
Patterns and Frameworks for

Concurrent Network

Programming with ACE and C++

Douglas C. Schmidt

Washington University, St. Louis

http://www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

1

Motivation for Concurrency

� Concurrent programming is increasing rel-
evant to:

{ Leverage hardware/software advances

� e.g., multi-processors and OS thread sup-

port

{ Increase performance

� e.g., overlap computation and communica-
tion

{ Improve response-time

� e.g., GUIs and network servers

{ Simplify program structure

� e.g., synchronous vs. asynchronous network

IPC
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Motivation for Distribution

� Bene�ts of distributed computing:

{ Collaboration ! connectivity and interworking

{ Performance ! multi-processing and locality

{ Reliability and availability ! replication

{ Scalability and portability ! modularity

{ Extensibility ! dynamic con�guration and re-

con�guration

{ Cost e�ectiveness! open systems and resource

sharing
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Challenges and Solutions

� However, developing e�cient, robust, and
extensible concurrent networking applica-
tions is hard

{ e.g., must address complex topics that are less
problematic or not relevant for non-concurrent,

stand-alone applications

� OO techniques and OO language features
help to enhance software quality factors

{ Key OO techniques include patterns and frame-

works

{ Key OO language features include classes, in-

heritance, dynamic binding, and parameterized
types

{ Key software quality factors include modular-

ity, extensibility, portability, reusability, and

correctness
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Caveats

� OO is not a panacea

{ However, when used properly it helps minimize

\accidental" complexity and improve software

quality factors

� Advanced OS features provide additional
functionality and performance, e.g.,

{ Multi-threading

{ Multi-processing

{ Synchronization

{ Shared memory

{ Explicit dynamic linking

{ Communication protocols and IPC mechanisms
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Tutorial Outline

� Outline key OO networking and concur-
rency concepts and OS platform mecha-
nisms

{ Emphasis is on practical solutions

� Examine several examples in detail

1. Distributed logger

2. Concurrent WWW client/server

3. Application-level Telecom Gateway

4. OO framework for layered active objects

� Discuss general concurrent programming

strategies
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Software Development

Environment

� The topics discussed here are largely in-
dependent of OS, network, and program-
ming language

{ Currently used successfully on UNIX/POSIX,

Win32, and RTOS platforms, running on TCP/IP

networks using C++

� Examples are illustrated using freely avail-
able ADAPTIVE Communication Environ-
ment (ACE) OO framework components

{ Although ACE is written in C++, the princi-

ples covered in this tutorial apply to other OO
languages

� e.g., Java, Ei�el, Smalltalk, etc.

{ In addition, other networks and backplanes can
be used, as well
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De�nitions

� Concurrency

{ \Logically" simultaneous processing

{ Does not imply multiple processing elements

� Parallelism

{ \Physically" simultaneous processing

{ Involves multiple processing elements and/or
independent device operations

� Distribution

{ Partition system/application into multiple com-

ponents that can reside on di�erent hosts

{ Implies message passing as primary IPC mech-

anism
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Stand-alone vs. Distributed

Application Architectures
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Concurrency vs. Parallelism
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Sources of Complexity

� Concurrent network application develop-

ment exhibits both inherent and acciden-

tal complexity

� Inherent complexity results from funda-
mental challenges

{ Concurrent programming

* Eliminating \race conditions"

* Deadlock avoidance

* Fair scheduling

* Performance optimization and tuning

{ Distributed programming

* Addressing the impact of latency

* Fault tolerance and high availability

* Load balancing and service partitioning

* Consistent ordering of distributed events
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Sources of Complexity (cont'd)

� Accidental complexity results from limita-
tions with tools and techniques used to
develop concurrent applications, e.g.,

{ Lack of portable, reentrant, type-safe and ex-

tensible system call interfaces and component

libraries

{ Inadequate debugging support and lack of con-
current and distributed program analysis tools

{ Widespread use of algorithmic decomposition

� Fine for explaining concurrent programming

concepts and algorithms but inadequate for
developing large-scale concurrent network ap-

plications

{ Continuous rediscovery and reinvention of core

concepts and components
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OO Contributions to Concurrent

Applications

� Concurrent network programming has tra-
ditionally been performed using low-level
OS mechanisms, e.g.,

* fork/exec

* Shared memory, mmap, and SysV semaphores

* Signals

* sockets/select

* POSIX pthreads, Solaris threads, Win32 threads

� Patterns and frameworks elevate develop-
ment to focus on application concerns,
e.g.,

{ Service functionality and policies

{ Service con�guration

{ Concurrent event demultiplexing and event han-
dler dispatching

{ Service concurrency and synchronization
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Patterns

� Patterns represent solutions to problems
that arise when developing software within
a particular context

{ i.e., \Patterns == problem/solution pairs in a

context"

� Patterns capture the static and dynamic
structure and collaboration among key par-
ticipants in software designs

{ They are particularly useful for articulating how

and why to resolve non-functional forces

� Patterns facilitate reuse of successful soft-

ware architectures and designs
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Active Object Pattern

ProxyProxy
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11 2: enqueue(M1)

1: enqueue(new M1)

3: dispatch()

loop {
  m = act_queue_.dequeue()
  m.call()
}

Servant
1

m1()
m2()
m3()

Activation
Queue

enqueue()
dequeue()

1

1

n
Method
Request

call()
4: m1()

11 11

M1M1

M3M3

M2M2

� Intent: decouples the thread of method

execution from the thread of method in-

vocation
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Frameworks

� A framework is:

{ \An integrated collection of components that

collaborate to produce a reusable architecture

for a family of related applications"

� Frameworks di�er from conventional class
libraries:

1. Frameworks are \semi-complete" applications

2. Frameworks address a particular application do-
main

3. Frameworks provide \inversion of control"

� Typically, applications are developed by in-

heriting from and instantiating framework

components
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Di�erences Between Class

Libraries and Frameworks
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Why We Need Communication

Middleware

� System call-level programming is wrong
abstraction for application developers, e.g.,

{ Too low-level ! error codes, endless reinven-

tion

{ Error-prone! HANDLEs lack type-safety, thread

cancellation woes

{ Mechanisms do not scale ! Win32 TLS

{ Steep learning curve ! Win32 Named Pipes

{ Non-portable ! Win32 WinSock bugs

{ Ine�cient ! i.e., tedious for humans

� GUI frameworks are inadequate for com-
munication software, e.g.,

{ Ine�cient ! excessive use of virtual methods

{ Lack of features ! minimal threading and syn-
chronization mechanisms, no network services
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The ADAPTIVE Communication

Environment (ACE)
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� A set of C++ wrappers, class categories,
and frameworks based on patterns

{ www.cs.wustl.edu/�schmidt/ACE.html
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ACE Statistics

� Core ACE frameworks and components

contain 175,000 lines of C++

� > 20 person-years of e�ort

� Ported to UNIX, Win32, MVS, and em-

bedded platforms

� Large user community (ACE-users.html)

� Currently used by dozens of companies

{ e.g., Siemens, Motorola, Ericsson, Kodak, Bell-
core, Boeing, SAIC, StorTek ,etc.

� Supported commercially by Riverace

{ www.riverace.com/
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Class Categories in ACE

APPLICATIONSAPPLICATIONAPPLICATION--
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Class Categories in ACE (cont'd)

� Responsibilities of each class category

{ IPC encapsulates local and/or remote IPC mech-
anisms

{ Service Initialization encapsulates active/passive
connection establishment mechanisms

{ Concurrency encapsulates and extends multi-

threading and synchronization mechanisms

{ Reactor performs event demultiplexing and event

handler dispatching

{ Service Configurator automates con�gura-

tion and recon�guration by encapsulating ex-

plicit dynamic linking mechanisms

{ Stream Frameworkmodels and implements lay-

ers and partitions of hierarchically-integrated
communication software

{ Network Services provides distributed nam-
ing, logging, locking, and routing services
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The ACE ORB (TAO)
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� A high-performance, real-time ORB built

with ACE

� www.cs.wustl.edu/�schmidt/TAO.html
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TAO Statistics

� Core TAO ORB contain �50,000 lines of
C++

{ Leverages ACE heavily

� > 10 person-years of e�ort

� Ported to UNIX, Win32, and embedded

platforms

� Currently used by many companies

{ e.g., Siemens, Boeing, SAIC, Raytheon, etc.

� Supported commercially by OCI

{ www.ociweb.com/
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JAWS Adaptive Web Server
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� A high-performance, cross-platform Web
server built with ACE

{ Used commercially by Entera

� www.cs.wustl.edu/�jxh/research/
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Java ACE

FRAMEWORKS

AND  CLASS

CATEGORIES

DISTRIBUTED

SERVICES  AND

COMPONENTS
NAME

SERVER

TOKEN

SERVER

LOGGING

SERVER

TIME

SERVER

JAVA

WRAPPERS
SYNCH

WRAPPERS
SOCK_SAP

THREAD

MANAGER

LOG

MSG

TIMER

QUEUE

SERVICE

CONFIGURATOR

ADAPTIVE  SERVICE  EXECUTIVE  (ASX)

ACCEPTOR CONNECTOR
SERVICE

HANDLER

JAVA  VIRTUAL  MACHINE  (JVM)

� A version of ACE written in Java

� Currently used for medical imaging proto-

type

� www.cs.wustl.edu/�schmidt/JACE.html

� www.cs.wustl.edu/�schmidt/C++2java.html

� www.cs.wustl.edu/�schmidt/MedJava.ps.gz

26

ACE-related Patterns
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Concurrency Overview

� A thread of control is a single sequence of
execution steps performed in one or more
programs

{ One program ! standalone systems

{ More than one program ! distributed systems

� Traditional OS processes contain a single
thread of control

{ This simpli�es programming since a sequence

of execution steps is protected from unwanted
interference by other execution sequences: : :
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Traditional Approaches to OS

Concurrency

1. Device drivers and programs with signal
handlers utilize a limited form of concur-
rency

� e.g., asynchronous I/O

� Note that concurrency encompasses more than

multi-threading: : :

2. Many existing programs utilize OS pro-
cesses to provide \coarse-grained" con-
currency

� e.g.,

{ Client/server database applications

{ Standard network daemons like UNIX inetd

� Multiple OS processes may share memory via

memory mapping or shared memory and use

semaphores to coordinate execution

� The OS kernel scheduler dictates process be-

havior
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Evaluating Traditional OS

Process-based Concurrency

� Advantages

{ Easy to keep processes from interfering

� A process combines security, protection, and

robustness

� Disadvantages

1. Complicated to program, e.g.,

{ Signal handling may be tricky

{ Shared memory may be inconvenient

2. Ine�cient

{ The OS kernel is involved in synchronization

and process management

{ Di�cult to exert �ne-grained control over
scheduling and priorities
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Modern OS Concurrency

� Modern OS platforms typically provide a
standard set of APIs that handle

1. Process/thread creation and destruction

2. Various types of process/thread synchroniza-

tion and mutual exclusion

3. Asynchronous facilities for interrupting long-

running processes/threads to report errors and

control program behavior

� Once the underlying concepts are mas-
tered, it's relatively easy to learn di�erent
concurrency APIs

{ e.g., traditional UNIX process operations, So-

laris threads, POSIX pthreads, WIN32 threads,
Java threads, etc.
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Lightweight Concurrency

� Modern OSs provide lightweight mecha-
nisms that manage and synchronize mul-
tiple threads within a process

{ Some systems also allow threads to synchro-

nize across multiple processes

� Bene�ts of threads

1. Relatively simple and e�cient to create, con-

trol, synchronize, and collaborate

{ Threads share many process resources by de-

fault

2. Improve performance by overlapping computa-

tion and communication

{ Threads may also consume less resources

than processes

3. Improve program structure

{ e.g., compared with using asynchronous I/O
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Single-threaded vs.

Multi-threaded RPC
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Hardware and OS Concurrency

Support

� Most modern OS platforms provide kernel

support for multi-threading

� e.g., SunOS multi-processing (MP) model

{ There are 4 primary abstractions

1. Processing elements (hardware)

2. Kernel threads (kernel)

3. Lightweight processes (user/kernel)

4. Application threads (user)

{ Sun MP thread semantics work for both uni-
processors and multi-processors: : :
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Sun MP Model (cont'd)
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� Application threads may be bound and/or

unbound
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Application Threads

� Most process resources are equally acces-
sible to all threads in a process, e.g.,

* Virtual memory

* User permissions and access control privileges

* Open �les

* Signal handlers

� Each thread also contains unique informa-
tion, e.g.,

* Identi�er

* Register set (e.g., PC and SP)

* Run-time stack

* Signal mask

* Priority

* Thread-speci�c data (e.g., errno)

� Note, there is generally no MMU protec-

tion for separate threads within a single

process: : :
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Kernel-level vs. User-level

Threads

� Application and system characteristics in-

uence the choice of user-level vs. kernel-

level threading

� A high degree of \virtual" application con-
currency implies user-level threads (i.e.,
unbound threads)

{ e.g., desktop windowing system on a uni-processor

� A high degree of \real" application paral-
lelism implies lightweight processes (LWPs)
(i.e., bound threads)

{ e.g., video-on-demand server or matrix multi-

plication on a multi-processor
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Synchronization Mechanisms

� Threads share resources in a process ad-

dress space

� Therefore, they must use synchronization

mechanisms to coordinate their access to

shared data

� Traditional OS synchronization mechanisms

are very low-level, tedious to program, error-

prone, and non-portable

� ACE encapsulates these mechanisms with

higher-level patterns and classes
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Common OS Synchronization

Mechanisms

1. Mutual exclusion locks

� Serialize thread access to a shared resource

2. Counting semaphores

� Synchronize thread execution

3. Readers/writer locks

� Serialize thread access to resources whose con-

tents are searched more than changed

4. Condition variables

� Used to block threads until shared data changes

state

5. File locks

� System-wide readers/write locks accessed by
processes using �lename
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Additional ACE Synchronization

Mechanism

1. Events

� Gates and latches

2. Barriers

� Allows threads to synchronize their completion

3. Token

� Provides FIFO scheduling order and simpli�es

multi-threaded event loop integration

4. Task

� Provides higher-level \active object" semantics

for concurrent applications

5. Thread-speci�c storage

� Low-overhead, contention-free storage
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Concurrency Mechanisms in ACE
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� www.cs.wustl.edu/�schmidt/Concurrency.ps.gz
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Graphical Notation
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Distributed Logging Service
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� www.cs.wustl.edu/�schmidt/reactor-rules.ps.gz
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Distributed Logging Service

� Server logging daemon

{ Collects, formats, and outputs logging records
forwarded from client logging daemons residing

throughout a network or internetwork

� The application interface is similar to printf

ACE_ERROR ((LM_ERROR, "(%t) fork failed"));

// generates on server host

Oct 29 14:50:13 1992@tango.ics.uci.edu@2766@LM_ERROR@client

::(4) fork failed

ACE_DEBUG ((LM_DEBUG,

"(%t) sending to server %s", server_host));

// generates on server host

Oct 29 14:50:28 1992@zola.ics.uci.edu@18352@LM_DEBUG@drwho

::(6) sending to server bastille
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Conventional Logging Server

Design

� Typical algorithmic pseudo-code for the
server daemon portion of the distributed
logging service:

void server logging daemon (void)

f

initialize listener endpoint

loop forever

f

wait for events

handle data events

handle connection events

g

g

� The \grand mistake:"

{ Avoid the temptation to \step-wise re�ne" this

algorithmically decomposed pseudo-code directly

into the detailed design and implementation of

the logging server!
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Select-based Logging Server

Implementation
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Conventional Logging Server

Implementation

� Note the excessive amount of detail re-

quired to program at the socket level: : :

// Main program
static const int PORT = 10000;

typedef u_long COUNTER;
typedef int HANDLE;

// Counts the # of logging records processed
static COUNTER request_count;

// Passive-mode socket handle
static HANDLE listener;

// Highest active handle number, plus 1
static HANDLE maxhp1;

// Set of currently active handles
static fd_set read_handles;

// Scratch copy of read_handles
static fd_set tmp_handles;
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// Run main event loop of server logging daemon.

int main (int argc, char *argv[])
{

initialize_listener_endpoint
(argc > 1 ? atoi (argv[1]) : PORT);

// Loop forever performing logging server processing.

for (;;) {
tmp_handles = read_handles; // struct assignment.

// Wait for client I/O events
select (maxhp1, &tmp_handles, 0, 0, 0);

// First receive pending logging records
handle_data ();

// Then accept pending connections
handle_connections ();

}
}
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// Initialize the passive-mode socket handle

static void initialize_listener_endpoint (u_short port)
{

struct sockaddr_in saddr;

// Create a local endpoint of communication
listener = socket (PF_INET, SOCK_STREAM, 0);

// Set up the address information to become a server
memset ((void *) &saddr, 0, sizeof saddr);
saddr.sin_family = AF_INET;
saddr.sin_port = htons (port);
saddr.sin_addr.s_addr = htonl (INADDR_ANY);

// Associate address with endpoint
bind (listener, (struct sockaddr *) &saddr, sizeof saddr);

// Make endpoint listen for connection requests
listen (listener, 5);

// Initialize handle sets
FD_ZERO (&tmp_handles);
FD_ZERO (&read_handles);
FD_SET (listener, &read_handles);

maxhp1 = listener + 1;
}
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// Receive pending logging records

static void handle_data (void)
{

// listener + 1 is the lowest client handle

for (HANDLE h = listener + 1; h < maxhp1; h++)
if (FD_ISSET (h, &tmp_handles)) {

ssize_t n = handle_log_record (h, 1);

// Guaranteed not to block in this case!
if (n > 0)

++request_count; // Count the # of logging records

else if (n == 0) { // Handle connection shutdown.
FD_CLR (h, &read_handles);
close (h);

if (h + 1 == maxhp1) {

// Skip past unused handles

while (!FD_ISSET (--h, &read_handles))
continue;

maxhp1 = h + 1;
}

}
}

}
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// Receive and process logging records

static ssize_t handle_log_record
(HANDLE in_h, HANDLE out_h)

{
ssize_t n;
size_t len;
Log_Record log_record;

// The first recv reads the length (stored as a
// fixed-size integer) of adjacent logging record.

n = recv (in_h, (char *) &len, sizeof len, 0);

if (n <= 0) return n;

len = ntohl (len); // Convert byte-ordering

// The second recv then reads LEN bytes to obtain the
// actual record
for (size_t nread = 0; nread < len; nread += n

n = recv (in_h, ((char *) &log_record) + nread,
len - nread, 0);

// Decode and print record.
decode_log_record (&log_record);
write (out_h, log_record.buf, log_record.size);
return n;

}
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// Check if any connection requests have arrived

static void handle_connections (void)
{

if (FD_ISSET (listener, &tmp_handles)) {
static struct timeval poll_tv = {0, 0};
HANDLE h;

// Handle all pending connection requests
// (note use of select's "polling" feature)

do {
h = accept (listener, 0, 0);
FD_SET (h, &read_handles);

// Grow max. socket handle if necessary.
if (h >= maxhp1)

maxhp1 = h + 1;
} while (select (listener + 1, &tmp_handles,

0, 0, &poll_tv) == 1);
}
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Limitations with Algorithmic

Decomposition Techniques

� Algorithmic decomposition tightly couples
application-speci�c functionality and the
following con�guration-related character-
istics:

{ Structure

� The number of services per process

� Time when services are con�gured into a

process

{ Communication Mechanisms

� The underlying IPC mechanisms that com-
municate with other participating clients and

servers

� Event demultiplexing and event handler dis-

patching mechanisms

{ Concurrency Model

� The process and/or thread architecture that

executes service(s) at run-time
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Overcoming Limitations via OO

� The algorithmic decomposition illustrated
above speci�es many low-level details

{ Furthermore, the excessive coupling signi�cantly
complicates reusability, extensibility, and portability: : :

� In contrast, OO focuses on application-

speci�c behavior, e.g.,

int Logging_Handler::handle_input (void)
{

ssize_t n = handle_log_record (peer ().get_handle (),
STDOUT);

if (n > 0)
++request_count; // Count the # of logging records

return n <= 0 ? -1 : 0;
}
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OO Contributions

� Patterns facilitate the large-scale reuse of
software architecture

{ Even when reuse of algorithms, detailed de-

signs, and implementations is not feasible

� Frameworks achieve large-scale design and
code reuse

{ In contrast, traditional techniques focus on the

functions and algorithms that solve particular

requirements

� Note that patterns and frameworks are
not unique to OO!

{ But objects are a useful abstraction mechanism
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Patterns in the Distributed

Logger

ActiveActive
ObjectObject

AcceptorAcceptor
ServiceService

ConfiguratorConfigurator

ReactorReactor

FactoryFactory
MethodMethodIteratorIterator AdapterAdapter

TemplateTemplate
MethodMethod

TACTICAL

PATTERNS

STRATEGIC

PATTERNS

� Note that strategic and tactical are al-

ways relative to the context and abstrac-

tion level
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Pattern Intents

� Reactor pattern

{ Decouple event demultiplexing and event han-

dler dispatching from application services per-

formed in response to events

� Acceptor pattern

{ Decouple the passive initialization of a service

from the tasks performed once the service is

initialized

� Service Con�gurator pattern

{ Decouple the behavior of network services from
point in time at which services are con�gured

into an application

� Active Object pattern

{ Decouple method invocation from method ex-

ecution and simpli�es synchronized access to
shared resources by concurrent threads
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OO Logging Server

� OO server logging daemon decomposes
into several modular components:

1. Application-speci�c components

{ Process logging records received from clients

2. Connection-oriented application components

{ Svc Handler

� Performs I/O-related tasks with clients

{ Acceptor factory

� Passively accepts connection requests

� Dynamically creates a Svc Handler object
for each client and \activates" it

3. Application-independent ACE framework com-

ponents

{ Perform IPC, explicit dynamic linking, event

demultiplexing, event handler dispatching, multi-
threading, etc.
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Class Diagram for OO Logging

Server
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ConfiguratorConfigurator

StreamStream
ConnectionConnection

Logging
Acceptor

Logging_Handler
SOCK_Acceptor

Logging
Handler

SOCK_Stream
Null_Synch

Svc
HandlerAcceptor

SVC_HANDLER
PEER_ACCEPTOR

PEER_STREAM
SYNCH

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

--
O

R
IE

N
T

E
D

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
-

S
P

E
C

IF
IC

C
O

M
P

O
N

E
N

T
S

A
C

E
A

C
E

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

C
O

M
P

O
N

E
N

T
S

C
O

M
P

O
N

E
N

T
S

PEER
ACCEPTOR

PEER
STREAM

IPC_SAP

ReactorReactor

ACTIVATES

1 n

ConcurrencyConcurrency

59

Demultiplexing and Dispatching

Events

� Problem

{ The logging server must process several di�er-

ent types of events simultaneously

� Forces

{ Multi-threading is not always available

{ Multi-threading is not always e�cient

{ Multi-threading can be error-prone

{ Tightly coupling general event processing with

server-speci�c logic is inexible

� Solution

{ Use the Reactor pattern to decouple generic

event processing from server-speci�c process-
ing
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The Reactor Pattern

� Intent

{ \Decouple event demultiplexing and event han-

dler dispatching from the services performed in

response to events"

� This pattern resolves the following forces
for event-driven software:

{ How to demultiplex multiple types of events

from multiple sources of events e�ciently within
a single thread of control

{ How to extend application behavior without re-

quiring changes to the event dispatching frame-

work
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Structure of the Reactor Pattern

InitiationInitiation
DispatcherDispatcher

handle_events()
register_handler(h)
remove_handler(h)

11

11

11

Event_HandlerEvent_Handler

handle_input()
handle_output()
handle_signal()
handle_timeout()
get_handle()

A

11

nn

nn

Timer_QueueTimer_Queue

schedule_timer(h)
cancel_timer(h)
expire_timers(h)

11

11

select (handles);select (handles);
foreach h in handles {foreach h in handles {
   if (h is output handler)   if (h is output handler)
      table[h]->handle_output () ;      table[h]->handle_output () ;
   if (h is input handler)   if (h is input handler)
      table[h]->handle_input ();      table[h]->handle_input ();
   if (h is signal handler)   if (h is signal handler)
      table[h]->handle_signal ();      table[h]->handle_signal ();
}}
timer_queue->expire_timers ();timer_queue->expire_timers ();

nn
HandlesHandles

11

APPLICATIO
N-

D
EPEN

D
EN

T
APPLICATIO

N-
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D
EPEN

D
EN

T
n

Concrete
Event

Handler

� www.cs.wustl.edu/�schmidt/Reactor.ps.gz
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Collaboration in the Reactor

Pattern

mainmain
programprogram

INITIALIZEINITIALIZE

REGISTER  HANDLERREGISTER  HANDLER

callback :callback :
ConcreteConcrete

Event_HandlerEvent_Handler

START  EVENT  LOOPSTART  EVENT  LOOP

DATA  ARRIVESDATA  ARRIVES

OK TO  SENDOK TO  SEND

InitiationInitiation
DispatcherDispatcher

handle_events()

FOREACH  EVENT  DOFOREACH  EVENT  DO

handle_input()

select()

Reactor()

register_handler(callback)

handle_output()

SIGNAL  ARRIVESSIGNAL  ARRIVES

TIMER  EXPIRESTIMER  EXPIRES

handle_signal()

handle_timeout()

get_handle()
EXTRACT  HANDLEEXTRACT  HANDLE
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remove_handler(callback)
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Using the Reactor Pattern in the

Logging Server

: Initiation  Dispatcher: Initiation  Dispatcher
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: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

: Event: Event
HandlerHandler

: Logging: Logging
HandlerHandler

1: handle_input()1: handle_input()

5: handle_input()5: handle_input()
6: recv(msg)6: recv(msg)
7:process(msg)7:process(msg)

: Event: Event
HandlerHandler

: Logging: Logging
AcceptorAcceptor

2: sh = new Logging_Handler2: sh = new Logging_Handler
3: accept (sh->peer())3: accept (sh->peer())
4: sh->open()4: sh->open()

OS  EVENT  DEMULTIPLEXING  INTERFACE

:Timer:Timer
QueueQueue : Reactor: Reactor

: Handle: Handle
TableTable
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The Acceptor Pattern

� Intent

{ \Decouple the passive initialization of a service

from the tasks performed once the service is

initialized"

� This pattern resolves the following forces
for network servers using interfaces like
sockets or TLI:

1. How to reuse passive connection establishment

code for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to enable exible policies for creation,

connection establishment, and concurrency

4. How to ensure that a passive-mode handle is

not accidentally used to read or write data
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Structure of the Acceptor Pattern

SvcSvc
HandlerHandler

peer_stream_
open()

AcceptorAcceptor

peer_acceptor_
accept()

Svc HandlerSvc Handler

ReactorReactor

ACTIVATES

ACTIVATES

SERVICESERVICE--
DEPENDENTDEPENDENT

SERVICESERVICE--
INDEPENDENTINDEPENDENT

� www.cs.wustl.edu/�schmidt/Acc-Con.ps.gz

66

Collaboration in the Acceptor

Pattern

ServerServer

REGISTER  HANDLERREGISTER  HANDLER

START  EVENT  LOOPSTART  EVENT  LOOP

CONNECTION  EVENTCONNECTION  EVENT

REGISTER  HANDLERREGISTER  HANDLER

FOR  CLIENT  FOR  CLIENT  I/OI/O

FOREACH  EVENT  DOFOREACH  EVENT  DO

EXTRACT  HANDLEEXTRACT  HANDLE

INITIALIZE  PASSIVEINITIALIZE  PASSIVE

ENDPOINTENDPOINT
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handle_input()

handle_close()
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select()
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peer_acceptor_
: SOCK
Acceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

register_handler(sh)

� Acceptor factory creates, connects, and

activates a Svc Handler
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Using the Acceptor Pattern in the

Logging Server

PASSIVE

LISTENER

ACTIVE

CONNECTIONS

: Svc
Handler

: Logging
Handler

: Svc
Handler

: Logging
Handler

: Svc
Handler

: Logging
Handler

: Svc
Handler

: Logging
Handler

: Acceptor

: Logging
Acceptor

1: handle_input()
2: sh = make_svc_handler()
3: accept_svc_handler(sh)
4: activate_svc_handler(sh)

: Reactor
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Structure of the Acceptor Pattern

in ACE

ReactorReactor11

AcceptorAcceptor

SVC_HANDLERSVC_HANDLER

PEER_ACCEPTORPEER_ACCEPTOR

ConcreteConcrete
AcceptorAcceptor

Concrete_Svc_Handler
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Handler

PEER_STREAM

open()

A

sh = make_svc_handler();

accept_svc_handler (sh);

activate_svc_handler (sh);

n

Event
Handler

handle_input()

A

make_svc_handler()
accept_svc_handler()
activate_svc_handler()
open()
handle_input()
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Acceptor Class Public Interface

� A reusable template factory class that ac-

cepts connections from clients

template <class SVC_HANDLER, // Service aspect
class PEER_ACCEPTOR>, // IPC aspect

class Acceptor : public Service_Object {
// Service_Object inherits from Event_Handler

public:
// Initialization.

virtual int open (const PEER_ACCEPTOR::PEER_ADDR &,
Reactor * = Reactor::instance ());

// Template Method or Strategy for creating,
// connecting, and activating SVC_HANDLER's.

virtual int handle_input (HANDLE);

� Note how service and IPC aspects are strategized: : :
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Acceptor Class Protected and

Private Interfaces

� Only visible to the class and its subclasses

protected:
// Factory method that creates a service handler.

virtual SVC_HANDLER *make_svc_handler (void);

// Factory method that accepts a new connection.
virtual int accept_svc_handler (SVC_HANDLER *);

// Factory method that activates a service handler.
virtual int activate_svc_handler (SVC_HANDLER *);

private:
// Passive connection mechanism.

PEER_ACCEPTOR peer_acceptor_;
};
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Acceptor Class Implementation

// Shorthand names.
#define SH SVC_HANDLER
#define PA PEER_ACCEPTOR

// Template Method Factory that creates, connects,
// and activates SVC_HANDLERs.

template <class SH, class PA> int
Acceptor<SH, PA>::handle_input (HANDLE)
{

// Factory Method that makes a service handler.

SH *svc_handler = make_svc_handler ();

// Accept the connection.

accept_svc_handler (svc_handler);

// Delegate control to the service handler.

activate_svc_handler (svc_handler);
}
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// Factory method for creating a service handler.
// Can be overridden by subclasses to define new
// allocation policies (such as Singletons, etc.).

template <class SH, class PA> SH *
Acceptor<SH, PA>::make_svc_handler (HANDLE)
{

return new SH; // Default behavior.
}

// Accept connections from clients (can be overridden).

template <class SH, class PA> int
Acceptor<SH, PA>::accept_svc_handler (SH *svc_handler)
{

peer_acceptor_.accept (svc_handler->peer ());
}

// Activate the service handler (can be overridden).

template <class SH, class PA> int
Acceptor<SH, PA>::activate_svc_handler (SH *svc_handler)
{

if (svc_handler->open () == -1)
svc_handler->close ();

}
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// Initialization.

template <class SH, class PA> int
Acceptor<SH, PA>::open (const PA::PEER_ADDR &addr,

Reactor *reactor)
{

// Forward initialization to concrete peer acceptor
peer_acceptor_.open (addr);

// Register with Reactor.

reactor->register_handler
(this, Event_Handler::ACCEPT_MASK);

}
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Svc Handler Class Public Interface

� Provides a generic interface for communi-

cation services that exchange data with a

peer over a network connection

template <class PEER_STREAM, // IPC aspect
class SYNCH_STRATEGY> // Synchronization aspect

class Svc_Handler : public Task<SYNCH_STRATEGY>
{
public:

// Constructor.
Svc_Handler (Reactor * = Reactor::instance ());

// Activate the client handler.
virtual int open (void *);

// Return underlying IPC mechanism.
PEER_STREAM &peer (void);

� Note how IPC and synchronization aspects

are strategized: : :
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Svc Handler Class Protected

Interface

� Contains the demultiplexing hooks and other

implementation artifacts

protected:
// Demultiplexing hooks inherited from Task.

virtual int handle_close (HANDLE, Reactor_Mask);
virtual HANDLE get_handle (void) const;
virtual void set_handle (HANDLE);

private:
// Ensure dynamic initialization.

virtual ~Svc_Handler (void);

PEER_STREAM peer_; // IPC mechanism.
Reactor *reactor_;

};
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Svc Handler implementation

� By default, a Svc Handler object is regis-
tered with the Reactor

{ This makes the service singled-threaded and

no other synchronization mechanisms are nec-
essary

#define PS PEER_STREAM // Convenient short-hand.

template <class PS, class SYNCH_STRATEGY>
Svc_Handler<PS, SYNCH_STRATEGY>::Svc_Handler
(Reactor *r): reactor_ (r) {}

template <class PS, class SYNCH_STRATEGY> int
Svc_Handler<PS, SYNCH_STRATEGY>::open (void *)
{

// Enable non-blocking I/O.
peer ().enable (ACE_NONBLOCK);

// Register handler with the Reactor.
reactor_->register_handler

(this, Event_Handler::READ_MASK);
}
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Object Diagram for OO Logging

Server

: Logging: Logging
HandlerHandler

: Service: Service
RepositoryRepository

: Service: Service
ConfigConfig

: Reactor: Reactor

SERVERSERVER

SERVERSERVER

LOGGINGLOGGING

DAEMONDAEMON

: Service: Service
ManagerManager

: Logging: Logging
HandlerHandler

: Logging: Logging
AcceptorAcceptor

CONNECTIONCONNECTION

REQUESTREQUEST

REMOTEREMOTE

CONTROLCONTROL

OPERATIONSOPERATIONS

CLIENTCLIENT

LOGGINGLOGGING

RECORDSRECORDS

CLIENTCLIENT CLIENTCLIENT
CLIENTCLIENT
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The Logging Handler and

Logging Acceptor Classes

� Templates implement application-speci�c

logging server

// Performs I/O with client logging daemons.

class Logging_Handler :
public Svc_Handler<SOCK_Acceptor::PEER_STREAM,

NULL_SYNCH> {
public:

// Recv and process remote logging records.
virtual int handle_input (HANDLE);

};

// Logging_Handler factory.

class Logging_Acceptor :
public Acceptor<Logging_Handler, SOCK_Acceptor> {

public:
// Dynamic linking hooks.

virtual int init (int argc, char *argv[]);
virtual int fini (void);

};
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OO Design Interlude

IPC_SAP

A

SOCK_SAP TLI_SAP FIFO_SAPSPIPE_SAP

SOCKET

API

TRANSPORT

LAYER

INTERFACE  API

STREAM  PIPE

API

NAMED  PIPE

API

� Q:What are the SOCK * classes and why

are they used rather than using sockets

directly?

� A: SOCK * are \wrappers" that encapsu-
late network programming interfaces like
sockets and TLI

{ This is an example of the \Wrapper pattern"
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SOCK SAP Class Structure
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SOCK SAP Factory Class

Interfaces

class SOCK_Connector
{
public:

// Traits
typedef INET_Addr PEER_ADDR;
typedef SOCK_Stream PEER_STREAM;

int connect (SOCK_Stream &new_sap,
const Addr &remote_addr,
Time_Value *timeout);

// ...
};

class SOCK_Acceptor : public SOCK
{
public:

// Traits
typedef INET_Addr PEER_ADDR;
typedef SOCK_Stream PEER_STREAM;

SOCK_Acceptor (const Addr &local_addr);

int accept (SOCK_Stream &, Addr *, Time_Value *) const;
//...

};
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SOCK SAP Stream and

Addressing Class Interfaces

class SOCK_Stream : public SOCK
{
public:

typedef INET_Addr PEER_ADDR; // Trait.

ssize_t send (const void *buf, int n);
ssize_t recv (void *buf, int n);
ssize_t send_n (const void *buf, int n);
ssize_t recv_n (void *buf, int n);
int close (void);
// ...

};

class INET_Addr : public Addr
{
public:

INET_Addr (u_short port_number, const char host[]);
u_short get_port_number (void);
int32 get_ip_addr (void);
// ...

};
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OO Design Interlude

� Q:Why decouple the SOCK Acceptor and

the SOCK Connector from SOCK Stream?

� A: For the same reasons that Acceptor
and Connector are decoupled from Svc Handler,
e.g.,

{ A SOCK Stream is only responsible for data

transfer

� Regardless of whether the connection is es-
tablished passively or actively

{ This ensures that the SOCK* components are

never used incorrectly: : :

� e.g., you can't accidentally read or write
on SOCK Connectors or SOCK Acceptors,
etc.
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SOCK SAP Hierarchy

 LSOCK LSOCK
DgramDgram

 SOCK SOCK
DgramDgram

 SOCK SOCK
CODgramCODgram

 LSOCK LSOCK
CODgramCODgram

 LSOCK LSOCK
ConnectorConnector

 LSOCK LSOCK
AcceptorAcceptor

 SOCK SOCK
AcceptorAcceptor

 SOCK SOCK
ConnectorConnector

 SOCK SOCK

AA

 LSOCK LSOCK

AA

IPCIPC
SAPSAP

AA

 SOCK SOCK
DgramDgram
McastMcast

 SOCK SOCK
DgramDgram
BcastBcast

GROUPGROUP

COMMCOMM

DATAGRAMDATAGRAM

COMMCOMM

STREAMSTREAM

COMMCOMM

CONNECTIONCONNECTION

ESTABLISHMENTESTABLISHMENT

SOCKSOCK
StreamStream

LSOCKLSOCK
StreamStream

� Shared behavior is isolated in base classes

� Derived classes implement di�erent com-

munication services, communication do-

mains, and connection roles

� www.cs.wustl.edu/�schmidt/IPC SAP�92.ps.gz
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OO Design Interlude

� Q: \How can you switch between di�erent

IPC mechanisms?"

� A: By parameterizing IPC Mechanisms with

C++ Templates!

#if defined (ACE_USE_SOCKETS)
typedef SOCK_Acceptor PEER_ACCEPTOR;
#elif defined (ACE_USE_TLI)
typedef TLI_Acceptor PEER_ACCEPTOR;
#endif /* ACE_USE_SOCKETS */

class Logging_Handler : public
Svc_Handler<PEER_ACCEPTOR::PEER_STREAM,

NULL_SYNCH>
{ /* ... /* };

class Logging_Acceptor : public
Acceptor <Logging_Handler, PEER_ACCEPTOR>

{ /* ... */ };
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Logging Handler Implementation

� Implementation of the application-speci�c

logging method

// Callback routine that receives logging records.
// This is the main code supplied by a developer!

int
Logging_Handler::handle_input (HANDLE)
{

// Call existing function to recv
// logging record and print to stdout.
handle_log_record (peer ().get_handle (), STDOUT);

}
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// Automatically called when a Logging_Acceptor object
// is dynamically linked.

Logging_Acceptor::init (int argc, char *argv[])
{

Get_Opt get_opt (argc, argv, "p:", 0);
INET_Addr addr;

for (int c; (c = get_opt ()) != -1; )
switch (c)

{
case 'p':

addr.set (atoi (getopt.optarg));
break;

default:
break;

}

// Initialize endpoint and register with the Reactor
open (addr, Reactor::instance ());

}

// Automatically called when object is dynamically unlinked.

Logging_Acceptor::fini (void)
{

handle_close ();
}
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Putting the Pieces Together at

Run-time

� Problem

{ Prematurely committing ourselves to a particu-
lar logging server con�guration is inexible and

ine�cient

� Forces

{ It is useful to build systems by \scripting" com-
ponents

{ Certain design decisions can't be made e�-

ciently until run-time

{ It is a bad idea to force users to \pay" for
components they do not use

� Solution

{ Use the Service Con�gurator pattern to assem-

ble the desired logging server components dy-
namically
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The Service Con�gurator Pattern

� Intent

{ \Decouple the behavior of services from the
point in time at which these services are con-

�gured into an application"

� This pattern resolves the following forces
for highly exible communication software:

{ How to defer the selection of a particular type,

or a particular implementation, of a service un-

til very late in the design cycle

� i.e., at installation-time or run-time

{ How to build complete applications by scripting

multiple independently developed services

{ How to recon�gure and control the behavior of
the service at run-time
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Structure of the Service

Con�gurator Pattern
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Collaboration in the Service

Con�gurator Pattern

: Service: Service
ConfigConfig

main()main()

REGISTER  SERVICEREGISTER  SERVICE

START  EVENT  LOOPSTART  EVENT  LOOP

INCOMING  EVENTINCOMING  EVENT

FOREACH  EVENT  DOFOREACH  EVENT  DO

STORE  IN  REPOSITORYSTORE  IN  REPOSITORY

CONFIGURECONFIGURE

FOREACH  SVC  ENTRY  DOFOREACH  SVC  ENTRY  DO

svc :svc :
Service_ObjectService_Object

: Reactor: Reactor

run_event_loop()

handle_events()

handle_input()

Service_Config()

: Service: Service
RepositoryRepository

insert()
EXTRACT  HANDLE

INITIALIZE  SERVICE
init(argc, argv)

fini()

DYNAMICALLY  LINK
SERVICE

link_service()

unlink_service()

SHUTDOWN  EVENT handle_close()

UNLINK  SERVICE
remove()

register_handler(svc)

get_handle()

remove_handler(svc)
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Using the Service Con�gurator

Pattern for the Logging Server

 Service Service
ConfigConfig

SERVICESERVICE

CONFIGURATORCONFIGURATOR

RUNTIMERUNTIME

 Service Service
RepositoryRepository

 Reactor Reactor

 Service Service
ObjectObject

 Reactive Reactive
LoggerLogger

 Service Service
ObjectObject

 Thread Pool Thread Pool
LoggerLogger

DLLDLLSS

 Service Service
ObjectObject

 Thread Thread
LoggerLogger

dynamic Logger Service_Object *
   logger:make_logger() "-p 2001"

svc.conf
FILE

� Existing service is single-threaded, other

versions could be multi-threaded: : :
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Dynamic Linking a Service

� Application-speci�c factory function used

to dynamically create a service

// Dynamically linked factory function that allocates
// a new Logging_Acceptor object dynamically

extern "C" Service_Object *make_Logger (void);

Service_Object *
make_Logger (void)
{

return new Logging_Acceptor;
// Framework automatically deletes memory.

}

� The make Logger function provides a hook
between an application-speci�c service and
the application-independent ACE mecha-
nisms

{ ACE handles all memory allocation and deallo-
cation
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Service Con�guration

� The logging service is con�gured via script-

ing in a svc.conf �le:

% cat ./svc.conf
# Dynamically configure the logging service
dynamic Logger Service_Object *

logger:make_Logger() "-p 2010"
# Note, .dll or .so suffix added to "logger" automatically

� Generic event-loop to dynamically con�g-

ure service daemons

int
main (int argc, char *argv[])
{

// Initialize the daemon and configure services
Service_Config::open (argc, argv);

// Run forever, performing configured services
Reactor::run_event_loop ();
/* NOTREACHED */

}
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State-chart Diagram for the

Service Con�gurator Pattern

INITIALIZEDINITIALIZED

CONFIGURE/CONFIGURE/
Service_ConfigService_Config::::process_directivesprocess_directives()()

NETWORKNETWORK    EVENT/EVENT/
ReactorReactor::::dispatchdispatch()()

RECONFIGURE/RECONFIGURE/
Service_ConfigService_Config::::process_directivesprocess_directives()()

SHUTDOWN/SHUTDOWN/
Service_ConfigService_Config::::closeclose()()

AWAITINGAWAITING
EVENTSEVENTS

CALLCALL    HANDLER/HANDLER/
Event_HandlerEvent_Handler::::handle_inputhandle_input()()

IDLEIDLE

PERFORMPERFORM
CALLBACKCALLBACK

STARTSTART    EVENTEVENT    LOOP/LOOP/
ReactorReactor::::run_event_looprun_event_loop()()

� Note the separation of concerns between

objects: : :
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Collaboration of Patterns in the

Server Logging Daemon

: Service: Service
ConfigConfig

LoggerLogger
DaemonDaemon

REGISTER  SERVICEREGISTER  SERVICE

START  EVENT  LOOPSTART  EVENT  LOOP

CONNECTION  EVENTCONNECTION  EVENT

DATA  EVENTDATA  EVENT

REGISTER   HANDLERREGISTER   HANDLER

FOR  CLIENT  FOR  CLIENT  I/OI/O

PROCESS  LOGGINGPROCESS  LOGGING

RECORDRECORD

FOREACH  EVENT  DOFOREACH  EVENT  DO

STORE  IN  REPOSITORYSTORE  IN  REPOSITORY

CONFIGURECONFIGURE

FOREACH  SVC  ENTRY  DOFOREACH  SVC  ENTRY  DO

A :A :
Logging
Acceptor

: Reactor: Reactor

handle_events()

handle_input()

register_handler(C)

handle_input()

write()

: Service: Service
RepositoryRepository

process_directives()

insert()

C :C :
LoggingLogging
HandlerHandler

EXTRACT  HANDLEEXTRACT  HANDLE

EXTRACT  HANDLEEXTRACT  HANDLE

get_handle()

INITIALIZE  SERVICEINITIALIZE  SERVICE

DAEMON  SHUTDOWNDAEMON  SHUTDOWN

fini()

LINK  SERVICELINK  SERVICE
link_service()

remove()
unlink_service()

ALLOCATE  ANDALLOCATE  AND
   ACTIVATE  OBJECT   ACTIVATE  OBJECT

CLIENT  SHUTDOWNCLIENT  SHUTDOWN

handle_close()

UNLINK  SERVICEUNLINK  SERVICE

remove_handler(C)

C = new Logging_Handler
accept (C);
C->open(A)

register_handler(A)

run_event_loop()

Service_Config()

get_handle()

init(argc, argv)

handle_close()

remove_handler(A)
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Advantages of OO Logging

Server

� The OO architecture illustrated thus far
decouples application-speci�c service func-
tionality from:

* Time when a service is con�gured into a process

* The number of services per-process

* The type of IPC mechanism used

* The type of event demultiplexing mechanism used

� We can use the techniques discussed thus
far to extend applications without:

1. Modifying, recompiling, and relinking existing

code

2. Terminating and restarting executing daemons

� The remainder of the slides examine a set

of techniques for decoupling functionality

from concurrency mechanisms, as well

102

Concurrent OO Logging Server

� The structure of the server logging dae-

mon can bene�t from concurrent execu-

tion on a multi-processor platform

� This section examines ACE C++ classes
and patterns that extend the logging server
to incorporate concurrency

{ Note how most extensions require minimal changes

to the existing OO architecture: : :

� This example also illustrates additional ACE

components involving synchronization and

multi-threading
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Concurrent OO Logging Server

Architecture

NETWORKNETWORK

SERVERSERVER

LOGGING  DAEMONLOGGING  DAEMON

CLIENTCLIENT

SERVERSERVER

: logging: logging
acceptoracceptor

: logging: logging
handlerhandler

CONNECTION

REQUEST

LOGGING

RECORDS

CLIENTCLIENT

CLIENTCLIENT

: logging
handler

LOGGING

RECORDS

� Thread-per-connection implementation
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Pseudo-code for Concurrent

Server

� Pseudo-code for multi-threaded Logging Handler
factory server logging daemon

void handler factory (void)

f

initialize listener endpoint

foreach (pending connection event) f

accept connection

spawn a thread to handle connection and

run logger handler() entry point

g

g

� Pseudo-code for server logging daemon
active object

void logging handler (void)

f

foreach (incoming logging records from client)

call handle log record()

exit thread

g
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Application-speci�c Logging Code

� The OO implementation localizes the application-

speci�c part of the logging service in a

single point, while leveraging o� reusable

ACE components

// Process remote logging records. Loop until
// the client terminates the connection.

int
Thr_Logging_Handler::svc (void)
{

while (handle_input () != -1)
// Call existing function to recv logging
// record and print to stdout.
continue;

return 0;
}
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Class Diagram for Concurrent

OO Logging Server

Thr
Logging
Acceptor

Thr_Logging_Handler
SOCK_Acceptor

ThrThr
LoggingLogging
HandlerHandler

SOCK_Stream
NULL_Synch

Svc
Handler

Acceptor

SVC_HANDLER
PEER_ACCEPTOR PEER_STREAM

SYNCH

C
O

N
N

E
C

T
IO

N
C

O
N

N
E

C
T

IO
N

--
O

R
IE

N
T

E
D

O
R

IE
N

T
E

D

C
O

M
P

O
N

E
N

T
S

C
O

M
P

O
N

E
N

T
S

A
P

P
L

IC
A

T
IO

N
A

P
P

L
IC

A
T

IO
N

--
S

P
E

C
IF

IC
S

P
E

C
IF

IC

C
O

M
P

O
N

E
N

T
S

C
O

M
P

O
N

E
N

T
S

A
C

E
A

C
E

F
R

A
M

E
W

O
R

K
F

R
A

M
E

W
O

R
K

C
O

M
P

O
N

E
N

T
S

C
O

M
P

O
N

E
N

T
S

PEER
ACCEPTOR

PEER
STREAM

StreamStream

ServiceService
ConfiguratorConfigurator

ConcurrencyConcurrency
global

IPC_SAPIPC_SAP

ConnectionConnection

ReactorReactor

ACTIVATES

1 nn

107

Thr Logging Acceptor and

Thr Logging Handler

� Template classes that create, connect, and

activate a new thread to handle each client

class Thr_Logging_Handler : public Logging_Handler
// Inherits <handle_input>

{
public:

// Override definition in the Svc_Handler
// class (spawns a new thread!).

virtual int open (void *);

// Process remote logging records.
virtual int svc (void);

};

class Thr_Logging_Acceptor :
public Acceptor<Thr_Logging_Handler,

SOCK_Acceptor>
{

// Same as Logging_Acceptor...
};
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// Override definition in the Svc_Handler class
// (spawns a new thread in this case!).

int
Thr_Logging_Handler::open (void *)
{

// Spawn a new thread to handle
// logging records with the client.
activate (THR_BOUND | THR_DETACHED);

}

// Process remote logging records. Loop until
// the client terminates the connection.

int
Thr_Logging_Handler::svc (void)
{

while (handle_input () != -1)
// Call existing function to recv logging
// record and print to stdout.
continue;

return 0;
}
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ACE Tasks

� An ACE Task binds a separate thread of
control together with an object's data and
methods

{ Multiple active objects may execute in paral-

lel in separate lightweight or heavyweight pro-

cesses

� Task objects communicate by passing typed
messages to other Tasks

{ Each Task maintains a queue of pending mes-

sages that it processes in priority order

� ACE Task are a low-level mechanism to

support \active objects"
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Task Inheritance Hierarchy

EventEvent
HandlerHandler

handle_input()
handle_output()
handle_exception()
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handle_close()
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� Supports dynamically con�gured services
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Task Class Public Interface

� C++ interface for message processing

* Tasks can register with a Reactor
* They can be dynamically linked
* They can queue data
* They can run as \active objects"

� e.g.,

template <class SYNCH_STRATEGY>
class Task : public Service_Object
{
public:

// Initialization/termination hooks.
virtual int open (void *args = 0) = 0;
virtual int close (u_long flags = 0) = 0;

// Hook to pass msg for immediate processing.
virtual int put (Message_Block *,

Time_Value * = 0) = 0;

// Hook run by daemon thread(s) for
// deferred processing.

virtual int svc (void) = 0;

// Turn task into an active object.
int activate (long flags, int n_threads = 1);
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Task Class Protected Interface

� The following methods are mostly used

within put and svc

// Accessors to internal queue.
Message_Queue<SYNCH_STRATEGY> *msg_queue (void);
void msg_queue (Message_Queue<SYNCH_STRATEGY> *);

// Accessors to thread manager.
Thread_Manager *thr_mgr (void);
void thr_mgr (Thread_Manager *);

// Insert message into the message list.
int putq (Message_Block *, Time_Value *tv = 0);

// Extract the first message from the list (blocking).
int getq (Message_Block *&mb, Time_Value *tv = 0);

// Hook into the underlying thread library.
static void *svc_run (Task<SYNCH_STRATEGY> *);
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OO Design Interlude

� Q:What is the svc run() function and why

is it a static method?

� A: OS thread spawn APIs require a C-style

function as the entry point into a thread

� The Stream class category encapsulates the

svc run function within the Task::activate

method:

template <class SYNCH_STRATEGY> int
Task<SYNCH_STRATEGY>::activate (long flags, int n_threads)
{

if (thr_mgr () == NULL)
thr_mgr (Thread_Manager::instance ());

thr_mgr ()->spawn_n
(n_threads, &Task<SYNCH_STRATEGY>::svc_run,
(void *) this, flags);

}
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OO Design Interlude (cont'd)

� Task::svc run is static method used as the

entry point to execute an instance of a

service concurrently in its own thread

template <class SYNCH_STRATEGY> void *
Task<SYNCH_STRATEGY>::svc_run (Task<SYNCH_STRATEGY> *t)
{

// Thread added to thr_mgr()
// automatically on entry...

// Run service handler and record return value.
void *status = (void *) t->svc ();

tc.status (status);
t->close (u_long (status));

// Status becomes `return' value of thread...
return status;

// Thread removed from thr_mgr()
// automatically on return...

}
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OO Design Interlude

� Q: \How can groups of collaborating threads

be managed atomically?"

� A: Develop a \thread manager" class

{ Thread Manager is a collection class

� It provides mechanisms for suspending and

resuming groups of threads atomically

� It implements barrier synchronization on thread

exits

{ Thread Manager also shields applications from
incompabitilities between di�erent OS thread

libraries

� It is integrated into ACE via the Task::activate
method
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The Active Object Pattern

� Intent

{ \Decouple method execution from method in-

vocation and simpli�es synchronized access to
shared resources by concurrent threads"

� This pattern resolves the following forces
for concurrent communication software:

{ How to allow blocking read and write opera-

tions on one endpoint that do not detract from

the quality of service of other endpoints

{ How to serialize concurrent access to shared

object state

{ How to simplify composition of independent

services
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Structure of the Active Object

Pattern

ProxyProxy

Future m1()
Future m2()
Future m3()

SchedulerScheduler

dispatch()
enqueue()

INVISIBLEINVISIBLE
TOTO

CLIENTSCLIENTS

VISIBLEVISIBLE
TOTO

CLIENTSCLIENTS

11

11 2: enqueue(M1)

1: enqueue(new M1)

3: dispatch()

loop {
  m = act_queue_.dequeue()
  m.call()
}

Servant
1

m1()
m2()
m3()

Activation
Queue

enqueue()
dequeue()

1

1

n
Method
Request

call()
4: m1()

11 11

M1M1

M3M3

M2M2

� www.cs.wustl.edu/�schmidt/Act-Obj.ps.gz
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Collaboration in the Active

Object Pattern
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CREATE  METHODCREATE  METHOD
REQUESTREQUEST

reply_to_future()
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                  ACTIVATION  QUEUE                  ACTIVATION  QUEUE

enqueue(new M1)
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ACE Support for Active Objects

ACTIVEACTIVE

::  MessageMessage
QueueQueue

tt22 : :

TaskTask
2: enqueue (msg)2: enqueue (msg)

1: put (msg)1: put (msg)

::  MessageMessage
QueueQueue

tt11 : :

TaskTask

::  MessageMessage
QueueQueue

tt33 : :

TaskTask

6: put (msg)6: put (msg)

3: svc ()3: svc ()
4: dequeue (msg)4: dequeue (msg)
5: do_work(msg)5: do_work(msg)

ACTIVEACTIVE

ACTIVEACTIVE

:: TASK TASK

STATESTATE

:: TASK TASK

STATESTATE

:: TASK TASK

STATESTATE

� Can implement complete Active Object

pattern or lighterweight subsets
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Collaboration in ACE Active

Objects
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Dynamically Recon�guring the

Logging Server

� The concurrent logger is recon�gured by

changing the svc.conf �le and sending SIGHUP

signal to the server:

// Dynamically linked factory function that
// allocates a new threaded Logging Acceptor.

extern "C" Service_Object *make_Logger (void);

Service_Object *
make_Logger (void)
{

return new Thr_Logging_Acceptor;
}

% cat ./svc.conf
# Dynamically configure the logging service
# dynamic Logger Service_Object *
# /svcs/logger.dll:make_Logger() "-p 2010"
remove Logger
dynamic Logger Service_Object *

thr_logger:make_Logger() "-p 2010"
# .dll or .so suffix added to "thr_logger" automatically
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Caveats

� The concurrent server logging daemon has
several problems

1. Output in the handle log record function is

not serialized

2. The auto-increment of global variable request count
is also not serialized

� Lack of serialization leads to errors on
many shared memory multi-processor platforms: : :

{ Note that this problem is indicative of a large

class of errors in concurrent programs: : :

� The following slides compare and contrast

a series of techniques that address this

problem
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Explicit Synchronization

Mechanisms

� One approach for serialization uses OS

mutual exclusion mechanisms explicitly, e.g.,

// at file scope
mutex_t lock; // SunOS 5.x synchronization mechanism

// ...
handle_log_record (HANDLE in_h, HANDLE out_h)
{

// in method scope ...
mutex_lock (&lock);
write (out_h, log_record.buf, log_record.size);
mutex_unlock (&lock);
// ...

}

� However, adding these mutex calls explic-

itly is causes problems: : :
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Problems Galore!

� Problems with explicit mutex * calls:

{ Inelegant

� \Impedance mismatch" with C/C++

{ Obtrusive

� Must �nd and lock all uses of write

{ Error-prone

� C++ exception handling and multiple method

exit points cause subtle problems

� Global mutexes may not be initialized correctly: : :

{ Non-portable

� Hard-coded to Solaris 2.x

{ Ine�cient

� e.g., expensive for certain platforms/designs
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C++ Wrappers for

Synchronization

� To address portability problems, de�ne a

C++ wrapper:

class Thread_Mutex
{
public:

Thread_Mutex (void) {
mutex_init (&lock_, USYNCH_THREAD, 0);

}
~Thread_Mutex (void) { mutex_destroy (&lock_); }
int acquire (void) { return mutex_lock (&lock_); }
int tryacquire (void) { return mutex_trylock (&lock); }
int release (void) { return mutex_unlock (&lock_); }

private:
mutex_t lock_; // SunOS 5.x serialization mechanism.
void operator= (const Thread_Mutex &);
Thread_Mutex (const Thread_Mutex &);

};

� Note, this mutual exclusion class interface

is portable to other OS platforms
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Porting Mutex to Windows NT

� WIN32 version of Mutex

class Thread_Mutex
{
public:
Thread_Mutex (void) {
lock_ = CreateMutex (0, FALSE, 0);

}
~Thread_Mutex (void) {

CloseHandle (lock_);
}
int acquire (void) {
return WaitForSingleObject (lock_, INFINITE);

}
int tryacquire (void) {

return WaitForSingleObject (lock_, 0);
}
int release (void) {
return ReleaseMutex (lock_);

}
private:

HANDLE lock_; // Win32 locking mechanism.
// ...
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Using the C++ Mutex Wrapper

� Using C++ wrappers improves portability

and elegance

// at file scope

Thread_Mutex lock; // Implicitly "unlocked".

// ...
handle_log_record (HANDLE in_h, HANDLE out_h)
{

// in method scope ...

lock.acquire ();
write (out_h, log_record.buf, log_record.size);
lock.release ();

// ...
}

� However, this doesn't really solve the te-

dium or error-proneness problems
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Automated Mutex Acquisition and

Release

� To ensure mutexes are locked and un-

locked, we'll de�ne a template class that

acquires and releases a mutex automati-

cally

template <class LOCK>
class Guard
{
public:
Guard (LOCK &m): lock (m) { lock_.acquire (); }
~Guard (void) { lock_.release (); }

private:
LOCK &lock_;

}

� Guard uses the C++ idiom whereby a con-

structor acquires a resource and the de-

structor releases the resource
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OO Design Interlude

� Q: Why is Guard parameterized by the

type of LOCK?

� A: since there are many di�erent avors of
locking that bene�t from the Guard func-
tionality, e.g.,

* Non-recursive vs recursive mutexes

* Intra-process vs inter-process mutexes

* Readers/writer mutexes

* Solaris and System V semaphores

* File locks

* Null mutex

� In ACE, all synchronization wrappers use

to Adapter pattern to provide identical in-

terfaces whenever possible to facilitate pa-

rameterization
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The Adapter Pattern

� Intent

{ \Convert the interface of a class into another

interface client expects"

� Adapter lets classes work together that couldn't

otherwise because of incompatible interfaces

� This pattern resolves the following force
that arises when using conventional OS
interfaces

1. How to provide an interface that expresses the

similarities of seemingly di�erent OS mecha-
nisms (such as locking or IPC)
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Structure of the Adapter Pattern

client
Adapter

request()

1: request ()

2: specific_request()
Adaptee1

specific_request()Adaptee2

specific_request()Adaptee3

specific_request()
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Using the Adapter Pattern for

Locking

clientclient
GuardGuard

GuardGuard

Guard()
~Guard()

Guard()
~Guard()

1: Guard()

2: acquire()

LOCKLOCK

MutexMutex

3: mutex_lock()

MutexMutex

acquire()

Win32Win32
EnterCritical
Section()

SolarisSolaris

mutex_lock()

POSIXPOSIX
pthread_mutex
_lock()
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A thread-safe handle log record()

Function

template <class LOCK = Thread_Mutex> ssize_t
handle_log_record (HANDLE in_h, HANDLE out_h)
{

// new code (beware of static initialization...)
static LOCK lock;
ssize_t n;
size_t len;
Log_Record log_record;

n = recv (h, (char *) &len, sizeof len, 0);

if (n != sizeof len) return -1;
len = ntohl (len); // Convert byte-ordering

for (size_t nread = 0; nread < len; nread += n
n = recv (in_h, ((char *) &log_record) + nread,

len - nread, 0));
// Perform presentation layer conversions.
decode (&log_record);
// Automatically acquire mutex lock.
Guard<LOCK> monitor (lock);
write (out_h, log_record.buf, log_record.size);
// Automatically release mutex lock.

}
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Remaining Caveats

� There is a race condition when increment-

ing the request count variable

int Logging_Handler::handle_input (void)
{

ssize_t n = handle_log_record (peer ().get_handle (),
STDOUT);

if (n > 0)
// @@ Danger, race condition!!!
++request_count; // Count the # of logging records

return n <= 0 ? -1 : 0;
}

� Solving this problem using the Mutex or

Guard classes is still tedious, low-level, and

error-prone

� A more elegant solution incorporates pa-

rameterized types, overloading, and the

Decorator pattern
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Transparently Parameterizing

Synchronization Using C++

� The following C++ template class uses

the \Decorator" pattern to de�ne a set

of atomic operations on a type parameter

template <class LOCK = Thread_Mutex, class TYPE = u_long>
class Atomic_Op {
public:

Atomic_Op (TYPE c = 0) { count_ = c; }
TYPE operator++ (void) {
Guard<LOCK> m (lock_); return ++count_;

}
void operator= (const Atomic_Op &ao) {

if (this != &ao) {
Guard<LOCK> m (lock_); count_ = ao.count_;

}
}
operator TYPE () {
Guard<LOCK> m (lock_);
return count_;

}
// Other arithmetic operations omitted...

private:
LOCK lock_;
TYPE count_;

};
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Final Version of Concurrent

Logging Server

� Using the Atomic Op class, only one change

is made

// At file scope.
typedef Atomic_Op<> COUNTER; // Note default parameters...
COUNTER request_count;

� request count is now serialized automati-

cally
for (; ; ++request_count) // Atomic_Op::operator++

handle_log_record (get_handle (), STDOUT);

� The original non-threaded version may be

supported e�ciently as follows:

typedef Atomic_Op<Null_Mutex> COUNTER;
//...

for (; ; ++request_count)
handle_log_record<Null_Mutex>

(get_handle (), STDOUT);
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Synchronization-aware Logging

Classes

� A more sophisticated approach would add

several new parameters to the Logging Handler

class

template <class PEER_STREAM,
class SYNCH_STRATEGY, class COUNTER>

class Logging_Handler
: public Svc_Handler<PEER_STREAM, SYNCH_STRATEGY>

{
public:

Logging_Handler (void);
// Process remote logging records.

virtual int svc (void);

protected:
// Receive the logging record from a client.

ssize_t handle_log_record (HANDLE out_h);
// Lock used to serialize access to std output.

static SYNCH_STRATEGY::MUTEX lock_;
// Count the number of logging records that arrive.

static COUNTER request_count_;
};
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Thread-safe handle log record

Method

template <class PS, class LOCK, class COUNTER> ssize_t
Logging_Handler<PS, LOCK, COUNTER>::handle_log_record

(HANDLE out_h)
{

ssize_t n;
size_t len;
Log_Record log_record;

++request_count_; // Calls COUNTER::operator++().

n = peer ().recv (&len, sizeof len);

if (n != sizeof len) return -1;
len = ntohl (len); // Convert byte-ordering

peer ().recv_n (&log_record, len);

// Perform presentation layer conversions
log_record.decode ();
// Automatically acquire mutex lock.
Guard<LOCK> monitor (lock_);
write (out_h, log_record.buf, log_record.size);
// Automatically release mutex lock.

}
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Using the Thread-safe

handle log record() Method

� In order to use the thread-safe version, all

we need to do is instantiate with Atomic Op

typedef Logging_Handler<TLI_Stream,
NULL_SYNCH,
Atomic_Op<> >

LOGGING_HANDLER;

� To obtain single-threaded behavior requires

a simple change:

typedef Logging_Handler<TLI_Stream,
NULL_SYNCH,
Atomic_Op <Null_Mutex, u_long> >

LOGGING_HANDLER;
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Concurrent WWW Client/Server

Example

� The following example illustrates a con-

current OO architecture for a high-performance

Web client/server

� Key system requirements are:

1. Robust implementation of HTTP protocol

{ i.e., resilient to incorrect or malicious Web

clients/servers

2. Extensible for use with other protocols

{ e.g., DICOM, HTTP 1.1, SFP

3. Leverage multi-processor hardware and OS soft-

ware

{ e.g., support various concurrency models
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General Web Client/Server

Interactions

WWWWWW
SERVERSERVER

2: index.html2: index.html
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CLIENTCLIENT
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Pseudo-code for Concurrent

WWW Server

� Pseudo-code for master server

void master server (void)

f

initialize work queue and

listener endpoint at port 80

spawn pool of worker threads

foreach (pending work request from clients) f

receive and queue request on work queue

g

exit process

g

� Pseudo-code for thread pool workers

void worker (void)

f

foreach (work request on queue)

dequeue and process request

exit thread

g
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OO Design Interlude

� Q: Why use a work queue to store mes-

sages, rather than directly reading from

I/O handles?

� A:

{ Separation of concerns

{ Promotes more e�cient use of multiple CPUs
via load balancing

{ Enables transparent interpositioning and prior-

itization

{ Makes it easier to shut down the system cor-

rectly and portably

� Drawbacks

{ Using a message queue may lead to greater

context switching and synchronization overhead: : :

{ Single point for bottlenecks
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Thread Entry Point

� Each thread executes a function that serves
as the \entry point" into a separate thread
of control

{ Note algorithmic design: : :

typedef u_long COUNTER;
// Track the number of requests
COUNTER request_count; // At file scope.

// Entry point into the WWW HTTP 1.0 protocol.
void *worker (Message_Queue *msg_queue)
{

Message_Block *mb; // Message buffer.

while (msg_queue->dequeue_head (mb)) > 0) {
// Keep track of number of requests.
++request_count;

// Print diagnostic
cout << "got new request " << OS::thr_self ()

<< endl;

// Identify and perform WWW Server
// request processing here...

}
return 0;

}
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Master Server Driver Function

� The master driver function in the WWW

Server might be structured as follows:

// Thread function prototype.
typedef void *(*THR_FUNC)(void *);

int main (int argc, char *argv[]) {
parse_args (argc, argv);
Message_Queue msg_queue; // Queue client requests.

// Spawn off NUM_THREADS to run in parallel.
for (int i = 0; i < NUM_THREADS; i++)

thr_create (0, 0, THR_FUNC (&worker),
(void *) &msg_queue, THR_NEW_LWP, 0);

// Initialize network device and
// recv HTTP work requests.
thr_create (0, 0, THR_FUNC (&recv_requests),

(void *) &msg_queue, THR_NEW_LWP, 0);

// Wait for all threads to exit (BEWARE)!
while (thr_join (0, &t_id, (void **) 0) == 0)

continue; // ...
}

146

Pseudo-code for recv requests()

� e.g.,

void recv requests (Message Queue *msg queue)

f

initialize socket listener endpoint at port 80

foreach (incoming request)

f

use select to wait for new connections or data

if (connection)

establish connections using accept

else if (data) f

use sockets calls to read HTTP requests

into msg

msg queue.enqueue tail (msg);

g

g

g

� The \grand mistake:"

{ Avoid the temptation to \step-wise re�ne" this

algorithmically decomposed pseudo-code directly

into the detailed design and implementation of

the WWW Server!
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Limitations with the WWW

Server

� The algorithmic decomposition tightly cou-
ples application-speci�c functionality with
various con�guration-related characteris-
tics, e.g.,

{ The HTTP 1.0 protocol

{ The number of services per process

{ The time when services are con�gured into a
process

� The solution is not portable since it hard-
codes

{ SunOS 5.x threading

{ sockets and select

� There are race conditions in the code
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Overcoming Limitations via OO

� The algorithmic decomposition illustrated
above speci�es too many low-level details

{ Furthermore, the excessive coupling compli-

cates reusability, extensibility, and portability: : :

� In contrast, OO focuses on decoupling

application-speci�c behavior from reusable

application-independent mechanisms

� The OO approach described below uses

reusable framework components and com-

monly recurring patterns
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Eliminating Race Conditions

� Problem

{ A naive implementation of Message Queue will
lead to race conditions

� e.g., when messages in di�erent threads are

enqueued and dequeued concurrently

� Forces

{ Producer/consumer concurrency is common,

but requires careful attention to avoid over-

head, deadlock, and proper concurrency con-

trol

� Solution

{ Utilize a \condition variables"
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Condition Variable Overview

� Condition variables (CVs) are used to \sleep/wait"
until a particular condition involving shared
data is signaled

{ CVs may be arbitrarily complex C++ expres-
sions

{ Sleeping is often more e�cient than busy waiting: : :

� This allows more complex scheduling de-
cisions, compared with a mutex

{ i.e., a mutex makes other threads wait, whereas

a condition object allows a thread to make

itself wait for a particular condition involving

shared data
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Condition Variable Usage

� A particular idiom is associated with ac-
quiring resources via condition variables

// Global variables

static Thread Mutex lock; // Initially unlocked.

// Initially unlocked.

static Condition Thread Mutex cond (lock);

void acquire resources (void) f

// Automatically acquire the lock.

Guard<Thread Mutex> monitor (lock);

// Check condition (note the use of while)

while (condition expression is not true)

// Sleep if not expression is not true.

cond.wait ();

// Atomically modify shared information here: : :

// monitor destructor automatically releases lock.

g
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Condition Variable Usage (cont'd)

� Another idiom is associated with releasing
resources via condition variables

void release resources (void) f

// Automatically acquire the lock.

Guard<Thread Mutex> monitor (lock);

// Atomically modify shared information here: : :

cond.signal (); // Could also use cond.broadcast()

// monitor destructor automatically releases lock.

g

� Note how the use of the Guard idiom sim-
pli�es the solution

{ e.g., now we can't forget to release the lock!
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Condition Variable Interface

� In ACE, the Condition Thread Mutex class
is a wrapper for the native OS condition
variable abstraction

{ e.g., cond t on SunOS 5.x, pthread cond t
for POSIX, and a custom implementation on

Win32

class Condition_Thread_Mutex
public:

// Initialize the condition variable.
Condition_Thread_Mutex (const Thread_Mutex &);

// Implicitly destroy the condition variable.
~Condition_Thread_Mutex (void);

// Block on condition, or until time has
// passed. If time == 0 use blocking semantics.

int wait (Time_Value *time = 0) const;
// Signal one waiting thread.

int signal (void) const;
// Signal *all* waiting threads.

int broadcast (void) const;
private:

cond_t cond_; // Solaris condition variable.
const Thread_Mutex &mutex_;
// Reference to mutex lock.

};
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Overview of Message Queue and

Message Block Classes

� A Message Queue is composed of one or
more Message Blocks

{ Similar to BSD mbufs or SVR4 STREAMS
m blks

{ Goal is to enable e�cient manipulation of arbitrarily-

large message payloads without incurring un-

necessary memory copying overhead

� Message Blocks are linked together by prev

and next pointers

� A Message Block may also be linked to a

chain of other Message Blocks
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Message Queue and

Message Block Object Diagram

: Payload

: Payload

: Payload

: Message
Queue

head_
tail_

: Message: Message
BlockBlock

next_
prev_
cont_

: Message: Message
BlockBlock

next_
prev_
cont_

: Message: Message
BlockBlock

next_
prev_
cont_

: Payload: Payload

: Message: Message
BlockBlock

SYNCHSYNCH

STRATEGYSTRATEGY
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The Message Block Class

� The contents of a message are represented

by a Message Block

class Message_Block
{
friend class Message_Queue;
public:

Message_Block (size_t size,
Message_Type type = MB_DATA,
Message_Block *cont = 0,
char *data = 0,
Allocator *alloc = 0);

// ...

private:
char *base_;
// Pointer to beginning of payload.

Message_Block *next_;
// Pointer to next message in the queue.

Message_Block *prev_;
// Pointer to previous message in the queue.

Message_Block *cont_;
// Pointer to next fragment in this message.
// ...

};
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OO Design Interlude

� Q: What is the Allocator object in the

Message Block constructor?

� A: It provides extensible mechanism to con-
trol how memory is allocated and deallo-
cated

{ This makes it possible to switch memory man-
agement policies withoutmodifying Message Block

{ By default, the policy is to use new and delete,
but it's easy to use other schemes, e.g.,

* Shared memory

* Persistent memory

* Thread-speci�c memory

{ A similar technique is also used in the C++
Standard Template Library
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OO Design Interlude

� Here's an example of the interfaces used
in ACE

{ Note the use of the Adapter pattern to inte-

grate third-party memory allocators

class Allocator {
// ...
virtual void *malloc (size_t nbytes) = 0;
virtual void free (void *ptr) = 0;

};

template <class ALLOCATOR>
class Allocator_Adapter : public Allocator {
// ...
virtual void *malloc (size_t nbytes) {

return allocator_.malloc (nbytes);
}

ALLOCATOR allocator_;
};

Allocator_Adapter<Shared_Alloc> sh_malloc;
Allocator_Adapter<New_Alloc> new_malloc;
Allocator_Adapter<Persist_Alloc> p_malloc;
Allocator_Adapter<TSS_Alloc> p_malloc;
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The Message Queue Class Public

Interface

� A Message Queue is a thread-safe queueing
facility for Message Blocks

{ The bulk of the locking is performed in the

public methods

template <class SYNCH_STRATEGY>
class Message_Queue
{
public:

// Default high and low water marks.
enum { DEFAULT_LWM = 0, DEFAULT_HWM = 4096 };

// Initialize a Message_Queue.
Message_Queue (size_t hwm = DEFAULT_HWM,

size_t lwm = DEFAULT_LWM);

// Check if full or empty (hold locks)
int is_empty (void) const;
int is_full (void) const;

// Enqueue and dequeue Message_Block *'s.
int enqueue_prio (Message_Block *, Time_Value *);
int enqueue_tail (Message_Block *, Time_Value *);
int dequeue_head (Message_Block *&, Time_Value *);
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The Message Queue Class

Private Interface

� The bulk of the work is performed in the

private methods

private:
// Routines that actually do the enqueueing and
// dequeueing (do not hold locks).

int enqueue_prio_i (Message_Block *, Time_Value *);
int enqueue_tail_i (Message_Block *new_item, Time_Value *)
int dequeue_head_i (Message_Block *&first_item);

// Check the boundary conditions (do not hold locks).
int is_empty_i (void) const;
int is_full_i (void) const;

// ...

// Parameterized types for synchronization
// primitives that control concurrent access.
// Note use of C++ "traits"

SYNCH_STRATEGY::MUTEX lock_;
SYNCH_STRATEGY::CONDITION not_empty_cond_;
SYNCH_STRATEGY::CONDITION not_full_cond_;

};
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The Message Queue Class

Implementation

� Uses ACE synchronization wrappers

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::is_empty_i (void) const {

return cur_bytes_ <= 0 && cur_count_ <= 0;
}

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::is_full_i (void) const {
return cur_bytes_ > high_water_mark_;

}

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::is_empty (void) const {
Guard<SYNCH_STRATEGY::MUTEX> m (lock_);
return is_empty_i ();

}

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::is_full (void) const {
Guard<SYNCH_STRATEGY::MUTEX> m (lock_);
return is_full_i ();

}
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OO Design Interlude

� Q: How should locking be performed in an

OO class?

� A: In general, the following general pat-
tern is useful:

{ \Public functions should lock, private functions
should not lock"

� This also helps to avoid intra-class method

deadlock: : :

{ This is actually a variant on a common OO

pattern that \public functions should check,

private functions should trust"

{ Naturally, there are exceptions to this rule: : :
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// Queue new item at the end of the list.

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::enqueue_tail

(Message_Block *new_item, Time_Value *tv)
{

Guard<SYNCH_STRATEGY::MUTEX> monitor (lock_);

// Wait while the queue is full.

while (is_full_i ())
{

// Release the lock_ and wait for timeout, signal,
// or space becoming available in the list.
if (not_full_cond_.wait (tv) == -1)

return -1;
}

// Actually enqueue the message at the end of the list.
enqueue_tail_i (new_item);

// Tell blocked threads that list has a new item!
not_empty_cond_.signal ();

}
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// Dequeue the front item on the list and return it
// to the caller.

template <class SYNCH_STRATEGY> int
Message_Queue<SYNCH_STRATEGY>::dequeue_head

(Message_Block *&first_item, Time_Value *tv)
{

Guard<SYNCH_STRATEGY::MUTEX> monitor (lock_);

// Wait while the queue is empty.

while (is_empty_i ())
{

// Release the lock_ and wait for timeout, signal,
// or a new message being placed in the list.
if (not_empty_cond_.wait (tv) == -1)

return -1;
}

// Actually dequeue the first message.
dequeue_head_i (first_item);

// Tell blocked threads that list is no longer full.
not_full_cond_.signal ();

}

165

Overcoming Algorithmic

Decomposition Limitations

� The previous slides illustrate tactical OO
techniques, idioms, and patterns that:

1. Reduce accidental complexity e.g.,

{ Automate synchronization acquisition and re-

lease (C++ constructor/destructor idiom)

{ Improve consistency of synchronization in-
terface (Adapter and Wrapper patterns)

2. Eliminate race conditions

� The next slides describe strategic patterns,
frameworks, and components that:

1. Increase reuse and extensibility e.g.,

{ Decoupling solution from particular service,

IPC and demultiplexing mechanisms

2. Improve the exibility of concurrency control
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Selecting the Server's

Concurrency Architecture

� Problem

{ A very strategic design decision for high-performance

Web servers is selecting an e�cient concur-
rency architecture

� Forces

{ No single concurrency architecture is optimal

{ Key factors include OS/hardware platform and
workload

� Solution

{ Understand key alternative concurrency pat-

terns
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Concurrency Patterns in the Web

Server

� The following example illustrates the pat-

terns and framework components in an

OO implementation of a concurrent Web

Server

� There are various architectural patterns
for structuring concurrency in a Web Server

1. Reactive

2. Thread-per-request

3. Thread-per-connection

4. Synchronous Thread Pool

5. Asynchronous Thread Pool

168



Reactive Web Server

 Reactor Reactor

 HTTP HTTP
HandlerHandler

 HTTP HTTP
AcceptorAcceptor

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

6:6: PROCESS  HTTP  REQUEST PROCESS  HTTP  REQUEST

 HTTP HTTP
HandlerHandler

1:1: CONNECT CONNECT

2:2: HANDLE  INPUT HANDLE  INPUT

3:3: CREATE  HANDLER CREATE  HANDLER

4:4: ACCEPT  CONNECTION ACCEPT  CONNECTION

5:5: ACTIVATE  HANDLER ACTIVATE  HANDLER
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Thread-per-Request Web Server

SERVER

CLIENT

CLIENT
CLIENT

ReactorReactor

 HTTP HTTP
AcceptorAcceptor

HTTPHTTP
HandlerHandler

 HTTP HTTP
HandlerHandler

HTTPHTTP
HandlerHandler

6:6: PROCESS  HTTP REQUEST PROCESS  HTTP REQUEST
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2: HANDLE  INPUT

3: CREATE  HANDLER

4: ACCEPT  CONNECTION

5: SPAWN  THREAD
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Thread-per-Connection Web

Server

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

 HTTP HTTP
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 Reactor Reactor
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Handle-based Synchronous

Thread Pool Web Server

1:1: HTTP HTTP

              REQUEST              REQUEST

4:4: PROCESS  HTTP  REQUEST PROCESS  HTTP  REQUEST
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CLIENTCLIENT
CLIENTCLIENT
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HTTPHTTP
HandlerHandler

EventEvent
DispatcherDispatcher

HTTPHTTP
AcceptorAcceptor HTTP HTTP

AcceptorAcceptor

2:2: ACCEPT  CONNECTION ACCEPT  CONNECTION

3:3: MORPH  INTO  HANDLER MORPH  INTO  HANDLER

172



Queue-based Synchronous

Thread Pool Web Server

 Reactor

 HTTP
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Asynchronous Thread Pool Web

Server

ProactorProactor
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Web Server Software Architecture

HTTPHTTP
HandlerHandler

SockSock
StreamStream

HTTPHTTP
AcceptorAcceptor

SockSock
AcceptorAcceptor

EventEvent
DispatcherDispatcher

HTTPHTTP
HandlerHandler

SockSock
StreamStream

HTTPHTTP
HandlerHandler

SockSock
StreamStream

� Event Dispatcher

{ Encapsulates Web server concurrency and dis-
patching strategies

� HTTP Handlers

{ Parses HTTP headers and processes requests

� HTTP Acceptor

{ Accepts connections and creates HTTP Han-

dlers
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Patterns in the Web Server

Implementation

AcceptorAcceptor

ConnectorConnector

ThreadThread
PoolPool

Thread-perThread-per
RequestRequest

Thread-perThread-per
SessionSession

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

Strategy AdapterState

TACTICALTACTICAL    PATTERNSPATTERNS

STRATEGICSTRATEGIC    PATTERNSPATTERNS

DoubleDouble
CheckedChecked
LockingLocking

Singleton

ServiceService
ConfiguratorConfigurator

Reactor/Reactor/
ProactorProactor

AsynchronousAsynchronous
CompletionCompletion

TokenToken

ActiveActive
ObjectObject

Abstract
Factory
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Patterns in the WWW

Client/Server (cont'd)

� The WWW Client/Server uses same pat-
terns as distributed logger

{ i.e., Reactor, Service Con�gurator, Active Ob-
ject, and Acceptor

� It also contains following patterns:

{ Connector

� \Decouple the active initialization of a ser-

vice from the tasks performed once the ser-

vice is initialized"

{ Double-Checked Locking Optimization

� \Ensures atomic initialization of objects and

eliminates unnecessary locking overhead on

each access"

{ Half-Sync/Half-Async

� \Decouple synchronous I/O from asynchronous

I/O in a system to simplify concurrent pro-

gramming e�ort without degrading execu-
tion e�ciency"
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Architecture of Our WWW Server

: Reactor: Reactor

WWWWWW  SERVER  SERVER

: HTTP: HTTP
HandlerHandler

svc_runsvc_runsvc_runsvc_run

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
HandlerHandler

: HTTP: HTTP
AcceptorAcceptor

: Options: Options

svc_runsvc_run
svc_runsvc_run

: HTTP: HTTP
ProcessorProcessor

: Msg: Msg
QueueQueue

s
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An Integrated Reactive/Active

Web Server
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The HTTP Handler Public

Interface

� The HTTP Handler is the Proxy for commu-
nicating with clients (e.g., WWW browsers
like Netscape or IE)

{ It implements the asynchronous portion of Half-

Sync/Half-Async pattern

template <class PEER_ACCEPTOR>
class HTTP_Handler :
public Svc_Handler<PEER_ACCEPTOR::PEER_STREAM,

NULL_SYNCH> {
public:

// Entry point into HTTP_Handler, called by
// HTTP_Acceptor.

virtual int open (void *)
{

// Register with Reactor to handle client input.
Reactor::instance ()->register_handler

(this, READ_MASK);

// Register timeout in case client doesn't
// send any HTTP requests.
Reactor::instance ()->schedule_timer

(this, 0, Time_Value (HTTP_CLIENT_TIMEOUT));
}
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The HTTP Handler Protected

Interface

� The following methods are invoked by call-

backs from the Reactor

protected:
// Reactor notifies when client's timeout.

virtual int handle_timeout (const Time_Value &,
const void *)

{
// Remove from the Reactor.
Reactor::instance ()->remove_handler

(this, READ_MASK);
}

// Reactor notifies when client
// HTTP requests arrive.

virtual int handle_input (HANDLE);

// Receive/frame client HTTP requests (e.g., GET).
int recv_request (Message_Block &*);

};
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Integrating Multi-threading

� Problem

{ Multi-threaded Web servers are needed since

Reactive Web servers are often ine�cient and

non-robust

� Forces

{ Multi-threading can be very hard to program

{ No single multi-threading model is always op-

timal

� Solution

{ Use the Active Object pattern to allow multiple

concurrent server operations in an OO-manner
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Using the Active Object Pattern

in the WWW Server
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The HTTP Processor Class

� Processes HTTP requests using the \Thread-

Pool" concurrency model to implement

the synchronous task portion of the Half-

Sync/Half-Async pattern

class HTTP_Processor : public Task<MT_SYNCH> {
public:

// Singleton access point.
static HTTP_Processor *instance (void);

// Pass a request to the thread pool.
virtual int put (Message_Block *, Time_Value *);

// Entry point into a pool thread.
virtual int svc (int)
{

Message_Block *mb = 0; // Message buffer.

// Wait for messages to arrive.
for (;;)
{

getq (mb); // Inherited from class Task;
// Identify and perform HTTP Server
// request processing here...
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Using the Singleton

� The HTTP Processor is implemented as a

Singleton that is created \on demand"

// Singleton access point.

HTTP_Processor *
HTTP_Processor::instance (void)
{

// Beware of race conditions!
if (instance_ == 0)
instance_ = new HTTP_Processor;

return instance_;
}

// Constructor creates the thread pool.

HTTP_Processor::HTTP_Processor (void)
{

// Inherited from class Task.
activate (THR_NEW_LWP, num_threads);

}
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Subtle Concurrency Woes with

the Singleton Pattern

� Problem

{ The canonical Singleton implementation has

subtle \bugs" in multi-threaded applications

� Forces

{ Too much locking makes Singleton too slow: : :

{ Too little locking makes Singleton unsafe: : :

� Solution

{ Use the Double-Checked Locking optimization

pattern to minimize locking and ensure atomic

initialization
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The Double-Checked Locking

Optimization Pattern

� Intent

{ \Ensures atomic initialization of objects and

eliminates unnecessary locking overhead on each

access"

� This pattern resolves the following forces:

1. Ensures atomic initialization or access to ob-

jects, regardless of thread scheduling order

2. Keeps locking overhead to a minimum

{ e.g., only lock on �rst access

� Note, this pattern assumes atomic mem-

ory access: : :
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Using the Double-Checked

Locking Optimization Pattern for

the WWW Server

HTTP
Processor

static instance()
static instance_

if  (instance_ == NULL)  {
    mutex_.acquire ();
    if  (instance_  == NULL)
        instance_ = new HTTP_Processor;
    mutex_.release ();
}
return instance_;

Mutex
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Integrating Reactive and

Multi-threaded Layers

� Problem

{ Justifying the hybrid design of our Web server

can be tricky

� Forces

{ Engineers are never satis�ed with the status

quo ;-)

{ Substantial amount of time is spent re-discovering

the intent of complex concurrent software de-
sign

� Solution

{ Use the Half-Sync/Half-Async pattern to ex-

plain and justify our Web server concurrency
architecture
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Half-Sync/Half-Async Pattern

� Intent

{ \An architectural pattern that decouples syn-

chronous I/O from asynchronous I/O in a sys-

tem to simplify programming e�ort without de-

grading execution e�ciency"

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level
communication tasks

� These are performed synchronously (via Ac-

tive Objects)

{ How to ensure e�cient lower-level I/O com-
munication tasks

� These are performed asynchronously (via the

Reactor)
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Structure of the

Half-Sync/Half-Async Pattern
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Collaboration in the

Half-Sync/Half-Async Pattern
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� This illustrates input processing (output

processing is similar)
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Using the Half-Sync/Half-Async

Pattern in the WWW Server
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Joining Async and Sync Tasks in

the WWW Server

� The following methods form the boundary

between the Async and Sync layers

template <class PA> int
HTTP_Handler<PA>::handle_input (HANDLE h)
{

Message_Block *mb = 0;

// Try to receive and frame message.
if (recv_request (mb) == HTTP_REQUEST_COMPLETE) {

Reactor::instance ()->remove_handler
(this, READ_MASK);

Reactor::instance ()->cancel_timer (this);
// Insert message into the Queue.
HTTP_Processor<PA>::instance ()->put (mb);

}
}

HTTP_Processor::put (Message_Block *msg,
Time_Value *timeout) {

// Insert the message on the Message_Queue
// (inherited from class Task).
putq (msg, timeout);

}

194

Optimizing Our Web Server for

Asynchronous Operating Systems

� Problem

{ Synchronous multi-threaded solutions are not

always the most e�cient

� Forces

{ Purely asynchronous I/O is quite powerful on

some OS platforms

� e.g., Windows NT 4.x

{ Good designs should be adaptable to new con-

texts

� Solution

{ Use the Proactor pattern to maximize perfor-
mance on Asynchronous OS platforms
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The Proactor Pattern

� Intent

{ \Decouples asynchronous event demultiplexing

and event handler completion dispatching from

service(s) performed in response to events"

� This pattern resolves the following forces
for asynchronous event-driven software:

{ How to demultiplex multiple types of events

from multiple sources of events asynchronously
and e�ciently within a minimal number of threads

{ How to extend application behavior without re-

quiring changes to the event dispatching frame-

work
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Structure of the Proactor Pattern

Completion
Dispatcher

handle_events()
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� www.cs.wustl.edu/�schmidt/proactor.ps.gz
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Collaboration in the Proactor

Pattern

Completion
Dispatcher

Proactive
Initiator

Asynchronous
Operation
Processor
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operation initiated

Completion
Handler
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Operation completes

Completion Handler
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dispatch
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Client Connects to a Proactive

Web Server

4: connect Web Server

Web
Browser Acceptor

Completion
Dispatcher

HTTP
Handler

1: accept
connections

Operating
System

2: accept
(Acceptor,
Dispatcher)

3: handle
events

5: accept
complete

6:
accept

complete

7: create

8: read (connection,
Handler, Dispatcher)
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Client Sends Request to a

Proactive Web Server

Web Server

Web
Browser

File
System

Completion
Dispatcher
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2: read complete

3: read
complete

4: parse request
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Structuring Service Initialization

� Problem

{ The communication protocol used between clients

and the Web server is often orthogonal to the

initialization protocol

� Forces

{ Low-level connection establishment APIs are

tedious, error-prone, and non-portable

{ Separating initialization from use can increase

software reuse substantially

� Solution

{ Use the Acceptor and Connector patterns to

decouple passive service initialization from run-
time protocol
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Using the Acceptor Pattern in the

WWW Server

PASSIVE  LISTENERPASSIVE  LISTENER

ACTIVEACTIVE

CONNECTIONSCONNECTIONS

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Acceptor Acceptor

 Reactor Reactor

 HTTP HTTP
AcceptorAcceptor

1: handle_input()1: handle_input()
2: sh = make_svc_handler()2: sh = make_svc_handler()
3: accept_svc_handler(sh)3: accept_svc_handler(sh)
4: activate_svc_handler(sh)4: activate_svc_handler(sh)
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The HTTP Acceptor Class

Interface

� The HTTP Acceptor class implements the
Acceptor pattern

{ i.e., it accepts connections/initializes HTTP Handlers

template <class PEER_ACCEPTOR>
class HTTP_Acceptor : public

// This is a ``trait.''
Acceptor<HTTP_Handler<PEER_ACCEPTOR::PEER_STREAM>,

PEER_ACCEPTOR>
{
public:

// Called when HTTP_Acceptor is
// dynamically linked.

virtual int init (int argc, char *argv[]);

// Called when HTTP_Acceptor is
// dynamically unlinked.

virtual int fini (void);

// ...
};
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The HTTP Acceptor Class

Implementation

// Initialize service when dynamically linked.

template <class PA> int
HTTP_Acceptor<PA>::init (int argc, char *argv[])
{

Options::instance ()->parse_args (argc, argv);

// Initialize the communication endpoint and
// register to accept connections.
peer_acceptor ().open

(PA::PEER_ADDR (Options::instance ()->port ()),
Reactor::instance ());

}

// Terminate service when dynamically unlinked.

template <class PA> int
HTTP_Acceptor<PA>::fini (void)
{

// Shutdown threads in the pool.
HTTP_Processor<PA>::instance ()->

msg_queue ()->deactivate ();

// Wait for all threads to exit.
HTTP_Processor<PA>::instance ()->thr_mgr ()->wait ();

}
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Using the Service Con�gurator

Pattern in the WWW Server

SERVICESERVICE

CONFIGURATORCONFIGURATOR

RUNTIMERUNTIME

 Service Service
RepositoryRepository

 Service Service
ObjectObject

 TP TP
WWW ServerWWW Server

 Service Service
ObjectObject

 TPR TPR
WWW ServerWWW Server

DLLDLLSS

 Service Service
ObjectObject

 Reactive Reactive
WWW ServerWWW Server

 Service Service
ConfigConfig

 Reactor Reactor

svc.conf
FILE

dynamic Web_Server Service_Object *
   www_server:make_Web_Server() "-ORBport 2001"

� Existing service is based on Half-Sync/Half-
Async \`Thread pool"' pattern

{ Other versions could be single-threaded, could
use other concurrency strategies, and other

protocols
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Service Con�gurator

Implementation in C++

� The concurrent WWW Server is con�g-

ured and initialized via a con�guration script

% cat ./svc.conf
dynamic Web_Server Service_Object *

www_server:make_Web_Server()
"-p $PORT -t $THREADS"

# .dll or .so suffix added to "www_server" automatically

� Factory function that dynamically allocates

a Half-Sync/Half-Async WWW Server ob-

ject

extern "C" Service_Object *make_Web_Server (void);

Service_Object *make_Web_Server (void)
{

return new HTTP_Acceptor<SOCK_Acceptor>;
// ACE dynamically unlinks and deallocates this object.

}
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Main Program for WWW Server

� Dynamically con�gure and execute the WWW
Server

{ Note that this is totally generic!

int main (int argc, char *argv[])
{

// Initialize the daemon and dynamically
// configure the service.
Service_Config::open (argc, argv);

// Loop forever, running services and handling
// reconfigurations.

Reactor::run_event_loop ();
/* NOTREACHED */

}
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The Connector Pattern

� Intent

{ \Decouple the active initialization of a service

from the task performed once a service is ini-

tialized"

� This pattern resolves the following forces
for network clients that use interfaces like
sockets or TLI:

1. How to reuse active connection establishment

code for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to enable exible policies for creation,

connection establishment, and concurrency

4. How to e�ciently establish connections with

large number of peers or over a long delay path
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Structure of the Connector

Pattern

ConnectorConnector

connect(sh, addr)
complete()ACTIVATESACTIVATES

HANDLE  ASYNCHANDLE  ASYNC

CONNECTION  COMPLETIONCONNECTION  COMPLETION

SvcSvc
HandlerHandler

peer_stream_
open()

Svc HandlerSvc Handler

ReactorReactor

11nn

SERVICESERVICE--
DEPENDENTDEPENDENT

SERVICESERVICE--
INDEPENDENTINDEPENDENT

� www.cs.wustl.edu/�schmidt/Acc-Con.ps.gz
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Collaboration in the Connector

Pattern

ClientClient

FOREACH  CONNECTIONFOREACH  CONNECTION

      INITIATE  CONNECTION      INITIATE  CONNECTION

      SYNC  CONNECT      SYNC  CONNECT

INSERT  IN  REACTORINSERT  IN  REACTOR

con :con :
ConnectorConnector

handle_input()

reactor :reactor :
ReactorReactor

register_handler(sh)

get_handle()EXTRACT  HANDLEEXTRACT  HANDLE

DATA  ARRIVESDATA  ARRIVES

svc()PROCESS  DATAPROCESS  DATA

connect(sh, addr)

connect()

ACTIVATE  OBJECTACTIVATE  OBJECT

peer_stream_peer_stream_
: SOCK: SOCK

ConnectorConnector
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START  EVENT  LOOPSTART  EVENT  LOOP

FOREACH  EVENT  DOFOREACH  EVENT  DO

handle_events()

select()

open()

sh:sh:
Svc_HandlerSvc_Handler

� Synchronous mode
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Collaboration in the Connector

Pattern

ClientClient

FOREACH  CONNECTIONFOREACH  CONNECTION

      INITIATE  CONNECTION      INITIATE  CONNECTION

      ASYNC  CONNECT      ASYNC  CONNECT

      INSERT  IN  REACTOR      INSERT  IN  REACTOR

START  EVENT  LOOPSTART  EVENT  LOOP

FOREACH  EVENT  DOFOREACH  EVENT  DO

handle_events()

select()

CONNECTION  COMPLETECONNECTION  COMPLETE

INSERT  IN  REACTORINSERT  IN  REACTOR

con :con :
ConnectorConnector

handle_input()

reactor :reactor :
ReactorReactor

sh:sh:
Svc_HandlerSvc_Handler

handle_output()

register_handler(sh)

get_handle()
EXTRACT  HANDLEEXTRACT  HANDLE

DATA  ARRIVESDATA  ARRIVES

svc()PROCESS  DATAPROCESS  DATA

connect(sh, addr)

connect()

ACTIVATE  OBJECTACTIVATE  OBJECT

register_handler(con)

peer_stream_peer_stream_
: SOCK: SOCK
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activate_svc_handler(sh)

connect_svc_handler(sh, addr)

open()

� Asynchronous mode
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Structure of the Connector

Pattern in ACE

ReactorReactor11nn

EventEvent
HandlerHandler

ConnectorConnector
connect_svc_handler()
activate_svc_handler()
handle_output()
connect(sh, addr)

SVC_HANDLERSVC_HANDLER

PEER_CONNECTORPEER_CONNECTOR

ConcreteConcrete
ConnectorConnector

Concrete_Svc_HandlerConcrete_Svc_Handler

SOCK_ConnectorSOCK_Connector11

ConcreteConcrete
Svc HandlerSvc Handler

SOCK_StreamSOCK_Stream

open()
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PEER_STREAMPEER_STREAM
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activate_svc_handleractivate_svc_handler

   (sh);   (sh);2:2:
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212



Using the Connector Pattern in a

WWW Client

 Connector Connector

 Reactor Reactor
PENDINGPENDING

CONNECTIONSCONNECTIONS

ACTIVEACTIVE

CONNECTIONSCONNECTIONS

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

 Svc Svc
HandlerHandler

 HTTP HTTP
HandlerHandler

� e.g., in the Netscape HTML parser
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Connector Class Public Interface

� A reusable template factory class that es-

tablishes connections with clients

template <class SVC_HANDLER, // Type of service
class PEER_CONNECTOR> // Connection factory

class Connector
: public Service_Object

{
public:

// Initiate connection to Peer.
virtual int connect (SVC_HANDLER &*svc_handler,

const PEER_CONNECTOR::PEER_ADDR &,
Synch_Options &synch_options);

// Cancel a <svc_handler> that was
// started asynchronously.

virtual int cancel (SVC_HANDLER *svc_handler);
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OO Design Interlude

� Q: What is the Synch Options class?

� A: This allows callers to de�ne the syn-

chrony/asynchrony policies, e.g.,

class Synch_Options
{
// Options flags for controlling synchronization.
enum {
USE_REACTOR = 1,
USE_TIMEOUT = 2

};

Synch_Options (u_long options = 0,
const Time_Value &timeout
= Time_Value::zero,

const void *arg = 0);

// This is the default synchronous setting.
static Synch_Options synch;

// This is the default asynchronous setting.
static Synch_Options asynch;

};
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Connector Class Protected

Interface

protected:
// Demultiplexing hooks.

virtual int handle_output (HANDLE); // Success.
virtual int handle_input (HANDLE); // Failure.
virtual int handle_timeout (Time_Value &, const void *);

// Create and cleanup asynchronous connections...
virtual int create_svc_tuple (SVC_HANDLER *,

Synch_Options &);
virtual Svc_Tuple *cleanup_svc_tuple (HANDLE);

// Table that maps an I/O handle to a Svc_Tuple *.
Map_Manager<HANDLE, Svc_Tuple *, Null_Mutex>

handler_map_;

// Factory that actively establishes connections.
PEER_CONNECTOR connector_;

};
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OO Design Interlude

� Q: \What is a good technique to imple-
menting a handler map?"

{ e.g., to route messages or to map HANDLEs

to SVC HANDLERs

� A: Use a Map Manager collection class

{ ACE provides a Map Manager collection that

associates external ids with internal ids, e.g.,

� External ids ! HANDLE

� Internal ids ! set of Svc Handlers

{ Map Manager uses templates to enhance reuse
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Map Manager Class

� Synchronization mechanisms are parameterized: : :

template <class EXT_ID, class INT_ID, class LOCK>
class Map_Manager
{
public:

bool bind (EXT_ID, INT_ID *);
bool unbind (EXT_ID);

bool find (EXT_ID ex, INT_ID &in) {
// Exception-safe code...
Read_Guard<LOCK> monitor (lock_);
// lock_.read_acquire ();
if (find_i (ex, in))

return true;
else

return false;
// lock_.release ();

}

private:
LOCK lock_;
bool locate_entry (EXT_ID, INT_ID &);
// ...

};
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Connector Class Implementation

// Shorthand names.
#define SH SVC_HANDLER
#define PC PEER_CONNECTOR

// Initiate connection using specified blocking semantics.
template <class SH, class PC> int
Connector<SH, PC>::connect

(SH *sh,
const PC::PEER_ADDR &r_addr,
Synch_Options &options) {

Time_Value *timeout = 0;
int use_reactor = options[Synch_Options::USE_REACTOR];

if (use_reactor) timeout = Time_Value::zerop;
else

timeout = options[Synch_Options::USE_TIMEOUT]
? (Time_Value *) &options.timeout () : 0;

// Use Peer_Connector factory to initiate connection.
if (connector_.connect (*sh, r_addr, timeout) == -1) {

// If the connection hasn't completed, then
// register with the Reactor to call us back.
if (use_reactor && errno == EWOULDBLOCK)
create_svc_tuple (sh, options);

} else
// Activate immediately if we are connected.
sh->open ((void *) this);

}
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// Register a Svc_Handler that is in the
// process of connecting.

template <class SH, class PC> int
Connector<SH, PC>::create_svc_tuple

(SH *sh, Synch_Options &options)
{

// Register for both "read" and "write" events.
Reactor::instance ()->register_handler

(sh->get_handle (),
Event_Handler::READ_MASK |
Event_Handler::WRITE_MASK);

Svc_Tuple *st = new Svc_Tuple (sh, options.arg ());

if (options[Synch_Options::USE_TIMEOUT])
// Register timeout with Reactor.
int id = Reactor::instance ()->schedule_timer

(this, (const void *) st,
options.timeout ());

st->id (id);

// Map the HANDLE to the Svc_Handler.
handler_map_.bind (sh->get_handle (), st);

}
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// Cleanup asynchronous connections...

template <class SH, class PC> Svc_Tuple *
Connector<SH, PC>::cleanup_svc_tuple (HANDLE h)
{

Svc_Tuple *st;

// Locate the Svc_Tuple based on the handle;
handler_map_.find (h, st);

// Remove SH from Reactor's Timer_Queue.
Reactor::instance ()->cancel_timer (st->id ());

// Remove HANDLE from Reactor.
Reactor::instance ()->remove_handler (h,

Event_Handler::RWE_MASK | Event_Handler::DONT_CALL);

// Remove HANDLE from the map.
handler_map_.unbind (h);
return st;

}

221

// Finalize a successful connection (called by Reactor).

template <class SH, class PC> int
Connector<SH, PC>::handle_output (HANDLE h) {

Svc_Tuple *st = cleanup_svc_tuple (h);

// Transfer I/O handle to SVC_HANDLE *.
st->svc_handler ()->set_handle (h);

// Delegate control to the service handler.
sh->open ((void *) this);

}

// Handle connection errors.

template <class SH, class PC> int
Connector<SH, PC>::handle_input (HANDLE h) {

Svc_Tuple *st = cleanup_svc_tuple (h);
}

// Handle connection timeouts.

template <class SH, class PC> int
Connector<SH, PC>::handle_timeout

(Time_Value &time, const void *arg) {
Svc_Tuple *st = (Svc_Tuple *) arg;
st = cleanup_svc_tuple

(st->svc_handler ()->get_handle ());
// Forward "magic cookie"...
st->svc_handler ()->handle_timeout (tv, st->arg ());

}
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The OO Architecture of the

JAWS Framework

Protocol

Filter

Handler

Protocol

Framework
Strategy
Concurrency

Protocol Pipeline
Framework

Framework
I/O Strategy

Filesystem
Cached Virtual

Expander
Tilde ~

/home/...
Event Dispatcher

A
cceptor

A
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Asynchronous Completion Token

Reactor/Proactor Singleton

Adapter

Streams

Strategy

Service Configurator

State
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gy

� www.cs.wustl.edu/~jxh/research/
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Web Server Optimization

Techniques

� Use lightweight concurrency

� Minimize locking

� Apply �le caching and memory mapping

� Use \gather-write" mechanisms

� Minimize logging

� Pre-compute HTTP responses

� Avoid excessive time calls

� Optimize the transport interface
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Application-level Gateway

Example

� The next example explores the patterns

and reusable framework components used

in an OO architecture for application-level

Gateways

� Gateways route messages between Peers

in a large-scale telecommunication system

� Peers and Gateways are connected via TCP/IP
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Physical Architecture of the

Gateway

WIDE  AREA

NETWORK

SATELLITESSATELLITES
TRACKINGTRACKING
STATIONSTATION

PEERSPEERS

STATUS  INFO

COMMANDS BULK  DATA

TRANSFER

LOCAL  AREA  NETWORK

GROUND
STATION

PEERS

GATEWAY
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OO Software Architecture of the

Gateway

CONNECTIONCONNECTION

REQUESTREQUEST

CONNECTION

REQUEST

OUTGOING

MESSAGES

: Output: Output
ChannelChannel

INCOMING

MESSAGES

: Acceptor: Acceptor: Connector: Connector

: Input: Input
ChannelChannel

: Routing: Routing
TableTable

: Output: Output
ChannelChannel

: Input: Input
ChannelChannel

: Reactor: Reactor

GATEWAYGATEWAY
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Gateway Behavior

� Components in the Gateway behave as
follows:

1. Gateway parses con�guration �les that specify

which Peers to connect with and which routes
to use

2. Channel Connector connects to Peers, then

creates and activates Channel subclasses (Input Channel
or Output Channel)

3. Once connected, Peers send messages to the
Gateway

{ Messages are handled by an Input Channel

{ Input Channels work as follows:

(a) Receive and validate messages

(b) Consult a Routing Table

(c) Forward messages to the appropriate Peer(s)

via Output Channels
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Patterns in the Gateway

ConnectorConnector AcceptorAcceptor

RouterRouterActive ObjectActive Object

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

FactoryFactory
MethodMethodIteratorIterator ProxyProxy

TemplateTemplate
MethodMethod

TACTICALTACTICAL

PATTERNSPATTERNS

STRATEGICSTRATEGIC

PATTERNSPATTERNS

ServiceService
ConfiguratorConfigurator

ReactorReactor

� The Gateway components are based upon

a system of patterns
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Using the Reactor Pattern for the

Gateway
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Class Diagram for

Single-Threaded Gateway
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OO Gateway Architecture

� The Gateway is decomposed into compo-
nents that are layered as follows:

1. Application-speci�c components

{ Channels route messages among Peers

2. Connection-oriented application components

{ Svc Handler

� Performs I/O-related tasks with connected

clients

{ Connector factory

� Establishes new connections with clients

� Dynamically creates a Svc Handler object
for each client and \activates" it

3. Application-independent ACE framework com-

ponents

{ Perform IPC, explicit dynamic linking, event

demultiplexing, event handler dispatching, multi-
threading, etc.
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Using the Connector Pattern for

the Gateway

: Connector: Connector

:: Reactor Reactor
PENDINGPENDING

CONNECTIONSCONNECTIONS

ACTIVEACTIVE

CONNECTIONSCONNECTIONS

: Svc: Svc
HandlerHandler

: Channel: Channel

: Svc: Svc
HandlerHandler

: Channel: Channel

: Svc: Svc
HandlerHandler

: Channel: Channel

: Svc: Svc
HandlerHandler

: Channel: Channel

: Svc: Svc
HandlerHandler

: Channel: Channel

: Svc: Svc
HandlerHandler

: Channel: Channel
: Svc: Svc

HandlerHandler

: Channel: Channel
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Specializing Connector and

Svc Handler

� Producing an application that meets Gate-
way requirements involves specializing ACE
components

{ Connector ! Channel Connector

{ Svc Handler ! Channel ! Input Channel
and Output Channel

� Note that these new classes selectively over-
ride methods de�ned in the base classes

{ The Reactor automatically invokes these meth-

ods in response to I/O, signal, and timer events
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Channel Inheritance Hierarchy

Channel

Input
Channel

Output
Channel

Svc
Handler

APPLICATION-
INDEPENDENT

APPLICATION-
SPECIFIC

peer_stream_

msg_queue_
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Channel Class Public Interface

� Common methods and data for I/O Chan-

nels

// Determine the type of threading mechanism.
#if defined (ACE_USE_MT)
typedef MT_SYNCH SYNCH;
#else
typedef NULL_SYNCH SYNCH;
#endif /* ACE_USE_MT */

// This is the type of the Routing_Table.
typedef Routing_Table <Peer_Addr,

Routing_Entry,
SYNCH::MUTEX> ROUTING_TABLE;

class Channel
: public Svc_Handler<SOCK_Stream, SYNCH>

{
public:

// Initialize the handler (called by Connector).
virtual int open (void * = 0);

// Bind addressing info to Router.
virtual int bind (const INET_Addr &, CONN_ID);
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OO Design Interlude

� Q:What is the MT SYNCH class and how

does it work?

� A:MT SYNCH provides a thread-safe syn-
chronization policy for a particular instan-
tiation of a Svc Handler

{ e.g., it ensures that any use of a Svc Handler's
Message Queue will be thread-safe

{ Any Task that accesses shared state can use
the \traits" in the MT SYNCH

class MT_SYNCH { public:
typedef Thread_Mutex MUTEX;
typedef Condition_Thread_Mutex CONDITION;

};

{ Contrast with NULL SYNCH

class NULL_SYNCH { public:
typedef Null_Mutex MUTEX;
typedef Null_Condition_Thread_Mutex CONDITION;

};
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Channel Class Protected Interface

� Common data for I/O Channels

protected:
// Reconnect Channel if connection terminates.

virtual int handle_close (HANDLE, Reactor_Mask);

// Address of peer.
INET_Addr addr_;

// The assigned connection ID of this Channel.
CONN_ID id_;

};
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Detailed OO Architecture of the

Gateway

CONNECTION

REQUEST

CONNECTION

REQUEST

OUTGOING

MESSAGES

: Output: Output
ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

INCOMING

MESSAGES

: Acceptor: Acceptor

: SOCK: SOCK
AcceptorAcceptor

: Connector: Connector

: SOCK: SOCK
ConnectorConnector

: Map: Map
ManagerManager

: Input: Input
ChannelChannel

: SOCK: SOCK
StreamStream

: Routing: Routing
TableTable

: Map: Map
ManagerManager

: Output: Output
ChannelChannel

: Message: Message
QueueQueue: SOCK: SOCK

StreamStream

: Input: Input
ChannelChannel

: SOCK: SOCK
StreamStream

: Reactor: Reactor

GATEWAYGATEWAY
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Input Channel Interface

� Handle input processing and routing of

messages from Peers

class Input_Channel : public Channel
{
public:

Input_Channel (void);

protected:
// Receive and process Peer messages.

virtual int handle_input (HANDLE);

// Receive a message from a Peer.
virtual int recv_peer (Message_Block *&);

// Action that routes a message from a Peer.
int route_message (Message_Block *);

// Keep track of message fragment.
Message_Block *msg_frag_;

};
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Output Channel Interface

� Handle output processing of messages sent

to Peers

class Output_Channel : public Channel
{
public:

Output_Channel (void);

// Send a message to a Gateway (may be queued).
virtual int put (Message_Block *, Time_Value * = 0);

protected:
// Perform a non-blocking put().

int nonblk_put (Message_Block *mb);

// Finish sending a message when flow control abates.
virtual int handle_output (HANDLE);

// Send a message to a Peer.
virtual int send_peer (Message_Block *);

};
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Channel Connector Class

Interface

� A Concrete factory class that behaves as
follows:

1. Establishes connections with Peers to produce

Channels

2. Activates Channels, which then do the work

class Channel_Connector : public
Connector <Channel, // Type of service

SOCK_Connector> // Connection factory
{
public:

// Initiate (or reinitiate) a connection on Channel.
int initiate_connection (Channel *);

}

� Channel Connector also ensures reliability by

restarting failed connections
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Channel Connector

Implementation

� Initiate (or reinitiate) a connection to the

Channel

int
Channel_Connector::initiate_connection (Channel *channel)
{

// Use asynchronous connections...
if (connect (channel, channel->addr (),

Synch_Options::asynch) == -1) {
if (errno != EWOULDBLOCK)

// Reschedule ourselves to try to connect again.
Reactor::instance ()->schedule_timer

(channel, 0, channel->timeout ());
else

return -1; // Failure.
}
else

// We're connected.
return 0;

}
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The Router Pattern

� Intent

{ \Decouple multiple sources of input from mul-

tiple sources of output to prevent blocking"

� The Router pattern resolves the following
forces for connection-oriented routers:

{ How to prevent misbehaving connections from

disrupting the quality of service for well-behaved

connections

{ How to allow di�erent concurrency strategies
for Input and Output Channels
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Structure of the Router Pattern
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Collaboration in the Router

Pattern

START  EVENT  LOOPSTART  EVENT  LOOP

FOREACH  EVENT  DOFOREACH  EVENT  DO

: Routing: Routing
TableTable

handle_events()

handle_input()

find ()

reactor :reactor :
ReactorReactor

select()

: Input: Input
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Collaboration in Single-threaded

Gateway Routing

 Routing Routing
TableTable

 Input Input
ChannelChannel

6: put (msg)6: put (msg)

1: handle_input()1: handle_input()
2: recv_peer(msg)2: recv_peer(msg)

3: find()3: find()

MessageMessage
QueueQueue

 Output Output
ChannelChannel

5: send_peer(msg)5: send_peer(msg)

ROUTEROUTE
IDID

SubscriberSubscriber
SetSet

4:
 p

ut (
m

sg
)

4:
 p

ut (
m

sg
)

MessageMessage
QueueQueue

 Output Output
ChannelChannel

7: send_peer(msg)7: send_peer(msg)
8: enqueue(msg)8: enqueue(msg)
9: schedule_wakeup()9: schedule_wakeup()
------------------------------
10: handle_output()10: handle_output()
11: dequeue(msg)11: dequeue(msg)
12: send_peer(msg)12: send_peer(msg)
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// Receive input message from Peer and route
// the message.

int
Input_Channel::handle_input (HANDLE)
{

Message_Block *route_addr = 0;

// Try to get the next message.
if ((n = recv_peer (route_addr)) <= 0) {

if (errno == EWOULDBLOCK) return 0;
else return n;

}
else

route_message (route_addr);
}

// Send a message to a Peer (queue if necessary).

int
Output_Channel::put (Message_Block *mb, Time_Value *)
{

if (msg_queue_->is_empty ())
// Try to send the message *without* blocking!
nonblk_put (mb);

else
// Messages are queued due to flow control.
msg_queue_->enqueue_tail (mb, Time_Value::zerop);

}
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// Route message from a Peer.

int
Input_Channel::route_messages (Message_Block *route_addr)
{

// Determine destination address.
CONN_ID route_id = *(CONN_ID *) route_addr->rd_ptr ();

const Message_Block *const data = route_addr->cont ();
Routing_Entry *re = 0;

// Determine route.
Routing_Table::instance ()->find (route_id, re);

// Initialize iterator over destination(s).
Set_Iterator<Channel *> si (re->destinations ());

// Multicast message.
for (Channel *out_ch;

si.next (out_ch) != -1;
si.advance ()) {

Message_Block *newmsg = data->duplicate ();
if (out_ch->put (newmsg) == -1) // Drop message.
newmsg->release (); // Decrement reference count.

}
delete route_addr;

}
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Peer Message

// unique connection id that denotes a Channel.
typedef short CONN_ID;

// Peer address is used to identify the
// source/destination of a Peer message.
class Peer_Addr {
public:

CONN_ID conn_id_; // Unique connection id.
u_char logical_id_; // Logical ID.
u_char payload_; // Payload type.

};

// Fixed sized header.
class Peer_Header { public: /* ... */ };

// Variable-sized message (sdu_ may be
// between 0 and MAX_MSG_SIZE).

class Peer_Message {
public:

// The maximum size of a message.
enum { MAX_PAYLOAD_SIZE = 1024 };
Peer_Header header_; // Fixed-sized header portion.
char sdu_[MAX_PAYLOAD_SIZE]; // Message payload.

};
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OO Design Interlude

� Q: What should happen if put() fails?

{ e.g., if a queue becomes full?

� A: The answer depends on whether the
error handling policy is di�erent for each
router object or the same: : :

{ Strategy pattern: give reasonable default, but

allow substitution

� A related design issue deals with avoid-

ing output blocking if a Peer connection

becomes ow controlled
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// Pseudo-code for receiving framed message
// (using non-blocking I/O).

int
Input_Channel::recv_peer (Message_Block *&route_addr)
{

if (msg_frag_ is empty) {
msg_frag_ = new Message_Block;
receive fixed-sized header into msg_frag_
if (errors occur)

cleanup
else

determine size of variable-sized msg_frag_
}
else

determine how much of msg_frag_ to skip

perform non-blocking recv of payload into msg_frag_
if (entire message is now received) {

route_addr = new Message_Block (sizeof (Peer_Addr),
msg_frag_)

Peer_Addr addr (id (), msg_frag_->routing_id_, 0);
route_addr->copy (&addr, sizeof (Peer_Addr));
return to caller and reset msg_frag_

}
else if (only part of message is received)

return errno = EWOULDBLOCK
else if (fatal error occurs)

cleanup
}
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OO Design Interlude

� Q: How can a ow controlled Output Channel

know when to proceed again without polling

or blocking?

� A: Use the Event Handler::handle output
noti�cation scheme of the Reactor

{ i.e., via the Reactor's methods schedule wakeup
and cancel wakeup

� This provides cooperative multi-tasking within
a single thread of control

{ The Reactor calls back to the handle output
method when the Channel is able to transmit
again
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// Perform a non-blocking put() of message MB.

int Output_Channel::nonblk_put (Message_Block *mb)
{

// Try to send the message using non-blocking I/O
if (send_peer (mb) != -1

&& errno == EWOULDBLOCK)
{

// Queue in *front* of the list to preserve order.
msg_queue_->enqueue_head (mb, Time_Value::zerop);

// Tell Reactor to call us back when we can send again.

Reactor::instance ()->schedule_wakeup
(this, Event_Handler::WRITE_MASK);

}
}
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// Simple implementation...

int
Output_Channel::send_peer (Message_Block *mb)
{

ssize_t n;
size_t len = mb->length ();

// Try to send the message.
n = peer ().send (mb->rd_ptr (), len);

if (n <= 0)
return errno == EWOULDBLOCK ? 0 : n;

else if (n < len)
// Skip over the part we did send.
mb->rd_ptr (n);

else /* if (n == length) */ {
delete mb; // Decrement reference count.
errno = 0;

}
return n;

}
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// Finish sending a message when flow control
// conditions abate. This method is automatically
// called by the Reactor.

int
Output_Channel::handle_output (HANDLE)
{

Message_Block *mb = 0;

// Take the first message off the queue.
msg_queue_->dequeue_head

(mb, Time_Value::zerop);
if (nonblk_put (mb) != -1

|| errno != EWOULDBLOCK) {
// If we succeed in writing msg out completely
// (and as a result there are no more msgs
// on the Message_Queue), then tell the Reactor
// not to notify us anymore.

if (msg_queue_->is_empty ()
Reactor::instance ()->cancel_wakeup

(this, Event_Handler::WRITE_MASK);
}

}
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The Gateway Class

GatewayGateway

INPUTINPUT    CHANNELCHANNEL

OUTPUTOUTPUT    CHANNELCHANNEL

ServiceService
ObjectObject

APPLICATIONAPPLICATION--
INDEPENDENTINDEPENDENT

APPLICATIONAPPLICATION--
SPECIFICSPECIFIC

ChannelChannel
ConnectorConnector

SINGLETONSINGLETON

ConnectorConnector MapMap
ManagerManager

RoutingRouting
TableTable
SINGLETONSINGLETON

ConfigConfig
TableTable

� This class integrates other application-speci�c

and application-independent components
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Gateway Class Public Interface

� Since Gateway inherits from Service Object

it may be dynamically (re)con�gured into

a process at run-time

// Parameterized by the type of I/O channels.
template <class INPUT_CHANNEL, // Input policies

class OUTPUT_CHANNEL> // Output policies
class Gateway

: public Service_Object
{
public:

// Perform initialization.
virtual int init (int argc, char *argv[]);

// Perform termination.
virtual int fini (void);
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Gateway Class Private Interface

protected:
// Parse the channel table configuration file.

int parse_cc_config_file (void);

// Parse the routing table configuration file.
int parse_rt_config_file (void);

// Initiate connections to the Peers.
int initiate_connections (void);

// Table that maps Connection IDs to Channel *'s.
Map_Manager<CONN_ID, Channel *, Null_Mutex>

config_table_;
};
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// Convenient short-hands.
#define IC INPUT_CHANNEL
#define OC OUTPUT_CHANNEL

// Pseudo-code for initializing the Gateway (called
// automatically on startup).

template <class IC, class OC>
Gateway<IC, OC>::init (int argc, char *argv[])
{

// Parse command-line arguments.
parse_args (argc, argv);

// Parse and build the connection configuration.
parse_cc_config_file ();

// Parse and build the routing table.
parse_rt_config_file ();

// Initiate connections with the Peers.
initiate_connections ();
return 0;

}
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Con�guration and Gateway

Routing

PEERPEER

11

PEERPEER

55

PEERPEER

44

PEERPEER

33

PEER

2

(30, 9) => 1
(21,10) => 5

(9,8) => 3

(12,13) => 1,3
(13,8) => 5

GATEWAY
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Con�guration Files

� The Gateway decouples the connection
topology from the peer routing topology

{ The following con�g �le speci�es the connec-
tion topology among the Gateway and its Peers

# Conn ID Hostname Port Direction Max Retry
# ------- -------- ---- --------- ---------

1 peer1 10002 O 32
2 peer2 10002 I 32
3 peer3 10002 O 32
4 peer4 10002 I 32
5 peer5 10002 O 32

{ The following con�g �le speci�es the routing

topology among the Gateway and its Peers

# Conn ID Logical ID Payload Destinations
# ------- ---------- ------- ------------

2 30 9 1
2 21 10 5
2 09 8 3
4 12 13 1,3
4 13 8 5
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// Parse the cc_config_file and
// build the connection table.

template <class IC, class OC>
Gateway<IC, OC>::parse_cc_config_file (void)
{

CC_Entry entry;
cc_file.open (cc_filename);

// Example of the Builder Pattern.

while (cc_file.read_line (entry) {
Channel *ch;

// Locate/create routing table entry.
if (entry.direction_ == 'O')

ch = new OC;
else
ch = new IC;

// Set up the peer address.
INET_Addr addr (entry.port_, entry.host_);
ch->bind (addr, entry.conn_id_);
ch->max_timeout (entry.max_retry_delay_);
config_table_.bind (entry.conn_id_, ch);

}
}
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// Parse the rt_config_file and
// build the routing table.

template <class IC, class OC>
Gateway<IC, OC>::parse_rt_config_file (void)
{

RT_Entry entry;
rt_file.open (cc_filename);

// Example of the Builder Pattern.

while (cc_file.read_line (entry) {
Routing_Entry *re = new Routing_Entry;
Peer_Addr peer_addr (entry.conn_id, entry.logical_id_);
Set<Channel *> *channel_set = new Set<Channel *>;

// Example of the Iterator pattern.
foreach destination_id in entry.total_destinations_ {

Channel *ch;
if (config_table_.find (destination_id, ch);

channel_set->insert (ch);
}

// Attach set of destination channels to routing entry.
re->destinations (channel_set);

// Bind with routing table, keyed by peer address.
routing_table.bind (peer_addr, re);

}
}
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// Initiate connections with the Peers.

int Gateway<IC, OC>::initiate_connections (void)
{

// Example of the Iterator pattern.
Map_Iterator<CONN_ID, Channel *, Null_Mutex>

cti (connection_table_);

// Iterate through connection table
// and initiate all channels.

for (const Map_Entry <CONN_ID, Channel *> *me = 0;
cti.next (me) != 0;
cti.advance ()) {

Channel *channel = me->int_id_;

// Initiate non-blocking connect.
Channel_Connector::instance ()->
initiate_connection (channel);

}
return 0;

}
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Dynamically Con�guring Services

into an Application

� Main program is generic

// Example of the Service Configurator pattern.

int main (int argc, char *argv[])
{

// Initialize the daemon and
// dynamically configure services.
Service_Config::open (argc, argv);

// Run forever, performing configured services.

Reactor::run_event_loop ();

/* NOTREACHED */
}
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Using the Service Con�gurator

Pattern for the Gateway

 Service Service
ConfigConfig

SERVICESERVICE

CONFIGURATORCONFIGURATOR

RUNTIMERUNTIME

 Service Service
RepositoryRepository

 Reactor Reactor

 Service Service
ObjectObject

 Reactive Reactive
GatewayGateway

 Service Service
ObjectObject

 Thread Pool Thread Pool
GatewayGateway

DLLDLLSS

 Service Service
ObjectObject

 Thread Thread
GatewayGateway

dynamic Gateway Service_Object *
   gateway:make_Gateway() "-ORBport 2001"

svc.conf
FILE

� Replace the single-threaded Gateway with

a multi-threaded Gateway
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Dynamic Linking a Gateway

Service

� Service con�guration �le

% cat ./svc.conf
static Svc_Manager "-p 5150"
dynamic Gateway_Service Service_Object *

Gateway:make_Gateway () "-d"
# .dll or .so suffix added to "logger" automatically

� Application-speci�c factory function used

to dynamically link a service

// Dynamically linked factory function that allocates
// a new single-threaded Gateway object.

extern "C" Service_Object *make_Gateway (void);

Service_Object *
make_Gateway (void)
{

return new Gateway<Input_Channel, Output_Channel>;
// ACE automatically deletes memory.

}
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Concurrency Strategies for

Patterns

� The Acceptor and Connector patterns do

not constrain the concurrency strategies

of a Svc Handler

� There are three common choices:

1. Run service in same thread of control

2. Run service in a separate thread

3. Run service in a separate process

� Observe how OO techniques push this de-
cision to the \edges" of the design

{ This greatly increases reuse, exibility, and per-

formance tuning
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Using the Active Object Pattern

for the Gateway

:: Reactor Reactor
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Collaboration in the Active

Object-based Gateway Routing

 Routing
Table

 Input
Channel

 Message
Queue

 Output
Channel

4: put (msg)

1: handle_input ()
2: recv_peer(msg)

3: find()

 Message
Queue

 Output
Channel

5: send_peer(msg)

5: send_peer(msg)

ACTIVE

ACTIVE

ROUTE
ID

Subscriber
Set
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Using the Half-Sync/Half-Async

Pattern in the Gateway
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Class Diagram for Multi-Threaded
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Thr Output Channel Class

Interface

� New subclass of Channel uses the Active
Object pattern for the Output Channel

{ Uses multi-threading and synchronous I/O (rather

than non-blocking I/O) to transmit message to
Peers

{ Transparently improve performance on a multi-
processor platform and simplify design

#define ACE_USE_MT
#include "Channel.h"

class Thr_Output_Channel : public Output_Channel
{
public:

// Initialize the object and spawn a new thread.
virtual int open (void *);

// Send a message to a peer.
virtual int put (Message_Block *, Time_Value * = 0);

// Transmit peer messages within separate thread.
virtual int svc (void);

};
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Thr Output Channel Class

Implementation

� The multi-threaded version of open is slightly

di�erent since it spawns a new thread to

become an active object!

// Override definition in the Output_Channel class.

int
Thr_Output_Channel::open (void *)
{

// Become an active object by spawning a
// new thread to transmit messages to Peers.

activate (THR_NEW_LWP | THR_DETACHED);
}

� activate is a pre-de�ned method on class

Task
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// Queue up a message for transmission (must not block
// since all Input_Channels are single-threaded).

int
Thr_Output_Channel::put (Message_Block *mb, Time_Value *)
{

// Perform non-blocking enqueue.
msg_queue_->enqueue_tail (mb, Time_Value::zerop);

}

// Transmit messages to the peer (note simplification
// resulting from threads...)

int
Thr_Output_Channel::svc (void)
{

Message_Block *mb = 0;

// Since this method runs in its own thread it
// is OK to block on output.

while (msg_queue_->dequeue_head (mb) != -1)
send_peer (mb);

return 0;
}
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Dynamic Linking a Gateway

Service

� Service con�guration �le

% cat ./svc.conf
remove Gateway_Service
dynamic Gateway_Service Service_Object *

thr_Gateway:make_Gateway () "-d"
# .dll or .so suffix added to "thr_Gateway" automatically

� Application-speci�c factory function used

to dynamically link a service

// Dynamically linked factory function that allocates
// a new multi-threaded Gateway object.

extern "C" Service_Object *make_Gateway (void);

Service_Object *
make_Gateway (void)
{

return new Gateway<Input_Channel, Thr_Output_Channel>;
// ACE automatically deletes memory.

}
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ACE Streams

� An ACE Stream allows exible con�gura-

tion of layered processing modules

� It is an implementation of the Pipes and
Filters architectural pattern

{ This pattern provides a structure for systems

that process a stream of data

{ Each processing step is encapsulated in a �lter

component

{ Data is passed through pipes between adjacent
�lters, which can be re-combined
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Call Center Manager Example

EVENTEVENT
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CCM
Stream
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Session  Router
Module

Event  Filter
Module

Switch  Adapter
Module

Event  Analyzer
Module

SUPER
VISOR SUPER

VISOR
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Implementing a Stream in ACE

� A Stream contains a stack of Modules

� Each Module contains two Tasks

{ i.e., a read Task and a write Task

� Each Task contains a Message Queue and a

pointer to a Thread Manager
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Stream Class Category
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U
P

S
T

R
E

A
MD

O
W

N
S

T
R

E
A

M

MESSAGEMESSAGE

OBJECTOBJECT

WRITEWRITE

TASKTASK

OBJECTOBJECT

READREAD

TASKTASK

OBJECTOBJECT

MODULEMODULE

OBJECTOBJECT

open()=0
close()=0
put()=0
svc()=0
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Alternative Invocation Methods

ModuleModule
AA

PROCESS  ORPROCESS  OR

THREADTHREAD

READ  TASKREAD  TASK

OBJECTOBJECT

READ  TASKREAD  TASK

OBJECTOBJECT

MODULEMODULE

OBJECTOBJECT

ModuleModule
BB

ModuleModule
CC

ModuleModule
AA

ModuleModule
BB

ModuleModule
CC

2: svc()2: svc()

1: put()1: put()

4: svc()4: svc()

3: put()3: put()

ACTIVEACTIVE

ACTIVEACTIVE

ACTIVEACTIVE

ACTIVEACTIVE

2: put()2: put()

1: put()1: put()

ACTIVEACTIVEACTIVEACTIVE

TASKTASK--BASEDBASED

THREAD  ARCHITECTURETHREAD  ARCHITECTURE

MESSAGEMESSAGE--BASEDBASED

THREAD  ARCHITECTURETHREAD  ARCHITECTURE

MESSAGEMESSAGE

OBJECTOBJECT
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Alternative Concurrency Models

PEPE

PEPE

PEPE

PEPE

(1)(1)  TASK  TASK--BASEDBASED

CONCURRENCY  MODELCONCURRENCY  MODEL

ACTIVE

(2)  MESSAGE-BASED

CONCURRENCY  MODEL

PE PEPE PE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

ACTIVE

MESSAGE

OBJECT

PE

PROCESSING

ELEMENT

TASK

OBJECT
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ACE Stream Example: Parallel

I/O Copy

� Illustrates an implementation of the clas-

sic \bounded bu�er" problem

� The program copies stdin to stdout via

the use of a multi-threaded Stream

� In this example, the \read" Task is al-

ways ignored since the data ow is uni-

directional
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Producer and Consumer Object

Interactions

ConsumerConsumer
ModuleModule

activeactive 2: svc()2: svc()

3: put()3: put()

activeactive

ProducerProducer
ModuleModule

1: read()1: read()

4: svc()4: svc()

5: write()5: write()
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Producer Interface

� e.g.,

// typedef short-hands for the templates.
typedef Stream<MT_SYNCH> MT_Stream;
typedef Module<MT_SYNCH> MT_Module;
typedef Task<MT_SYNCH> MT_Task;

// Define the Producer interface.

class Producer : public MT_Task
{
public:

// Initialize Producer.
virtual int open (void *)
{

// activate() is inherited from class Task.
activate (THR_NEW_LWP);

}

// Read data from stdin and pass to consumer.
virtual int svc (void);
// ...

};
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// Run in a separate thread.

int
Producer::svc (void)
{

for (int n; ; ) {
// Allocate a new message.
Message_Block *mb = new Message_Block (BUFSIZ);

// Keep reading stdin, until we reach EOF.

if ((n = read (STDIN, mb->rd_ptr (), mb->size ())) <= 0)
{

// Send a shutdown message to other thread and exit.
mb->length (0);
this->put_next (mb);
break;

}
else
{

mb->wr_ptr (n); // Adjust write pointer.

// Send the message to the other thread.
this->put_next (mb);

}
}
return 0;

}
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Consumer Class Interface

� e.g.,

// Define the Consumer interface.

class Consumer : public MT_Task
{
public:

// Initialize Consumer.
virtual int open (void *)
{

// activate() is inherited from class Task.
activate (THR_NEW_LWP);

}

// Enqueue the message on the Message_Queue for
// subsequent processing in svc().

virtual int put (Message_Block*, Time_Value* = 0)
{

// putq() is inherited from class Task.
return putq (mb, tv);

}

// Receive message from producer and print to stdout.
virtual int svc (void);

};
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// The consumer dequeues a message from the Message_Queue,
// writes the message to the stderr stream, and deletes
// the message. The Consumer sends a 0-sized message to
// inform the consumer to stop reading and exit.

int
Consumer::svc (void)
{

Message_Block *mb = 0;

// Keep looping, reading a message out of the queue,
// until we get a message with a length == 0,
// which informs us to quit.

for (;;)
{

int result = getq (mb);

if (result == -1) break;
int length = mb->length ();

if (length > 0)
write (STDOUT, mb->rd_ptr (), length);

delete mb;

if (length == 0) break;
}

return 0;
}
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Main Driver Function

� e.g.,

int main (int argc, char *argv[])
{

// Control hierachically-related active objects.
MT_Stream stream;

// Create Producer and Consumer Modules and push
// them onto the Stream. All processing is then

// performed in the Stream.

stream.push (new MT_Module ("Consumer",
new Consumer);

stream.push (new MT_Module ("Producer",
new Producer));

// Barrier synchronization: wait for the threads,
// to exit, then exit ourselves.
Thread_Manager::instance ()->wait ();
return 0;

}
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Evaluation of the Stream Class

Category

� Structuring active objects via a Stream al-
lows \interpositioning"

{ Similar to adding a �lter in a UNIX pipeline

� New functionality may be added by \push-

ing" a new processing Module onto a Stream,

e.g.,

stream.push (new MT_Module ("Consumer",
new Consumer))

stream.push (new MT_Module ("Filter",
new Filter));

stream.push (new MT_Module ("Producer",
new Producer));

291

Concurrency Strategies

� Developing correct, e�cient, and robust

concurrent applications is challenging

� Below, we examine a number of strategies
that addresses challenges related to the
following:

{ Concurrency control

{ Library design

{ Thread creation

{ Deadlock and starvation avoidance
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General Threading Guidelines

� A threaded program should not arbitrarily

enter non-threaded (i.e., \unsafe") code

� Threaded code may refer to unsafe code
only from the main thread

{ e.g., beware of errno problems

� Use reentrant OS library routines (\ r")

rather than non-reentrant routines

� Beware of thread global process opera-
tions

{ e.g., �le I/O

� Make sure that main terminates via thr exit(3T)

rather than exit(2) or \falling o� the end"
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Thread Creation Strategies

� Use threads for independent jobs that must

maintain state for the life of the job

� Don't spawn new threads for very short

jobs

� Use threads to take advantage of CPU

concurrency

� Only use \bound" threads when absolutely

necessary

� If possible, tell the threads library how
many threads are expected to be active
simultaneously

{ e.g., use thr setconcurrency
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General Locking Guidelines

� Don't hold locks across long duration op-
erations (e.g., I/O) that can impact per-
formance

{ Use \Tokens" instead: : :

� Beware of holding non-recursive mutexes
when calling a method outside a class

{ The method may reenter the module and dead-
lock

� Don't lock at too small of a level of gran-

ularity

� Make sure that threads obey the global
lock hierarchy

{ But this is easier said than done: : :
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Locking Alternatives

� Code locking

{ Associate locks with body of functions

� Typically performed using bracketed mutex

locks

{ Often called a monitor

� Data locking

{ Associate locks with data structures and/or
objects

{ Permits a more �ne-grained style of locking

� Data locking allows more concurrency than

code locking, but may incur higher over-

head
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Single-lock Strategy

� One way to simplify locking is use a single,

application-wide mutex lock

� Each thread must acquire the lock before

running and release it upon completion

� The advantage is that most legacy code

doesn't require changes

� The disadvantage is that parallelism is elim-
inated

{ Moreover, interactive response time may de-

grade if the lock isn't released periodically
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Passive Object Strategy

� A more OO locking strategy is to use a
\Passive Object"

{ Also known as a \monitor"

� Passive Object synchonization mechanisms
allow concurrent method invocations

{ Either eliminate access to shared data or use
synchronization objects

{ Hide locking mechanisms behind method inter-
faces

� Therefore, modules should not export data
directly

� Advantage is transparency

� Disadvantages are increased overhead from

excessive locking and lack of control over

method invocation order
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Active Object Strategy

� Each task is modeled as an active object

that maintains its own thread of control

� Messages sent to an object are queued
up and processed asynchronously with re-
spect to the caller

{ i.e., the order of execution may di�er from the

order of invocation

� This approach is more suitable to message

passing-based concurrency

� The ACE Task class implements this ap-

proach

299

Invariants

� In general, an invariant is a condition that

is always true

� For concurrent programs, an invariant is
a condition that is always true when an
associated lock is not held

{ However, when the lock is held the invariant

may be false

{ When the code releases the lock, the invariant

must be re-established

� e.g., enqueueing and dequeueing messages

in the Message Queue class
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Run-time Stack Problems

� Most threads libraries contain restrictions
on stack usage

{ The initial thread gets the \real" process stack,

whose size is only limited by the stacksize limit

{ All other threads get a �xed-size stack

� Each thread stack is allocated o� the heap

and its size is �xed at startup time

� Therefore, be aware of \stack smashes"
when debugging multi-threaded code

{ Overly small stacks lead to bizarre bugs, e.g.,

* Functions that weren't called appear in backtraces

* Functions have strange arguments
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Deadlock

� Permanent blocking by a set of threads

that are competing for a set of resources

� Caused by \circular waiting," e.g.,

{ A thread trying to reacquire a lock it already

holds

{ Two threads trying to acquire resources held

by the other

� e.g., T1 and T2 acquire locks L1 and L2 in

opposite order

� One solution is to establish a global or-
dering of lock acquisition (i.e., a lock hi-
erarchy)

{ May be at odds with encapsulation: : :
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Avoiding Deadlock in OO

Frameworks

� Deadlock can occur due to properties of
OO frameworks, e.g.,

{ Callbacks

{ Inter-class method calls

� There are several solutions

{ Release locks before performing callbacks

� Every time locks are reacquired it may be
necessary to reevaluate the state of the ob-

ject

{ Make private \helper" methods that assume

locks are held when called by methods at higher

levels

{ Use a Token or a Recursive Mutex
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Recursive Mutex

� Not all thread libraries support recursive
mutexes

{ Here is portable implementation available in
ACE:

class Recursive_Thread_Mutex
{
public:

// Initialize a recursive mutex.
Recursive_Thread_Mutex (void);
// Implicitly release a recursive mutex.

~Recursive_Thread_Mutex (void);
// Acquire a recursive mutex.

int acquire (void) const;
// Conditionally acquire a recursive mutex.

int tryacquire (void) const;
// Releases a recursive mutex.

int release (void) const;

private:
Thread_Mutex nesting_mutex_;
Condition_Thread_Mutex mutex_available_;
thread_t owner_id_;
int nesting_level_;

};

304



// Acquire a recursive mutex (increments the nesting
// level and don't deadlock if owner of the mutex calls
// this method more than once).

Recursive_Thread_Mutex::acquire (void) const
{

thread_t t_id = Thread::self ();

Guard<Thread_Mutex> mon (nesting_mutex_);

// If there's no contention, grab mutex.
if (nesting_level_ == 0) {

owner_id_ = t_id;
nesting_level_ = 1;

} else if (t_id == owner_id_)
// If we already own the mutex, then
// increment nesting level and proceed.
nesting_level_++;

else {
// Wait until nesting level drops
// to zero, then acquire the mutex.
while (nesting_level_ > 0)
mutex_available_.wait ();

// Note that at this point
// the nesting_mutex_ is held...

owner_id_ = t_id;
nesting_level_ = 1;

}
return 0;
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// Releases a recursive mutex.

Recursive_Thread_Mutex::release (void) const
{

thread_t t_id = Thread::self ();

// Automatically acquire mutex.
Guard<Thread_Mutex> mon (nesting_mutex_);

nesting_level_--;

if (nesting_level_ == 0) {
// This may not be strictly necessary, but
// it does put the mutex into a known state...
owner_id_ = OS::NULL_thread;

// Inform waiters that the mutex is free.
mutex_available_.signal ();

}
return 0;

}

Recursive_Thread_Mutex::Recursive_Thread_Mutex (void)
: nesting_level_ (0),

owner_id_ (OS::NULL_thread),
mutex_available_ (nesting_mutex_)

{
}
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Avoiding Starvation

� Starvation occurs when a thread never ac-

quires a mutex even though another thread

periodically releases it

� The order of scheduling is often unde�ned

� This problem may be solved via:

{ Use of \voluntary pre-emption" mechanisms

� e.g., thr yield () or Sleep

{ Using a \Token" that strictly orders acquisition

and release

307

Drawbacks to Multi-threading

� Performance overhead

{ Some applications do not bene�t directly from
threads

{ Synchronization is not free

{ Threads should be created for processing that

lasts at least several 1,000 instructions

� Correctness

{ Threads are not well protected against inter-

ference from other threads

{ Concurrency control issues are often tricky

{ Many legacy libraries are not thread-safe

� Development e�ort

{ Developers often lack experience

{ Debugging is complicated (lack of tools)
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Lessons Learned using OO

Patterns

� Bene�ts of patterns

{ Enable large-scale reuse of software architec-

tures

{ Improve development team communication

{ Help transcend language-centric viewpoints

� Drawbacks of patterns

{ Do not lead to direct code reuse

{ Can be deceptively simple

{ Teams may su�er from pattern overload
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Lessons Learned using OO

Frameworks

� Bene�ts of frameworks

{ Enable direct reuse of code (cf patterns)

{ Facilitate larger amounts of reuse than stand-

alone functions or individual classes

� Drawbacks of frameworks

{ High initial learning curve

� Many classes, many levels of abstraction

{ The \inversion of control" for reactive dispatch-

ing may be non-intuitive

{ Veri�cation and validation of generic compo-

nents is hard
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Lessons Learned using C++

� Bene�ts of C++

{ Classes and namespacesmodularize the system

architecture

{ Inheritance and dynamic binding decouple ap-

plication policies from reusable mechanisms

{ Parameterized types decouple the reliance on
particular types of synchronization methods or

network IPC interfaces

� Drawbacks of C++

{ Many language features are not widely imple-

mented

{ Development environments are primitive

{ Language has many dark corners and sharp

edges
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Software Principles for

Distributed Applications

1. Use patterns and frameworks to separate
policies from mechanisms

� Enhance reuse of common concurrent program-
ming components

2. Decouple service functionality from con�guration-
related mechanisms

� Improve exibility and performance

3. Utilize OO class abstractions, inheritance,
dynamic binding, and parameterized types

� Improve extensibility and modularity
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Software Principles for

Distributed Applications (cont'd)

1. Use advanced OS mechanisms to enhance
performance and functionality

� e.g., implicit and explicit dynamic linking and
multi-threading

2. Perform commonality/variability analysis

� Identify uniform interfaces for variable compo-

nents and support pluggability of variation
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Conferences and Workshops on

Patterns

� Pattern Language of Programs Confer-
ences

{ September, 1999, Monticello, Illinois, USA

{ st-www.cs.uiuc.edu/users/patterns/patterns.html

� The European Pattern Languages of Pro-
gramming conference

{ July, 1999, Kloster Irsee, Germany

{ www.cs.wustl.edu/~schmidt/patterns.html

� USENIX COOTS

{ May 3�7, 1999, San Diego, CA

{ www.usenix.org/events/coots99/
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Patterns and Frameworks

Literature

� Books

{ Gamma et al., \Design Patterns: Elements

of Reusable Object-Oriented Software" AW,

1994

{ Pattern Languages of Program Design series

by AW, 1995�97.

{ Siemens, Pattern-Oriented Software Architec-
ture, Wiley and Sons, 1996

� Special Issues in Journals

{ October '96 CACM (guest editors: Douglas C.

Schmidt, Ralph Johnson, and Mohamed Fayad)

{ October '97 CACM (guest editors: Douglas C.

Schmidt and Mohamed Fayad)

� Magazines

{ C++ Report and JOOP, columns by Coplien,
Vlissides, Vinoski, Schmidt, and Martin
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Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ www.cs.wustl.edu/~schmidt/ACE.html

� Mailing lists

* ace-users@cs.wustl.edu

* ace-users-request@cs.wustl.edu

* ace-announce@cs.wustl.edu

* ace-announce-request@cs.wustl.edu

� Newsgroup

{ comp.soft-sys.ace
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Concluding Remarks

� Developers of communication software con-
front recurring challenges that are largely
application-independent

{ e.g., service initialization and distribution, error

handling, ow control, event demultiplexing,

concurrency control

� Successful developers resolve these chal-

lenges by applying appropriate patterns to

create communication frameworks

� Frameworks are an e�ective way to achieve

broad reuse of software
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