
USENIX - Winter ‘92

9.0 Correspondence

Correspondence regarding this paper should be sent to the address below.

Michael Sebrée

SunSoft Incorporated, M/S MTV5-44

2550 Garcia Avenue

Mountain View, CA 94043

Michael.Sebree@Eng.Sun.COM

10.0 Biographies

Sandeep Khannais a software engineer in the Operating Systems Technology Group at SunSoft. He graduated with
an M.S. in Computer Science from the University of Mississippi in 1987. He received his B.E. Electrical and Elec-
tronics Engineering from Birla Institute of Technology and Science, Pilani, India in 1984. He is currently involved
with the design and implementation of realtime extensions to SunOS 5.0.

Michael Sebréeis a software engineer in the Operating Systems Technology Group at SunSoft. He is rumored to
have obtained some knowledge of operating systems in general, and the UNIX operating system in particular, at
Vanderbilt University and at UCLA.

John Zolnowsky is a software engineer in the Operating Systems Technology Group at SunSoft. He has a Ph.D. in
Computer Science from Stanford University, was instruction set architect for the 68000 processor family, and now
serves as technical editor for the POSIX 1003.4 Realtime Extensions.

USENIX - Winter ‘92

6.0 Summary

In SunOS 5.0, we have provided the following realtime functionality:

• Static priority and fixed quantum scheduling for realtime threads.

• A fully preemptive kernel, providing bounded dispatch latency.

• Hidden scheduling in the kernel has been greatly reduced, eliminating much priority inversion.

• Priority inversion arising from the use of synchronization objects has been controlled by implementing the basic pri-
ority inheritance protocol.

7.0 Bibliography

[AT&T 1989] System V Interface Definition, 3rd Edition, AT&T 1989.

[AT&T 1990] UNIX System V Release 4 Internals Student Guide, AT&T 1990.

[Lampson 1980] B. W. Lampson and D. D. Redell, “Experiences with processes and monitors in Mesa,”Communica-
tions of the ACM, vol. 23, no. 2, pp. 105-117, February 1980.

[Leffler 1989] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman,The Design
and Implementation of the 4.3 BSD UNIX Operating System, Addison-Wesley, 1989.

[Moran 1988] Joseph P. Moran, “SunOS Virtual Memory Implementation,”Proceedings for the Spring 1988 EUUG
Conference, EUUG, London, England, Spring 1988.

[Rajkumar 1988] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky, “Real-Time Synchronization Protocols for
Multiprocessors,”Proceedings of the Real-Time Systems Symposium, December 6-8, 1988, Huntsville, Alabama.

[Powell 1991] M.L. Powell, S.R. Kleiman, S. Barton, D. Shah, D. Stein, M. Weeks, “SunOS Multi-thread Architec-
ture,” Proceedings 1991 USENIX Winter Conference.

[Sha 1990] Lui Sha, Ragunathan Rajkumar, John P. Lehoczky, “Priority Inheritance Protocols: An Approach to Real-
Time Synchronization.”IEEE Transactions on Computers, Vol. 39, No. 9, September 1990.

[SPARC 1991]The SPARC Architecture Manual, Version 8, Prentice-Hall 1991.

[SunSoft MT, to appear] “Multithreading Techniques Used in the SunOS 5.0 Kernel,” to be submitted to a future con-
ference.

8.0 Acknowledgments

The authors are indebted to the multithreading group of the Operating Systems Technology Group of SunSoft, both
for providing the platform multi-thread implementation and for their assistance in development of the realtime sched-
uling mechanisms. We also wish to acknowledge the assistance of Deepak Dhamdhere for his contributions to the
Performance section of this paper. He built many of the measurement tools and collected the data that provided a
basis for that section.

USENIX - Winter ‘92

realtime_timeout. When the wakeup callout function is called, it unblocks the sampling process, enables kernel exe-
cution path recording, and records the time of kernel wakeup. When the thread resumes execution, it records the time
of kernel dispatch, and the firstioctl() then returns the recorded times to the sampling process. The sampling process
then uses the secondioctl() command to disable kernel execution path recording and attain a timestamp for the return
to user mode. The execution path recording has been extended to include timestamps to enable detailed analysis.
When the sampling process detects a dispatch latency violating our projected guaranteed value, it captures the viola-
tion time parameters and execution path trace to a file.

We have measured our kernel with preemption both disabled and enabled. With preemption disabled, we have
observed dispatch latencies in excess of 100 milliseconds. Our preliminary results with preemption enabled showed a
dispatch latency of about 2 milliseconds on the SPARCstation 1, with a small number of larger values. Our analysis
of these larger values pointed to long non-preemption intervals associated with the memory management unit hard-
ware layer [Moran 1988]. We are in the process of reducing these intervals. A similar problem can arise when the
context of the realtime process is stolen by another process. The operations associated with reloading the realtime
process’s context can take over 4 milliseconds on a SPARCstation 1, much of which is non-preemptible. We discuss a
possible solution to this problem in § 5.0.

5.0 Future Work

Although we feel that we have achieved much in bounding the dispatch latency of SunOS, there remain a number of
areas where we could improve the performance of the system, or increase its utility as a base for realtime applica-
tions. In this section, we discuss some of the areas we are interested in improving.

• Realtime I/O

In SunOS 5.0, much of the I/O processing is done through streams. The streams processing is done at the systems pri-
ority level and thus executes below any active realtime thread. It is impossible to guarantee realtime I/O for streams
without drastically changing the handling of streams processing. Other I/O activities require additional changes in
request queuing to gain realtime priority-based behavior.

• Dispatch Latency

We intend to continue trying to reduce the dispatch latency of the system. Work is going on to improve the granularity
of the locking and to reduce the length of non-preemption intervals. It is our goal to bring the dispatch latency on the
SPARCstation 2 down to 1 millisecond.

While we have been able to bound dispatch latency, applications are interested in the overall response time. One of
the components of response time is the time required to process interrupts. Arrival of multiple interrupts may delay
dispatch, thus making the duration of interrupt processing unbounded. We intend to provide the user a mechanism to
block certain interrupts temporarily when running in a multiprocessor environment. Such a capability provides a
means of shielding realtime threads from the delays due to interrupts.

• Locking Contexts

Since realtime threads are often event-driven, they typically do not run very often. On machines such as the SPARC-
station 1 that implement the older, large kernel-managed TLB-based MMU, it is possible for a realtime thread to have
its context stolen, even though its pages may be locked into primary memory. In order to resume the realtime thread,
it may be necessary to steal a context from another thread and reload the realtime thread’s context. To avoid the long
non-preemption points associated with this activity, we are contemplating implementing a facility to lock a context
into association with a thread, providing a facility analogous to that for locking pages into memory.

USENIX - Winter ‘92

due to the possibility of taking an interrupt between clearing the owner and the lock, and being unable to determine
unambiguously whether the lock was held by the interrupted thread or some other. Hence we were forced to encode
the owner and lock fields within the same word, and clear both with a single instruction.

3.2 Limitations in Providing Priority Inheritance

Priority inheritance is appropriate only when it is known which thread or threads must release the synchronization
object in order for the blocking thread to proceed. We faced this issue for readers/writer lock, due to the cost of main-
taining the list of reader access holders.

For condition variables and semaphores, priority inheritance is not possible. The protocol for these synchronization
objects does not determine which thread(s) will release these objects. This is particularly unfortunate for condition
variables, which can be used with mutexes to build higher order synchronization operations. Even if the protocol for
these synchronization objects determines which threads(s) will be releasing them, the inability to inherit through con-
dition variables precludes the provision of inheritance.

4.0 Performance Measurement

Scheduling performance from the realtime perspective can be defined in terms of the dispatch latency. We define dis-
patch latency as the amount of time it takes to begin execution of a high-priority runnable thread. As illustrated in
Figure 4-1, this time includes the remainder of the non-preemption interval for the currently running thread, the time
to resolve resource conflicts represented by acquiring held synchronization objects, and the context switch time. We
do not include the processing time associated with interrupts nor any of the time within the application used in
responding to the event which made the thread runnable. The total application response time will of course include
both interrupt and application processing time.

Figure 4-1: Dispatch Latency

We examined two different ways of measuring dispatch latency. The first way is to measure all possible paths in the
kernel to see if there exists a path which exceeds the response time we wish to guarantee. This requires a complete
static analysis of the kernel, and the use of dynamically loaded modules again makes this solution infeasible. The sec-
ond way is to repeatedly sample the dispatch latency of the kernel under specified loads. With a sufficiently large
number of samples, this second way should have the same result. To measure the dispatch latency of SunOS 5.0, we
have chosen the sampling approach.

Our sampling dispatch latency test (SDLT) is composed of a sampling process, using a sample driver and recording
violations for further analysis.The sampling driver provides twoioctl() commands to control sampling. The first com-
mand computes and records the time for a wakeup event, blocks the sampling process, and scheduling the wakeup via

event response
to event

dispatch latency

dispatch
priority
task

low priority threads release resources

response interval

interrupt
processing

conflicts

+ non-preemption interval

thread made
runnable

Calculate
response

reschedule to run
the highest priority
thread

USENIX - Winter ‘92

2.5.2.3 Priority Inheritance for Readers/Writer Locks

The case of readers/writer locks deviates somewhat from the idealized picture we have presented for synchronization
objects. When a synchronization object of this type is acquired by a thread with the intention of updating the data it
protects, i.e., when a writer lock is in effect, there is no deviation: there is a single thread that controls the synchroni-
zation object and is the beneficiary of all inheritance applied via the synchronization object. The deviation comes in
the case of readers locks. Readers locks can have a potentially large number of “owners.” It is not practical in terms of
space to keep a pointer in the readers lock to every thread that currently “owns” it. To simplify the implementation,
for readers locks we have implemented what we term theowner-of-record. When a readers/writer lock is acquired for
reading, the first thread that obtains the readers lock is assigned “ownership” of the synchronization object. As such,
it is the beneficiary of all inheritance that passes through the readers lock until it releases the lock. When the owner-
of-record thread releases a readers lock, it is possible that there are still other threads that own it. These owners are in
a sense anonymous, since they cannot be identified by inspecting the readers lock, nor can they inherit from it while
they own it. Since it is not an uncommon condition for a readers lock to have a single owner, our measurements indi-
cate that there is still value in providing this limited form of priority inheritance for readers locks.

3.0 Lessons Learned

In the implementation of the realtime scheduling features, we encountered two problems: the requirements on mutex
implementation and the generalization of priority inheritance.

3.1 Mutex Entry/Exit Implementation

Priority inheritance requires the owner of a synchronization object to be known. Our basic mutex entry code appears
like:

An interrupt occurring between theldstub andst instructions can leave the mutex held by an unknown owner.

One possible solution is to raise the processor interrupt level to prevent interruption during the above sequence. Since
the management of the processor interrupt level is nontrivial, efficiency requires that uncontested entry/exit should
not require raising the processor interrupt level. Another solution might be to use an atomic operation which could set
the lock and owner fields simultaneously, but in the SPARC architecture [SPARC 1991], the sole atomic update avail-
able is theldstub instruction. A third solution might be to have a blocking thread arrange for deferred inheritance,
which the acquiring thread would have to check for and assume after return from interrupt. Again, this solution was
rejected for its performance cost.

We chose to solve this issue by constraining the mutex lock operation to a stylized behavior which could be recog-
nized by the interrupt handler. The use of a fixed register as LOCK_REG, with the convention that a zero value in this
register indicated the successful acquisition of a mutex, allows the interrupt handler to safely set the mutex owner
before processing the interrupt. Not only does this work in the uniprocessor case, where no other thread ever sees the
lock held with an unknown owner, but it works in the multi-processor case because the interval between setting the
lock and setting the owner is bounded, and a thread attempting to acquire the mutex from another processor can spin
until the owner is known.

In order to prevent erroneous inheritance, possibly to a thread that is no longer extant, we chose to invalidate the
owner field of a mutex at exit. This invalidation could not take place after the lock was released due to possibility of a
race with a thread acquiring the mutex from another processor. It could not take place before the lock was released,

ldstub [MUTEX_PTR + M_LOCK], LOCK_REG
tst LOCK_REG
bnz lock_already_held
nop
st OWNER_ID_REG, [MUTEX_PTR + M_OWNER]

USENIX - Winter ‘92

blocking chain to the end. The end of the blocking chain, as far as priority inheritance is concerned, arrives when it
finds a thread that is not blocked, or a synchronization object that is not priority inverted.

The distinction that priority inheritance makes between global priority and inherited priority is reflected in the imple-
mentation. The thread structure contains a field for each. Ordinarily, the field that represents the thread’s inherited pri-
ority is zero. If the thread inherits a priority, the thread is marked to indicate this condition, and the inherited priority
field is set accordingly. The code that enqueues and dequeues threads makes note of whether the thread possesses an
inherited priority and uses it instead of the global priority when appropriate. Related to this issue, when priority inher-
itance encounters a thread that is in a sleep queue or dispatch queue, it must first dequeue the thread, will the new,
inherited priority to the thread, then re-enqueue the thread at its new priority. Currently, in order to maintain the con-
sistency of global data structures, all these operations must take place while holdingschedlock, the global scheduler
lock (§2.4).

Note further that it is possible for a thread to hold several synchronization objects at once, each of which could be pri-
ority inverted at potentially different priorities. When priority inheritance wills a priority to a priority inverting
thread, it saves a record of the synchronization object and the priority of the highest priority thread blocked on it in a
circular linked-list in the thread structure of the priority inverting thread. When the priority inverting thread releases a
synchronization object, the record of its inheritance from this synchronization object is removed from the thread’s
linked-list, and the linked-list is traversed to compute the thread’s (possibly new) dispatch priority.

The sleep queue and all the priority inheritance information associated with a synchronization object are encapsulated
in an abstract data type called aturnstile. Figure 2-7 below displays this relationship. Because there are many, many
synchronization objects in the system, we allocate turnstiles dynamically when needed. When a thread blocks on a
synchronization object that previously had no threads blocked on it, the newly blocked thread allocates a turnstile
from a pool of turnstiles and attaches the turnstile to the synchronization object. The pool itself grows with the num-
ber of allocated threads in the kernel. The existence of a turnstile attached to a synchronization object is an indication
that there are threads blocked on a synchronization object. When a thread releases a synchronization object that it
owns and in so doing discovers that it has awakened the last of the threads in the turnstile’s sleep queue, the releasing
thread returns the turnstile to the free pool.

The traditional UNIX implementation of sleep queues uses a hashing scheme based on await channel, which is usu-
ally the address of a desired resource or some offset therefrom; aliasing of hash buckets is implicit in such a scheme
[Leffler 1989]. High priority processes sleeping on unrelated wait channels may hash to the same sleep queue bucket;
thus to wake up processes sleeping on a particular resource, it is necessary to hash to the appropriate sleep queue
bucket, then traverse the sleep queue looking for those processes with matching wait channels. The result is that the
behavior of insertion and release operations on sleep queues is not bounded by the number of processes competing for
the resource—instead, the bound is the number of processes in the system.

Rather than using hashing schemes, turnstiles provide a per-synchronization object sleep queue, so aliasing is
avoided. Insertion and release operations on turnstiles are bounded only by the number of threads competing for the
associated synchronization object. Since threads waiting in a turnstile are queued in priority order, higher priority
threads have a fixed bound for behavior. Turnstiles have potential to improve the performance of sleep and wakeup
operations on large systems with lots of threads.

Figure 2-7: Turnstiles

BT0S0 BT1TST0

BTn = Blocked Thread n
Sn = Synchronization Object n
TSTn = Turnstile n

USENIX - Winter ‘92

Figure 2-6: Indirect Blocking & Transitive Priority Inheritance

As described in the literature [Rajkumar 1988], the basic priority inheritance protocol imposes bounds on the duration
of blocking. Briefly, if there arem lower priority threads, and these threads access k distinct synchronization objects
in common with a higher priority thread, the higher priority thread can be blocked by at most a number of critical sec-
tions equal to the minimum ofm andk .

2.5.2.1 Priority Inheritance Primitives

Table 3 summarizes the operations of priority inheritance. Priority inheritance for both mutexes and readers/writer
locks is implemented using these primitives. Thepi_willto () function is used when a thread attempts to acquire a syn-
chronization object and discovers that it is blocked by another thread. The pi_waive() function is used when a thread
releases ownership of a synchronization object and must surrender the inheritance that it received via the synchroni-
zation object. These two functions are the primary operations in our priority inheritance implementations. Note that
the function pi_willto () contains no direct reference to the synchronization object that the argument thread is blocked
on. This is becausepi_willto () is called only after the argument thread has been put on the sleep queue for the syn-
chronization object. Doing so causes information to be saved within the thread structure itself, allowing the synchro-
nization object to be found via the thread.

2.5.2.2 Priority Inheritance Implementation

Priority inheritance comes into play only when threads block on a synchronization object. To implement transitive
priority inheritance, when starting from an arbitrary synchronization object, priority inheritance must be able to find
the owning thread and each successive synchronization object and thread in the blocking chain. In order to make this
information quick and easy to obtain, each synchronization object maintains a pointer to its owning thread; likewise,
each blocked thread keeps a pointer to the synchronization object it is blocked on and a tag field to identify the syn-
chronization object’s type. Using this information, the priority inheritance mechanism in SunOS 5.0 can follow a

Table 3: Priority Inheritance Primitives

Function Name Operation

void pi_willto (thread) Will the priority of the argument thread to all threads directly or indi-
rectly blocking it.

void pi_waive(thread, sync_object) Release the priority inheritance that the argument thread obtained via
a particular synchronization object.

high
priority

low
priority

medium
priority

medium
priority

S0

S1
owns

owns

blocked

blocked

RTn = Runnable Thread n
Sn = Synchronization Object n

T1

T2

T3

T4

Tn = Thread n

USENIX - Winter ‘92

Figure 2-5: Bounded and Unbounded Priority Inversion

To solve the priority inversion problem, we have chosen to implement thebasic priority inheritance protocol. A com-
plete and detailed discussion of this protocol is beyond the scope of this paper, but its essentials are easily described.
A more elaborate description may be found in [Sha 1990]. The basic priority inheritance protocol attempts to limit the
duration of priority inversion during blocking by having a blocked high priority thread propagate (will) its priority to
all lower priority threads that block it. When lower priority threads cease to block a high priority thread, the lower pri-
ority threads revert to their original priority.

The basic priority inheritance protocol concerns itself with two general abstract data types. These abstract data types
are the schedulable entity, in our case the thread, and synchronization objects, in our implementation mutexes and
readers/writer locks. Let us consider what happens in the general case when threads acquire and release synchroniza-
tion objects. Before a threadT1 enters a critical section, it attempts to acquire ownership of the synchronization object
S guarding the critical section. If the synchronization objectS is already owned by threadT2, the attempt by threadT1
to acquire synchronization objectS fails, and threadT1 blocks. In this scenario, threadT1 is said to be blocked on syn-
chronization objectS and blocked by threadT2. If the synchronization objectS is not already owned by another
thread, threadT1 will acquire ownership of synchronization objectS and enter the critical section that it guards. When
threadT1 exits this critical section, it releases synchronization objectS and awakens the highest priority thread
blocked onS by T1.

Priority inheritance determines at what priority threads block and are dispatched. Priority inheritance makes a distinc-
tion between the global priority and theinherited priority of a thread. The inherited priority is the priority a thread
obtains via priority inheritance by blocking higher priority threads. Thedispatch priority is computed as the maxi-
mum of the global and inherited priorities of a thread. A threadT executes at its global priority unless it is in a critical
section and is blocking higher priority threads. If threadT blocks higher priority threads,T inherits a priority equal to
the maximum dispatch priority of the threads it blocks. When threadT exits a critical section and releases the associ-
ated synchronization object, it relinquishes the inheritance it obtained by holding the synchronization object.

To ensure that the duration of priority inversion is bounded, the basic priority inheritance protocol requires that prior-
ity inheritance be transitive. That is, if there are three threads,T1, T2, andT3, such that the dispatch priorities are
ordered thus:

Priority(T1) > Priority(T2) > Priority(T3)

and if threadT3 blocks threadT2, and threadT2 blocks threadT1, then threadT3 inherits the priority of threadT1 via
threadT2. Figure 2-6 below illustrates a case where transitive priority inheritance prevents unbounded blocking by
the highest priority thread: if runnable thread T3 does not inherit indirectly from blocked thread T1, then the medium
priority runnable thread T4 will preempt the execution of T3, resulting in unbounded blocking for T1.

high
priority

low
priority

S0
owns

blocked

Case A

S0
owns

blocked

medium
priority

Case B
RTn = Runnable Thread n
Sn = Synchronization Object n

T1 T1

T2

Tn = Thread n

T2

T3

USENIX - Winter ‘92

switches, and the major restructuring required of the existing callout-queue framework. Another possible alternative
is to process only the smaller requests at interrupt level and process the remainder at a lower priority. This approach
requires complete knowledge of the entire system. With dynamically loadable modules this is not a feasible solution.

To address the problem of hidden scheduling, we have whenever possible followed a policy of moving kernel pro-
cessing of this sort into kernel threads, so that the work does not preempt or run at the expense of realtime work on
the system. The processing of the streams queues has been dealt with in this fashion [SunSoft MT, to appear]. Simi-
larly, the delayed processing scheduled by thetimeout() function is done by a kernel thread,callout_thread, running
at the highestsys class priority. In the default configuration, this thread runs at a priority immediately below the real-
time class priorities. As before, at every clock tick, thecallout_thread checks to see if any timeout processing needs
to be done. The difference is that, instead of being called at interrupt level, now it simply sleeps on a condition vari-
able periodically signalled by the clock interrupt. Thecallout_thread runs only after all the realtime threads run,
thereby avoiding priority inversion due to delayed processing.

Yet realtime threads may need to set a timer/alarm so that they can be awakened in realtime. This problem has been
addressed by adding a function calledrealtime_timeout(). The requests made viarealtime_timeout() are run at the
lowest interrupt level and are kept on a separate heap. Figure 2-4 shows the priority space model before and after the
changes forrealtime_timeout(). Only time-critical interfaces use this function. For example, the interval timer and
its interface,setitimer() are based on realtime_timeout(). The interfaces fortimeout() andrealtime_timeout() are
identical as shown in Table 2.

Figure 2-4: Callout-Queue Processing

2.5.2 The Priority Inversion Problem

The priority inversion problem was first identified by Lampson and Redell in their discussion on the use of monitors
in Mesa [Lampson 1980]. It has received a moderate amount of attention lately in the literature [Rajkumar 1988] [Sha
1990]. What follows is a brief description of the problem as it pertains to SunOS. SunOS 5.0 is a multithreading ker-
nel that uses synchronization objects such as mutexes andreaders/writer locks to enforce thread synchronization. The
use of such synchronization objects can lead to uncontrolled priority inversion. By way of illustration, consider the
case where a high priority thread that uses amutex gets blocked during the periods of time when a lower-priority
thread that owns themutex is preempted by intermediate-priority threads. These periods of time are potentially very
long—in fact, they are unbounded, since the amount of time a high priority thread must wait for amutex to become
unlocked may depend not only on the duration of some critical sections, but on the duration of the complete execution
of some threads. Figure 2-5 below illustrates these situations. Case A shows simple priority inversion: low priority
thread T2 blocks high priority thread T1 because T2 holds synchronization object S0; Case B is identical, save that
medium priority thread T3 preempts the execution of T2, with the result that T1’s blocking time depends on the dura-
tion of T3’s execution.

interrupts

timeout() lowest interrupt realtime_timeout()

max. systemtimeout()

level

priority

lowest interrupt
level

RT

system

TS

interrupts

RT

system

TS

SunOS 5.0SunOS / SVR4 Test Platform

USENIX - Winter ‘92

Thus, kernel preemption requests need only be checked at two places: in thesched_unlock() routine, and at the end
of interrupt processing. In both instances, if thecpu_kprunrun flag is set, thekpreempt() routine is called. This rou-
tine determines whether circumstances are appropriate for preemption, or should be deferred. Examples of circum-
stances under which preemption is deferred include when the executing thread is already slated to callswtch(), the
calling thread is the idle thread or an interrupt thread, or preemption is disabled. The latter condition arises when
some processor state, such as floating point or memory management context is in flux. These conditions are bracketed
by calls tokpreempt_disable() / kpreempt_enable(), with the latter function checking for a deferred preemption.

The thread time quantum is enforced by class-specific code, which marks the class specific data to indicate an expired
thread, and requests preemption. When the actual preemption occurs, the class-specific code checks the expiration
mark, and if so, callssetbackdq() rather thansetfrontdq() when placing the current thread on the dispatch queues,
thus providing round-robin scheduling.

2.5 Priority Inversion

Priority inversion is the condition that occurs when the execution of a high priority thread is blocked by a lower prior-
ity thread. If the duration of priority inversion in a system is unbounded, it is said to be uncontrolled. Uncontrolled
priority inversion can cause unbounded delays during blocking, resulting in missed deadlines even under very low
levels of processor utilization. During the design phase, we identified two types of priority inversion as particular
areas of concern. These areas arehidden scheduling and the priority inversion problem associated with the use of syn-
chronization objects, usually called simply the priority inversion problem.

2.5.1 Hidden Scheduling

We define hidden scheduling as that work done asynchronously in the kernel on behalf of threads without regard to
their priority. One example is the traditional model of streams processing. In this traditional model, whenever a pro-
cess is about to return from the kernel to user mode, the kernel checks to see if there are any requests pending in the
streams queues, and if so, these requests are processed before the thread returns to user mode. In effect, these requests
are being handled at the wrong priority.

Another example is the processing of the callout-queue, a mechanism for scheduling delayed processing of specified
functions. Thetimeout() function puts requests on the callout-queue; its interface is specified in Table 2. Regardless
of whether a request for delayed processing was issued by a timesharing thread, a realtime thread or a system thread,
callout processing is done at the lowest interrupt level. It is possible that the time for a request issued by a time-shar-
ing thread arrives while a realtime thread is running. This will cause the realtime thread to be interrupted, resulting in
priority inversion. Since neither the number nor the duration of the functions on the callout-queue are predictable, the
duration of priority inversion is non-deterministic, and hence is uncontrolled. Measurements taken under SunOS
4.0.3 and SunOS 4.1 have shown that it could take longer than 5 milliseconds to process the callout-queue. Such
unscheduled delays are unacceptable in an operating system that purports to offer realtime response.

In the ideal case, all work done in the kernel would be done at the priority of the thread that requested the work. To do
this for the callout mechanism would entail associating a priority with each request and creating a thread at that prior-
ity to do the requested work. The obvious drawbacks of this approach are the creation of many threads, more context

Table 2: Timeout Interfaces

Interface Description

timeout (func, arg, t) Schedule the functionfunc to be called at timet from now. Processed at
the highest priority for system threads.

realtime_timeout (func, arg, t) Schedule the functionfunc to be called at timet from now. Processed at
the lowest software interrupt level.

USENIX - Winter ‘92

ority dispatched thread. If this thread has a lower priority than the newly runnable thread, that processor is marked for
preemption, that processor’scpu_chosen_level is set to the new thread’s priority, and if necessary, the interprocessor
interrupt is sent. Thecpu_chosen_level is used by later calls tocpu_choose() as an indication that a higher priority
thread is intended for this processor.

When a thread which is currently executing on a processor has its dispatch priority lowered below that of the highest
priority runnable thread, either through the effect of apriocntl () call or by loss of inheritance (§2.5.2), it is appropri-
ate for that thread to be preempted by the higher priority thread. The cpu_surrender() function accomplishes this,
finding the processor on which the target thread is executing and marking it for preemption, and sending the interpro-
cessor interrupt, if necessary. The level of preemption is determined by comparison with a system parameter,kpre-
emptpri, with lower levels causing user preemption and higher levels causing kernel preemption.

Before we can describe the dispatch operation, some details concerning interrupt thread creation and termination are
required. For efficiency, the dispatch of an interrupt thread is not a complete dispatch operation. Instead, the thread
executing at the time of the interrupt is pushed onto a LIFO list, and execution of the interrupt thread begins immedi-
ately, withcpu_thread set to refer to the interrupt thread. Since the pushed thread cannot be dispatched until the inter-
rupt thread terminates or blocks, the interrupted thread is called “pinned.” If the interrupt thread terminates without
blocking, as would typically be the case, the head of the interrupt list is popped off for execution [SunSoft MT, to
appear].

The swtch() function provides the fundamental operation of scheduling. If the calling thread is an interrupt thread
with a pinned thread, the pinned thread is unpinned and execution is switched to that thread. Otherwise, the function
disp() is called to select the highest priority thread eligible for execution on this processor. If no runnable thread
exists for this processor,disp() returns the idle thread for this processor (ID2 in Figure 2-3).Thedisp() function
automatically resets thecpu_chosen_level and thecpu_kprunrun and cpu_runrun preemption flags, and sets
cpu_dispthread to reflect the newly dispatched thread.

SunOS 5.0 has two modes of preemption, user and kernel. User level preemption refers not to a user level request, but
a “lazy” preemption which is deferred until the thread last dispatched attempts to return to user mode; this corre-
sponds to the historical notion ofrunrun [Leffler 1989]. User level preemption forces aswtch() call before resuming
user state execution of a process; this level of preemption is requested by setting thecpu_runrun flag associated with
the processor. User preemption requests are recognized at the end of trap or system call processing.

Kernel preemption requests an immediateswtch() call, and is requested by setting thecpu_kprunrun flag. These
requests can occur because of scheduling operations on either the same or another processor. The requests on the
same processor may occur while executing the thread to be preempted, or may occur while executing an interrupt
thread pinning the thread to be preempted. Requests occurring on another processor result in an interprocessor inter-
rupt, and thus can be processed like preemption requests occurring during local interrupts.

Table 1: Scheduling Interfaces

Function Description
setfrontdq Put a thread onto the front of the dispatch queue.

setbackdq Put a thread onto the back of the dispatch queue.

cpu_choose Determine a processor to execute a thread.

cpu_surrender Have a thread give up its processor.

disp Select a thread for execution from the dispatch queue.

swtch Select the next thread to execute.

kpreempt Attempt to preempt the kernel.

kpreempt_disable Disable preemption for a critical interval.

kpreempt_enable Reenable preemption.

USENIX - Winter ‘92

ations in terms of a single thread or single processor at a time. We chose the following design objective: a runnable
thread will be dispatched if it has higher priority than some thread currently executing on a processor for which this
thread has affinity. Stated from the processor point of view: every processor is executing a thread with at least as high
dispatch priority as the highest among the runnable threads having affinity for this processor. This objective can guar-
antee the dispatch latency for a thread only if it remains the highest priority thread on the dispatch queue until dis-
patched. Each arrival of a higher priority thread while a thread is awaiting dispatch restarts its dispatch latency
interval.

Figure 2-3: Scheduling Example

Currently, a single spin lock,schedlock, protects all scheduling operations. In particular, whenever the release of a
synchronization object makes some thread runnable,schedlock is held while placing the thread on the dispatch
queue. The functionsched_lock() obtains this lock, andsched_unlock() releases the lock. If the lock is currently
held, the processor will spin on the lock, waiting for access. To prevent interference and delays from interrupt rou-
tines, the holder ofschedlock runs at an elevated processor interrupt level.

Associated with each processor is a set of scheduling variables:cpu_thread, cpu_dispthread, cpu_idle, cpu_runrun,
cpu_kprunrun, andcpu_chosen_level. Thecpu_thread value refers to the thread currently executing on the processor,
and is changed whenever execution of a different thread begins. Thecpu_dispthread value records the identity of the
thread last selected for dispatch on that processor. Thecpu_idle value refers to a special idle thread allocated for this
processor, having a priority lower than any dispatch priority, and never appearing in the dispatch queue. The
cpu_runrun andcpu_kprunrun values record requests for preemption of the current thread. Thecpu_chosen_level
records the priority of the thread which is slated to preempt the thread currently executing on that processor.

Threads are placed on the dispatch queue by one of two functions:setfrontdq() or setbackdq(). Thesetfrontdq()
function is used primarily when a thread is preempted, to place it at the head of its dispatch queue so that when a
thread is next chosen for dispatch from its level, it will be the first selected. Thesetbackdq() function places a thread
at the tail of its dispatch queue. Thus a newly-awakened thread will be dispatched only after all other threads at its
dispatch priority have been dispatched.

After setfrontdq() or setbackdq() has put a thread on the dispatch queue, thecpu_choose() function is called to find
a processor on which the runnable thread might be dispatched. This function finds the processor with the lowest pri-

IT0

Dispatch Queue

Runnable Threads

RT0 RT1 RT2

IDn = Idle Thread n

Pn = Processor n

ITn = Interrupt Thread n
DTn = Dispatched Thread n
BTn = Blocked Thread n
RTn = Runnable Thread n

Sn = Synchronization Object

P0

IT1 DT0

P2P1

executing
thread

BT0 BT1S0

DT1

Blocked Threads

dispatched
thread

executing
thread

ID2

owns

USENIX - Winter ‘92

per time slice. The time-sharing scheduler switches context in round-robin fashion often enough to give every thread
an equal opportunity to run. Thesys class exists for the purpose of scheduling the execution of special system threads
and interrupt threads. Threads in thesys class have fixed priorities established by the kernel when they are started. It
is not possible for a user thread to change its class tosys class. Therealtime class supports a fixed priority technique
of processor access. Realtime threads are scheduled strictly on the basis of their priority and the time quantum associ-
ated with them. A realtime thread with infinite time quantum runs until it terminates, blocks or is preempted. Figure
2-2 shows the default configuration of scheduling classes in SunOS 5.0.

Interrupt thread priorities are computed such that they are always the highest priority threads in the system. If a
scheduling class is dynamically loaded, the priorities of the interrupt threads are recomputed to ensure that they
remain the highest priority threads in the system.

Each scheduling class has a unique scheduling policy for dispatching threads within its class and a set of priority lev-
els which apply to threads in that class as illustrated in Figure 2-2. A class-specific mapping translates these priorities
into a set of global priorities. The user can configure the ranges as well as the global mapping associated with each
class.

Figure 2-2: The Global Priority Model

2.4 Scheduling

SunOS 5.0 is designed to run on a shared-memory multiprocessor system. The set of threads, threads’ data, and syn-
chronization objects are shared by all processors, and the system has a single dispatch queue for all processors. We
assume that each processor can send an interrupt to any other processor. Except for specially configured threads
bound to a single processor, threads may be selected for dispatch on any processor.

As far as scheduling is concerned, threads can be in one of three states: blocked, runnable, or executing. Figure 2-3
shows examples of each of these cases. Blocked threads are those waiting on some synchronization object, such as
BTn. When the object is released, the highest priority or all waiting threads in the sleep queue are made runnable.
Unblocked threads are placed at the end of the dispatch queue for their dispatch priority, such asRTn. The thread
enters the executing state when a processor selects it for execution, such asDTn. An executing thread may become a
blocked thread by waiting on a synchronization object, or may be preempted by a higher priority thread and placed
back on the dispatch queue as a runnable thread. When an executing thread blocks, the system dispatches another
thread.

In a uniprocessor system, realtime scheduling is defined to mean that the highest priority thread is dispatched, within
a bounded time of its becoming runnable. The obvious extension to an-processor environment is that then highest
priority processes should be dispatched. Unfortunately, this state is not achievable in a system in which some threads
are restricted to or from certain processors. We have made a more local generalization, emphasizing scheduling oper-

TS

sys

RT
TS RT

0

59+20

-20

0

59

99

159
interrupt

USENIX - Winter ‘92

The primary example of a thread is an LWP executing within a process [Powell 1991]. Such a thread has extra associ-
ated information for accessing, for example, file descriptors, user credentials, and signal context. Kernel daemon
threads are responsible for pageout, swapping, and the background servicing of STREAMS. An idle thread is selected
for execution whenever no other thread is runnable, and switches whenever another thread becomes runnable.

Threads interact using synchronization objects. Amutex allows a single thread access to the information protected by
the mutex. Acondition variable allows threads to suspend execution, waiting for some change in the condition which
the thread requires. A readers/writer lock allows a single thread to modify or multiple threads to examine some
shared information. Acounting semaphore permits synchronization from a thread that does not wish to block. Opera-
tions on synchronization objects include acquisition, which may involve blocking the calling thread, and release,
which may involve unblocking other threads.

Interrupt processing is performed by interrupt threads, created at interrupt time and exiting when interrupt processing
is complete [SunSoft MT, to appear]. One particular interrupt thread, the clock thread, is dispatched upon clock inter-
rupt, and is responsible for time-based scheduling activities. Currently, interrupt threads have an affinity for the pro-
cessor which took the interrupt, and so cannot migrate to another processor. Interrupt and foreground threads use
synchronization objects to interact, and hence the pervasive use of elevated interrupt level in the kernel is eliminated.
Asynchronous wakeup refers to the occasion when an interrupt thread releases a synchronization object and unblocks
another thread; we use the term synchronous wakeup when this is done by a foreground thread.

2.2 Priority Model

We associate with each thread a number of priority values: dispatch priority, global priority, inherited priority, and
typically, a user priority. The user priority, together with other application parameters, determines the thread’s global
priority. The inherited priority, derived through priority inheritance as described below, and the global priority deter-
mine the dispatch priority, the actual value used in queuing and selecting a thread for execution.

The dispatcher, illustrated in Figure 2-1, uses an array of dispatch queues, indexed by dispatch priority. When a thread
is made runnable, it is placed on a dispatch queue, typically at the end, corresponding to its dispatch priority. When a
processor switches to a new thread, it always selects the thread at the beginning of the highest priority nonempty dis-
patch queue. Threads may not change dispatch priority while on a dispatch queue; the thread must be first removed,
its dispatch priority adjusted, and then the thread may be placed on a different dispatch queue.

When a thread needs to wait on a synchronization object, it is placed on a sleep queue associated with the synchroni-
zation object. The sleep queue is maintained in dispatch priority order, so that when the synchronization object is
released, the highest priority thread waiting for the object is at the head of the sleep queue.

2.3 Scheduling Attributes

In SunOS 5.0 threads are divided into scheduling classes. Each class chooses the attributes for the priority of threads
in that class. These attributes are determined in the class dependent functions supplied by each scheduling class.
Scheduling class dependent code must abide by certain rules expected by the class independent code, such as that the
higher the priority value, the higher the priority of the thread. However, scheduling class dependent functions have
the flexibility to decide the range of priority values for threads belonging to the class, and the class dependent func-
tions also determine when (if ever) a thread’s priority value changes.

A new thread inherits the scheduling class of its parent. Associated with each thread is a class id,t_cid and a pointer
to the class specific data,t_cldata. Within the class specific data is the class specific priority, the time quantum associ-
ated with the thread and the other class related data. A thread may change its scheduling class by using theprio-
cntl(2) system call. Thepriocntl (2) system call may also be used to change other parameters associated with thread
processor usage.

SunOS 5.0 by default supports three scheduling classes. Thetime-sharing class supports a time slicing technique for
threads using the processor. Time-sharing class threads are scheduled dynamically, with a few hundred milliseconds

USENIX - Winter ‘92

One possible solution was the use of preemption points whereby, at various points throughout the kernel, code was
inserted to check if the current process should be preempted and, if so, force the preemption [AT&T 1990]. These
preemption points could be inserted, however, only where the process could recover from the effects of the preemp-
tion. For instance, an exiting process releasing its memory resources could not be preempted if its process state was
not safe for scheduling. Hence, while a kernel with preemption points might be able to provide bounded dispatch
latency, it might be guaranteed only while no process used certain kernel facilities.

SunOS 5.0 has a fully preemptible kernel, based on fully synchronized access by kernel code to kernel storage and
resources. The elimination of the pervasive use of elevated processor interrupt levels to mask interrupts leaves a small
set of non-preemption intervals. This permits immediate preemption when a higher priority task becomes runnable.
Another relevant feature of SunOS 5.0 is the use of dynamically loaded kernel modules to enhance kernel extensibil-
ity.

The rest of this paper consists of the following sections: Details of Implementation, which describes the objects and
methods involved in implementing realtime scheduling in the kernel; Lessons Learned, where we discuss some of the
problems of our implementation; Performance, where we describe the results of our work and the measurement meth-
ods used; and Futures, where we discuss areas for possible improvement and enhancement.

2.0 Details of Implementation

Several elements compose the realtime scheduling features of SunOS 5.0. The foremost of these is that the internal
architecture of SunOS is based on threads [Powell 1991]. Within the kernel, threads interact through the use of shared
memory and synchronization objects.

The user and programmer interfaces for realtime scheduling are those provided by SVR4. Runnable threads are
queued in a system-wide dispatch queue array, and the scheduler determines when and which threads are to be dis-
patched for execution on the system processors. We describe below the scheduler activities in kernel preemption,
multiprocessor scheduling, and the techniques we used to lower dispatch latency.

Figure 2-1: Scheduling Elements

2.1 Elements

Figure 2-1 illustrates the scheduling elements of SunOS 5.0. The fundamental unit of scheduling in this system is the
thread. A thread is a single flow-of-control. Each thread possesses a register state and a stack. The system associates
with each thread extra state information relating to its schedulability. These include the thread dispatch priority and
processor affinity that determines on which processors a thread can execute. In SunOS 5.0, processor affinities are not
user accessible; the default is to execute on all processors.

Dispatch Queue

Runnable Threads

P0

Synchronization
Object

Thread

ThreadBlocked

Processor

BT0 BT1S0

owns

USENIX - Winter ‘92

Realtime Scheduling in SunOS 5.0

Sandeep Khanna
Michael Sebrée
John Zolnowsky

SunSoft Incorporated

Abstract
We describe the fundamental mechanisms in SunOS 5.0 to provide realtime scheduling functionality. Our primary
goal was to provide bounded behavior for dispatching or blocking threads. To achieve this goal we have modified the
kernel to befully preemptive, guaranteeing dispatch after both synchronous and asynchronous wakeups. We have also
worked toward controllingpriority inversion in the kernel. The result is a kernel capable of delivering realtime sched-
uling and bounded response to a large class of user level applications.

1.0 Introduction

A realtime operating system may be defined as one that has the ability to provide a required level of service in a
bounded response time. To achieve a bounded response time, time-critical applications require control over their
scheduling behavior. Increasing numbers of new, interesting applications for the desktop possess time-critical aspects.
Some examples that come immediately to mind are in the area of user interfaces, multimedia, and virtual reality.
These applications are typically “mixed-mode,” that is, they are partitionable into schedulable entities, some but not
all of which require realtime response. It seems desirable to provide a standards-conformant, full-featured environ-
ment like SunOS for the tasks without realtime requirements. But to support these applications, SunOS must be able
to provide some realtime capability to those tasks that are time-critical. From our desires to provide realtime capabil-
ity and to use SunOS as the basis of our work, we derived the set of requirements listed below.

• The scheduling of tasks in the kernel should be deterministic. By deterministic scheduling, we mean the kernel
should provide priority-based scheduling for user tasks, so that the time-critical application developer has control of
the scheduling behavior of the system; the kernel should provide bounded dispatch latency, so that time-critical user
tasks are not subjected to unexpected and undesirable delays; the kernel should be free from unbounded priority
inversions.

• No draconian demands should be placed on application behavior in order to obtain realtime response. This is impor-
tant for mixed-mode applications including non-realtime components which require the general services of a UNIX
environment.

• The resultant operating system should be appropriate for multiprocessor machines.

• The resultant operating system should present a standard interface to the programmer and user. In particular, the
interface that we must support is that described in the System V Interface Definition [AT&T 1989].

Historical implementations of UNIX have not provided bounded dispatch latency. The principal failure of these sys-
tems was that a process executing in the kernel was not preemptible. A low-priority process would retain control of
the processor until the process either blocked or attempted to return to user state.

