
Object-Oriented Design and

Programming

C++ Language Support for

Abstract Data Types

Douglas C. Schmidt

www.cs.wustl.edu/�schmidt/

schmidt@cs.wustl.edu

Washington University, St. Louis

1



Describing Objects Using ADTs

� An abstract data type (ADT) is a set of

objects and an associated set of opera-

tions on those objects

� ADTs support abstraction, encapsulation,
and information hiding

{ Basically, enhance representational independence: : :

� They provide equal attention to data and

operations

� Common examples of ADTs:

{ Built-in types: boolean, integer, real, arrays

{ User-de�ned types: stacks, queues, trees,

lists

2



Built-in ADTs

� boolean

{ Values: TRUE and FALSE

{ Operations: and, or, not, nand, etc.

� integer

{ Values: Whole numbers between MIN and MAX

values

{ Operations: add, subtract, multiply, divide,
etc.

� arrays

{ Values: Homogeneous elements, i.e., array of

X: : :

{ Operations: initialize, store, retrieve,
copy, etc.

3



User-de�ned ADTs

� stack

{ Values: Stack elements, i.e., stack of X: : :

{ Operations: create, dispose, push, pop,
is empty, is full, etc.

� queue

{ Values: Queue elements, i.e., queue of X: : :

{ Operations: create, dispose, enqueue, dequeue,
is empty, is full, etc.

� tree search structure

{ Values: Tree elements, i.e., tree of X

{ Operations: insert, delete, find, size,
traverse (in-order, post-order, pre-order,
level-order), etc.

4



Avoiding Over-Speci�cation

� Goal:

{ We want complete, precise, and unambigu-

ous descriptions and speci�cations of software

components

� Problem:

{ We do not want to be dependent on physical

representation

� Too hard to port

� Too hard to change implementation

� Solution

{ Use ADTs

� ADTs capture essential properties without

over-specifying their internal realizations

� ADT interfaces provide a list of operations
rather than an implementation description

� i.e., what rather than how

5



Over-Speci�cation Examples

� e.g.,

int bu�er[100], last = �1;
: : :

bu�er[++last] = 13;

� e.g.,

struct Node f

int item ;
Node *next ;

g *p, *�rst = 0;
: : :

p = new Node;
p->next = �rst; p->item = 13; �rst = p;

� e.g.,

template <class T, int SIZE>
class Stack f

public:
int push (T new item); /* : : :*/
// : : :

private:
T stack [SIZE]

g;
Stack<int, 100> int stack;
// : : :

int stack.push (13);
6



Algebraic Speci�cation of ADTs

� Allows complete, precise, and non-ambiguous
speci�cation of ADTs without over-specifying
their underlying implementation

{ e.g., language independent

� ADT speci�cation techniques must de�ne:

{ Syntax

� e.g., map function: arguments ! results

{ Semantics

� Meaning of the mapping

� Often entails preconditions, postconditions,
axioms

{ Exceptions

� Error conditions

7



Algebraic Speci�cation of ADTs

(cont'd)

� Algebraic speci�cations attempt to be com-
plete, consistent, and handle errors

{ They consist of four parts: types, functions,

preconditions/postconditions, and axioms

� e.g.,

types

STACK[T]

functions

create: ! STACK[T]

push: STACK[T] � T ! STACK[T]

pop: STACK[T] ! STACK[T]

top: STACK[T] ! T
empty: STACK[T] ! BOOLEAN
full: STACK[T] ! BOOLEAN

preconditions/postconditions
pre pop (s: STACK[T]) = (not empty (s))
pre top (s: STACK[T]) = (not empty (s))
pre push (s: STACK[T], i: T) = (not full (s))
post push (s: STACK[T], i : T) = (not empty (s)

axioms

for all t: T, s: STACK[T]:
empty (create ())
not empty (push (t, s))
top (push (s, t)) = t
pop (push (s, t)) = s

8



Ei�el Stack Example

� -- Implement a bounded stack abstraction
in Ei�el

class STACK[T] export

is empty, is full, push, pop, top

feature

bu�er : ARRAY[T];

top : INTEGER;

Create (n : INTEGER) is

do

top := 0;

bu�er.Create (1, n);

end; -- Create

is empty: BOOLEAN is

do

Result := top <= 0;

end; -- is empty

is full: BOOLEAN is

do

Result := top >= bu�er.size;

end; -- is full

top: T is

require

not is empty

do

Result := bu�er.entry (top );

end; -- pop
9



Ei�el Stack Example (cont'd)

� e.g.,

pop: T is

require

not is empty

do

Result := bu�er.entry (top );

top := top � 1;

ensure

not is full;

top = old top � 1;

end; -- pop

push (x : T) is

require

not is full;

do

top := top + 1;

bu�er.enter (top , x);

ensure

not is empty; top = x;

top = old top + 1;

end; -- push

invariant

top >= 0 and top < bu�er.size;

end; -- class STACK

10



Ei�el Stack Example (cont'd)

� e.g., An Ei�el program used to reverse a
name

class main feature

MAX NAME LEN : INTEGER is 80;
MAX STACK SIZE : INTEGER is 80;

Create is

local

io : STD FILES;
st : STACK[CHARACTER];
str : STRING;
index : INTEGER;

do

io.create; str.create (MAX NAME LEN);
st.create (MAX STACK SIZE);
io.output.putstring ("enter your name..: ");
io.input.readstring (MAX NAME LEN);
str := io.input.laststring;
from index := 1;
until index > str.length or st.is full
loop

st.push (str.entry (index));
index := index + 1;

end;

from until st.is empty loop

io.output.putchar (st.pop);
end;
io.output.new line;

end;
end;

11



C++ Support for ADTs

� C++ Classes

� Automatic Initialization and Termination

� Assignment and Initialization

� Parameterized Types

� Exception Handling

� Iterators

12



C++ Classes

� A C++ class is an extension to the struct

type speci�er in C

� Classes are containers for state variables

and provide operations (i.e., methods)

for manipulating the state variables

� A class is separated into three access con-
trol sections:

class Classic Example f

public:

// Data and methods accessible to

// any user of the class

protected:

// Data and methods accessible to

// class methods, derived classes, and

// friends only

private:

// Data and methods accessible to class

// methods and friends only

g;
13



C++ Classes (cont'd)

� Each access control section is optional,

repeatable, and sections may occur in any

order

� Note, access control section order may af-
fect storage layout for classes and structs:

{ C++ only guarantees that consecutive �elds

appear at ascending addresses within a section,
not between sections, e.g.,

class Foo f /* Compiler may not rearrange these! */
int a ;
char b ;
double c ;
char d ;
oat e ;
short f ;

g;
class Foo f /* Compile may rearrange these! */
public: int a ;
public: char b ;
public: double c ;
public: char d ;
public: oat e ;
public: short f ;
g;

14



C++ Classes (cont'd)

� By default, all class members are private
and all struct members are public

{ A struct is interpreted as a class with all data

objects and methods declared in the public sec-

tion

� A class de�nition does not allocate stor-
age for any objects

{ i.e., it is just a cookie cutter: : :

{ Remember this when we talk about nested classes: : :

{ Note, a class with virtual methods will allocate
at least one vtable to store virtual method def-

initions

15



C++ Class Components

� Nested classes, structs, unions, and enu-

merated types

{ Versions of AT&T cfront translator later than

2.1 enforce proper class nesting semantics

� Data Members

{ Including both built-in types and user-de�ned
class objects

� Methods

{ Also called \member functions," only these op-

erations (and friends) may access private class
data and operations

16



C++ Class Components (cont'd)

� The this pointer

{ Used in the source code to refer to a pointer

to the object for which the method is called

� Friends

{ Non-class functions granted privileges to ac-
cess internal class information, typically for ef-

�ciency reasons

17



Nested Classes et al.

� Earlier releases of C++ (i.e., cfront ver-
sions pre�2.1) did not support nested se-
mantics of nested classes

{ i.e., nesting was only a syntactic convenience

� This was a problem since it prevented con-
trol over name space pollution of type names

{ Compare with static for functions and vari-

ables

� It is now possible to fully nest classes and
structs

{ Class visibility is subject to normal access control: : :

� Note, the new C++ namespace feature is

a more general solution to this problem: : :

18



Nested Classes et al. (cont'd)

� e.g.,

class Outer f
public:

class Visible Inner f /* : : :*/ g;
private:

class Hidden Inner f /* : : :*/ g;
g;

Outer outer; /* OK */
Hidden Inner hi; /* ERROR */
Visible Inner vi; /* ERROR */
Outer::Visible Inner ovi; /* OK */
Outer::Hidden Inner ohi; /* ERROR */

� Note,

{ Nesting is purely a visibility issue, it does not

convey additional privileges on Outer or Inner

class relationships

� i.e., nesting and access control are separate

concepts

{ Also, inner classes do not allocate any addi-
tional space inside the outer class

19



Class Data Members

� Data members may be objects of built-in
types, as well as user-de�ned types, e.g.,
class Bounded Stack

#include "Vector.h"

template <class T>

class Bounded Stack f

public:

Bounded Stack (int len): stack (len), top (0) fg

void push (T new item) f

this->stack [this->top ++] = new item;

g

T pop (void) f return this->stack [--this->top ]; g

T top (void) const f

return this->stack [this->top � 1]; g

int is empty (void) const f return this->top == 0; g

int is full (void) const f

return this->top >= this->stack .size ();

g

private:

Vector<T> stack ;

int top ;

g;

20



Class Data Members (cont'd)

� Important Question: \How do we initial-

ize class data members that are objects

of user-de�ned types whose constructors

require arguments?"

� Answer: use the base/member initializa-

tion section

{ That's the part of the constructor after the ':',

following the constructor's parameter list (up

to the �rst 'f')

� Note, it is a good habit to always use the
base/member initialization section

{ e.g., there are less e�ciency surprises this way

when changes are made

� Base/member initialization section only ap-

plies to constructors

21



Base/Member Initialization

Section

� Four mandatory cases for classes:

1. Initializing base classes (whose constructors re-

quire arguments)

2. Initializing user-de�ned class data members (whose

constructors require arguments)

3. Initializing reference variables

4. Initializing consts

� One optional case:

1. Initializing built-in data members

22



Base/Member Initialization

Section (cont'd)

� e.g.,

class Vector f public: Vector (size t len); /* : : :*/ g;

class String f public: String (char *str); /* : : :*/ g;

class Stack : private Vector // Base class

f

public:

Stack (size t len, char *name)

: Vector (len), name (name),

MAX SIZE (len), top (0) fg

// : : :

private:

String name ; // user-de�ned

const int MAX SIZE ; // const

size t top ; // built-in type

// : : :

g;

class Vector Iterator f

public:

Vector Iterator (const Vector &v): vr (v), i (0) fg

// : : :

private:

Vector &vr ; // reference

size t i ;

g;
23



Class Methods

� Four types of methods

1. Manager functions (constructors, destructors,
and operator=)

{ Allow user-de�ned control over class creation,

initialization, assignment, deallocation, and
termination

2. Helper functions

{ \Hidden" functions that assist in the class

implementation

3. Accessor functions

{ Provide an interface to various components

in the class's state

4. Implementor functions

{ Perform the main class operations

24



Class Methods (cont'd)

� e.g.,

// typedef int T;

template <class T>

class Vector

f

public:

// manager

Vector (size t len = 100);

// manager

~Vector (void);

// accessor

size t size (void) const;

// implementor

T &operator[] (size t i);

private:

// helper

bool in range (size t i) const;

g;

25



The this Pointer

� this is a C++ reserved keyword

{ It valid only in non-static method de�nitions

� this textually identi�es the pointer to the
object for which the method is called

class String f

public:

void print (void);

// : : :

private:

char *str ;

// : : :

g;

void String::print (void) f

puts (this->str ); // same as puts (str );

g

int main (void) f

String s, t;

s.print (); // this == &s

t.print (); // this == &t

g

26



The this Pointer (cont'd)

� The this pointer is most often used ex-
plicitly to

{ Pass the object (or a pointer or reference to

it) to another function

{ Return the object (or a pointer or reference to

it) to another function, e.g.,

#include <ctype.h>
class String f

public:
String &upper case (void);
void print (void) const;

private:
char *str ;

g;
String &String::upper case (void) f

for (char *cp = this->str ; *cp != 0; cp++)
if (islower (*cp))

*cp = toupper (*cp);
return *this;

g

int main (void) f
String s ("hello"); // this == &s
s.upper case ().print ();
/* Could also be:

s.upper case ();
s.print ();

compare with:
cout << s.upper case ();
*/

g

27



Friends

� A class may grant access to its private
data and methods by including a list of
friends in the class de�nition, e.g.,

class Vector f

friend Vector &product (const Vector &, const &Matrix);

private:

int size ;

// : : :

g;

class Matrix f

friend Vector &product (const Vector &, const &Matrix);

private:

int size ;

// : : :

g;

� Function product can now access private
parts of both the Vector and Matrix, al-
lowing faster access, e.g.,

Vector &product (const Vector &v, const Matrix &m) f

int vector size = v.size ;

int matrix size = m.size ;

// : : :

g

28



Friends (cont'd)

� Note, a class may confer friendship on the
following:

1. Entire classes

2. Selected methods in a particular class

3. Ordinary stand-alone functions

� Friends allow for controlled violation of
information-hiding

{ e.g., ostream and istream functions:

#include <iostream.h>
class String f

friend ostream &operator << (ostream &, String &);
private:

char *str ;
// : : :

g;

ostream &operator << (ostream &os, String &s) f
os << s.str ;
return os;

g

29



Friends (cont'd)

� Using friends weakens information hiding

{ In particular, it leads to tightly-coupled imple-

mentations that are overly reliant on certain
naming and implementation details

� For this reason, friends are known as the

\goto of access protection mechanisms!"

� Note, C++ inline functions reduce the

need for friends: : :

30



Class Vector Example

� // File Vector.h (correct wrt initialization
and assignment)

// typedef int T;
template <class T>

class Vector
f

public:
~Vector (void);
Vector (size t len = 100, const T init = 0);
size t size (void) const;
T &operator[] (size t i);
/* New functions */
Vector (const Vector<T> &v); // Copy constructor
// Assignment operator
Vector<T> &operator= (const Vector<T> &v);

protected:
T &elem (size t i);

private:
size t size ;
size t max ;
T *buf ;
bool in range (size t i);

g;

� This class solves previous problems with

aliasing and deletion: : :

31



Initialization and Termination

� Automatic initialization and termination

activities are supported in C++ via con-

structors and destructors

� Constructors

{ Allocate data objects upon creation

{ Initialize class data members

{ e.g.,

template <class T>
Vector<T>::Vector (size t len, const T init)

: size (len), max (len)
f

if (this->size <= 0)
throw Vector<T>::RANGE ERROR ();

this->buf = new T[this->size ];

while (--this->size >= 0)
this->buf [this->size ] = init;

if (verbose logging)
log ("constructing Vector object");

g

32



Initialization and Termination

(cont'd)

� Destructors

{ Deallocate data allocated by the constructor

{ Perform other tasks associated with object ter-
mination

{ e.g.,

template <class T>

Vector<T>::~Vector (void) f

delete [] this->buf ;

if (verbose logging)

log ("destructing Vector object");

g

33



Initialization and Termination

(cont'd)

� Without exceptions, handling constructor
or destructor failures is very di�cult and/or
ugly, e.g.,

1. Abort entire program

2. Set global (or class instance) ag

3. Return reference parameter (works for construc-

tors, but not destructors)

4. Log message and continue: : :

� However, exceptions have their own traps

and pitfalls: : :

34



Assignment and Initialization

� Some ADTs must control all copy opera-

tions invoked upon objects

� This is necessary to avoid dynamic mem-

ory aliasing problems caused by \shallow"

copying

� A String class is a good example of the

need for controlling all copy operations: : :

35



Assignment and Initialization

(cont'd)

� e.g.,

class String f

public:
String (char *t)

: len (t == 0 ? 0 : ::strlen (t)) f
if (this->len == 0)

throw RANGE ERROR ();
this->str = ::strcpy (new char [len + 1], t);

g

~String (void) f delete [] this->str ; g
// : : :

private:
size t len , char *str ;

g;

void foo (void) f
String s1 ("hello");
String s2 ("world");

s1 = s2; // leads to aliasing
s1[2] = 'x';
assert (s2[2] == 'x'); // will be true!
// : : :

// double deletion in destructor calls!
g

36



Assignment and Initialization

(cont'd)

s1 s2

world

� Note that both s1.s and s2.s point to the

dynamically allocated bu�er storing "world"

(this is known as \aliasing")

37



Assignment and Initialization

(cont'd)

� In C++, copy operations include assign-
ment, initialization, parameter passing and
function return, e.g.,

#include "Vector.h"

extern Vector<int> bar (Vector<int>);

void foo (void) f
Vector<int> v1 (100);

Vector<int> v2 = v1; // Initialize new v2 from v1
// same as Vector v2 (v1);

v1 = v2; // Vector assign v2 to v1

v2 = bar (v1); // Pass and return Vectors
g

� Note, parameter passing and function re-

turn of objects by value is treated using

initialization semantics via the \copy con-

structor"

38



Assignment and Initialization

(cont'd)

� Assignment is di�erent than initialization,

since the left hand object already exists

for assignment

� Therefore, C++ provides two related, but
di�erent operators, one for initialization
(the copy constructor, which also handles
parameter passing and return of objects
from functions): : :

template <class T>

Vector<T>::Vector (const Vector &v)

: size (v.size ), max (v.max), buf (new T[v.max])

f

for (size t i = 0; i < this->size ; i++)

this->buf [i] = v.buf [i];

if (verbose logging)

log ("initializing Vector object");

g

39



Assignment and Initialization

(cont'd)

� : : :and one for assignment (the assignment
operator), e.g.,

template <class T>

Vector<T> &Vector<T>::operator= (const Vector<T> &v)

f

if (this != &v) f

if (this->max < v.size ) f

delete [] this->buf ;

this->buf = new T[v.size ];

this->max = v.size ;

g

this->size = v.size ;

for (size t i = 0; i < this->size ; i++)

this->buf [i] = v.buf [i];

g

return *this; // Allows v1 = v2 = v3;

g

40



Assignment and Initialization

(cont'd)

� Both constructors and operator = must
be class members and neither are inherited

{ Rationale

� If a class had a constructor and an operator

=, but a class derived from it did not what

would happen to the derived class members

which are not part of the base class?!

{ Therefore

� If a constructor or operator = is not de�ned

for the derived class, the compiler-generated

one will use the base class constructors and
operator ='s for each base class (whether

user-de�ned or compiler-de�ned)

� In addition, a memberwise copy (e.g., using

operator =) is used for each of the derived
class members

41



Assignment and Initialization

(cont'd)

� Bottom-line: de�ne constructors and operator=
for almost every non-trivial class: : :

{ Also, de�ne destructors and copy constructors

for most classes as well: : :

� Note, you can also de�ne compound as-

signment operators, such as operator +=,

which need have nothing to do with op-

erator =

42



Vector Usage Example

� // File main.C

#include <stream.h>
#include "Vector.h"

extern atoi (char *);

int main (int argc, char *argv[]) f
int size = argc > 1 ? ::atoi (argv[1]) : 10;
Vector<int> v1 (size); // defaults to 0
Vector<int> v2 (v1);
/* or:

Vector<int> v2 = v1;
Vector<int> v2 = Vector<int> (v1);
Vector<int> v2 = (Vector<int>) v1; */

::srandom (::time (0L));

for (size t i = 0; i < v1.size (); i++)
v1[i] = v2[i] = ::random ();

Vector<int> v3 (v1.size (), �1);
/* Perform a Vector assignment */
v3 = v1;

for (size t i = 0; i < v3.size (); i++)
cout << v3[i];

g

43



Restricting Assignment and

Initialization

� Assignment, initialization, and parameter
passing of objects by value may be pro-
hibited by using access control speci�ers:

template <class T>

class Vector f

public:

Vector<T> (void); // Default constructor

// : : :

private:

Vector<T> &operator= (const Vector<T> &);

Vector<T> (const Vector<T> &);

// : : :

g

void foo (Vector<int>); // pass-by-value prototype

Vector<int> v1;

Vector<int> v2 = v1; // Error

v2 = v1; // Error

foo (v1); // Error

� Note, these idioms are surprisingly useful: : :

44



Restricting Assignment and

Initialization (cont'd)

� Note, a similar trick can be used to pre-
vent static or auto declaration of an ob-
ject, i.e., only allows dynamic objects!

class Foo f

public:
// : : :

void dispose (void);
private:

// : : :

~Foo (void); // Destructor is private: : :

g;
Foo f; // error

� Now the only way to declare a Foo object
is o� the heap, using operator new

Foo *f = new Foo;

� Note, the delete operator is no longer accessible

delete f; // error!

� Therefore, a dispose function must be provided

to delete this

f->dispose ();
45



Restricting Assignment and

Initialization (cont'd)

� If you declare a class constructor protected
then only objects derived from the class
can be created

{ Note, you can also use pure virtual functions

to achieve a similar e�ect, though it forces the

use of virtual tables: : :

� e.g.,

class Foo f protected: Foo (void); g;

class Bar : private Foo f public Bar (void); g;

Foo f; // Illegal

Bar b; // OK

� Note, if Foo's constructor is declared in

the private section then we can not de-

clare objects of class Bar either (unless

class Bar is declared as a friend of Foo)

46



Overloading

� C++ allows overloading of all function
names and nearly all operators that handle
user-de�ned types, including:

{ the assignment operator =

{ the function call operator ()

{ the array subscript operator []

{ the pointer operator ->()

{ the \comma" operator ,

{ the auto-increment operator ++

� You may not overload:

{ the scope resolution operator ::

{ the ternary operator ? :

{ the \dot" operator .

47



Overloading (cont'd)

� Ambiguous cases are rejected by the com-
piler, e.g.,

int foo (int);
int foo (int, int = 10);
foo (100); // ERROR, ambiguous call!
foo (100, 101); // OK!

� A function's return type is not considered
when distinguishing between overloaded in-
stances

{ e.g., the following declarations are ambiguous

to the C++ compiler:

extern int divide (double, double);
extern double divide (double, double);

� Overloading becomes a hindrance to the
readability of a program when it serves to
remove information

{ This is especially true of overloading operators!

� e.g., overloading operators += and -= to mean
push and pop from a Stack ADT

48



Overloading (cont'd)

� Function name overloading and operator
overloading relieves the programmer from
the lexical complexity of specifying unique
function identi�er names. e.g.,

class String f

// various constructors, destructors,

// and methods omitted

friend String operator+ (String&, const char *);

friend String operator+ (String&,String&);

friend String operator+ (const char *, String&);

friend ostream &operator<< (ostream &, String &);

g;

String str vec[101];

String curly ("curly");

String comma (", ");

str vec[13] = "larry";

String foo = str vec[13] + ", " + curly;

String bar = foo + comma + "and moe";

/* bar.String::String (

operator+ (operator+ (foo, comma), "and moe")); */

void baz (void) f

cout << bar << "\n";

// prints "larry, curly, and moe"

g

49



Overloading (cont'd)

� For another example of why to avoid op-
erator overloading, consider the following
expression:

Matrix a, b, c, d;

// : : :

a = b + c * d; // *, +, and = are overloaded

// remember, \standard" precedence rules apply: : :

� This code will be compiled into something
like the following:

Matrix t1 = c.operator* (d);

Matrix t2 = b.operator+ (t1);

a.operator= (t2);

destroy t1;

destroy t2;

� This may involve many constructor/destructor

calls and extra memory copying: : :

50



Overloading (cont'd)

� There are two issues to consider when
composing overloaded operators in expres-
sions, e.g.,

{ Two issues to

1. Memory Management

� Creation and destruction of temporary vari-
ables

� Where is memory for return values allo-

cated?

2. Error Handling

� e.g., what happens if a constructor for a

temporary object fails in an expression?

� This requires some type of exception han-

dling

51



Overloading (cont'd)

� Bottom-line: do not use operator over-

loading unless absolutely necessary!

� Instead, many operations may be written
using functions with explicit arguments,
e.g.,

Matrix a, b, c, d;

: : :

Matrix t (b);
t.add (c);

t.mult (d);

a = t;

� or de�ne and use the short-hand operator

x= instead:

Matrix a (c);

a *= d;
a += b;

� Note that this is the same as

a = b + c * d;
52



Parameterized Types

� Parameterized types serve to describe gen-

eral container class data structures that

have identical implementations, regardless

of the elements they are composed of

� The C++ parameterized type scheme al-
lows \lazy instantiation"

{ i.e., the compiler need not generate de�nitions

for template methods that are not used

� ANSI/ISO C++ also supports template
speci�ers, that allow a programmer to \pre-
instantiate" certain parameterized types,
e.g.,

template class Vector<int>;

53



Parameterized Types

� Here's the Vector class again (this time
using a default parameter for the type)

template <class T = int>

class Vector

f

public:

Vector (size t len): size (len),

buf (new T[size < 0 ? 1 : size ]) fg

T &operator[] (size t i) f return this->buf [i]; g

// : : :

private;

size t size ; /* Note, this must come �rst!!! */

T *buf ;

g;

Vector<> v1 (20); // int by default: : :

Vector<String> v2 (30);

typedef Vector<Complex> COMPLEX VECTOR;

COMPLEX VECTOR v3 (40);

v1[1] = 20;

v2[3] = "hello";

v3[10] = Complex (1.0, 1.1);

v1[2] = "hello"; // ERROR!

54



Parameterized Types (cont'd)

� e.g.,

Vector<int> *foo (size t size) f

// An array of size number of doubles

Vector<double> vd (size); // constructor called

// A dynamically allocated array of size chars

Vector<char> *vc = new Vector<char>(size);

// size arrays of 100 ints

Vector<int> *vi = new Vector<int>[size];

/* : : :*/

delete vc; /* Destructor for vc called */

// won't be deallocated until delete is called!

return vi;

/* Destructor called for auto variable vd */

g

� Usage

Vector<int> *va = foo (10);

assert (va[1].size () == 100);

delete [] va; /* Call 10 destructors */
55



Parameterized Types (cont'd)

� Note that we could also use templates to
supply the size of a vector at compile-time
(more e�cient, but less exible)

template <class T = int, size t SIZE = 100>

class Vector

f

public:

Vector (void): size (SIZE) fg

T &operator[] (size t i) f return this->buf [i]; g

private:

size t size ;

T buf[SIZE];

g;

� This would be used as follows:

Vector<double, 1000> v;

56



Parameterized Types (cont'd)

� C++ templates may also be used to pa-
rameterize functions, e.g.,

template <class T> inline void

swap (T &x, T &y) f

T t = x;

x = y;

y = t;

g

int main (void) f

int a = 10, b = 20;

double d = 10.0, e = 20.0;

char c = 'a', s = 'b';

swap (a, b);

swap (d, e);

swap (c, s);

g

� Note that the C++ compiler is responsi-

ble for generating all the necessary code: : :

57



Exception Handling Overview

� Exception handling provides a disciplined

way of dealing with erroneous run-time

events

� When used properly, exception handling

makes functions easier to understand be-

cause they separate out error code from

normal control ow

� C++ exceptions may throw and catch

arbitrary C++ objects

{ Therefore, an unlimited amount of information

may be passed along with the exception indi-

cation

� The termination (rather than resumption)

model of exception handling is used

58



Limitations of Exception Handling

� Exception handling may be costly in terms
of time/space e�ciency and portability

{ e.g., it may be ine�cient even if exceptions

are not used or not raised during a program's
execution

� Exception handling is not appropriate for
all forms of error-handling, e.g.,

{ If immediate handling or precise context is re-

quired

{ If \error" case may occur frequently

� e.g., reaching end of linked list

� Exception handling can be hard to pro-

gram correctly

59



Exception Handling Examples

� Without exceptions:

Stack s;

int i;

// : : :

if (!s.is full ()) s.push (10);

else /* : : :*/

// : : :

if (!s.is empty ()) i = s.pop ();

else /* : : :*/

� Versus

Stack s;

int i;

try f s.push (10);

// : : :

i = s.pop ();

g

catch (Stack::UNDERFLOW &e) f /* : : :*/ g

catch (Stack::OVERFLOW &e) f /* : : :*/ g

60



Another C++ Exception Handling

Example

� Note the sublte chances for errors: : :

class xxii f
public:

xxii (const String &r): reason (r) fg
String reason ;

g;
int g (const String &s) f

String null ("");
if (s == null) throw xxii ("null string");

// destructors are automatically called!
// : : :

g

int f (const String &s) f
try f

String s1 (s);
char *s2 = new char[100]; // careful: : :

// : : :

g (s1);
delete [] s2;
return 1;

g

catch (xxii &e) f
cerr << "g() failed, " << e.reason ;
return 22;

g

catch (: : : ) f
cerr << "unknown error occurred!";
return �1;

g

g

61



Iterators

� Iterators allow applications to loop through

elements of some ADT without depend-

ing upon knowledge of its implementation

details

� There are a number of di�erent techniques
for implementing iterators

{ Each has advantages and disadvantages

� Other design issues:

{ Providing a copy of each data item vs. provid-

ing a reference to each data item?

{ How to handle concurrency and insertion/deletion

while iterator(s) are running

62



Iterators (cont'd)

� Three primary methods of designing iter-
ators

1. Pass a pointer to a function

{ Not very OO: : :

{ Clumsy way to handle shared data: : :

2. Use in-class iterators (a.k.a. passive or internal

iterators)

{ Requires modi�cation of class interface

{ Generally not reentrant: : :

3. Use out-of-class iterators (a.k.a. active or ex-

ternal iterator)

{ Handles multiple simultaneously active iter-
ators

{ May require special access to original class

internals: : :

� i.e., use \friends"

63



Pointer to Function Iterator

� e.g.,

#include <stream.h>

template <class T>

class Vector f

public:

/* Same as before */

int apply (void (*ptf) (T &)) f

for (int i = 0; i < this->size (); i++)

(*ptf) (this->buf[i]);

g

g

template <class T> void f (T &i) f

cout << i << endl;

g

Vector<int> v (100);

// : : :

v.apply (f);

64



In-class Iterator

� e.g.,

#include <stream.h>

template <class T>

class Vector f

public:

// Same as before

void reset (void) f this->i = 0; g

bool advance (void) f

return this->i ++ < this->size ();

g

T value (void) f

return this->buf[this->i � 1];

g

private:

/* Same as before */

size t i ;

g;

Vector<int> v (100);

// : : :

for (v.reset (); v.advance () != false; )

cout << "value = " << v.value () << "\n";

� Note, this approach is not re-entrant: : :

65



Out-of-class Iterator

� e.g.,

#include <stream.h>
#include "Vector.h"
template <class T>

class Vector Iterator f
public:

Vector Iterator (const Vector<T> &v)
: i (0), vr (v) fg

bool advance (void) f
return this->i ++ < this->vr .size ();

g

T value (void) f
return this->vr [this->i � 1];

g

private:
Vector<T> &vr ;
size t i ;

g;
Vector<int> v (100);
Vector Iterator<int> iter (v);
while (iter.advance () != false)

cout << "value = " << iter.value () << "\n";

� Note, this particular scheme does not re-
quire that Vector Iterator be declared as
a friend of class Vector

{ However, for e�ciency reasons this is often
necessary in more complex ADTs

66



Miscellaneous ADT Issues in

C++

� References

� const methods

� static methods

� static data members

� mutable Type Quali�er

� Arrays of class objects

67



References

� Parameters, return values, and variables
can all be de�ned as \references"

{ This is primarily done for e�ciency

� Call-by-reference can be used to avoid the
run-time impact of passing large arguments
by value

{ Note, there is a trade-o� between indirection

vs copying

struct Huge f int size ; int array [100000]; g;
int total (const Huge &h) f

int count = 0;
for (int i = 0; i < h.size ; i++)

count += h.array [i];
return count;

g

Huge h;

int main (void) f
/* : : :*/
// Small parameter passing cost: : :

int count = total (h);
g

68



References (cont'd)

� The following behaves like Pascal's VAR
parameter passing mechanism (a.k.a. call-
by-reference):

double square (double &x) f return x *= x; g
int bar (void) f

double foo = 10.0;
square (foo);
cout << foo; // prints 100.0

g

� In C this would be written using explicit
dereferencing:

double square (double *x) f return *x *= *x; g
int bar (void) f

double foo = 10.0;
square (&foo);
printf ("%f", foo); /* prints 100.0 */

g

� Note, reference variables may lead to sub-
tle aliasing problems when combined with
side-e�ects:

cout << (square (foo) * foo);
// output result is not de�ned!

69



References (cont'd)

� A function can also return a reference to
an object, i.e., an lvalue

{ Avoids cost of returning by an object by value

{ Allows the function call to be an lvalue

Employee &boss of (const Employee &);

Employee smith, jones, vacant;

if (boss of (smith) == jones)

boss of (smith) = vacant;

{ Note, this is often done with operator[], e.g.,

Vector<int> v (10);

v[3] = 100; // v.operator[] (3) = 100;

int i = v[3]; // int i = v.operator[] (3);

70



References (cont'd)

� References are implemented similarly to
const pointers. Conceptually, the di�er-
ences between references and pointers are:

{ Pointers are �rst class objects, references are

not

� e.g., you can have an array of pointers, but

you can't have an array of references

{ References must refer to an actual object, but
pointers can refer to lots of other things that

aren't objects, e.g.,

� Pointers can refer to the special value 0 in

C++ (often referred to as NULL)

� Also, pointers can legitimately refer to a lo-

cation one past the end of an array

� In general, use of references is safer, less

ambiguous, and much more restricted than

pointers (this is both good and bad, of

course)

71



Const Methods

� When a user-de�ned class object is de-
clared as const, its methods cannot be
called unless they are declared to be const
methods

{ i.e., a const method must not modify its mem-
ber data directly

� This allows read-only user-de�ned objects
to function correctly, e.g.,

class Point f
public:

Point (int x, int y): x (x), y (y) fg
int dist (void) const f

return ::sqrt (this->x * this->x
+ this->y * this->y );

g

void move (int dx, int dy) f
this->x += dx; this->y += dy;

g

private:
int x , y ;

g;
const Point p (10, 20);
int d = p.dist (); // OK
p.move (3, 5); // ERROR

72



Static Data Members

� A static data member has exactly one in-
stantiation for the entire class (as opposed
to one for each object in the class), e.g.,

class Foo f

public:
int a ;

private:
// Must be de�ned exactly once outside header!
// (usually in corresponding .C �le)
static int s ;

g;
Foo x, y, z;

� Note:

{ There are three distinct addresses for Foo::a

(i.e., &x.a , &y.a , &z.a )

{ There is only one Foo::s, however: : :

� Also note:

&Foo::s == (int *);

&Foo::a == (int Foo::*); // pointer to data member
73



Static Methods

� A static method may be called on an ob-

ject of a class, or on the class itself with-

out supplying an object (unlike non-static

methods: : : )

� Note, there is no this pointer in a static
method

{ i.e., a static method cannot access non-static

class data and functions

class Foo f

public:
static int get s1 (void) f

this->a = 10; /* ERROR! */
return Foo::s ;

g

int get s2 (void) f
this->a = 10; /* OK */
return Foo::s ;

g

private:
int a ;
static int s ;

g;

74



Static Methods (cont'd)

� The following calls are legal:

Foo f;

int i1, i2, i3, i4;

i1 = Foo::get s1 ();

i2 = f.get s2 ();

i3 = f.get s1 ();

i4 = Foo::get s2 (); // error

� Note:

&Foo::get s1 == int (*)(void);

// pointer to method

&Foo::get s2 == int (Foo::*)(void);

75



Mutable Type Quali�er

� The constness of an object's storage is

determined by whether the object is con-

structed as const

� An attempt to modify the contents of const
storage (via casting of pointers or other
tricks) results in unde�ned behavior

{ It is possible (though not encouraged) to \cast-

away" the constness of an object. This is not
guaranteed to be portable or correct, however!

const int i = 10;

//: : :

* (int *) &i = 100; // Asking for trouble!

� If a data member is declared with the stor-

age class mutable, then that member is

modi�able even if the containing object is

const

76



Mutable Type Quali�er (cont'd)

� e.g.,

class Foo f

public:

Foo (int a, int b): i (a), j (b) fg

mutable int i ;

int j ;

g;
const Foo bar;

// the following must be written in a context with

// access rights to Foo::i and Foo::j .

bar.i = 5; // well formed and de�ned

bar.j = 5; // not well-formed

*(int *)(&bar.j ) = 5; // well-formed but unde�ned behavior

// better style, but still unde�ned behavior

if (int *i = const cast<int *>(&bar.j ))

i = 5;

77



Mutable Type Quali�er (cont'd)

� A consequence of mutable is that a ob-
ject is ROMable if

1. Its class doesn't have any mutable data mem-

bers

2. The compiler can �gure out its contents after

construction at compile time

3. The compiler can cope with any side e�ects of
the constructor and destructor

{ or can determine that there aren't any

78



Arrays of Objects

� In order to create an array of objects that
have constructors, one constructor must
take no arguments

{ Either directly or via default arguments for all

formal parameters

{ e.g.,

Vector<Vector<int> > vector vector1;

Vector<int> vector vector2[100];

Vector<int> *vector vector ptr = new Vector<int>[size];

� The constructor is called for each element

� If array created dynamically via new, then
delete must use an empty []

{ This instructs the compiler to call the destruc-

tor the correct number of times, e.g.,

delete [] vector vector ptr;

79



Anonymous Unions

� A union is a structure who member ob-
jects all begin at o�set zero and whose
size is su�cient to contain any of its mem-
ber objects

{ They are often used to save space

� A union of the form union f member-list

g; is called an anonymous union; it de�nes
an unnamed object

{ The union �elds are used directly without the

usual member access syntax, e.g.,

void f (void) f

union f int a ; char *p ; g;

a = 1; p = "Hello World\n";

// a and p have the same address!

// i.e., &a == &p

g

80



Anonymous Unions (cont'd)

� Here's an example that illustrates a typical
way of using unions, e.g.,

struct Types f

enum Type fINT, DOUBLE, CHARg type ;

union f int i ; double d ; char c ; g;

g t;

if (t.type == Types::DOUBLE) t.d = 100.02;

// Q: \what is the total size of struct Types?"

// Q: \What if union were changed to struct?"

� Note that C++ provides other language
features that makes unions less necessary
(compared to C)

{ e.g., inheritance with dynamic binding

81



Anonymous Unions (cont'd)

� Some restrictions apply:

{ Unions in general

� A union may not be used as a base class and

can have no virtual functions

� An object of a class with a constructor or

destructor or a user-de�ned assignment op-

erator cannot be a member of a union

� A union can have no static data members

{ Anonymous unions

� Global anonymous unions must be declared

static

� An anonymous union may not have private

or protected members

� An anonymous union may not have methods

82



Summary

� A major contribution of C++ is its sup-
port for de�ning abstract data types (ADTs),
e.g.,

{ Classes

{ Parameterized types

{ Exception handling

� For many systems, successfully utilizing
C++'s ADT support is more important
than using the OO features of the lan-
guage, e.g.,

{ Inheritance

{ Dynamic binding

83


