
Active Object

an Object Behavioral Pattern for
Concurrent Programming

R. Greg Lavender Douglas C. Schmidt
G.Lavender@isode.com schmidt@cs.wustl.edu
ISODE Consortium Inc. Department of Computer Science

Austin, TX Washington University, St. Louis

An earlier version of this paper appeared in a chapter in
the book “Pattern Languages of Program Design 2” ISBN
0-201-89527-7, edited by John Vlissides, Jim Coplien, and
Norm Kerth published by Addison-Wesley, 1996.

Abstract

This paper describes the Active Object pattern, which decou-
ples method execution from method invocation in order to
simplify synchronized access to an object that resides in its
own thread of control. The Active Object pattern allows one
or more independent threads of execution to interleave their
access to data modeled as a single object. A broad class of
producer/consumer and reader/writer applications are well-
suited to this model of concurrency. This pattern is com-
monly used in distributed systems requiring multi-threaded
servers. In addition, client applications, such as window-
ing systems and network browsers, employ active objects to
simplify concurrent, asynchronous network operations.

1 Intent

The Active Object design pattern decouples method execu-
tion from method invocation to simplify synchronized access
to an object that resides in its own thread of control. Meth-
ods invoked by clients on an object are not executed directly
in the thread of the caller. Instead, they are transformed by
a Proxy into Method Requests and stored in an Activation
Queue. When synchronization constraints are met, Method
Requests are executed by a Scheduler running in its own
thread of control. Results can be returned to the client via
a Future.

2 Also Known As

Concurrent Object and Actor

3 Example

To illustrate the Active Object pattern, consider the design of
a communication Gateway [1]. A Gateway decouples coop-

erating components in a distributed system and allows them
to interact without having direct dependencies among each
other [2]. The Gateway shown in Figure 1 routes messages
from one or more supplier processes to one or more con-
sumer processes in a distributed system [3].

GATEWAYGATEWAY

 Supplier Supplier
HandlerHandler

 Consumer Consumer
HandlerHandler

 Message Message
QueueQueue

OUTGOING

MESSAGES

 Routing Routing
TableTable

INCOMING

MESSAGES

OUTGOING

MESSAGES

2: find_route (msg)2: find_route (msg)
3: put (msg)

CONSUMERCONSUMER

SUPPLIERSUPPLIER

CONSUMERCONSUMER

SUPPLIERSUPPLIER

 Consumer Consumer
HandlerHandler

 Message Message
QueueQueue

INCOMING

MESSAGES

 Supplier Supplier
HandlerHandler

1: recv (msg)1: recv (msg)

Figure 1: Communication Gateway

In our example, the Gateway, suppliers, and consumers
communicate over TCP connections. Internally, the Gate-
way software contains a set ofSupplier andConsumer
Handler s, which act as local proxies [2, 4] for re-
mote suppliers and consumers, respectively.Supplier
Handlers receive messages from remote suppliers. They
inspect address fields in the messages and use a routing ta-
ble to find the appropriateConsumer Handlers asso-
ciated with the one or more consumers. TheConsumer
Handler (s) then deliver the message to remote con-
sumer(s).

The suppliers, consumers, and Gateway communicate us-
ing TCP, which is a connection-oriented protocol [5]. There-
fore,Consumer Handlers in the Gateway software may
encounter flow control from the TCP transport layer when

1

they try to send data to a consumer. TCP uses flow control to
ensure that fast suppliers or Gateways do not produce data
more rapidly than slow consumers or congested networks
can buffer and process the data.

To improve end-to-end quality of service (QoS) for all
suppliers and consumers, aConsumer Handler must not
block the entire Gateway waiting for flow control to abate
over any one connection to a consumer. In addition, the
Gateway must be able to scale up efficiently as the number
of suppliers and consumers increase. An effective way to
prevent blocking and to improve performance is to introduce
concurrency into the design of the Gateway. Concurrent ap-
plications allow the thread of control of an objectO that ex-
ecutes a method to be decoupled from the thread of control
of objects that invoke methods onO.

4 Context

Applications that use concurrency to communicate between
clients and servers running in separate threads of control.

5 Problem

Many applications benefit from applying concurrency to im-
prove their QoS,e.g., by enabling an application to handle
multiple client requests in parallel. Instead of using single-
threadedpassive objects, which execute their methods in the
thread of control of the client that invoked the method, con-
current objects reside in their own thread of control. How-
ever, if objects run concurrently we must synchronize ac-
cess to their methods if these objects are shared by multiple
clients. Three forces arise:

1. Methods invoked on the object should not block
in order to prevent degrading the QoS of other meth-
ods: For instance, if aConsumer Handler object in
our Gateway example is blocked due to flow control on
its TCP connection,Supplier Handler objects should
still be able to pass new messages to thisConsumer
Handler . Likewise, if otherConsumer Handler s are
notflow controlled, they should be able to send messages to
their consumers independently of any blockedConsumer
Handlers .

2. Synchronized access to shared data should be sim-
ple: Applications like the Gateway example are often hard
to program if developers must explicitly use low-level syn-
chronization mechanisms, such as acquiring and releasing
locks. In general, methods that are subject to synchroniza-
tion constraints should be serialized transparently when an
object is accessed by multiple client threads.

3. Applications should be designed to transpar-
ently leverage the parallelism available on a hard-
ware/software platform: In our Gateway example, mes-
sages destined for differentConsumer Handlers should
be sent in parallel by a Gateway. If the entire Gateway runs in

a single thread of control, however, performance bottlenecks
cannot be alleviated transparently by running the Gateway
on a multi-processor.

6 Solution

For each object that requires concurrent execution, decou-
ple method invocation on the object from method execution.
A Proxy [4, 2] represents the interface of the object and a
Servant[6] provides its implementation. Both the Proxy
and the Servant run in separate threads so that method in-
vocation and method execution can run concurrency. At
run-time, the Proxy transforms the client’s method invoca-
tion into aMethod Request, which is stored in anActivation
Queueby aScheduler. The Scheduler runs continuously in
its own thread, dequeueing Method Request from the Activa-
tion Queue and dispatching them on the Servant that imple-
ments the object. Clients can obtain the results of a method’s
execution via theFuturereturned by the Proxy.

7 Structure

The structure of the Active Object pattern is illustrated in the
following Booch class diagram:

ProxyProxy

Future m1()
Future m2()
Future m3()

SchedulerScheduler

dispatch()
enqueue()

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

11

11 2: enqueue(M1)

1: enqueue(new M1)

3: dispatch()

loop {
 m = act_que.dequeue()
 m.call()
}

ServantServant
11

m1()
m2()
m3()

ActivationActivation
QueueQueue

enqueue()
dequeue()

11

11

nn
MethodMethod
RequestRequest

call()
4: m1()

11 11

M1M1

M3M3

M2M2

There are six key participants in the Active Object pattern:

Proxy

� A Proxy [2, 4] provides an interface to publically ac-
cessible methods of an Active Object. This interface al-
lows clients to invoke methods. When a client invokes a
method defined by the Proxy, this triggers the construc-
tion and queueing of a Method Request.

Method Request

� A Method Request is constructed by a Proxy for any
method call that requires synchronized access to an Ac-
tive Object. Each Method Request maintainscontext

2

information, such as method parameters and method
code, necessary to (1) execute a method invocation and
(2) to return any results of that invocation back through
the Future. In addition, Method Requests may con-
tain predicatesthat can be used to determine when the
Method Request’s synchronization constraints are met.

Activation Queue

� An Activation Queue maintains a priority queue of
pending method invocations, which are represented as
Method Request created by the Proxy.

Scheduler

� A Scheduler runs in its own thread managing an Acti-
vation Queue of Method Requests that are pending ex-
ecution. The Scheduler decides which Method Request
to dequeue and execute on the Servant that implements
the method. This can be based on various criteria, such
asordering, e.g., the order in which Method Requests
are invoked by clients, andsynchronization constraints,
e.g., mutual exclusion, which are evaluated by using
Method Request predicates.

Servant

� A Servant defines the behavior and state that is being
modeled as an Active Object. Servants implement the
methods defined in the Proxy. In addition, Servants
may provide methods used by Method Requests to im-
plement predicates used by a Scheduler to determine
Method Request execution order.

Future

� When a client invokes a method on the Proxy, a Future
is returned to the client. The Future is an object that
enforces “write-once, read-many” synchronization [7,
8]. It allows the caller to obtain the results of the method
after the Servant completes the method execution.

8 Dynamics

The following figure illustrates the three phases of collabo-
rations in the Active Object pattern:

INVOKEINVOKE

DEQUEUE NEXTDEQUEUE NEXT
 METHOD REQUEST METHOD REQUEST

RETURN RESULTRETURN RESULT

EXECUTEEXECUTE

ClientClient

ProxyProxy Activation Activation
QueueQueue

M
E

T
H

O
D

 O
B

J
E

C
T

M
E

T
H

O
D

 O
B

J
E

C
T

C
O

N
S

T
R

U
C

T
IO

N
C

O
N

S
T

R
U

C
T

IO
N

S
C

H
E

D
U

L
IN

G
S

C
H

E
D

U
L

IN
G

//
E

X
E

C
U

T
IO

N
E

X
E

C
U

T
IO

N
C

O
M

P
L

E
T

IO
N

C
O

M
P

L
E

T
IO

N

m1()

ServantServant

 Scheduler Scheduler

CREATE METHODCREATE METHOD
REQUESTREQUEST

reply_to_future()

future()RETURN FUTURERETURN FUTURE

INSERT INTOINSERT INTO
 ACTIVATION QUEUE ACTIVATION QUEUE

enqueue(new M1)

dequeue(M1)

enqueue(M1)

M1

call()

dispatch(M1)

m1()

1. Method Request construction and scheduling: In this
phase, the client invokes a method defined by the Proxy. This
triggers the creation of a Method Request, which maintains
the argument bindings to the method, as well as any other
bindings required to execute the method and return its re-
sults. The Proxy then passes the Method Request to the
Scheduler, which enqueues it on the Activation Queue. If
the method is defined as atwoway[6], a binding to a Future
is returned to the caller of the method. If a method is de-
fined as aoneway, i.e., it has no return values, no Future is
returned.

2. Method execution: In this phase, the Scheduler runs
continuously in a different thread than any of its clients.
Within this thread, the Scheduler monitors the Activation
Queue and determines which Method Request(s) have be-
come runnable,e.g., when their synchronization constraints
are met. When a Method Request becomes runnable, the
Scheduler dequeues it, binds it to the Servant, and dispatches
appropriate method on the Servant. When this method is
called, it can access/update the state of its Servant and create
its result(s).

3. Completion: In the final phase, the results, if any, are
bound to the Future and the Scheduler continues to monitor
the Activation Queue for runnable Method Requests. Clients
use the Future to obtain the method’s results after its execu-
tion completes. Any clients that rendezvous with the Future
will obtain the results. The Method Request and Future can
be garbage collected when they are no longer referenced.

9 Implementation

This section explains the steps involved in building a concur-
rent application using the Active Object pattern. The appli-
cation implemented using the Active Object pattern is a por-
tion of the Gateway from Section 3. Figure 2 illustrates the
structure and participants in this example. The example in
this section uses reusable components from the ACE frame-
work [9]. ACE provides a rich set of reusable C++ wrappers
and framework components that perform common commu-
nication software tasks across a wide range of OS platforms.

3

MessageMessage
QueueQueue
ProxyProxy

put (msg)
Future get()

SchedulerScheduler

dispatch()
enqueue()

loop {
 m = act_que.dequeue()
 m.call()
}

MessageMessage
QueueQueue
ServantServant

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

1: enqueue(Put)
2: enqueue

 (new Put)

3: dispatch()

put()
get()

ActivationActivation
QueueQueue

enqueue()
dequene()

PutPut

GetGet

MethodMethod
RequestRequest

call()

nn

11

4: put()

11 11

Figure 2: Implementing a Message Queue as an Active Ob-
ject forConsumer Handler s

The following steps illustrate how to implement a
Message Queue as an Active Object in the Gateway.
Consumer Handler s useMessage Queue s to obtain
messages fromSupplier Handlers in the Gateway and
send them to their remote consumers.

1. Implement the Servant: A Servant defines the behav-
ior and state that is being modeled as an Active Object. The
mehtods a Servant implements are accessible by clients via a
Proxy. In addition, a Servant may contain other methods that
Method Requests can use to implement predicates that allow
a Scheduler to evaluate run-time synchronization constraints.
These constraints determine the order in which a Scheduler
dispatches Method Requests.

In our Gateway example, the Servant is a message queue
that allows Consumer Handlers to obtain messages
from Supplier Handlers and to send them to their cor-
responding remote consumers. The following class provides
an interface for this Servant:

class Message_Queue_Servant
{
public:

Message_Queue_Servant (size_t size);

// Predicates.
bool empty (void) const;
bool full (void) const;

// Queue operations.
void put (const Message x);
Message get (void);

private:
// Internal Queue representation.

};

Theempty andfull predicates distinguish three inter-
nal states: (1) empty, (2) full, and (3) neither empty nor full.
Theput andget methods implement the insertion and re-
moval operations on the queue, respectively.

Note that the Active Object pattern is designed so that syn-
chronization mechanisms can remain external to the Servant.
Therefore, methods in theMessage Queue Servant

class do not include any code that implements synchroniza-
tion or mutual exclusion. It only provides methods that im-
plement the Servant’s functionality. This design avoids the
inheritance anomaly[10, 11, 12, 13] problem, which inhibits
the reuse of Servant implementations by subclasses that re-
quire specialized or different synchronization policies.

2. Implement the Proxy and Method Requests: The
Proxy provides clients with an interface to the Servant’s
methods. For each method invocation by a client, the Proxy
creates a Method Request. A Method Request is an abstrac-
tion for the context1 of a method. This context typically in-
cludes the method parameters, a binding to the Servant the
method will be applied to, a Future for the result, and the
code for the Method Request’scall method.

In our Gateway example, theMessage Queue Proxy
provides an abstract interface
to theMessage Queue Servant defined in Step 1. This
message queue is used by aConsumer Handler to queue
messages for delivery to consumers, as shown in Figure 1.
In addition, theMessage Queue Proxy is a factory that
constructs instances of Method Requests and passes them to
a Scheduler, which queues them for subsequent execution.
The C++ implementation for theMessage Queue Proxy
is shown below:

class Message_Queue_Proxy
{
public:

// Bound the message queue size.
enum { MAX_SIZE = 100 };

Message_Queue_Proxy
(size_t size = MAX_SIZE) {
scheduler_ = new MQ_Scheduler;
servant_ = new Message_Queue_Servant (size);

}

// Schedule <put> to run as an active object.
void put (const Message m) {

Method_Request *method =
new Put (servant_, m);

scheduler_->enqueue (method);
}

// Return a Message_Future as the ‘‘future’’
// result of an asynchronous <get>
// method on the active object.
Message_Future get (void) {

Message_Future result;

Method_Request *method =
new Get (servant_, result);

scheduler_->enqueue (method);
return result;

}

// These predicates can execute directly
// since they are "const".
bool empty (void) const {

return servant_->empty ();
}
bool full (void) const {

return servant_->full ();
}

1This context is often called aclosure.

4

protected:
// The Servant that implements the
// Active Object methods.
Message_Queue_Servant *servant_;

// A scheduler for the Message Queue.
MQ_Scheduler *scheduler_;

};

Each method of aMessage Queue Proxy transforms
its invocation into a Method Request and passes the request
to theMQScheduler , which enqueues it for subsequent
activation. AMethod Request base class defines virtual
guard andcall methods that are used by a Scheduler to
determine if a Method Request can be executed and to exe-
cute the Method Request on its Servant, respectively, as fol-
lows:

class Method_Request
{
public:

// Evaluate the synchronization constraint.
virtual bool guard (void) const = 0;

// Implement the method.
virtual void call (void) = 0;

};

The methods in this class must be defined by subclasses, one
for each method defined in the Proxy. For instance, when a
client invokes theput method on the Proxy in our Gatway
example, this method is transformed into an instance of the
Put subclass, which inherits fromMethod Request and
contains a pointer to theMessage Queue Servant , as
follows:

class Put : public Method_Request
{
public:

Put (Message_Queue_Servant *rep,
Message arg)

: servant_ (rep), arg_ (arg) {}

virtual bool guard (void) const {
// Synchronization constraint.
return !servant_->full ();

}

virtual void call (void) {
// Enqueue message into message queue.
servant_->put (arg_);

}

private:
Message_Queue_Servant *servant_;
Message arg_;

};

A run-time binding to theMessage Queue Servant
is used by thecall method, which is similar to providing a
“ this ” pointer to a C++ method. The method is executed
in the context of that Servant representation, as shown in the
Put::call method above.

The Proxy also transforms theget method into an in-
stance of theGet class, which is defined as follows:

class Get : public Method_Request
{

public:
Get (Message_Queue_Servant *rep,

Message_Future &f)
: servant_ (rep), result_ (f) {}

bool guard (void) const {
// Synchronization constraint.
return !servant_->empty ();

}

virtual void call (void) {
// Bind the dequeued message to the
// future result object.
result_ = servant_->get ();

}

private:
Message_Queue_Servant *servant_;

// Message_Future result value.
Message_Future result_;

};

For every method in the Proxy that returns a value,
such as theget method in our Gateway example, a
Message Future is returned to the client thread that calls
it, as shown in implementation Step 4 below. The caller may
choose to evaluate theMessage Future ’s value immedi-
ately. Conversely, the evaluation of a return result from a
method invocation on an Active Object can be deferred.

3. Implement the Activation Queue and Scheduler:
Each Method Request is enqueued on an Activation Queue,
which is typically implemented as a priority queue, as fol-
lows:

class Activation_Queue
{
public:

typedef ... iterator;

// Insert <method> into the queue.
void enqueue (Method_Request *method);

// Remove <method> into the queue.
void dequeue (Method_Request *method);

private:
// ...

};

In addition, anActivation Queue offers an iterator
for traversing its elements, which is typically implemented
using the Iterator pattern [4].

The Activation Queue is used by a Scheduler
to enforce specific synchronization constraints on be-
half of a Servant. To accomplish this, the Sched-
uler usesMethod Request guards to determine which
Method Request s to execute. In turn, these guards use
predicates defined in Servant implementations to represent
different states the Servant can be in.

For instance, in our
Gateway example, theMQScheduler determines the or-
der to processput andget methods based on predicates of
the underlyingMessage Queue Servant . These pred-
icates reflect the state of the Servant, such as whether the
message queue is empty, full, or neither.

5

The MQScheduler ac-
cesses theMessage Queue Servant empty andfull
predicates via theMethod Request guard s when it
evaluates synchronization constraints prior to executing a
put or get method on theMessage Queue Servant .
The use of constraints ensures fair shared access to the
Message Queue Servant .

The MQScheduler enqueuesPut andGet instances
into anActivation Queue as follows:

class MQ_Scheduler
{
public:

// ... constructors/destructors, etc.,

// Insert the Method Request into
// the Activation_Queue. This method
// runs in the thread of its caller.
void enqueue (Method_Request *method) {

act_que_->enqueue (method);
}

// Dispatch the Method Requests
// on their Servant. This method
// runs in a separate thread.
virtual void dispatch (void);

protected:
// Queue of pending Method_Requests.
Activation_Queue *act_que_;

};

In general, a Scheduler executes itsdispatch method
in a thread of control that is different from its clients’
threads. Within this thread, the Scheduler moni-
tors its Activation Queue. The Scheduler selects
a Method Request whose guard evaluates to “true,”
i.e., whose synchronization constraints are met. This
Method Request is then executed by invoking itscall
hook method, as follows:

virtual void
MQ_Scheduler::dispatch (void)
{

// Iterate continuously in a
// separate thread.
for (;;) {

Activation_Queue::iterator i;

for (i = act_que_->begin ();
i != act_que_->end ();
i++) {

// Select a Method Request ‘m’
// whose guard evaluates to true.
Method_Request *m = *i;

if (m->guard ()) {
// Remove <m> from the queue first
// in case <call> throws an exception.
act_que_->dequeue (m);
m->call ();

}
}

}
}

The MQScheduler ’s dispatch implementation exe-
cutes the firstMethod Request whoseguard predicate
evaluates to true. However, a Scheduler implementation

could also check which of all pending invocations could be
executed and then select a subset of these according to crite-
ria such as mutual exclusion or invocation order.

In general, a Scheduler may contain variables that repre-
sent the synchronization state of the Servant. The variables
defined depend on the type of synchronization mechanism
that is required. For example, with reader-writer synchro-
nization, counter variables may be used to keep track of the
number of read and write requests. In this case, the values of
the counters are independent of the state of the Servant since
they are only used by the scheduler to enforce the correct
synchronization policy on behalf of the Servant.

4. Determine rendezvous and return value policies: The
rendezvous policy determines how clients obtain return val-
ues from methods invoked on active objects. A rendezvous
policy is required since active objects do not execute in the
same thread as clients that invoke their methods. Differ-
ent implementations of the Active Object pattern typically
choose from the following rendezvous and return value poli-
cies:

� Synchronous waiting– Block the caller synchronously
at the Proxy until the active object accepts the method
call.

� Synchronous timed wait– Block only for a bounded
amount of time and fail if the active object does not
accept the method call within that period. If the timeout
is zero this scheme is referred to as “polling.”

� Asynchronous– Queue the method call and return con-
trol to the caller immediately. If the method produces a
result value then some form of Future mechanism must
be used to provide synchronized access to the value (or
the error status if the method fails).

A Future allows asynchronous invocations that return a
value to the caller. When a Servant completes the method
execution, it acquires a write lock on the Future and updates
the Future with a result value of the same type as that used to
parameterize the Future. Any readers of the result value that
are currently blocked waiting for the result value are awak-
ened and may access the result value concurrently. A Future
object can be garbage collected after the writer and all read-
ers no longer reference the Future.

In our Gateway example, theget method in the
Message Queue Proxy is ultimately processed by the
Get::call method, which binds theget operation result
to theresult Future as shown in Step 2 above. Since the
Message Queue Proxy get method returns a value, a
Message Future is returned when the client calls it. The
Message Future is defined as follows:

class Message_Future
public:

// ... constructors/destructors, etc.,

// Type conversion, which blocks
// waiting to obtain the result of the
// asynchronous method invocation.
operator Message ();

};

6

The client can obtain theMessage result value from a
Message Future object in either of the followings ways:

� Immediate evaluation: The caller may choose to
evaluate theMessage Future ’s value immediately. For
example, a GatewayConsumer Handler running in a
separate thread may choose to block until new messages ar-
rive fromSupplier Handler s, as follows:

Message_Queue_Proxy mq;
// ...

// Conversion of Message_Future from the
// get() method into a Message causes the
// thread to block until a message is
// available on the mq.
Message msg = mq.get ();

// Transmit message to the consumer.
send (msg);

� Deferred evaluation: The evaluation of a return re-
sult from a method invocation on an Active Object can
be deferred. For example, if messages are not avail-
able immediately, aConsumer Handler can store the
Message Future return value frommqand perform other
“bookkeeping” tasks, such as exchangingkeepalive mes-
sagesto ensure its consumer is still active. When the
Consumer Handler is done with these tasks it can block
until a message arrives from anSupplier Handler , as
follows:

// Obtain a future (does not block the caller).
Message_Future future = mq.get ();

// Do something else here...

// Evaluate future in the conversion operator;
// may block if the result is not available yet.
Message msg = Message (future);

10 Variants

The following are variations of the Active Object pattern.

Workpile: The Workpile is a generalization of Active Ob-
ject that supports multiple Servants per Active Object. These
Servants can offer the same services to increase QoS. Every
Servant runs in its own thread and actively ask the Sched-
uler to assign a new request when it is ready with its current
job. The Scheduler then assigns a new job as soon as one is
available.

Integrated Scheduler: For simplicity, the roles of the
Proxy and Servant are often integrated into the Scheduler
component. Moreover, the transformation of the method call
into a Method Request can also be integrated into the Sched-
uler. For instance, the following is another way to implement
the Message Queue example:

class MQ_Scheduler
public:

// ... constructors/destructors, etc.,

void put (const Message m) {
Method_Request *method =

new Put (servant_, m);
queue_->enqueue (method);

}

Message_Future get (void) {
Message_Future result;

Method_Request *method =
new Get (servant_, result);

queue_->enqueue (method);
return result;

}

// ...
protected:

Message_Queue_Servant *servant_;

// ...
};

By centralizing where Method Requests are generated, the
pattern implementation can be simplified since the Servant
needn’t be coupled with the Proxy.

Polymorphic Futures: A Polymorphic Future [14] allows
parameterization of the eventual result type represented by
the Future and enforces the necessary synchronization. A
typed future result value provides write-once, read-many
synchronization. Whether a caller blocks on a future depends
on whether or not a result value has been computed. Hence,
a Future is partly a reader-writer condition synchronization
pattern and partly a producer-consumer synchronization pat-
tern.

11 Known Uses

The following are specific known uses of this pattern:

CORBA ORBs: The Active Object pattern has been used
to implement concurrent ORB middleware frameworks, such
as CORBA [6] and DCOM [15]. For instance, the TAO
ORB [16] implements the Active Object pattern for its de-
fault concurrency model [17]. In this design, CORBA
stubs correspond to the Active Object pattern’s Proxies,
which transform remote operation invocations into CORBA
Request s. The TAO ORB Core’sReactor is the Sched-
uler and the socket queues in the ORB Core correspond to
the Activation Queues. Developers create Servants that exe-
cute the methods in the context of the server. Clients can ei-
ther make synchronous twoway invocations, which block the
calling thread until the operation returns, or they can make
asynchronous method invocations, which return a Future that
can be evaluated at a later point.

ACE Framework: Reusable implementations of the
Method Request , Activation Queue , andFuture
components in the Active Object pattern are provided in the
ACE framework [9]. These components have been used to
implement many production distributed systems.

7

Siemens MedCom: The Active Object pattern is used in
the Siemens MedCom framework, which provides a black-
box component-oriented framework for electronic medical
systems [18]. MedCom employ the Active Object pattern
to simplify client windowing applications that access patient
information on various medical servers.

Siemens Call Center management system:This system
uses the Workpile variant of the Active Object pattern.

Actors: The Active Object pattern has been used to imple-
ment Actors [19]. An Actor contains a set of instance vari-
ables and behaviors that react to messages sent to an Actor
by other Actors. Messages sent to an Actor are queued in the
Actor’s message queue. In the Actor model, messages are
executed in order of arrival by the “current” behavior. Each
behavior nominates a replacement behavior to execute the
next message, possibly before the nominating behavior has
completed execution. Variations on the basic Actor model
allow messages in the message queue to be executed based
on criteria other than arrival order [20]. When the Active Ob-
ject pattern is used to implement Actors, the Scheduler cor-
responds to the Actor scheduling mechanism, Method Re-
quest correspond to the behaviors defined for an Actor, and
the Servant is the set of instance variables that collectively
represent the state of an Actor [21]. The Proxy is simply a
strongly-typed mechanism used to pass a message to an Ac-
tor.

12 Consequences

The Active Object pattern provides the following benefits:

Enhance application concurrency and simplify synchro-
nization complexity: Concurrency is enhanced by allow-
ing method invocations on active objects to execute simul-
taneously. Synchronization complexity is simplified by the
Active Object Scheduler, which evaluates synchronization
constraints to guarantee serialized access to Servants, de-
pending on the state of the resource.

Transparently leverage available parallelism: If the
hardware and software platforms support multiple CPUs ef-
ficiently, this pattern can allow multiple active objects to ex-
ecute in parallel, subject to their synchronization constraints.

Method execution order can differ from method invoca-
tion order: Methods invoked asynchronously are executed
based on their synchronization constraints, which may differ
from their order of invocation.

However, the Active Object pattern has the following liabil-
ities:

Performance overhead: Depending on how the Scheduler
is implemented,e.g., in user-space vs. kernel-space, con-
text switching, synchronization, and data movement over-
head may occur when scheduling and executing active object
method invocations. In general, the Active Object pattern is

most applicable on relatively coarse-grained objects. In con-
trast, if the objects are very fine-grained, the performance
overhead of active objects can be high [22].

Complicated debugging: It may be difficult to debug pro-
grams containing active objects due to the concurrency and
non-determinism of the Scheduler. Moreover, many debug-
gers do not support concurrent applications adequately.

13 See Also

The Mutual Exclusion (Mutex) pattern [23] is a simple lock-
ing pattern that can occur in slightly different forms, such
as a spin lock or a semaphore. The Mutex pattern can have
subtle semantics, such as recursive mutexes and priority mu-
texes.

The Consumer-Producer Condition Synchronization pat-
tern is a common pattern that occurs when the synchroniza-
tion policy and the resource are related by the fact that syn-
chronization is dependent on the state of the resource.

The Reader-Writer Condition Synchronization pattern is a
common synchronization pattern that occurs when the syn-
chronization mechanism is not dependent on the state of the
resource. A readers-writers synchronization mechanism can
be implemented independent of the type of resource requir-
ing reader-writer synchronization.

The Reactor pattern [24] is responsible for demultiplexing
and dispatching of multiple event handlers that are triggered
when it is possible to initiate an operation without blocking.
This pattern is often used in lieu of the Active Object pattern
in order to schedule callback operations to passive objects.
It can also be used in conjunction of the Reactor pattern to
form the Half-Sync/Half-Async pattern described in the next
paragraph.

The Half-Sync/Half-Async pattern [25] is an architectural
pattern that decouples synchronous I/O from asynchronous
I/O in a system to simplify concurrent programming effort
without degrading execution efficiency. This pattern typi-
cally uses the Active Object pattern to implement the Syn-
chronous task layer, the Reactor pattern [24] to implement
the Asynchronous task layer, and a Producer/Consumer pat-
tern to implement the Queueing layer.

Acknowledgements

The genesis for the Active Object pattern originated with
Greg Lavender. Thanks to Frank Buschmann for extensive
comments that greatly improved the form and content of this
version of the pattern description.

References
[1] D. C. Schmidt, “Acceptor and Connector: Design Patterns for

Initializing Communication Services,” inPattern Languages
of Program Design(R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, MA: Addison-Wesley, 1997.

8

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal,Pattern-Oriented Software Architecture - A System of
Patterns. Wiley and Sons, 1996.

[3] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,”The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[5] W. R. Stevens,TCP/IP Illustrated, Volume 1. Reading, Mas-
sachusetts: Addison Wesley, 1993.

[6] Object Management Group,The Common Object Request
Broker: Architecture and Specification, 2.2 ed., Feb. 1998.

[7] R. H. Halstead, Jr., “Multilisp: A Language for Concur-
rent Symbolic Computation,”ACM Trans. Programming Lan-
guages and Systems, vol. 7, pp. 501–538, Oct. 1985.

[8] B. Liskov and L. Shrira, “Promises: Linguistic Support for
Efficient Asynchronous Procedure Calls in Distributed Sys-
tems,” inProceedings of the SIGPLAN’88 Conference on Pro-
gramming Language Design and Implementation, pp. 260–
267, June 1988.

[9] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” inProceedings of the
6
th USENIX C++ Technical Conference, (Cambridge, Mas-

sachusetts), USENIX Association, April 1994.

[10] P. America, “Inheritance and Subtyping in a Parallel Object-
Oriented Language,” inECOOP’87 Conference Proceedings,
pp. 234–242, Springer-Verlag, 1987.

[11] D. G. Kafura and K. H. Lee, “Inheritance in Actor-Based Con-
current Object-Oriented Languages,” inECOOP’89 Confer-
ence Proceedings, pp. 131–145, Cambridge University Press,
1989.

[12] S. Matsuoka, K. Wakita, and A. Yonezawa, “Analysis of
Inheritance Anomaly in Concurrent Object-Oriented Lan-
guages,”OOPS Messenger, 1991.

[13] M. Papathomas, “Concurrency Issues in Object-Oriented
Languages,” inObject Oriented Development(D. Tsichritzis,
ed.), pp. 207–245, Centre Universitaire D’Informatique, Uni-
versity of Geneva, 1989.

[14] R. G. Lavender and D. G. Kafura, “A Polymorphic Fu-
ture and First-Class Function Type for Concurrent Object-
Oriented Programming in C++,” inForthcoming, 1995.
http://www.cs.utexas.edu/users/lavender/papers/futures.ps.

[15] D. Box, Essential COM. Addison-Wesley, Reading, MA,
1997.

[16] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Com-
puter Communications, vol. 21, pp. 294–324, Apr. 1998.

[17] D. C. Schmidt, “Evaluating Architectures for Multi-threaded
CORBA Object Request Brokers,”Communications of the
ACM special issue on CORBA, vol. 41, Oct. 1998.

[18] P. Jain, S. Widoff, and D. C. Schmidt, “The Design and Per-
formance of MedJava – Experience Developing Performance-
Sensitive Distributed Applications with Java,”IEE/BCS Dis-
tributed Systems Engineering Journal, 1998.

[19] G. Agha,A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[20] C. Tomlinson and V. Singh, “Inheritance and Synchronization
with Enabled-Sets,” inOOPSLA’89 Conference Proceedings,
pp. 103–112, Oct. 1989.

[21] D. Kafura, M. Mukherji, and G. Lavender, “ACT++: A Class
Library for Concurrent Programming in C++ using Actors,”
Journal of Object-Oriented Programming, pp. 47–56, Octo-
ber 1992.

[22] D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” inProceed-
ings of the Conference on Computer Communications (INFO-
COM), (Boston, MA), pp. 624–633, IEEE, April 1995.

[23] Paul E. McKinney, “A Pattern Language for Parallelizing Ex-
isting Programs on Shared Memory Multiprocessors,” inPat-
tern Languages of Program Design(J. O. Coplien, J. Vlis-
sides, and N. Kerth, eds.), Reading, MA: Addison-Wesley,
1996.

[24] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design(J. O.
Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading, MA:
Addison-Wesley, 1995.

[25] D. C. Schmidt and C. D. Cranor, “Half-Sync/Half-Async: an
Architectural Pattern for Efficient and Well-structured Con-
current I/O,” in Proceedings of the2nd Annual Conference
on the Pattern Languages of Programs, (Monticello, Illinois),
pp. 1–10, September 1995.

9

