
Design Patterns and Frameworks

for Concurrent CORBA Event

Channels

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1

Motivation

� Asynchronous messaging and group com-

munication are important for real-time ap-

plications

� This example explores the design patterns

and reusable framework components used in

an OO architecture for CORBA Real-time

Event Channels

� CORBA Event Channels route events from

Supplier(s) to Consumer(s)

2

Communication Models for Event

Channels

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

pull()pull()

pull()pull()

pull()pull()

pull()pull()

pull()pull()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

pull()pull()

pull()pull()

push()push()

push()push()

push()push()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

push()push()

push()push()

push()push()

push()push()

push()push()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

SUPPLIERSUPPLIER

push()push()

push()push()

pull()pull()

pull()pull()

pull()pull()

CONSUMERCONSUMER

CONSUMERCONSUMER

CONSUMERCONSUMER

((DD) T) THEHE HYBRIDHYBRID PULLPULL//PUSHPUSH MODELMODEL

((AA) T) THEHE C CANONICALANONICAL PUSHPUSH MODELMODEL ((BB) T) THEHE C CANONICALANONICAL PULLPULL MODELMODEL

((CC) T) THEHE HYBRIDHYBRID PUSHPUSH//PULLPULL MODELMODEL

EVENT

CHANNEL

(NOTIFIER)

EVENT

CHANNEL

(QUEUE)

EVENT

CHANNEL

(AGENT)

EVENT

CHANNEL

(PROCURER)

3

OO Software Architecture of the

Event Channel

: Consumer: Consumer
ProxyProxy

: Reactor: Reactor

: Event: Event
ChannelChannel

: QoS Queues: QoS Queues

: Consumer: Consumer
ProxyProxy

: Consumer: Consumer
ProxyProxy

: Supplier: Supplier
ProxyProxy

: Supplier: Supplier
ProxyProxy

4

Design Patterns in the Event

Channel

AdapterAdapterIteratorIterator ProxyProxyWrapperWrapper
TACTICAL

PATTERNS

STRATEGIC

PATTERNS

ServiceService
ConfiguratorConfigurator

ReactorReactor

Active ObjectActive Object

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

ConnectorConnector

AcceptorAcceptor

� The Event Channel components are based

upon a system of design patterns

5

Design Patterns in the Event

Channel (cont'd)

� Reactor

{ \Decouples event demultiplexing and event han-

dler dispatching from application services performed

in response to events"

� Half-Sync/Half-Async

{ \Decouples synchronous I/O from asynchronous

I/O in a system to simplify concurrent program-

ming e�ort without degrading execution e�ciency"

� Active Object

{ \Decouples method execution from method invo-

cation and simpli�es synchronized access to shared

resources by concurrent threads"

6

Using the Reactor Pattern for the

Single-Threaded Event Channel

: Reactor

REGISTEREDREGISTERED

OBJECTSOBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy

: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy

: Event: Event
HandlerHandler

: Supplier: Supplier
ProxyProxy

1: handle_input()1: handle_input()

4: send(event)4: send(event)

2: recv(event)2: recv(event)
3: forward(event)3: forward(event)

OS EVENT DEMULTIPLEXING INTERFACEOS EVENT DEMULTIPLEXING INTERFACE

7

Event Channel Inheritance

Hierarchy

ProxyProxy
HandlerHandler

ConsumerConsumer
ProxyProxy

TaskTask

APPLICATION-
INDEPENDENT

APPLICATION-
SPECIFIC

MessageMessage
QueueQueue

SupplierSupplier
ProxyProxy

8

IO Proxy Class Public Interface

� Common methods and data for I/O Proxys

// Keeps track of events sent and received.
typedef u_long COUNTER;

// This is the type of the Consumer_Map.
typedef Null_Mutex MAP_LOCK;
typedef Map_Manager <Event_Header,

Consumer_Set,
MAP_LOCK> CONSUMER_MAP;

class Proxy_Handler : public Task<Null_Synch>
{
public:

// Initialize the Proxy.
virtual int open (void * = 0);

private:
static COUNTER events_sent_;
static COUNTER events_received_;

9

Supplier Proxy Interface

� Handle input processing and routing of events

from Suppliers

class Supplier_Proxy : public Proxy_Handler
{
protected:

// Notified by Reactor when Supplier
// event arrives.

virtual int handle_input (void);

// Low-level method that receives
// an event from a Supplier.

virtual int recv (Message_Block *&);

// Forward an event from
// a Supplier to Consumer(s).

int forward (Message_Block *);
};

10

Consumer Proxy Interface

� Handle output processing of events sent to

Consumers

class Consumer_Proxy : public Proxy_Handler
{
public:

// Send an event to a Consumer.
virtual int push (Message_Block *);

protected:
// Perform a non-blocking push() (will
// may queue if flow control occurs).

int nonblk_push (Message_Block *event);

// Finish sending an event when flow control
// abates.

virtual int handle_output (void);

// Low-level method that sends an event to
// a Consumer.

virtual int send (Message_Block *);
};

11

Collaboration in Single-threaded

Event Channel Forwarding

: Consumer: Consumer
MapMap

: Supplier: Supplier
ProxyProxy

6: push (event)6: push (event)

1: handle_input()1: handle_input()
2: recv(event)2: recv(event)

3: find()3: find()

:: MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

5: send(event)5: send(event)

SOURCESOURCE
IDID

ConsumerConsumer
SetSet

4:
 p

ush
 (e

ve
nt)

4:
 p

ush
 (e

ve
nt)

:: MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

7: send(event)7: send(event)
8: enqueue(event)8: enqueue(event)
9: schedule_wakeup()9: schedule_wakeup()

10: handle_output()10: handle_output()
11: dequeue(event)11: dequeue(event)
12: send(event)12: send(event)

12

// Receive input event from Supplier and forward
// the event to Consumer(s).

int
Supplier_Proxy::handle_input (void)
{
Message_Block *event = 0;

// Try to get the next event from the
// Supplier.
if (recv (event) == COMPLETE_EVENT)
{
Proxy_Handler::events_received_++;
forward (event);

}
}

// Send an event to a Consumer (queue if necessary).

int
Consumer_Proxy::push (Message_Block *event)
{
if (msg_queue ()->is_empty ())
// Try to send the Message_Block *without* blocking!
nonblk_put (event);

else
// Events are queued due to flow control.
msg_queue ()->enqueue_tail (event);

}

13

// Forward event from Supplier to Consumer(s).

int
Supplier_Proxy::forward (Message_Block *event)
{
Consumer_Set *c_set = 0;

// Determine route.
Consumer_Map::instance ()->find (event, c_set);

// Initialize iterator over Consumers(s).
Set_Iterator<Consumer_Proxy *> iter (c_set);

// Multicast event.
for (Consumer_Proxy *ch;

si.next (ch) != -1;
si.advance ()) {

// Make a "logical copy" (via reference counting).
Message_Block *new_event = event->duplicate ();

if (ch->push (new_event) == -1) // Drop event.
new_event->release (); // Decrement reference count.

}

event->release (); // Delete event.
}

14

Event Structure

� An Event contains two portions

{ The Event Header identi�es the Event

. Used for various types of �ltering

and correlation

class Event_Header {
public:
Supplier_Id s_id_;
int priority_;
Event_Type type_;
time_t time_stamp_;
size_t length_;

};

{ The Event contains a header plus a variable-sized

message

class Event {
public:

// The maximum size of an event.
enum { MAX_PAYLOAD_SIZE = /* ... */ };
Event_Header header_; // Fixed-sized header portion.
char payload_[MAX_PAYLOAD_SIZE]; // Event payload.

};

15

OO Design Interlude

� Q: What should happen if push() fails?

{ e.g., if a Consumer queue becomes full?

� A: The answer depends on whether the error
handling policy is di�erent for each router
object or the same: : :

{ Bridge/Strategy pattern: give reasonable default,

but allow substitution

� A related design issue deals with avoiding

output blocking if a Consumer connection

ow controls

16

OO Design Interlude

� Q: How can a ow controlled Consumer Proxy

know when to proceed again without polling

or blocking?

� A: Use the Event Handler::handle output no-
ti�cation scheme of the Reactor

{ i.e., via the Reactor's methods schedule wakeup
and cancel wakeup

� This provides cooperative multi-tasking within
a single thread of control

{ The Reactor calls back to the handle output
method when the Consumer Proxy is able to trans-
mit again

17

Performing Non-blocking Push

Operations

� The following method will push the event
without blocking

{ We need to queue if ow control conditions occur

int Consumer_Proxy::nonblk_push (Message_Block *event)
{
// Try to send the event using non-blocking I/O
if (send (event) == EWOULDBLOCK)
{

// Queue in *front* of the list to preserve order.
msg_queue ()->enqueue_head (event);

// Tell Reactor to call us when we can send again.

Service_Config::reactor ()->schedule_wakeup
(this, Event_Handler::WRITE_MASK);

}
else

Proxy_Handler::events_sent_++;
}

18

// Finish sending an event when flow control
// conditions abate. This method is automatically
// called by the Reactor.

int
Consumer_Proxy::handle_output (void)
{
Message_Block *event = 0;

// Take the first event off the queue.
msg_queue ()->dequeue_head (event);

if (nonblk_push (event) != 0)
{
// If we succeed in writing msg out completely
// (and as a result there are no more msgs
// on the Message_Queue), then tell the Reactor
// not to notify us anymore.

if (msg_queue ()->is_empty ()
Service_Config::reactor ()->cancel_wakeup
(this, Event_Handler::WRITE_MASK);

}
}

19

Event Channel Class Public

Interface

� Maintains maps of the Consumer Proxy ob-

ject references and the Supplier Proxy ob-

ject references

// Parameterized by the type of I/O Proxys.
template <class Supplier_Proxy, // Supplier policies

class Consumer_Proxy> // Consumer policies
class Event_Channel
{
public:

// Perform initialization.
virtual int init (int argc, char *argv[]);

// Perform termination.
virtual int fini (void);

private:
// ...

};

20

Dynamically Con�guring Services

into an Application

� Main program is generic

// Example of the Service Configurator pattern.

int main (int argc, char *argv[])
{
Service_Config daemon;
// Initialize the daemon and
// dynamically configure services.
daemon.open (argc, argv);

// Run forever, performing configured services.

daemon.run_reactor_event_loop ();

/* NOTREACHED */
}

21

Dynamic Linking an

Event Channel Service

� Service con�guration �le

% cat ./svc.conf
static Svc_Manager "-p 5150"
dynamic Event_Channel_Service Service_Object *

Event_Channel.dll:make_Event_Channel () "-d"

� Application-speci�c factory function used to

dynamically link a service

// Dynamically linked factory function that allocates
// a new single-threaded Event_Channel object.

extern "C" Service_Object *make_Event_Channel (void);

Service_Object *
make_Event_Channel (void)
{
return new Event_Channel<Supplier_Proxy,

Consumer_Proxy>;
// ACE automatically deletes memory.

}

22

Concurrency Strategies for Event

Channel

� The single-threaded Event Channel has sev-
eral limitations

1. Fragile program structure due to cooperative multi-

tasking

2. Doesn't take advantage of multi-processing plat-

forms

� Therefore, a concurrent solution may be
bene�cial

{ Though it can also increase concurrency control

overhead

� The following slides illustrate how OO tech-
niques push this decision to the \edges" of
the design

{ This greatly increases reuse, exibility, and perfor-

mance tuning

23

Using the Active Object Pattern

for the Multi-threaded

Event Channel

:: Reactor Reactor

REGISTERED

OBJECTS

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

L
E

V
E

L
L

E
V

E
L

K
E

R
N

E
L

K
E

R
N

E
L

L
E

V
E

L
L

E
V

E
L

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

L
E

V
E

L
L

E
V

E
L

:Timer:Timer
QueueQueue

: Signal: Signal
HandlersHandlers

: Handle: Handle
TableTable

: Event: Event
HandlerHandler

: Supplier: Supplier
ProxyProxy

1: handle_input()1: handle_input()

4: send(event)4: send(event)

2: recv(event)2: recv(event)
3: forward(event)3: forward(event)

OS EVENT DEMULTIPLEXING INTERFACEOS EVENT DEMULTIPLEXING INTERFACE

: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy

: Event: Event
HandlerHandler

: Consumer: Consumer
ProxyProxy

24

Collaboration in the Active

Object-based Event Channel

Forwarding

: Consumer: Consumer
MapMap

: Supplier: Supplier
ProxyProxy

6: push (event)6: push (event)

1: handle_input()1: handle_input()
2: recv(event)2: recv(event)

3: find()3: find()

:: MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

5: send(event)5: send(event)

SOURCESOURCE
IDID

ConsumerConsumer
SetSet

4:
 p

ush
 (e

ve
nt)

4:
 p

ush
 (e

ve
nt)

:: MessageMessage
QueueQueue

: Consumer: Consumer
ProxyProxy

5: send(event)5: send(event)

25

Half-Sync/Half-Async Pattern

� Intent

{ \Decouple synchronous I/O from asynchronous I/O

in a system to simplify concurrent programming

e�ort without degrading execution e�ciency"

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level com-

munication tasks

. These are performed synchronously (via Active

Objects)

{ How to ensure e�cient lower-level I/O communi-

cation tasks

. These are performed asynchronously (via Reac-

tor)

26

Structure of the

Half-Sync/Half-Async Pattern

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

T

A
S

K

L

A
Y

E
R

T

A
S

K

L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

L

A
Y

E
R

 T
A

S
K

L

A
Y

E
R SSYNCYNC

TASK TASK 11

SSYNCYNC

TASK TASK 33

SSYNCYNC

TASK TASK 22

1, 4: read(data)1, 4: read(data)

3: enqueue(data)3: enqueue(data)

2: interrupt2: interrupt

ASYNCASYNC

TASKTASK

EXTERNALEXTERNAL

EVENT SOURCESEVENT SOURCES

MESSAGE QUEUESMESSAGE QUEUES

27

Using the Half-Sync/Half-Async

Pattern in the Event Channel

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

T

A
S

K

L
A

Y
E

R

T
A

S
K

L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

L

A
Y

E
R

 T
A

S
K

L

A
Y

E
R

1: dequeue(event)1: dequeue(event)
2: send(event)2: send(event)

2: recv(event)2: recv(event)
3: forward(event)3: forward(event)
4: enqueue(event)4: enqueue(event)

1: dispatch()1: dispatch()

: Reactor: Reactor

MESSAGE QUEUESMESSAGE QUEUES

: Supplier: Supplier
ProxyProxy: Supplier: Supplier

ProxyProxy

: Supplier: Supplier
ProxyProxy

: Consumer: Consumer
ProxyProxy : Consumer: Consumer

ProxyProxy

: Consumer: Consumer
ProxyProxy

28

Con�guring Synchronization

Mechanisms

// Determine the type of synchronization mechanism.
#if defined (ACE_USE_MT)
typedef MT_SYNCH SYNCH;
#else
typedef NULL_SYNCH SYNCH;
#endif /* ACE_USE_MT */

typedef Null_Mutex MAP_LOCK;

// This is the type of the Consumer_Map.
typedef Map_Manager <Event_Header,

Consumer_Set,
MAP_LOCK> CONSUMER_MAP;

class Proxy_Handler : public Task<SYNCH>
{ /* ... */ };

29

OO Design Interlude

� Q: What is the MT SYNCH class and how

does it work?

� A: MT SYNCH provides a thread-safe syn-
chronization policy for a particular instanti-
ation of a Svc Handler

{ e.g., it ensures that any use of a Svc Handler's
Message Queue will be thread-safe

{ Any Task that accesses shared state can use the

\traits" in the MT SYNCH

class MT_SYNCH { public:
typedef Mutex MUTEX;
typedef Condition<Mutex> CONDITION;

};

{ Contrast with NULL SYNCH

class NULL_SYNCH { public:
typedef Null_Mutex MUTEX;
typedef Null_Condition<Null_Mutex> CONDITION;

};

30

Thr Consumer Proxy Class

Interface

� New subclass of Proxy Handler uses the Ac-
tive Object pattern for the Consumer Proxy

{ Uses multi-threading and synchronous I/O to trans-

mit events to Consumers

{ Transparently improve performance on a multi-

processor platform and simplify design

#define ACE_USE_MT
#include "Proxy_Handler.h"

class Thr_Consumer_Proxy : public Proxy_Handler
{
public:

// Initialize the object and spawn a new thread.
virtual int open (void *);

// Send an event to a Consumer.
virtual int push (Message_Block *);

private:
// Transmit Supplier events to Consumer within
// separate thread.

virtual int svc (void);

31

Thr Consumer Proxy Class

Implementation

� The multi-threaded version of open is slightly

di�erent since it spawns a new thread to be-

come an active object!

// Override definition in the Consumer_Proxy class.

int
Thr_Consumer_Proxy::open (void *)
{
// Become an active object by spawning a
// new thread to transmit events to Consumers.

activate (THR_NEW_LWP | THR_DETACHED);
}

� activate is a pre-de�ned method on class

Task

32

// Queue up an event for transmission (must not block
// since all Supplier_Proxys are single-threaded).

int
Thr_Consumer_Proxy::push (Message_Block *event)
{
// Perform non-blocking enqueue.
msg_queue ()->enqueue_tail (event);

}

// Transmit events to the Consumer (note simplification
// resulting from threads...)

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;
// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
Proxy_Handler::events_sent_++;

}
}

33

Dynamic Linking an

Event Channel Service

� Service con�guration �le

% cat ./svc.conf
remove Event_Channel_Service
dynamic Event_Channel_Service Service_Object *

thr_Event_Channel.dll:make_Event_Channel () "-d"

� Application-speci�c factory function used to

dynamically link a service

// Dynamically linked factory function that allocates
// a new multi-threaded Event_Channel object.

extern "C" Service_Object *make_Event_Channel (void);

Service_Object *
make_Event_Channel (void)
{
return new Event_Channel<Supplier_Proxy,

Thr_Consumer_Proxy>;
// ACE automatically deletes memory.

}

34

Eliminating Race Conditions

� Problem

{ The concurrent Event Channel contains \race con-

ditions" e.g.,

. Auto-increment of static variable events sent
is not serialized properly

� Forces

{ Modern shared memory multi-processors use deep

caches and weakly ordered memory models

{ Access to shared data must be protected from cor-

ruption

� Solution

{ Use synchronization mechanisms

35

Basic Synchronization

Mechanisms

� One approach to solve the serialization prob-

lem is to use OS mutual exclusion mecha-

nisms explicitly, e.g.,

// SunOS 5.x, implicitly "unlocked".
mutex_t lock;

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;
// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
mutex_lock (&lock);
Proxy_Handler::events_sent_++;
mutex_unlock (&lock);

}
}

36

Problems Galore!

� Adding these mutex * calls explicitly is inele-
gant, obtrusive, error-prone, and non-portable

{ Inelegant

. \Impedance mismatch" with C/C++

{ Obtrusive

. Must �nd and lock all uses of events sent

{ Error-prone

. C++ exception handling and multiple method

exit points cause subtle problems

. Global mutexes may not be initialized correctly: : :

{ Non-portable

. Hard-coded to Solaris 2.x

37

C++ Wrappers for

Synchronization

� To address portability problems, de�ne a

C++ wrapper:

class Thread_Mutex
{
public:
Thread_Mutex (void) {
mutex_init (&lock_, USYNCH_THREAD, 0);

}
~Thread_Mutex (void) { mutex_destroy (&lock_); }
int acquire (void) { return mutex_lock (&lock_); }
int tryacquire (void) { return mutex_trylock (&lock); }
int release (void) { return mutex_unlock (&lock_); }

private:
mutex_t lock_; // SunOS 5.x serialization mechanism.
void operator= (const Thread_Mutex &);
Thread_Mutex (const Thread_Mutex &);

};

� Note, this mutual exclusion class interface

is portable to other OS platforms

38

Porting Thread Mutex to

Windows NT

� Win32 version of Thread Mutex

class Thread_Mutex
{
public:
Thread_Mutex (void) {
InitializeCriticalSection (&lock_);

}
~Thread_Mutex (void) {
DeleteCriticalSection (&lock_);

}
int acquire (void) {
EnterCriticalSection (&lock_); return 0;

}
int tryacquire (void) {
TryEnterCriticalSection (&lock_); return 0;

}
int release (void) {
LeaveCriticalSection (&lock_); return 0;

}
private:
CRITICAL_SECTION lock_; // Win32 locking mechanism.
// ...

39

Using the C++ Thread Mutex

Wrapper

� Using the C++ wrapper helps improve porta-

bility and elegance:

Thread_Mutex lock;

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
lock.acquire ();
Proxy_Handler::events_sent_++;
lock.release ();

}
}

� However, it does not solve the obtrusiveness

or error-proneness problems: : :

40

Automated Mutex Acquisition and

Release

� To ensure mutexes are locked and unlocked,

we'll de�ne a template class that acquires

and releases a mutex automatically

template <class LOCK>
class Guard
{
public:
Guard (LOCK &m): lock_ (m) { lock_.acquire (); }
~Guard (void) { lock_.release (); }
// ...

private:
LOCK &lock_;

}

� Guard uses the C++ idiom whereby a con-

structor acquires a resource and the destruc-

tor releases the resource

41

Using the Guard Class

� Using the Guard class helps reduce errors:

Thread_Mutex lock;

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;
// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
{
// Constructor releases lock.
Guard<Thread_Mutex> mon (lock);
Proxy_Handler::events_sent_++;
// Destructor releases lock.

}
}

}

� However, using the Thread Mutex and Guard

classes is still overly obtrusive and subtle

(may lock too much scope: : :)

42

OO Design Interlude

� Q: Why is Guard parameterized by the type

of LOCK?

� A: there are many locking mechanisms that
bene�t from Guard functionality, e.g.,

* Non-recursive vs recursive mutexes

* Intra-process vs inter-process mutexes

* Readers/writer mutexes

* Solaris and System V semaphores

* File locks

* Null mutex

� In ACE, all synchronization classes use the

Wrapper and Adapter patterns to provide

identical interfaces that facilitate parame-

terization

43

The Wrapper Pattern

� Intent

{ \Encapsulate low-level, stand-alone functions within

type-safe, modular, and portable class interfaces"

� This pattern resolves the following forces
that arises when using native C-level OS
APIs

1. How to avoid tedious, error-prone, and non-portable

programming of low-level IPC and locking mecha-

nisms

2. How to combine multiple related, but independent,

functions into a single cohesive abstraction

44

Structure of the Wrapper Pattern

client
Wrapper

request()

1: request ()

2: specific_request()

Wrappee

specific_request()

45

Using the Wrapper Pattern for

Locking

clientclient
MutexMutex

acquire()
release()
tryacquire()

1: acquire ()

2: mutex_lock()

SolarisSolaris

mutex_lock()
mutex_unlock()
mutex_trylock()

46

Using the Adapter Pattern for

Locking

clientclient
GuardGuard

GuardGuard

Guard()
~Guard()

Guard()
~Guard()

1: Guard()

2: acquire()

LOCKLOCK

MutexMutex

3: mutex_lock()

MutexMutex

acquire()

Win32Win32
EnterCritical
Section()

SolarisSolaris

mutex_lock()

POSIXPOSIX
pthread_mutex
_lock()

47

Transparently Parameterizing

Synchonization Using C++

� The following C++ template class uses the

\Decorator" pattern to de�ne a set of atomic

operations on a type parameter:

template <class LOCK = Thread_Mutex, class TYPE = u_long>
class Atomic_Op {
public:
Atomic_Op (TYPE c = 0) { count_ = c; }

TYPE operator++ (void) {
Guard<LOCK> m (lock_); return ++count_;

}

operator TYPE () {
Guard<LOCK> m (lock_);
return count_;

}
// Other arithmetic operations omitted...

private:
LOCK lock_;
TYPE count_;

};

48

Using Atomic Op

� A few minor changes are made to the class

header:

#if defined (MT_SAFE)
typedef Atomic_Op<> COUNTER; // Note default parameters...
#else
typedef Atomic_Op<ACE_Null_Mutex> COUNTER;
#endif /* MT_SAFE */

� In addition, we add a lock, producing:

class Proxy_Handler
{
// ...

// Maintain count of events sent.
static COUNTER events_sent_;

};

49

Thread-safe Version of

Consumer Proxy

� events sent is now serialized automatically

and we only lock the minimal scope neces-

sary

int
Thr_Consumer_Proxy::svc (void)
{
Message_Block *event = 0;

// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue ()->dequeue_head (event) != -1) {
send (event);
// Calls Atomic_Op<>::operator++.
Proxy_Handler::events_sent_++;

}
}

50

Bene�ts of Design Patterns

� Design patterns enable large-scale reuse of

software architectures

� Patterns explicitly capture expert knowledge

and design tradeo�s

� Patterns help improve developer communi-

cation

� Patterns help ease the transition to object-

oriented technology

51

Drawbacks to Design Patterns

� Patterns do not lead to direct code reuse

� Patterns are deceptively simple

� Teams may su�er from pattern overload

� Patterns are validated by experience rather

than by testing

� Integrating patterns into a software devel-

opment process is a human-intensive activ-

ity

52

Suggestions for Using Patterns

E�ectively

� Do not recast everything as a pattern

{ Instead, develop strategic domain patterns and reuse

existing tactical patterns

� Institutionalize rewards for developing pat-

terns

� Directly involve pattern authors with appli-

cation developers and domain experts

� Clearly document when patterns apply and

do not apply

� Manage expectations carefully

53

Patterns Literature

� Books

{ Gamma et al., \Design Patterns: Elements of

Reusable Object-Oriented Software" Addison-Wesley,

1994

{ Pattern Languages of Program Design series by

Addison-Wesley, 1995 and 1996

{ Siemens, Pattern-Oriented Software Architecture,

Wiley and Sons, 1996

� Special Issues in Journals

{ Dec. '96 \Theory and Practice of Object Sys-

tems" (guest editor: Stephen P. Berczuk)

{ October '96 \Communications of the ACM" (guest

editors: Douglas C. Schmidt, Ralph Johnson, and

Mohamed Fayad)

� Magazines

{ C++ Report and Journal of Object-Oriented Pro-

gramming, columns by Coplien, Vlissides, and Mar-

tin

54

Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to wuarchive.wustl.edu

{ Transfer the �les /languages/c++/ACE/*.gz

� Mailing lists

* ace-users@cs.wustl.edu
* ace-users-request@cs.wustl.edu
* ace-announce@cs.wustl.edu
* ace-announce-request@cs.wustl.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/ACE.html

55

