
Design Patterns for Evolving

System Software Components

from unix to Windows nt

Douglas C. Schmidt

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

1

Motivation

� Developing e�cient, robust, extensible, and

reusable communication software is hard

� It is essential to understand successful tech-

niques that have proven e�ective to solve

common development challenges

� Design patterns and frameworks help to cap-

ture, articulate, and instantiate these suc-

cessful techniques

2

Observations

� Developers of communication software con-
front recurring challenges that are largely
application-independent

{ e.g., service initialization and distribution, error

handling, ow control, event demultiplexing, con-

currency control

� Successful developers resolve these challenges

by applying appropriate design patterns

� However, these patterns have traditionally
been either:

1. Locked inside heads of expert developers

2. Buried in source code

3

Design Patterns

� Design patterns represent solutions to prob-
lems that arise when developing software
within a particular context

{ i.e., \Patterns == problem/solution pairs in a con-

text"

� Patterns capture the static and dynamic struc-
ture and collaboration among key partici-
pants in software designs

{ They are particularly useful for articulating how

and why to resolve non-functional forces

� Patterns facilitate reuse of successful soft-

ware architectures and designs

4

Proxy Pattern

NETWORK

CLIENT

SERVER

: BROKER

1: METHOD

CALL

4: METHOD

RETURN

: QUOTER

2: FORWARD

REQUEST

3: RESPONSE

: QUOTER

PROXY

� Intent: provide a surrogate for another ob-

ject that controls access to it

5

Graphical Notation

PROCESS

THREAD

OBJECT

: CLASS

CLASS

CLASS

CATEGORY

CLASS

UTILITY

INHERITS

CONTAINS

INSTANTIATES

A

ABSTRACT

CLASS
USES

TEMPLATE

CLASS

6

More Observations

� Reuse of patterns alone is not su�cient

{ Patterns enable reuse of architecture and design

knowledge, but not code (directly)

� To be productive, developers must also reuse

detailed designs, algorithms, interfaces, im-

plementations, etc.

� Application frameworks are an e�ective way

to achieve broad reuse of software

7

Frameworks

� A framework is:

{ \An integrated collection of components that col-

laborate to produce a reusable architecture for a

family of related applications"

� Frameworks di�er from conventional class
libraries:

1. Frameworks are \semi-complete" applications

2. Frameworks address a particular application do-

main

3. Frameworks provide \inversion of control"

� Typically, applications are developed by in-

heriting from and instantiating framework

components

8

Di�erences Between Class

Libraries and Frameworks

APPLICATION

SPECIFIC

LOGIC

USER

INTERFACE

CLASS

LIBRARIES

NETWORKING

MATH ADTS

DATA

BASE

APPLICATION

SPECIFIC

LOGIC

MATH

OBJECT-ORIENTED

FRAMEWORK

ADTS

INVOKES

CALL

BACKS

NETWORKING USER

INTERFACE

DATABASE

INVOKES

EVENT

LOOP

EVENT

LOOP

9

Tutorial Outline

� Outline key challenges for developing com-

munication software

� Present the key reusable design patterns in
a distributed medical imaging system

{ Both single-threaded and multi-threaded solutions

are presented

� Discuss lessons learned from using patterns

on production software systems

10

Stand-alone vs. Distributed

Application Architectures

PRINTER

FILE
SYSTEM

PRINTER
FILE SYSTEM

COMPUTER

(1)(1) STAND-ALONESTAND-ALONE APPLICATIONAPPLICATION ARCHITECTUREARCHITECTURE

(2)(2) DISTRIBUTEDDISTRIBUTED APPLICATIONAPPLICATION ARCHITECTUREARCHITECTURE

CD ROM

CD ROM

NETWORK

DISPLAY

SERVICE

FI LE

SERVICE

PRINT

SERVICE

CYCLE

SERVICES

11

Concurrency vs. Parallelism

CONCURRENT SERVER

maxfdp1

read_fds

WORK

REQUEST

SERVER

CLIENT

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST
CLIENT

CLIENT CLIENT

SERVER

CPU1 CPU2 CPU3 CPU4

WORK

REQUEST

WORK

REQUEST
WORK

REQUEST

WORK

REQUEST

CLIENT

CLIENT

CLIENT CLIENT

PARALLEL SERVER

12

Sources of Complexity

� Distributed application development exhibits

both inherent and accidental complexity

� Inherent complexity results from fundamen-
tal challenges, e.g.,

{ Distributed systems

. Latency

. Error handling

. Service partitioning and load balancing

{ Concurrent systems

. Race conditions

. Deadlock avoidance

. Fair scheduling

. Performance optimization and tuning

13

Sources of Complexity (cont'd)

� Accidental complexity results from limita-
tions with tools and techniques, e.g.,

{ Low-level tools

. e.g., Lack of type-secure, portable, re-entrant,

and extensible system call interfaces and com-

ponent libraries

{ Inadequate debugging support

{ Widespread use of algorithmic decomposition

. Fine for explaining network programming con-

cepts and algorithms but inadequate for devel-

oping large-scale distributed applications

{ Continuous rediscovery and reinvention of core con-

cepts and components

14

OO Contributions

� Concurrent and distributed programming has
traditionally been performed using low-level
OS mechanisms, e.g.,

{ fork/exec

{ Shared memory

{ Signals

{ Sockets and select

{ POSIX pthreads, Solaris threads, Win32 threads

� OO design patterns and frameworks elevate
development to focus on application con-
cerns, e.g.,

{ Service functionality and policies

{ Service con�guration

{ Concurrent event demultiplexing and event han-

dler dispatching

{ Service concurrency and synchronization

15

Distributed Medical Imaging

Example

� This example illustrates the reusable design

patterns and framework components used in

an OO architecture for a distributed medical

imaging system

� Application clients uses Blob Servers to store

and retrieve medical images

� Clients and Servers communicate via a connection-
oriented transport protocol

{ e.g., TCP/IP, IPX/SPX, TP4

16

Distributed Electronic Medical

Imaging Architecture

DIAGNOSTICDIAGNOSTIC

STATIONSSTATIONS

ATMATM
MANMAN

ATMATM

LANLAN

ATMATM

LANLAN

MODALITIESMODALITIES

((CTCT,, MR MR,, CR CR))

LOCALLOCAL

STORESTORE

MODALITIESMODALITIES

((CTCT,, MR MR,, CR CR))

NAMENAME
SERVERSERVER

ROUTINGROUTING
SERVICESERVICE

 CENTRAL CENTRAL

STORESTORE

CLUSTERCLUSTER

STORESTORE
TIMETIME

SERVERSERVER

LLOCATIONOCATION
SERSERVICEVICE

17

Architecture of the Blob Server

: Reactor

BLOBBLOB SERVERSERVER

: Blob: Blob
HandlerHandler

svc_runsvc_runsvc_runsvc_run

: Blob: Blob
HandlerHandler

: Blob: Blob
HandlerHandler

: Blob: Blob
AcceptorAcceptor

: Options: Options

svc_runsvc_run
svc_runsvc_run

: Blob: Blob
ProcessorProcessor

: Msg: Msg
QueueQueue

* Manage short-term and long-term blob persistence

* Respond to queries from Blob Locators
18

Design Patterns in the Blob

Server

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

StrategyStrategy AdapterAdapterProxyProxy
TACTICAL

PATTERNS

STRATEGIC

PATTERNS
Double CheckedDouble Checked

LockingLocking

ConnectorConnector

SingletonSingleton

AcceptorAcceptor

ServiceService
ConfiguratorConfigurator

ReactorReactor

Thread-perThread-per
RequestRequest

Thread-perThread-per
SessionSession

ThreadThread
PoolPool

Active ObjectActive Object

19

Tactical Patterns

� Proxy

{ \Provide a surrogate or placeholder for another

object to control access to it"

� Strategy

{ \De�ne a family of algorithms, encapsulate each

one, and make them interchangeable"

� Adapter

{ \Convert the interface of a class into another in-

terface client expects"

� Singleton

{ \Ensure a class only has one instance and provide

a global point of access to it"

20

Concurrency Patterns

� Reactor

{ \Decouples event demultiplexing and event han-

dler dispatching from application services performed

in response to events"

� Active Object

{ \Decouples method execution from method invo-

cation and simpli�es synchronized access to shared

resources by concurrent threads"

� Half-Sync/Half-Async

{ \Decouples synchronous I/O from asynchronous

I/O in a system to simplify concurrent program-

ming e�ort without degrading execution e�ciency"

� Double-Checked Locking Pattern

{ \Ensures atomic initialization of objects and elim-

inates unnecessary locking overhead on each ac-

cess"

21

Concurrency Architecture

Patterns

� Thread-per-Request

{ \Allows each client request to run concurrently"

� Thread-Pool

{ \Allows up to N requests to execute concurrently"

� Thread-per-Session

{ \Allows each client session to run concurrently"

22

Service Initialization Patterns

� Connector

{ \Decouples active connection establishment from

the service performed once the connection is es-

tablished"

� Acceptor

{ \Decouples passive connection establishment from

the service performed once the connection is es-

tablished"

� Service Con�gurator

{ \Decouples the behavior of network services from

point in time at which services are con�gured into

an application"

23

Concurrency Patterns in the Blob

Server

� The following example illustrates the design

patterns and framework components in an

OO implementation of a concurrent Blob

Server

� There are various architectural patterns for
structuring concurrency in a Blob Server

1. Reactive

2. Thread-per-request

3. Thread-per-session

4. Thread-pool

24

Reactive Blob Server Architecture

: Reactor: Reactor

BLOB SERVERBLOB SERVER

: Blob: Blob
ProcessorProcessor

: Blob: Blob
AcceptorAcceptor

SERVER

CLIENT

CLIENT
CLIENT

1:1: CONNECT CONNECT

2:2: HANDLE INPUT HANDLE INPUT

3:3: CREATE PROCESSOR CREATE PROCESSOR

4:4: ACCEPT CONNECTION ACCEPT CONNECTION

5:5: ACTIVATE PROCESSOR ACTIVATE PROCESSOR

6:6: PROCESS BLOB REQUEST PROCESS BLOB REQUEST

: Blob: Blob
ProcessorProcessor

25

Thread-per-Request Blob Server

Architecture

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: Reactor: Reactor

BLOB SERVER

: Blob: Blob
AcceptorAcceptor

1:1: CONNECT CONNECT

2:2: HANDLE INPUT HANDLE INPUT

3:3: CREATE PROCESSOR CREATE PROCESSOR

4:4: ACCEPT CONNECTION ACCEPT CONNECTION

5:5: SPAWN THREAD SPAWN THREAD

: Blob: Blob
ProcessorProcessor

: Blob: Blob
ProcessorProcessor

: Blob: Blob
ProcessorProcessor

6:6: PROCESS BLOB REQUEST PROCESS BLOB REQUEST

26

Thread-per-Session Blob Server

Architecture

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT

2:2: CREATE CREATE,, ACCEPT ACCEPT,,
 AND ACTIVATE AND ACTIVATE

 BLOB BLOB__PROCESSORPROCESSOR

BLOB SERVER

1:1: BIND BIND

CLIENTCLIENT

: Blob: Blob
ProcessorProcessor

: Blob: Blob
ProcessorProcessor

: Blob: Blob
ProcessorProcessor

4:4: PROCESS BLOB REQUEST PROCESS BLOB REQUEST

3:3: SPAWN THREAD SPAWN THREAD

: Reactor: Reactor

: Blob: Blob
AcceptorAcceptor

27

Thread-Pool Blob Server

Architecture

: Reactor: Reactor

BLOB SERVERBLOB SERVER

1:1: BLOB BLOB

REQUESTREQUEST

2:2: HANDLE INPUT HANDLE INPUT

3:3: ENQUEUE REQUEST ENQUEUE REQUEST

: Blob: Blob
HandlerHandler

6:6: PROCESS BLOB REQUEST PROCESS BLOB REQUEST

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: Blob: Blob
HandlerHandler

: Blob: Blob
HandlerHandler

5:5: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

: Blob: Blob
ProcessorProcessor

: Blob: Blob
AcceptorAcceptor

: Msg
Queue

28

The ADAPTIVE Communication

Environment (ACE)

THREADTHREAD

LIBRARYLIBRARY

DYNAMICDYNAMIC

LINKINGLINKING

MEMORYMEMORY

MAPPINGMAPPING

SELECTSELECT//
POLLPOLL

SYSTEMSYSTEM

VV IPCIPC
STREAMSTREAM

PIPESPIPES

NAMEDNAMED

PIPESPIPES

C

APISS

SOCKETSSOCKETS//
TLITLI

COMMUNICATIONCOMMUNICATION

SUBSYSTEMSUBSYSTEM

VIRTUAL MEMORYVIRTUAL MEMORY

SUBSYSTEMSUBSYSTEM

GENERAL UNIX AND WIN32 SERVICES

PROCESSPROCESS//THREADTHREAD

SUBSYSTEMSUBSYSTEM

SYNCHSYNCH

WRAPPERSWRAPPERS

FRAMEWORKS

AND CLASS

CATEGORIES

ACCEPTORACCEPTOR CONNECTORCONNECTOR

DISTRIBUTED

SERVICES

NAMENAME

SERVERSERVER

TOKENTOKEN

SERVERSERVER

LOGGINGLOGGING

SERVERSERVER

GATEWAYGATEWAY

SERVERSERVER

SOCKSOCK__SAPSAP//
TLITLI__SAPSAP

FIFOFIFO

SAPSAP

REACTORREACTOR

LOGLOG

MSGMSG

SERVICESERVICE

HANDLERHANDLER

TIMETIME

SERVERSERVER

OS ADAPTATION LAYER

SERVICESERVICE

CONFIGCONFIG--
URATORURATOR

ADAPTIVE SERVICE EXECUTIVE ADAPTIVE SERVICE EXECUTIVE (ASX)(ASX)

C++

WRAPPERS

THREADTHREAD

MANAGERMANAGER

SPIPESPIPE

SAPSAP

CORBACORBA

HANDLERHANDLER

SYSVSYSV
WRAPPERSWRAPPERS

MEMMEM

MAPMAP

SHAREDSHARED

MALLOCMALLOC

� A set of C++ wrappers and frameworks

based on common design patterns

29

The Reactor Pattern

� Intent

{ \Decouples event demultiplexing and event han-

dler dispatching from the services performed in re-

sponse to events"

� This pattern resolves the following forces
for event-driven software:

{ How to demultiplex multiple types of events from

multiple sources of events e�ciently within a single

thread of control

{ How to extend application behavior without requir-

ing changes to the event dispatching framework

30

Structure of the Reactor Pattern

ReactorReactor
handle_events()
register_handler(h)
remove_handler(h)
expire_timers()

11

11

11

Event_HandlerEvent_Handler

handle_input()
handle_output()
handle_signal()
handle_timeout()
get_handle()

A

11

nn

nn

ConcreteConcrete
Event_HandlerEvent_Handler

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timer(h)

11

11

select (handles);select (handles);
foreach h in handles {foreach h in handles {
 if (h is output handler) if (h is output handler)
 table[h]->handle_output () ; table[h]->handle_output () ;
 if (h is input handler) if (h is input handler)
 table[h]->handle_input (); table[h]->handle_input ();
 if (h is signal handler) if (h is signal handler)
 table[h]->handle_signal (); table[h]->handle_signal ();
}}
this->expire_timers ();this->expire_timers ();

nn
HandlesHandles

11

APPLICATION

APPLICATION--

DEPENDENT

DEPENDENT
APPLICATION-

INDEPENDENT
n

� Participants in the Reactor pattern

31

Collaboration in the Reactor

Pattern

mainmain
programprogram

INITIALIZEINITIALIZE

REGISTER HANDLERREGISTER HANDLER

callback :callback :
ConcreteConcrete

Event_HandlerEvent_Handler

START EVENT LOOPSTART EVENT LOOP

DATA ARRIVESDATA ARRIVES

OK TO SENDOK TO SEND

reactorreactor
: Reactor: Reactor

handle_events()

FOREACH EVENT DOFOREACH EVENT DO

handle_input()

select()

Reactor()

register_handler(callback)

handle_output()

SIGNAL ARRIVESSIGNAL ARRIVES

TIMER EXPIRESTIMER EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

REMOVE HANDLERREMOVE HANDLER
remove_handler(callback)

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T

H
A

N
D

L
IN

G
E

V
E

N
T

H

A
N

D
L

IN
G

M
O

D
E

M
O

D
E

handle_close()
CLEANUPCLEANUP

32

Using the Reactor in the Blob

Server

:: Reactor Reactor

REGISTERED

OBJECTS

: Handle: Handle
TableTable

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

OS EVENT DEMULTIPLEXING INTERFACEOS EVENT DEMULTIPLEXING INTERFACE

1: handle_input()1: handle_input()

svc_runsvc_run
svc_runsvc_run

svc_runsvc_run

: Blob: Blob
ProcessorProcessor

: Message: Message

QueueQueue

4: getq(msg)4: getq(msg)
5:svc(msg)5:svc(msg)

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

2: recv_request(msg)2: recv_request(msg)
3: putq(msg)3: putq(msg)

33

The Blob Handler Interface

� The Blob Handler is the Proxy for commu-
nicating with clients

{ Together with Reactor, it implements the asyn-

chronous task portion of the Half-Sync/Half-Async

pattern

// Reusable Svc Handler.
class Blob_Handler : public Event_Handler
{
public:

// Entry point into Blob Handler.
virtual int open (void) {

// Register with Reactor to handle client input.
Reactor::instance ()->register_handler

(this, READ_MASK);
}

protected:
// Notified by Reactor when client requests arrive.

virtual int handle_input (void);

// Receive and frame client requests.
int recv_request (Message_Block &*);

SOCK_Stream peer_stream_; // IPC endpoint.
};

34

The Active Object Pattern

� Intent

{ \Decouples method execution from method invo-

cation and simpli�es synchronized access to shared

resources by concurrent threads"

� This pattern resolves the following forces
for concurrent communication software:

{ How to allow blocking read and write operations

on one endpoint that do not detract from the qual-

ity of service of other endpoints

{ How to simplify concurrent access to shared state

{ How to simplify composition of independent ser-

vices

35

Structure of the Active Object

Pattern

ClientClient
InterfaceInterface

ResultHandle m1()
ResultHandle m2()
ResultHandle m3()

ActivationActivation
QueueQueue
insert()

remove()

SchedulerScheduler

dispatch()
m1'()
m2'()
m3'()

ResourceResource
RepresentationRepresentation

MethodMethod
ObjectsObjects

loop {
 m = actQueue.remove()
 dispatch (m)
}

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

nn

11

11
11

11

11

� The Scheduler determines the sequence that

Method Objects are executed

36

Collaboration in the Active

Object Pattern

INVOKEINVOKE

INSERT ININSERT IN
 PRIORITY QUEUE PRIORITY QUEUE

cons(m1')

remove(m1')DEQUEUE NEXTDEQUEUE NEXT
 METHOD OBJECT METHOD OBJECT

RETURN RESULTRETURN RESULT

EXECUTEEXECUTE

clientclient
: Client: Client

InterfaceInterface
: Activation: Activation

QueueQueue

insert(m1')

dispatch(m1')

M
E

T
H

O
D

 O
B

J
E

C
T

M
E

T
H

O
D

 O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
/

E
X

E
C

U
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

: Represent-: Represent-
ationation

: Scheduler: Scheduler

CREATE METHOD
OBJECT

reply_to_future()

future()RETURN RESULTRETURN RESULT
HANDLEHANDLE

37

Using the Active Object Pattern

in the Blob Server

:: Reactor Reactor

: Handle: Handle
TableTable

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

1: handle_input()1: handle_input()

REGISTERED

OBJECTS

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

svc_runsvc_run svc_runsvc_run

svc_runsvc_run

4: getq(msg)4: getq(msg)
5:svc(msg)5:svc(msg)

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

2: recv_request(msg)2: recv_request(msg)
3: putq(msg)3: putq(msg)

: Blob: Blob
ProcessorProcessor

: Message: Message

QueueQueue

OS EVENT DEMULTIPLEXING INTERFACEOS EVENT DEMULTIPLEXING INTERFACE

38

The Blob Processor Class

� Processes Blob requests using the \Thread-
Pool" concurrency model

{ Implement the synchronous task portion of the

Half-Sync/Half-Async pattern

class Blob_Processor : public Task {
public:

// Singleton access point.
static Blob_Processor *instance (void);

// Pass a request to the thread pool.
virtual put (Message_Block *);

// Event loop for the pool thread
virtual int svc (int) {
Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.
for (;;) {
getq (mb); // Inherited from class Task;
// Identify and perform Blob Server
// request processing here...

protected:
Blob_Processor (void); // Constructor.

39

Using the Singleton Pattern

� The Blob Processor is implemented as a Sin-

gleton that is created \on demand"

Blob_Processor *
Blob_Processor::instance (void) {
// Beware race conditions!
if (instance_ == 0) {
instance_ = new Blob_Processor;

}
return instance_;

}

� Constructor creates the thread pool

Blob_Processor::Blob_Processor (void) {
Thread_Manager::instance ()->spawn_n
(num_threads, THR_FUNC (svc_run),
(void *) this, THR_NEW_LWP);

}

40

The Double-Checked Locking

Pattern

� Intent

{ \Ensures atomic initialization of objects and elim-

inates unnecessary locking overhead on each ac-

cess"

� This pattern resolves the following forces:

1. Ensures atomic initialization or access to objects,

regardless of thread scheduling order

2. Keeps locking overhead to a minimum

{ e.g., only lock on �rst access

� Note, this pattern assumes atomic memory

access: : :

41

Using the Double-Checked

Locking Pattern for the Blob

Server

Blob Processor

static instance()static instance()
static instance_static instance_

if (instance_ == NULL) {if (instance_ == NULL) {
 mutex_.acquire (); mutex_.acquire ();
 if (instance_ == NULL) if (instance_ == NULL)
 instance_ = new Blob_Processor; instance_ = new Blob_Processor;
 mutex_.release (); mutex_.release ();
}}
return instance_;return instance_;

MutexMutex

42

Half-Sync/Half-Async Pattern

� Intent

{ \Decouples synchronous I/O from asynchronous

I/O in a system to simplify programming e�ort

without degrading execution e�ciency"

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level com-

munication tasks

. These are performed synchronously

{ How to ensure e�cient lower-level I/O communi-

cation tasks

. These are performed asynchronously

43

Structure of the

Half-Sync/Half-Async Pattern

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

T

A
S

K

L
A

Y
E

R

T
A

S
K

L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

L

A
Y

E
R

 T
A

S
K

L

A
Y

E
R SSYNCYNC

TASK TASK 11

SSYNCYNC

TASK TASK 33

SSYNCYNC

TASK TASK 22

1, 4: read(data)1, 4: read(data)

3: enqueue(data)3: enqueue(data)

2: interrupt2: interrupt

ASYNCASYNC

TASKTASK

EXTERNALEXTERNAL

EVENT SOURCESEVENT SOURCES

MESSAGE QUEUESMESSAGE QUEUES

44

Collaborations in the

Half-Sync/Half-Async Pattern

EXTERNAL EVENTEXTERNAL EVENT

PROCESS MSGPROCESS MSG

read(msg)

EXECUTE TASKEXECUTE TASK

ENQUEUE MSGENQUEUE MSG

ExternalExternal
Event SourceEvent Source

AsyncAsync
TaskTask

SyncSync
TaskTask

MessageMessage
QueueQueue

work()

DEQUEUE MSGDEQUEUE MSG

A
S
Y

N
C

A
S
Y

N
C

P
H

A
S

E
P

H
A

S
E

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

P
H

A
S

E
P

H
A

S
E

S
Y

N
C

S
Y

N
C

P
H

A
S

E
P

H
A

S
E

RECV MSGRECV MSG

notification()

read(msg)

work()

enqueue(msg)

� This illustrates input processing (output pro-

cessing is similar)

45

Using the Half-Sync/Half-Async

Pattern in the Blob Server

A
S

Y
N

C

T

A
S

K
A

S
Y

N
C

T

A
S

K

L
E

V
E

L
L

E
V

E
L

S
Y

N
C

H

T

A
S

K
S

Y
N

C
H

T

A
S

K

L
E

V
E

L
L

E
V

E
L

1: handle_input()1: handle_input() :: Reactor Reactor

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
E

V
E

L
L

E
V

E
L

svc_runsvc_run svc_runsvc_run svc_run

: Blob
Processor

: Message
Queue

4: getq(msg)
5:svc(msg)

: Blob: Blob
HandlerHandler

: Event: Event
HandlerHandler

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

: Event: Event
HandlerHandler

: Blob: Blob
HandlerHandler

2: recv_request(msg)2: recv_request(msg)
3: putq(msg)3: putq(msg)

46

Joining Async and Sync Tasks in

the Blob Server

� The following methods form the boundary

between the Async and Sync layers

int
Blob_Handler::handle_input (void)
{
Message_Block *mb = 0;

// Receive and frame message
// (uses peer_stream_).
recv_request (mb);

// Insert message into the Queue.
Blob_Processor::instance ()->put (mb);

}

// Task entry point.
Blob_Processor::put (Message_Block *msg)
{
// Insert the message on the Message_Queue
// (inherited from class Task).
putq (msg);

}

47

The Acceptor Pattern

� Intent

{ \Decouples passive initialization of a service from

the tasks performed once the service is initialized"

� This pattern resolves the following forces
for network servers using interfaces like sock-
ets or TLI:

1. How to reuse passive connection establishment code

for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to ensure that a passive-mode descriptor is

not accidentally used to read or write data

4. How to enable exible policies for creation, con-

nection establishment, and concurrency

48

Structure of the Acceptor Pattern

ACTIVATES

Svc HandlerSvc Handler

peer_stream_
open()

AcceptorAcceptor

peer_acceptor_
handle_input()

Svc HandlerSvc Handler

ReactorReactor

handle_input()

49

Collaboration in the Acceptor

Pattern

ServerServer

REGISTER HANDLERREGISTER HANDLER

START EVENT LOOPSTART EVENT LOOP

CONNECTION EVENTCONNECTION EVENT

REGISTER HANDLERREGISTER HANDLER

FOR CLIENT FOR CLIENT I/OI/O

FOREACH EVENT DOFOREACH EVENT DO

EXTRACT HANDLEEXTRACT HANDLE

INITIALIZE PASSIVEINITIALIZE PASSIVE

ENDPOINTENDPOINT

acc :acc :
AcceptorAcceptor

handle_input()

handle_close()

reactor :reactor :
ReactorReactor

select()

sh:sh:
Svc_HandlerSvc_Handler

handle_input()

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA EVENTDATA EVENT

CLIENT SHUTDOWNCLIENT SHUTDOWN

svc()
PROCESS MSGPROCESS MSG

open()

CREATECREATE,, ACCEPT ACCEPT,,
AND ACTIVATE OBJECTAND ACTIVATE OBJECT

SERVER SHUTDOWNSERVER SHUTDOWN
handle_close()

E
N

D
P

O
IN

T

IN
IT

IA
L

IZ
A

T
IO

N

 P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

P
H

A
S

E

peer_acceptor_peer_acceptor_
: SOCK: SOCK
AcceptorAcceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

register_handler(sh)

� Acceptor is a factory that creates, connects,

and activates a Svc Handler

50

Using the Acceptor Pattern in the

Blob Server

PASSIVE LISTENER

ACTIVE

CONNECTIONS

: Svc
Handler

: Blob
Handler

: Svc
Handler

: Blob
Handler

: Svc
Handler

: Blob
Handler

: Svc
Handler

: Blob
Handler

: Acceptor

: Reactor

: Blob
Acceptor

1: handle_input()
2: sh = make_svc_handler()
3: accept_svc_handler(sh)
4: activate_svc_handler(sh)

51

The Acceptor Class

� The Acceptor class implements the Acceptor

pattern

// Reusable Factor
template <class SVC_HANDLER>
class Acceptor :
public Service_Object // Subclass of Event_Handler.

{
public:

// Notified by Reactor when clients connect.
virtual int handle_input (void)
{
// The strategy for initializing a SVC_HANDLER.
SVC_HANDLER *sh = new SVC_HANDLER;
peer_acceptor_.accept (*sh);
sh->open ();

}
// ...

protected:
// IPC connection factory.

SOCK_Acceptor peer_acceptor_;
}

52

The Blob Acceptor Class

Interface

� The Blob Acceptor class accepts connections

and initializes Blob Handlers

class Blob_Acceptor
: public Acceptor<Blob_Handler>
// Inherits handle_input() strategy from Acceptor.

{
public:

// Called when Blob_Acceptor is dynamically linked.
virtual int init (int argc, char *argv);

// Called when Blob_Acceptor is dynamically unlinked.
virtual int fini (void);

53

The Service Con�gurator Pattern

� Intent

{ \Decouples the behavior of communication ser-

vices from the point in time at which these services

are con�gured into an application or system"

� This pattern resolves the following forces
for highly exible communication software:

{ How to defer the selection of a particular type, or

a particular implementation, of a service until very

late in the design cycle

. i.e., at installation-time or run-time

{ How to build complete applications by composing

multiple independently developed services

{ How to optimize, recon�gure, and control the be-

havior of the service at run-time

54

Structure of the Service

Con�gurator Pattern

ReactorReactor11nn

EventEvent
HandlerHandler

ConcreteConcrete
Service ObjectService Object

R
E

A
C

T
IV

E
R

E
A

C
T

IV
E

L
A

Y
E

R
L

A
Y

E
R

C
O

N
F

IG
U

R
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
A

Y
E

R
L

A
Y

E
R

11

11

ServiceService
ConfigConfig

nn

ServiceService
ObjectObject

A

suspend()suspend()
resume()resume()
init()init()
fini()fini()
info()info()

11
ServiceService

RepositoryRepository

11

55

Collaboration in the Service

Con�gurator Pattern

: Service: Service
ConfigConfig

main()main()

REGISTER SERVICEREGISTER SERVICE

START EVENT LOOPSTART EVENT LOOP

INCOMING EVENTINCOMING EVENT

FOREACH EVENT DOFOREACH EVENT DO

STORE IN REPOSITORYSTORE IN REPOSITORY

CONFIGURECONFIGURE

FOREACH SVC ENTRY DOFOREACH SVC ENTRY DO

svc :svc :
Service_ObjectService_Object

: Reactor: Reactor

run_event_loop()

handle_events()

handle_input()

Service_Config()

: Service: Service
RepositoryRepository

insert()
EXTRACT HANDLEEXTRACT HANDLE

INITIALIZE SERVICEINITIALIZE SERVICE
init(argc, argv)

fini()

DYNAMICALLY LINKDYNAMICALLY LINK
SERVICESERVICE

link_service()

unlink_service()

SHUTDOWN EVENTSHUTDOWN EVENT handle_close()

UNLINK SERVICEUNLINK SERVICE
remove()

register_handler(svc)

get_handle()

remove_handler(svc)

C
O

N
F

IG
U

R
A

T
IO

N
C

O
N

F
IG

U
R

A
T

IO
N

M
O

D
E

M
O

D
E

E
V

E
N

T

H
A

N
D

L
IN

G

M
O

D
E

process_directives()

CLOSE SERVICECLOSE SERVICE

56

Using the Service Con�gurator

Pattern in the Blob Server

: Service: Service
ConfigConfig

SERVICESERVICE

CONFIGURATORCONFIGURATOR

RUNTIMERUNTIME

: Service: Service
RepositoryRepository

: Reactor: Reactor

: Service: Service
ObjectObject

: TP: TP
Blob ServerBlob Server

: Service: Service
ObjectObject

: TPR: TPR
Blob ServerBlob Server

SHAREDSHARED

OBJECTSOBJECTS

: Service: Service
ObjectObject

: Reactive: Reactive
Blob ServerBlob Server

� Existing service is based on Half-Sync/Half-

Async pattern

� Other versions could be single-threaded or

use other concurrency strategies: : :

57

The Blob Acceptor Class

Implementation

// Initialize service when dynamically linked.

int Blob_Acceptor::init (int argc, char *argv[])
{
Options::instance ()->parse_args (argc, argv);

// Set the endpoint into listener mode.
Acceptor::open (local_addr);

// Initialize the communication endpoint.
Reactor::instance ()->register_handler

(this, READ_MASK)
}

// Terminate service when dynamically unlinked.

int Blob_Acceptor::fini (void)
{
// Unblock threads in the pool so they will
// shutdown correctly.
Blob_Processor::instance ()->close ();

// Wait for all threads to exit.
Thread_Manager::instance ()->wait ();

}

58

Con�guring the Blob Server with

the Service Con�gurator

� The concurrent Blob Server is con�gured

and initialized via a con�guration script

% cat ./svc.conf
dynamic TP_Blob_Server Service_Object *

blob_server.dll:make_TP_Blob_Server()
"-p $PORT -t $THREADS"

� Factory function that dynamically allocates

a Half-Sync/Half-Async Blob Server object

extern "C" Service_Object *make_TP_Blob_Server (void);

Service_Object *make_TP_Blob_Server (void)
{
return new Blob_Acceptor;
// ACE dynamically unlinks and deallocates this object.

}

59

Main Program for Blob Server

� Dynamically con�gure and execute the Blob
Server

{ Note that this is totally generic!

int main (int argc, char *argv[])
{
Service_Config daemon;

// Initialize the daemon and dynamically
// configure the service.
daemon.open (argc, argv);

// Loop forever, running services and handling
// reconfigurations.

daemon.run_event_loop ();

/* NOTREACHED */
}

60

The Connector Pattern

� Intent

{ \Decouples active initialization of a service from

the task performed once a service is initialized"

� This pattern resolves the following forces
for network clients that use interfaces like
sockets or TLI:

1. How to reuse active connection establishment code

for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to enable exible service concurrency policies

4. How to actively establish connections with large

number of peers e�ciently

61

Structure of the Connector

Pattern

ConnectorConnector

connect(sh, addr)
complete()ACTIVATES

HANDLE ASYNC

CONNECTION COMPLETION

ServiceService
HandlerHandler

peer_stream_
open()

Service HandlerService Handler

ReactorReactor

11nn

62

Collaboration in the Connector

Pattern

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 SYNC CONNECT SYNC CONNECT

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_input()

reactor :reactor :
ReactorReactor

sh:sh:
Svc_HandlerSvc_Handler

register_handler(sh)

get_handle()EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

svc()PROCESS DATAPROCESS DATA

connect(sh, addr)

connect()

ACTIVATE OBJECTACTIVATE OBJECT

peer_stream_peer_stream_
: SOCK: SOCK

ConnectorConnector

S
E

R
V

IC
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

R
O

C
E

S
S

IN
G

P
H

A
S

E
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

 I
N

IT
IA

T
IO

N
IN

IT
IA

T
IO

N
//

S
E

V
IC

E
S

E
V

IC
E

 I
N

IT
IA

L
IZ

A
T

IO
N

IN
IT

IA
L

IZ
A

T
IO

N
P

H
A

S
E

P
H

A
S

E

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

open()

� Synchronous mode

63

Collaboration in the Connector

Pattern

ClientClient

FOREACH CONNECTIONFOREACH CONNECTION

 INITIATE CONNECTION INITIATE CONNECTION

 ASYNC CONNECT ASYNC CONNECT

 INSERT IN REACTOR INSERT IN REACTOR

START EVENT LOOPSTART EVENT LOOP

FOREACH EVENT DOFOREACH EVENT DO

handle_events()

select()

CONNECTION COMPLETECONNECTION COMPLETE

INSERT IN REACTORINSERT IN REACTOR

con :con :
ConnectorConnector

handle_input()

reactor :reactor :
ReactorReactor

sh:sh:
Svc_HandlerSvc_Handler

handle_output()

register_handler(sh)

get_handle()
EXTRACT HANDLEEXTRACT HANDLE

DATA ARRIVESDATA ARRIVES

svc()PROCESS DATAPROCESS DATA

connect(sh, addr)

connect()

ACTIVATE OBJECTACTIVATE OBJECT

register_handler(con)

peer_stream_peer_stream_
: SOCK: SOCK

ConnectorConnector

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

IN
IT

IA
T

IO
N

IN
IT

IA
T

IO
N

 P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N
IN

IT
IA

L
IZ

A
T

IO
N

P
H

A
S

E
P

H
A

S
E

S
E

R
V

IC
E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G
P

R
O

C
E

S
S

IN
G

P
H

A
S

E
P

H
A

S
E

activate_svc_handler(sh)

connect_svc_handler(sh, addr)

open()

� Asynchronous mode

64

Using the Connector in the Blob

Clients

:: Reactor Reactor

ACTIVE

CONNECTIONS

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Connector: Connector

: Blob: Blob
ConnectorConnector

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

PENDING

CONNECTIONS

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

65

Bene�ts of Design Patterns

� Design patterns enable large-scale reuse of

software architectures

� Patterns explicitly capture expert knowledge

and design tradeo�s

� Patterns help improve developer communi-

cation

� Patterns help ease the transition to object-

oriented technology

66

Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may su�er from pattern overload

� Patterns are validated by experience and dis-

cussion rather than by automated testing

� Integrating patterns into a software devel-

opment process is a human-intensive activ-

ity

67

Suggestions for Using Patterns

E�ectively

� Do not recast everything as a pattern

{ Instead, develop strategic domain patterns and reuse

existing tactical patterns

� Institutionalize rewards for developing pat-

terns

� Directly involve pattern authors with appli-

cation developers and domain experts

� Clearly document when patterns apply and

do not apply

� Manage expectations carefully

68

Books and Magazines on Patterns

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable Object-Oriented Software" Addison-Wesley,

Reading, MA, 1994.

{ \Pattern Languages of Program Design," editors

James O. Coplien and Douglas C. Schmidt, Addison-

Wesley, Reading, MA, 1995

� Special Issues in Journals

{ \Theory and Practice of Object Systems" (guest

editor: Stephen P. Berczuk)

{ \Communications of the ACM" (guest editors: Dou-

glas C. Schmidt, Ralph Johnson, and Mohamed

Fayad)

� Magazines

{ C++ Report and Journal of Object-Oriented Pro-

gramming, columns by Coplien, Vlissides, and De

Souza

69

Conferences and Workshops on

Patterns

� 1st EuroPLoP

{ July 10�14, 1996, Kloster Irsee, Germany

� 3rd Pattern Languages of Programs Con-
ference

{ September 4�6, 1996, Monticello, Illinois, USA

� Relevant WWW URLs

http://www.cs.wustl.edu/~schmidt/jointPLoP�96.html/

http://st-www.cs.uiuc.edu/users/patterns/patterns.html

70

Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to wuarchive.wustl.edu

{ Transfer the �les /languages/c++/ACE/*.gz and
gnu/ACE-documentation/*.gz

� Mailing lists

* ace-users@cs.wustl.edu
* ace-users-request@cs.wustl.edu
* ace-announce@cs.wustl.edu
* ace-announce-request@cs.wustl.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/ACE.html

71

