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Abstract

Real-time and embedded systems have traditionally been designed for closed environments where operating conditions,

input workloads, and resource availability are known a priori, and are subject to little or no change at run-time. There is

increasing demand, however, for adaptive capabilities in distributed real-time and embedded (DRE) systems that execute

in open environments where system operational conditions, input workload, and resource availability cannot be character-

ized accurately a priori. A challenging problem faced by researchers and developers of such systems is devising effective

adaptive resource management strategies that can meet end-to-end quality of service (QoS) requirements of applications.

To address key resource management challenges of open DRE systems, this paper presents the Hierarchical Distributed

Resource-management Architecture (HiDRA), which provides adaptive resource management using control techniques that

adapt to workload fluctuations and resource availability for both bandwidth and processor utilization simultaneously.

This paper presents three contributions to research in adaptive resource management for DRE systems. First, we describe

the structure and functionality of HiDRA. Second, we present an analytical model of HiDRA that formalizes its control-

theoretic behavior and presents analytical assurance of system performance. Third, we evaluate the performance of HiDRA

via experiments on a representative DRE system that performs real-time distributed target tracking. Our analytical and em-

pirical results indicate that HiDRA yields predictable, stable, and efficient system performance, even in the face of changing

workload and resource availability.

1 Introduction

Distributed real-time and embedded (DRE) systems form the core of many mission-critical domains, including au-

tonomous air surveillance [1], total ship computing environments [2], and supervisory control and data acquisition sys-
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tems [3, 4, 5]. Often, these DRE systems execute in open environments where system operating conditions, input workload,

and resource availability cannot be characterized accurately a priori. These characteristics are beginning to emerge in to-

day’s large-scale systems of systems [6], and they will dominate in the next-generation of ultra-large-scale DRE systems [7].

Achieving end-to-end quality of service (QoS) is important and challenging for these types of systems due to their unique

characteristics, including (1) constraints in multiple resources (e.g., limited computing power and network bandwidth) and

(2) highly fluctuating resource availability and input workload.

Conventional resource management approaches, such as rate monotonic scheduling [8], are designed to manage system

resources and providing QoS in closed environments where operating conditions, input workloads, and resource availability

are known in advance. Since these approaches are insufficient for open DRE systems, there is a need to introduce resource

management mechanisms that can adapt to dynamic changes in resource availability and requirements. A promising solution

is feedback control scheduling (FCS) [9, 10, 11], which employs software feedback loops that dynamically control resource

allocation to applications in response to changes in input workload and resource availability. These techniques enable adaptive

resource management capabilities in DRE systems that can compensate for fluctuations in resource availability and changes

in application resource requirements at run-time. When FCS techniques are designed and modeled using rigorous control-

theoretic techniques and implemented using QoS-enabled software platforms, they can provide robust and analytically sound

QoS assurance.

Although existing FCS algorithms have been shown to be effective in managing a single type of resource, they have

not been enhanced to manage multiple types of resources. It is still an open issue, therefore, to extend individual FCS

algorithms to work together in a coordinated way to manage multiple types of resources, such as managing computational

power and network bandwidth simultaneously. To address this issue, we have developed a control-based multi-resource

management framework called Hierarchical Distributed Resource management Architecture (HiDRA). HiDRA employs

a control-theoretic approach featuring two types of feedback controllers that coordinate the utilization of computational

power and network bandwidth to prevent over-utilization of system resources. This capability is important because processor

overload can cause system failure and network saturation can cause congestion and severe packet loss. HiDRA improves

system QoS by modifying appropriate application parameters, subject to the constraints of the desired utilization.

This paper provides contributions to both theoretical and experimental research on FCS. Its theoretical contribution is

its use of control theory to formally prove the stability of HiDRA. Its experimental contribution is to evaluate empirically

how HiDRA works for a real-time distributed target tracking application built atop The ACE ORB (TAO) [12], which is an

implementation of Real-time CORBA [13]. Our experimental results validate our theoretical claims and show that HiDRA

yields predictable and high-performance resource management and coordination for multiple types of resources.

The remainder of the paper is organized as follows: Section 2 describes the architecture and QoS requirements of our

DRE system case study; Section 3 explains the structure and functionality of HiDRA; Section 4 formulates the resource

management problem of our DRE system case study described in Section 2 and presents an analysis of HiDRA; Section 5

empirically evaluates the adaptive behavior of HiDRA for our DRE system case study; Section 6 compares our research on

HiDRA with related work; and Section 7 presents concluding remarks.
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2 Case Study: Target Tracking DRE System

This section describes a real-time distributed target tracking system that we use as a case study to investigate adaptive

management of multiple system resources in a representative open DRE system. The tracking system provides emergency

response and surveillance capabilities to help communities and relief agencies recover from major disasters, such as floods,

hurricanes, or earthquakes. In this system, multiple unmanned air vehicles (UAVs) fly over a pre-designated area (known as

an “area of interest”) capturing live images. The architecture of this distributed target tracking system, which is similar to

other reconnaissance mission systems [14] and target tracking systems [15, 16], is shown in Figure 1.
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Figure 1: Target Tracking DRE System Architecture

Each UAV serves as a data source, captures live images, compresses them, and transmits them to a receiver over a wireless

network. The receiver serves as a data sink, receives the images sent from the UAVs, and performs object detection. If the

presence of an object of interest is detected in the received images, the tracking system determines the coordinates of the

objects automatically and keeps tracking it. The coordinates of the object is reported to responders who use this information

to determine the appropriate course of action, e.g. initiate a rescue, airlift supplies, etc. Humans, animals, cars, boats, and

aircraft are typical objects of interest in our tracking system.

The QoS of our resource-constrained DRE system is measured as follows:

• Target-tracking precision, which is the distance between the computed center of mass of an object and the actual center

of mass of the object, and

• End-to-end delay, which is the time interval between image capture by the UAV and computation of the coordinates of

an object of interest. End-to-end delay includes image processing delay at the UAV, network transmission delay, and

processing delay of the object detection and tracking sub-system at the receiver.

Just as any real-time system, end-to-end delay is a crucial QoS in our emergency response system and must be as low

as possible. A set of coordinates computed with a lower precision and lower end-to-end delay is preferred over a set of

coordinates computed with a higher precision and higher end-to-end delay.

There are two primary types of resources that constrain the QoS of our DRE system: (1) processors that provide compu-

tational power available at the UAVs and the receiver and (2) the wireless network bandwidth that provides communication

bandwidth between UAVs and the receiver. To determine the coordinates accurately, images captured by the UAVs must be

transmitted at a higher quality when an object is present. This in turn increases the network bandwidth consumption by the

UAV. To increase the utility of the system, images are transmitted at a higher rate by the UAVs when objects of interest are
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present in the captured images. This in-turn increases the processor utilization at the receiver node, and thus increases the

processing delay of the object detection and tracking sub-system. Moreover, transmission of images of higher quality at a

higher rate increases the bandwidth consumption by the UAV. If the network bandwidth is over-utilized considerably, the

network transmission delay increases, which in-turn increases the end-to-end delay.

The utilization of the system resources (i.e., wireless network bandwidth and computing power at the receiver) are there-

fore subject to abrupt changes caused by the presence of varying numbers of objects of interest. Moreover, the wireless

network bandwidth available to transmit images from the UAVs to the receiver depends on the channel capacity of the wire-

less network, which in-turn depends on dynamic factors, such as the speed of the UAVs and the relative distance between

UAVs and the receiver due to adaptive modulation [17, 18].

The coupling between the utilization of multiple resources, varying resource availability, and fluctuating input workloads

motivate the need for adaptive management of multiple resources. To meet this need, the captured images in our system

are compressed using JPEG, which supports flexible image quality [19]. Likewise, we choose to use image streams rather

than video because video compression algorithms are computationally expensive, the computation power of the on-board

processor on the UAVs is limited, and emergency response and surveillance applications and operators do not necessarily

need video at 30 frames per sec. However, the computational power of the UAV on-board processor is large enough to

compress images of the highest quality and resolution and transmit them to the receiver without overloading the processor.

In JPEG compression, a parameter called the quality factor is provided as a user-specified integer in the range 1 to 100. A

lower quality factor results in smaller data size of the compressed image. The quality factor of the image compression algo-

rithm can therefore be used as a control knob to manage the bandwidth utilization of an UAV. To manage the computational

power of the receiver, end-to-end execution rate of applications is used as the control knob.

3 The Hierarchical Distributed Resource-management Architecture (HiDRA)

This section analyzes the adaptive management of multiple resources in open DRE systems using a control-based approach

and presents the Hierarchical Distributed Resource-management Architecture (HiDRA), which employs a control-theoretic

approach to manage processors and network bandwidth simultaneously. Our control framework is shown in Figure 2 and

consists of three entities: monitors, controller, and effectors. A monitor is associated with a specific system resource and

Monitor Effector Application
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Application Resource Utilization

Application
Parameters

Controller
Adaptation
Decisions

Figure 2: The HiDRA Control Framework

periodically measures the controller with the current resource utilization. The controller implements a particular control

algorithm and computes the adaptations decisions for each application (or a set of applications) to achieve the desired system
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resource utilization. Each effector is associated with an application and modifies the application parameters to achieve the

controller-recommended application adaptation.

We proceed to instantiate the HiDRA control framework for the domain of target tracking described in Section 2. Each

application in our DRE system is composed of two subtasks: image compression and target tracking. To ensure end-to-end

QoS, therefore, resource utilization of both subtasks must be controlled. As shown in Figure 3, HiDRA consists of two
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Figure 3: HiDRA’s Control Architecture

types of feedback control loops: (1) a processor control loop located at the receiver that manages the processor utilization

and (2) a bandwidth control loop located at each UAV that manages the bandwidth utilization. These loops control the

utilization of the critical processor and network bandwidth resources and coordinate the execution of the image compression

and target tracking subtasks. One approach to manage these system resources is to design independent feedback control

loops. Unfortunately, this approach does not take into consideration the coupling between the two types of system resources

and does not necessarily assure system stability. Therefore, we structure these control loops in a hierarchical fashion so that

the processor control loop at the receiver is viewed as the outer control loop and the bandwidth control loop at each UAV is

viewed as the inner control loop.

As shown in Figure 4, the processor utilization monitor and processor controller serve as the resource monitor and con-

troller of the processor control loop, respectively. The objective of the processor controller is to ensure that the processor
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Figure 4: Processor Control Feedback Loop

utilization is maintained at a specified set-point in spite of variations in resource availability and input workload. The utiliza-

tion set-point of the receiver processor is an input to the processor controller and is specified during system initialization. The
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controlled variable for this loop is the processor utilization of the receiver, and the control input from the processor controller

to the system is the image transmission rate, which is fed to the rate adapter in each UAV. For the processor control loop,

therefore, rate adapters serve as effectors.

The bandwidth allocator shown in Figure 3 is responsible for dynamically computing the bandwidth allocation to each

UAV based on (1) presence/absence of objects of interest in the images received from the corresponding UAV and (2)

variations in available wireless network bandwidth. The bandwidth controller of each UAV views this allocation as the

bandwidth utilization set-point. The bandwidth allocator ensures that the bandwidth requirement of UAVs capturing images

of one or more objects of interest is met.

As shown in Figure 5, the bandwidth utilization monitor and the bandwidth controller serve as the monitor and controller of

the bandwidth control loop, respectively. The objective of the bandwidth controller is to ensure that the bandwidth utilization
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Bandwidth
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Image
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Rate

Figure 5: Bandwidth Control Feedback Loop

of the UAV is maintained at the specified set-point despite variations in resource availability and input workload. The image

transmission rate and bandwidth utilization set-point are inputs to the bandwidth controller. Based on these inputs, the

bandwidth controller computes an appropriate value of the JPEG quality factor to transmit the image of the highest quality,

subjected to the specified bandwidth limitation. The controlled variable is the network bandwidth utilization of each UAV

and the control input from the bandwidth controller to the system is the quality factor of the JPEG compression algorithm.

This input is fed to the implementation of the JPEG compression algorithm, which serves as the effector for this control loop.

The coupling between the two types of system resources is captured by using the image transmission rates computed by the

processor controller as an input parameters to the bandwidth controllers.

4 Control Design and Analysis

This section first formalizes the resource management problem of our real-time distributed target tracking system. We

then map HiDRA to this system to show how it addresses key resource management challenges of our DRE system. Finally,

we present analysis that shows how HiDRA ensures the stability of our system. The formalism described below forms the

foundations for the design and implementation of HiDRA and also provides analytical assurance about system performance
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under fluctuating workload and varying resource availability.

4.1 Problem Formulation

The following formal notations are used throughout the remaining of the paper. The target tracking system consists of

n UAVs, and therefore, n end-to-end tasks {Ti|1 ≤ i ≤ n}, each with two subtasks, i.e., image compression subtask

executing at the UAVi and target-tracking subtask executing at the receiver. The sampling period of the processor controller

(outer feedback loop) and the bandwidth controller (inner feedback loop) are represented by T out
s and T in

s , respectively. The

sampling periods T out
s and T in

s are selected to be larger than the maximum task period. All the entities that make up the

bandwidth control loop (such as monitor, controller, and effector) are collocated on each UAV. However, for the processor

control feedback loop, the monitor and the controller are collocated on the receiver node, whereas the effectors are located

at each UAV node. As a result, in the processor control feedback loop, the communication between the controller and the

effectors is over a wireless network. Although there are no theoretical constraints on the sampling periods, for these practical

reasons, T out
s is selected to be greater than T in

s . In our model, kth and κth sampling period represent the kth sampling period

of the processor controller and the κth sampling period of the bandwidth controller, respectively.

Each end-to-end task Ti is invoked periodically at a rate ri(k) at the kth sampling instant of the processor controller. The

rate ri(k) is assumed to take values within the range [rmin
i , rmax

i ]. During the kth sampling instant of the processor controller,

images are compressed and transmitted by Ti’s data source, UAVi, to the receiver at the rate of ri(k) images/second.

C(k) represents the channel capacity (available bandwidth) of the wireless network during the kth sampling period. This

can be obtained form the wireless network card using operating system tools/commands such as iwlist.

4.1.1 Bandwidth Allocator

During each sampling period of the processor controller, the bandwidth allocator computes a desirable bandwidth allocation

for each task Ti. The wireless network bandwidth allocation to each task Ti is recomputed by the bandwidth allocator if

the presence of an object of interest was detected by any of the target-tracking subtasks or a variation in the available band-

width was detected during the previous sampling period. For each task, bandwidth is allocated such that the net bandwidth

utilization is below the set-point Bs, i.e.:
n

∑

i=1

bs
i (k) ≤ BsC(k) (1)

where bs
i (k) is the bandwidth allocation (utilization set-point) for task Ti during the kth sampling period of the processor

controller.

Let p(k) and pi(k) represent the total number of objects of interest tracked by the system and the number of objects being

tracked by Ti during the kth sampling period, respectively. Let bmin represent the minimum bandwidth allocation to each

task so that images of the lowest quality can be transmitted to the receiver. Bandwidth is thus allocated to each end-to-end

task as a function of p(k) and pi(k) as follows:

bs
i (k) =







BsC(k)/n if p(k) = 0

bmin + (BsC(k)−nbmin)pi(k)
p(k) if p(k) > 0

, ∀ Ti | 1 ≤ i ≤ n. (2)
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If the total number of objects of interest tracked by the system is 0, bandwidth is equally allocated to each task. If the total

number of objects of interest tracked by the system is greater than 0, bandwidth allocation to tasks is based on the number of

objects currently being tracked by that task. This design ensures that a greater amount of bandwidth is allocated to tasks that

are currently tracking objects of interest as compared to the ones that are not.

4.1.2 Processor Utilization Controller

We use the approach in [11] to model processor utilization. Section 4.2 uses the following model in the stability analysis of

HiDRA. The target-tracking subtask of each end-to-end task Ti has an estimated execution time of ci known at design time.

The estimated processor utilization by the target-tracking subtask of task Ti during the kth sampling period is denoted as

Ei(k) and is computed as

Ei(k) = ciri(k) (3)

where ri(k) is the invocation rate of end-to-end task Ti during the kth sampling period. The net estimated processor utilization

during the kth sampling period is therefore

E(k) =

n
∑

i=1

ciri(k). (4)

At runtime, however, the actual execution times may be different since they depend on the presence (and number) of objects

in the images. At runtime, therefore, the actual processor utilization U(k) can be written as

U(k) = Gp(k)E(k) (5)

where Gp(k) is the processor utilization ratio. Although, Gp(k) is unknown, it is reasonable to assume that the worst case

utilization ratio Gp = maxk{Gp(k)} is known. Let the processor utilization set-point of the receiver node be represented as

Us. From (5), the process utilization model can be written as

∆U(k + 1) = ∆U(k) + Gpvp(k) (6)

where ∆U(k) = U(k)−U s and vp(k) = E(k + 1)−E(k). The task of the feedback controller is to compute vp(k) so that

U(k) converges to U s (or ∆U(k) → 0).

We consider a linear proportional controller

vp(k) = Kp∆U(k) (7)

where Kp is a control gain which will be selected so that the system is stable. The control signal vp(k) is implemented by

the actuators by changing the invocation rate of end-to-end tasks. The closed-loop system is described by

∆U(k + 1) = [1 + KpGp]∆U(k) (8)

The control algorithm is implemented as follows. During each sampling period, the controller compares the current

processor utilization U(k) with the utilization set-point U s, and computes the net estimated utilization E(k + 1) for the next

sampling period based on the equation E(k + 1) = E(k) + Kp∆U(k). Since the presence of one or more objects of interest
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in the received images increases the execution time the target-tracking subtask, computational power is allocated to target

tracking subtasks based on the number of objects of interest that are present in the received images. We therefore have

Ei(k + 1) =







E(k+1)
n if p(k) = 0

Emin + (E(k+1)−nEmin)pi(k)
p(k) if p(k) > 0

, ∀ Ti | 1 ≤ i ≤ n (9)

where p(k) represents the total number of objects of interest captured by all the tasks in the system, pi(k) represents the

number of objects of interest being captured by Ti during the kth sampling period, and Emin represents the minimum

processor allocation to each task so that images can be processed by the receiver at the lowest rate.

If the total number of objects of interest tracked by the system is 0, computational power is equally allocated to each

task. If the total number of objects of interest tracked by the system is greater than 0, however, allocation of computational

resource to tasks is weighted based on the number of objects currently being tracked by that task. This design ensures that a

greater amount of computational power is allocated to tasks that are currently tracking objects of interest as compared to the

ones that are not. From equations (3), (7), and (9) we derive the task execution rate as follows:

ri(k + 1) =







E(k)+(U(k)−Us)Kp/Gp

nci
if p(k) = 0

Emin

ci
+

pi(k)(E(k)+(U(k)−Us)Kp/Gp−nEmin)
p(k)ci

if p(k) > 0
, ∀ Ti | 1 ≤ i ≤ n (10)

4.1.3 Bandwidth Utilization Controller

We next present the analytical model of the bandwidth controller for each UAV. The following notations are used in this

model where the symbols correspond to each UAV and the subscript is omitted for simplicity:

• b(κ): Actual bandwidth utilization in the κth sampling period.

• bs(k): Desired bandwidth utilization (set-point) computed by the bandwidth allocator in the kth sampling period as

shown in equation (2).

• r(k): Task rate computed by the processor controller in the kth sampling period, as shown in equation (10).

• s: Size of an uncompressed image, which is a constant and known at design time.

• q(κ): Quality factor of image compression algorithm (JPEG) computed by the bandwidth controller in the κth sampling

period.

• φ(q) : Estimated size of the compressed image compressed with quality factor q.

To simplify our notation, we express r(k) and bs(k) with respect to the index κ by defining r(κ) = r(k), bs(κ) =

bs(k), k ≤ κ < k + 1.

The controlled variable of this feedback control loop is the bandwidth utilization, b(κ), and the control input from the

controller to the UAV is the quality factor of the image compression algorithm, q(κ). The controller computes an appropriate

value of quality factor, q(κ), to ensure that the bandwidth utilization of the UAV, b(κ), converges to the set-point, bs(κ),

computed by equation (2).
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The average size of the compressed image, φ(q), is related to the quality factor of the image compression algorithm, q,

by a non-linear function as shown in Figure 6. For the purpose of our control design, however, we choose q within the
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Figure 6: Linearization of φ(q)

range [10, 70] where this function can be approximated by a linear one. A piecewise linear function can also be used. For

10 ≤ q ≤ 70, we have

φ(q) = sgq + ω (11)

where g is the slope and ω is the y-intersect of the linear approximation of the function in Figure 6.

The bandwidth utilization monitor measures the bandwidth utilization as the rate at which data is written by the image

compression subtask to the underlying network stack, and therefore the resolution of the bandwidth utilization monitor

is in the order of the size of the compressed image. Hence, even a small variation in the sampling period and/or image

transmission rate will considerably affect the measured bandwidth utilization. To remove the measurement noise in the

measured bandwidth utilization, we employ a Kalman filter [20] to estimate the actual bandwidth utilization. It should be

noted that the processor utilization monitor obtains the processor utilization directly from the underlying operating system,

and therefore is of higher resolution compared to the bandwidth utilization monitor.

The following notations are used in the description of the Kalman filter:

• b̃(κ): Measured bandwidth utilization in the κth sampling period.

• b̂−(κ): Predicted bandwidth utilization in the κth sampling period.

• b̂(κ): Bandwidth utilization in the κth sampling period estimated using a Kalman filter.

• P−(κ): a priori estimate of variance in b(κ).

• P (κ): a posteriori estimate of variance in b(κ).

• R: Variance in measurement noise in the measured bandwidth utilization.

• K(κ): Computed Kalman gain in the κth sampling period.
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Images are compressed with a quality factor q and transmitted at the rate of r(κ) images per second from the UAV to the

receiver. The following expression gives the predicted bandwidth utilization by the UAV:

b̂−(κ) = r(κ)φ(q)

= r(κ)sgq(κ) + r(κ)ω. (12)

Using a Kalman filter, estimated bandwidth utilization is computed as follows:

P−(κ) = P (κ − 1)

K(κ) = P−(κ)(P−(κ) + R)−1

b̂(κ) = b̂−(κ) + K(κ)(b̃(κ) − b̂−(κ))

P (κ) = (1 − K(κ))P−(κ). (13)

The output of the Kalman filter, b̂(κ), is used by the bandwidth controller as the current bandwidth utilization. We therefore

get the network utilization model as

∆b̂(κ + 1) = ∆b̂(κ) + r(κ)sgvb(κ) (14)

where ∆b̂(κ) = b̂(κ) − bs(κ) and vb(κ) = q(κ + 1) − q(κ).

We consider a linear controller

r(κ)sgvb(κ) = Kb∆b̂(κ) (15)

where Kb is the control gain that will be selected so that the system is stable. The closed-loop system is

∆b̂(κ + 1) = [1 + Kb]∆b̂(κ). (16)

During each sampling period, the controller compares the estimated bandwidth utilization b̂(κ) with the utilization set-

point bs(κ), and computes the quality factor q(κ + 1) by

q(κ + 1) = q(κ) + Kb∆b̂(κ)/r(κ)sg. (17)

4.2 Stability Analysis

A control system is said to be stable if and only if the system converges to an equilibrium for any set of initial conditions. In

our case study, the initial conditions are used to represent the changes in workload (due to the change of the images’ content)

and/or resource availability. Our target tracking system is therefore stable if resource utilization of both the system resources

(i.e., processor utilization at the receiver and the network bandwidth utilization) converge to their respective utilization set-

points in the presence of workload changes and/or resource availability. Although the controller is designed based on a

time-invariant model (constant upper bounds on resource utilization), we show that the system is stable even when resource

availability and/or utilization changes at runtime, i.e., the system is time-varying.

We can stabilize each of the two types of feedback control loops by selecting the gains Kp and Kb so that the corresponding

poles are in the unit circle. Such a design, however, does not necessarily ensure the stability of the hierarchical control
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architecture since it does not take into consideration the interaction between the feedback loops (due to the presence of r(κ)

in equation (17)). We next present an analysis result that allows us to select the control gains so that the overall stability is

assured. It should be noted that the introduction of the Kalman filter in the bandwidth utilization control loop does not affect

the stability of the system and, therefore, is not considered in our analysis.

Assuming that the input buffer of the receiver is never empty, it is clear that the processor utilization is independent of the

bandwidth utilization. If we select Kp so that −2/Gp < Kp < 0 then

∆U(k) = [1 + KpGp(k)]k∆U(k0), k ≥ k0

and ∆U(k) → 0 since |1 + KpGp(k)| < 1.

From equation (10), it follows that in the steady state the utilization for each task Ui(k) will be stable (it will converge to

a set-point U s
i that depends on the presence of objects in the image data) and we can write

∆Ui(k + 1) = αi(k)∆Ui(k) (18)

where the function αi(k) satisfies |αi(k)| < 1.

Let rs
i denote the rate of the ith task at the steady state, then ri(k) = rs

i + ∆ri(k) where ∆ri(k) → 0. From equation

(16), the bandwidth utilization model for the ith UAV is

∆bi(κ + 1) = [1 + (rs
i + ∆ri(κ))sgKi

b]∆bi(κ) (19)

The primary challenge of the stability analysis of our framework is the coupling between the processor and bandwidth

controllers. As it can be seen in equation (19), the control input from the processor controller to the system, ∆ri(κ), is used

by the bandwidth controller. Our objective is to deduce the stability properties of the system (18-19) by studying the isolated

system

∆Ui(k + 1) = αi(k)∆Ui(k) (20)

∆bi(κ + 1) = [1 + rs
i sgKi

b]∆bi(κ) (21)

where the equations have been decoupled by setting ∆ri(κ) = 0.

Theorem 1. The system (18-19) is stable if and only if the isolated system (20-21) is stable.

Proof. Define the norm ||[x1, x2]|| = ||[x1, x2]||∞ = max{|x1|, |x2|} and denote ∆Ui(k), ∆bi(κ) and ∆U I
i (k), ∆bI

i (κ) the

solutions of (18-19) and (20-21) respectively.

”Only-if”: If the system (18-19) is stable, then there exists function α(κ) with α(κ) → 0 such that

||[∆Ui(κ), ∆bi(κ)]T || ≤ α(κ)||[∆Ui(κ0), ∆bi(κ0)]
T || (22)

∀κ ≥ κ0 and for every initial condition [∆Ui(κ0), ∆bi(κ0)]
T where ∆Ui(κ) = ∆Ui(k), k ≤ κ < k + 1.

In particular, suppose that the initial condition is [0, ∆bi(κ0)]
T , then by equation (22) ∀κ ≥ κ0, |∆bI

i (κ)| ≤ α(κ)|∆bI
i (κ0)|,

which shows that the system (20-21) is stable.
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”If”: It is easy to see that ∆Ui(k) = ∆U I
i (k) so we have to analyze only ∆bi(κ). Define ηI(κ) = 1 + rs

i gKi
b and

η(κ, ∆ri(κ)) = 1 + (rs
i + ∆ri(κ))gKi

b. From the stability of (20-21), we have that |ηI (κ)| < 1 and there exists a function

α2(κ) with 0 ≤ α2(κ) → 0 such that

∆b2
i (κ)(η2

I (κ) − 1) ≤ −α2(κ)∆b2
i (κ0)

for every ∆bi(κ0) and κ ≥ κ0. But we can write

∆b2
i (κ + 1) − ∆b2

i (κ) = ∆b2
i (κ)(η2

I (κ) − 1) + ∆b2
i (κ)(η2(κ, ∆ri(κ)) − η2

I (κ))

≤ −α2(κ)∆b2
i (κ0) + γ(κ)

where γ(κ) → 0 since ∆ri(κ) → 0. ∆bi(κ) → 0 and the system (18-19) is therefore stable.

Using the above theorem, we can select the control gains so that our hierarchical control architecture is stable. For the

processor utilization feedback loop, the gain could be selected to satisfy −2/Gp < Kp < 0 that ensures stability [11, 21].

Similarly, for the bandwidth utilization control loop, the gain should be selected so that (21) is stable. Since rs
i is not known

at design time, we can select the gain to satisfy −2/(rmax
i ) < Ki

b < 0. A reasonable choice for selecting the control gains is

to use deadbeat control [22] based on the worst case utilization ratio and maximum task rate respectively, i.e. Kp = −1/G

and Ki
b = −1/rmax

i . This selection tries to minimize the settling time keeping the overshoot equal to zero. Other criteria for

selection of the gain can be found in [11].

5 Performance Results and Analysis

This section first presents the testbed for our target tracking system, which was used to evaluate the performance of HiDRA

in the context of a representative open DRE system. We then describe our experiments and analyze the results obtained

to evaluate the performance of our DRE system empirically with and without HiDRA under varying wireless bandwidth

availability and input workload. The goal of our experiments was to validate our theoretical claims and show that HiDRA

yields predictable and high-performance resource management and coordination for multiple types of resources.

5.1 Hardware and Software Testbed

Our experiments were performed on the Emulab [23] testbed at University of Utah (www.emulab.net). The hardware

configuration consists of three nodes acting as UAVs and one receiver node. Images from the UAVs were transmitted to a

receiver via a wireless LAN configured with a maximum channel capacity of 2 Mbps. The hardware configuration of all the

nodes was a 3 GHz Intel Pentium IV processor, 1 GB physical memory, 802.11 a/b/g WIFI interface (Atheros 5212 chipset),

and 120 GB hard drive. The Redhat 9.0 operating system with wireless support was used for all the nodes.

The following software packages were also used for our experiments: (1) TAO 1.4.7, which is our open-source imple-

mentation of Real-time CORBA [13] that HiDRA and our DRE system case study are built upon, (2) Ffmpeg 0.4.9-pre1

with Fobs-0.4.0 front-end, which is an open-source library that decodes video encoded in MPEG-2, MPEG-4, Real Video,
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and many other video formats to yield raw images, and (3) ImageMagick 6.2.5, which is an open-source software suite that

we used to compress the raw images to JPEG image format.

5.2 Target Tracking DRE System Implementation

The entities in our target tracking DRE system are implemented as CORBA objects and communicate over the TAO [12]

Real-time CORBA Object Request Broker to achieve desired real-time performance. The end-to-end application consists of

pairs of CORBA objects: the UAV data source and the receiver data sink. The UAV data source object that executes on each

UAV’s on-board processor performs the following actions: (1) extracts raw images from an on-disk video file using Ffmpeg

with Fobs front end1, (2) compress the raw image into JPEG format using ImageMagick, and (3) “pushes” the compressed

images to the data sink object via a CORBA oneway method invocation.

A data sink object at the receiver processes the images received from the corresponding UAV. Each data sink object

contains two functional modules: one that determines the presence of one or more objects of interest in the received images,

and the other tracks the coordinates of objects of interest in the received image, if present. The second functional module is

executed only if the presence of one or more objects of interest is detected by the first module.

To perform target tracking, received images are compared with a reference image, that is given during system initialization.

To obtain the reference image, a raw image is extracted from a frame in the video that contains the object of interest. This raw

image is then compressed using JPEG compression algorithm with a quality factor of 100 and used as the reference image.

The received images are converted from color to gray-scale, and the processed image is “subtracted” from the reference

image to obtain the difference image. If the average pixel value of the difference image is greater than a threshold (which

indicates the presence of one of more objects of interest), the center of mass of the objected is computed. This approach is

common and the coordinates of a moving object can be tracked using a Kalman filter [24].

Table 1 summarizes the number of lines of code of various entities in our middleware and DRE multimedia system case

study.2

Entity Total Lines of Source Code

HiDRA 12,243

DRE Target Tracking System 19,875

Ffmpeg + Fobs 214,092

ImageMagick 253,270

The ACE ORB (TAO) 907,035

Table 1: Lines of Source Code for Various System Elements

HiDRA is distributed with TAO, which is our open-source implementation of Real-time CORBA, and can be obtained

from http://deuce.doc.wustl.edu/Download.html. Other open-source software packages used in our DRE

1We used pre-recorded video which was made available on each UAV node as our source of “live” video.
2Lines of source code was measured using SLOCCount (http://www.dwheeler.com/sloccount/).
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multimedia system can be obtained from the following locations: Ffmpeg http://ffmpeg.mplayerhq.hu/, Fobs

http://fobs.sourceforge.net/, and ImageMagick http://www.imagemagick.org.

5.3 Experiment Configuration

Our experiments consisted of three (emulated) UAVs containing the data source object that (1) decoded the video from

a file, (2) extracted the raw images, (3) compressed them using JPEG compression, and (4) transmitted the compressed

images to the corresponding data sink object at the receiver node. Wireless network bandwidth was shared between the three

data source/data sink object pairs, and the computational power at the receiver node was shared between the three data sink

CORBA objects.

We evaluated the adaptive resource management capabilities of HiDRA under the following operational conditions: (1)

constant bandwidth availability and constant workload, (2) constant bandwidth availability and varying workload, (3) varying

bandwidth availability and constant workload, and (4) varying bandwidth availability and varying workload. These experi-

mental configurations were chosen to evaluate the performance of HiDRA under all possible combinations of fluctuations in

bandwidth availability and input workload. In all operating conditions, we monitored the processor utilization at the receiver

and wireless network bandwidth utilization between the UAVs and the receiver. Processor utilization at each UAV node was

not monitored since the computational power of the UAV on-board processor was sufficiently large to compress images of

the highest quality and resolution and transmit them to the receiver without overloading the processor.

Bandwidth consumption by each UAV was measured as the rate at which data was written to the underlying network

stack by the UAV data source CORBA object. The bandwidth utilization can also be measured at the receiver node using

the techniques described in [25]. Since our measurement of bandwidth consumption by each UAV was noisy, we used a

Kalman filter to suppress the disturbances in the measured bandwidth utilization. Processor utilization at the receiver was

measured using the data from the /proc/stat file. In our experiments, we also measured application QoS properties, such

as target-tracking precision and average end-to-end delay.

We defined target-tracking precision as the inverse of target-tracking error, which is the distance between the computed

center of mass of an object and the actual center of mass of the object. To compute the actual center of mass of the object, we

identified an object present in the video as the object of interest, performed target-tracking on the raw images extracted from

the video, and used this value as a reference. At the data sink object, the target-tracking results were then compared with this

reference value.

End-to-end delay consists of (1) processing delay at the UAV, (2) network transmission delay from the UAV node to the

receiver and (3) processing delay at the receiver node. To measure the end-to-end delay, an image was timestamped by

the data source object when the raw image was extracted from the pre-recorded video file, before it was compressed and

transmitted to the corresponding data sink object. Upon completion of processing of the received image by the data sink

object, the timestamp of the image was compared with the current time on the receiver node to obtain the end-to-end delay.

To eliminate time skews, physical clocks on all the nodes in our hardware testbed were synchronized using NTP [26].

In all the above listed operational conditions, we compare the performance of our DRE system when it was operated
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with and without HiDRA. Comparison of system performance is decomposed into comparison of resource utilization and

application QoS. For system resource utilization, we compare (1) wireless network bandwidth utilization and (2) processor

utilization of the receiver node. For application QoS, we compare (1) target-tracking precision and (2) average end-to-end

delay.

For all our experiments, we chose the sampling period of the processor controller and the bandwidth controller as 10

seconds and 1 second, respectively. The minimum and maximum image transmission rate [rmin, rmax] was 5 and 15 im-

ages/second. The control gains for the processor controller (Kp) and the bandwidth controller (Kb) were -0.5 and -0.05,

respectively. The processor utilization set-point was selected to be 0.7, which is slightly lower than rate monotonic schedul-

ing [8] utilization bound for three tasks (0.77). The goal of utilization control is to (1) prevent processor overload (which

can cause system instability), and (2) avoid unnecessarily under utilizing the processor (which leads to a low task rate). The

choice of 0.7 as the set point achieves the desired trade off between overload protection and high task rate in our system.

Since an IEEE 802.11 DCF-based network has a utilization of approximately 0.7 with 20 active nodes [27], the wireless

bandwidth utilization set-point was also configured at 0.7. Although for a system with four nodes the achievable channel

utilization could be higher than 0.7 (e.g., as high as 0.8), this value varies depending on many other factors such as packet

size, channel bit rate, etc. Considering all these factors, we set the bound to 0.7 conservatively.

5.4 Experiment 1 : Constant Bandwidth Availability and Constant Workload

We now present the results obtained from running the experiment under a constant channel capacity of 2 Mbps and

a constant 2 objects of interest tracked by the system. This experimental setup provides an operational condition where

resource availability and input workload are known a priori and not subjected to change during the course of the experiments.

Images containing objects of interest were captured by UAVs 1 and 2. This experiment serves as the baseline for all other

experiments. It validates that when the tracking system is operated with HiDRA the following behavior occurs: (1) utilization

of system resources converge to their respective set-points and (2) application QoS converges to the values that were obtained

when the system was operated without HiDRA and application parameters were chosen a priori.

UAV Image Transmission Rate (images/sec) Quality Factor

UAV 1 10 40

UAV 2 10 40

UAV 3 10 40

Table 2: Application Parameters Chosen in Advance

We compare the performance against a static configuration. In the static configuration, application parameters, such as

image transmission rates and quality factor of the JPEG image compression algorithm, were chosen a priori. Values of these

parameters were selected such that (1) both processor utilization of the receiver node and the wireless bandwidth utilization

is equal to the set-point of 0.7 and (2) application QoS are maximized. The settings of the static configuration of the system

are shown in Table 2.
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5.4.1 Comparison of Resource Utilization
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Figure 7: Exp 1: Comparison of Processor Utilization
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Figure 8: Exp 1: Comparison of Bandwidth Utilization

Figures 7 and 8 compare the processor utilization at the receiver node and the wireless network bandwidth utilization when

the system was operated with and without HiDRA. The output of the bandwidth utilization monitor, shown in Figure 8b, was

processed with a Kalman filter and used by the bandwidth controller as the current bandwidth utilization.

Figures 7b and 8c show that when the system was operated without HiDRA, resource utilization of both the resources is

0.7 during the course of the experiment. Similarly, Figures 7a, 8a, and 8b show that when the system was operated with

HiDRA, resource utilization converges to the set-point of 0.7 and in maintained at 0.7 for the remaining duration of the

experiment. These results show that when the system is operated using HiDRA, system resource utilization converges to the

respective utilization set-points.

5.4.2 Comparison of QoS

We now compare the application QoS – (1) target-tracking precision, and (2) average end-to-end delay.
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Figure 9: Exp 1: Comparison of Target-tracking Error

Figure 9 compares the target-tracking error obtained when the system was operated with and without HiDRA. Figures 9a

and 9b show that average target-tracking error—and therefore target-tracking precision—is nearly the same when the system

was operated with and without HiDRA.

Table 3, which compares the end-to-end delay when the system was operated with and without HiDRA, shows that average

end-to-end delay is the same as when the system was operated with and without HiDRA. Based on these results, we conclude

Number of Objects End-to-End Delay (msec)

With HiDRA Without HiDRA

2 117 117

Table 3: Exp 1: Comparison of End-to-End Delay

that QoS of applications in our DRE system converges to the values obtained when the system was operated without HiDRA

and application parameters were chosen a priori.

From our comparison of resource utilization and system QoS, we conclude that when the system is operated with HiDRA

(1) utilization of system resources converge to their respective set-points and (2) application QoS converge to the values that

were obtained when the system was operated without HiDRA and application parameters were chosen a priori.

5.5 Experiment 2: Constant Bandwidth Availability and Varying Workload

We next present the results obtained from running the experiment under a constant channel capacity of 2 Mbps and varying

number of objects of interest in the system. This experiment demonstrates the adaptive resource management capabilities

of HiDRA under constant resource availability and varying input workload. Table 4 summarizes the number of objects of

interest that were tracked as a function of time. In this experiment, when the system was operated without HiDRA, the static

system configuration shown in Table 2 was used.
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Time (sec) Number of Objects

UAV 1 UAV 2 UAV 3 Total

0 - 300 0 0 0 0

300 - 500 1 0 0 1

500 - 700 1 1 0 2

700 - 1,100 1 1 1 3

1,100 - 1,300 0 1 1 2

1,300 - 1,500 0 0 1 1

1,500 - 2,000 0 0 0 0

Table 4: Objects of Interest as a Function of Time

5.5.1 Comparison of Resource Utilization
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Figure 10: Exp 2: Comparison of Processor Utilization

Figures 10 and 11 compare the processor utilization at the receiver node and the wireless network bandwidth utiliza-

tion when the system was operated with and without HiDRA. The output of the bandwidth utilization monitor, shown in

Figure 11b, was processed with a Kalman filter and used by the bandwidth controller as the current bandwidth utilization.

Figures 10a and 10b and Table 4 show that the increase in the processor utilization at T = 300s is due to the presence

of the first object of interest. Figure 10a shows that although the processor utilization increased above 0.7, within the next

several sampling periods, HiDRA restored the processor utilization to the desired set-point of 0.7. HiDRA achieved this

result by reducing the execution rates of data-source/receiver pair(s) deemed less important, i.e., ones that captured images

where objects of interest were absent. As shown in Figure 10b, when the system was operated without HiDRA, the processor

utilization remained at 0.85, which is significantly higher than the utilization set-point of 0.7.

At T = 500s, the presence of the second object of interest was detected. The processor utilization thus increased to 0.9

when the system was operated without HiDRA, as shown in Figure 10b. As Figure 10a shows that the processor utilization

quickly re-converges to the set-point after a transient increase when the system was operated with HiDRA.
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Figure 11: Exp 2: Comparison of Bandwidth Utilization

At T = 700s, the presence of the third object of interest was detected. As a result, when the system was operated without

HiDRA, the processor utilization increased to 1, as shown in Figure 10b. Once again, Figure 10a shows that the processor

utilization quickly re-converges to the set-point after a transient increase when the system was operated with HiDRA.

At T = 1, 100s the total number of objects being tracked by the system reduced from 3 to 2. Although there was a

decrease in the processor utilization, HiDRA restored the processor utilization to the set-point by increasing the execution

rate of important data-source/data sink pair(s). Similarly, HiDRA ensured that the processor utilization converges to the

desired set-point for the remaining duration of the experiment. Similarly, Figures 11a and 11b shows how HiDRA ensures

that the wireless bandwidth utilization converges to the desired set-point of 0.7 within bounded time, even under fluctuating

workloads.

These results show how HiDRA ensures that the processor utilization of the receiver node—as well as the wireless band-

width of the network—converges to the desired set-point within bounded time, even under fluctuating workloads. We there-

fore conclude that HiDRA ensures utilization of multiple system resources is maintained within the specified bounds, thereby

ensuring system stability.

5.5.2 Comparison of QoS

We now compare the application QoS – (1) target-tracking precision and (2) average end-to-end delay.

Figure 12 compares the target-tracking errors that were obtained when the system was operated with and without HiDRA.

Table 4 shows that during T ∈ [300s, 500s], there was only one object of interest that was tracked by the system, and this

object was tracked by UAV 1. When the system was operated without HiDRA, the static configuration of the system (shown

in Table 2) assumed that there was a total 2 objects of interests being tracked by the system. As a result, the Figure 12a shows

that the target tracking error during T ∈ [300s, 500s] is lower when the system was operated with HiDRA than without it.

During T ∈ [500s, 700s], a total of 2 objects of interest that were tracked by the system, and these objects were tracked

by UAV 1 and UAV 2. This input workload is the same as the static configuration of the system. As a result, Figures 12a

and 12b show that the target tracking error during T ∈ [500s, 700s] is nearly the same when the system was operated with

and without HiDRA.
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Figure 12: Exp 2: Comparison of Target-tracking Error

During T ∈ [700s, 1100s], however, a total of three objects of interest were being tracked by the system, one by each

UAV. This input workload is higher than the input workload under which the static configuration of the system was selected.

To maintain the bandwidth utilization within specified bounds, therefore, HiDRA lowers the quality factor of the images

transmitted by the UAVs to the receiver during T ∈ [700s, 1100s]. As a result, Figures 12a, 12b, and 12c show that the target

tracking error during T ∈ [700s, 1100s] is higher when the system was operated with HiDRA than without it. Similarly, the

target tracking precision of the received images for the remaining time intervals can be analyzed.

These results demonstrate that HiDRA effectively maintains utilization of system resource below the specified set-points

despite fluctuations in input workload by gracefully adjusting application QoS.

Number of Objects End-to-End Delay (msec)

With HiDRA Without HiDRA

0 20 20

1 60 60

2 117 117

3 160 250

Table 5: Exp 2: Comparison of End-to-End Delay

Table 5 compares the end-to-end delay when the system was operated with and without HiDRA. This table shows that

when the total number of objects of interest tracked by the system was 2 or less, the end-to-end delay was the same when

the system was operated with and without HiDRA. This result occurred because the static configuration of the system was

selected assuming 2 objects of interest were being tracked by the system. When the number of objects tracked by the system

increased to 3, however, system resource were over-utilized considerably when the system was operated without HiDRA,

as compared to when the system was operated with it. As a result, when the system was operated without HiDRA, the

end-to-end delay is significantly higher than when the system was operated with HiDRA.

HiDRA reacts to fluctuations in input workload by modifying application parameters such as JPEG quality factor. These

adaptations ensure that system resources are not over-utilized and thus lowers average end-to-end delay.
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5.6 Experiment 3 : Varying Bandwidth Availability and Constant Workload

We now present the results obtained from running the experiment under varying channel capacity of the wireless network

and a constant 2 number of objects of interest tracked by the system. This experiment demonstrates the adaptive resource

management capabilities of HiDRA under varying resource availability and constant input workload. We normalize the

channel capacity, bandwidth utilization, and bandwidth utilization set-point to the maximum channel capacity of 2Mbps.

Table 6 summarizes the variation in channel capacity and bandwidth utilization set-point as a function of time. As it can be

Time (sec) Channel Capacity (Mbps) Bandwidth Utilization Normalized Normalized Bandwidth

Set-Point (Mbps) Channel Capacity Utilization Set-point

0 - 480 2.0 0.7 * 2.0 = 1.4 2.0 / 2.0 = 1.0 1.4 / 2.0 = 0.7

480 - 1,480 1.0 0.7 * 1.0 = 0.7 1.0 / 2.0 = 0.5 0.7 / 2.0 = 0.35

1,480 - 2,000 2.0 0.7 * 2.0 = 1.4 2.0 / 2.0 = 1.0 1.4 / 2.0 = 0.7

Table 6: Channel Capacity and Bandwidth Utilization Set-Point as a Function of Time

seen in Table 6, the variation in the channel capacity represents a “step function”. A step function is selected because it is

one of the most severe form of variation (or disturbance) that a control system can be subjected to. This experiment validates

that HiDRA can maintain system stability even under such severe variation in channel capacity. Images containing objects

of interests were captured by UAVs 1 and 2. In this experiment, the static configuration of the system shown in Table 2 was

used when the system was operated without HiDRA.

5.6.1 Comparison of Resource Utilization
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Figure 13: Exp 4: Comparison of Processor Utilization

Figures 13 and 14 compare the processor utilization at the receiver node and the normalized bandwidth utilization when

the system was operated with and without HiDRA. The output of the bandwidth utilization monitor, shown in Figure 14b, was

processed with a Kalman filter and used by the bandwidth controller as the current bandwidth utilization. From Figures 13a
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Figure 14: Exp 3: Comparison of Normalized Bandwidth Utilization

and 13b it can be seen that under this experimental scenario, processor utilization is equal to the set-point of 0.7 when the

system was operated both with and without HiDRA.

Figure 14c shows that when the system was operated without HiDRA, the normalized bandwidth utilization during T ∈

[0s, 480s] and T ∈ [1480s, 2000s] was 0.7, which is equal to the set-point. During T ∈ [480s, 1480s] the normalized

bandwidth utilization was 0.5, which is equal to the normalized channel capacity and significantly greater than the normalized

set-point of 0.35. From Figures 14a and 14b, however, it can be seen that when the system was operated with HiDRA, the

normalized bandwidth utilization converged to the normalized utilization set-point even under varying channel capacity.

HiDRA achieved this behavior by lowering the quality factor of the images in response to fluctuations in network bandwidth.

These results show that HiDRA ensures the wireless bandwidth utilization converges to the desired set-point within

bounded time, even under varying network bandwidth availability. We therefore conclude that HiDRA ensures system re-

source utilization is maintained within the specified bounds, thereby ensuring system stability.

5.6.2 Comparison of QoS

We now compare the application QoS, which includes (1) target-tracking precision and (2) average end-to-end delay.

Figure 15 compares the target-tracking error that was obtained when the system operated with and without HiDRA. As

shown in Table 6, during T ∈ [0s, 480s] and T ∈ [1, 480s, 2000s] the channel capacity of the wireless network was 2 Mbps,

which is the resource availability under which the static configuration of the system was selected. As a result, Figures 15a

and 15b show that the target tracking error during during T ∈ [0s, 480s] and T ∈ [1, 480s, 2000s] is nearly the same when

the system was operated with HiDRA and without HiDRA.

During T ∈ [480s, 1480s], however, the channel capacity of the wireless network was 1 Mbps. Within this time interval,

the wireless bandwidth resource availability is half the wireless bandwidth resource availability under which the static config-

uration of the system was selected. To maintain the bandwidth utilization within specified bounds, HiDRA lowers the quality

factor of the images transmitted by the UAVs to the receiver during T ∈ [480s, 1480s]. As a result, Figures 15a and 15b show

that the target tracking error during T ∈ [480s, 1480s] was higher when the system was operated with HiDRA than when the

system was operated without it. These results demonstrate that HiDRA effectively maintains utilization of system resource
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Figure 15: Exp 3: Comparison of Target-tracking Error

below the specified set-points despite variations in bandwidth resource availability by gracefully adjusting application QoS.

Table 7 compares the end-to-end delay when the system was operated with and without HiDRA. This table shows that

Number of Objects End-to-End Delay (msec)

With HiDRA Without HiDRA

2 185 276

Table 7: Exp 3: Comparison of End-to-End Delay

end-to-end delay was much lower when the system was operated with HiDRA than without it. When the system was operated

without HiDRA, during T ∈ [480s, 1480s], the utilization of the wireless network bandwidth is equal to its channel capacity,

which increased packet loss, retransmission delays, and in turn network transmission delay. This behavior accounts for the

increase in the average end-to-end delay because the static configuration of the system was selected assuming 2 objects of

interest were being tracked by the system and a constant channel capacity of 2 Mbps. When the system was operated with

HiDRA, however, HiDRA reacts to variations in channel capacity by modifying application parameters such as JPEG quality

factor. These adaptations ensure that system resources are not over-utilized and thus lowers average end-to-end delay.

5.7 Experiment 4: Varying Bandwidth Availability and Varying Workload

We finally present the results obtained from running the experiment under varying channel capacity of the wireless net-

work, as well as varying number of objects of interest in the system. This experiment demonstrates the adaptive resource

management capabilities of HiDRA under varying resource availability and fluctuating input workload. We, once again,

normalize the channel capacity, bandwidth utilization, and bandwidth utilization set-point to the maximum channel capacity

of 2Mbps. Table 4 summarizes the number of objects of interests that were tracked as a function of time. Table 6 summarizes

the variation of channel capacity as a function of time. In this experiment, when the system was operated without HiDRA,

the static configuration of the system shown in Table 2 was used.
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5.7.1 Comparison of Resource Utilization
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Figure 16: Exp 4: Comparison of Processor Utilization
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Figure 17: Exp 4: Comparison of Normalized Bandwidth Utilization

Figures 16 and 17 compare the processor utilization at the receiver node and the wireless network bandwidth utiliza-

tion when the system was operated with and without HiDRA. The output of the bandwidth utilization monitor, shown in

Figure 17b, was processed with a Kalman filter and used by the bandwidth controller as the current bandwidth utilization.

Figure 16 and Table 4 show that the increase in the processor utilization at T = 300s is due to the presence of the first

object of interest. From Figure 16a it can be seen that although the processor utilization increased above 0.7, within the

next several sampling periods, HiDRA restored the processor utilization to the desired set-point of 0.7. This behavior was

achieved by reducing the execution rates of data-source/receiver pair(s) deemed less important, i.e., ones that captured images

where objects of interest were absent. As shown in Figure 16b, when the system was operated without HiDRA, the processor

utilization remained at 0.85, which is significantly higher than the utilization set-point of 0.7.

At T = 500s, the presence of the second object of interest was detected. As a result, Figure 16b shows that processor

utilization increased to 0.95 when the system was operated without HiDRA. As shown in Figure 16a, however, the processor
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utilization quickly re-converges to the set-point after a transient increase when the system was operated with HiDRA.

At T = 700s the presence of the third object of interest was detected. When the system was operated without HiDRA,

Figure 16b shows how the processor utilization increased to 1. As shown in Figure 16a, however, once again the processor

utilization quickly re-converges to the set-point after a transient increase when the system was operated with HiDRA.

At T = 1100s the total number of objects currently being tracked by the system reduced from 3 to 2, although there

was a decrease in the processor utilization, HiDRA restored the processor utilization of 0.7 by increasing the execution rate

of important data-source/data sink pair(s). Similarly, HiDRA ensured that the processor utilization converges to the desired

set-point for the remaining duration of the experiment.

These results show that HiDRA ensures that the processor utilization of the receiver node converges to the desired set-point

within bounded time, even under fluctuating workloads.

Figure 17c shows that when the system was operated without HiDRA, the normalized bandwidth utilization during T ∈

[0s, 480s] and T ∈ [1480s, 2000s] was below the normalized set-point of 0.7. During T ∈ [480s, 1480s] the normalized

bandwidth utilization was 0.5, which is equal to the channel capacity and significantly greater than the normalized set-point

of 0.35. From Figures 17a and 17b, however, it can be seen that when the system operated with HiDRA, the normalized

bandwidth utilization converged to the normalized utilization set-point even under varying channel capacity. This behavior

was achieved by lowering the quality factor of the images in response to the variations in network bandwidth availability and

input workload.

These results show that HiDRA ensures that the wireless bandwidth utilization converges to the desired set-point within

bounded time, even under varying channel capacity and input workload. We therefore conclude that HiDRA ensures uti-

lization of system resources is maintained within the specified bounds, even under varying resource availability and input

workload, thereby ensuring system stability.

5.7.2 Comparison of QoS

We now compare the application QoS – (1) target-tracking precision, and (2) average end-to-end delay.
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Figure 18: Exp 4: Comparison of Target-tracking Error

Figure 18 compares the target-tracking error that were obtained when the system was operated with and without HiDRA.

Table 4 shows that during T ∈ [300s, 500s] there was only one object of interest tracked by the system using UAV 1. When
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the system was operated without HiDRA, the static configuration of the system (as shown in Table 2) assumed (1) that there

were a total of 2 objects of interests being tracked by the system and (2) a constant channel capacity of 2 Mbps. As a result,

Figure 18a shows that the target tracking error during T ∈ [300s, 480s] is lower when the system was operated with HiDRA

than without it.

During T ∈ [480s, 1480s], however, the channel capacity of the wireless network was 1 Mbps. During Within this time

interval, the wireless network bandwidth availability was half the bandwidth availability under which the static configuration

of the system was selected. To maintain the bandwidth utilization within specified bounds, therefore, HiDRA lowers the

quality factor of the images transmitted by the UAVs to the receiver during T ∈ [480s, 1480s]. As a result, Figures 18a, 18b,

and 18c show that the target tracking error during T ∈ [480s, 1480s] was higher when the system was operated with HiDRA

than without it.

These results demonstrate that HiDRA effectively maintains utilization of system resource below the specified set-points

despite fluctuations in input workload and variations in bandwidth resource availability by gracefully adjusting application

QoS.

Table 8 compares the end-to-end delay when the system was operated with and without HiDRA. This table shows that end-

Number of Objects End-to-End Delay (msec)

With HiDRA Without HiDRA

0 20 20

1 80 123

2 137 235

3 206 327

Table 8: Exp 4: Comparison of End-to-End Delay

to-end delay is much lower when the system operates with HiDRA than without it. When the system was operated without

HiDRA the utilization of the wireless network bandwidth is equal to its channel capacity during T ∈ [480s, 1480s], which

resulted in increased packet loss, retransmission delays, which in turn increased network transmission delay. This behavior

accounts for the increase in the average end-to-end delay because the static configuration of the system was selected assuming

2 objects of interest were being tracked by the system and a constant channel capacity of 2 Mbps. When the system was

operated with HiDRA, however, it reacts to variations in channel capacity and number of objects by modifying application

parameters, such as the JPEG quality factor. These adaptations ensures that system resources are not over-utilized and thus

lowers average end-to-end delay.

5.8 Summary

HiDRA responds to fluctuation in input workload and the most severe form of variation in resource availability by periodi-

cally monitoring and control of resource utilization. Both our theoretical and empirical analysis assures that the utilization of

system resources converge to their specified utilization set-points even if a set-point is specified as a time-varying reference
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signal. However, the only assumption is that the variation in the reference signal is slower than the sampling period.

Our results show that when resources utilization increases above the desired set-point, HiDRA lowers the utilization by

modifying application parameters, such as execution rates and JPEG quality factor. These adaptations ensure that (1) system

resources are not over-utilized and (2) enough resources are available for important applications.

Our analysis of the results described above suggests that applying hierarchical adaptive resource management to our target

tracking system helps to (1) maintain system resource utilization within specified bounds and (2) improve overall system QoS.

These improvements are achieved largely due to monitoring of system resource utilization, adaptive resource provisioning,

and efficient system workload management by means of HiDRA’s resource monitors, hierarchical controllers, and effectors,

respectively.

6 Related Work

A number of control-theoretic approaches have been applied to real-time system to overcome limitations with traditional

scheduling approaches that are not suited to handle dynamic changes in resource availability and result in a rigidly sched-

uled system that adapts poorly to change. A survey of these techniques is presented in [10]. This section summarizes the

relationship of related work on control-theoretic approaches with our research on HiDRA.

Feedback control scheduling (FCS) [11] is designed to address the challenges of applications with stringent end-to-end

QoS executing in open DRE systems. These algorithms provide robust and analytical performance assurances despite uncer-

tainties in resource availability and/or demand. FC-U and FC-M [28] and HySUCON [29] to manage the processor utilization.

CAMRIT [30] applies control-theoretic approaches to ensure transmission deadlines of images over an unpredictable network

link and also presents analytic performance assurance that the transmission deadlines are met.

A hierarchical control scheme that integrates resource reservation mechanisms [9, 31] with application specific QoS adap-

tation [32] is proposed in [21]. This control scheme features a two-tier hierarchical structure: (1) a global QoS manager that

is responsible for allocating computational resources to various applications in the system and (2) application-specific QoS

managers/adapters that modify application execution to use the allocated resources efficiently and improves application QoS.

Although the approaches outlined above are similar to HiDRA, these algorithms/mechanisms perform resource man-

agement of only one type of system resource, i.e., either computing power or network bandwidth. HiDRA’s contribution to

control-theoretic research, therefore, is its ability to perform resource management of both network and computing resources,

which is crucial for many real-world DRE systems.

One approach to manage both computing power and network bandwidth is to manage the network bandwidth utilization

with CAMRIT and processor utilization with either the hierarchical control structure proposed in [21], FC-U/FC-M, or

HySUCON. Unfortunately, this approach does not take into consideration the coupling between the two types of system

resources and does not necessarily assure system stability.

The work of [33] utilizes task control model and fuzzy control model to enhance the QoS adaptation decision of multimedia

DRE systems. The control framework established in this work, however, is still confined to single type of resource, i.e.,

network bandwidth in a distributed visual tracking system.
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As described in Section 3, HiDRA uses hierarchical feedback control loops—the processor utilization feedback loop and

bandwidth utilization loop—to manage the utilization of system resources, which can be extended to handle more types

of resources and end-to-end applications without significant modifications to the existing architecture. Moreover, HiDRA’s

feedback loops are designed so that the adaptation decisions made by one does not conflict with the decisions made by the

other. As shown in Section 4.2 and Section 5, HiDRA’s design results in a hierarchical control architecture that ensures

system stability.

7 Concluding Remarks

Open DRE systems require end-to-end QoS enforcement from their underlying operating platforms to operate correctly.

These systems often run in environments where resource availability is subject to dynamic change. To meet end-to-end QoS

in these dynamic environments, DRE systems can benefit from adaptive resource management architectures that monitors

system resources, performs efficient application workload management, and enables efficient resource provisioning for exe-

cuting applications. Resource management mechanisms based on control-theoretic techniques are emerging as a promising

solution to handle the challenges of applications with stringent end-to-end QoS executing in DRE systems. These mecha-

nisms enable adaptive resource management capabilities in open DRE systems and adapt gracefully to fluctuation in resource

availability and application resource requirement at run-time.

This paper described HiDRA, which is our hierarchical distributed resource management architecture based on control-

theoretic techniques that provides adaptive resource management, such as resource monitoring and application adaptation,

that are key to supporting open DRE systems. We first presented the theoretical analysis that shows how HiDRA ensures

stability in our DRE system. We then evaluated the performance of HiDRA using a representative target tracking DRE sys-

tem implemented using Real-time CORBA and composed of two types of system resources (i.e., computational power at the

receiver and wireless network bandwidth) and three applications (i.e., UAV data sender/receiver pairs). Our theoretical anal-

ysis and empirical results show that HiDRA delivers efficient resource utilization by maintaining system resource utilization

within specified bounds even under fluctuating work loads, thereby ensuring system stability and delivering effective QoS.

The lessons learned by applying HiDRA to our target tracking system thus far include:

• HiDRA’s Control-theoretic approaches yielded in an adaptive resource management architecture that can gracefully

handle fluctuations in resource availability and/or demand for open DRE systems.

• The formalisms presented in the paper form the foundation for a resource management framework based on control-

theoretic principles that can be used to perform system stability analysis and obtain theoretical assurance about system

performance.

• Developing applications in which parameters can be fine-tuned to modify the application operation and utilization of

system resources helps achieve higher QoS of applications and enables HiDRA to maintain system resource utilization

within desired bounds.

29



DRE systems are increasingly being used for mission-critical applications that operate in hostile environments. Often these

systems are subjected to QoS attacks that aim at degrading system performance significantly. These attacks often results in

loss of system resources, which in turn affects the QoS of mission critical applications operating on these systems. In future

work, we will also extend HiDRA to detect such attacks early and prevent them from reducing the QoS of mission-critical

applications.
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