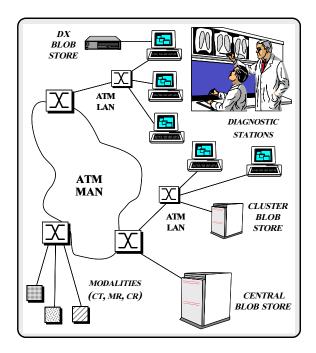
The Performance of Object-Oriented Components for High-speed Network Programming

> Douglas C. Schmidt schmidt@cs.wustl.edu

Washington University, St. Louis

Introduction

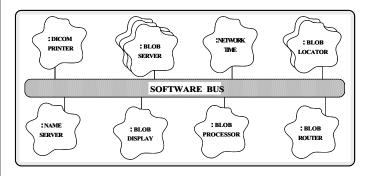
- Distributed object computing (DOC) frameworks are well-suited for certain *communication requirements* and certain *network environments*
 - *e.g.*, request/response or oneway messaging over low-speed Ethernet or Token Ring
- However, current DOC implementations exhibit high overhead for other types of *requirements* and *environments*
 - e.g., bandwidth-intensive and delay-sensitive streaming applications over high-speed ATM or FDDI


2

Outline

- Outline communication requirements of distributed medical imaging domain
- Compare performance of several network programming mechanisms:
 - Sockets
 - ACE C++ wrappers
 - CORBA (Orbix)
 - Blob Streaming
- Outline Blob Streaming Architecture and Related Patterns
- Evaluation and Recommendations

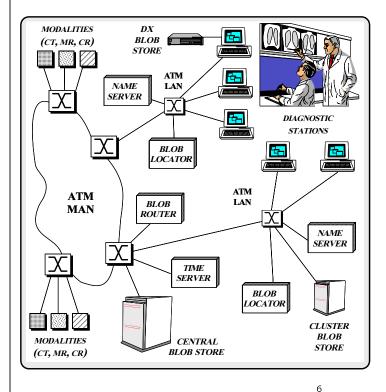
Distributed Medical Imaging in


Project Spectrum

1

Distributed Objects in Medical

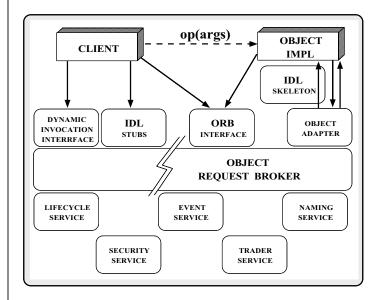
Imaging Systems


- Blob Servers have the following responsibilities and requirements:
 - * Efficiently store/retrieve large medical images (Blobs)

5

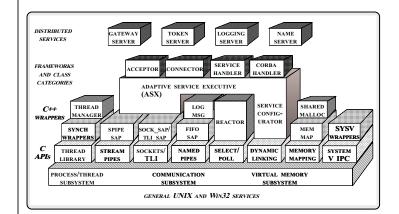
7

- * Respond to queries from Blob Locators
- * Manage short-term and long-term blob persistence


DOC View of Project Spectrum

Motivation for Distributed Object Computing

- Simplify application development and interworking, *e.g.*,
 - CORBA provides higher level integration than traditional "untyped TCP bytestreams"
 - ACE encapsulates lower-level networking and concurrency systems programming interfaces
- Provide a foundation for higher-level application collaboration
 - *e.g.*, Windows OLE and the OMG Common Object Service Specification (COSS)
- Benefits for distributed programming similar to OO languages for non-distributed programming
 - *e.g.*, encapsulation, interface inheritance, and objectbased exception handling


CORBA Architecture

CORBA Components

- The CORBA specification is comprised of several parts:
- 1. An Object Request Broker (ORB)
- 2. An Interface Definition Language (IDL)
- 3. A Static Invocation Interface (SII)
- 4. A Dynamic Invocation Interface (DII)
- 5. A Dynamic Skeleton Interface (DSI)
- Other documents from OMG describe common object services built upon CORBA
 - e.g., CORBAServices \rightarrow Event services, Name services, Lifecycle services

ACE Architecture

• A set of C++ wrappers, class categories, and frameworks based on design patterns

10

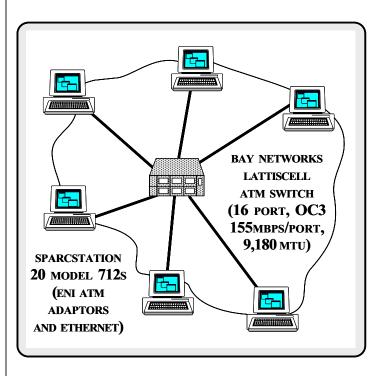
Motivation for CORBA and ACE on Project Spectrum

- Two crucial issues for overall communication infrastructure *flexibility* and *performance*
- Flexibility motivates the use of a distributed object computing framework like CORBA to transport many formats of data
- e.g., HL7, DICOM, Blobs, domain objects, etc.
- Performance requires we transport this data as quickly as the current technology allows

Key Research Question

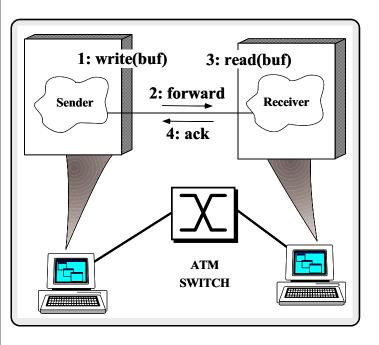
Can CORBA and ACE be used to transfer medical images efficiently over high-speed networks?

• Our goal was to determine this empirically *before* adopting distributed object computing wholesale

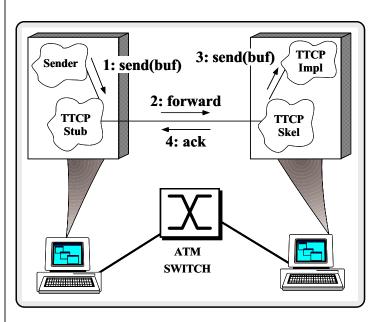

9

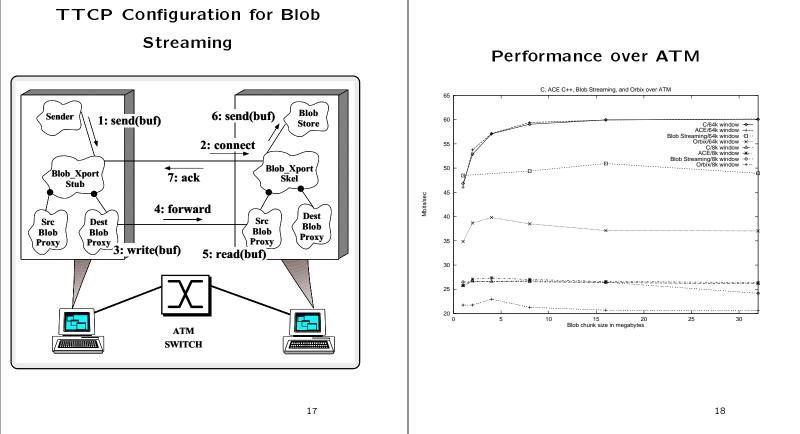
Performance Experiments

- Enhanced version of TTCP
 - TTCP measures end-to-end bulk data transfer with ackknowledgements
 - Enhanced version tests C, ACE C++ wrappers, and CORBA, and Blob Streaming
- Parameters varied
 - 100 Mbytes of data transferred in various chunk sizes
 - Socket queues were 8k (default) and 64k (maximum)
 - Network was 155 Mbps ATM
- Compiler was SunC++ 4.0.1 using highest optimization level


13

Network/Host Environment




14

TTCP Configuration for C and ACE C++ Wrappers

TTCP Configuration for CORBA Implementation

Primary Sources of Overhead

- Data copying
- Demultiplexing
- Memory allocation
- Presentation layer formatting

High-Cost Functions

- C and ACE C++ Tests
 - Transferring 64 Mbytes with 1 Mbyte buffers

Test	%Time	#Calls	Name
C sockets	93.9	112	write
(sender)	3.6	110	read
C sockets	93.2	13,085	read
(receiver)	4.5	3	getmsg
ACE C++ wrapper	94.4	112	write
(sender)	3.2	110	read
ACE C++ wrapper	93.9	12,984	read
(receiver)	5.6	3	getmsg

High-Cost Functions (cont'd)

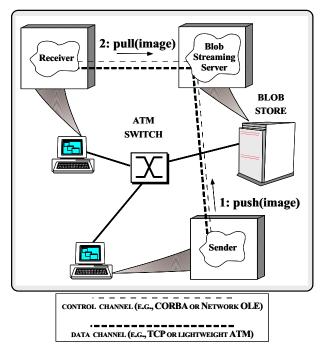
• Orbix String and Sequence

Test	%Time	#Calls	Name
Orbix Sequence (sender)	53.5 35.1 7.3	127 223 1,108	write read memcpy
Orbix Sequence (receiver)	85.6 12.4	12,846 1,064	read memcpy
Orbix String (sender)	45.0 35.1 10.8 6.0	127 223 1,315 1,108	write read strlen memcpy
Orbix String (receiver)	70.7 18.1 10.0	12,443 2,142 1,064	read strlen memcpy

21

High-Cost Functions (cont'd)

Blob Streaming


Test	%Time	#Calls	Name
BlobStreaming (sender)	48.8 44.8 1.3	327 232 2,055	write read memcpy
BlobStreaming (receiver)	77.2 16.4 1.4	12,546 12,734 202	read memcpy write

22

Overview of Blob Streaming

- Blob Streaming provides developers with a uniform interface for operations on multiple types of *Binary Large OBjects* (BLOBs)
- Two primary goals
- 1. Improved abstraction
 - Shield developers from knowledge of blob location (e.g., memory vs. "local" files vs. remote network)
- 2. Maximize performance
 - Transport blobs as efficiently as current technology allows

Blob Streaming System Architecture

Blob Streaming Architecture

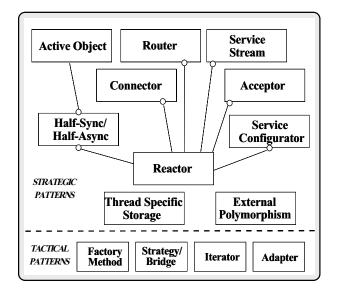
- Blob Streaming components allow transparent use of resources through uniform blob interfaces
- Blob Streaming support the following:
 - Blob location
 - e.g., smart caches to decouple transfers from location algorithms
 - Blob routing
 - \triangleright e.g., context based routing
 - Source and destination independent Blob transport, e.g.,
 - ▷ Store and retrieve from remote or local databases
 - Abstract operations like reads/writes may use local file reads/writes, or remote reads/writes via sockets

25

Blob Streaming Architecture Design Goals

- Goal: decouple application from OS platform
 - e.g., applications can be shielded from fact that current version is implemented for UNIX
 - Thus, can port Blob Streaming to Windows NT or OS/2 without changing applications
 - Platform specific operations hidden behind abstract interfaces
 - > e.g., WIN32 WaitForMultipleObjects and UNIX
 select
- Advantages
 - Portability and extensibility

26

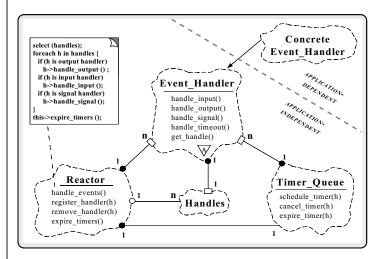

Blob Streaming Architecture Design Goals (cont'd)

- *Goal*: application independence from transport mechanism
 - Switch transports at any stage in the development without affecting application code
 - Presently using CORBA and TCP/IP as transport mechanisms
 - However, none of these mechanisms are exposed to programmers
 - \cdot e.g., can use Network OLE
 - As transport technology improves, Blob Streaming can change without affecting applications
 - e.g., "direct ATM"

Advantages

- Portability, extensibility, and performance tuning

Design Patterns in Blob Streaming

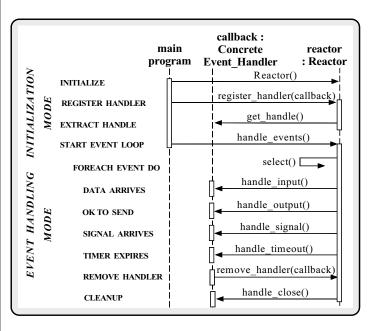


• Blob Streaming is based upon a system of design patterns

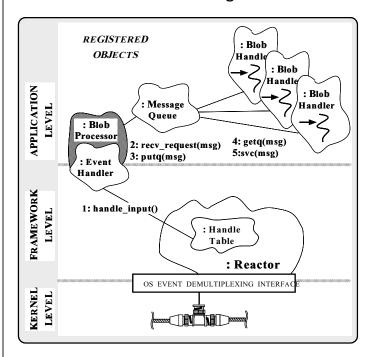
The Reactor Pattern

- Intent
 - An object behavioral pattern that decouples event demultiplexing and event handler dispatching from the services performed in response to events
- This pattern resolves the following forces for event-driven software:
- How to demultiplex multiple types of events from multiple sources of events efficiently within a single thread of control
- How to extend application behavior without requiring changes to the event dispatching framework

Structure of the Reactor Pattern



• Participants in the Reactor pattern


30

Collaboration in the Reactor

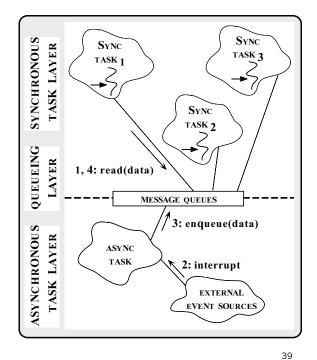
Pattern

Using the Reactor for Blob Streaming

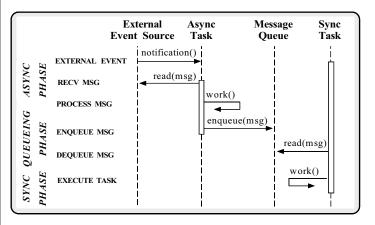
29

Pattern in ACE The Active Object Pattern SYNCH SYNCH Task Service • Intent open()=0 APPLICATION close()=0 INDEPENDENT put()=0- Decouples method execution from method invoca-APPLICATION svc()=0 tion and simplifies synchronized access to shared SPECIFIC resources by concurrent threads SYNCH Service Message 7 This pattern resolves the following forces ٠ Object Queue / Event for concurrent communication software: suspend()=0 Handler resume()=0 - How to allow blocking operations (such as read handle_input() Ą and write) to execute concurrently Shared handle output() handle_exception() Object handle_signal() handle_timeout () - How to simplify concurrent access to shared state init()=0 fini ()=0 handle_close() get_handle()=0 info()=0 $\overline{\mathbb{A}}$ Y 33 34 Using the Active Object Pattern Collaboration in ACE Active for Blob Streaming Objects REGISTERED : Blob **OBJECTS** Handl t₂ : Task : Blob Handl 2: enqueue (msg) 3: svc () APPLICATION : Blob 4: dequeue (msg) : Message Handler LEVEL Message Oueue Oueue : Blob Processor 5: put (msg) ACTIVE 4: getq(msg) 2: recv_request(msg) 5:svc(msg) 1: put (msg) 3: putq(msg) : Event Handler FRAMEWORK t₃ : Task 1: handle_input() LEVEL t₁ : Task : Handle Message Table Queue : Message ACTIVE : Reactor Queue OS EVENT DEMULTIPLEXING INTERFA ACTIVE KERNEI LEVEL

Structure of the Active Object

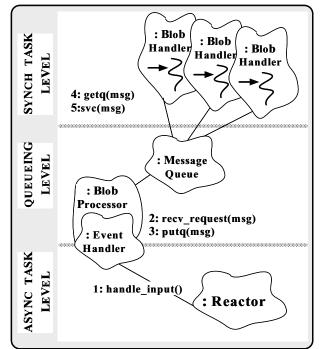

Half-Sync/Half-Async Pattern

- Intent
- An architectural pattern that decouples synchronous I/O from asynchronous I/O in a system to simplify programming effort without degrading execution efficiency
- This pattern resolves the following forces for concurrent communication systems:
 - How to simplify programming for higher-level communication tasks
 - ▷ These are performed synchronously (via Active Objects)
 - How to ensure efficient lower-level I/O communication tasks
 - These are performed asynchronously (via the Reactor)


38

Structure of the

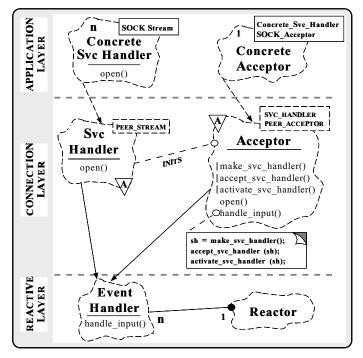
Half-Sync/Half-Async Pattern


Collaborations in the Half-Sync/Half-Async Pattern

• This illustrates *input* processing (*output* processing is similar)

Using the Half-Sync/Half-Async

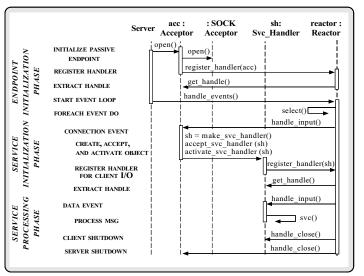
Pattern for Blob Streaming



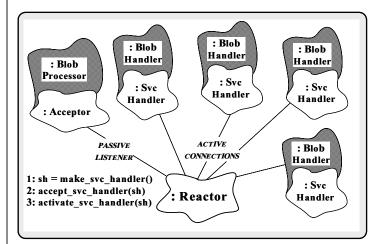
The Acceptor Pattern

- Intent
 - Decouple the passive initialization of a service from the tasks performed once the service is initialized
- This pattern resolves the following forces for network servers using interfaces like sockets or TLI:
- 1. How to reuse passive connection establishment code for each new service
- 2. How to make the connection establishment code portable across platforms that may contain sockets but not TLI, or vice versa
- 3. How to ensure that a passive-mode descriptor is not accidentally used to read or write data
- 4. How to enable flexible policies for creation, connection establishent, and concurrency

42


Structure of the Acceptor Pattern

43

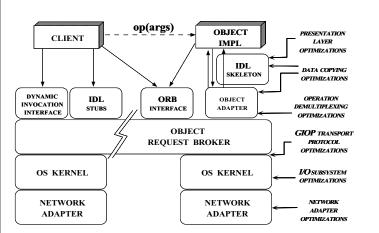

Collaboration in the Acceptor

Pattern

 Acceptor factory creates, connects, and activates a Svc_Handler

Using the Acceptor Pattern for Blob Streaming

Evaluation and Recommendations


- Understand communication requirements and network/host environments
- Measure performance empirically before adopting a communication model
 - Low-speed networks often hide performance overhead
- Insist CORBA implementors provide hooks to manipulate options
 - e.g., setting socket queue size with ORBeline was hard
- Increase size of socket queues to largest value supported by OS
- Tune the size of the transmitted data buffers to match MTU of the network

46

Evaluation and Recommendations (cont'd)

- Use IDL sequences rather than IDL strings to avoid unnecessary data access (i.e. strlen)
- Use write/read rather than send/recv on SVR4 platforms
- Long-term solution:
 - Optimize DOC frameworks
 - Add streaming support to CORBA specification
- Near-term solution for CORBA overhead on high-speed networks:
 - e.g., Blob Streaming integrates CORBA with ACE

47

Optimizations

• To be effective for use with performancecritical applications over high-speed networks, CORBA implementations must be optimized

Obtaining ACE

- The ADAPTIVE Communication Environment (ACE) is an OO toolkit designed according to key network programming patterns
- All source code for ACE is freely available
 - Anonymously ftp to wuarchive.wustl.edu
 - Transfer the files /languages/c++/ACE/*.gz and gnu/ACE-documentation/*.gz
- Mailing list
 - ace-users@cs.wustl.edu
 - ace-users-request@cs.wustl.edu
- WWW URL
 - http://www.cs.wustl.edu/~schmidt/ACE.html