
C++ Support for Abstract Data Types

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.cs.wustl.edu/�schmidt/ (615) 343-8197

ADTs in C++ Douglas C. Schmidt

Topics

� Describing Objects Using ADTs

� Built-in vs. User-defined ADTs

� C++ Support

Vanderbilt University 1

ADTs in C++ Douglas C. Schmidt

Describing Objects Using ADTs

� An ADT is a collection of data and associated operations for
manipulating that data

� ADTs support abstraction, encapsulation, and information hiding

� They provide equal attention to data and operations

� Common examples of ADTs:

– Built-in types: boolean, integer, real, array
– User-defined types: stack, queue, tree, list

Vanderbilt University 2

ADTs in C++ Douglas C. Schmidt

Built-in ADTs
� boolean

– Values: true and false
– Operations: and, or, not, nand , etc.

� integer

– Values: Whole numbers between MIN and MAX values
– Operations: add, subtract, multiply, divide , etc.

� arrays

– Values: Homogeneous elements, i.e., array of X. . .
– Operations: initialize, store, retrieve, copy , etc.

Vanderbilt University 3

ADTs in C++ Douglas C. Schmidt

User-defined ADTs

� stack

– Values: Stack elements, i.e., stack of X. . .
– Operations: create, destroy/dispose, push, pop , is empty,

is full , etc.

� queue

– Values: Queue elements, i.e., queue of X. . .
– Operations: create, destroy/dispose, enqueue, dequeue,

is empty, is full , etc.

� tree search structure

– Values: Tree elements, i.e., tree of X
– Operations: insert, delete, find, size, traverse (in-

order, post-order, pre-order, level-order) , etc.

Vanderbilt University 4

ADTs in C++ Douglas C. Schmidt

C++ Support for ADTs

� C++ Classes

� Automatic Initialization and Termination

� Friends

� Assignment and Initialization

� Overloading

� Parameterized Types

� Iterators

� Miscellaneous Issues

Vanderbilt University 5

ADTs in C++ Douglas C. Schmidt

C++ Classes

� Classes are containers for state variables and provide operations,
i.e., methods, for manipulating the state variables

� A class is separated into three access control sections:

class Classic_Example {
public:

// Data and methods accessible to any user of the class
protected:

// Data and methods accessible to class methods,
// derived classes, and friends only

private:
// Data and methods accessible to class
// methods and friends only

};

Vanderbilt University 6

ADTs in C++ Douglas C. Schmidt

C++ Classes (cont’d)
� A struct is interpreted as a class with all data objects and methods

declared in the public section

� By default, all class members are private and all struct members are
public

� A class definition does not allocate storage for any objects

� Data members and member functions (i.e., methods)

Vanderbilt University 7

ADTs in C++ Douglas C. Schmidt

C++ Class Components (cont’d)

� The this pointer

– Used in the source code to refer to a pointer to the object on which
the method is called

� Friends

– Non-class functions granted privileges to access internal class
information, typically for efficiency reasons

Vanderbilt University 8

ADTs in C++ Douglas C. Schmidt

Class Data Members

� Data members may be objects of built-in types, as well as user-
defined types, e.g., class Bounded Stack

#include "Vector.h"
template <class T>
class Bounded_Stack {
public:

Bounded_Stack (int len) : stack_ (len), top_ (0) {}
// . . .

private:
Vector<T> stack_;
int top_;

};

Vanderbilt University 9

ADTs in C++ Douglas C. Schmidt

Class Data Members (cont’d)

� Important Question: ‘How do we initialize class data members that
are objects of user-defined types whose constructors require
arguments?’

� Answer: use the base/member initialization section

– That’s the part of the constructor after the ’:’, following the
constructor’s parameter list (up to the first ’f’)

� Note, it is a good habit to always use the base/member initialization
section

� Base/member initialization section only applies to constructors

Vanderbilt University 10

ADTs in C++ Douglas C. Schmidt

Base/Member Initialization Section
� Five mandatory cases for classes:

1. Initializing base classes (whose constructors require arguments)
2. Initializing user-defined class data members (whose constructors

require arguments)
3. Initializing reference variables
4. Initializing const s
5. Initializing virtual base class(es), in most derived class (when they

don’t have default constructor(s))

� One optional case:

1. Initializing built-in data members

Vanderbilt University 11

ADTs in C++ Douglas C. Schmidt

Base/Member Initialization Section (cont’d)
class Vector { public: Vector (size_t len); /* . . . */ };
class String { public: String (const char *str); / * . . .
class Stack : private Vector // Base class
{
public:

Stack (size_t len, const char *name)
: Vector (len), name_ (name),

max_size_ (len), top_ (0) {}
// . . .

private:
String name_; // user-defined
const int max_size_; // const
size_t top_; // built-in type
// . . .

};

Vanderbilt University 12

ADTs in C++ Douglas C. Schmidt

Base/Member Initialization Section (cont’d)

� References (and const s) must be initialized

class Vector_Iterator {
public:

Vector_Iterator (const Vector &v): vr_ (v), i_ (0) {}
// . . .

private:
Vector &vr_; // reference
size_t i_;

};

Vanderbilt University 13

ADTs in C++ Douglas C. Schmidt

Friends

� A class may grant access to its private data and methods by including
friend declarations in the class definition, e.g.,

class Vector {
friend Vector &product (const Vector &,

const Matrix &);
private:

int size_;
// . . .

};

� Function product can access Vector ’s private parts:

Vector &product (const Vector &v, const Matrix &m) {
int vector_size = v.size_;
// . . .

Vanderbilt University 14 A
D

T
s

in
C

+
+

D
o

F
rie

nd
s

(c
on

t’d
)

�

A
cl

as
s

m
ay

co
nf

er
fr

ie
nd

sh
ip

on
en

tir
e

cl
as

se
s,

se
le

ct
ed

m
et

ho
ds

in
a

pa
rt

ic
ul

ar
cl

as
s,

or
di

na
ry

st
an

d-
al

on
e

fu
nc

tio
ns

�

Fr
ie

nd
s

al
lo

w
fo

rc
on

tr
ol

le
d

vi
ol

at
io

n
of

in
fo

rm
at

io
n-

hi
di

ng

–
e.

g.
,o

st
re

am
an

d
is

tr
ea

m
fu

nc
tio

ns
:

#
in

cl
u
d
e

<
io

st
re

a
m

.h
>

cl
a
ss

S
tr

in
g

{
fr

ie
n
d

o
st

re
a
m

&
o
p
e
ra

to
r<

<
(o

st
re

a
m

&
,

S
tr

in
g

&
);

p
ri
va

te
:

ch
a
r

*s
tr

_
;

//
.

.
.

}; o
st

re
a
m

&
o
p
e
ra

to
r<

<
(o

st
re

a
m

&
o
s,

S
tr

in
g

&
s)

{
o
s

<
<

s.
st

r_
;

re
tu

rn
o
s;

} V
an

de
rb

ilt
U

ni
ve

rs
ity

ADTs in C++ Douglas C. Schmidt

Friends (cont’d)

� Using friends weakens information hiding

– In particular, it leads to tightly-coupled implementations that are
overly reliant on certain naming and implementation details

� For this reason, friends are known as the ‘goto of access protection
mechanisms!’

� Note, C++ inline (accessor) functions reduce the need for friends . . .

Vanderbilt University 16

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization

� Some ADTs must control all copy operations invoked upon objects

� This is necessary to avoid dynamic memory aliasing problems
caused by “shallow” copying

� A String class is a good example of the need for controlling all copy
operations . . .

Vanderbilt University 17

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)

class String {
public:

String (const char *t)
: len_ (t = = 0 ? 0 : strlen (t)) {
if (this->len_ == 0)

throw range_error ();
this->str_ = strcpy (new char [len_ + 1], t);

}
˜String (void) { delete [] this->str_; }

// . . .
private:

size_t len_;
char *str_;

};

Vanderbilt University 18

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)

void foo (void) {
String s1 ("hello");
String s2 ("world");

s1 = s2; // leads to aliasing
s1[2] = ’x’;
assert (s2[2] == ’x’); // will be true!
// . . .
// double deletion in destructor calls!

}

Vanderbilt University 19

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)

s1 s2

world

� Note that both s1.s and s2.s point to the dynamically allocated
buffer storing world (this is known as aliasing)

Vanderbilt University 20

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)

� In C++, copy operations include assignment, initialization, parameter
passing and function return, e.g.,

#include "Vector.h"
Vector<int> bar (Vector<int>);

void foo (void) {
Vector<int> v1 (100);

Vector<int> v2 = v1; // Initialize new v2 from v1
// Same net effect as Vector v2 (v1);

v1 = v2; // Vector assign v2 to v1

v2 = bar (v1); } // Pass and return Vectors

� Note, parameter passing and function return of objects by value is
handled using the initialization semantics of the copy constructor

Vanderbilt University 21

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)

� Assignment is different than initialization because the left hand object
already exists for assignment

� Therefore, C++ provides two different operators, one for initialization
(the copy constructor, which also handles parameter passing and
return of objects from functions) . . .

template <class T>
Vector<T>::Vector (const Vector &v)

: size_ (v.size_), max_ (v.max_), buf_ (new T[v.max_])
{

for (size_t i = 0; i < this->size_; i++)
this->buf_[i] = v.buf_[i];

}

Vanderbilt University 22

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)
� . . . and one for assignment (the assignment operator), e.g.,

template <class T>
Vector<T> &Vector<T>::operator= (const Vector<T> &v) {

if (this != &v) {
if (this->max_ < v.size_) {

delete [] this->buf_;
this->buf_ = new T[v.size_];
this->max_ = v.size_;

}
this->size_ = v.size_;

for (size_t i = 0; i < this->size_; i++)
this->buf_[i] = v.buf_[i];

}
return *this; // Allows v1 = v2 = v3; }

Vanderbilt University 23

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)

� Constructors and operator= must be class members and neither
are inherited

– Rationale

� If a class had a constructor and an operator= , but a class
derived from it did not what would happen to the derived class
members which are not part of the base class?!

– Therefore

� If a constructor or operator= is not defined for the derived
class, the compiler-generated one will use the base class
constructors and operator= ’s for each base class (whether
user-defined or compiler-defined)

� In addition, a memberwise copy (e.g., using operator=) is used
for each of the derived class members

Vanderbilt University 24

ADTs in C++ Douglas C. Schmidt

Assignment and Initialization (cont’d)

� Bottom-line: define constructors and operator= for almost every
non-trivial class . . .

– Also, define destructors and copy constructors for most classes as
well . . .

� Note, you can also define compound assignment operators, such as
operator +=, which need have nothing to do with operator =

Vanderbilt University 25

ADTs in C++ Douglas C. Schmidt

Restricting Assignment and Initialization

� Assignment, initialization, and parameter passing of objects by value
may be prohibited by using access control specifiers:

template <class T> class Vector {
public:

Vector<T> (void); // Default constructor
private:

Vector<T> &operator= (const Vector<T> &);
Vector<T> (const Vector<T> &);

};
void foo (Vector<int>); // pass-by-value prototype
Vector<int> v1;
Vector<int> v2 = v1; // Error
v2 = v1; // Error
foo (v1); // Error

Vanderbilt University 26

ADTs in C++ Douglas C. Schmidt

Restricting Assignment and Initialization (cont’d)
� A similar idiom can be used to prevent static or auto declaration of an

object, i.e., only allows dynamic objects!

class Foo { public: void dispose (void);
private: ˜Foo (void); // Destructor is private . . .

};
Foo f; // error

� Now the only way to declare a Foo object is off the heap, using
operator new, Foo *f = new Foo;

– Note, the delete operator is no longer accessible

delete f; // error!

� Therefore, a dispose function must be provided to delete the object,
f->dispose ();

Vanderbilt University 27

ADTs in C++ Douglas C. Schmidt

Restricting Assignment and Initialization (cont’d)

� If you declare a class constructor protected then only objects derived
from the class can be created

– Note, you can also use pure virtual functions to achieve a similar
effect, though it forces the use of virtual tables . . .

class Foo { protected: Foo (void); };
class Bar : private Foo { public Bar (void); };
Foo f; // Illegal
Bar b; // OK

� Note, if Foo’s constructor is declared in the private section then
we can not declare objects of class Bar either (unless class Bar is
declared as a friend of Foo)

Vanderbilt University 28

ADTs in C++ Douglas C. Schmidt

Overloading

� C++ allows overloading of all function names and nearly all operators
that handle user-defined types, including:

– the assignment operator =
– the function call operator ()
– the array subscript operator []
– the pointer operator ->()
– the sequence (comma) operator ,
– the ternary operator ? :
– the auto-increment operator ++

� You may not overload:

– the scope resolution operator ::
– the member selection (dot) operator .

Vanderbilt University 29

ADTs in C++ Douglas C. Schmidt

Overloading (cont’d)

� Ambiguous cases are rejected by the compiler, e.g.,

int foo (int);
int foo (int, int = 10);
foo (100); // ERROR, ambiguous call!
foo (100, 101); // OK!

� A function’s return type is not considered when distinguishing
between overloaded instances

– e.g., the following declarations are ambiguous to the C++ compiler:
int divide (double, double);
double divide (double, double);

Vanderbilt University 30

ADTs in C++ Douglas C. Schmidt

Overloading (cont’d)
� const and non-const functions are different functions, so const-

ness may be used to distinguish return values, e.g.,

char &operator[] (unsigned int);
const char &operator[] (unsigned int) const;

Vanderbilt University 31

ADTs in C++ Douglas C. Schmidt

Overloading (cont’d)

� Function name overloading and operator overloading relieves the
programmer from the lexical complexity of specifying unique function
identifier names. e.g.,

class String {
// various constructors, destructors,
// and methods omitted
friend String operator+ (const String&, const char *);
friend String operator+ (const String&,const String&);
friend String operator+ (const char *, const String&);
friend ostream &operator<< (ostream &, const String &);

};

Vanderbilt University 32

ADTs in C++ Douglas C. Schmidt

Overloading (cont’d)
String str_vec[101];
String curly ("curly");
String comma (", ");
str_vec[13] = "larry";
String foo = str_vec[13] + " , " + curly"
String bar = foo + comma + "and moe";
/* bar.String::String (

operator+ (operator+ (foo, comma), "and moe")); */

void baz (void) {
cout << bar << "\n";
// prints larry, curly, and moe

}

Vanderbilt University 33

ADTs in C++ Douglas C. Schmidt

Overloading (cont’d)

� Overloading becomes a hindrance to the readability of a program
when it serves to remove information

– This is especially true of overloading operators!

� e.g., overloading operators += and -= to mean push and pop
from a Stack ADT

� For another example of why to avoid operator overloading, consider
the following expression:

Matrix a, b, c, d;
// . . .
a = b + c * d; // *, +, and = are overloaded
// remember, standard precedence rules apply . . .

Vanderbilt University 34

ADTs in C++ Douglas C. Schmidt

Overloading (cont’d)
� This code will be compiled into something like the following:

Matrix t1 = c.operator* (d);
Matrix t2 = b.operator+ (t1);
a.operator= (t2);
destroy t1;
destroy t2;

� This may involve many constructor/destructor calls and extra memory
copying . . .

Vanderbilt University 35

ADTs in C++ Douglas C. Schmidt

Overloading (cont’d)

� So, do not use operator overloading unless necessary!

� Instead, many operations may be written using functions with explicit
arguments, e.g.,

Matrix b, c, d;
. . .
Matrix a (c);
a.mult (d);
a.add (b);

� or define and use the short-hand operator x= instead, e.g.,
a = b + c * d; can be represented by:

Matrix a (c);
a *= d; a += b;

Vanderbilt University 36

ADTs in C++ Douglas C. Schmidt

Parameterized Types

� Parameterized types serve to describe general container class data
structures that have identical implementations, regardless of the
elements they are composed of

� The C++ parameterized type scheme allows “lazy instantiation”

– i.e., the compiler need not generate definitions for template
methods that are not used (or non-template methods)

� ANSI/ISO C++ allows a programmer to explicitly instantiate
parameterized types, e.g., template class Vector<int>;

Vanderbilt University 37

ADTs in C++ Douglas C. Schmidt

Parameterized Types (cont’d)

� C++ templates may also be used to parameterize functions. The
compiler generates all the necessary code!

template <class T> inline void
swap (T &x, T &y) {

T t = x; x = y; y = t;
}

int main (int, char *[]) {
int a = 10, b = 20;
double d = 10.0, e = 20.0;
char c = ’a’, s = ’b’;

swap (a, b); swap (d, e); swap (c, s);
return 0;

}

Vanderbilt University 38

ADTs in C++ Douglas C. Schmidt

Parameterized Types (cont’d)
� C++ standard library provides standard containers, algorithms

iterators and functors. The library is generic in the sense that they
are heavily parameterized.

– Containers - e.x, vectors, list, map, queue etc.
– Algorithm - e.x, copy, sort, find, count etc.
– Iterators - e.x, Input, Output, Forward, BiDirectional, Random

Access and Trivial
– Function Objects or Functors - e.x, plus, minus, multiplies etc.

� They were called STL in earlier versions of C++

Vanderbilt University 39

ADTs in C++ Douglas C. Schmidt

Template Metaprograms

� Make the compiler act as an interpreter.

� Made possible by C++ template features.

� These programs need not be executed. They generate their output
at compile time.

template<int N> class Power2 {
public:

enum { value = 2 * Power2<N-1>::value };
};
class Power2<1> {
public:

enum { value = 2 };
};

Vanderbilt University 40

ADTs in C++ Douglas C. Schmidt

Template Metaprograms (cont’d)

� Very powerful when combined with normal C++ code.

� A hybrid approach would result in faster code.

� Template metaprograms can be written for specific algorithms and
embedded in code.

� Generates useful code for specific input sizes during compile times.

� Basically, it is an extremely early binding mechanism as opposed to
traditional late binding used with C++.

� Can torture your compiler, and not many compilers can handle this.

Vanderbilt University 41

ADTs in C++ Douglas C. Schmidt

Template Metaprograms (cont’d)

� A simple do while loop

template<int I>
class loop {
private: enum { go = (I-1) != 0 };
public: static inline void f() {

// Whatever needs to go here
loop<go ? (I-1) : 0>::f(); }

};
class loop<0> {
public:

static inline void f()
{ }

};
loop<N>::f();

Vanderbilt University 42

ADTs in C++ Douglas C. Schmidt

Iterators
� Iterators allow applications to loop through elements of some ADT

without depending upon knowledge of its implementation details

� There are a number of different techniques for implementing iterators

– Each has advantages and disadvantages

� Other design issues:

– ‘Providing a copy of each data item vs. providing a reference to
each data item‘?

– ‘How to handle concurrency and insertion/deletion while iterator(s)
are running‘

Vanderbilt University 43

ADTs in C++ Douglas C. Schmidt

Iterators (cont’d)

� Iterators are central to generic programming

1. Pass a pointer to a function
– Not very OO . . .
– Clumsy way to handle shared data . . .

2. Use in-class iterators (a.k.a. passive or internal iterators)
– Requires modification of class interface
– Generally not reentrant . . .

3. Use out-of-class iterators (a.k.a. active or external iterator)
– Handles multiple simultaneously active iterators
– May require special access to original class internals . . .
– i.e., use friend s

Vanderbilt University 44

ADTs in C++ Douglas C. Schmidt

Iterators (cont’d)

� Three primary methods of designing iterators

1. Pass a pointer to a function
– Not very OO . . .
– Clumsy way to handle shared data . . .

2. Use in-class iterators (a.k.a. passive or internal iterators)
– Requires modification of class interface
– Generally not reentrant . . .

3. Use out-of-class iterators (a.k.a. active or external iterator)
– Handles multiple simultaneously active iterators
– May require special access to original class internals . . .
– i.e., use friend s

Vanderbilt University 45

ADTs in C++ Douglas C. Schmidt

Pointer to Function Iterator Example
#include <stream.h>
template <class T>
class Vector {
public:

/* Same as before */
int apply (void (*ptf) (T &)) {

for (int i = 0; i < this->size (); i++)
(*ptf) (this->buf[i]);

}
};
template <class T> void f (T &i) { cout << i << endl; }

Vector<int> v (100);
// . . .
v.apply (f);

Vanderbilt University 46

ADTs in C++ Douglas C. Schmidt

In-class Iterator Example
#include <stream.h>
template <class T>
class Vector {
public:

// Same as before
void reset (void) {this->i_ = 0;}
int advance (void) {return this->i_++ < this->size ();}
T value (void) {return this->buf[this->i_ - 1];}

private:
size_t i_;

};
Vector<int> v (100);
// . . .
for (v.reset (); v.advance () != 0;)

cout << "value = " << v.value () << "\n";

Vanderbilt University 47

ADTs in C++ Douglas C. Schmidt

Out-of-class Iterator Example
#include <stream.h>
#include "Vector.h"
template <class T> class Vector_Iterator {
public:

Vector_Iterator(const Vector<T> &v) : vr_(v), i_(0) {}
int advance() {return this->i_++ < this->vr_.size();}
T value() {return this->vr_[this->i_ - 1];}

private:
Vector<T> &vr_;
size_t i_;

};
Vector<int> v (100);
Vector_Iterator<int> iter (v);
while (iter.advance () != 0)

cout << "value = " << iter.value () << "\n";

Vanderbilt University 48

ADTs in C++ Douglas C. Schmidt

Out-of-class Iterator Example (cont’d)

� Note, this particular scheme does not require that Vector Iterator be
declared as a friend of class Vector

– However, for efficiency reasons this is often necessary in more
complex ADTs

Vanderbilt University 49

ADTs in C++ Douglas C. Schmidt

Miscellaneous ADT Issues in C++

� const methods

� New (ANSI) casts

� References

� static methods

� static data members

Vanderbilt University 50

ADTs in C++ Douglas C. Schmidt

Const Methods
� When a user-defined class object is declared as const, its methods

cannot be called unless they are declared to be const methods

– i.e., a const method must not modify its member data directly, or
indirectly by calling non-const methods

Vanderbilt University 51

ADTs in C++ Douglas C. Schmidt

Const Methods (cont’d)

� This allows read-only user-defined objects to function correctly, e.g.,

class Point {
public:

Point (int x, int y): x_ (x), y_ (y) {}
int dist (void) const {

return ::sqrt (this->x_ * this->x_ + this->y_ *
this->y_); }

void move (int dx, int dy) { this->x_ += dx;
this->y_ += dy; }

private:
int x_, y_;

};
const Point p (10, 20); in t d = p.dist (); // OK
p.move (3, 5); // ERROR

Vanderbilt University 52

ADTs in C++ Douglas C. Schmidt

New (ANSI) casts

� static_cast performs a standard, nonpolymorphic cast

– unsigned int invalid = static_cast<unsigned int> (-1);

� const_cast removes const-ness

void Foo::func (void) const
{

// Call a non-const member function from a
// const member function. Often dangerous!!!!
const_cast<Foo *> (this)->func2 ();

}

Vanderbilt University 53

ADTs in C++ Douglas C. Schmidt

New (ANSI) casts, (cont’d)

� reinterpret_cast converts types, possibly in an implementation-
dependent manner

– long random = reinterpret_cast<long> (&func);

� dynamic_cast casts at run-time, using RTTI

void func (Base *bp) {
Derived *dp = dynamic_cast<Derived *> (bp);
if (dp)

// bp is a pointer to a Derived object
}

Vanderbilt University 54

ADTs in C++ Douglas C. Schmidt

References
� Parameters, return values, and variables can all be defined as

“references”

– This is primarily done for efficiency

� Call-by-reference can be used to avoid the run-time impact of passing
large arguments by value

Vanderbilt University 55

ADTs in C++ Douglas C. Schmidt

References (cont’d)

� References are implemented similarly to const pointers. Conceptually,
the differences between references and pointers are:

– Pointers are first class objects, references are not

� e.g., you can have an array of pointers, but you can’t have an
array of references

– References must refer to an actual object, but pointers can refer to
lots of other things that aren’t objects, e.g.,

� Pointers can refer to the special value 0 in C++ (often referred to
as NULL)

� Also, pointers can legitimately refer to a location one past the
end of an array

� In general, use of references is safer, less ambiguous, and much
more restricted than pointers (this is both good and bad, of course)

Vanderbilt University 56

ADTs in C++ Douglas C. Schmidt

Static Data Members

� A static data member has exactly one instantiation for the entire class
(as opposed to one for each object in the class), e.g.,

class Foo {
public:

int a_;
private:

// Must be defined exactly once outside header!
// (usually in corresponding .C file)
static int s_;

};
Foo x, y, z;

Vanderbilt University 57

ADTs in C++ Douglas C. Schmidt

Static Data Members (cont’d)

� Note:

– There are three distinct addresses for Foo::a , i.e., &x.a_, &y.a_, &z.
– There is only one Foo::s , however . . .

� Also note:

&Foo::s_ == (int *);
&Foo::a_ == (int Foo::*); // pointer to data member

Vanderbilt University 58

ADTs in C++ Douglas C. Schmidt

Static Methods
� A static method may be called on an object of a class, or on the class

itself without supplying an object (unlike non-static methods . . .)

� Note, there is no this pointer in a static method

Vanderbilt University 59

ADTs in C++ Douglas C. Schmidt

Static Methods (cont’d)

� i.e., a static method cannot access non-static class data and
functions

class Foo {
public:

static int get_s1 (void) {
this->a_ = 10; /* ERROR! */; return Foo::s_;

}
int get_s2 (void) {

this->a_ = 10; /* OK */; return Foo::s_;
}

private:
int a_;
static int s_;

};

Vanderbilt University 60

ADTs in C++ Douglas C. Schmidt

Static Methods (cont’d)

� Most of the following calls are legal:

Foo f;
int i1, i2, i3, i4;
i1 = Foo::get_s1 ();
i2 = f.get_s2 ();
i3 = f.get_s1 ();
i4 = Foo::get_s2 (); // error

� Note:

&Foo::get_s1 == int (*)();

// pointer to method
&Foo::get_s2 == int (Foo::*)();

Vanderbilt University 61

ADTs in C++ Douglas C. Schmidt

Summary

� A major contribution of C++ is its support for defining abstract data
types (ADTs), e.g.,

– Classes
– Parameterized types

� For many systems, successfully utilizing C++’s ADT support is more
important than using the OO features of the language, e.g.,

– Inheritance
– Dynamic binding

Vanderbilt University 62

