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Introduction

� Distributed object computing (DOC) frame-
works are well-suited for certain communi-
cation requirements and certain network en-
vironments

{ e.g., request/response or oneway messaging over

low-speed Ethernet or Token Ring

� However, current DOC implementations ex-
hibit high overhead for other types of re-
quirements and environments

{ e.g., bandwidth-intensive and delay-sensitive stream-

ing applications over high-speed ATM or FDDI
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Outline

� Outline communication requirements of dis-

tributed medical imaging domain

� Compare performance of several network pro-
gramming mechanisms:

{ Sockets

{ ACE C++ wrappers

{ CORBA (Orbix)

{ Blob Streaming

� Outline Blob Streaming Architecture and

Related Patterns

� Evaluation and Recommendations
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Distributed Objects in Medical

Imaging Systems
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� Blob Servers have the following responsibil-
ities and requirements:

* E�ciently store/retrieve large medical images (Blobs)

* Respond to queries from Blob Locators

* Manage short-term and long-term blob persistence
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DOC View of Project Spectrum
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Motivation for Distributed Object

Computing

� Simplify application development and inter-
working, e.g.,

{ CORBA provides higher level integration than tra-

ditional \untyped TCP bytestreams"

{ ACE encapsulates lower-level networking and con-

currency systems programming interfaces

� Provide a foundation for higher-level appli-
cation collaboration

{ e.g., Windows OLE and the OMG Common Ob-

ject Service Speci�cation (COSS)

� Bene�ts for distributed programming simi-
lar to OO languages for non-distributed pro-
gramming

{ e.g., encapsulation, interface inheritance, and object-

based exception handling
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CORBA Architecture
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CORBA Components

� The CORBA speci�cation is comprised of
several parts:

1. An Object Request Broker (ORB)

2. An Interface De�nition Language (IDL)

3. A Static Invocation Interface (SII)

4. A Dynamic Invocation Interface (DII)

5. A Dynamic Skeleton Interface (DSI)

� Other documents from OMG describe com-
mon object services built upon CORBA

{ e.g., CORBAServices ! Event services, Name ser-

vices, Lifecycle services
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ACE Architecture
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� A set of C++ wrappers, class categories,

and frameworks based on design patterns
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Motivation for CORBA and ACE

on Project Spectrum

� Two crucial issues for overall communica-

tion infrastructure exibility and performance

� Flexibility motivates the use of a distributed
object computing framework like CORBA
to transport many formats of data

{ e.g., HL7, DICOM, Blobs, domain objects, etc.

� Performance requires we transport this data

as quickly as the current technology allows
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Key Research Question

Can CORBA and ACE be used to

transfer medical images e�ciently

over high-speed networks?

� Our goal was to determine this empirically

before adopting distributed object comput-

ing wholesale
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Performance Experiments

� Enhanced version of TTCP

{ TTCP measures end-to-end bulk data transfer with

ackknowledgements

{ Enhanced version tests C, ACE C++ wrappers,

and CORBA, and Blob Streaming

� Parameters varied

{ 100 Mbytes of data transferred in various chunk

sizes

{ Socket queues were 8k (default) and 64k (maxi-

mum)

{ Network was 155 Mbps ATM

� Compiler was SunC++ 4.0.1 using highest

optimization level
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Network/Host Environment
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TTCP Con�guration for C and

ACE C++ Wrappers
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TTCP Con�guration for CORBA

Implementation
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TTCP Con�guration for Blob

Streaming
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Performance over ATM
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Primary Sources of Overhead

� Data copying

� Demultiplexing

� Memory allocation

� Presentation layer formatting

19

High-Cost Functions

� C and ACE C++ Tests

{ Transferring 64 Mbytes with 1 Mbyte bu�ers

Test %Time #Calls Name

----------------------------------------------

C sockets 93.9 112 write

(sender) 3.6 110 read

C sockets 93.2 13,085 read

(receiver) 4.5 3 getmsg

ACE C++ wrapper 94.4 112 write

(sender) 3.2 110 read

ACE C++ wrapper 93.9 12,984 read

(receiver) 5.6 3 getmsg
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High-Cost Functions (cont'd)

� Orbix String and Sequence

Test %Time #Calls Name

----------------------------------------------

Orbix Sequence 53.5 127 write

(sender) 35.1 223 read

7.3 1,108 memcpy

Orbix Sequence 85.6 12,846 read

(receiver) 12.4 1,064 memcpy

Orbix String 45.0 127 write

(sender) 35.1 223 read

10.8 1,315 strlen

6.0 1,108 memcpy

Orbix String 70.7 12,443 read

(receiver) 18.1 2,142 strlen

10.0 1,064 memcpy
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High-Cost Functions (cont'd)

� Blob Streaming

Test %Time #Calls Name

----------------------------------------------

BlobStreaming 48.8 327 write

(sender) 44.8 232 read

1.3 2,055 memcpy

BlobStreaming 77.2 12,546 read

(receiver) 16.4 12,734 memcpy

1.4 202 write
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Overview of Blob Streaming

� Blob Streaming provides developers with a

uniform interface for operations on multiple

types of Binary Large OBjects (BLOBs)

� Two primary goals

1. Improved abstraction

{ Shield developers from knowledge of blob loca-

tion (e.g., memory vs. \local" �les vs. remote

network)

2. Maximize performance

{ Transport blobs as e�ciently as current technol-

ogy allows
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Blob Streaming System
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Blob Streaming Architecture

� Blob Streaming components allow transpar-

ent use of resources through uniform blob

interfaces

� Blob Streaming support the following:

{ Blob location

. e.g., smart caches to decouple transfers from

location algorithms

{ Blob routing

. e.g., context based routing

{ Source and destination independent Blob trans-

port, e.g.,

. Store and retrieve from remote or local databases

. Abstract operations like reads/writes may use

local �le reads/writes, or remote reads/writes
via sockets
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Blob Streaming Architecture

Design Goals

� Goal: decouple application from OS plat-
form

{ e.g., applications can be shielded from fact that

current version is implemented for UNIX

. Thus, can port Blob Streaming to Windows NT

or OS/2 without changing applications

{ Platform speci�c operations hidden behind abstract

interfaces

. e.g., WIN32 WaitForMultipleObjects and UNIX
select

� Advantages

{ Portability and extensibility
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Blob Streaming Architecture

Design Goals (cont'd)

� Goal: application independence from trans-
port mechanism

{ Switch transports at any stage in the development

without a�ecting application code

. Presently using CORBA and TCP/IP as trans-

port mechanisms

� However, none of these mechanisms are ex-

posed to programmers

� e.g., can use Network OLE

. As transport technology improves, Blob Stream-

ing can change without a�ecting applications

� e.g., \direct ATM"

� Advantages

{ Portability, extensibility, and performance tuning
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Design Patterns in Blob

Streaming

Active ObjectActive Object

Half-Sync/Half-Sync/
Half-AsyncHalf-Async

IteratorIterator
FactoryFactory
MethodMethod AdapterAdapter

Strategy/Strategy/
BridgeBridge

TACTICAL

PATTERNS

STRATEGIC

PATTERNS

ConnectorConnector AcceptorAcceptor

RouterRouter

ServiceService
ConfiguratorConfigurator

ServiceService
StreamStream

Thread SpecificThread Specific
StorageStorage

ReactorReactor

ExternalExternal
PolymorphismPolymorphism

� Blob Streaming is based upon a system of

design patterns
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The Reactor Pattern

� Intent

{ An object behavioral pattern that decouples event

demultiplexing and event handler dispatching from

the services performed in response to events

� This pattern resolves the following forces
for event-driven software:

{ How to demultiplex multiple types of events from

multiple sources of events e�ciently within a single

thread of control

{ How to extend application behavior without requir-

ing changes to the event dispatching framework
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Structure of the Reactor Pattern

Reactor
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remove_handler(h)
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� Participants in the Reactor pattern
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Collaboration in the Reactor

Pattern
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Using the Reactor for Blob

Streaming

:: Reactor Reactor
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The Active Object Pattern

� Intent

{ Decouples method execution from method invoca-

tion and simpli�es synchronized access to shared

resources by concurrent threads

� This pattern resolves the following forces
for concurrent communication software:

{ How to allow blocking operations (such as read

and write) to execute concurrently

{ How to simplify concurrent access to shared state
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Structure of the Active Object

Pattern in ACE
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Collaboration in ACE Active

Objects

ACTIVE

: Message
Queue

t2 : Task

2: enqueue (msg)

1: put (msg)

ACTIVE

: Message
Queue

t1 : Task

ACTIVE

: Message
Queue

t3 : Task

5: put (msg)

3: svc ()
4: dequeue (msg)
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Using the Active Object Pattern

for Blob Streaming

:: Reactor Reactor
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Half-Sync/Half-Async Pattern

� Intent

{ An architectural pattern that decouples synchronous

I/O from asynchronous I/O in a system to simplify

programming e�ort without degrading execution

e�ciency

� This pattern resolves the following forces
for concurrent communication systems:

{ How to simplify programming for higher-level com-

munication tasks

. These are performed synchronously (via Active

Objects)

{ How to ensure e�cient lower-level I/O communi-

cation tasks

. These are performed asynchronously (via the Re-

actor)
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Structure of the

Half-Sync/Half-Async Pattern
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Collaborations in the

Half-Sync/Half-Async Pattern
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� This illustrates input processing (output pro-

cessing is similar)

40

Using the Half-Sync/Half-Async

Pattern for Blob Streaming
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The Acceptor Pattern

� Intent

{ Decouple the passive initialization of a service from

the tasks performed once the service is initialized

� This pattern resolves the following forces
for network servers using interfaces like sock-
ets or TLI:

1. How to reuse passive connection establishment code

for each new service

2. How to make the connection establishment code

portable across platforms that may contain sock-

ets but not TLI, or vice versa

3. How to ensure that a passive-mode descriptor is

not accidentally used to read or write data

4. How to enable exible policies for creation, con-

nection establishent, and concurrency
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Structure of the Acceptor Pattern
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accept_svc_handler (sh);accept_svc_handler (sh);

activate_svc_handler (sh);activate_svc_handler (sh);
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EventEvent
HandlerHandler

handle_input()

AA

make_svc_handler()
accept_svc_handler()
activate_svc_handler()
open()
handle_input()
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Collaboration in the Acceptor

Pattern

Server

REGISTER  HANDLER

START  EVENT  LOOP

CONNECTION  EVENT

REGISTER  HANDLER

FOR  CLIENT  I/O

FOREACH  EVENT  DO

EXTRACT  HANDLE

INITIALIZE  PASSIVE

ENDPOINT

acc :
Acceptor

handle_input()

handle_close()

reactor :
Reactor

select()

sh:
Svc_Handler

handle_input()

register_handler(sh)

get_handle()
EXTRACT  HANDLE

DATA  EVENT
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PROCESS  MSG

open()

CREATE, ACCEPT,
AND  ACTIVATE  OBJECT

SERVER  SHUTDOWN
handle_close()

E
N

D
P

O
IN

T

IN
IT

IA
L

IZ
A

T
IO

N

 P
H

A
S

E

S
E

R
V

IC
E

IN
IT

IA
L

IZ
A

T
IO

N

P
H

A
S

E

S
E

R
V

IC
E

P
R

O
C

E
S

S
IN

G

P
H

A
S

E

: SOCK
Acceptor

handle_events()

get_handle()

register_handler(acc)

sh = make_svc_handler()
accept_svc_handler (sh)
activate_svc_handler (sh)

open()

� Acceptor factory creates, connects, and ac-

tivates a Svc Handler
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Using the Acceptor Pattern for

Blob Streaming

PASSIVEPASSIVE

LISTENERLISTENER

ACTIVEACTIVE

CONNECTIONSCONNECTIONS

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Svc: Svc
HandlerHandler

: Blob: Blob
HandlerHandler

: Acceptor: Acceptor

: Blob: Blob
ProcessorProcessor

1: sh = make_svc_handler()1: sh = make_svc_handler()
2: accept_svc_handler(sh)2: accept_svc_handler(sh)
3: activate_svc_handler(sh)3: activate_svc_handler(sh)

:: Reactor Reactor
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Evaluation and Recommendations

� Understand communication requirements and

network/host environments

� Measure performance empirically before adopt-
ing a communication model

{ Low-speed networks often hide performance over-

head

� Insist CORBA implementors provide hooks
to manipulate options

{ e.g., setting socket queue size with ORBeline was

hard

� Increase size of socket queues to largest

value supported by OS

� Tune the size of the transmitted data bu�ers

to match MTU of the network
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Evaluation and Recommendations

(cont'd)

� Use IDL sequences rather than IDL strings

to avoid unnecessary data access (i.e. strlen)

� Use write/read rather than send/recv on

SVR4 platforms

� Long-term solution:

{ Optimize DOC frameworks

{ Add streaming support to CORBA speci�cation

� Near-term solution for CORBA overhead on
high-speed networks:

{ e.g., Blob Streaming integrates CORBA with ACE
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Optimizations

CLIENT
OBJECTOBJECT

IMPLIMPL

DYNAMICDYNAMIC

INVOCATIONINVOCATION

INTERFACEINTERFACE

IDLIDL
STUBSSTUBS

ORBORB
INTERFACEINTERFACE

IDLIDL
SKELETONSKELETON

OBJECT

ADAPTER

OBJECT

REQUEST  BROKER

op(args)op(args)

OS  KERNEL

NETWORK

ADAPTER

OS  KERNEL

NETWORK

ADAPTER

GIOPGIOP  TRANSPORT  TRANSPORT

PROTOCOLPROTOCOL

OPTIMIZATIONSOPTIMIZATIONS

DATA  COPYINGDATA  COPYING

OPTIMIZATIONSOPTIMIZATIONS

OPERATIONOPERATION

DEMULTIPLEXINGDEMULTIPLEXING

OPTIMIZATIONSOPTIMIZATIONS

PRESENTATIONPRESENTATION

LAYERLAYER

OPTIMIZATIONSOPTIMIZATIONS

I/OI/O SUBSYSTEM SUBSYSTEM

OPTIMIZATIONSOPTIMIZATIONS

NETWORKNETWORK

ADAPTERADAPTER

OPTIMIZATIONSOPTIMIZATIONS

� To be e�ective for use with performance-

critical applications over high-speed networks,

CORBA implementations must be optimized
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Obtaining ACE

� The ADAPTIVE Communication Environ-

ment (ACE) is an OO toolkit designed ac-

cording to key network programming pat-

terns

� All source code for ACE is freely available

{ Anonymously ftp to wuarchive.wustl.edu

{ Transfer the �les /languages/c++/ACE/*.gz and
gnu/ACE-documentation/*.gz

� Mailing list

{ ace-users@cs.wustl.edu

{ ace-users-request@cs.wustl.edu

� WWW URL

{ http://www.cs.wustl.edu/~schmidt/ACE.html
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