
Design Patterns and Frameworks

for Concurrent CORBA Event

Channels

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1



Motivation

� Asynchronous messaging and group com-

munication are important for real-time ap-

plications

� This example explores the design patterns

and reusable framework components used in

an OO architecture for CORBA Real-time

Event Channels

� CORBA Event Channels route events from

Supplier(s) to Consumer(s)
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Communication Models for Event

Channels
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OO Software Architecture of the

Event Channel

: Consumer: Consumer
ProxyProxy

: Reactor: Reactor

: Event: Event
ChannelChannel

: QoS  Queues: QoS  Queues

: Consumer: Consumer
ProxyProxy

: Consumer: Consumer
ProxyProxy

: Supplier: Supplier
ProxyProxy

: Supplier: Supplier
ProxyProxy
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Design Patterns in the Event

Channel

AdapterAdapterIteratorIterator ProxyProxyWrapperWrapper
TACTICAL

PATTERNS

STRATEGIC

PATTERNS

ServiceService
ConfiguratorConfigurator

ReactorReactor

Active ObjectActive Object

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

ConnectorConnector

AcceptorAcceptor

� The Event Channel components are based

upon a system of design patterns
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Design Patterns in the Event

Channel (cont'd)

� Reactor

{ \Decouples event demultiplexing and event han-

dler dispatching from application services performed

in response to events"

� Half-Sync/Half-Async

{ \Decouples synchronous I/O from asynchronous

I/O in a system to simplify concurrent program-

ming e�ort without degrading execution e�ciency"

� Active Object

{ \Decouples method execution from method invo-

cation and simpli�es synchronized access to shared

resources by concurrent threads"
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Using the Reactor Pattern for the

Single-Threaded Event Channel

: Reactor

REGISTEREDREGISTERED
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:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy

: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy

: Event: Event
HandlerHandler

: Supplier: Supplier
ProxyProxy

1: handle_input()1: handle_input()

4: send(event)4: send(event)

2: recv(event)2: recv(event)
3: forward(event)3: forward(event)

OS  EVENT  DEMULTIPLEXING  INTERFACEOS  EVENT  DEMULTIPLEXING  INTERFACE
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Event Channel Inheritance

Hierarchy

ProxyProxy
HandlerHandler

ConsumerConsumer
ProxyProxy

TaskTask

APPLICATION-
INDEPENDENT

APPLICATION-
SPECIFIC

MessageMessage
QueueQueue

SupplierSupplier
ProxyProxy
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IO Proxy Class Public Interface

� Common methods and data for I/O Proxys

// Keeps track of events sent and received.
typedef u_long COUNTER;

// This is the type of the Consumer_Map.
typedef Null_Mutex MAP_LOCK;
typedef Map_Manager <Event_Header,

Consumer_Set,
MAP_LOCK> CONSUMER_MAP;

class Proxy_Handler : public Task<Null_Synch>
{
public:

// Initialize the Proxy.
virtual int open (void * = 0);

private:
static COUNTER events_sent_;
static COUNTER events_received_;
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Supplier Proxy Interface

� Handle input processing and routing of events

from Suppliers

class Supplier_Proxy : public Proxy_Handler
{
protected:

// Notified by Reactor when Supplier
// event arrives.

virtual int handle_input (void);

// Low-level method that receives
// an event from a Supplier.

virtual int recv (Message_Block *&);

// Forward an event from
// a Supplier to Consumer(s).

int forward (Message_Block *);
};
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Consumer Proxy Interface

� Handle output processing of events sent to

Consumers

class Consumer_Proxy : public Proxy_Handler
{
public:

// Send an event to a Consumer.
virtual int push (Message_Block *);

protected:
// Perform a non-blocking push() (will
// may queue if flow control occurs).

int nonblk_push (Message_Block *event);

// Finish sending an event when flow control
// abates.

virtual int handle_output (void);

// Low-level method that sends an event to
// a Consumer.

virtual int send (Message_Block *);
};
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Collaboration in Single-threaded

Event Channel Forwarding

: Consumer: Consumer
MapMap

: Supplier: Supplier
ProxyProxy

6: push (event)6: push (event)

1: handle_input()1: handle_input()
2: recv(event)2: recv(event)

3: find()3: find()

::  MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

5: send(event)5: send(event)

SOURCESOURCE
IDID

ConsumerConsumer
SetSet

4:
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ush
 (e
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nt)

4:
 p

ush
 (e
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::  MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

7: send(event)7: send(event)
8: enqueue(event)8: enqueue(event)
9: schedule_wakeup()9: schedule_wakeup()
------------------------------
10: handle_output()10: handle_output()
11: dequeue(event)11: dequeue(event)
12: send(event)12: send(event)
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// Receive input event from Supplier and forward
// the event to Consumer(s).

int
Supplier_Proxy::handle_input (void)
{
Message_Block *event = 0;

// Try to get the next event from the
// Supplier.
if (recv (event) == COMPLETE_EVENT)
{
Proxy_Handler::events_received_++;
forward (event);

}
}

// Send an event to a Consumer (queue if necessary).

int
Consumer_Proxy::push (Message_Block *event)
{
if (msg_queue ()->is_empty ())
// Try to send the Message_Block *without* blocking!
nonblk_put (event);

else
// Events are queued due to flow control.
msg_queue ()->enqueue_tail (event);

}
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// Forward event from Supplier to Consumer(s).

int
Supplier_Proxy::forward (Message_Block *event)
{
Consumer_Set *c_set = 0;

// Determine route.
Consumer_Map::instance ()->find (event, c_set);

// Initialize iterator over Consumers(s).
Set_Iterator<Consumer_Proxy *> iter (c_set);

// Multicast event.
for (Consumer_Proxy *ch;

si.next (ch) != -1;
si.advance ()) {

// Make a "logical copy" (via reference counting).
Message_Block *new_event = event->duplicate ();

if (ch->push (new_event) == -1) // Drop event.
new_event->release (); // Decrement reference count.

}

event->release (); // Delete event.
}
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Event Structure

� An Event contains two portions

{ The Event Header identi�es the Event

. Used for various types of �ltering

and correlation

class Event_Header {
public:
Supplier_Id s_id_;
int priority_;
Event_Type type_;
time_t time_stamp_;
size_t length_;

};

{ The Event contains a header plus a variable-sized

message

class Event {
public:

// The maximum size of an event.
enum { MAX_PAYLOAD_SIZE = /* ... */ };
Event_Header header_; // Fixed-sized header portion.
char payload_[MAX_PAYLOAD_SIZE]; // Event payload.

};
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OO Design Interlude

� Q: What should happen if push() fails?

{ e.g., if a Consumer queue becomes full?

� A: The answer depends on whether the error
handling policy is di�erent for each router
object or the same: : :

{ Bridge/Strategy pattern: give reasonable default,

but allow substitution

� A related design issue deals with avoiding

output blocking if a Consumer connection

ow controls
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OO Design Interlude

� Q: How can a ow controlled Consumer Proxy

know when to proceed again without polling

or blocking?

� A: Use the Event Handler::handle output no-
ti�cation scheme of the Reactor

{ i.e., via the Reactor's methods schedule wakeup
and cancel wakeup

� This provides cooperative multi-tasking within
a single thread of control

{ The Reactor calls back to the handle output
method when the Consumer Proxy is able to trans-
mit again
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Performing Non-blocking Push

Operations

� The following method will push the event
without blocking

{ We need to queue if ow control conditions occur

int Consumer_Proxy::nonblk_push (Message_Block *event)
{
// Try to send the event using non-blocking I/O
if (send (event) == EWOULDBLOCK)
{

// Queue in *front* of the list to preserve order.
msg_queue ()->enqueue_head (event);

// Tell Reactor to call us when we can send again.

Service_Config::reactor ()->schedule_wakeup
(this, Event_Handler::WRITE_MASK);

}
else

Proxy_Handler::events_sent_++;
}
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// Finish sending an event when flow control
// conditions abate. This method is automatically
// called by the Reactor.

int
Consumer_Proxy::handle_output (void)
{
Message_Block *event = 0;

// Take the first event off the queue.
msg_queue ()->dequeue_head (event);

if (nonblk_push (event) != 0)
{
// If we succeed in writing msg out completely
// (and as a result there are no more msgs
// on the Message_Queue), then tell the Reactor
// not to notify us anymore.

if (msg_queue ()->is_empty ()
Service_Config::reactor ()->cancel_wakeup
(this, Event_Handler::WRITE_MASK);

}
}
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Event Channel Class Public

Interface

� Maintains maps of the Consumer Proxy ob-

ject references and the Supplier Proxy ob-

ject references

// Parameterized by the type of I/O Proxys.
template <class Supplier_Proxy, // Supplier policies

class Consumer_Proxy> // Consumer policies
class Event_Channel
{
public:

// Perform initialization.
virtual int init (int argc, char *argv[]);

// Perform termination.
virtual int fini (void);

private:
// ...

};
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Dynamically Con�guring Services

into an Application

� Main program is generic

// Example of the Service Configurator pattern.

int main (int argc, char *argv[])
{
Service_Config daemon;
// Initialize the daemon and
// dynamically configure services.
daemon.open (argc, argv);

// Run forever, performing configured services.

daemon.run_reactor_event_loop ();

/* NOTREACHED */
}
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Dynamic Linking an

Event Channel Service

� Service con�guration �le

% cat ./svc.conf
static Svc_Manager "-p 5150"
dynamic Event_Channel_Service Service_Object *

Event_Channel.dll:make_Event_Channel () "-d"

� Application-speci�c factory function used to

dynamically link a service

// Dynamically linked factory function that allocates
// a new single-threaded Event_Channel object.

extern "C" Service_Object *make_Event_Channel (void);

Service_Object *
make_Event_Channel (void)
{
return new Event_Channel<Supplier_Proxy,

Consumer_Proxy>;
// ACE automatically deletes memory.

}
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Concurrency Strategies for Event

Channel

� The single-threaded Event Channel has sev-
eral limitations

1. Fragile program structure due to cooperative multi-

tasking

2. Doesn't take advantage of multi-processing plat-

forms

� Therefore, a concurrent solution may be
bene�cial

{ Though it can also increase concurrency control

overhead

� The following slides illustrate how OO tech-
niques push this decision to the \edges" of
the design

{ This greatly increases reuse, exibility, and perfor-

mance tuning
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Using the Active Object Pattern

for the Multi-threaded

Event Channel

:: Reactor Reactor
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HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Supplier: Supplier
ProxyProxy

1: handle_input()1: handle_input()

4: send(event)4: send(event)

2: recv(event)2: recv(event)
3: forward(event)3: forward(event)
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: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy

: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy
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Collaboration in the Active

Object-based Event Channel

Forwarding

: Consumer: Consumer
MapMap

: Supplier: Supplier
ProxyProxy

6: push (event)6: push (event)

1: handle_input()1: handle_input()
2: recv(event)2: recv(event)

3: find()3: find()

::  MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

5: send(event)5: send(event)

SOURCESOURCE
IDID

ConsumerConsumer
SetSet

4:
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ush
 (e
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4:
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ush
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::  MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

5: send(event)5: send(event)
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Half-Sync/Half-Async Pattern

� Intent

{ \Decouple synchronous I/O from asynchronous I/O

in a system to simplify concurrent programming

e�ort without degrading execution e�ciency"

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level com-

munication tasks

. These are performed synchronously (via Active

Objects)

{ How to ensure e�cient lower-level I/O communi-

cation tasks

. These are performed asynchronously (via Reac-

tor)
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Structure of the

Half-Sync/Half-Async Pattern
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1, 4: read(data)1, 4: read(data)

3: enqueue(data)3: enqueue(data)

2: interrupt2: interrupt
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TASKTASK
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Using the Half-Sync/Half-Async

Pattern in the Event Channel
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1: dequeue(event)1: dequeue(event)
2: send(event)2: send(event)

2: recv(event)2: recv(event)
3: forward(event)3: forward(event)
4: enqueue(event)4: enqueue(event)

1: dispatch()1: dispatch()

: Reactor: Reactor

MESSAGE  QUEUESMESSAGE  QUEUES

: Supplier: Supplier
ProxyProxy: Supplier: Supplier

ProxyProxy

: Supplier: Supplier
ProxyProxy

: Consumer: Consumer
ProxyProxy : Consumer: Consumer

ProxyProxy

: Consumer: Consumer
ProxyProxy
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Con�guring Synchronization

Mechanisms

// Determine the type of synchronization mechanism.
#if defined (ACE_USE_MT)
typedef MT_SYNCH SYNCH;
#else
typedef NULL_SYNCH SYNCH;
#endif /* ACE_USE_MT */

typedef Null_Mutex MAP_LOCK;

// This is the type of the Consumer_Map.
typedef Map_Manager <Event_Header,

Consumer_Set,
MAP_LOCK> CONSUMER_MAP;

class Proxy_Handler : public Task<SYNCH>
{ /* ... */ };
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OO Design Interlude

� Q: What is the MT SYNCH class and how

does it work?

� A: MT SYNCH provides a thread-safe syn-
chronization policy for a particular instanti-
ation of a Svc Handler

{ e.g., it ensures that any use of a Svc Handler's
Message Queue will be thread-safe

{ Any Task that accesses shared state can use the

\traits" in the MT SYNCH

class MT_SYNCH { public:
typedef Mutex MUTEX;
typedef Condition<Mutex> CONDITION;

};

{ Contrast with NULL SYNCH

class NULL_SYNCH { public:
typedef Null_Mutex MUTEX;
typedef Null_Condition<Null_Mutex> CONDITION;

};
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Thr Consumer Proxy Class

Interface

� New subclass of Proxy Handler uses the Ac-
tive Object pattern for the Consumer Proxy

{ Uses multi-threading and synchronous I/O to trans-

mit events to Consumers

{ Transparently improve performance on a multi-

processor platform and simplify design

#define ACE_USE_MT
#include "Proxy_Handler.h"

class Thr_Consumer_Proxy : public Proxy_Handler
{
public:

// Initialize the object and spawn a new thread.
virtual int open (void *);

// Send an event to a Consumer.
virtual int push (Message_Block *);

private:
// Transmit Supplier events to Consumer within
// separate thread.

virtual int svc (void);
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Thr Consumer Proxy Class

Implementation

� The multi-threaded version of open is slightly

di�erent since it spawns a new thread to be-

come an active object!

// Override definition in the Consumer_Proxy class.

int
Thr_Consumer_Proxy::open (void *)
{
// Become an active object by spawning a
// new thread to transmit events to Consumers.

activate (THR_NEW_LWP | THR_DETACHED);
}

� activate is a pre-de�ned method on class

Task
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// Queue up an event for transmission (must not block
// since all Supplier_Proxys are single-threaded).

int
Thr_Consumer_Proxy::push (Message_Block *event)
{
// Perform non-blocking enqueue.
msg_queue ()->enqueue_tail (event);

}

// Transmit events to the Consumer (note simplification
// resulting from threads...)

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;
// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
Proxy_Handler::events_sent_++;

}
}
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Dynamic Linking an

Event Channel Service

� Service con�guration �le

% cat ./svc.conf
remove Event_Channel_Service
dynamic Event_Channel_Service Service_Object *

thr_Event_Channel.dll:make_Event_Channel () "-d"

� Application-speci�c factory function used to

dynamically link a service

// Dynamically linked factory function that allocates
// a new multi-threaded Event_Channel object.

extern "C" Service_Object *make_Event_Channel (void);

Service_Object *
make_Event_Channel (void)
{
return new Event_Channel<Supplier_Proxy,

Thr_Consumer_Proxy>;
// ACE automatically deletes memory.

}
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Eliminating Race Conditions

� Problem

{ The concurrent Event Channel contains \race con-

ditions" e.g.,

. Auto-increment of static variable events sent
is not serialized properly

� Forces

{ Modern shared memory multi-processors use deep

caches and weakly ordered memory models

{ Access to shared data must be protected from cor-

ruption

� Solution

{ Use synchronization mechanisms
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Basic Synchronization

Mechanisms

� One approach to solve the serialization prob-

lem is to use OS mutual exclusion mecha-

nisms explicitly, e.g.,

// SunOS 5.x, implicitly "unlocked".
mutex_t lock;

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;
// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
mutex_lock (&lock);
Proxy_Handler::events_sent_++;
mutex_unlock (&lock);

}
}
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Problems Galore!

� Adding these mutex * calls explicitly is inele-
gant, obtrusive, error-prone, and non-portable

{ Inelegant

. \Impedance mismatch" with C/C++

{ Obtrusive

. Must �nd and lock all uses of events sent

{ Error-prone

. C++ exception handling and multiple method

exit points cause subtle problems

. Global mutexes may not be initialized correctly: : :

{ Non-portable

. Hard-coded to Solaris 2.x
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C++ Wrappers for

Synchronization

� To address portability problems, de�ne a

C++ wrapper:

class Thread_Mutex
{
public:
Thread_Mutex (void) {
mutex_init (&lock_, USYNCH_THREAD, 0);

}
~Thread_Mutex (void) { mutex_destroy (&lock_); }
int acquire (void) { return mutex_lock (&lock_); }
int tryacquire (void) { return mutex_trylock (&lock); }
int release (void) { return mutex_unlock (&lock_); }

private:
mutex_t lock_; // SunOS 5.x serialization mechanism.
void operator= (const Thread_Mutex &);
Thread_Mutex (const Thread_Mutex &);

};

� Note, this mutual exclusion class interface

is portable to other OS platforms
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Porting Thread Mutex to

Windows NT

� Win32 version of Thread Mutex

class Thread_Mutex
{
public:
Thread_Mutex (void) {
InitializeCriticalSection (&lock_);

}
~Thread_Mutex (void) {
DeleteCriticalSection (&lock_);

}
int acquire (void) {
EnterCriticalSection (&lock_); return 0;

}
int tryacquire (void) {
TryEnterCriticalSection (&lock_); return 0;

}
int release (void) {
LeaveCriticalSection (&lock_); return 0;

}
private:
CRITICAL_SECTION lock_; // Win32 locking mechanism.
// ...
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Using the C++ Thread Mutex

Wrapper

� Using the C++ wrapper helps improve porta-

bility and elegance:

Thread_Mutex lock;

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
lock.acquire ();
Proxy_Handler::events_sent_++;
lock.release ();

}
}

� However, it does not solve the obtrusiveness

or error-proneness problems: : :
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Automated Mutex Acquisition and

Release

� To ensure mutexes are locked and unlocked,

we'll de�ne a template class that acquires

and releases a mutex automatically

template <class LOCK>
class Guard
{
public:
Guard (LOCK &m): lock_ (m) { lock_.acquire (); }
~Guard (void) { lock_.release (); }
// ...

private:
LOCK &lock_;

}

� Guard uses the C++ idiom whereby a con-

structor acquires a resource and the destruc-

tor releases the resource
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Using the Guard Class

� Using the Guard class helps reduce errors:

Thread_Mutex lock;

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;
// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
{
// Constructor releases lock.
Guard<Thread_Mutex> mon (lock);
Proxy_Handler::events_sent_++;
// Destructor releases lock.

}
}

}

� However, using the Thread Mutex and Guard

classes is still overly obtrusive and subtle

(may lock too much scope: : : )
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OO Design Interlude

� Q: Why is Guard parameterized by the type

of LOCK?

� A: there are many locking mechanisms that
bene�t from Guard functionality, e.g.,

* Non-recursive vs recursive mutexes

* Intra-process vs inter-process mutexes

* Readers/writer mutexes

* Solaris and System V semaphores

* File locks

* Null mutex

� In ACE, all synchronization classes use the

Wrapper and Adapter patterns to provide

identical interfaces that facilitate parame-

terization
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The Wrapper Pattern

� Intent

{ \Encapsulate low-level, stand-alone functions within

type-safe, modular, and portable class interfaces"

� This pattern resolves the following forces
that arises when using native C-level OS
APIs

1. How to avoid tedious, error-prone, and non-portable

programming of low-level IPC and locking mecha-

nisms

2. How to combine multiple related, but independent,

functions into a single cohesive abstraction
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Structure of the Wrapper Pattern

client
Wrapper

request()

1: request ()

2: specific_request()

Wrappee

specific_request()

45



Using the Wrapper Pattern for

Locking

clientclient
MutexMutex

acquire()
release()
tryacquire()

1: acquire ()

2: mutex_lock()

SolarisSolaris

mutex_lock()
mutex_unlock()
mutex_trylock()
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Using the Adapter Pattern for

Locking

clientclient
GuardGuard

GuardGuard

Guard()
~Guard()

Guard()
~Guard()

1: Guard()

2: acquire()

LOCKLOCK

MutexMutex

3: mutex_lock()

MutexMutex

acquire()

Win32Win32
EnterCritical
Section()

SolarisSolaris

mutex_lock()

POSIXPOSIX
pthread_mutex
_lock()
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Transparently Parameterizing

Synchonization Using C++

� The following C++ template class uses the

\Decorator" pattern to de�ne a set of atomic

operations on a type parameter:

template <class LOCK = Thread_Mutex, class TYPE = u_long>
class Atomic_Op {
public:
Atomic_Op (TYPE c = 0) { count_ = c; }

TYPE operator++ (void) {
Guard<LOCK> m (lock_); return ++count_;

}

operator TYPE () {
Guard<LOCK> m (lock_);
return count_;

}
// Other arithmetic operations omitted...

private:
LOCK lock_;
TYPE count_;

};
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Using Atomic Op

� A few minor changes are made to the class

header:

#if defined (MT_SAFE)
typedef Atomic_Op<> COUNTER; // Note default parameters...
#else
typedef Atomic_Op<ACE_Null_Mutex> COUNTER;
#endif /* MT_SAFE */

� In addition, we add a lock, producing:

class Proxy_Handler
{
// ...

// Maintain count of events sent.
static COUNTER events_sent_;

};
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Thread-safe Version of

Consumer Proxy

� events sent is now serialized automatically

and we only lock the minimal scope neces-

sary

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;

// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
// Calls Atomic_Op<>::operator++.
Proxy_Handler::events_sent_++;

}
}
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Bene�ts of Design Patterns

� Design patterns enable large-scale reuse of

software architectures

� Patterns explicitly capture expert knowledge

and design tradeo�s

� Patterns help improve developer communi-

cation

� Patterns help ease the transition to object-

oriented technology
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Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may su�er from pattern overload

� Patterns are validated by experience rather

than by testing

� Integrating patterns into a software devel-

opment process is a human-intensive activ-

ity
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Suggestions for Using Patterns

E�ectively

� Do not recast everything as a pattern

{ Instead, develop strategic domain patterns and reuse

existing tactical patterns

� Institutionalize rewards for developing pat-

terns

� Directly involve pattern authors with appli-

cation developers and domain experts

� Clearly document when patterns apply and

do not apply

� Manage expectations carefully
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Patterns Literature

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable Object-Oriented Software" Addison-Wesley,

1994

{ Pattern Languages of Program Design series by

Addison-Wesley, 1995 and 1996

{ Siemens, Pattern-Oriented Software Architecture,

Wiley and Sons, 1996

� Special Issues in Journals

{ Dec. '96 \Theory and Practice of Object Sys-

tems" (guest editor: Stephen P. Berczuk)

{ October '96 \Communications of the ACM" (guest

editors: Douglas C. Schmidt, Ralph Johnson, and

Mohamed Fayad)

� Magazines

{ C++ Report and Journal of Object-Oriented Pro-

gramming, columns by Coplien, Vlissides, and Mar-

tin
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Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to wuarchive.wustl.edu

{ Transfer the �les /languages/c++/ACE/*.gz

� Mailing lists

* ace-users@cs.wustl.edu
* ace-users-request@cs.wustl.edu
* ace-announce@cs.wustl.edu
* ace-announce-request@cs.wustl.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/ACE.html
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