
UCLA Extension Course

C++ Performance Issues

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/�schmidt/ (615) 343-8197

C++ Performance Douglas C. Schmidt

C++ Performance Issues Overview

� Construction/destruction

� Inlining

� Virtual functions

� Static and dynamic libraries

� Dynamic allocation

� Compiler optimizations

� Generality vs. performance

� General performance strategies
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Construction/Destruction

� Pass-by-value copies objects.

– Constructor called on creation, destructor called at end of function
(or function call, for return values).

– Pass objects (of types that have constructors/destructors) by
reference , instead.

� Use const reference, to be safe.

� Don’t create local objects unless necessary; create them in
innermost scope.

// Don’t create foo here!
if (option) {

Foo foo; // foo only created if option is enabled
// . . .

}
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Construction/Destruction
� Use initializer list to avoid default construction of contained objects.

template <class T>
Stack<T>::Stack (size_t max_size) {

array_ = Array<T> (max_size); // Very inefficient! array_
// already initialized using
// its default constructor.

// [. . .]
}

� Consider inlining constructors and destructors.

– Though be very careful with inline destructors. For local (stack)
objects, they’ll be called for every path out of a function. And if the
destructor is virtual, it should not be inline.

� Bulka and Mayhew measured about 60 percent decrease in
performance for additional destructor call.
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Inlining

� Inlining removes function call overhead.

� Two ways to inline:

– Add inline keyword to function definition :
inline
int
Foo::status () const { return status_; }

– Define the function in the class declaration :
class Foo {
public:

int status () const { return status_; }
};

� inline keyword is suggestion to compiler.

Vanderbilt University 4

C++ Performance Douglas C. Schmidt

Inlining Mechanics

class Foo {
 // [. . .]

};
 static int incr (int i);

int
Foo::incr (int i) {
  return i + 17;
}

1) save register state
2) set up argument (y)
3) jump to Foo::incr () code
4) add 17 to argument
5) set up return value
6) return to caller
7) restore register state

not inlined:

int y = // [. . .];

z = Foo::incr (y);

inlined:

int y = // [. . .];

z = y + 17;

1) add 17 to y
2) place result in z
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Effects of Inlining
� Positive

– Speeds execution, due to removal of function call overhead.
– Speeds execution, due to more aggressive optimization.
– For small functions such as accessors, can cause code size

decrease !

� Negative

– For large functions, causes code size increase.
– Some functions cannot be inlined.
– Debuggers usually do not see inline functions.
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Virtual Functions

� Virtual functions add overhead.

– Construction requires setup of vtable pointer (single long copy).
– Virtual function call is indirect, through vtable.
– Inlining not possible if object type cannot be determined at compile

time.

� Virtual function call time can be 2 to 3 times as non-virtual call.

– 10’s of nanoseconds on several hundred MHz CPU.
– Insignificant penalty for large functions.
– Modern compilers can usually remove all of the penalty.

� Second-order effects can be very significant: vtable access can
cause cache misses.
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Static and Dynamic Libraries

� A static (archive, .a ) library is simply a collection (plus optional index)
of object (.o ) files.

– Linking extracts copies of .o files from static library and places
them in executable.

� A dynamic (shared object, .so ) library resides in memory. Any
process (owned by any user) can call its code.

– Therefore, the (shared) code must be position independent.
– Called dynamic because actual linking is done at run-time.
– Each process gets a copy of the static (global) data in the dynamic

library.
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Dynamic Library Implications for C++

� Dynamic libraries are slower due to position independent object
code.

– Position independence implemented via added level of indirection.
– In addition to first-order cost of indirection, indirection increases

likelihood of cache misses.

� 18 to 25 percent slower for a representative TAO example.
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Dynamic Allocation
� Avoid dynamic allocation on critical paths.

– Allocation/deallocation itself is slow due to heap management.
– With multithreading, must serialize heap management.

� Fragmentation can impair performance, so avoid repetitive allocation
+ deallocation.

� If dynamic allocation is necessary, try to do it before entering
performance-critical sections.

� Use pools of objects.

Vanderbilt University 11



C++ Performance Douglas C. Schmidt

Compiler Optimizations

� -O usually enables optimization, though many compilers have other,
more specific or aggressive options, e.g., -O3 , -fast .

– Optimization can greatly increase compile time.
– Optimization can hinder debugging, because the object code no

longer directly corresponds to the source code.
– Optimization can overly aggressive.

� Some compilers disable optimization with -g . (g++ does not.)
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Performance and Generality

� Container design usually trades off performance and generality.

– For specific applications, custom containers may provide better
performance.

– STL provides good performance, given its generality.
– For general purpose applications, it’s likely that STL will give better

performance than a one-off solution.

� Another example of the tradeoff: memcpyvs. memmove(and bcopy ).
memcpy is faster, but does not allow overlap.

� STL tries to be minimal, but not at the cost of performance.

– Equality operator is required only for performance.
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General Performance Strategies

� Beware of the 80-20 “rule”:

– 80 percent of execution time is spent in only 20 percent of the
code.

� Performance problems are often due to just a few small
implementation decisions.

– (assuming that the design supports good performance)

� Use tools to help isolate performance problems.

– e.g., time probes (gethrtime () ), prof /gprof , Quantify
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For More Information
� Bulka and Mayhew, Efficient C++: Performance Programming

Techniques, Addison-Wesley, 1999.

– Andrew summarized in http://students.cec/˜agg1/c++/
performance.html

� Compiler documentation, e.g., info gcc , for optimization options
and discussion.
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