
CS242: Object-Oriented Design and Programming

Programming Assignment 5
Part 1 due Wednesday, November 20th; 1995

Part 2 due Tuesday, November 28th; 1995
Part 3 due Tuesday, December 4th; 1995

Problem Statement

In this assignment you will write an operator-precedence parser. The parser will construct a syntax
tree for each input line and then evaluate it. You will be parsing a language that is a subset of C
expressions.1 The underlying grammar, illustrating the operator precedence, is succinctly stated as:

start ::= assign_expr
assign_expr ::= add_expr | ID assign_op assign_expr
add_expr ::= mult_expr | add_expr add_op mult_expr
mult_expr ::= unary_expr | mult_expr mult_op unary_expr
unary_expr ::= primary | uminus_op primary
primary ::= ID | NUM | l_paren assign_expr r_paren
add_op ::= + | -
mult_op ::= * | /
uminus_op ::= -
assign_op ::= =
l_paren ::= (
r_paren ::=)

Your program will be developed in the following three parts:

1. Lexical analysis – Write a lexical analyzer that reads test input and “tokenizes” it (i.e., returns
an appropriate enum and associated value for each type of token it reads.

2. Parsing and expression tree construction – Write an operator precedence parser that will parse
the tokens and build an expression tree. A rough sketch of the operator precedence parsing
algorithm will be presented in the class slides. More information is available in the Aho, Sethi,
and Ullman book on compilers.

3. Expression tree traversal – Implement “in order,” “pre order,” “post order,” and “level order.”
traversals of the syntax tree. In addition, implement a function that evaluates the “yield” of the
tree and prints it out to stdout (just like the sample program I gave you).

/project/adaptive/cs242/assignment5 contains sample test input (testinput) and a
working sample parser (opp). You should run the test program to see how your program’s output
should appear. It is very important that your output match this form.

1Note that the current implementation only handles one letter, lower-case variable names.

