
The Design and Performance of

Next-generation Real-time CORBA Middleware

Arvind Krishna, Raymond Klefstad

fkrishnaa, klefstadg@uci.edu

EECS Department

UC Irvine

Irvine, CA 92697, USA

Douglas C. Schmidt

schmidt@dre.vanderbilt.edu

ISIS

Vanderbilt University

Nashville, TN 37203, USA

Angelo Corsaro

corsaro@cs.wustl.edu

CS Department

Washington University

St. Louis, MO 63130, USA

Chapter Overview

Distributed Real-time and Embedded (DRE) systems are

becoming increasingly widespread and important. There

are many types of DRE systems, but they have one

thing in common: the right answer delivered too late

becomes the wrong answer. Common DRE systems in-

clude telecommunication networks (e.g., wireless phone

services), process automation (e.g., hot rolling mills),

and defense applications (e.g., avionics mission comput-

ing systems). The various aspects of DRE systems have

the following challenging requirements.

� As distributed systems, DRE systems require capa-

bilities to manage connections and message transfer

between separate machines.

� As real-time systems, DRE systems require pre-

dictable and e�cient control over end-to-end system

resources.

� As embedded systems, DRE systems have weight,

cost, and power constraints that limit their comput-

ing and memory resources. For example, embedded

systems often cannot use conventional virtual mem-

ory, since software must �t on low-capacity storage

media, such as EEPROM or NVRAM.

Designing DRE systems, that implement all the re-

quired capabilities, that are fast and reliable, and that

use limited computing resources is hard; building them

on time and within budget is even harder. In particu-

lar, DRE applications developers face the following chal-

lenges:

� Tedious and error-prone development| Acci-

dental complexity proliferates, because many DRE

applications are still developed using low-level lan-

guages, such as C and assembly languages.

� Limited debugging tools | Although debugging

tools are improving, real-time and embedded systems

are still hard to debug due to inherent complexities,

such as concurrency and remote debugging.

� Validation and tuning complexities | It is

hard to validate and tune key quality of service

(QoS) properties, such as (1) pooling concurrency

resources, (2) synchronizing concurrent operations,

(3) enforcing sensor input and actuator output tim-

ing constraints, (4) allocating, scheduling, and as-

signing priorities to computing and communication

resources end-to-end, and (5) managing memory.

Due to these challenges, developers of DRE applications

have historically rediscovered core concepts and rein-

vented custom solutions that are tightly coupled to par-

ticular hardware and software platforms.

Over the past decade, distributed object comput-

ing (DOC) middleware frameworks, such as CORBA,

COM+, and Java RMI have emerged to reduce the com-

plexity of developing distributed applications. DOC mid-

dleware simpli�es application development for distributed

systems by o�-loading many tedious and error-prone as-

pects of distributed computing from application develop-

ers to middleware developers. It has been used success-

fully in business and desktop systems where scalability,

evolvability, and interoperability are essential for success.

Real-time CORBA is a rapidly maturing DOC mid-

dleware technology standardized by the OMG that can

simplify many challenges for DRE applications, just as

CORBA, COM+, and Java RMI have been used for

business and desktop systems. The Real-time CORBA

1.0 speci�cation was designed for applications with hard

real-time requirements, such as avionics mission comput-

ers and process manufacturing controllers. Real-time

CORBA 1.0 adds QoS control capabilities to improve

DRE application predictability by bounding priority in-

versions, providing end-to-end priority enforcement, and

end-to-end system resource management. In particular,

the standard features de�ned by the Real-time CORBA

1.0 speci�cation enable DRE applications to con�gure

and control the following resources:

� Processor resources via thread pools, priority

mechanisms, intra-process mutexes, and a global

scheduling service for real-time applications with

�xed priorities,

� Communication resources via protocol proper-

ties and explicit bindings to server objects using pri-

ority bands and private connections, and



� Memory resources via bu�ering requests in queues

and bounding the size of thread pools.

This chapter explains how the features in the Real-

time CORBA 1.0 speci�cation enables predictable and ef-

�cient control over process, communication, and memory

resources. It also illustrates how application developers

can apply the Real-time CORBA features to simplify the

design of DRE systems. The material in this chapter is

based on our extensive experience developing and apply-

ing The ACE ORB (TAO), which is an open-source im-

plementation of Real-time CORBA 1.0 written in C++.

TAO has been applied to hundreds of DRE applications

in domains that include telecommunications, distributed

interactive simulations, aerospace, process control, and

defense.

Although the Real-time CORBA 1.0 speci�cation was

integrated into the OMG standard several years ago, it

has not been adopted universally by DRE application de-

velopers, due in part to the following limitations

� Steep learning curve, caused largely by the com-

plexity of the CORBA C++ mapping,

� Run-time and memory footprint overhead,

which stem from monolithic ORB implementations

that include all the code supporting the various

core ORB services, such as connection and data

transfer protocols, concurrency and synchronization

management, request and operation demultiplexing,

(de)marshaling, and error-handling,

� Lack of support for dynamic scheduling, which

is needed to support applications with stringent soft

real-time requirements, such as telecommunication

call processing and streaming video.

This chapter presents the following contributions to the

design and use of next-generation Real-time CORBA

middleware that resolves the limitations outlined above:

1. It explains how the dynamic scheduling features in

the Real-time CORBA 2.0 enable more exible con-

trol over process, communication, and memory re-

sources than is possible with Real-time CORBA 1.0.

2. It compares various software architectures for imple-

menting Real-time CORBA, ranging from conven-

tional monolithic ORB architectures to more exible

micro-ORB architectures.

3. It shows how design patterns can be applied to min-

imize the memory footprint of DRE middleware cus-

tomized for various types of applications.

4. It describes how Real-time Java features can be ap-

plied to achieve low and bounded jitter for ORB op-

erations and eliminate sources of priority inversion.

Our expertise is the result of experience developing

and applying ZEN, which is an open-source Real-time

CORBA ORB implemented using Real-time Java. ZEN is

inspired by many of the patterns, techniques, and lessons

learned in TAO. We describe how the challenge of imple-

menting next-generation Real-time CORBA using Real-

time Java can be decomposed into the following two lev-

els:

� Applying optimization principles to ensure

predictability. These optimizations are applied at

the algorithmic and data structural level and are in-

dependent of the Java virtual machine (JVM). These

strategies are applied at:

{ Object Adapter layer { Optimizations ap-

plied in this layer include predictable and scal-

able (1) request demultiplexing techniques, that

ensure O(1) look up time irrespective of the

POA hierarchy, (2) object key processing tech-

niques, and (3) servant lookups.
{ ORB Core layer { Optimizations applied in

this layer include, (1) collocation optimizations,

(2) bu�er-allocation strategies and (3) asyn-

chronous I/O using Java's nio package.

� Applying Real-time features e�ectively within

a Real-time CORBA ORB. We illustrate how

Real-Time Speci�cation for Java (RTSJ) features can

be integrated with components in Real-time CORBA

ORBs (such as Real-time CORBA thread pool lanes)

to span the following layers:

1. I/O layer, e.g., Acceptor-Connector and Reac-

tor,
2. ORB Core layer, e.g., CDR streams and Bu�er

Allocators, and
3. Object Adapter layer, e.g., Thread Pools and

the POA.

To eliminate priority inversions related to invoca-

tions of the garbage collector during a request upcall,

it is essential that key ORB objects be allocated ei-

ther within Scoped or Immortal memory to enable

use of NoHeapRealTime (NHRT) threads. Proper

use of NHRT threads for request dispatch ensures

that user requests are not interrupted in an inappro-

priate time.

We use ZEN as a case-study of next-generation Real-

time CORBA middleware to illustrate how, well designed

ORBs enable developers to make choices between ef-

�ciency and exibility. We also illustrate how to in-

corporate Real-time features (such as real-time threads

and scoped memory) in an ORB without modifying the

2



CORBA speci�cation and show patterns that can mini-

mize the time/space overhead for DRE applications that

do not require certain Real-time CORBA features.

3


