
Realtime CORBA

Alcatel

Hewlett-Packard Company

Lucent Technologies, Inc.

Sun Microsystems, Inc.

In collaboration with:

Tri-Pacific

France Telecom

Mitre

Version 1.0 - Initial RFP Submission

January 19, 1998

OMG Document Number orbos/98-01-08

Object-Oriented Concepts, Inc.

Humboldt-University

Washington University

Deutsche Telekom AG

Motorola, Inc.

Copyright 1998 by Alcatel.

Copyright 1998 by Hewlett-Packard Company.

Copyright 1998 by Lucent Technologies, Inc.

Copyright 1998 by Mitre

Copyright 1998 by Object-Oriented Concepts, Inc

Copyright 1998 by Sun Microsystems, Inc.

Copyright 1998 by Tri-Pacific

The companies listed above hereby grant a royalty-free license to the Object Management Group, Inc.
(OMG) for worldwide distribution of this document or any derivative works thereof, so long as the OMG
reproduces the copyright notices and the below paragraph on all distributed copies.

The material in this document is submitted to the OMG for evaluation. Submission of this document dos
not represent a commitment to implement any portion of this specification in the products of the submit-
ters.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The companies listed above shall
not be liable for errors contained herein or for incidental or consequential damages in connection with
the furnishing, performance or use of this material. The information contained in this document is subject
to change without notice.

The document contains information which is protected by copyright. All Right Reserved. Except as oth-
erwise provided herein, no part of this work may be reproduced or used in any form or by any means
(graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems) without the permission of one of the copyright owners. All copies of this document
must include the copyright and other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of
copies of this document (up to 50 copies) for their internal use as part of the OMG evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restric-
tions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause
at DFARS 252.227.7013.

Contacts

Trademarks
All trademarks acknowledged

Contents of Submission

Introduction 4

References 4

Overall Design Rationale 5
Rationale for IDL 5

Realtime API 5
Interface Inheritance 5
Exceptions 5
Locality Constraints 5

Rationale for RT module 6

Rationale for Realtime Portable Object Adapter module 6

Proof of Concept 6

Issues Addressed in This Submission 6
Mandatory Requirements 6

Optional Requirements 8

Zoely Canela
Alcatel Alsthom Recherche
Route de Nozay
91460 Marcoussis
France
phone +33 1 69 63 12 71
fax +33 1 69 63 17 89
E-mail: canela@aar.alcatel-alsthom.fr

Jishnu Mukerji
Hewlett-Packard Company
300 Campus Drive, MS 2E-62
Florham Park, NJ 07932
USA
phone +1 973 443 7528
fax +1 973 443 7422
E-mail: jis@fpk.hp.com

Judy McGoogan
Lucent Technologies
Room 5B-427
2000 N. Naperville Road
Naperville, IL 60566
USA
phone +1 630 713-7355
fax +1 630 979-9364
E-mail: jmcgoogan@lucent.com

Michel Gien
Sun Microsystems
6 av Gustave Eiffel
78180 Montigny Le Bretonneux
France
phone +33 1 30 64 82 22
fax +33 1 30 57 00 66
E-mail: Michel.Gien@France.Sun.COM

Marc Laukien
Object-Oriented Concepts, Inc
44 Manning road
Billerica, MA 01821
USA
phone +1 978 439 92 85
fax +1 978 439 92 86
E-mail: ml@ooc.com

Peter Kortmann
Tri-Pacific Software Consulting Corp.
1070 Marina Village Parkway Suite 202
Alameda, CA 94501
USA
phone +1 510 814 1775
fax +1 510 814 1788
E-mail: peter@tripac.com

Issues 8

Problem Statement 9
Conventional CORBA Architecture - Background 9

CORBA Problems for Realtime Applications 10

Architecture Overview of a CORBA ORB for Realtime Applications 11
Introduction to Realtime and End-to-end predictability 11

Key Architectural Elements 12

Schedulable Entities 14

End to End Predictability 15

Asynchronous invocations 18

Control of Resources 20
Overview 20

Threads 21
Thread Attributes 21

Architectural Considerations 21
Specification 21
Locality Constraints 21

POSIX Thread Attributes 22
Architectural Considerations 22
Specification 22
Locality Constraints 22
Example 23

Thread Management 23
Architectural Considerations 23
Specification 24
Locality Constraints 25

Thread Specific Storage 25
Architectural Considerations 25
Specification 26
Locality Constraints 27
Example 27

Thread Pools 28
Architectural Considerations 28
Specification 30
Locality Constraints 31
Example 31

Request Queue and Flow Control 31
Architectural Considerations 31
Specification 32

Locality Constraints 33

Transport 33
Transport End-Point Management 34
Transport Attributes 36

Architectural Considerations 36
Generic Specification 36
Locality Constraints 36

TCP/IP Attributes 36
Architectural Considerations 36
Attributes Specification 37

Locality Constraints 37
Transport End-Point API 38

Locality Constraints 39
Example 39

Buffers 40

Strategy Factory 40
Architectural Considerations 40
Specification 41
Locality Constraints 41
Example 41

ORB Flexibility Enablers 42
Componentized Object References 42

Architectural Considerations 43
Specification 44

Interceptors 44
Interceptor Categories 45
General Rules 46

Architectural Considerations 46
Specification 48
Locality Constraints 49

Request Interceptors 49
Architectural Considerations 49
Specification 49
Locality Constraints 50

Service Context Data 50
Architectural Considerations 50
Specifications 52

Request Interceptor Context 52
Architectural Considerations 52
Specification 54
Locality Constraints 54

Client Interceptor 54
Architectural Considerations 54
Specification 55
Locality Constraints 56

Server Interceptor 56
Architectural Considerations 56
Specification 56
Locality Constraints 57

POA Interceptor 57
Transport Interceptor 57
Thread Interceptor 57

Locality Constraints 58
Initialization Interceptor 58

Architectural Considerations 58
Specification 58
Locality Constraints 58

Message Interceptors 59

Synchronization Facilities 59
Synchronization Objects 59

Mutexes 59
Architectural Considerations 59
Specification 60
Locality Constraints 60

-1 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Semaphores 60
Architectural Considerations 60
Specification 61
Locality Constraints 61

Multiple Readers Single Writer Lock 61
Architectural Considerations 61
Specification 62
Locality Constraints 62

Condition Variable 63
Architectural Considerations 63
Specification 63
Locality Constraints 63

Synchronization Object Factory 64
Architectural Considerations 64
Specification 64
Locality Constraints 65

Fixed Priority Scheduling Service 65
Global Priority Notion 65

Portability and Fixed Priority Scheduling 66

Scheduling Service 66
set_priority and get_priority 67
set_priority_ceiling and get_priority_ceiling 68
Factory 69

Example and Intended Use of The Scheduling Service 69

Pluggable Protocols 71
Motivation 71

The Open Communications Interface 72

Compliance Points 73

The Message Transfer Interface 73
General 73

Design Patterns 73
Exceptions 73
Thread Safety 73
Single-Threaded ORBs 74
Object References 74
Locality Constraints 74

Interface Summary 74
Buffer 74
Transport 74
Acceptor and Connector 74
Connector Factory 75
The Registries 75
Reactor 75

Class Diagram 75
Specification 76

OCI::Buffer 79
OCI::Transport 79

orbos/98-01-08 -2

OCI::Connector 80
OCI::Acceptor 80
OCI::ConFactory 81
OCI::ConFactoryRegistry 81
OCI::AccRegistry 81

The Remote Operation Interface 81

CORBA API 82
Object References and Transport End-Points 82

Architectural Considerations 82
Specification 83
GIOP Transport End-Points 84

Client Binding and QoS 84
Architectural Considerations 84
Specification 85
Locality Constraints 86
Example 86

Realtime POA 87
Applying POA Specification to the Realtime CORBA Profile 87

Architectural Considerations 87
Specification 88

The Servant IDL Type 89
The ObjectId Type 89
POA Interface 89

Extending the POA Specification 90
Architectural Considerations 90
Specification 91

Thread Pool Policy 91
Servant Policy 91
Binding Data Interface 91
Creating a POA with a Thread Pool 92
Policy Creation Operations 92
Binding Data Creation Operation 92
Creating a Reference with (Binding) Data 92

IDL for Extensions to POA 93

Usage Scenario 94

... Example Scenario 95

Relation with COS Specifications 95
The COS Specifications and realtime 95

Service Classification 96
Services Used in Initialization 96
Run-Time Services 97
Independent Services 97

Realtime Required Services 97

Consolidated IDL 99
CORBA Modules Extension 99

-3 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

POA 100

Interceptor Module 101

Realtime Modules 102

Client Binding 106

Scheduling Service 107

Pluggable Protocol 108

Realtime CORBA Initial Submission orbos/98-01-08 January 1998 -4

Realtime CORBA

Initial Joint Submission

Alcatel/HP/Lucent/OOC/Sun/Tri-Pacific

Version 2
January 19, 1998

1 Introduction

Alcatel, Hewlett-Packard Company, Lucent Technologies, Object-Oriented Concepts,
Sun Microsystems and Tri-Pacific in collaboration with Deutsche Telekom AG, France
Telecom, Humboldt-University, Mitre, Motorola and Washington University, are pleased
to provide this first submission in response to the OMG “Realtime CORBA” RFP.

2 References

In addition to documents referring to background information on OMG’s Object
Management Architecture, the following documents are referenced in this document:

[1] [CORBA 2.1] The Common Object Request Broker: Architecture and
Specification, Revision 2.1, August 1997.

[2] [ORB Portability] ORB Portability Joint Submission, OMG Document orbos/97-
05-15.

[3] [RFP Real Time]Realtime Request For Proposal, OMG Document orbos/97-09-
31.

-5 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

[4] [ODP Reference]ODP Reference Model: Architecture, ITU-T|ISO/IEC
Recommendation X.903|International Standard 10746-3

[5] D. C. Schmidt, “Acceptor and Connector: Design Patterns for Initializing
Communication Services,” inPattern Languages of Program Design(R. Martin,
F. Buschmann, and D. Riehle, eds.), Reading, MA: Addison-Wesley, 1997.

[6] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching,” inPattern Languages of
Program Design(J. O. Coplien and D. C. Schmidt, eds.), pp. 529–545, Reading,
MA: Addison-Wesley, 1995.

[7] [RT White Paper]Realtime CORBA White Paper, December 1996

[8] [ReTINA] Requirements for a Realtime ORB ReTINA ACTS Project AC048 RT-
TR-96-08.1, May 1996

3 Overall Design Rationale

3.1 Rationale for IDL

3.1.1 Realtime API

The Realtime API is specified in IDL so that it is independent of the programming
language. While specifying the Realtime API, a strongly typed approch was used
because strong typing is an important concept in object oriented programming paradigm.
Strong typing also to reduce the risks of programming errors.

3.1.2 Interface Inheritance

The IDL which is defined uses interface inheritance to achieve genericity. Genericity
brings openness and reusable APIs. For the second submission, we are investigating
further the use of ObjectsByValue or the POAlocal-only on server side as an alternative
to some interfaces.

3.1.3 Exceptions

The submitters are concerned with small memory footprint for a realtime ORB. As much
as possible the IDL of the Realtime API tries to take advantages of existing system
exceptions and the ability to specify a minor code.

orbos/98-01-08 Proof of Concept -6

3.1.4 Locality Constraints

A locality constrainted object is like a regular object except for the fact that it can only
be accessed from within its capsule (see [4]) in which it is instantiated. Consequently, a
reference to such objects cannot be externalized either through marshaling or through the
ORB::object_to_string operation. Any attempt to do so should raise the
CORBA::MARSHAL exception. Any attempt to use such an object through DII should
raise theCORBA::NO_IMPLEMENT exception. Additionally, since they are not
accessible from outside the capsule, they may not be registered with an Interface
Repository.

A consequence of this restriction is that references to a locally constrained object may
not be passed as a parameter of any operation of a normal object. However, it is OK to
pass references to locally constrained objects as parameters in operations of another
locality constrained object as long as the two objects reside in the same capsule.

3.2 Rationale for RT module

Realtime APIs are defined in a separate module calledRT. The use of a separate module
clarifies the organization of the APIs and most of all position it as an extension of the
Realtime ORB compared to traditional ORBs.

3.3 Rationale for Realtime Portable Object Adapter module

The realtime ORB requires a realtime portable object adapter. A separate module which
uses the Portable Object Adapter is defined to specify the realtime extensions to the
POA. These extensions are separate so that traditional ORBs are not obliged to
implement them.

4 Proof of Concept

This specification is based on the combined experience on prototypes and products of the
submitters:

• ChorusORB r5
http://www.chorus.com or http://www.sun.com

• HP
http://www.hp.com/hpj/97feb/feb97a9.htm

• Fixed Priority Scheduling
http://www.tripac.com

• Pluggable Protocols
http://www.ooc.com

• TAO
http://www.cs.wustl.edu/~schmidt/TAO.html

-7 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

5 Issues Addressed in This Submission

5.1 Mandatory Requirements

This submission addresses the following mandatory requirements:

• Extensions to adopted OMG specifications: Introduces extensions to existing
OMG specifications. The only overlap may be with OMG’s Interceptor Facility,
which is currently being revised. The final submission will be aligned with the
revised OMG architecture for interceptors.

• Schedulable entities: At the ORB level, defines threads, requests, replies, messages
and transport end-points as “schedulable entities”. Specifies: 1) thread attributes, 2)
a thread management API that allows creation and deletion of threads as well as
modification of thread attributes, 3) thread specific storage, and 4) thread pools.
Also specifies APIs for: 1) request queue and flow control, and 2) management of
transport end-points.

At the services level, defines a new Scheduling Common Object Service to facilitate
plugging in various fixed-priority, realtime scheduling policies. The Scheduling
Service is based on the notion of a global, uniform priority assignment to threads. It
defines interfaces for client and server scheduling entities that allow management of
priorities and priority ceilings.

• Propagating client’s priority : At the ORB level, specifies “ORB flexibility
enablers” that allow integration of specific realtime strategies such as QoS support,
priority inheritance and others. Flexibility enablers: 1) allow applications to store
arbitrary data in an object reference, and 2) support an interceptor mechanism to
manage the semantics of method invocation. Interceptor APIs increase the
flexibility of the realtime ORB and allow implementation of a variety of
application-selected strategies. Interceptors are introduced for requests, portable
object adapters, transport, and threads.

Application programmers can choose to use a Scheduling Service or to set
scheduling parameters using ORB primitives directly.

• Avoiding/Bounding priority inversion: The Scheduling Service interfaces coupled
with the characteristics of the realtime ORB enable designers of analyzable realtime
systems to bound priority inversion. Multiple transport end-points and buffer
management API avoid or bound the priority inversion by directing client requests
to the thread with correct priority.

• Avoiding/Bounding blocking: APIs of the realtime ORB and the Scheduling
Service integrate several elements to avoid/bound blocking on method invocations.
ORB APIs are specified for: 1) threads, 2) request queues, 3) transport management,
4) buffer management, 5) interceptors, and 6) synchronization facilities. The
Scheduling Service obtains its input from interceptors and the request. It uses the
request queue API to schedule requests that must be processed in priority order.

• Resources: Resources include: threads, buffers and memory, transport end-points,
request queues and synchronization objects (e.g., mutexes, semaphores, condition
variables, multiple readers/single writer, ...). APIs are defined for each.

orbos/98-01-08 Issues Addressed in This Submission -8

• Interfaces for selecting interaction and transport protocols: The generic
Transport API creates, deletes, and manages attributes for transport end points.
Specific attributes for TCP/IP are defined. Additionally, a flexible mechanism is
defined for integrating new protocols in the realtime ORB at both the transport and
the interaction level.

• Binding:
Server Binding: Enables the server to establish appropriate bindings so that
realtime requests can be processed with no (or minimal bounded) priority inversion
by integrating an appropriate use of transport resources, the appropriate setting of
server threads, a well configured request queue, and a scheduler that drives the
dispatching and execution of requests.
Client Binding : Enables the client to choose and set appropriate bindings with a
selection and configuration of transport resources; specification of Client QoS so
that realtime invocations can be processed. (this is also related to theORB
Flexibility Enablers).

• POA: Uses the Portable Object Adapter not the Basic Object Adapter. Identifies
POA activation policies that should not be used - in order to guarantee end-to-end
predictability. Contains a placeholder for POA extensions for Realtime.

5.2 Optional Requirements

The optional requirements are dealt with in the submission as follows:

• Time limits for replies: One example of a control parameter that could be used
with the generic request queue API is “the maximum time that a request can wait
without being processed.” Application designers may also address this need by
using the flexibility provided by: 1) the ability to store arbitrary data in an object
reference, 2) the interceptor mechanism, and 3) the Scheduling Service.

• Installation of user-provided transport protocols: Pluggable protocols are defined
to provide a flexible mechanism for integrating new transport level protocols in the
realtime ORB.

• RT interaction protocols: Pluggable protocols are also defined to provide a flexible
mechanism for integrating new interaction level protocols in the realtime ORB.
However, the submission does not define a specific realtime interaction protocol,
since other OMG Task Forces (e.g., the Telecom DTF) are currently addressing this
via RFPs for a variety of ESIOPs (e.g., SS7, ATM, OSI, etc).

• Run-time interfaces for “schedulable entities”: The Thread API, Transport API,
and Request Queue API address this.

5.3 Issues

This submission addresses the following issues:

• Assumptions about the underlying operating system: Defines as a minimum a
specialization of the generic thread attributes to control POSIX threads. Also
compatible with other threading APIs, such as Win32 Threads.

-9 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

• Relationship to POSIX: See above.

• Relationship to Concurrency Service, Time Service, Transaction Service, and
Event Service: Addressed in §16 “Relation with COS Specifications” on page 95.

• Role of the Security Service: TBD

• Definition of binding: Defines binding based on ODP. Proposes use of the Portable
Object Adapter’s interfaces and operations for a server to bind its servants to object
references. Specifies the addition of realtime parameters to the binding information
recorded/retrieved by the object adapter.

• Relationship to the Messaging Service: Addressed in §7.5 “Asynchronous
invocations” on page 18.

• How to build realtime CORBA applications: Examples of usage appear
throughout the document, and this is also addressed in §15 “Example Scenario” on
page 95.

6 Problem Statement

6.1 Conventional CORBA Architecture - Background

Figure 1 on page 10, shows the conventional structure of an ORB. The ORB is
responsible for all of the mechanisms required to find the Servant for the request, to
prepare the Servant to receive the request, and to communicate the data making up the
request. To make a request, the Client can use the DII or an IDL stub. It can interact with
the ORB for some functions. On the server side, the Servant receives a request as an up-
call either through the IDL generated skeleton or through the DSI. The ORB core locates
the servant, transmits parameters, and transfers the control to the Servant through an IDL
skeleton or the DSI. The object adapter provides generation and interpretation of object
references, method invocation, servant activation and deactivation, mapping of object
references to servants. The ORB core provides the GIOP/IIOP interaction protocol.

orbos/98-01-08 Problem Statement -10

Figure 1 Components in the CORBA Reference Model

6.2 CORBA Problems for Realtime Applications

The conventional CORBA architecture does not meet the needs of many realtime
applications:

• This architecture does not provide interfaces to specify end-to-end QoS
requirements which are necessary for realtime applications. Furthermore, the
opaqueness of the ORB core concerning resources and the full invocation path
makes end-to-end QoS enforcement hard to meet.

• Lack of realtime programming features such as asynchronous invocations, timed
operations and transport layer flow control notification.

• Lack of performance optimizations lead to significant throughput and latency
overhead. Improvements in data copying, message buffering and de-multiplexing
are required to allow many performance sensitive realtime applications to use a
CORBA ORB.

DII ORB
INTERFACE

ORB
CORE

operation()

IDL
STUBS

OBJECT

ADAPTER

IDL
SKELETON

DSI

in args

out args + return value

CLIENT

GIOP/IIOP

SERVANT

STANDARD INTERFACE STANDARD LANGUAGE

MAPPING

ORB-SPECIFIC INTERFACE STANDARD PROTOCOL

-11 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

7 Architecture Overview of a CORBA ORB for Realtime Applications

7.1 Introduction to Realtime and End-to-end predictability

Realtime systems need to specify timeliness and throughput quality of service (QoS)
requirements to obtain guarantees about the fulfillment of these requirements. The nature
of guarantees provided may vary from best-effort (where the system provides no
quantitative guarantee of how well or how often it will meet application QoS
requirements) to deterministic (where the system guarantees that application
requirements will be strictly met throughout the lifetime of the application). In a
distributed system, the end-to-end predictability qualifies the temporal behavior of the
system from best-effort to deterministic. The distributed realtime system should take into
account the following two important elements:

• End-to-end predictability requires establishing communication paths between client
and server with defined characteristics.

• The network characteristics must be taken into account. Network latency, network
error rate (such as packet loss or cell loss) have an impact on the resulting end-to-
end predictability.

Establishment of the communication path between objects (e.g., client and server
objects) is referred to as a binding process. The result of this process is also called a
binding. This notion of binding is exactly that introduced in the Reference Model for
ODP ([4]). It is an end-to-end notion, not just server adapter to server applications, and it
is not limited to client-server configurations. For instance, a binding can support
multimedia streams, group communication etc.

The notion of binding is not new to CORBA. Conventional ORBs establish a binding
between the client and the server that the client wants to invoke. Most often this binding
is made implicitly and no QoS requirement can be specified. The realtime ORB
architecture requires that implicit bindings as well as explicit bindings be possible, and
that mechanisms exist for realtime applications to specify their QoS and for the realtime
ORB to enforce it.

Establishing a binding in a client-server configuration to guarantee the requested end-to-
end predictability requires consideration at three lebels: client side, network, and server
side.

• On the client side, the realtime ORB must establish the client part of a client-server
binding (briefly,client binding) to guarantee that the QoS required by the client can
be met. Depending on the QoS required, this may range from simple actions, such
as opening or using an opened connection, up to complex actions, such as pre-
allocating resources and pre-establishing dedicated transport or network
connections.

• The network must provide protocols supporting the appropriate QoS. Client QoS
information is used as an input for configuring and using such protocols.

orbos/98-01-08 Architecture Overview of a CORBA ORB for Realtime Applications -12

• On the server side, the realtime ORB must establish the server side of a binding
(briefly, server binding) so that realtime requests can be processed in a timely
fashion with no (or minimal bounded) priority inversion, in order to meet the end-
to-end QoS.

On both the client and server side, meeting the QoS constraints implies an appropriate
use of transport resources, of supporting threads, and request queues. This in turn implies
an integrate scheduling to take place, ensuring the proper dispatching and handling of
realtime requests.

Establishing a binding may involve third party servers (on the client side as well as on
the server side). The realtime ORB architecture does not mandate any policy on how,
when and what is done to establish a binding. However, it provides:

• The architectural elements for bindings to be established (ie, the Realtime API)

• QoS guarantee for bindings which are successfully established (ie, realtime
capability).

7.2 Key Architectural Elements

Threads are an important abstraction in realtime applications. Several threads of
execution are commonly used to guarantee the predictability of realtime applications.
With the Realtime ORB, a server must be ready to process several invocations coming
from clients with different priorities. The server must guarantee, via the Realtime ORB,
the end-to-end QoS that was requested and set for its different clients. This gurarantee is
hard to meet in mono-thread environment. Therefore, the Realtime ORB executesa
priori on a multi-threaded environment.

To enforce the end-to-end QoS required by clients, there exist many policies for a
Realtime ORB. The specification of the QoS itself, also depends on the policy that is
used to guarantee it. For example some applications will need priority inheritance; others
will use more complex QoS information (e.g., for a Rate Monotonic scheduler) and so
on. Defining only policies for the Realtime ORB will not be satisfactory for all realtime
applications.

The Realtime ORB architecture which is presented here focuses on the definition of
mechanisms instead of policies. Mechanisms are defined to enforce the end-to-end QoS
at different levels. They do not specify how the enforcement is made but rather provide
enablers for policies to be defined. It is probably the most important element of the
Realtime ORB to specify these mechanisms for plugging in specific realtime policies.

Mechanisms are not useful if no policy is defined. The Realtime ORB architecture
defines important realtime policies which are commonly used or should be suitable for
many realtime applications.

The basic CORBA architecture is retained, but interfaces are added to allow realtime
developers control over the end-to-end predictability of the system by providing them
with a clear knowledge of the full path of method invocations.

The key elements of the realtime ORB are defined as follows:

-13 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

• ORB Resource Control
The Realtime CORBA architecture defines key elements and an API for controlling
resources used by the ORB. Resources include the following: threads, buffers and
memory, transport end-points, and request queues.
The ORB Resource Control interface is the API that realtime applications will use
to specify their end-to-end QoS requirements so that the ORB endsystem can
attempt to enforce these requirements. This API is defined in §8 “Control of
Resources” on page 20.

• ORB Flexibility Enablers
Realtime distributed applications are not limited to a single priority or QoS model.
They are not limited to a single failure model either. The specification of the QoS
itself depends on the policies used to guarantee it. Applications may use different
approaches to predictability (e.g., using Rate Monotonic theory or deadline-based
scheduler). Thus, ORB Resource Control alone is not sufficient because it does not
dictate the interaction between resources and a particular invocation under varying
conditions.

Componentized Object References and Interceptors are Realtime ORB Flexibility
Enablers that support an integrated yet flexible architecture which provides realtime
application developers the ability to influence or control ORB behavior to meet a
variety of realtime system environments.

This API is presented in §9 “ORB Flexibility Enablers” on page 42.

• ORB Synchronization Facilities
Synchronization objects are used in multi-threaded applications to serialize access
to data shared by several threads. Such objects are used by the ORB to protect
internal ORB data. Applications canalso use synchronization objectsto protect
their owndata. Synchronization objects are defined in §10 “Synchronization
Facilities” on page 59.

• ORB Pluggable Schedulers
The scheduler is an important element of realtime applications. A realtime ORB
cannot provide a single scheduler that will fit all realtime application needs. The
ability for the ORB to plug-in and correctly integrate a variety of application
schedulers is an important element of the architecture. Pluggable schedulers will
operate on the ORB resources and will use ORB Flexibility Enablers to control
method invocations. Since Fixed Priority Scheduling is one specific scheduler
which is required in a major category of realtime applications, it will be the first
ORB Pluggable Scheduler to be defined for Realtime CORBA. This scheduler is
presented in §11 “Fixed Priority Scheduling Service” on page 65.

• ORB Pluggable Protocols
A flexible mechanism for integrating new protocols in the realtime ORB is
necessary. Pluggable protocols operate at two levels: 1) the interaction level 2) the
transport level. The first level describes and controls the format of messages
exchanged by client and servers (e.g., GIOP, DCE-CIOP). The second level
represents the raw physical transport which is used to exchange those messages
(e.g., TCP/IP, SS7, ...).

orbos/98-01-08 Architecture Overview of a CORBA ORB for Realtime Applications -14

7.3 Schedulable Entities

An entity is schedulable when the resources or processing capabilities it provides must
be explicitly managed to meet the QoS needs of tasks sharing the ORB endsystem. The
Realtime ORB contains several entities which are schedulable. Basically, entities may be
scheduled at two levels:

• within the operating system

• within the ORB

The first level is refered to as the OS scheduler and the second level is refered to as the
ORB scheduler.

The following entities are schedulable:

• Threads
Threads execute application and ORB code. They may be suspended by the OS
scheduler. The OS scheduler assigns a processor to a thread and at a given time it
decides which thread is best to have a processor.

• Requests
Requests are an ORB schedulable entity. An ORB scheduler has the ability to
decide whether the request must be processed now or later. Basically, the ORB
scheduler can organize requests as they arrive according to their priority or
importance (see §8.3 “Request Queue and Flow Control” on page 31).

• Replies
Replies are an ORB schedulable entity. On the client side, a scheduling is necessary
when concurrent threads are waiting for replies on the same client-side end-point
(e.g., two threads waiting for a reply on the same TCP/IP connection). Deferred
synchronous replies also need to be scheduled.

• Messages
Messages are schedulable entities that are scheduled outside of the ORB, in most
cases in the operating system or its drivers. Messages may be scheduled to handle a
request or a reply produced by the ORB scheduler. The message can be scheduled
inside the transport driver. For example with ATM networks, a message can be
directed to one virtual circuit or to the other depending on its associated QoS
parameter.

• Transport End-Points
Transport end-points, for example TCP/IP socket connections, need to be
scheduled. Connections may be multiplexed or not (that is shared by several client
threads). Scheduling access to multiplexed and non-multiplexed connection end-
points has a big impact on priority inversion and non-determinism. Transport end-
points are scheduled by the ORB scheduler.

In the document, the term scheduler alone is commonly used to refer to the ORB
scheduler.

-15 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

7.4 End to End Predictability

End-to-end predictability can be studied globally at three levels: 1) on the client side; 2)
on the network; and 3) on the server side.

• First, on the client side, client QoS information must be passed to the server, and
the appropriate binding specified by the server must be used to perform the
invocation.

• Second, the network must support appropriate protocols that avoid message priority
inversions. Client QoS information is used as an input for configuring and using
such protocols.

• Finally, the server must establish appropriate bindings so that realtime requests can
be processed with no (or minimal bounded) priority inversion. This requires
integrating an appropriate use of transport resources, the appropriate setting of
server threads, a well configured request queue and last but not least a scheduler
that drives the dispatching and execution of requests.

Figure 2, “Client side configuration for end-to-end predictability,” on page 16 illustrates
a possible configuration on the client side to ensure end-to-end predictability. The client
defines several threads and assigns them appropriate QoS characteristics (e.g., priority).
Bindings are established that logically comprise, on the client side, stubs and
communication protocols (including at least a transport protocol that drives and interact
with the node I/O subsystem). The role of a stub is to transform an operation into a
request with QoS characteristics derived from that of the issuing thread, and to pass it to
the supporting protocols. When the request is passed to the supporting protocols, ORB
interceptor mechanisms can be activated to provide the ability for runtime scheduling to

orbos/98-01-08 Architecture Overview of a CORBA ORB for Realtime Applications -16

take place. The runtime scheduler can e.g., determine which transport connection to use
(depending on the binding configuration), based on the request’s QoS characteristics.
The transfer of the request is then performed by using the chosen connection.

Figure 2 Client side configuration for end-to-end predictability

RR

UU

NN

TT

II

MM

EE

 S S

CC

HH

EE

DD

UU

LL

EE

RR

ORBORB CORECORE

CLIENTCLIENT APPLICATIONAPPLICATION

STUBSTUB STUBSTUB STUBSTUB

II//OO SUBSYSTEMSUBSYSTEM

4:4: I I//O SUBSYSTEMO SUBSYSTEM

 DELIVERS THE DELIVERS THE

 REQUEST TO THE REQUEST TO THE

 SERVER SERVER

2:2: STUB PROXY STUB PROXY

 TRANSFORMS TRANSFORMS

 OPERATION OPERATION

 INTO REQUEST INTO REQUEST

3:3: RUN RUN--TIME SCHEDULERTIME SCHEDULER

 DETERMINES DETERMINES

 CONNECTION CONNECTION

 ACCORDING TO ACCORDING TO

 PRIORITY PRIORITY//RATERATE

1:1: OPERATION INVOKED OPERATION INVOKED

 ON STUB PROXY IN AN ON STUB PROXY IN AN

 APPLICATION THREAD APPLICATION THREAD

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

20 10 5 120 10 5 1

HZHZ HZHZ HZHZ HZHZ

CONNECTORCONNECTOR

-17 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Figure 3 Server side configuration for end-to-end predictability

Figure 3, “Server side configuration for end-to-end predictability,” on page 17 illustrates
a possible configuration on the server side to ensure end-to-end predictability. Four
transport end-points are shown. Each of them is associated with a separate set of threads
and a separate request queue. Each of the threads have different priorities so that a
priority distinction can be made on messages which arrive on the transport end-points.
More generally, the realtime ORB integrates several elements to guarantee the end-to-
end predictability on the server side:

• The Realtime Thread API provides the ability to allocate several threads (e.g., pool
of threads) and to dedicate them to a particular transport end-point. By doing so,
requests received on a given transport end-point are received by threads with
appropriate priorities.

• The Request Queue API provides a flexible management of requests received by the
server. Strategy for queuing requests and processing them is configurable. A flow
control mechanism can be implemented. Depending on the realtime policy of the
application, the flow control may be layer-to-layer within the ORB or end-to-end
across the network. In the first case, the flow control mechanism is local while in
the second case it is distributed.

• The Transport Management API allows fine-grained control of communication
resources. A realtime server is able to create several transport end-points in order to
differentiate client priorities within the transport media. This differentiation is

RR

UU

NN

TT

II

MM

EE

 S S

CC

HH

EE

DD

UU

LL

EE

RR II//OO SUBSYSTEMSUBSYSTEM

ORBORB CORECORE

SERVANTSERVANT DEMUXERDEMUXER

OBJECTOBJECT ADAPTERADAPTER

REACTORREACTOR

(20 (20 HZHZ))

REACTORREACTOR

(10 (10 HZHZ))

REACTORREACTOR

(5 (5 HZHZ))

REACTORREACTOR

(1 (1 HZHZ))

SERVANTSSERVANTS

SKELETONSKELETON

SERVANTSSERVANTS

SKELETONSKELETON
SERVANTSSERVANTS

SKELETONSKELETON

SOCKETSOCKET QUEUEQUEUE DEMUXERDEMUXER 1:1: I I//O SUBSYSTEMO SUBSYSTEM

 RECEIVES INCOMING RECEIVES INCOMING

 CLIENT REQUEST CLIENT REQUEST

2:2: RUN RUN--TIME SCHEDULERTIME SCHEDULER

 DETERMINES PRIORITY DETERMINES PRIORITY

 OF REQUEST OF REQUEST

3:3: REQUEST QUEUED REQUEST QUEUED

 AND DEQUEUED AND DEQUEUED

 ACCORDING TO ACCORDING TO

 PRIORITY PRIORITY//RATERATE

4:4: REQUEST DEQUEUED REQUEST DEQUEUED

 BY THREAD WITH BY THREAD WITH

 SUITABLE SUITABLE OSOS
 PRIORITY PRIORITY

5:5: REQUEST DISPATCHED REQUEST DISPATCHED

 TO SERVANT TO SERVANT

orbos/98-01-08 Architecture Overview of a CORBA ORB for Realtime Applications -18

necessary to reduce the message priority inversion which may occur on the
transport media. This is a key enabler for correctly supporting priority based
transport protocols such as ATM.

• The Buffer Management API controls the allocation of memory buffers used for
request and replies. Minimizing the amount of shared resources by threads in an
ORB is important to improve predictability and avoid priority inversion. The Buffer
Management API uses thread specific storage to avoid the use of locks for
protecting memory buffers.

• The Interceptors API provides inputs for transparently and flexibly introducing
specific elements of the Realtime ORB. The Realtime ORB activates the
interceptors at different levels so that specific realtime policies may be defined. As
an example, an interceptor may be defined to extract from the client request the
information about its QoS (e.g., the global priority that is defined in §11 “Fixed
Priority Scheduling Service” on page 65). Then, the interceptor can save this
information in a thread specific data so that this may later be retrieved by the
servant thread.

• The scheduler obtains its input from interceptors and the request. It uses the
Realtime Thread API to schedule threads. It uses the Request Queue API to
schedule requests that must be processed.

The example showed that the object adapter contained only one object map, shared by
the four transport end-points. The object map is used to record bindings made by the
application. With the use of the POA, two separate object adapters may be created and
each of them maintains its own object map. The server is able to associate a specific
transport end-point to a POA.

7.5 Asynchronous invocations

CORBA specifies oneway methods with asynchronous semantics. However, the
invocation of these methods offers no visibility at all concerning the final outcome of the
invocation. The reliability of the invocation delivery relies on the underlying transport
mechanism, but there is no way to check for proper invocation delivery.

Similarly, the underlying transport protocols might exhibit a behavior incompatible with
realtime when accessing sites that are stopped or crashed (TCP timeouts for example).

Since a specification for the CORBA Messaging Service has not yet been apdopted by
OMG, the final submission to the Realtime RFP will address Asynchronous Messaging
in more detail.

Current proposals in response to the CORBA Messaging Service RFP define a non-
procedural way to address asynchronous invocations, but it is a significant departure
from the CORBA programming model. It forces an un-natural programming model
which greatly exposes the underlying mechanisms.

What is required is a way to query asynchronous request status after it has been sent. To
address asynchronous client invocation needs, this submission adds a new keyword
async to CORBA IDL language. This keyword is treated only in the client side language

-19 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

mapping. Server side implementations will not be required to change since in the server
side programmers point of view, all invocations are treated identically regardless of their
invocation model characteristics.

Three models appear interesting:

• A polling model, where a handle could be passed by the client in the invoked
method and later be polled.

• Alternatively, a oneway (or asynchronous) method (currently returning void) could
return a handle to access the requests status.

• An upcall model, where a callback object/function is registered when sending the
invocation.

Thus, clients can perform either asynchronous or synchronous requests on the server. To
perform an asynchronous invocation, the client passes a response handler
(ResponseHandler, a client object that handles the response of the request) in addition to
the normal parameters needed by the request. The response handler encapsulates all of
the return values (including inout and out values) and its generated methods are
implemented by the programmer. The ResponseHandler will support both the polling and
future type (upcall) mechanisms.

The ResponseHandler is an interface defined in the CORBA module as given in the
following:

module CORBA {
...
interface ResponseHandler {

NVList get_response() raises(..);
NVList get_next_response() raises (..);
void wait();
void callback_invoked();

};
};

TheCORBA::ResponseHandler object is the base class for the IDL language
mapping generated response handler objects. It provides the asynchronous response
handling behavior that all response handler objects will inherit. The
CORBA::ResponseHandler object is a local object with the following non
exhaustive operations

NVList get_response and get_next_response;

The asynchronous request is blocked until the response comes (responses are
encapsulated in NVList return value). Each of the return, inout, out and exceptions will
be encapsulated in the NVList.

void wait

Will wait for the client callback (subclass of this object for upcall asynchronous response
handling).

void callback_invoked

orbos/98-01-08 Control of Resources -20

This function is called implicitly by the derived class when one of its callbacks is
invoked. This function internally keep track of the status of the responses.

The asynchronous invocation mechanism which is defined and mandated by the Realtime
ORB architecture is in line with the CORBA Messaging service requirements with some
simplifications to take care of footprint constraints.

8 Control of Resources

8.1 Overview

Realtime applications need the ability to control resources used by the ORB on both the
client side and the server side. The management of resources can be classified in two
main categories:

• Some resources are allocated statically or basically at initialization of the ORB
(e.g., threads, transport end-points, buffers). Once allocated, such resources will not
be freed until the end of the process in which they are allocated. When the ORB
uses static resources, there is no additional runtime overhead for allocation or
deallocation. Furthermore, it is not necessary to deal with resource exhaustion: they
are static and therefore they exist (unless the ORB initialization has failed).

• Other resources are allocated dynamically (e.g., request buffers, upcall parameters,
...). This means that the ORB will need to allocate those resources and also
deallocate them while the application performs ORB requests. Dynamic allocation
introduces two problems: 1) unpredictability, and 2) resource exhaustion. The first
problem is more or less solved by providing realtime APIs for resource allocation
and deallocation. The second problem is hard to solve and may result in
catastrophic behavior for the realtime application.

Pre-allocation of resources is an important step for end-to-end predictability. As much as
possible, the dynamic allocation of resources by the ORB should be avoided. First
because this reduces or avoids the unpredictability which is a consequence of resource
allocation. Second because this eliminates the resource exhaustion problem. Pre-
allocation of resources is a first step to enforce end-to-end predictability. To control this,
the realtime ORB defines the following resource APIs:

• Realtime Thread API

• Request Queue API

• Transport Management API

• Buffer Management API

The section “Control of Resources” focuses on the definition and the management of
these resources. Resource management APIs are generic enough to only define
mechanisms for controlling these resources. Some specific APIs are also defined for the
Realtime ORB to provide a minimal policy for managing resources. Specific realtime
policies for managing resources may also be defined by realtime applications (if that is
necessary). The use of these resources and their interactions with other components is
discussed later.

-21 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

8.2 Threads

Threads are used at two levels in a CORBA application. First, they are used by the ORB
to wait for incoming requests, do the dispatching and execute the servant code. Second,
they may be used by applications for their own needs. For the purpose of controlling
ORB resources, we are only interested in the first category, however the Realtime Thread
API will address both. The realtime application must be able to specify the
characteristics and the number of threads that the ORB will use for dispatching requests.
The Realtime Thread API is organized in four parts:

• Thread attributes define the characteristics of the thread and specify what can be
configured by realtime applications.

• A thread management API provides control of threads: including their creation and
deletion as well as changing their attributes at run-time.

• Thread specific data is a mechanism which allows applications to associate specific
data to a thread.

• Threads can be grouped in a thread pool concept to allow the control of ORB
runtime threads by realtime applications.

The Realtime Thread API is generic and in general does not specify policies for threads.
However, POSIX being a widely used standard, the API defines an interface for
controlling POSIX threads. Other thread policies like Win32 threads may easily be
defined.

8.2.1 Thread Attributes

8.2.1.1 Architectural Considerations
Thread attributes represent the characteristics of the thread. For example thread attributes
may be defined to control the priority of threads, their scheduling class and so on.
Attributes are defined as an interface so that the API is generic and can be extended for
specific thread implementations. The top-level interface is empty.

8.2.1.2 Specification

// IDL
module RT {

interface ThreadAttributes { // locality constrained
};

};

TheThreadAttributes interface represents the abstract thread attributes. Specific
thread attributes are defined by creating an interface that derives from this abstract
interface.

8.2.1.3 Locality Constraints
A ThreadAttributes object must be local to the process.

orbos/98-01-08 Control of Resources -22

8.2.2 POSIX Thread Attributes

8.2.2.1 Architectural Considerations
The POSIX 1003.1b standard being widely used, the realtime ORB defines, as a
minimum of specialization of the generic thread attributes, a set of thread attributes to
control POSIX threads.

8.2.2.2 Specification

module RT {
native StackAddr;
interface PosixThreadAttributes : ThreadAttributes {

// locality constrained
struct SchedParam {

long priority;
};
enum SchedulerType {

SCHED_OTHER,
SCHED_FIFO,
SCHED_RR

};

attribute SchedParam sched_attr;
attribute SchedulerType sched_policy;
attribute unsigned long stack_size;
attribute StackAddr stack_addr;

};
};

ThePosixThreadAttributes interface defines the most important parameters
present in POSIX.

• The stack_addr can be specified, and the type of this parameter is
implementation defined. The definition of the stack address is necessary for some
realtime applications.

• The sched_attr member represents the POSIX scheduling parameters.

• Thesched_policy member indicates the scheduling class. POSIX only mandates
the fifo and round robin policies. The fifo scheduling class is represented by the
SCHED_FIFO constant value and the round robin scheduling class is represented
by theSCHED_RR constant value.

• The stack_size member is used to configure the size of the stack.

8.2.2.3 Locality Constraints
A PosixThreadAttributes object must be local to the process.

-23 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

8.2.2.4 Example
The example below indicates how to create the POSIX thread attributes for creating a
thread which:

• uses the FIFO scheduling class,

• uses a priority of 61,

• has a 16Kb stack.

// C++
RT::PosixThreadAttributes posix_attributes;

posix_attributes.set_sched_policy(SCHED_FIFO);
posix_attributes.set_sched_attr(61);
posix_attributes.set_stack_size(16 * 1024);

8.2.3 Thread Management

8.2.3.1 Architectural Considerations
Applications need to create threads and control them. The Realtime Thread API is used
to:

• Create new threads with specific thread attributes

• Delete an existing thread

• Get or set the thread attributes

The ability to suspend and resume a thread is not proposed in the generic API because
this is non-portable and the semantic of such operations would be difficult to specify.
However, specific policies for managing threads may provide such operations.

orbos/98-01-08 Control of Resources -24

8.2.3.2 Specification

module RT {
interface Thread { // locality constrained

attribute ThreadAttributes attr;

void join(out long status);
void detach();

};
interface CurrentThread : Thread{ // locality constrained

void exit(in long status);
...

};
native ThreadParam;
interface ThreadHandler { // locality constrained

long run(in ThreadParam param);
};
interface ThreadFactory { // locality constrained

Thread create_thread(in ThreadAttributes attr,
in ThreadHandler entry,
in ThreadParam param);

CurrentThread get_current_thread();
...

};
};

TheThread interface defines the operations for controlling a thread created by the
ORB. The control is always local: the object reference cannot be transmitted in remote
invocations. A thread can change or obtain attributes from another thread but both
threads will belong to the same process.

Theattr attribute defines the current attributes of the thread. Depending on the thread
policies supported by the interface, the returned attributes will represent a more derived
type thanThreadAttributes .

Theattr attribute is also used to change some thread attributes. If some attributes cannot
be changed, theCORBA::NO_PERMISSION system exception is raised. If some
attributes have a wrong value, theCORBA::BAD_PARAM system exception is
raised. The attributes which can be changed while the thread is running depend on the
threading attributes. With thePosixThreadAttributes , only thesched_attr and
sched_policy attributes can be changed. Changing the stack size or the stack address
is not permitted. The validity of values specified in the thread attributes also depends on
the thread attributes specification.

The join operation waits for the termination of a thread. The caller is blocked until the
thread to join has terminated. Only one thread is able to wait for the termination of
another thread. The exit status of the thread is returned in the status parameter.

Thedetach operation detaches the thread. When a thread is detached, nojoin
operation is possible on it. Detaching a thread must be made if the thread is not subject
to be joined. By doing so, system resources are freed automatically upon termination of
the thread.

-25 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

TheCurrentThread interface represents the current thread. This interface also defines
other operations which are presented later in §8.2.4 “Thread Specific Storage” on page
25.

Theexit operation stops the current thread with a status. This exit status can be retrieved
by another thread by calling thejoin operation.

The object reference which identifies the current thread can be obtained by using the
RT::ThreadFactory::get_current_thread operation.

A ThreadFactory is the interface which allows the creation of new threads. The
thread execution flow (e.g., the method) is represented by theThreadHandler
interface: when a thread is created, it executes therun operation. Thread creation can
only be made locally, this is why the interface is defined with locality constraints. How
to obtain a ThreadFactory object reference is explained in §8.6 “Strategy Factory” on
page 40. Other operations are defined on theThreadFactory interface and are
presented in §8.2.4 “Thread Specific Storage” on page 25 and in §8.2.5 “Thread Pools”
on page 28.

Thecreate_thread operation creates a new thread and returns an object reference to
control it. The thread is created with the attributes which are passed in theattr
parameter. Once created, the thread will execute therun operation with the parameter
param on theThreadHandler object passed inentry . When the thread returns
from therun operation, it terminates and is deleted. The return value of therun
operation can be retrieved by another thread by calling thejoin operation.

8.2.3.3 Locality Constraints
A Thread, ThreadHandler andThreadFactory objects must be local to the
process.

8.2.4 Thread Specific Storage

8.2.4.1 Architectural Considerations
Thread specific storage is a very important mechanism for multi-threaded applications: it
allows the application to associate specific data to a particular thread. Thread specific
storage is used in the following situations:

• A typical usage is the use of specific data for storing the value of theerrno system
error code: each thread has its own knowledge of system errors.

• Thread specific storage improves the performance and simplifies multi-threaded
applications by reducing the overhead of acquiring and releasing locks: thread
specific storage does not need to be protected by locks. This is of a primarily
importance, specially for allocation of resources. For example, thread specific
storage can be used to associate a set of memory buffers to a particular thread. By
doing so, when the thread needs some memory it allocates it by using its thread
specific information. No lock is necessary, thus eliminating the possible priority
inversion of threads that can occur if thread specific storage is not used.

orbos/98-01-08 Control of Resources -26

The realtime threading API defines a thread specific data abstraction and specifies some
operations to manipulate this abstraction.

Thread specific storage is associated to a key. Keys are global to a process: they are
common to all threads. A thread can define several thread specific storage by associating
each of them a separate key.

8.2.4.2 Specification

module RT {
typedef unsigned long ThreadSpecificKey;
interface ThreadSpecific { // locality constrained

void destroy();
};
interface CurrentThread : Thread { // locality constrained

...
void set_thread_specific(in ThreadSpecificKey key,

in ThreadSpecific data);
ThreadSpecific get_thread_specific(in ThreadSpecificKey key);
void remove_thread_specific(in ThreadSpecificKey key);
boolean has_thread_specific(in ThreadSpecificKey key);

};
interface ThreadFactory { // locality constrained

...
ThreadSpecificKey create_thread_specific_key();
void destroy_thread_specific_key(in ThreadSpecificKey key);

};
};

TheThreadSpecific interface represents the thread specific storage abstraction.
Application thread specific storage must be defined as an interface which derives from
that interface. The derived interface holds the specific data.

Thedestroy operation is called by the ORB to delete the thread specific storage. This
operation is called when a thread exits and has thread specific storage. It is also called by
the ORB when the thread specific storage is removed.

Theset_thread_specific operation associates the thread specific storage to a
particular key. Once set, the thread keeps ownership of the thread specific storage.
Applications must not release the thread specific storage. The previous storage is
overridden if there was one. In that case, thedestroy operation is called on the
previous storage. TheCORBA::BAD_PARAM system exception is raised if the key
is not valid.

Theget_thread_specific operation retrieves the thread specific storage. The content
of the storage can be read and also modified. When it is modified, it is not necessary to
call set_thread_specific to update the thread specific storage. The caller must not
free the thread specific storage.

-27 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

The remove_thread_specific operation deletes the thread specific storage
associated to a particular key. Thedestroy operation is called by the ORB on the
calling thread specific storage. This is the only way for deleting explicitly the thread
specific storage object.

Thehas_thread_specific operation returns the boolean valueCORBA::TRUE if
the calling thread has a specific storage for a given key. No exception is raised by this
operation.

TheThreadFactory defines two operations for creating and deleting the thread
specific keys. Thecreate_thread_specific_key operation allocates a new thread
specific key. If no more keys can be allocated due to implementation limits, the
CORBA::IMPL_LIMIT system exception is raised.

Thedestroy_thread_specific_key operation deallocates the thread specific key.
If the key is not valid, theCORBA::BAD_PARAM system exception is raised. Due
to the error prone nature of this operation, an implementation may impose some
restrictions about this operation including refusing it by raising the
CORBA::NO_PERMISSION exception.

8.2.4.3 Locality Constraints
A ThreadSpecific object must be local to the process.

8.2.4.4 Example
The example below illustrates how an application can attach specific data to a thread and
retrieve the data later. First of all, a specific data is defined by inheriting from the
ThreadSpecific interface. The thread factory is used to create a new thread specific
storage key. The creation of the key is made only once, at initialization time. The thread
specific storage is allocated and attached to the thread.

// C++
class ThreadQoS : RT::ThreadSpecific {

public:
CORBA::ULong priority;

};

// C++, Initialization
RT::ThreadFactory_ptr thFactory = ...;
RT::ThreadSpecificKey qosKey =

thFactory->create_thread_specific();

// Set specific storage
RT::CurrentThread_ptr th = ...;

// Obtain the thread object reference
ThreadQoS* myQoS = ...;

// Create the specific storage
myQoS->priority = 23;
th->set_thread_specific(qosKey, myQoS);

orbos/98-01-08 Control of Resources -28

8.2.5 Thread Pools

8.2.5.1 Architectural Considerations
Threads may be grouped to represent a thread pool. The thread pool represents a set of
threads which have, more or less the same characteristics (e.g., scheduling class,
scheduling attributes, stack size,...) and are used to process invocations. Thread pools are
used by the realtime ORB for various purposes:

• First, they are used by the transport layer to wait for incoming requests. The ability
to control the number of threads as well as their attributes is a first step to guarantee
the end-to-end predictability of the ORB.

• Second, they are used by the object adapter to dispatch the request. Here, thread
pool characteristics allow control of the threads which will execute application code
in the servant.

• Finally, they are used on the client side to receive replies and process deferred
asynchronous replies.

The same thread pool may be used for both purposes: 1) to wait for incoming requests,
and 2) to dispatch them. This avoids unnecessary thread context switches.

A thread pool is characterized by the following information:

• the number of threads in the pool,

• the attributes of the threads belonging to the pool: stack size, scheduling
attributes,...

• a request queue which is attached to the pool (request queue management is
discussed later),

• a policy for managing threads of the pool.

The thread pool API is generic and does not mandate any thread pool policy. Specific
thread pool policies may be implemented by realtime applications if that is necessary.
However, as a minimal behavior, it creates several threads with the same characteristics
when a thread pool is created.

The Realtime Thread API is used to change thread attributes. Therefore, when a thread of
the pool is used to process invocations, it is able to change its attributes. It is the
responsibility of applications to restore the thread attributes, if this is necessary.

Figure 4, “Thread Pool Usage Example,” on page 29 illustrates a typical use of a thread
pool. First, the ORB defines threads to wait for incoming requests. These threads are
represented by the thread pool A. When an incoming request is received by one of these
threads the request is queued on the request queue associated to the thread pool A. The
realtime portable object adapter defines threads to process the requests. These threads are
represented by the thread pool B. This second thread pool is also associated to the
request queue. Threads of pool B extract from the request queue the requests that must
be processed. Requests are transfered from threads of pool A to threads of pool B. In this

-29 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

example the two thread pools introduce an extra thread context switch. Obviously, the
Realtime ORB allows to define other designs in which no extra thread context switch
will occur.

Figure 4 Thread Pool Usage Example

Se
rv

er

Object Map

Policies

Attributes

Attributes

Servant Servant Servant

ServantServant

Request Queue

Attributes

Transport EndPoint

Attributes

I/O Subsystem

Object reference

Servant pointer

Thread Pool A

Thread Pool B

O
R

B
 C

or
e

O
bj

ec
t

A
da

pt
er

POA/RT

orbos/98-01-08 Control of Resources -30

8.2.5.2 Specification

module RT {
interface RequestQueue;
interface ThreadPoolAttributes { // locality constrained

attribute ThreadAttributes thread_attributes;
attribute RequestQueue request_queue;
attribute unsigned long number_of_threads;

};
interface ThreadPool { // locality constrained

attribute ThreadPoolAttributes attr;

void destroy();
};
interface ThreadFactory { // locality constrained

...
ThreadPool create_thread_pool(in ThreadPoolAttributes attr);

};
};

TheThreadPoolAttributes interface defines the global attributes of the thread pool.
A specific implementation of a thread pool can provide new attributes by deriving from
this interface. The global attributes are the following:

• thread_attributes
This attribute specifies the characteristics of threads which are in the pool.

• request_queue
This attribute specifies the request queue which is attached to the thread pool.
Incoming requests received by threads of the pool are queued on this request queue.
Threads of the pool which process requests obtain requests from this request queue.
The RequestQueue interface is described in §8.3 “Request Queue and Flow
Control” on page 31.

• number_of_threads
This attribute indicates the current number of threads which are in the pool.

TheThreadPool interface defines the thread pool abstraction. Different thread pool
semantics may be defined: first by setting different thread pool attributes and second by
using different thread pool factories.

Theattr attribute defines the attributes of the thread pool. In particular, it indicates in
number_of_threads the actual number of threads that the pool contain. Depending
on the thread pool semantic, a more derived interface thanThreadPoolAttributes
may be returned.

Theattr attribute is also used to change the attributes of the thread pool. An
implementation may refuse to change the thread attributes of threads which already exist.

Thedestroy operation deletes the thread pool and the threads which are part of it.

-31 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Thecreate_thread_pool operation creates a new thread pool with some initial
characteristics. The factory object which is used determines the characteristics of the
thread pool. Thread pool attributes which are passed may depend on the specific thread
factory. The minimum semantic is to createnumber_of_threads threads with the
attributesthread_attributes . If not all the requested number of threads could be
created, the operation fails. This minimum semantic provides a static behavior for the
thread pool.

8.2.5.3 Locality Constraints
A ThreadPoolAttributes andThreadPool objects must be local to the process.

8.2.5.4 Example
The example below illustrates how to create a fixed size thread pool. First, thread
attributes are defined (see the example in §8.2.2 “POSIX Thread Attributes” on page 22).
Then, the thread pool attributes are defined to use the Posix thread attributes and it is
configured to have 4 threads. Thecreate_thread_pool operation is invoked on the
thread factory. The factory creates 4 threads with the specified Posix thread attributes. It
then returns the object reference for controlling and using the thread pool. Threads of the
pool are waiting for jobs to be executed.

// C++
RT::PosixThreadPoolAttributes posix_attributes;
// ... see §8.2.2 “POSIX Thread Attributes” on page 22
RT::ThreadPoolAttributes pool_attributes;
RT::ThreadPool_var thread_pool;

pool_attributes.set_thread_attributes(posix_attributes);
pool_attributes.set_number_of_threads(4);
thread_pool =

thFactory->create_thread_pool(pool_attributes);

8.3 Request Queue and Flow Control

8.3.1 Architectural Considerations

On the server side, the Realtime ORB receives client requests. To correctly process them
a request queue is necessary:

• Basically, queuing is necessary for the scheduler to organize requests. Requests may
be organized according to their priority (or QoS).

• Threads are scarce resources. In case of heavy load, it may be better to queue
requests instead of just creating new threads.

• The request queue is a first element for a flow control mechanism.

The request queue is used to control:

• the number of requests in the queue,

orbos/98-01-08 Control of Resources -32

• the organization of requests within the queue,

• the policy for keeping requests in the queue and for the flow control mechanism.

The request queue API is generic and does not define any particular policy. Specific
policies may be implemented. For example:

• Some control parameters could include: the number of requests, the maximum size
of request, the maximum time that a request can wait without being processed, the
request priority and so on.

• Strategies for enqueuing requests could be defined: FIFO and priority order, then
application-defined via a callback/interceptor API.

• A flow control can be introduced when the request queue is full, or when a request
is waiting for too much time or whatever. The client can be informed of the server
congestion and do whatever is appropriate (load balancing, wait+retry, abort, ...).

• The request queue can be attached to a thread pool so that when a thread is ready it
can obtain a request from the queue and process it.

8.3.2 Specification

module RT {
interface RequestQueueAttributes {

// locality constrained
};
interface RequestQueue { // locality constrained

attribute RequestQueueAttributes attr;

void put_request(in CORBA::ServerRequest req);
CORBA::ServerRequest get_request();
unsigned long pending_requests();
void destroy(in long mode);

};
interface RequestQueueFactory {

// locality constrained
RequestQueue create_request_queue(

in RequestQueueAttributes attr);
};

};

TheRequestQueue interface represents the top-level request queue and the
RequestQueueAttributes interface represents attributes for controlling the request
queue. No particular policy is defined in this request queue. This is why the
RequestQueueAttributes interface is empty. Specific policies may be provided by
creating interfaces which derive from these top-level interfaces.

Theattr attribute defines the characteristics of the request queue. Depending on the
request queue, a more derived interface thanRequestQueueAttributes may be
returned.

-33 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Theattr attribute is also used to change the attributes for controlling the request queue.
The semantics of the request queue attributes and whether they may be changed
dynamically depends on the policy of the request queue.

Theput_request operation inserts a new request in the request queue. The position of
the new request within the queue depends on the policy of the queue.

Theget_request operation extracts a request from the queue.

Thepending_requests operation returns the number of requests which are present
in the queue.

Thedestroy operation deletes the request queue. Specific policies may be implemented
for destrying the request queue, including refusing the operation by raising the
CORBA::NO_PERMISSION exception. The mode parameter specifies whether the
queue must be deleted abruptly or gracefuly.

TheRequestQueueFactory interface represents a factory for creating request
queues. Several factories may exist and may create request queues with specific policies.
How to obtain aRequestQueueFactory object reference is explained in §8.6
“Strategy Factory” on page 40.

Thecreate_request_queue operation creates a new request queue. The initial
characteristics of the request queue can be specified at creation time by passing
appropriate request queue attributes.

8.3.2.1 Locality Constraints
A RequestQueueAttributes , RequestQueue andRequestQueueFactory
objects must be local to the process.

8.4 Transport

Transport resources represent the resources which are managed by the transport layer of
the ORB. A realtime application may need to create several transport end-points. An
end-point is an object created and maintained by the transport layer. It is used by
applications for sending and receiving data. An end-point identifies the source or
destination of a message. The end-point has several characteristics:

• Localization attributes are used for physically sending or receiving data. With
TCP/IP, localization attributes consist of the Internet address and the TCP/IP port.
In most cases, localization attributes depend on the transport media.

• Threads which are waiting behind the end-point for messages.

• Other attributes and policies, like buffers, strategies for receiving or emitting
messages and so on.

The support of multiple transport end-points and the ability to control these end-points is
an important element of a realtime ORB. The Transport API is organized as follows:

• Transport attributes are identified. A generic representation is proposed and specific
representation for TCP/IP is also given.

orbos/98-01-08 Control of Resources -34

• The API for creating and managing transport end-points is defined

• A representation for transport connections is defined

8.4.1 Transport End-Point Management

The realtime ORB transport layer defines an API that allows the creation of new
transport end-points and is also used to control these transport end-points. The Transport
API gives an abstraction of the transport mechanism used by the ORB. This abstraction
is independent of any transport media. Among the transport control facilities that it
defines, the Transport API also increases considerably the portability of applications. The
Transport API is generic and is suitable for all kinds of transports. It allows designers to
specify some transport end-point parameters (e.g., the TCP/IP port number and so on).
Some protocol-specific examples follow:

• TCP/IP
With the TCP/IP transport layer, the creation of a new end-point will result in the
allocation of a TCP/IP port and the ability for the ORB to accept connections on
this port. The end-point may be associated with TCP/IP configuration parameters, in
which case these parameters will be used to configure the connection when it is
open.

The Transport API is used to:

• Create a new transport end-point

• Delete a transport end-point (abruptly or gracefully)

• Get or set some attributes related to the transport end-point

• Control the transport media by opening or closing the connection.

The Transport API also gives the ability to control the threads that the transport layer of
the ORB will use to receive and send messages. A transport end-point is associated with
a thread pool. The thread pool represents the threads that the transport layer uses for
receiving and sending messages. Therefore, applications can control the number of
threads as well as their characteristics.

Figure 5, “Transport End-Point Configuration Example,” on page 35 illustrates a possible
configuration of a transport end-point. A thread pool is created and associated with the
transport end-point. Threads of the pool are used by the transport layer of the ORB to
receive incoming requests. The realtime portable object adapter is also configured to use
the same thread pool. When a request is received by the transport layer of the ORB, the
realtime portable object adapter will dispatch the request. This configuration does not
create a thread context switch between the thread which receives the request and the
thread which processes it: the same thread is used.

-35 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Figure 5 Transport End-Point Configuration Example

Se
rv

er

Object Map

Policies

Attributes

Servant Servant Servant

ServantServant

Request Queue

Attributes

Transport EndPoint

Attributes

I/O Subsystem

Object reference

Servant pointer

POA/RT

Thread Pool

O
R

B
 C

or
e

O
bj

ec
t

A
da

pt
er

orbos/98-01-08 Control of Resources -36

8.4.2 Transport Attributes

8.4.2.1 Architectural Considerations
Transport attributes depend on the characteristics of the transport media. The API is
extensible so that it does not depend on the transport media. For this, transport attributes
are represented by an interface with locality constraints. This is used to integrate new
transports by providing new interfaces that derive from the top-level transport attributes.
One common attribute is:

• the thread pool which is associated to the end-point for receiving requests

8.4.2.2 Generic Specification

module RT {
interface TransportAttributes { // locality constrained

attribute ThreadPool thread_pool;
};

};

TheTransportAttributes interface defines the top-level transport attributes. This
only defines thethread_pool attribute which is used to specify the thread pool that
defines the threads to wait for incoming invocations. Any kind of transport attributes
must derive from this interface.

8.4.2.3 Locality Constraints
A TransportAttributes object must be local to the process.

8.4.3 TCP/IP Attributes

8.4.3.1 Architectural Considerations
TCP/IP is a commonly used transport mechanism. As a minimal policy for controlling a
transport, the TCP/IP attributes are defined. Most of the parameters which may be
controlled are those which are defined by the TCP/IP layer.

-37 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

8.4.3.2 Attributes Specification

module RT {
interface TcpTransportAttributes : TransportAttributes {

// locality constrained
attribute long tcp_send_size;
attribute long tcp_recv_size;
attribute boolean tcp_keep_alive;
attribute boolean tcp_dont_route;
attribute unsigned short tcp_port;
attribute unsigned long tcp_addr;

};
};

TheTcpTransportAttributes interface defines the attributes for configuring the
TCP/IP transport end-point. All the attributes excepttcp_port andtcp_addr can be
modified dynamically after the transport end-point is created. The TCP/IP attributes have
the following meaning:

• tcp_send_size
This attribute is used to control the size of the TCP/IP send buffers in the OS driver.
It corresponds to theSOL_SNDBUF socket option.

• tcp_recv_size
This attribute controls the size of the TCP/IP receive buffers in the OS driver. It
corresponds to theSOL_RECVBUF socket option.

• tcp_keep_alive
This attribute defines whether the TCP/IP stack must keep the connection alive by
sending messages. This corresponds to theSOL_KEEPALIVE socket option.

• tcp_dont_route
This attribute enables the routing bypass for outgoing messages. It corresponds to
the SOL_DONTROUTE socket option.

• tcp_port
This attribute defines the TCP/IP port number associated to the transport end-point.
This attribute can be set only before the creation of the transport end-point. If no
value is specified at the creation time, the TCP/IP transport will allocate one.

• tcp_addr
This attribute specifies the Internet address of the transport end-point. It can be set
only before the creation of the transport end-point.

8.4.4 Locality Constraints

A TcpTransportAttributes object must be local to the process.

orbos/98-01-08 Control of Resources -38

8.4.5 Transport End-Point API

The Transport Management API consists of two parts. First, the transport end-point is
controlled by theTransportEndPoint interface. Second, a given transport media
provides aTransportEndPointFactory interface for creation and deletion of end-
points. How to obtain aTransportEndPointFactory object reference is explained in
§8.6 “Strategy Factory” on page 40.

module RT {
interface TransportEndPoint { // locality constrained

attribute TransportAttributes attr;

boolean is_equal(in TransportEndPoint endPoint);
string type();
string to_url();
void from_url(in string id);
unsigned long hash(in unsigned long maximum);
void open(in TransportAttributes a);
void close();
void destroy(in long mode);

};
interface TransportEndPointFactory {

// locality constrained
TransportEndPoint create_end_point(

in TransportAttributes attr);
unsigned long number_of_end_points();
TransportEndPoint get_end_point(in unsigned long pos);

};
};

Theattr attribute defines the characteristics of the the transport end-point. The returned
interface is an interface that derives from theTransportAttributes interface.

Theattr attribute is also used to change the transport attributes. It can be used to specify
the thread pool which is attached to the transport end-point. The transport attributes
which are specified as parameter may be generic (TransportAttributes) or specific
to a transport media (e.g.,TcpTransportAttributes). The semantic of changing the
transport attributes is specific to the transport media. In any case, the transport media
should raiseCORBA::BAD_PARAM if some transport attributes have a wrong value
and it should raiseCORBA::NO_PERMISSION if some attributes cannot be
changed.

The is_equal operation is provided to compare two transport end-points and see
whether they are identical. If the two transport end-points are not of the same transport
media, they are not equal and the operation returnsCORBA::FALSE .

The type operation returns a string which identifies the transport type.

The to_url andfrom_url operations convert the transport end-point to a URL string
or a URL string to a transport end-point. The URL format is specific to the transport
media.

-39 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Thehash operation returns a hash number which corresponds to the transport end-
point. Together with theis_equal operation, it may be used to store the transport end-
points in a hash table and implement insertion and search primitives with a transport end-
point as the key.

Theopen operation is used by clients to open the connection explicitly. Attributes for
openning the connection are specified inattr .

Theclose operation is used by clients to explicitly close a connection.

Thedestroy operation destroys the transport end-point. The mode parameter controls
the destruction of the end-point. Some transport media may support an abrupt destruction
and also a graceful destruction.

Thecreate_end_point operation creates a new transport end-point. The transport
media that the new transport end-point uses depends on the
TransportEndPointFactory object reference onto which the operation is made.
Generic attributes or specific attributes can be passed at creation time. Specific attributes
may be used to configure the end-point during the creation.

Thenumber_of_end_points operation returns the number of transport end-point
which have been created for the given transport.

Theget_end_point operation returns a transport end-point. Together with
number_of_end_points , it can be used to iterate over all the transport end-points
which exist.

8.4.6 Locality Constraints

A TransportEndPoint andTransportEndPointFactory objects must be local
to the process.

8.4.7 Example

The example below shows how to create a new TCP/IP transport end-point and configure
it. First, the TCP/IP attributes are filled: the TCP/IP port is assigned the value 2002 and
the TCP/IP send buffers are configured for 64Kb. Once created, the new transport end-
point is identified by thetcpEndPoint object reference. After the transport end-point
creation, the end-point is configured directly by using its attribute.

orbos/98-01-08 Control of Resources -40

// C++
RT::Transport_var tcp = ...; // Obtain TCP/IP transport
object reference
RT::TransportEndPoint_ptr tcpEndPoint;
RT::TcpTransportAttributes tcpAttr;

// Create the TCP/IP end-point
tcpAttr.tcp_port = 2002;
tcpAttr.tcp_send_size = 64*1024;
tcp->create_end_point(attr, tcpEndPoint);

// Configure the end-point
RT::ThreadPool_ptr thPool = ...; // Obtain the thread pool
tcpAttr.thread_pool = thPool;
tcpEndPoint->attr(tcpAttr);

8.5 Buffers

The realtime ORB defines a Buffer API for controlling memory allocation. Pre-
allocation of memory is necessary for realtime application: the realtime ORB must
ensure that enough memory is available to process a request and it must not be blocked
to wait for the availability of memory.

Note – The first submission does not define an API for this. The submitters are
working on the subject and will propose a complete API for the second submission.

8.6 Strategy Factory

8.6.1 Architectural Considerations

Threads, requests and transport end-points represent important scheduling entities.
Specific policies for managing these entities may be defined. To obtain the different
scheduling entities that cooperate for a given scheduling policy, an interface is necessary.
Such an interface acts as the entry point for obtaining the different factories. This
interface, refered to as the realtime strategy factory interface, provides a uniform and
coherent view of the realtime policies provided by the different resource factories.

-41 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

8.6.2 Specification

module RT {
interface StrategyFactory {

ThreadFactory get_thread_factory();
TransportEndPointFactory get_transport_factory(in string name);
RequestQueueFactory get_request_queue_factory();
...

};
};

TheStrategyFactory interface represents the entry point to control ORB resources. It
is used to obtain the Realtime Thread Factory, the Transport End-Point Factory and the
Request Queue Factory. Depending on the realtime strategy object reference, the
different factories which are returned may implement specific policies. The realtime
strategy object reference is obtained by using the
ORB::resolve_initial_references operation with the name “RT_Strategy ”.

Theget_thread_factory operation returns the thread factory which allows creation
of threads and thread pools.

Theget_transport_factory operation returns the transport end-point factory for the
transport identified by name.

Theget_request_queue_factory operation returns the request queue factory
which allows creation of request queues.

8.6.3 Locality Constraints

A StrategyFactory object is local to the process.

8.6.4 Example

The example below shows how to obtain the realtime strategy object reference.

CORBA::Object_var obj;
RT::StrategyFactory_var strategy;

obj = orb->resolve_initial_references(“RT_Strategy”);
strategy = RT::Strategy::_narrow(obj);

The example below indicates how the thread factory can be obtained by using the
realtime strategy object.

RT::ThreadFactory_var thFactory;
thFactory = strategy->get_thread_factory();

orbos/98-01-08 ORB Flexibility Enablers -42

9 ORB Flexibility Enablers

The flexible enablers presented in this chapter are important key elements for a flexible
realtime ORB architecture. They allow an integration of specific realtime strategies such
as QoS support, priority inheritance and others. The flexible enablers are composed of
two parts:

• The first element is the ability for the ORB to let applications store arbitrary data in
an object reference. This key element allows multiple forms of binding to coexist in
the same ORB, and allows servers to store its realtime characteristics in the object
reference.

• The second element is the support of an interceptor mechanism to be able to change
or control the semantic of method invocation.

9.1 Componentized Object References

A componentized object reference is an object reference into which applications can
store arbitrary data. When the object reference is passed in method invocation, data that
was stored in it is also passed. The primary goal of storing data in the object reference is
to allow applications to support the following:

• The servant can store some information in the object reference and retrieve this
information when the client performs an invocation.

• Scalable compound objects can be defined easily by storing specific keys in the
object reference and retrieving the key in the servant when the application performs
an invocation.

• Characteristics of the server such as the protocols that it supports can be stored in
the object reference. On the client side, such information could be used to optimize
invocations by using the best protocol.

• If a server supports a specific protocol, information to establish the connection
and/or to use that specific protocol can be stored in the object reference.

• Information to manage replicated servers and/or to provide a fault tolerant
mechanism can be stored in the object reference and later can be fetched when
needed.

-43 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Figure 6 Object Reference Components

9.1.1 Architectural Considerations

Data which is inserted in the object reference is represented by a sequence of octets and
is associated with a tag number. Data components which are stored in the object
reference correspond to the IOP tagged profile structureIOP::TaggedComponent .
The semantic is different: it is assumed that these data components are not removed from
the IOR when it is passed to a bridge or another ORB.

The manipulation of data components can be made at three levels:

• IOR_PROFILE_LEVEL
The data component is inserted, extracted or removed from the profile level of the
IOR. The data component corresponds to a plain profile. According to GIOP
specification, it can be removed by bridges or ORBs.

• IIOP_PROFILE_LEVEL
The data component is inserted, extracted or removed from the
TAG_INTERNET_IOP profile. In that case, because the data component is part
of theProfileBody , it can not be removed.

• IIOP_KEY_LEVEL
The data component is inserted, extracted or removed in the key of the
TAG_INTERNET_IOP profile.

Note – The submitters are working on the interface and will update it for the second
submission.

iiop_version

host

port

object_key

components

tag

TAG_INTERNET_IOP

profile_data

ProfileBody 1.1

tag

component_data

Profiles Components

orbos/98-01-08 ORB Flexibility Enablers -44

9.1.2 Specification

TheCORBA::Object definition is extended by defining four new operations which
are used to access the data components.

#include <IOP.idl>
module CORBA {

typedef IOP::ComponentId ComponentId;
typedef sequence<octet> ComponentData;

const long IOR_PROFILE_LEVEL = 1;
const long IIOP_PROFILE_LEVEL = 2;
const long IIOP_KEY_LEVEL = 4;
const long EXCLUSIVE = 8;

interface Object { // locality constrained with special operation mapping
void set_component(in ComponentId id,

in long flags, in ComponentData d);
void get_component(in ComponentId id,

in long flags, out ComponentData d);
void remove_component(in ComponentId id, in long flags);
boolean has_component(in ComponentId id, in long flags);

};
};

For all these operations, the flags parameter indicates at which level the component must
be inserted. Flag values are defined as constants instead of enumeration type because
they may be or-ed together.

Theset_component operation inserts or replaces a component in the object
reference. If the flags parameter contains theEXCLUSIVE flag, the
CORBA::NO_PERMISSION system exception is raised if the component exists
already.

Theget_component operation retrieves a component given its identifier. The
operation raisesCORBA::BAD_PARAM if the component is not defined.

The remove_component operation removes a component given its identifier.

Thehas_component operation determines whether a component is present or not. It
returns theCORBA::TRUE value if it is present andCORBA::FALSE otherwise.
No system exception is raised.

9.2 Interceptors

Note – The submitters believe that the Interceptor facilty is of critical importance to
the realization of a Realtime CORBA standard. The current OMG definition of
interceptor facility is inadequate to serve these needs. The submitters are aware of
revision activities that are in progress in this area. This section contains the current

-45 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

thinking of the type of facilities that realtime needs in this area. The plan is to
rationalize and align this with existing interceptor facility as appropriate in the final
revised submission.

The realtime ORB must be flexible enough to allow modifications of or provide new
characteristics to a method invocation. For example, some realtime applications will need
to pass the priority of the client and use that priority in the server to implement the
priority inheritance. Other applications will pass more complete QoS information such as
time constraints, importance, dependencies and so on. The realtime ORB cannot
implement all the existing realtime strategies. Instead, an extensible API is defined to
increase the flexibility of the realtime ORB and to allow implementation of new
strategies. This API is defined in the form of interceptors.

An interceptor is an object that has several of its operations which are called by the ORB
at different levels of an invocation. Interceptor objects are provided by applications.
They may be seen as a kind of specialized callback mechanism. Interceptors are chained
together and their operations are executed sequentially.

9.2.1 Interceptor Categories

Several interceptor categories may be defined. The realtime ORB defines the following
categories:

• Client Interceptors
This category represents interceptors which are invoked by the ORB when a remote
invocation is made. The interceptor defines several operations which are called at
different steps of the method invocation. Client interceptors may be used to do some
monitoring or logging of method invocation as well as to transparently pass the
specific QoS information requested by the application.

• Server Interceptors
These interceptors are called by the ORB when a remote invocation is received and
must be processed. Several operations are defined to catch the processing of the
remote invocation. This kind of interceptor can be used to monitor the server
activity, to log the method invocations as well as to extract the QoS information
passed by the client interceptor.

• Portable Object Adapter Interceptors
These interceptors are called by the portable object adapter on the server side. They
give the ability to be notified when the server queries the POA to create a new
object reference. Such interceptors are used in cunjunction with the componentized
object reference API to automatically store information in the object reference (e.g.,
QoS information supported by the server, ...).

• Transport Interceptors
Transport interceptors are used by the transport layer of the ORB to notify the
realtime application about transport events.

• Thread Interceptors
This category represents interceptors which are called when the state of a thread is
changed.

orbos/98-01-08 ORB Flexibility Enablers -46

• Initialization Interceptors
Initialization Interceptors are called by the ORB when it initializes. They are
intended to simplify the integration and initialization of specific realtime policies.

• Message Interceptors
Message interceptors operate at the message level. They are used for encryption or
compression of messages.

Figure 7, “Client and Server Interceptors,” on page 46 illustrates the position of client
and server interceptors within the CORBA architecture. Basically, the client and server
interceptors are activated in the transition between the stubs/DII and the interaction
protocol and also in the transition between the interaction and transport protocols.

Figure 7 Client and Server Interceptors

9.2.2 General Rules

9.2.2.1 Architectural Considerations
Interceptors are objects provided by applications. Interceptors have several operations
that are called by the ORB at different levels of a method invocation. The application can
create several interceptor objects. In that case, interceptors of a given category are
chained together and executed sequentially.

We define several kinds of interceptor objects, each of them providing several
interceptor methods as stated above. The order of activation of these different methods is
pre-defined by the ORB. As an example, when a client issues an invocation, request level
interceptors are invoked before message interceptors on the way out. When the reply is
received the message interceptors are invoked before the request interceptor.

Transport

Interaction
Protocol

Interaction
Protocol

Se
rv

er
 I

nt
er

ce
pt

or
s

I/O Subsystem

C
lie

nt
 I

nt
er

ce
pt

or
s

Transport

OA

Skeleton/DSI

ORB CORE

Client Application Servants

Stubs/DII

-47 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

When several interceptors are created, the interceptor methods of a given level (same
method name of the same kind of interceptor object) are called sequentially. Therefore, it
is necessary to specify the order in which they will be invoked. For this, each interceptor
must be assigned a priority. This priority allows applications to define the order of
execution of interceptors: interceptors are inserted in the chain according to their priority.

It is necessary to define two order of calls for interceptor method. The operation made by
an interceptor on a message must be made at the same place in the state of the message.
For example, if an interceptor encrypts a message and a second interceptor compresses
the message, when the message is received we must first uncompress it and then decrypt
the uncompressed message. This is possible only if we provide interceptor with the
Forward andBackward semantics:

• Forward
Some interceptor methods are called in the interceptor highest priority order. This
means that the interceptor with the lowest priority has its method called last.

• Backward
Opposite, some interceptor methods are called in the interceptor lowest priority
order. The interceptor with the lowest priority has its method called first.

Interceptors follow the following rules:

• Creation
Interceptor objects are created by applications. Once created, they are not yet active.

• Deletion
Interceptor objects are released by applications.

• Activation and Deactivation
The application must activate the interceptor explicitly. The priority of the
interceptor object is specified when it is activated. Realtime ORBs may impose
constraints on when activation or deactivation can occur (e.g., only at initialization
time).

• Recursions
An interceptor method can call the ORB as well as perform an invocation (remote
or co-local). In those situations, and depending on what operation is made in the
interceptor method, it may happen that the interceptor is called again by the ORB.
It is the responsibility of applications to detect and break recursions if that is
necessary.

orbos/98-01-08 ORB Flexibility Enablers -48

9.2.2.2 Specification

module Interceptor {
enum Status {

INVOKE_CONTINUE,
INVOKE_ABORT,
INVOKE_RETRY

};
interface Root { // locality constrained

typedef unsigned long Priority;

readonly attribute Priority prio;

const Priority LowestPriority = 0; // Priority’First
const Priority HighestPriority = 0xffffffff;

// Priority’Last;

void activate(in Priority p);
void deactivate();
boolean is_active();

};
};

TheRoot interface defines the interceptor abstraction. All categories of interceptors
must derive from this interface to guarantee the general rules presented in previous
section. The interface defines operations to activate, deactivate or query the state of the
interceptor object. The priority of the interceptor object can be fetched by looking at the
prio attribute.

TheStatus enum type defines the possible return values of interceptor operations. An
enumeration is used to enforce the semantic of possible return values of interceptor
operations. The semantic of enumerated values is the following:

• INVOKE_CONTINUE
The invocation continues. If other interceptor objects exist in the chain, their
methods are executed.

• INVOKE_ABORT
The invocation is aborted. The call chain of interceptor objects is stopped. No other
interceptor method will be called.

• INVOKE_RETRY
The invocation is retried.

Theactivate operation activates the interceptor. When the interceptor is active, its
operations are called by the ORB. The priority parameter defines the priority of the
interceptor object. If the priority is equal to the constantLowestPriority , the
interceptor object has the lowest priority at the moment of activation. Opposite, if the
HighestPriority value is used, it has the highest priority at the moment of activation.

Thedeactivate operation deactivates the interceptor. Interceptor operations are not
called by the ORB.

-49 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

The is_active operation returns the state of the interceptor regardless of its activation.

9.2.2.3 Locality Constraints
A Root object must be local to the process.

9.2.3 Request Interceptors

9.2.3.1 Architectural Considerations
Request interceptors are invoked by the ORB when an invocation is made. A first request
interceptor is involved on the client side and a second request interceptor operates on the
server side. These two interceptors need to have enough information about the current
request. The following list of actions is the minimal set of possible actions that request
interceptors can do:

• Getting and setting the target object reference
Obtaining the target object reference is important to be able to extract information
from it. Changing the object reference is also an important need to be able to route
the request to another server transparently. This allows replication, fault tolerance
and other such mechanisms.

• Getting and setting the operation name
Obtaining the operation name is used by monitoring or logging tools.
Getting, setting and removing service context data
Passing service context data is an important requirement for interceptors. This is a
simple and extensible way for exchanging information transparently between client
and servers. Service context data is presented later.

• Observing, clearing and raising exceptions
Request interceptors have to deal with exceptions raised by the ORB at several
levels. Logging and monitoring tools need to observe the exception and replication.
Fault tolerant mechanisms need to analyze and hide the exceptions (in other words
clear or override it).

The set of actions that a Realtime ORB permits can be larger but must not be smaller
than the above list.

9.2.3.2 Specification
The Realtime ORB does not need a complete DII and DSI. In particular, operations to
access or set parameters and return values are not required. In order to avoid to have
light-weight implementations and also to avoid changing the existing DII/DSI interfaces,
the interceptor module defines two interfaces for representing the request on the client
and server sides.

orbos/98-01-08 ORB Flexibility Enablers -50

module Interceptor {
interface LWRootRequest { // locality constrained

attribute Object target;
attribute Identifier operation;
...

};
interface LWRequest : LWRootRequest { // locality constrained

readonly attribute CORBA::Request request;
};
interface LWServerRequest : LWRootRequest { // locality constrained

readonly attribute CORBA::Request request;
};

};

TheLWRootRequest interface represents a generic light-weight request. This interface
is only defined for the purpose of simplification for defining the operations which are
common to client and server requests. TheLWRequest interface represents the light-
weight request on the client side and theLWServerRequest interface represents the
light-weight request on the server side.

The request attribute gives access to the DII/DSI request object if the Realtime ORB
supports DII/DSI for interceptors. When DII/DSI is not available, accessing the attribute
will raise theCORBA::NO_IMPLEMENT exception.

The target attribute gives access to the object reference used by the client to perform
the invocation. The attribute can be queried and also set. Setting the attribute will
redirect the invocation to the new target object reference. The Realtime ORB may
impose restrictions on the places where the setting is made, regardless of the current state
of the invocation. For example, setting the target object reference when the invocation is
complete is useless and the Realtime ORB will raise theCORBA::NO_PERMISSION
exception.

Theoperation attribute indicates the name of the operation which is invoked by the
client.

9.2.3.3 Locality Constraints
TheLWRootRequest , LWRequest andLWServerRequest objects are local to the
process.

9.2.4 Service Context Data

9.2.4.1 Architectural Considerations
Client and server interceptors need to exchange data in a safe and transparent manner for
realtime applications. For example, a client interceptor can pass the QoS information
concerning the request, and the server interceptor can retrieve this QoS. IDL of
applications may not be involved in this process, that is the QoS does not need to be
specified at the IDL level. However, we do not preclude that this is the only way for QoS
to be passed. It can also be passed explicitly.

-51 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

The service context data represents arbitrary data which can be passed by client and
server interceptors in method invocations. It is possible to specify several sets of service
context data. Each set may be independent from the other and each may be uniquely
identified. Service context data is identified by a service identifier which is represented
by a number.

The IIOP protocol supports service context data in the request and reply messages. The
service context data is identified by a service identifier followed by the data which
appears as a sequence of octets. Figure 8 on page 51 illustrates the format of an IIOP
request message. It is composed of a generic message header followed by the IIOP
service context. The service context is a sequence of service context structures. Each
structure is composed of a tag number and a sequence of octets. The content of the
sequence of octets depends on the service. In the example, a priority number is stored in
one of the service context data fields.

Figure 8 Service Contexts in GIOP Requests

The service context data of IIOP satisfies completely the transparent exchange of data
between client and server. The interceptor defines only the operations for manipulating
these service context data. Operations are defined to:

• Put in the request or reply message a service context data

• Extract from the request or reply message a service context data

• Remove a service context data and check whether a service context data is present
or not.

Par
am

ete
rs

Req
ues

t H
ea

der

M
es

sa
ge

Hea
der

Ser
vic

e C
on

tex
t

co
ntex

t_
dat

a

co
ntex

t_
id

priority

...

orbos/98-01-08 ORB Flexibility Enablers -52

9.2.4.2 Specifications

module Interceptor {
typedef IOP::ServiceID ServiceID;
typedef sequence<octet> ContextData;
interface LWRootRequest { // locality constrained

...
void set_service_context(in ServiceID id,

 in long flags, in ContextData d);
ContextData get_service_context(in ServiceID id,

 in long flags);
void remove_service_context(in ServiceID id);
boolean has_service_context(in ServiceID id):
...

};
};

Operations to create, get or remove service context data are defined on the
Interceptor::LWRootRequest interface. They are available for both the client and
server light-weight request interfaces. The only way to create, get or remove service
context data is by using the light-weight request interfaces.

Theset_service_context operation inserts or changes the service context data
identified by a service id. If the flagEXCLUSIVE is defined and the service context
data is already present in the request object, theCORBA::NO_PERMISSION
system exception is raised.

Theget_service_context operation retrieves a service context data given its service
identifier. The operation raises the system exceptionCORBA::BAD_PARAM if the
service context is not present in the request.

Theremove_service_context operation removes the service context data given its
service identifier.

Thehas_service_context operation checks whether a service context data is
present. The operation returnsCORBA::TRUE if it is andCORBA::FALSE
otherwise. No system exception is raised.

9.2.5 Request Interceptor Context

9.2.5.1 Architectural Considerations
Client or server interceptors have several operations which are called by the ORB at
different steps of a method invocation (this is necessary because the request is in a
different state, regardless of its completion). In a given interceptor (client or server), the
different methods of the same interceptor may need to exchange information. For
example, an interceptor method may perform some actions and may need to save some
of the results so that when the ORB invokes another method of the same interceptor, the
results can be obtained. Request interceptor context objects are used for this. Within a

-53 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

client or server interceptor, they allow the interceptor to have a common data which is
specific to the interceptor and to the request. The common data serves as a placeholder
for interceptor methods to exchange information.

To use the mechanism, a client or server interceptor can create an interceptor context
object. Such object is specific to the invocation and it can be retrieved only by the
interceptor that created it, in any of its methods. The lifetime of the interceptor context
object ends when the invocation is finished.

Figure 9 Interceptor Contexts

Figure 9, “Interceptor Contexts,” on page 53 gives an example of two interceptor
methods which use an interceptor context object for sharing and storing specific request
information. The two methods are defined for the same client interceptor object. In the
example, the application invokes an operation on an object reference (i) denoting a
remote server. While processing the request on the client-side, the ORB invokes the
client interceptors. Theinitialize_request andbefore_unmarshal operations are two
client interceptor operations (as described later in §9.2.6 “Client Interceptor” on page
54). These two operations share data concerning the current request. This data is saved in
the interceptor context object.

initialize_request

before_unmarshal

Processing
Interceptor

processing
ORB

i->foo()

Processing

Application

Interceptor Context

orbos/98-01-08 ORB Flexibility Enablers -54

9.2.5.2 Specification

module Interceptor {
interface Context { // locality constrained

void destroy();
};
interface LWRootRequest { // locality constrained

void set_context(in Root interceptor, in Context ctx);
Context get_context(in Root interceptor);

};
};

TheContext interface defines the root of interceptor contexts. Specific interceptor
context objects must derive from this interface.

Thedestroy operation is called by the ORB when the current request is finished. This
allows application to free the memory correctly.

Theset_context operation attaches to the current request object and interceptor object
a specific interceptor context. The request object has ownership of the interceptor context
object. Applications must not delete it.

Theget_context operation retrieves from the current request the interceptor context
object which is associated with a particular interceptor.

9.2.5.3 Locality Constraints
A Context object is local to the process.

9.2.6 Client Interceptor

9.2.6.1 Architectural Considerations
The client interceptor has four interceptor methods. Interceptor methods are called at
different steps in the invocation process. Each method gets as argument the
Interceptor::LWRequest object which describes the current request. An
implementation may impose some restrictions about what operations or what treatement
can be made in a particular interceptor method.

Even though each method gets as argument the request object, it is not always possible to
modify the request object in all interceptor methods. There are several places where the
modification of the request description cannot be updated (easily) in the message. For
example, once the request header is marshaled, it becomes difficult to change the
operation name, the object reference, etc. The Realtime ORB architecture defines the
places where the request object can be changed.

The client interceptor is called at four levels:

• At initialization of the request.

• Before sending the request to the server

• After reception of the reply or detection of server failure by the ORB

-55 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

• When the request is finished

9.2.6.2 Specification

module Interceptor {
interface ClientInterceptor : Root {

// locality constrained
Status initialize_request(in LWRequest req,

in CORBA::Environment env);
Status after_marshal(in LWRequest req,

in CORBA::Environment env);
Status before_unmarshal(in LWRequest req,

in CORBA::Environment env);
Status finish_request(in LWRequest req,

in CORBA::Environment env);
};

};

TheClientInterceptor interface represents the client interceptor abstraction. All its
operations receive the request object which describes the client request and an
environment object which contains the exception (if one exception is raised). The
initialize_request andafter_marshal operations follow theForward call order and
the before_unmarshal and finish_request operations follow theBackward call order.

The initialize_request operation is called after the request object reference is
initialized and before creating the request header message in the interaction protocol. The
operation is invoked by the client thread which performs the invocation. The request
object provides the following minimal set of information:

• the target object reference onto which the invocation is made.

• the operation name which is invoked.

• the service contexts which are created by client interceptors.

In this operation, the interceptor is allowed at least to do the following:

• change the target object reference. Once changed, the invocation will be routed to
the new target object reference installed by the interceptor method.

• change the operation name.

• insert or remove service contexts from the request object reference.

• raise an exception to abort the invocation.

Theafter_marshal operation is called after the interaction protocol has built the
message and before the transport protocol is invoked. The operation is invoked by the
client thread which performs the invocation. A realtime ORB may forbid any
modification of the request, including change of target object reference, change of
operation name and change of service contexts. The interceptor method can raise an
exception to abort the invocation.

Thebefore_unmarshal operation is called after the reply is received or if a
communication failure is detected. For a synchronous operation, the operation is invoked
by the client thread which performs the invocation. For an asynchronous invocation, the
operation is invoked by a thread of the transport end-point thread pool.

orbos/98-01-08 ORB Flexibility Enablers -56

Thefinish_request operation is called when the invocation is finished successfully
or not.

9.2.6.3 Locality Constraints
A ClientInterceptor object must be local to the process.

9.2.7 Server Interceptor

9.2.7.1 Architectural Considerations
The server interceptor has four operations which are called at four levels:

• When a request is received

• When parameters are extracted and before calling the servant

• When the servant returns and before preparing the reply

• When the request is finished

9.2.7.2 Specification

module Interceptor {
interface ServerInterceptor : Root {

// locality constrained
Status initialize_request(in LWServerRequest req,

in CORBA::Environment env);
Status after_unmarshal(in LWServerRequest req,

in CORBA::Environment env);
Status before_marshal(in LWServerRequest req,

in CORBA::Environment env);
Status finish_request(in LWServerRequest req,

in CORBA;;Environment env);
};

};

TheServerInterceptor interface represents the server interceptor abstraction. All its
operations receive the request object which describes the request received by the ORB in
the req parameter. The environment object passed inenv contains the exception which
is eventually raised by either the ORB or the servant. Theinitialize_request and
after_unmarshal operations follow theForward call order and the before_unmarshal
and finish_request operations follow theBackward call order.

The initialize_request operation is called when a remote invocation is received by
the server. The operation is called by a thread of the transport end-point thread pool. The
request object provides the following minimal set of information:

• the target object reference onto which the invocation is made

• the operation name which is invoked

-57 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Theafter_unmarshal operation is called after the operation parameters have been
unmarshaled from the request buffer. The operation is called by the thread that will
execute the servant code.

Thebefore_marshal operation is called after the servant method has been called or if
an exception is raised and returned to the client. This is the only method which can be
used to insert service context data in the reply. The operation is called by the thread that
executes the servant code.

Thefinish_request operation is called after the invocation is finished; that is, after
the reply was sent to the client.

9.2.7.3 Locality Constraints
A ServerInterceptor object must be local to the process.

9.2.8 POA Interceptor

The POA Interceptor is called by the POA or Realtime POA when object references are
created. They are used to insert information in the object reference in a transparent
manner for applications.

Note – The submitters are working on the subject and will propose an interface in the
second revision. The next proposed submission will take into account the possible
revisions and adoptions of interceptors by OMG.

9.2.9 Transport Interceptor

Note – The submitters are working on the subject and will propose an interface in the
second revision. The next proposed submission will take into account the possible
revisions and adoptions of interceptors by OMG.

9.2.10 Thread Interceptor

The thread pool currently defined will never fit to every application needs. A thread
interceptor can inform the application when a thread starts to do some dispatching. It can
also inform when the thread has nothing to do. This can increase the flexibility of the
thread pool by being able to monitor the thread activities, create new threads, do some
garbage collection of threads.

Note – The submitters are working on the interface and will provide a complete
description in the second submission. The next proposed submission will take into
account the possible revisions and adoptions of interceptors by OMG.

orbos/98-01-08 ORB Flexibility Enablers -58

9.2.10.1 Locality Constraints
A ThreadInterceptor object must be local to the process.

9.2.11 Initialization Interceptor

9.2.11.1 Architectural Considerations
The introduction of specific realtime policies brings a non trivial challenge for their
initialization. First, it is not possible to use the ORB before it is initialized. Specific
realtime policies are therefore not allowed to instantiate their specific factories before
ORB initialization. Once the ORB is initialized, it is often too late: the ORB has already
settled some default behavior.

The role of the initialization interceptor is to simplify the integration of these specific
realtime policies by letting them be aware of when the ORB is initialized. Initialization
interceptors are activated when the ORB initialization operationCORBA::ORB_init is
called.

9.2.11.2 Specification

module Interceptor {
interface InitInterceptor : Root { // locality constrained

Status initialize(in CORBA::ORB orb,
in CORBA::ORB id,
inout CORBA::arg_list);

};
};

The InitInterceptor interface defines the initialization interceptor. This interceptor is
only invoked in the initialization phase of the ORB, on the client as well as on the server
side. Basically, the interceptor is triggered by invocations on theCORBA::ORB_ini t
operation.

The initialize operation is called by the ORB as soon as the ORB has been initialized.
The ORB object reference is passed in theorb parameter and the parameters that were
used to initialize the orb are passed in theid andarg_list parameters. Theinitialize
operation follows theForward call order.

9.2.11.3 Locality Constraints
An InitInterceptor object must be local to the process.

-59 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

9.2.12 Message Interceptors

Note – The submitters are working on the subject and will eventually propose an
interface in the second revision. The next proposed submission will take into account
the possible revisions and adoptions of interceptors by OMG.

10 Synchronization Facilities

10.1 Synchronization Objects

Synchronization objects are an important tool in multi-threaded applications. To increase
the portability of applications the Realtime ORB defines an API for the following
objects:

• Mutexes
These objects are used to protect critical section of codes.

• Semaphores
A semaphore is a non negative integer count and is generally used to coordinate
access to resources.

• Multiple readers/Single writer
Many threads can have simultaneous read-only access to data, while only one thread
can have write access at any given time. Multiple read access with single write
access is controlled by locks, which are generally used to protect data that is
frequently searched.

• Condition Variables
A condition variable enables threads to atomically block and test the condition
under the protection of a mutual exclusion lock (mutex) until the condition is
satisfied.

10.2 Mutexes

10.2.1 Architectural Considerations

Mutexes provide standard operations for enforcing mutual exclusion.

orbos/98-01-08 Synchronization Facilities -60

10.2.2 Specification

module RT {
interface Mutex { // locality constrained

void acquire();
void release();
boolean try_acquire();
void destroy();

};
};

TheMutex interface defines the operation for controlling and using a mutex. Policies
for queuing and awaking threads are not specified. This allows the use of several kinds
of mutexes with different policies. How a mutex object is created is explained in §10.6
“Synchronization Object Factory” on page 64.

Theacquire operation acquires the target mutex. If the mutex is free, it becomes
locked and the calling thread continues execution. Otherwise, the calling thread is
blocked until the mutex is released.

The release operation releases the target mutex. If threads are blocked on the mutex,
one of them is awakened.

The try_acquire operation attempts to acquire the mutex. It has the same effect as the
acquire operation and returnstrue if the mutex is free. Otherwise, the calling thread is
not blocked andfalse is returned.

Thedestroy operation destroys the mutex object.

10.2.3 Locality Constraints

A Mutex object is local to the process.

10.3 Semaphores

10.3.1 Architectural Considerations

Semaphores provide standard operations for controlling a semaphore counter.

-61 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

10.3.2 Specification

module RT {
interface Semaphore { // locality constrained

void acquire();
boolean try_acquire();
void acquire();
void destroy();

};
};

TheSemaphore interface defines the operation for controlling and using a
semaphore. Policies for queuing and awaking threads are not specified. This allows the
use of several kinds of semaphores with different policies. How a semaphore object is
created is explained in §10.6 “Synchronization Object Factory” on page 64. The initial
semaphore counter is specified at creation time.

Theacquire operation decrements the semaphore counter. If the counter reaches a
strictly negative value, the calling thread is blocked.

The try_acquire operation is identical to acquire except that it does not block. The
operation returnstrue if the semaphore counter was decremented successfully and
false if the counter is negative.

The release operation increments the semaphore counter. If the new value is negative
or zero, a thread that has been blocked behind the semaphore is awakened.

Thedestroy operation destroys the semaphore object.

10.3.3 Locality Constraints

A Semaphore object is local to the process.

10.4 Multiple Readers Single Writer Lock

10.4.1 Architectural Considerations

Multiple readers and single writer lock serialize access to resources whose contents are
searched more than they are changed.

orbos/98-01-08 Synchronization Facilities -62

10.4.2 Specification

module RT {
interface RWLock { // locality constrained

void acquire_write();
boolean try_acquire_write();
void acquire_read();
boolean try_acquire_read();
void release();
void destroy();

};
};

TheRWLock interface defines the operation for controlling and using a multiple
readers and single writer lock. Policies for queuing and awaking threads are not
specified. This allows the use of several kinds of such locks with different policies. How
a multiple readers and single writer lock object is created is explained in §10.6
“Synchronization Object Factory” on page 64.

Theacquire_write operation acquires the lock if it is not locked for writing and there
are no readers. If the lock is free, it becomes locked and the calling thread continues
execution. Otherwise, the calling thread is blocked until there are no readers and no
writers.

The try_acquire_write operation is identical toacquire_write except that it does
not block if the lock cannot be acquired. It returnstrue if the lock for writting is
acquired andfalse otherwise.

Theacquire_read operation acquires the lock if it is not locked for writing.
Otherwise, the calling thread is blocked until there are no writers.

The try_acquire_read operation is identical toacquire_read except that it does
not block if the lock cannot be acquired. It returnstrue if the lock for reading is
acquired andfalse otherwise.

The release operation releases the lock which was held by the thread. If threads are
blocked on the lock, either for writing or for reading, one of them is awakened.

Thedestroy operation destroys the lock object.

10.4.3 Locality Constraints

A RWLock object is local to the process.

-63 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

10.5 Condition Variable

10.5.1 Architectural Considerations

Condition variables provide standard operations for enforcing mutual exclusion, where
threads sleep instead of spinning when contention occurs.

10.5.2 Specification

module RT {
interface ConditionVariable { // locality constrained

boolean wait(in Mutex m, in long delay);
void signal();
void broadcast();
void destroy();

};
};

TheConditionVariable interface defines the operation for controlling and using a
condition variable. Policies for queuing and awaking threads are not specified. This
allows the use of several kinds of mutexes with different policies. How a condition
object is created is explained in §10.6 “Synchronization Object Factory” on page 64.

Thewait operation atomically unlocks the mutex and blocks the calling thread on the
target condition variable (for a maximum time of delay) until another thread calls
signal or broadcast . The operation returns the valuetrue if the condition variable
was signal’ed andfalse if the maximum blocking time has expired.

Thesignal operation unblocks a thread waiting on the target condition variable, which
thus becomes eligible to execute.

Thebroadcast operation unblocks all the threads waiting on the target condition
variable, which thus become eligible to execute.

Thedestroy operation destroys the condition object.

10.5.3 Locality Constraints

A ConditionVariable object is local to the process.

orbos/98-01-08 Synchronization Facilities -64

10.6 Synchronization Object Factory

10.6.1 Architectural Considerations

A factory for the creation of synchronization objects is defined. The factory is used to
create any kind of synchronization object: mutex, semaphore, multiple readers/single
writer lock and condition variable. The factory defines the policies for queuing threads as
well as for awaking threads.

The synchronization object factory defines policies for managing its locks. These
policies must be inline and coherent with other realtime policies that are defined for
threads, request queues and transport end-points. This is why the realtime strategy
interface is the interface which returns the synchronization object factory (see §8.6
“Strategy Factory” on page 40).

10.6.2 Specification

module RT {
interface SynchronizationFactory { // locality constrained

Mutex create_mutex();
Semaphore create_semaphore(in long count);
RWLock create_RWLock();
ConditionVariable create_condition();

};
interface StrategyFactory { // locality constrained

...
SynchronizationFactory get_synchronization_factory();

};
};

TheSynchronizationFactory interface defines the operations for creating
synchronization objects.

Thecreate_mutex operation creates a new mutex object.

Thecreate_semaphore operation creates a new semaphore object with a counter
value set tocount .

Thecreate_RWLock operation creates a new multiple readers/single writer lock
object.

Thecreate_condition operation creates a new condition object.

TheSynchronizationFactory object is obtained from the strategy factory presented in
§8.6 “Strategy Factory” on page 40. This allows the strategy factory to return a
synchronization factory which implements the policies which correspond to the realtime
application needs.

Theget_synchronization_factory operation returns the factory object for creating
synchronization objects.

-65 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

10.6.3 Locality Constraints

A SynchronizationFactory object is local to the process.

11 Fixed Priority Scheduling Service

Note – This section needs to be extensively reworked in the revised submission. While
specification is headed in the right direction, examples shown in this section appeared
to be not convincing enough to be usable.

This Section describes a new Scheduling Common Object Service to facilitate plugging
in various fixed-priority realtime scheduling policies across the realtime CORBA system.
The Scheduling Service uses the capabilities of the realtime ORB to facilitate
enforcement of a uniform scheduling policy. Various implementations of the Scheduling
Service may embody various scheduling policies. For instance, a Scheduling Service
from one vendor may provide a policy that allows hard realtime analysis, such as global
rate-monotonic scheduling with distributed priority ceiling resource management across
the Realtime CORBA system.

The Scheduling Service is independent of the underlying ORB. That is, it is possible to
implement the Scheduling Service without access to the internals of the ORB. However,
a Scheduling Service built on the realtime ORB specified in the previous sections makes
for better enforcement of end-to-end predictability.

Note that the Scheduling Service is not orthogonal to other capabilities in the realtime
ORB. For instance, the realtime ORB allows applications to establish thread priorities
and the Scheduling Service also sets thread priorities. The Scheduling Service is
designed so that application programmers do not have to use the ORB capabilities
directly. Instead, they can use the Scheduling Service to achieve a uniform scheduling
policy across the CORBA system. Application programmers can choose to use a
Scheduling Service or to set scheduling parameters using ORB primitives directly.

11.1 Global Priority Notion

The Scheduling Service is based on the notion of a global, uniform priority assignment to
threads. Global priority is a total ordering of those threads in the system that are assigned
a priority by the application programmer. Note that some threads may not be explicitly
assigned a priority in application code (e.g. servant threads that inherit the priority of the
client), but that eventually every thread will have a global priority. The programmer uses
the Scheduling Service to assign each client thread one or more fixed, unique global
priorities from 1 to N, with 1 being highest priority and N being lowest priority. A client
may have more than one priority when parts of its execution have tighter timing
constraints or higher importance than others. We anticipate that in most systems this
priority assignment will be done a priori, perhaps with use of an off-line scheduling tool.

orbos/98-01-08 Fixed Priority Scheduling Service -66

Note that global priority is a conceptual ordering of threads; global priority is not
necessarily the operating system priority, priority within the realtime ORB, nor other
implementation-level priority at which the thread will actually execute. The Scheduling
Service will map these global priorities to local priorities in the underlying system.

Also note that priority is not "importance". Importance is an application specification of
the relative value of the thread or request/reply to the system. Importance is often used to
determine the global priority ordering, but is not necessarily related.

Fixed priority scheduling entails, whenever possible, resolving scheduling conflicts by
allowing the highest global priority thread to use a resource on which the conflict occurs.

When, for some reason such as consistency of a shared resource, the RT CORBA system
does not resolve conflicts in priority order and causes a higher priority thread to wait for
a lower priority thread, "priority inversion" is said to occur. Analyzable realtime systems
require that priority inversion be bounded. This standard will provide interfaces that
allow implementations that bound priority inversion.

11.2 Portability and Fixed Priority Scheduling

Portability is a fundamental requirement in the OMG. What does portability mean with
respect to realtime? In the Scheduling Service model, the notion of global priority is
meant to be portable. That is, threads ordered by the Scheduling Service on one CORBA
system should have the same ordering (and the same ordinal global priority value)
resulting from a Scheduling Service on another CORBA system. For instance, a thread
with global priority 10 should be the 10th highest priority thread (there are threads with
priority 1-9 that have higher priority) on one CORBA system and remain that way if the
application is ported to another CORBA system.

However, the actual resulting schedule is not necessarily portable. That is, the order in
which threads are actually executed on one CORBA system will not necessarily be the
same on another CORBA system. Although all CORBA systems should seek to maintain
the global priority ordering, most will allow some priority inversion (hopefully with
good reason such as preserving the consistency of a shared resource). The amount and
instances of priority inversion will differ among CORBA systems and thus will yield
different schedules. This is important to note so that portable applications do not depend
on scheduling decisions made by the CORBA system.

This definition of portability which does not mandate exact schedules be portable also
allows for different Scheduling Service vendors to provide different scheduling
mechanisms that meet different criteria.

11.3 Scheduling Service

The basic notion of the Scheduling Service is that threads have a SchedEntity interface
associated with them to manipulate their priority and priority ceiling. The SchedEntity
instances also provide the ability to pass the scheduling information to other parts of the
CORBA system.

Here is the IDL For the Scheduling Service:

-67 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

module CosScheduling {
exception InvalidPriority {};
exception InvalidPC {};
exception PriorityNotSet {};
exception ExistingSchedEntity {};

typedef long Priority;

const Priority NoScheduling = 0;
const Priority NoCeiling = 0;

interface ClientSchedEntity : RT::Scheduler {
void set_priority(in Priority global_priority)

raises(InvalidPriority);

Priority get_priority()
raises (PriorityNotSet);

};

interface ServantSchedEntity : RT::Scheduler {
void set_priority(in Priority global_priority)

raises(InvalidPriority);

Priority get_priority()
raises(PriorityNotSet);

void set_priority_ceiling(in Priority priority_ceiling)
raises(InvaildPC);

Priority get_priority_ceiling();
raises(PriorityNotSet);

};

 interface SchedEntityFactory {
ClientSchedEntity create_client_sched_entity(

in Priority priority);
raises(InvalidPriority, ExistingSchedEntity);

ServantSchedEntity create_servant_sched_entity(
in Priority priority,
in Priority priority_ceiling);
raises(InvalidPriority, ExistingSchedEntity);

};
};

11.3.1 set_priority andget_priority

In both theClientSchedEntity andServantSchedEntity interfaces, the
set_priority method changes the global priority value of the schedulable entity to the
parameter global_priority, which must be a unique global priority from 1 to N. The

orbos/98-01-08 Fixed Priority Scheduling Service -68

scheduling service uses this value as the basis to perform implementation-specific setting
of local priorities, if any, on the local ORB, operating system, and network. For instance,
on realtime operating systems with a limited number of local priorities (e.g. 256 local
priorities), the Scheduling Serviceset_priority method may need to map a large
priority range to those local limited priorities. The details of this mapping are
proprietary to each implementation of a Scheduling Service.

A global_priority parameter value ofCosScheduling::NoScheduling indicates
that priority-based scheduling is not used and that the default scheduling policy of the
ORB, operating systems, and network is used.

An implementation raisesInvalidPriority if global_priority's value is negative. An
implementation may raiseInvalidPriority if the specified global priority is over the
maximum priority allowed by the CORBA system.

The methodget_priority returns the global priority to which the schedulable entity
has been set. If the global priority has not been set, then the method raises
PriorityNotSet .

11.3.2 set_priority_ceiling andget_priority_ceiling

In theServantSchedEntity interface, theset_priority_ceiling method causes
the servant to use a priority inheritance protocol to bound priority inversion and to
establish the priority of the servant while it executes on behalf of a client. The parameter
priority_ceiling is the priority ceiling under which the thread is to execute. A value of
CosScheduling::NoCeiling indicates that the servant will use the Basic Priority
Inheritance protocol and not a Priority Ceiling protocol.

Note that for proper realtime scheduling, applications that set a priority ceiling for a
schedulable entity must reset the ceiling using the
set_priority_ceiling(CosScheduling::NoCeiling) when the entity terminates.
The existence of a schedulable entity with a priority ceiling causes the Scheduling
Service to assume that the schedulable entity is active. If the entity has terminated, this
invalid assumption could cause other execution to be unnecessarily blocked. See the
example in §11.4 “Example and Intended Use of The Scheduling Service” on page 69 for
recommended usage of the Scheduling Service and in particular of resetting priority
ceilings.

Exactly which priority inheritance protocol is used will depend on the implementation of
the Scheduling Service. Many different priority inheritance protocols can be used with
this interface. We assume that a Scheduling Service implementation will provide one of
them. Recall that re-creating schedules is not a goal of realtime CORBA portability - this
allows the flexibility of having different Scheduling Services with different priority
inheritance approaches (including no priority inheritance).

An implementation raisesInvalidPC if priority_ceiling's value is negative. An
implementation may raiseInvalidPC if the specified priority_ceiling is over the
maximum priority allowed by the CORBA system.

-69 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

The methodget_priority_ceiling returns the global priority to which the
schedulable entity has been set. If the global priority has not been set, then the method
raisesPriorityNotSet .

11.3.3 Factory

TheSchedEntityFactory interface creates client and servant schedulable entity
instances. A SchedEntity should be created only once for a client, once for the servant
main program, and once for each servant method.

The client schedulable entity is initialized to the parameterpriority . Note that after such
an initialization, theset_priority method does not need to be called unless the client
wants to eventually change the priority. Clients with a single priority throughout their
execution will likely create aClientSchedEntity with the factory and not have to
invoke any of theClientSchedEntity methods.

The servant schedulable entity is initialized to the parameterpriority and to the
parameterpriority_ceiling . Note that theset_priority andset_priority_ceiling
methods do not need to be called unless the servant wants to eventually change either the
priority or ceiling. For most applications based on priority ceiling techniques, such a
change is not recommended (the priority and the ceiling should be set once at the
beginning of the servant execution) until the very end of execution. At the end of
execution these servants will want to set the priority ceiling to
CosScheduling::NoCeiling to indicate to the Scheduling Service that they are no
longer executing.

An implementation raisesInvalidPriority if specified priority value is negative. An
implementation may raiseInvalidPriority if the specified priority value is over the
maximum priority allowed by the CORBA system.

An implementation raisesInvalidPC if the specified priority_ceiling’s value is
negative. An implementation may raiseInvalidPC if the specified priority_ceiling
value is over the maximum priority allowed by the CORBA system.

An implementation raisesExistingSchedEntity if a SchedEntity entity already
exists for the client/servant method.

11.4 Example and Intended Use of The Scheduling Service

Here is the way that we expect clients and servant methods to look.

orbos/98-01-08 Fixed Priority Scheduling Service -70

Client

// C++
{

CosScheduling::SchedEntityFactory_var sched_factory =
...;

CosScheduling::ClientSchedEntity_var client_sched;

client_sched =
sched_factory->create_client_sched_entity(10);

servant = bind(...);

// some client code
servant->method(params, 10);
// rest of client code

}

Servant Main

// C++
{

CosScheduling::SchedEntityFactory_var sched_factory;
CosScheduling::ServantSchedEntity_var servant_sched;

servant_sched =
sched_factory->create_servant_sched_entity(14,

CosScheduling::NoCeiling);
main request loop:
// accept request
// create/attach a thread for request;
end request loop

}

Servant Method (params, client_prio) //params to method
// C++
// note that client priority is passed explicitly as parame-
ter client_prio
{

CosScheduling::ServantSchedEntity method_sched;

method_sched =
sched_factory->create_servant_sched_entity(

client_prio, 12);
 // method code

method_sched->set_priority_ceiling(
CosScheduling::NoCeiling);

}

-71 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

This example presumes that first, offline, a realtime scheduling analysis is done to
establish a fixed priority ordering of client threads, and portions of client threads, in the
entire CORBA system.

The sample client creates the schedulable entity instance and sets its global priority to 10.
The Scheduling Service will map this to one of the realtime operating system's local
priorities, and set a priority in the realtime ORB. The realtime ORB would then pass the
request to the servant (enforcing priority as it goes).

The servant main program has been set to execute at the highest priority of any client
that will access it (its priority ceiling, in this example is 14). We are assuming a high
performance realtime POA so that launching/attaching to a thread to perform the method
is a very fast operation as far as the servant's main request loop is concerned. This
assumption justifies keeping the servant's main loop at the high priority (its priority
ceiling) and not having it use a priority ceiling protocol. Strictly speaking, this is not a
perfect fixed-priority technique, but the resulting priority inversion can be accounted for
in adding the execution of the servant main loop and POA execution to the execution
time of each method thread when the thread's execution is analyzed.

Once in the method code, the method creates a schedulable entity instance using the
priority of the client, which is explicitly passed as a parameter to the servant method. It
also uses the servant method's priority ceiling (12). Note that in some priority ceiling
protocols, the priority ceiling of a method may be less than the priority ceiling of its
servant's main loop (in our example, 12 < 14). The Scheduling Service will then perform
a priority ceiling check and the factory call does not return until the priority ceiling check
is satisfied (essentially making the servant method invocation wait). When the factory
call does return, the servant method invocation is executing at the client's priority;
possibly at a higher priority if the scheduling service determines that priority inheritance
needs to occur. After executing the servant method code and completing, the servant
method callsset_priority_ceiling with CosScheduling::NoCeiling to
indicate that that the servant method is no longer active.

Note that use of a priority inheritance protocol is not necessary. In applications where the
servant is to run at some fixed priority, theset_priority method can be used in the
servants to set this priority without priority inheritance taking place.

12 Pluggable Protocols

Note – This section needs to be extensively reworked in the revised submission in
order to introduce more flexibility. A higher level API for protocol plug-ins is being
studied. The submitters will provide a complete interface for protocol plug-ins in the
second revision.

12.1 Motivation

To deploy CORBA technology as a central building block of a Distributed Processing
Environment in specific domains, the General Inter-ORB Protocol (GIOP) and the
Internet Inter-ORB Protocol (IIOP) are in many cases not sufficient. For example, in the

orbos/98-01-08 Pluggable Protocols -72

telecommunications domain the use of GIOP/IIOP instead of existing telecommunication
protocols would result in a loss of efficiency and reliability. Such a use would pay no
attention to proven networking technologies, like the reliable and efficient Signaling
System No. 7 (SS7).

At present it is difficult and sometimes impossible to add new protocols to existing
ORBs. In many cases a protocol implementor does not have access to the ORB’s internal
interfaces needed to add such new protocols. Moreover, even if an ORB implements
interfaces to add new protocols, these interfaces are proprietary, meaning that a protocol
plug-in can only be used with the particular ORB it was written for.

Defining common interfaces for such protocol plug-ins solves these problems. With
common interfaces a protocol plug-in can be written once and then be reused with every
ORB implementing these interfaces. This protects the often enormous investments for
developing domain-specific protocol plug-ins. This approach also makes it possible to
write protocol plug-ins for non-public, proprietary protocols, for example in domains
where protocol specifications cannot be made public for security reasons (e.g. banking or
military protocols).

12.2 The Open Communications Interface

The Open Communications Interface (OCI) defines common interfaces for pluggable
protocols. It consists of two major parts: The Message Transfer Interface and the Remote
Operation Interface.

The Message Transfer Interface supports connection-oriented, reliable protocols. TCP/IP
makes one possible candidate for a Message Transfer Interface plug-in. If the underlying
ORB uses GIOP, such a plug-in can implement the IIOP protocol. Other candidates are
SCCP (Signaling Connection Control Part, part of SS7) or SAAL (Signaling ATM
Adaptation Layer). Non-reliable or non-connection-oriented protocols can also be used if
the protocol plug-in itself takes care of reliability and connection management. For
example, UDP/IP can be used if the protocol plug-in provides for packet ordering and
packet repetition in case of a packet loss.

The Remote Operation Interface supports protocols that directly implement the concept
of remote procedure calls. Candidates for a Remote Operation Interface plug-in are
DCE-RPC and TCAP (Transaction Capabilities Application Part, part of SS7). GIOP
also falls into this category since GIOP basically implements remote procedure calls.

These two different levels of abstraction for protocol plug-ins allow the OCI to be used
for a wide range of protocols. On the one hand it’s easy to implement plug-ins for
connection-oriented, reliabe protocols. These plug-ins can be light-weight since the ORB
handles most of the protocol logic. On the other hand it is possible to make use of
existing remote procedure call mechanisms in domains where this is desirable.

It is also possible to combine a plug-in for the Remote Operation Interface with a plug-in
for the Message Transfer Interface, provided that the Remote Operation Interface plug-in
supports the Message Transfer Interface. For example, a GIOP Remote Operation
Interface plug-in supporting Message Transfer Interface plug-ins can be combined with a
TCP/IP Message Transfer Interface plug-in. Together these two plug-ins implement the
IIOP protocol.

-73 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

12.3 Compliance Points

Pluggable Protocols are a separate compliance point. This means that an ORB can be
compliant to the OCI without being compliant to the Realtime specification and vice
versa. OCI compliance is defined as follows:

• An ORB implementing only the OCI Message Transfer Interface is “OCI Message
Transfer Interface compliant”.

• An ORB implementing only the OCI Remote Operation Interface is “OCI Remote
Operation Interface compliant”.

• An ORB implementing both the OCI Remote Operation Interface and the OCI
Message Transfer Interface is “OCI compliant”.

Unless noted otherwise, no part of the Remote Operation Interface specification and
Message Transfer Interface specification is optional.

12.4 The Message Transfer Interface

12.4.1 General

12.4.1.1 Design Patterns
The Message Transfer Interface is based on the commonly used design patterns
Connector, Acceptor ([5]) and Reactor ([6]). These patterns already provide the basis for
most ORB implementations, so in many cases this allows ORB vendors to switch to the
Message Transfer Interface by simply “wrapping” existing code.

12.4.1.2 Exceptions
The Message Transfer Interface does not define any new exceptions. This would result in
a severe performance penalty since such exceptions would have to be caught by the ORB
and translated into standard CORBA system exceptions.

Instead, system exceptions (i.e. exceptions derived from SystemException) are used.
That is, all operations are allowed to throw system exceptions but no other exceptions. A
separate set of minor exceptions codes has to be defined for each protocol plug-in.

12.4.1.3 Thread Safety
Plug-ins for the Message Transfer Interface do not have to be thread safe. It’s the ORB‘s
responsibility to ensure a serialized access to the interfaces. This allows using plug-ins
for single-threaded and multi-threaded ORBs without performance loss.

orbos/98-01-08 Pluggable Protocols -74

12.4.1.4 Single-Threaded ORBs
The Message Transfer Interface supports single-threaded ORBs through the Reactor and
the callback interfaces. This is an optional part, however, since using a Reactor and
callback-based communication is not possible or inefficient in some environments. For
example, in Java it’s difficult to write Reactor classes since Java lacks system calls that
directly support waiting for multiple events within a single thread.

12.4.1.5 Object References
For the representation of Object References the Message Transfer Interface uses
Componentized object references described in §9.1 “Componentized Object References”
on page 42. Using the Componentized object reference API, specific protofols can
extract or insert their own profiles in the object reference.

12.4.1.6 Locality Constraints
All objects used by the Message Transfer Interface must be local to the process.

12.4.2 Interface Summary

12.4.2.1 Buffer
The Buffer interface can be viewed as an interface to an unbounded octet sequence with
operations to set and get the sequence’s length. However, the internal representation is
implementation dependent and does not necessarily have to use unbounded sequences.

Besides the length attribute a sequence provides a position counter, which determines
how many octets already have been read or sent.

12.4.2.2 Transport
The Transport interface is used to send and receive octet streams in the form of Buffer
objects. There are blocking and non-blocking send/receive operations available, as well
as operations that handle timeouts and detection of connection loss.

A Transport interface provides optional hooks for send and receive callbacks, which can
be used by single-threaded ORBs for non-blocking input/output.

12.4.2.3 Acceptor and Connector
Acceptors and Connectors work as Factories for Transport objects. A Connector is used
to connect clients to servers and an Acceptor is used by the server to accept incoming
client connection requests.

Acceptors and Connectors also provide for operations to manage protocol-specific object
reference profiles, like comparing profiles, adding profiles to an object reference or
extracting object keys from profiles.

Acceptors provide optional hooks for accept callbacks, which can be used by single-
threaded ORBs for non-blocking acceptance of connection requests.

-75 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

12.4.2.4 Connector Factory
A Connector Factory is used by clients to create Connectors. No special Acceptor
Factory is necessary, since an Acceptor is created just once at server startup then accepts
incoming connection requests until it is destroyed on server shutdown. Connectors,
however, need to be created by clients whenever a new object reference is received and
a new connection for this object reference has to be established.

12.4.2.5 The Registries
The ORB provides a Connector Factory Registry and the Object Adapter an Acceptor
Registry. These registries make it possible to plug in new protocols. Transport,
Connector, Connector Factory and Acceptor must be written by the protocol
implementors. The Connector Factory must then be registered with the ORB’s Connector
Factory Registry and the Acceptor must be registered with the Object Adapter’s
Acceptor Registry.

12.4.2.6 Reactor

Note – The Reactor interfaces are not defined yet. There are three ways how this can
be done:

1. Define a complete set of Reactor interfaces and data types in IDL, including an
event handler interface, operations for adding and removing event handlers, a system-
specific “handle” type and operations for dispatching events. An instance of the
Reactor is then provided by the ORB.

2. Don’t define Reactor interfaces but add an operation to the Transport, Connector and
Acceptor interfaces returning a system-specific “handle”. For example, for Unix
systems this handle can be a file descriptor.

3. Define only a minimal Reactor interface, which has operations for dispatching
events only. An instance of the Reactor is provided by the protocol plug-in and not by
the ORB. The protocol plug-in extends this Reactor interface internally by adding
operations for event handler management.

Approach 1 and 2 have the drawback that all protocol plug-ins are required to use the
same “handle” type, which is provided by the ORB’s Reactor. Approach 3 doesn’t
require such a “handle” type to be defined, but it is not possible to plug in two different
protocols using different Reactors.

12.4.3 Class Diagram

Figure 10, “Interface Diagram,” on page 76 shows the classes and interfaces of the
Message Transfer Interface. The ORB must provide abstract base classes for the
interfaces Connector Factory, Connector, Transport and Acceptor. The protocol plug-in
must inherit from these classes in order to provide concrete implementations for a
specific protocol. The ORB must also provide concrete classes for the interfaces Buffer,

orbos/98-01-08 Pluggable Protocols -76

Reactor, Connector Factory Registry and Acceptor Registry. An instance of the
Connector Factory Registry and the Acceptor Registry is provided by the ORB and OA,
respectively. Concrete implementations of the Connector Factory must be registered with
the ORB’s Connector Factory Registry and concrete implementations of the Acceptor
must be registered with the Acceptor Registry.

Figure 10 Interface Diagram

12.4.4 Specification

Connector
Factory

Connector Transport Acceptor

Protocol-Specific
Connector

Factory

Protocol-Specific
Connector

Protocol-Specific
Transport

Protocol-Specific
Acceptor

Connector
Factory
Registry

Acceptor
RegistryORB OA

-77 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

#pragma prefix “omg.org”

module OCI
{

typedef sequence<octet> ObjectKey;

interface Buffer { // locality constrainted
attribute unsigned long length;
attribute unsigned long pos;
void advance(in unsigned long delta);
unsigned long rest_length();
boolean is_full();

};

interface ReceiveCB { // locality constrainted
void receive_cb();

};

interface SendCB { // locality constrained
void send_cb();

};

interface Transport { // locality constrained
readonly attribute ProfileId tag;

void receive(in Buffer buf, in boolean block);
boolean receive_detect(in Buffer buf, in boolean block);
void receive_timeout(in Buffer buf, in unsigned long timeout);

void send(in Buffer buf, in boolean block);
boolean send_detect(in Buffer buf, in boolean block);
void send_timeout(in Buffer buf, in unsigned long timeout);

void set_receive_cb(in ReceiveCB cb);
void set_send_cb(in SendCB cb);

};

interface Connector { // locality constrained
readonly attribute ProfileId tag;

Transport connect();

boolean compare(in Object object);
ObjectKey extract_key(in Object object);

};

interface AcceptCB { // locality constrained
void accept_cb();

};

interface Acceptor { // locality constrained

orbos/98-01-08 Pluggable Protocols -78

readonly attribute ProfileId tag;

Transport accept();

void set_accept_cb(in AcceptCB cb);

void add_profile(in ObjectKey key, inout Object object);
boolean compare(in Object obj1, in Object obj2);

};

interface ConFactory { // locality constrained
readonly attribute ProfileId tag;

Connector create(in Object object);

boolean compare(in Object obj1, in Object obj2);
};

interface ConFactoryRegistry { // locality constrained
void add_factory(in ConFactory Factory);

boolean compare(in Object obj1, in Object obj2);
};

interface AccRegistry { // locality constrained
void add_acceptor(in Acceptor Acceptor);

void add_profiles(in ObjectKey key, in Object object);
boolean compare(in Object obj1, in Object obj2);

};

}; // end module OCI

module CORBA
{

interface ORB
{

// Other definitions

attribute OCI::ConFactoryRegistry registry;
};

interface BOA // Or POA
{

// Other definitions

attribute OCI::AccRegistry registry;
};

}; // end module CORBA

-79 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

12.4.4.1 OCI::Buffer
Buffer is an interface for an input/output buffer. An input/output buffer (or just
“buffer”) can be regarded as an object holding an unbounded sequence of octets. Note,
however, that using octet sequences for the implementation is only one of many
possibilities. It is not mandatory to use octet sequences internally. In addition to the
sequence of octets, a buffer contains a position counter of typeunsigned long which
determines how many octets have already been sent or received. The IDL interface
definition for buffer is incomplete and must be extended by the specific language
mappings. For example, the C++ mapping defines the following additional operations:

• Octet* data() : This operation returns a C++ pointer to the first element of
the array of octets, which represents the buffer's contents.

• Octet* rest() : Similar todata() this operation returns a C++ pointer,
but to the n-th element of the array of octets with n being the value of the position
counter.

The length attribute is used to set and get the buffer’s length, i.e. the total number of
octets the buffer can hold.

Thepos attribute is the position counter. Note that the buffer's length and the position
counter don't depend on each other. There are no restrictions on the values permitted for
the counter. This implies that it's even legal to set the counter to values beyond the
buffer's length.

advance adds a value to the position counter.

is_full checks whether the buffer is full. The buffer is considered full if its length is
equal to the position counter's value.

rest_length returns the length of the rest of the buffer. Therest_length is the length
minus the position counter's value. If the value of the position counter exceeds the
buffer's length, the return value is undefined.

12.4.4.2 OCI::Transport
Transport is an interface for a transport object. Transport objects provide operations
for sending and receiving octet streams. In addition, it is possible to register callbacks
with the transport object, which are invoked whenever data can be sent or received
without blocking.

The readonly attributetag returns the profile id tag for the specific protocol.

The receive andsend operations receive or send a buffer's contents. If theblock
parameter is set to TRUE, the operation blocks until the buffer has been fully received or
sent. Ifblock is set to FALSE, these operations are non-blocking.

receive_detect andsend_detect work like receive andsend , but they signal a
connection loss by returning FALSE instead of throwing a system exception.

orbos/98-01-08 Pluggable Protocols -80

The receive_timeout andsend_timeout operations work likereceive and
send , but it is possible to specify a time-out value (in milliseconds). On return the
caller can test whether there was a time-out by checking if the buffer has completely
been received or sent, respectively. A zero time-out value is equivalent to calling receive
or send with the block parameter set to FALSE.

set_receive_cb andset_send_cb are used to set callbacks, which are called
whenever it is possible to receive or send a buffer (partially or completely) without
blocking. Only one receive and one send callback can be set. Subsequent calls to these
operations overwrite the old settings. A nil argument removes the current send or receive
callback.

12.4.4.3 OCI::Connector
TheConnector interface is used by CORBA clients to initiate a connection to a
server. It also provides operations for the management of object references specific
profiles.

The readonly attributetag returns the profile id tag for the specific protocol.

Theconnect operation is used by CORBA clients to establish a connection to a
CORBA server. It returns a transport object, which can be used for sending and receiving
octet streams to and from the server.

compare checks whether an object reference contains at least one profile that matches
this Connector. Only the connection specific profile data is taken into account, not the
object key. This operation allows to reuse connections.

extract_key extracts an object key from a profile of the object reference matching this
Connector. If more than one profile matches, the particular key returned from these
profiles is implementation specific.

12.4.4.4 OCI::Acceptor
An Acceptor is used by CORBA servers to accept client connection requests. It also
provides operations for the management of specific profiles in the object reference.

The readonly attributetag returns the profile id tag for the specific protocol.

accept is used by CORBA servers to accept client connection requests. It returns a
transport object which can be used for sending and receiving octet streams to and from
the client.

Theadd_profile operation adds a new profile that reflects this Acceptor to an object
reference.

Thecompare operation checks two object references for equality. Two object
references are considered equal if at least one profile from the first object reference is
equal to at least a profile from the second object reference.

set_accept_cb is used to set a callback that is called if a connection request can be
accepted without blocking. Only one accept callback can be set. Subsequent calls to this
operation overwrite the old setting. A nil argument removes the current callback.

-81 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

12.4.4.5 OCI::ConFactory
TheConFactory interface serves as a Factory for Connector objects.

The readonly attributetag returns the profile id tag for the specific protocol.

create creates a new Connector. All connection specific data is taken from a profile of
the object reference that matches this Factory. If more than one profile matches, the
particular profile that is used is implementation specific. A nil object reference is
returned if the object reference does not contain a profile matching this Factory.

Thecompare operation checks two object references for equality. Two object
references are considered equal if at least one profile from the first object reference is
equal to at least one profile from the second object reference.

12.4.4.6 OCI::ConFactoryRegistry
A ConFactoryRegistry serves as a Registry for ConFactory objects. An instance of
a ConFactoryRegistry is provided by the ORB.

add_factory adds a Connector Factory to the Registry.

compare checks two object references for equality. It calls thecompare operation
of the registered Connector factories. If at least one of these calls returns TRUE, the
object references are considered equal and TRUE is returned. If none of the calls return
TRUE, the object references are considered different and FALSE is returned.

12.4.4.7 OCI::AccRegistry
An AccRegistry serves as a Registry for Acceptor objects. An instance of an
AccRegistry is provided by the ORB.

add_acceptor adds an Acceptor to the Registry.

add_profiles adds new profiles to an object reference. For each registered Acceptor a
new profile is added by calling the Acceptor'sadd_profile operation.

compare checks two object references for equality by calling thecompare operation
of the registered Connector factories. If at least one of these calls returns TRUE the
object references are considered equal and TRUE is returned. If none of the calls return
TRUE the IORs are considered different and FALSE is returned.

12.5 The Remote Operation Interface

Note – The submitters are working on the subject and they will propose a complete
interface for the second revision of the submission.

orbos/98-01-08 CORBA API -82

13 CORBA API

13.1 Object References and Transport End-Points

13.1.1 Architectural Considerations

The object reference contains various information that is used by the ORB to perform the
method invocation. One type of information concerns the transport end-pointend-point.
With a server supporting several transport end-points, at least two strategies exist. The
first strategy provides fixed object references with no choice for the client about the
transport end-point. The second strategy provides flexible object references and the
ability for the client to choose the transport end-point.

• In strategy 1, the object reference only contains one transport end-point. The client
which must perform an invocation has no choice for the transport end-point. This
strategy forces the server to specify the transport end-point that the client will use.
This strategy is useful to make sure that the client will not use a wrong transport
end-point (for example one with higher priority) and to ensure that object references
remain small entities. The drawback is probably an increased complexity of the
distributed application: it is the responsibility of the server or third party factory to
build an object reference which is suitable for the client.

• With strategy 2, the object reference contains several transport end-points. The
client chooses the transport end-point that it must use for an invocation. The choice
can be made according to various parameters (QoS, client priority,...).

The first strategy is probably nice to reduce the size of object references and also
increase the performance of invocations. However, this can lead to some problems if for
example client A passes the object reference to client B being more prioritized. In that
case, client B might invoke the server using a wrong transport end-point. In such a
situation, the second strategy gives the ability for client B to use the appropriate transport
end-point.

The architecture does not mandate either solution. The choice of strategy is left to the
realtime application.

A simple management of transport end-points can be made available on an object
reference. The idea is to allow a server (or a third-party-tool) to update or query an
existing object reference about the transport end-points that it knows. Here are examples
where this may be useful:

• On the server side when the server must return an object reference to a client. The
server has the ability to decide what transport end-points the client can use.

• In a third-party-tool dedicated to QoS negotiation, the negotiator can remove from
the object reference all the transport end-points except the one that results from
negotiation. By doing so, the client object reference remains small, the client is
forced to use the specified transport end-point and there is no overhead on the client
side to choose a suitable transport end-point (no choice).

-83 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

• The object reference contains several transport end-points. The client chooses the
transport end-point that it must use for an invocation. The choice can be made
according to various parameters (QoS, client priority, ...).

Note – The submitters are working on the subject to provide interfaces that give the
same semantics and functionalities as the proposed interface. However, being conscient
that theCORBA::Object interface is absolutely not the correct place for such
operations, they will propose new separate interfaces in the second revision of this
submission.

13.1.2 Specification

module CORBA {
interface Object { // locality constrained

void insert_transport_end_point(
in RT::TransportEndPoint endPoint,
in long pos);

void remove_transport_end_point(
in RT::TransportEndPoint endPoint);

void remove_transport_end_point_at(in long pos);
RT::TransportEndPoint get_transport_end_point(in long pos);
long number_of_transport_end_points();
void select_transport_end_point(

in RT::TransportEndPoint endPoint);
void select_transport_end_point_at(in long pos);

};
};

The insert_transport_end_point method allows insertion of a new transport end-
point. No verification about the validity of the transport end-point can be made. One
restriction that the ORB may provide is that this operation is only possible by the server
whichownsthe object reference. The operation verifies that the transport end-point is not
already present. The transport end-point is inserted at the position specified bypos
within the list.

The remove_transport_end_point method removes a transport end-point. The
transport end-point is searched within the list and then removed. The second form for
removing the transport end-point isremove_transport_end_point_at which
allows removal of a transport end-point at a given position within the list.

Theget_transport_end_point method returns a transport end-point given its
index. Together withnumber_of_transport_end_points it can be used to iterate
over the supported transport end-points.

Theselect_transport_end_point method allows to select, before an invocation,
the transport end-point which must be used. If the object reference contains only one
end-point, this is not useful. The selected transport end-point is passed as parameter of
the method. It must be present in the object reference. Any invocation with the object
reference will be made with the selected transport end-point. If the object reference is

orbos/98-01-08 CORBA API -84

passed to a method invocation, the selected transport end-point will remain. A second
form of selection is available with theselect_transport_end_point_at operation
which selects the transport end-point at a given position within the list.

13.1.3 GIOP Transport End-Points

The GIOP 1.1 protocol allows specification of several components in the IOR profile. It
is proposed to allocate one component for specifying a list of transport end-points.

13.2 Client Binding and QoS

13.2.1 Architectural Considerations

Note – The submitters are working on the client binding model and the QoS
specification. The complete description of the client binding model will be described in
the final submission.

In the same way that there is a server-side binding to tie an object to an OA, there is a
need for a client-side binding to perform client-side actions when exploiting an object
reference.

Classically, binding in computer systems denotes a set of actions or process for
associating or interconnecting different objects of a computing system. Binding implies
setting up an access path between two objects, which in turn typically comprises locating
the target of the access path, checking access rights, setting up appropriate data structures
in support of the access path to enable communication between objects following this
path.

Take an object which is accessible through two different protocols, one is a traditional
heavyweight WAN protocol (such as TCP/IP), the other a lightweight shared memory
protocol (such as LRPC). There is a need for a policy to choose between the two,
depending on where the client is. On the same machine, LRPC will be a good choice,
and TCP/IP elsewhere.

Elements such as QoS, or transport protocols can be chosen through such policies. We
will detail several policy examples later.

The policy can be a result of two different influences: that of the client, deciding which
policy he prefers, or that of someone else (likely the server side), that will encapsulate a
policy choice within the object references.

To lighten the burden placed on the programmer, these policy choices must be
encapsulated in well-defined components. We will call these components Binding
Policies. They are managed by a Binding Policy Manager. Their role is to prepare
invocations at binding time, following policies that are defined either by the servant or
by the client. The main result of a client binding operation can be to define the transport
end-point that will be used for invocations, but arbitrary side-effects can also be
performed.

-85 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

The CORBA Object References can contain several transport end-points, along with
additional components. Within these components is defined a Binding Policy component,
composed of a Binding Policy Identifier and associated Binding Policy Data (an opaque
container). The Policy Data is interpreted by the Binding Policy object itself in a specific
way.

The client can perform binding in two ways :

• requesting binding from the Binding Manager using either a default policy or the
policy specified by the server.

• requesting binding from a explicitly specified specialized Binding Policy with
specific arguments. The Binding Policy is free to dispatch the request to another
policy if required.

Anybody can define new binding policies, although it would be desirable to start with a
few basic types. We outline a few example policies:

• Closest: the closest (in communication time) target is selected.

• Verify : the targets are tested for validity and accessibility before being selected.

• QoS: a channel with the selected Qos is used.

• Encrypted: an encrypted protocol is used depending on where the client is. The
binding data contains a private key for encryption. Interceptors are used to encrypt
the invocation data.

• Interpreted : the Binding Data contains data that can be dynamically interpreted to
implement the binding policy.

The possibilities are endless and might be outside the scope of this proposal.

Typically, binding policies will be identified by Strings (as exemplified in the following
sections).

13.2.2 Specification

module ClientBinding {
interface Policy {

void bind(inout Object object);
};
interface Manager {

void bind(inout CORBA::Object object);
void add(in Policy policy);
void remove(in Policy policy);
Policy find(in String type);

};
interface Server {

CORBA::Object create (in String t, in PolicyData,
in RepositoryID id);

};
};

orbos/98-01-08 CORBA API -86

13.2.3 Locality Constraints

ThePolicy , Manager andServer objects are local to the process.

13.2.4 Example

The extract below gives an example of how the client can use the Binding Manager and
how it specifies its policy.

...
CORBA::ORB_ptr orb = CORBA::ORB_init (argv, orb_identifier);
CORBA::Object_ptr bMgr =

orb->resolve_inital_reference("BindingManager");
...
Binding::Manager_ptr bindingManager =

Binding::Manager::_narrow (bMgr);
CORBA::Object_ptr gRef = NS->resolve ("myService");

...// simple case using default or server-assigned policy

bindingManager->bind (gRef);
MyService mRef = MyService::_narrow (gRef);
mRef->foo();

...// elaborate case requesting Qos handling
Qos qos(...);
BindingPolicy pol = bindingManager->find ("QOS");
(BindingPolicyWithQOS)(pol).bind (gRef, qos);
MyService mRef = MyService::_narrow (gRef);
mRef->foo();

The extract below indicates how the server side uses the Binding Server.

...
CORBA::ORB_ptr orb =

CORBA::ORB_init (argv, orb_identifier);
CORBA::Object_ptr bServ =

orb->resolve_inital_reference("BindingServer");
Binding::Server_ptr bindingServer =

Binding::Server::_narrow (bServ);
…..
RepositoryID repID = ...;

-87 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

14 Realtime POA

The goal of this section is twofold:

• to extract from the POA specification [ORB Portability] the definitions appropriate
to realtime applications. There is a generally accepted statement that a simplified,
dedicated version of the POA specification is the right approach for a specific
CORBA profile.

• to extend the POA specification to fulfill realtime requirements introduced by this
proposal.

As a consequence of locality constraints to the POA specification, in this section the term
binding refers to the binding on the server side.

14.1 Applying POA Specification to the Realtime CORBA Profile

14.1.1 Architectural Considerations

Guaranteeing end-to-end predictability requires the POA to avoid calling external,
unpredictable events such as calling a servant locator for an incoming request.

The root POA is a distinguished CORBA object provided to the applications through the
initial list of object references. Existing OMG default policies that apply to the root POA
are discussed below with respect to realtime requirements:

• Request Processing Policy:USE_ACTIVE_OBJECT_MAP_ONLY

The POA maintains an Active Object Map for servants. Alternatives are:

- USE_DEFAULT_SERVANT . A default servant is invoked.

- USER_SERVANT_MANAGER . A servant manager is called to locate the
servant.

The latter policy requires an external service that cannot guarantee end-to-end
predictability. Although a default servant could be used, this proposal favors the
default policy.

• Servant Retention Policy: RETAIN

This policy is required when the Active Object Map is used. Alternative is
NON_RETAIN, which requires a default servant or a servant manager and so, is
not appropriate for the proposal.

• Implicit Activation Policy: NO_IMPLICIT_ACTIVATION

Applications must activate all servants explicitly using theactivate_object
operation. TheRETAIN andUSE_ACTIVE_OBJECT_MAP combination
requires aNO_IMPLICIT_ACTIVATION policy as described in [ORB
Portability §3.3.7.6.1].

• Thread Policy: ORB_CTRL_MODEL

orbos/98-01-08 Realtime POA -88

The ORB is responsible for assigning multiple threads to concurrent requests.
Alternative isSINGLE_THREAD_MODEL whose semantics will be part of the
extensions discussed in §14.2 “Extending the POA Specification” on page 90.

• Lifespan Policy: TRANSIENT

Servants registered in the POA cannot outlive the process in which they are first
created. Alternative isPERSISTENT. This latter policy cannot guarantee end-to-
end predictibility since there is no guarantee to associate an active and even an
existing POA to the servant invoked by an incoming request.

• Id Assignment Policy: SYSTEM_ID

The POA assigns Object Ids to servants. Alternative isUSER_ID: applications
assign Object Ids to servants. Only the former allows use of the Object Id as part of
a hash key for the Active Object Map, which is of prime interest for supporting
high-performance lookup algorithms.

• Object Id Uniqueness Policy: UNIQUE_ID

Exactly one Object Id is associated to one servant. Alternative isMULTIPLE_ID :
multiple Object Ids may be associated to one servant. This latter policy is of no
interest when Object Ids are assigned by the POA, as described above.

As a conclusion, only the default policies are of interest for a realtime CORBA profile.
Child POAs will be created using implicitly the same policies. There is no need to
support operations for creating alternative policies.

In a similar way:

• no POA Manager is required. The only operation that requires a reference to some
POA Manager iscreate_POA . This operation is not appropriate for the proposal
and is replaced by an operation creating a POA with an associated thread pool (see
§8.2.5 “Thread Pools” on page 28).

• no Servant Manager is required. There is no need for functionality to locate
servants.

• no Adapter Activator is required. As specified in [ORB Portability, §3.3.3], an
application server that creates all its needed POAs at the beginning of execution
does not need to use or to provide an adapter activator. Aternative is to create POAs
during request processing, which cannot guaranteee end-to-end-predictibility.

The following operations should create object references and are not supported:
create_reference , create_reference_with_id , servant_to_reference ,
id_to_reference . They do not allow to create reference associated with binding data.

14.1.2 Specification

The Realtime CORBA specification requires only operations relevant to the default
policies to be supported. The correspondingPortableServer module is defined in
§14.2 “Extending the POA Specification” on page 90. Definitions are briefly described
below. Full specifications are defined in [ORB Portability].

-89 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

14.1.2.1 The Servant IDL Type

native Servant;

Values of the typeServant are programming-language-specific implementations of
CORBA interfaces.

14.1.2.2 The ObjectId Type

typedef sequence<octet> ObjectId;

TheObjectId type is defined as an unbound sequence of octets.

14.1.2.3 POA Interface
• find_POA

POA find_POA (

in string name,

in boolean wait_for_completion);

This operation finds the POA object ofname argument from the root POA object.
FALSE is expected as second argument for the realtime CORBA profile. Support
for an adapter activator should be required otherwise.

• destroy

void destroy (

in boolean etherealize_objects,

in boolean wait_for_completion);

This operation destroys the POA and all descendant POAs.TRUE is required as
first parameter for theRETAIN policy. If TRUE is passed as second argument, the
destroy operation will return only after all requests in process have completed.

• the_name

readonly attribute string the_name;

This attribute identifies the POA.

• the_parent

readonly attribute POA the_parent;

This attribute identifies the parent of the POA.

• activate_object

ObjectId activate_object (in Servant p_servant);

orbos/98-01-08 Realtime POA -90

This operation registers theservant argument in the Active Object Map and returns
the associated Object Id.

• deactivate_object

void deactivate_object (in ObjectId oid);

This operation removes the servant associated with theObjectId argument from the
Active Object Map.

• servant_to_id

ObjectId servant_to_id (in Servant p_servant);

The Object Id associated with theservant argument is returned.

• reference_to_servant

Servant reference_to_servant (in Object reference);

This operation returns the servant associated with thereference argument in the
Active Object Map.

• reference_to_id

ObjectId reference_to_id (in Object reference);

This operation returns the Object Id value encapsulated by thereference argument.

• id_to_servant

Servant id_to_servant (in ObjectId oid);

This operation returns the active servant associated with theObjectId argument.

14.2 Extending the POA Specification

14.2.1 Architectural Considerations

In addition to the functionality described in the previous section, a realtime POA profile
must provide support for the POA to control thread management.

Extensions are designed using the following criteria:

• only one thread pool is associated with a POA. The thread pool and an invocation
control policy are specified when a POA is created. Policies may not be changed on
an existing POA. Policies are not inherited from the parent POA.

• binding data are specified to the POA when an object reference is created. Binding
data include a thread policy appropriate to the servant.

IDL specifications for these extensions are encapsulated in aRT module embedded in
thePortableServer module. Specifications are described in the next section and the
corresponding IDL is recapitulated in §A.2 “POA” on page 100. Note that the Realtime
Object Adapter is defined as theROA interface deriving from thePOA interface.

-91 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

14.2.2 Specification

14.2.2.1 Thread Pool Policy
Objects with theThreadPoolPolicy interface are obtained using the
ROA::create_thread_pool_policy operation and passed to the
ROA::create_POA_with_thread_pool operation to specify the threading pool
model used with the created POA. The value attribute ofThreadPoolPolicy contains
the value supplied to theROA::create_POA_with_thread_pool operation from
which it was obtained. The following values can be supplied:

• THREAD_POOL - A thread from the pool is used to process the request.

• THREAD_PER_REQUEST - A new thread is created to process the request.
The pool must have been configured with an unlimited maximum of threads.

The thread pool policy must be defined by the implementer of the pool in
accordance with the thread pool attributes as specified in §8.2.5 “Thread Pools” on
page 28.::RT::RequestQueue operations are responsible for defining the
behavior when no thread is available from the pool (see in §8.3 “Request Queue and
Flow Control” on page 31). For example, an exception may be raised, or the request
may be put in a queue.

14.2.2.2 Servant Policy
Values for the servant policy are obtained from theServantPolicyValue
enumeration and supplied to theROA::create_binding_data operation. The
following values can be supplied:

• THREAD_NONE - No new thread needs to be created on the reception of a
request. Invocation is expected to be short-time and the ORB does not need to
create a new thread.

• THREAD_SAFE - Only one thread can execute an operation on the invoked
servant. This model is particularly appropriate for mono-threaded servants used in
multithreaded environments. It is strictly equivalent to the
SINGLE_THREAD_MODEL thread policy as specified in [ORB Portability,
§3.3.7.1].

• THREAD_NOT_SAFE - Multiple threads can execute concurrently on a same
servant whatever the invoked operation is. There is no concurrency control
performed by the ORB.

14.2.2.3 Binding Data Interface

attribute servantPolicyValue servant_policy;

Objects with theBindingData interface are obtained using the
ROA::create_binding_data operation and passed to the
ROA::create_reference_with_data operation. The value attribute of
BindingData contains the servant policy value supplied to the
ROA::create_binding_data operation from which it was obtained.

orbos/98-01-08 Realtime POA -92

14.2.2.4 Creating a POA with a Thread Pool

ROA create_POA_with_thread_pool (
in string adapter_name,
in ::RT::ThreadPool pool,
in ThreadPoolPolicy policy)

raises (AdapterAlreadyExists, InvalidThreadPoolPolicy);

This operation creates a new POA of typeROA as a child of the target POA. The
specified name identifies the new POA with respect to other POAs with the same parent
POA. If the target POA already has a child POA with the specified name, the
AdapterAlreadyExists exception is raised. The::RT::ThreadPool parameter
defines the pool associated with the POA. TheThreadPoolPolicy parameter defines
the policy associated with the pool. If this policy is not one of the expected policies, the
InvalidThreadPoolPolicy exception is raised.

14.2.2.5 Policy Creation Operations

ThreadPoolPolicy create_thread_pool_policy (
in ThreadPoolPolicyValue value);

This operation returns a reference to a policy object with the specified value. The
application is responsible for calling the inherited destroy operation on the returned
reference when it is no longer needed.

14.2.2.6 Binding Data Creation Operation

BindingData create_binding_data (in ServantPolicyValue value);

This operation returns a reference to aBindingData object containing the specified
servant policy value. The application is responsible for calling the inherited destroy
operation on the returned reference when it is no longer needed.

14.2.2.7 Creating a Reference with (Binding) Data

Object create_reference_with_data (

in CORBA::RepositoryId intf,

in BindingData data);

This operation creates an object reference that encapsulates a POA-generated ObjectId
value and the specified binding data. This operation does not cause an activation to take
place. Theactivate_object operation must be called after the object creation and
prior to any request received by the ORB and applied to the servant referenced by the
object.

-93 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

14.2.3 IDL for Extensions to POA

module PortableServer
{

module RT
{

// Policy interfaces
enum ThreadPoolPolicyValue {

THREAD_POOL,
THREAD_PER_REQUEST

};
interface ThreadPoolPolicy
{

readonly attribute ThreadPoolPolicyValue value;
};

enum ServantPolicyValue {
THREAD_NONE,
THREAD_SAFE,
THREAD_NOT_SAFE

};

// Binding Data
interface BindingData {

attribute servantPolicyValue servant_policy;
};

// Realtime Object Adapter Interface
interface ROA : POA
{

// POA creation
ROA create_POA_with_thread_pool (

in string adapter_name,
in ::RT::ThreadPool pool,
in ThreadPoolPolicy policy);

// Factories for Policy objects and Binding Data
ThreadPoolPolicy create_thread_pool_policy (

in ThreadPoolPolicyValue value);
BindingData create_binding_data (

in ServantPolicyValue value);

// reference creation operation
Object create_reference_with_data (

in CORBA::RepositoryId intf,
in BindingData data);

};
};

};

orbos/98-01-08 Realtime POA -94

14.3 Usage Scenario

Applications get an object reference to the realtime root POA through the initial list of
references and the_narrow operation:

// C++
CORBA::ORB_ptr orb =
CORBA::ORB_init (argc, argv, orb_identifier);
CORBA::Object_ptr obj =
orb->resolve_initial_references (“RootPOA”);
PortableServer::RT::ROA_ptr rootPOA =
PortableServer::RT::ROA::_narrow (obj);
if (CORBA::is_nil (rootPOA) == CORBA::TRUE)
{

error (“not a realtime root POA”);
}

A nil object reference returns by the_narrow operation means that the POA registered
through the list of initial references was not of real typePortableServer::RT::ROA
as expected. This test allows an early check against a bad usage of the root POA.

Applications create a child POA as follows:

// C++
RT::ThreadFactory_ptr threadFactory = ...;
RT::ThreadPoolAttributes_ptr poolAttributes = ...;
RT::TheadPool_ptr pool =
threadFactory->create_thread_pool (poolAttributes);

PortableServer::RT::ThreadPoolPolicyValue poolPolicyValue =
...;
PortableServer::RT::ThreadPoolPolicy_ptr poolPolicy =
rootPOA->create_thread_policy_pool (poolPolicyValue);
PortableServer::RT::ROA_ptr rtPOA =
rootPOA->create_POA_with_thread_pool
(“rtPOA”, pool, poolPolicy);

Applications register servants with thertPOA as follows:

// C++
PortableServer_Servant servant =;
PortableServer::ObjectId oid =
rtPOA->activate_object (servant);

Applications get an object reference for this servant as follows:

-95 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

// C++
CORBA::RepositoryId intf = ...;
PortableServer::RT::ServantPolicyValue servantPolicyValue =
...;
PortableServer::RT::BindingData_ptr binding_data =
rootPOA->create_binding_data (servantPolicyValue);

CORBA::Object_ptr obj =
rtPOA->create_reference_with_data(intf, binding_data);

15 Example Scenario

This chapter presents some client/server scenario to illustrate the flexibility of the
realtime ORB architecture and to show how the realtime end-to-end predictability can be
guaranteed.

Note – The submitters will provide several examples in the second submission.

16 Relation with COS Specifications

The realtime CORBA RFP recommends addressing the following CORBA Comon
Object Services: Concurrency, Time, Transaction and Event Service. This chapter gives
a quick overview of the meaning and impact of realtime in CORBA services, and more
specifically those mentioned above.

16.1 The COS Specifications and realtime

The Design Principles document explicitly states that quality of service is a characteristic
of the implementation. This implies a number of things :

• CORBAservices don’t specify any constraint pertaining to the realtime behavior of
the service implementations. They don’t specify interfaces to give access to realtime
information either.

• The specification of the CORBAservices leaves to the implementation the
placement of the components implementing the services. The implementation can
thus be centralized, local or distributed, or even replicated. These design choices
can have a dramatic impact on the response time of the services. This problem is
inherent to the current service specification model.

• The service implementations could favor some operations against others depending
on their structure and design choices. This is typically the case when caching
requests. Nothing is provided to take advantage nor to detect this situation.

Because of all these points, the CORBAservices as specified cannot offer realtime
guarantees.

orbos/98-01-08 Relation with COS Specifications -96

To coexist in a realtime environment, CORBAservices should provide information about
their operational realtime characteristics, such as best execution time (i.e. cached),
typical execution time, worst execution time, dependencies with other services.

Additionally, the services should favor implementations offering quick response time and
possibly allow fixed-time service semantics (with abortion when time is expired).

16.2 Service Classification

There are many CORBAservices. We make a very synthetic classification in order to
outline a number of needs. The CORBAservices are not equally involved in the writing
of realtime applications. Some are mainly used during the application’s initialization
phase while others are used along the whole execution.

16.2.1 Services Used in Initialization

Services are not always uniformly used during application execution. A number of them
are mostly used during the application initialization phase. This doesn’t mean that these
services are unusable outside of this phase, but that they can affect adversely the realtime
behavior when they are used in sensitive situations.

The following services are considered important in the OMG architecture:

• Naming Service

• Trading Service

• Property Service

• Relationship Service

• Licensing Service

Each of those services have an impact on the initialization phase:

• Naming Service : there is no strong realtime requirement for the naming service if
one considers that it is only used in the initialization phase.

• Trader Service : this service might have a part to play as it can allow an application
in initialization phase to access references for implementations offering services
conforming to the realtime requirements.

• Property Service : during the initialization phase, this service might be used to
provide realtime information. By exporting a PropertyService interface, an
implementation might provide its operating realtime characteristics.

• Relationship Service : this service might be useful in finding out relationship
between services, for example to determine realtime properties at run-time.

• The Licensing Service : its impact should be marginal and specific to the
initialization phase.

-97 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

16.2.2 Run-Time Services

The following services are likely to have an impact on the execution phase of the
application.

• Time Service

• Concurrency Service

• Event Management Service

• Query Service

• Transaction Service

• Query Service

• Transaction Service

• Lifecycle Service

• Persistent Object Service

• Security Service

• Externalization Service

16.2.3 Independent Services

The CORBA design principles specify that services should be as orthogonal as possible.
Even though those services can cooperate, some of them are independent.

• Concurrency Control Service

• Time Service

• Event Management Service

• Security Service

• Property Service

• Query Service

16.3 Realtime Required Services

The following services are mandated by the RealTime RFP :

• Time Service : this service offers an interface with a timing resolution close to a
nanosecond. While most implementations will never come that far, the limits of the
clock’s resolution are largely outside of the CORBA domain. This service also
offers timers, however there is no mention of the system’s behavior when two
timers spring up at the same time, particularly when they run in activities with
different priorities.

orbos/98-01-08 Relation with COS Specifications -98

• Concurrency Service : this service might have an important impact on the realtime
behavior as standalone locks (outside of transactions) appear to be blocking,
without delays. However, the concurrency service is crucial to resource
management and could be used in implementing the MPCP realtime resource
scheduling protocol.

• Event Management Service : This service is involved whenever there is a
requirement for secure asynchronous calls, as the oneway mechanism provides no
guarantees nor information about the completion of a request. This requirement
appears in a large number of realtime systems, hence this service needs to provide
adequate support for realtime operation. However, this mechanism is both costly
and unnatural notably because of its non-procedural appearance. Deferred
synchronous calls as the base model for oneway invocations would provide a better
solution.

• Transaction Service : the semantics of transactions is somewhat unsuited to realtime
systems as it usually requires locking strategies involving several participants and
possible rollback to a previous state. However, the option of time-limited
transactions helps having a behavior compatible with some realtime requirements.

-99 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

Appendix A Consolidated IDL

A.1 CORBA Modules Extension

The CORBA module is extended to provide new operations:

#include “iop.idl”

module CORBA {
typedef IOP::ComponentId ComponentId;
typedef sequence<octet> ComponentData;

const long IOR_PROFILE_LEVEL = 1;
const long IIOP_PROFILE_LEVEL = 2;
const long IIOP_KEY_LEVEL = 4;
const long EXCLUSIVE = 8;

interface Object { // locality constrained with special operation mapping
void set_component(in ComponentId id,

in long flags, in ComponentData d);
void get_component(in ComponentId id,

in long flags, out ComponentData d);
void remove_component(in ComponentId id, in long flags);
boolean has_component(in ComponentId id, in long flags);

// The following operations are subject to be moved in
// another interfaces to avoid modification of CORBA Object
// and also dependencies to Realtime module.
void insert_transport_end_point(

in RT::TransportEndPoint endPoint,
in long pos);

void remove_transport_end_point(
in RT::TransportEndPoint endPoint);

void remove_transport_end_point_at(in long pos);
RT::TransportEndPoint get_transport_end_point(in long pos);
long number_of_transport_end_points();
void select_transport_end_point(

in RT::TransportEndPoint endPoint);
void select_transport_end_point_at(in long pos);

};
};

orbos/98-01-08 Relation with COS Specifications -100

A.2 POA

module PortableServer
{

module RT
{

// Policy interfaces
enum ThreadPoolPolicyValue {

THREAD_POOL,
THREAD_PER_REQUEST

};
interface ThreadPoolPolicy
{

readonly attribute ThreadPoolPolicyValue value;
};

enum ServantPolicyValue {
THREAD_NONE,
THREAD_SAFE,
THREAD_NOT_SAFE

};

// Binding Data
interface BindingData {

attribute servantPolicyValue servant_policy;
};

// Realtime Object Adapter Interface
interface ROA : POA
{

// POA creation
ROA create_POA_with_thread_pool (

in string adapter_name,
in ::RT::ThreadPool pool,
in ThreadPoolPolicy policy);

// Factories for Policy objects and Binding Data
ThreadPoolPolicy create_thread_pool_policy (

in ThreadPoolPolicyValue value);
BindingData create_binding_data (

in ServantPolicyValue value);

// reference creation operation
Object create_reference_with_data (

in CORBA::RepositoryId intf,
in BindingData data);

};
};

};

-101 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

A.3 Interceptor Module

#pragma prefix “omg.org”
module Interceptor {

enum Status {
INVOKE_CONTINUE,
INVOKE_ABORT,
INVOKE_RETRY

};

interface Root { // locality constrained
typedef unsigned long Priority;

readonly attribute Priority prio;

const Priority LowestPriority = 0; // Priority’First
const Priority HighestPriority = 0xffffffff;

// Priority’Last;

void activate(in Priority p);
void deactivate();
boolean is_active();

};

interface Context { // locality constrained
void destroy();

};

typedef IOP::ServiceID ServiceID;
typedef sequence<octet> ContextData;

interface LWRootRequest { // locality constrained
attribute Object target;
attribute Identifier operation;

void set_service_context(in ServiceID id,
 in long flags, in ContextData d);

ContextData get_service_context(in ServiceID id,
 in long flags);

void remove_service_context(in ServiceID id);
boolean has_service_context(in ServiceID id):

void set_context(in Root interceptor, in Context ctx);
Context get_context(in Root interceptor);

};

interface LWRequest : LWRootRequest { // locality constrained
readonly attribute CORBA::Request request;

};

orbos/98-01-08 Relation with COS Specifications -102

interface LWServerRequest : LWRootRequest { // locality constrained
readonly attribute CORBA::Request request;

};

interface ClientInterceptor : Root { // locality constrained
Status initialize_request(in LWRequest req,

in CORBA::Environment env);
Status after_marshal(in LWRequest req,

in CORBA::Environment env);
Status before_unmarshal(in LWRequest req,

in CORBA::Environment env);
Status finish_request(in LWRequest req,

in CORBA::Environment env);
};

interface ServerInterceptor : Root { // locality constrained
Status initialize_request(in LWServerRequest req,

in CORBA::Environment env);
Status after_unmarshal(in LWServerRequest req,

in CORBA::Environment env);
Status before_marshal(in LWServerRequest req,

in CORBA::Environment env);
Status finish_request(in LWServerRequest req,

in CORBA;;Environment env);
};

interface InitInterceptor : Root { // locality constrained
Status initialize(in CORBA::ORB orb,

in CORBA::ORB id,
inout CORBA::arg_list);

};
};

A.4 Realtime Modules

The following modules are new to the realtime ORB:

-103 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

// IDL
#include <corba.idl>
#pragma prefix “omg.org”

module RT {
// Realtime Thread API
interface ThreadAttributes { // locality constrained
};

typedef unsigned long ThreadSpecificKey;
interface ThreadSpecific { // locality constrained

void destroy();
};

interface Thread { // locality constrained
attribute ThreadAttributes attr;

void join(out long status);
void detach();

};
interface CurrentThread : Thread{ // locality constrained

void exit(in long status);

void set_thread_specific(in ThreadSpecificKey key,
in ThreadSpecific data);

ThreadSpecific get_thread_specific(in ThreadSpecificKey key);
void remove_thread_specific(in ThreadSpecificKey key);
boolean has_thread_specific(in ThreadSpecificKey key);

};
native ThreadParam;
interface ThreadHandler { // locality constrained

long run(in ThreadParam param);
};

// Thread Pools
interface ThreadPoolAttributes { // locality constrained

attribute ThreadAttributes thread_attributes;
attribute RequestQueue request_queue;
attribute unsigned long number_of_threads;

};
interface ThreadPool { // locality constrained

attribute ThreadPoolAttributes attr;

void destroy();
};
interface ThreadFactory { // locality constrained

Thread create_thread(in ThreadAttributes attr,
in ThreadHandler entry,
in ThreadParam param);

CurrentThread get_current_thread();
ThreadPool create_thread_pool(in ThreadPoolAttributes attr);

orbos/98-01-08 Relation with COS Specifications -104

};

// Request Queue API
interface RequestQueueAttributes { // locality constrained
};
interface RequestQueue { // locality constrained

attribute RequestQueueAttributes attr;

void put_request(in CORBA::ServerRequest req);
CORBA::ServerRequest get_request();
unsigned long pending_requests();
void destroy(in long mode);

};
interface RequestQueueFactory {

// locality constrained
RequestQueue create_request_queue(

in RequestQueueAttributes attr);
};

// Transport API
interface TransportAttributes { // locality constrained

attribute ThreadPool thread_pool;
};
interface TransportEndPoint { // locality constrained

attribute TransportAttributes attr;

boolean is_equal(in TransportEndPoint endPoint);
string type();
string to_url();
void from_url(in string id);
unsigned long hash(in unsigned long maximum);
void open(in TransportAttributes a);
void close();
void destroy(in long mode);

};
interface TransportEndPointFactory {

// locality constrained
TransportEndPoint create_end_point(

in TransportAttributes attr);
unsigned long number_of_end_points();
TransportEndPoint get_end_point(in unsigned long pos);

};

// Synchronization Facilities
interface Mutex { // locality constrained

void acquire();
void release();

-105 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

boolean try_acquire();
void destroy();

};
interface Semaphore { // locality constrained

void acquire();
boolean try_acquire();
void acquire();
void destroy();

};

interface RWLock { // locality constrained
void acquire_write();
boolean try_acquire_write();
void acquire_read();
boolean try_acquire_read();
void release();
void destroy();

};
interface ConditionVariable { // locality constrained

boolean wait(in Mutex m, in long delay);
void signal();
void broadcast();
void destroy();

};
interface SynchronizationFactory { // locality constrained

Mutex create_mutex();
Semaphore create_semaphore(in long count);
RWLock create_RWLock();
ConditionVariable create_condition();

};

// Entry point for factories
interface StrategyFactory {

ThreadFactory get_thread_factory();
TransportEndPointFactory get_transport_factory(in string name);
RequestQueueFactory get_request_queue_factory();
SynchronizationFactory get_synchronization_factory();

};

// Realtime Policies: POSIX and TCP/IP specifications
// POSIX Threads
native StackAddr;
interface PosixThreadAttributes : ThreadAttributes {

// locality constrained
struct SchedParam {

long priority;
};
enum SchedulerType {

SCHED_OTHER,
SCHED_FIFO,

orbos/98-01-08 Relation with COS Specifications -106

SCHED_RR
};

attribute SchedParam sched_attr;
attribute SchedulerType sched_policy;
attribute unsigned long stack_size;
attribute StackAddr stack_addr;

};

// TCP/IP Specific Attributes
interface TcpTransportAttributes : TransportAttributes {

// locality constrained
attribute long tcp_send_size;
attribute long tcp_recv_size;
attribute boolean tcp_keep_alive;
attribute boolean tcp_dont_route;
attribute unsigned short tcp_port;
attribute unsigned long tcp_addr;

};
};

A.5 Client Binding

#pragma prefix “omg.org”

module ClientBinding {
interface Policy {

void bind(inout Object object);
};
interface Manager {

void bind(inout CORBA::Object object);
void add(in Policy policy);
void remove(in Policy policy);
Policy find(in String type);

};
interface Server {

CORBA::Object create (in String t, in PolicyData, in RepositoryID id);
};

};

-107 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

A.6 Scheduling Service

#pragma prefix “omg.org”

module CosScheduling {
exception InvalidPriority {};
exception InvalidPC {};
exception PriorityNotSet {};
exception ExistingSchedEntity {};

typedef long Priority;

const Priority NoScheduling = 0;
const Priority NoCeiling = 0;

interface ClientSchedEntity {
void set_priority(in Priority global_priority)

raises(InvalidPriority);

Priority get_priority()
raises (PriorityNotSet);

};

interface ServantSchedEntity {
void set_priority(in Priority global_priority)

raises(InvalidPriority);

Priority get_priority()
raises(PriorityNotSet);

void set_priority_ceiling(in Priority priority_ceiling)
raises(InvaildPC);

Priority get_priority_ceiling();
raises(PriorityNotSet);

};

 interface SchedEntityFactory {
ClientSchedEntity create_client_sched_entity(

in Priority priority);
raises(InvalidPriority, ExistingSchedEntity);

ServantSchedEntity create_servant_sched_entity(
in Priority priority,
in Priority priority_ceiling);
raises(InvalidPriority, ExistingSchedEntity);

};
};

orbos/98-01-08 Relation with COS Specifications -108

A.7 Pluggable Protocol
#pragma prefix “omg.org”
module OCI
{

typedef sequence<octet> ObjectKey;

interface Buffer { // locality constrainted
attribute unsigned long length;
attribute unsigned long pos;
void advance(in unsigned long delta);
unsigned long rest_length();
boolean is_full();

};

interface ReceiveCB { // locality constrainted
void receive_cb();

};

interface SendCB { // locality constrained
void send_cb();

};

interface Transport { // locality constrained
readonly attribute ProfileId tag;

void receive(in Buffer buf, in boolean block);
boolean receive_detect(in Buffer buf, in boolean block);
void receive_timeout(in Buffer buf, in unsigned long timeout);

void send(in Buffer buf, in boolean block);
boolean send_detect(in Buffer buf, in boolean block);
void send_timeout(in Buffer buf, in unsigned long timeout);

void set_receive_cb(in ReceiveCB cb);
void set_send_cb(in SendCB cb);

};

interface Connector { // locality constrained
readonly attribute ProfileId tag;

Transport connect();

boolean compare(in Object object);
ObjectKey extract_key(in Object object);

};

interface AcceptCB { // locality constrained
void accept_cb();

};

-109 Realtime CORBA Initial Submission orbos/98-01-08 January 1998

interface Acceptor { // locality constrained
readonly attribute ProfileId tag;

Transport accept();

void set_accept_cb(in AcceptCB cb);

void add_profile(in ObjectKey key, inout Object object);
boolean compare(in Object obj1, in Object obj2);

};

interface ConFactory { // locality constrained
readonly attribute ProfileId tag;

Connector create(in Object object);

boolean compare(in Object obj1, in Object obj2);
};

interface ConFactoryRegistry { // locality constrained
void add_factory(in ConFactory Factory);

boolean compare(in Object obj1, in Object obj2);
};

interface AccRegistry { // locality constrained
void add_acceptor(in Acceptor Acceptor);

void add_profiles(in ObjectKey key, in Object object);
boolean compare(in Object obj1, in Object obj2);

};

}; // end module OCI

