication Changes: ... 122
XA Resource Manager Changes: ... 124
Locking Subsystem Changes: .. 124
Logging Subsystem Changes: .. 125
Memory Pool Subsystem Changes: .. 125
Mutex Subsystem Changes: .. 125
Test Suite Changes .. 126
Transaction Subsystem Changes: .. 126
Utility Changes: ... 126
Configuration, Documentation, Sample Application, Portability and Build
Changes: ... 127

13. Test Suite ... 129
Running the test suite ... 129

Running SQL Test Suite on Unix .. 129
Running SQL Test Suite on Windows .. 130

Test suite FAQ ... 130

6/10/2011 DB Installation Guide Page ix

Preface
Welcome to Berkeley DB (DB). This document describes how to build, install and upgrade
Berkeley DB

This document reflects Berkeley DB 11g Release 2, which provides DB library version 11.2.5.2.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

Note

Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

• Getting Started with Transaction Processing for C

• Berkeley DB Getting Started with Replicated Applications for C

• Berkeley DB C API Reference Guide

• Berkeley DB C++ API Reference Guide

• Berkeley DB STL API Reference Guide

• Berkeley DB TCL API Reference Guide

• Berkeley DB Programmer's Reference Guide

• Berkeley DB Upgrade Guide

• Berkeley DB Getting Started with the SQL APIs

To download the latest documentation along with white papers and other collateral, visit
http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle downloads, visit http://www.oracle.com/technetwork/
database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for

http://download.oracle.com/docs/cd/E17076_02/html/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/C/Replication_C_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/BDB-CXX_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/STL/BDB-STL_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/TCL/BDB-TCL_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf
http://download.oracle.com/docs/cd/E17076_02/html/bdb-sql/BDB-SQL-Guide.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

6/10/2011 DB Installation Guide Page x

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

6/10/2011 DB Installation Guide Page 1

Chapter 1. Introduction
Welcome to the Berkeley DB. This manual describes how to configure, build and install
Berkeley DB. Installation of DB for all of the platforms it officially supports is described in
this manual. Upgrade instructions and release notes for newer versions of this product are
described here. For infomation on upgrading from historical versions, see the Berkeley DB
Upgrade Guide.

Note that some operating systems and distributions might provide DB, either by default or
as part of an installation option. If so, those platforms will have installation instructions for
DB specific to them. In this situation, you should see the documentation for your operating
system or distribution provider for information on how to get DB on your platform.

Installation Overview

Berkeley DB is an open-source product, and as such it is usually offered in source-code format.
This means that placing DB on your platform requires you to configure the build scripts,
compile it, and then install the product onto your host system. The exception to this are
Microsoft Windows platforms for which a binary installer is available. Note that for Windows
platforms, you can still compile the product from source if you desire.

For *nix systems, including the BSD and Linux systems, the usual configure, make and make
install installation process is used to place DB on your platform.

For information on building and installing Berkeley DB on:

• Microsoft Windows, see Building Berkeley DB for Windows (page 22) or Building Berkeley
DB for Windows Mobile (page 37).

• Unix/POSIX — including Linux, BSD, Apple iOS (known as iPhone OS previously), and Mac OS
X — see Building Berkeley DB for UNIX/POSIX (page 42).

• VxWorks, see Building Berkeley DB for VxWorks (page 72).

Supported Platforms

You can install Berkeley DB on the following platforms:

• Most versions of Linux (x86-64 and x86) including:

• Oracle Linux 4, 5, and 6

• Red Hat

• Ubuntu

• Wind River

• MontaVista Embedded Linux version 6.0

• Oracle Solaris versions 9 and 10 on x86_64, x86, and SPARC.

http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf
http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf

Library Version 11.2.5.2 Introduction

6/10/2011 DB Installation Guide Page 2

• FreeBSD

• Microsoft Windows (x86-64 and x86).

• XP (SP2, SP3)

• Vista

• Windows 7

• Server 2008

• Windows Mobile (6.x)

• Apple Mac OS X 10.5 and 10.6.

• IBM AIX version 5 and 6.

• VxWorks 6.x

• QNX Neutrino/POSIX version 6

• Android

• Apple iOS (previously known as iPhone OS)

Apart from those mentioned in the list above, you can install Berkeley DB on most other
systems which are POSIX-compliant. When there is a need to run Berkeley DB on a platform
that is currently not supported, DB is distributed in source code form that you can use as
base source to port Berkeley DB to that platform. For more information on porting to other
platforms, see the Berkeley DB Porting Guide.

6/10/2011 DB Installation Guide Page 3

Chapter 2. System Installation Notes
File utility /etc/magic information

The file(1) utility is a UNIX utility that examines and classifies files, based on information
found in its database of file types, the /etc/magic file. The following information may be
added to your system's /etc/magic file to enable file(1) to correctly identify Berkeley DB
database files.

The file(1) utility magic(5) information for the standard System V UNIX implementation
of the file(1) utility is included in the Berkeley DB distribution for both big-endian (for
example, Sparc) and little-endian (for example, x86) architectures. See Big-endian magic
information (page 4) and Little-endian magic information (page 7) respectively for this
information.

The file(1) utility magic(5) information for Release 3.X of Ian Darwin's implementation of the
file utility (as distributed by FreeBSD and most Linux distributions) is included in the Berkeley
DB distribution. This magic.txt information is correct for both big-endian and little-endian
architectures. See the next section for this information.

Magic information
Berkeley DB
#
Ian Darwin's file /etc/magic files: big/little-endian version.
#
Hash 1.85/1.86 databases store metadata in network byte order.
Btree 1.85/1.86 databases store the metadata in host byte order.
Hash and Btree 2.X and later databases store the metadata in
host byte order.

0 long 0x00061561 Berkeley DB
>8 belong 4321
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, native byte-order)
>8 belong 1234
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, little-endian)

0 belong 0x00061561 Berkeley DB
>8 belong 4321
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, big-endian)
>8 belong 1234
>>4 belong >2 1.86
>>4 belong <3 1.85
>>4 belong >0 (Hash, version %d, native byte-order)

Library Version 11.2.5.2 System Installation Notes

6/10/2011 DB Installation Guide Page 4

0 long 0x00053162 Berkeley DB 1.85/1.86
>4 long >0 (Btree, version %d, native byte-order)
0 belong 0x00053162 Berkeley DB 1.85/1.86
>4 belong >0 (Btree, version %d, big-endian)
0 lelong 0x00053162 Berkeley DB 1.85/1.86
>4 lelong >0 (Btree, version %d, little-endian)

12 long 0x00061561 Berkeley DB
>16 long >0 (Hash, version %d, native byte-order)
12 belong 0x00061561 Berkeley DB
>16 belong >0 (Hash, version %d, big-endian)
12 lelong 0x00061561 Berkeley DB
>16 lelong >0 (Hash, version %d, little-endian)

12 long 0x00053162 Berkeley DB
>16 long >0 (Btree, version %d, native byte-order)
12 belong 0x00053162 Berkeley DB
>16 belong >0 (Btree, version %d, big-endian)
12 lelong 0x00053162 Berkeley DB
>16 lelong >0 (Btree, version %d, little-endian)

12 long 0x00042253 Berkeley DB
>16 long >0 (Queue, version %d, native byte-order)
12 belong 0x00042253 Berkeley DB
>16 belong >0 (Queue, version %d, big-endian)
12 lelong 0x00042253 Berkeley DB
>16 lelong >0 (Queue, version %d, little-endian)

12 long 0x00040988 Berkeley DB
>16 long >0 (Log, version %d, native byte-order)
12 belong 0x00040988 Berkeley DB
>16 belong >0 (Log, version %d, big-endian)
12 lelong 0x00040988 Berkeley DB
>16 lelong >0 (Log, version %d, little-endian)

Big-endian magic information
Berkeley DB
#
System V /etc/magic files: big-endian version.
#
Hash 1.85/1.86 databases store metadata in network byte order.
Btree 1.85/1.86 databases store the metadata in host byte order.
Hash and Btree 2.X and later databases store the metadata in
host byte order.

0 long 0x00053162 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x00000002 version 2,
>4 long 0x00000003 version 3,

Library Version 11.2.5.2 System Installation Notes

6/10/2011 DB Installation Guide Page 5

>0 long 0x00053162 native byte-order)

0 long 0x62310500 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x02000000 version 2,
>4 long 0x03000000 version 3,
>0 long 0x62310500 little-endian)

12 long 0x00053162 Berkeley DB (Btree,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00053162 native byte-order)

12 long 0x62310500 Berkeley DB (Btree,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x62310500 little-endian)

0 long 0x00061561 Berkeley DB
>4 long >2 1.86
>4 long <3 1.85
>0 long 0x00061561 (Hash,
>4 long 2 version 2,
>4 long 3 version 3,
>8 long 0x000004D2 little-endian)
>8 long 0x000010E1 native byte-order)

12 long 0x00061561 Berkeley DB (Hash,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00061561 native byte-order)

12 long 0x61150600 Berkeley DB (Hash,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,

Library Version 11.2.5.2 System Installation Notes

6/10/2011 DB Installation Guide Page 6

>16 long 0x09000000 version 9,
>12 long 0x61150600 little-endian)

12 long 0x00042253 Berkeley DB (Queue,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00042253 native byte-order)

12 long 0x53220400 Berkeley DB (Queue,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x53220400 little-endian)

12 long 0x00040988 Berkeley DB (Log,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>16 long 0x0000000a version 10,
>16 long 0x0000000b version 11,
>16 long 0x0000000c version 12,
>16 long 0x0000000d version 13,
>16 long 0x0000000e version 14,
>16 long 0x0000000f version 15,
>12 long 0x00040988 native byte-order)

12 long 0x88090400 Berkeley DB (Log,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,

Library Version 11.2.5.2 System Installation Notes

6/10/2011 DB Installation Guide Page 7

>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>16 long 0x0a000000 version 10,
>16 long 0x0b000000 version 11,
>16 long 0x0c000000 version 12,
>16 long 0x0d000000 version 13,
>16 long 0x0e000000 version 14,
>16 long 0x0f000000 version 15,
>12 long 0x88090400 little-endian)

Little-endian magic information
Berkeley DB
#
System V /etc/magic files: little-endian version.
#
Hash 1.85/1.86 databases store metadata in network byte order.
Btree 1.85/1.86 databases store the metadata in host byte order.
Hash and Btree 2.X and later databases store the metadata in
host byte order.

0 long 0x00053162 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x00000002 version 2,
>4 long 0x00000003 version 3,
>0 long 0x00053162 native byte-order)

0 long 0x62310500 Berkeley DB 1.85/1.86 (Btree,
>4 long 0x02000000 version 2,
>4 long 0x03000000 version 3,
>0 long 0x62310500 big-endian)

12 long 0x00053162 Berkeley DB (Btree,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00053162 native byte-order)

12 long 0x62310500 Berkeley DB (Btree,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,

Library Version 11.2.5.2 System Installation Notes

6/10/2011 DB Installation Guide Page 8

>16 long 0x09000000 version 9,
>12 long 0x62310500 big-endian)

0 long 0x61150600 Berkeley DB
>4 long >0x02000000 1.86
>4 long <0x03000000 1.85
>0 long 0x00061561 (Hash,
>4 long 0x02000000 version 2,
>4 long 0x03000000 version 3,
>8 long 0xD2040000 native byte-order)
>8 long 0xE1100000 big-endian)

12 long 0x00061561 Berkeley DB (Hash,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00061561 native byte-order)

12 long 0x61150600 Berkeley DB (Hash,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x61150600 big-endian)

12 long 0x00042253 Berkeley DB (Queue,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>12 long 0x00042253 native byte-order)

12 long 0x53220400 Berkeley DB (Queue,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,

Library Version 11.2.5.2 System Installation Notes

6/10/2011 DB Installation Guide Page 9

>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>12 long 0x53220400 big-endian)

12 long 0x00040988 Berkeley DB (Log,
>16 long 0x00000001 version 1,
>16 long 0x00000002 version 2,
>16 long 0x00000003 version 3,
>16 long 0x00000004 version 4,
>16 long 0x00000005 version 5,
>16 long 0x00000006 version 6,
>16 long 0x00000007 version 7,
>16 long 0x00000008 version 8,
>16 long 0x00000009 version 9,
>16 long 0x0000000a version 10,
>16 long 0x0000000b version 11,
>16 long 0x0000000c version 12,
>16 long 0x0000000d version 13,
>16 long 0x0000000e version 14,
>16 long 0x0000000f version 15,
>12 long 0x00040988 native byte-order)

12 long 0x88090400 Berkeley DB (Log,
>16 long 0x01000000 version 1,
>16 long 0x02000000 version 2,
>16 long 0x03000000 version 3,
>16 long 0x04000000 version 4,
>16 long 0x05000000 version 5,
>16 long 0x06000000 version 6,
>16 long 0x07000000 version 7,
>16 long 0x08000000 version 8,
>16 long 0x09000000 version 9,
>16 long 0x0a000000 version 10,
>16 long 0x0b000000 version 11,
>16 long 0x0c000000 version 12,
>16 long 0x0d000000 version 13,
>16 long 0x0e000000 version 14,
>16 long 0x0f000000 version 15,
>12 long 0x88090400 big-endian)

Building with multiple versions of Berkeley DB

In some cases it may be necessary to build applications which include multiple versions of
Berkeley DB. Examples include applications which include software from other vendors, or
applications running on a system where the system C library itself uses Berkeley DB. In such
cases, the two versions of Berkeley DB may be incompatible, that is, they may have different
external and internal interfaces, and may even have different underlying database formats.

Library Version 11.2.5.2 System Installation Notes

6/10/2011 DB Installation Guide Page 10

To create a Berkeley DB library whose symbols won't collide with other Berkeley DB libraries
(or other application or library modules, for that matter), configure Berkeley DB using the
--with-uniquename=NAME configuration option, and then build Berkeley DB as usual. (Note
that --with-uniquename=NAME only affects the Berkeley DB C language library build; loading
multiple versions of the C++ or Java APIs will require additional work.) The modified symbol
names are hidden from the application in the Berkeley DB header files, that is, there is
no need for the application to be aware that it is using a special library build as long as it
includes the appropriate Berkeley DB header file.

If "NAME" is not specified when configuring with --with-uniquename=NAME, a default value
built from the major and minor numbers of the Berkeley DB release will be used. It is rarely
necessary to specify NAME; using the major and minor release numbers will ensure that only
one copy of the library will be loaded into the application unless two distinct versions really
are necessary.

When distributing any library software that uses Berkeley DB, or any software which will
be recompiled by users for their systems, we recommend two things: First, include the
Berkeley DB release as part of your release. This will insulate your software from potential
Berkeley DB API changes as well as simplifying your coding because you will only have to code
to a single version of the Berkeley DB API instead of adapting at compile time to whatever
version of Berkeley DB happens to be installed on the target system. Second, use --with-
uniquename=NAME when configuring Berkeley DB, because that will insure that you do not
unexpectedly collide with other application code or a library already installed on the target
system.

6/10/2011 DB Installation Guide Page 11

Chapter 3. Debugging Applications
Introduction to debugging

Because Berkeley DB is an embedded library, debugging applications that use Berkeley DB is
both harder and easier than debugging a separate server. Debugging can be harder because
when a problem arises, it is not always readily apparent whether the problem is in the
application, is in the database library, or is a result of an unexpected interaction between
the two. Debugging can be easier because it is easier to track down a problem when you can
review a stack trace rather than deciphering interprocess communication messages. This
chapter is intended to assist you with debugging applications and reporting bugs to us so that
we can provide you with the correct answer or fix as quickly as possible.

When you encounter a problem, there are a few general actions you can take:
Review the Berkeley DB error output:

If an error output mechanism has been configured in the Berkeley DB environment,
additional run-time error messages are made available to the applications. If
you are not using an environment, it is well worth modifying your application to
create one so that you can get more detailed error messages. See Run-time error
information (page 12) for more information on configuring Berkeley DB to output
these error messages.

Review the options available for the DB_ENV->set_verbose() method:
Look to see if it offers any additional informational and/or debugging messages that
might help you understand the problem.

Add run-time diagnostics:
You can configure and build Berkeley DB to perform run-time diagnostics. (By default,
these checks are not done because they can seriously impact performance.) See
Compile-time configuration (page 11) for more information.

Apply all available patches:
Before reporting a problem in Berkeley DB, please upgrade to the latest Berkeley DB
release, if possible, or at least make sure you have applied any updates available for
your release from the Berkeley DB web site .

Run the test suite:
If you see repeated failures or failures of simple test cases, run the Berkeley DB test
suite to determine whether the distribution of Berkeley DB you are using was built and
configured correctly.

Compile-time configuration

There are three compile-time configuration options that assist in debugging Berkeley DB and
Berkeley DB applications:
--enable-debug

If you want to build Berkeley DB with -g as the C and C++ compiler flag, enter
--enable-debug as an argument to configure. This will create Berkeley DB with
debugging symbols, as well as load various Berkeley DB routines that can be called
directly from a debugger to display database page content, cursor queues, and so
forth. (Note that the -O optimization flag will still be specified. To compile with only
the -g, explicitly set the CFLAGS environment variable before configuring.)

../api_reference/C/envset_verbose.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Library Version 11.2.5.2 Debugging Applications

6/10/2011 DB Installation Guide Page 12

--enable-diagnostic
If you want to build Berkeley DB with debugging run-time sanity checks and with
DIAGNOSTIC #defined during compilation, enter --enable-diagnostic as an argument to
configure. This will cause a number of special checks to be performed when Berkeley
DB is running. This flag should not be defined when configuring to build production
binaries because it degrades performance.

--enable-umrw
When compiling Berkeley DB for use in run-time memory consistency checkers (in
particular, programs that look for reads and writes of uninitialized memory), use --
enable-umrw as an argument to configure. This guarantees, among other things, that
Berkeley DB will completely initialize allocated pages rather than initializing only the
minimum necessary amount.

Run-time error information

Normally, when an error occurs in the Berkeley DB library, an integer value (either a Berkeley
DB specific value or a system errno value) is returned by Berkeley DB. In some cases,
however, this value may be insufficient to completely describe the cause of the error,
especially during initial application debugging.

Most Berkeley DB errors will result in additional information being written to a standard file
descriptor or output stream. Additionally, Berkeley DB can be configured to pass these verbose
error messages to an application function. There are four methods intended to provide
applications with additional error information: DB_ENV->set_errcall(), DB_ENV->set_errfile(),
DB_ENV->set_errpfx() and DB_ENV->set_verbose().

The Berkeley DB error-reporting facilities do not slow performance or significantly increase
application size, and may be run during normal operation as well as during debugging. Where
possible, we recommend these options always be configured and the output saved in the
filesystem. We have found that this often saves time when debugging installation or other
system-integration problems.

In addition, there are three methods to assist applications in displaying their own error
messages: db_strerror(), DB_ENV->err(), and DB_ENV->errx(). The first is a superset of
the ANSI C strerror function, and returns a descriptive string for any error return from the
Berkeley DB library. The DB_ENV->err() and DB_ENV->errx() methods use the error message
configuration options described previously to format and display error messages to appropriate
output devices.

Reviewing Berkeley DB log files

If you are running with transactions and logging, the db_printlog utility can be a useful
debugging aid. The db_printlog utility will display the contents of your log files in a human
readable (and machine-readable) format.

The db_printlog utility will attempt to display any and all log files present in a designated
db_home directory. For each log record, the db_printlog utility will display a line of the form:

[22][28]db_big: rec: 43 txnid 80000963 prevlsn [21][10483281]

../api_reference/C/envset_errcall.html
../api_reference/C/envset_errfile.html
../api_reference/C/envset_errpfx.html
../api_reference/C/envset_verbose.html
../api_reference/C/envstrerror.html
../api_reference/C/enverr.html
../api_reference/C/enverr.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html

Library Version 11.2.5.2 Debugging Applications

6/10/2011 DB Installation Guide Page 13

The opening numbers in square brackets are the log sequence number (LSN) of the log record
being displayed. The first number indicates the log file in which the record appears, and the
second number indicates the offset in that file of the record.

The first character string identifies the particular log operation being reported. The log
records corresponding to particular operations are described following. The rest of the line
consists of name/value pairs.

The rec field indicates the record type (this is used to dispatch records in the log to
appropriate recovery functions).

The txnid field identifies the transaction for which this record was written. A txnid of 0 means
that the record was written outside the context of any transaction. You will see these most
frequently for checkpoints.

Finally, the prevlsn contains the LSN of the last record for this transaction. By following
prevlsn fields, you can accumulate all the updates for a particular transaction. During
normal abort processing, this field is used to quickly access all the records for a particular
transaction.

After the initial line identifying the record type, each field of the log record is displayed, one
item per line. There are several fields that appear in many different records and a few fields
that appear only in some records.

The following table presents each currently written log record type with a brief description of
the operation it describes. Any of these record types may have the string "_debug" appended
if they were written because DB_TXN_NOT_DURABLE was specified and the system was
configured with --enable-diagnostic.

Log Record Type Description

bam_adj Used when we insert/remove an index into/
from the page header of a Btree page.

bam_cadjust Keeps track of record counts in a Btree or
Recno database.

bam_cdel Used to mark a record on a page as deleted.

bam_curadj Used to adjust a cursor location when a
nearby record changes in a Btree database.

bam_merge Used to merge two Btree database pages
during compaction.

bam_pgno Used to replace a page number in a Btree
record.

bam_rcuradj Used to adjust a cursor location when a
nearby record changes in a Recno database.

bam_relink Fix leaf page prev/next chain when a page is
removed.

bam_repl Describes a replace operation on a record.

bam_root Describes an assignment of a root page.

../api_reference/C/dbset_flags.html#dbset_flags_DB_TXN_NOT_DURABLE

Library Version 11.2.5.2 Debugging Applications

6/10/2011 DB Installation Guide Page 14

Log Record Type Description

bam_rsplit Describes a reverse page split.

bam_split Describes a page split.

crdel_inmem_create Record the creation of an in-memory named
database.

crdel_inmem_remove Record the removal of an in-memory named
database.

crdel_inmem_rename Record the rename of an in-memory named
database.

crdel_metasub Describes the creation of a metadata page for
a subdatabase.

db_addrem Add or remove an item from a page of
duplicates.

db_big Add an item to an overflow page (overflow
pages contain items too large to place on the
main page)

db_cksum Unable to checksum a page.

db_debug Log debugging message.

db_noop This marks an operation that did nothing but
update the LSN on a page.

db_ovref Increment or decrement the reference count
for a big item.

db_pg_alloc Indicates we allocated a page to a database.

db_pg_free Indicates we freed a page (freed pages are
added to a freelist and reused).

db_pg_freedata Indicates we freed a page that still contained
data entries (freed pages are added to a
freelist and reused.)

db_pg_init Indicates we reinitialized a page during a
truncate.

db_pg_sort Sort the free page list and free pages at the
end of the file.

dbreg_register Records an open of a file (mapping the
filename to a log-id that is used in subsequent
log operations).

fop_create Create a file in the file system.

fop_file_remove Remove a name in the file system.

fop_remove Remove a file in the file system.

fop_rename Rename a file in the file system.

fop_write Write bytes to an object in the file system.

Library Version 11.2.5.2 Debugging Applications

6/10/2011 DB Installation Guide Page 15

Log Record Type Description

ham_chgpg Used to adjust a cursor location when a Hash
page is removed, and its elements are moved
to a different Hash page.

ham_copypage Used when we empty a bucket page, but
there are overflow pages for the bucket;
one needs to be copied back into the actual
bucket.

ham_curadj Used to adjust a cursor location when a
nearby record changes in a Hash database.

ham_groupalloc Allocate some number of contiguous pages to
the Hash database.

ham_insdel Insert/delete an item on a Hash page.

ham_metagroup Update the metadata page to reflect the
allocation of a sequence of contiguous pages.

ham_newpage Adds or removes overflow pages from a Hash
bucket.

ham_replace Handle updates to records that are on the
main page.

ham_splitdata Record the page data for a split.

qam_add Describes the actual addition of a new record
to a Queue.

qam_del Delete a record in a Queue.

qam_delext Delete a record in a Queue with extents.

qam_incfirst Increments the record number that refers to
the first record in the database.

qam_mvptr Indicates we changed the reference to either
or both of the first and current records in the
file.

txn_child Commit a child transaction.

txn_ckp Transaction checkpoint.

txn_recycle Transaction IDs wrapped.

txn_regop Logs a regular (non-child) transaction commit.

txn_xa_regop Logs a prepare message.

Augmenting the Log for Debugging

When debugging applications, it is sometimes useful to log not only the actual operations
that modify pages, but also the underlying Berkeley DB functions being executed. This form
of logging can add significant bulk to your log, but can permit debugging application errors
that are almost impossible to find any other way. To turn on these log messages, specify the --

Library Version 11.2.5.2 Debugging Applications

6/10/2011 DB Installation Guide Page 16

enable-debug_rop and --enable-debug_wop configuration options when configuring Berkeley
DB. See Configuring Berkeley DB (page 43) for more information.

Extracting Committed Transactions and Transaction Status

Sometimes, it is helpful to use the human-readable log output to determine which
transactions committed and aborted. The awk script, commit.awk, (found in the db_printlog
directory of the Berkeley DB distribution) allows you to do just that. The following command,
where log_output is the output of db_printlog, will display a list of the transaction IDs of all
committed transactions found in the log:

awk -f commit.awk log_output

If you need a complete list of both committed and aborted transactions, then the script
status.awk will produce it. The syntax is as follows:

awk -f status.awk log_output

Extracting Transaction Histories

Another useful debugging aid is to print out the complete history of a transaction. The awk
script txn.awk allows you to do that. The following command line, where log_output is the
output of the db_printlog utility and txnlist is a comma-separated list of transaction IDs, will
display all log records associated with the designated transaction ids:

awk -f txn.awk TXN=txnlist log_output

Extracting File Histories

The awk script fileid.awk allows you to extract all log records that refer to a designated
file. The syntax for the fileid.awk script is the following, where log_output is the output of
db_printlog and fids is a comma-separated list of fileids:

awk -f fileid.awk PGNO=fids log_output

Extracting Page Histories

The awk script pgno.awk allows you to extract all log records that refer to designated page
numbers. However, because this script will extract records with the designated page numbers
for all files, it is most useful in conjunction with the fileid script. The syntax for the pgno.awk
script is the following, where log_output is the output of db_printlog and pgnolist is a comma-
separated list of page numbers:

awk -f pgno.awk PGNO=pgnolist log_output

Other log processing tools

The awk script count.awk prints out the number of log records encountered that belonged to
some transaction (that is, the number of log records excluding those for checkpoints and non-
transaction-protected operations).

The script range.awk will extract a subset of a log. This is useful when the output of
db_printlog utility is too large to be reasonably manipulated with an editor or other tool. The

../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html

Library Version 11.2.5.2 Debugging Applications

6/10/2011 DB Installation Guide Page 17

syntax for range.awk is the following, where sf and so represent the LSN of the beginning of
the sublog you want to extract, and ef and eo represent the LSN of the end of the sublog you
want to extract:

 awk -f range.awk START_FILE=sf START_OFFSET=so END_FILE=ef \
 END_OFFSET=eo log_output

6/10/2011 DB Installation Guide Page 18

Chapter 4. Building Berkeley DB for Android
Berkeley DB provides support for the Android platform enabling you to develop and deploy
a wide range of mobile applications and services. Android provides SQLite as the default
database for developing applications that need database support. Berkeley DB SQL API is fully
compatible with SQLite and can be used as a replacement. The build_android directory
in the Berkeley DB distribution contains a makefile, Android.mk, for building a drop-in
replacement for SQLite.

This chapter contains instructions on building Berkeley DB for Android platforms.

Building for Android

This section provides instructions to build Berkeley DB as a drop-in replacement for SQLite on
Android.

1. Download and compile Android source tree.
The compiling process takes time but is a one time activity. For information on
downloading and compiling the Android source code, see http://source.android.com/
source/download.html.

2. Copy the Berkeley DB code into the Android build tree.

$ cd <root>/external/sqlite/dist
$ tar ${DB_PATH}

where <root> is the root of the Android source tree and ${DB_PATH} is the path where you
saved the db-xx.tar.gz version of the Berkeley DB distribution.

3. Update the Android build file to identify Berkeley DB.
Replace the Android.mk file with the one from the Berkeley DB source tree by doing the
following:

$ cd <root>/external/sqlite/dist
$ mv Android.mk Android.mk.sqlite
$ cp ${DB_INSTALL}/build_android/Android.mk ./

where ${DB_INSTALL} is the directory into which you installed the Berkeley DB library.

4. Tuning parameters.
The configuration options for performance tuning can be added/edited in the Android.mk
file by modifying LOCAL_CFLAGS located in the build libsqlite replacement section.
For more information, see Configuration options (page 20).

It is also possible to change these settings using PRAGMA commands or through the
DB_CONFIG file.

5. Build the new Android image.
To build the Android image with Berkeley DB SQL included, do the following:

$ cd <root>
$. build/envsetup.sh

http://source.android.com/source/download.html
http://source.android.com/source/download.html
../api_reference/C/configuration_reference.html

Library Version 11.2.5.2 Building Berkeley DB for Android

6/10/2011 DB Installation Guide Page 19

$ make clean-libsqlite
$ mmm -B external/sqlite/dist
$ make snod

You can locate the new image in <root>/out/target/product/generic.

Migrating from SQLite to Berkeley DB

The instructions in this section enable converting SQLite format databases to Berkeley DB SQL
automatically when they are opened. Ensure that the -DBDBSQL_CONVERT_SQLITE option is
added to LOCAL_CFLAGS.

1. Build a static SQLite shell for Android platform.
Create a script, build_sqlite3_shell.sh, in the <root>/external/sqlite/dist directory.

#!/bin/bash
This script shows how to use built-in toolchain to build
sqlite3 shell, which is required by Berkeley DB SQL
on-the-fly migration feature.

Note: these variables should be set per active Android source tree
We assume $PWD=$ROOT/external/sqlite/dist
ROOT=${PWD}/../../..
TOOLCHAIN=${ROOT}/prebuilt/linux-x86/toolchain/arm-eabi-4.4.0
CC=${TOOLCHAIN}/bin/arm-eabi-gcc
LIB="${ROOT}/out/target/product/generic/obj/lib"
INCLUDE="${ROOT}/ndk/build/platforms/android-8/arch-arm/usr/include"

CFLAGS should be set per Android.mk.sqlite (the original
version of SQLite's Android.mk)
CFLAGS="-DHAVE_USLEEP=1 -DSQLITE_THREADSAFE=1 -DNDEBUG=1 \
 -DSQLITE_DEFAULT_JOURNAL_SIZE_LIMIT=1048576 \
 -DSQLITE_ENABLE_MEMORY_MANAGEMENT=1 \
 -DSQLITE_DEFAULT_AUTOVACUUM=1 \
 -DSQLITE_TEMP_STORE=3 -DSQLITE_ENABLE_FTS3 \
 -DSQLITE_ENABLE_FTS3_BACKWARDS -DTHREADSAFE=1"
CFLAGS="${CFLAGS} -I${INCLUDE}"

LDFLAGS="-ldl -nostdlib -Wl,--gc-sections -lc -llog -lgcc \
 -Wl,--no-undefined,-z,nocopyreloc ${LIB}/crtend_android.o \
 ${LIB}/crtbegin_dynamic.o -L${LIB} -Wl,-rpath,${LIB}"

${CC} -DANDROID -DOS_ANDROID --sysroot="${SYSROOT}" -mandroid \
 -fvisibility=hidden -ffunction-sections -fdata-sections \
 -fPIC ${LDFLAGS} ${CFLAGS} \
 sqlite3.c shell.c -o sqlite3orig

Ensure you adjust the variables as per your actual Android environment. This script is
suited for Android 2.2.

Library Version 11.2.5.2 Building Berkeley DB for Android

6/10/2011 DB Installation Guide Page 20

2. Execute the build_sqlite3_shell.sh script and to get the static sqlite3 shell utility -
sqlite3orig.

3. Change the system image file.
Use the xyaffs2 utiltiy to decompress system.img and get the directory system.

$ xyaffs2 ./system.img system

Add static sqlite3 shell utility.

$ cp <root>/external/sqlite/dist/sqlite3orig \
 system/xbin/sqlite3orig

Use the mkyaffs2image utility to rebuild system.img from the changed directory system.

$ mkyaffs2image -f $PWD/system system.img

Note

To open the database in the SQLite format use the sqlite3orig command.

Configuration options

There are several configuration options you can specify in LOCAL_CFLAGS located in the
Android.mk file.

• BDBSQL_CONVERT_SQLITE

This option enables to convert SQLite database to BDB SQL database format. See Migrating
from SQLite to Berkeley DB (page 19) for more information.

• BDBSQL_SHARE_PRIVATE

This flag is enabled by default and keeps all the region files in memory instead of the disk.
This flag also implements database-level locking.

• SQLITE_DEFAULT_CACHE_SIZE

SQLite provides an in-memory cache which you size according to the maximum number of
database pages that you want to hold in memory at any given time. See Changing Compile
Options (page 50).

• SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT

For SQLite, this pragma identifies the maximum size that the journal file is allowed to be.
Berkeley DB does not have a journal file, but it writes and uses log files. A new log file is
created when the current log file has reached the defined maximum size. This flag defines
this maximum size for a log file. Default value is 10 MB for Berkeley DB SQL interface.

Hard-coded numbers in the build can be adjusted using the following SQLite PRAGMA
commands:

• PRAGMA cache_size

Library Version 11.2.5.2 Building Berkeley DB for Android

6/10/2011 DB Installation Guide Page 21

• PRAGMA journal_size_limit

You can configure most aspects of your Berkeley DB environment by using the DB_CONFIG file.

../api_reference/C/configuration_reference.html

6/10/2011 DB Installation Guide Page 22

Chapter 5. Building Berkeley DB for Windows
This chapter contains general instructions on building Berkeley DB for specific windows
platforms using specific compilers. The Windows FAQ (page 35) also contains helpful
information.

The build_windows directory in the Berkeley DB distribution contains project files for
Microsoft Visual Studio:

Project File Description

Berkeley_DB.sln Visual Studio 2005 (8.0) workspace

*.vcproj Visual Studio 2005 (8.0) projects

Berkeley_DB_vs2010.sln Visual Studio 2010 workspace

*.vcxproj Visual Studio 2010 projects

These project files can be used to build Berkeley DB for the following platforms: Windows
NT/2K/XP/2003/Vista and Windows7; and 64-bit Windows XP/2003/Vista and Windows7.

Building Berkeley DB for 32 bit Windows

Visual C++ .NET 2010

1. Choose File -> Open -> Project/Solution.... In the build_windows directory, select
Berkeley_DB_vs2010.sln and click Open.

2. Choose the desired project configuration from the drop-down menu on the tool bar
(either Debug or Release).

3. Choose the desired platform configuration from the drop-down menu on the tool bar
(usually Win32 or x64).

4. To build, right-click on the Berkeley_DB_vs2010 solution and select Build Solution.

Visual C++ .NET 2008

1. Choose File -> Open -> Project/Solution.... In the build_windows directory, select
Berkeley_DB.sln and click Open.

2. The Visual Studio Conversion Wizard will open automatically. Click the Finish button.

3. On the next screen click the Close button.

4. Choose the desired project configuration from the drop-down menu on the tool bar
(either Debug or Release).

5. Choose the desired platform configuration from the drop-down menu on the tool bar
(usually Win32 or x64).

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 23

6. To build, right-click on the Berkeley_DB solution and select Build Solution.

Visual C++ .NET 2005

1. Choose File -> Open -> Project/Solution.... In the build_windows directory, select
Berkeley_DB.sln and click Open

2. Choose the desired project configuration from the drop-down menu on the tool bar
(either Debug or Release).

3. Choose the desired platform configuration from the drop-down menu on the tool bar
(usually Win32 or x64).

4. To build, right-click on the Berkeley_DB solution and select Build Solution.

Build results

The results of your build will be placed in one of the following Berkeley DB subdirectories,
depending on the configuration that you chose:

build_windows\Win32\Debug
build_windows\Win32\Release
build_windows\Win32\Debug_static
build_windows\Win32\Release_static

When building your application during development, you should normally use compile options
"Debug Multithreaded DLL" and link against build_windows\Debug\libdb51d.lib. You can
also build using a release version of the Berkeley DB libraries and tools, which will be placed
in build_windows\Win32\Release\libdb51.lib. When linking against the release build,
you should compile your code with the "Release Multithreaded DLL" compile option. You
will also need to add the build_windows directory to the list of include directories of your
application's project, or copy the Berkeley DB include files to another location.

Building Berkeley DB for 64-bit Windows

The following procedure can be used to build natively on a 64-bit system or to cross-compile
from a 32-bit system.

When building 64-bit binaries, the output directory will be one of the following Berkeley DB
subdirectories, depending upon the configuration that you chose:

build_windows\x64\Debug
build_windows\x64\Release
build_windows\x64\Debug_static
build_windows\x64\Release_static

x64 build with Visual Studio 2005 or newer

1. Follow the build instructions for your version of Visual Studio, as described in Building
Berkeley DB for 32 bit Windows (page 22).

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 24

2. Select x64 from the Platform Configuration dropdown.

3. Right click on Solution 'Berkeley_DB' in the Solution Explorer, and select Build Solution

Building Berkeley DB with Cygwin

To build Berkeley DB with Cygwin, follow the instructions in Building for UNIX/POSIX (page
42).

Building the C++ API

C++ support is built automatically on Windows.

Building the C++ STL API

In the project list of the Berkeley_DB.sln solution, build the "db_stl" project and
"db_stl_static" project to build STL API as a dynamic or static library respectively. And in
your application, you should link this library file as well as the Berkeley DB library file to
your application. The STL API library file is by default always put at the same location as the
Berkeley DB library file.

And you need to include the STL API header files in your application code. If you are using the
Berkeley DB source tree, the header files are in <Berkeley DB Source Root >/stl directory; If
you are using the pre-built installed version, these header files are in < Berkeley DB Installed
Directory>/include, as well as the db.h and db_cxx.h header files.

Building the Java API

Java support is not built automatically. The following instructions assume that you have
installed the Sun Java Development Kit in d:\java. Of course, if you installed elsewhere or
have different Java software, you will need to adjust the pathnames accordingly.

1. Set your include directories.

• In Visual Studio 2005/Visual Studio 2008 - Choose Tools -> Options -> Projects -> VC++
Directories. Under the "Show directories for" pull-down, select "Include files". Add the
full pathnames for the d:\java\include and d:\java\include\win32 directories.
Then click OK.

• In Visual Studio 2010 - Right-click db_java project, choose Properties->Configuration
Properties-> VC++ Directories->Include Directories. Add the full pathnames for the d:
\java\include and d:\java\include\win32 directories. Then click OK.

These are the directories needed when including jni.h.

2. Set the executable files directories.

• In Visual Studio 2005/Visual Studio 2008 - Choose Tools -> Options -> Projects -> VC++
Directories. Under the "Show directories for" pull-down, select "Executable files". Add
the full pathname for the d:\java\bin directory, then click OK.

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 25

• In Visual Studio 2010 - Right-click db_java project, choose Properties->Configuration
Properties-> VC++ Directories->Executable Directories. Add the full pathnames for the
d:\java\bin directories. Then click OK.

This is the directory needed to find javac.

3. Set the build type to Release or Debug in the drop-down on the tool bar.

4. To build, right-click on db_java and select Build. This builds the Java support library
for Berkeley DB and compiles all the java files, placing the resulting db.jar and
dbexamples.jar files in one of the following Berkeley DB subdirectories, depending on
the configuration that you chose:

build_windows\Win32\Debug
build_windows\Win32\Release

Building the C# API

The C# support is built by a separate Visual Studio solution and requires version 2.0 (or
higher) of the .NET platform. In Visual Studio 2005/Visual Studio 2008, the solution is
build_windows\BDB_dotnet.sln; in Visual Studio 2010, the solution is build_windows
\BDB_dotnet_vs2010.sln.

By default, the solution will build the native libraries, the managed assembly and all example
programs. The NUnit tests need to be built explicitly because of their dependence upon the
NUnit assembly. The native libraries will be placed in one of the following subdirectories,
depending upon the chosen configuration:

build_windows\Win32\Debug
build_windows\Win32\Release
build_windows\x64\Debug
build_windows\x64\Release

The managed assembly and all C# example programs will be placed in one of the following
subdirectories, depending upon the chosen configuration:

build_windows\AnyCPU\Debug
build_windows\AnyCPU\Release

The native libraries need to be locatable by the .NET platform, meaning they must be copied
into an application's directory, the Windows or System directory, or their location must
be added to the PATH environment variable. The example programs demonstrate how to
programmatically edit the PATH variable.

Building the SQL API

SQL support is built as part of the default build on Windows. For information on the build
instructions, see Building Berkeley DB for Windows (page 22).

The SQL library is built as libdb_sql51.dll in the Release mode or libdb_sql51d.dll in the
Debug mode. An SQL command line interpreter called dbsql.exe is also built.

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 26

Binary Compatibility With SQLite

libdb_sql51.dll is compatible with sqlite3.dll. You can copy libdb_sql51.dll to
sqlite3.dll and dbsql.exe to sqlite3.exe, and use these applications as a replacement
for the standard SQLite binaries with the same names. However, if you want to do this, then
any legacy data in use by those tools must be migrated from the standard SQLite database to a
Berkeley DB SQL database before you replace the standard SQLite dll and executable with the
Berkeley DB equivalent. For information on migrating data from standard SQLite databases to
a Berkeley DB SQL database, see the Berkeley DB Getting Started with the SQL APIs guide.

Warning

Rename your dlls and executables to the standard SQLite names with extreme care.
Doing this will cause all existing tools to break that currently have data stored in a
standard SQLite database.

For best results, rename your dlls and command line tool to use the standard SQLite
names only if you know there are no other tools on your production platform that
rely on standard SQLite.

Setting Preprocessor Flags

By default, Berkeley DB SQL generates each table as a subdatabase in a single file. To
generate each table in a separate file, specify BDBSQL_FILE_PER_TABLE in Preprocessor
Definitions of the db_sql project.

When this option is enabled, the SQL database name is used as a directory name. This
directory contains one file for the metadata and one file each for every table created by the
SQL API. Do not add or delete files from the database directory. Adding or deleting files may
corrupt the database. To backup just the metadata (schema), make a copy of the metadata
and table00001 files from the database directory. Make a new copy whenever the schema is
changed.

Enabling Extensions

The Berkeley DB SQL API provides extensions such as full text search and R-Tree index. To
enable these extensions, do the following:

1. Open the Berkeley DB solution in Visual Studio.

2. Specify SQLITE_ENABLE_FTS3 or SQLITE_ENABLE_RTREE in Preprocessor Definitions of the
db_sql project.

3. Re-build the db_sql project.

See the SQLite Documentation for more information on full text search and R-Tree.

Disabling Log Checksums

You can disable checksums in log records so as to provide a boost to database performance.
However, this comes at the risk of having undetectable log file corruption that could prevent
data recovery in the event of database corruption.

http://www.sqlite.org/fts3.html
http://www.sqlite.org/rtree.html

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 27

Note

Note that disabling log record checksums is meant to only be used with the SQL
interface. However, disabling checksums for the SQL interface also disables checksums
for the non-SQL interfaces.

To disable log checksums, before you build the library edit the build_windows/db_config.h
file, and delete the following line:

#define HAVE_LOG_CHECKSUM 1

Building the JDBC Driver

This section describes the steps to build the JDBC driver.

1. Configure your build environment. For information on how to configure to build Java
applications, see Building the Java API (page 24).

2. Build the SQL project in Debug mode.

3. Open Visual Studio.

4. Select File -> Add -> Existing Project.

5. Select build_windows/db_sql_jdbc.vcproj and add it to the Berkeley_DB solution. This
adds the db_sql_jdbc Visual Studio project to the Berkeley_DB solution file.

6. Build the db_sql_jdbc project in Visual Studio.

You can test the build by entering the following commands from the db\build_windows
\Win32\Debug directory:

javac -cp ".;jdbc.jar" -d . ..\..\..\sql\jdbc\test3.java
java -cp ".;jdbc.jar" test3

When building the JDBC driver, if you may see an error message:
"SQLite.JDBC2x.JDBCConnection is not abstract and does not override abstract method in
java.sql.Connection".

This means that your Java environment requires JDBC2z.* instead of JDBC2x.*. To resolve
this problem, do the following:

• In the Solution Explorer, right-click the db_sql_jdbc project and select properties.

• In the Configuration Properties -> Build Events -> Pre-Build Event section, alter the
command to refer to JDBC2z instead of JDBC2x.

Using the JDBC Driver

This section describes the steps to download, build, and run sample programs using the built
JDBC driver.

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 28

Downloading JDBC Sample Code

The download link for JDBC sample code is available on the Oracle Technology Network (OTN)
. You can identify the link by the "JDBC programming examples from all three editions (ZIP
format)" text beside it.

Modifying Sample Code

Before running the sample code, do the following:

1. Unzip the file containing the sample code to a new directory (for example, jdbc_ex).

2. Substitute jdbc:sqlite:/<db-file-name> for the generic JDBC URL that appears in the
code. That is, put jdbc:sqlite:/<db-file-name> between the quotation marks in the
line:

String url = "jdbc:mySubprotocol:myDataSource";

Note: The <db-file-name> can either be an absolute path name like "D:\\jdbc_ex_db\
\myDataSource", or a relative path-file-name like "..\\jdbc_ex_db\myDataSource",
or a file name, like "myDataSource", in which the database file will be stored at the
current directory.

3. Substitute SQLite.JDBCDriver for myDriver.ClassName in the line:
Class.forName("myDriver.ClassName");

4. Substitute the username and password you use for your database in the following:
"myLogin", "myPassword".

This is optional.

5. If your JDK version is above 1.5, change the variable name enum in OutputApplet.java
to some other variable name because, as of JDK release 5 enum is a keyword and can not
be used as an identifier.

Building and Running the JDBC Sample code

See Building the JDBC Driver (page 27) for instructions about building JDBC driver.

To build and run the JDBC examples do the following:

1. In the db\build_windows\Win32\Debug directory, run following commands:

 $ javac -classpath ".;jdbc.jar" -d . \path\to\jdbc_ex*.java
 $ java -classpath ".;jdbc.jar" <ClassName, eg. CreateCoffees>

2. After you run the CreateCoffees example, use the dbsql executable to open the
myDataSource database file and check if the table COFFEES has been successfully created
in the database.

http://www.oracle.com/technetwork/java/index-139949.html

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 29

 $ dbsql myDataSourcedbsql> .tables
 COFFEES
 dbsql> .dump
 PRAGMA foreign_keys=OFF;
 BEGIN TRANSACTION;
 CREATE TABLE COFFEES (COF_NAME varchar(32),/
 SUP_ID int, PRICE float, SALES int, TOTAL int);
 COMMIT;
 dbsql>

3. Repeat step 2 to run other examples.
Note: Some examples like AutoGenKeys are not yet supported by BDB JDBC driver. The
SQLFeatureNotSupportedException is displayed for those unsupported examples.

Building the ODBC Driver

This section describes the steps required to build the ODBC driver.

Configuring Your System

To configure your system prior to building the ODBC driver, do the following:

1. Download and install the latest SQLite ODBC driver Windows installer package for 32 bit
Windows or 64 bit Windows.

2. Download and install the latest Microsoft Data Access Components (MDAC) SDK . The
MDAC SDK is only required for testing the installation.

Building the Library

1. Build the SQL project in Release mode. See Building the SQL API (page 25).

2. Open Visual Studio.

3. Load the Berkeley_DB solution file into Visual Studio.

4. Set the build target to Release

5. Build the solution.

6. Select File -> Add -> Existing Project.

7. Select build_windows/db_sql_odbc.vcproj and add it to the Berkeley_DB solution. This
adds the db_sql_odbc Visual Studio project to the Berkeley_DB solution file.

8. Build the db_sql_odbc project. This can be done by right-clicking the db_sql_odbc
project in the project explorer panel, and selecting build.

http://www.ch-werner.de/sqliteodbc/sqliteodbc.exe
http://www.ch-werner.de/sqliteodbc/sqliteodbc.exe
http://www.ch-werner.de/sqliteodbc/sqliteodbc_w64.exe
http://www.microsoft.com/downloads/en/details.aspx?familyid=5067faf8-0db4-429a-b502-de4329c8c850

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 30

The sqlite3odbc.dll, libdb_sql51.dll and libdb51.dll files are now built.

Installing the Library

Copy the dll files built in the Building the Library section to the Windows system folder.

The Windows system folder is different on different systems, but is often C:\WINDOWS
\System32.

Testing the ODBC Install

The steps to verify that the installed driver works are as follows:

1. Open the Unicode ODBCTest application. On Windows XP: Windows start -> Microsoft Data
Access SDK 2.8 -> ODBCTest (Unicode, x86).

2. Select the Conn -> Full Connect... menu item.

3. Select SQLite3 Datasource and click OK.

4. Select the Stmt -> SQLExecDirect... menu item.

5. Enter CREATE TABLE t1(x); in the Statement text box and click OK.

6. Verify that no error messages were output to the error window.

Using the ADO.NET Driver

Go to the Oracle Berkeley DB download page, and download the ADO.NET package. Build
following the instructions included in the documentation in the package.

Building the Tcl API

Tcl support is not built automatically. See Loading Berkeley DB with Tcl for information on
sites from which you can download Tcl and which Tcl versions are compatible with Berkeley
DB. These notes assume that Tcl is installed as d:\tcl, but you can change that if you want.

The Tcl library must be built as the same build type as the Berkeley DB library (both Release
or both Debug). We found that the binary release of Tcl can be used with the Release
configuration of Berkeley DB, but you will need to build Tcl from sources for the Debug
configuration. Before building Tcl, you will need to modify its makefile to make sure that you
are building a debug version, including thread support. This is because the set of DLLs linked
into the Tcl executable must match the corresponding set of DLLs used by Berkeley DB.

1. Set the include directories.

• In Visual Studio 2005/Visual Studio 2008 - Choose Tools -> Options -> Projects -> VC++
Directories. Under the "Show directories for" pull-down, select "Include files". Add the
full pathname for d:\tcl\include, then click OK.

http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
../programmer_reference/tcl.html#tcl_intro

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 31

• In Visual Studio 2010 - Right-click db_java project, choose Properties->Configuration
Properties-> VC++ Directories->Include Directories. Add the full pathnames for d:\tcl
\include, then click OK.

This is the directory that contains tcl.h.

2. Set the library files directory.

• In Visual Studio 2005/Visual Studio 2008 - Choose Tools -> Options -> Projects -> VC++
Directories. Under the "Show directories for" pull-down, select "Library files". Add the
full pathname for the d:\tcl\lib directory, then click OK.

• In Visual Studio 2010 - Right-click db_java project, choose Properties->Configuration
Properties-> VC++ Directories->Library Directories. Add the full pathname for the d:
\tcl\lib directory, then click OK.

This is the directory needed to find tcl85g.lib (or whatever the library is named in
your distribution).

3. Set the build type to Release or Debug in the drop-down on the tool bar.

4. To build, right-click on db_tcl and select Build. This builds the Tcl support library for
Berkeley DB, placing the result into one of the following Berkeley DB subdirectories,
depending upon the configuration that you chose:

build_windows\Win32\Debug\libdb_tcl51d.dll
build_windows\Win32\Release\libdb_tcl51.dll

If you use a version different from Tcl 8.5.x you will need to change the name of the Tcl
library used in the build (for example, tcl85g.lib) to the appropriate name. To do this, right
click on db_tcl, go to Properties -> Linker -> Input -> Additional dependencies and change
tcl85g.lib to match the Tcl version you are using.

Distributing DLLs

When distributing applications linked against the DLL (not static) version of the library, the
DLL files you need will be found in one of the following Berkeley DB subdirectories, depending
upon the configuration that you chose:

build_windows\Win32\Debug
build_windows\Win32\Release
build_windows\Win32\Debug_static
build_windows\Win32\Release_static
build_windows\x64\Debug
build_windows\x64\Release
build_windows\x64\Debug_static
build_windows\x64\Release_static

You may also need to redistribute DLL files needed for the compiler's runtime. Generally,
these runtime DLL files can be installed in the same directory that will contain your installed
Berkeley DB DLLs. This directory may need to be added to your System PATH environment

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 32

variable. Check your compiler's license and documentation for specifics on redistributing
runtime DLLs.

Additional build options

There are several build options that you can configure when building Berkeley DB on Windows.
To specify these, select Project Properties->C/C++->Command Line and add the property.

These are some of the additional properties that you can specify when you are building
Berkeley DB on Windows:

• /D HAVE_LOCALIZATION

Enable localized error message text, if available. This option should not be used when
enabling stripped messages.

• /D HAVE_MIXED_SIZE_ADDRESSING

Allows for the sharing of the BDB database environment between 32-bit and 64-bit
applications. Note that if you use this macro to rebuild your Berkeley DB library,
then you need to also rebuild both your 32-bit and 64-bit applications using /D
HAVE_MIXED_SIZE_ADDRESSING.

Note that use of this macro means that private environments are disabled for the library.

• /D HAVE_STRIPPED_MESSAGES

Causes all error messages to be stripped of their textual information. This option should not
be used when enabling localization support. Use of this property can reduce your library
footprint by up to 42KB (for DLLs) or 98KB (for a .lib).

Note that this option is automatically enabled if you build using the db_small project
name. For more information on building a small library, see Building a small memory
footprint library (page 32).

Building a small memory footprint library

For applications that don't require all of the functionality of the full Berkeley DB library, an
option is provided to build a static library with certain functionality disabled. In particular,
cryptography, hash and queue access methods, replication and verification are all turned off.
This can reduce the memory footprint of Berkeley DB significantly.

In general on Windows systems, you will want to evaluate the size of the final application, not
the library build. The Microsoft LIB file format (like UNIX archives) includes copies of all of
the object files and additional information. The linker rearranges symbols and strips out the
overhead, and the resulting application is much smaller than the library. There is also a Visual
C++ optimization to "Minimize size" that will reduce the library size by a few percent.

A Visual C++ project file called db_small is provided for this small memory configuration.
During a build, static libraries are created in Release or Debug, respectively. The library

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 33

name is libdb_small48sd.lib for the debug build, or libdb_small48s.lib for the release
build.

For assistance in further reducing the size of the Berkeley DB library, or in building small
memory footprint libraries on other systems, please contact Berkeley DB support.

Running the test suite under Windows

To build the test suite on Windows platforms, you will need to configure Tcl support. You will
also need sufficient main memory (at least 64MB), and disk (around 250MB of disk will be
sufficient).

Building the software needed by the tests
The test suite must be run against a Debug version of Berkeley DB, so you will need a Debug
version of the Tcl libraries. This involves building Tcl from its source. See the Tcl sources for
more information. Then build the Tcl API - see Building the Tcl API (page 30) for details.

Visual Studio 2005 or newer

To build for testing, perform the following steps:

1. Open the Berkeley DB solution.

2. Ensure that the target configuration is Debug

3. Right click the db_tcl project in the Solution Explorer, and select Build.

4. Right click the db_test project in the Solution Explorer, and select Build.

Running the test suite under Windows

Before running the tests for the first time, you must edit the file include.tcl in your build
directory and change the line that reads:

set tclsh_path SET_YOUR_TCLSH_PATH

You will want to use the location of the tclsh program (be sure to include the name of the
executable). For example, if Tcl is installed in d:\tcl, this line should be the following:

set tclsh_path d:\tcl\bin\tclsh85g.exe

If your path includes spaces be sure to enclose it in quotes:

set tclsh_path "c:\Program Files\tcl\bin\tclsh85g.exe"

Make sure that the path to Berkeley DB's tcl library is in your current path. On Windows
NT/2000/XP, edit your PATH using the My Computer -> Properties -> Advanced -> Environment
Variables dialog. On earlier versions of Windows, you may find it convenient to add a line to c:
\AUTOEXEC.BAT:

SET PATH=%PATH%;c:\db\build_windows

Then, in a shell of your choice enter the following commands:

1. cd build_windows

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 34

2. run d:\tcl\bin\tclsh85g.exe, or the equivalent name of the Tcl shell for your system.

You should get a "%" prompt.

3. % source ../test/tcl/test.tcl
If no errors occur, you should get a "%" prompt.

You are now ready to run tests in the test suite; see Running the test suite for more
information.

Building the software needed by the SQL tests

The SQL test suite must be run against a Debug version of Berkeley DB, so you need a Debug
version of the Tcl libraries. This involves building Tcl from its source. See the Tcl sources for
more information. Then build the Tcl API - see Building the Tcl API (page 30) for details.

Before building for SQL tests, build the db_tcl and db_sql_testfixture projects. This requires
Tcl 8.5 or above. If you are using a later version of Tcl, edit the Tcl library that db_tcl and
db_sql_testfixture link to.

To do this right click the db_tcl/db_sql_testfixture project, select Properties->Configuration
Properties->Linker->Input->Additional Dependencies and edit the Tcl library, tcl85g.lib, to
match the version you are using.

Building the db_sql_testfixture project builds the testfixture.exe program in ../
build_windows/Win32/Debug. It also builds the projects db and db_sql, on which it depends.

Visual Studio 2005 or newer

To build for testing, perform the following steps:

1. Open the Berkeley DB solution.

2. Ensure that the target configuration is Debug.

3. Right click the db_tcl project in the Solution Explorer, and select Build.

4. Right click the db_sql_testfixture project in the Solution Explorer, and select Build.

To test extensions, specify the following in the Preprocessor Definitions of the
db_sql_testfixture project:

• SQLITE_ENABLE_FTS3 to enable the full text search layer

• SQLITE_ENABLE_RTREE to enable the R-Tree layer

Windows notes

If a system memory environment is closed by all processes, subsequent attempts to open
it will return an error. To successfully open a transactional environment in this state,
recovery must be run by the next process to open the environment. For non-transactional

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 35

environments, applications should remove the existing environment and then create a new
database environment.

1. Berkeley DB does not support the Windows/95, Windows/98 or Windows/ME platforms.

2. On Windows, system paging file memory is freed on last close. For this reason, multiple
processes sharing a database environment created using the DB_SYSTEM_MEM flag must
arrange for at least one process to always have the environment open, or alternatively
that any process joining the environment be prepared to re-create it.

3. When using the DB_SYSTEM_MEM flag, Berkeley DB shared regions are created without
ACLs, which means that the regions are only accessible to a single user. If wider sharing
is appropriate (for example, both user applications and Windows/NT service applications
need to access the Berkeley DB regions), the Berkeley DB code will need to be modified
to create the shared regions with the correct ACLs. Alternatively, by not specifying
the DB_SYSTEM_MEM flag, filesystem-backed regions will be created instead, and the
permissions on those files may be directly specified through the DB_ENV->open() method.

4. Applications that operate on wide character strings can use the Windows function
WideCharToMultiByte with the code page CP_UTF8 to convert paths to the form expected
by Berkeley DB. Internally, Berkeley DB calls MultiByteToWideChar on paths before calling
Windows functions.

5. Various Berkeley DB methods take a mode argument, which is intended to specify the
underlying file permissions for created files. Berkeley DB currently ignores this argument
on Windows systems.

It would be possible to construct a set of security attributes to pass to CreateFile that
accurately represents the mode. In the worst case, this would involve looking up user and
all group names, and creating an entry for each. Alternatively, we could call the _chmod
(partial emulation) function after file creation, although this leaves us with an obvious
race.

Practically speaking, however, these efforts would be largely meaningless on a FAT file
system, which only has a "readable" and "writable" flag, applying to all users.

Windows FAQ

1. My Win* C/C++ application crashes in the Berkeley DB library when Berkeley DB calls
fprintf (or some other standard C library function).

You should be using the "Debug Multithreaded DLL" compiler option in your application
when you link with the build_windows\Debug\libdb48d.lib library (this .lib file is actually
a stub for libdb48d.DLL). To check this setting in Visual C++, choose the Project/Settings
menu item and select Code Generation under the tab marked C/C++; and see the box
marked Use runtime library. This should be set to Debug Multithreaded DLL. If your
application is linked against the static library, build_windows\Debug\libdb48sd.lib; then,
you will want to set Use runtime library to Debug Multithreaded.

Setting this option incorrectly can cause multiple versions of the standard libraries to be
linked into your application (one on behalf of your application, and one on behalf of the

../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html

Library Version 11.2.5.2 Building Berkeley DB for Windows

6/10/2011 DB Installation Guide Page 36

Berkeley DB library). That violates assumptions made by these libraries, and traps can
result.

Also, using different Visual Studio compilers in the application and libraries can lead to a
crash. So rebuild the application with the same Visual C++ version as that of the library.

2. Why are the build options for DB_DLL marked as "Use MFC in a Shared DLL"? Does
Berkeley DB use MFC?

Berkeley DB does not use MFC at all. It does however, call malloc and free and other
facilities provided by the Microsoft C runtime library. We found in our work that many
applications and libraries are built assuming MFC, and specifying this for Berkeley DB
solves various interoperation issues, and guarantees that the right runtime libraries are
selected. Note that because we do not use MFC facilities, the MFC library DLL is not
marked as a dependency for libdb.dll, but the appropriate Microsoft C runtime is.

3. How can I build Berkeley DB for MinGW?

Follow the instructions in Building for UNIX/POSIX (page 42), and specify the --enable-
mingw option to the configuration script. This configuration option currently only builds
static versions of the library, it does not yet build a DLL version of the library, and file
sizes are limited to 2GB (2^32 bytes.)

4. How can I build a Berkeley DB for Windows 98/ME?

Windows 98/ME is no longer supported by Berkeley DB. The following is therefore only of
interest to historical users of Berkeley DB.

By default on Windows, Berkeley DB supports internationalized filenames by treating all
directory paths and filenames passed to Berkeley DB methods as UTF-8 encoded strings.
All paths are internally converted to wide character strings and passed to the wide
character variants of Windows system calls.

This allows applications to create and open databases with names that cannot be
represented with ASCII names while maintaining compatibility with applications that work
purely with ASCII paths.

Windows 98 and ME do not support Unicode paths directly. To build for those versions of
Windows, either:

• Follow the instructions at Microsoft's web site.

• Open the workspace or solution file with Visual Studio. Then open the Project
properties/settings section for the project you need to build (at least db_dll). In the C/
C++->Preprocessor->Preprocessor Definitions section, remove _UNICODE and UNICODE
entries. Add in an entry of _MBCS. Build the project as normal.

The ASCII builds will also work on Windows NT/2K/XP/2003 and Windows7, but will not
translate paths to wide character strings.

http://www.mingw.org
http://msdn.microsoft.com/goglobal/bb688166.aspx

6/10/2011 DB Installation Guide Page 37

Chapter 6. Building Berkeley DB for Windows
Mobile
Building for Windows Mobile

This page contains general instructions on building Berkeley DB for Windows Mobile platforms
using specific compilers.

The build_wince directory in the Berkeley DB distribution contains project files for Microsoft
Visual 2005 with the Mobile SDK installed:

Project File Description

Berkeley_DB.sln Visual Studio 2005 solution

*.vcproj Visual Studio 2005 project files

These project files can be used to build Berkeley DB for the Windows Mobile platform.

Building Berkeley DB for Windows Mobile

Visual Studio 2005

1. Choose File -> Open Workspace.... Navigate to the build_wince directory, select
Berkeley_DB and click Open.

2. Select the desired target platform from the platform drop-down menu.

3. Build the desired projects.

Build results

The results of your build will be placed in any one of the following Berkeley DB subdirectories,
depending on the configuration that you chose:

build_wince\(Platform)\Debug
build_wince\(Platform)\Release
build_wince\(Platform)\Debug_static
build_wince\(Platform)\Release_static

When building your application during development, you must link against
libdb_small51sd.lib or against libdb_sql51sd.lib for SQL features. You can also build
using a release version of the Berkeley DB libraries and tools, which will be placed in the
build_wince\(Platform)\Release_static directory. You must add the build_wince
directory to the list of include directories of your application's project, or copy the Berkeley
DB include files to a location in your Visual Studio include path.

Changing Build Configuration Type

This section contains information on how to change between a dynamic library (.dll) and static
library (.lib). The library projects and their default output and configuration in the Release
build is as follows:

Library Version 11.2.5.2 Building Berkeley DB for Windows Mobile

6/10/2011 DB Installation Guide Page 38

Project Default Output Default Configuration

db_small_static libdb_small51s.lib Static Library

db_static libdb51s.lib Static Library

db_sql libdb_sql51.dll Dynamic Library

db_sql_static libdb_sql51s.lib Static Library

To change a project configuration type in Visual Studio 2005, select a project and do the
following:

1. Choose Project->Properties and navigate to Configuration Properties.

2. Under Project Defaults, change the Configuration Type to your desired type.

Note: After this change, the output file names change to the Visual Studio 2005 defaults based
on the project name.

Building Berkeley DB for different target platforms

There are many possible target CPU architectures for a Windows Mobile application. This
section outlines the process required to add a new target architecture to the project files
supplied with Berkeley DB.

The Visual Studio 2005 project files will by default build for Pocket PC 2003 and Smartphone
2003, and Windows Mobile 6.5.3 Professional. If you want to build for other platforms such as
Windows Mobile 6.0, 6.1, or 6.5, you need to follow the steps provided in this section.

Different target architectures are available in different Platform SDK or DTK downloads from
Microsoft. The appropriate SDK must be installed for your mobile architecture before you can
build for that platform. You can find the downloads at the Microsoft Developer Center page.

Visual Studio 2005

1. Choose File -> Open Workspace.... Navigate to the build_wince directory, select
Berkeley_DB and click Open.

2. From the Solution explorer window, right-click the Solution Berkeley_DB and select
Configuration manager...

3. In the Active solution platform: drop down box select New...

4. From the Type or select the new platform drop-down box, select a configuration
from the ones available and click OK.

5. Click Close from the Configuration Manager dialog box.

6. The target platform drop-down now contains the platform just added.

7. Build as per the instructions given at the beginning of this chapter.

http://msdn.microsoft.com/en-us/windowsmobile/default.aspx

Library Version 11.2.5.2 Building Berkeley DB for Windows Mobile

6/10/2011 DB Installation Guide Page 39

BDB SQL Notes

After building for a different platform, change the deployment remote directory for the
db_sql project to run the wce_sql sample application:

1. Select db_sql from the Solution explorer window.

2. Choose Project->Properties and navigate to Configuration Properties.

3. Under Deployment, change the remote directory to %CSIDL_PROGRAM_FILES%\wce_sql.

Windows Mobile notes
1. The C++ API is not supported on Windows Mobile. The file stream and exception handling

functionality provided by the Berkeley DB C++ API are not supported by Windows Mobile.
It is possible to build a C++ application against the Berkeley DB C API.

2. The Java API is not currently supported on Windows Mobile.

3. Tcl support is not currently supported on Windows Mobile.

4. Berkeley DB is shipped with support for the Pocket PC 2003 and Smartphone 2003 target
platforms. It is possible to build Berkeley DB for different target platforms using Visual
Studio's Configuration Manager.
This can be done using the following steps:

a. Open Visual Studio, and load the build_wince/Berkeley_DB.sln solution file.

b. Select the Build->Configuration Manager... menu item.

c. In the Active Solution Platform... dropdown, select New...

d. Select the desired target platform (you must have the desired Microsoft Platform SDK
installed for it to appear in the list). Choose to copy settings from either the Pocket
PC 2003 or Smartphone 2003 platforms.

Before building the wce_tpcb sample application for the new platform, you will need to
complete the following steps:

a. Open the project properties page for wce_tpcb. Do this by: Right click wce_tpcb in
the Solution Explorer then select Properties

b. Select Configuration Properties->Linker->Input

c. Remove secchk.lib and crtti.lib from the Additional Dependencies field.

NOTE: These steps are based on Visual Studio 2005, and might vary slightly depending on
which version of Visual Studio being used.

Windows Mobile FAQ
1. What if my Windows Mobile device does not support SetFilePointer and/or

SetEndOfFile?

Library Version 11.2.5.2 Building Berkeley DB for Windows Mobile

6/10/2011 DB Installation Guide Page 40

You can manually disable the truncate functionality from the build.

Do that by opening the db-X.X.X/build_wince/db_config.h file, and change the line
that reads

#define HAVE_FTRUCATE 1

to read

#undef HAVE_FTRUNCATE

Making this change disables DB->compact() for btree databases.

2. Why doesn't automatic log archiving work?

The Windows Mobile platform does not have a concept of a working directory. This means
that the DB_ARCH_REMOVE and DB_ARCH_ABS flags do not work properly within Windows
Mobile, because they rely on having a working directory.

To work around this issue, you can call log_archive with the DB_ARCH_LOG flag, the list of
returned file handles will not contain absolute paths. Your application can take this list of
files, construct absolute paths, and delete the files.

3. Does Berkeley DB support Windows Mobile?

Yes.

Berkeley DB relies on a subset of the Windows API, and some standard C library APIs.
These are provided by Windows CE. Windows Mobile is built "on top" of Windows CE.

4. Does Berkeley DB support Windows CE?

Yes.

Berkeley DB relies on a subset of the Windows API, and some standard C library APIs.
These are provided by Windows CE.

5. What platforms are the supplied sample applications designed for?

The supplied sample applications were developed for the Pocket PC 2003 emulator. They
are known to work on real pocket PC devices and later versions of the emulator as well.

The supplied applications are not designed to work with Smartphone devices. The screen
size and input mechanisms are not compatible.

6. I see a file mapping error when opening a Berkeley DB environment or database. What
is wrong?

The default behavior of Berkeley DB is to use memory mapped files in the environment.
Windows Mobile does not allow memory mapped files to be created on flash storage.

There are two workarounds:

../api_reference/C/dbcompact.html
../api_reference/C/logarchive.html#archive_DB_ARCH_REMOVE
../api_reference/C/logarchive.html#archive_DB_ARCH_ABS
../api_reference/C/logarchive.html#archive_DB_ARCH_LOG

Library Version 11.2.5.2 Building Berkeley DB for Windows Mobile

6/10/2011 DB Installation Guide Page 41

a. Configure the Berkeley DB environment not to use memory mapped files. The options
are discussed in detail in Shared memory region.

b. Create the Berkeley DB environment on non-flash storage. It is possible to store
database and log files in a different location to using the DB_ENV->set_data_dir() and
DB_ENV->set_lg_dir() APIs.

../programmer_reference/env_region.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envset_lg_dir.html

6/10/2011 DB Installation Guide Page 42

Chapter 7. Building Berkeley DB for UNIX/POSIX

Building for UNIX/POSIX

The Berkeley DB distribution builds up to four separate libraries: the base C API Berkeley DB
library and the optional C++, Java, and Tcl API libraries. For portability reasons, each library is
standalone and contains the full Berkeley DB support necessary to build applications; that is,
the C++ API Berkeley DB library does not require any other Berkeley DB libraries to build and
run C++ applications.

Building for Linux, Apple iOS (known as iPhone OS previously), Mac OS X or the QNX Neutrino
release is the same as building for a conventional UNIX platform.

The Berkeley DB distribution uses the Free Software Foundation's autoconf and libtool tools
to build on UNIX platforms. In general, the standard configuration and installation options for
these tools apply to the Berkeley DB distribution.

To perform a standard UNIX build of Berkeley DB, change to the build_unix directory and then
enter the following two commands:
../dist/configure
make

This will build the Berkeley DB library.

To install the Berkeley DB library, enter the following command:
make install

To rebuild Berkeley DB, enter:
make clean
make

If you change your mind about how Berkeley DB is to be configured, you must start from
scratch by entering the following command:
make realclean
../dist/configure
make

To uninstall Berkeley DB, enter:
make uninstall

To build multiple UNIX versions of Berkeley DB in the same source tree, create a new directory
at the same level as the build_unix directory, and then configure and build in that directory as
described previously.

Building the Berkeley DB SQL Interface

To perform a standard UNIX build of the Berkeley DB SQL interface, go to the build_unix
directory and then enter the following two commands:
../dist/configure --enable-sql
make

http://www.gnu.org/software/autoconf/autoconf.html
http://www.gnu.org/software/libtool/libtool.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 43

This creates a library, libdb_sql, and a command line tool, dbsql. You can create and
manipulate SQL databases using the dbsql shell.

You can optionally provide the --enable-sql_compat argument to the configure script.
In addition to creating libdb_sql and dbsql this causes a thin wrapper library called
libsqlite3 and a command line tool called sqlite3 to be built. This library can be used as
a drop-in replacement for SQLite. The sqlite3 command line tool is identical to the dbsql
executable but is named so that existing scripts for SQLite can easily work with Berkeley DB.

../dist/configure --enable-sql_compat
make

There are several arguments you can specify when configuring the Berkeley DB SQL Interface.
See Configuring the SQL Interface (page 49) for more information.

Configuring Berkeley DB
There are several arguments you can specify when configuring Berkeley DB. Although only the
Berkeley DB-specific ones are described here, most of the standard GNU autoconf arguments
are available and supported. To see a complete list of possible arguments, specify the --help
flag to the configure program.

The Berkeley DB specific arguments are as follows:

• --disable-largefile

Some systems, notably versions of Solaris, require special compile-time options in order to
create files larger than 2^32 bytes. These options are automatically enabled when Berkeley
DB is compiled. For this reason, binaries built on current versions of these systems may
not run on earlier versions of the system because the library and system calls necessary for
large files are not available. To disable building with these compile-time options, enter --
disable-largefile as an argument to configure.

• --disable-shared, --disable-static

On systems supporting shared libraries, Berkeley DB builds both static and shared libraries
by default. (Shared libraries are built using the GNU Project's Libtool distribution, which
supports shared library builds on many (although not all) systems.) To not build shared
libraries, configure using the --disable-shared argument. To not build static libraries,
configure using the --disable-static argument.

• --disable-heap

Disables the Heap access method so that it cannot be used by Berkeley DB applications.

• --enable-compat185

To compile or load Berkeley DB 1.85 applications against this release of the Berkeley DB
library, enter --enable-compat185 as an argument to configure. This will include Berkeley
DB 1.85 API compatibility code in the library.

• --enable-cxx

http://www.gnu.org/software/libtool/libtool.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 44

To build the Berkeley DB C++ API, enter --enable-cxx as an argument to configure.

• --enable-debug

To build Berkeley DB with -g as a compiler flag and with DEBUG #defined during
compilation, enter --enable-debug as an argument to configure. This will create a Berkeley
DB library and utilities with debugging symbols, as well as load various routines that can
be called from a debugger to display pages, cursor queues, and so forth. If installed, the
utilities will not be stripped. This argument should not be specified when configuring to
build production binaries.

• --enable-debug_rop

To build Berkeley DB to output log records for read operations, enter --enable-debug_rop as
an argument to configure. This argument should not be specified when configuring to build
production binaries.

• --enable-debug_wop

To build Berkeley DB to output log records for write operations, enter --enable-debug_wop
as an argument to configure. This argument should not be specified when configuring to
build production binaries.

• --enable-diagnostic

To build Berkeley DB with run-time debugging checks, enter --enable-diagnostic as an
argument to configure. This causes a number of additional checks to be performed when
Berkeley DB is running, and also causes some failures to trigger process abort rather than
returning errors to the application. Applications built using this argument should not share
database environments with applications built without this argument. This argument should
not be specified when configuring to build production binaries.

• --enable-dump185

To convert Berkeley DB 1.85 (or earlier) databases to this release of Berkeley DB, enter --
enable-dump185 as an argument to configure. This will build the db_dump185 utility, which
can dump Berkeley DB 1.85 and 1.86 databases in a format readable by the Berkeley DB
db_load utility.

The system libraries with which you are loading the db_dump185 utility must already
contain the Berkeley DB 1.85 library routines for this to work because the Berkeley DB
distribution does not include them. If you are using a non-standard library for the Berkeley
DB 1.85 library routines, you will have to change the Makefile that the configuration step
creates to load the db_dump185 utility with that library.

• --enable-java

To build the Berkeley DB Java API, enter --enable-java as an argument to configure. To build
Java, you must also build with shared libraries. Before configuring, you must set your PATH
environment variable to include javac. Note that it is not sufficient to include a symbolic
link to javac in your PATH because the configuration process uses the location of javac to

../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 45

determine the location of the Java include files (for example, jni.h). On some systems,
additional include directories may be needed to process jni.h; see Changing compile or load
options (page 56) for more information.

• --enable-posixmutexes

To force Berkeley DB to use the POSIX pthread mutex interfaces for underlying mutex
support, enter --enable-posixmutexes as an argument to configure. This is rarely necessary:
POSIX mutexes will be selected automatically on systems where they are the preferred
implementation.

The --enable-posixmutexes configuration argument is normally used in two ways:
First, when there are multiple mutex implementations available and the POSIX mutex
implementation is not the preferred one (for example, on Solaris where the LWP mutexes
are used by default). Second, by default the Berkeley DB library will only select the
POSIX mutex implementation if it supports mutexes shared between multiple processes,
as described for the pthread_condattr_setpshared and pthread_mutexattr_setpshared
interfaces. The --enable-posixmutexes configuration argument can be used to force the
selection of POSIX mutexes in this case, which can improve application performance
significantly when the alternative mutex implementation is a non-blocking one (for example
test-and-set assembly instructions). However, configuring to use POSIX mutexes when the
implementation does not have inter-process support will only allow the creation of private
database environments, that is, environments where the DB_PRIVATE flag is specified to the
DB_ENV->open() method.

Specifying the --enable-posixmutexes configuration argument may require that applications
and Berkeley DB be linked with the -lpthread library.

• --enable-pthread_api

To configure Berkeley DB for a POSIX pthreads application (with the exception that POSIX
pthread mutexes may not be selected as the underlying mutex implementation for the
build), enter --enable-pthread_api as an argument to configure. The build will include the
Berkeley DB replication manager interfaces and will use the POSIX standard pthread_self
and pthread_yield functions to identify threads of control and yield the processor. The --
enable-pthread_api argument requires POSIX pthread support already be installed on your
system.

Specifying the --enable-pthread_api configuration argument may require that applications
and Berkeley DB be linked with the -lpthread library.

• --enable-sql

To build the command tool dbsql, enter --enable-sql as an argument to configure. The
dbsql utility provides access to the Berkeley DB SQL interface. See Configuring the SQL
Interface (page 49) for more information.

• --enable-sql_compat

To build the command tool sqlite3, enter --enable-sql_compat as an argument to configure.
Sqlite3 is a command line tool that enables you to manually enter and execute SQL

../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 46

commands. It is identical to the dbsql executable but named so that existing scripts for
SQLite can easily work with Berkeley DB. See Configuring the SQL Interface (page 49) for
more information.

• --enable-sql_codegen

To build the command line tool db_sql_codegen, enter --enable-sql_codegen as an argument
to configure. The db_sql_codegen utility translates a schema description written in a SQL
Data Definition Language dialect into C code that implements the schema using Berkeley
DB.

• --enable-smallbuild

To build a small memory footprint version of the Berkeley DB library, enter --enable-
smallbuild as an argument to configure. The --enable-smallbuild argument is equivalent to
individually specifying --with-cryptography=no, --disable-hash, --disable-queue, --disable-
replication, --disable-statistics and --disable-verify, turning off cryptography support, the
Hash and Queue access methods, database environment replication support and database
and log verification support. See Building a small memory footprint library (page 55) for
more information.

• --enable-stl

To build the Berkeley DB C++ STL API, enter --enable-stl as an argument to configure.
Setting this argument implies that --enable-cxx is set, and the Berkeley DB C++ API will be
built too.

There will be a libdb_stl-X.X.a and libdb_stl-X.X.so built, which are the static and shared
library you should link your application with in order to make use of Berkeley DB via its STL
API.

If your compiler is not ISO C++ compliant, the configure may fail with this argument
specified because the STL API requires standard C++ template features. In this case, you will
need a standard C++ compiler. So far gcc is the best choice, we have tested and found that
gcc-3.4.4 and all its newer versions can build the Berkeley DB C++ STL API successfully.

For information on db_stl supported compilers, see the Portability section in the
Programmer's Reference Guide.

And you need to include the STL API header files in your application code. If you are
using the Berkeley DB source tree, the header files are in <Berkeley DB Source Root >/stl
directory; If you are using the installed version, these header files are in < Berkeley DB
Installed Directory>/include, as well as the db.h and db_cxx.h header files.

• --enable-tcl

To build the Berkeley DB Tcl API, enter --enable-tcl as an argument to configure. This
configuration argument expects to find Tcl's tclConfig.sh file in the /usr/local/lib
directory. See the --with-tcl argument for instructions on specifying a non-standard location
for the Tcl installation. See Loading Berkeley DB with Tcl for information on sites from which

../programmer_reference/stl.html#stl_intro_portability
../programmer_reference/tcl.html#tcl_intro

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 47

you can download Tcl and which Tcl versions are compatible with Berkeley DB. To build Tcl,
you must also build with shared libraries.

• --enable-test

To build the Berkeley DB test suite, enter --enable-test as an argument to configure. To run
the Berkeley DB test suite, you must also build the Tcl API. This argument should not be
specified when configuring to build production binaries.

• --enable-uimutexes

To force Berkeley DB to use the UNIX International (UI) mutex interfaces for underlying
mutex support, enter --enable-uimutexes as an argument to configure. This is rarely
necessary: UI mutexes will be selected automatically on systems where they are the
preferred implementation.

The --enable-uimutexes configuration argument is normally used when there are multiple
mutex implementations available and the UI mutex implementation is not the preferred one
(for example, on Solaris where the LWP mutexes are used by default).

Specifying the --enable-uimutexes configuration argument may require that applications and
Berkeley DB be linked with the -lthread library.

• --enable-umrw

Rational Software's Purify product and other run-time tools complain about uninitialized
reads/writes of structure fields whose only purpose is padding, as well as when heap
memory that was never initialized is written to disk. Specify the --enable-umrw argument
during configuration to mask these errors. This argument should not be specified when
configuring to build production binaries.

• --enable-dtrace [--enable-perfmon-statistics]

To build Berkeley DB with performance event monitoring probes add --enable-dtrace to
the configuration options. Both native DTrace (on Solaris and Mac OS X) and the Statically
Defined Tracing compatibility layer in Linux SystemTap version 1.1 or better are supported.
That compatibility package may be called systemtap-sdt-devel; it includes sys/sdt.h.

If --enable-perfmon-statistics is combined with --enable-dtrace then additional probes are
defined for the tracking variables from which DB's statistics are obtained. They allow DTrace
and SystemTap access to these values when they are updated, are the basis of the statistics
as displayed db_stat and the API functions that return statistics.

The --enable-dtrace option may not be specified at the same time as --disable-statistics.

For information on Berkeley DB Performance Event Monitoring, see the Performance Event
Monitoring section in the Programmer's Reference Guide.

• --enable-localization

Enable localized error message text, if available. This option should not be used when --
enable-stripped_messages is in use.

../programmer_reference/program_perfmon.html
../programmer_reference/program_perfmon.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 48

• --enable-stripped_messages

Causes all error messages to be stripped of their textual information. Instead, only error
return codes are used. This option should not be used when --enable-localization is in
use. Use of this build option can reduce your library foot print by up to 44KB (.so) or 50KB
(.a).

• --with-cryptography

To build Berkeley DB with support for cryptography, enter --with-cryptography=yes as an
argument to configure.

To build Berkeley DB without support for cryptography, enter --with-cryptography=no as an
argument to configure.

To build Berkeley DB with support for cryptography using Intel's Performance Primitive (IPP)
library, enter --with-cryptography=ipp as an argument to configure. Additionally, set the
following arguments:

-L/path/to/ipp/sharedlib to LDFLAGS

-I/path/to/ipp/include to CPPFLAGS

-lippcpem64t -lpthread to LIBS

An example configuration command for IPP encryption is as follows:

 ../dist/configure -with-cryptography=ipp
 CPPFLAGS="-I/opt/intel/ipp/6.1.3.055/em64t/include"
 LDFLAGS="-L/opt/intel/ipp/6.1.3.055/em64t/sharedlib"
 LIBS="-lippcpem64t -lpthread"

See the Intel Documenation for specific instructions on configuring environment variables.

Note: The --with-cryptography=ipp argument works only on Linux.

• --with-mutex=MUTEX

To force Berkeley DB to use a specific mutex implementation, configure with --with-
mutex=MUTEX, where MUTEX is the mutex implementation you want. For example, --with-
mutex=x86/gcc-assembly will configure Berkeley DB to use the x86 GNU gcc compiler based
test-and-set assembly mutexes. This is rarely necessary and should be done only when the
default configuration selects the wrong mutex implementation. A list of available mutex
implementations can be found in the distribution file dist/aclocal/mutex.m4.

• --with-tcl=DIR

To build the Berkeley DB Tcl API, enter --with-tcl=DIR, replacing DIR with the directory
in which the Tcl tclConfig.sh file may be found. See Loading Berkeley DB with Tcl for
information on sites from which you can download Tcl and which Tcl versions are compatible
with Berkeley DB. To build Tcl, you must also build with shared libraries.

http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-documentation/
../programmer_reference/tcl.html#tcl_intro

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 49

• --with-uniquename=NAME

To build Berkeley DB with unique symbol names (in order to avoid conflicts with other
application modules or libraries), enter --with-uniquename=NAME, replacing NAME with
a string that to be appended to every Berkeley DB symbol. If "=NAME" is not specified,
a default value of "_MAJORMINOR" is used, where MAJORMINOR is the major and minor
release numbers of the Berkeley DB release. See Building with multiple versions of Berkeley
DB (page 9) for more information.

Configuring the SQL Interface

There are a set of options you can provide to configure in order to control how the Berkeley
DB SQL interface is built. These configuration options include:

--disable-log-checksum
Disables checksums in log records. This provides a boost to performance at the risk of
log files having undetectable corruption that could prevent proper data recovery in
case of database corruption.
Note that while this option is meant for use with the SQL interface, it will also disable
checksum for the non-SQL interfaces.

--enable-sql
Causes the dbsql command line interpreter to be built. Along with dbsql, this
argument also builds the libdb_sqlXX.{so|la} library, a C API library that mirrors the
SQLite C API.

--enable-sql_compat
Causes the sqlite3 command line tool to be built. This tool is identical to the dbsql
command line tool, except that it has the same name as the command line tool that
comes with standard SQLite.

In addition, the libsqlite3.{so|la} C API library is built if this option is specified. This
library is identical to the libdb_sqlXX.{so|la} library that is normally built for Berkeley
DB's sql interface, except that it has the same name as the library which is built for
standard SQLite.

Warning

Use this compatibility option with extreme care. Standard SQLite is used by
many programs and utilities on many different platforms. Some platforms,
such as Mac OS X, come with standard SQLite built in because default
applications for the platform use that library.

Use of this option on platforms where standard SQLite is in production use
can cause unexpected runtime errors either for your own application, or
for applications and utilities commonly found on the platform, depending
on which library is found first in the platform's library search path.

Use this option only if you know exactly what you are doing.

This option is provided so that there is an easy upgrade path for legacy SQLite tools
and scripts that want to use BDB SQL without rewriting the tool or script. However,

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 50

data contained in standard SQLite databases must be manually migrated from the
old database to your BDB SQL database even if you use this option. See the Berkeley
DB Getting Started with the SQL APIs guide for information on migrating data from
standard SQLite to BDB SQL databases.

Note that in addition to the renamed command line tool and library, this option also
causes versions of the command line tool and library to be built that use the normal
BDB SQLite names (dbsql and libdb_sqlXX.{so|la}).

--enable-test
Cause the Berkeley DB SQL interface test suite to be built. This argument can also be
used with either --enable-sql or --enable-sql_compat to build the SQLite Tcl test
runner.

--enable-jdbc
Causes the JDBC driver to be built.

The following configuration options are useful when debugging applications:

--enable-debug
Builds the Berkeley DB SQL interface with debug symbols.

--enable-diagnostic
Builds the Berkeley DB SQL interface with run-time debugging checks.

Any arguments that you can provide to the standard SQLite configure script can also be
supplied when configuring Berkeley DB SQL interface.

Changing Compile Options

There are several configuration options you can specify as an argument to the configure script
using the standard environment variable, CFLAGS.

BDBSQL_DEFAULT_PAGE_SIZE
To set the default page size when you create a database, specify the
BDBSQL_DEFAULT_PAGE_SIZE flag. The value assigned must be a 0, 512, 1024, 2048,
4096, 8192 16384, 32768, or 65536. The default value is 4096. If the value is set to
zero, Berkeley DB queries the file system to determine the best page size, and the
value of SQLITE_DEFAULT_PAGE_SIZE is used to calculate the cache size, as the cache
size is specified as a number of pages.

BDBSQL_FILE_PER_TABLE
To generate each table in a separate file, rather than as subdatabases in a single
file, specify the BDBSQL_FILE_PER_TABLE flag. When this option is enabled, the SQL
database name is used as a directory name. This directory contains one file for the
metadata and one file each for every table created by the SQL API. Note that adding
or deleting files from the database directory may corrupt your database. To backup
the metadata (schema), make a copy of the metadata and table00001 files from the
database directory. Make a new copy whenever the schema is changed.

BDBSQL_LOG_REGIONMAX
To configure the log region size for the underlying storage engine, specify
the BDBSQL_LOG_REGIONMAX flag. For more information, see DB_ENV-
>get_lg_regionmax().

../api_reference/C/envget_lg_regionmax.html
../api_reference/C/envget_lg_regionmax.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 51

BDBSQL_OMIT_LEAKCHECK
For Berkeley DB to use the default system allocation routines rather than the SQLite
allocation routines, specify the BDBSQL_OMIT_LEAKCHECK flag.

BDBSQL_OMIT_LOG_REMOVE
Berkeley DB automatically removes log files that are not required any more, that is,
files that are older than the most recent checkpoint. To disable this functionality,
specify the BDBSQL_OMIT_LOG_REMOVE flag. It is necessary to provide this flag if you
are using replication with Berkeley DB SQL.

BDBSQL_OMIT_SHARING
To create a private environment rather than a shared environment, specify the
BDBSQL_OMIT_SHARING flag. That is, the cache and other region files will be created
in memory rather than using file backed shared memory. For more information, see
the DB_PRIVATE flag of DB_ENV->open().

BDBSQL_SINGLE_THREAD
To disable locking and thread safe connections, specify the BDBSQL_SINGLE_THREAD
flag. If an application is going to use Berkeley DB from a single thread and a single
process, enabling this flag can deliver significant performance advantages.

SQLITE_DEFAULT_CACHE_SIZE
SQLite provides an in-memory cache which you size according to the maximum
number of database pages that you want to hold in memory at any given time.
Berkeley DB's in-memory cache feature performs the same function as SQLite. To
specify the suggested maximum number of pages of disk cache that will be allocated
per open database file specify the SQLITE_DEFAULT_CACHE_SIZE flag. Default value
is 2000 pages. For more information, see the SQLite documentation on PRAGMA
default_cache_size.

SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT
For SQLite, this pragma identifies the maximum size that the journal file is
allowed to be. Berkeley DB does not have a journal file, but it writes and uses
log files. A new log file is created when the current log file has reached the
defined maximum size. To define this maximum size for a log file, specify the
SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT flag. Default value is 10 MB for the Berkeley DB
SQL interface.

Enabling Extensions

The Berkeley DB SQL API provides extensions such as full text search and R-Tree index.
By default, these extensions are disabled. To enable an extension in the Berkeley DB SQL
interface, specify the related option as an argument to the configure script using the standard
environment variable, CPPFLAGS.

SQLITE_ENABLE_FTS3
Enable building the Berkeley DB full text search layer

SQLITE_ENABLE_RTREE
Enables the Berkeley DB R-Tree layer.

See the SQLite Documentation for more information on full text search and R-Tree.

../api_reference/C/envopen.html
http://www.sqlite.org/pragma.html#pragma_default_cache_size
http://www.sqlite.org/pragma.html#pragma_default_cache_size
http://www.sqlite.org/fts3.html
http://www.sqlite.org/rtree.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 52

Building the JDBC Driver

This section describes how to build the JDBC driver code using autoconf, which is the only
method supported and tested by the Berkeley DB team.

To build the JDBC driver, you must have Sun Java Development Kit 1.1 or above installed.

cd build_unix
 ../dist/configure --enable-jdbc --prefix=<install path>
 make install

You can test the build by entering the following commands from the build_unix/jdbc
directory:

javac -classpath ./sqlite.jar test3.java
java -Djava.library.path=./.libs -classpath ./sqlite.jar:. test3

Using the JDBC Driver

This section describes how to download, build, and run sample programs using the built JDBC
driver.

Downloading JDBC Sample Code

The download link for JDBC sample code is available on the Oracle Technology Network (OTN)
page. You can identify the link by the "JDBC programming examples from all three editions
(ZIP format)" text beside it.

Modifying Sample Code

Before running the example code, do the following:

1. Unzip the file containing the sample code to a new directory (for example, jdbc_ex).

2. Substitute jdbc:sqlite:/<db-file-name> for the generic JDBC URL that appears in the
code. That is, put jdbc:sqlite:/<db-file-name> between the quotation marks in the
line:

String url = "jdbc:mySubprotocol:myDataSource";

Note: The <db-file-name> can either be an absolute path name like "/jdbc_ex_db/
myDataSource", or a relative path-file-name like "../jdbc_ex_db/myDataSource", or
a file name, like "myDataSource", in which case the database file will be stored at the
current directory.

3. Substitute SQLite.JDBCDriver for myDriver.ClassName in the line:
Class.forName("myDriver.ClassName");

4. Optionally substitute the username and password you use for your database in the
following: "myLogin", "myPassword".

http://www.oracle.com/technetwork/java/index-139949.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 53

5. If your JDK version is above 1.5, change the variable name enum in OutputApplet.java
to some other variable name because, as of JDK release 5 enum is a keyword and can not
be used as an identifier.

Building and Running the JDBC Sample code

See Building the JDBC Driver (page 52) for instructions on building the JDBC driver.

To build and run the JDBC examples do the following:

1. Copy build_unix/jdbc/sqlite.jar and build_unix/jdbc/.libs/libsqlite_jni.so
to the jdbc_ex directory.

2. In the jdbc_ex directory, run the following commands:

 $ javac -classpath ./sqlite.jar *.java
 $ java -classpath .:sqlite.jar -Djava.library.path=. \
 <ClassName, eg. CreateCoffees>

3. After you run the CreateCoffees example, use the dbsql executable to open the
myDataSource database file and check if the table COFFEES has been successfully created
in the database.

 $ dbsql myDataSourcedbsql> .tables
 COFFEES
 dbsql> .dump
 PRAGMA foreign_keys=OFF;
 BEGIN TRANSACTION;
 CREATE TABLE COFFEES (COF_NAME varchar(32),\
 SUP_ID int, PRICE float, SALES int, TOTAL int);
 COMMIT;
 dbsql>

4. Repeat step 3 to run other examples.

Note: Some examples, such as AutoGenKeys, are not yet supported by BDB JDBC driver.
The SQLFeatureNotSupportedException is displayed for those unsupported examples.

Building the ODBC Driver

This section describes how to build the ODBC driver.

Configuring Your System

To configure your system prior to building the ODBC driver, do the following:

1. Download and install the latest unixODBC if ODBC is not already installed on your system.

http://www.unixodbc.org

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 54

2. Configure the ODBC server to work with SQLite databases. Follow these instructions from
Christian Werner.

Building the Library

To build the library, do the following:

 $ cd db-5.1.XX/build_unix
 $ CFLAGS="-fPIC" ../dist/configure --enable-sql_compat --disable-shared
 $ make
 $ cd ../lang/sql/odbc
 $ CFLAGS="-DHAVE_ERRNO_H -I../../../build_unix -I../../../src/dbinc \
 -I../sqlite/src" LDFLAGS="../../../build_unix/libdb-5.1.a" \
 ./configure --with-sqlite3=../generated
 $ make

The libsqlite3odbc.so library containing a statically linked version of Berkeley DB SQL is
now built.

NOTE: The final make command above is known to generate a warning when using GCC. The
warning states: Warning: Linking the shared library libsqlite3odbc.la against
the static library ../../build_unix/libdb-5.1.a is not portable!. It is generally
safe to ignore the warning when using the generated library.

Testing the ODBC Driver

The steps to verify that the installed driver works are as follows:

1. Alter the /etc/odbcinst.ini and ~/.odbc.ini configuration files to refer to the
libsqlite3odbc.so file built above.

2. Create a data source, and launch a data source viewer application by doing the following:

$ mkdir ~/databases
 $ cd ~/databases
 $ /path/to/Berkeley DB/build_unix/sqlite3 mytest.db
 dbsql> CREATE TABLE t1(x);
 dbsql> .quit;
 $ DataManager

The final step opens a GUI application that displays ODBC data sources on a system. You
should be able to find the mytest.db data source just created.

Building the BFILE extension

The BFILE extension allows you to store binary files outside of the database, but still operate
upon them as if they were stored within the database. To enable this extension, use the --
enable-load-extension configuration flag. For example:

$ cd <db>/build_unix
$ export DBSQL_DIR=$PWD/../install

http://www.ch-werner.de/sqliteodbc/html/index.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 55

$../dist/configure --enable-sql --enable-load-extension \
 --prefix=$DBSQL_DIR && make && make install
$ cd ../lang/sql/sqlite/ext/bfile/build
$ make && make install

BFILE extensions are only supported for Unix platforms.

Note that the extension support has two interfaces: SQL expressions and a C-functions API. By
default, the SQL expressions are built when you use --enable-load_extension. To use the C-
functions API, edit <db>/lang/sql/ext/bfile/build/Makefile and set ENABLE_BFILE_CAPI
to 1.

Once you have enabled the extension and built the library, you can run the included example:
$ cd lang/sql/sqlite/ext/bfile/build
$ export LD_LIBRARY_PATH=$PWD:$DBSQL_DIR/lib
$./bfile_example_sql # for SQL expressions interface
$./bfile_example_capi # for C-functions API

For more information on using the BFILE extension, see the Berkeley DB Getting Started with
the SQL APIs guide.

Building a small memory footprint library

There are a set of configuration options to assist you in building a small memory footprint
library. These configuration options turn off specific functionality in the Berkeley DB library,
reducing the code size. These configuration options include:
--enable-smallbuild

Equivalent to individually specifying all of the following configuration options. In
addition, when compiling building with the GNU gcc compiler, this option uses the -Os
compiler build flag instead of the default -O3.
--with-cryptography=no

Builds Berkeley DB without support for cryptography.
--disable-hash

Builds Berkeley DB without support for the Hash access method.
--disable-heap

Builds Berkeley DB without support for the Heap access method.
--disable-queue

Builds Berkeley DB without support for the Queue access method.
--disable-replication

Builds Berkeley DB without support for the database environment replication.
--disable-statistics

Builds Berkeley DB without support for the statistics interfaces.
--disable-verify

Builds Berkeley DB without support for database verification.
--enable-stripped_messages

Strips message text from the error messages issued by Berkeley DB. This can
reduce the size of the library by roughly another 22KB.

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 56

Note

--disable-cryptography and --enable-cryptography are deprecated in
the Berkeley DB 11gR2 release. Use --with-cryptography=no and --with-
cryptography=yes instead.

The following configuration options will increase the size of the Berkeley DB library
dramatically and are only useful when debugging applications:
--enable-debug

Build Berkeley DB with symbols for debugging.
--enable-debug_rop

Build Berkeley DB with read-operation logging.
--enable-debug_wop

Build Berkeley DB with write-operation logging.
--enable-diagnostic

Build Berkeley DB with run-time debugging checks.

In addition, static libraries are usually smaller than shared libraries. By default Berkeley DB
will build both shared and static libraries. To build only a static library, configure Berkeley DB
with the Configuring Berkeley DB (page 43) option.

The size of the Berkeley DB library varies depending on the compiler, machine architecture,
and configuration options. As an estimate, production Berkeley DB libraries built with GNU
gcc version 3.X compilers have footprints in the range of 400KB to 1.2MB on 32-bit x86
architectures, and in the range of 500KB to 1.4MB on 64-bit x86 architectures.

For assistance in further reducing the size of the Berkeley DB library, or in building small
memory footprint libraries on other systems, please contact Berkeley DB support.

Changing compile or load options

You can specify compiler and/or compile and load time flags by using environment variables
during Berkeley DB configuration. For example, if you want to use a specific compiler, specify
the CC environment variable before running configure:
prompt: env CC=gcc ../dist/configure

Using anything other than the native compiler will almost certainly mean that you'll want to
check the flags specified to the compiler and loader, too.

To specify debugging and optimization options for the C compiler, use the CFLAGS environment
variable:
prompt: env CFLAGS=-O2 ../dist/configure

To specify header file search directories and other miscellaneous options for the C
preprocessor and compiler, use the CPPFLAGS environment variable:
prompt: env CPPFLAGS=-I/usr/contrib/include ../dist/configure

To specify debugging and optimization options for the C++ compiler, use the CXXFLAGS
environment variable:

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 57

prompt: env CXXFLAGS=-Woverloaded-virtual ../dist/configure

To specify miscellaneous options or additional library directories for the linker, use the
LDFLAGS environment variable:
prompt: env LDFLAGS="-N32 -L/usr/local/lib" ../dist/configure

If you want to specify additional libraries, set the LIBS environment variable before running
configure. For example, the following would specify two additional libraries to load, "posix"
and "socket":
prompt: env LIBS="-lposix -lsocket" ../dist/configure

Make sure that you prepend -L to any library directory names and that you prepend -I to
any include file directory names! Also, if the arguments you specify contain blank or tab
characters, be sure to quote them as shown previously; that is with single or double quotes
around the values you are specifying for LIBS.

The env command, which is available on most systems, simply sets one or more environment
variables before running a command. If the env command is not available to you, you can set
the environment variables in your shell before running configure. For example, in sh or ksh,
you could do the following:
prompt: LIBS="-lposix -lsocket" ../dist/configure

In csh or tcsh, you could do the following:
prompt: setenv LIBS "-lposix -lsocket"
prompt: ../dist/configure

See your command shell's manual page for further information.

Installing Berkeley DB

Berkeley DB installs the following files into the following locations, with the following default
values:

Configuration Variables Default value

--prefix /usr/local/BerkeleyDB.Major.Minor

--exec_prefix $(prefix)

--bindir $(exec_prefix)/bin

--includedir $(prefix)/include

--libdir $(exec_prefix)/lib

docdir $(prefix)/docs

Files Default location

include files $(includedir)

libraries $(libdir)

utilities $(bindir)

documentation $(docdir)

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 58

With one exception, this follows the GNU Autoconf and GNU Coding Standards installation
guidelines; please see that documentation for more information and rationale.

The single exception is the Berkeley DB documentation. The Berkeley DB documentation is
provided in HTML format, not in UNIX-style man or GNU info format. For this reason, Berkeley
DB configuration does not support --infodir or --mandir. To change the default installation
location for the Berkeley DB documentation, modify the Makefile variable, docdir.

When installing Berkeley DB on filesystems shared by machines of different architectures,
please note that although Berkeley DB include files are installed based on the value
of $(prefix), rather than $(exec_prefix), the Berkeley DB include files are not always
architecture independent.

To move the entire installation tree to somewhere besides /usr/local, change the value of
prefix.

To move the binaries and libraries to a different location, change the value of exec_prefix.
The values of includedir and libdir may be similarly changed.

Any of these values except for docdir may be set as part of the configuration:

prompt: ../dist/configure --bindir=/usr/local/bin

Any of these values, including docdir, may be changed when doing the install itself:

prompt: make prefix=/usr/contrib/bdb install

The Berkeley DB installation process will attempt to create any directories that do not already
exist on the system.

Dynamic shared libraries

Warning: the following information is intended to be generic and is likely to be correct for
most UNIX systems. Unfortunately, dynamic shared libraries are not standard between UNIX
systems, so there may be information here that is not correct for your system. If you have
problems, consult your compiler and linker manual pages, or your system administrator.

The Berkeley DB dynamic shared libraries are created with the name libdb-major.minor.so,
where major is the major version number and minor is the minor version number.
Other shared libraries are created if Java and Tcl support are enabled: specifically,
libdb_java-major.minor.so and libdb_tcl-major.minor.so.

On most UNIX systems, when any shared library is created, the linker stamps it with a
"SONAME". In the case of Berkeley DB, the SONAME is libdb-major.minor.so. It is important
to realize that applications linked against a shared library remember the SONAMEs of the
libraries they use and not the underlying names in the filesystem.

When the Berkeley DB shared library is installed, links are created in the install lib directory
so that libdb-major.minor.so, libdb-major.so, and libdb.so all refer to the same library. This
library will have an SONAME of libdb-major.minor.so.

Any previous versions of the Berkeley DB libraries that are present in the install directory
(such as libdb-2.7.so or libdb-2.so) are left unchanged. (Removing or moving old shared

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 59

libraries is one drastic way to identify applications that have been linked against those vintage
releases.)

Once you have installed the Berkeley DB libraries, unless they are installed in a directory
where the linker normally looks for shared libraries, you will need to specify the installation
directory as part of compiling and linking against Berkeley DB. Consult your system manuals or
system administrator for ways to specify a shared library directory when compiling and linking
applications with the Berkeley DB libraries. Many systems support environment variables (for
example, LD_LIBRARY_PATH or LD_RUN_PATH), or system configuration files (for example, /
etc/ld.so.conf) for this purpose.

Warning: some UNIX installations may have an already existing /usr/lib/libdb.so, and this
library may be an incompatible version of Berkeley DB.

We recommend that applications link against libdb.so (for example, using -ldb). Even though
the linker uses the file named libdb.so, the executable file for the application remembers the
library's SONAME (libdb-major.minor.so). This has the effect of marking the applications with
the versions they need at link time. Because applications locate their needed SONAMEs when
they are executed, all previously linked applications will continue to run using the library they
were linked with, even when a new version of Berkeley DB is installed and the file libdb.so is
replaced with a new version.

Applications that know they are using features specific to a particular Berkeley DB release can
be linked to that release. For example, an application wanting to link to Berkeley DB major
release "3" can link using -ldb-3, and applications that know about a particular minor release
number can specify both major and minor release numbers; for example, -ldb-3.5.

If you want to link with Berkeley DB before performing library installation, the "make"
command will have created a shared library object in the .libs subdirectory of the build
directory, such as build_unix/.libs/libdb-major.minor.so. If you want to link a file
against this library, with, for example, a major number of "3" and a minor number of "5", you
should be able to do something like the following:

cc -L BUILD_DIRECTORY/.libs -o testprog testprog.o -ldb-3.5
env LD_LIBRARY_PATH="BUILD_DIRECTORY/.libs:$LD_LIBRARY_PATH" ./testprog

where BUILD_DIRECTORY is the full directory path to the directory where you built Berkeley
DB.

The libtool program (which is configured in the build directory) can be used to set the shared
library path and run a program. For example, the following runs the gdb debugger on the
db_dump utility after setting the appropriate paths:

libtool gdb db_dump

Libtool may not know what to do with arbitrary commands (it is hardwired to recognize
"gdb" and some other commands). If it complains the mode argument will usually resolve the
problem:

libtool --mode=execute my_debugger db_dump

On most systems, using libtool in this way is exactly equivalent to setting the
LD_LIBRARY_PATH environment variable and then executing the program. On other systems,

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 60

using libtool has the virtue of knowing about any other details on systems that don't behave in
this typical way.

Running the test suite under UNIX

The Berkeley DB test suite is built if you specify --enable-test as an argument when
configuring Berkeley DB. The test suite also requires that you configure and build the Tcl
interface to the library.

Before running the tests for the first time, you may need to edit the include.tcl file in your
build directory. The Berkeley DB configuration assumes that you intend to use the version of
the tclsh utility included in the Tcl installation with which Berkeley DB was configured to run
the test suite, and further assumes that the test suite will be run with the libraries prebuilt in
the Berkeley DB build directory. If either of these assumptions are incorrect, you will need to
edit the include.tcl file and change the following line to correctly specify the full path to
the version of tclsh with which you are going to run the test suite:

set tclsh_path ...

You may also need to change the following line to correctly specify the path from the
directory where you are running the test suite to the location of the Berkeley DB Tcl library
you built:

set test_path ...

It may not be necessary that this be a full path if you have configured your system's shared
library mechanisms to search the directory where you built or installed the Tcl library.

All Berkeley DB tests are run from within tclsh. After starting tclsh, you must source the file
test.tcl in the test directory. For example, if you built in the build_unix directory of the
distribution, this would be done using the following command:

% source ../test/tcl/test.tcl

If no errors occur, you should get a "%" prompt.

You are now ready to run tests in the test suite; see Running the test suite for more
information.

Building SQL Test Suite on Unix

The Berkeley DB SQL interface test suite is built if you specify --enable-test and --enable-sql
as arguments, when configuring Berkeley DB. The test suite also requires that you build the
Berkeley DB Tcl API.

../dist/configure --enable-sql --enable-test --with-tcl=/usr/lib

This builds the testfixture project in ../build_unix/sql.

To enable extensions like full text search layer and R-Tree layer in the SQL test suite,
configure with --enable-amalgamation.

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 61

Architecture independent FAQ

1. I have gcc installed, but configure fails to find it.

Berkeley DB defaults to using the native C compiler if none is specified. That is usually
"cc", but some platforms require a different compiler to build multithreaded code. To
configure Berkeley DB to build with gcc, run configure as follows:

env CC=gcc ../dist/configure ...

2. When compiling with gcc, I get unreferenced symbols; for example the following:

symbol __muldi3: referenced symbol not found
symbol __cmpdi2: referenced symbol not found

Berkeley DB often uses 64-bit integral types on systems supporting large files, and gcc
performs operations on those types by calling library functions. These unreferenced
symbol errors are usually caused by linking an application by calling "ld" rather than by
calling "gcc": gcc will link in libgcc.a and will resolve the symbols. If that does not help,
another possible workaround is to reconfigure Berkeley DB using the --disable-largefile
configuration option and then rebuild.

3. My C++ program traps during a failure in a DB call on my gcc-based system.

We believe there are some severe bugs in the implementation of exceptions for some
gcc compilers. Exceptions require some interaction between compiler, assembler, and
runtime libraries. We're not sure exactly what is at fault, but one failing combination is
gcc 2.7.2.3 running on SuSE Linux 6.0. The problem on this system can be seen with a
rather simple test case of an exception thrown from a shared library and caught in the
main program.

A variation of this problem seems to occur on AIX, although we believe it does not
necessarily involve shared libraries on that platform.

If you see a trap that occurs when an exception might be thrown by the Berkeley DB
runtime, we suggest that you use static libraries instead of shared libraries. See the
documentation for configuration. If this doesn't work and you have a choice of compilers,
try using a more recent gcc- or a non-gcc based compiler to build Berkeley DB.

Finally, you can disable the use of exceptions in the C++ runtime for Berkeley DB by using
the DB_CXX_NO_EXCEPTIONS flag with the DbEnv or Db constructors. When this flag is on,
all C++ methods fail by returning an error code rather than throwing an exception.

4. I get unexpected results and database corruption when running threaded programs.

I get error messages that mutex (for example, pthread_mutex_XXX or mutex_XXX)
functions are undefined when linking applications with Berkeley DB.

On some architectures, the Berkeley DB library uses the ISO POSIX standard pthreads
and UNIX International (UI) threads interfaces for underlying mutex support; Solaris is an
example. You can specify compilers or compiler flags, or link with the appropriate thread
library when loading your application to resolve the undefined references:

../api_reference/CXX/envcreate.html#env_DB_CXX_NO_EXCEPTIONS
../api_reference/CXX/env.html
../api_reference/CXX/db.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 62

cc ... -lpthread ...
cc ... -lthread ...
xlc_r ...
cc ... -mt ...

See the appropriate architecture-specific Reference Guide pages for more information.

On systems where more than one type of mutex is available, it may be necessary for
applications to use the same threads package from which Berkeley DB draws its mutexes.
For example, if Berkeley DB was built to use the POSIX pthreads mutex calls for mutex
support, the application may need to be written to use the POSIX pthreads interfaces
for its threading model. This is only conjecture at this time, and although we know of no
systems that actually have this requirement, it's not unlikely that some exist.

In a few cases, Berkeley DB can be configured to use specific underlying mutex interfaces.
You can use the --enable-posixmutexes and --enable-uimutexes configuration options to
specify the POSIX and Unix International (UI) threads packages. This should not, however,
be necessary in most cases.

In some cases, it is vitally important to make sure that you load the correct library.
For example, on Solaris systems, there are POSIX pthread interfaces in the C library, so
applications can link Berkeley DB using only C library and not see any undefined symbols.
However, the C library POSIX pthread mutex support is insufficient for Berkeley DB, and
Berkeley DB cannot detect that fact. Similar errors can arise when applications (for
example, tclsh) use dlopen to dynamically load Berkeley DB as a library.

If you are seeing problems in this area after you confirm that you're linking with the
correct libraries, there are two other things you can try. First, if your platform supports
interlibrary dependencies, we recommend that you change the Berkeley DB Makefile to
specify the appropriate threads library when creating the Berkeley DB shared library, as
an interlibrary dependency. Second, if your application is using dlopen to dynamically
load Berkeley DB, specify the appropriate thread library on the link line when you load
the application itself.

5. I get core dumps when running programs that fork children.

Berkeley DB handles should not be shared across process forks, each forked child should
acquire its own Berkeley DB handles.

6. I get reports of uninitialized memory reads and writes when running software analysis
tools (for example, Rational Software Corp.'s Purify tool).

For performance reasons, Berkeley DB does not write the unused portions of database
pages or fill in unused structure fields. To turn off these errors when running software
analysis tools, build with the --enable-umrw configuration option.

7. Berkeley DB programs or the test suite fail unexpectedly.

The Berkeley DB architecture does not support placing the shared memory regions on
remote filesystems -- for example, the Network File System (NFS) or the Andrew File
System (AFS). For this reason, the shared memory regions (normally located in the

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 63

database home directory) must reside on a local filesystem. See Shared memory region
for more information.

With respect to running the test suite, always check to make sure that TESTDIR is not on a
remote mounted filesystem.

8. The db_dump utility fails to build.

The db_dump185 utility is the utility that supports the conversion of Berkeley DB 1.85 and
earlier databases to current database formats. If the build errors look something like the
following, it means the db.h include file being loaded is not a Berkeley DB 1.85 version
include file:
db_dump185.c: In function `main':
db_dump185.c:210: warning: assignment makes pointer from integer
without a cast
db_dump185.c:212: warning: assignment makes pointer from integer
without a cast
db_dump185.c:227: structure has no member named `seq'
db_dump185.c:227: `R_NEXT' undeclared (first use in this function)

If the build errors look something like the following, it means that the Berkeley DB 1.85
code was not found in the standard libraries:
cc -o db_dump185 db_dump185.o
ld:
Unresolved:
dbopen

To build the db_dump185 utility, the Berkeley DB version 1.85 code must already been
built and available on the system. If the Berkeley DB 1.85 header file is not found in a
standard place, or if the library is not part of the standard libraries used for loading, you
will need to edit your Makefile, and change the following lines:
DB185INC=
DB185LIB=

So that the system Berkeley DB 1.85 header file and library are found; for example:
DB185INC=/usr/local/include
DB185LIB=-ldb185

AIX

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on AIX. If
you are compiling a threaded application, you must compile with the _THREAD_SAFE flag
and load with specific libraries; for example, "-lc_r". Specifying the compiler name with a
trailing "_r" usually performs the right actions for the system.
xlc_r ...
cc -D_THREAD_SAFE -lc_r ...

../programmer_reference/env_region.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 64

The Berkeley DB library will automatically build with the correct options.

2. I can't run using the DB_SYSTEM_MEM option to DB_ENV->open().

AIX 4.1 allows applications to map only 10 system shared memory segments. In AIX 4.3,
this has been raised to 256K segments, but only if you set the environment variable
"export EXTSHM=ON".

3. On AIX 4.3.2 (or before) I see duplicate symbol warnings when building the C++ shared
library and when linking applications.

We are aware of some duplicate symbol warnings with this platform, but they do not
appear to affect the correct operation of applications.

4. On AIX 4.3.3 I see undefined symbols for DbEnv::set_error_stream,
Db::set_error_stream or DbEnv::verify when linking C++ applications. (These
undefined symbols also appear when building the Berkeley DB C++ example
applications).

By default, Berkeley DB is built with _LARGE_FILES set to 1 to support the creation of
"large" database files. However, this also affects how standard classes, like iostream, are
named internally. When building your application, use a "-D_LARGE_FILES=1" compilation
option, or insert "#define _LARGE_FILES 1" before any #include statements.

5. I can't create database files larger than 1GB on AIX.

If you're running on AIX 4.1 or earlier, try changing the source code for os/os_open.c to
always specify the O_LARGEFILE flag to the open(2) system call, and recompile Berkeley
DB from scratch.

Also, the documentation for the IBM Visual Age compiler states that it does not not
support the 64-bit filesystem APIs necessary for creating large files; the ibmcxx product
must be used instead. We have not heard whether the GNU gcc compiler supports the 64-
bit APIs or not.

Finally, to create large files under AIX, the filesystem has to be configured to support
large files and the system wide user hard-limit for file sizes has to be greater than 1GB.

6. I see errors about "open64" when building Berkeley DB applications.

System include files (most commonly fcntl.h) in some releases of AIX and Solaris redefine
"open" when large-file support is enabled for applications. This causes problems when
compiling applications because "open" is a method in the Berkeley DB APIs. To work
around this problem:

a. Avoid including the problematical system include files in source code files which also
include Berkeley DB include files and call into the Berkeley DB API.

b. Before building Berkeley DB, modify the generated include file db.h to itself include
the problematical system include files.

../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 65

c. Turn off Berkeley DB large-file support by specifying the --disable-largefile
configuration option and rebuilding.

7. I see the error "Redeclaration of lseek64" when building Berkeley DB with the --
enable-sql and --enable-test options.

In some releases of AIX, the system include files (most commonly unistd.h) redefine
lseek to lseek64 when large-file support is enabled even though lseek may have
already been defined when the _LARGE_FILE_API macro is on. To work around this
problem, do either one of the following:

a. Disable large-file support in Berkeley DB by specifying the --disable-largefile
configuration option and rebuilding.

b. Edit db.h manually after running the configure command, and remove the line that
includes unistd.h.

FreeBSD

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on
FreeBSD. If you are compiling a threaded application, you must compile with the
_THREAD_SAFE and -pthread flags:

cc -D_THREAD_SAFE -pthread ...

The Berkeley DB library will automatically build with the correct options.

2. I see fsync and close system call failures when accessing databases or log files on NFS-
mounted filesystems.

Some FreeBSD releases are known to return ENOLCK from fsync and close calls on NFS-
mounted filesystems, even though the call has succeeded. The Berkeley DB code should
be modified to ignore ENOLCK errors, or no Berkeley DB files should be placed on NFS-
mounted filesystems on these systems.

Apple iOS (iPhone OS)

Building Berkeley DB in Apple iOS (known as iPhone OS previously) is the same as building for a
conventional UNIX platform. This section lists the commands for building Berkeley DB in both
the iPhone simulator (a software simulator included in the iPhone SDK that you can use to test
your application without using the iPhone/iPod Touch) and the iPhone device.

Prior to building BDB in an iPhone simulator/iPhone device, set the required environment
variables for iOS (iPhone OS).

The steps to build BDB in an iPhone simulator is as follows:

export LDFLAGS="-L$SDKROOT/usr/lib/"
export CFLAGS="-arch i386 -pipe -no-cpp-precomp --sysroot=$SDKROOT"

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 66

export CXXFLAGS="-arch i386 -pipe -no-cpp-precomp --sysroot=$SDKROOT"
cd $BDB_HOME/build_unix
../dist/configure --host=i386-apple-darwin\
 --prefix=$SDKROOT ...
make

The steps to build BDB in an iPhone device is as follows:

export LDFLAGS="-arch armv6 -pipe -Os -gdwarf-2\
 -no-cpp-precomp -mthumb -isysroot $SDKROOT "
export CFLAGS="-arch armv6 -pipe -Os -gdwarf-2\
 -no-cpp-precomp -mthumb -isysroot $SDKROOT "
export CXXFLAGS="-arch armv6 -pipe -Os -gdwarf-2\
 -no-cpp-precomp -mthumb -isysroot $SDKROOT "
cd $BDB_HOME/build_unix
../dist/configure --host=arm-apple-darwin9\
 --prefix=$SDKROOT ...
make

Both set of commands create the BDB dynamic library - libdb-5.1.dylib. To build the static
library, libdb-5.1.a, add the --enable-shared=no option while configuring.

IRIX

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on IRIX. If
you are compiling a threaded application, you must compile with the _SGI_MP_SOURCE
flag:

cc -D_SGI_MP_SOURCE ...

The Berkeley DB library will automatically build with the correct options.

Linux

1. I can't compile and run multithreaded applications.

Special compile-time flags are required when compiling threaded applications on Linux. If
you are compiling a threaded application, you must compile with the _REENTRANT flag:

cc -D_REENTRANT ...

The Berkeley DB library will automatically build with the correct options.

2. I see database corruption when accessing databases.

Some Linux filesystems do not support POSIX filesystem semantics. Specifically, ext2
and early releases of ReiserFS, and ext3 in some configurations, do not support "ordered
data mode" and may insert random data into database or log files when systems crash.
Berkeley DB files should not be placed on a filesystem that does not support, or is not
configured to support, POSIX semantics.

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 67

3. What scheduler should I use?

In some Linux kernels you can select schedulers, and the default is the "anticipatory"
scheduler. We recommend not using the "anticipatory" scheduler for transaction
processing workloads.

Mac OS X

1. When trying to link multiple Berkeley DB language interfaces (for example, Tcl, C++,
Java, Python) into a single process, I get "multiple definitions" errors from dyld.

To fix this problem, set the environment variable MACOSX_DEPLOYMENT_TARGET to 10.3
(or your current version of OS X), and reconfigure and rebuild Berkeley DB from scratch.
See the OS X ld(1) and dyld(1) man pages for information about how OS X handles symbol
namespaces, as well as undefined and multiply-defined symbols.

2. When trying to use system-backed shared memory on OS X I see failures about "too
many open files".

The default number of shared memory segments on OS X is too low. To fix this problem,
edit the file /etc/rc, changing the kern.sysv.shmmax and kern.sysv.shmseg values as
follows:

*** /etc/rc.orig Fri Dec 19 09:34:09 2003
--- /etc/rc Fri Dec 19 09:33:53 2003

*** 84,93 ****
 # System tuning
 sysctl -w kern.maxvnodes=$(echo $(sysctl -n hw.physmem) '33554432 /
512 * 1024 +p'|dc)
! sysctl -w kern.sysv.shmmax=4194304
 sysctl -w kern.sysv.shmmin=1
 sysctl -w kern.sysv.shmmni=32
! sysctl -w kern.sysv.shmseg=8
 sysctl -w kern.sysv.shmall=1024
 if [-f /etc/sysctl-macosxserver.conf]; then
 awk '{ if (!-1 && -1) print $1 }' <
/etc/sysctl-macosxserver.conf | while read
--- 84,93 ----
 # System tuning
 sysctl -w kern.maxvnodes=$(echo $(sysctl -n hw.physmem) '33554432 /
512 * 1024 +p'|dc)
! sysctl -w kern.sysv.shmmax=134217728
 sysctl -w kern.sysv.shmmin=1
 sysctl -w kern.sysv.shmmni=32
! sysctl -w kern.sysv.shmseg=32
 sysctl -w kern.sysv.shmall=1024
 if [-f /etc/sysctl-macosxserver.conf]; then
 awk '{ if (!-1 && -1) print $1 }' <
 /etc/sysctl-macosxserver.conf | while read

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 68

and then reboot the system.

QNX

1. To what versions of QNX has DB been ported?

Berkeley DB has been ported to the QNX Neutrino technology which is commonly referred
to as QNX RTP (Real-Time Platform). Berkeley DB has not been ported to earlier versions
of QNX, such as QNX 4.25.

2. Building Berkeley DB shared libraries fails.

The /bin/sh utility distributed with some QNX releases drops core when running the
GNU libtool script (which is used to build Berkeley DB shared libraries). There are two
workarounds for this problem: First, only build static libraries. You can disable building
shared libraries by specifying the configuration flag when configuring Berkeley DB.

Second, build Berkeley DB using an alternate shell. QNX distributions include an
accessories disk with additional tools. One of the included tools is the GNU bash shell,
which is able to run the libtool script. To build Berkeley DB using an alternate shell, move
/bin/sh aside, link or copy the alternate shell into that location, configure, build and
install Berkeley DB, and then replace the original shell utility.

3. Are there any QNX filesystem issues?

Berkeley DB generates temporary files for use in transactionally protected file system
operations. Due to the filename length limit of 48 characters in the QNX filesystem,
applications that are using transactions should specify a database name that is at most 43
characters.

4. What are the implications of QNX's requirement to use shm_open(2) in order to use
mmap(2)?

QNX requires that files mapped with mmap(2) be opened using shm_open(2). There are
other places in addition to the environment shared memory regions, where Berkeley DB
tries to memory map files if it can.

The memory pool subsystem normally attempts to use mmap(2) even when using private
memory, as indicated by the DB_PRIVATE flag to DB_ENV->open(). In the case of QNX, if an
application is using private memory, Berkeley DB will not attempt to map the memory and
will instead use the local cache.

5. What are the implications of QNX's mutex implementation using microkernel
resources?

On QNX, the primitives implementing mutexes consume system resources. Therefore,
if an application unexpectedly fails, those resources could leak. Berkeley DB solves this
problem by always allocating mutexes in the persistent shared memory regions. Then, if
an application fails, running recovery or explicitly removing the database environment by
calling the DB_ENV->remove() method will allow Berkeley DB to release those previously

../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html
../api_reference/C/envremove.html

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 69

held mutex resources. If an application specifies the DB_PRIVATE flag (choosing not to use
persistent shared memory), and then fails, mutexes allocated in that private memory may
leak their underlying system resources. Therefore, the DB_PRIVATE flag should be used
with caution on QNX.

6. The make clean command fails to execute when building the Berkeley DB SQL
interface.

Remove the build directory manually to clean up and proceed.

SCO

1. If I build with gcc, programs such as db_dump and db_stat core dump immediately
when invoked.

We suspect gcc or the runtime loader may have a bug, but we haven't tracked it down. If
you want to use gcc, we suggest building static libraries.

Solaris

1. I can't compile and run multithreaded applications.

Special compile-time flags and additional libraries are required when compiling threaded
applications on Solaris. If you are compiling a threaded application, you must compile
with the D_REENTRANT flag and link with the libpthread.a or libthread.a libraries:

cc -mt ...
cc -D_REENTRANT ... -lthread
cc -D_REENTRANT ... -lpthread

The Berkeley DB library will automatically build with the correct options.

2. I've installed gcc on my Solaris system, but configuration fails because the compiler
doesn't work.

On some versions of Solaris, there is a cc executable in the user's path, but all it does is
display an error message and fail:

% which cc
/usr/ucb/cc
% cc
/usr/ucb/cc: language optional software package not installed

Because Berkeley DB always uses the native compiler in preference to gcc, this is a fatal
error. If the error message you are seeing is the following, then this may be the problem:

checking whether the C compiler (cc -O) works... no
configure: error: installation or configuration problem: C compiler
cannot create executables.

The simplest workaround is to set your CC environment variable to the system compiler
and reconfigure; for example:

../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_PRIVATE

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 70

env CC=gcc ../dist/configure

If you are using the --configure-cxx option, you may also want to specify a C++ compiler,
for example the following:

env CC=gcc CCC=g++ ../dist/configure

3. I see the error "libc internal error: _rmutex_unlock: rmutex not held", followed by a
core dump when running threaded or JAVA programs.

This is a known bug in Solaris 2.5 and it is fixed by Sun patch 103187-25.

4. I see error reports of nonexistent files, corrupted metadata pages and core dumps.

Solaris 7 contains a bug in the threading libraries (-lpthread, -lthread), which causes the
wrong version of the pwrite routine to be linked into the application if the thread library
is linked in after the C library. The result will be that the pwrite function is called rather
than the pwrite64. To work around the problem, use an explicit link order when creating
your application.

Sun Microsystems is tracking this problem with Bug Id's 4291109 and 4267207, and patch
106980-09 to Solaris 7 fixes the problem:

Bug Id: 4291109
Duplicate of: 4267207
Category: library
Subcategory: libthread
State: closed
Synopsis: pwrite64 mapped to pwrite
Description:
When libthread is linked after libc, there is a table of functions in
libthread that gets "wired into" libc via _libc_threads_interface().
The table in libthread is wrong in both Solaris 7 and on28_35 for the
TI_PWRITE64 row (see near the end).

5. I see corrupted databases when doing hot backups or creating a hot failover archive.

The Solaris cp utility is implemented using the mmap system call, and so writes are
not blocked when it reads database pages. See Berkeley DB recoverability for more
information.

6. Performance is slow and the application is doing a lot of I/O to the disk on which the
database environment's files are stored.

By default, Solaris periodically flushes dirty blocks from memory-mapped files to the
backing filesystem. This includes the Berkeley DB database environment's shared memory
regions and can affect Berkeley DB performance. Workarounds include creating the
shared regions in system shared memory (DB_SYSTEM_MEM) or application private memory
(DB_PRIVATE), or configuring Solaris to not flush memory-mapped pages. For more
information, see the "Solaris Tunable Parameters Reference Manual: fsflush and Related
Tunables".

../programmer_reference/transapp_reclimit.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE

Library Version 11.2.5.2 Building Berkeley DB for UNIX/POSIX

6/10/2011 DB Installation Guide Page 71

7. I see errors about "open64" when building Berkeley DB applications.

System include files (most commonly fcntl.h) in some releases of AIX and Solaris redefine
"open" when large-file support is enabled for applications. This causes problems when
compiling applications because "open" is a method in the Berkeley DB APIs. To work
around this problem:

a. Avoid including the problematical system include files in source code files which also
include Berkeley DB include files and call into the Berkeley DB API.

b. Before building Berkeley DB, modify the generated include file db.h to itself include
the problematical system include files.

c. Turn off Berkeley DB large-file support by specifying the --disable-largefile
configuration option and rebuilding.

SunOS

1. I can't specify the DB_SYSTEM_MEM flag to DB_ENV->open().

The shmget(2) interfaces are not used on SunOS releases prior to 5.0, even though they
apparently exist, because the distributed include files did not allow them to be compiled.
For this reason, it will not be possible to specify the DB_SYSTEM_MEM flag to those
versions of SunOS.

../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM

6/10/2011 DB Installation Guide Page 72

Chapter 8. Building Berkeley DB for VxWorks

Building for VxWorks 5.4 and 5.5

The build_vxworks directory in the Berkeley DB distribution contains a workspace and project
files for Tornado 2.0/VxWorks 5.4 and Tornado 2.2/VxWorks 5.5.

File Description

BerkeleyDB20.wsp Berkeley DB Workspace file for Tornado 2.0

BerkeleyDB20.wpj Berkeley DB Project file for Tornado 2.0

BerkeleyDB22.wsp Berkeley DB Workspace file for Tornado 2.2

BerkeleyDB22.wpj Berkeley DB Project file for Tornado 2.2

dbdemo/dbdemo20.wpj VxWorks notes (page 74) project file for
Tornado 2.0

dbdemo/dbdemo22.wpj VxWorks notes (page 74) project file for
Tornado 2.2

db_*/*20.wpj VxWorks notes (page 74) project files for
Tornado 2.0

db_*/*22.wpj VxWorks notes (page 74) project files for
Tornado 2.2

Building With Tornado 2.0 or Tornado 2.2

Open the workspace BerkeleyDB20.wsp or BerkeleyDB22.wsp. The list of projects in this
workspace will be shown. These projects were created for the x86 BSP for VxWorks.

The remainder of this document assumes that you already have a VxWorks target and a target
server, both up and running. It also assumes that your VxWorks image is configured properly
for your needs. It also assumes that you have an acceptable file system already available. See
VxWorks FAQ (page 75) for more information about file system requirements. See VxWorks
notes (page 74) for more information about building a small footprint version of Berkeley
DB.

First, you need to set the include directories. To do this, go to the Builds tab for the
workspace. Open up Berkeley DB Builds. You will see several different builds, containing
different configurations. All of the projects in the Berkeley DB workspace are created to be
downloadable applications.

Build Description

PENTIUM_debug x86 BSP with debugging

PENTIUM_release x86 BSP no debugging

You have to add a new build specification if you use a different BSP, want to add a build for
the simulator or want to customize further. For instance, if you have the Power PC (PPC) BSP,

Library Version 11.2.5.2 Building Berkeley DB for VxWorks

6/10/2011 DB Installation Guide Page 73

you need to add a new build for the PPC tool chain. To do so, select the "Builds" tab, select
the Berkeley DB project name, and right-click. Choose the New Build... selection and create
the new build target. For your new build target, you need to decide whether it should be built
for debugging. See the properties of the Pentium builds for ways to configure for each case.
After you add this build you, you still need to configure correctly the include directories, as
described in the sections that follow.

If you are running with a different BSP, you should remove the build specifications that do
not apply to your hardware. We recommend that you do this after you configure any new
build specifications first. The Tornado tools will get confused if you have a PENTIUMgnu build
specification for a PPC BSP, for instance.

Select the build you are interested in, and right-click. Choose the Properties... selection. At
this point, a tabbed dialog should appear. In this new window, choose the C/C++ compiler
tab. In the edit box, you need to modify the full pathname of the build_vxworks subdirectory
of Berkeley DB, followed by the full pathname of Berkeley DB. Then, click OK. Note that
some versions of Tornado (such as the version for Windows) do not correctly handle relative
pathnames in the include paths.

To build and download the Berkeley DB downloadable application for the first time requires
several steps:

1. Select the build you are interested in, and right-click. Choose the Set... as Active Build
selection.

2. Select the build you are interested in, and right-click. Choose the Dependencies...
selection. Run dependencies over all files in the Berkeley DB project.

3. Select the build you are interested in, and right-click. Choose the Rebuild All (Berkeley
DB.out) selection.

4. Select the Berkeley DB project name, and right-click. Choose the Download "Berkeley
DB.out" selection.

Note that the output file listed about will really be listed as BerkeleyDB20.out or
BerkeleyDB22.out depending on which version of Tornado you are running. You need to repeat
this procedure for all builds you are interested in building, as well as for all of the utility
project builds you want to run.

Building for VxWorks 6.x

Building With Wind River Workbench using the Makefile

In VxWorks6.x, developers use Wind River Workbench for software development. Two
makefiles are provided in the db/build_vxworks directory. Use them to build Berkeley DB or
Berkeley DB small build, using the build chain provided with Wind River Workbench.

We assume that you have installed all necessary VxWorks6.x software including the Wind River
Workbench, and that you know how to use it.

Use the following steps to build Berkeley DB:

Library Version 11.2.5.2 Building Berkeley DB for VxWorks

6/10/2011 DB Installation Guide Page 74

1. Setting variables in the Makefile. Open the Makefile and modify the BDB_ROOT variable to
the path of your Berkeley DB source tree's root directory. You may need to set other variables
when you build on different platforms, such as BUILD_SPEC, DEBUG_MODE, PROJECT_TYPE,
CC_ARCH_SPEC, VXVER, build tool flags, and BUILD_SPEC specific settings. Please refer to the
documentation of the Workbench for a complete list of available values of each variable. You
can also find out the list of values by creating a project using the Workbench. Each variable's
available values will be listed in the GUI window which assigns values to that variable.

2. Make sure "make" can be found. Basically you need to set the make utility's path to
environment variables.

3. Start up the wrenv utility of the Wind River Workbench.

4. In the command console, move to the $(BDB_ROOT)/build_vxworks/ directory, rename the
target makefile (Makefile.6x or Makefile.6x.small) to "Makefile", and run "make". The make
process will start and create the directory "bdbvxw". It will contain all intermediate object
files as well as the final built image "bdbvxw.out".

5. After the "bdbvxw.out" image is built, you can use command tools or the Workbench IDE to
download and run it.

6. Test and Verification. There is a dbdemo and test_micro, which you can run to verify
whether everything works fine.

VxWorks notes

Berkeley DB currently disallows the DB_TRUNCATE flag to the DB->open() method on VxWorks
because the operations this flag represents are not fully supported under VxWorks.

The DB->sync() method is implemented using an ioctl call into the file system driver with the
FIOSYNC command. Most, but not all file system drivers support this call. Berkeley DB requires
the use of a file system that supports FIOSYNC.

Building and Running the Demo Program

The demo program should be built in a manner very similar to building Berkeley DB. If you
want different or additional BSP build specifications you should add them by following the
directions indicated in Building for VxWorks 5.4 and 5.5 (page 72).

The demo program can be downloaded and run by calling the entry function dbdemo with the
pathname of a database to use. The demo program will ask for some input keys. It creates
a database and adds those keys into the database, using the reverse of the key as the data
value. When complete you can either enter EOF (control-D) or quit and the demo program will
display all of the key/data items in the database.

Building and Running the Utility Programs

The Berkeley DB utilities can be downloaded and run by calling the function equivalent to
the utility's name. The utility functions take a string containing all the supported arguments.
The program will then decompose that string into a traditional argc/argv used internally.
For example, to execute db_stat utility on a database within an environment you would

../api_reference/C/dbopen.html#open_DB_TRUNCATE
../api_reference/C/dbopen.html
../api_reference/C/dbsync.html
../api_reference/C/db_stat.html

Library Version 11.2.5.2 Building Berkeley DB for VxWorks

6/10/2011 DB Installation Guide Page 75

execute the following from the windsh prompt. Obviously you would change the pathname and
database name to reflect your system.
> db_stat "-h /tmp/myenvhome -d mydatabase.db"

VxWorks 5.4/5.5: shared memory

The memory on VxWorks is always resident and fully shared among all tasks running on the
target. For this reason, the DB_LOCKDOWN flag has no effect and the DB_SYSTEM_MEM
flag is implied for any application that does not specify the DB_PRIVATE flag. Note that the
DB_SYSTEM_MEM flag requires all applications use a segment ID to ensure the applications do
not overwrite each other's database environments: see the DB_ENV->set_shm_key() method
for more information.

VxWorks 5.4/5.5: building a small memory footprint library

A default small footprint build is provided. This default provides equivalent to the --enable-
smallbuild configuration option described in Building a small memory footprint library (page
55). In order to build the small footprint, you should move db_config.h aside and copy
db_config_small.h to db_config.h. Then open up the appropriate small workspace file via
Tornado and build as usual.

Support for Replication Manager

The Berkeley DB Replication Manager component is available on Vxworks 6.x because it
provides support for TCP/IP sockets and POSIX 1003.1 style networking and threads. You
must build Berkley DB for Vxworks using the command line. Prior to building Berkeley DB,
ensure you set appropriate values for the variables specified in Step 1 of Building for VxWorks
6.x (page 73). To use Berkeley DB Replication Manager, netLib and ioLib must be present
in the Vxworks image.

To use the Berkeley DB on Vxworks 5.x, make the following manual changes.

• Undefine the HAVE_GETADDRINFO, HAVE_REPLICATION_THREADS, and HAVE_SYS_SOCKET_H
macros in the Berkeley DB include files db_config.h and db_config_small.h.

• Remove this line: #include <pthread.h>, present in the Berkeley DB include file db.h.

VxWorks FAQ

• I get the error "Workspace open failed: This project workspace is an older format.",
when trying to open the supplied workspace on Tornado 2.0 under Windows.

This error will occur if the files were extracted in a manner that adds a CR/LF to lines
in the file. Make sure that you download the Berkeley DB ".zip" version of the Berkeley
DB distribution, and, when extracting the Berkeley DB sources, that you use an unzipper
program that will not do any conversion.

• I sometimes see spurious output errors about temporary directories.

These messages are coming from the stat(2) function call in VxWorks. Unlike other
systems, there may not be a well known temporary directory on the target. Therefore, we

../api_reference/C/envopen.html#envopen_DB_LOCKDOWN
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envset_shm_key.html

Library Version 11.2.5.2 Building Berkeley DB for VxWorks

6/10/2011 DB Installation Guide Page 76

highly recommend that all applications use DB_ENV->set_tmp_dir() to specify a temporary
directory for the application.

• How can I build Berkeley DB without using Tornado?

The simplest way to build Berkeley DB without using Tornado is to configure Berkeley DB on
a UNIX system, and then use the Makefile and include files generated by that configuration
as the starting point for your build. The Makefile and include files are created during
configuration, in the current directory, based on your configuration decisions (for example,
debugging vs. non-debugging builds), so you'll need to configure the system for the way you
want Berkeley DB to be built.

Additionally, you'll need to account for the slight difference between the set of source
files used in a UNIX build and the set used in a VxWorks build. You can use the following
command to create a list of the Berkeley DB VxWorks files. The commands assume you are
in the build_vxworks directory of the Berkeley DB distribution:

% cat > /tmp/files.sed
s/<BEGIN> FILE_//
s/_objects//
^D
% grep FILE_ BerkeleyDB.wpj | grep _objects | sed -f /tmp/files.sed \
> /tmp/db.files

You will then have a template Makefile and include files, and a list of VxWorks-specific
source files. You will need to convert this Makefile and list of files into a form that is
acceptable to your specific build environment.

• Does Berkeley DB use floating point registers?

Yes, there are a few places in Berkeley DB where floating point computations are
performed. As a result, all applications that call taskSpawn should specify the VX_FP_TASK
option.

• Can I run the test suite under VxWorks?

The test suite requires the Berkeley DB Tcl library. In turn, this library requires Tcl 8.5 or
greater. In order to run the test suite, you would need to port Tcl 8.5 or greater to VxWorks.
The Tcl shell included in windsh is not adequate for two reasons. First, it is based on Tcl 8.0.
Second, it does not include the necessary Tcl components for adding a Tcl extension.

• Are all Berkeley DB features available for VxWorks?

All Berkeley DB features are available for VxWorks with the exception of the DB_TRUNCATE
flag for DB->open(). The underlying mechanism needed for that flag is not available
consistently across different file systems for VxWorks.

• Are there any constraints using particular filesystem drivers?

There are constraints using the dosFs filesystems with Berkeley DB. Namely, you must
configure your dosFs filesystem to support long filenames if you are using Berkeley DB
logging in your application. The VxWorks' dosFs 1.0 filesystem, by default, uses the old MS-

../api_reference/C/envset_tmp_dir.html
../api_reference/C/dbopen.html#open_DB_TRUNCATE
../api_reference/C/dbopen.html

Library Version 11.2.5.2 Building Berkeley DB for VxWorks

6/10/2011 DB Installation Guide Page 77

DOS 8.3 file-naming constraints, restricting to 8 character filenames with a 3 character
extension. If you have configured with VxWorks' dosFs 2.0 you should be compatible with
Windows FAT32 filesystems which supports long filenames.

• Are there any dependencies on particular filesystem drivers?

There is one dependency on specifics of filesystem drivers in the port of Berkeley DB to
VxWorks. Berkeley DB synchronizes data using the FIOSYNC function to ioctl() (another
option would have been to use the FIOFLUSH function instead). The FIOSYNC function was
chosen because the NFS client driver, nfsDrv, only supports it and doesn't support FIOFLUSH.
All local file systems, as of VxWorks 5.4, support FIOSYNC -- with the exception of rt11fsLib,
which only supports FIOFLUSH. To use rt11fsLib, you will need to modify the os/os_fsync.c
file to use the FIOFLUSH function; note that rt11fsLib cannot work with NFS clients.

• Are there any known filesystem problems?

During the course of our internal testing, we came across three problems with the dosFs
2.0 filesystem that warranted patches from Wind River Systems. We strongly recommend
you upgrade to dosFs 2.2, SPR 79795 (x86) and SPR 79569 (PPC) which fixes all of these
problems and many more. You should ask Wind River Systems for the patches to these
problems if you encounter them and are unable to upgrade to dosFs 2.2.

The first problem is that files will seem to disappear. You should look at SPR 31480 in the
Wind River Systems' Support pages for a more detailed description of this problem.

The second problem is a semaphore deadlock within the dosFs filesystem code. Looking at
a stack trace via CrossWind, you will see two or more of your application's tasks waiting in
semaphore code within dosFs. The patch for this problem is under SPR 33221 at Wind River
Systems. There are several SPR numbers at Wind River Systems that refer to this particular
problem.

The third problem is that all tasks will hang on a dosFs semaphore. You should look at SPR
72063 in the Wind River Systems' Support pages for a more detailed description of this
problem.

• Are there any filesystems I cannot use?

Currently both the Target Server File System (TSFS) and NFS are not able to be used.

The Target Server File System (TSFS) uses the netDrv driver. This driver does not support any
ioctl that allows flushing to the disk, nor does it allow renaming of files via FIORENAME. The
NFS file system uses nfsDrv and that driver does not support FIORENAME and cannot be used
with Berkeley DB.

• What VxWorks primitives are used for mutual exclusion in Berkeley DB?

Mutexes inside of Berkeley DB use the basic binary semaphores in VxWorks. The mutexes are
created using the FIFO queue type.

• What are the implications of VxWorks' mutex implementation using microkernel
resources?

Library Version 11.2.5.2 Building Berkeley DB for VxWorks

6/10/2011 DB Installation Guide Page 78

On VxWorks, the semaphore primitives implementing mutexes consume system resources.
Therefore, if an application unexpectedly fails, those resources could leak. Berkeley
DB solves this problem by always allocating mutexes in the persistent shared memory
regions. Then, if an application fails, running recovery or explicitly removing the database
environment by calling the DB_ENV->remove() method will allow Berkeley DB to release
those previously held mutex resources. If an application specifies the DB_PRIVATE flag
(choosing not to use persistent shared memory), and then fails, mutexes allocated in that
private memory may leak their underlying system resources. Therefore, the DB_ENV->open()
flag should be used with caution on VxWorks.

../api_reference/C/envremove.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

6/10/2011 DB Installation Guide Page 79

Chapter 9. Upgrading Berkeley DB 11.2.5.1
applications to Berkeley DB 11.2.5.2

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
11.2.5.1 library to the Berkeley DB 11.2.5.2 library (both of which belong to Berkeley DB
11g Release 2). This information does not describe how to upgrade Berkeley DB 1.85 release
applications.

For information on the general process of upgrading Berkeley DB installations and upgrade
instructions related to historical releases, see the Berkeley DB Upgrade Guide.

SQLite Interface Upgrade

Berkeley DB's SQL interface includes code from SQLite. The version of SQLite used has been
upgraded, so DB SQL is compatible with SQLite version 3.7.6.2. Please see the release notes at
http://sqlite.org/changes.html for further information.

32bit/64bit Compatibility on Windows

Berkeley DB can now be compiled on Windows so that 32 bit and 64 bit applications
can concurrently access a BDB environment. To enable this feature, build both the 32
bit BDB library and application and the 64 bit library and application with the flag /D
HAVE_MIXED_SIZE_ADDRESSING. Note that private environments are disabled under the
compatibility mode.

Read Only flag for DBT

A DBT can now be set as read-only, when passed to the DB->get() method, using the flag
DB_DBT_READONLY. This is useful when using a static string as a key value, because this flag
will prevent Berkeley DB from updating the DBT.

New Flag

• DB_DBT_READONLY

Dynamic Environment Configuration

Memory is now allocated incrementally as needed, instead of all at once during environment
initialization, for structures that support locks, transactions, threads, and mutexes. With this
change new functions have been added that configure how much memory is allocated initially,
and how much that memory is allowed to grow. The old memory configuration functions have
been deprecated.

New Functions

• DB_ENV->set_memory_init()

http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf
http://sqlite.org/changes.html
../api_reference/C/dbt.html
../api_reference/C/dbget.html
../api_reference/C/dbt.html
../api_reference/C/envset_memory_init.html

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 80

• DB_ENV->get_memory_init()

• DB_ENV->set_memory_max()

• DB_ENV->get_memory_max()

• DB_ENV->set_lk_tablesize()

• DB_ENV->get_lk_tablesize()

• DB_ENV->mutex_set_init()

• DB_ENV->mutex_get_init()

Deprecated Functions

• DB_ENV->mutex_set_max()

• DB_ENV->mutex_get_max()

• DB_ENV->set_lk_max_lockers()

• DB_ENV->get_lk_max_lockers()

• DB_ENV->set_lk_max_locks()

• DB_ENV->get_lk_max_locks()

• DB_ENV->set_lk_max_objects()

• DB_ENV->get_lk_max_objects()

• DB_ENV->set_thread_count()

• DB_ENV->get_thread_count()

• DB_ENV->set_tx_max()

• DB_ENV->get_tx_max()

Exclusive Transactions in the SQL Layer

Issuing the SQL command BEGIN TRANSACTION EXCLUSIVE will now cause any other
transactions accessing the database to block, or return a SQLITE_BUSY or SQLITE_LOCK error,
until the exclusive transaction is committed or aborted. Previously, non-exclusive transactions
could execute concurrently with an exclusive transaction.

Group Membership in Repmgr

Replication Manager now manages group membership much more closely, making it much
easier for applications to add and remove sites from a replication group without risk of
transaction loss. In order to accomplish this, the API for configuring group membership has

../api_reference/C/envget_memory_init.html
../api_reference/C/envset_memory_max.html
../api_reference/C/envget_memory_max.html
../api_reference/C/envset_lk_tablesize.html
../api_reference/C/envget_lk_tablesize.html
../api_reference/C/mutexset_init.html
../api_reference/C/mutexget_init.html
../api_reference/C/mutexset_max.html
../api_reference/C/mutexget_max.html
../api_reference/C/envset_lk_max_lockers.html
../api_reference/C/envget_lk_max_lockers.html
../api_reference/C/envset_lk_max_locks.html
../api_reference/C/envget_lk_max_locks.html
../api_reference/C/envset_lk_max_objects.html
../api_reference/C/envget_lk_max_objects.html
../api_reference/C/envset_thread_count.html
../api_reference/C/envget_thread_count.html
../api_reference/C/envset_tx_max.html
../api_reference/C/envget_tx_max.html

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 81

changed significantly. The repmgr_set_local_site() and repmgr_add_remote_site()
methods no longer exist; they are replaced by a new handle type, DB_SITE. The
repmgr_get_local_site() method has been replaced by DB_ENV->repmgr_site(), which now
returns a DB_SITE handle instead of a raw host/port network address.

Replication Manager applications may no longer call the DB_ENV->rep_set_nsites() method,
because the Replication Manager now tracks the number of sites in the replication group for
you. Replication Manager applications may still call DB_ENV->rep_get_nsites(), but only after a
successful call to DB_ENV->repmgr_start().

For applications using the replication Base API there is no change, except that they may now
call DB_ENV->rep_set_nsites() to change the group size even when Master Leases are in use.

The new Replication Manager group membership functionality is described in the Managing
Replication Manager Group Membership chapter in the Berkeley DB Programmer's Reference
Guide.

Replication Manager no longer prints an error message on a connection failure. Instead it
generates an event with the equivalent information (invoking the application's event-handling
call-back function).

Upgrading

An existing application running a previous version of BDB can do a "live upgrade" so that only
one site at a time has to be shut down. To do this, restart each site in the group, with the
old master being shutdown last. When each site is restarted, use DB_SITE to configure the
local site with the flag DB_LEGACY, and create a DB_SITE handle with a full specification of
all the remote site addresses for all other sites currently in the group, and configure each
handle with the DB_LEGACY flag. When the old master is restarted and a new master has been
established, the new master is ready to manage membership changes, and new sites can be
added as usual. But the application must not try to add new sites, or remove existing sites,
during the mixed-version transitional phase.

To do a non-live upgrade shutdown the entire replication group. Then restart the group with
each site configured with the DB_LEGACY flag, and in DB_REP_ELECTION mode.

New Functions

• DB_ENV->repmgr_site()

• DB_ENV->repmgr_site_by_eid()

• DB_SITE->set_config()

• DB_SITE->get_config()

• DB_SITE->remove()

• DB_SITE->get_eid()

• DB_SITE->get_address()

../api_reference/C/repmgr_site.html
../api_reference/C/repnsites.html
../api_reference/C/repget_nsites.html
../api_reference/C/repmgrstart.html
../api_reference/C/repnsites.html
../programmer_reference/group_membership.html
../programmer_reference/group_membership.html
../api_reference/C/repmgr_site.html
../api_reference/C/repmgr_site_by_eid.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/dbsite_get_config.html
../api_reference/C/dbsite_remove.html
../api_reference/C/dbsite_get_eid.html
../api_reference/C/dbsite_get_address.html

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 82

• DB_SITE->close()

Modified Functions

• DB_ENV->rep_set_nsites() is no longer used by the Replication Manager, but is still used by
the Base API. It can now be used to change the number of sites dynamically, even when
master leases are in use.

New Events

• DB_EVENT_REP_SITE_ADDED

• DB_EVENT_REP_SITE_REMOVED

• DB_EVENT_REP_LOCAL_SITE_REMOVED

• DB_EVENT_REP_CONNECT_BROKEN

• DB_EVENT_REP_CONNECT_ESTD

• DB_EVENT_REP_CONNECT_TRY_FAILED

• DB_EVENT_REP_INIT_DONE

Removed Functions

• DB_ENV->repmgr_set_local_site()

• DB_ENV->repmgr_add_local_site()

• DB_ENV->repmgr_add_remote_site()

• DB_ENV->repmgr_get_local_site()

New Parameters

The following new parameters are passed to DB_SITE->set_config().

• DB_BOOTSTRAP_HELPER

• DB_GROUP_CREATOR

• DB_LEGACY

• DB_LOCAL_SITE

• DB_REPMGR_PEER

New Structure

• DB_REPMGR_CONN_ERR encapsulates an EID and an integer system error code.

../api_reference/C/dbsite_close.html
../api_reference/C/repnsites.html
../api_reference/C/dbsite_set_config.html

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 83

Heap Access Method

Databases can now be configured as heaps by passing the access type DB_HEAP to DB->open().
Heap size can be configured with DB->set_heapsize(), and DB->stat() now returns heap
statistics in the structure DB_HEAP_STAT when applied to a heap database.

New Functions

• DB->set_heapsize()

• DB->get_heapsize()

Modified Functions

• DB->open() now accepts DB_HEAP as an access type.

• DB->stat() now returns heap statistics in the structure DB_HEAP_STAT.

New Definition

• DB_HEAP_RID is the defined heap key value.

Enabling Transaction Snapshots in the SQL Layer

Read/write concurrency can now be enabled in the SQL API by using PRAGMA
multiversion=on before accessing any tables in the database. After multiversion has been
enabled, it can be temporarily disabled using the PRAGMA transaction_snapshots=on/off.

New Pragmas

For more details on pragmas concerning Transaction Snapshots read Using Multiversion
Concurrency Control in the Berkeley DB Getting Started with the SQL APIs guide.

• PRAGMA multiversion=ON|OFF;

• PRAGMA snapshot_isolation=ON|OFF

2SITE_STRICT Enabled by Default in Replication

The 2SITE_STRICT replication configuration parameter is now turned on by default. This
configuration parameter is controlled using the DB_REPMGR_CONF_2SITE_STRICT. flag on the
DB_ENV->rep_set_config() method.

Enabling Replication in the SQL Layer

Replication can now be enabled and configured in the SQL layer using pragmas. The pragmas
replication_local_site, replication_initial_master, and replication_remote_site
can be used to configure the replication group. Note that when the BDB SQL replicated

../api_reference/C/dbopen.html
../api_reference/C/dbset_heapsize.html
../api_reference/C/dbstat.html
../api_reference/C/dbset_heapsize.html
../api_reference/C/dbget_heapsize.html
../api_reference/C/dbopen.html
../api_reference/C/dbstat.html
../bdb-sql/mvcc.html
../bdb-sql/mvcc.html
../api_reference/C/repconfig.html#config_DB_REPMGR_CONF_2SITE_STRICT
../api_reference/C/repconfig.html

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 84

application is initially started, a specific master site must be explicitly designated. After
configuring the replication group, start replication using PRAGMA replication=ON.

To display replication statistics in the dbsql shell, use:

dbsql> .stat :rep

New Pragmas

For more details on the replication pragmas see Replication PRAGMAs in the Berkeley DB
Getting Started with the SQL APIs guide.

• PRAGMA replication=ON|OFF

• PRAGMA replication_initial_master=ON|OFF

• PRAGMA replication_local_site="hostname:port"

• PRAGMA replication_remote_site="hostname:port"

• PRAGMA replication_remove_site="host:port"

• PRAGMA replication_verbose_output=ON|OFF

• PRAGMA replication_verbose_file=filename

Repmgr Message Channels

Application components running at various sites within a replication group can now use the
Replication Manager's existing TCP/IP communications infrastructure to send and process
messages among themselves, using the DB_CHANNEL handle. DB_ENV->repmgr_channel()
is used to create the DB_CHANNEL handle. DB_CHANNEL->send_msg() and DB_CHANNEL-
>send_request() are used to send sychronous and asychronous messages that are handled by
the function set by DB_ENV->repmgr_msg_dispatch(). DB_CHANNEL->set_timeout() is used to
configure channel time out, and DB_CHANNEL->close() closes the channel and frees resources
held by it.

New Functions

• DB_ENV->repmgr_msg_dispatch()

• DB_ENV->repmgr_channel()

• DB_CHANNEL->send_msg()

• DB_CHANNEL->send_request()

• DB_CHANNEL->set_timeout()

• DB_CHANNEL->close()

../bdb-sql/reppragma.html
../api_reference/C/repmgr_channel.html
../api_reference/C/dbchannel_send_msg.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/repmgr_msg_dispatch.html
../api_reference/C/dbchannel_set_timeout.html
../api_reference/C/dbchannel_close.html
../api_reference/C/repmgr_msg_dispatch.html
../api_reference/C/repmgr_channel.html
../api_reference/C/dbchannel_send_msg.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/dbchannel_set_timeout.html
../api_reference/C/dbchannel_close.html

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 85

Sequence Support in the SQL Layer

A partial implementation of the sequence API defined in the SQL 2003 specification has been
added to the SQL layer. A sequence is created using the syntax:

SELECT create_sequence("sequence_name"...)

The sequence numbers are accessed using

SELECT nextval("sequence_name")

and

SELECT currval("sequence_name")

Finally, a sequence can be dropped using

SELECT drop_sequence("sequence_name")

New Functions

The four new functions, which have to be called as part of a SELECT statement, are describe
in more detail in Using Sequences in the Berkeley DB Getting Started with the SQL APIs guide.

• create_sequence

• seq_nextval

• seq_currval

• seq_drop_sequence.

Berkeley DB X/Open Compliant XA Resource Manager

The Berkeley DB X/open compliant XA resource manager has been restored. (It was removed
from the product after the 4.7 release.) The new implementation includes support for multi-
threaded servers. Consult the documentation of your chosen transaction manager to learn how
to implement a multi-threaded server.

Constraints

Applictions that use a BDB XA resource manager must now take into account the following
constraints.

• No in-memory logging.

• No application-level child transactions.

• All database-level operations (open, close, create and the like) must be performed outside
of a global transactions (i.e., they can be performed in local BDB transactions, but not while
a distributed XA transaction is active).

• Environment configuration must be done using a DB_CONFIG file.

../bdb-sql/sequencesupport.html
../bdb-sql/sequencesupport.html#create_sequence
../bdb-sql/sequencesupport.html#seq_nextval
../bdb-sql/sequencesupport.html#seq_currval
../bdb-sql/sequencesupport.html#seq_drop_sequence

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 86

• Cursors must be closed before a service invocation returns.

New Flag

• DB_XA_CREATE - This flag is passed to db_create() to create a DB handle that supports XA
transactions.

Modified Function

• DB->stat() now returns the field DB_TXN_STAT->DB_TXN_ACTIVE->xa_status, which
contains information on the XA transactions.

Hot Backup Changes

Because non-UNIX systems do not support atomic file system reads, the db_hotbackup utility
has been modified to read data through the environment. If your application is running on
a UNIX based system such as Solaris, HPUX, BSD or Mac OS, you can specify the -F flag to
read directly from the filesystem. Please refer to Recovery procedures in the Berkeley DB
Programmer's Reference Guide for more information on safely backing up your databases.

Berkeley DB Library Version 11.2.5.2 Change Log

This is the changelog for Berkeley DB 11g Release 2 (library version 11.2.5.2).

Database or Log File On-Disk Format Changes

1. Existing database file formats were unchanged in library version 11.2.5.2. However, a new
database file format, "heap", was introduced.

2. The log file format changed in library version 11.2.5.2.

New Features

1. Replication Manager now manages Group Membership. This allows sites to be added
to and removed from the replication group dynamically. Replication Manager also now
automatically keeps track of the group size (nsites). [#14778]

2. Initial allocations for various non-pagebuffer (mpool) system resources may now be
specified, as well as a total maximum of memory to use, rather than specifying a
maximum value for each resource. [#16334]

3. Implemented Berkeley DB globalization support architecture to enable localized and
stripped error and output messages. [#16863]

4. Added a new access method, DB_HEAP. Heap aims for efficient use (and re-use) of disk
space. Keys in a heap database are automatically generated by BDB, it is recommended
that one or more secondary indexes be used with a heap database. For full details on
DB_HEAP, see the Programmer's Reference Guide. [#17627]

5. Added a compatible mode for 32bit and 64bit Windows environment. [#18225]

../api_reference/C/dbcreate.html
../api_reference/C/dbstat.html
../api_reference/C/db_hotbackup.html
../programmer_reference/transapp_recovery.html

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 87

6. For the SQL API, concurrency between read and write transactions can now be enabled
using "PRAGMA multiversion". Added several pragmas that can be used to configure the
Berkeley DB datastore. [#18521]

7. Add several new pragmas to provide in-process support for replication in the SQL API.
[#18528]

8. The Berkeley DB X/open compliant XA resource manager has been restored, including
support for multi-threaded servers. [#18701]

9. Improved the ability to recover from an application crash on connections through the SQL
API. Berkeley DB will try to automatically clean up locks, mutexes and transactions from
the failed process. [#18713]

10. Add support for sequence usage in the SQL API using SQLite custom functions. [#19007]

11. Add a pragma in the SQL API to allow execution of a cache trickle command. [#19202]

12. Add a pragma in the SQL API to allow configuration of DB_SYSTEM_MEM environments.
[#19249]

13. The new db_env_set_win_security(SECURITY_ATTRIBUTES *) function allows an application
to specify the particular Microsoft Windows security attributes to be used by Berkeley
DB. This helps support applications which reduce their privileges after opening the
environment. [#19529]

Database Environment Changes

1. None

Concurrent Data Store Changes

1. None

Access Method Changes

1. Modified the queue access method so that it only uses latches on the metadata page
rather than a latch and a lock. This was done to improve performance. [#18749]

2. Fixed several bugs that could cause an update running with MVCC to get the wrong version
of a page or improperly update the metadata last page number. [#19063]

3. The database open code will no longer log the open and close of the master database in a
file when opening a sub database in that file. [#19071]

4. Fixed a bug where an error during an update to a hash database with DB_NOOVERWRITE
set could return DB_KEYEXIST rather than the correct error. [#19077]

5. Fixed a bug that could cause the wrong page number to be on a root or metadata page if
DB->compact moved the page and the operation was later rolled forward. [#19167]

6. Fixed a bug that could cause the close of a secondary index database to fail if the
transaction doing the open aborted. [#19169]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 88

7. Fixed a bug that could prevent an update to a primary recno or queue database with
DB_NOOVERWITE set. [#19230]

8. Fixed a bug when an update to a database with DB_NOOVERWRITE set could incorrectly
return DB_KEYEXIST rather than the correct error (e.g., DB_LOCK_DEADLOCK). [#19345]

9. Fixed a bug preventing the use of the set_re_len and set_re_pad methods with a RECNO
database when configuring with --disable-queue. [#19367]

10. Fixed a bug in DB->compact on BTREE databases that did not check if the last page in the
database could be moved to a lower numbered page. [#19394]

11. Fixed a bug that could cause a Log Sequence Error when recovering the deallocation of a
multiple page overflow chain. [#19474]

12. Fixed a bug that could cause a diagnostic assertion if MVCC was in use and multiple levels
of a btree needed to be split. [#19481]

13. Fixed a few error paths that could cause a Panic with an "unpinned page returned" error.
[#19493]

14. Fixed a bug that closed a race condition that under heavy mult-threaded appending to a
queue database could cause some records to be lost. [#19498]

15. Fixed a bug that might cause DB->compact to mis-estimate the size of an overflow record
when merging two pages. This may cause the page to have more data than desired.
[#19562]

16. Fixed a bug in DB_ENV->fileid_reset that did not update the fileid's on the metadata
pages of subdatabases if the database file was not in native byte order. [#19608]

17. Fixed a bug that caused the first directory specified in the create of a partitioned
database to get too many partitions. [#20041]

SQL API Changes

1. Fixed a race condition that would cause a corruption error in one process when two
processes created the same SQL database. [#18929]

2. Fixed a bug that would cause a constraint violation when updating the primary key with
the same value. [#18976]

3. Overwriting an old backup with a new backup using the SQL online backup API will no
longer double the size of the database. [#19021]

4. Implemented index optimizations for indexes on large values. [#19094]

5. Fixed a bug that could cause an undetected deadlock between a thread which moved a
metadata or root page via a DB->compact operation and another thread trying to open
the database if the old page was being removed from the file. [#19186]

6. Fix a bug in the BDBSQL_FILE_PER_TABLE option, to allow absolute path names. [#19190]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 89

7. Add a pragma to allow configuration of DB_SYSTEM_MEM environments. [#19249]

8. Exclusive transactions will now block new transactions and will prevent existing
transactions from making forward progress. [#19256]

9. Fixed a bug that would cause assert error when opening an in-memory hash database with
thread count configured when compiled with --enable-diagnostic. [#19357]

10. Upgrade the bundled version of SQLite to 3.7.6.2 [#19376]

11. Fixed a performance bug with the cache victim selection algorithm when there were
multiple cache regions. [#19385]

12. Fixed a bug which could cause two SQL threads to have an undetected deadlock when
opening or closing tables. [#19386]

13. Fix a bug that could cause a hang when deleting a table if there are multiple connections
to a database from different processes. [#19419]

14. Fixed a bug which could cause multiple threads performing DB->compact on the same
database file to overrun the in-memory freelist, which could potentially lead to memory
corruption. [#19571]

15. Fixed a bug in DB->compact that could cause a loop if an attempt to move a sub-database
meta data page deadlocked. [#20028]

C API Changes

1. Fixed a bug where encryption could not be enabled for individual databases in an
encrypted environment. [#18891]

2. Removed two unused error codes, DB_NOSERVER_HOME and DB_NOSERVER_ID. [#18978]

3. Added a DB_DBT_READONLY flag so that users can pass in a non-usermem key
(DB_DBT_USERMEM) for get operations. [#19360]

4. Fixed a bug in DB/DBC->get/pget that the partial flags are silently ignored with positional
flags and return inconsistent DBT. [#19540]

5. Fixed a bug which prevented items from being deleted on a secondary database. [#19573]

6. Fixed a bug to correctly handle the DB_BUFFER_SMALL case on delete operations when
compression is enabled. [#19660]

Tcl-specific API Changes

1. None.

C#-specific API Changes

1. Added support for partial put/get in the C# API. [#18795]

2. Fixed a bug in compare delegate for secondary db. [#18935]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 90

Replication Changes

1. Replication Manager now allows differing ack policies at different sites throughout
the group, and supports dynamic changes to the ack policy. (The ack policy in force is
determined by the current master.) [#14993]

2. Replication Manager "channels" feature allows applications to share repmgr's
communication facilities. [#17228]

3. Add example program for RepMgr "channels" feature: ex_rep_chan. [#17387]

4. Replication Manager now allows dynamic changes to a site's "electability" (changes
between zero and non-zero priority). This feature should be used with care, because
electability changes can in boundary cases invalidate durability guarantees granted for
previous transactions. [#17497]

5. Changed election criteria so that later group transactions won't get overwritten by earlier
generations with more log. [#17815]

6. Added changes to master lease checks that result in improved performance when using
master leases. [#18960]

7. A log write failure on a replication master will now cause a panic since the transaction
may be committed on some clients. [#19054]

8. Fixed a few memory leak conditions on error paths. [#19131]

9. Change lease code so that zero priority sites do not count in lease guarantees since they
cannot be elected. [#19154]

10. Repmgr rerequest processing is moved from a dedicated thread to heartbeat messages.
Repmgr clients using heartbeats can now detect and rerequest missing final master log
records without master activity. [#19197]

11. Repmgr statistics are now included in full statistics output for an environment. [#19198]

12. Fix an inefficiency in mixed version elections. We now check if an election is won via the
EID instead of priority. [#19254]

13. Changed election LSNs to use the last txn commit LSN instead of the end of the log.
[#19278]

14. Create replication internal database files in the environment home directory rather than
the data directory so that they are in the same location as the other internal replication
files. [#19403]

15. Fix a bug that was preventing repmgr from calling an election when starting a site with
the DB_REP_ELECTION flag. [#19546]

16. Fixed a bug which could cause a segfault at a replication master if a named in-memory
database was being created around the same time as a client site were synchronizing (in
"internal init") with the master. [#19583]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 91

17. Adjust lease code to consider timeout length when retrying. [#19705]

18. Fixed a bug that could cause a crash in replication groups of more than 10 sites, with
multiple processes sharing each DB environment concurrently. [#19818]

19. Fix a bug where an assertion failure could happen if pages in a database were deallocated
during a client internal initialization.[#19851]

20. Fix a bug where an internal initialization of a queue database with non-contiguous extent
files could return an error. [#19925]

21. The 2SITE_STRICT replication configuration parameter is now turned on by default. It can
be turned off via a call to DB_ENV->rep_set_config(). [#19937]

22. Repmgr heartbeats can now help detect a duplicate master without the need for
application activity. [#19950]

Locking Subsystem Changes

1. Fixed a bug where an updater supporting DB_READ_UNCOMMITED might downgrade its
lock too soon if there was an error during the update. [#19155]

2. Fixed a bug where transaction timeouts could have been specified in a database
environment where the locking subsystem was disabled. [#19582]

3. Fixed a bug in a diagnostic assertion that was improperly triggered by the removal of a
sub-database. [#19683]

4. Fixed a bug that would cause DB_ENV->failcheck to free locks for a locker associated with
a database handle after the thread that opened the handle exited. [#19881]

Logging Subsystem Changes

1. Enhanced recovery so that it will not output extra checkpoint or transaction id recycle log
records if there was no activity since the last checkpoint. [#15330]

2. Log checksums can now be disabled using the compile argument --disable-log-checksum.
This will give a performance increase at the risk of undetectable corruption in the log
records, which would make recovery impossible. [#19143]

3. Fixed a bug that could cause a page that should have been removed from the end of a file
still be in the copy of the file in a hot backup. [#19996]

Memory Pool Subsystem Changes

1. Fixed a bug in MPOOLFILE->get that did not permit the DB_MPOOL_DIRTY flag to be used
with other flags. [#19421]

Mutex Subsystem Changes

1. Fixed a bug when the mutex region needs to be larger than 4GB, the region size was
incorrectly adjusted to be slightly too small to fit the mutexes. [#18968]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 92

2. Fixed a performance problem with hybrid shared latches in which a request for exclusive
access would busy-wait (rather than put itself to sleep) if the latch were held by a shared
reader. This also fixed the timeout handling of hybrid mutexes. In some cases the timeout
would not be honored, resulting in delays for the replication "read your writes" feature
which were longer than requested. [#18982]

3. Fixed the timeout handling of the pthreads mutexes used by the replication "read your
writes" feature. When a timeout occurred there was a race condition which might result
in a hang. [#19047]

Transaction Subsystem Changes

1. Fixed a leak of log file ids when a database is closed before the end of a transaction that
references it. [#15957]

2. Fixed a bug that would cause a panic if a child transaction performed a database rename,
then aborted, and then the parent transaction committed. [#18069]

3. Fixed a bug where we released the metadata page lock too early if a non-transactional
update was being done. [#19036]

4. Removed the possibility that checkpoints will overlap in the log, decreasing the time to
recover. [#19062]

Test Suite Changes

1. Require Tcl 8.5 or greater.

Utility Changes

1. Added a new utility, db_tuner, which analyzes the data in a btree database, and suggests
a reasonable pagesize. [#18910]

2. Fixed some bugs in log_verify when there are in-memory database logs and subdb logs.
[#19157]

3. Modified db_hotbackup to not read from the file system as required on non-UNIX systems.
Also provided the db_copy function for this purpose. [#19863]

4. Fixed db_hotbackup so that when -d/-l or -D is not specified, DB_CONFIG is used to
determine the locations of the databases and logs in the source environment. [#19994]

Configuration, Documentation, Sample Apps, Portability and Build Changes

1. Changed SQL API library built on *nix to link with libpthreads when necessary. [#19098]

2. Added CPPFLAGS into our --enable-jdbc configuration. [#19234]

3. Added encryption support into the Windows CE build project for SQL API. [#19632]

4. Fixed a bug in the STAT_INC_VERB() dtrace probe that was causing compiler warnings.
[#19707]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.1 applications to
Berkeley DB 11.2.5.2

6/10/2011 DB Installation Guide Page 93

5. Fixed a bug that could cause a trap in db_dump using salvage mode if a page was found
that was not associated with any database in the file. [#19974]

6. On Cygwin, circumvented a bug in libtool that is exposed when building the BDB SQL API
in a directory path containing whitespace characters. [#19812]

Example Changes

1. Update repmgr C, C#, C++, Java examples(ex_rep_mgr, ex_rep_gsg_repmgr, ex_rep_chan,
excs_repquote, excxx_repquote, excxx_epquote_gsg, repquote, repquote_gsg) with their
related API changes for group membership. [#19586][#19622]

2. Port ex_rep_chan, ex_rep_gsg_repmgr,ex_rep_gsg_simple, excxx_repquote_gsg_repmgr,
excxx_repquote_gsg_simple to Window.[#19890]

Miscellaneous Bug Fixes

1. Fixed a bug where memory copied from the Java API could leak if flags were not correctly
configured. [#19152]

Deprecated Features

1. None

Known Bugs

1. The SQL API has a known issue when using a blob field with a lot of content and multiple
concurrent connections to the database. [#19945]

2. Rollback of a dropped table in the SQL layer contains a mutex leak, which can consume
all mutex resources if enough rollbacks of table drops are performed. [#20077]

3. The DB_CONFIG configuration parameters which specify path names currently do not
support names containing any whitespace characters. [#20158]

4. The BFile module has a known crash issue when using BFile handle for SQL expressions
interface on 64bit platforms. [#20193]

5. On systems without FTRUNCATE, db_verify will return an error for truncated heap
databases. This is a bug in db_verify, the database has been truncated correctly and can
be used in the future. [#20195]

6. An application using queue extents which is append mostly could see a decrease in the
buffer pool hit rate due to the failure to remove pages from closed extents from the
buffer pool. [#20217]

6/10/2011 DB Installation Guide Page 94

Chapter 10. Upgrading Berkeley DB 11.2.5.0
applications to Berkeley DB 11.2.5.1

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
11.2.5.0 library to the Berkeley DB 11.2.5.1 library (both of which belong to Berkeley DB
11g Release 2). This information does not describe how to upgrade Berkeley DB 1.85 release
applications.

For information on the general process of upgrading Berkeley DB installations and upgrade
instructions related to historical releases, see the Berkeley DB Upgrade Guide.

DPL Applications must be recompiled

Applications that use the Java interface's Direct Persistence Layer must be recompiled, due to
a change in the return type of the setter methods in StoreConfig and EvolveConfig classes. The
setter methods now return this instead of void.

Source Tree Rearranged

The source code hierarchy has been reorganized. Source files that belong to Berkeley DB core
are now in a top-level directory named src. Files related to language interfaces are in lang,
and all examples are collected under examples.

SQLite Interface Upgrade

Berkeley DB's SQL interface includes code from SQLite. The version of SQLite used has been
upgraded, so DB SQL is compatible with SQLite version 3.7.0.1. Please see the release notes at
http://sqlite.org/changes.html for further information.

Mod_db4 Support Discontinued

The mod_db4 apache module is no longer included in the release.

Berkeley DB Library Version 11.2.5.1 Change Log

This is the changelog for Berkeley DB 11g Release 2 (library version 11.2.5.1).

Database or Log File On-Disk Format Changes

1. The database file format was unchanged in 11gR2 library version 11.2.5.1.

2. The log file format was unchanged in 11gR2 library version 11.2.5.1.

New Features

1. Added Performance event monitoring support for DTrace and SystemTap which can be
enabled during configuration. Static probes have been defined where statistics values

http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 95

are updated, where mutex or transactional consistency lock waits occur, and where some
other potentially lengthy operations may be initiated. [#15605]

2. Added a new acknowledge policy - DB_REPMGR_ACKS_ALL_AVAILABLE. [#16762]

3. Added transactional bulk loading optimization for non-nested transactions. [#17669]

4. Added exclusive transaction support for the SQL API. [#17822]

5. Added support for bulk update and delete in C# API. [#18011]

6. Added a db_replicate utility. [#18326]

7. Added an implementation of the Online Backup API. [#18500]

8. Added support in Berkeley DB SQL for the vacuum and incremental vacuum pragmas
[#18545]

9. Added an option to automatically convert SQLite databases to Berkeley DB on opening.
[#18531]

10. Added BDBSQL_SHARE_PRIVATE, an option to enable inter-process sharing of DB_PRIVATE
environments using multiple-reader. [#18533]

11. Added database-level locking to optimize single-threaded operations and remove locking
limitations for database load operations. [#18549]

12. Added support for DB_INIT_REP, DB_PRIVATE and DB_THREAD in DB_CONFIG file.[#18555]

13. Added support for the BDBSQL_DEFAULT_PAGE_SIZE pragma to override Berkeley DB's
choice of page size depending on the filesystem. Use SQLITE_DEFAULT_PAGE_SIZE rather
than a hard-coded default. [#18577]

14. Added an extension that allows access to binary files stored outside of the database.
What is stored in the database is a pointer to the binary file. [#18635]

15. Added .stat command to dbsql shell to print environment, table, and index statistics.
[#18640]

16. Added enhancements to reduce the size of indexes in the SQL API by allowing duplicates
in the index database and moving the rowid from the index key into the index data.
[#18653]

17. Added a compile time flag BDBSQL_FILE_PER_TABLE that causes each table to be created
in a separate file. This flag replaces the BDBSQL_SPLIT_META_TABLE flag. [#18664]

18. Added the handling of read only and read write open of the same database in BDB SQL
[#18672]

19. Added an encryption implementation to the SQL API [#18683]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 96

Database Environment Changes

1. Fixed failchk behavior on QNX. [#17403]

2. Fixed a bug that prevented the same process from connecting to the database after
recovery is performed. [#18535]

3. Fixed a bug which would occur when recovery checkpoint was not written because the
cache ran out of space attempting to flush the memory pool cache. The environment
would be recovered and all database where made available, but some databases would
incorrectly closed. This would cause a subsequent recovery to fail on its backward pass
with the error "PANIC: No such file or directory". [#18590]

4. Fixed a bug that could cause recovery to fail with the error "DB_LOGC->get: log record
LSN %u/%u: checksum mismatch" if the last log file was nearly full and ended with a
partially written log record which was smaller than a checkpoint record. It now erases the
invalid partial record before switching to the new log file. [#18651]

Concurrent Data Store Changes

1. None

Access Method Changes

1. Fixed a bug such that segementation fault does not occur if DB->set_partition_dirs is
called before DB->set_partition. [#18591]

2. Fixed a bug such that the error "unknown path" does not occur if you put duplicate
records into a duplicated sorted HASH database with DB_OVERWRITE_DUP option.
[#18607]

3. Added the ability to specify that data should not be logged when removing pages from
a database. This can be used if the ability to recover the data is not required after the
database has been removed. [#18666]

4. Fixed a bug that caused an aborting transaction to fail if it aborted while a DB->compact
of the same HASH database was compacting the dynamic hash table [#18695]

5. Fixed a bug that could cause DB->compact to loop on a DB_RECNO database or a database
with an multilevel unsorted off page duplicate tree. [#18722]

6. Fixed a bug that could cause an illegal page type error when using a HASH database with
MVCC and the HASH table was contracted and then extended. [#18785]

7. Fixed locking bugs: [#18789] The Db->compact method of BTREE with MVCC would return
an unpinned page. The RECNO option would fail to lock the next page when splitting a
leaf page.

8. Fixed a bug that could cause data to not be returned in a HASH database that was one of
multiple databases in a file and was opened prior to running DB->compact method on that
database in another thread of control [#18824]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 97

9. Fixed a bug where doing a bulk insert with secondaries could return an error incorrectly.
[#18878]

10. Fixed a bug that would return DB_NOTFOUND instead of DB_BUFFER_SMALL when the first
item in a HASH database is larger than the user supplied buffer. [#18829]

API Changes

1. Fixed various items uncovered by extending DB_CONFIG support: [#18720] - Added missing
set_cache_max method, and fixed name of log_set_config (was set_log_config). - Added
new DB_ENV->repmgr_get_local_site method. - Fixed a bug which could fail to allocate
enough mutexes when specifying a maximum cache size. - Fixed a bug that could allocate
multiple caches when a small cache size was specified.

SQL-Specific API Changes

1. Allowed SQL applications to attach to the same database multiple times unless shared
cache mode is explicitly requested. [#18340]

2. Fixed a bug where auto-removal of log files after writing a checkpoint was not functioning
correctly. [#18413]

3. Fixed a race between opening and closing SQL databases from multiple threads that
could lead to the error "DB_REGISTER limits processes to one open DB_ENV handle per
environment". [#18538]

4. Optimized the SQL adapter for joins. Reduce the number of Berkeley DB operations in a
join by caching the maximum key in the primary. [#18566]

5. A SQLITE_LOCKED or SQLITE_BUSY error returned by a statement in an explict transaction
will no longer invalidate the entire transaction, but just the statement that returned the
error. [#18582]

6. Changed how multiple connections to the same database are detected. Used a fileid so
that different paths can be used without error. [#18646]

7. Fixed a bug where the journal (environment) directory was being created prior to the
actual environment. [#18656]

8. Added a new PRAGMA to allow tuning of when checkpoints are run. [#18657]

9. Fixed spurious "column <x> not unique" error messages.[#18667]

10. Fixed a segmentation fault that could happen when memory could not be allocated for
the index key in the SQL API.[#18783]

11. Fixed a bug causing a segfault when releasing a savepoint that was already released.
[#18784]

Tcl-Specific API Changes

1. Changed to link tcl8.5 by default on Windows[#18244]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 98

Java-Specific API Changes

1. Fixed a bug where getAllowPopulate and getImmutableSecondaryKey
method always returned false for SecondaryConfig objects returned by
SecondaryDatabase.getSecondaryConfig method. [#16018]

2. Fixed a bug which made it impossible to (re)set VerboseConfig.REPLICATION_SYSTEM on
the Java API. [#17561]

3. Fixed a bug where populating a SecondaryDatabase on open could lead to an
OutOfMemoryException. [#18529]

4. Fixed a bug such that segementation fault does not occur when putting records into
callback-partitioned database. [#18596]

5. Fixed a bug where DatabaseConfig.getUnsortedDuplicates method returned true when the
datbase had been configured for sorted duplicates. [#18612]

6. Initialized DatabaseConfig.pageSize so that it can be queried. [#18691]

7. Fixed a bug by opening a write cursor for Direct Persistent Layer(DPL) entity's put
operation in the Concurrent Data Store product. [#18692]

8. Synchronized Java persistence code and tests from Java Edition to Berkeley DB. [#18711]

9. Introduced the EnvironmentConfig.setReplicationInMemory method as a way to configure
in-memory internal replication files before opening the Environment handle on the Java
API. [#18719]

10. Fixed a bug in the bulk DatabaseEntry class, where it was possible to overflow the buffer.
[#18850]

11. Added LEASE_TIMEOUT field to the ReplicationTimeoutType class that enables configuring
the amount of time a client grants its Master Lease to a master. [#18867]

C#-Specific API Changes

1. Fixed a bug in BTree prefix comparison method such that there is no problem when
the application needs to save a number larger than or equal to 2^31. The BTree prefix
comparison function now returns an unsigned int instead of a signed int. [#18481]

2. Fixed a bug which caused the HasMultiple method to throw an exception when there were
multiple databases in a single database file. [#18483]

3. Fixed a bug to ensure the CachePriority is set for Database and Cursor objects. [#18716]

4. Fixed a bug that use leading to the error: "Transaction that opened the DB handle is still
active" when applications used different transactional handles in the associate and open
methods in a secondary database. [#18873]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 99

Direct Persistence Layer (DPL), Bindings and Collections API

1. All setter methods in the DPL |StoreConfig| and |EvolveConfig| now return |this| rather
than having a |void| return type. This change requires that applications using the DPL be
recompiled. [#17021]

2. Improve performance of |StoredCollection.removeAll|. This method no longer iterates
over all records in the stored collection. [#17727]

3. Several new tuple formats and binding classes have been added in the |
com.sleepycat.bind.tuple| package:

• Packed integer formats have been added that support default natural sorting. These are
intended to replace the old unsorted packed integer formats.

• Two new |BigDecimal| formats have been added. One format supports default natural
sorting. The other format is unsorted, but has other advantages: trailing zeros after the
decimal place are preserved, and a more compact, faster serialization format is used.
See the |com.sleepycat.bind.tuple| package description for an overview of the new
bindings and a comparative description of all tuple bindings. [#18379]

4. The following classes are now certified to be serializable. [#18738]

• com.sleepycat.persist.IndexNotAvailableException

• com.sleepycat.persist.StoreExistsException

• com.sleepycat.persist.StoreNotFoundException

• com.sleepycat.persist.evolve.DeletedClassException

• com.sleepycat.persist.evolve.IncompatibleClassException

Replication Changes

1. Replication Manager now uses the standard system implementation of getaddrinfo() when
running on Windows, which means that it can support IPv6 addresses if support is present
and configured in the operating system. [#18263]

2. Fixed a bug which caused a "full election" to fail if a majority of sites were not ready
when the election started. [#18456]

3. Fixed a bug which could occur when using bulk transfer with Replication Manager. When
closing a DB_ENV handle, any remaining bulk buffer contents are flushed, and Replication
Manager could have tried to send the resulting messages even though its connections had
already been closed, leading in rare circumstances to spurious EBADF error reports, or
possibly even arbitrary memory corruption. [#18469]

4. Fixed a bug which caused Replication Manager to wait for acknowledgement from client,
even if it had failed to send a log record, due to "queue limit exceeded". Replication
Manager now returns immediately, with a PERM_FAILED indication, to avoid a pointless
delay to the commit() operation. [#18682]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 100

5. Fixed a bug where changes made in one process to Replication Manager configuration
values (such as ack policy or ack timeout) were not observed in other processes sharing
the same database environment. [#18839]

6. Fixed bugs that could prevent client synchronization from completing due to a failure to
request missing log records. [#18849]

7. Fixed a bug where a client that had rolled back transactions to synchronize with a new
master, failed to invalidate existing database handles later used for cursor operations
based on an explicitly provided transaction. [#18862]

8. Fixed a bug where Replication Manager called for an election after a DUPMASTER event,
even when using Master Leases. In such a case it now simply accepts the new (remote)
master. [#18864]

9. Fixed a bug which would cause failure if client env attempted to perform sync-up
recovery to a point in the log that happened to fall exactly on a log file boundary.
[#18907]

Locking Subsystem Changes

1. Moved the wait mutex from the lock structure to the locker structure, reducing the
number of mutexes required in the system. [#18685]

Logging Subsystem Changes

1. None.

Memory Pool Subsystem Changes

1. Fixed a race condition that was causing the error: "Unable to allocate space from the
buffer cache". The error can only be triggered when multiple memory pool regions are
used and there is a periodic gathering and clearing of statistics. This also fixes a second
bug where if you compile without statistics and explicitly set the memoru pool default
pagesize, other environment handles to that environment would not see the correct
memory pool default pagesize. [#18386]

2. Fixed a bug where the get_cachesize method and the mpool_stat method returned the
initial cache size, even if the cache size had been changed. [#18706]

3. Changed memory pool allocation so that the EIO error is returned rather than the ENOMEM
error when the memory cannot be allocated because dirty pages cannot be written.
[#18740]

Mutex Subsystem Changes

1. Fixed problems with the printed statistics for DB_MUTEX_SHARED latches. The
DB_STAT_CLEAR flag (as specified by db_stat -Z) did not clear the counts of the number of
times a shared latch either had to wait to get access or was able to get the latch without
waiting. Also, the ownership state of a test-and-set latch (not a hybrid one) was always
displayed as not owned, even when it was held. [#17585] [#18743]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 101

Transaction Subsystem Changes

1. Fixed bugs that could caused PANIC or DB_RUNRECOVERY errors when the synchronization
of the transaction log failed. [#18588]

2. Fix javadoc to note the exception to the rule that a transaction handle may not be
accessed after commit() operaton (getCommitToken() is allowed). [#18730]

Test Suite Changes

1. None. [#18831]

Utility Changes

1. Modified the db_printlog and db_dump -da so that they use the same formatting. The
db_logprint utility now uses the message stream. Both db_dump -da and db_printlog
accept a -D flag to indicate the numer of bytes of data items to display. You can set this
value when calling the DB_ENV->set_data_len method or in the DB_CONFIG. [#18365]

2. Fixed a bug that caused a segmentation violation when using the db_printlog utility.
[#18694]

3. Fixed a bug in db_hotbackup that would cause a trap if the -D flag is used and the
DB_CONFIG file does not specify a log directory. [#18841]

Configuration, Documentation, Sample Apps, Portability, and Build Changes

1. Added support and documentation for iPhone OS. [#18223]

2. Fix a bug to make the configuration option --enable-debug work when CFLAGS is set.
[#18432]

3. Updated Visual Studio project files to enable ADO.NET support. [#18448]

4. Enhanced the source tree layout making it easier to navigate. [#18492]

5. Fixed the --enable-dbm argument to configure. [#18497]

6. Fixed Visual Studio project files so that they can load into Visual Studio 2010. [#18505]

7. Updated Windows CE build files to be consistent with desktop Windows build files. Added
Windows Mobile 6.5.3 Professional as a target platform. [#18516]

8. Added a fix so that an error message is displayed when the 'ar' utility is missing when
configured. [#18619]

9. Added tighter integration of JDBC on POSIX/autoconf by including an argument --enable-
jdbc to configure. [#18621]

10. Fix build conflicts in log verify with other configurations. [#18658]

11. Upgraded Berkeley DB SQL to SQLite version 3.7.0 [#18857]

Library Version 11.2.5.2 Upgrading Berkeley DB 11.2.5.0 applications to
Berkeley DB 11.2.5.1

6/10/2011 DB Installation Guide Page 102

Example Changes

1. Renamed examples/c/bench_001 to examples/c/ex_bulk. [#18537]

Miscellaneous Bug Fixes

1. Provided a functionality on the Windows platform to choose a default page size based on
the underlying file system sector size. [#16538]

2. Changed DB_NOSYNC from an "operation" constant to a flag value. [#17775]

3. Changed the default permissions for files in the release tree to allow write access.
[#17974]

4. Fixed a bug which caused database verification to hang when verifying a database in a
Concurrent Data Store environment that performs locking on an environment-wide basis
(DB_CDB_ALLDB.) [#18571]

Deprecated Features

1. [#18871] Removed the mod_db4 PHP/Apache wrapper. It only supported Apache 1.3 and
has not been actively supported. Use php_db4 instead.

Known Bugs

1. None

6/10/2011 DB Installation Guide Page 103

Chapter 11. Upgrading Berkeley DB 4.8
applications to Berkeley DB 11.2.5.0

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB 4.8
release interfaces to the Berkeley DB 11g Release 2 interfaces. (Library version 11.2.5.0). This
information does not describe how to upgrade Berkeley DB 1.85 release applications.

db_sql Renamed to db_sql_codegen

The db_sql utility is now called db_sql_codegen. This command line utility is not built by
default. To build db_sql_codegen, specify --enable-sql_codegen when configuring Berkeley
DB.

DB_REP_CONF_NOAUTOINIT Replaced

In this release, the DB_REP_CONF_NOAUTOINIT flag is replaced by the DB_REP_CONF_AUTOINIT
flag. This option is ON by default. To turn off automatic internal initialization, call the
DB_ENV->rep_set_config method with the which parameter set to DB_REP_CONF_AUTOINIT
and the onoff parameter set to zero.

Support for Multiple Client-to-Client Peers

A Berkeley DB Replication Manager application can now designate one or more remote sites
(called its "peers") to receive client-to-client requests.

In previous releases, there could be only one peer at a time. If you called the DB_ENV-
>repmgr_add_remote_site method specifying site "A" as a peer and you made another call
specifying site "B" as a peer, site "B" would become the only peer, and site "A" would no longer
be a peer.

Starting with Berkeley DB 11gR2, the same sequence of calls results in both site "A" and site
"B" being possible peers. Replication Manager may select any of a site's possible peers to use
for client-to-client requests. If the first peer that the Replication Manager selects cannot be
used (for example, it is unavailable or it is the current master), Replication Manager attempts
to use a different peer if there is more than one peer.

To get the pre-11gR2 peer behavior in this example, you must make an additional call to the
DB_ENV->repmgr_add_remote_site method, specifying site "A" and a flag value that excludes
the DB_REPMGR_PEER bit value to remove site "A" as a possible peer.

Cryptography Support

In this release, the configuration options, --disable-cryptography and --enable-cryptography
are deprecated. --disable-cryptography is replaced by --with-cryptography=no and --enable-
cryptography is replaced by --with-cryptography=yes.

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 104

To build Berkeley DB with support for cryptography, enter --with-cryptography=yes as an
argument to configure instead of --enable-cryptography.

To build Berkeley DB without support for cryptography, enter --with-cryptography=no as an
argument to configure instead of --disable-cryptography.

Berkeley DB now supports encryption using Intel's Performance Primitive (IPP) on Linux. To
build Berkeley DB with support for cryptography using Intel's Performance Primitive (IPP)
library, enter --with-cryptography=ipp as an argument to configure.

Note: The --with-cryptography=ipp argument works only on Linux.

DB_NOSYNC Flag to Flush Files

Applications must now pass the DB_NOSYNC flag to the methods - DB->remove, DB->rename,
DB_ENV->dbremove, and DB_ENV->dbrename, to avoid a multi-database file to be flushed
from cache. This flag is applicable if you have created the database handle in a non-
transactional environment.

By default, all non-transactional database remove/rename operations cause data to be synced
to disk. This can now be overridden using the DB_NOSYNC flag so that files can be accessed
outside the environment after the database handles are closed.

Dropped Support

Berkeley DB no longer supports Visual Studio 6.0. The earliest version supported is Visual
Studio 2005. The build files for Windows Visual Studio 6.0 are removed.

Berkeley DB no longer supports Win9X, Windows Me (Millenium edition), and Windows NT 4.0.
The minimum supported windows platform is Windows 2000.

Changing Stack Size

Prior to the 11gR2 release, Berkeley DB limited the stack size for threads it created using
the POSIX thread API to 128 KB for 32-bit platforms and 256 KB for 64-bit platforms. In this
release, the system default stack size is used unless you run the Berkeley DB configure script
with the --with-stacksize=SIZE argument to override the default.

Berkeley DB 11g Release 2 Change Log

Changes between 11.2.5.0.26 and 11.2.5.0.32

1. Added Visual Studio 2010 support. Users can find Visual Studio 2010 solutions and projects
on build_windows. [#18889]

2. Fixed a leak of log file ids when a database is closed before the end of a transaction that
references it. [#15957]

3. Fixed a race condition that was causing an "unable to allocate space from the buffer
cache" error. The error can only be triggered when multiple mpool regions are used

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 105

and there is a periodic gathering and clearing of statistics. This also fixes a second bug
where if you compile without statistics and explicitly set the mpool default pagesize,
other environment handles to that environment would not see the correct mpool default
pagesize. [#18386]

4. Fix failure to flush pages to disk. [#18760]

5. Fix a general I/O problem on Windows where system doesn't always return ENOENT when
file is missing. [#18762]

6. Fixed locking bugs: [#18789]

• Db->compact of BTREE with MVCC could return an unpinned page.

• RECNO would fail to lock the next page when splitting a leaf page.

7. Don't await ack if message not sent due to queue limit exceeded. [#18682]

8. Fixed a bug that could cause data to not be returned in a HASH database that was one
of multiple databases in a file and it was opened prior to running DB->compact on that
database in another thread of control [#18824]

9. Return HANDLE_DEAD on cursor creation that names a specific txn after client callback.
[#18862]

10. Remove parting_shot rep_start(CLIENT) in election thread because it can occasionally
conflict with rep_start(MASTER) in another thread. [#18946]

11. Fixed a bug that would cause handle locks to be left referencing the wrong metadata
page if DB->compact moved the metadata page of a sub-database. [#18944]

12. Fixed a bug that might cause an update to a HASH database to fail with an "unpinned page
returned" error if it first gets an I/O error while logging. [#18985]

13. Fixed a bug that failed to dirty a page when DB->compact moved records within a hash
bucket [#18994]

14. Fixed a bug in page allocation where if a non-transactional update was being done, then
we release the metadata page lock too early possibly leading to the corruption of the in
memory page list used by DB->compact. [#19036]

15. A log write failure on a replication master will now cause a panic since the transaction
may be committed on some clients. [#19054]

16. Removed the possibility that checkpoints will overlap in the log, decreasing the time to
recover [#19062]

17. Fixed a bug that could leave a hash bucket overflow page not linked to the bucket if the
unlink of that page aborted. [#19001]

18. Fixed a bug that would leave the next page pointer of a hash bucket that was removed
pointing to an invalid page. [#19004]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 106

19. Fixed several bugs that could cause an update running with MVCC to get the wrong version
of a page or improperly update the metadata last page number. [#19063]

20. Fixed a bug where an error during an update to a hash database with DB_NOOVERWRITE
set could return DB_KEYEXIST rather than the correct error. [#19077]

21. Fixed a bug where an updater supporting DB_READ_UNCOMMITED might downgrade its
lock too soon if there was an error during the update [#19155]

22. Fixed a bug that could cause the wrong page number to be on a root or metadata page if
DB->compact moved the page and the operation was later rolled forward [#19167]

23. Fixed a bug that could cause the close of a secondary index database to fail if the
transaction doing the open aborted [#19169]

24. The database open code will no longer log the open and close of the master database in a
file when opening a sub database in that file [#19071]

Changes between 11.2.5.0.21 and 11.2.5.0.26

1. Fixed a bug that might cause recovery to fail if processed part of the log that had
previously been recovered and a database which was not present was opened in the log
and not closed. [#18459]

2. Fixed a bug which could occur when using bulk transfer with Replication Manager. When
closing a DB_ENV handle, any remaining bulk buffer contents are flushed, and Replication
Manager could have tried to send the resulting messages even though its connections had
already been closed, leading in rare circumstances to spurious EBADF error reports, or
possibly even arbitrary memory corruption. [#18469]

3. Fixed a bug in C# HasMultiple() that this function always throws exceptions when there
are multiple databases in a single db file. [#18483]

4. Fixed the '--enable-dbm' argument to configure. [#18497]

5. Fixed a bug in the Java API where populating a SecondaryDatabase on open could lead to
an OutOfMemoryException. [#18529]

6. Fixed a bug where DB SQL reports "The database disk image is malformed" in "group by"
operations. [#18531]

7. Fixed a bug that prevented the same process from reconnecting to the database when
DB_REGISTER is being used. [#18535]

8. Fix a race between opening and closing SQL databases from multiple threads that
could lead to the error "DB_REGISTER limits processes to one open DB_ENV handle per
environment". [#18538]

9. Fixed some bugs that could cause a panic or a DB_RUN_RECOVERY error if the sync of the
transaction log failed. [#18588]

10. Fixed a bug which would occur when recovery checkpoint was not written because the
cache ran out of space attempting to flush the mpool cache. The environment was

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 107

recovered and all database where made available, but some databases were incorrectly
closed. This would cause a subsequent recovery to fail on its backward pass with the error
"PANIC: No such file or directory". [#18590]

11. Fixed a bug that segementation fault would occur if DB->set_partition_dirs was called
before DB->set_partition. [#18591]

12. Fixed a bug that the error of "unknown path" would occur if putting duplicate records to
duplicated sorted hash database with DB_OVERWRITE_DUP.[#18607]

13. Fixed a bug where DatabaseConfig.getUnsortedDuplicates() returned true when the
datbase had been configured for sorted duplicates. [#18612]

14. Fixed a bug that could cause recovery to fail with the error "DB_LOGC->get: log record
LSN %u/%u: checksum mismatch" if the last log file was nearly full and ended with a
partially written log record which was smaller than a checkpoint record. It now erases the
invalid partial record before switching to the new log file. [#18651]

15. Initialize DatabaseConfig.pageSize so that it can be queried from Java. [#18691]

16. Fixed a bug that might cause an aborting transaction to fail if it aborted while a DB-
>compact of the same HASH database was compacting the dynamic hash table [#18695]

Changes between 4.8 and 11.2.5.0.21

Database or Log File On-Disk Format Changes

1. The log file format changed in 11.2.5.0.21

New Features

1. Replication Manager sites can specify one or more possible client-to-client peers. [#14776]

2. Added resource management feature in all Berkeley DB APIs to automatically manage
cursor and database handles by closing them when they are not required, if they are not
yet closed.[#16188]

3. Added a SQL interface to the Berkeley DB library. The interface is based on - and a drop-
in-replacement for - the SQLite API. It can be accessed via a command line utility, a C
API, or existing APIs built for SQLite. [#16809]

4. Added hash databases support to the DB->compact interface. [#16936]

5. Renamed the "db_sql" utility to "db_sql_codegen". This utility is not built by default. To
build this utility, enter --enable-sql_codegen as an argument to configure. [#18265]

6. Added transactional support in db_sql_codegen utility. Specify TRANSACTIONAL or
NONTRANSACTIONAL in hint comments in SQL statement, db_sql_codegen enable/disable
transaction in generated code accordingly. [#17237]

7. Added the feature read-your-writes consistency that allows client application to check, or
wait for a specific transaction to be replicated from the master before reading database.
[#17323]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 108

8. Added DB log verification feature, accessible via the API and a new utility. This feature
can help debugging and analysis. [#17420]

9. Added support for applications to assign master/client role explicitly at any time.
Replication Manager can now be configured not to initiate elections. [#17484]

10. Enhanced the DB->compact method so that it can reassign metadata and root pages from
subdatabases to lower numbered pages while compacting a database file that contains
multiple databases. This feature helps to free the higher numbered pages and truncate
the file. [#17554]

11. Added system diagnostic messages that are ON by default. [#17561]

12. Added the feature to assign a priority level to transactions. When resolving a deadlock:

• if the transactions have differing priority, the lowest priority transaction is aborted

• if all transactions have the same priority, the same poilcy that existed before priorities
were introduced is used [#17604]

13. Added a feature in which log_archive uses group-wide information for archiving purposes
if Replication Manager is in use. [#17664]

14. Added a feature by which the Replication Manager application clients now automatically
request any missing information, even when there is no master transaction activity.
[#17665]

15. Added support for sharing logs across mixed-endian systems. [#18032]

16. Added an option to specify the first and last pages to the db_dump utility. You can do this
by providing -F and -L flags to the db_dump -d option. [#18072]

17. Added Intel Performance Primitive (IPP) AES encryption support. [#18110]

18. Removed support for the configuration option --with-mutex=UNIX/fcntl as of version 4.8.
If Berkeley DB was configured to use this type of mutex in an earlier release, switch to a
different mutex type or contact Oracle for support. [#18361]

Database Environment Changes

1. Fixed a bug to reflect the correct configuration of the logging subsystem when the
DB_ENV->log_set_config method is called with the DB_LOG_ZERO flag in a situation where
a DB_ENV handle is open and an environment exists. [#17532]

2. Fixed a bug to prevent memory leak caused when the environment is closed by the named
in-memory database in a private database environment which has open named in-memory
databases. [#17816]

3. Fixd a race condition in an internal directory-scanning function that returns the ENOENT
("No such file or directory") error, if a file is removed just before a call to stat() or its
eqivalent. [#17850]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 109

Access Method Changes

1. Fixed a bug to prevent a page in the hash database from carrying the wrong header
information when a group allocation is rolled forward by recovery. [#15414]

2. Improved the sort function for bulk put operations. [#17440]

3. Fixed a bug in the DB->compact method to ensure locking of leaf pages when merging
higher level interior nodes or when freeing interior nodes when descending to find a non-
zero length key. [#17485][#16466]

4. Fixed a bug to prevent a trap if a cursor is opened or closed when another thread is
adjusting cursors due to an update in the same database. [#17602]

5. Fixed a bug that incorrectly lead to the error message "library build did not include
support for the Hash access method" [#17672]

6. Fixed a bug to ensure that the DB->exists method accepts the DB_AUTO_COMMIT flag.
[#17687]

7. In the past, removing a database from a multi-database file that was opened in an
environment always caused dirty pages in the file to be flushed from the cache. In this
release, there is no implicit flush as part of a DB->remove for handles opened in an
environment. Applications that expect the database file to be flushed will need to add an
explicit flush. [#17775]

8. Fixed a bug so that the code does not loop if a DB->compact operation processed a 3 or
more level non-sorted off page duplicate tree. [#17831]

9. Fixed a bug that could leave pages pinned in the cache if an allocation failed during a DB-
>compact operation. [#17845]

10. Fixed a bug to ensure sequences are closed when an EntityStore is closed. [#17951]

11. Fixed a bug that prevented retrieval of a non-duplicate record with DB_GET_BOTH_RANGE
in hash sorted duplicate db. In a database configured with sorted duplicate support, when
the DBcursor->get method is passed the DB_GET_BOTH_RANGE flag, the data item should
be retrieved that is the smallest value greater than or equal to the value provided by the
data parameter (as determined by the comparison function). [#17997]

12. Fixed a bug that causes the wrong file to be removed if multiple cascading renames are
done in the same transaction. [#18069]

13. Fixed a bug to prevent the DB->compact method specified with the DB_AUTO_COMMIT
flag from acquiring too many locks. [#18072]

14. Fixed a bug that might cause DB->compact on a DB_BTREE database to get a spurious
read lock on the metadata page. If the database was opened non-transactionally the lock
would get left behind. [#18257]

15. Fixed a bug that could lead to btree structure corruption if the DB->compact method ran
out of locks [#18361]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 110

16. Fixed a bug that would generate an error if a non-BDB file was used to create a database
and the DB_TRUNCATE flag was specified. [#18373]

17. Fixed a bug that might cause a trap reading unitialized memory when backing out a merge
of a duplicate tree leaf page during DB->compact. [#18461]

Locking Subsystem Changes

1. Fixed a bug to ensure deadlock detection works even when there are blocked
transactions, configured with and without timeouts. [#17555]

2. Fixed a bug to ensure a call to the DB->key_range method from outside a transaction does
not lock pages. [#17930]

3. Fixed a bug that could cause a segmentation fault if the lock manager ran out of mutexes
[#18428]

Logging Subsystem Changes

1. Limited the size of a log record generated by freeing pages from a database, so that it fits
in the log file size. [#17313]

Memory Pool Subsystem Changes

1. Fixed a bug to ensure mulitple versions of a buffer are not created when MVCC is not set.
[#17495]

2. Fixed a bug to detect if cache size is being set when the cache is not configured. [#17556]

3. Fixed a bug to ensure the error message "unable to allocate space from the buffer cache"
generated when there is still some space available, can be cleared by running recovery.
[#17630]

4. Fixed a race condition that causes an operation to return EPERM when the buffer cache is
nearly filled with pages belonging to recently closed queue extents. [#17840]

5. Fixed a bug that could cause a page needed by a snapshot reader to be overwritten rather
than copied when it was freed. [#17973]

6. Enabled set_mp_pagesize to be specified in the DB_CONFIG file. [#18015]

7. Fixed a bug to ensure single-version or obsolete buffers were selected over any
intermediate version. [#18114]

Mutex Subsystem Changes

1. Fixed a bug on HP-UX when specifying --with-mutex=HP/msem_init during configure.
It would generate the error "TAS: mutex not appropriately aligned" at runtime, when
initializing the first mutex. [#17489]

2. Fixed a race condition which could cause unnecessary retrying of btree searches when
several threads simulatenously attempted to get a shared latch. [#18078]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 111

3. Exclusive Transactions have been implemented for the SQL API. See the documentation
for details on the behavior of this feature. [#17822]

Tcl-specific API Changes

1. Fixed a bug in Tcl API to prevent a segmentation fault from occurring when the
get_dbname method is called to get the db name and the db handle is opened without
providing either the filename or dbname. [#18037]

C#-specific API Changes

1. Fixed a bug in C# to prevent a System.AccessViolationException from occurring on
Windows7 when trying to open new database. [#18422]

2. Fixed a bug in the C# API to make DB_COMPACT consistent with __db_compact in teh C
API. [#18246]

API Changes

1. Added the dbstl_thread_exit method to release thread specific resouces on thread exit.
[#17595]

2. Fixed the parser to allow configuration API flags set in the DB_CONFIG file to accept an
optional ON/OFF string. The DB_REP_CONF_NOAUTOINIT flag has been removed. It is
replaced by DB_REP_CONF_AUTOINIT. However, replication's default behavior remains the
same. [#17795]

Replication Changes

1. Fixed bug where a not-in-sync client could service a peer request. [#18279]

2. Fixed bug where page gaps, once filled, would not immediately request the next page gap
it finds. This was already fixed for logs. [#18219]

3. Fixed a bug so that only one thread waits for the meta-page lock during internal
initialization and broadcasts out the information rather than all threads waiting. Removed
the former retry code. [#17871]

4. Added a feature by which the DB->open method now allows the DB_CREATE flag on a
replication client. It is ignored, but this allows a replication application to make one call
that can work on either master or client. It fixes a possible race that could develop in a
Replication Manager application if a call to DB->open is made around the same time as a
master/client role change. [#15167]

5. The DB_ENV->repmgr_site_list method now returns an indication on whether the site is a
client-to-client peer. [#16113]

6. Fixed a bug that could occasionally lead to elections failing to complete. [#17105]

7. Fixed a bug that could cause DB_ENV->txn_stat to trap. [#17198]

8. Added a new JOIN_FAILURE event to notify Replication Manager applications which refuse
auto-initialization. [#17319]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 112

9. Fixed a bug where a failed master lease check at a client site causes an ASSERT when
processing a master lease grant at the master site. [#17869]

10. Fixed a bug to ensure a second simultaneous call to the DB_ENV->rep_elect method does
not incorrectly clear a bit flag. [#17875]

11. Fixed a bug in client-side autoremoval of log files. [#17899]

12. Removed the likelihood of dual data streams to enhance network traffic. [#17955]

13. Fixed a bug such that non-txn dup cursors are accounted for in the replication API
lockout. [#18080]

14. Fixed a bug to ensure checking for other sync states for the rerequest thread. [#18126]

15. Fixed a bug to avoid getting stuck in an election forever. [#18151]

16. Fixed a bug where using client-to-client synchronization with Master Leases could have
resulted in failure of a new master to get initial lease grants from sufficient number of
clients, resulting in a master environment panic. [#18254]

17. Fixed a bug which had prevented Replication Manager socket operations from working on
HP/UX systems. [#18382]

18. Fixed a bug where starting as a client in multiple threads after receiving dupmaster
messages could have resulted in a failure to find a new log file, resulting in a panic.
[#18388]

19. The default thread stack size is no longer overridden by default for Berkeley DB threads.
[#18383]

Transaction Subsystem Changes

1. Fixed a bug that caused transactions to deadlock on the mutex in the sequence object.
[#17731]

2. Fixed a bug to ensure that the failure checking mechanism reconstructs child transactions
correctly when a process dies with active sub-transactions. [#18154]

3. Removed a memory leak during recovery related to a deleted database [#18273]

Utility Changes

1. Fixed compiler warnings in the db_sql_codegen utility. [#17503]

2. Enhanced the db_recover -v utility to display the message, "No log files found", if no logs
are present. [#17504]

3. Modified the db_verify utility to verify all files instead of aborting on the first failure.
[#17513]

4. Modified the db_verify utility to display a message after verification is completed.
[#17545]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 113

5. Fixed a bug in the db_sql_codegen utility where the primary key is stored in both key and
data fields. Removed it from the data field. [#17925]

Example Changes

1. Fixed a bug that causes the ex_txn C# example to hang. [#17376]

2. Fixed Solaris alignment issues in Stl port test code. [#17459]

3. Added GCC 4.4 compatibility support for all examples. [#17584]

4. Added new command line arguments(-h and -d) to the env examples. [#17624]

5. Fixed configuration problems related to running java API tests. [#17625]

6. Updated the bench_001 example to include bulk testing examples. [#17766]

7. Added a new Stl example to demo advanced feature usage. The Stl test cases referred
earlier are replaced by these new examples in the Stl reference document. [#18175]

Deprecated Features

1. The configuration options --disable-cryptography and --enable-cryptoraphy are being
deprecated. [#18110]

Configuration, Documentation, Sample Apps, Portability and Build Changes

1. Remove build files for Windows Visual Studio 6.0. [#16848]

2. Added an API, DBENV->db_full_version, to return db full version.

3. Berkeley DB no longer supports Win9X, Windows Me (Millenium edition) and NT 4.0. The
minimum supported windows platform is Win 2k.

4. Berkeley DB no longer supports Visual Studio 6.0. The earliest version supported is Visual
Studio 2005.

5. Added "+u1" to CFLAGS for HP ANSI C Compiler on HP-UX(IA64) to fix the alignment issue
found with the allocation functions DB->set-alloc and DB_ENV->set_alloc. [#17257]

6. Fixed a bug such that the thread local storage (TLS) definition modifier is correctly
deduced from the m4 script on all platforms. [#17609][#17713]

7. Fixed a bug such that TLS key is not initialized on platforms which do not support thread
local storage (TLS) keywords, such as MAC OSX, and where TLS is implemented using
pthread API. [#18001]

8. Fixed a bug to ensure that when using Intel C++ compiler (icpc), the TLS code builds
successfully. A stricter criteria is adopted to deduce the TLS keyword, and hence pthread
API is more likely to be used to implement TLS. [#18038]

9. Adding new configuration option, --with-cryptography={yes|no|ipp}. Using --with-
cryptography=yes, will give equivalent behavior to the old --enable-cryptography

Library Version 11.2.5.2 Upgrading Berkeley DB 4.8 applications to
Berkeley DB 11.2.5.0

6/10/2011 DB Installation Guide Page 114

option. Using --with-cryptography=no, will give equivalent behavior to the old --disable-
cryptography option. Using --with-cryptograhy=ipp will enable Intel's Performance
Primitive (IPP) encryption on linux. [#18110]

Known Bugs

1. The configure option --with-uniquename may cause macro redefinition warnings on
platforms where BDB implements parts of the standard C library. These warnings (e.g.,
'"db_int_def.h", line 586: warning: macro redefined: strsep') may occur when functions in
the "clib" directory are included during configuration. This cosmetic affect does not affect
the correct operation of the library. [#17172]

2. A multithreaded application using a private environment and multi-version concurrency
control could, on very rare occasions, generate an illegal pointer access error during the
final steps of a clean environment shutdown. [#17507]

3. Although rare, it is possible for a partial log record header at the end of a transaction log
to be erroneously accepted as if it were valid, causing the error "Illegal record type 0 in
log" during recovery. [#17851]

4. It is possible to get the error "unable to allocate space from the buffer cache" when there
are disk errors on the freezer files used by multi-version concurrency control . [#17902]

5. Java API does not support partitioning by keys and the C# API doesn't support partitioning.
[#18350]

6. If a database is removed from an environment and it was still opened transactionally and
recovery is run, then a future recovery that must process that part of the log may fail.
[#18459]

7. Replication "bulk transfer" does not work if Berkeley DB is unable to determine, at
environment open time, whether the Replication Manager will be used. To work
around this problem, an application using the Replication Manager should call DB_ENV-
>repmgr_set_local_site() before opening the environment. An application using the
replication Base API should call DB_ENV->rep_set_transport() before opening the
environment. [#18476]

8. The BTree prefix comparison function behaves slightly differently in the C API vs the C#
API. In the C# API it returns a signed int and in the C API it returns an unsigned int. This
can be a problem if the application needs to save more than 2^31 bytes.

6/10/2011 DB Installation Guide Page 115

Chapter 12. Upgrading Berkeley DB 4.7
applications to Berkeley DB 4.8

Introduction

The following pages describe how to upgrade applications coded against the Berkeley DB
4.7 release interfaces to the Berkeley DB 4.8 release interfaces. This information does not
describe how to upgrade Berkeley DB 1.85 release applications.

Registering DPL Secondary Keys

Entity subclasses that define secondary keys must now be registered prior to storing an
instance of the class. This can be done in two ways:

• The EntityModel.registerClass() method may be called to register the subclass before
opening the entity store.

• The EntityStore.getSubclassIndex() method may be called to implicitly register the
subclass after opening the entity store.

Failure to register the entity subclass will result in an IllegalArgumentException the first
time an attempt is made to store an instance of the subclass. An exception will not occur if
instances of the subclass have previously been stored, which allows existing applications to
run unmodified in most cases.

This behavioral change was made to increase reliability. In several cases, registering an entity
subclass has been necessary as a workaround. The requirement to register the subclass will
ensure that such errors do not occur in deployed applications.

Minor Change in Behavior of DB_MPOOLFILE->get

DB 4.8 introduces some performance enhancements, based on the use of shared/exclusive
latches instead of locks in some areas of the internal buffer management code. This change
will affect how the DB_MPOOL interface handles dirty buffers.

Because of these changes, DB_MPOOLFILE->get will now acquire an exclusive latch on the
buffer if the DB_MPOOL_DIRTY or DB_MPOOL_EDIT flags are specified. This could lead to an
application deadlock if the application tries to fetch the buffer again, without an intervening
DB_MPOOLFILE->put call.

If your application uses the DB_MPOOL interface, and especially the DB_MPOOL_DIRTY and
DB_MPOOL_EDIT flags, you should review your code to ensure that this behavior change does
not cause your application to deadlock.

Dropped Support for fcntl System Calls

Berkeley DB no longer supports mutex implementations based on the fcntl system call. If you
have been configuring Berkeley DB to use this type of mutex, you need to either switch to a
different mutex type or contact the Berkeley DB team for support.

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 116

Upgrade Requirements

The log file format changed in the Berkeley DB 4.8 release.

No database formats changed in the Berkeley DB 4.8 release.

The Berkeley DB 4.8 release does not support live replication upgrade from the 4.2 or 4.3
releases, only from the 4.4 and later releases.

For further information on upgrading Berkeley DB installations, see the Berkeley DB Upgrade
Guide.

Berkeley DB 4.8.28 Change Log

Changes between 4.8.26 and 4.8.28:

1. Limit the size of a log record generated by freeing pages from a database so it fits in the
log file size. [#17313]

2. Fix a bug that could cause a file to be removed if it was both the source and target of two
renames within a transaction. [#18069]

3. Modified how we go about selecting a usable buffer in the cache. Place more emphasis on
single version and obsolete buffers. [#18114]

Known bugs in 4.8

1. Sharing logs across mixed-endian systems does not work.[#18032]

Changes between 4.8.24 and 4.8.26:

1. Fixed a bug where the truncate log record could be too large when freeing too many
pages during a compact. [#17313]

2. Fixed a bug where the deadlock detector might not run properly. [#17555]

3. Fixed three bugs related to properly detecting thread local storage for DbStl. [#17609]
[#18001] [#18038]

4. Fixed a bug that prevented some of our example code from running correctly in a
Windows environment. [#17627]

5. Fixed a bug where a "unable to allocate space from buffer cache" error was improperly
generated. [#17630]

6. Fixed a bug where DB->exists() did not accept the DB_AUTO_COMMIT flag. [#17687]

7. Fixed a bug where DB_TXN_SNAPSHOT was not getting ignored when DB_MULTIVERSION
not set. [#17706]

8. Fixed a bug that prevented callback based partitioning through the Java API. [#17735]

http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf
http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 117

9. Fixed a replication bug where log files were not automatically removed from the client
side. [#17899]

10. Fixed a bug where code generated from db_sql stored the key in both the data and key
DBTs. [#17925]

11. Fixed a bug that prevented a sequence from closing properly after the EntityStore closed.
[#17951]

12. Fixed a bug where gets fail if the DB_GET_BOTH_FLAG is specified in a hash, sorted
duplicates database.[#17997]

Changes between 4.8.21 and 4.8.24:

1. Fixed a bug in the C# API where applications in a 64-bit environment could hang. [#17461]

2. Fixed a bug in MVCC where an exclusive latch was not removed when we couldn't obtain a
buffer. [#17479]

3. Fixed a bug where a lock wasn't removed on a non-transactional locker. [#17509]

4. Fixed a bug which could trigger an assertion when performing a B-tree page split and
running out of log space or with MVCC enabled. [#17531]

5. Fixed a bug in the repquote example that could cause the application to crash. [#17547]

6. Fixed a couple of bugs when using the GCC 4.4 compiler to build the examples and the
dbstl API. [#17504] [#17476]

7. Fixed an incorrect representation of log system configuration info. [#17532]

Changes between 4.7 and 4.8.21:

Database or Log File On-Disk Format Changes:

1. The log file format changed in 4.8.

New Features:

1. Improved scalability and throughput when using BTree databases especially when running
with multiple threads that equal or exceed the number of available CPUs.

2. Berkeley DB has added support for C#. In addition to the new C# api, C# specific tests and
sample applications were also added. [#16137]

3. Berkeley DB has added an STL API, which is compatible with and very similar to C++
Standard Template Library (STL). Tests and sample applications and documentation were
also added. [#16217]

4. Berkeley DB has added database partitioning. BTree or Hash databases may now be
partitioned across multiple directories. Partitioned databases can be used to increase

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 118

concurrency and to improve performance by spreading access across disk subsystems.
[#15862]

5. Berkeley DB now supports bulk insertion and deletion of data. Similar to the bulk get
interface, the bulk put and bulk delete allow the developer to populate a buffer of key-
value pairs and then pass it to the BDB library with a single API call.

6. Berkeley DB now supports compression when using BTree.

7. Berkeley DB introduces a new utility named db_sql which replaces db_codegen. Similar
to db_codegen, db_sql accepts an input file with DDL statements and generates a
Berkeley DB application using the C API that creates and performs CRUD operations on the
defined tables. The developer can then use that code as a basis for further application
development.

8. The Replication Manager now supports shared access to the Master database environment
from multiple processes. In earlier versions, multiple process support on the Master
required use of the Base Replication API. [#15982]

9. Foreign Key Support has been added to Berkeley DB.

10. Several enhancements were made to DB_REGISTER & DB_ENV->failchk().

11. Berkeley now supports 100% in-memory replication.

12. Berkeley DB now has the ability to compare two cursors for equality. [#16811]

Database Environment Changes:

1. Fixed a bug that could cause an allocation error while trying to allocate thread tracking
information for the DB_ENV->failcheck system. [#16300]

2. Fixed a bug that could cause a trap if an environment open failed and failchk thread
tracking was enabled.[#16770]

Concurrent Data Store Changes:

None.

General Access Method Changes:

1. Fixed a bug where doing an insert with secondary indices and the NOOVERWRITE flag
could corrupt the secondary index. [#15912]

2. Fixed a possible file handle leak that occurred while aborting the create of a database
whose metadata page was not initialized. [#16359]

3. Fixed a bug so that we now realloc the filename buffer only if we need it to grow.
[#16385] [#16219]

4. Fixed a race freeing a transaction object when using MVCC. [#16381]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 119

5. Added missing get methods for the DB and DB_ENV classes where there already was a
corresponding set method. [#16505]

6. Fixed a bug to now ensure that DB_STAT_SUBSYSTEM is distinct from other stat flags.
[#16798]

7. Fixed a bug related to updating multiple secondary keys (using DB_MULTIPLE). [#16885]

8. Fixed a bug so that verify (db->verify, db_verify) will now report when it cannot read a
page rather than just saying the database is bad. [#16916]

9. Fixed a bug that could cause memory corruption if a transaction allocating a page aborted
while DB->compact was running on that database. [#16862]

10. Fixed a bug where logging was occurring during remove of an in-memory database when
the DB_TXN_NOT_DURABLE flag was set. [#16571]

11. Fixed a bug to remove a race condition during database/file create. [#17020]

12. Fixed a bug where a call to DB->verify and specifying DB_SALVAGE could leak memory
when the call returned. [#17161]

13. Fixed a bug to avoid accessing freed memory during puts on primaries with custom
comparators. [#17189]

14. Fixed a bug that could cause old versions of pages to be written over new versions if an
existing database is opened with the DB_TRUNCATE flag. [#17191]

Btree Access Method Changes:

1. Fixed a bug which could cause DB->compact to fail with DB_NOTFOUND or
DB_PAGE_NOTFOUND if the height of the tree was reduced by another thread while
compact was active. The bug could also cause a page split to trigger splitting of internal
nodes which did not need to be split. [#16192]

2. Fixed a bug that caused Db->compact to loop if run on an empty RECNO database when
there were pages in the free list. [#16778]

3. Added a new flag, DB_OVERWRITE_DUP, to DB->put and DBC->put. This flag is equivalent
to DB_KEYLAST in almost all cases: the exception is that with sorted duplicates, if a
matching key/data pair exists, we overwrite it rather than returning DB_KEYEXIST.
[#16803]

Hash Access Method Changes:

1. Fixed a bug to now force a group allocation that rolls forward to reinit all the pages.
Otherwise a previous aborted allocation may change the header. [#15414]

2. Fixed a bug to now return the expected buffer size on a DB_BUFFER_SMALL condition.
[#16881]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 120

Queue Access Method Changes:

1. Fixed a bug that would cause the LSN reset functionality to not process queue extents.
[#16213]

2. Fixed a bug that prevented a partial put on a queue database with secondaries
configured. [#16460]

3. Fixed a bug to now prevent an unpinned page to be returned if a delete from a HASH
database deadlocked. [#16371]

4. Fixed a bug that could cause a queue extent to be recreated if an application deleted a
record that was already deleted in that extent. [#17004]

5. Added the DB_CONSUME flag to DB->del and DBC->del to force adjustment of the head of
the queue. [#17004]

Recno Access Method Changes:

1. Fixed a bug which could cause DB->compact of a RECNO database to loop if the number of
pages on the free list was reduced by another thread while compact was active. [#16199]

2. Fixed a bug that occurs when deleting from a Recno database and using
DB_READ_UNCOMMITTED where we could try to downgrade a lock twice. [#16347]

3. Fixed a bug to now disallow passing DB_DUP and DB_RECNUM together to __db_set_flags.
[#16585]

C-specific API Changes:

1. Add get functions for each set functions of DB and DB_ENV structures which didn't have
one.[#16505]

C++-specific API Changes:

1. The get and set_lk_partitions methods are now available.

2. Add get functions for each set functions of Db and DbEnv classes which didn't have one.
[#16505]

3. Fixed a memory leak when using nested transactions.[#16956]

Java-specific API Changes:

1. Fixed a bug where the replication finer-grained verbose flags were not available in the
Java API. [#15419]

2. Fixed a bug in the BTree prefix compression API when called from the Java API. DBTs were
not properly initialized. [#16417]

3. Fixed a bug so that LogCursor will work correctly from the Java API. [#16827]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 121

4. Fixed a bug so that position(), limit() and capacity() of ByteBuffers are obeyed by
DatabaseEntry objects. [#16982]

Direct Persistence Layer (DPL), Bindings and Collections API:

1. The StoredMap class now implements the standard java.util.concurrent.ConcurrentMap
interface. [#15382]

2. Report a meaningful IllegalArgumentException when @Persistent is incorrectly declared
on an enum class. Before, the confusing message Persistent class has non-persistent
superclass: java.lang.Enum was reported. [#15623]

3. Report a meaningful IllegalArgumentException when @Persistent is incorrectly declared
on an interface. Before, a NullPointerException was reported. [#15841]

4. Several validation checks have been added or corrected having to do with entity
subclasses, which are @Persistent classes that extend an @Entity class. [#16077]

5. Optimized marshaling for large numbers of embedded objects improving performance.
[#16198]

6. The StoredMap class now implements the Java 1.5 ConcurrentMap interface. [#16218]

7. Fix a DPL bug that caused exceptions when using a class Converter for an instance
containing non-simple fields. [#16233]

8. Add EntityCursor.setCacheMode and getCacheMode. See the com.sleepycat.je.CacheMode
class for more information. [#16239]

9. Fix a bug that prevents evolution of @SecondaryKey information in an entity subclass (a
class that extends an @Entity class). [#16253]

10. Report a meaningful IllegalArgumentException when @Persistent or @Entity is incorrectly
used on an inner class (a non-static nested class). Before, the confusing message No
default constructor was reported. [#16279]

11. Improved the reliability of Entity subclasses that define secondary keys by requiring that
they be registered prior to storing an instance of the class. [#16399]

12. Fix a bug that under certain circumstances causes "IllegalArgumentException: Not a
key class" when calling EntityStore.getSubclassIndex, EntityStore.getPrimaryConfig,
EntityStore.getSecondaryConfig, or PrimaryIndex.put, and a composite key class is used.
[#16407]

13. Fixed a bug so that one can now compile DPL in the Java API on Windows. [#16570]

14. The com.sleepycat.collections.TransactionRunner.handleException method has been
added to allow overriding the default transaction retry policy. See the javadoc for this
method for more information. [#16574]

15. Fix a bug that causes an assertion to fire or a NullPointerException (when assertions are
disabled) from the EntityStore constructor. The problem occurs only when the previously

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 122

created EntityStore contains an entity with a secondary key definition in which the key
name has been overridden and is different than the field name. [#16819]

16. Key cursors have been optimized to significantly reduce I/O when the
READ_UNCOMMITTED isolation mode is used. See EntityIndex.keys for more information.
[#16859]

17. Report a meaningful IllegalArgumentException when NULLIFY is used with a
@SecondaryKey and the field is a primitive type. Before, the confusing message Key field
object may not be null was reported. [#17011]

18. Enum fields may now be used as DPL keys, including primary keys, secondary keys, and
fields of composite key classes. Comparators are supported for composite key classes
containing enum fields. [#17140]

19. Fix a bug that prevented the use of custom key comparisons (composite key classes that
implement Comparable) for secondary keys defined as ONE_TO_MANY or MANY_TO_MANY.
[#17207]

20. The db.jar file now contains a Premain class which enables bytecode enhancement
using the JVM instrumentation commands. The built-in proxy classes are also now
enhanced in the db.jar file, which enables off-line bytecode enhancement. For more
information on DPL bytecode enhancement and how to use both instrumentation and off-
line enhancement, please see the com.sleepycat.persist.model.ClassEnhancer javadoc.
[#17233]

Tcl-specific API Changes:

1. The mutex API is now available when using Tcl. [#16342]

RPC-specific Client/Server Changes:

• RPC support has been removed from Berkeley DB. [#16785]

Replication Changes:

1. Improved testing of initial conditions for rep and repmgr APIs and added heartbeat
timeouts to rep_get_timeout.[#14977]

2. Added DB_REP_CONF_INMEM replication configuration flag to store replication
information exclusively in-memory without creating any files on-disk. [#15257]

3. Added repmgr support for multi-process shared env [#15982]

4. Fixed a bug where opening a cursor from a database handle failed to check whether
the database handle was still fresh. If the database handle had been invalidated by a
replication client synchronizing with a new master, it could point to invalid information.
[#15990]

5. Fixed a bug so that if LOG_REQ gets an archived LSN, replication sends VERIFY_FAIL.
[#16004]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 123

6. Added timestamp and process/thread id to replication verbose messages. [#16098]

7. Fixed a bug where, in very rare circumstances, two repmgr sites could connect to each
other at the exact same time, the connection attempts "collide" and fail, and the same
collision repeats in time synchronization indefinitely. [#16114]

8. Fixed a bug where a missing database file (FILE_FAIL error condition) can interrupt a
client synchronization without restarting it. [#16130]

9. Fixed a bug by adding REP_F_INREPSTART flag to prevent racing threads in rep_start.
[#16247]

10. Fixed a bug to not return HOLDELECTION if we are already in the middle of an election.
Updated the egen so the election thread will notice. [#16270]

11. Fixed a bug in buffer space computation, which could have led to memory corruption in
rare circumstances, when using bulk transfer. [#16357]

12. Fixed a bug that prevented replication clients from opening a sequence. The sequence is
opened for read operations only. [#16406]

13. Fixed a bug by removing an assertion about priority in elections. It is not correct because
it could have changed by then. Remove unused recover_gen field. [#16412]

14. Fixed a bug to now ignore a message from client if it is an LSN not recognized in a
LOG_REQ. [#16444]

15. Fixed a bug so that on POSIX systems, repmgr no longer restores default SIGPIPE action
upon env close, if it was necessary to change it during start-up. This allows remaining
repmgr environments within the same process, if any, to continue operating after one of
them is closed. [#16454]

16. After a replication client restarts with recovery, any named in-memory databases are
now re-materialized from the rest of the replication group upon synchronization with the
master. [#16495]

17. Fixed a bug by adding missing rep_get_config flags. [#16527]

18. Instead of sleeping if the bulk buffer is in transmission, return so that we can send as a
singleton. [#16537]

19. Fixed a bug by changing __env_refresh to not hit assert on -private -rep env with an in-
memory database. [#16546]

20. Fixed a bug in the Windows implementation of repmgr where a large number of commit
threads concurrently awaiting acknowledgments could result in memory corruption, and
leaking Win32 Event Objects. [#16548]

21. Fixed a bug by changing repmgr to count a dropped connection when noticing a lacking
heartbeat; fixed hearbeat test to check for election, rather than connection drop count,
and more reasonable time limit; fixed test to poll until desired result, rather than always
sleeping max possible time. [#16550]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 124

22. Fixed "master changes" stat to count when local site becomes master too. [#16562]

23. Fixed a bug where a c2c client would send UPDATE_REQ to another client [#16592]

24. Removed code to proactively expire leases when we don't get acks. Leases maintain their
own LSNs to know. [#16494]

25. Fixed a bug where a client may not sync pages during internal init. [#16671]

26. Fixed a bug where a client that received and skipped a log record from the master during
an election, then won the election, could then try to request a copy of the skipped log
record. The result was an attempt to send a request to the local site, which is invalid:
this could confuse a replication Base API application, or cause the Replication Manager to
crash. [#16700]

27. Fixed a bug which could have caused data loss or corruption (at the client only) if a
replication client rolled back existing transactions in order to synchronize with a new
master, and then crashed/recovered before a subsequent checkpoint operation had been
replicated from the master. [#16732]

28. Fixed a bug so that replication now retries on DB_LOCK_NOTGRANTED. [#16741]

29. Fixed a potential deadlock in rep_verify_fail. [#16779]

30. Fixed a bug so that an application will no longer segv if nsites given was smaller than
number of sites that actually exists. [#16825]

XA Resource Manager Changes:

1. The XA Resource Manager has been removed from Berkeley DB. [#6459]

Locking Subsystem Changes:

1. Fixed a bug to prevent unlocking a mutex twice if we ran out of transactional locks.
[#16285]

2. Fixed a bug to prevent a segmentation trap in __lock_open if there were an error during
the opening of an environment. [#16307]

3. Fixed a bug to now avoid a deadlock if user defined locks are used only one lock partition
is defined.[#16415]

4. Fixed concurrency problems in __dd_build, __dd_abort by adding LOCK_SYSTEM_LOCK()
calls to __dd_build and __dd_abort. [16489]

5. Fixed a bug that could cause a panic if a transaction which updated a database that was
supporting READ_UNCOMMITED readers aborted and it hit a race with a thread running the
deadlock detector. [#16490]

6. Fixed a race condition in deadlock detection that could overwrite heap. [#16541]

7. Fixed a bug so that DB_STAT_CLEAR now restores the value of st_partitions. [#16701]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 125

Logging Subsystem Changes:

1. Fixed a bug so that the header checksum is only ignored when the log is from a previous
version [#16281]

2. Fixed a bug by removing a possible race condition with logc_get(DB_FIRST) and log
archiving. [#16387]

3. Fixed a bug that could cause a recovery failure of a create of a database that was
aborted. [#16824]

4. An in-memory database creation has an intermediate phase where we have a semi-open
DBP. If we crash in that state, then recovery was failing because it tried to use a partically
open database handle. This fix checks for that case, and avoids trying to undo page writes
for databases in that interim step. [#17203]

Memory Pool Subsystem Changes:

1. Fixed a bug that occurred after all open handles on a file are closed. Needed to clear the
TXN_NOT_DURABLE flag (if set) and mark the file as DURABLE_UNKNOWN in the memory
pool. [#16091]

2. Fixed a possible race condition between dirtying and freeing a buffer that could result in
a panic or corruption. [#16530]

3. Fixed a memory leak where allocated space for temporary file names are not released.
[#16956]

Mutex Subsystem Changes:

1. Fixed a bug when using mutexes for SMP MIPS/Linux systems. [#15914]

2. POSIX mutexes are now the default on Solaris. [#16066]

3. Fixed a bug in mutex allocation with multiple cache regions. [#16178]

4. Fixed MIPS/Linux mutexes in 4.7. [#16209]

5. Fixed a bug that would cause a mutex to be unlocked a second time if we ran out of space
while tracking pinned pages. [#16228]

6. Fixed a bug Sparc/GCC when using test-and-set mutexes. They are now aligned on an 8-
byte boundary. [#16243]

7. Fixed a bug to now prevent a thread calling DB_ENV->failcheck to hang on a mutex held
by a dead thread. [#16446]

8. Fixed a bug so that __db_pthread_mutex_unlock() now handles the failchk case of finding
a busy mutex which was owned by a now-dead process. [#16557]

9. Removed support for the mutex implementation based on the "fcntl" system call. Anyone
configuring Berkeley DB to use this type of mutex in an earlier release will need to either
switch to a different mutex type or contact Oracle for support. [#17470]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 126

Test Suite Changes

1. Fixed a bug when using failchk(), where a mutex was not released. [#15982]

2. Added a set of basic repmgr tests to run_std and run_all. [#16092]

3. Added control wrapper for db_reptest to test suite. [#16161]

4. Fixed a bug to now skip tests if db_reptest is not configured. [#16161]

5. Changed name of run_db_in_mem to run_inmem_db, and run_inmem to run_inmem_log
and made the arg orders consistent. [#16358]

6. Fixed a bug to now clean up stray handles when rep_verify doesn't work. [#16390]

7. Fixed a bug to avoid db_reptest passing the wrong flag to repmgr_start when there is
already a master. [#16475]

8. Added new tests for abbreviated internal init. Fixed test not to expect in-memory
database to survive recovery. [#16495]

9. Fix a bug, to add page size for txn014 if the default page size is too small. Move files
instead of renaming directory for env015 on QNX. [#16627]

10. Added new rep088 test for log truncation integrity. [#16732]

11. Fixed a bug by adding a checkpoint in rep061 to make sure we have messages to process.
Otherwise we could hang with client stuck in internal init, and no incoming messages to
trigger rerequest. [#16781]

Transaction Subsystem Changes:

1. Fixed a bug to no longer generate an error if DB_ENV->set_flags (DB_TXN_NOSYNC) was
called after the environment was opened. [#16492]

2. Fixed a bug to remove a potential hang condition in replication os_yield loops when
DB_REGISTER used with replication by adding PANIC_CHECKS. [#16502]

3. Fix a bug to now release mutex obtained before special condition returns in
__db_cursor_int and __txn_record_fname. [#16665]

4. Fixed a leak in the transaction region when a snapshot update transaction accesses more
than 4 databases. [#16734]

5. Enabled setting of set_thread_count via the DB_CONFIG file. [#16878]

6. Fixed a mutex leak in some corner cases. [#16665]

Utility Changes:

1. The db_stat utility with the -RA flags will now print a list of known remote replication
flags when using repmgr. [#15484]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 127

2. Restructured DB salvage to walk known leaf pages prior to looping over all db pages.
[#16219]

3. Fixed a problem with upgrades to 4.7 on big endian machines. [#16411]

4. Fixed a bug so that now db_load consistently returns >1 on failure. [#16765]

5. The db_dump utility now accepts a "-m" flag to dump information from a named in-
memory database. [#16896]

6. Fixed a bug that would cause db_hotbackup to fail if a database file was removed while it
was running. [#17234]

Configuration, Documentation, Sample Application, Portability and Build
Changes:

1. Fixed a bug to now use the correct Perl include path. [#16058]

2. Updated the version of the Microsoft runtime libraries shipped. [#16058]

3. Upgraded the Visual Studio build files to be based on Visual Studio 8 (2005+). The build is
now simplified. Users can still upgrade the Visual Studio 6.0 project files, if they want to
use Visual Studio .NET (7.1) [#16108]

4. Expanded the ex_rep example with checkpoint and log archive threads, deadlock
detection, new options for acknowledgment policy and bulk transfer, and use of
additional replication features and events. [#16109]

5. Fixed a bug so that optimizations on AIX are re-enabled, avoiding incorrect code
generation. [#16141]

6. Removed a few compiler warnings and three type redefinitons when using vxworks and
the GNU compiler. [#16341]

7. Fixed a bug on Sparc v9 so that MUTEX_MEMBAR() now uses membar_enter() to get a
#storeload barrier rather than just stbar's #storestor. [#16468]

8. Berkeley DB no longer supports Win9X and Windows Me (Millenium edition).

9. Fixed lock_get and lock_vec examples from the Java (and C#) API. Updated the Java lock
example. [#16506]

10. Fixed a bug to correctly handle the TPC-B history record on 64-bit systems. [#16709]

11. Add STL API to Linux build. Can be enabled via the --enable-stl flag. [#16786]

12. Add STL API to Windows build, by building the db_stl project in the solution. There are
also stl's test and examples projects in this solution. [#16786]

13. Add support to build dll projects for WinCE, in order to enable users to build DB into a dll
in addition to a static library.[#16625]

Library Version 11.2.5.2 Upgrading Berkeley DB 4.7 applications to
Berkeley DB 4.8

6/10/2011 DB Installation Guide Page 128

14. Fixed a weakness where several malloc/realloc return values are not checked before use.
[#16664]

15. Enabled DB->compact for WinCE.[#15897]

16. HP-UX 10 is no longer supported.

6/10/2011 DB Installation Guide Page 129

Chapter 13. Test Suite

Running the test suite

Once you have started tclsh and have loaded the test.tcl source file (see Running the test
suite under UNIX (page 60) and Running the test suite under Windows (page 33) for more
information), you are ready to run the test suite. At the tclsh prompt, to run the standard test
suite, enter the following:

% run_std

A more exhaustive version of the test suite runs all the tests several more times, testing
encryption, replication, and different page sizes. After you have a clean run for run_std, you
may choose to run this lengthier set of tests. At the tclsh prompt, enter:

% run_all

Running the standard tests can take from several hours to a few days to complete, depending
on your hardware, and running all the tests will take at least twice as long. For this reason,
the output from these commands are redirected to a file in the current directory named
ALL.OUT. Periodically, a line will be written to the standard output, indicating what test is
being run. When the test suite has finished, a final message will be written indicating the test
suite has completed successfully or that it has failed. If the run failed, you should review the
ALL.OUT file to determine which tests failed. Errors will appear in that file as output lines,
beginning with the string "FAIL".

Tests are run in the directory TESTDIR, by default. However, the test files are often large, and
you should use a filesystem with at least several hundred megabytes of free space. To use a
different directory for the test directory, edit the file include.tcl in your build directory, and
change the following line to a more appropriate value for your system:

set testdir ./TESTDIR

For example, you might change it to the following:

set testdir /var/tmp/db.test

Alternatively, you can create a symbolic link named TESTDIR in your build directory to an
appropriate location for running the tests. Regardless of where you run the tests, the TESTDIR
directory should be on a local filesystem. Using a remote filesystem (for example, an NFS
mounted filesystem) will almost certainly cause spurious test failures.

Running SQL Test Suite on Unix

Once the test suite is built (see Building SQL Test Suite on Unix (page 60) for more
information), run the entire test suite by executing the following command in the ../
build_unix/sql directory:

sh ../../sql/adapter/bdb-test.sh

This runs a set of tests and lists the errors each test encountered, if any. A detailed list of the
test results is written to test.log.

Library Version 11.2.5.2 Test Suite

6/10/2011 DB Installation Guide Page 130

To run an individual test, such as insert.test, execute the following command in the ../
build_unix/sql directory:

./textfixture ../../sql/sqlite/test/insert.test

Running SQL Test Suite on Windows

After the test suite is built (see Building the software needed by the SQL tests (page 34) for
more information) and before running the entire test suite, go to ../sql/adapter/bdb-
test.sh and edit the line:

echo $t: `alarm $TIMEOUT ./testfixture.exe
$tpath 2>&1 | tee -a test.log | grep "errors out of"
|| echo "failed"`

to

echo $t: `alarm $TIMEOUT Win32/Debug/testfixture.exe
$tpath 2>&1 | tee -a test.log | grep "errors out of"
|| echo "failed"`

Running the test suite requires an Unix emulator, such as Cygwin. In a Cygwin window go to
the ../build_windows directory and execute the command:

sh ../sql/adapter/bdb-test.sh

This runs a set of tests and lists errors that each test encountered, if any. A detailed list of the
test results is written to test.log.

To run an individual test, such as insert.test, execute the following command in the ../
build_windows directory:

Win32/Debug/testfixture.exe ../sql/sqlite/test/insert.test

Test suite FAQ

1. The test suite has been running for over a day. What's wrong?

The test suite can take anywhere from some number of hours to several days to run,
depending on your hardware configuration. As long as the run is making forward progress
and new lines are being written to the ALL.OUT files, everything is probably fine.

	Berkeley DB Installation and Build Guide
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Introduction
	Installation Overview
	Supported Platforms

	Chapter 2. System Installation Notes
	File utility /etc/magic information
	Magic information
	Big-endian magic information
	Little-endian magic information

	Building with multiple versions of Berkeley DB

	Chapter 3. Debugging Applications
	Introduction to debugging
	Compile-time configuration
	Run-time error information
	Reviewing Berkeley DB log files
	Augmenting the Log for Debugging
	Extracting Committed Transactions and Transaction Status
	Extracting Transaction Histories
	Extracting File Histories
	Extracting Page Histories
	Other log processing tools

	Chapter 4. Building Berkeley DB for Android
	Building for Android
	Migrating from SQLite to Berkeley DB
	Configuration options

	Chapter 5. Building Berkeley DB for Windows
	Building Berkeley DB for 32 bit Windows
	Visual C++ .NET 2010
	Visual C++ .NET 2008
	Visual C++ .NET 2005
	Build results

	Building Berkeley DB for 64-bit Windows
	x64 build with Visual Studio 2005 or newer

	Building Berkeley DB with Cygwin
	Building the C++ API
	Building the C++ STL API
	Building the Java API
	Building the C# API
	Building the SQL API
	Binary Compatibility With SQLite
	Setting Preprocessor Flags
	Enabling Extensions
	Disabling Log Checksums
	Building the JDBC Driver
	Using the JDBC Driver
	Downloading JDBC Sample Code
	Modifying Sample Code
	Building and Running the JDBC Sample code

	Building the ODBC Driver
	Configuring Your System
	Building the Library
	Installing the Library
	Testing the ODBC Install

	Using the ADO.NET Driver

	Building the Tcl API
	Distributing DLLs
	Additional build options
	Building a small memory footprint library
	Running the test suite under Windows
	Building the software needed by the tests
	Visual Studio 2005 or newer

	Running the test suite under Windows
	Building the software needed by the SQL tests
	Visual Studio 2005 or newer

	Windows notes
	Windows FAQ

	Chapter 6. Building Berkeley DB for Windows Mobile
	Building for Windows Mobile
	Building Berkeley DB for Windows Mobile
	Visual Studio 2005
	Build results

	Changing Build Configuration Type
	Building Berkeley DB for different target platforms
	Visual Studio 2005
	BDB SQL Notes

	Windows Mobile notes
	Windows Mobile FAQ

	Chapter 7. Building Berkeley DB for UNIX/POSIX
	Building for UNIX/POSIX
	Building the Berkeley DB SQL Interface

	Configuring Berkeley DB
	Configuring the SQL Interface
	Changing Compile Options
	Enabling Extensions
	Building the JDBC Driver
	Using the JDBC Driver
	Downloading JDBC Sample Code
	Modifying Sample Code
	Building and Running the JDBC Sample code

	Building the ODBC Driver
	Configuring Your System
	Building the Library
	Testing the ODBC Driver

	Building the BFILE extension

	Building a small memory footprint library
	Changing compile or load options
	Installing Berkeley DB
	Dynamic shared libraries
	Running the test suite under UNIX
	Building SQL Test Suite on Unix

	Architecture independent FAQ
	AIX
	FreeBSD
	Apple iOS (iPhone OS)
	IRIX
	Linux
	Mac OS X
	QNX
	SCO
	Solaris
	SunOS

	Chapter 8. Building Berkeley DB for VxWorks
	Building for VxWorks 5.4 and 5.5
	Building With Tornado 2.0 or Tornado 2.2

	Building for VxWorks 6.x
	Building With Wind River Workbench using the Makefile

	VxWorks notes
	Building and Running the Demo Program
	Building and Running the Utility Programs
	VxWorks 5.4/5.5: shared memory
	VxWorks 5.4/5.5: building a small memory footprint library
	Support for Replication Manager

	VxWorks FAQ

	Chapter 9. Upgrading Berkeley DB 11.2.5.1 applications to Berkeley DB 11.2.5.2
	Introduction
	SQLite Interface Upgrade
	32bit/64bit Compatibility on Windows
	Read Only flag for DBT
	New Flag

	Dynamic Environment Configuration
	New Functions
	Deprecated Functions

	Exclusive Transactions in the SQL Layer
	Group Membership in Repmgr
	Upgrading
	New Functions
	Modified Functions
	New Events
	Removed Functions
	New Parameters
	New Structure

	Heap Access Method
	New Functions
	Modified Functions
	New Definition

	Enabling Transaction Snapshots in the SQL Layer
	New Pragmas

	2SITE_STRICT Enabled by Default in Replication
	Enabling Replication in the SQL Layer
	New Pragmas

	Repmgr Message Channels
	New Functions

	Sequence Support in the SQL Layer
	New Functions

	Berkeley DB X/Open Compliant XA Resource Manager
	Constraints
	New Flag
	Modified Function

	Hot Backup Changes
	Berkeley DB Library Version 11.2.5.2 Change Log
	Database or Log File On-Disk Format Changes
	New Features
	Database Environment Changes
	Concurrent Data Store Changes
	Access Method Changes
	SQL API Changes
	C API Changes
	Tcl-specific API Changes
	C#-specific API Changes
	Replication Changes
	Locking Subsystem Changes
	Logging Subsystem Changes
	Memory Pool Subsystem Changes
	Mutex Subsystem Changes
	Transaction Subsystem Changes
	Test Suite Changes
	Utility Changes
	Configuration, Documentation, Sample Apps, Portability and Build Changes
	Example Changes
	Miscellaneous Bug Fixes
	Deprecated Features
	Known Bugs

	Chapter 10. Upgrading Berkeley DB 11.2.5.0 applications to Berkeley DB 11.2.5.1
	Introduction
	DPL Applications must be recompiled
	Source Tree Rearranged
	SQLite Interface Upgrade
	Mod_db4 Support Discontinued
	Berkeley DB Library Version 11.2.5.1 Change Log
	Database or Log File On-Disk Format Changes
	New Features
	Database Environment Changes
	Concurrent Data Store Changes
	Access Method Changes
	API Changes
	SQL-Specific API Changes
	Tcl-Specific API Changes
	Java-Specific API Changes
	C#-Specific API Changes
	Direct Persistence Layer (DPL), Bindings and Collections API
	Replication Changes
	Locking Subsystem Changes
	Logging Subsystem Changes
	Memory Pool Subsystem Changes
	Mutex Subsystem Changes
	Transaction Subsystem Changes
	Test Suite Changes
	Utility Changes
	Configuration, Documentation, Sample Apps, Portability, and Build Changes
	Example Changes
	Miscellaneous Bug Fixes
	Deprecated Features
	Known Bugs

	Chapter 11. Upgrading Berkeley DB 4.8 applications to Berkeley DB 11.2.5.0
	Introduction
	db_sql Renamed to db_sql_codegen
	DB_REP_CONF_NOAUTOINIT Replaced
	Support for Multiple Client-to-Client Peers
	Cryptography Support
	DB_NOSYNC Flag to Flush Files
	Dropped Support
	Changing Stack Size
	Berkeley DB 11g Release 2 Change Log
	Changes between 11.2.5.0.26 and 11.2.5.0.32
	Changes between 11.2.5.0.21 and 11.2.5.0.26
	Changes between 4.8 and 11.2.5.0.21
	Database or Log File On-Disk Format Changes
	New Features
	Database Environment Changes
	Access Method Changes
	Locking Subsystem Changes
	Logging Subsystem Changes
	Memory Pool Subsystem Changes
	Mutex Subsystem Changes
	Tcl-specific API Changes
	C#-specific API Changes
	API Changes
	Replication Changes
	Transaction Subsystem Changes
	Utility Changes
	Example Changes
	Deprecated Features
	Configuration, Documentation, Sample Apps, Portability and Build Changes

	Known Bugs

	Chapter 12. Upgrading Berkeley DB 4.7 applications to Berkeley DB 4.8
	Introduction
	Registering DPL Secondary Keys
	Minor Change in Behavior of DB_MPOOLFILE->get
	Dropped Support for fcntl System Calls
	Upgrade Requirements
	Berkeley DB 4.8.28 Change Log
	Changes between 4.8.26 and 4.8.28:
	Known bugs in 4.8
	Changes between 4.8.24 and 4.8.26:
	Changes between 4.8.21 and 4.8.24:
	Changes between 4.7 and 4.8.21:
	Database or Log File On-Disk Format Changes:
	New Features:
	Database Environment Changes:
	Concurrent Data Store Changes:
	General Access Method Changes:
	Btree Access Method Changes:
	Hash Access Method Changes:
	Queue Access Method Changes:
	Recno Access Method Changes:
	C-specific API Changes:
	C++-specific API Changes:
	Java-specific API Changes:
	Direct Persistence Layer (DPL), Bindings and Collections API:
	Tcl-specific API Changes:
	RPC-specific Client/Server Changes:
	Replication Changes:
	XA Resource Manager Changes:
	Locking Subsystem Changes:
	Logging Subsystem Changes:
	Memory Pool Subsystem Changes:
	Mutex Subsystem Changes:
	Test Suite Changes
	Transaction Subsystem Changes:
	Utility Changes:
	Configuration, Documentation, Sample Application, Portability and Build Changes:

	Chapter 13. Test Suite
	Running the test suite
	Running SQL Test Suite on Unix
	Running SQL Test Suite on Windows

	Test suite FAQ

