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Abstract
Product-line architectures (PLAs) designed for mobile de-
vices create a unique challenge for deployment and config-
uration (D&C) planning engines. A D&C planning engine
captures the unique OS, middleware, and hardware signature
of the device and rapidly finds a valid variant of the PLA
that can be supported by the configuration in terms of OS,
middleware, and available resources, such as memory. It is
hard to develop a D&C engine for a PLA that can both cap-
ture the numerous nuanced requirements of a PLA’s variant
construction rules and the unique characteristics of a large
number of mobile devices. It is even harder to fin a valid
variant to deploy to the target device fast enough to support
automatic deployment in an ad-hoc environment. This paper
presents a tool called Scatter whose input is (1) the require-
ments of PLA construction and (2) the resources available
on a discovered mobile device and whose output is the opti-
mal variant that can be deployed to the device. Scatter pro-
vides automatic variant selection based on configuration and
resource constraints and also ensures that variant selection
is optimal with regard to a configurable cost function.

1. INTRODUCTION
The increasing popularity and abundance of mobile and em-
bedded devices is bringing the promise of pervasive comput-
ing closer to reality. A recent trend in mobile devices that
makes pervasive computing more realistic is the proliferation
of services that allow mobile devices to download software
on-demand. Mobile phones, for example, can now access
web-based applications, such as google mail, or download
custom applications from services, such as Verizon’s ”Get It
Now.”
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In a pervasive computing environment, the ability to down-
load software on-demand will play a critical role in delivering
custom services to users where and when they are needed.
For example, when a mobile device enters a retail store,
software for browsing back room inventory, displaying store
circulars, and purchasing items can be downloaded by the
mobile device. When exiting the store, the device may be
carried onto a train, in which case applications for placing
food orders, checking train schedules, and reserving further
tickets could be downloaded by the mobile device.

Middleware, such as the Java Micro Edition, will play an
increasingly important role developing custom and context-
based application delivery. These platforms reduce the bur-
den of handling the nuances between device and OS APIs
placed on developers and allow more effective reuse of ap-
plication software. Common deployment infrastructure [16]
and device capability and preference schemas, such as RDF
[22] and CC/PP [21, 17], will also make on-demand appli-
cation deployment more feasible.

Despite the advances in middleware and deployment tech-
nologies, however, there are still significant variabilities be-
tween devices in terms of hardware resources (such as CPU
power and RAM), middleware versions (such as Java Virtual
Machine versions), hardware capabilities (such as commu-
nication protocols like General Packet Radio Service), and
service provider restrictions (such as bandwidth usage lim-
its). Handling all these diverse restrictions and producing
an application that can be deployed on a large number of
heterogeneous devices is hard.

Product-line architectures (PLAs) [6] are a promising ap-
proach to help developers manage the complexity of the
variability between mobile devices [2, 35, 28]. PLAs [7] en-
able the development of a group of software packages that
can be retargeted for different requirement sets by leverag-
ing common capabilities, patterns, and architectural styles.
The design of a PLA is typically guided by scope, common-
ality, and variability (SCV) analysis [10]. SCV captures key
characteristics of software product-lines, including their (1)
scope, which defines the domains and context of the PLA,
(2) commonalities, which describe the attributes that recur
across all members of the family of products, and (3) vari-
abilities, which describe the attributes unique to the differ-



ent members of the family of products.

Using a PLA, developers can create software architectures
that can be rapdily retargeted to the capabilities of differ-
ent mobile devices. In a pervasive environment, however,
the retargeting of a software application to produce a valid
variant for a device must happen online. When a device
enters a particular context, such as a retail store, the appli-
cation provider service must very quickly deduce and create
a variant for the device. With the large array of device types
and rapid development speed of new devices and capabili-
ties, the system will not be able to know about all device
types a priori. As devices enter a context, their unique ca-
pabilities must be discovered and dealt with efficiently and
correctly.

To address the need for online software variant selection
engines for mobile devices, we have developed a tool called
Scatter that first captures the requirements of a PLA and
the resources of a mobile device and then quickly constructs
a custom variant from a PLA for the device. This paper
presents the architecture and functionality of Scatter and
provides the following contributions to research on custom
application deployment in pervasive environments:

• We describe Scatter’s requirement and resource speci-
fication mechanisms and show how they facilitate the
capture and analysis of a wide variety of requirement
types

• We discuss how Scatter transforms requirement spec-
ifications into a format that can be operated on by a
constraint solver

• We describe the automated variant selection solver,
based on a Constraint Logic Programming Finite Do-
main (CLP(FD)) solver [18, 31] and show how it can
rapidly produce both correct and optimal variants based
on the requirements

• We describe an architecture based on repair operations
for negotiating with mobile devices when no suitable
variant can be found and suggesting ways that the de-
vice can make itself a suitable host for a variant

• We describe Scatter’s remoting mechanisms that no-
tify it when new devices are discovered and communi-
cate variant selections and

• We present data from performance tests that show how
PLA constraints impact resource constraint satisfac-
tion, which is the computationally-intensive compo-
nent of variant selection.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the challenges of capturing the requirements
and resources for deploying PLA variants to mobile devices
and discusses how Scatter addresses them; Section 3 shows
how Scatter automatically transforms PLA requirements and
mobile device resources into a model that can be operated on
by the CLP(FD) based variant selector; Section 4 describes
Scatter’s repair operator framework and shows how it can be
used to deduce modifications to a device, such as increasing
memory allocations or downloading additional third-party

software, to make variant selection possible; Section 5 ana-
lyzes the performance results of applying Scatter to variant
selection for an example PLA; Section 6 compares our ap-
proach with related work; and Section 7 presents lessons
learned and concluding remarks.

2. CAPTURING PLA AND MOBILE DEVICE
REQUIREMENTS

Traditional processes of identifying valid PLA variants in-
volve software developers manually determining the software
components that must be in a variant, the components to
configure, and how to compose and deploy the components.
In addition to being infeasible in a pervasive environment
(where the target device signatures are not known ahead of
time and variant selection must be done on demand), such
manual approaches are tedious and error-prone and are a sig-
nificant source of system downtime [11]. Manual approaches
also do not scale well and become impractical with the large
solution spaces typical of PLAs.

One way to overcome the speed and correctness deficiencies
of manual variant selection, is to capture a formal model of
the PLA’s commonality and variability so that automation
can take place. In addition to capturing the composition
rules for building variants, a model for analyzing the non-
functional requirements of a variant must be produced to
avoid selecting variants that are compositionally correct but
whose functional requirements fail due to being deployed on
incompatible or insufficient infrastructure. Figure 1 shows
the cycle of device discovery, variant selection based on re-
quirements, and variant deployment on a train.

For example, a ticket reservation service for a train may
require 1 metabyte of memory and a 256 kilobits of data
transfer over a General Packet Radio Service (GPRS) con-
nection. If the reservation service is deployed to a device
with insufficient free memory, it will not function properly
since it does not have sufficient memory, even if it adheres
to the PLA compositional rules. To properly configure and
select a variant dynamically, therefore, both compositional
and non-functional requirements must be considered and
matched against the target device.

Capturing and relating composition and non-functional re-
quirements to a mobile device is hard. The remainder of
this section describes key challenges of building a composi-
tional and non-functional requirements model of a PLA and
outlines how Scatter addresses them. The section also illus-
trates how Scatter transforms requirements captured in its
graphical modeling tool into a format that can be operated
on by its variant selection solvers.

2.1 PLA Composition Rules
Scatter is a graphical tool that provides a domain-specific
modeling language (DSML) for specifying variant selection
and provides a visio-like interface, as shown in Figure 2.
Scatter allows developers to visually model (1) the compo-
nents of their PLA, (2) the dependencies and composition
rules of components, and (3) the non-functional require-
ments of each component. The components in the Scatter
DSML represent the software components that compose the
PLA. PLA developers simply drag-and-drop these compo-



Figure 1: Selecting a Train Ticket Reservation Ser-

vice for a Device

nents from a palette into a model.

To facilitate the analysis of the variant solution space re-
quires a formal grammar to describe the structure, com-
monality, and variability (SCV) analysis of the PLA and its
valid configurations. This customization grammar can then
be used to automatically generate and explore the variant
solution space. Scatter provides a visual model for captur-
ing the SCV of a PLA, as seen in Figure 2. This view allows
developers to formalize which components are available in
the PLA, what applications can be constructed, and how
each application is composed. The components can be used
as an abstraction to describe a PLA both on system struc-
ture [26] or using feature modeling [3, 19]. In our approach,
configurations of components or features can be modeled as
variabilities using Scatter’s SCV model.

To capture a formal definition of the PLA, the components
on which it is based must be modeled. The Component
element is the basic building block in Scatter that represents
an indivisible unit of functionality, such as a Java class or
specific feature. From our train, example, the various food
ordering applications are Components.

Applications are valid compositions of Components that pro-
vide a higher level of functionality. Applications can be com-
posed by specifying a composition predicate (AND or Exclu-
sive OR) and the Components to which the predicate should
be applied. For our train example, the FoodService compo-
nent is connected to the Exclusive OR predicate, which can

Figure 2: Scatter PLA Composition and Non-

functional Requirements

be connected to the first class and coach class menu com-
ponents. This composition indicates that the FoodService
component can be deployed with exactly one of these menus.

Component dependencies can be constructed hierarchically
from other components with dependencies to capture the
compositional variability in a PLA. To specify the com-
positional variability in the PLA, developers build Compo-
nent and Predicate trees, which we call Logical Composition
Trees. The root Components of these trees represent de-
ployable Applications. Each level down the tree specifies
the Components that are required for the level above.

The graphical specification of Logical Composition Trees
provides the primary means of specifying PLA composition
rules in Scatter. For some situations, however, graphical
mechanisms based on AND and XOR may not provide the
most concise or intuitive rules. For these cases, explicit com-
position rules based on a domain-specific predicate logic can
be used. These predicate logic constructs are provided by
developers and can be incorporated into and used by the
Scatter solver. The predicate logic specification for PLA
composition is discussed in Section 2.3.

By capturing PLA compositional variability in Logical Com-
position trees, developers can formally specify how valid
variants are composed. With a formal specification of the
variant construction rules, Scatter can automatically explore
the variant solution space to discover all valid compositional
variants of the PLA for a given device, as discussed in Sec-
tion 3.

2.2 Non-functional Requirements Capture
One challenge when building a tool to model a PLA’s non-
functional requirements is providing a mechanism that can
not only allow modelers to express a wide variety of con-
straint types, but also capture them in a form that can be
operated on by a constraint solver. At one end of the spec-
trum, are textual specifications, such as “this component
should only be deployed to devices located in the first-class



cabin running Palm OS,” that tend to be intuitive to pro-
duce and understand, but are imprecise in meaning and re-
quire manual translation to the format expected by a con-
straint solver.

At the other end of the spectrum are the native formats used
by constraint solvers to specify constraints, such as matrices
representing systems of linear equations or constraint net-
works. These native constraint solver formats are easy to
operate on with a constraint solver. It is hard, however, to
map these formats back to the variant selection for mobile
devices, which makes them essentially unusable by applica-
tion developers and quality engineers.

To deduce a variant, a modeling tool must not only be able
to capture the high-level picture of the constraints that de-
velopers understand, but be able to map this requirement
model to one or more constraint solvers. With Scatter, we
faced an added challenge that the tool would be used for
variant selection across a large number of devices in a large
number of contexts. It therefore needed to provide a suffi-
cient general interface to capture a wide variety of constraint
types, while at the same time provide enough specificity that
developers and requirements engineers could grasp how to
use the tool. Striking this balance was not easy.

Scatter provides a graphical modeling tool to address this
challenge and allow developers to express requirements. To
specify non-functional requirements, users drag-and-drop re-
quirements from the palette onto components. The child re-
quirement elements of a component specify the non-functional
requirements that must be satisfied by a device’s resources.
Each requirement has a Name, Type, and Value attribute
associated with it:

• The Name specifies the name of the resource on the
device that it is restricting.

• The Type specifies the type of requirement, either ’>’,
’<’, ’=’, ’=<’, ’>=’, or ’−’.

• The Value indicates the target amount of the resource
to which constraint is being applied.

For example, if a JVM with a version greater than 1.2 is
needed, the requirement would have the Name ’JVMVer-
sion’, Type ’>’, and Value ’1.2’. For a Resource constraint,
such as the amount of memory consumed by a software com-
ponent, the ’−’ Type is used, e.g., if a component consumed
200kb of memory, the constraint would be Name RAM,
Type ’−’, and Value 200.

Scatter’s approach strikes the careful balance between ex-
pressivity and formalness outlined above by blending both
the flexibility and intuitiveness of a textual approach with
the concrete meaning of a constraint solver format. The
Name can be any string and thus modelers can create mean-
ing by providing very descriptive names. The Type provides
a clear definition of how the constraint is compared to the
resources available on a candidate device. The Type also
indicates exactly which constraint solver must be used to
analyze the constraint.

All types, except the ’-’ type, are local constraints govern-

ing the placement of one component and are solved by an
inferencing engine. These constraints are considered local
because their satisfaction is independent of the satisfaction
of constraints for other components. For example, if a com-
ponent requires a specific OS, that constraint does not re-
strict which other components it can be deployed with. If a
component consumes a certain amount of memory, however,
its placement on a device will restrict the other components
that can be placed with it.

A key challenge in a pervasive environment is that variant
selection must take into account business and context-based.
For example, on a train, the first-class and coach-class cab-
ins may offer different meal services. In coach, travelers
may be able to pre-order food via a mobile phone applica-
tion, but still must physically go and pickup the food. In
first-class, however, train staff may be required to deliver
food orders to a traveler’s seat. For first class, therefore, a
variant that provides a component for notifying the order-
ing system of where the traveler is sitting may be required
while it would not be required in coach. Cabins may also of-
fer different meal selections or meal prices, in which case the
variant selection must account for the location-based rules
when selecting which menu to deliver with the ordering ser-
vice. This train variant selection scenario can be seen in
Figure 3.

Figure 3: Cabin Class Constraints for Train Menu

Variant Selection

At one extreme, a tool can limit the types of constraints
that can be solved to a small subset that is considered most
important. At the other extreme, a tool can allow developers
to capture any type of constraint, but provide no guarantee
of having a way of deducing a variant that satisfies them.
Capturing a wide variety of these types of non-functional
business and location-based constraints is challenging.

Scatter employs a strategy, similar to the Bridge pattern [14],



that allows it to capture and solve a wide variety of con-
straint types. The interface and semantics for constraints,
remains constant, while the datasources and datatypes over
which the constraints operate is variable. For example, a
modeler could specify the constraints:

JVMVersion > 1.2

WifiCapable = true

CabinClass = first

CPU - 100

RAM - 200

DisplayHResolution > 128

DisplayVResolution > 64

Here, multiple different types of domain constraints are mixed.
A segment of a Scatter requirements model showing these
constraints is seen in Figure 4. The JVMVersion constraint
relates to the software stack on the device, CPU and RAM
are resource consumption constraints, WifiCapable and Dis-
playXResolution are hardware capability constraints, and
CabinClass is a business/location based constraint.

Figure 4: Capturing Mixed Non-functional Require-

ment Types in Scatter

The restrictions imposed by the specification format are only
on the types of comparisons that can be done and not on the
data that the comparison is based upon. This freedom in
constraint specification allows Scatter’s variant selection to
incorporate a large array of datatypes that a device discov-
ery service could provide. This setup allows other services
to pre-process the data used by the variant selector and thus
allow it to operate on very complex data sets.

For example, context processors based on GPS or RFID
can calculate a device’s position or type and correlate cabin
class. Business-rule engines can calculate customer priori-
ties and provide business analysis. For non-functional re-
quirements, we have found that these six types of primitive
constraint types (>, −, et al) when combined with front-end
data preprocessing, cover most situations. Scatter’s archi-
tecture thus allows the complex portions of variant selection,

the constraint solvers to remain constant, while still allow-
ing new datatypes to be incorporated. For scenarios where
other types of constraints are needed, Scatter provides mech-
anisms for plugging in new types and solvers, although we
have found that this capability is rarely needed in practice.

2.3 Transforming Requirments into Native Con-
straint Solver Formats

Scatter is based on the open-source Generic Eclipse Model-
ing System (GEMS) [33, 34], which is a part of the Eclipse
Generative Modeling Technologies (GMT) project. GEMS
provides a convenient way to define the metamodel, i.e.,
the visual syntax of the modeling language. Based on the
metamodel, GEMS automatically generates a graphical ed-
itor that enforces the grammar specified in the metamodel.
To facilitate code generation, GEMS also provides an infras-
tructure for model traversal and event listening that can be
used in conjunction with other MDD tools, such as ATL [12]
or open Architecture Ware (oAW) [1].

Scatter extends our previous work using Role-based Object
Constraints (ROCs) and Model Intelligence [29, 32]. ROCs
uses Subject-oriented design [5] as the abstraction for view-
ing the PLA model. Subject-oriented design provides an
abstraction that decomposes designs into design subjects,
which are units that encapsulate a single coherent piece of
functionality. The design subject abstraction helps to more
tightly align system design and requirements. The PLA
metamodel is viewed as a set of model entites or design
subjects and the role-based relationships between them.

In Scatter, Device, Component, Requirement, and Resource
are entities. Each entity may participate in multiple role-
based relationships. For example, a Requirement may play
the ’requirements’ role for a Component. A role-based re-
lationship may also represent properties or attributes of an
entity, such as the name of a Component. The GEMS ROCs
infrastructure automatically transforms instances of mod-
els created in Scatter into Prolog knowledge bases that use
predicate names based on these relationship roles.

After a developer creates a model of a PLA in Scatter,
the underlying GEMS ROCs infrastructure transforms the
model into a Prolog knowledge base, which KB is based on
domain-specific predicates, derived from the subject-oriented
design view of the Scatter metamodel. For example, the
predicate statements:

self_type(1, component).

self_name(1, ’FirstClassFoodReservationService’).

self_requires(1, [2]).

self_type(2,requirement).

self_name(2,’CabinClass’).

self_type(2,’=’).

self_value(2,’first’).

would be generated from a PLA component named First-
ClassFoodReservationService that had a non-functional re-
quirement that it only be placed on devices with Cabin-
Class = first. This transformation from the visual modeling
domain to the Prolog knowledge base happens behind the



scenes and does not require user intervention. This Prolog
knowledge base is then leveraged by the Prolog inference en-
gine and the Constraint Logic Programming Finite Domain
(CLP(FD)) solver [18, 31] based variant selection engine.

As we discussed in Section 2.1, users can augment the basic
AND and OR graphical PLA composition rules with com-
plex rules using the Prolog domain-specific predicates. De-
velopers add invocations of their custom composition rules
in special rules for calculating the dependencies of a com-
ponent and the feasibility of deploying a specific component
to a device. For example, assume that a developer wants
to ensure that a Wifi API component is deployed with all
lower level Wifi Drivers. The developer knows that Wifi
drivers have a Requirement named ’802.11b’. A developer
could specify the rule:

get_dependencies(Component,Dependencies) :-

self_name(Component,’WifiAPI’),

findall(Dependency,

(self_requires(Dependency,Reqs),

member(Req,Reqs),

self_name(Req,’802.11b’))

Dependencies)).

which would ensure that all other Components that with a
802.11b Requirement were listed as the Wifi API’s depen-
dencies. This predicate logic composition language gives
developers the full power of the Prolog language for spec-
ifying rules. Although Scatter translates PLA models and
device signatures into a Prolog knowledge base, developers
need not expose themselves to it unless needed.

2.4 Discovery and Device Signatures
Another challenge to implementing an automatic variant se-
lection engine is decoupling device discovery and variant de-
ployment from the discovery and deployment engines. The
variant selector should be independent of the mechanism
used for discovery so that it can be reused in different con-
texts. Decoupling the variant selector from the discovery
mechanism requires providing a method for outside services
to remotely update the knowledge base utilized by the se-
lector. Moreover, the discovery service may not be imple-
mented in the same programming language or understand
the specifics of the knowledge base format.

Scatter focuses on providing the engine for deducing a valid
variant given a model of a PLA and a target infrastruc-
ture. Scatter allows the configuration of discovery and de-
vice profiling mechanisms into it to provide the infrastruc-
ture descriptions over which it operates. The characteriza-
tion schemas that are used are also configurable. Transfor-
mations can be plugged-into Scatter to interpret new schema
types. This architecture can be seen in Figure 5.

Scatter exposes a SOAP-based web service and a CORBA
remoting mechanism for remotely communicating device char-
acterizations as they are discovered. These remoting services
provide a high-level API that allows the discovery service to
report back the device name and the resources available on
the device. The service then transforms these reports into

Figure 5: Scatter Integration with a Discovery Ser-

vice

the native knowledge base format so that they can be com-
bined with the PLA model and operated on by the Scatter
variant selection solver. This transformation on the vari-
ant selector side from the high-level remote updates to the
specific format of the knowledge base prevents the discovery
mechanisms from becoming tightly coupled to the knowledge
base format. As Scatter’s knowledge base format evolves,
existing mechanisms for discovery can be reused.

Scatter’s remoting services also provide the ability to in-
voke the variant selection solver. A discovery service can
remotely update the Scatter model and then invoke its vari-
ant selector to find a software configuration to push to the
device. After a particular device signature has had a vari-
ant found for it, it can be cached and reused when devices
with identical or compatible signatures are discovered. This
capability significantly reduces time and space overhead by
only invoking the Scatter solver when new device signatures
are encountered.

3. THE SCATTER VARIANT SELECTOR
The following are three key challenges associated with cre-
ating an automated variant selector in a pervasive environ-
ment:

• Unknown device signatures. Although devices may
share common communication protocols and resource de-
scription schemas, a variant selection service will not know
all device signatures ahead of time. This ensure that variant
selection must be able to run efficient and online to a valid
variant when a new device is encountered. Moreover, devices



may possess wildly differing signatures. On the one extreme,
a laptop may be carried onto a train with a relatively power-
ful Intel Core Duo processor and a gigabyte or more of RAM.
On the other extreme, a Treo mobile phone may be discov-
ered with a 312mhz XScale processor and 64mb of RAM. A
variant selector must be able to handle these diverse device
descriptions.

• Variant cost optimization. Each variant may have a
cost associated with it. There may be many valid variants
that can be deployed and the variant selector must possess
the ability to choose the best variant based on a cost for-
mula. For example, if the variant selected is deployed to a
device across a GPRS connection that is billed for the total
data transferred, it is crucial that this cost/benefit tradeoff
be analyzed when determining which variant to deploy. If
one variant minimizes the amount of data transferred over
thousands or hundreds of thousands of devices deployments,
it can provide significant cost savings.

• Limited selection time. A variant may need to be se-
lected very rapidly. On a train, a variant selection engine
may have tens of minutes or hours before the device exits
(although the traveler may become irritated if variant selec-
tion takes this long). In a retail store, however, if customers
cannot get a variant of a sales application quickly, they may
become frustrated and leave. To provide a truly seamless
pervasive environment, automated variant selection must
happen rapidly. When combined with the challenge of not
knowing devices signatures a priori and the need for opti-
mization, achieving quick selection times becomes even more
difficult.

To address these challenges, Scatter provides an automated
variant selector that leverages Prolog’s inferencing engine
and a CLP(FD) constraint solver. The Scatter solver uses a
layered solving approach to solving to help reduce the com-
binatorial complexity of satisfying the resource constraints,
a form of bin-packing an NP-Hard problem, by pruning the
solution space using the PLA composition rules and the local
non-functional requirements. This layered pruning helps ad-
dress the speed challenge outlined above and enables more
efficient solving. As shown in the Section 5, this layered
pruning can significantly improve variant selection perfor-
mance.

3.1 Layered Solution Space Pruning
Initially, the variant solution space contains many millions
or more possible component compositions, as seen in step
1 of Figure 6. Solving the resource constraints is thus time
consuming. To optimize this search, Scatter first prunes the
solution space by eliminating components that cannot be
deployed to the device because their non-functional require-
ments, such a JVMVersion or CabinClass, are not met. Af-
ter pruning away these components, Scatter evaluates the
PLA composition rules to see if any components can no
longer be deployed because one of their dependencies has
been pruned in the previous step. After pruning the solu-
tion space using the PLA composition rules, the resource
requirements are considered, as shown in step 2 of Figure 6.
After solving the resource constraints, Scatter is left with a
drastically reduced number of deployment solutions to se-
lect from. At this point, if there is more than one valid

Figure 6: Scatter’s Layered Deployment Solving Ap-

proach

variant remaining, Scatter uses a branch and bound algo-
rithm to iteratively try and optimize a developer-supplied
cost function by searching the remaining valid solutions.

The first two phases of the solution space pruning use a con-
straint solver based on standard Prolog inferencing. A rule
is specified that only allows a component to be deployed to
a device, if for every local non-functional requirement on the
component, a resource is present that satisfies the require-
ment. For example, if a Component requires a JVMVersion
greater than 1.2, the target Device must contain a Resource
named JVMVersion with a value greater that 1.2 or the
component is pruned from the solution space and not con-
sidered. The simple rules for performing this pruning are
listed below:

comparevalue(V1,V2,’>’) :- V1 > V2.

comparevalue(V1,V2,’<’) :- V1 < V2.

comparevalue(V1,V2,’=’) :- V1 == V2.

comparevalue(V1,V2,’-’) :- V1 >= V2.

matchesResource(Req,Resources) :-

member(Res,Resources),

self_name(Req,RName),

self_name(Res,RName),

self_resourcetype(Req,Type),

self_value(Req,Rqv),

self_value(Res,Rsv),

comparevalue(Rsv,Rqv,Type).

canDeployTo(Componentid,Device) :-

self_type(Componentid,component),

self_type(Device,node),

self_requires(Componentid,Requirements),

self_dependencies(Componentid,Depends),



self_provides(Device,Resources),

forall(member(Req,Requirements),

matchesResource(Req,Resources)),

forall(member(D,Depends),canDeployTo(D,Device)).

For each Component, the rule ’canDeployTo’ is invoked to
determine deployment feasibility. This rule also simultane-
ously tests the feasibility of deploying a component based on
its dependencies. The last invocation in the rule checks to
ensure that all of the components that current component
depends on can also be deployed to the Device. If any of
the dependencies cannot be deployed, the component can-
not be deployed. The rule also throws out components with
a resource requirement exceeding what is available on the
device, which helps to eliminate the size of the search space
for the resource solver.

3.2 Using CLP(FD) to Solve Resource Con-
straints

After performing this initial pruning of the solution space,
the resource and PLA composition constraints are turned
into an input for a CLP(FD) solver. For each Component Ci

that is deployable in the PLA, a presence variable DCi, with
domain [0,1] is created to indicate whether or not the Com-
ponent is present in the chosen variant. For every resource
type in the model, such as CPU, the individual Component
requirements, Ci(R), when multiplied by their prescence
variables and summed cannot exceed the available amount
of that resource, Dvc(R), on the Device.

If the presence variable is assigned 0, indicating the com-
ponent is not in the variant, the resource demand by that
component falls to zero. The constraint

P

Ci(R) ∗ DCi <

Dvc(R) is created to enforce this rule. The solver supports
multiple types of composition relationships between Compo-
nents. For each Component Cj that Ci depends on, Scatter
creates the constraint: Ci > 0 → Cj = 1. Scatter also sup-
ports a selection composition constraint that allows exactly
N components from the dependencies to be present. The
selection operator creates the constraint: Ci > 0 →

P

Cj =
N . The standard XOR dependencies from the metamodel
are modeled as a special case of selection where N = 1. Fi-
nally, the solver supports component exclusion. For each
Component Cn that cannot be present with Ci, the con-
straint Ci > 0 → Cn = 0 is created.

To support optimization, a variable Cost(V ) is defined using
the user supplied cost function. For example, Cost(V ) =
1000 − C1 + C2 + C3 . . . Cn could be used to specify the
cost of a variant as being lower when more Components are
contained within it. This cost function would attempt to
maximize the number of components deployed within the re-
source and PLA composition limits. Once the requirements
have been translated into CLP(FD) constraints, Scatter asks
the CLP solver for a labeling of the variables that maximizes
or minimizes the variable Cost(V ), which allows the variant
selector to choose components that not only adhere to the
compositional and resource constraints but that maximize
the value of the variant. The user therefore supplies a fitness
criteria for selecting the best variant from the population of
valid solutions.

4. AUTOMATED REPAIR NEGOTIATION
WITH MOBILE DEVICES

When devices enter a particular context and wish to re-
ceive a customized variant, the device may be in a state
such that no valid variant can be found. For example, if a
device is running several other applications and cannot pro-
vide enough memory to support even the most minimal of
variants from the PLA, the solver will not be able to make a
selection. In these cases, it is crucial that the variant selec-
tion mechanism provide a method of diagnosing the failure
and negotiating resource or configuration changes on the de-
vice to make variant selection possible. We call this process
of negotiating with a device to alter its configuration, repair
negotiation.

The first challenge of providing automated repair negotia-
tion is creating a way of diagnosing the cause of a variant
selection failure. With numerous complex composition rules
guiding the selection process, it is extremely hard to figure
out why there is no valid variant of the PLA and how to
repair the device or relax the PLA’s non-functional require-
ments to overcome the problem. Simply failing to select a
variant and not providing an explanation would leave the
reasoning of the underlying cause to the device user, with-
out any hints on possible modifications (such as resource
expansions) to make it work. In these situations, deducing
the cause of selection failure could be as hard as finding a
valid variant manually.

A key question was what type of feedback should be pro-
vided to device users. One approach we evaluated was mark-
ing non-functional requirements, such as CPU demand, that
could not be satisfied and then returning a list of failed re-
quirements as an error message to the device. We found this
approach unsatisfactory for the following reasons:

• For global constraints, such as resource constraints,
the overall state of the device determines whether or
not the constraint succeeds. In the variant selection,
if the device does not provide sufficient resources to
host all of the components required for a variant, it
is not necessarily a single requirement that is causing
the problem. Marking the first requirement that could
not be met would not make sense since different pack-
ing or selection search orders could result in different
requirements marked as the cause of failure.

• Even if the cause of the failure was marked in some
manner, users would still need to manually determine
how to modify the device from its present state to make
it compliant with the failed constraints. Although fix-
ing the problem, by taking an action such as shutting
down other applications, might appear trivial when the
failing constraint was identified, changing the device
state could have unforseen affects on the other domain
constraints. Again, manual approaches do not scale
for these types of constraint satisfaction problems.

To overcome these problems, Scatter adopts a strategy of
allowing a device to express a series of state modification
operations that it is willing to undertake as part of the dis-
covery process. We call these modifications that could be
performed repair operations. For example, a repair operator



IncreaseCPUPower could be exposed by the device, indi-
cating it is willing to shutdown other applications to free up
CPU cycles. These repair operations can then be taken into
account by the variant selection solver to find a variant if no
suitable one is available in the device’s current state.

Repair operations can include an amount by which a re-
source can be expanded or they can be specified without
amounts indicating that it is the responsibility of the vari-
ant selector to deduce the minimal amount that the re-
source should be expanded when selecting a variant. For
example, if no variant could be found and the device had
published the repair operations IncreaseCPUPower and In-
creaseRAM, with no expansion amounts, the constraint solver
could first try to find a variant normally and if none was
found to calculate the smallest variant that could be de-
ployed to the device based on the other non-functional re-
quirements. After finding the minimal variant, the variant,
along with the required CPU and Memory could be reported
back to the device, as seen in Figure 7.

Figure 7: Negotiating Repair Operations with a De-

vice

To achieve this repair functionality, for each modifiable re-
source Rm, that reports a value, Up(Rm), by which it can
be expanded, the constraint

P

Ci(Rm) ∗ DCi < Dvc(Rm)
is replaced by

P

Ci(Rm) ∗ DCi < Dvc(Rm)+Up(Rm). The
solver then simply reruns the variant selection process with
the expanded resource values.

Repairs without values specified are more complex. For
repair operations on resources that do not express expan-
sion values, the constraint

P

Ci(Rm) ∗ DCi < Dvc(Rm) is
replaced by

P

Ci(Rm) ∗ DCi = Dm(Rm). A further con-
straint,

P

Dm(Rm) = UpTotal is also added to capture the
total value of the modifiable resources consumed by a vari-
ant. The cost function is modified to prioritize variants that
consume less of the modifiable resources. This prioritiza-
tion is acheived by changing the cost function, Cost(V ) to
CostM(V ), where CostM(V ) = Cost(V ) − Wm ∗ UpTotal

(assuming that we are attempting to maximize cost). The

term Wm is a configurable constant used to weight the im-
portance of minimizing the size of the changes that the de-
vice will have to make.

Finally, since we have added the terms Wm∗UpTotal, which
causes the solver to prefer smaller solutions (and possibly no
solution), we add a constraint to guarantee that the solver
selects a variant, if it is possible. The new constraint is
P

DCi > 0. This constraint guarantees that at least one
component is present, i.e., that a variant is selected if pos-
sible.

Scatter’s repair operation mechanism provides the follow-
ing characteristics that make automated device negotiation
possible:

• diagnosing and providing a meaningful explanation of
variant selection failure to a user is not required

• devices and users control repair by expressing only
modifications that they are willing or capable of mak-
ing

• repair is automated and does not require error-prone
user intervention

• repair can be optimized to according to a cost function

Scatter’s repair mechanism removes any necessity for the
user to take part in diagnosing a failure. This automation is
particularly important when device users may have varying
skill levels and wind up requiring human assistance from an
employee, which is expensive. Even though repair is auto-
mated, device users can still control modifications to their
device by setting allowed modification preferences, such as
whether or not applications can be closed, third-party soft-
ware downloaded, or memory reservations increased. Fi-
nally, this mechanism allows developers of PLAs to provide
criteria for choosing the best variant in the face of failures,
which is important when costs are associated with variants.

5. SCATTER PERFORMANCE RESULTS
A key question is how fast Scatter performs and whether
or not online variant selection is possible. To test Scatter’s
performance, we developed a series of increasing larger and
larger PLA models to evaluate solution time. We also tested
how various properties of PLA composition and local non-
functional constraints affected the solution speed. Our test
were performed on an IBM T43 laptop, with an 1.86ghz
Pentium M CPU and 1 gigabyte of memory.

Before continuing further into the results, it is worth noting
that optimization and satisfaction of resource constraints
is an NP-Hard problem. It is always possible to play the
role of an adversary and craft a problem instance that pro-
vides horrendous performance [8]. Constraint satisfaction
and optimization algorithms, however, often perform well
in practice despite their theoretical worst case performance.
One challenge when developing a PLA that needs to support
online variant selection is ensuring that the PLA does not
induce worst-case performance of the selector. We therefore
attempted to model realistic PLAs and to test Scatter’s per-
formance and better understand the effects of PLA design
decisions.



5.1 Pure Resource Constraints
First, we tested the brute force speed of Scatter when con-
fronting PLAs with no local non-functional or PLA com-
position requirements that could prune the solution space.
We created models with 18, 21, 26, 30, 40, and 50 Compo-
nents. Our models were built incrementally and thus each
successively larger model contained all of the components
from the previous model. In each model, we ensured that
not all of the components could be simultaneously supported
by the device’s resources. Initially, our device was allocated
100 units of CPU and 16 megabytes of memory. Scatter’s
performance results on this model can be seen in Figure 8.
As can be seen from the large jump in time from the time

Figure 8: Scatter Performance on Pure Resource

Constraints

to select a variant from 40 to 50 Components, solving for a
variant does not scale well if resource constraints alone are
considered.

5.2 Testing the Effect of Limited Resources
Next, we investigated how the tightness of the resource con-
straints affected solution time. We incrementally increased
the available CPU on the modeled device from 100 to 2500
units for the 50 Component model. The results can be seen
in Figure 9.

As shown in Figure 9, expanding the CPU units from 100 to
500 units dramatically dropped the time required to solve
for a variant. Moreover, after increasing the CPU units to
2,500, there was no increase in performance indicating that
the tightness of the CPU resource constraints were no longer
the limiting bottleneck.

We next proceeded to increase the memory on the device
while keeping 2,500 units of CPU. The results are shown
in Figure 10. Doubling the memory immediately halved the
solution time. Doubling the memory again to 128 megabytes
provided little benefit since the initial doubling to 64 megabytes
made deployment of all of the components possible. What
we had hypothesized initially and was shown is that the so-

Figure 9: Scatter Performance as CPU Resources

Expand on Device

Figure 10: Scatter Performance as Memory Re-

sources Expand on Device



lution speed when pure resource constraints are considered
is highly dependent on how tight the resource constraints
are.

5.3 Testing the Effect of PLA Composition
Constraints

Our next experiments evaluated how well the dependency
constraints within a PLA could filter the solution space and
reduce solution time. We modified our models so that the
Components composed sets of applications that should be
deployed together. For example, our TrainTicketReserva-
tionService was paired with the TrainScheduleService and
other complementary components.

As with the first experiment 5.1, we used our 50 component
model as the initial baseline. First, we began by construct-
ing a tree of dependencies that tied 10 components into an
application set that led the root of the tree, the reservation
service, to only be deployed if all children where deployed.
Each level in the tree depended on the deployment of the
layer beneath it. The max depth of the tree was 5. We
continued to add trees to the model to see the effect. The
results are shown in Figure 11.

Figure 11: Scatter Performance as PLA Depen-

dency Trees are Introduced

5.4 Results Analysis: Mobile PLA Design Strate-
gies

As can be seen from the results, PLA dependencies can sig-
nificantly reduce the time taken by Scatter to find a variant.
Based on the results we collected, we devised a set of mobile
PLA design rules to help improve variant selection perfor-
mance. The remainder of this section presents the lessons
we have learned from our results.

5.4.0.1 Exploit Non-functional Requirements

Non-functional requirements can be used to further increase
the performance of Scatter. Each component with an unmet
non-functional requirement is completely eliminated from
consideration. When PLA dependency trees are present,
this can have a cascading effect that completely eliminates
large numbers of components. One PLA construction rule
based on non-functional requirements that was particularly
powerful and natural to implement exploited the relative
lack of variation in packaging of a PLA variant.

5.4.0.2 Prune Using Low-Granularity Requirements
The requirements with the lowest granularity filter the largest
numbers of variants. For example, when deploying variants,
especially from a PLA with high configuration-based vari-
ability, such as changes input parameters, the disk footprint
of various classes of variants can be used to greatly prune the
solution space. If a PLA with 50 components is composed
of 5 Java Archive Resource (JAR) files, although there are a
large number of ways that the PLA can be composed, there
are relatively few valid combinations of the JAR files.

More than likely many variants will require common sets of
these JAR files with various footprints. Variants can then
be grouped based on their JAR configurations. For each
group, a non-functional requirement can be added to the
components to ensure that a target Device provide suffi-
cient disk space or communication bandwidth to receive the
JARs. For small devices that usually have little availabe
disk space, where resource constraints are tighter and solv-
ing takes more time, large numbers of Components can be
pruned solely due to the lack of packaging variability and
need for disk space. This footprint-based strategy works
even if there are few functional PLA dependencies between
components.

5.4.0.3 Limit Resource Tightness
Due to the increased cost of finding a variant for small de-
vices where resources are more limited, we developed an-
other design rule. To decrease the difficulty of finding a
deployment on small devices, PLA developers should pro-
vide local non-functional constraints to immediately filter
out unessential resource consumptive Components when the
resource requirements of the deployable Components greatly
exceed the available resources on the device. Although the
cost function can be used to perform this tradeoff analy-
sis and filter these Components during optimization, this
method is time consuming. Filtering some components out
ahead of time may lead to less optimal solutions but it can
greatly improve solution speed. Even by selecting only the
least valued components to exclude from consideration, per-
formance can be increased significantly.

5.4.0.4 Create Service Classes
Another effective mechanism for pruning the solution space
with non-functional requirements is to provide various classes
of service that divide the components into broad categories.
In our train example, by annotating numerous Components
with the CabinClass and other similar context-based re-
quirements, the solution space can be quickly pruned to only
search the correct class of service for the target device. In
general, the more non-functional requirements that can be
specified, the quicker Scatter can prune away invalid solu-
tions and hone in on the correct configuration. Moreover,



each non-functional requirement gives the solver more in-
sight into how Components are meant to be used and thus
reduces the likely hood of unanticipated variants that fail.

From our experiments, we have seen that when a PLA for
a mobile device is properly specified with good constraints,
Scatter can solve models involving 50 or fewer components
in seconds. This performance should be more than ade-
quate for many pervasive environments, particularly when
device signature and variants are cached to eliminate repet-
itive solving for known solutions. In future work, we intend
to test Scatter with larger models and evaluate more charac-
teristics of PLAs that can be used to reduce variant selection
time.

6. RELATED WORK
In [24], Mannion et al presents a method for specifying PLA
compositional requirements using first-order logic. The va-
lidity of a variant can then be validated by determining if a
PLA satisfies a logical statement. Scatter’s approach to PLA
composition rule specification expands on this idea by spec-
ifying PLAs as compositions using AND and XOR of com-
ponents. Scatter also extends the work in [24] by including
the evaluation of non-functional requirements not related to
composition in validation. In particular, Scatter automates
the variant selection process using these boolean expressions
and augments the selection process to take into account
resource constraints, as well as optimization criteria. Al-
though the idea of automated thereom proving is enhanced
in [25], this approach does not provide a requirements-driven
optimal variant selection engine like Scatter.

In [23], Lemlouma et. al, present a framework for adapting
and customizing content before delivering it to a mobile de-
vice. Their strategy takes into account device preferences
and capabilities, as does Scatter. The approaches are com-
parable in that each attempts to deliver customized data to
a device that handles its capabilities and preferences. Re-
source constraints is a key difference that makes the selection
of software for a device more challenging than adapting con-
tent. Unlike [23], Scatter not only provides adaptation for
a device, but also optimizes adaptation of the software with
respect to its provided PLA cost function.

Many complex modeling tools are available for describing
and solving combinatorial constraint problems, such as those
presented in [27, 9, 30, 4, 13]. These tools provide mecha-
nisms for describing domain-constraints, a set of knowledge,
and finding solutions to the constraints. These tools, how-
ever, do not provide a high-level mechanism to capture non-
functional requirements and PLA composition rules. With
these tools, developers must also re-invent the repair ar-
chitecture and remoting mechansims provided by Scatter.
Finally, unlike in Scatter, complex transformations must be
created by the PLA developer to map the output of these
tools back to the PLA.

Chisel [20] provides an adaptive application framework for
mobile devices based on policy-driven context aware adapta-
tion. This framework allows a running application to adapt
to handle resource and other context-based changes in its en-
vironment. Although Chisel allows an application to adapt
to a particular device’s characteristics, it is not sufficient for

PLA variant selection for two key reasons. First, Chisel as-
sumes that the core functionality of the application does not
change via adaptation, which is not the case in the scenar-
ios we describe, where PLA variants may share components
but function very differently. Second, Chisel is based on ex-
plicit developer-provided policies that describe how to adapt
to changing conditions. These policies are produced manu-
ally and thus may not provide optimal or even good adap-
tation procedures to handle variant selection based on the
environment. In contrast, Scatter automates and optimizes
component selection. Automating component selection is
key when hard constraints, such as resource consumption,
are present. Furthermore, Scatter’s optimization algorithms
provide guaranteed results while Chisel’s manually produced
policies give no guarantee of solution quality. Finally, Scat-
ter does not assume that the functionality of the variants
is identical and can thus handle the selection of multiple
variants to deploy.

7. CONCLUDING REMARKS
Online PLA variant selection for mobile devices is a chal-
lenging domain that can benefit from automation since there
are too many complexities and unknown device characteris-
tics to manually account for all possibilities ahead of time.
Constraint-solver based automation is a promising technique
for online variant selection. This paper describes how our
Scatter tool supports efficient online variant selection. More-
over, by carefully evaluating and constructing a PLA selec-
tion model based on the rules we presented, developers can
avoid worst case solver behavior.

From our experience developing and evaluate Scatter, we
have learned the following lessons:

• PLA composition and non-functional requirements can
be used to efficiently prune the variant selection space
and provide good performance. There are many pat-
terns of requirements specification that can be used to
optimize a PLA for automated variant selection. In
future work, we intend to further explore these pat-
terns.

• Although Scatter can automate variant selection, it
works best when a PLA is crafted with performance
in mind. An arbitrary PLA may or may not allow
for rapid variant selection. PLA’s that will be used in
conjunction with an automated variant selector should
be carefully constructed to avoid poor performance.

• By using the Bridge pattern [15], the Scatter tool de-
scribed in Section 2.1 can handle a wide variety of
constraint types, such as context or business based
constraints, while still providing a concrete method of
mapping constraints to a solver.

• A key challenge of providing online selection is obtain-
ing and characterizing device and context information.
These challenges are handled by other efforts, such as
CC/PP described in Section 1.

• More work must be done to understand how to merge
and integrate the various information sources that will
provide device characterizations. Device characteri-
zations may come from customer databases, discovery



services, and location services. Finding the right trans-
formations to correlate and utilize these diverse in-
formation streams is important to provide customized
and correct variant selection.

• Resource and configuration negotiation with a device
can be viewed as a repair operation and automated and
optimized by a constraint solver. Automating repair,
helps to eliminate manual intervention when a suitable
variant cannot be found.

In future work, we plan to integrate and test various discov-
ery mechanisms and resource, context, and device charac-
terization schemas to see how Scatter performs in situ. We
also plan to extend Scatter to interface with various types
of runtime deployment middleware infrastructure.
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and K. Schmid. GoPhone-A Software Product Line in the
Mobile Phone Domain. IESE-Report No, 25.

[29] A. Nechypurenko, J. White, E. Wuchner, and D. C.
Schmidt. Applying Model Intelligence Frameworks to
Deployment Problems in Real-time and Embedded
Systems. In Proceedings of MARTES: Modeling and
Analysis of Real-Time and Embedded Systems at the 9th
International Conference on Model Driven Engineering
Languages and Systems, MoDELS/UML 2006, 2006.

[30] G. Smolka. The Oz Programming Model. In JELIA ’96:
Proceedings of the European Workshop on Logics in
Artificial Intelligence, page 251, London, UK, 1996.
Springer-Verlag.

[31] P. Van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press Cambridge, MA, USA, 1989.



[32] J. White, A. Nechypurenko, E. Wuchner, and D. C.
Schmidt. Intelligence frameworks for assisting modelers in
combinatorically challenging domains. In Proceedings of the
Workshop on Generative Programming and Component
Engineering for QoS Provisioning in Distributed Systems
at the Fifth International Conference on Generative
Programming and Component Engineering (GPCE 2006),
2006.

[33] J. White, D. Schmidt, and A. Gokhale. The J3 Process for
Building Autonomic Enterprise Java Bean Systems. icac,
00:363–364, 2005.

[34] J. White and D. C. Schmidt. Simplifying the Development
of Product-Line Customization Tools via MDD. In
Workshop: MDD for Software Product Lines, ACM/IEEE
8th International Conference on Model Driven Engineering
Languages and Systems, October 2005.

[35] W. Zhang, S. Jarzabek, N. Loughran, and A. Rashid.
Reengineering a PC-based system into the mobile device
product line. Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, pages 149–160,
2003.


