
26.11.1999 HS-HA.doc

Half Sync/Half Async 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Half Sync/Half Async

The Half-Sync/Half-Async architectural pattern decouples synchro-
nous tasks from asynchronous tasks in complex concurrent systems.

Example An operating system is a widely-used example of a complex
concurrent system that manages many different types of applications
and hardware. For instance, it coordinates and demultiplexes the
communication between standard Internet networking applications,
such as telnet , ftp , smtp , dns , and inetd , and hardware I/O
devices, such as network interfaces, disk controllers, end-user
terminals, and printers. The operating system is responsible for
managing the scheduling, communication, protection, and memory
allocation of all its concurrently executing applications and hardware
devices.

One way to implement a highly efficient operating system is to drive
it entirely by asynchronous interrupts. This design is efficient
because it maps directly onto the event notification mechanism used
by most hardware devices. For instance, packets arriving on network
interfaces can be delivered asynchronously to the operating system
by hardware interrupts, processed asynchronously by higher-layer
protocols, such as TCP/IP, and finally consumed by applications,
such as telnet or ftp , which can be notified by asynchronous
signals, such as SIGIO [Ste97].

FTP INETD DNS

TELNET SMTP

Operating System

Applications

Hardware

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

Experience has shown, however, that it is hard to develop complex
concurrent systems that are based entirely on asynchronous
processing. In particular, the effort required to program, validate,
debug, and maintain asynchronous applications can be prohibitively
expensive, tedious, and error-prone. Therefore, many software
developers prefer to use synchronous programming techniques, such
as multi-threading or multi-processing, which may be easier to learn
and understand than asynchronous techniques, such as signals or
interrupts.

Unfortunately, basing complex concurrent systems entirely on
synchronous processing often makes it hard to meet stringent quality
of service requirements. This problem stems from the additional time
and space overhead associated with implementations of synchronous
multi-threading or multi-processing techniques. These synchronous
techniques are typically less efficient because they add more
abstraction layers between asynchronously triggered hardware
devices, operating system services, and higher-level applications.

Thus, a key challenge facing developers of complex concurrent
systems is how to structure asynchronous and synchronous
processing in order to reconcile the need for programming simplicity
with the need for high quality of service. There is a strong incentive to
use a synchronous processing model to simplify application
programming. Likewise, there is a strong incentive to use asynchrony
to improve quality of service.

Context A complex concurrent system that performs both asynchronous and
synchronous processing.

Problem Complex concurrent systems are often characterized by a mixture of
asynchronous and synchronous tasks that must be processed at
various levels of abstraction. These types of systems require the
simultaneous resolution of the following two forces:

• Certain tasks in complex concurrent systems must be processed
asynchronously in order to satisfy quality of service requirements.
For instance, protocol processing within an operating system
kernel is typically asynchronous because I/O devices are driven by
interrupts that are triggered by the network interface hardware. If
these asynchronous interrupts are not handled immediately the

26.11.1999 HS-HA.doc

Half Sync/Half Async 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

hardware may function incorrectly by dropping packets or
corrupting hardware registers and memory buffers.

It is hard, however, to write complex programs where all tasks are
triggered entirely by asynchronous interrupts. In particular,
asynchrony can cause subtle timing problems and race conditions
when a thread of control is preempted by an interrupt handler.
Moreover, in addition to a run-time stack, asynchronous programs
often require data structures that contain additional state
information. When interrupts occur, programmers must save and
restore these data structures explicitly, which is tedious and error-
prone. In addition, it is hard to debug asynchronous programs
because interrupts can occur at different, often non-repeatable,
points of time during program execution.

In contrast, it may be easier to write synchronous programs
because tasks can be constrained to occur at well-defined points in
the processing sequence. For instance, programs that use
synchronous read() and write() system calls can block awaiting
the completion of I/O operations. The use of blocking I/O allows
programs to maintain state information and execution history in
their run-time activation record stack, rather than in separate data
structures that must be managed by programmers explicitly.

• Although synchronous programs are generally easier to write,
there are circumstances where quality of service requirements
cannot be achieved if many or all tasks are processed
synchronously within separate threads of control. The problem
stems from the fact that each thread contains resources, such as
a run-time stack, a set of registers, and thread-specific storage,
that must be created, stored, retrieved, synchronized, and
destroyed by a thread manager. A non-trivial amount of time and
space may be required to manage threads. For example, if an
operating system associates a separate thread to process each
hardware I/O device synchronously within the kernel, the thread
management overhead can be excessive.

In contrast, it may be more efficient to write asynchronous
programs because tasks can be mapped directly onto hardware or
software interrupt handlers. For instance, asynchronous I/O
based on interrupt-driven DMA enables communication and
computation to proceed simultaneously and efficiently. Likewise,

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

asynchronous systems structured using interrupts may incur less
overhead from context switching [SchSu95] than equivalent
synchronous systems structured using threads because the
information needed to maintain program state can be reduced.

Although the need for both programming simplicity and high quality
of service may appear to conflict, it is essential that both these forces
be resolved effectively in complex concurrent systems.

Solution Decompose the tasks in the system into three layers: synchronous,
asynchronous, and queueing. Process higher-layer tasks, such as
database queries or file transfers, synchronously in separate threads
or processes in order to simplify concurrent programming.
Conversely, process lower-layer tasks, such as servicing interrupts
from network interfaces, asynchronously in order to enhance quality
of service. Communication between tasks residing in the separate
synchronous and asynchronous layers should be mediated by a
queueing layer.

Structure The participants in the Half-Sync/Half-Async pattern include the
following:

A synchronous task layer performs high-level processing tasks. Tasks
in the synchronous layer run in separate threads or processes that
have their own run-time stack and registers. Therefore, they can
block while performing synchronous operations, such as I/O. For
instance, application processes can use read() and write() system
calls to perform I/O synchronously for their high-level tasks.

An asynchronous task layer performs lower-level processing tasks,
which typically emanate from multiple external I/O sources. Tasks in
the asynchronous layer do not have a dedicated run-time stack or
registers. Thus, they cannot block indefinitely while performing
asynchronous operations. For instance, I/O devices and protocol
processing in operating system kernels typically perform their tasks
asynchronously, often in interrupt handlers.

A queueing layer provides a buffering point between the synchronous
task layer and the asynchronous task layer. Messages produced by
asynchronous tasks are buffered at the queueing layer for subse-
quent retrieval by synchronous tasks and vice versa. In addition, the
queueing layer is responsible for notifying tasks in one layer when

26.11.1999 HS-HA.doc

Half Sync/Half Async 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

messages are passed to them from the other layer. For instance, op-
erating systems typically provide a socket layer that serves as the
buffering and notification point between the synchronous application
processes and the asynchronous I/O hardware devices in the kernel.

External I/O sources generate events that are received and processed
by the asynchronous task layer. For example, network interfaces,
disk controllers, and end-user terminals are common sources of
external I/O events for operating systems.

The following simplified UML class diagram illustrates the structure
and relationships between these participants.

Class
Queuing Layer

Responsibility
• Provides a buffering

between the
synchronous task
layer and the
asynchronous task
layer

Collaborator
• Asynchronous

Task Layer
• Synchronous

Task Layer

Class
Asynchronous
Task Layer

Responsibility
• Executes low-level

processing tasks
asynchronously

Collaborator
• Queuing Layer

Class
Synchronous
Task Layer

Responsibility
• Executes high-lev-

el processing tasks
synchronously

Collaborator
• Queuing Layer

Class
External
I/O Source

Responsibility
• Generates events

received and
processed by the
asynchronous task
layer

Collaborator
• Asynchronous

Task Layer

<<read/write>>

Sync Task 1 Sync Task 2 Sync Task 3

Queue

Async Task External
Event Source

<<read/write>>

<<read/write>>

<<dequeue/enqueue>> <<interrupt>>

Synchronous
Task Layer

Asynchronous
Task Layer

Queuing
Layer

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

Dynamics Asynchronous and synchronous layers in the Half-Sync/Half-Async
pattern interact in a ‘producer/consumer’ manner by exchanging
messages via a queueing layer. Below, we describe three phases of
interactions that occur when input arrives ‘bottom-up’ from external
I/O sources,

• Asynchronous phase. In this phase, external sources of input
interact with the asynchronous task layer via interrupts or
asynchronous event notifications. When asynchronous tasks are
finished processing their input they can communicate to the
designated tasks in the synchronous layer via the queueing layer.

• Queueing phase. In this phase, the queueing layer buffers input
passed from the asynchronous layer to the synchronous layer and
notifies the synchronous layer that input is available.

• Synchronous phase. In this phase, tasks in the synchronous layer
retrieves and processes input placed into the queueing layer by
tasks in the asynchronous layer.

The interactions between layers and components is similar when
output arrives ‘top-down’ from tasks in the synchronous layer.

: External I/O
Source

: Async Task : Queue

notification

read()

enqueues()

message

: Sync Task

work()

message

read()

message

work()

notification

26.11.1999 HS-HA.doc

Half Sync/Half Async 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Implementation This section describes how to implement the Half-Sync/Half-Async
pattern by factoring out tasks in a complex concurrent system into
synchronous and asynchronous layers that communicate solely
through a queueing layer.

1 Decompose the overall system into three layers: synchronous,
asynchronous, and queueing. The following criteria can be used to
determine where various tasks are configured into a system
architecture designed according to the Half-Sync/Half-Async pattern.

1.1 Identify higher-level or long-duration tasks and configure them into the
synchronous layer. Many tasks in a complex concurrent system are
easier to implement using synchronous processing. Often, these
tasks perform relatively high-level or long-duration application
processing, such as transferring large streams of data1 or performing
database queries. Tasks in the synchronous layer may block for
prolonged periods awaiting responses in accordance with application
protocols. If the data is not yet available, these synchronous tasks
can block at the queueing layer until the data arrives.

1.2 Identify lower-level or short-duration tasks and configure them into the
asynchronous layer. Other tasks in a system cannot block for
prolonged periods of time. Often, these tasks perform lower-level or
short-duration system processing that interacts with external
sources of events, such as graphical user interfaces or interrupt-
driven hardware network interfaces. To increase efficiency and
ensure response-time, these sources of events must be serviced
rapidly without blocking. Thus, these tasks are triggered by
asynchronous notifications or interrupts from external I/O sources
and run to completion, at which point they can insert their results
into the queueing layer.

1.3 Identify inter-layer communication tasks and configure them into the
queueing layer. The queueing layer is a mediator [GHJV95] that
exchanges messages between tasks in the asynchronous and
synchronous layers. The protocols used by tasks in the synchronous
and asynchronous layers to exchange messages is orthogonal to the
tasks performed by the queueing layer. Tasks associated with the

1. The Web server example from the Proactor pattern description (121) illustrates
these types of long-duration operations.

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

queueing layer include buffering and notification, layer-to-layer flow
control, and data copying.

2 Implement the three layers. The three layers in the Half-Sync/Half-
Async pattern can be implemented as follows.

2.1 Implement the synchronous layer. A common way to implement
higher-level or long-duration tasks is to use the Active Object pattern
(269). The Active Object pattern decouples method execution from
method invocation to simplify synchronized access to a shared
resource by methods invoked in different threads of control. Thus,
active objects can block, such as when performing synchronous I/O,
because they have their own run-time stack and registers.

Implement the asynchronous layer. These lower-level or shorter-
duration tasks can be implemented using passive objects, which
borrow their thread of control from elsewhere, such as the calling
thread or a separate interrupt stack. Therefore, to ensure adequate
response time for other system tasks, such as high-priority hardware
interrupts, these tasks must run asynchronously and cannot block
for long periods of time. There are several ways to process
asynchronous tasks:

• Demultiplex events from external sources using the Reactor or
Proactor patterns. The Reactor pattern (97) is responsible for
demultiplexing and dispatching of multiple event handlers that are
triggered when it is possible to initiate an operation without
blocking. The Proactor pattern (121) supports the demultiplexing
and dispatching of multiple event handlers that are triggered by
the completion of asynchronous operations. The behavior of both
patterns is similar, however, in that a handler cannot block for long
periods of time without disrupting the processing of other event
sources.

• Implement a multi-level interrupt scheme. These implementations
allow non-time critical processing to be interrupted by higher-
priority tasks, such as hardware interrupts, if higher priority
events must be handled before the current processing is done. To
prevent interrupt handlers from corrupting shared state while they
are being accessed, data structures used by the asynchronous
layer must be protected, such as by raising the processor priority
or by using semaphores [WS95].

26.11.1999 HS-HA.doc

Half Sync/Half Async 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

2.2 Implement the queueing layer. For input processing, messages are
typically ‘pushed’ from the asynchronous task layer to the queueing
layer, where the synchronous task layer then ‘pulls’ the messages
from the queueing layer. These roles are reversed for output process-
ing. The following topics must be addressed when implementing the
queueing layer.

• Define the queueing layer's buffering and notification mechanisms.
The presence of multiple CPUs, preemptive multi-threading, or
asynchronous hardware interrupts enable the simultaneous
execution of tasks in the asynchronous and synchronous layer.
Therefore, concurrent access to internal queue message buffers
must be serialized to avoid race conditions. In addition, it is
necessary to notify a task in one layer when messages are passed
to it from another layer.

The buffering and notification mechanisms provided by the queue-
ing layer are typically implemented using synchronization primi-
tives, such as semaphores, mutexes, and condition variables.
These mechanisms ensure that messages can be inserted and re-
moved to and from the queueing layer's message buffers without
corrupting internal data structures. Likewise, these synchroniza-
tion mechanisms can be used to notify the appropriate tasks when
data has arrived for them in the queueing layer.

The Message_Queue components in the examples from the Monitor
Object (299) and Active Object (269) patterns illustrates various
techniques for implementing a queueing layer.

• Define a layer-to-layer flow control mechanism. Systems cannot de-
vote an unlimited amount of resources to buffer messages in the
queueing layer. Therefore, it is necessary to regulate the amount of
data that is passed between the synchronous and asynchronous
layers. Layer-to-layer flow control is a technique that prevents syn-
chronous tasks from flooding the asynchronous layer at a faster
rate than messages can be transmitted and queued on network in-
terfaces [SchSu93].

Tasks in the synchronous layer can block. Thus, a common flow
control policy is to put a task to sleep if it produces and queues
more than a certain amount of data. When the asynchronous task
layer drains the queue below a certain level the synchronous task

10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

can be awakened to continue. In contrast, tasks in the asynchro-
nous layer cannot block. Therefore, if they produce an excessive
amount of data a common flow control policy is to have the queue-
ing layer discard messages. If the messages are associated with a
reliable connection-oriented transport protocol, such as TCP, the
sender will eventually timeout and retransmit.

• Minimize data copying overhead. Some systems, such as BSD
UNIX, place the queueing layer at the boundary between user-level
and kernel-level protection domains. A common way to decouple
these protection domains is to copy messages from user to kernel
and vice versa. However, this increases system bus and memory
load, which may degrade performance significantly when large
messages are moved across protection domains.

One way to reduce data copying is to allocate a region of memory
that is shared between the synchronous task layer and the
asynchronous task layer [DP93]. This design allows the two layers
to exchange data directly, without copying data in the queueing
layer. For example, [CP95] presents an I/O subsystem that
minimizes boundary-crossing penalties by using polled interrupts
to improve the handling of continuous media I/O streams. In
addition, this approach provides a buffer management system that
allows efficient page remapping and shared memory mechanisms
to be used between application processes, the kernel, and its
devices.

Example
Resolved

The BSD UNIX operating system [MBKQ96] [Ste97] demultiplexes
and coordinates communication between application processes and
I/O device hardware controlled by the BSD UNIX kernel. In the
following, we illustrate how the BSD UNIX applies the Half-Sync/
Half-Async pattern to receive data through its TCP/IP protocol stack
over Ethernet. We focus on the synchronous invocation of a read()
system call, asynchronous reception and protocol processing of data

26.11.1999 HS-HA.doc

Half Sync/Half Async 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

arriving on a network interface, and synchronous completion of the
read() call.

To reduce the complexity of network programming, application
processes commonly perform I/O synchronously via read() and
write() operations. For instance, an application process can receive
its data from the socket layer synchronously using the read() system
call. Moreover, an application can make read() calls at any point
during its execution. If the data is not available yet, the operating
system kernel can put the process to sleep until the data arrives from
the network, thereby allowing other application processes to proceed
concurrently.

For instance, consider an application process that receives TCP data
from the connected socket handle. To the application process, the
read() system call on the connection appears to be a synchronous
operation, for example, the process invokes read() and the data is
returned subsequently. Several asynchronous steps occur to
implement this system call, however, as described below.

When a read() call is issued it traps into the kernel, which vectors it
synchronously into the network socket code. The thread of control
ends up in the kernel's soreceive() function, which handles many
types of sockets, such as datagram sockets and stream sockets, and
transfers the data from the socket queue to the user. In addition, this
function performs the ‘Half-Sync’ part of the BSD UNIX operating
system processing.

Sync App

Socket Queues

Application
Process 1

Sync App
Process 3

Sync App
Process 2 Processes

Socket
Layer

Async Protocol
Processing

BSD Unix
Kernel

1,4: read(data)

3: enqueue(data)

2: interrupt

Network
Interface

12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

A simplified description of soreceive() is shown below:

/* Receive data from a socket after being invoked
synchronously on behalf of an application
process's read() system call. */

int soreceive (...) {
for (;;) {

if (not enough data to satisfy read request) {
/***** Note! *****
The following call forms the boundary
between the Sync and Async layers. */
sbwait (...); /* wait for data */

}
else

break;
}

/* copy data to user's buffer at normal priority */
uiomove (...);
return (error code); /* returns 0 if no error */

}

The code above illustrates the boundary between the synchronous
application process layer and the asynchronous kernel layer.
Although an application process can sleep while waiting for data, the
kernel cannot sleep because other application processes and I/O
devices in the system may require its services.

There are two ways the user's read() operation can be handled by
soreceive() , depending on the characteristics of the socket and the
amount of data in the socket queue:

• Completely synchronous. If the data requested by the application is
in the socket queue it is copied out immediately and the operation
completes synchronously.

• Half-synchronous and half-asynchronous. If the data requested by
the application has not yet arrived, the kernel will call the
sbwait() function to put the application process to sleep until the
requested data arrives.

Once sbwait() puts the process to sleep, the operating system
scheduler will context switch to another process that is ready to run.
To the original application process, however, the read() system call
appears to execute synchronously. When packet(s) containing the
requested data arrive the kernel will process them asynchronously,
as described below. When enough data has been placed in the socket

26.11.1999 HS-HA.doc

Half Sync/Half Async 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

queue to satisfy the user's request the kernel will wakeup the original
process and complete the read() system call, which returns
synchronously to the application.

To maximize performance within the BSD UNIX kernel, all processing
tasks are executed asynchronously because I/O devices are driven by
hardware interrupts. For instance, packets arriving on network
interfaces are delivered to the kernel via interrupt handlers initiated
asynchronously by the hardware. These handlers receive packets
from devices and trigger subsequent asynchronous processing of
higher-layer protocols, such as IP, TCP, or UDP. Valid packets
containing application data are ultimately queued at the socket layer,
where the BSD UNIX kernel schedules and dispatches application
processes waiting to produce or consume the data synchronously.

For instance, the ‘half-async’ processing associated with an
application's read() system call starts with a packet arriving on a
network interface, which causes an asynchronous hardware
interrupt. All incoming packet processing is done in the context of an
interrupt handler. It is not possible to sleep in the BSD UNIX kernel
during an interrupt because there is no application process context
and no dedicated thread of control. Therefore, an interrupt handler
must borrow the caller's thread of control, such as its stack and
registers. The BSD UNIX kernel uses this strategy to borrow the
thread of control from interrupt handlers and from application
processes that perform system calls.

Conventional versions of BSD UNIX use a two-level interrupt scheme
to handle packet processing. Hardware critical processing is done at
a high priority and less time critical software processing is done at a
lower priority level. This two-level interrupt scheme prevents the
overhead of software protocol processing from delaying the servicing
of other hardware interrupts.

The two-level BSD UNIX packet processing scheme is divided into
hardware-specific processing and software protocol processing. When
a packet arrives on a network interface it causes an interrupt at that
interface's interrupt priority. The operating system services the
hardware interrupt and then enqueues the packet on the input queue
in the protocol layer, such as the IP protocol. A network software
interrupt is then scheduled to service that queue at a lower priority.
Once the network hardware interrupt is serviced, the rest of the

14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

protocol processing is done at the lower priority level as long as there
are no other higher level interrupts pending.

If the packet is destined for a local process it is handed off to the
transport protocol layer. The transport layer performs additional
protocol processing, such as TCP segment reassembly and
acknowledgments. Eventually, the transport layer appends the data
to the receive socket queue and calls sbwakeup() . This call wakes up
the original process that was sleeping in soreceive() waiting for
data on that socket queue. Once this is done, the software interrupt
is finished processing the packet.

The following code illustrates the general flow of control in the BSD
UNIX kernel, starting with ipintr() , up through tcp_input() , to
sowakeup() , which forms the boundary between the asynchronous
and synchronous layers. The first function is ipintr() , which
handles inbound IP packets, as follows:

int ipintr (...) {
int s;
struct mbuf *m;

/* loop, until there are no more packets */
for (;;) {

/* dequeue next packet */
IF_DEQUEUE (&ipintrq, m);
/* return if no more packets
if (m == 0) return; */

if (packet not for us) {
/* route and forward packet */

} else {
/* packet for us... reassemble and call the
protocol input function, i.e.,tcp_input(),
to pass the packet up to the transport
protocol. */
(*inetsw[ip_protox[ip->ip_p]].pr_input)

(m, hlen);
}

}

When a TCP/IP packet is received by ipintr() , the inetsw()
‘protocol switch’ invokes the tcp_input() function, which processes
inbound TCP packets:

26.11.1999 HS-HA.doc

Half Sync/Half Async 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

int tcp_input (m, iphlen) {
/* Much complicated protocol processing omitted... */
/* We come here to pass data up to the application. */
sbappend (&so->so_rcv, m);
sowakeup((so), &(so)->so_rcv);
/* ... */

}

The sowakeup() function wakes up the application process that was
asleep in read() waiting for data to arrive from a TCP connection. As
discussed below, this function forms the boundary between the
asynchronous and synchronous layers.

When incoming data is appended to the appropriate socket queue,
the sowakeup() is invoked if an application process is asleep waiting
for data to be placed into its buffer.

void sowakeup (so, sb) {
/* ... */
if (an application process is asleep on this queue) {

/***** Note! *****
The following call forms the boundary
between the Async and Sync layers. */
wakeup ((caddr_t) &sb->sb_cc);

}
}

When a process goes to sleep there is a ‘handle’ associated with that
process. To wake up a sleeping process the BSD UNIX kernel invokes
the wakeup() call on that handle. A process waiting for an event will
typically use the address of the data structure related to that event as
its handle. In the current example, the address of the socket receive
queue (sb->sc_cc) is used as a handle.

If there are no processes waiting for data on a socket queue nothing
interesting happens.2 In our example use case, however, the original
process was sleeping in soreceive() waiting for data. Therefore, the
kernel will wake up this process in the soreceive() function, which
loops back to check if enough data has arrived to satisfy the read()
operation. If all the data requested by the application has arrived
soreceive() will copy the data to the user's buffer and the system
call will return.To the application process, the read() call appeared

2. Note that the kernel never blocks, however, and is always doing something
‘interesting’, even if that something is simply running an ‘idle’ process.

16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

to be synchronous, even though asynchronous processing and
context switching were performed while the process was sleeping.

Variants Combining asynchronous notification with synchronous I/O. It is pos-
sible for the synchronous task layer to be notified asynchronously
when data is buffered at the queueing layer. For instance, the UNIX
SIGIO signal-driven I/O mechanism is implemented using this tech-
nique [Ste97]. In this case, a signal is used to ‘push’ a notification to
a higher-level application process. This process can then use read()
to ‘pull’ the data synchronously from the queueing layer without
blocking.

Spawning synchronous threads on-demand from asynchronous
handlers. Another way to combine asynchronous notifications with
synchronous I/O is to spawn a thread on-demand when an
asynchronous operation is invoked. I/O is then performed
synchronously in the new thread. This approach ensures that the
resources devoted to I/O tasks are a function of the number of work
requests being processed in the system.

Providing asynchronous I/O to higher-level tasks. Some systems
extend the preceding model still further by allowing notifications to
push data along to the higher-level tasks. This approach is used in
the extended signal interface for UNIX System V Release 4 (SVR4). In
this case, a buffer pointer is passed along to the handler function
called by the operating system when a signal occurs.

Windows NT supports a similar mechanism using overlapped I/O and
I/O completion ports [Sol98].In this case, when an asynchronous
operation completes its associated overlapped I/O structure indicates
which operation completed and passes any data along. The Proactor
pattern (121) and Asynchronous Completion Token pattern (149)
describes how to structure applications to take advantage of
asynchronous operations and overlapped I/O.

Providing synchronous I/O to lower-level tasks. Single-threaded
operating systems, such as BSD UNIX, usually support a hybrid
synchronous/asynchronous I/O model only for higher-level
application tasks. In these systems, lower-level kernel tasks are
restricted to asynchronous I/O. Multi-threaded systems permit
synchronous I/O operations in the kernel if multiple wait contexts
are supported via threads. This is useful for implementing polled

26.11.1999 HS-HA.doc

Half Sync/Half Async 17

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

interrupts, which reduce the amount of context switching for high-
performance continuous media systems by dedicating a kernel
thread to poll a field in shared memory at regular intervals [CP95].

If the asynchronous task layer possesses its own thread of control it
can run autonomously and use the queueing layer to pass messages
to the synchronous task layer. Micro-kernel operating systems, such
as Mach or Amoeba [Tan95], typically use this design. The micro-
kernel runs as a separate ‘process’ that exchanges messages with
application processes [Bl90].

Known Uses UNIX Networking Subsystems. The BSD UNIX networking
subsystem [MBKQ96] and the original System V UNIX STREAMS
communication framework [Ri84] use the Half-Sync/Half-Async
pattern to structure the concurrent I/O architecture of application
processes and the operating system kernel. All I/O in these kernels
is asynchronous and triggered by interrupts. The queueing layer is
implemented by the Socket layer in BSD and by STREAM heads in
System V STREAMS. I/O for application processes is synchronous.
Most UNIX network daemons, such as telnet and ftp , are developed
as application processes that call the synchronous higher-level
read() /write() system calls. This design shields developers from
the complexity of asynchronous I/O handled by the kernel. There are
provisions for notifications, however, such as the SIGIO signal
mechanism, that can be used to trigger synchronous I/O
asynchronously.

CORBA ORBs. The multi-threaded version of Orbix, MT-Orbix
[Bak97], uses several variations of the Half-Sync/Half-Async pattern
to dispatch CORBA remote operations in a concurrent server. In the
asynchronous layer of MT-Orbix, a separate thread is associated with
each socket handle that is connected to a client. Each thread blocks
synchronously reading CORBA requests from the client. When a
request is received it is demultiplexed and inserted into the queueing
layer. An active object thread in the synchronous layer then wakes
up, dequeues the request, and processes it to completion by
performing an upcall to the CORBA servant.

ACE. The ACE framework [Sch97] uses the Half-Sync/Half-Async
pattern in an application-level Gateway [Sch96] that routes messages
between peers in a distributed system. The Reactor pattern (97) is

18

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

used to implement an object-oriented demultiplexing and dispatching
mechanism that handles indication events asynchronously, the ACE
Message_Queue class implements the queueing layer, and the ACE
Task class implements the Active Object pattern (269) in the
synchronous task layer.

Conduit. The Conduit communication framework [Zweig90] from the
Choices operating system project [CIRM93] implements an object-
oriented version of the Half-Sync/Half-Async pattern. Application
processes are synchronous active objects, an Adapter Conduit serves
as the queueing layer, and the Conduit micro-kernel operates
asynchronously.

Consequences The Half-Sync/Half-Async pattern has the following benefits:

Simplification and performance. Higher-level synchronous processing
tasks are simplified, without degrading overall system performance.
In complex concurrent systems, there are often many more high-layer
processing tasks than low-layer tasks. Therefore, decoupling higher-
layer synchronous tasks from lower-level asynchronous processing
tasks simplifies the overall system because complex concurrency
control, interrupt handling, and timing tasks can be localized within
the asynchronous task layer. The asynchronous layer also handles
low-level details, such as interrupt handling, that may be hard for
application developers to program. In addition, the asynchronous
layer can manage the interaction with hardware-specific components,
such as DMA, memory management, and I/O device registers.

Moreover, the use of synchronous I/O can simplify programming and
improve performance on multi-processor platforms. For example,
long-duration data transfers, such as downloading a large medical
image from a database [PHS96], can be simplified and performed
efficiently by using synchronous I/O. One processor can be dedicated
to the thread transferring the data, which enables the instruction and
data cache of that CPU to be associated with the entire transfer
operation.

Separation of concerns. Synchronization policies in each layer are
decoupled. Therefore, each layer need not use the same concurrency
control strategies. In the single-threaded BSD UNIX kernel, for
instance, the asynchronous task layer implements synchronization
via low-level mechanisms, such as raising and lowering CPU

26.11.1999 HS-HA.doc

Half Sync/Half Async 19

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

interrupt levels. In contrast, application processes in the
synchronous task layer implement synchronization via higher-level
mechanisms, such as monitor objects (299) and message queues.

➥For example, legacy libraries like X windows and Sun RPC are often
non-reentrant. Therefore, multiple threads of control cannot safely
invoke these library functions concurrently. However, to ensure
quality of service or to take advantages of multiple CPUs, it may be
necessary to perform bulk data transfers or database queries in
separate threads. The Half-Sync/Half-Async pattern can be used to
decouple the single-threaded portions of an application from the
multi-threaded portions. This decoupling of synchronization policies
in each layer enables non-reentrant functions to be used correctly,
without requiring changes to existing code. ❏

Centralization. Inter-layer communication is localized at a single
point because all interaction is mediated by the queueing layer. The
queueing layer buffers messages passed between the other two
layers. This eliminates the complexity of locking and serialization that
would occur if the synchronous and asynchronous task layers
accessed each other's memory directly.

However, the Half-Sync/Half-Async pattern also has the following
liabilities:

A boundary-crossing penalty may be incurred from synchronization,
data copying, and context switching overhead. This overhead typically
occurs when data is transferred between the synchronous and
asynchronous task layer via the queueing layer. In particular, most
operating systems that use the Half-Sync/Half-Async pattern place
the queueing layer at the boundary between the user-level and
kernel-level protection domains. A significant performance penalty
may be incurred when crossing this boundary. For example, the
socket layer in BSD UNIX accounts for a large percentage of the
overall TCP/IP networking overhead [HP91].

Asynchronous I/O for higher-level tasks is lacking. Depending on the
design of system interfaces, it may not be possible for higher-level
tasks to utilize low-level asynchronous I/O devices. Thus, the system
I/O structure may prevent applications from using the hardware
efficiently, even if external devices support asynchronous overlap of
computation and communication.

20

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

26.11.1999 HS-HA.doc

See Also The Half-Sync/Half-Async pattern can be viewed as a composite
pattern that combines Reactor/Proactor patterns with the Active
Object pattern. The synchronous task layer can use the Active Object
pattern (269). The Active Object pattern decouples method execution
from method invocation to simplify synchronized access to a shared
resource by methods invoked in different threads of control.

The asynchronous task layer may use the Reactor pattern (97) or
Proactor pattern (121) to demultiplex events from multiple I/O
sources. The Reactor and Proactor patterns are responsible for
demultiplexing and dispatching event and completion handlers,
respectively. These pattern can be used in conjunction with the Active
Object pattern to form the Half-Sync/Half-Async pattern.

Credits We would like to thank Lorrie Cranor and Paul McKenney for
comments and suggestions for improving this paper.

