
Introduction to Patterns and Frameworks

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/�schmidt/ (615) 343-8197

OO Patterns Douglas C. Schmidt

Patterns and Frameworks

� Motivation for Patterns and Frameworks

� What is a Pattern? A Framework?

� Pattern Categories

� Pattern Examples

Vanderbilt University 1

OO Patterns Douglas C. Schmidt

Motivation for Patterns and Frameworks

DIAGNOSTIC STATIONSDIAGNOSTIC STATIONS

ATMATM
MANMAN

ATM

LAN

ATM

LAN

MODALITIES

(CT, MR, CR)
 CENTRAL

BLOB STORE

CLUSTER

BLOB

STORE

DX

BLOB

STORE

� Developing software is hard

� Developing reusable
software is even harder

� Proven solutions include
patterns and frameworks

� www.cs.wustl.edu/�schmidt/
patterns.html

Vanderbilt University 2

OO Patterns Douglas C. Schmidt

Overview of Patterns and Frameworks

� Patterns support reuse of software architecture and design

– Patterns capture the static and dynamic structures and
collaborations of successful solutions to problems that arise when
building applications in a particular domain

� Frameworks support reuse of detailed design and code

– A framework is an integrated set of components that collaborate
to provide a reusable architecture for a family of related
applications

� Together, design patterns and frameworks help to improve software
quality and reduce development time

– e.g., reuse, extensibility, modularity, performance

Vanderbilt University 3

OO Patterns Douglas C. Schmidt

Patterns of Learning

� Successful solutions to many areas of human endeavor are deeply
rooted in patterns

– In fact, an important goal of education is transmitting patterns of
learning from generation to generation

� In a moment, we’ll explore how patterns are used to learn chess

� Learning to develop good software is similar to learning to play good
chess

– Though the consequences of failure are often far less dramatic!

Vanderbilt University 4

OO Patterns Douglas C. Schmidt

Becoming a Chess Master

� First learn the rules

– e.g., names of pieces, legal movements, chess board geometry
and orientation, etc.

� Then learn the principles

– e.g., relative value of certain pieces, strategic value of center
squares, power of a threat, etc.

� However, to become a master of chess, one must study the
games of other masters

– These games contain patterns that must be understood,
memorized, and applied repeatedly

� There are hundreds of these patterns

Vanderbilt University 5

OO Patterns Douglas C. Schmidt

Becoming a Software Design Master

� First learn the rules

– e.g., the algorithms, data structures and languages of software

� Then learn the principles

– e.g., structured programming, modular programming, object
oriented programming, generic programming, etc.

� However, to become a master of software design, one must
study the designs of other masters

– These designs contain patterns that must be understood,
memorized, and applied repeatedly

� There are hundreds of these patterns

Vanderbilt University 6

OO Patterns Douglas C. Schmidt

Design Patterns

� Design patterns represent solutions to problems that arise when
developing software within a particular context

– i.e., “Pattern == problem/solution pair in a context”

� Patterns capture the static and dynamic structure and collaboration
among key participants in software designs

– They are particularly useful for articulating how and why to
resolve non-functional forces

� Patterns facilitate reuse of successful software architectures and
designs

Vanderbilt University 7

OO Patterns Douglas C. Schmidt

Example: Stock Quote Service

OBSERVERSOBSERVERS

REALREAL--TIMETIME

MARKETMARKET

DATA FEEDDATA FEED

STOCKSTOCK

QUOTESQUOTES

SUBJECTSUBJECT

MODELMODEL

Key Forces

1. There may be many
observers

2. Each observer may react
differently to the same
notification

3. The subject should be as
decoupled as possible
from the observers

� i.e., allow observers to
change independently of
the subject

Vanderbilt University 8

OO Patterns Douglas C. Schmidt

Structure of the Observer Pattern

ObserverObserver

update()

SubjectSubject

notify()
attach(observer)
detach(observer)

ConcreteConcrete
ObserverObserver

foreach o in observers loop
 o.update()
end loop

ConcreteConcrete
SubjectSubject

get_state()

subject_state_

update()

return subject_state_

subject->get_state()

APPLICATION

INDEPENDENT

APPLICATION

DEPENDENT

observers

subject

1 N

� Intent

– Define a one-to-many
dependency between
objects so that when one
object changes state, all
its dependents are
notified and updated
automatically.

Vanderbilt University 9

OO Patterns Douglas C. Schmidt

Graphical Notation

TEMPLATE

CLASS

PROCESS

THREAD

OBJECT

: CLASS

INHERITS CONTAINMENT

Vanderbilt University 10

OO Patterns Douglas C. Schmidt

Collaboration in the Observer Pattern

ConcreteConcrete
SubjectSubject

ConcreteConcrete
Observer 1Observer 1

ConcreteConcrete
Observer 2Observer 2

set_state()

notify()

update()

get_state()

update()

get_state()

Variations

� “Push” architectures combine
control flow and data flow

� “Pull” architectures separate
control flow from data flow

Vanderbilt University 11

OO Patterns Douglas C. Schmidt

Design Pattern Descriptions
Main parts

1. Name and intent

2. Problem and context

3. Force(s) addressed

4. Abstract description of structure and
collaborations in solution

5. Positive and negative
consequence(s) of use

6. Implementation guidelines and
sample code

7. Known uses and related patterns

Pattern descriptions are
often independent of
programming language or
implementation details

� Contrast with
frameworks

Vanderbilt University 12

OO Patterns Douglas C. Schmidt

Frameworks

1. Frameworks are semi-complete applications

� Complete applications are developed by inheriting from, and
instantiating parameterized framework components

2. Frameworks provide domain-specific functionality

� e.g., business applications, telecommunication applications,
window systems, databases, distributed applications, OS kernels

3. Frameworks exhibit inversion of control at run-time

� i.e., the framework determines which objects and methods to
invoke in response to events

Vanderbilt University 13

OO Patterns Douglas C. Schmidt

Class Libraries vs. Frameworks vs. Patterns

NETWORKING

DATABASE

GUI

EVENT

LOOP

APPLICATION-
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

EVENT

LOOP

CALL

BACKSINVOKES

(A) CLASS LIBRARY ARCHITECTURE

(B) FRAMEWORK ARCHITECTURE

DATABASE

CLASSES

NETWORK

IPC
CLASSES

MATH

CLASSES

ADT
CLASSES

GUI
CLASSES

APPLICATION-
SPECIFIC

FUNCTIONALITY

EVENT

LOOP

GLUE

CODE

LOCAL

INVOCATIONS

ADT
CLASSES

MATH

CLASSES

Definition

� Class libraries

– Self-contained, “pluggable” ADTs

� Frameworks

– Reusable, “semi-complete”
applications

� Patterns

– Problem, solution, context

Vanderbilt University 14

OO Patterns Douglas C. Schmidt

Component Integration in Frameworks

EVENT SENSOREVENT SENSOR

SYSTEMSYSTEM

CODECODE

EVENT LOOPEVENT LOOP

DISPATCHERDISPATCHER

APPLICATIONAPPLICATION
CODECODE

EVENTEVENT

HANDLERHANDLER((SS))

callback()callback()

� Framework components are loosely
coupled via callbacks

� Callbacks allow independently developed
software components to be connected
together

� Callbacks provide a connection-point where
generic framework objects can
communicate with application objects

– The framework provides the common
template methods and the application
provides the variant hook methods

Vanderbilt University 15

OO Patterns Douglas C. Schmidt

Comparing Patterns and Frameworks

Protocol

Filter

Handler

Protocol

Framework
Strategy
Concurrency

Protocol Pipeline
Framework

Framework
I/O Strategy

Filesystem
Cached Virtual

Expander
Tilde ~

/home/...
Event Dispatcher

A
cceptor

A
ct

iv
e

O
bj

ec
t

Asynchronous Completion Token

Reactor/Proactor Singleton

Adapter

Streams

Strategy

Service Configurator

State

St
ra

te
gy

� Patterns and frameworks
are highly synergistic

– i.e., neither is
subordinate

� Patterns can be
characterized as more
abstract descriptions of
frameworks, which are
implemented in a particular
language

In general, sophisticated frameworks embody dozens of patterns and
patterns are often used to document frameworks

Vanderbilt University 16

OO Patterns Douglas C. Schmidt

Design Pattern Space

� Creational patterns

– Deal with initializing and configuring classes and objects

� Structural patterns

– Deal with decoupling interface and implementation of classes and
objects

� Behavioral patterns

– Deal with dynamic interactions among societies of classes and
objects

Vanderbilt University 17

OO Patterns Douglas C. Schmidt

Creational Patterns

� Factory Method

– Method in a derived class creates associates

� Abstract Factory

– Factory for building related objects

� Builder

– Factory for building complex objects incrementally

� Prototype

– Factory for cloning new instances from a prototype

� Singleton

– Factory for a singular (sole) instance

Vanderbilt University 18

OO Patterns Douglas C. Schmidt

Structural Patterns

� Adapter

– Translator adapts a server interface for a client

� Bridge

– Abstraction for binding one of many implementations

� Composite

– Structure for building recursive aggregations

� Decorator

– Decorator extends an object transparently

Vanderbilt University 19

OO Patterns Douglas C. Schmidt

Structural Patterns (cont’d)

� Facade

– Facade simplifies the interface for a subsystem

� Flyweight

– Many fine-grained objects shared efficiently

� Proxy

– One object approximates another

Vanderbilt University 20

OO Patterns Douglas C. Schmidt

Behavioral Patterns

� Chain of Responsibility

– Request delegated to the responsible service provider

� Command

– Request as first-class object

� Interpreter

– Language interpreter for a small grammar

� Iterator

– Aggregate elements are accessed sequentially

Vanderbilt University 21

OO Patterns Douglas C. Schmidt

Behavioral Patterns (cont’d)

� Mediator

– Mediator coordinates interactions between its associates

� Memento

– Snapshot captures and restores object states privately

� Observer

– Dependents update automatically when a subject changes

� State

– Object whose behavior depends on its state

Vanderbilt University 22

OO Patterns Douglas C. Schmidt

Behavioral Patterns (cont’d)

� Strategy

– Abstraction for selecting one of many algorithms

� Template Method

– Algorithm with some steps supplied by a derived class

� Visitor

– Operations applied to elements of an heterogeneous object
structure

Vanderbilt University 23

OO Patterns Douglas C. Schmidt

When to Use Patterns

1. Solutions to problems that recur with variations

� No need for reuse if the problem only arises in one context

2. Solutions that require several steps

� Not all problems need all steps

� Patterns can be overkill if solution is simple linear set of
instructions

3. Solutions where the solver is more interested in the existence of the
solution than its complete derivation

� Patterns leave out too much to be useful to someone who really
wants to understand
– They can be a temporary bridge, however

Vanderbilt University 24

OO Patterns Douglas C. Schmidt

What Makes a Pattern a Pattern?

A pattern must:

� Solve a problem ,

– i.e., it must be useful!

� Have a context ,

– It must describe where the
solution can be used

� Recur ,

– It must be relevant in other
situations

� Teach

– It must provide sufficient
understanding to tailor the
solution

� Have a name

– It must be referred to
consistently

Vanderbilt University 25

OO Patterns Douglas C. Schmidt

Case Study: A Reusable Object-Oriented
Communication Software Framework

� Developing portable, reusable, and efficient communication software
is hard

� OS platforms are often fundamentally incompatible

– e.g., different concurrency and I/O models

� Thus, it may be impractical to directly reuse:

– Algorithms
– Detailed designs
– Interfaces
– Implementations

Vanderbilt University 26

OO Patterns Do

System Overview

CALLCALL CENTERCENTER
MANAGERMANAGER

SUPERSUPER--
VISORVISOR

NETWORKNETWORK

MD110MD110 ERICSSONERICSSON

TELECOMTELECOM

SWITCHESSWITCHES

EVENTEVENT

SERVERSERVER

SWITCHSWITCH

HANDLERSHANDLERS

SUPERSUPER--
VISORVISOR

SUPERSUPER--
VISORVISOR

SUPERSUPER--
VISORVISOR

MD110MD110 ERICSSONERICSSON

SUPERVISORSUPERVISOR

HANDLERSHANDLERS
: Reactor: Reactor

� OO framework for Call Center Management

� www.cs.wustl.edu/�schmidt/PDF/ECOOP-
95.pdf

� www.cs.wustl.edu/�schmidt/PDF/DSEJ-94.pdf

Vanderbilt University

OO Patterns Douglas C. Schmidt

Problem: Cross-platform Reuse

read()

Protocol Handlers (HTTP)

I/O
Subsystem

write() read() read() read()write() accept()

WaitForCompletion()

I/O Completion
Port

� OO framework was first developed
on UNIX and later ported to
Windows NT 3.51 in 1993

� UNIX and Windows NT have
fundamentally different I/O models

– i.e., synchronous vs.
asynchronous

� Thus, direct reuse of original
framework was infeasible

– Later solved by ACE and
Windows NT 4.0

Vanderbilt University 28

OO Patterns Douglas C. Schmidt

Solution: Reuse Design Patterns

Component
Configurator

Pipes &
Filters

TACTICAL
PATTERNS

STRATEGIC
PATTERNS

Reactor

CompositeIterator Factory
Method Proxy Wrapper

Facade

Layers

Publisher
Subscriber

Acceptor-
Connector

� Patterns support reuse of
software architecture

� Patterns embody
successful solutions to
problems that arise when
developing software in a
particular context

� Patterns reduced project
risk by leveraging proven
design expertise

Vanderbilt University 29

OO Patterns Douglas C. Schmidt

The Reactor Pattern
Reactor

handle_events()
register_handler(h)
remove_handler(h)

select (handles);
foreach h in handles loop
 table[h].handle_event(type)
end loop

Event Handler
handle_event(type)
get_handle()

handlers

Handle ownsuses

notifies

Concrete
Event

Handler

Synchronous Event
Demultiplexer

select()

1 N

www.cs.wustl.edu/�schmidt/POSA/

Intent

� Decouples
synchronous event
demuxing & dispatching
from event handling

Forces Resolved
� Efficiently demux

events synchronously
within one thread

� Extending applications
without changing
demux infrastructure

Vanderbilt University 30

OO Patterns Douglas C. Schmidt

Collaboration in the Reactor Pattern

main
program

INITIALIZE

REGISTER HANDLER

callback :
Concrete

Event_Handler

START EVENT LOOP

DATA ARRIVES

OK TO SEND

Reactor

handle_events()

FOREACH EVENT DO

handle_input()

select()

Reactor()

register_handler(callback)

handle_output()

SIGNAL ARRIVES

TIMER EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT HANDLE

REMOVE HANDLER
remove_handler(callback)

IN
IT

IA
L

IZ
A

T
IO

N

M
O

D
E

E
V

E
N

T
 H

A
N

D
L

IN
G

M
O

D
E

handle_close()
CLEANUP

� Note inversion of
control

� Also note how
long-running
event handler
callbacks can
degrade quality
of service

Vanderbilt University 31

OO Patterns Douglas C. Schmidt

Using ACE’s Reactor Pattern Implementation

#include "ace/Reactor.h"
class My_Event_Handler : public ACE_Event_Handler {
public:

virtual int handle_input (ACE_HANDLE h) {
cout << "input on handle " << h << endl;
return 0; }

virtual int handle_signal (int signum,
siginfo_t *,
ucontext_t *) {

cout << "signal " << signum << endl;
return 0; }

virtual ACE_HANDLE get_handle (void) const {
return ACE_STDIN; }

};

Vanderbilt University 32

OO Patterns Do

Using ACE’s Reactor Pattern
Implementation (cont’d)

int main (int argc, char *argv[])
{

My_Event_Handler eh;
ACE_Reactor reactor;

reactor.register_handler
(&eh, ACE_Event_Handler::READ_MASK);

reactor.register_handler
(SIGINT, &eh);

for (;;)
reactor.handle_events ();

/* NOTREACHED */
return 0;

}

Vanderbilt University

OO Patterns Douglas C. Schmidt

Differences Between UNIX and Windows NT

� Reactive vs. Proactive I/O

– Reactive I/O is synchronous
– Proactive I/O is asynchronous

� Requires additional interfaces to “arm” the I/O mechanism
– See Proactor pattern

� www.cs.wustl.edu/�schmidt/POSA/

� Other differences include

– Resource limitations

� e.g., Windows WaitForMultipleObjects() limits
HANDLEs per-thread to 64

– Demultiplexing fairness

� e.g., WaitForMultipleObjects always returns the lowest
active HANDLE

Vanderbilt University 34

OO Patterns Douglas C. Schmidt

Lessons Learned from Case Study

� Real-world constraints of OS platforms can preclude direct reuse of
communication software

– e.g., must often use non-portable features for performance

� Reuse of design patterns may be the only viable means to leverage
previous development expertise

� Design patterns are useful, but are no panacea

– Managing expectations is crucial
– Deep knowledge of platforms, systems, and protocols is also very

important

Vanderbilt University 35

OO Patterns Douglas C. Schmidt

Key Principles

� Successful patterns and frameworks can be boiled down to a few
key principles:

1. Separate interface from implementation
2. Determine what is common and what is variable with an interface

and an implementation
– Common == stable

3. Allow substitution of variable implementations via a common
interface

� Dividing commonality from variability should be goal-oriented rather
than exhaustive

Vanderbilt University 36

OO Patterns Douglas C. Schmidt

Planning for Change

� Often, aspects of a design “seem” constant until they are examined
in the light of the dependency structure of an application

– At this point, it becomes necessary to refactor the framework or
pattern to account for the variation

� Frameworks often represent the distinction between commonality
and variability via template methods and hook methods, respectively

Vanderbilt University 37

OO Patterns Douglas C. Schmidt

The Open/Closed Principle

� Determining common vs. variable components is important

– Insufficient variation makes it hard for users to customize
framework components

– Conversely, insufficient commonality makes it hard for users to
comprehend and depend upon the framework’s behavior

� In general, dependency should always be in the direction of stability

– i.e., a software component should not depend on any component
that is less stable than itself

� The “Open/Closed” principle

– This principle allows the most stable component to be extensible

Vanderbilt University 38

OO Patterns Douglas C. Schmidt

The Open/Closed Principle (cont’d)

� Components should be:

– open for extension
– closed for modification

� Impacts

– Abstraction is good
– Inheritance and polymorphism are good
– Public data members and global data are bad
– Run-time type identification can be bad

Vanderbilt University 39

OO Patterns Douglas C. Schmidt

Violation of Open/Closed Principle

struct Shape { enum Type { CIRCLE, SQUARE }
shape_type;

/* . . . */ };
void draw_square (const Square &);
void draw_circle (const Circle &);

void draw_shape (const Shape &shape) {
switch (shape.shape_type) {

case SQUARE:
draw_square ((const Square &) shape);
break;

case CIRCLE:
draw_circle ((const Circle &) shape);
break;

// etc.

Vanderbilt University 40

OO Patterns Douglas C. Schmidt

Application of Open/Closed Principle

class Shape {
public:

virtual void draw () const = 0;
};

class Square : public Shape { / * . . . */ };
class Circle : public Shape { / * . . . */ };

typedef vector<Shape> Shape_Vector;

void draw_all (const Shape_Vector &shapes) {
for (Shape_Vector::iterator i = shapes.begin();

i != shapes.end ();
i++)

(*iterator).draw ();
}

Vanderbilt University 41

OO Patterns Douglas C. Schmidt

Benefits of Design Patterns

� Design patterns enable large-scale reuse of software
architectures

– They also help document systems to enhance understanding

� Patterns explicitly capture expert knowledge and design
tradeoffs, and make this expertise more widely available

� Patterns help improve developer communication

– Pattern names form a vocabulary

� Patterns help ease the transition to object-oriented technology

Vanderbilt University 42

OO Patterns Douglas C. Schmidt

Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may suffer from pattern overload

� Patterns are validated by experience and discussion rather
than by automated testing

� Integrating patterns into a software development process is a
human-intensive activity

Vanderbilt University 43

OO Patterns Douglas C. Schmidt

Tips for Using Patterns Effectively

� Do not recast everything as a pattern.

– Instead, develop strategic domain patterns and reuse existing
tactical patterns

� Institutionalize rewards for developing patterns

� Directly involve pattern authors with application developers
and domain experts

� Clearly document when patterns apply and do not apply

� Manage expectations carefully

Vanderbilt University 44

OO Patterns Douglas C. Schmidt

Lessons Learned using OO Frameworks

� Benefits of frameworks

– Enable direct reuse of code
– Facilitate larger amounts of reuse than stand-alone functions or

individual classes

� Drawbacks of frameworks

– High initial learning curve

� Many classes, many levels of abstraction
– The flow of control for reactive dispatching is non-intuitive
– Verification and validation of generic components is hard

Vanderbilt University 45

OO Patterns Douglas C. Schmidt

Patterns and Framework Literature

� Books

– Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software AW, ’94

– Pattern Languages of Program Design series by AW, ’95-’99.
– Siemens & Schmidt, Pattern-Oriented Software Architecture,

Wiley, volumes ’96 & ’00 (www.posa.uci.edu)
– Schmidt & Huston, C++ Network Programming: Mastering

Complexity with ACE and Patterns, AW, ’02
(www.cs.wustl.edu/˜schmidt/ACE/book1/)

– Schmidt & Huston, C++ Network Programming: Systematic
Reuse with ACE and Frameworks, AW, ’03
(www.cs.wustl.edu/˜schmidt/ACE/book2/)

Vanderbilt University 46

OO Patterns Douglas C. Schmidt

Conferences and Workshops on Patterns

� Pattern Language of Programs Conferences

– September 8-12, 2003, Monticello, Illinois, USA
– http://hillside.net/conferences/plop.htm

� The European Pattern Languages of Programming conference

– June 25-29, 2003, Kloster Irsee, Germany
– http://hillside.net/conferences/europlop.htm

� Middleware 2003

– June 16-20, 2003, Rio, Brazil
– www.cs.wustl.edu/ schmidt/activities-chair.html

Vanderbilt University 47

OO Patterns Douglas C. Schmidt

Summary

� Mature engineering disciplines have handbooks that describe
successful solutions to known problems

– e.g., automobile designers don’t design cars using the laws of
physics, they adapt adequate solutions from the handbook known
to work well enough

– The extra few percent of performance available by starting from
scratch typically isn’t worth the cost

� Patterns can form the basis for the handbook of software
engineering

– If software is to become an engineering discipline, successful
practices must be systematically documented and widely
disseminated

Vanderbilt University 48

