
Addressing Design Challenges of

(Re)Deploying Components for
Distributed Real-time and Embedded Systems

N. Shankaran, J. Balasubramanian, D. Schmidt, and G. Biswas

Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37203, USA?

Abstract

Middleware is increasingly used to develop and deploy components in large-scale
distributed real-time and embedded (DRE) systems. A key challenge in com-
ponent deployment for DRE systems is devising resource allocation and con-
trol algorithms that map application components in DRE systems onto resources
available on target nodes. Designing and evaluating these algorithms in a DRE
system today, however, often involves tedious, error-prone, and human-intensive
programming tasks. This paper provides two contributions to R&D on middleware
support for automating the deployment of components in DRE systems. First, it
describes the design of a Resource Allocation and Control Engine (RACE), which
is a middleware framework that integrates multiple resource management algo-
rithms based on standard Lightweight CORBA Component Model (CCM) mech-
anisms for (re)deploying and (re)configuring application components in DRE
systems. Second, it shows how developers of DRE systems can use RACE to de-
couple resource allocation and system adaptation logic from the time when this
logic is applied to a system to configure the resource management algorithms.

1 Introduction

Component-based technologies are increasingly being applied to large-scale dis-
tributed real-time and embedded (DRE) systems, such as shipboard comput-
ing environments [1], avionics mission computing systems [2], and intelligence,
surveillance and reconnaissance systems [3]. Applications in these DRE systems
can be defined as a set of operational strings, which capture interdependent com-
putational component workflow sequences from a single application unit (such
as the guidance system of a ship or spacecraft) or between multiple applications
(such as the navigation and propulsion applications for a ship). Dependency re-
lations can be (1) data dependencies, such as producer/consumer dependencies,
and/or (2) control dependencies, where an application component can execute
only after the completion of a preceding component.

Applications in DRE systems have a range of quality of service (QoS) require-
ments that may vary in response to (1) changes in mission goals at runtime, e.g.,

? This work is supported in part by funding from NSF, LMCO ATC, LMCO ATL,
Raytheon, and Siemens.

due to new information or because certain tasks cannot be completed on time,
and (2) changes in system performance, e.g., due to loss of resources, transient
overload and/or algorithmic properties. Applications can adapt to these changes
by running the components in their operational strings in different modes and
dynamically reconfiguring and migrating application component implementa-
tions.

Target
Domain

Uniform Interface to parse component resource requirements

Uniform Interface to deploy and manage
components

RACE

Deployment, Configuration & Control Mechanism

Allocation
Algorithms

Control
Algorithms

Application
Performance

Data

Resource
Utilization

Data

Application
Monitors

Resource
Monitors

 Component Middleware Infrastructure (CIAO/DAnCE)

Deploy and manage components

Operation string with
time-varying resource

requirements

Fig. 1. Resource Allocation and Control of Applications in DRE Systems

To support different types of applications running in various DRE system
environments – as well as to allow applications with diverse QoS requirements
to share resources simultaneously – a range of resource allocation and control
algorithms and mechanisms are needed to (1) allocate resources to operational
strings and (2) control system performance after operational strings have been
deployed, as shown in Figure 1.

Algorithms are responsible for deciding how best to deploy and redeploy op-
erational strings of application components at system initialization and during
runtime. Allocation algorithms determine the initial component deployment by
deciding how to map these components to the appropriate target nodes. For ex-
ample, an allocation algorithm could apportion CPU resources to components in
such a way that avoids saturating these resources. Likewise, control algorithms
adapt the execution of an operational strings’s components at runtime in re-
sponse to changing environments and variations in resource availability and/or
demand. For example, a control algorithm could (1) modify an application’s
current operating mode, (2) dynamically update component implementations,
and/or (3) redeploy all or part of an operational string’s components to other
target nodes to meet end-to-end QoS requirements.

Mechanisms are responsible for performing the decisions of the algorithms,
namely allocation and control decisions by the respective algorithms. For exam-
ple, mechanisms can (1) (re)deploy and (re)configure application components,
(2) transition application components from idle states to operational states and

monitor the performance of the DRE system, and (3) modify components and/or
operational strings to realize the adaptation decisions of control algorithms.

One way to develop resource allocation and control solutions for DRE sys-
tems is to tightly couple handcrafted algorithms and mechanisms. While this
approach is common, it yields convoluted implementations that can increase the
algorithm complexity and memory footprint. It also involves tedious and error-
prone human-intensive programming tasks, such as (1) specifying and evaluating
component resource requirements, (2) examining component behavioral and in-
teraction characteristics to identify which resource management algorithm(s)
are best suited for deployment, (3) identifying resources available on target plat-
form(s), (4) devising application-specific monitors that identify changes in dy-
namic operating conditions, and (5) interacting with middleware infrastructure
mechanisms that (re)configure and (re)deploy components based on decisions
made by allocation and control algorithms.

A more effective design, therefore, is to develop a framework that enables
different allocation and control algorithms to reuse common, automated mech-
anisms that include (1) capabilities to parse metadata that describe applica-
tion QoS characteristics, (2) monitors that track application and infrastructure
performance and resource usage, (3) the ability to represent allocation/control
algorithm policies via metadata and automatically configure the middleware to
enforce these policies, and (4) the ability to (re)deploy and (re)configure the ap-
plication components based on the decisions made by the allocation and control
algorithms.

This paper describes one such reusable framework, the Resource Allocation
and Control Engine (RACE), that we have developed in conjunction with col-
leagues at Lockheed Martin Advanced Technology Lab and Advanced Technol-
ogy Center. As shown in Figure 1, RACE separates resource allocation and con-
trol algorithms from the underlying middleware deployment, configuration, and
control mechanisms so that different algorithms can reuse common mechanisms
to (re)deploy components onto nodes and manage the node’s resources among
competing applications. These capabilities enable DRE system developers to
configure allocation and control algorithms depending on the characteristics of
the operational strings being deployed and enables the use of multiple algorithms
without needing to handcraft the mechanisms used to configure the algorithms.

The remainder of this paper is organized as follows: Section 2 motivates the
need for RACE in the context of applications for DRE systems; Section 3 de-
scribes the design of RACE and shows how it leverages the OMG Deployment
and Configuration (D&C) specification [4] in the Lightweight CORBA Com-
ponent Model (CCM) standard [5]; Section 4 illustrates how we are applying
RACE to the applications described in Section 2; Section 5 compares our work
on RACE with related research; and Section 6 presents concluding remarks.

2 Motivating Application Scenarios

Figure 1 presented a computational architecture applicable to large-scale DRE
systems that perform a number of coordination and heterogeneous data han-

dling and analysis tasks. An example is NASA’s Earth Science Enterprise (ESE)
mission, whose goal is to collect significant amounts of atmospheric and earth
surface data to enable computational models that can accurately predict climate,
weather, and natural hazard occurrences. The architecture of a DRE system that
implements the ESE mission is shown in Figure 2. Although these studies have

Mission
Goals

Intelligent
Mission
Planner

RACE

System Monitors

System
Status

Deploy
Components

Deployment (in)flexible &
(un)successful

Mission
Status

Science Mission
Monitors

Satellite System

Operational
strings

Fig. 2. Architecture of Earth Science Enterprise System

traditionally been conducted using large, independently operated spacecraft, the
goals of better physical coverage and richer data collection with a variety of sen-
sors at lower cost motivates the deployment of large networked constellations of
satellites [6, 7].

In addition to deploying a constellation of satellites, modern science mis-
sions often operate in multiple application modes, such as signal space coverage,
combination, and isolation, depending on the current task requirements. For ex-
ample, the Global Precipitation Measurement (GPM) constellation [8] requires
an evenly distributed network of orbiters to sample every point in the globe
at periodic time intervals driven by the rate at which thunderstorms can form
and dissipate. In other situations, it may be important for separate platforms
with different sensors to cooperate and analyze a phenomena, e.g., Cloudsat and
Calipso use different sensors to study the relationship between aerosols and pre-
cipitation [9]. In these applications, spacecraft fly in close coordinated formations
to capture different information from the same region.

Future science missions will likely combine and simultaneously operate in all
the modes of operation outlined above, while autonomously switching between
modes as conditions and requirements change, e.g., as a new storm system begins
to form over the Gulf of Mexico. NASA’s Leonardo-BRDF [10] is an example
of such a multi-functional, multi-platform, and multi-configuration system. To
achieve this capability, satellite systems and their computational resources will
need to be reconfigured dynamically during system operation.

A key challenge, therefore, is to develop reusable DRE system middleware
that supports efficient operation of the different configurations outlined above,
and the transitions between these configurations. To address this challenge, we
are developing an intelligent mission planner [11] that decomposes the over-
all science mission goal(s) into sets of tasks that can be executed concurrently.
This mission planner employs decision-theoretic methods and other AI schemes
(such as hierarchical task decomposition) to decompose mission goals into navi-
gation, control, data gathering, and data execution tasks. In addition to initial

plan generation, the planner can incrementally generate new task sequences (see
Figure 2) in response to changing mission goals and resource requirements, or
degraded performance reported by the mission and system monitors.

Each computational task sequence generated by the intelligent mission plan-
ner translates to an operational string of application components. The set of
operational strings for an application can be represented as a partial-order de-
pendency graph, where the application components form the nodes of the graph,
and the edges capture the dependency relations. The graph generated by our
intelligent mission planner captures the possible sequential and concurrent exe-
cution sequences of applications in a DRE system. To support efficient resource
allocation and adaptation for these operational strings, we need a reusable mid-
dleware architecture that resolves the following challenges:

1. Support for efficient parsing of operational string resource requirements. The
intelligent mission planner generates (1) the sequence of application components
to be deployed for each operational string, (2) the interactions between com-
ponents in a string and between strings, (3) the behavioral characteristics of
each component, (4) the resource requirements for each component, and (5) the
QoS characteristics of each component. To support interoperability among var-
ious tools in a science mission [6], such application-specific information can be
captured via XML metadata. To ensure that this information is available for
processing – and to prevent the runtime overhead of parsing XML data – the
middleware must provide mechanisms for parsing the metadata once, and store
the parsed information efficiently so it can be transferred quickly across multiple
processes at runtime.

2. Support for selecting resource allocation and control algorithms. A single re-
source allocation and control strategy will not handle all resource allocation
and adaptation needs for heterogeneous application components, which include
guidance, navigation, control, data acquisition, data handling, and data analy-
sis algorithms [6]. The middleware should, therefore, provide mechanisms that
select different resource allocation and control algorithms depending on the be-
havior, interactions, and priorities of operational strings composed of application
components.

3. Support for sharing common middleware deployment framework. Implement-
ing resource allocation and control decisions of algorithms is error-prone and
tedious, e.g., it includes locating component binaries and libraries, connecting
components using the interaction specification information, and configuring un-
derlying OS and middleware to ensure proper end-to-end QoS. Reimplementing
these tasks manually for each algorithm leads to convoluted implementations, in-
creased memory footprint, and longer system development and quality assurance
cycles. A reusable middleware framework should therefore provide mechanisms
that efficiently and automatically (1) interact with the intelligent mission plan-
ner to convey the resource allocation and control decisions and (2) configure the
underlying system resources to ensure end-to-end QoS requirements.

Section 3 describes the design of a resource allocation and control engine
that leverages the OMG Deployment and Configuration specification in the
Lightweight CCM standard to address the challenges described above.

3 The Design of RACE

The architecture of the Resource Allocation and Control Engine (RACE) is
shown in Figure 1. This section presents a brief overview of CIAO and DAnCE,
which are the standard middleware platforms underlying RACE. It then de-
scribes how RACE enhances these platforms to provide a reusable framework
for (re)deploying components onto nodes and managing node resources among
competing operational strings.

3.1 RACE Middleware Infrastructure

As shown in Figure 1, the Resource Allocation and Control Engine (RACE) is a
framework built atop of our CIAO and DAnCE, which are our open-source1 im-
plementations of the OMG Lightweight CCM [5], Deployment and Configuration
(D&C) [4], and Real-time CORBA [12] specifications.

Overview of CIAO. The OMG Lightweight CCM specification standardizes
the development, configuration, and deployment of component-based applica-
tions that are not tied to any particular language, OS platform, or network.
Components in Lightweight CCM are implemented by executors and collaborate
with other components via ports, including (1) facets, which define an inter-
face that accepts point-to-point method invocations from other components,
(2) receptacles, which indicate a dependency on point-to-point method interface
provided by another component, and (3) event sources/sinks, which indicate a
willingness to exchange typed messages with one or more components. There are

HOST
INFRASTRUCTURE

MIDDLEWARE LAYER

Container

… …

Container

… …

Object Adapter

ORB CORE

OS/KERNEL

DISTRIBUTION
MIDDLEWARE

LAYER

COMPONENT
MIDDLEWARE

LAYER

Client

OBJ
REF

DII IDL
STUBS ORB

INTERFACE

in args
operation()

out args +
return

IDL
SKEL

Component
(Servant)

NETWORK
PROTOCOLS

NETWORK
INTERFACE

OS/KERNEL
NETWORK

PROTOCOLS

NETWORK
INTERFACE

NETWORK

S
 e rv ic e s

Fig. 3. CIAO Architecture Fig. 4. DAnCE Architecture

two categories of components in Lightweight CCM: (1) monolithic components,
which are executable binaries, and (2) assembly-based components, which are a
set of interconnected components that can either be monolithic or assembly-
based (note the intentional recursion).

1 CIAO and DAnCE are available from www.dre.vanderbilt.edu/CIAO.

A container in Lightweight CCM provides the runtime environment for one
or more components that provides various pre-defined hooks and strategies, such
as persistence, event notification, transaction, and security, to the component(s)
it manages. Each container is responsible for initializing instances of the compo-
nents it manages and mediating their access to other components and common
middleware services. A NodeApplication is a component server factory that cre-
ates containers and provides the run-time process context.

CIAO [13] is an open-source implementation of the OMG Lightweight CCM
and Real-time CORBA [12] specifications. CIAO’s architecture (shown in Fig-
ure 3) is designed based on (1) patterns for composing component-based mid-
dleware [14] and (2) reflective middleware [15] techniques to enable mechanisms
within the component-based middleware to support different QoS aspects [16].

Overview of DAnCE. In Lightweight CCM, component assemblies are de-
ployed and configured via the OMG D&C [4] specification, which manages the
mapping of application components onto nodes in a target environment. The in-
formation about the component assemblies and the target environment in which
the application components will be deployed are captured in the form of stan-
dard XML descriptors. To support automatic deployment and configuration of
components based on their descriptors, we developed the Deployment And Con-
figuration Engine (DAnCE), whose architecture is shown in Figure 4. DAnCE’s
runtime framework parses XML assembly descriptors and deployment plans, ex-
tracts connection and deployment information from the descriptors and plans,
and then automatically deploys the system into the CIAO component middle-
ware platform and establishes the connections between component ports.2

DAnCE implements a set of runtime interfaces defined by the OMG D&C
specification that handle the instantiation, installation, connection establish-
ment, monitoring, and termination of components on nodes in a target envi-
ronment. The D&C specification calls this target environment a domain, which
consists of nodes, interconnects, bridges, and resources. The standard D&C in-
terfaces implemented by DAnCE include (1) the ExecutionManager and Node-

Manager, which manage the lifecycle of the deployment process to help configure
component servers on the nodes, install components into containers, and set up
connections among components that may be distributed across multiple nodes,
and (2) the DomainApplicationManager and NodeApplicationManager, which
split a deployment plan across multiple domains so that various QoS concerns
(such as security and fault isolation) can be enforced. The ExecutionManager

and DomainApplicationManager operate at the global domain level, whereas
the NodeManager and NodeApplicationManager operate at each node of the
domain.

3.2 The Structure and Functionality of RACE

The RACE architecture consists of the entities shown in Figure 5. These entities

2 In the context of this paper, a connection refers to the high-level binding between an
object reference and its target component, rather than a lower-level transport (e.g.,
TCP) connection.

Target
Manager

Resource
Monitor

Resource
Monitor

Resource
Monitor

Deployment
Manager

Utilization Data Data Ready

Application
Qos

Monitors

Application
QoS Data

Application
QoS Data

Application
Qos

Monitors

Operational string with time-varying resource requirements

Fig. 5. RACE Structure

<connection>
 <name>compressionQosPredictor_qosLevels</name>
 <internalEndpoint>
 <portName>qosLevels</portName>
 <instance portName>
 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-
F5EA-4D1A-942E-13AE7CFED30A"/>
 </internalEndpoint>
…
…
</connection>

Deployment / Control Plan

Deployment Manager
Core

Algorithm
Manager

Allocators Controllers

Historian

Configurators

Operational string with time-varying resource requirements

Fig. 6. DeploymentManager Structure

are implemented as CCM components using CIAO and are deployed via DAnCE.
We describe each entity below:
ResourceMonitors are CCM components that track resource utilization in a
domain. One or more ResourceMonitors are associated with each domain re-
source, such as CPU and memory utilization monitors on each node and network
bandwidth utilization monitors on interconnects and bridges.
ApplicationQoSMonitors are CCM components that track the performance
of application components by observing QoS properties, such as throughput and
latency. One or more ApplicationQoSMonitors are associated with each type
of application component.
TargetManager is a CCM component defined in the D&C specification [4] that
receives periodic resource utilization updates from ResourceMonitors within a
domain. It uses these updates to track resource usage of all resources within
the domain. The TargetManager provides a standard interface for retrieving
information pertaining to resource consumption of each component and an as-
sembly in the domain, as well as the domain’s overall resource utilization. The
TargetManager provides information on resource utilization component ports in
operational strings.
DeploymentManager is an assembly of CCM components that encapsulates
and coordinates one or more allocation and control algorithms. The Deployment-
Manager deploys assemblies by allocating resources to individual components in
an assembly. After an assemblies is deployed, the DeploymentManager manages
the performance of (1) operational strings and (2) domain resource utilization.
The Deployment Manager ensures desired performance of the operational strings
by performing the following actions to the components that make up the oper-
ational strings: (a) (re)allocating resources to the component, (b) modifying
component parameters such as executional mode, and/or (c) dynamic replacing
the component implementations. The DeploymentManager is the most novel con-
tribution of RACE, so the remainder of this section focuses on its input/output
handling, structure and functionality, and extensibility mechanisms.

Input and output handling. Two types of inputs are processed by a Deployment-

Manager:

– Allocation algorithm inputs, which can be decomposed into static and dy-
namic inputs. Static inputs include (1) assembly(s) of components to deploy,
along with their resource requirements, (2) topology of target domain, and
(3) operational strings along with their QoS requirements. The static in-
put is represented in XML descriptors generated off-line via domain-specific
modeling tools, such as PICML [17], which can visually define, design, and
configure CIAO-based applications. Dynamic inputs capture information re-
garding current resource utilization/availability in the target domain, which
is provided by the TargetManager.

– Control algorithm inputs are primarily dynamic and include run-time infor-
mation from TargetManager and ApplicationQoSMonitors within the do-
main. This information conveys (1) domain resource utilization/availability
and (2) performance corresponding to application components in operational
strings.

A DeploymentManager processes allocation algorithm input to produce a
resource allocation plan, known as a deployment plan in the D&C specification,
which describes the nodes in a target environment and the type/number of
components to be deployed on a node. Likewise, it processes control algorithm
input to produce a runtime control plan composed of recommended adaptations,
such as changes in application properties and/or reallocation of system resources
to application components. These plans then become policies that the CIAO
and DAnCE mechanisms described in Section 3.1 use to (re)allocate resources
to applications and manage system performance.

Structure and functionality. The DeploymentManager is itself implemented as a
CCM assembly-based component that is composed of the monolithic components
shown in Figure 6 and described below:

– Allocators are CCM components that implement various resource alloca-
tion algorithms used during system initialization to allocate various domain
resources, such as CPU, memory, and network bandwidth, among compo-
nents. Example allocation algorithms include Bin-Packing [18] and Rate-
Monotonic General Task Model [19]. Allocators map application components
in operational strings to available domain resources via a deployment plan.

– Controllers are CCM components that implement various control algo-
rithms used at runtime to adapt the execution of an application’s compo-
nents at runtime in response to changing operational context and variations
in resource availability and/or demand. Example control algorithms include
HySUCON [20] and FCS [21]. Controllers can make (1) coarse-grained con-
trol decisions, which apply to many/all nodes in a domain and can migrate
components across nodes or reducing the priority of an operational string,
and/or (2) fine-grained control decisions, which apply to individual nodes in
a domain and can reduce the rate at which a component makes invocations
on another component or reconfigure a component’s priority.

– The AlgorithmManager is a CCM component that selects the appropriate
Allocator(s) and Controller(s) that are employed to allocate resources
and manage the performance of the application components in an opera-
tional string. The selection of algorithms depends on the characteristics and
resource requirements conveyed in the metadata associated with an opera-
tional string.

– Configurators are CCM components that automatically configure the mid-
dleware settings (such as threading policy, CORBA priority model and re-
quest processing policy) for the application components in an operational
string. The input to a Configurator includes (1) the behavioral charac-
teristics and QoS requirements of each component in an operational string
and (2) the deployment plan. The Configurator parses (1) the behavioral
characteristics of the application components to understand the invocation
behavior of the components, (2) the QoS requirements to understand the
latency and throughput of such invocations, and (3) the deployment plan
to understand the middleware resources present in each node of a domain.
The output of a Configurator is a configuration plan that specifies the mid-
dleware settings that need to be configured automatically in each node in a
domain. This plan is used to configure the CIAO and DAnCE middleware to
realize a concrete QoS-aware component middleware that attempts to satisfy
the QoS goals of application components in operational strings.

– The Historian is a CCM component that maintains the current mapping
of resource allocations to application components in an operational string.
It also maintains information pertaining to past successful and unsuccessful
deployment and control plans. Although this information could be stored
internally within each algorithm, the Historian supports the automated
sharing of this information across multiple algorithms to enhance reuse.

Extensibility mechanisms. Our experience developing resource allocation and
control engines for DRE systems indicates that one algorithm is not sufficient
to manage QoS for DRE systems with many types of applications executing
on heterogeneous distributed resources. The DeploymentManager therefore sup-
ports multiple implementations of resource allocation and control algorithms,
as shown in Figure 6. These algorithms can differ in performance and behavior
under dynamic operating conditions and application requirements.

The DeploymentManager uses the Component Configurator pattern [22] to
dynamically (re)configure the appropriate algorithms available to make resource
allocation and control decisions, depending on operating conditions and appli-
cation requirements. This pattern enables the DeploymentManager to link and
unlink its algorithm implementations at runtime without having to modify, re-
compile, statically relink, or shutdown/restart the RACE processes. Moreover,
the ability to dynamic (un)link allocation and control algorithms into RACE
allows multiple algorithm policies to share the same CIAO and DAnCE mech-
anisms, thereby simplifying the development, integration, and comparison of
multiple allocation and control algorithms.

4 Resolving DRE System Requirements with RACE

We are applying the RACE framework described in Section 3 to the science mis-
sion application scenarios described in Section 2. For example, Figure 7 shows
the sequence of actions performed by RACE, as the intelligent mission planner
generates the sets of operational strings to solve the goal(s) of the Global Precip-
itation Measurement (GPM) science mission. Since the performance of science

Mission Planner

CIAO/DAnCE

Target
Manager

Operational
strings and
component
descriptors

System
Resource
Utilization

Application
QoS

3: Deployment &
Configuration Plan

1: XML Parser

Core

2: Algorithm
Manager

Allocators Controllers

Historian

Configurators

Deployment Manager (Re)deploy / modify
components

Application
QoS Managers

4: Run-time
Control Plan

Application
QoS

System Resource Utilization

Mission Goals

Domain
Resources

Fig. 7. Apply RACE to the GPM Science Mission

missions depend on the performance of their operational strings, RACE is re-
sponsible for (1) allocating resources to application components and assemblies
that comprise these operational strings, (2) monitoring resource utilization in
the system, and (3) ensuring the QoS requirements of these operational strings
are met. This section describes how the intelligent mission planner and RACE
together achieve the goals of the GPM multi-satellite DRE system presented in
Section 2.
Initial application scenario. In the GPM mission, an evenly distributed constel-
lation of satellites cover the earth’s surface and collect precipitation data in a
synchronized manner. The intelligent mission planner generates a nearly identi-
cal set of operational strings for each satellite, which capture their navigation,
control, data capture, data analysis, and data transmission behaviors. Key QoS
specifications emphasize synchronization in the data capture process. Data cap-
tured by each satellite is collected in a central location, such as a “mother ship,”
that performs data processing and analysis before transmitting the processed
information to earth. The QoS of the science mission thus depends heavily on
timely data synchronization among the satellites and between satellites and the
mother ship.

The mission planner generates several artifacts, including (1) operational
string(s) to execute to achieve the science mission goals, (2) information that
captures the interaction, behavioral, and resource requirements of components
in the operational string(s), and (3) QoS requirement(s) associated with each

operational string. This information is passed by the mission planner to RACE,
which (re)allocates resources, (re)deploys, and manages the application com-
ponents and assemblies to ensure QoS requirements of operational strings are
met. Below, we summarize various activities performed by RACE to deploy and
allocate resources to the science mission’s operational strings.
1. Efficiently parse operational string resource requirements. RACE parses the
XML descriptors of the GPM mission’s components to obtain application QoS
and resource requirements. This information is stored in an in-memory data
structure, which the XML parser exposes to the DeploymentManager via a
strongly typed interface. Therefore, RACE avoids the runtime overhead of pars-
ing XML at each step, yet retains the information to make allocation and control
decisions.
2. Selecting the resource allocation and control algorithms. The Deployment-

Manager parses the in-memory data structure inputs provided by the XML parser
and employs the AlgorithmManager that determines the set of Allocators and
Controllers to use for the application components present in the operational
string. RACE then automatically deploys the corresponding ApplicationQoS-

Monitors and ResourceMonitors into the target environment, i.e., the appro-
priate satellites in the constellation.
3. Deploying and configuring application components. Using the input from
the (1) XML parser, (2) ApplicationQoSMonitors, (3) TargetManager, (4)
Allocators, and (5) Configurators, the DeploymentManager generates the de-
ployment and configuration plans for the science mission’s operational strings.
Rather than generating individual deployment and configuration plans for each
Allocator and Configurator pair, RACE generates a global deployment plan
and conveys this plan to the CIAO and DAnCE middleware described in Sec-
tion 3.1. This separation of concerns allows RACE to use multiple Allocators

without having to perform the complex and tedious tasks of deploying the ap-
plication components by itself, based on the decisions made by the Allocators.
Updated application scenario. At some point, the mother satellite may determine
that a storm system is developing over the Gulf of Mexico, so operators may
decide to track this storm. As a first reorganization step, satellites in the vicinity
are asked to accelerate their data collection rates. Meanwhile, part of the GPM
system switches from the signal space coverage to the signal isolation mode,
which reconfigures these satellites in the original constellation into a new tightly-
coupled formation to track the expected path of the storm. The mission planner
responds by generating a new set of operational strings, and the reallocation
process is initiated by RACE. The control activities RACE performs in response
to these varying operational conditions is summarized below.
4. System Management Once the application components are deployed, RACE
monitors application performance and domain resource utilization using the
ApplicationQoSMonitors and the TargetManager. The accelerated data col-
lection rates results in new QoS requirements for some of the application com-
ponents. If the performance of an operational string or an individual application
component falls below the QoS performance level specified by the mission plan-
ner, the Controllers will intervene to manage and maintain domain resource

utilization. RACE uses the underlying CIAO and DAnCE middleware to fine-
tune application properties when applying the coarse-grained and fine-grained
control decisions. Similarly, when the mission planner generates a new set of
operational strings to implement the the tightly-coupled formation, RACE uses
the configured Allocators and Controllers to allocate resources and manage
and maintain domain resource utilization, respectively.

5 Related Work

As component middleware becomes more pervasive, there has been an increase in
focus on technologies, platforms, and tools for deploying components effectively
within distributed systems. This section compares our work on RACE with three
recent related efforts.

The Autonomic Deployment and Management Engine (ADME) [23] provides
a framework for deploying and autonomically managing application components
in distributed systems. Allocating resources to application components in ADME
is framed as a constraint solving problem, where domain resources are allo-
cated to application components, subject to specified constraints. ADME uses a
domain-specific constraint language called “DEclarative LAnguage for Describ-
ing Autonomic Systems” (DELDAS) to specify desired system performance as
goals at design time. At runtime, the ADME infrastructure deploys and manages
application components to satisfy these goals. RACE has similar motivations as
ADME, though RACE provides a pluggable framework where multiple resource
allocation and control algorithms can be (re)configured at runtime. RACE also
focuses more on the (re)deployment and (re)configuration of QoS-enabled appli-
cations executing in DRE systems.

[24] presents a component middleware framework for distributed systems
that aids the process of dynamic system reconfiguration by (1) starting and
stopping application components, (2) migrating components between hosts a
domain, and (3) dynamically modifying component implementations to main-
tain the desired QoS of applications with varying operational contexts, resource
requirements, and resource availability. Although this framework provides ca-
pabilities to transparently reconfigure distributed systems, it does not provide
mechanisms to bootstrap the system by performing initial resource allocation to
application components. RACE augments this approach by offering capabilities
to plug-in various allocation algorithms that bootstrap the system and control
algorithms that drive system reconfiguration.

Plaint [25] is a tool that uses a temporal planner to manage and reconfigure a
software system. A plan is defined as a sequence of execution steps that ensures
desired system performance. Plaint generates to types of plans: (1) deployment
plans that allocate resources to application components, and (2) reconfiguration
plans that dynamically reconfigure systems in response to changes in their opera-
tion that may be attributed to factors such as external attacks that result in loss
of critical application components. The output from various planning techniques
can be viewed as deployment plans and control plans that RACE can execute
to ensure desired system performance. RACE also augments this planning ap-

proach to system reconfiguration by providing the capability to link and unlink
various planning mechanisms at run-time to handle system reconfiguration more
transparently.

6 Concluding Remarks

This paper describes the design and application of a Resource Allocation and
Control Engine (RACE), which is a middleware framework that integrates mul-
tiple resource management algorithms based on standard OMG Lightweight
CORBA Component Model (CCM) and Deployment and Configuration capa-
bilities for (re)deploying and (re)configuring application components in DRE
systems. RACE manages system resource utilization and ensures QoS require-
ments of operational strings are met even under varying operational contexts
and/or varying resource requirement/availability. Our future work will apply
CIAO, DAnCE, and RACE to a broader range of DRE systems, including more
of the science applications presented in Section 2, as well as total ship computing
systems [1]. We plan to evaluate the pros and cons of RACE qualitatively and
quantitatively.

References

1. Schmidt, D.C., Schantz, R., Masters, M., Cross, J., Sharp, D., DiPalma, L.: To-
wards Adaptive and Reflective Middleware for Network-Centric Combat Systems.
CrossTalk (2001)

2. Sharp, D.C., Roll, W.C.: Model-Based Integration of Reusable Component-Based
Avionics System. In: Proc. of the Workshop on Model-Driven Embedded Systems
in RTAS 2003. (2003)

3. Sharma, P., Loyall, J., Heineman, G., Schantz, R., Shapiro, R., Duzan, G.:
Component-Based Dynamic QoS Adaptations in Distributed Real-Time and Em-
bedded Systems. In: Proc. of the Intl. Symp. on Dist. Objects and Applications
(DOA’04), Agia Napa, Cyprus (2004)

4. Object Management Group: Deployment and Configuration Adopted Submission.
OMG Document ptc/03-07-08 edn. (2003)

5. Object Management Group: Light Weight CORBA Component Model Revised
Submission. OMG Document realtime/03-05-05 edn. (2003)

6. NASA Science Mission Directorate: NASA Science Missions. http://science.hq.
nasa.gov/directorate/index.html (2004)

7. Esper, J., Wiscombe, W., Neeck, S., Ryschkewitsch, M.: Leonardo-BRDF: A New
Generation Satellite Constellation. In: 51st International Aeronautical Congress,
Rio de Janerio, Brazil (2000)

8. Ruf, C.S., Principe, C.M., Neek, S.P.: Enabling Technologies to Map Precipitation
with Near-Global Coverage and Hour-Scale Revisit Times. In: Proc. of IEEE Intl.
Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI (2000)

9. Clement, B.J., Barrett, A.C.: Coordination Challenges for Autonomous Spacecraft.
In: AAMAS-02 Workshop Notes on Towards an Application Science: MAS Problem
Space and Their Implications to Achieving Globally Coherent Behavior, Bologna,
Italy (2002)

10. Silverman, G., Bhasin, K., Capots, L., Enlow, D., Sroga, J.: Technology Drivers for
Space-Based Science Communication. In: IEEE Military Communications Confer-
ence (MILCOM 2001), Vienna, Virginia (2001)

11. Bagchi, S., Biswas, G., Kawamura, K.: Task Planning under Uncertainty using a
Spreading Activation Network. IEEE Transactions on Systems, Man, and Cyber-
netics 30 (2000) 639–650

12. Object Management Group: Real-time CORBA Specification. OMG Document
formal/02-08-02 edn. (2002)

13. Wang, N., Schmidt, D.C., Gokhale, A., Rodrigues, C., Natarajan, B., Loyall, J.P.,
Schantz, R.E., Gill, C.D.: QoS-enabled Middleware. In Mahmoud, Q., ed.: Mid-
dleware for Communications. Wiley and Sons, New York (2003) 131–162

14. Volter, M., Schmid, A., Wolff, E.: Server Component Patterns: Component Infras-
tructures Illustrated with EJB. Wiley Series in Software Design Patterns, West
Sussex, England (2002)

15. Schmidt, D.C.: Adaptive and Reflective Middleware for Distributed Real-time and
Embedded Systems. In: EMSOFT 2001: First Workshop on Embedded Software.,
Lake Tahoe, CA (2001)

16. Wang, N., Gill, C., Schmidt, D.C., Subramonian, V.: Configuring Real-time As-
pects in Component Middleware. In: Proc. of the International Symposium on
Distributed Objects and Applications (DOA’04), Agia Napa, Cyprus (2004)

17. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D.C.: A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems. In: Proc. of the 11th IEEE Real-Time and
Embedded Technology and Applications Sym., San Francisco, CA (2005)

18. Lehoczky, J., Sha, L., Ding, Y.: The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior. In: Proceedings of the 10th IEEE
Real-Time Systems Symposium, IEEE Computer Society Press (1989) 166–171

19. Liebeherr, J., Burchard, A., Oh, Y., H.Son, S.: New strategies for assigning real-
time tasks to multiprocessor systems. IEEE Trans. Comput. 44 (1995) 1429–1442

20. Koutsoukos, X., Tekumalla, R., Natarajan, B., Lu, C.: Hybrid Supervisory Control
of Real-Time Systems. In: 11th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, California (2005)

21. Lu, C.: Feedback Control Real-Time Scheduling. PhD thesis, University of Vir-
ginia, Charlottesville, VA (2001)

22. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley
& Sons, New York (2000)

23. Dearle, A., Kirby, G.N.C., McCarthy, A.J.: A Framework for Constraint-Based
Deployment and Autonomic Management of Distributed Applications. In: ICAC,
IEEE Computer Society (2004) 300–301

24. Chen, X., Simons, M.: A Component Framework for Dynamic Reconfiguration of
Distributed Systems. In: CD ’02: Proceedings of the IFIP/ACM Working Confer-
ence on Component Deployment, London, UK, Springer-Verlag (2002) 82–96

25. Arshad, N., Heimbigner, D., Wolf, A.L.: Deployment and Dynamic Reconfiguration
Planning For Distributed Software Systems. In: Proc. of the 15th IEEE Interna-
tional Conference on Tools With Artificial Intelligence (ICTAI 2003), Sacramento,
CA, USA (2003)

