
C++ Dynamic Memory Management
Techniques

Douglas C. Schmidt
Professor Department of EECS
d.schmidt@vanderbilt.edu Vanderbilt University
www.dre.vanderbilt.edu/�schmidt/ (615) 343-8197



UCLA Extension Course OO Programming with C++

Dynamic Memory Management

� In C++, the new() and delete() operators provide built-in
language support for dynamic memory allocation and deallocation.

� This feature has several benefits:

– Reduces common programmer errors: it is easy to forget to
multiply the number of objects being allocated by sizeof when
using malloc() , e.g.,
// oops, only 2 1/2 int’s!
int *a = (int *) malloc (10);

– Enhances source code clarity: generally, there is no need to: (1)
declare operator new() and delete() , (2) explicitly use casts, or
(3) explicitly check the return value.

– Improves run-time efficiency: (1) users can redefine operator
new() and delete() globally and also define them on a per-
class basis and (2) calls can be inlined.

Copyright c1997-2003 Vanderbilt University 1



UCLA Extension Course OO Programming with C++

Dynamic Memory Management (cont’d)

� Operator new() can be either a globally defined function or a
member of class T or a base class of T.

– Here is a minimal example of a global definition of
operator new():
extern "C" void *malloc (size_t);
void *operator new() (size_t sz) {

return malloc (sz);
}

� There must be only one global operator new() (with these particular
argument types) in an executable

– Note, it is possible to overload operator new() !
– if you do not supply your own, there is one in the C++ run-time

library that’s only a little more complicated than this one.

Copyright c1997-2003 Vanderbilt University 2



UCLA Extension Course OO Programming with C++

Dynamic Memory Management (cont’d)

� Operator new() , be it local or global, is only used for “free store”
allocation

– Therefore, the following does not involve any direct invocation of
operator new() :
X a;
X f (void ) { X b; /* ... */ return b; }

� Note, an object allocated from the free store has a lifetime that
extends beyond its original scope,

int *f (int i) {
int *ip = new() int[i];
// ...
return ip;

}

Copyright c1997-2003 Vanderbilt University 3



UCLA Extension Course OO Programming with C++

Error Handling

� By default, if operator new() cannot find memory it calls a pointer to
function called new handler() , e.g.,

void *operator new() (size_t size) {
void *p;
while ((p = malloc (size)) == 0)

if (_new_handler)
(*_new_handler)();

else
return 0;

return p;
}

� if new handler() can somehow supply memory for malloc()
then all is fine - otherwise, an exception is thrown

� Note, new handler() can be set by users via the set new handler()
function, e.g., set new handler (::abort);

Copyright c1997-2003 Vanderbilt University 4



UCLA Extension Course OO Programming with C++

Interaction with Malloc and Free

� All C++ implementations also permit use of C malloc() and
free() routines. However:

1. Don’t intermix malloc() /delete() and new() /free() .
2. Be careful not to use these to allocate C++ class objects with

constructors or destructors, e.g.,
class Foo {
public:

Foo (void) { foo_ = new() int (100); }
// ...
˜Foo (void);

private:
int *foo_;

};
Foo *bar = new() Foo; // OK, calls constructor
Foo *baz = malloc (sizeof *baz); // ERROR, constructor not called
free (bar); // Error, destructor not called!

� Note, C++ does not supply a realloc() -style operator.

Copyright c1997-2003 Vanderbilt University 5



UCLA Extension Course OO Programming with C++

Interaction with Arrays

� The global new() and delete() operators are always used for
allocating and deallocating arrays of class objects.

� When calling delete() for a pointer to an array, use the [] syntax
to enabled destructors to be called, e.g.,

class Foo {
public:

Foo (void);
˜Foo (void);

};

Foo *bar = new() Foo[100];
Foo *baz = new() Foo;
// ...
delete [] bar; // must have the []
delete baz; // must not have the []

Copyright c1997-2003 Vanderbilt University 6



UCLA Extension Course OO Programming with C++

Interaction with Constructors and Destructors

� Allocation and deallocation are completely separate from construction
and destruction

– construction and destruction are handled by constructors and
destructors

– Allocation and deallocation are handled by operator new() and
operator delete()

� Note, at the time a constructor is entered, memory has already been
allocated for the constructor to do its work

� Similarly, a destructor does not control what happens to the memory
occupied by the object it is destroying

Copyright c1997-2003 Vanderbilt University 7



UCLA Extension Course OO Programming with C++

Interaction with Constructors and Destructors (cont’d)

� Here’s a simple case:

void f (void) {
T x;

}

� Executing f() causes the following to happen:

1. Allocate enough memory to hold a T;
2. construct the T in that memory;
3. Destroy the T;
4. Deallocate the memory.

Copyright c1997-2003 Vanderbilt University 8



UCLA Extension Course OO Programming with C++

Interaction with Constructors and Destructors (cont’d)

� Similarly, the next line has the following effects:

T *tp = new() T;

1. Allocate enough memory to hold a T;
2. if allocation was successful,
3. construct a T in that memory;
4. Store the address of the memory in tp

� Finally, the following happens on deletion:

delete() tp;

if tp is non-zero, destroy the T in the memory addressed by tp and
then deallocate the memory addressed by tp .

Copyright c1997-2003 Vanderbilt University 9



UCLA Extension Course OO Programming with C++

Interaction with Constructors and Destructors (cont’d)

� How can a programmer control the memory allocated for objects of
type T?

– The answer lies in the allocation process, not the construction
process

– C++ provides fine-grained control over what it means to “allocate
enough memory to hold a T”

� e.g.,

T *tp = new() T;

1. first set tp = operator new() (sizeof (T))
2. then call constructor for CLASS T at location tp

Copyright c1997-2003 Vanderbilt University 10



UCLA Extension Course OO Programming with C++

Object Placement Syntax

� The C++ memory allocation scheme provides a way to construct an
object in an arbitrary location via an object placement syntax. Merely
say:

void *operator new() (size_t, void *p) { return p; }

� Now you can do something like this:

// Allocate memory in shared memory
void *vp = shm_malloc (sizeof (T));
T *tp = new() (vp) T; // construct a T there.

� Because it is possible to construct an object in memory that has
already been allocated, there must be a way to destroy an object
without deallocating its memory. To do that, call the destructor
directly:

tp->T::˜T (); // Note, also works on built-in types!
shm_free (tp);

Copyright c1997-2003 Vanderbilt University 11



UCLA Extension Course OO Programming with C++

Object Placement Syntax (cont’d)

� The placement syntax can be used to supply additional arguments to
operator new() , e.g.,

new() T; // calls operator new() (sizeof (T))
new() (2, f) T; // calls operator new() (sizeof (T), 2, f)

� e.g., provide a C++ interface to vector-resize via realloc...

// Note, this only works sensibly for built-in types,
// due to constructor/destructor issues...
static inline void *
operator new() (size_t size, void *ptr, size_t new_len) {

return ptr = = 0 ? malloc (size * new_len)
: realloc (ptr, new_len * size);

}
// ...
char *p = new() (0, 100) char;
p = new() (p, 1000) char;

Copyright c1997-2003 Vanderbilt University 12



UCLA Extension Course OO Programming with C++

Overloading Global operator New

� Memory allocation can be tuned for a particular problem

– e.g., assume you never want to delete() any allocated memory:
struct align {char x; double d;};
const int ALIGN = ((char *)&((struct align *) 0)->d - (char *) 0);
void *operator new() (size_t size) {

static char *buf_start = 0;
static char *buf_end = 0;
static int buf_size = 4 * BUFSIZ;
char *temp;
size = ((size + ALIGN - 1) / ALIGN) * ALIGN;
if (buf_start + size >= buf_end) {

buf_size *= 2;
buf_size = MAX (buf_size, size);
if (buf_start = malloc (buf_size))

buf_end = buf_start + buf_size;
else

return 0;
}
temp = buf_start;
buf_start += size;
return temp;

}

Copyright c1997-2003 Vanderbilt University 13



UCLA Extension Course OO Programming with C++

Class Specific new() and delete()

� It is possible to overload the allocation/deallocation operators
operator new() and delete() for an arbitrary class X:

class X {
public:

void *operator new() (size_t);
void operator delete() (void *);
// ...

};

� Now X::operator new () will be used instead of the global
operator new () for objects of class X . Note that this does not
affect other uses of operator new () within the scope of X:

void *X::operator new() (size_t s) {
return new() char[s]; // global operator new as usual

}

void X::operator delete() (void *p) {
delete() p; // global operator delete as usual

}

Copyright c1997-2003 Vanderbilt University 14



UCLA Extension Course OO Programming with C++

� Note, the version of operator new() above will be used only when
allocating objects of class T or classes derived from T

– i.e., not arrays of class objects...

Copyright c1997-2003 Vanderbilt University 15



UCLA Extension Course OO Programming with C++

Interaction with Overloading

� Operator new() can take additional arguments of any type that it can
use as it wishes, e.g.,
enum Mem_Speed {SLOW, NORM, FAST, DEFAULT};
void *operator new() (size_t sz, Mem_Speed sp);

� Note, operator new() and delete() obey the same scope rules as
any other member function

– if defined inside a class, operator new() hides any global operator
new() ,
class T {
public:

void *operator new() (size_t, Mem_Speed);
};

T* tp = new() T; // Error, need 2 arguments!

� The use of new T is incorrect because the member operator new()
hides the global operator new()

Copyright c1997-2003 Vanderbilt University 16



UCLA Extension Course OO Programming with C++

– Therefore, no operator new() can be found for T that does not
require a second argument

Copyright c1997-2003 Vanderbilt University 17



UCLA Extension Course OO Programming with C++

Interaction with Overloading (cont’d)

� There are three ways to solve the above problem.

1. The class definition for T might contain an explicit declaration:
class T {
public:

void *operator new() (size_t, Mem_Speed);
void *operator new() (size_t sz) {

return ::operator new() (sz);
}

};
2. Alternatively, you can explicitly request the global operator new()

using the scope resolution operator when allocating a T:
T *tp = ::new() T;

3. Finally, give a default value to class specific operator new() , e.g.,
void *operator new() (size_t, Mem_Speed = DEFAULT);

Copyright c1997-2003 Vanderbilt University 18



UCLA Extension Course OO Programming with C++

Interaction with Overloading (cont’d)

� It is not possible to overload operator delete() with a different
signature

� There are several ways around this restriction:

– Operator delete() can presumably figure out how to delete an
object by looking at its address.

� e.g., obtained from different allocators.
– Alternatively, operator new() might store some kind of “magic

cookie” with the objects it allocates to enable operator delete()
to figure out how to delete them.

Copyright c1997-2003 Vanderbilt University 19



UCLA Extension Course OO Programming with C++

Class Specific new() and delete() Example

� Class specific new() and delete() operators are useful for
homogeneous container classes

– e.g., linked lists or binary trees, where the size of each object is
fixed

� This permits both eager allocation and lazy deallocation strategies
that amortize performance, in terms of time and space utilization

� It is possible to become quite sophisticated with the allocation
strategies

– e.g., trading off transparency for efficiency, etc.

Copyright c1997-2003 Vanderbilt University 20



UCLA Extension Course OO Programming with C++

Class Specific new() and delete() Example (cont’d)

� Here’s an example that shows how operator new() and operator
delete() can reduce overhead from a dynamically allocated stack

� File Stack.h

#include <new.h>
typedef int T;
class Stack {
public:

Stack (int csize);
T pop (void);
T top (void);
int push (T new_item);
int is_empty (void);
int is_full (void);
˜Stack (void);
static int get_chunk_size (void);
static void set_chunk_size (int size);
static void out_of_memory (int mem_avail);

Copyright c1997-2003 Vanderbilt University 21



UCLA Extension Course OO Programming with C++

Class Specific new() and delete() Example (cont’d)

� File Stack.h (cont’d)
private:

static int chunk_size;
static int memory_exhausted;
class Stack_Chunk {
friend class Stack;
private:

int top;
int chunk_size;
Stack_Chunk *link;
T stack_chunk[1];
static Stack_Chunk *free_list;
static Stack_Chunk *spare_chunk;
void *operator new() (size_t, int = 1,

Stack_Chunk * = 0);
void operator delete() (void *);

};
Stack_Chunk *stack;

};

Copyright c1997-2003 Vanderbilt University 22



UCLA Extension Course OO Programming with C++

Class Specific new() and delete() Example (cont’d)

� File Stack.cpp

#include <stream.h>
#include "stack.h"
int Stack::chunk_size = 0;
int Stack::memory_exhausted = 0;
Stack_Chunk *Stack_Chunk::free_list = 0;
Stack_Chunk *Stack_Chunk::spare_chunk = 0;

void *Stack_Chunk::operator new() (size_t bytes,
int size, Stack_Chunk *next) {

Stack_Chunk *chunk;
if (Stack_Chunk::free_list != 0) {

chunk = Stack_Chunk::free_list;
Stack_Chunk::free_list =

Stack_Chunk::free_list->link;
}
else {

int n_bytes = bytes + (size - 1)
* sizeof *chunk->stack_chunk;

Copyright c1997-2003 Vanderbilt University 23



UCLA Extension Course OO Programming with C++

if ((chunk = (Stack_Chunk *) new() char[n_bytes])
== 0) {
chunk = Stack_Chunk::spare_chunk;
Stack::out_of_memory (1);

}
chunk->chunk_size = size;

}
chunk->top = 0;
chunk->link = next;
return chunk;

}

Copyright c1997-2003 Vanderbilt University 24



UCLA Extension Course OO Programming with C++

Class Specific new() and delete() Example (cont’d)

� File Stack.cpp

void Stack_Chunk::operator delete() (void *ptr) {
Stack_Chunk *sc = (Stack_Chunk *) ptr;
if (sc == Stack_Chunk::spare_chunk)

Stack::out_of_memory (0);
else {

sc->link = Stack_Chunk::free_list;
Stack_Chunk::free_list = sc;

}
}
int Stack::get_chunk_size (void) {

return Stack::chunk_size;
}
void Stack::set_chunk_size (int size) {

Stack::chunk_size = size;
}
void Stack::out_of_memory (int out_of_mem) {

Stack::memory_exhausted = out_of_mem;
}

Copyright c1997-2003 Vanderbilt University 25



UCLA Extension Course OO Programming with C++

Stack::Stack (int csize) {
Stack::set_chunk_size (csize);
if (Stack_Chunk::spare_chunk == 0)

Stack_Chunk::spare_chunk =
new() Stack_Chunk;

}

Copyright c1997-2003 Vanderbilt University 26



UCLA Extension Course OO Programming with C++

Class Specific new() and delete() Example (cont’d)

� File Stack.cpp

Stack::˜Stack (void) {
for (Stack_Chunk *sc = this->stack; sc != 0; ) {

Stack_Chunk *temp = sc;
sc = sc->link;
delete() (void *) temp;

}
for (sc = Stack_Chunk::free_list; sc != 0; ) {

Stack_Chunk *temp = sc;
sc = sc->link;
delete() (void *) temp;

}
}

T Stack::pop (void) {
T temp =

this->stack->stack_chunk[--this->stack->top];
if (this->stack->top <= 0) {

Stack_Chunk *temp = this->stack;

Copyright c1997-2003 Vanderbilt University 27



UCLA Extension Course OO Programming with C++

this->stack = this->stack->link;
delete() temp;

}
return temp;

}

Copyright c1997-2003 Vanderbilt University 28



UCLA Extension Course OO Programming with C++

Class Specific new() and delete() Example (cont’d)

� File Stack.cpp

T Stack::top (void) {
const int tp = this->stack->top - 1;
return this->stack->stack_chunk[tp];

}

int Stack::push (T new_item) {
if (this->stack == 0)

this->stack =
NEW (Stack::get_chunk_size ()) Stack_Chunk;

else if (this->stack->top >= this->stack->chunk_size)
this->stack =
NEW (Stack::get_chunk_size (),

this->stack) Stack_Chunk;
this->stack->stack_chunk[this->stack->top++] =

new_item;
return 1;

}
int Stack::is_empty (void) {

Copyright c1997-2003 Vanderbilt University 29



UCLA Extension Course OO Programming with C++

return this->stack == 0;
}
int Stack::is_full (void) {

return Stack::memory_exhausted;
}

Copyright c1997-2003 Vanderbilt University 30



UCLA Extension Course OO Programming with C++

Main program
#include <stream.h>
#include <stdlib.h>
#include "Stack.h"
const int DEFAULT_SIZE = 10;
const int CHUNK_SIZE = 40;
int main (int argc, char *argv[]) {

int size = argc == 1 ? DEFAULT_SIZE : atoi (argv[1]);
int chunk_size = argc == 2 ?

CHUNK_SIZE : atoi (argv[2]);
Stack stack (chunk_size);
int t;
srandom (time (0L));
for (int i = 0; i < size && !stack.is_full (); i++)

if (random () & 01) {
stack.push (random () % 1000);
t = stack.top ();
std::cout << "top = " << t << std::endl;

} else if (!stack.is_empty ()) {
t = stack.pop ();
std::cout << "pop = " << t << std::endl;

Copyright c1997-2003 Vanderbilt University 31



UCLA Extension Course OO Programming with C++

} else
std::cout << "stack is currently empty!\n";

while (!stack.is_empty ()) {
t = stack.pop ();
std::cout << "pop = " << t << std::endl;

}
return 0;

}

Copyright c1997-2003 Vanderbilt University 32



UCLA Extension Course OO Programming with C++

Summary
class T {
public:

T (void);
˜T (void);
void *operator new (size_t);
void operator delete() (void);

};

void f (void) {
T *tp1 = new T; // calls T::operator new
T *tp2 = ::new T; // calls ::operator new
T *tp3 = new T[10]; // calls ::operator new
delete() tp1; // calls T::operator delete()
::delete() tp2; // calls ::operator delete()
delete() [] tp3; // calls ::operator delete()

}

Copyright c1997-2003 Vanderbilt University 33


