
Feature_ Introduction to the Generic Eclipse Modeling System

TO BE FILLED IN BY THE EDITOR
Heading: Introduction to the Generic Eclipse Modeling System 2.0.5
Subheading: Using GEMS for Developing Graphical Modeling Tools for Eclipse
Standfirst: Graphical Model-Driven Engineering (MDE) tools have become extremely popular in the
development of applications for a large number domains. In many cases, however, an organization does
not have the resources or time available to develop a graphical modeling environment from scratch using
the Eclipse Modeling Framework (EMF), Graphical Editor Framework (GEF), or Graphical Modeling
Framework (GMF). In other situations, the complexity of the domain limits the feasibility of using a
graphical model to describe a domain solution. The Generic Eclipse Modeling System (GEMS), which is part
of the Eclipse Generative Modeling Technologies (GMT) project, helps developers rapidly create a graphical
modeling tool from a visual language description or metamodel without any coding in third-generation
languages. GEMS automatically generates the requisite EMF, GEF, and GMF code required to implement
the editor from a metamodel. GEMS also provides extensive capabilities for expressing modeling guidance
and performing optimization. Finally, graphical modeling tools created with GEMS automatically support
complex capabilities, such as remote updating and querying, template creation, styling with Cascading
Style Sheets (CSS), and model linking.
Author Name: Jules White
Author Bio: Jules White is a researcher in the Distributed Object Computing (DOC) group at Vanderbilt
University’s Institute for Software Integrated Systems (ISIS). Mr. White’s research focuses on reducing
the complexity of modeling complex domains. Before joining the DOC group, he worked in IBM’s Boston
Innovation Center. Mr. White is the head of development for the Generic Eclipse Modeling System (GEMS).
Author Name: Douglas C. Schmidt
Author Bio: Douglas C. Schmidt is a Full Professor in the Electrical Engineering and Computer Science
(EECS) Department, Associate Chair of the Computer Science and Engineering program, and a Senior
Research Scientist at the Institute for Software Integrated Systems (ISIS) at Vanderbilt University,
Nashville, TN. For the past two decades, he has led pioneering research on patterns, optimization
techniques, and empirical analyses of object-oriented and component-based frameworks and model-
driven development tools that facilitate the development of distributed middleware and applications. Dr.
Schmidt is an expert on distributed computing patterns and middleware frameworks and has published
over 300 technical papers and 6 books that cover a range of topics including high-performance
communication software systems, parallel processing for high-speed networking protocols, real-time
distributed object computing, object-oriented patterns for concurrent and distributed systems, and model-
driven development tools. In addition to his academic research, Dr. Schmidt has over fifteen years of
experience leading the development of widely used, open-source middleware platforms
(www.dre.vanderbilt.edu) that contain a rich set of components and domain-specific languages that im-
plement key patterns for high-performance distributed systems. Dr. Schmidt received his Ph.D. in Com-
puter Science from the University of California, Irvine in 1994. URL: www.dre.vanderbilt.edu/~schmidt.
Email: schmidt@dre.vanderbilt.edu.
Author Name: Andrey Nechypurenko
Author Bio: Andrey Nechypurenko is a …... at Siemens Corporate Technology SE2 in Munich, Germany.
Author Name: Egon Wuchner
Author Bio: Egon Wuchner is a …... at Siemens Corporate Technology SE2 in Munich, Germany.
Character Count:
Figures: 13
Issue:
Publication Month:
Section:

Introduction to the Generic Eclipse Modeling System
by Jules White

Developing a Graphical Modeling Tool for Eclipse

Graphical Model-Driven Engineering (MDE) tools have become extremely popular in the
development of applications for a large number domains. A wide range of frameworks support
development of MDE tools for Eclipse. The Eclipse Modeling Framework (EMF) provides an object graph
for representing models, as well as capabilities for (de)serializing models in a number of formats, checking
constraints, and generating various types of tree editors for use in Eclipse. The Graphical Editor Framework
(GEF) and Draw2D provide the foundations for building graphical views for EMF and other models types.
Finally, the Graphical Model Framework (GMF) for Eclipse provides a rich framework for reducing the

Feature_ Introduction to the Generic Eclipse Modeling System

complexity of developing an GEF/EMF-based modeling tool. These frameworks are designed to provide
the degrees of flexibility needed to support products, such as IBM’s Rational Architect.

MDE tools are rarely simple to develop, however, and are generally reserved only for the highest
payoff domains. Regardless of the framework used, developers must still produce a significant amount of
XML and Java code to construct a working graphical modeling tool. Smaller organizations tend to lack the
required development expertise to implement a graphical modeling tool using EMF, GEF, and GMF. Even
in situations where an organization can develop a graphical modeling tool from scratch, the time spent
performing these activities subtracts from the time available for developing the true assets of these tools;
the complex domain validation, code-generation, optimization, and simulation capabilities. Moreover, there
is a significant cost associated with maintaining a graphical modeling tool infrastructure, as understanding
of the domain deepens and the tool and DSML requirements change.

The Generic Eclipse Modeling System (GEMS), a part of the Eclipse Generative Modeling
Technologies (GMT) project, helps developers rapidly create a graphical modeling tool from a visual
language description (metamodel) without any coding in third-generation languages. GEMS is an open-
source project, based on the Eclipse License, that has been developed in conjunction with Siemens CT SE2,
IBM, and Prismtech. GEMS gives developers the ability to graphically describe the domain-specific
modeling language(s) (DSML) they wish to create a modeling tool for and automatically generate the
requisite EMF, GEF, and GMF code required to implement an Eclipse-based plug-in for creating and
editing instances of the DSML. GEMS pulls together these various Eclipse modeling frameworks and uses
standardized naming conventions, file formats, and other simplifications to make coding an editor from
scratch unnecessary. Even though GEMS uses multiple techniques to allow developers not to write code
unless they want to, the decisions and default visualizations used by GEMS can still be overridden through
the use of Cascading Style Sheets (CSS), extending GEMS extension-points and other facilities, such as
model templates and remote updating mechanisms.

GEMS substantially reduces the cost of developing a graphical modeling tool by allowing developers
to focus on the key aspects of their tool: the specification of the DSML and the intellectual assets built
around the use of the language. The infrastructure to create, edit, and constrain instances of the language is
generated automatically by GEMS from the language specification. As the language specification changes,
GEMS can regenerate the Java, EMF, GEF, GMF, and XML descriptors required to edit the new language.
Moreover, GEMS allows the separation of language development, coding, as well as “look and feel”
development, such as changing how modeling elements appear based on domain analyses.

A GEMS-generated graphical modeling tool can have both static and dynamic visual behaviour
specified through stylesheets. Graphic designers or developers can create styles and icons that should be
applied to elements when they are in specific states. For example, a developer building a tool for specifying
the deployment of software components to nodes could develop separate icons and styles for drawing a
component when it is deployed and undeployed. The CSS capabilities of GEMS will be discussed in detail
in the Section “Customizing the Look of the Modeling Tool with CSS.”

The process for developing and using a graphical modeling tool using GEMS is based on the Model
Integrated Computing paradigm [5] developed at Vanderbilt University and originally implemented in the
Generic Modeling Environment (GME) [6]. This process can be seen in Figure 1.

Feature_ Introduction to the Generic Eclipse Modeling System

INSERT GEMS_Dev_Cycle_w.jpg
Figure 1: The GEMS Development Cycle

The first step for building a graphical modeling tool with GEMS is to define a metamodel for the

DSML. This metamodel describes the graphical entities, connection types, attributes, and other visual
syntax information needed by GEMS. In step two, the user invokes a code generator the produces the EMF,
GEF, GMF, XML etc. needed to create a plug-in for editing the DSML described by the metamodel.
Graphic designers or developers create custom icons and CSS styles for the DSML elements in the third
step. For the fourth step, developers specify the constraints on the model that GEMS uses to ensure that
only correct models are built with the model. The constraints generally involve domain information that
requires a constraint language to express properly. Finally, domain experts use the modeling tool produced
by GEMS to construct models of the domain. If the DSML is sufficiently expressive that no modifications
are needed for the metamodel, model interpreters (or code generators) are developed to produce software
artifacts (such as Java code or XML descriptors), run simulations, or execute the model. The following
sections describe each of these steps in detail.

Creating a GEMS Metamodel
The core of a GEMS-based modeling tool is a metamodel describing the syntax of the DSML. As a

case study, we describe the development of a tool, called AUTODeploy, for specifying the deployment of
software components to nodes in a data center. AUTODeploy allows IT professionals to describe each
software component they wish to deploy in their data center, the requirements of the node hosting each
component, the nodes available in the data center, and the resources available on each node. AUTODeploy
can also specify where components should be deployed by creating connections between components and
nodes. Finally, this modeling tool can automatically deduce and create a valid deployment for all of the
components. Figure 2 shows a screenshot for AUTODeploy that we will produce using GEMS.

Feature_ Introduction to the Generic Eclipse Modeling System

INSERT autodeploy.eps
Figure 2: A GEMS-based Software Component Deployment Tool

Examining the finished AUTODeploy product we are creating helps clarify how the various parts of
the GEMS development cycle fit together and map to AUTODeploy, which has five different types of
model entities or elements. The first entity is the DeploymentPlan, which is represented as the main white
canvas containing the Nodes and Components. The DeploymentPlan is the root entity in our model. Node
and Component entities can be seen on the right and left hand sides of the model, respectively. Two more
entity types are present but not visible in the screenshot. Requirements are child entities of Components that
can be seen by expanding a Component by clicking on the button in the upper left hand corner of each
Component. Resources are child entities of Nodes and are also not visible. We can, however, see evidence
of the Resources in the properties pane of the tool.

The Overview attribute in the properties pane visible in the bottom of Figure 2 provides a brief outline
of the children contained by each entity and the attributes of the children. CPU, GeoDB, and OS are all
Resources contained by Host3. The finished AUTODeploy tool contains connections between Components
and Nodes. These are Deployment connections that were defined in the metamodel. Figure 3 shows the
complete metamodel for our software component deployment tool.

Feature_ Introduction to the Generic Eclipse Modeling System

INSERT metamodel.eps
Figure 3, The Complete Software Component Deployment Metamodel

The Entity elements in the metamodel correspond to the entities we described in AUTODeploy. The
metamodel can be viewed as a class diagram for the instances of the model entities seen in AUTO
Deploy. The Entity elements in the figure above correspond to the types in our DSML. The Atrributes,
visualized with the “@” sign, represent the properties of the types that can be set in the property pane. The
Connection element, called Deployment, corresponds to the Deployment connection type in AUTODeploy.
Figures 4, 5, 6, and 7 illustrate these mappings.

INSERT entity_mapping.jpg
Figure 4: Realization of Entities in AUTODeploy

Feature_ Introduction to the Generic Eclipse Modeling System

INSERT connection_mapping.jpg
Figure 5: Realization of Connection Entities

Feature_ Introduction to the Generic Eclipse Modeling System

INSERT attribute_mapping.jpg
Figure 6: Realization of Attributes in AUTODeploy

INSERT containment_mapping.jpg

Feature_ Introduction to the Generic Eclipse Modeling System

Figure 7: Realization of Containment in AUTODeploy

Entities can have Inheritance relationships between them, although this example does not show this
feature. Inheritance relationships are created by adding an Inheritance element to the model and connecting
it to the parent type and derived type(s). Any attributes, connections, or containment relationships that are
specified by the parent are inherited by derived types. Aspects are another metamodel element that can be
defined to group sets of Entities and Connections into separate views on the model. Entity types are
associated with an Aspect element in the metamodel through containment relationships. In the generated
modeling tool, Aspects appear as unique views that can be used to filter the currently visible Entity and
Connection types. Custom CSS styles can be defined for an element so that its visual appearance changes
when the aspect changes.

Generating a Graphical Modeling Tool Using GEMS

After creating a metamodel, GEMS’s DSML plug-in generator can be invoked to create the modeling

tool. The code generator first traverses the various entities in the model and generates an Ecore model,
which is a set of EMF objects that represent the metamodel or syntax of the visual language, to implement
the metamodel. GEMS then invokes the appropriate EMF code generators to produce EMF classes that
implement the Ecore definition. This process can be seen in step 1 of Figure 8.

INSERT gems_generation.jpg
Figure 8: Realization of Containment in AUTODeploy

The generated EMF classes are used as the object graph underlying AUTODeploy. These classes
automate key aspects of serialization and de-serialization. By default, GEMS leverages EMF’s ability to
save EMF models to XMI. Other serializers can be plugged in to persist models in a database or use an
alternate file format. The EMF object graph also allows GEMS to leverage the libraries available for
Eclipse to check Object Constraint Language (OCL) constraints against a model.

Comment [ds1]: Jules, can you please
briefly explain what Ecore is? – fixed

Jules, it’s still not really clear what the
“EMF metamodel” means/does. Can you
please pull this out of the parens and
briefly explain it?!

Feature_ Introduction to the Generic Eclipse Modeling System

The second set of code generated by GEMS are the classes required to plug the generated EMF code
into the GEMS runtime framework. The GEMS runtime provides a layer built on top of GEF (and soon
GMF) that provides higher level capabilities, such as applying CSS styles to elements, exposing remote
update mechanisms, and providing constraint solver modeling intelligence. The relationship between the
generated artifacts, GEMS runtime, and Eclipse modeling frameworks can be seen in Figure 9.

INSERT gems_stack.jpg
Figure 9: GEMS and Eclipse Modeling Frameworks

The GEMS runtime provides numerous extension points for adding custom functionality to the
generated modeling tool. Extension points are available for adding actions that can be triggered by OCL,
Java, or role-based object constraint assertions on the model; customization of menus; custom code
generators; remoting mechanisms; custom serializers; and many other features. As the underlying Eclipse
modeling technologies evolve, GEMS continues to incorporate and expose their new features.

The third set of code artifacts, generated by GEMS are the various XML descriptors, build
specifications, classpath directives, and icons required to integrate the generated tool into Eclipse as a plug-
in. When a modeling tool is generated into a Java project, these various artifacts configure the project
properly to build the plug-in and make it visible for testing with the runtime workbench. The build artifacts
also configure the project so that it can be exported properly as an Eclipse modeling tool plug-in.

Customizing the Look of the Modeling Tool Using GEMS

Feature_ Introduction to the Generic Eclipse Modeling System

A goal of GEMS is to avoid requiring developers to use third-generation languages to write any
graphics code required to implement a modeling tool. In most cases, however, simply providing a stock set
of visualizations will not suffice. GEMS therefore allows developers to customize the look and feel of their
modeling tools. GEMS supports this capability by allowing developers to change the default icons visible
on the palette and in the model, which enables developers to quickly create impressive visualizations that
match the domain notations.

Swapping icons, isn’t the only mechanism GEMS provides to customize the look and feel of modeling
tools like AUTODeploy. Developers can use CSS style sheets to change fonts, colors, backgrounds,
background images, line styles, and many more features of a GEMS-based modeling tool. If an
organization has a graphic design department, the customization of the look is similar enough to using
HTML and CSS that they can often handle this effort. Figure 10, shows the application of a CSS line style
to change the line to a 4 pixel, dotted, green line.

INSERT applying_css.jpg
Figure 10: Applying a CSS Line Style

CSS styles are applied to elements using traditional CSS selectors. The key difference is that the
selectors refer to the roles and types specified in the metamodel. For example, to make all the Components
that are deployed have a different style than un-deployed Nodes, a style could be created with a selector
that matches source role of a Deployment connection. After adding this style, any Component that serves as
the source of a Deployment connection will have the style applied.

CSS selectors can also be matched against different aspects of a model. For example, a style can be
created to only match the target of a Deployment connection if the current aspect being used for
visualization is the Nodes aspect. The Nodes aspect would show only the Nodes in the model and apply the
Deployment target style to any node that had Components deployed to it.

Even more complex visual behaviors can be created by leveraging a feature called TAGS in GEMS.
TAGS are textual markup that can be added to modeling elements to denote that they have a certain
property. For example, AUTODeploy could provide visual queues to modelers by changing the background
color of nodes who cannot host any more components to red. Two pieces of code are required to create this
complex behaviour based on domain analysis:
1. An OCL, Java, or role-based object constraint trigger must be added to add a “NodeFull” tag to nodes

whose resources cannot support any more Components.

Feature_ Introduction to the Generic Eclipse Modeling System

2. Create a CSS style that matches Nodes with the “NodeFull” tag.
The GEMS TAGS facility supports the combination of domain analysis with CSS styles to rapidly develop
complex domain-specific visual behaviors, such as changing the icon for a node that doesn’t have sufficient
resources to host anymore components or highlighting green nodes that have more than a predefined level
of slack on their CPU.

Adding Domain Constraints
A key benefit of MDE tools is their ability to capture and enforce domain constraints. The GEMS

constraint framework supports a number of constraint types, including OCL, Java, and role-based object
constraints. Other constraint languages can be plugged into GEMS by extending various extension points in
the plug-in.

GEMS views constraints more as triggers than actual constraints since this allows constraints to
perform a number of actions to guarantee model correctness, such as showing a warning message, vetoing a
model change, or adding elements to fix the error. In GEMS, a domain analysis is performed using one of
the constraint languages, such as OCL, and when the analysis indicates that a constraint has been violated,
an action is triggered. For a traditional constraint, the action can veto the modeling event that produced the
constraint violation and roll back any changes that it caused. A trigger can also result in a message popping
up above the modeling element that has violated the constraint. Much more complex actions can take place
as well. For example, a constraint violation can trigger an action that runs automated diagnostics to identify
why the event was generated, as seen in Figure 11.

INSERT constraint_violation.jpg
Figure 11: A Constraint Violation Triggering a Popup Warning

Model Intelligence
A unique feature of GEMS that sets it apart from other MDE tools is its integration of Role-based

Object Constraints (ROCs). ROCs allow developers to describe declarative domain constraints, just like
they would with OCL, except that GEMS can leverage its built-in constraint solvers to find solutions for
many types of constraint problems. To put it another way, if you tell the GEMS-based modeling tool about
what the rules are for a correct solution, it can find the solution for you.

For example, in AUTODeploy, each Component must be deployed to a node that supports the proper
configuration of middleware, OS, OS version, databases, etc. These constraints are modeled as

Comment [s2]: Jules, please briefly
explain the motivation for this
perspective!

Feature_ Introduction to the Generic Eclipse Modeling System

Requirements that must be matched with >,<, or = against a value on a Resource contained by a Node. For
example, you could have the requirements, OSVersion > 2.3, MultiCoreCPU = true, FireWallInstalled =
true, or HeatProduction < 25. In AUTODeploy, users can add arbitrary name, comparator, value
requirements that must be matched against the Resources contained by a Node.

A realistic deployment model for a data center will likely contain hundreds of servers and hundreds or
thousands of software components. Human modelers clearly can’t point and click their way through a
deployment of this size. The GEMS Model Intelligence and ROCs are designed to handle problems at this
scale.

Model Intelligence provides a modeling tool like AUTODeploy with two key capabilities. First, it
allows the tool to show a modeler the valid ways of satisfying a constraint. For example, in AUTODeploy,
when a user places the mouse over a Component, Model Intelligence can highlight the Nodes that satisfy
the configuration requirements for the Component. This type of suggestion can be seen in Figure 12.

INSERT local_guidance.jpg
Figure 12: Model Intelligence Suggesting Deployment Locations

Suggesting local modeling decisions is certainly a huge improvement over merely constraint checking
a manually produced solution. The real benefit of Model Intelligence becomes evident when it is combined
with batch processing. As described previously, large-scale models are too complex to manage manually,
particularly if the model has complex global constraints, such as resource constraints. GEMS provides a
facility for combining batch processing with Model Intelligence to perform complex assignments
automatically, such as finding a target host for EVERY Component in a model.

To see how this could work using GEMS, we will add the following ROC rules written in Prolog to
AUTODeploy:

compare_value(V1,V2,'>') :- V1 > V2.
compare_value(V1,V2,'<') :- V1 < V2.
compare_value(V1,V1,'=').

matches_resource(Req,Resources) :-
 member(Res,Resources),
 self_name(Req,RName),
 self_name(Res,RName),

Feature_ Introduction to the Generic Eclipse Modeling System

 self_type(Req,Type),
 self_value(Req,Rqv),
 self_value(Res,Rsv),
 comparevalue(Rsv,Rqv,Type).

can_deploy_to(Componentid,Nodeid) :-
 self_type(Componentid,component),
 self_type(Nodeid,node),
 self_requires(Componentid,Requirements),
 self_provides(Nodeid,Resources),
 forall(member(Req,Requirements),matches_resource(Req,Resources)).

These rules implement exactly the requirement to resource matching that we described earlier. They
tell Model Intelligence to only deploy a Component to a Node if all of the Requirements are met by the
Node. We can then make the rule “can_deploy_to” invokable as a batch process. The result of running this
Model Intelligence batch processor can be seen in Figure 13.

INSERT batch_process.jpg
Figure 13: Model Intelligence Assigning a Target Host for Every Component

The ROCs that Model Intelligence uses are a programming paradigm built on top of constraint solvers.
The default solver that is packaged with GEMS uses Prolog since it provides a large number of constraint
solver and optimizer implementations, an easy to use declarative language, and good performance. ROCs
allow users to describe constraints using domain-specific notation, while at the same time allowing existing
complex Prolog solvers and algorithms to be plugged-in. ROCs is an extensible paradigm not limited solely
to Prolog-based solvers. New solvers, such as highly optimized bin-packers, simplex methods, or other
libraries can be incorporated into the paradigm. Plugging a solver into ROCs is a non-trivial task, however,
and is rarely needed. In the software component deployment modeling tool that we developed with GEMS,
complex Prolog-based solvers have been developed for resource constraints. We are in the process of
templatizing and incorporating these complex solvers into the base ROCs installation.

Concluding Remarks
This article has described the powerful features available for building graphical modeling tools with

GEMS. The article has just scratched the surface of what GEMS provides and many features, such as

Feature_ Introduction to the Generic Eclipse Modeling System

remote updating and model templatization have been omitted, due to space limitations. For more
information on GEMS, please see our project website [1].

Resources
[1] GEMS: http://www.eclipse.org/gmt/gems
[2] GEMS Download and Development: http://www.sf.net/projects/gems
[3] GEMS Research at the Distributed Object Computing Group
http://www.dre.vanderbilt.edu/~jules/gems.htm
[4] The Distributed Object Computing Group http://www.dre.vanderbilt.edu
[5] Model-Integrated Computing at ISIS: http://www.isis.vanderbilt.edu/mic.html
[6] Generic Modeling Environment (GME): http://www.isis.vanderbilt.edu/Projects/gme

