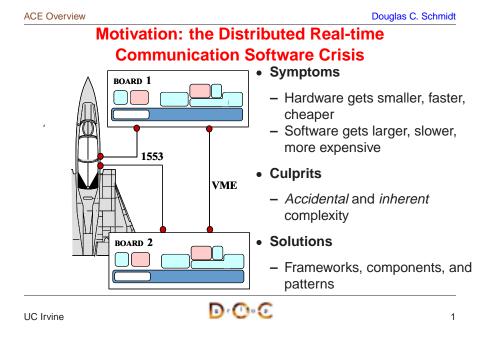
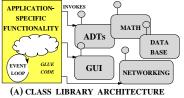
Developing Distributed Real-time Systems Using OS System-Hiding Frameworks

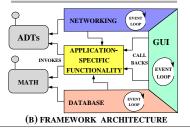
Douglas C. Schmidt


Associate Professor schmidt@uci.edu www.ece.uci.edu/~schmidt/

Elec. & Comp. Eng. Dept. University of California, Irvine (949) 824-1901

Sponsors

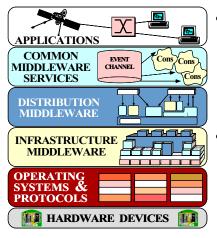

NSF, DARPA, ATD, BBN, Boeing, Cisco, Comverse, GDIS, Experian, Global MT, Hughes, Kodak, Krones, Lockheed, Lucent, Microsoft, Mitre, Motorola, NASA, Nokia, Nortel, OCI, Oresis, OTI, Raytheon, SAIC, Siemens SCR, Siemens MED, Siemens ZT, Sprint, Telcordia, USENIX



ACE Overview

Douglas C. Schmidt

Techniques for Improving Software Quality and Productivity



Proven solutions

- Components
 - * Self-contained, "pluggable" ADTs
- Frameworks
 - * Reusable, "semi-complete" applications
- Patterns
 - * Problem/Solution/Context
- Architecture
 - * Families of related patterns and components

ACE Overview

Roadmap to Levels of Middleware Abstraction

Douglas C. Schmidt

- Observations
 - Historically, apps built directly atop OS
 - Today, more and more apps built atop *middleware*
 - Middleware has several layers

General R&D challenges

- Performance optimizations
- Quality of Service (QoS)
- Software architecture & patterns

2

Douglas C. Schmidt

Douglas C. Schmidt

Why We Need Communication Middleware

- · System call-level programming is wrong abstraction for application developers
 - Too low-level \rightarrow error codes, endless reinvention
 - Error-prone → HANDLEs lack type-safety, thread cancellation woes
 - Mechanisms do not scale → RTOS TSS
 - Steep learning curve → Win32 Named Pipes
 - *Non-portable* \rightarrow socket bugs
 - Inefficient \rightarrow *i.e.*, tedious for humans

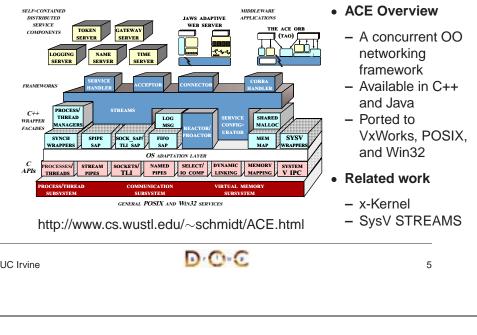
• GUI frameworks are inadequate for communication software

- Inefficient \rightarrow excessive use of virtual methods
- Lack of features → minimal threading and synchronization mechanisms, no network services

UC Irvine	D ∙ O • €	4	UC Irvine	

ACE Overview **ACE Statistics** • ACE contain > 200,000 lines of C++ • Currently used by - Over 30 person-years of effort Ported to UNIX, Win32, MVS, and embedded platforms - e.g., VxWorks, LynxOS, Chorus, pSoS, QNX

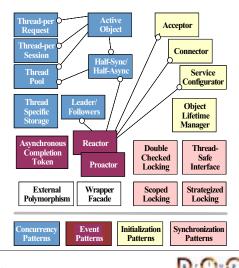
- Large user community
 - www.cs.wustl.edu/~schmidt/ACE- Supported commercially users.html


dozens of companies

Douglas C. Schmidt

- Boeing, Cisco, Ericsson, Kodak, Lockheed, Lucent, Motorola, Nokia, Nortel, Raytheon, SAIC, Siemens, StorTek, etc.
- - www.riverace.com

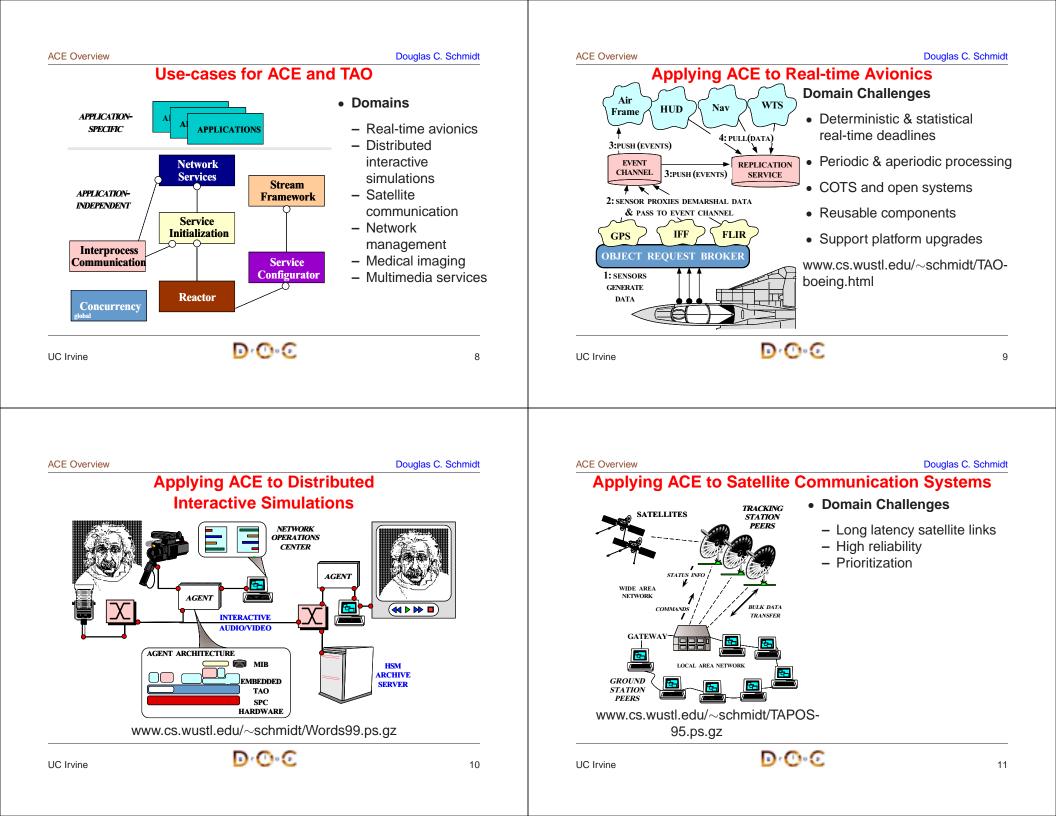
ACE Overview


The ADAPTIVE Communication Environment (ACE)

ACE Overview

Douglas C. Schmidt

Patterns for Communication Middleware


Observation

- Failures rarely result from unknown scientific principles, but from failing to apply proven engineering practices and patterns
- Benefits of Patterns
 - Facilitate design reuse
 - Preserve crucial design information
 - Guide design choices

UC Irvine

6

7

Session Router Module

Presentation Module

Event Filter Module

Event Analysis

Module

Presentation Module

Switch Router

Module

Douglas C. Schmidt

Domain Challenges

- Family of related

- Low latency

services

- Multi-platform

• The best components

problems

come from solving real

Lessons Learned Building ACE

• Be patient

ACE Overview

- Good components, frameworks, and software architectures take time to develop
- Keep feedback loops tight to avoid "runaway" reuse • Reuse-in-the-large works best efforts when: Produce reusable 1. The marketplace is competitive components by 2. The domain is complex generalizing from working 3. Skilled middleware developers applications 4. Supportive corporate culture 5. "Reuse magnets" exist - i.e., don't build 6. Open source development components in isolation models DOC 13 UC Irvine

ACE Overview

UC Irvine

Douglas C. Schmidt

12

Concluding Remarks

Applying ACE to Network Management

SUPER VISORS

Session IO

Switch IO

DOC

Reactor

www.cs.wustl.edu/~schmidt/DSEJ-

94.ps.gz

SUPER

VISORS

SUPER

TELECOM SWITCHES

- Developers of real-time communication software confront recurring challenges that are largely application-independent
 - *e.g.*, service initialization and distribution, error handling, flow control, event demultiplexing, concurrency control, synchronization, scheduling
- Programming directly to the underlying OS APIs is tedious, error-prone, and non-portable
- Successful developers resolve these challenges by applying appropriate *design patterns* to create communication *frameworks*
- Application *frameworks* are an effective way to achieve broad reuse of software

ACE Overview

Douglas C. Schmidt

Obtaining ACE

- All source code for ACE is freely available
 - www.cs.wustl.edu/~schmidt/ACE.html
- Mailing lists
 - ace-users@cs.wustl.edu
 - ace-users-request@cs.wustl.edu
 - ace-announce@cs.wustl.edu
 - ace-announce-request@cs.wustl.edu
- Newsgroup

UC Irvine

- comp.soft-sys.ace
- Commercial support
 - www.riverace.com

14

Douglas C. Schmidt

- PACE (POSIX ACE) is a bottom-up rework of ACE
- OS adaptation layer
 - Strict POSIX.1 interface
 - C, not C++
 - Partitioned, not monolithic
 - * Corresponding to POSIX.1 sections
 - * Adds configurability, reduces learning curve
- The rest of ACE will ultimately migrate to PACE
 - i.e., Utilities, Logging, Threads, Event Demultiplexing and Handling, Sockets, IPC, Service Configuration, Streams, and Memory Management

ACE Overview

PACE: Footprint Reduction

- Interface stability vs. small footprint
 - PACE will not necessarily be backward compatible with ACE
- General purpose middleware vs. small footprint
 - Revisit some "forgotten" techniques, such as a separate file for each method, to minimize linking of unused code

Then, TAO will migrate to PACE						
UC Irvine	D. O. C	16	UC Irvine	D · 🕐 · C	17	
ACE Overview		Douglas C. Schmidt	ACE Overview		Douglas C. Schmidt	
PACE: Miscellaneous			PACE Challenges			
 Avoid static objects that require construction/destruction, multiple inheritance, <i>etc.</i> Strict component hierarchy, to support subsetting No mandatory exception handling 			 How do we decide what to exclude from ACE? Knowledge of implementation concessions provides candidates, such as backward compatibility for, <i>e.g.</i>, Reactor and static objects Must support TAO 			
 For rapid access to non-POSIX ACE platforms, PACE will be ported to ACE's OS adaptation layer (ACE_OS) 			 How do we maintain two (three, with JavaACE) versions? Initially, host PACE on ACE to rapidly provide support for non-POSIX platforms Long term, provide adapter from PACE to ACE to support existing ACE applications 			
UC Irvine	D · 🕐 · C	18	UC Irvine	D · 🕐 · 🖸	19	