
Design and Performance Evaluation of Resource-Management Framework for

End-to-End Adaptation of Distributed Real-time Embedded Systems

Nishanth Shankaran†, Douglas C. Schmidt†, Xenofon D. Koutsoukos†,

Yingming Chen‡, and Chenyang Lu‡

†Dept. of EECS ‡Dept. of Computer Science and Engineering,

Vanderbilt University, Nashville, TN Washington University, St. Louis

Abstract

Standards-based quality of service (QoS)-enabled component middleware is increasingly being used as a platform for

developing distributed real-time embedded (DRE) systems. Although QoS-enabled component middleware offers many de-

sirable features, until recently it lacked the ability to monitor utilization of system resources, efficiently allocate resources to

application components, and ensure application QoS requirements are met. Moreover, it has also lacked the ability to handle

fluctuations in availability of resource resources and application workload.

This paper presents two contributions to research on adaptive resource management for component-based DRE systems.

First, we describe the structure and functionality of the Resource Allocation and Control Engine (RACE), which is an open-

source adaptive resource management framework built atop standards-based QoS-enabled component middleware. Second,

we demonstrate and evaluate the effectiveness of RACE in the context of a representative DRE system: NASA’s Magneto-

spheric Multi-scale Mission system. Our empirical results demonstrate that when adaptive resource management algorithms

for DRE systems are implemented using RACE, they yield in a predictable and high performance system, even in the face of

changing operational conditions, workloads, and resource availability.

1 Introduction

Distributed real-time and embedded (DRE) systems form the core of many mission-critical domains, such as shipboard

computing environments [1], avionics mission computing [2], multi-satellite missions [3], and intelligence, surveillance and

reconnaissance missions [4]. Quality of service (QoS)-enabled distributed object computing (DOC) middleware based on

standards like Real-time Common Object Request Broker Architecture (RT-CORBA) [5] and the Real-Time Specification

for Java (RTSJ) [6] have been used to develop such DRE systems. More recently, QoS-enabled component middleware,

such as the Lightweight CORBA Component Model (CCM) [7] and PRiSm [8], have been used as the middleware for DRE

systems [2].

1.1 Evolution of Middleware Technology

This section summarizes the evolution of various middleware technologies primarily focusing on their contributions and

limitations.

1. Distributed Object Computing (DOC) Middleware: Commercial-off-the-shelf (COTS) middleware technologies for

DOC based on standards such as The Object Management Group (OMG)’s CORBA [9] and Sun’s Java RMI [10], encapsu-

lates and enhances native OS mechanisms to create reusable network programming components. These technologies provide

a layer of abstraction that shields application developers from the low-level platform-specific details and define higher-level

distributed programmingmodels whose reusable APIs and components automate and extend native OS capabilities. Conven-

tional DOC middleware technologies, however, have the following limitations:

• They address only functional aspects of application development: DOC middleware address functional aspects

of application development such as how to define and integrate object interfaces and implementations. They do not

address QoS aspects such as how to (1) define and enforce application timing requirements, (2) allocate resources to

applications, and (3) configure OS and network QoS policies such as priorities for application processes and/or threads.

As a result, the code that configures and manages QoS aspects often become entangled with the application code.

• Lacks support for system design and development: DOC middleware support only the design and development

of individual application objects. They lack generic standards for (1) distributing object implementations within the

system, (2) installing, initializing, and configuring objects, and (3) interconnection between independent objects, all

of which are crucial in system development. Therefore, when large-scale distributed systems are built using DOC

middleware technologies, system design and development is tedious, error prone, hard to maintain and/or evolve, and

results in a brittle system.

2. QoS-enabled DOC Middleware: QoS limitations of conventional DOC middleware have been addressed by new mid-

dleware standards such as RT-CORBA [5] and RTSJ [6]. Middleware based on these technologies support explicit configu-

ration of QoS middleware aspects such as priority and threading models. However, it lacks the higher level abstraction that

separates real-time policy configuration from application functionality. Moreover, these enhancements do not address the

limitation of conventional DOC middleware in the context of system design and development as described above.

3. Conventional Component Middleware: Component middleware technologies, such as the CORBA Component Model

(CCM) [11] and Enterprise Java Beans [12, 13] provide capabilities that addresses the limitation of conventional DOC

middleware in the context of system design and development. Examples of capabilities offered include (1) standardized

interfaces for application component interaction, (2) model-based tools for deploying and interconnecting components, and

(3) standards-basedmechanisms for installing, initializing, and configuring application components, thus separating concerns

2

of application development, configuration, and deployment. Although conventional component middleware support design

and development of large scale distributed systems, they do not address the address the QoS limitations of DOC middleware.

Therefore, conventional component middleware can support large scale enterprise distributed systems, but not DRE systems

that have the stringent QoS requirements.

4. QoS-enabled Component Middleware: To address the limitations with various middleware technologies listed above,

QoS-enabled component middleware such as Component Integrated ACE ORB (CIAO) [14] have evolved that combines the

capabilities of conventional component middleware and real-time DOC middleware. CIAO is our open source implemen-

tation of the OMG’s Lightweight CORBA Model (LCCM) specification [7] and is built atop The ACE ORB (TAO) [15].

QoS-enabled component middlewares offer explicit configuration of QoS middleware parameters as well as provide capabil-

ities that aid in design and development of large scale distributed systems. QoS-enabled component middleware capabilities

enhance the design, development, evolution, and maintenance of DRE systems [16].

1.2 Limitations of Existing Middleware Technologies and Solution Approach

These middleware technologies are suitable for DRE systems that operate in closed environments where operating con-

ditions, input workloads, and resource availability are known in advance and do not vary significantly at runtime. However,

these technologies are insufficient for DRE systems that execute in open environments where system operational conditions,

input workload, and resource availability cannot be characterized accurately a priori. Therefore, there is an increasing need to

introduce resource management mechanisms within the middleware that can adapt to dynamic changes in resource availabil-

ity and requirements. As a first step towards this, to provide end-to-end QoS assurances for applications executing in open

DRE systems, in our earlier work we developed adaptive resource management algorithms, such as EUCON [17], DEU-

CON [18], HySUCON [19], and FMUF [20], based on control theoretic techniques. When then developed FC-ORB [21],

which is a QoS enabled adaptive DOC middleware that implements the EUCON algorithm and can handle fluctuation in

application workload and system resource availability.

Since the design and implementation of FC-ORB is based on the EUCON adaptive resource management algorithm,

enhancing FC-ORB or any other DOC middleware to use other algorithms such as DEUCON, HySUCON, FMUF, and

others that may be developed in the future would involve re-designing and/or re-implementing significant portions of the

middleware. To address this issue, we have developed a component-based adaptive resource management framework – the

Resource Allocation and Control Engine (RACE). Application built using RACE benefit from the aforementioned advantages

of component based middleware as well as QoS and/or performance assurances provided by adaptive resource management

algorithms. RACE therefore complements the theoretical work on resource allocation and control algorithms that provide a

model and theoretical analysis of system performance.

RACE is built atop our CIAO QoS-enabled component middleware. As shown in Figure 1, RACE provides (1) resource

monitors that track utilization of various system resources, such as CPU, memory, and network bandwidth, (2) QoS monitors

that track application QoS, such as end-to-end delay, (3) resource allocators that allocate resource to components based

on their resource requirements and current availability of system resources, (4) configurators that configure middleware

3

QoS parameters of application components, (5) controllers that compute end-to-end adaptation decisions based on control

algorithms to ensure that QoS requirements of applications are met, and (6) effectors that perform controller-recommended

adaptations.

Figure 1: Resource Allocation and Control Engine (RACE) for

DRE Systems

RACE supports multiple applications running in var-

ious DRE system environments and allows applica-

tions with diverse QoS requirements to share resources

simultaneously. As various entities of RACE them-

selves are designed and implemented as CCM compo-

nents, RACE’s allocators and controllers can be con-

figured with diverse resource allocation and control al-

gorithms using tools based on domain-specific model-

ing languages (DSML) such as thePlatform-Independent

Component Modeling Language (PICML) [22].

This paper provides two contributions to research

on adaptive resource management for component-based

DRE systems. First, it describes the design and imple-

mentation of the RACE framework. Second, we qualitatively and quantitatively evaluate the effectiveness of RACE in

resolving key adaptive resource management challenges of a representative DRE system. The remainder of the paper is

organized as follows: Section 2 compares our research on RACE with related work; Section 3 motivates the use of RACE

in the context of a representative DRE system; Section 5 describes the architecture of RACE and shows how it aids in the

development of the DRE system described in Section 3; Section 6 empirically evaluates the performance of the DRE system

when various control algorithms are used in conjunction with RACE and also presents an empirical measure of the overhead

associated with the RACE framework; and Section 7 presents concluding remarks.

2 Related Work

This section compares our work on RACE with related research on building large-scale DRE systems. As shown below,

we classify this research along two orthogonal dimensions: (1) QoS-enabled DOC middleware vs. QoS-enabled component

middleware and (2) design-time vs. run-time QoS configuration, optimization, analysis, and evaluation of constraints, such

as timing, memory, and CPU.

2.1 QoS-enabled DOC Middleware

Design-time. RapidSched [23] enhances QoS-enabled DOC middleware, such as RT-CORBA, by computing and en-

forcing distributed priorities. RapidSched uses PERTS [24] to specify real-time information, such as deadline, estimated

execution times, and resource requirements. Static schedulability analysis (such as rate-monotonic analysis) is then per-

formed and priorities are computed for each CORBA object in the system. After the priorities are computed, RapidSched

4

uses RT-CORBA features to enforce these computed priorities.

Run-time. Early work on resource management middleware for shipboard DRE systems presented in [25, 26] motivated

the need for adaptive resource management middleware. This work was further extended by QARMA [27], which provides

resourcemanagement as a service for existing QoS-enabledDOCmiddleware, such as RT-CORBA. Kokyu [28] also enhances

RT-CORBA QoS-enabled DOC middleware by providing a portable middleware scheduling framework that offers flexible

scheduling and dispatching services. Kokyu performs feasibility analysis based on estimated worst case execution times of

applications to determine if a set of applications is schedulable. Resource requirements of applications, such as memory and

network bandwidth, are not captured and taken into consideration by Kokyu. Moreover, Kokyu lacks the capability to track

utilization of various system resources as well as QoS of applications. To address these limitations, research presented in [29]

enhances QoS-enabled DOC middleware by combining Kokyu and QARMA.

Our work on RACE extends this earlier work on QoS-enabled DOC middleware by providing an adaptive resource man-

agement framework for DRE systems built atop QoS-enabled component middleware. DRE systems built using RACE

benefit from the additional capabilities offered by QoS-enabled component middleware compared to QoS-enabled DOC mid-

dleware, as described in Section 1. Moreover, the elements of RACE are designed as CCM components, so RACE itself can

be configured using DSML tools, such as PICML.

2.2 QoS-enabled Component Middleware

Design-time. Cadena [30] is an integrated environment for developing and verifying component-based DRE systems

by applying static analysis, model-checking, and lightweight formal methods. Like PICML, Cadena also provides a com-

ponent assembly framework for visualizing and developing components and their connections. VEST [31] is a design as-

sistant tool based on the Generic Modeling Environment [32] that enables embedded system composition from component

libraries and checks whether timing, memory, power, and cost constraints of real-time and embedded applications are sat-

isfied. AIRES [33] is a similar tool that provides the means to map design-time models of component composition with

real-time requirements to run-time models that weave together timing and scheduling attributes.

These tools are similar to PICML and use estimates, such as estimated worst case execution time, estimated CPU, memory,

and/or network bandwidth requirements. These tools are targeted for systems that execute in closed environments, where

operational conditions, input workload, and resource availability can be characterized accurately a priori. Since RACE

tracks and manages utilization of various system resources, as well as application QoS, it can be used in conjunction with

these tools to build DRE systems that execute in open environments.

Run-time. QoS provisioning frameworks, such as QuO [34] and Qoskets [35, 4, 36] help ensure desired performance of

DRE systems built atop QoS-enabled DOC middleware and QoS-enabled component middleware, respectively. When appli-

cations are designed using Qoskets (1) resources are dynamically (re)allocated to applications in response to changing oper-

ational conditions and/or input workload and (2) application parameters are fine-tuned to ensure that allocated resource are

used effectively. With this approach, however, applications are augmented explicitly at design-time with Qosket components,

such as monitors, controllers, and effectors. This approach thus requires redesign and reassembly of existing applications

5

built without Qoskets. When applications are generated at run-time (e.g., by intelligent mission planners [37]), this approach

would require planners to augment the applications with Qosket components, which may be infeasible since planners are

designed and built to solve mission goals and to work atop any component middleware, not just CCM.

Compared with related work, RACE provides adaptive resource and QoS management capabilities in a more transparent

and non-intrusive way. In particular, it allocates CPU, memory, and networking resources to application components and

tracks and manages utilization of various system resources, as well as application QoS. In contrast to our own earlier work

on QoS-enabled DOC middleware, such as FC-ORB [21] and HiDRA [38], RACE is a QoS-enabled component middleware

framework that enables the deployment and configuration of feedback control loops in DRE systems.

In summary, RACE’s novelty stems from its combination of design-time DSML tools, which can be used design the

application as well as configure RACE itself, QoS-enabled component middleware run-time platforms, and research on

adaptive resource management algorithm. RACE can be used to deploy and manage component-based applications that are

composed at design-time via PICML, as well as at run-time by intelligent mission planners [39] such as SA-POP [37].

3 Motivating Application Scenario

We use the NASA’s upcoming Magnetospheric Multi-scale (MMS) mission (stp.gsfc.nasa.gov/missions/

mms/mms.htm) as a motivating DRE system example to evaluate the effectiveness and performance of RACE. First, we

present an overview of the MMS mission system, followed by the resource and QoS management challenges involved in

developing the MMS mission using QoS-enabled component middleware.

3.1 DRE System Case Study

NASA’s MMS mission is a representative DRE system consisting of several interacting subsystems (both in-flight and

stationary) with a variety of complexQoS requirements. TheMMSmission consists of four identical instrumented spacecrafts

that maintain a specific formation while orbiting over a region of scientific interest. The primary function of the spacecraft(s)

is to collect data while in orbit and send it to a ground station for further processing when appropriate.

Applications in the MMS mission have the following QoS characteristics and requirements: (1) they operate in multiple

modes, (2) relative importance between applications varies at runtime according to the mode in which they are operating, (3)

end-to-end response time shoud be within the specified end-to-end deadline, and (4) resource utilization is dependent on the

data collected. Applications in the MMS mission execute in three modes of operation: slow, fast, and burst survey modes.

Applications executing in fast and burst mode are considered more important than applications executing in slow mode, i.e.,

applications executing in fast and burst mode belong to the important class, whereas application executing in slow mode

belong to the best-effort class. Resource utilization by these applications are also dependent on their mode of operation, i.e.,

resource utilization of an application in slow, fast, and burst modes are minimal, medium, and maximum respectively.

For example, for an application that monitors the plasma activity, slow survey mode is entered outside the regions of

scientific interests and enables only a minimal set of data acquisition (primarily for health monitoring). The fast survey mode

is entered when the spacecrafts are within one or more regions of interest, which enables data acquisition for all payload

6

sensors at a moderate rate. If plasma activity is detected while in fast survey mode, the application enters burst mode, which

results in data collection at the highest data rates.

Each spacecraft consists of an on-board intelligent mission planner such as the spreading activation partial order planner

(SA-POP) [37] which decomposes overall mission goal(s) into navigation, control, data gathering-processing applications

that can be executed concurrently. SA-POP employs decision-theoretic methods and other AI schemes (such as hierarchical

task decomposition) to decompose mission goals into navigation, control, data gathering, and data processing applications.

In addition to initial generation of applications, SA-POP incrementally generates new applications in response to changing

mission goals and/or degraded performance reported by the mission and system monitors.

Comm Ground

Gizmo Filter Analysis

Gizmo Filter Analysis

Figure 2: Example MMS Data Gather-Process Application

Figure 2 shows the instances of—and connections

between—software components of an example data

gather-process application executing within a single

spacecraft. As shown in Figure 2, data gathering-

processing applications typically consists of the follow-

ing components: gizmo, filter, analysis, comm, and

ground components. Each gizmo component collects data from the sensors, which have varying data rate, data size, and

compression requirements. The data collected from the different sensors have varying importance, depending on the mode

and on the mission. The collected data is passed through filter components, which remove noise from the data. The filter

components pass the data onto analysis components, which compute a quality value indicating the likelihood of a tran-

sient plasma event. This quality value is then communicated to the other spacecraft and used to determine entry into burst

mode while in fast mode. Finally, the analyzed data from each analysis component is passed to a comm (communication)

component, which transmits the data to the ground component at an appropriate time.

3.2 Challenges of Developing the MMS Mission using QoS-enabled Component Middleware

As discussed in Section 1, the use of QoS-enabled component middleware to develop DRE systems, such as the NASA

MMS mission, significantly improves the design, development, evolution, and maintenance of these large-scale systems. In

the absence of an adaptive resource management framework like RACE, however, several key challenges remain unresolved

when using component middleware. Below we present the key resource and QoS management challenges associated with

the MMS mission DRE system.

Challenge 1: Resource allocation to applications. Applications generated by SA-POP are resource sensitive, i.e., end-to-

end response time is increased significantly if components of an application do not receive the required CPU time and network

bandwidth within bounded delay. Moreover, in open DRE systems like the MMS mission, input workload affects utilization

of system resources by, and QoS of, applications. Therefore, utilization of system resources and QoS of applicationsmay vary

significantly from their estimated values. Due to the operating condition for open DRE systems, system resource availability,

such as available network bandwidth, may also be time variant. A resource management framework like RACE should

therefore (1) monitor the current utilization of system resources, (2) allocate resources in a timely fashion to application

7

components such that their resource requirements are met using resource allocation algorithms such as PBFD [40], and

(3) support multiple resource allocation strategies since CPU and memory utilization overhead might be associated with

implementations of resource allocation algorithms themselves and select the appropriate one(s) depending on properties of

the application and the overheads associated with various implementations.

Challenge 2: Configuring platform-specific QoS parameters. The QoS of applications depend on various platform-

specific real-time QoS configurations including (1) QoS configuration of the QoS-enabled component middleware such as

priority model, threading model, and request processing policy, (2) operating system QoS configuration such as real-time

priorities of the process(es) and thread(s) that host and execute within the components respectively, and (3) networks QoS

configurations, such as diffserv code-points of the component interconnections. Since these configurations are platform-

specific, it is tedious and error-prone for system developers or SA-POP to specify them in isolation. An adaptive resource

management framework like RACE should therefore provide abstractions that shield developers and/or SA-POP from low-

level platform-specific details and define higher-level QoS specification models. The system developers and/or intelligent

mission planners would specify QoS characteristics of the application such as QoS requirements and relative importance, and

the framework must configure platform-specific parameters accordingly.

Challenge 3: Monitoring end-to-end QoS and ensuring QoS requirements are met. To meet the end-to-end QoS re-

quirements of applications, an adaptive resource management framework like RACE must providemonitors that track QoS of

applications at run-time. Although some QoS properties (such as accuracy, precision, and fidelity of the produced output) are

application-specific, certain QoS (such as end-to-end delay) can be tracked by the framework transparently to the application.

The framework should also provide hooks into which application specific QoS monitors can be configured. The framework

should enable the system to adapt to dynamic changes, such as variations in operational conditions, input workload, and/or

resource availability, and thereby ensure that QoS requirements of applications are not violated.

4 Overview of CCMMiddleware

RACE is built atop of the QoS-enabled component middleware CIAO and DAnCE, which are open-source implementa-

tions of the OMG Lightweight CCM [7], Deployment and Configuration (D&C) [41], and RT-CORBA [5] specifications,

which are outlined below. CIAO abstracts key Real-time CORBA QoS concerns into elements that can be configured declar-

atively via Lightweight CCM metadata. DAnCE, which is a standard component middleware deployment and configuration

mechanisms, uses this metadata to perform deployment, initialization, interconnection, and lifecycle management of appli-

cations components.

RT-CORBA adds QoS control to regular CORBA to improve application predictability, such as bounding priority inver-

sions. RT-CORBA provides policies and mechanisms for configuring middleware features such as thread pools, priority

models, protocol policies, and explicit binding. These capabilities address some, but by no means all, important DRE system

development challenges. To address this issue, the OMG introduced the Lightweight CCM specification, which is built atop

8

the RT-CORBA specification and standardizes the development, configuration, and deployment of component-based appli-

cations. CCM is built atop CORBA object model, and therefore, system implementors are not tied to any particular language

or platform for their component implementations. As shown in Figure 3, key entities of CCM-based component middleware

include:

• Component, which encapsulates the behavior of the application. Components interact with clients and each other

via ports, which are of four types: (1) facets, also known as provided interfaces, which are end-points that implement

CORBA interfaces and accept incomingmethod invocations, (2) receptacles, also known as required connection points,

that indicate the dependencies on end-points provided by another component(s), (3) event sources, which are event

producers that emit events of a specified type to one or more interested event consumers, and (4) event sinks, which are

event consumers and into which events of a specified type are pushed. The programming artifact(s) that provides the

“business logic” of the component is called an executor.

• Container, which provides an execution environment for components with common operating requirements. The

container also provides an abstraction of the underlying middleware and enables the component to communicate via

the underlying middleware bus and reuse common services offered by the underlying middleware.

• Component Home, which is a factory [42] that creates and manages the life cycle for instances of a specified compo-

nent type.

• Component Implementation Framework (CIF),which defines the programmingmodel for defining and constructing

component implementations using the Component Implementation Definition Language (CIDL). CIF automates the

implementation of many component features which include generation of programming skeletons and association of

components with component executors with their context and homes.

• Component server, which is a generic server process that hosts application containers. One or more components can

be collocated in one component server.

Component middleware provides a standard “virtual boundary” around application component implementations that inter-

act only via well-defined ports, defines standard container mechanisms needed to execute components in generic component

servers, and specifies a reusable/standard infrastructure needed to configure and deploy components throughout a distributed

system. Since the Lightweight CCM specification does not standardize the process of deployment, initialization, and inter-

connection of components, the OMG Deployment and Configuration (D&C) specification was introduced as an addendum

to the CCM specification. Our open-source implementation of the D&C specification Deployment and Configuration Engine

(DAnCE) enables the deployment and configuration of components in DRE systems.

5 Structure and Functionality of RACE

9

Container

COMPONENT
EXECUTORS

Component
Home

POA

Transaction

Security Notification

Persistent

Callback
Interfaces

In
t e

rn
a

l
In

te
rf

ac
e

s

E vent
Si nks

Fac ets

R e
ce
pt
ac
le
s

E
ve
nt

S o
ur
ce
s

Component
Reference

Co
m
po
n e
nt
C
o n
t e
xt

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback
Interfaces

In
t e

rn
al

In
t e

rf
ac

e
s

E vent
S
in ks

Fac ets

R e
ce
pt
ac
l e
s

Ev
en
t

S o
ur
ce
s

Component
Reference

Co
m
po
ne
nt
Co
nt
ex
t

COMPONENT SERVER 1 COMPONENT SERVER 2

ORB

Container

COMPONENT
EXECUTORS

Component
Home

POA

Transaction

Security Notification

Persistent

Callback
Interfaces

In
t e

rn
a

l
In

te
rf

ac
e

s

E vent
Si nks

Fac ets

R e
ce
pt
ac
le
s

E
ve
nt

S o
ur
ce
s

Component
Reference

Co
m
po
n e
nt
C
o n
t e
xt

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback
Interfaces

In
t e

r

Container

COMPONENT
EXECUTORS

Component
Home

POA

Transaction

Security Notification

Persistent

Callback
Interfaces

In
t e

rn
a

l
In

te
rf

ac
e

s

E vent
Si nks

Fac ets

R e
ce
pt
ac
le
s

E
ve
nt

S o
ur
ce
s

Component
Reference

Co
m
po
n e
nt
C
o n
t e
xt

Container

COMPONENT
EXECUTORS

Component
Home

POA

Callback
Interfaces

In
t e

rn
al

In
t e

rf
ac

e
s

E vent
S
in ks

Fac ets

R e
ce
pt
ac
l e
s

Ev
en
t

S o
ur
ce
s

Component
Reference

Co
m
po
ne
nt
Co
nt
ex
t

COMPONENT SERVER 1 COMPONENT SERVER 2

ORB
Portable
Interceptor

Portable
Interceptor

Figure 3: CCM Architectural Overview

As shown in Figure 4, RACE is composed of

the following components: (1) InputAdapter, (2)

Orchestrator, (3) Conductor, (4) Allocators,

(5) Controllers, (6) Configurators, and (7)

Historian. RACE also monitors application QoS

and system resource usage via its CentralizedQos-

Monitor and TargetManager components. All

components of RACE are deployed and configured us-

ing DAnCE. This section motivates and describes the de-

sign of RACE by showing how it resolves the challenges

presented in the MMS case study from Section 3.

5.1 Resource Allocation

To allocate resources to applications that execute in

an open DRE system, such as the NASA’s MMS mission

system, RACE performs the following steps: (1) it parses the metadata that describes the application to obtain the resource

requirement(s) of components that make up the application, (2) obtains current resource utilization from resource utilization

monitors, and (3) selects and invokes an appropriate implementation(s) of resource allocation algorithm depending on the

properties of the application and the overhead associated with the implementation(s). Below we describe the RACE com-

ponents that work together to perform the steps outlined above and resolve the resource allocation challenges of the MMS

mission as described in Section 3.2.

1. InputAdapter. End-to-end applications can be composed in many ways. For example, an application can be composed

by using a DSML like PICML at system design-time and/or by an intelligent mission planner like SA-POP at run-time.

When an application is composed using PICML, metadata describing the application is captured in a XML file based on

the PackageConfiguration schema defined by the D&C specification [41]. When applications are generated during

runtime by SA-POP, metadata is captured in an in-memory structure defined by the planner.

During design time, RACE can be configured using PICML and an InputAdapter appropriate for the system can be

selected. For example, if applications in the system are constructed at design-time using PICML, RACE can be configured

with the PICMLInputAdapter; if applications are constructed at run-time using SA-POP, RACE can be configured with

the SAPOPInputAdapter. As shown in Figure 5, the InputAdapter parses the metadata that describes the application

into an in-memory end-to-end (E-2-E) IDL structure that is managed internally by RACE. The E-2-E IDL structure

populated by the InputAdapter contains information regarding the application, including (1) components that make

up the application and their resource requirement(s), (2) interconnections between the components, (3) application QoS

properties (such relative priority) and QoS requirement(s) (such as end-to-end delay), and (4) mapping components onto

domain nodes. The mapping of components onto nodes need not be specified in the metadata that describes the application

10

which is given to RACE. If an mapping is specified, it is honored by RACE; if not, a mapping is determined at run-time by

RACE’s Allocators.

CIAO/DAnCE Target
Manager

Allocators Controllers

Historian
Configurators

Centralized
QoS Monitor

Application
QoS

System
Resource
Utilization

Input Adapter

System domain with time-varying
resource availability

Application
Monitors

Resource
Monitors

Applications

DeploymentPlan

Deploy Components

Orchestrator

Conductor

Figure 4: Structure and Interactions in RACE

2. TargetManager. is an entity of the CCM component mid-

dleware as defined in the D&C specification [41] that monitors

utilization of system resources. As shown in Figure 4, RACE

employs the TargetManager to obtain information regarding

system resource utilization. TargetManager uses a hierarchi-

cal design and receives periodic resource utilization updates from

ResourceMonitorswithin the domain. It uses these updates

to track resource usage of all resources within the domain. Our

implementation of the TargetManager, Bulls-Eye [43], pro-

vides an uniform interface for retrieving information pertaining

to resource consumption of each component, each node in the

domain, as well as the domain’s overall resource utilization.

3. Allocators are implementations of resource allocation al-

gorithms that allocate various domain resources (such as CPU,

memory, and network bandwidth) to components of an applica-

tion by determining the mapping of components onto nodes in

the system domain. For certain applications—usually the impor-

tant ones—static mapping between components and nodes may

be specified at design-time by system developers. To honor these

static mappings, RACE therefore provides a static allocator that

ensures components are allocated to nodes in accordance with the static mapping specified in the application’s metadata. If

no static mapping is specified, however, dynamic allocators determine the component to node mapping at run-time based

on resource requirements of the components and current resource availability on the various nodes in the domain. Input

to Allocators include the E-2-E IDL structure corresponding to the application and the current utilization of system

resources. Since Allocators themselves are CCM components, RACE can be configured with new Allocators by

using PICML.

The current version of RACE supports following algorithms as Allocators: (1) CPU allocator, (2) memory allocator,

(3) network-bandwidth allocator, (4) PBFD allocator [40] that allocates CPU, memory, and network-bandwidth, and (5) static

allocator. Metadata is associated with each allocator and captures its type (i.e., static, single dimension bin-packing [44], or

PBFD) and associated resource overhead (such as CPU and memory utilization).

11

SA-POP Application E-2-E
Input

Adapter Orchestrator Composition
& E-2-E

Conductor DeploymentPlan CIAO/DAnCE

Target
Manager

PBFD Allocator

Resource
Utilization

Resource
Utilization &
E-2-E

Component
Node

Mapping

Filter CommAnalysisGizmo

Filter AnalysisGizmo Ground

Comm Ground

Gizmo Filter Analysis

Gizmo Filter Analysis

Figure 5: Resource Allocation to Application Components Using RACE

4. Orchestrator and Conductor. As shown in Figure 5, after the metadata describing the application is parsed by RACE’s

InputAdapter, the in-memory E-2-E IDL structure is passed onto the Orchestrator. This component processes the

E-2-E structure to determine the types of resources (e.g., CPU, memory, or network bandwidth) required and whether a

static allocation is specified. If a static allocation is specified, the static allocator is selected; otherwise a dynamic allocator(s)

is selected based on the type(s) of resources required. This selection process is captured in the Composition IDL struc-

ture shown in Figure 6. For example, consider the data gather-process application generated by SA-POP shown in Figure 2

and described in Section 3. Since these application components have both CPU and memory resource requirements, the

Orchestrator selects the PBFD Allocator which is capable of allocating multiple resources to applications compo-

nents. This selection is captured in a Composition.

As shown in Figure 5, the Orchestrator passes the Composition and the E-2-E to the Conductor, which

then performs the desired orchestration by invoking the Allocator(s) specified in the Composition, along with the

resource utilization information obtained from the TargetManager to map components onto nodes in the system do-

main. After resources are allocated to the application, the Conductor converts the application from RACE’s internal

E-2-E IDL structure into the standard DeploymentPlan IDL structure defined by the D&C specification [41]. The

DeploymentPlan IDL structure is then passed to the underlying DAnCE middleware to deploy the components on the

designated target nodes.

Since the elements of RACE are developed as CCM components, RACE itself can be configured using DSML tools, such

as PICML. Moreover, new InputAdapters and Allocators can be plugged directly into RACE without modifying

RACE’s existing architecture. RACE can be used to deploy and allocate resources to applications that are composed at

design-time and run-time. RACE’s Allocators with inputs from the TargetManger allocates resource to application

components based on runtime resource availability, thereby addressing the resource allocation challenge for DRE systems

identified in Section 3.2.

12

module RACE

{

/ / Con f i g u r a t o r sequence .

t y p e d e f sequence<Con f i g u r a t o r> Con f i g u r a t o r s e q ;

s t r u c t Compos i t ion

{

/ / C o n f i g u r a t o r s t h a t a r e r e q u i r e d to p r o c e s s t h i s a p p l i c a t i o n .

C o n f i g u r a t o r s e q C o n f i g u r a t o r s ;

/ / Recommended a l l o c a t o r .

A l l o c a t o r r e commended a l l o ca to r ;

} ;

} ;

Figure 6: Composition IDL Structure

5.2 QoS Parameter Confi guration

RACE shields application developers and SA-POP from low-level platform-specific details and defines a higher-level QoS

specification model. Developers and/or SA-POP specify only QoS characteristics of the application, such as QoS require-

ments and relative importance, and RACE automatically configures platform-specific parameters accordingly. Below, we

describe the RACE components that work together to provide these capabilities and resolve the QoS configuration challenges

of the MMS mission described in Section 3.2.

1. Configurators determine values for various low-level platform-specific QoS parameters, such as middleware, operating

system, and network settings for an application based on its QoS characteristics and requirements such as relative importance

and end-to-end delay. For example, the MiddlewareConfigurator configures component Lightweight CCM policies,

such as threading policy, priority model, and request processing policy based on the class of the application (important and

best-effort). The OperatingSystemConfigurator configures operating system parameters, such as the priorities of

the Component Servers that host the components based on Rate Monotonic Scheduling (RMS) [44] or Maximum Urgency

First (MUF) [45] scheduling algorithms. Likewise, the NetworkConfigurator configures network parameters, such

as diffserv code-points of the component interconnections. Like other entities of RACE, Configurators are imple-

mented as CCM components, so new configurators can be plugged into RACE by configuring RACE at design-time using

PICML.

2. Orchestrator and Conductor. Based on the QoS properties of the application captured in the E-2-E IDL structure,

the Orchestrator selects appropriate Configurators to configure QoS properties for the application. As shown in

Figure 7, this orchestration is captured in the Composition IDL structure and passed onto the Conductor along with the

13

E-2-E IDL structure, which invokes the Configurators specified in the Composition to configure the system QoS

parameters for the application.

Composition & E-2-E

Figure 7: QoS Parameter Configuration with RACE

RACE’s Configurators, Orchestrator and

Conductor coordinate with one another to configure

platform-specific QoS parameters for applications ap-

propriately. These entities provide higher level abstrac-

tions and shield system developers and SA-POP from

low-level platform-specific details, thus resolving the

challenges associated with configuring platform-specific

QoS parameters identified in Section 3.2.

5.3 Runtime System Management

When resources are allocated to components at

design-time by system designers using PICML, i.e. map-

ping of application components to nodes in the domain

are specified, these operations are performed based on

estimated resource utilization of applications and esti-

mated availability of system resources. Allocation algo-

rithms supported by RACE’s Allocators allocate re-

sources to components based on current system resource

utilization and component’s estimated resource require-

ments. In open DRE systems, however, there is often no accurate a priori knowledge of input workload, the relationship

between input workload and resource requirements of an application, and system resource availability.

To resolve these challenges, as well as the ones described in 3.2, RACE’s control architecture employs a feedback loop

to manage system resource and application QoS and ensures (1) QoS requirements of applications are met at all times

and (2) system stability by maintaining utilization of system resources below their specified utilization set-points. RACE’s

control architecture features a feedback loop that consists of three main components: Monitors, Controllers, and

Effectors, as shown in Figure 8.

Monitors are associated with system resources and QoS of the applications and periodically update the Controller

with the current resource utilization and QoS of applications currently running in the system. The Controller imple-

ments a particular control algorithm such as EUCON [17], DEUCON [18], HySUCON [19], and FMUF [20], and computes

the adaptations decisions for each (or a set of) application(s) to achieve the desired system resource utilization and QoS.

Effectors modify system parameters, which include resource allocation to components, execution rates of applications,

and OS/middleware/network QoS setting of components, to achieve the controller recommended adaptation. Below we

describe the components RACE’s control architecture.

14

ControllerTarget
Manager

Centralized Effector

Centralized
QoS Monitor

Resource
Utilization

Application
QoS

System Wide Adaptation Decisions

Per Node System Parameters

Resource
Utilization

System
QoS

Node Effector Resource
Monitor

QoS
Monitor

E-2-E
Application

Figure 8: RACE’s Feedback Control Loop

1. Monitors. To ensure system stability and meet QoS

requirements of applications, RACE’s control architec-

ture must monitor both system QoS and resource uti-

lization. As shown in Figure 8, RACE employs the

Lightweight CCM’s TargetManager to monitor sys-

tem resource utilization.

As described in Section 4, containers provide appli-

cation components with an execution environment and

enables them to communicate via the underlyingmiddle-

ware. Each container is aware of all the interactions of

a component and the end-to-end delay of an application

can therefore be measured in an application-transparent

way. QoS properties, such as accuracy, precision, and fidelity of the produced output, are application-specific, however, and

thus cannot be measured by the middleware without help from application components. We extended the container to embed

Monitors, called application-QoS-monitors, to measure end-to-end application delay.

Since QoS-enabled CCM middleware currently implement inter-component interactions (both facet/receptacle interac-

tions and event source/sink interactions) as two-way calls, end-to-end delay of an application can obtained by measuring the

round-trip delay at the “source” of the application. Application-QoS-monitorsuse high resolution timers (ACE High Res Timer)

to measure this round-trip delay and periodically send the collected end-to-end delays to the node-QoS-monitor that is col-

located on the same node using the Node QoS Monitor interface shown in Figure 9. Node-QoS-monitors in turn peri-

odically send the collected end-to-end delay of all the applications on its node to the centralized-QoS-monitor using the

Centralized QoS Monitor interface shown in Figure 9. Moreover, application specific QoS monitors can send QoS

information to the central monitor by invoking the same interface. The update period of both application-QoS-monitors and

node-QoS-monitors is configurable.

As shown in Figure 8, RACE’s QoS Monitors are structured in the following hierarchical fashion: an application-QoS-

monitor tracks the QoS of an application, a node-QoS-monitor tracks the QoS of all the applications running on its node, and

the centralized-QoS-monitor tracks the QoS of all the applications running the entire domain, which captures the system QoS.

RACE’s Controller(s) obtain the system QoS from the centralized-QoS-monitor via the Central QoS Monitor

interface shown in Figure 9.

2. Controllers enable a DRE system to adapt to changing operational context and variations in resource availability and/-

or demand. The RACE Controllers implement various control algorithms that manage runtime system performance,

including EUCON [17], DEUCON [18], HySUCON [19], and FMUF [20]. Based on the control algorithm they implement,

Controllersmodify configurable system parameters (such as execution rates and mode of operation of the application),

real-time configuration settings (such as operating system priorities of component servers that host the components), and

network difserv code-points of the component interconnections. Controllers are also implemented as CCM compo-

nents. RACE can therefore be configured with new Controllers by using PICML.

15

module RACE

{

i n t e r f a c e Node QoS Monitor

{

/ / / Update p e r i o d .

a t t r i b u t e long i n t e r v a l ;

/ / / Oneway method c a l l t o push t h e c o l l e c t e d QoS .

oneway void push QoS (in s t r i n g QoS id , i n s t r i n g A p p l i c a t i o n i d , i n any QoS) ;

} ;

i n t e r f a c e Cen t r a l QoS Mon i t o r

{

/ / / No QoS i n f o rm a t i o n i s a v a i l a b l e f o r t h e r e q u e s t e d App l i c a t i o n ID .

e x c e p t i o n App l i c a t i on IdNo tFound { } ;

/ / / No QoS i n f o rm a t i o n i s a v a i l a b l e f o r t h e r e q u e s t e d QoSID .

e x c e p t i o n QoSIdNotFound { } ;

/ / / Oneway method to push t h e c o l l e c t e d QoS .

oneway void push QoS (in s t r i n g QoS id , i n s t r i n g A p p l i c a t i o n i d , i n any QoS) ;

/ / / R e t r i e v e t h e QoS i n f o rm a t i o n r e g a r d i n g a s p e c i f i c QoS of an a p p l i c a t i o n .

any get QoS (in s t r i n g QoS id , i n s t r i n g A p p l i c a t i o n i d)

r a i s e s (App l i c a t i on IdNo tFound , QoSIdNotFound) ;

} ;

} ;

Figure 9: Interface Definition of Node-QoS-Monitor and Centralized-QoS-Monitor

3. Effectors modify system parameters, including resources allocated to components, execution rates of applications,

and OS/middleware/network QoS setting for components, to achieve the controller recommended adaptation. As shown in

Figure 8, Effectors are designed hierarchically. The centralized effector first computes the values of various system

parameters for all the nodes in the domain to achieve the Controller recommended adaptation. The computed values of

system parameters for each node are then propagated to Effectors located on each node, which then modify system pa-

rameters of its node accordingly. The hierarchical design of ResourceMonitors (TargetManager), QoSMonitors,

and RACE’s Effectors is scalable and can handle many applications and nodes in the domain.

4. Historian, Orchestrator, and Conductor. The Historian maintains the history of all deployed applications along

with their QoS characteristics and mapping of components to nodes. The orchestrator employs the Historian

to obtain information regarding the QoS characteristics of application that have been deployed in the system to select the

appropriate controller to manage the system. For example, if all the deployed applications can be operated at various rates,

16

the Orchestrator selects the EUCON controller to manage the system. The Conductor invokes the controller

selected by the Orchestrator to manage the DRE system.

RACE’s monitoring framework, controllers, and effectors coordinate with one another and other entities of

RACE to ensure (1) QoS requirements of applications are met and (2) utilization of system resources are maintained within

the specified utilization set-point set-point(s), thereby resolving the challenges associated with runtime end-to-end QoS man-

agement identified in Section 3.2.

6 Performance Results and Analysis

This section presents the testbed and experiment configuration inspired by the goals of the NASAMMSmission prototype

that we developed to evaluate the empirical performance RACE. We describe our experiments and analyze the results to show

the performance of this DRE system with and without RACE under varying operating condition and input workload. The

results show that RACE performs effective end-to-end adaptation and yields a predictable and high-performanceDRE system.

6.1 Hardware Testbed

Our experiments were performed on the ISISLab testbed at Vanderbilt University (www.dre.vanderbilt.edu/

ISISlab). The hardware configuration consists of six nodes acting as the system domain. The hardware configuration of

all the nodes was a 2.8 GHz Intel Xeon dual processor, 1 GB physical memory, 1GHz Ethernet network interface, and 40 GB

hard drive. Redhat Fedora Core release 4 operating system along with real-time patches running in single processor mode

was used for all the nodes.

Figure 10: Experiment Topology

6.2 Summary of Evaluated Scheduling Algorithms

We studied the performance of the prototype MMS system under various configurations: including (1) a baseline config-

uration with no RACE usage at all and with (2) RACE’s Rate Monotonic Scheduling (RMS) [44] configurator, (3) RACE’s

Maximum Urgency First (MUF) [45] configurator, and (4) RACE’s MUF configurator and Flexible MUF (FMUF) [20] con-

troller. The RMS and the MUF configurators assign priorities to all components (component servers) at deployment time

based on the RMS and MUF policies, respectively. A disadvantage of RMS is that it cannot provide performance isolation

for important applications [45]. During system overload caused by dynamic workload, a important applications with a low

rate may miss deadlines, while a best-effort applications with a high rate may experience no missed deadlines.

17

In contrast, MUF provides performance isolation to important applications by dividing priorities into two classes [45]. All

components belonging to important applications are assigned to the high-priority class, while all components belonging to

best-effort applications are assigned to the low-priority class. Components within a same priority class are assigned priorities

based on the RMS policy. Relative to RMS, however, MUF may cause priority inversion when an important application has

a lower rate than best-effort applications. As a result, MUF may unnecessarily cause a best-effort application to miss its

deadline, even when all tasks are schedulable under RMS.

To address the limitation of MUF, RACE’s FMUF controller provides performance isolation for important applications

while reducing the deadline misses of best-effort applications. While both RMS and MUF assign priorities statically at

deployment time, the FMUF controller adjusts the priorities of best-effort applications dynamically based on performance

feedback. The FMUF controller can reassign best-effort applications to the high-priority class when (1) all the applications

currently in the high-priority class meet their deadlines while (2) some applications in the low-priority class miss their

deadlines. FMUF moves best-effort applications back to the low-priority class when the high-priority class experiences

deadline misses. It can therefore effectively deal with workload variations caused by application arrivals and changes in

application execution times.

6.3 Experiment Confi guration

Our configurations of the prototype NASA MMS Mission DRE system consist of 11 periodic applications, 4 belonging

to important (I-M) class and 7 belonging to best-effort (B-E) class. Each application is composed of 6 components (C1–C6)

and is subjected to an end-to-end deadline equal to its period. Interconnection of components of applications is shown in

Figure 10. Periods of applications along with the estimated execution times of components comprising the applications are

described in Table 1. For all applications, static allocation as shown in Figure 10 was specified .

Estimated Execution Time (msec) Period Class

C1 C2 C3 C4 C5 C6 (msec)

1 55 40 65 55 40 65 700 I-M

2 90 65 70 90 65 70 1000 I-M

3 65 70 65 70 55 65 900 I-M

4 35 40 40 35 35 40 500 B-E

5 70 65 65 55 65 70 800 B-E

6 70 65 90 70 90 70 1200 B-E

7 40 55 35 40 40 65 600 B-E

8 65 55 55 70 40 55 700 B-E

9 70 65 65 90 70 65 900 B-E

10 35 40 35 35 40 35 400 B-E

11 65 55 65 70 65 70 700 I-M

Table 1: Properties of End-to-End Applications

18

 0

 0.1

 0.2

 0.3

 0.4

900800700600500400300200100

M
iss

 R
at

io

Time (sec)

Important
Applications

Best Effort
Applications

(a) Baseline

 0

 0.1

 0.2

 0.3

 0.4

900800700600500400300200100

M
iss

 R
at

io

Time (sec)

Best Effort
Applications

Important
Applications

(b) RMS Confi gurator

 0

 0.1

 0.2

 0.3

 0.4

900800700600500400300200100

M
iss

 R
at

io

Time (sec)

Important
Applications

Best Effort
Applications

(c) MUF Confi gurator

 0

 0.1

 0.2

 0.3

 0.4

900800700600500400300200100

M
iss

 R
at

io

Time (sec)

Important
Applications

Best Effort
Applications

(d) MUF Confi gurator + FMUF Controller

Figure 11: Deadline Miss Ratio

Since the applications described above do not support rate adaptation, RACE employs FMUF as the end-to-end adaptation

strategy. Since RACE is a framework, however, other adaptation strategies/algorithms, such as HySUCON [19], can be

implemented and employed in a similar way. Below, we evaluate the use of FMUF for end-to-end adaptation. Since the

focus of this work is RACE, and not the design or evaluation of individual control algorithms, we use FMUF as an example

to demonstrate RACE’s ability to support the integration of feedback control algorithms for end-to-end adaptation in DRE

systems.

Our experiments were conducted over 1,000 seconds and we emulated the variation in operating condition and input

workload by performing the following. At time T = 0sec, we deployed applications 1 through 10. At time T = 250sec,

we decreased the execution time of all application components by 10 percent to emulate a decrease in input workload. At

time T = 500sec, we deployed application 11, and at time T = 750sec, we increased the execution time of all application

components by 10 percent to emulate an increase in input workload. Since each application was subjected to an end-to-end

deadline equal to its period, to evaluate the performance of RACE, we monitored the deadline miss ratio of all applications

that were deployed.

19

As described in Sections 1 and 2, QoS-enabled component middleware previously lacked the ability to automatically

(1) configure QoS settings of application components and (2) enforce their end-to-end QoS requirements. When the MMS

DRE system described above was built atop CIAO/DAnCE directly without RACE, therefore, all application components

were assigned default QoS settings, i.e. all applications were assigned the same middleware, operating system, and network

policies and/or priorities. We use this configuration as the baseline to compare with performance of the system when built

atop RACE.

6.4 Analysis of Empirical Results

We now present the results obtained from running the experiment described in Section 6.3 on our ISISlab DRE system

testbed described in Section 6.1. We use deadline miss ratio as the metric to evaluate system performance under varying

input workloads and operating conditions.

Comparison of QoS. Figures 11a, 11b, 11c, and 11d show the deadline miss ratio of applications when the system

operated under the four configurations described in Section 6.3, i.e., baseline configuration, with RACE’s RMS configurator,

RACE’s MUF configurator, and RACE’s MUF configurator along with FMUF controller, respectively. These figures show

that under all the four configurations, deadline miss ratio of applications (1) reduced at T = 250sec due to the decrease

in the input work load, (2) increased at T = 500sec due to the introduction of application 11, and (3) further increased at

T = 750sec due to the increase in the input workload. These results demonstrates the impact of fluctuation in input workload

and operating conditions on system performance.

Figure 11b shows that when RACE’s RMS configurator was used to configure the operating system priorities of compo-

nent servers, deadline miss ratio of important applications were higher than that of best-effort applications due to reasons

explained earlier. Figures 11c and 11d show that when RACE’s MUF configurator is used (both individually and along with

FMUF controller), deadline miss ratio of important applications were nearly zero throughout the course of the experiment.

Figures 11a and 11c demonstrate that RACE improves QoS of our DRE system significantly by configuring platform-specific

parameters appropriately.

As described in [20], the FMUF controller responds to variations in input workload and operating conditions (indicated

by deadline misses) by dynamically adjusting the priorities of the best-effort applications (i.e. moving best-effort applica-

tions into or out of the high-priority class). Figures 11a and 11d demonstrate the impact of the RACE’s controller on the

performance of the system.

Our conclusion from analyzing the results above is that RACE significantly improves the performance of our prototype

MMS DRE system even under varying input workload and operating conditions. These benefits result from configuring

platform-specific QoS parameters appropriately and performing effective end-to-end adaptation, which were carried out by

RACE’s MUF Configurator and FMUF Controller respectively. Moreover, the RACE framework addresses the

challenges of building component-based DRE systems identified in Section 3.2.

20

6.5 Overhead of the RACE Framework.

The runtime overhead of the RACE framework can be decomposed into monitoring overhead (the average increase in

end-to-end delay as a result of RACE’s monitoring framework, as perceived by the application) and control overhead (the

average execution time of RACE’s controller). To measure monitoring overhead, we first instrumented application compo-

nents with high resolution timers (ACE High Res Timer) to measure the end-to-end delay. We next obtained the average

end-to-end delay of applications described in Section 6.3 when the system was executed with and without RACE’s moni-

toring framework. We then computed RACE’s monitoring overhead as the difference between these two average end-to-end

execution times. To measure the control overhead, we also instrumented RACE’s controller with a high resolution timer

(ACE High Res Timer). This timer measured the execution time of the controller during every sampling period. We

computed the control overhead as the average of the collected execution times.

From running the experiment described in Section 6.3 on our DRE system testbed, the average monitoring overhead was

37.97 µs and average control overhead of the FMUF controller was 799.82 ns. Average monitoring and control overhead are

0.0645% and 0.0013% of the average estimated execution times of components shown in Table 1. These results demonstrate

that the runtime overhead of RACE is small and acceptable for DRE systems.

7 Concluding Remarks

In this paper, we described RACE, which is an adaptive resource management framework that provides end-to-end adap-

tation and resource management for open DRE systems built atop QoS-enabled component middleware. We demonstrated

how RACE helps resolve key resource and QoS management challenges associated with a prototype of the NASA MMS

system. We also discussed results from empirical studies of the overhead associated with RACE.

Since the elements of RACE are designed and implemented as CCM components, RACE itself can be configured using

DSML tools, such as PICML. Moreover, new InputAdapters, Allocators, Configurators, and Controllers

can be plugged into RACE using PICML, and without any modifications to the existing architecture. RACE can be used to

deploy, allocate resources to, and manage performance of, applications that are composed both at design time as well as at

runtime. Moreover, due to the ease with which RACE can be configured, RACE can be employed in a wide range of DRE

systems.

Our experience building a prototype of a representative DRE system atop RACE shows that it yields in a predictable and

high performance system, even in the face of changing operational conditions, workloads, and resource availability. CIAO,

DAnCE, and RACE are available in open-source for download at deuce.doc.wustl.edu/Download.html.

References

[1] D. C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. DiPalma, “Towards Adaptive and Reflective Middle-

ware for Network-Centric Combat Systems,” CrossTalk - The Journal of Defense Software Engineering, Nov. 2001.

21

[2] D. C. Sharp and W. C. Roll, “Model-Based Integration of Reusable Component-Based Avionics System,” in Proc. of

the Workshop on Model-Driven Embedded Systems in RTAS 2003, May 2003.

[3] D. Suri, A. Howell, N. Shankaran, J. Kinnebrew, W. Otte, D. C. Schmidt, and G. Biswas, “Onboard Processing using

the Adaptive Network Architecture,” in Proceedings of the Sixth Annual NASA Earth Science Technology Conference,

College Park, MD, June 2006.

[4] P. Sharma, J. Loyall, G. Heineman, R. Schantz, R. Shapiro, and G. Duzan, “Component-Based Dynamic QoS Adapta-

tions in Distributed Real-time and Embedded Systems,” in Proc. of the Intl. Symp. on Dist. Objects and Applications

(DOA’04), Agia Napa, Cyprus, Oct. 2004.

[5] Real-time CORBA Specification, OMG Document formal/05-01-04 ed., Object Management Group, Aug. 2002.

[6] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turnbull, The Real-time Specification for Java.

Addison-Wesley, 2000.

[7] Light Weight CORBA Component Model Revised Submission, OMG Document realtime/03-05-05 ed., Object Manage-

ment Group, May 2003.

[8] D. C. Sharp, E. Pla, K. R. Luecke, and R. J. H. II, “Evaluating Real-time Java for Mission-Critical Large-Scale Embed-

ded Systems,” in IEEE Real-time and Embedded Technology and Applications Symposium. Washington, DC: IEEE

Computer Society, May 2003.

[9] The Common Object Request Broker: Architecture and Specification, Revision 2.6, Object Management Group, Dec.

2001.

[10] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for the Java System,” USENIX Computing Systems,

vol. 9, no. 4, pp. 265–290, November/December 1996.

[11] CORBA Components, OMG Document formal/2002-06-65 ed., Object Management Group, June 2002.

[12] Sun Microsystems, “Enterprise JavaBeans Specification,” java.sun.com/products/ejb/docs.html, Aug. 2001.

[13] Anne Thomas, Patricia Seybold Group, “Enterprise JavaBeans Technology,”

java.sun.com/products/ejb/white paper.html, Dec. 1998, Prepared for Sun Microsystems, Inc.

[14] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P. Loyall, R. E. Schantz, and C. D. Gill, “QoS-

enabled Middleware,” in Middleware for Communications, Q. Mahmoud, Ed. New York: Wiley and Sons, 2004, pp.

131–162.

[15] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and Performance of Real-time Object Request Brokers,”

Computer Communications, vol. 21, no. 4, pp. 294–324, Apr. 1998.

22

[16] N. Wang and C. Gill, “Improving Real-time System Configuration via a QoS-aware CORBA Component Model,” in

Hawaii International Conference on System Sciences, Software Technology Track, Distributed Object and Component-

based Software Systems Minitrack, HICSS 2004. Kona, HW: HICSS, Jan. 2004.

[17] C. Lu, X. Wang, and X. Koutsoukos, “Feedback Utilization Control in Distributed Real-time Systems with End-to-End

Tasks,” IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 6, pp. 550–561, 2005.

[18] X. Wang, D. Jia, C. Lu, and X. Koutsoukos, “Decentralized utilization control in distributed real-time systems,” in

RTSS ’05: Proceedings of the 26th IEEE International Real-Time Systems Symposium. Washington, DC, USA: IEEE

Computer Society, 2005, pp. 133–142.

[19] X. Koutsoukos, R. Tekumalla, B. Natarajan, and C. Lu, “Hybrid Supervisory Control of Real-time Systems,” in 11th

IEEE Real-time and Embedded Technology and Applications Symposium, San Francisco, California, Mar. 2005.

[20] Y. Chen and C. Lu, “Flexible Maximum Urgency First Scheduling for Distributed Real-Time Systems,” Washington

University in St. Louis, Tech. Rep. WUCSE-2006-55, October 2006.

[21] X. Wang, C. Lu, and X. Koutsoukos, “Enhancing the Robustness of Distributed Real-Time Middleware via End-to-

End Utilization Control,” in RTSS ’05: Proceedings of the 26th IEEE International Real-Time Systems Symposium.

Washington, DC, USA: IEEE Computer Society, 2005, pp. 189–199.

[22] K. Balasubramanian, J. Balasubramanian, J. Parsons, A. Gokhale, and D. C. Schmidt, “A Platform-Independent Com-

ponent Modeling Language for Distributed Real-time and Embedded Systems,” in Proceedings of the 11th Real-time

Technology and Application Symposium (RTAS ’05). San Francisco, CA: IEEE, Mar. 2005, pp. 190–199.

[23] V. F. Wolfe, L. C. DiPippo, R. Bethmagalkar, G. Cooper, R. Johnston, P. Kortmann, B. Watson, and S. Wohlever,

“RapidSched: Static Scheduling and Analysis for Real-Time CORBA,” WORDS, vol. 00, p. 34, 1999.

[24] J. W. Liu, J. Redondo, Z. Deng, T. Tia, R. Bettati, A. Silberman, M. Storch, R. Ha, andW. Shih, “PERTS: A Prototyping

Environment for Real-Time Systems,” Champaign, IL, USA, Tech. Rep., 1993.

[25] B. Ravindran, L. Welch, and B. Shirazi, “Resource Management Middleware for Dynamic, DependableReal-Time

Systems,” Real-Time Syst., vol. 20, no. 2, pp. 183–196, 2001.

[26] L. R. Welch, B. A. Shirazi, B. Ravindran, and C. Bruggeman, “DeSiDeRaTa: QoS Management Technology for Dy-

namic, Scalable, Dependable Real-time Systems,” in IFACs 15th Symposium on Distributed Computer Control Systems

(DCCS98). IFAC, 1998.

[27] D. Fleeman, M. Gillen, A. Lenharth, M. Delaney, L. Welch, D. Juedes, and C. Liu, “Quality-Based Adaptive Resource

Management Architecture (QARMA): A CORBA Resource Management Service,” IPDPS, vol. 03, p. 116b, 2004.

[28] C. D. Gill, “Flexible Scheduling in Middleware for Distributed Rate-Based Real-time Applications,” Ph.D. dissertation,

Department of Computer Science, Washington University, St. Louis, 2002.

23

[29] K. Bryan, L. C. DiPippo, V. Fay-Wolfe, M. Murphy, J. Zhang, D. Niehaus, D. T. Fleeman, D. W. Juedes, C. Liu,

L. R. Welch, and C. D. Gill, “Integrated CORBA Scheduling and Resource Management for Distributed Real-Time

Embedded Systems,” in RTAS ’05: Proceedings of the 11th IEEE Real Time on Embedded Technology and Applications

Symposium. Washington, DC, USA: IEEE Computer Society, 2005, pp. 375–384.

[30] J. Hatcliff, W. Deng, M. Dwyer, G. Jung, and V. Prasad, “Cadena: An Integrated Development, Analysis, and Verifi-

cation Environment for Component-based Systems,” in Proceedings of the 25th International Conference on Software

Engineering, Portland, OR, May 2003.

[31] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey, and B. Ellis, “VEST: An Aspect-based Compo-

sition Tool for Real-time Systems,” in Proceedings of the IEEE Real-time Applications Symposium. Washington, DC:

IEEE, May 2003, pp. 58–69.

[32] A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle, and G. Karsai, “Composing Domain-Specific

Design Environments,” IEEE Computer, pp. 44–51, November 2001.

[33] S. Kodase, S. Wang, Z. Gu, and K. G. Shin, “Improving Scalability of Task Allocation and Scheduling in Large Dis-

tributed Real-time Systems using Shared Buffers,” in Proceedings of the 9th Real-time/Embedded Technology and

Applications Symposium (RTAS). Washington, DC: IEEE, May 2003.

[34] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for Quality of Service for CORBA Objects,” Theory

and Practice of Object Systems, vol. 3, no. 1, pp. 1–20, 1997.

[35] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal, “Packaging Quality of Service Control Behaviors for Reuse,” in

Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-time Distributed Computing (ISORC).

Crystal City, VA: IEEE/IFIP, April/May 2002, pp. 375–385.

[36] P. Manghwani, J. Loyall, P. Sharma, M. Gillen, and J. Ye, “End-to-End Quality of Service Management for Distributed

Real-Time Embedded Applications,” ipdps, vol. 03, p. 138a, 2005.

[37] J. Kinnebrew, N. Shankaran, G. Biswas, and D. Schmidt, “A Decision-Theoretic Planner with Dynamic Component

Reconguration for Distributed Real-Time Applications,” in Poster paper at the Twenty-First National Conference on

Artificial Intelligence, Boston, MA, July 2006.

[38] N. Shankaran, X. Koutsoukos, C. Lu, D. C. Schmidt, and Y. Xue, “Hierarchical Control of Multiple Resources in

Distributed Real-time and Embedded Systems,” in Proceedings of the Euromicro Conference on Real-Time Systems

(ECRTS 06), Dresden, Germany, July 2006.

[39] S. Bagchi, G. Biswas, and K. Kawamura, “Task Planning under Uncertainty using a Spreading Activation Network,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 30, no. 6, pp. 639–650, Nov. 2000.

[40] D. de Niz and R. Rajkumar, “Partitioning Bin-Packing Algorithms for Distributed Real-time Systems,” International

Journal of Embedded Systems, 2005.

24

[41] Deployment and Configuration Adopted Submission, OMG Document mars/03-05-08 ed., Object Management Group,

July 2003.

[42] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software.

Reading, MA: Addison-Wesley, 1995.

[43] N. Roy, N. Shankaran, and D. C. Schmidt, “Bulls-Eye: A Resource Provisioning Service for Enterprise Distributed

Real-time and Embedded Systems,” in Proceedings of the 8th International Symposium on Distributed Objects and

Applications, Montpellier, France, Oct/Nov 2006.

[44] J. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling Algorithm: Exact Characterization and Average

Case Behavior,” in Proceedings of the 10th IEEE Real-time Systems Symposium (RTSS 1989). IEEE Computer Society

Press, 1989, pp. 166–171.

[45] D. B. Stewart and P. K. Khosla, “Real-time Scheduling of Sensor-Based Control Systems,” in Real-time Programming,

W. Halang and K. Ramamritham, Eds. Tarrytown, NY: Pergamon Press, 1992.

25

