
Reducing Enterprise Product Line Architecture
Deployment and Testing Costs via Model-Driven

Deployment, Configuration, and Testing

Jules White and Douglas C. Schmidt

Vanderbilt University, Department of Electrical Engineering and Computer Science, Nash-
ville, TN, 37212, USA

{jules, schmidt}@dre.vanderbilt.edu

Abstract. Product-line architectures (PLAs) are a paradigm for developing
software families by customizing and composing reusable artifacts, rather than
handcrafting software from scratch. Extensive testing is required to develop re-
liable PLAs, which may have scores of valid variants that can be constructed
from the architecture’s components. It is crucial that each variant be tested
thoroughly to assure the quality of these applications on multiple platforms and
hardware configurations. It is tedious and error-prone, however, to setup nu-
merous distributed test environments manually and ensure they are deployed
and configured correctly. To simplify and automate this process, we present
FireAnt, which is a tool for the model-driven development (MDD) of PLA de-
ployment and testing plans. To validate FireAnt, we use a distributed con-
straints optimization system case study to illustrate the cost savings of using an
MDD approach for the deployment and testing of PLAs.

1 Introduction

Product-line architectures (PLAs) [1] enable the development of a group of soft-
ware packages that can be retargeted for different requirement sets by leveraging
common capabilities, patterns, and architectural styles. The design of a PLA is typi-
cally guided by scope, commonality, and variability (SCV) analysis [2]. SCV cap-
tures key characteristics of software product-lines, including their (1) scope, which
defines the domains and context of the PLA, (2) commonalities, which describe the
attributes that recur across all members of the family of products, and (3) variabili-
ties, which describe the attributes unique to the different members of the family of
products.

Although PLAs simplify the development of new applications by reusing existing
software components, they require significant testing to ensure that valid variants
function properly. Testing is essential since even variants that obey the compositional
rules of the PLA may not function properly. For example, connecting two compo-
nents with compatible interfaces can produce a non-functional variant due to assump-
tions made by one component, such as boundary conditions, that do not hold for the

component it is connected to [3]. It is therefore crucial that PLAs undergo significant
testing to validate the correctness of all possible configurations of their components.

Deploying, configuring, and testing all valid variants of a PLA without automated
methods, however, is expensive and or infeasible. Large-scale product variants may
consist of thousands of component types and instances [4] that must be tested. This
large solution space presents the following key challenges to developing a PLA:

Challenge 1 – Creating a model of the PLA’s variant solution space. Tradi-
tional processes of identifying valid PLA variants involve software developers deter-
mining manually the software components that must be in a variant, the components
that must be configured, and how the components must be composed. Such manual
approaches are tedious and error-prone and are a significant source of system down-
time [5]. Manual approaches also do not scale well and become impractical with the
large solution spaces typical of PLAs.

Challenge 2 - Managing the complexity of hundreds of valid configuration
and deployment options for product line variants. Ad hoc techniques often employ
build and configuration tools, such as Make and Another Neat Tool (ANT) [6], but
application deployers still must manage the large number of scripts required to per-
form the component installations. Developing these scripts can involve significant
effort and require in-depth understanding of components. Understanding these intri-
cacies and properly configuring applications is crucial to their proper functionality
and quality of service (QoS) requirements [7]. Incorrect system configuration due to
operator error has also been shown to be a significant contributor to down-time and
recovery [5].

Developing custom deployment and configuration scripts for each variant leads to
a significant amount of reinvention and rediscovery of common deployment and con-
figuration processes. As the number of valid variants increases, there is a correspond-
ing rise in the complexity of developing and maintaining each variant’s deployment
and configuration infrastructure. Automated techniques can be used to manage this
complexity [8,9,10].

Challenge 3 - Evolving deployment, configuration, and testing processes as a
PLA evolves. To be viable, a PLA must evolve as the domain changes, which pre-
sents significant challenges to the maintenance of configuration, deployment, and
testing processes. Small modifications to composition rules can ripple through the
PLA, causing widespread changes in the deployment and configuration scripts. Main-
taining and validating the large configuration and deployment infrastructure is hard.
Moreover, as PLA components evolve, it is essential that regression testing be per-
formed on all PLA variants to identify those that may become non-functional due to
unforeseen side effects. With a large variant solution space, it becomes hard to rap-
idly evolve and validate the PLA.

Challenge 4 - Ensuring that a PLA is rigorously tested in all valid configura-
tions. Even when model-driven development (MDD) [11] techniques and tools, are
used to generate the customization, composition, packaging, and deployment code to
implement PLA variants [9, 12] it is still impossible to ensure that all correctly con-
structed variants will perform as modeled. In mission-critical domains, such as avion-
ics and automotive systems, it is essential that nonfunctional variants be discovered.
The large number of valid variants, however, makes it hard to test all the valid con-

figurations and deployments. Rapid regression testing in response to component
changes is even harder.

Challenge 5 – Identifying the performance characteristics of the variants. The
performance characteristics of each variant must be well understood to select the ap-
propriate variant to meet the QoS requirements. Only by performing rigorous per-
formance tests on the entire variant solution space is it possible to choose the optimal
variant for a requirement set. which is hard as the number of variants increases. Per-
formance testing is further complicated in PLAs for distributed systems where the
deployment and collocation options can have large impacts on the system perform-
ance.

Challenge 6 - Managing the packaging complexities of a product line variant.
Each package that is deployed to a target must contain the minimal amount of physi-
cal artifacts, such as DLLs and Java ARchive (JAR) files, required to deploy the
variant. Minimizing the footprint of the installation artifacts, ensures that the target
environment does not have wasted disk space and that bandwidth and time is not used
to transfer unnecessary items to the target. It is also desirable to have a configuration
process that is specific to the variant to ensure that unexpected complications involv-
ing unused packages do not affect the deployment. Creating individual packages and
configuration scripts is costly using traditional approaches due to the large solution
space. Maintaining the packages as the PLA evolves is even more challenging.

This paper presents three contributions to the deployment, configuration, and test-
ing of PLAs. First, we describe the structure and functionality of FireAnt, which is
an open-source model-driven development (MDD) Eclipse plug-in for specifying the
SCV of a PLA, the artifact and configuration dependencies of each component, and
the intended deployment destinations of each component. Second, we describe the
structure and functionality of FireAnt’s deployment, configuration, and test-
generation infrastructure, which explores the variant solution space and produces
build and deployment scripts to configure each valid variant. Third, we present em-
pirical results that show FireAnt significantly reduces the overhead of developing
and maintaining a deployment and testing infrastructure for a PLA.
The remainder of this paper is organized as follows: Section 2 provides a motivating
case study example for our work; Section 3 describes the FireAnt MDD tool for mod-
eling PLAs; Section 4 quantifies the benefits of the FireAnt code generation capabili-
ties in the context of our case study; Section 5 compares our work with related re-
search; and Section 6 presents concluding remarks.

2 Motivating Case Study Example

To explore the characteristics of testing PLAs, we have developed an Enterprise
Java Beans (EJB)-based Constraints Optimization System (CONST) that schedules
pickup requests to vehicles. As shown in Figure 1, CONST manages a list of items
that must be scheduled for pickup, a list of times that the items must arrive by, and a
list of vehicles and drivers that are available to perform the pickup. It uses a con-
straint-optimization engine to find a cost effective assignment of drivers and trucks to
pickups. CONST’s optimization engine can be used to schedule a wide variety of

shipment types. In one configuration, for example, the system could schedule limou-
sines to customers requiring a ride, whereas in another configuration the system could
dispatch trucks to highway freight shipments. CONST’s optimization engine must
therefore be customizable at design-time to handle these various domains effectively.

Figure 1: Highway Freight Shipment Scheduling Architecture

CONST must also be customizable at run-time to adapt to changing operating con-

ditions. During peak traffic times, for instance, its optimization engine may need to
use traffic-aware routing algorithms, whereas during off-peak times, it may switch to
faster traffic-unaware algorithms. CONST also needs to handle failures differently,
depending on the target domain. For scheduling limousines to pickups, for example, a
degradation of the time required to schedule a reservation below a threshold may
require CONST’s constraint engine to adapt to improve performance. When schedul-
ing highway freight shipments, however, the threshold may be higher since pickup
and drop-off windows are more flexible.

To support the degree of customization described above, we developed CONST as
a PLA using SCV analysis, as follows:
• The scope is the constraint optimization system architecture and the associated

components that address the domain of scheduling shipments to vehicles, e.g.,
computing route times between vehicles and shipments, maintaining a list of wait-
ing shipments, and calculating the cost of assigning a vehicle to a shipment.

• The commonality is the set of components and their interactions that are present
in all configurations of CONST, which include the scheduler updating the sched-
ule, the route time module answering requests from the schedule, and the dis-
patcher sending routing orders to vehicles.

• The variability includes how the list of waiting shipments is prioritized, how the
system calculates the cost of assigning each vehicle/driver combination to pick-
ups, how late pickups and dropoffs are handled, and how the system handles re-
sponse time degradation.
By applying the SCV analysis to CONST we designed a PLA that enables the cus-

tomization of its optimization engine for various domains.
CONST variants are composed of two main assemblies of components: the Picku-

pList and the Optimizer. The PickupList may be implemented as either (1) a priori-
tized list for domains, such as freight shipments, where some cargos have higher pri-
orities, or (2) a FIFO list for other domains, such as taxi scheduling. The Optimizer is
composed of a ConstraintsOptimizationModule, RouteTimeModule, GeoDatabase-

Module, and DispatchingModule, each of which has different valid configurations.
The DispatchModule has two valid implementations for different system to driver
communication models. The RouteTimeModule has three different implementations.
The ConstraintsOptimizationModule can be configured with three different algo-
rithms. Finally, the GeoDatabase can use two different vendor implementations.
These composition options support a total of 72 valid variants to be constructed from
the PLA.

3 Modeling PLA Deployments and Configurations with FireAnt

To address the challenge of deploying, configuring, and testing a PLA, we have
developed FireAnt. FireAnt is an MDD tool that allows application developers to de-
scribe the components that form the common building blocks of their PLA and to
construct AND/OR trees specifying how the blocks can be composed to form valid
variants. FireAnt significantly reduces the cost of testing a PLA in the following key
ways:
1. SCV Capture: FireAnt models components common to the application and al-

lows variability to be described formally using AND/OR trees, which enables de-
velopers to express rules governing a PLA. FireAnt can also capture the deploy-
ment variability in an application, e.g., to specify which components can be de-
ployed together and which cannot.

2. SCV to Artifact Mapping: FireAnt provides views that allow developers to
specify the physical artifacts, such as Java Archive (JAR) files, required for a
common element. Variabilities can be mapped to configuration scripts that con-
figure them properly.

3. Solution Space Discovery: Using model interpreters, FireAnt can automatically
infer all valid variants from the commonality and variability trees. FireAnt can
combine this information with artifact mapping information to show the required
artifacts and configuration scripts for a variant.

4. Test, Deployment, and Configuration Infrastructure Generation: FireAnt
allows developers to describe the target hardware where variants will be de-
ployed. Using a target hardware definition and the artifact mapping, FireAnt can
automatically package all the archive files required to deploy each variant, as
well as generate the required configuration scripts. These scripts may be in im-
plemented in a variety of languages. Currently, FireAnt provides bindings for
generating Another Neat Tool (ANT) build files.

5. Test Automation: FireAnt can generate a global configuration script that re-
motely deploys, configures, and tests each variant automatically on each possible
hardware target.

FireAnt was developed using the Generic Eclipse Modeling System (GEMS) [17],
which is an open-source MDD environment built as an Eclipse plug-in. A GEMS-
based metamodel describing the domain of PLA deployment, configuration, and test-
ing was constructed and interpreted to create the FireAnt domain-specific modeling
language (DSML) for PLAs. FireAnt’s modeling environment uses GEM’s support
for multiple views to capture the SCV, deployment, configuration, and testing re-

quirements of a PLA. The remainder of this section discusses how each of these
views can be used to manage the complexity of testing a PLA and how the view ad-
dresses each of the challenges described in Section 1.

3.1 Logical Composition View

To facilitate the analysis of the variant solution space and address Challenge 1 re-
quires a formal grammar to describe the structure of the PLA and its valid configura-
tions. This customization grammar can then be used to automatically generate and
explore the variant solution space. The Logical Composition View is the aperture for
capturing the SCV of a PLA. This view allows developers to formalize what compo-
nents are available in the PLA, what assemblies can be constructed, and how each
assembly is composed. As with other approaches that capture the variants based on
system structure [18] rather than feature modeling [19][20], in our approach require-
ments are expressed as configurations of components, i.e., features are modeled as
variabilities in our SCV analysis.

To capture a formal definition of the PLA, the components on which it is based
must be modeled. The Component element is the basic building block in the Logical
Composition View. A Component represents an indivisible unit of functionality, such
as an EJB or CORBA component. In the CONST application, the various algorithm
implementations for the constraints optimization engine are represented as EJB com-
ponents. Assemblies are valid compositions of Components and other Assemblies that
provide a higher level of functionality. Assemblies may require different source arti-
facts for different configurations or compositions. They can be composed by specify-
ing a composition predicate, AND or Exclusive OR and the Components or Assem-
blies to which the predicate should be applied. In CONST, for example, the Con-
straintsOptimizationModule is connected to the Exclusive OR predicate, which can
be connected to each algorithm packaged with the optimizer to create a variant. This
composition indicates that the ConstraintOptimizationModule is composed from one
of the three algorithms. Assemblies can also be constructed hierarchically from other
Assemblies to capture the compositional variability in a PLA.

To specify the compositional variability in the PLA, developers build Component,
Assembly, and Predicate trees, which we call Logical Composition Trees. At the root
of the tree is an Assembly representing the entire PLA. The root Assembly, Predicate,
and children specify the modules that must be present to complete the PLA. Each
level down the tree specifies the composition of smaller pieces of functionality.

In the CONST system, the root of the tree is the CONST Assembly. The CONST
Assembly is connected to an AND predicate and the predicate is in turn connected to
the PickupList and Optimizer Assemblies, which specifies that both a PickupList and
Optimizer must be present in CONST variants. The CONST Logical Composition
tree is shown in Figure 2.

By capturing PLA compositional variability in a Logical Composition tree, devel-
opers can formally specify how valid variants are composed. With a formal specifi-
cation of the variant construction rules, FireAnt can automatically explore the variant
solution space to discover all valid compositional variants of the PLA. Section 3.4

discusses how FireAnt explores the solution space and uses it to automate the testing,
deployment, and configuration of PLAs.

Figure 2: CONST Logical Composition Tree

Figure 3: Logical Deployment Tree for
the GeoDatabase Assembly

3.2 Logical Deployment View

It is essential to formally describe the variability in the deployment of the PLA to
automate the configuration, deployment, and testing of the variants with multiple
collocation strategies, hardware and OS platforms, and other performance critical
variations. FireAnt’s Logical Deployment View is used to specify a deployment
grammar for the PLA. The Logical Deployment View addresses Challenges 2, 3, and
4. It is designed to capture and manage the complexity of the large number of de-
ployment possibilities for a variant.

The Logical Deployment View describes which Assemblies are deployed, which
Assemblies are collocated, and on what nodes they are deployed. Each top-level as-
sembly is associated with one or more deployment predicates. These predicates are
the same as in the Logical Deployment View. The predicates are then connected to
one or more Collocation Groups. The mappings from Assemblies to Collocation
Groups to Nodes form the Logical Deployment Trees. These trees specify what valid
deployment variations are allowed in the PLA.

3.3 Dependency View

To automate the packaging and configuration of variants and address Challenges 2
and 6, a dependency model must be developed to associate each component with
physical artifacts, such as JAR files, it relies on. This mapping from physical artifacts

to PLA components can be used to automatically manage and package the artifacts
and configuration scripts required for each variant.

The Dependency View manages the complexity of organizing and maintaining all
the various physical artifacts required to deploy and configure a variant. A variant
may contain hundreds of components, each with multiple physical artifacts required
for their deployment. As the number of variants grows, it becomes hard to package all
physical artifacts required to deploy a variant. Our CONST application, for example,
has 72 unique valid package combinations that can be created for the variants. Each
possible package requires a unique artifact set.

3.4 Managed Views: Physical Composition and Deployment

The large size of the variant space makes it impractical to generate it manually. It
is therefore essential to provide PLA developers with views of the solution space that
are generated automatically from grammars describing the PLA’s structure and vari-
ability. These generated views can then be used to address Challenges 1, 4, and 6.

The FireAnt managed views visualize various aspects of the variant solution
spaces that are impractical to create by hand. They catalog the current possible com-
positional variants and deployment variations. These views are called managed views
because they are generated by FireAnt and are not edited by users.

FireAnt creates the Physical Deployment View by traversing the Logical Composi-
tion Tree and calculating all possible combinations of Assemblies that can be de-
ployed to each node. FireAnt then takes each of these possible variants and deter-
mines the unique packaging combinations of components that are required for all
possible valid deployments. Each unique package is called an Egg.

The Physical Composition View shows which physical artifacts are associated with
each egg. Individual zip archives can be created for each deployment package by
traversing the Physical Composition View trees. This view manages the complexity
of determining what physical artifacts should be present in for the deployment of each
variant’s Assemblies. FireAnt can automatically collect and zip all of the required
artifacts for a variant’s Assemblies by traversing the Physical Composition Tree.

4 Empirically Evaluating FireAnt Generative and Analytic
Capabilities

A method for estimating the point at which developing a PLA becomes more cost
effective than a traditional development approach is described in [2]. This paper de-
fines the average economic or time cost of developing a variant manually without a
PLA to be C0 and the cost of the same development with automation to be C1. To
develop N variants using a manual approach, therefore, has a total cost of N*C0. A is
defined to be the initial overhead of performing SCV analysis and creating reusable
components. C1 is assumed to be smaller than C0. The cost of developing the same N
variants with a PLA is A + N * C1.

For small numbers of variants, the initial cost A does not make a PLA cost effec-
tive. As the number of variants, N, grows, however, a PLA becomes more cost effec-
tive since C1 < C0. This section expands on this formula to estimate the cost of testing
N variants developed manually and N variants developed with a PLA. We then show
how FireAnt can decrease the initial cost A of developing a testing infrastructure for a
PLA.

In the context of testing, we let T0 be the cost of manually developing the infra-
structure to test a variant and T1 be the cost of developing the same infrastructure for
a PLA variant. T1 should be significantly smaller than T0, since tests for determining
the correctness of individual components can be reused for each variant. Moreover,
any tests that check the correctness of a common element among the variants can be
shared. To develop the testing infrastructure for a new variant, therefore, T1 will only
be comprised of the cost of developing tests for the unique components of each vari-
ant. With a manual approach, however, the variants do not share common compo-
nents and tests cannot be shared among them making T0 > T1.

 With a PLA, conversely, we incur an initial cost A of developing a flexible proc-
ess for integrating and orchestrating the tests shared between variants. Even with the
use of automation tools, such as those available for running JUnit tests, a developer
must manually specify which tests to run for each variant. The total cost of testing N
variants is N*T0 for the manual approach and A+N*T1 for the PLA. The goal of de-
veloping a testing infrastructure of a PLA is therefore to minimize A and ensure that
the overhead of creating reusable tests does not make T1 > T0.

This section reports the results from a series of experiments on our CONST case
study. The goal of these experiments was to evaluate the extent to which FireAnt
minimizes the initial cost A and does not require excess testing overhead that would
increase T1. Each experiment was repeated using several variations of the PLA to
investigate how the performance of FireAnt scaled as the solution space grew. For
testing, we used FireAnt 2.0 with a 2.2 Mhz AMD Athlon 3200 with 1 gigabyte of
RAM running Windows XP and Eclipse 3.1.0. Our test cases were written using
JUnit.

4.1 Solution Space Exploration Time

In our CONST case study, we evaluated the time required by FireAnt to discover
and visualize all valid variants. Our initial implementation of CONST contained 17
EJBs, each packaged in individual Enterprise Application Resource (EAR) files with
separate XML deployment descriptors to facilitate packaging. To analyze the impact
of re-factoring and its affect on FireAnt and the solution space, we created a new type
of PickupList that was a hybrid priority/FIFO list. A waiting request’s priority was
determined by the time multiplied by the priority. Adding this PickupList implemen-
tation increased the number of valid variants to 108.

In our second re-factoring, we provided two new graph representations for the op-
timization algorithm. One implementation used an in-memory graph representation.
The second implementation used a disk-based graph representation scheme to reduce
memory footprint. This refactoring increased the number of valid variants to 144. In

the final re-factoring, we combined both the PickupList and algorithm refactoring,
which produced 216 valid variants. For each PLA, we calculated the time for FireAnt
to generate all of the valid configurations (Eggs). The results of the tests are shown in
Figure 5.

Figure 4 shows that the time required, Dv, to explore the solution space scaled at a
rate of approximately N * D1 + K, where D1 is the time to required by FireAnt to dis-
cover a single variant and K a constant overhead. The maximum time required was
less than 2 seconds. It can be seen that D1 = (DV (72) - DV (216)) / 144 < 700 / 144 =
4.8ms. We posit that to discover the same set of variants manually, the time required
would be V(N) * N * D0 + K, where D0 > D1, V(N) is a function of N, and V(N) > V(N-
1) ≥ 1 for all N. That is, discovery of a single variant is slower with a manual process
and the time to discover all variants becomes increasingly worse as the number of
variants grows. This is a result of the inability of manual methods to scale as the com-
plexity increases. Even without a V(N) manual scaling factor and optimistically as-
suming D0 = 1000ms, the FireAnt aided method is roughly 200 times faster. If a PLA
architecture is used with a manual approach for assigning tests to variants, A varies in
proportion to V(N). By using FireAnt, V(N) is removed and D1 is far smaller than D0,
and thus, the cost, A, is significantly reduced for large numbers of variants.

Figure 4: Solution Space Exploration Time

Figure 5: FireAnt Packaging Time

4.2 Packaging Time

FireAnt also has the ability to collect all the resources needed to deploy a variant
and package them in separate zip files for deployment across a group of nodes. Fire-
Ant uses the Eggs and Dependency Tree to calculate the minimum physical artifacts
required for each node’s package. Along with the package generator, we created a

translator that generates ANT build scripts for the deployment of the variant’s pack-
ages. FireAnt can support generation of other scripting languages. We chose ANT,
however, since it is platform-independent and well supported.

For each variant/deployment configuration, FireAnt generates local ANT scripts
that are executed on each node to perform the Assembly installations. The generated
ANT scripts invoke the appropriate PreDeployment, Deployment, and PostDeploy-
ment scripts required to install each component. After installing each component or
assembly, the generated ANT scripts invoke any tests associated with the element in
the Dependency view, which enables automated testing of each variant. FireAnt also
generates a global deployment script to execute the deployment, configuration, and
testing of each variant consecutively. Developers simply provide the scripts to con-
figure and deploy the individual assemblies and / or components.

We used our AMD Athlon 3200 test platform to measure, Ov, which is how long it
took FireAnt to package all of the resources and generate the ANT build scripts for
each of the variants. We then measured the time required for FireAnt to collect and
zip the files for each package. The results are shown in Figure 5.

The results in this figure show that using FireAnt, Ov, = N * P1, + K, where P1 is
the time taken to package and generate the configuration script for a single variant
using FireAnt and K is a constant overhead. Again, a manual approach to accom-
plishing the same task would require that Ov = V(N) * N * P0 + K, where P0 is the
time to manually package a variant, P0 > P1, V(N) is a function of N, and V(N) > V(N-
1) ≥ 1 for all N. As can be seen from the results, P1 < (12000 – 2000) / 144 = 69.4ms.

Assuming that a manual process could package all the artifacts required for a vari-
ant in 1000ms (which is extremely optimistic), the FireAnt aided method is still ~14
times faster. The FireAnt method again removes a V(N) manual scaling factor, as
well, from the cost A. FireAnt’s packaging provides the ability to calculate and re-
package all the variants automatically when new components are added to the PLA,
which reduces developer effort and ensures that each variant’s package footprint is
always up-to-date. Thus, using FireAnt reduces the cost of R refactorings by R *
(V(N) – 1) * 14. For large values of N, this cost savings will be significant.

4.3 Results Summary

FireAnt uses the managed views described in Section 3.4 to automate (1) the gen-
eration of deployment scripts for variants, (2) the packaging of artifacts for variants,
and (3) the testing of variants. These capabilities reduce the upfront cost, A, and en-
able rigorous testing of PLAs. They also address each of the six key challenges out-
lined in Section 1.

Due to the large number of variants it becomes costly for PLA developers to
manually find and manage all possible variants without MDD tool support. This
complexity increases the initial cost, A, of developing a PLA testing infrastructure
since a developer must find all valid variants and determine which tests are required
to ensure the proper functioning of each. In other words, A ≥ Dv + Ov, where Dv is
the time required to find each valid variant and Ov is the time required to generate an
orchestration script for each variant that will execute the proper tests. FireAnt reduces

A by automatically exploring the solution space and producing visualizations of valid
variants for the developer. These capabilities significantly aid developer understand-
ing of PLA variability and enables for the automated testing and packaging of each
variant. Without identifying all possible variants of the PLA, it is hard to ensure that
the PLA is tested properly, which is important in mission-critical domains.

5 Related Work

 In [24], Kang et al., propose a modeling technique for PLAs called Feature Ori-
ented Reuse Method (FORM). FORM captures the key variabilities in a PLA as fea-
tures that can be present in a variant. A market analysis is first performed on the PLA
to categorize and understand the important features of the variants. These features are
then cataloged and mapped to the underlying object model to determine how they
affect the underlying system structure. FireAnt uses a more general model of the
variability in a PLA. First, FireAnt allows for variations in the configuration parame-
ters of the underlying object model, such as thread priorities, to be modeled as vari-
abilities. Small permutations in threading models can be applied to variants with
identical features. That is, FireAnt allows for more flexibility in what is considered a
variability. This can be particularly important for performance testing purposes where
many configurations of a single feature variant may wish to be tested. Another key
difference between FORM and FireAnt is that FireAnt provides a model-driven de-
velopment tool that can automate the generation and management of an entire product
line’s deployment, configuration, and testing infrastructure. These powerful genera-
tive capabilities are what decrease the initial cost, A, and incremental costs of testing
variants.

An algebra for specifying and deriving fault dependencies and propagations be-
tween components is proposed in [15], which focuses on investigating how known
dependencies and assumptions of components can help predict fault propagation.
FireAnt is designed not to predict fault propagation but to discover the component
fault properties. FireAnt can be used to automate the discovery of faulty component
compositions and configurations in PLAs, which helps identify and catalog the as-
sumptions that were not being met by failing variants. The success of future evolu-
tions to the PLA could then be predicted using the dependency algebra. FireAnt tests
all known configurations of components and assumes that the tests provided by de-
velopers properly cover each variant. The dependency algebra in [15], could be used
to help properly craft the test scripts invoked by FireAnt.

Another approach to model-driven testing is presented in [24] that uses the UML
2.0 Testing Profile and model transformations to generate tests. This work provides
an effective means of relating the system design to the design of the testing process.
This approach, as with other approaches, does provide a mechanism for automatically
exploring a solution space and determining which tests should be applied to which
variants, which is critical for PLAs. A UML-driven testing process, however, could
be used in conjunction with FireAnt. FireAnt does not place restrictions on the testing
framework or how tests are developed. Thus, developers could first use a UML-based
test development infrastructure to produce tests that were orchestrated by FireAnt.

Other approaches to testing large-scale systems involve MDD tools that generate
test cases from operational profiles [21]. FireAnt automates the testing of all variants.
A complementary approach is to use statistical methods to generate test cases. Test
cases created from tools, such as in [21], could be used to generate the testing orches-
trated by FireAnt. Unlike FireAnt, however, this tool is not specific to PLAs.

Model-driven component design tools, such as Cadena [16], exist for Eclipse. Ca-
dena is a model-driven development tool for designing component systems that pro-
vides the capability to package components, generate build scripts for them, and gen-
erate test infrastructure. Cadena supports development of multiple models to provide
strongly typed modeling for PLAs. These tools, however, focus on the structure and
implementation of the PLA. Furthermore, this approach is tailored to modeling spe-
cific variants of the PLA. Cadena is not designed to explore solution spaces and gen-
erate test infrastructure to cover all possible PLA variants. Again, this generative
capability is one of the keys to rigorously testing a PLA to identify non-functional
variants and unknown component dependencies, decreasing the cost of testing, and
mitigating the cost of PLA evolution on the deployment, configuration, and testing
infrastructure.

Techniques for improving the reuse of components by identifying and adapting
components with compatible interfaces are presented in [22]. FireAnt can be applied
to allow developers using these techniques to run automated tests of their assump-
tions about the compatibility of various components’ interfaces. The results could
then be used to refine the component dependency relationships. Pairing these works
could provide an iterative environment for modeling and testing component composi-
tions created through adaptive reuse.

6 Concluding Remarks

Product-line architectures (PLAs) can significantly improve the reuse of software
components and decrease the cost of developing applications. The large number of
valid variations in a PLA must be tested to ensure that only working configurations
are used. Due to the large solution spaces it is infeasible or overly costly to use tradi-
tional ad hoc methods to test a PLA’s variants.

By using MDD tools to capture the compositional and deployment variability in
PLAs, we showed that much of the deployment, configuration, and testing of PLAs
can be automated. This automation frees developers to focus on implementing reus-
able components and deployment and configuration scripts for known working units
of functionality. Our experiments have shown that FireAnt can significantly reduce
both the initial cost, A, of developing a PLA and the testing cost T1 of each variant.
FireAnt accomplishes this cost reduction by automating tedious and error-prone man-
ual tasks, such as solution space exploration.

The following are our lessons learned from developing FireAnt and applying it to
the EJB-based Constraints Optimization System (CONST) that schedules pickup re-
quests to vehicles:
• There may be unanticipated problems caused by the composition of two or more

assemblies that may not be scriptable by FireAnt. More work is needed to identify

how to automate the generation of the deployment and configuration glue of PLA
variants.

• Deployment variations greatly expand the solution space since each variant must
be tested with each deployment variation. It is thus important to only model realis-
tic deployment scenarios to restrict this space.
In future work, we are pursuing the use of FireAnt to create self-tuning installa-

tions. Many high-performance parallel computing applications, such as the Automati-
cally Tuned Linear Algebra Software (ATLAS) [23], run performance tests in multi-
ple configurations as part of the installation process. These applications can then in-
terpret the performance results to optimize themselves for the given hardware.

We also plan to expand on the ATLAS approach by allowing FireAnt users to de-
fine a fitness function based on the performance metrics collected from the individual
component tests. The FireAnt test automation framework will then be used to itera-
tively deploy variants in various configurations in an attempt to maximize this fitness
function.

Developers only need to create the tests to collect the appropriate data, such as ser-
vice rate, and then provide the logic to perform analyses on the results, such as
throughput analysis using queuing networks, to score the configurations. FireAnt will
use this cost function to automatically deploy, configure, test, and score each candi-
date variant in each valid component to hardware configuration. After all testing com-
pletes, FireAnt will collect the results and install the variant/component to hardware
configuration with the highest score.

References
1. P. C. Clements and L. Northrop, Software Product Lines – Practices, and Patterns, Addi-

son-Wesley, 2001.
2. J. Coplien, D. Hoffman, D. Weiss, „Commonality and Variability in Software Engineer-

ing,” IEEE Software, Volume 15, Issue 6, Nov.-Dec. 1998 Page(s):37-45.
3. E. J. Weyuker, “Testing Component-based Software: A Cautionary Tale,” IEEE Software,

September/October 1998
4. D. Sharp, “Avionics Product Line Software Architecture Flow Policies,” Proc of the 18th

IEEE/AIAA Digital Avionics Systems Conference (DASC), Oct 1999, St. Louis, MO.
5. D. Oppenheimer, A. Ganapathi, D. Patterson, “Why do Internet Services Fail, and What

can be Done about It?,” Proc of the USENIX Symposium on Internet Technologies and
Systems, Mar 2003, Seattle, WA.

6. Apache Foundation: Apache Ant. http://ant.apache.org.
7. A. Krishna, E. Turkay, A. Gokhale, D. Schmidt, “Model-Driven Techniques for Evaluating

the QoS of Middleware Configurations for DRE Systems,” I Proc of the 11th IEEE Real-
Time and Embedded Technology and Applications Symposium, Mar 2005, San Francisco,
CA.

8. A. Sloane, “Modeling Deployment and Configuration of CORBA Systems with UML,”
Proc of the 22nd International Conference on Software Engineering, June 2000, Limerick,
Ireland.

9. G. Edwards, G. Deng, D. Schmidt, A. Gokhale, B. Natarajan, “Model-driven Configuration
and Deployment of Component Middleware Publisher/Subscriber Services,” Proc of the
3rd ACM Conference on Generative Programming and Component Engineering, Oct 2004,
Vancouver, CA

http://ant.apache.org/
http://www.program-transformation.org/Gpce

10. A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, B. Natarajan. "Skoll: Distrib-
uted Continuous Quality Assurance," pp. 459-468, 26th International Conference on Soft-
ware Engineering, May 2004, Edinburgh, Scotland.

11. A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle, G. Karsai,
“Composing Domain-Specific Design Environments,” IEEE Computer, Nov. (2001).

12. M. Harrold, D. Liang, and S. Sinha, “An Approach to Analyzing and Testing Component-
Based Systems,” Proc of the ICSE'99 Workshop on Testing Distributed Component-Based
Systems, May 1999, Los Angeles, CA.

13. N. Wang, C. Gill, D. Schmidt, and V. Subramonian, “Configuring Real-time Aspects in
Component Middleware,” Proc of the Conference on Distributed Objects and Applications,
October 2004, Cyprus, Greece.

14. V. Matena and M. Hapner, “Enterprise Java Beans Specification,” Version 1.1. Sun Micro-
systems (1999).

15. H. Ding, L. Kihwal, L. Sha, “Dependency Algebra: A Theoretical Framework for Depend-
ency Management in Real-Time Control Systems,” Proc of the 12th IEEE International
Conference on the Engineering of Computer-Based Systems, Apr 2005, Greenbelt, MD.

16. J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V. Prasad, “Cadena: An Integrated Development,
Analysis, and Verification Environment for Component-based Systems,” Proc of the 25th
International Conference on Software Engineering, May 2003, Portland, OR.

17. J. White, D. Schmidt, "Simplifying the Development of Product-Line Customization Tools
via MDD," Workshop: MDD for Software Product Lines, ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems, October 2005, Montego
Bay, Jamaica.

18. T. Mannisto, T. Soininen, R. Sulonen, “Product Configuration View to Software Product
Families,” Proc of the 10th Int. Workshop on Software Configuration Management (SCM-
10) of ICSE, May 2001, Ontario, Canada.

19. K.Kang, S.G.Cohen, J.A.Hess, W.E.Novak, and S.A.Peterson, “Feature Oriented Domain
Analysis (FODA) - Feasibility Study,” Technical report CMU/SEI-90-TR-21, Carnegie-
Mellon University, 1990, Pittsburg, PA.

20. T. Asikainen, T. Männistö, and T. Soininen, “Representing Feature Models of Software
Product Families Using a Configuration Ontology,” Proc of the ECAI 2004 , Workshop on
Configuration. Aug 23rd 2004, Valencia, Spain.

21. M. Popovic and I. Velikic, “A Generic Model-Based Test Case Generator,” Proc of the
12th IEEE International Conference on the Engineering of Computer-Based Systems
(ECBS 2005), 4-7 Apr 2005, Greenbelt, MD, USA.

22. J. Guo, Y. Liao, J. Gray, B. Bryant, “Using connectors to integrate software components,”
Engineering of Computer-Based Systems (ECBS 2005), 4-7 Apr 2005, Greenbelt, MD,
USA.

23. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of soft-
ware and the atlas project. Technical report, Dept. of Computer Sciences, Univ. of TN,
Knoxville, March 2000

24. K. C., Kang, J. Lee, P. Donohoe, “Feature-oriented Product Line Engineering,” IEE Soft-
ware, Vol. 19, Issue 4, July-Aug. 2002, Pages 58-65

25. Z. R. Dai, “Model-driven Testing with UML 2.0,” Second European Workshop on Model
Driven Architecture (MDA), September 7th-8th 2004, Canterbury, England

http://www.cs.wustl.edu/%7Eschmidt/PDF/doa04_ciao.pdf
http://www.cs.wustl.edu/%7Eschmidt/PDF/doa04_ciao.pdf
http://www.cs.rmit.edu.au/fedconf/doa2004cfp.html

	3.1 Logical Composition View
	3.2 Logical Deployment View
	3.3 Dependency View
	3.4 Managed Views: Physical Composition and Deployment

