
The Design and Performance of an Adaptive Middleware
Load Balancing and Monitoring Service

Ossama Othman and Jaiganesh Balasubramanian Douglas C. Schmidt
fossama,jaig@doc.ece.uci.edu d.schmidt@vanderbilt.edu

Dept. of Electrical Institute for Software

and Computer Engineering Integrated Systems
University of California Vanderbilt University
608 Engineering Tower 2015 Terrace Place
Irvine, CA 92697, USA Nashville, TN 37203, USA

Abstract

Middleware is increasingly used as the infrastructure for ap-
plications with stringent quality of service (QoS) require-
ments, including scalability. One way to improve the scala-
bility of distributed applications is to use adaptive middleware
to balance system processing load dynamically among mul-
tiple servers. Adaptive middleware load balancing can help
improve overall system performance by ensuring that client
application requests are distributed and processed equitably
across groups of servers.

This paper presents the following contributions to research
on adaptive middleware load balancing techniques: (1) it de-
scribes deficiencies with common load-balancing techniques,
such as introducing unnecessary overhead or not adapting dy-
namically to changing load conditions, (2) it describes the ca-
pabilities of Cygnus, which is an adaptive load balancing ser-
vice, and (3) it presents the results of empirical benchmarks
that systematically evaluate different load balancing strate-
gies provided in Cygnus by measuring their scalability show-
ing how well each strategy balances system load. The findings
in this paper show that adaptive middleware load balancing
is a viable solution for improving the scalability of distributed
applications.

1 Introduction

Motivation. As the demands of resource-intensive dis-
tributed applications have grown, the need for improved over-
all scalability has also grown. For example, client requests
may arrive dynamically–not deterministically–in many dis-
tributed applications, such as automated stock trading, e-
commerce transactions, and total ship computing environ-
ments. Moreover, the amount of load incurred by each request
may not be known in advance.

These conditions require that a distributed application be

able to redistribute requests dynamically. Otherwise, one or
more backend servers may potentially become overloaded,
whereas others will be underutilized. In other words, the sys-
tem mustadaptto changing load conditions. In theory, apply-
ing adaptability in conjunction with multiple backend servers
can

� Allow the system to scale up gracefully to handle more
clients and processing workload in larger configurations.

� Reduce the initial investment when the number of clients
is small and

� Increase the reliability of the overall system,e.g., by redi-
recting requests to replicated servers when failures occur.

Achieving this degree of scalability requires a sophisticated
load balancing service. Ideally, this service should be trans-
parent to existing distributed application components. More-
over, if incoming requests arrive dynamically, a load balanc-
ing service may not benefit froma priori QoS specifications,
scheduling, or admission control and must therefore adapt dy-
namically to changes in run-time conditions.
Evaluating candidate solutions. Load balancing can be
performed at the network, operating system, middleware, or
application layers, as shown in Figure 1. Network-level load
balancing is often provided by routers and domain name
servers [5]. OS-level load balancing is generally provided by
clustering software [19]. Application-level load balancing is
performed by the application itself [1]. A layer may take ad-
vantage of load balancing in layers below it when balancing
loads at its level. For instance, application-level load balanc-
ing may employ load balancing facilities supplied by the OS.

While load balancing can be performed in the layers out-
lined above, these layers have the following disadvantages that
can make them unsuitable for use in distributed applications
that require dynamic adjustment to runtime load conditions:

1. The inability to take into account client request content
2. Lack of transparency and
3. High maintenance lifecycle costs.

1



Router

Server

Middleware

Network

Application

Operating System

Figure 1: Load Balancing Layers

In particular, network- and OS-based load balancing suffer
from the first disadvantage,i.e., they cannot take into account
client request content because that information is necessarily
application-specific. Application-based load balancing suffers
from the last two disadvantages,i.e., transparency is lost since
the application itself must be modified to support load bal-
ancing, which can complicate code development and mainte-
nance.

Given these deficiencies, a cost-effective way to address the
application demands listed above is to employ load balanc-
ing services based on distributionmiddleware[20], such as
CORBA [16] or Java RMI [23]. These load balancing services
distribute client workload equitably among various backend
servers to obtain improved response times and scalability.

Earlier generations of middleware load balancing services
largely supported simple, centralized distributed application
configurations. For example, stateless distributed applications
that require load balancing often integrate their load balanc-
ing service with a naming service [3, 11]. In this approach, a
naming service returns a reference to a different object each
time it is accessed by a client. Implementing a load balancing
service via a naming service can be (1)overly static, e.g., if
the naming service does not consider dynamic load conditions
when returning an object reference to its clients and/or (2)in-
efficient, e.g., due to the extra (and ultimately unnecessary)
levels of indirection and round-trip latencies.

In contrast,adaptivemiddleware load balancing services
that consider dynamic load conditions when making decisions
can yield the following benefits:

� An adaptive load balancing service can support a larger
range of distributed systems since it need not be designed
for a specific application,i.e., it is more flexible.

� From the load balancing service implementation perspec-
tive, since a single load balancing service can be used for
many types of applications, the effort needed to develop
a load balancing service for a specific application is re-
duced. This generally allows for simpler and better load
balancing service implementations.

� It is possible to concentrate on the load balancing service
in general, rather than a particular aspect geared solely to
one application, which can improve the quality of opti-
mizations used in the load balancing service.

Unfortunately, first-generation adaptive middleware load
balancing services [13, 10], including our own earlier
work [18, 17] on the topic, do not provide solutions for key
dimensions of the problem space. In particular, they provided
insufficient functionality to satisfy advanced distributed ap-
plication requirements, such as the ability to tolerate faults,
install new load balancing algorithms at run-time, and create
group members on-demand to handle bursty clients. The lack
of support for this advanced functionality in first-generation
adaptive middleware load balancers has impeded distributed
system scalability. Moreover, the lack ofstandardizedinter-
faces and policies have precluded reuse of interoperable off-
the-shelf adaptive middleware load balancing services. This
paper therefore explores a previously unexamined dimension
in the middleware space:the design and performance of a
scalable adaptive load balancing service based on the OMG
CORBA standard.

Our work in this paper is presented in the context of one
of the OMG Load Balancing and Monitoring(LB/M) ser-
vice specification proposals [15] and our Cygnus implemen-
tation of this service that guided the proposal effort. Though
CORBA has standardized solutions for many distributed sys-
tem challenges, such as predictability, security, transactions,
and fault tolerance, it does not yet have specify how to tackle
load balancing capabilities required by distributed systems ar-
chitects and developers. Cygnus is available withThe ACE
ORB(TAO) [21] version 5.3, which implements the CORBA
3.0 specification [16]. The software, documentation, exam-
ples, and benchmarking tests for TAO and Cygnus are open-
source and can be downloaded fromdeuce.doc.wustl.
edu/Download.html .

Paper organization. The remaining sections of this pa-
per are organized as follows: Section 2 describes the pro-
posed CORBA Load Balancing and Monitoring (LB/M) ser-
vice specification and the architecture of Cygnus, which is our
LB/M service implementation; Section 3 presents benchmarks
that quantitatively evaluate how the Cygnus adaptive middle-
ware LB/M architecture improves distributed application scal-
ability; Section 4 describes other R&D efforts that are related
to load balancing; and Section 5 presents concluding remarks.

2



2 Cygnus: An Adaptive Middleware
Load Balancing and Monitoring Ser-
vice

This section motivates and describes the key components and
capabilities of Cygnus, which is the open-source middleware
framework integrated with TAO that guided the design of
our proposed OMG CORBA Load Balancing and Monitoring
(LB/M) service specification [15]. Sidebar 1 defines and il-
lustrates the load balancing concepts and components1 used
throughout this paper and the OMG LB/M proposal. TAO and
Cygnus implement all the components shown in the figure in
Sidebar 1. TAO facilitates location-transparent communica-
tion between (1) clients and instances of the Cygnus load bal-
ancer, (2) a load balancer and the object group members, and
(3) clients and the object group members. Cygnus also keeps
track of which members belong to each object group.

2.1 Overview of the Cygnus Load Balancing
Model

In contrast to load balancing models that are process-oriented
(where loads are balanced between processes) or object-
oriented (where loads are balanced between objects), the load
balancing model employed by Cygnus islocation-oriented.
For non-adaptive Cygnus load balancing strategies, the mem-
ber to receive the next client request is based on thelocation
where a specific member of an object group resides. The adap-
tive Cygnus load balancing case differs in that member selec-
tion is performed based on the loads at a givenlocation. In
both cases, neither process nor object characteristics are nec-
essarily used when making load balancing decisions.

Although hosts are often associated with locations, the
location-oriented model used in Cygnus makes no assump-
tions about the application’s interpretation of what a “loca-
tion” is. For example, an application could decide to associate
a process with a location instead of a host. The load balancing
model would still be location-oriented in this case, however,
since the load balancer would not be aware that the location
was actually a process.

The deployed structure of the location-oriented load balanc-
ing service is shown in Figure 2. The Cygnus load balancing
model allows members from different object groups to reside
at the same location. For instance, a member fromGroup 1
and a member fromGroup N can each reside at a single loca-
tion. This flexibility is one of the strengths of the Cygnus load
balancing model when compared with earlier adaptive load

1In this paper, the termcomponentis used generically,i.e., an identifiable
entity in a program, rather than more specifically,e.g., a component in the
CORBA Component Model [14].

Sidebar 1: Key Load Balancing Concepts

The key load balancing concepts and components used in
this paper are defined below:

� Load balancer, which is a component that attempts to
ensure application load is balanced across groups of
servers. It is sometimes referred to as a “load balanc-
ing agent,” or a “load balancing service.” A load bal-
ancer may consist of a single centralized server or mul-
tiple decentralized servers that collectively form a single
logical load balancer.

� Member, which is a duplicate instance of a particular
object on a server that is managed by a load balancer. It
performs the same tasks as the original object. A mem-
ber can either retain state (i.e., be stateful) or retain no
state at all (i.e., be stateless).

� Object group, which is actually a group of members
across which loads are balanced. Members in such
groups implement the same remote operations.

� Session, which in the context of distribution middleware
defines the period of time that a client is connected to a
given server for the purpose of invoking remote opera-
tions on objects in that server.

The following figure illustrates the relationships between
these components:

Load
Balancer

Clients

R
e

qu
e

st
s

R
e

pl
ie

s

Members
Object Groups

S
e

ss
io

n

balancing approaches [13, 10, 18, 17]. Additional flexibil-
ity can be found in Cygnus’ support for object group-specific
properties, such as the load balancing strategy in use.

2.2 Resolving Load Balancing Challenges with
Cygnus

Figure 3 illustrates the relationships among the components
in the Cygnus. As shown in this figure, the Cygnus adap-
tive LB/M middleware service consists of the (1)load man-

3



Load Balancer Host

LoadManager

Location

LoadMonitor

Member - Group 1

Member - Group N

LoadAlert

Figure 2: Deployed Structure of the Location-Oriented
CORBA Load Balancing Service.

Client

Location/Node

LoadManager

MemberLocator

LoadAnalyzer

next_member

push_loads

POArequests

member

requests

*

*
LoadMonitor

LoadAlert alert

Figure 3: Components in the Cygnus LB/M Service

ager, which is the application entry point for all load balancing
tasks, (2)member locator, which is the load balancing compo-
nent responsible for binding a client to a member, (3)load an-
alyzer, which analyses load conditions and triggers load shed-
ding when necessary, (4)load monitor, which makes load re-
ports available to the load manager, and (5)load alert, which
is a component through which load shedding is performed.

Although the preceding discussion and Figure 3 outline the
elements of the Cygnus, they do not motivate what these el-
ements do or more importantlywhy they are important. The
remainder of this section therefore justifies the need for these
elements by explaining the key challenges they address, which
include:

1. Extensible load analysis and shedding
2. Flexible load reporting and
3. Facilitating transparent and scalable load shedding.

For each challenge, we describe (1) how a particular compo-
nent of Cygnus resolves problems that arise when balancing

workloads in a middleware context and (2) how load balanc-
ing and monitoring is implemented in Cygnus. Our primary
focus is on the use of adaptivity to enhance scalability.2 As
discussed below, the Cygnus load manager enables clients and
servers to participate in load balancing decisions without un-
duly exposing them to tasks that can and should remain inter-
nal to the load balancing service. The member locator allows
a load balancer totransparentlyinform a client that it should
issue requests to a chosen object group member.

Other LB/M implementations, such as the one found in Or-
bix 2000 [11], employ concepts similar to the ones described
below. Those implementations are less flexible than the ap-
proach employed by Cygnus, however, and do not separate
concerns as cleanly.

Challenge 1: Extensible Load Analysis and Shedding

Context. The same load balancing service is used to balance
loads for multiple (potentially different) distributed applica-
tions.
Problem. Load balancing multiple distributed applications
with different resource requirements can be done in at least
two ways:

� Create a different load balancing service instance for each
type of distribute application. This solution, however, is
hard to maintain. For example, when a new distributed
application is deployed, a new load balancing service
must be started and configured, which is logistically com-
plex and costly.

� Use a single shared load balancing service instance to
manage loads for multiple applications with different re-
source requirements. This solution requires that the load
balancing service be extensible enough to allow run-time
configuration of the load analysis and shedding mecha-
nism on a per-object group basis, which is one of the re-
quirements set forth in [17].

Solution! Load analyzer. Define a load analyzer compo-
nent that decides which member will receive the next client re-
quest. The load analyzer also allows a load balancing strategy
to be selected explicitly at run-time, while still maintaining a
simple and flexible design. Since the load balancing strategy
can be chosen at run-time, member selection can be tailored to
fit the dynamics of a system that is being load balanced. An
additional task the load analyzer performs is to initiate load
shedding at locations where deemed necessary. This task only
occurs when using an adaptive load balancing strategy.
Implementing the load analyzer in Cygnus. Cygnus im-
plements the load analyzer component as a logical entity,i.e.,
an actual load analyzer component does not exist, though

2Portability and transparency issues addressed by the load manager and
member locator components are beyond the scope of this paper.

4



Cygnus functions as if one did exist. In particular, the tasks
performed by the load analyzer are handled by objects that
implement load balancing algorithms and are registered with
Cygnus. Cygnus uses an implementation of the Strategy [7]
design pattern to achieve this functionality. Load balancing
strategies are registered with Cygnus as CORBA object refer-
ences, meaning that load balancing strategy implementations
may actually reside at remote locations.

Load balancing strategies can invoke adaptive load balanc-
ing methods on the Cygnus load balancer to perform load
shedding operations. To maximize scalability and throughput,
CORBA asynchronous method invocations (AMI) [2] are used
to minimize the amount of time other operations are blocked
waiting for the adaptive load balancing operations to complete.

Challenge 2: Flexible Load Reporting

Context. A distributed application must be adaptively load
balanced.
Problem. Adaptive load balancing requires feedback on ap-
plication load conditions. Suppose the number of client re-
quests per second is used as load metric. Request counts are
typically tallied by the load balancer in a per-request archi-
tecture (see [18]), a very common load balancing architec-
ture. However, such an architecture may not be suitable for
other load metrics. Furthermore, per-request load balancing
architectures incur a great deal of overhead in distributed ap-
plications. Now suppose, an on-demand architecture is used
to reduce network and application overhead. Request counts
can no longer be tallied by the load balancer. Furthermore,
making the load balancer acquire request counts, or more gen-
erally load samples, unnecessarily restricts the types of loads
that can be handled by the load balancer. These deficiencies
can adversely affect the applicability of the adaptive load bal-
ancing support provided by a load balancer to a distributed
application.
Solution ! Load monitor. Define a load monitor compo-
nent that tracks the load at a given location and reports the
location load to a load balancer. As depicted in Figure 4, a
load monitor can be configured with either of the following
two policies:

� Pull policy – In this mode, a load balancer can query a
given location load on-demand,i.e., “pull” loads from the
load monitor.

� Push policy– In this mode, a load monitor can “push”
load reports to the load balancer.

The sole task of a load monitor component is to collect and
report loads to the load balancing service. This separation
of concerns greatly simplifies potential load balancing service
designs and implementations, with the added benefits of im-
proving flexibility of load reporting and reducing load sam-
pling and reporting overhead.

LoadManager LoadMonitor

loads

LoadManager LoadMonitor

push_loads

Pull
Monitoring

Push
Monitoring

Figure 4: Load Reporting Policies

Implementing the load monitor in Cygnus. Load moni-
tors are generally application-defined objects. Consequently,
Cygnus is designed to be load-metric neutral. For conve-
nience, Cygnus is shipped with aLoadMonitor utility that
simplifies registration of custom load monitors with its load
manager. This utility also supplies a convenient means to
use built-in load monitors that monitor common types of load,
such as CPU load, disk load, network load, memory load, and
application workload.

Challenge 3: Facilitate Transparent and Scalable Load
Shedding

Context. A load balancer decides that it must shed load at
given a location.
Problem. Adaptive load balancing requires the ability to
shed load at a given location. It also requires a server to redi-
rect client requests sent to its location back to the load bal-
ancer for reassignment to another location. To achieve this
level of control, the load balancer must communicate with the
application server(s) at a given location. However, communi-
cation with the application server(s) violates server-side trans-
parency [17].
Solution! Load alert. Define a component that facilitates
load shedding and delegate all load shedding communication
to this component, rather than the application server(s). This
load alert component responds toalert conditions set by the
load analyzer component described in Challenge 1. If the load
analyzer requires reduction in load (i.e., it must shed load)
from an object group member location, it enables an “alert”
condition on the load alert component residing at that same
location. After the alert is enabled, the load alert component
rejects client requests. Requests are rejected by a server re-
quest interceptor that throws aCORBA::TRANSIENTexcep-
tion. When a client ORB receives that exception, it will trans-
parently reissue the request to the original target,i.e., the load

5



balancer. The load balancer will then transparently reassign
the client’s request to another member in the object group.

Implementing load alerts in Cygnus. Applications may
register load alert objects with Cygnus. Cygnus maps load
alert objects to object group members using an efficient hash
map. This design minimizes load alert object lookup, which
enhances the overall scalability of Cygnus itself.

Cygnus invokes the application-defined load alert objects to
enable or disable load shedding on a given object group mem-
ber. It uses AMI to improve overall throughput in Cygnus, as
outlined in Challenge 1. The use of AMI reduces the overhead
of Cygnus by minimizing blocking time.

A load alert object consists of (1) a servant that the load
balancer can invoke requests on and (2) a server request inter-
ceptor that performs the actual load shedding by intercepting
client requests and determining whether or not they should be
rejected. The amount of overhead incurred by the interception
of client requests depends largely on the efficiency of TAO’s
Portable Interceptor3 implementation. For example, when an
alert is not enabled an interception can be reduced to an in-
stantiation of a small object and a simple atomic boolean flag
check.

2.3 Dynamic Interactions in the Proposed
OMG Load Balancing and Monitoring Ser-
vice

Section 2.2 describes the static relationships among the com-
ponents in Cygnus. This section augments this discussion
by describing the dynamic interactions among these compo-
nents. Although the following discussion is not comprehen-
sive, the scenario focuses on the case where the location an
object group member resides at has become overloaded, caus-
ing requests to be redirected. This scenario was chosen since
it illustrates all interactions that occur between a client, adap-
tive load balancing service, and a group of objects or servers
comprising an object group.4

Selecting a target member using a non-adaptive balancing
policy can yield non-uniform loads across group members. In
contrast, selecting a member adaptively for each request can
incur excessive overhead and latency. To avoid either extreme,
Cygnus therefore provides a hybrid solution [18], whose inter-
actions are shown in Figure 5. Each interaction in Figure 5 is
outlined below.

3A Portable Interceptor is an instance of the Interceptor design pat-
tern [22], with an interface defined by the OMG, designed to be registered
with an application’s ORB and invoked at various request processing points
with the intention of either examining the contents of the request or preventing
the request from continuing.

4Since the non-adaptive case is a subset of the adaptive case, we omit such
scenarios, such as the interactions that occur between a client, anon-adaptive
load balancing service, and group of objects or servers.

Client Load
Manager

1: send_request

3: next_member

4: LOCATION_FORWARD

5: send_request

6: push_loads

7: is_overloaded

8: alert

9: LOCATION_FORWARD

Member and LoadAlert
object are at same
location.

2: send_request

Member
Locator

Load
Analyzer

Load
Monitor

Load
Alert

Member

Figure 5: Cygnus Load Balancing and Monitoring Interactions

1. A client obtains an object reference to what it believes to
be a CORBA object and invokes an operation. In actual-
ity, however, the client transparently invokes the request
on the load manager itself.

2. After the request is received from the client, the load
manager’s POA dispatches the request to its servant lo-
cator,i.e., the member locator component.

3. Next, the member locator queries the load analyzer for an
appropriate group member.

4. The member locator then transparently redirects the
client to the chosen member.

5. Requests will continue to be sentdirectly to the chosen
member until the load analyzer detects a high load at the
location the member resides. The additional indirection
and overhead incurred by per-request load balancing ar-
chitectures (see [18]) is eliminated since the client com-
municates with the member directly.

6. The load monitor monitors a location’s load. Depending
on the load reporting policy (seeload monitordescription
in Section 2.2) that is configured, the load monitor will
either report the load(s) to the load analyzer (via the load
manager) or the load manager will query the load monitor
for the load(s) at a given location.

7. As loads are collected by the load manager, the load ana-
lyzer analyzes the load at all known locations.

8. To fulfill the transparency requirements, the load man-
ager does not communicate with the client application
when forwarding it to another member after it has been
bound to a member. Instead, the load manager issues an
“alert” to theLoadAlert object residing at the location
the member resides at. Depending on the contents of the
alert issued by the load manager, theLoadAlert object
will either cause request be accepted or redirected.

9. When instructed by the load analyzer, theLoadAlert
object uses the GIOPLOCATION FORWARD message to

6



dynamically and transparently redirect subsequent re-
quests sent by one or more clients back to the load man-
ager.

After all these steps, the load balancing cycle begins again.
Note that this hybrid approach does notnot perform load bal-
ancing on a per-request basis. It performs load balancing on-
demand, thus avoiding a major bottleneck found in many other
load balancing implementations.

3 Empirical Results

To improve overall application performance significantly, a
load balancing service itself must incur minimal overhead. A
key contribution of the Cygnus load balancing and monitoring
(LB/M) service described in Section 2.2 is its ability to in-
crease overall system scalability. The Cygnus LB/M service
achieves scalability by distributing requests across multiple
back-end servers (object group members). It is also designed
to avoid increasing round-trip latency and jitter significantly.

This section describes the design and results of several ex-
periments performed to empirically quantify the benefits of the
Cygnus adaptive on-demand load balancing support, as well
as to demonstrate the limitations with the alternative load bal-
ancing strategies outlined in [18]. Section 3.1 outlines the
hardware and software platform used to benchmark Cygnus.
Section 3.2 presents the results from a set of experiments
that illustrate the improved scalability attained by introducing
Cygnus’ adaptive load balancing capabilities into a represen-
tative distributed application.

3.1 Hardware/Software Benchmarking Plat-
form

Benchmarks performed for this paper were run on Emulab5 us-
ing between 2 and 49 single CPU Intel Pentium III 850 MHz
workstations, all running RedHat Linux 7.1. The Linux kernel
is open-source and supports kernel-level multi-tasking, multi-
threading, and symmetric multiprocessing. All workstations
were connected over a 100 Mbps LAN. This testbed is de-
picted in Figure 6. All benchmarks were run in the POSIX
real-time thread scheduling class [12]. This scheduling class
enhances the consistency of our results by ensuring the threads
created during the experiment were not preempted arbitrarily
during their execution.

The core CORBA benchmarking software is based on the
single-threaded form of the “Latency ” performance test dis-

5Emulab (www.emulab.net ) is an NSF-sponsored testbed that facili-
tates simulation and emulation of different network topologies for use in ex-
periments that require a large number of nodes.

100 MBps
Network SwitchClient 1

Client M

Server 1

Server N

Load Manager
and

Name Service Host

Figure 6: Load Balancing Experiment Testbed

tributed with the TAO open-source software release.6 Only
stateless objects are used as targets in this test. All benchmarks
were configured to run 200,000 iterations and to generate the
same load. The figure in Sidebar 1 illustrates the basic de-
sign of this performance test. All benchmarks use one of the
following variations of theLatency test:

1. Latency test with Round Robin load balancing strat-
egy. In this benchmark, theLatency test was config-
ured to employ the Round Robin load balancing strat-
egy to improve scalability. As defined, by the proposed
CORBA LB/M specification, the Round Robin strategy
is non-adaptive (i.e., it does not consider dynamic load
conditions) and simply chooses object group members to
forward client requests to by rotating through the list of
members in a given object group. In other words, all the
requests from the clients are equally distributed among
the servers.

2. Latency test with Random load balancing strategy.In
this benchmark, the Random load balancing strategy is
used to improve scalability. It is a non-adaptive load bal-
ancing and selects a member at random from the list of
members in a given object group.

3. Latency test with Least Loaded load balancing strat-
egy. This final benchmark configuration uses Cygnus’
Least Loaded load balancing strategy to improve scala-
bility. Unlike the Round Robin and Random tests, it uses
an adaptive load balancing strategy. As its name implies,
it chooses the object group member with the lowest load,
which is computed dynamically.

3.2 Scalability Results

The primary use of a load balancer is to improve scalability.
As such, it is important to demonstrate that a particular load

6TAO_ROOT/performance-tests/Latency/Single_
Threaded in the TAO release contains the source code for this benchmark.

7



balancer configuration actually improves distributed applica-
tion scalability. Three sets of benchmarks are shown below,
one for each load balancing strategy defined by the proposed
CORBA LB/M specification: (1) Round Robin, (2) Random,
and (3) Least Loaded. Each set of benchmarks shows how
throughput and latency vary as the number of clients is in-
creased between 1 and 16 clients, and the number of servers
is increased between 1 and 16 servers. In general, only two
or three server data sets are shown to illustrate trends without
cluttering the benchmark graphs.

3.2.1 Round Robin Strategy Benchmarks

Figure 7 shows how client request throughput varies as the
number of clients and servers are increased when using the
Round Robin load balancing strategy. This figure shows how

0 2 4 6 8 10 12 14 16
Clients

0

1000

2000

3000

4000

T
hr

ou
gh

pu
t (

E
ve

nt
s/

S
ec

on
d)

2 Server
4 Server
8 Server

Round Robin Strategy
Throughput

Figure 7: Round Robin Strategy Throughput

throughput decreased as the number of clients were increased
beyond the same number of servers. For example, through-
put remained essentially unchanged as long as the number of
clients was less than the number of servers. These results
demonstrate that the Round Robin load balancing strategy im-
plemented by Cygnus incurs no overhead beyond the first re-
quest. In particular, Cygnus no longer participates in subse-
quent client requests after it binds a client to a given object
group member via the Round Robin load balancing strategy.

Figure 7 also shows that as the number of servers increased,
throughput also increased when the number of clients sur-
passed the number of servers. For example, when the number
of clients is 8, the throughput with 4 servers is more than the
throughput with 2 servers.

Figure 8 illustrates how request latency varied as the num-
ber of clients and servers were increased. This figure shows
how employing Cygnus in theLatency performance test im-
proved both throughput and latency. Increasing the number of

0 2 4 6 8 10 12 14 16
Clients

0

250

500

750

1000

La
te

nc
y 

(m
ic

ro
se

co
nd

s)

2 Server
4 Server
8 Server

Round Robin Strategy
Latency

Figure 8: Round Robin Strategy Latency

servers improved the latency. For example, the latency for the
16 client and 2 server case is approximately 750 microseconds.
Increasing the number of servers to 8 reduced the roundtrip la-
tency to about 300 microseconds. This decrease in latency
in turn increased the throughput as the number of servers in-
creased.

3.2.2 Random Strategy Benchmarks

Figure 9 depicts how the Random load balancing strategy im-
plemented in Cygnus behaved when varying the number of
clients and servers. This figure shows how the throughput

0 2 4 6 8 10 12 14 16
Clients

0

1000

2000

3000

4000

T
hr

ou
gh

pu
t (

E
ve

nt
s/

S
ec

on
d)

2 Server
4 Server
8 Server

Random Strategy
Throughput

Figure 9: Random Strategy Throughput

of the Random load balancing strategy behaved basically the
same as the Round Robin load balancing strategy presented
in Section 3.2.1. Both strategies exhibit similar overhead and
scalability characteristics due to the fact that they are non-
adaptive and have fairly simple member selection algorithms.

8



The results in Figure 9 do not mean, however, that all non-
adaptive strategies will have the same throughput characteris-
tics. It simply happens that in this case, client requests were
distributed fairly equitably among the object group members
chosen at random. Other cases could potentially result in mul-
tiple clients being bound to the same randomly chosen object
group member. In those cases, and assuming that loads gen-
erated by all clients are uniform (as is the case in this test),
throughput would be less than the Round Robin case.

Figure 10 shows roundtrip latency for the Random load bal-
ancing strategy case increases when the number of clients ex-
ceeds the number of servers. This behavior occurs because
the random strategy continues to bind certain client requests
to the same server, even though other less loaded servers are
available. As shown in this figure, latency improved (i.e., de-

0 2 4 6 8 10 12 14 16
Clients

0

250

500

750

1000

La
te

nc
y 

(M
ic

ro
se

co
nd

s)

2 Server
4 Server
8 Server

Random Strategy
Latency

Figure 10: Random Strategy Latency

creased) as the number of servers increased.

3.2.3 Least Loaded Strategy Benchmarks

The Least Loaded load balancing strategy used for this test
configuration was designed to explicitly exercise the adaptive
load balancing support in Cygnus. In particular, the following
configuration was used:
� A load monitor process that measured the number of re-

quests per second and residing within the server was reg-
istered with the Cygnus

� A reject thresholdof 10,000 events/second was set,
which is the threshold at which Cygnus will avoid select-
ing a member with that load.

� A critical threshold of 30,000 events/second was set,
which is the threshold at which Cygnus informs servers
to shed loads by redirecting requests back to Cygnus.

� A dampeningof 0.2 was set, which is the value that de-
termines what fraction of a newly reported load is con-
sidered when making load balancing decisions.

With this configuration, Cygnus queried the server load
monitor every 5 seconds (the Cygnus default). Moreover,
high load conditions caused Cygnus to either reject object
group members when selecting members to bind request to,
or caused Cygnus to request that servers shed load.

Figure 11 illustrates how Cygnus’ Least Loaded load bal-
ancing strategy reacts as the number of clients and servers in-
creased. This figure illustrates how Cygnus’ Least Loaded

0 2 4 6 8 10 12 14 16
Clients

0

1000

2000

3000

4000

T
hr

ou
gh

pu
t (

E
ve

nt
s/

S
ec

on
d)

2 Server
4 Server
8 Server

Least Loaded Strategy
Throughput

Figure 11: Least Loaded Strategy Throughput

strategy incurs certain overhead compared with the Round
Robin and Random strategies. This overhead included (1) tak-
ing into account member loads, (2) rejecting some members
during member selection, and (3) shedding loads when some
servers become overloaded.
� Additional periodic requests on the server emanating

from Cygnus when querying the server for its current load
� Delays in client request binding as Cygnus waits for

member loads to fall under a suitable value,i.e., the reject
threshold, and

� Request redirection incurred when servers forward re-
quests back to Cygnus when their current load is over the
configured critical threshold.

Despite the additional overhead, Figure 11 illustrates that
scalability still improved. In particular, increasing the number
of servers showed further improvements in scalability. When
the number of clients is 8 and the number of servers is 2 there
is a good difference between the throughput obtained from
the Random strategy and the throughput obtained from Least-
Loaded strategy. This behavior occurs because the Random
strategy tries to bind the client to the same server even though
other less loaded servers are available. In contrast, Cygnus’
adaptive load balancer balances the load accordingly, which
therefore increases throughput.

The latency results shown in Figure 12 illustrate reductions
in roundtrip latency as the number of servers are increased.

9



There are certain cases when the latency is more than the la-

0 2 4 6 8 10 12 14 16
Clients

0

250

500

750

1000

La
te

nc
y 

(M
ic

ro
se

co
nd

s)

2 Server
4 Server
8 Server

Least Loaded Strategy
Latency

Figure 12: Least Loaded Strategy Latency

tency for the Round Robin and the Random strategy cases.
These results can also be attributed to the additional overhead
caused by Cygnus’ adaptive load balancing mechanisms.

3.3 Summary of Results

Section 3.2 showed that the proposed non-adaptive and adap-
tive CORBA LB/M strategies (i.e., Round Robin, Random, and
Least Loaded) supported by Cygnus can be quite effective in
increasing overall scalability of CORBA-based distributed ap-
plications. The strategy configurations used in these bench-
marks caused the Least Loaded adaptive load balancing strat-
egy benchmark to have similar throughput and latency as their
non-adaptive counterparts when the clients generate uniform
loads. These results also demonstrate that the load monitor
added in the adaptive load balancer does not add any overhead
compared with the non-adaptive Round Robin and the Ran-
dom strategies.

Given a test configuration with clients generating non-
uniform loads, the benefits of adaptive load balancing would
be more evident. However, results and discussions showing
these benefits are beyond the scope of this paper (see our prior
work on adaptive load balancing [18, 17] for concrete results
based on an earlier prototype of Cygnus). The goal of the
experiments in this paper was to show the extent to which em-
ploying a CORBA-compliant LB/M implementation, such as
Cygnus, can improve distributed application scalability. As
our results show, scalability was indeed improved in all test
cases.

4 Related Work

This section compares and contrasts our work on middleware
load balancing and Cygnus with representative related work.
Middleware load balancing provides the most flexibility in
terms of influencing how a load balancing service makes de-
cisions, and in terms of applicability to different types of dis-
tributed applications [6, 8]. Load balancing at this level, as
depicted in Figure 13, provides for straightforward selection
of load metrics, in addition to the ability to make load balanc-
ing decisions based on the content of a request.

Load Balancer

Client

Middleware

Application

Middleware
Client

Middleware

Application

Server

Middleware

Application

Server

Middleware

Application

Figure 13: Middleware-level Load Balancing

Some middleware implementations integrate load balanc-
ing functionality into the ORB middleware [13] itself, whereas
others implement load balancing support at the service level.
The latter is the approach taken by Cygnus upon which the
content of this paper is based.
CORBA load balancing. An increasing number of projects
are focusing on CORBA load balancing, which can be imple-
mented at the following levels in the OMG reference architec-
ture.
� ORB-level. Load balancing can be implemented inside

the ORB itself. For example, a load balancing implemen-
tation can take direct advantage of request invocation infor-
mation available within the POA when it makes load balanc-
ing decisions. Moreover, middleware resources used by each
object can also be monitored directly via this design, as de-
scribed in [13]. For example, Inprise’s VisiBroker implements
a similar strategy, where Visibroker’s object adapter [10] cre-
ates object references that point to Visibroker’s Implementa-
tion Repository, called the OSAgent, that plays both the role
of an activation daemon and a load balancer.

ORB-level techniques have the advantage that the amount
of indirection involved when balancing loads can be reduced
because load balancing mechanisms are closely coupled with
the ORBe.g., the length of communication paths is shortened.
However, ORB-level load balancing has the disadvantage that
it requires modifications to the ORB itself. Unless or until
such modifications are adopted by the OMG, they will be pro-
prietary, which reduces their portability and interoperability.
The Cygnus load balancing service therefore does not rely on

10



ORB-level extensions or non-standard features,e.g., it does
not require any modifications to TAO’s ORB core or object
adapter. Instead, it takes advantage of standard mechanisms
in CORBA 3.0 to implement adaptive load balancing. Like
the Visibroker implementation and the strategies described
in [13], Cygnus’ approach is transparent to clients. Unlike
the ORB-based approaches, however, Cygnus only uses stan-
dard CORBA features. It can therefore be ported to any C++
CORBA ORB that implements the CORBA 2.2 or newer spec-
ification.
� Service-level. Load balancing can also be implemented

as a CORBA service. For example, the research reported in [9]
extends the CORBA Event Service to support both load bal-
ancing and fault tolerance. Their system builds a hierarchy of
event channelsthat fan out from event sourcesuppliersto the
event sinkconsumers. Each event consumer is assigned to a
different leaf in the event channel hierarchy, and both fixed and
adaptive load balancing is performed to distribute consumers
evenly. In contrast, TAO’s load balancing service can be used
for application defined objects, as well as event services.

Various commercial CORBA implementations also provide
service-level load balancing. For example, IONA’s Orbix [11]
can perform load balancing using the CORBA Naming Ser-
vice. Different group members are returned to different clients
when they resolve an object. This design represents a typical
non-adaptive per-session load balancer, which suffers from the
disadvantages described in [18]. BEA’s WebLogic [4] uses a
per-request load balancing strategy, also described in [18]. In
contrast, TAO’s load balancing service Cygnus does not incur
the per-request network overhead of the BEA strategy, yet can
still adapt to dynamic changes in the load, unlike Orbix’s load
balancing service.

5 Concluding Remarks

As networks become more pervasive and applications become
more distributed, the demand for greater scalability is increas-
ing. Distributed system scalability can degrade significantly,
however, when servers become overloaded by the volume of
client requests. To alleviate such bottlenecks, adaptive load
balancing mechanisms can be used to distribute system load
across object group members residing on multiple servers.

Load can be balanced at several layers, including the net-
work, OS, middleware, and application. Network-level and
OS-level load balancing architectures are generally inflexible
since they cannot supportapplication-definedmetrics at run-
time when making load balancing decisions. They also lack
adaptability due to the absence of load-related feedback from
a given set of object group members, as well as the inability to
control if and when a given member should accept additional
requests. Likewise, application-level load balancing suffers

from lack of transparency, increased code complexity, and in-
creased maintenance burden.

To address these limitations, we have devised an adaptive
middleware load balancing architecture – called Cygnus – to
overcome the limitations with network-based and OS-based
load balancing mechanisms outlined above. This paper mo-
tivates and describes the design and performance of Cygnus,
which is an implementation of a CORBA Load Balancing and
Monitoring (LB/M) service proposal developed using the stan-
dard CORBA features provided by the TAO ORB [21].

The results in this paper illustrate how Cygnus allows dis-
tributed applications to be load balanced adaptively and effi-
ciently. Cygnus increases the scalability of distributed applica-
tions by distributing requests across multiple back-end server
members without increasing round-trip latency substantially
or assuming predictable, or homogeneous loads. For example,
the empirical results in Section 3 show that introducing LB/M
into distributed applications can substantially improve scala-
bility with minimal run-time overhead. As a result, developers
can concentrate on their core application behavior, rather than
wrestling with complex infrastructure mechanisms needed to
make their application distributed and scalable.

The Cygnus LB/M service implementation is based entirely
on standard CORBA features, such as location forwarding,
servant locators and asynchronous method invocation (AMI),
which demonstrates that CORBA technology has matured to
the point where many higher-level services can be imple-
mented efficiently without requiring extensions to the ORB or
its communication protocols. Exploiting the rich set of primi-
tives available in CORBA still requires specialized skills, how-
ever, along with the use of somewhat poorly documented fea-
tures. Further research and documentation of the effective ar-
chitectures and patterns used in the implementation of higher-
level CORBA services is therefore needed to advance the state
of the practice and to allow application developers to make
better decisions when designing their systems.

TAO and Cygnus have been applied to a wide range of dis-
tributed applications domains. Chief among these domains
include telecommunications, aerospace, defense, online fi-
nancial trading, medical, and manufacturing process control.
PrismTechnologies has developed a Java implementation of
the proposed OMG CORBA LB/M that interoperates with the
Cygnus C++ implementation provided with TAO.

References
[1] Mohit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel.

Scalable content-aware request distribution in cluster-based network
servers. InProceedings of the USENIX Summer Conference. USENIX,
June 2000.

[2] Alexander B. Arulanthu, Carlos O’Ryan, Douglas C. Schmidt, Michael
Kircher, and Jeff Parsons. The Design and Performance of a Scalable
ORB Architecture for CORBA Asynchronous Messaging. In

11



Proceedings of the Middleware 2000 Conference. ACM/IFIP, April
2000.

[3] Seán Baker.CORBA Distributed Objects using Orbix. Addison Wesley,
1997.

[4] BEA Systems Inc. WebLogic Administration Guide.
edoc.bea.com/wle/.

[5] Cisco Systems, Inc. High availability web services.
www.cisco.com/warp/public/cc/so/neso/ibso/ibm/s390/mnibmwp.htm,
2000.

[6] T. Ewald. Use Application Center or COM and MTS for Load
Balancing Your Component Servers.
www.microsoft.com/msj/0100/loadbal/loadbal.asp, 2000.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[8] Vittorio Ghini, Fabio Panzieri, and Marco Roccetti. Client-centered
Load Distribution: A Mechanism for Constructing Responsive Web
Services. InProceedings of the 34th Hawaii International Conference
on System Sciences - 2001, Hawaii, USA, 2001.

[9] Key Shiu Ho and Hong Va Leong. An Extended CORBA Event Service
with Support for Load Balancing and Fault-Tolerance. InProceedings
of the International Symposium on Distributed Objects and
Applications (DOA’99), Antwerp, Belgium, September 2000. OMG.

[10] Inc. Inprise Corporation. VisiBroker for Java 4.0: Programmer’s
Guide: Using the POA.
www.inprise.com/techpubs/books/vbj/vbj40/programmers-
guide/poa.html,
1999.

[11] IONA Technologies. Orbix 2000.
http://www.iona.com/products/orbix2000home.htm.

[12] Khanna, S.,et al. Realtime Scheduling in SunOS 5.0. InProceedings
of the USENIX Winter Conference, pages 375–390. USENIX
Association, 1992.

[13] Markus Lindermeier. Load Management for Distributed
Object-Oriented Environments. InProceedings of the 2nd

International Symposium on Distributed Objects and Applications
(DOA 2000), Antwerp, Belgium, September 2000. OMG.

[14] Object Management Group.CORBA Components, OMG Document
formal/2001-11-03 edition, November 2001.

[15] Object Management Group.Proposed CORBA Load Balancing and
Monitoring Specification, OMG Document mars/02-10-14 edition,
October 2002.

[16] Object Management Group.The Common Object Request Broker:
Architecture and Specification, 3.0 edition, June 2002.

[17] Ossama Othman, Carlos O’Ryan, and Douglas C. Schmidt. Designing
an Adaptive CORBA Load Balancing Service Using TAO.IEEE
Distributed Systems Online, 2(4), April 2001.

[18] Ossama Othman, Carlos O’Ryan, and Douglas C. Schmidt. Strategies
for CORBA Middleware-Based Load Balancing.IEEE Distributed
Systems Online, 2(3), March 2001.

[19] Daniel Ridge, Donald Becker, Phillip Merkey, and Thomas Sterling.
Beowulf: Harnessing the Power of Parallelism in a Pile-of-PCs. In
Proceedings, IEEE Aerospace. IEEE, 1997.

[20] Richard E. Schantz and Douglas C. Schmidt. Middleware for
Distributed Systems: Evolving the Common Structure for
Network-centric Applications. In John Marciniak and George Telecki,
editors,Encyclopedia of Software Engineering. Wiley & Sons, New
York, 2002.

[21] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The
Design and Performance of Real-Time Object Request Brokers.
Computer Communications, 21(4):294–324, April 1998.

[22] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann.Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley & Sons, New
York, 2000.

[23] Sun Microsystems, Inc.Java Remote Method Invocation Specification
(RMI), October 1998.

12


