AlphaStation 600 Series
Technical Reference Information

Part Number: EK-AS800-RM. AO1

July 1995

The purpose of this manual is to provide programming information that will
assist system programmers in writing AlphaStation 600 System support code
for their operating system.

Revision Information: This is a new manual.

Digital Equipment Corporation
Maynard, Massachusetts

July 1995

Digital Equipment Corporation makes no representation that the use of its products in the manner described in
this publication will not infringe on existing or future rights, nor do the descriptions contained in this publication
imply the granting of licenses to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid
written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1995. All rights reserved.

The postpaid Reader's Comments form at the end of this document requests your critical evaluation to assist in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha, AlphaStation and the DIGITAL logo.
The following are third-party trademarks:

Microsoft and Windows NT are registered trademarks of Microsoft Corporation.

SIMM is a trademark of Molex Corporation.

OSF/1 is a trademark of the Open Software Foundation, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

[S2739]

Contents

Preface
[oo [UTex 1 (o] o IH N XV
DOCUMENT CONTENTS ..ovuiiiiiiiiii e e e e ea e aaees XV
(O00] 0 1V7<T 0} € o] o F-I XVi
P AN o] o1 =AVA =X 1 o] o 1 XVi

1 AlphaStation 600 System Overview

INErOAUCTION ..t snaaee s 1-1
ASIC SUMIMAKY it e e e e e e aab e e e aees 1-5
Hardware JUMPELSoooiciiiiiiiiieeee et e e e e e e e e s e s st nrae e e e e e e e e e e e s ennnes 1-5
... 1-6

2 AlphaStation 600 ASIC Overview

INErOdUCTION ... e e e e e 2-1
THE CLA ASIC ... et e e e e nnnees 2-2
EV5 Instruction and Address REJIONuueiirieeeriieeiiieeeeiieeeesneeesnneesanneeeennnns 2-2
PCI Datapat.....cccooiiiii e 2-3
V1= 0 0 To] Y/ I o | o EEEURRR 2-4
VL@ I Ao [0 | €T R oo [RRE 2-6
DMA AdAresS LOGICuuvviiiiiiiiiieee e ie ettt e e e e e e s s s ee e s e e e e e e e s eeanns 2-6
THE DSW ASIC ..ottt st e e e s e e e e e nnnees 2-6
FIash ROM ..ot 2-7
CPU MemOry REAMuuvviiiiiiiee ittt e e e e e e e nran e 2-8
CPU Memory Read With VICtim ..o 2-9
(1 B 1 (@ I = To RSO PRP 2-9
CPU IO WIITE ettt et e e e 2-10
DMA TranSaCtiONSccooiiiiiiiiiiiiieeeee e e e e e r e e e e e e e e e 2-11
[N =T To PSR 2-12
DMA Read PrefetChingccccceeeiiiiiiiiiiiecee e 2-12
DIMA WIITE 1ttt ettt e et sta e e e s snaaaee s 2-13
VLS 1 gy o U1 o o] o PSSR 2-13
LOCK INSTIUCTIONS ...ccieeeiiiiicciiiiie e e e e e e e re e e e e e e e e 2-14
Locks to Uncached SPacecoooviiiiiiiiiieiieee e 2-15
GRU ASIC ..ttt s st e e e e nees 2-15
F@ T I | g (= = Vo 2-15
(€124 U Ao [0 | £ =1XS] [o [USRS 2-16
FIash ROM INTEITACEuvvviiiiieeiii e 2-17

INTEFTUPT LOGIC ..ttt 2-18

Configuration Registers for Cache and Memory.............ccccoeeiiivnnnen. 2-19
RESET LOGIC ..ttt 2-19
AlphaStation 600 PCI-EISA Bridgecooeiiiiiiiiiiiiie e 2-20
ESC fuNCLiONAlITYooiiiiiiiiiiiiee e 2-21
PCEB FUNCHIONATITYoooiiiiiiiiiiiiiiiie s 2-21
PCI-to-EISA AdAress DECOUEcoeeiiieiiiieiiiiiie e 2-21
PC Compatibility Addressing and Holescccocceiiiiniiiiiiinenn, 2-21
IMEMOCSH ..ttt ettt st et et e eee 2-22
PCHAIDITIAtION ...oooiiiiiiiiiiiiiee e 2-22
PCI Arbitration - POWEr-Upccueiiiiiiiiiiieeiice e 2-22
Data Buffering in the PCEB ... 2-23

3 AlphaStation 600 Addressing

INEFOAUCTION ...t 3-1
Address Mapping INtroductioncccceeiiiiiiiiie e 3-1
PCHAAAIESSING ..eeeiiiiiiiiiie ettt 3-2
CPU AAIESS SPACE ...eeiiiiiiiiiie ittt ettt s 3-2
CPU AdAress <38:35> ...cuiiiiiiiieiiee ittt sieee sttt aaee e 3-3
Cacheable MemOry SPACEuveiiiiiiiiiieeiie e 3-7
PCI Sparse MemoOry SPACEcccoeiiiiiiiiiiiiiieeeie e e e 3-8
Hardware Extension Registers (HAE) ..., 3-12
PCI SParse 1/0 SPACEcocuuiiieiiiiiiiee ittt 3-13
PCI Configuration SPacCecocuviiieiiiiiiiee it 3-15
PCI Special/INterrupt CYCIESovviiiiiiiiieiiiiee e 3-18
Hardware Specific and Miscellaneous Register Space 3-19
PCI to Physical Memory AddressSingcceeeeeiiiiiieeiiiiieeee e 3-19
Direct-mapped AdAreSSIiNgccuueeieiiiiiiieeiiiiee e 3-22
Scatter/Gather AdAreSSingccoooiiiiiiiiiiiiii e 3-23
Scatter/Gather TLBc.ooviiiiieee e 3-24
PCI Window Suggested USE...........eeiiiiiiiiiieiiiiiee e 3-26

PC Compatibility Addressing and Holescccocciiiiiiiiiiineen, 3-27
MEMOCSH ... 3-27

4 Modules

Memory MOtherBoardc.eeiiiiiiiiiiiice e 4-1
Presence DeteCt BitS........occuiiiiiiiiiiiiiiiiice e 4-2
CACNE SIMM ... 4-3
1/0 SUbSYSTEM MOAUIEoeiiiiiiiiiic e 4-4
Major COMPONENTSiiiiiiiiiiiie ettt e s ee e 4-4

5 Power Up and Reset

)0 goTo (8103 {0 o AT 5-1
POWET UP e 5-1
[E= L) =T a0 [LT <Y AT 5-1

6 AlphaStation 600 Physical Partitioning

INErOAUCTION ... 6-1
Hardware JUIMPEKSoooiiiiiiiieeee ettt e e e e e e e e e e e e aanees 6-1
Fan Fail Detect JUMPEISoooiiiiiiiiiieiiei e 6-1
Flash ROM WIite JUMPENcoooiiiiiiiiiiiieee e 6-2
Alternate Console JUMPEToooiiiiiiiiiiiiiieee e 6-2
Secure CoNS0IE JUMPET ...ttt e e e e e e 6-2
SROM Code SeleCt JUMPETuuiiiiiiiieaeae ittt e e 6-2
EV5 clock multiple DIP SWItch ..., 6-3
Physical Organization ...t 6-3
1/0 Subsystem Organizationccccceeiiiiiiiiiiiiiieeee e 6-10
AlphaStation 600 Module OVEIrVIEWccccuuiiiiiiiiiieeeie e 6-11
SYSEEM BOAIM ... 6-11
Memory MoOtherboard ... 6-11
CaChe SIMM .o 6-12
oL I @ o] 1 [o] o PP 6-12
EISA OPLIONS ..ooiiiiiiiieiee ettt 6-13
AlphaStation 600 SystemBoard - ASICScccceeiiiiiiiiiiiiiieee e, 6-13
EVS CPU ..ottt 6-13
CHA ASIC e 6-30
AlphaStation 600 1/0O & External Interconnectcccccceeeevnnnnins 6-38
Serial POITS ..o 6-38
Parallel POFt.........ooiiiiii e 6-38
Keyboard/Mouse CONNECLONS.........occuuiiiiiiieiieee et 6-39
PCI CONNECTON ...coiiiiiiiiii it 6-40
EISA CONNECTON ... 6-42
POWET CONNECTOIS ...ttt 6-44
Fan CONNECTOISceuiiiiiiiiiiiie e 6-45
OCP CONNECTOL ...ovviiiiiiiieeeiie i 6-45
FIOPPY CONNECTON ...t 6-48
Serial ROM CONNECTONocuviiiiiiiiieiee et 6-49
System Testability Featurescccuuviiiiiiiiii e 6-50

7 Control and Status Registers

REGISTEN TYPES ..ttt ettt e e e e e e e e s e bbb eeeaaaeeeas 7-1
ReGISTEr AQAIESSING ...eeiiiiiiiiiiii et a e e 7-1
GeNeral REJISTEIS 7-2
... 7-3
Memory Control REQISTEISooiiiiiiiiiiiiieeeee e 7-3
PCI Address-related REQISTEISoiiiiiiiaiiiiiiiieieeeee e 7-3
Scatter/Gather Address Translation RegiSterscccccccveveeeiiiiiiiiiiiinnen, 7-4
FIash ROM SPACEccoiiiiiitiie ettt a e e 7-5
YN (o | €211 [[0 TP PPPUPRPPRT 7-5
EV5 Configuration REQISTEIS.......cuuiiii ittt 7-7
EV5 REQISTEIS ...ttt e e e 7-7
General CIA Registers - DeSCriptioncccceiiiiiiiiiiiiiiiiee e 7-8
CIA Revison Register (CIA_REV) ... 7-8
PCI Latency Register (PCI_LAT) .o 7-9
CIA Control Register (CIA_CTRL) ..coooiiiiiiiiiiiieieeeeee e 7-10
Hardware Address Extension Register (HAE_MEM) 7-13
Hardware Address Extension Register (HAE_IO)cccccceiiiinninnns 7-14
Configuration Type Register (CFG).......coooiiiiiiiiiiiiiiieeeeeeeiieeee 7-15
CIA Acknowledgement Control Register (CACK_EN)cccovvveeeeen. 7-16

Diagnostic Registers - desCriptionooooiuuiiiiiiiiiiieeeeiiieeee e 7-17

CIA Diagnostic Control Register (CIA_DIAG)cccovviieeiiniiiieee 7-17

Diagnostic Check Register (DIAG_CHECK)cooociiiiiiiiiiiiiiiiee. 7-18
CIA Performance Monitor Register (PERF_MONITOR) 7-19
CIA Performance Control Register (PERF_CONTROL) 7-20
CPU Error Information Register 0 (CPU_ERRO)c.ccoecvveveennnnnn 7-22
CPU Error Information Register 1 (CPU_ERR1)cccoocviieennnnn 7-23
CIA Error Register (CIA_ERR)occuiiiiiiiie e 7-24
CIA Status Register (CIA_STAT) .o 7-27
CIA Error Mask Register (ERR_MASK)cooiiiiiiiiiiiiiieeieeeee 7-29
CIA Error Syndrome Register (CIA_SYN) ..coooviiiiiiiiiiiieieeeee 7-30
CIA Memory Port Status Register 0 (MEM_ERRO)ccccceeeennnee 7-31
CIA Memory Port Status Register 1 (MEM_ERRL)ccccceeennen 7-32
PCI Error Register O (PCI_ERRO)ccuviiiiiiiiiiieiee e 7-35
PCI Error Register 1 (PCI_ERRL)cccviiiiiiiiiiieiiiieeee e 7-37
PCI Error Register 2 (PCI_ERR2)cooeviiiiiiiieiiiieee e 7-38
Memory Control Registers - desCriptionccccceiviiieeieniiiieee e 7-39
Memory Configuration Register (MCR)cccccveviiiiiieeiniieee e 7-39
Memory Base Address Registers 0-E (MBAO-E)ccccoovieviinninnenn. 7-41
Memory Timing Registers (TMGO-TMG2)cccovviiieieiniiiieeeiiieenn. 7-43
.. 7-44
PCI Address-related Registers - DesCriptionccccoocveeeeiiiiieeeeiniiieeenne 7-45
Scatter/Gather Translation Buffer Invalidate Register (TBIA)........ 7-45
Window Base Registers (WX_BASE, X=0-3)ccccooeiiiiiiiieeeiniiieeenns 7-46
Window Mask Registers (WXx_MASK, X=0-3)cccceveriiiieeeeiniineeenns 7-48
Translated Base Registers (TX_BASE, X=0-3)ccccccvviiiieeeiniineeenns 7-49
Window DAC Base Register (W_DAC)coveeeiiiiiiiieniiiieee e 7-52
Scatter/Gather Address Translation RegiSterscccoocvvveeiiiiiineennnn 7-53
Lockable Translation Buffer Tag Registers (LTB_TAGO - LTB_TAG3) 7-53
Translation Buffer Tag Registers (TB_TAGO - TB_TAG3) 7-54
Translation Buffer Page Register (TBX_PAGERN)cccccceevviiiieeennns 7-55
GRU ASIC - related REQISTEISoiiiiiiiiiiie it 7-56
Interrupt Mask Register (INT_MASK) ..o 7-57
Interrupt Level/Edge Select Register (INT_EDGE)cccceeeneee 7-58
Interrupt Clear Register (INT_CLEAR)cccoiiiiiiiiiiiiieeiee e 7-59
Cache & Memory Configuration Register (CACHE_CNFG)............ 7-60
SET Configuration Register (SCR)coociiiiiiiiiiieeeiiee e 7-62
LED RegiSter (LED)coooiiiiiiiiiiiiiiiee et 7-63
Reset Register (RESET) ...uviiiiiiiiii e 7-64
EV5 Configuration Registers - descriptionccccovvvveeeeriiiieee i 7-65
Scache Control Register, SC_CTL ..ccccoeiiiiiiiieiiieeeeee e 7-65
Bcache Control Register, BC_CONTROLcccccoviiiiiieiniiieee e 7-66
Bcache Configuration Register, (BC_CONFIG)ccccccovviiviiininnnnn. 7-69

8 Hardware Exceptions and Interrupts

vi

INEFOAUCTION ... 8-1
SYSTEM INTEITUPTES ... 8-1
SYS_MCH_CHK_TRQ ...ttt 8-4
Halt/ReSet SWItChESooiiiiiiiii e 8-5
EV5 Error HaNAINGoooviiiiiiiii e 8-6
PCILError HANAING ...coviiiiiiiiie e 8-6
PERR# IMPlICAtiONScooiiiiiiiiiiiieec et 8-7
SERR# IMPHCALIONS ..o 8-7
AlphaStation 600 Error Handlingcccccooviiiiieiiiiiieeee e 8-10
CIA ASIC Error REJISTEFSvviiieiiiiiee et 8-12
CIA Error Mask REQISTENuuiiiiiiiiiie et 8-15

CIA Error REPOITINGoeevieiiiiiiiee it 8-16

CIA DeteCted EFrorsooiiiiiiiiee et 8-16
Error INSEITIONoooi i 8-21
FOrce Error REQISTENScoiuiiiiii it 8-21
Accessing Main Memory Via CPU Uncached Space............cccoeeeneeee 8-21
Writing Bad ECC INT0 MEMOIYcooiiiiiiiieiiiiiee e 8-21
Machine Check Logout Data StruCtureccceeeveveeeeeeiiiiiiiiieieeeeee e 8-22
Correctable Error Logout Frameccccoveeiiiiiiiiiiiieee e 8-23
Deciphering a Correctable Error Machine Check Logout Frame8-25
ECC Syndromes for Single-Bit Errors........cccccceeiiiiiieeniiiieeee e 8-27
Uncorrectable Error LOGOUL Framecooovuiiiiiiiiieiieniiieee e 8-28
Deciphering an Uncorrectable Error Logout Frameccceee... 8-35

9 AlphaStation 600 System Initialization

INErOAUCTION ... 9-1
Serial ROM Performed Initializationccccccoviiiiiiiiiiiiice e, 9-1
System Firmware Performed Initializationccccooviiiiiniiininnen, 9-3
Overview of Sizing the PCI BUS..........cooiiiiiiiiee e 9-4
Sizing/Configuring the PCI BUScccooiiiiiiiiiic e 9-5
Accessing PCIl Bus Configurationcooovvieieiiiiiieec e 9-5
PCI-PCI Bridge Configurationccocveeieiiiiiiiieniiiiee e 9-5
Driver Initiated PCI Configurationoccceeiiiiiiiiei e 9-6
PCI-EISA Bridge Configurationccccceeiiiiiiiieniiiiiee e 9-7
COML1 (87312) Device Initializationccccooiviiiiiniiine e 9-8
COM2 (87312) Device Initializationccccooviiiiiiniiie e 9-8
Parallel Port (87312) Device Initializationc.ccccccceeiiiiiiienninnnnn, 9-8
Floppy Controller (87312) Device Initializationcccccoeoeeenen. 9-8
Keyboard/Mouse Device Initializationccccoocoiiiiiiiiiniiieeeen, 9-8
Battery Backed SRAM Device Initializationcccceviiininnnnnnn. 9-8
TOY Driver Device Initialization...........ccooceeiiiiiiiii e 9-9
NCR810 Driver Device Initializationccccccoviiiieiiiniiieeiiieeeee 9-9
TULIP Driver Device Initializationccccccooviiiiinnieee e 9-9
TGA Driver Device Initializationcccocceiiiiiiiinee 9-9
Memory INItializationcccooiiiiiii 9-10
Miscellaneous CIA Related Initializationcccccceiiiiiiiiiniiinenn, 9-11
AAAIESS IMAP ..ttt e et e e 9-13
ISA Devices AdAress Mapoeoeeiiiiiiieiiiiee e 9-13
Software CONSIAEIAtIONSooiuiiiieiiiiiee et 9-14

10 AlphaStation 600 PCI-EISA Bridge

INTrOAUCTION .. 10-1
Related DOCUMENTATIONvviiiiiiiiiiieiiie e 10-1
ESC FUNCHIONATITY ..o 10-6
ESC REQISTEIS ...ttt st e e rbe e e e 10-6
PCEB FUNCHIONAIITY ..o 10-8
PCI-to-EISA AdAress DeCodeuueieiiiiiiieeiiiiiiee et 10-9
PC Compatibility Addressing and Holescccccoviiiiiniiiincennnn, 10-9
MEMCS#H DEtailS ...t 10-11
PCHAIDITratioNccooiiiiiiiiiiiiice e 10-13
PCI Arbitration - POWEI-UPcooiiiiiiiiiiiiee e 10-13
Potential for PCI-EISA Bridge Starvationccccccceeiviiieneennnnn, 10-13
Coherency IMpliCatioNSeeviiiiiiiiee e 10-14
Coherency: Posted Write Buffer in the PCI Deviceccccvveeeeen. 10-15

Vii

PCIl Deadlock Avoidance RUIEcoooueiiiieeiiieeeeee e 10-16

Coherency: CIA and FLSHREQ# ... 10-16
Guaranteed Access TIime Modeooovvvvviiiiiiiiiiiiiiciecin e, 10-17
Gat-Mode Software NOTES ..o, 10-18
Data Buffering in the PCEBcoooiiii e 10-18

11 System Coherency

INEFOAUCTION ..o e e e e e e e s 111
Referenced DOCUMENTSoocuviiiiiiiiiieeee e e e e e e e e 111
Alpha System Reference Manualcoocooiiiiiiiiiii e 11-1
PCI Local Bus Specificationcccoovuiiiiiiiiiiiiie e 111
NCR 53C820iiiiiiitiie ettt tee et tee e st e s sbee e e tee e e snreeeeee 11-1
OthEr DEVICES ...ttt e e e e e e e e 111
CONEIENCY SUMIMAIY ...coiiiiiiiiiei ittt 111
Classification of Coherency Situationsccccovviiiieiiiiiieeeniee e 11-2
Generic Event Types in the AlphaStation 600 System 11-2
Possible Write - Read and Write - Write interactions 11-4
Basic Properties of the AlphaStation 600 Systemccccvvviiveeenennnnn. 11-5
Analysis of Interactions With WIitescccoocviiiiiiiiiii e 11-6
Data fails to make it to a later readoccvveiiiiiiiiiin e, 11-6
Data overwrites some later Write.ccccovviiiiiinine e 11-12
Data is overwritten before readers are finished with it 11-19
Data fails to make it to destinationccccoccveveiiiiiiiienniieee e 11-19
Side Effects happen out of ordercccoooiieeiiiiiiiiei e 11-21
Analysis of 1/0 Page Table Modification Interactionsccocee. 11-22
Failure to use the latest 1/O Page Table State............ccccoecvvveennnne. 11-22
1/0 Page Table Changed While INn USecccooiiiiiiiniiiiieniiieeeee 11-24
Triangle Inequality for 1/O BUSSES........cuvviiiiiiiiiiieiieeeee e 11-25

A CIA - DSW Command Fields (CMC and IOC)

INEFOAUCTION ..o a e e e e eee s A-1
Figures

Figure 1-1 The AlphaStation 600 System Block Diagramcccccceevvivieeennnne 1-3
Figure 2-1 System Block Diagram Showing CIA and DSWccccccevveeeeenin, 2-1
Figure 2-2 The CIA BIOCK DIagramccuiiiioiiiiiiiiiieeiee e 2-2
Figure 2-3 Memory Address SWIZZIINGcccooiiiiiiiiiiiiieei e 2-4
Figure 2-4 VA To1 a T g A = 1] o o R 2-5
Figure 2-5 AlphaStation 600 System Memory Addressingccccccceeeviiiunvnnnnen. 2-5
Figure 2-6 The Data Switch BIock Diagramccccceeeiiiiieieniiiiieee e 2-8
Figure 2-7 Scatter/Gather TLB ... 2-12
Figure 2-8 Flash ROM Address SCheme ... 2-18
Figure 2-9 GRU INTErTUPT LOGIC ..eeeeiiiiiiiieiiiiiice et 2-18
Figure 2-10 Cache and Memory Configuration Registercccoccccvvveeeeeniinnnns 2-19
Figure 2-11 SET Configuration®c..ccooeiiiiiiiiiic e 2-19
Figure 2-12 AlphaStation 600 System Standard 1/0 BUSSEScccveeeennnn 2-20
Figure 2-13 AlphaStation 600 System PCI arbiter schemeccccccceeeeiiniinnis 2-22
Figure 3-1 AdAress SPace OVEIVIEWcccuuuiiiiiiiiiiaaaa et e e e e e e e e e eeeeeee 3-1
Figure 3-2 CPU and DMA Reads and WIiteSccccovviiiiiiiiiiiiiee e 3-4

Viii

Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-19
Figure 3-20
Figure 3-21
Figure 4-1
Figure 4-2
Figure 4-3
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 7-1
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 9-1
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5

CPU AAIESSING ..veeeeiiiiiiiiiee e et e e e e e e e e e e e e e e e e s s nannes 3-4
Dense Space Address Generationcccceevviiiieeeiniiiieee e 3-8
Cl Memory Sparse Space Address Generation - Region 1 3-11
PCI Memory Sparse Space Address Generation - Region 2 3-11
PCI Memory Sparse Space Address Generation - Region 3 3-11

AlphaStation 600 System PCI and (E)ISA /O Map..................... 3-13
PCI sparse 1/0 Space Address Translation...........cccccceevvveeeiinniiinns 3-15
PCI Configuration Space Definitioncccccooiiiiiiiiiis 3-16
PCI Configuration Space Read/Write ENcodings.........ccccceeevvviinnns 3-17
AlphaStation 600 System PCI Bus Hierarchycccccccceeiiiiinnnns 3-18
PCI DMA Addressing EXample ... 3-21
PCI Target Window COMPATecccoiiuieieiiiiiiieee i e e 3-21
Direct-mapped Translationccccooeeveieee e, 3-23
Scatter/Gather PTE FOrmatcccccooiiiiiiiiiiiiee e 3-24
Scatter/Gather Associative TLBcccciiiiiiiiiieee e, 3-25
Scatter/Gather Map Translationccccccceveeee e, 3-26
Default PCI Window AIOCAtIONeeeiiiiiiiiiiiiiiiieeeeece e 3-27
MEMCS# DECOUE AFBA ...ceveiieeeeeiiiiiiiiieieeite e e e e e s e s ssteieeeee e e e e e e e e e snnnnes 3-28
MEMOCSH LOQIC ..cooiciiieiieiieeeee e e e e e iete e e e e e e e e s e s st ee e e e e e e e e e s ennnnnes 3-28
MIMB LAYOULeviiieee ittt e e et e e e e e ntae e e e e e 4-1
SIMM Population Ordercceeviiiiiiiiiiiiiee e 4-2
1/0 Subsystem Module Block Diagramccccccceevviiiiiciviiiiieeeeeeenn. 4-5
AlphaStation 600 System Block Diagram...........cccccceeeeeiiiniiiiiniienen. 6-5
AlphaStation 600 System Board Layout............ccccooviviveeiniiiieeeennne 6-6
AlphaStation 600 System Board Function Mapcccccvvvvvnnen. 6-7
Memory Data Mappingoooccueeiieiieeiaee e 6-9
EV5 CPU Package - TOP VIEW ...oooiiiiiiiiiiiieieeee e 6-14
DSW PiNout - TOP VIEW ..oocoiiiiiiiiieieeee e r e e 6-21
GRU PinoUL - TOP VIBW ..coiiiiiiiiiiiiiiiiieee e 6-26
CIA PINOUL - TOP VIBW .ottt 6-31
Serial POrt CONNECLONuviiieiiiiiice e 6-38
Parallel Port CONNECTONcooiiiiiiiiiiieeee e 6-39
Keyboard/MOUSEoooiiiiiiiieiiiice et 6-39
Control Power Connector PINOULcoovviiiiieiiiiiece e 6-44
OCP CoNNECLOr PINOUTouiiiiiiiiiieeii et 6-47
Floppy Connector PiNOUTc.ueviiiiiiiiiiiciieee e 6-48
SROM Port Connector PiNOUL.........cccoociiiiiiiiiiiee e 6-49
GRU INTErTUPT LOGIC ..evveeiieiieaeeiiiiiiieeeeee e 7-57
The AlphaStation 600 System Interrupt Schemecccccccvvveennn. 8-2
AlphaStation 600 Error LOGICuuuivieeeiiiiiiiiiiiiiieeeeeee e e se e 8-10
POSSIDIE EFTOFS ...ttt 8-11
Correctable Error Machine Check Logout Frameccccooue. 8-23
AlphaStation 600 Specific Error Information..................cccccvvvneeeen. 8-29
AlphaStation 600 Memory Map After Initialization 9-11
AlphaStation 600 Standard 1/O BUSSEScccoccveeieiniiieeeeniiineeen 10-2
EISA Access 10 PCl and MemOKYcueveveeeeeiiiiiiciiiieeeeeee e e e 10-9
PCI-EISA Bridge: EISA Address Decodecooocuviiiieeeeieeeeennn. 10-10
PCI-EISA and CIA Hole Exampleccccooviiiiiiniiiee e, 10-11
MEMCS# DECOUE AFAevvvieiiiiiiiee ettt e 10-12

Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9

Tables

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 4-1
Table 4-2
Table 4-3
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14
Table 6-15
Table 6-16
Table 6-17
Table 6-18
Table 6-19
Table 6-20
Table 6-21
Table 6-22
Table 6-23

MEMOCSH LOGIC ..cceiiitiiieeeiiiiee ettt 10-12
AlphaStation 600 PCI Arbiter Schemecccccccoovviiiciiiiieeeeeeeenn, 10-13
EISA Deadlock EXamPIeccoooiiiiiiiiiiiiiieee e 10-14
Interacting Deadlock EXamplecccccoviiiiiiiiniieeee e 10-16
The AlphaStation 600 System I/O Summary..........cccccccvveeeeeeeeeenininns 14
CIA PCIl COMMANAS ..ooiiiiiieiiiieie ettt 2-3
AlphaStation 600 Series Prefetch Strategyccccceevviiieieennnn 2-13
GRU AdAreSS SPACE ...cceeeeeiiiiiiiiiieer et e e e e e ss s rr e e e e e e e e e s s nannenaaeees 2-17
Round-robin PCI Arbitrationoooiiiiiiiiiiii e 2-22
AlphaStation 600 Series CPU Address Spacecccceevuvveeeernnnnnnn. 3-5
AlphaStation 600 Series AAdress Mapcccccccoeveviiiiiiiieeeeeeee e 3-6
PCI Memory Sparse Space Read/Write Encodingsccccceee.... 3-10
High-order Sparse Space bits ..o 3-10
PCI Sparse 1/0 Space Read/Write Encodings............cccccvvvvveeeennnnn. 3-14
Primary 64-bit PCI Slot to IDSEL Mapping.......ccceeviiviiviieeenennenn. 3-18
Hardware Specific Register Address Mapcccccccevevviiiiiviiieeenenenn. 3-19
PCI Target Window MASK ReQISter.......ccccvcvvveeeeeeiiiiiiiiiiiieeeeeeenn, 3-20
Direct-mapped PCI Target Address Translationccccccoee.... 3-22
Scatter/Gather Mapped PCI Target Address Translation. 3-24
PCI Window POST Configuration.........cccccceeeiiiiiiiiiiiieieeece e 3-27
SIMM SPEEA ... 4-3
Cache Speed ENCOAINGScoiiviiiiieiiiiiee ettt 4-3
Cache Size ENCOAiNgSooooiiiiiiiiiiiiiece e 4-4
AlphaStation 600 SyStem BUSSESuuuieiiiiieeeiiiiiiiiiiieeeee e e e e e 6-1
Data Word / Bit RaNge Mapcccuvviiiiiiiiiieeiiiee e 6-8
AlphaStation 600 Interconnect Referenceccccccvvveeeeeeeeeniinnns 6-11
AlphaStation 600 MMB Feature Comparisoncccccccveeeeeennnnns 6-12
BCache FeatUrescooiiiiiiiiiieeec et 6-12
PCI SIOt ASSIGNMENTSeviiiiiiiiiiiee e e e 6-13
EV5 PIN OUT - Sorted by Pin Numbercccccccoiin, 6-15
EV5 PINS - Alphabetic Order..........cccociiiiinii e 6-18
DSW FEATUIES ...ooiiiiiiiiiittte ettt e e 6-21
DSW PIN OUT - Sorted by Pin Number ..., 6-22
DSW PIN OUT - Sorted Alphabeticallyccoccvvviiiiiiiiiie, 6-24
GRU FEATUIES ...coiiiiiiiiiititti ettt 6-26
GRU PIN OUT - Sorted by Pin NUMDbercccccciviiiiiiiiiiiiieneeen, 6-27
GRU PINS-Sorted Alphabeticallyccccooniiiiniii 6-28
CHA FERATUIES ...ooeiiiieieiie ettt e e 6-30
CIA PIN OUT - Sorted by Pin Numbercccccccviiiiiiiiiii, 6-32
CIA PIN OUT - Sorted Alphabeticallycccceevniiiiiiiniiiinee 6-35
PCI Pin Out - Sorted by pin NUMDBErccooiiiiiiiiiiiiieeece e, 6-40
PCI Pin Out - Sorted by Signal Name ..o 6-41
EISA Pin Out - Sorted by Pin NUMDErcccooovviiiiiiiiieeie, 6-42
EISA Pin Out Sorted by Signal Namecoccccviiiieeeneeee i, 6-43
Control Power Connector PiNOUL...........ccuuviiiiiiiieiiiiniiiieeeeeeeen 6-45
OCP CoNNECLOr PINOUTuuiiiiiiiieeee it 6-47

Table 6-24
Table 6-25
Table 6-26
Table 7-1

Table 7-2

Table 7-3

Table 7-4

Table 7-5

Table 7-6

Table 7-7

Table 7-8

Table 7-9

Table 7-10
Table 7-11
Table 7-12
Table 7-13
Table 7-14
Table 7-15
Table 7-16
Table 7-17
Table 7-18
Table 7-19
Table 7-20
Table 7-21
Table 7-22
Table 7-23
Table 7-24
Table 7-25
Table 7-26
Table 7-27
Table 7-28
Table 7-29
Table 7-30
Table 7-31
Table 7-32
Table 7-33
Table 7-34
Table 7-35
Table 7-36
Table 7-37
Table 7-38
Table 7-39
Table 7-40
Table 7-41
Table 7-42
Table 7-43
Table 7-44
Table 7-45
Table 7-46

Floppy Connector Pinout (Signals only)ccccocceiiiiiiiinnns 6-48
SROM Port Connector PINOUL..........coooiiiiiiiiiiiie e 6-49
ASIC Test Mode SEttINGScuuvieiiiiiieiaeee e 6-50
AlphaStation 600 Register Categoriesccevveiriiieieeiniiieeee i 7-1
Hardware Specific Register Address Mapcccccceeevvvviccvvviiineeeeeeeenn, 7-1
General CIA CSRs (Base = 87.4000.0000 HeX)cccocveerveeeininennnn 7-2
Diagnostic Registers (Base = 87.4000.0000 HeX)cccceevvvvveeernnne 7-2
Performance Monitoring Registers (Base = 87.4000.0000 Hex) 7-2
Error Registers (Base = 87.4000.0000 HEX)ccceeeeeiiiiiiiiiiiiieeeiaaann, 7-2
System Configuration REQISTESueeviiiiiiiiieiiiee e 7-3
PCI Address and Scatter/Gather Registerscccocccvvivvieeeeenenn, 7-3
Address Translation RegiStersuueeeeiiiiiiiiiiiiiieeeee e 7-4
GRU Space - (Base Address = 87.8000.0000 HEX)cceeverreeeerriinnns 7-6
EV5 System Specific ReQIStErSccvvvveeiiiiiiiieecee e 7-7
CIA Revision Register (CIA_REV) ... 7-8
CIA Configuration Register (CIA_CNFG).......ccccoviiiiiiiiniiiiee e, 7-9
CIA Control Register (CIA CTRL) ... 7-11
PCI READ Prefetch Algorithm ..., 7-13
High-order Sparse Space BitS........ccccceeiiiiiieiiiiiiieee e 7-13
Hardware Address Extension Register (HAE_MEM) 7-13
Hardware Address Extension Register (HAE_IO)ccccuvveeeeen. 7-14
CFG REJISTEN ..eeiieiiiiiie ettt 7-15
CIA Acknowledgement Control Register (CACK_EN) 7-16
CIA Diagnostic Control Register (CIA_DIAG)cccveeveiieeiiniins 7-17
Diagnostic Check Register (DIAG_CHECK).......cccccoiiiiiiiiiiiiennnnns 7-18
CIA Performance Monitor Register (PERF_MONITOR) 7-19
CIA Performance Control Register (PERF_CONTROL) 7-20
PERF_CONTROL Register low/high_selects Encoding 7-21
CPU Error Information Register 0 (CPU_ERRO)cccevveeeviiiinnns 7-22
CPU Error Information Register 1 (CPU_ERR1)cccccceeiiiiinnnns 7-23
CIA_Error Register (CIA_ERR)cooiiiiiiiiiii e 7-25
CIA Status Register (CIA STAT) coiiiiieeee e 7-28
CIA Error Mask Register (ERR_MASK) ..ot 7-29
CIA Error Syndrome Register (CIA_SYN) ...ccocciiiiiiiiiiiienee e, 7-30
CIA Memory Port Status Register 0 (MEM_ERRQO)c..... 7-31
CIA Memory Port Status Register 1 (MEM_ERR1) 7-32
MEM_PORT_CMD ENCOOINGScouvvieieiiiiiiee et 7-33
SEQ_ST ENCOUINGSvvviiiiiiiieeeeeiiiiiiiiitiee e e e e e e e s s s ssnsnreeerseeeeee s s s ennnnnes 7-33
SET_SEL_ENC ENCOAINGS ...coiuviiiiiiieiiieeniiie ettt 7-34
PCI Error Register 0 (PCI_ERRO)cccooiiiiiiiiiiiiiieeiieeee e 7-36
PCI Error Register 1 (PCI_ERRL) ..ooovviiiiiiiiiiiiieeecee e, 7-37
PCI Error Register 2 (PCI_ERR2) ..o, 7-38
Memory Configuration Register (MCR)occoocveiiiiiieienniiieeeee 7-40
Memory Base Address Registers 2,4,6,8 A C.Eooviiirinnnnn. 7-42
Memory Timing Parameters, Encoding Values................ccccuvveeeeee. 7-43
Memory Timing Registers (TMGO-TMG2)ccccceevviiiieeeiiiiiieeennns 7-44
Scatter/Gather Translation Buffer Invalidate Register (TBIA) ... 7-45
Window Base Registers (WX_BASE, X=0-3)ccceeeieiiiiiiiiiiiiiieen, 7-47
Window Mask Registers (Wx_MASK, X=0-3)ccccevurrreerriiirennnns 7-49

Xi

Xii

Table 7-47
Table 7-48
Table 7-49
Table 7-50
Table 7-51
Table 7-52
Table 7-53
Table 7-54
Table 7-55
Table 7-56
Table 7-57
Table 7-58
Table 7-59
Table 7-60
Table 7-61
Table 7-62
Table 7-63
Table 7-64
Table 7-65
Table 7-66
Table 7-67
Table 7-68
Table 7-69
Table 7-70
Table 7-71
Table 7-72
Table 8-1

Table 8-2

Table 8-3

Table 8-4

Table 8-5

Table 8-6

Table 8-7

Table 8-8

Table 8-9

Table 8-10
Table 8-11
Table 8-12
Table 8-13
Table 8-14
Table 8-15
Table 8-16
Table 8-17
Table 8-18
Table 8-19
Table 8-20
Table 9-1

Table 9-2

Table 9-3

Translated Base Registers (TX_BASE, X=0-3)........ccccovuvvereeininnenn. 7-50
PCI Address Translation - Scatter/Gather Mapping Disabled 7-51
PCI Address Translation - Scatter/Gather Mapping Enabled 7-51
Window DAC Base Register (W_DAC)cccceveiiiiiiiieiiiieee e 7-52
Lockable Translation Buffer Tag Registerscccccccevveeeeiiinnnns 7-53
Translation Buffer TAG Registers (TB_TAGO - TB_TAG3) 7-54
Translation Buffer Data Register (TBX_PAGEN)cccccccoviinnen. 7-55
INT_REQ REQISIEN .cceiieeiii it 7-56
Main Interrupt Logic IRQ ASSIgNMENTcoooviiiiiiiiiiiiiieeeeeeees 7-56
INT_MASK REQISTENoeeiiiiiiiiiie it 7-57
INT _EDGE REQISTEr ...ccci ittt e e e 7-58
INT_HILO REQISTEN ..ot 7-58
INT_CLEAR REQISTENoiiiiiiiiiiiiiiiiiee e 7-59
MMB and Cache Configuration Register (CACHE_CNFG) 7-61
CaChE SPEEAueiiiiiiiiiee e 7-61
CACNE SIZE ... 7-61
MMB ConfIQUIrationceeeeeeiiiiiiiiiiieeir e e e e e e 7-62
SIMM PD Speed Select PinS i 7-62
SET Configuration Register (SCR)ccccceviiiiieiiiiiiiieeeiieeeee 7-63
LED REQISTEI .ottt e e e e e e re e e e e e e e e e e e e e 7-63
RESET REJISTEY ...ttt 7-64
SC_CTL Field DeSCriptioNsccocuvieeeiiiiiieeeiiiiiee et siieeee e 7-65
BC_CONTROL Field DeSCriptioNsccceveeeeiiiiiiiiiiiiireeeeeeeeesannnns 7-66
BC_TAG_STAT Fleld Descriptionsccccccoeiiiiiiiiiiiiiiiiieeeeeees 7-68
BC_CONFIG Fleld DeScrIptionsc.cevveiiiiieieeiiiiieee e 7-69
BC_SIZE Fleld Descriptionscccccuviiiiiiieeee e e 7-71
EV5 Interrupt ASSIGNMENToooiiiiiiiiiiiiieeee e 8-2
Main Interrupt Logic IRQ Pin Assignmentcccoeveiiiiineennnn 8-3
EISA Interrupt ASSIGNMENTcovvvvieeiiiiiee e 8-4
ESC NMI GENEFALION ...ttt 8-5
EV5 Error Detection FEatUreS........coooviiiiiiiiiiiiiiieeee e 8-6
AlphaStation 600 Handling of PCI Data Parity Errors 8-7
CIA Error REQISTEIS .oooiiiiiiiiiieeeee ettt 8-12
CIA_ERR REQISTEN ..ottt 8-13
CIA_ERR Register Fault Indicationccccccoveiveereei i, 8-14

CIA Error Mask RegISTENcooviiiiiiiiiiiiiieiieeeee e 8-15
Error Reporting to EV5ooiiiiii e 8-16
DMA Read Associated Errors........ccoooveieiiiiieeie i 8-17
DMA Write ASSoCIiated EFTOrS.......cccuvuiiiiieiieeaiiiiiiiiieeeeee e 8-18
1/0 Write and Special Cycle Errorscccccevviiiieieiiiiiiee e 8-19
CPU 1/0 Read and PCI Interrupt-ACK Errorscccccceeveevvvvvnnnnn, 8-20
CPU/Memory Read Associated Errors.........cccceveeeiiiiiniiiiiiiiiiiene, 8-21
CPU/Memory Victim/Write Associated Errors.........cccccoeoveiuvvnnnee. 8-21
Correctable Machine Check Error Codescccceeeviivieeeeiiiieenennns 8-23
EV5 Single Bit Error SYNAromescccieiieaiiiiiiiiiiiieeeee e 8-27
Uncorrectable Machine Check Error Codesccccceevviiiereennnnne 8-30
Summary of SROM Initializationccccovvviiiiiiiiiiee e, 9-3
PCI-PCI Bridge Initialization ..o 9-6
PCI-EISA Bridge Chip Initializationcccccoeeiiiiiiieiiieee 9-7

Table 9-4
Table 9-5
Table 9-6
Table 9-7
Table 9-8
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6

CIA Main CSR Register Initializationcccoccoiiiiiiiiiinniinenn, 9-12
CIA Memory CSR initializationcccccceeeiiiiiiiiiiiiieecee e, 9-12
CIA Physical Address Translation CSR Initialization................... 9-12
CIA Error CSR initializationcccccvvivee i 9-13
ISA device Address Map (Sparse 10 Space)ccccveeeeeeeeeeeeieiiiiinnns 9-13
DOCUMENTATIONeeiiiiiiieeiiii it 10-1
ESC chip -- AlphaStation 600 System Requirements 10-3
PCEB chip - AlphaStation 600 Requirementscccccceeeeeeveiiiinnnns 10-5
ESC REQISTEIS ..ttt 10-7
Round-Robin PCI Arbitrationcccccceeeviiiiiiiiiiiieinieee e 10-13
AlphaStation 600 GAT Latency Delaycccccccceveeiiiiiicciiinnnnnnn. 10-18

Xiii

Introduction

Preface

The AlphaStation 600 Series Technical Reference Information is provided to assist pro-
grammers writng operating system support code. It describes the AlphaStation 600 Sys-
tem design from the system block diagram level, down to discusssions relating to individ-
ual registers, software/firmware design information, and detailed major physical
component layout designs, and signal paths.

Document Contents

The contents of this documents are organized as follows:

This preface, which includes an overview of the manual, a summary of its contents
and a list of conventions used throughout the manual.

An overview of the AlphaStation 600 system that includes a system block diagram
and information on cache sizes, memory capacity, number of 10 slots, and so on.

A high-level description of the basic ASIC functionality that includes basic system
transactions (for example, CPU 1/O read and write, DMA read and writes).

A describes the EV5 address space partitioning and how this space coexists with the
PCI address space. Emphasis on dense- and sparse-space CPU I/O addressing and
details of the DMA scatter/gather address translation.

A discussion of memory motherboard SIMM and I/O Subsystem Module configura-
tions.

A physical description of the system that includes board layout diagrams, pin designa-
tions/signals, and logic functions.

A description of all Control and Status registers.

A hardware description of the AlphaStation 600 interrupts and error strategy. The er-
rors are defined from a hardware point of view (which bits in which error registers are
set for the various errors). This includes the format of the AlphaStation 600 Machine

Check logout to assist software developers write the machine check handler.

System hardware and firmware power-up, initialization, and reset .

A definition of the AlphaStation 600 I/O Subsystem Module bridge chip set, the com-
ponent parts it uses (for example, arbiter, interrupt logic, etc.), and sugges-
tions/requirements for programming the internal registers.

System coherency and instruction ordering for the conjunction of three architectures
(EISA, PCI, and Alpha). An explanation is provided to clarify which architectural re-
guirement subsumes the other architectures. Some issues are in the hardware do-
main, but in certain cases, the architecture/hardware has specific requirements that
the software must specify (for example, when to flush buffers; when 1/O reads are re-
quired to guarantee coherency).

XV

Conventions

Abbreviations

XVi

The following conventions are used in this manual:

All Numbers Are Hex unless otherwise noted
UNP = stands for UNPredictable.
MBZ = stands for Must Be Zero.

IO or I/0O. The term 10 is used within technical terminology when a / is not appropri-
ate in a number string. The 1/O is used to reference the Input/Output functionality in
text.

Word = 2 bytes
Longword = Doubleword (PCI term) = Dword = 4 bytes.
Quadword = 8 bytes

The following abbreviations are used throughout the manual.

Symbol Description

RO Read Only

RW Read Write

WO Write Only

RwWC Read, Write to Clear

Introduction

1
AlphaStation 600 System Overview

The AlphaStation 600 system is a high-performance, deskside workstation based on the
EV5 implementation of the Alpha architecture. It supports WNT, OSF/1, and OpenVMS
operating systems. Figure 1-1 shows the AlphaStation 600 system. From the perspective
of the system programmer, the AlphaStation 600 system is:

« EV5 CPU with a 128 KB serial boot ROM. Jumpers are provided so that one-of-eight
alternative serial ROM patterns can be loaded into the EV5 (mainly for lab debug).
The EV5 8 KB I-cache can be fully loaded by any of the serial-ROM patterns.

EV5 chip summary
Cycle time 44ns-3.2ns
Address size 43 bit virtual address, 40 bit physical address, 8 KByte page
Pipeline depth size
On-chip Icache: 7 stage integer, 9 stage floating.
On-chip Dcache: 8 KB, virtual, direct-mapped
On-chip Secondary cache |8 KB, physical, direct-mapped
On-chip TLB 96 KB, physical, 3-way set-associative
Write Buffer 64-entry ITB and 48-entry DTB, 128 Address space numbers.
Issue rate six 32-byte entries
4 instructions per cycle (2 integer, 2 floating point).

« EV5 speed bins: Simple crystal swaps and serial ROM changes are all that are re-
quired to support various EV5 speed bins. The AlphaStation 600 system is synchro-
nous to the EV5 clock.

Thus, the PCI clock, the cache timing and the memory timing are an integer multiple
of the CPU frequency, as shown in the next table. Consequently, not all CPU frequen-
cies will optimize the Bcache and system timing (for example, a 4 ns EV5 will result in
a 7% slower PCI running at 32 ns).

* | CPU speed Bcache timing System timing
Mhz ns ns CPU cycles | ns CPU cycles
250 4.00 28 7 32 8
266.67 | 3.75 26.25 7 30 8
275 3.636 | 25.46 7 32.7 9
300 3.333 |[26.67 8 30 9
3125 | 3.20 25.6 8 32 10

AlphaStation 600 System Overview 1-1

« Direct-mapped, write-back, ECC protected, module-level Bcache . The Bcache is
a plug-in option allowing various speed and size configurations. The Bcache is parti-
tioned across 3 SIMMs which must all be inserted for the Bcache to function. The
block size is fixed at 64 B. The AlphaStation 600 system does not support a duplicate
TAG store.

Current cache designs vary from 2 MB to 16 MB, with 4 MB as the "typical" size. The
first Bcache design uses 15 ns SRAMs and achieves an access time of 24.9 ns' for
the first 128b and 21 ns thereafter for all subsequent, contiguous reads (called wave-
pipelining). Faster Bcache designs will be available.

DMA writes invalidate the Bcache.

« System memory: 256-bit data-width, ECC protected . The system memory com-
prises two Memory Motherboards into which the memory SIMMs are inserted. The Al-
phaStation 600 system cannot be configured with only one memory motherboard;
both must be resident and symmetrically populated with SIMMs. The memory latency
with 60 ns SIMMs is 180 ns (timed from the EV5 requesting a fill, until the data is re-
ceived by the EV5). Currently, there is only one memory motherboard variant
planned.

« Each motherboard tower holds up to 16 standard 36-bit SIMMs providing a capacity
from 32 MB to 1 GB (and eventually 4 GB when 64-Mbit chips become available).

« Maximum memory: Although the AlphaStation 600 system chip set can support 8
GB of physical memory, the workstation implementation is limited to 4 GB.

« The AlphaStation 600 system I/O modules. The system comes with three 1/O cards:
a PCI graphics card; the I1/0O Subsystem Module, PCl-based, SCSI/Ethernet card; and
an ISA-based Audio card. The remainder of the system I/O (serial lines, etc.) are pro-
vided on the SystemBoard. Table 1-1 summarizes the I/O arrangement.

1Depends on the EV5 frequency and the multiple selected for the cache loop time
(for example, a 3.25 ns EV5 will have a 26 ns cache loop time).

1-2 AlphaStation 600 System Overview

Figure 1-1 The AlphaStation 600 System Block Diagram

[>
scsli ScCsl 4‘—»[]
- 1 S R
AUI 'D
PCI Ether-| ——-[]
Bridge | ¢ g JU0WIE
Twisted pair

Option slots:
3- 64-bit PCI
1- 32-bit PCI
1- PCI/EISA
3- EISA

P2SE 1/0O card

< »| EISA
Bridge
PCI bus ¢64_bit g EISA-bus
Speaker
Address & command
- ClA GRU asic
Memory
PCI Presence 1MB
Inte_rrupt Detect FLASH
Cache SIMMs Logic Logic

Data
Switch

Real Time| Operator
Clock | »| Ctr Panel f%’StdFi’?&Z
DS1287 PCD8584
E‘,ISAf' Eeyboard «— Keyboard
onfi P & mouse
RAM © 8242 | Mouse
Flo Drive,
X-bus COMBO <_S_er_|_aI_Po_rt_>[]
Chip
[W] | 87312
buffer Parallel Port
Audio
- A
/ f U/ Headphones
‘ microphone

v/

64-bit +ECC

;

Lemmon Bus

Memory Bank 1
SIMM m SIMM m
SIMM SIMM

Memory Bank 0

AlphaStation 600 System Overview 1-3

Table 1-1 The AlphaStation 600 System

I/0 Summary

What

Where

Additional information

Keyboard and Mouse

Time of year (TOY)

Battery-backed SRAM-8 KB

Operator Control Panel

System module (on the X-bus)

Intel 8242

Dallas 1287

Dallas 1225

PCD 8584

Parallel Port
Serial Port (2)

System module (EISA bus)

87312 Combo Chip
(hardware auto-configured with

Floppy FAR =11)

IDE

Audio ISA card Microsoft Sound or OAK Card
Ethernet 1/0 Subsystem PCI option TULIP - DC287

Internal SCSI module Qlogic ISP 1020

External SCSI

Graphics PCI option module TGA

« |/O Subsystem Module Ethernet/SCSI PCI I/O module:

The internal and external

SCSI PClI devices, with the Ethernet device, are mounted on a separate I/O module.
This allows for future upgrades (for example, better SCSI chip). This I/O module will
occupy one of the 32-bit slots. The devices on this card are:

— Qlogic ISP1020 PCI-SCSI - two chips
— PCI-Ethernet chip (DECchip 21040 - Tulip)
— PCI-PCI bridge chip (DECchip 21050 - PPB)

+ The AlphaStation 600 System

hardware auto-configured with CFGn<4:0> = 1.

+ Industry standard ISA Audio Module

« No on-board graphics

uses the 87312 chip for serial/parallel /0. This is

- Microsoft Sound System or the OAK card.

- Graphics arre provided by plug-in options.

« 64-bit PCI - The AlphaStation 600 system generates and accepts 64-bit data but does
not generate 64-bit PCI addresses.

« 33Mhz PCI - The AlphaStation 600 system does not support the latest 66 MHz incar-

nation of the PCI.

« Back-to-Back PCI cycles -

The AlphaStation 600 system will issue and accept fast

back-to-back PCI cycles in dense-space only (this logic can be disabled via a CSR).

+ 8 PCland (E)ISA slots - The AlphaStation 600 system has four PCI slots, three
(E)ISA slots and one shared PCI/EISA slot -- see table below. Three 64-bit slots are
provided. Two PCI slots are used for the graphics and the SCSI/Ethernet, and one
(E)ISA slot is used for audio. Five slots remain for customer expansion.

1-4 AlphaStation 600 System Overview

Slot | Type AlphasStation 600 reserved Usage
1 PCI -- 64 bit Graphics
2 PCI -- 64 bit
3 PCI -- 64 bit
4 PCI -- 32 bit PCI 1/0 module (ethernet/SCSI)
5 EISA/PCI (32bit) shared
slot
6 (E)ISA
7 (E)ISA
8 (E)ISA Audio

ASIC Summary

PCI-EISA bridge chip set - Intel 82374EB (ESC chip) and Intel 82375EB (PCEB
chip)

1 MB Flash ROM and serial ROM - for console/diagnostics.
Scatter/gather PCI to memory addressing - as defined for the reference machine
by the 1/0O task force. Thus both physical and virtual DMA capability are available. The

CIA ASIC contains a 32-entry TLB for the PTEs (configured as 8 TLB entries of 4 con-
tiguous PTES).

Dense/Sparse space: as defined for the reference machine by the 1/0O task force.

The AlphaStation 600 system block diagram is shown in Figure 1-1. The major compo-
nents are:-

Five ASICS (2 designs): 4 Data Switch ASICs and 1 CIA ASIC:

— The CIA - this ASIC accepts the address and command from the EV5 and drives
the memory array with the address, RAS and CAS, signals, among others.. In ad-
dition, it also provides an interface to the PCI bus. The current CIA is in a 383-pin
PGA design. Other packages are being evaluated to reduce cost.

— The DSW - this is the data slice ASIC and provides the data path between the
EV5, memory and the CIA (for PCI data). It fits in a 208-pin PQFP. When used in
the AlphaStation 600 system, the DSW provides a 256-bit wide memory path; but
the ASIC can also be configured for a 128-bit memory datapath. Four ASICs are
always required, regardless of the memory width.

Miscellaneous ASIC - the GRU ASIC is on the 10D bus. This small ASIC handles
the PCl-interrupt logic, the memory/cache presence detect logic, and generates the
8-bit Lemmon Bus used to access the Flash ROMs and drive optional system LEDs.

Hardware Jumpers

The following jumpers and DIP switches are for debugging prototypes. Details are not pro-
vided since these are purely for lab use.

SROM code select. Used to select from one of the 8 stored patterns in the SROM.
Only one jumper should be shorted at a time.

EV5 clock multiple DIP switch. This DIP switch will only be provided on the first few
debug systemboards. This is used during reset time to select the EV5 system clock
multiple.

AlphaStation 600 System Overview 1-5

1-6 AlphaStation 600 System Overview

Introduction

2
AlphaStation 600 ASIC Overview

This chapter describes the AlphaStation 600 system data path and focuses on the inter-
nals of the Control, I/O and Addressing (CIA) and Data SWitch (DSW) ASICS. Figure 2-1
shows a simplified system block diagram to help place the CIA and DSW in context:

Figure 2-1 System Block Diagram Showing CIA and DSW

Memory
Bank O
Memory
#ndex Bank 1
Bcache I|/or> Bus > GRU
Address > CIA RAS, CAS
& command

64b PCl p———— g—p | «——— 32-bit
slots ——«—» |«———— PClslots

I/O Sub-
EISA PClI system
bridge bridge
PCI 1/0
Module
EISA slots
| — 2 m
—<+>
— <> [SCST_1]
Audio 14—

Note that the 1/O Subsystem module is shown plugged into a 32-bit PCI. This is the pre-
ferred location but, as the module is a standard PCI module, it can be inserted in any of
the 64/32-bit slots. This chapter focuses on the main system data-path which is imple-
mented in two ASICs.

AlphaStation 600 ASIC Overview 2-1

The CIA ASIC

EV5 Address
and command

Figure 2-2 shows the CIA internals pertaining to the CIA implementation used with a 64-
bit PCI interface and 64-bit datapath to the DSW); the 32-bit PCI version of the CIA is not
described.

Figure 2-2 The CIA Block Diagram

Data from/To DSW
(10D bus)

MEMORY ADDRESS, RAS
CAS, WE, REFRESH, ETC

Memory logic

EV5 orero @) PCI Data-Path logic
Inst.
& DATA_OUT DATAIN [P ™) s PCI
logic BO [® o
logic , BT L
PCI Data
| > >
CPU ECC ECC < D
Instruction ' GEN CORR b
Queue A -
/O WRITE
© E\gcliress
FLUSH @ > > m
) e
DMA write PCI Data Bypass PCI
+—- merge path TARGET | DEVSEL
WINDOW
D LOGIC
6 ! 10 Read patn i:_
@ PCI Data/addr Reg
i MU YA Wie pal
@ @ MUX DMA write path < «.4_
MEM PORT | 1/0 PORT
DMA read/write & TLB miss address)
10 read/write address for PCI
Bypassipal) > Scatter/Gather TLB @
ADDR/CMD
10 Address Queue @ 4% <
<
PA REG i
; Y —>
RAS MEMORY ADDR
CHECK| |CONTROL DECODH
+ INC.
G
HIT
Current oA Mux

Address
register

I/O address logic

DMA read
Prefetch
Counter

DMA address logic

Shading is used in the above figure to highlight the major datapaths and the major logical
entities. For instance, the darkest shaded datapath (bullets L, A, Q, I) represents the path
for data returning from the PCI bus to the DSW (that is, the DMA write and 1/O read
paths). All these highlighted paths sre described later in this chapter. The functional enti-
ties shown partitioned into five shaded boxes are described next. These are:

EV5 Instruction and Address Region

Conceptually, this logic accepts the commands from the EV5 and directs the instruction to
the memory port (bullet D) or the 1/O port (bullet C). The DMA read/write address (or the
scatter/gather TLB miss servicing address) also have access to the memory port through
the multiplexer at bullet E. A 3-deep CPU Instruction queue is provided to capture EV5
commands should the memory/I/O port be busy.

2-2 AlphaStation 600 ASIC Overview

For example, three addresses would be held if the EV5 issues two read misses with, at
most, one having a victim®. This accounts for the three-entry buffer.

The Flush Address register (bullet H) is used during DMA reads or writes to interrogate
the Bcache for the latest data (the Bcache is a write-back cache, and hence may have the
only valid copy of the required data).

PCI Datapath

The CIA is, in a PCI sense, the host-bridge. It generates/decodes the PCI addresses and
supplies/receives the data. Part of the PCI data path is in the CIA chip, and the remainder
resides in the DSW ASIC. The ECC generation and check logic is provided here since the
sliced nature of the DSW precludes placing ECC there.

Separate buffers are provided in the CIA (bullet J and A) for DMA and I/O read/writes.
These buffers are either 32B or 64B in size, and are shown partitioned into 16B entities
(which corresponds to the width of the EV5 data bus).

The PCI commands which the CIA responds/sends are listed in the following table:

Table 2-1 CIA PClI Commands

PCI command | Command type ClA slave | CIA master
0000 Interrupt Ack No Yes
0001 Special cycle No Yes
0010 1/0 read No Yes
0011 1/0 write No Yes
0100 reserved -- --
0101 reserved -- --
0110 Memory read Yes Yes
0111 Memory write Yes Yes
1000 reserved -- --
1001 reserved -- --
1010 Configuration read |No Yes
1011 Configuration write | No Yes
1100 Mem Read multiple |Yes No
1101 Dual addr cycle Yes No
1110 Mem Read Line Yes No
1111 Mem Write and Inv | Yes(1) No
Note: (1) Aliased to Memory write

CIA PCI features:
e 64-bit PCI bus width
e 64-bit PCI addressing (using DAC cycles)

e Capability to issue PCI fast back-to-back cycles in dense space

Note that the DSW also has buffers for the DMA and I/O paths. This duplication simplifies
control logic (the PCI control logic uses a buffer if the 10D bus to the DSW is not free);
simplifies handling PCI target stalls and retries; the ECC logic requires that 32-bit PCI
data be built up to 64-bits; buffering is required to compensate for the various bus widths
(IOD is either 32 or 64 bits, memory is either 256 or 128 bits, and the EV5 bus is 128 bits).

1 A victim is the cache block that has to be displaced to make room for the read miss (fill) data.

AlphaStation 600 ASIC Overview 2-3

Memory Logic

This logic (bullet F) provides the row and column address for the memory banks as well
as all the control signals (RAS, CAS, write enables, memory enable). The memory logic
provides control signals to the DSW to inform it when to send/strobe the data to/from
memory. Finally, this logic controls the memory refresh.

The next few paragraphs describe how the AlphaStation 600 system eliminates RAS cy-
cles for victim writes. This is a performance enhancement and is transparent to software.

The AlphaStation 600 system design uses a special technique to eliminate RAS cycles on
victim data. Instead of using the traditional approach of mapping the CPU address bit-for-
bit to the memory address (see Figure 2-3), The AlphaStation 600 system shuffles the
memory address bits so that the high-order CPU address bits (part of the Bcache Tag
portion) become the memory column address and the low-order CPU address bits (part of
the cache index portion) become the memory row address. Note that the high-order Tag
bits are used for memory bank selects in both schemes".

Figure 2-3 Memory Address Swizzling

| | I CPU physical address

Block offset
TAG Index

NN R "4 Cache address

S A

Bank YSelect §

22 4 _ Traditional memory address

1 K 1 .
Bank Select! PRow ! 4 Column
Eg?’ ﬂ _ "Almost" AlphaStation 600 memory address

The reason for this method is apparent in Figure 2-4. Since a cache is much smaller than
the available memory, multiple memory locations will alias to the same cache location --
this is shown in the left-hand side of the figure below where data Al, B1, C1, etc. all map
to the same cache location. Suppose that data Al currently resides in the Bcache, but the
CPU wishes to access data C1. A cache miss will occur which will fetch data C1 and
overwrite Al in the cache; if Al is the only valid copy of the data (for example, if an earlier
CPU write had previously updated Al) then Al has to be written to memory before the
requested data, C1, can overwrite Al. This displaced data is referred to as a victim, and is
fairly common (around 50% of read misses suffer victim displacements).

Referring again to Figure 2-4, note that in the traditional memory addressing scheme, the
data (for example, data A1) and the potential victim (for example, data C1) are well sepa-
rated in memory -- they are separated by a multiple of the cache size?. This sparse distri-
bution of potential victim locations means a read fill block and its victim may not reside in

the same memory page-mode region.

L This description is only a first order approximation; the actual AlphaStation 600 system implementation
is a little different.

2With a typical AlphaStation 600 system Bcache size of 4 MB, this separation will be many, many mega-
byes.

2-4 AlphaStation 600 ASIC Overview

However, by interchanging the memory Row and Column address bits, the potential victim
locations now reside in the same memory SIMMs and the same row within the SIMMs.
Now the chance of a cache block and its victim residing in the same memory page-mode
region increases astronomically. This will remove most, if not all, RAS cycles from victim
writes. In fact, for any cache greater than 1 MByte, all victims will be able to share a RAS
with the read Miss.

Figure 2-4 Victim Aliasing

data Al mmm————"" "% -data.-Al- - - ;
data A2 - > gg{g gl
etc. | data D1
data B1 Page-
data B2 mode
region
Bcache data C1 ; gata A2 --7Y.
-_ ata B2
data c2 i data C2
data D2
data D1
data D2
Typicar Memory AlphaStation 600 memory
addressing addressing

However, this approach hinders DMA transactions: the figure above shows that consecu-
tive blocks (for example, data Al, A2, A3) end up being scattered a page-mode region
apart in the AlphaStation 600-type memory addressing scheme. This implies that con-
secutive DMA read/write blocks will require a RAS cycle, constraining the attainable band-
width. The traditional scheme does not suffer this problem.

Hence, a compromise between the two schemes is used in the AlphaStation 600 system :
four low-order bits of the index map straight to the low-order bits of the column address
(just like in a traditional scheme), while the remaining high-order index bits go to the mem-
ory row-address. The remainder of the column address uses the Tag-portion of the physi-
cal address.

Figure 2-5 AlphaStation 600 System Memory Addressing

| | I CPU physical address

Block offset
TAG y Index

Cache address
L : <] Cache address

l¢—r !
1 Tl 1

t . . []
1

. R 1
BankV Select Row »° Column -5

Eﬁ” _ AlphaStation 600 memory address

With this compromise scheme, a DMA transaction will march through four 64B blocks
(that is, 64 longwords), on average, before requiring a RAS cycle. This constitutes a large
DMA transfer, minimizing the RAS penalty. Although the AlphaStation 600 system was
originally designed to take advantage of this scheme, it transpired that the simpler ap-
proach of a RAS cycle on every DMA 64-byte block provides more than enough band-
width for even a 64-bit PCI transfer (DMA read prefetch).

AlphaStation 600 ASIC Overview 2-5

The DSW ASIC

The logic which determines if a RAS cycle is required is shown by bullet F. The CPU-to-
memory path needs to be checked in case the Bcache is disabled, or if the Bcache is too
small.

I/0O Address Logic

This logic (bullet B) handles the 1/O read/write addressing. The Address decode logic ex-
tracts the PCI address from the dense/sparse space CPU address encodings (see Chap-
ter 4, AlphaStation 600 Addressing, for more details). This logic also increments the cur-
rent address each data cycle for two reasons: first, in case of a PCI retry, which will
require the transaction to be resumed later, we need to start with the address of the
aborted data; and second, to provide a pointer to the next data item to be loaded/sent
from the I/O read/write buffers.

The AlphaStation 600 system can queue up to six I/O writes: two of the I/O writes can be
waiting in the CPU queue (bullet G); and four I/O writes can be sitting in the 1/0O address
gueue (bullet B -- a three-entry 1/0O address queue is provided together with a single entry
Current Address register). This allows six 1/0O writes to be outstanding (the DSW provides
four corresponding I/O write data buffers -- bullet 4 in Figure 2-6; and the CIA provides
two more buffers -- bullet J). These buffers are required to sustain maximum bandwidth
for memory copy to I/O space. A bypass path is provided for certain dense-space /O
writes (that is, the longword valid bits for the first 16-bytes of data are either 1111, 1011,
1010 and 1001 -- these cases are optimized for a 64-bit PCI with at least two PCI data
cycles).

DMA Address Logic

This logic converts the PCl's address to the CPU memory address space. Two conversion
methods are provided: a direct path where a base offset is concatenated with the PCI ad-
dress; or a scatter/gather map which maps any 8 KB PCI page to any 8 KB memory
space page (bullet P). See Chapter 3, AlphaStation 600 Addressing, for more details. The
scatter/gather TLB is 8 entries deep; but each entry holds four consecutive PTEs. A TLB
miss is handled by hardware; but software is required to invalidate stale entries by writing
to the SG_TBIA CSR.

A counter is used on the output of the PA register to generate the prefetch address for
certain DMA read misses. An 8 KB detector prevents prefetching across page boundaries.

The DSW ASIC interfaces the data paths between the memory, EV5 and the CIA (for PCI
data). The ASIC is composed of mainly data buffers and multiplexers-- see Figure 2-6. All
control for the DSW is supplied by the CIA (albeit, some encoding and simple sequencing
is performed by the DSW). Features of the DSW design are:

* Victim buffer -- 64B
* 1/O read buffer -- 32B
* Four I/O write buffers -- 4 * 32B

« Two DMA buffer sets are provided for reads and writes. Each buffer set consists of
three buffers: one for the memory data, one for the Bcache data and one for the PCI
DMA write data (not used during DMA reads). The Bcache and memory data could
have shared one buffer (since only one of these two will provide valid data), but two

1asan example: a 1 MB Bcache the Tag bits are <32:20>. The AlphaStation 600 system has 16 memory
banks which are addressed by <32:29>. This leaves <28:20> which is 2**9 = 512 victim blocks. A 1K-entry
memory page corresponds to 512 blocks (the memory width is half a block) which will just hold all the
victim blocks. A smaller 512 KB cache will have twice as many victims and would not fit. In the AlphaSta-
ticin 600 ?astem’s case, the situation is slightly worse since the low-order address bits map straight to the
column address.

2-6 AlphaStation 600 ASIC Overview

buffers simplified the control logic.

Quadword valid bits are provided for the DMA write buffer. These valid bits are used
to merge the appropriate DMA write quadword with the memory/Bcache data. Finer
granularity merging (for example, bytes) is performed in the CIA (because of ECC re-
guirements) by looping the appropriate memory/Bcache quadword through the CIA
and merging in the valid DMA write bytes (see bullet Q for this path in the CIA).

No data is preserved in the buffers across transactions (that is, no DMA read pre-
fetched data or posted DMA write data). Consequently, there are no coherency issues
regarding DMA read/write data lingering in the buffers.

Flash ROM

A 1 MB Flash ROM is provided on the system module (see bullet 6 in Figure 2-6). The
Flash ROM is visible to software by reading/writing certain CSRs in the GRU ASIC.

AlphaStation 600 ASIC Overview 2-7

Figure 2-6 The Data Switch Block Diagram

VICTIM
BUFEER 0 DATA SWITCH BLOCK DIAGRAM Memory
Data Out
CPU Victim Path _ Register
>
TO THE
- MEMOSRV
g BANK
I:I [|‘ CPU Read Miss Path
(7] /O READ Memory
BUFFER Data in
Register
IOread |DMA \%MA
Buffer select Path Sgtaﬁd 0 artlfwe
' — multiplexer
_>l> I/O Write Path DMA Read Data Path @
Quadword l DMA BUFFER 0 DMA BUFFER 1
. select mux
1/0 WRITE BUFFERS @
PCI MEM BCACH
[\ A Ao AvEw Ascacie
DMA | Write | Path
Bcache Flush/Read Path for DMA write/read

‘ 9 DMA READ/WRITE BUFFERS

GRU ASIC
e and 10D bus
FLASH ROM

TO CIAASIC

CPU Memory Read

The EV5 Read Miss command and address are sent to the CIA. If the CIA is idle the com-
mand will be stored directly in the memory port register (bullet D in Figure 2-2); otherwise
the command enters the three-deep CPU Instruction queue (bullet G) and remains there
until the memory port is free. The CIA will accept one more subsequent Read Miss from
the EV5 and store it in the CPU Instruction Queue.

There are three paths to the memory port which have to be arbitrated for (bullet E): the
two paths described above -- namely the direct path and the CPU Instruction queue; and
thirdly, the DMA read/write address path (which is also the path for scatter/gather TLB
miss addresses). Note that, up-stream of the multiplexer at E, all instruction ordering from
the EV5 is preserved; downstream, the ordering between I/O write transactions and CPU
memory transactions is lost. This "post and run" I/O write coherency issue is discussed in
Chapter 11, System Coherency.

Once the CPU Read Miss gets into the memory port, the memory controller (bullet F)
generates the RAS, CAS, and address signals for the memory array.

2-8 AlphaStation 600 ASIC Overview

The memory controller then waits for the memory access delay before instructing the
DSW to accept the memory data. The memory width for the AlphaStation 600 system is
256-bits (32 B), and thus two memory cycles (typically 60 ns) are required to access the
64 B block.

The DSW clocks the data into the Memory Data-in register (bullet 2 of Figure 2-6). This
register is clocked on a 15 ns clock (not a 30ns clock) in order to minimize memory la-
tency. The data is then sent to the EV5 through a further flip-flop (bullet 7) which synchro-
nizes the data to the EV5 system clock (30 ns). The read data is returned to the EV5 in
wrapped-order. The block size for read data is fixed at 64 bytes.

CPU Memory Read with Victim

CPU I/O Read

This is similar to the Read Miss case previously described except that the EV5 will also
send out the victim block (that is, the modified [dirty] block which will be displaced from
the Bcache by the Read Miss data).

The command and address for the Victim always follow the Read Miss command®. Con-
sequently, the Read Miss command will get to the Memory port first and thus the Victim
command and address are always written into the CPU Instruction Queue (G). The victim
block data is saved in the Victim Buffer in the DSW (bullet 1).

The memory controller in the CIA (bullet F) generates the memory write pulses and in-
structs the DSW to send the victim data to memory. The victim data path is straightfor-
ward: the data is sent out of the victim buffer (bullet 1) and through the Memory Data-Out
register (bullet 2) to the two memory banks.

The victim data is written to memory after the read data has been fetched from memory
(the CIA arbiter ensures that a read miss and victim write are an atomic operation). The
row address portion of the victim address is compared to the row address of the current
read miss (bullet F). If they match then no memory RAS cycle is required, instead only
CAS strobes are performed. The address bits for the memory have been carefully inter-
spersed to maximize the chance of a victim row address "hitting" the read address -- this
performance feature is totally transparent to the software.

The Victim buffer is invalidated if a DMA write (or DMA read with lock) "hits" the victim
buffer. Until the EV5 has its read data returned, the victim block is still in the Bcache and
is still "owned" by the EV5 (even though the EV5 sent a copy of the victim data to the
DSW). It is possible for the Read-with-victim command from the EV5 to be stalled behind
a DMA write. The DMA write could "hit" the victim block -- in this case, the DMA write will
issue a FLUSH command to the EV5, which will result in the EV5 providing the victim data
to the DSW (to one of the Bcache buffers -- bullet 5) and then the EV5 will invalidate the
victim block in the Bcache. Consequently, the victim data waiting in the victim buffer (bul-
let 1) is no longer valid and is invalidated by logic in the CIA.

An I/O read by the CPU can be to one of five places: the PClI memory space; the PCI I/O
space; the PCI configuration space; the GRU CSRs (which includes the Flash ROM); and
the CSRs in the CIA (there are no CSRs in the DSW). The address for the I/O read is
either in sparse space or dense space -- for details please refer to Chapter 3, AlphaSta-
tion 600 Addressing.

The I/O read command is accepted by the CIA in a manner similar to a memory read ex-
cept that the instruction ends up in the 1/O port (bullet C). All I/O read commands go to the
I/O address queue (bullet B); no bypass path is provided for dense space /O reads.

Decode logic is provided on the output of the I/O address queue to extract the byte ad-
dress for the PCI from the CPUs sparse space encoding, and to decode the address for

1 The EVS must have "Victim first" disabled for the AlphaStation 600 system.

AlphaStation 600 ASIC Overview 2-9

CPU I/0 Write

the correct region (PCI memory, I/O, configuration, CSR or Flash ROM). We will only con-
sider an 1/0 read destined for the PCI since this is the more interesting case.

An incrementer is provided to increment the current Iongword/quadword1 address stored
in the Current address register each data cycle. This is needed in case of a PCI retry and
is also used to index the next data item in the 1/O write/read data buffers. The value in the
Current Address register corresponds to the address of the data item on the PCI bus (it
has the same canonical time as the PCI data-out register at bullet K).

The 1/0 read address is sent to the PCI after any prior 1/O writes have completed” (that is,
strict ordering is maintained). The PCI returns the requested data and places it in the I/O
Read buffer (bullet A). The contents of this I/O read buffer are next copied to the I/O read
buffer in the DSW (bullet 3) and then sent to the EV5.

One may wonder why we have replicated the 1/O read buffers. The 1/O read buffer in the
CIlA is provided for the following reasons: first, because the path to the DSW may be busy
with the tail end of a prior DMA write (especially if the data has to be merged with memory
data to build it up to the ECC width); second, at least 64 bits of storage are required for
ECC since the PCI can return 32 bits of data at a time; and finally, as a control conven-
ience to handle the vagaries of the PCI protocol (for example, retries). The I/O read buffer
in the DSW was provided to build the data up from 64-bits (width of the bus between the
CIA and DSW) to the 128 bits required by the EV5.

I/O reads from the EV5 are of an 8 B resolution and the CIA always returns 32 B. If a finer
resolution is required, then sparse space must be used, the details of which are fully cov-
ered in Chapter 3, AlphaStation 600 Addressing. Data is returned in the appropriate byte
lanes.

The EV5 issues uncached writes to its 1/0 space with a longword resolution. For a finer
granularity, use sparse space (see Chapter 3, AlphaStation 600 Addressing).

The data for I/O writes is captured in the I/O write buffer in the DSW (bullet 4). Four 32 B
buffers are available in the DSW and a further two in the CIA: this number of entries al-
lows AlphaStation 600 system to sustain maximum bandwidth on a large copy operation
from memory through the CPU to I/O space. The data from these I/O Write buffers is sent
to the two I/O write buffers in the CIA (bullet J): two buffers are provided, allowing one to
be emptied to the PCI bus while the other is filled. Each 32B buffer in the CIA constitutes
a separate PCI transaction (that is, no merging of the write buffers occurs). A secondary
benefit for the CIA’s I/O write buffers is simpler data-flow management when an obnox-
ious target PCI device stalls the 1/O writes.

The address for an I/O write is sent to the CIA I/O port (bullet C). Thence, for a 32B
aligned dense space write, the I/O write is either sent directly to the PCI bus via the by-
pass path, or queued up in the I/O address queue (bullet B). The fast, direct (bypass) path
is used if: (1) there are no outstanding I/O commands; and (2) the command is an I/O
write in dense space and the first 16-bytes3 are mostly valid (that is, 1111, 1011, 1010,
1001 -- see the CIA ASIC chip spec for details). Note that this command also goes into
the 1/0 address queue, but only as a convenient path in the 1/0 addressing logic section,
to get the address into the Current Address register.

A total of six I/O write addresses can be queued: two in the CPU-queue, three in the 1/0O
address queue, and the first I/O write in the Current Address register. The I/O address
gueue maintains strict ordering for 1/0 operations (but does not maintain strict ordering of
I/O writes relative to any memory reads or writes -- see Chapter 11, System Coherency,
for the implications).

1 Depending if a 32- or 64-bit PCI transfer is in effect.

2 Completed means that the CIA has issued the writes on the PCI bus and the target devices have accepted
them.

3 since we only see 16B each cycle from the EV5.

2-10 AlphasStation 600 ASIC Overview

DMA Transactions

The PCI address and command are captured in the Address/Command register (bullet M)
and the data/address register (bullet L). The address is compared against four address
windows to determine if this PCl command should be accepted or ignored by the clAh.
Address windows are a requirement of the PCI specification and are software program-
mable -- they are described in detail in Chapter 3, AlphaStation 600 Addressing. All PCI
commands destined for memory are accepted by the CIA.

Implementation detail: Two registers sample the incoming PCI bus. One is
used to capture the address and command (bullet M), and to hold onto the
values for the duration of the transaction; while the other (bullet L) is used to
primarily capture data cycles, but will also strobe in the address. The Target
Window logic is attached to the Data-in register (L) rather than the Address
register (M). The reason for this is the case of a DMA Write Scatter/Gather
TLB miss. The intention is to grab a buffer's worth of data (64B) and then re-
try the master PCI device should it have more data. Thus we have freed the
PCI bus for further transactions; but as we are busy servicing the TLB miss,
we need to hold the virtual address in the Address register (M). Should an-
other PCI transaction occur while we are servicing the TLB miss, we must ac-
cept that address and check it against our Target window. Consequently, the
Target Window logic is attached to the free-running PCI data-in register (L).

There are three registers associated with each of the four PCI Windows:

« Window Base register: This defines the start of the Target Window. This register
holds the SG bit which determines if the scatter/gather map is used for the translation.

« Window Mask Register: This defines the size of the Window

< Translation Base register: This holds a Base address used to relocate the PCI ad-
dress in the CPU memory space (for direct mapping); and is also used to hold the
Scatter/Gather Map Base address for scatter/gather mapping.

The Window Base register (see Chapter 3, AlphaStation 600 Addressing) SG bit deter-
mines how the PCI address is translated: if SG is clear, then the address is directly
mapped by concatenating theTranslation Base Register to it; otherwise the address is
mapped through the scatter/gather table, allowing any 8 KB of PCI address to map to any
8 KB of memory address.

1 DOS address space is decoded by the PCI-EISA bridge chip and signaled to the CIA via the MEMCS#
wire. See Chapter 3, AlphaStation 600 Addressing, for more information.

AlphaStation 600 ASIC Overview 2-11

Figure 2-7 Scatter/Gather TLB

8 KB
page
Direct I
map_ . = E Wndow
- 2 it
_-- - indow
A <
/ Scatter
l(\BAather
CPU Memory ap PCI memor
space (6 GB) space (4 G

Figure 2-7 illustrates this mapping. This Scatter/gather table is located in memory, but the
CIA provides an 8-entry TLB which caches the most recent scatter/gather table entries.
Each TLB entry holds 4 consecutive scatter/gather table entries (thus mapping a contigu-
ous 32 KB of virtual PCI addresses to any four 8 KB memory pages).

DMA Read

The translated address stored in the PA register (bullet P) is sent to the EV5 through the
Flush/Read Address register (bullet H), and also to memory via the memory port (bullet
D). If an EV5 data cache contains valid (modified) data then a copy is sent to the Bcache-
buffer portion of one of the two" DMA buffers in the DSW (bullet 5); and the valid bit is set.
Memory data is always fetched and lands in the Memory-buffer of the DMA buffer. The
PClI-buffer part of the DMA buffer is not used for DMA reads (see Appendix A).

As soon as the first valid QW is available in the DSW’s DMA buffer (bullet 5) it is sent to
the DMA read buffer in the CIA (bullet J) via the multiplexers at bullets 5 and 8. Any ECC
correction is done in the CIA (bullet I). From the DMA buffer in the CIA the data goes out
on the PCI a cycle later (through the register at K). The DMA read data also takes the
bypass path around the Big Multiplexer (bullet J) for as long as the PCI can accept this
stream of data; once the PCI stalls then the buffers start to be used.

DMA Read Prefetching

The PCI supports three types of memory read commands. The following is the use
as specified in the PCI Local Bus specification:

* Read command: used for small transfers (up to 1/2 a cache line)
¢ Read Line command: used for medium transfers (1/2 to 3 cache lines)

* Read Multiple: used for large transfers (more than 3 cache lines)

Note that for the PCI environment most devices will tacitly assume an Intel processor
cache of 32 bytes (compared to the AlphaStation 600 system’s cache line of 64 bytes).
Hence, the AlphaStation 600 system’s prefetch strategy is:

1 PCI address<6> -- the even/odd 64B block bit -- determines which DMA buffer is used

2-12 AlphasStation 600 ASIC Overview

MB Instruction

Table 2-2 AlphaStation 600 Series Prefetch Strategyl

PCI memory read command Prefetching
Read None
Read Line Prefetch 1 block
Read multiple Prefetch till end of transaction

The counter used to increment the memory block address for prefetching is shown by bul-
let P.

This address goes to the Bcache and memory as per a normal DMA read. The returned
data is sent to the next free DMA buffer in the DSW. So as one buffer is being copied
down to the CIA, the other is free to accept DMA prefetched data. At the completion of a
transaction, all prefetched data in the DMA read buffers is ignored (that is, no prefetch
caching is performed). Prefetching does not occur over an 8 KB page boundary.

The 64B DMA read buffer in the CIA (bullet J) acts like two 32B halves during DMASs -- as
one half is emptying to the PCI bus the other half is being filled.

DMA Write

The translated address stored in the PA register (bullet P) is sent to the Bcache through
the Flush/Read Address register (bullet H), and also to memory via the memory port (bul-
let D). If the Bcache contains valid (modified) data, then the data is sent to the Bcache-
buffer portion of the DMA buffer in the DSW (bullet 5), and the Bcache data is invalidated.
Memory data is always fetched and lands in the Memory-buffer of the DMA buffer (see
Appendix A).

The DMA write data is taken off the PCI bus and placed in the DMA write buffer (bullet A).
If the data is a complete quadword then ECC is generated (bullet I) and the data is sent to
the PCl-write portion of the DMA buffer in the DSW. If the data is an incomplete quadword
then a merge operation has to be performed (bullet Q). The valid Bcache or memory
guadword is sent to the CIA from the DMA buffer in the DSW, and the valid bytes of the
DMA write data are merged in. This merged quadword then is ECC generated and is sent
to the PCl-write buffer portion of the DMA buffer in the DSW.

The DMA buffer in the DSW builds the data up to 64B (the block size) before sending the
data to memory. The memory logic (bullet F) generates the memory write pulses. The
memory address is read from the PA register (bullet P) using the mux at bullet E. Note
that should the 1/0 port (bullet C) be busy with an I/O write/read transaction, the memory
port (bullet D) will be available for DMA writes®.

One reason for providing a copy of the DMA write buffer in the CIA is because the data
path to the DSW may not be available at the start of a DMA write (it could be busy trans-
ferring 1/0O write data from the DSW to the I/O write buffers if CPU I/O write had been re-
ceived concurrently with a PCI DMA write).

Note that the DMA write data is always written to memory, and never stored (cached) in
the DMA write buffers across transactions. The complexity of caching was deemed too
risky relative to the potential benefit gained.

The MB instruction can be disabled from leaving the EV5 (this is the expected AlphaSta-
tion 600 mode). If MB instructions are allowed to the CIA, then the CIA will effectively treat
the MBs as NOPs (that is, in accordance with the "posted-write" ECO to the Alpha SRM --
see Chapter 11, System Coherency).

1Any PCI read can be mapped to any prefetch algorithm using the CIA_CTRL CSR.

2The memory port may be busy with a CPU operation; but once the CPU operation completes, the DMA
will get through.

AlphaStation 600 ASIC Overview 2-13

LOCK Instructions

The AlphaStation 600 system has to contend with locks originating on either the CPU or
the PCI. There are two cases which require that the EV5’s internal lock-state on a block
be cleared (from a system point of view). The first is during a DMA write to the locked
block, and the second is when a PCI device has established a lock. The things to consider
about system lock behavior are:

DMA write case: The EV5 maintains its own lock flag and lock address in the EV5’s
BIU. This state is correctly maintained, even if the locked block is displaced from the
Scache, as long as the system sends all DMA write FLUSH commands to the EV5
(that is, no duplicate cache tag). This is the case for the AlphaStation 600 system.

PCI lock established: A PCI device can only establish a lock on a 16B block of data
during a DMA READ. Once the lock is established (by the read succeeding), the PCI
device has exclusive access to that 16B block (although the PCI target -- in this case,
the AlphaStation 600 system -- is at liberty to lock a larger block). This PCI lock allows
the device to do an atomic read-modify-write on a 16B entity.

The Alpha and PCI architectures have different mechanism for establishing a lock.
For the PCI, it is a successful READ (with the PCI LOCK signal asserted) that estab-
lishes a lock; for Alpha, it is a successful WRITE (STx_C) that establishes a lock.
Hence, a PCl READ with LOCK must be treated by the EV5 as if it were a WRITE
(that is, in terms of the Alpha architecture, it must have the same effect as would a
write from some other processor). The figure below gives an example of the CPU and
PCI vying for a memory flag:

EV5 Atomic Update
try_again:

PCl Atomic Update

LDQ_L R1, mem_flag

modify mem_flag —
<

STQ_C R1, mem_flag

READ/LOCK mem_flag
modify mem_flag

WRITE/UNLOCK mem_flag

BEQ R1, no_store

no_store:
check for excessive iterations
BR try_again

Both the EV5 and the PCI are attempting to do an atomic read-modify-write of a
memory flag (for example, a semaphore). The EV5 starts first with the LDQ_L but will
not know if the update is successful until the STQ_C completes successfully. How-
ever, assume that the PCI obtains the lock to the memory flag before the STQ_C --
with the READ/LOCK PCI command. For correct operation, the EV5’s STQ_C must
fail, otherwise the EV5 and the PCI device will both believe they have successfully
modified the flag (for example, obtained a semaphore). To achieve the correct opera-
tion, the follwing is required:

Before a PCI lock is established, the EV5 must clear its lock flag. The only mecha-
nism to do this is a system write/flush to the locked block. Normally the CIA will han-
dle a DMA read by sending a READ command to the EV5. However, in this case, a
FLUSH command is required (in order to clear any lock which may be set on that
block in the EV5). This unfortunately means that the system must not only do a DMA
read operation, but must also write the flushed-out block to memory. Once the CIA
successfully sends data to the PCI device, the PCI lock is established.

During the PCI lock, the CPU may attempt to refill the flushed-out block (this will hap-
pen if it is in a loop repeatedly executing LDX_L - as depicted in the figure above).
This requested block however cannot be provided by the system until the PCI lock
has completed (because, once the block gets inside the EV5, the system loses control

2-14 AlphasStation 600 ASIC Overview

GRU ASIC

of the block. The system could prevent the EV5 from setting its internal lock bit on the
block initially, by using the SYSTEM_LOCK_FLAG_H, but the next time around the
LDx_L/STx_C loop, the EV5 will enjoy a cache hit on the block and will be oblivious to
the system lock state; thus, the loop will succeed this second time around).

The lock rules are:
e The SYSTEM_LOCK_FLAG_H signal to the EV5 is not used and is always tied true.

* All DMA write operations will result in the CIA issuing a FLUSH command to the EV5
(this is normal AlphaStation 600 system behavior).

e All DMA reads with the PCI LOCK asserted will result in the CIA issuing a FLUSH
command to the EV5; the CIA must write the flushed-out block to memory. The inter-
nal CIA Lock Address register will be set with the locking address.

» If the EV5 requests a fill which hits the CIA lock address register then the fill is stalled
until the PCI lock is relinquished by the PCI device.

e The EV5 LOCK command will be a NOP in the AlphaStation 600 system (this com-
mand is only required for systems with duplicate TAGS).

e The EV5 WRITE_BLOCK_LOCK will be treated as a WRITE BLOCK (that is, a plain
write).

Locks to Uncached Space

The AlphaStation 600 system does not support LDx_L and STx_C to uncached space;
these are converted to plain LDx and STx.

The GRU chip (DC7560A) contains sections of miscellaneous logic necessary for system
operation. The major sections are:

¢ Flash ROM Interface
* Interrupt Logic
« Configuration registers for Cache and Memory

¢ System Reset

Refer to the GRU ASIC Specification for details.

IOD Interface

The GRU interfaces with the CIA ASIC via the low byte of the 10D bus and two control
signals (GRU_SEL and GRU_ACK). CIA asserts GRU_SEL to pass a command on the
IOD bus and GRU asserts GRU_ACK to inform CIA that read data is being returned. The
commands are:

* CSR Write: CIA sends a CMD (1 byte) to the GRU, followed by 4 bytes of data

¢ CSR Read: CIA sends a CMD (1 byte) to the GRU, the GRU sends back 1 LW of data

* Flash ROM Read: CIA sends a CMD (1 byte) to the GRU, and then 3 bytes of ad-
dress, the GRU sends back 1 LW of data

* Flash ROM Write: CIA sends a CMD (1 byte) to the GRU, and then 3 bytes of ad-

AlphaStation 600 ASIC Overview 2-15

dress, followed by 4 bytes of data

The command sent to the GRU is based on the CSR_ADDR from the EV5 and whether
the cycle is a read or write. The format is:

Bit[7] Bit[6] Bits[5:0]
CSR/Flash Read/write Address
1=CSR 1 =Read Address of internal CSR or partial address of the
0 = Flash ROM 0 = Write FROM

GRU Addressing
The physical address region 87.8000.0000 to 87.FFFF.FFFF is used to access the GRU
ASIC on the IOD bus. These addresses access a number of CSRs as well as external

Flash ROM space.

2-16 AlphaStation 600 ASIC Overview

Table 2-3 GRU Address Space

CPU Address Selected Region Mnemonic

87.8000.0000 Interrupt Request register INT_REQ

87.8000.0040 Interrupt Mask register INT_MASK

87.8000.0080 Interrupt Level/Edge Select register INT_EDGE

87.8000.00C0 Interrupt High/Low IRQ select register INT_HILO

87.8000.0100 Interrupt Clear register INT_CLEAR

87.8000.0140 to | reserved

87.8000.01CO

87.8000.0200 Cache and Memory Configuration register! CACHE_CNFG

87.8000.0240 to | reserved

87.8000.02C0

87.8000.0300 SET Configuration register! SCR

87.8000.0340 to | reserved

87.8000.07CO

87.8000.0800 LEDs (not used in current theAlphaStation 600 LED
system)

87.8000.0840 to | reserved

87.8000.08C0

87.8000.0900 Force System Reset RESET

87.8000.0940 to | reserved

87.8000.0BCO

87.8000.0Cxx to | Flash ROM bank 0

87.BFFF.FCxx | 256 KB byte-addressed by CPU address<29:12>

87.8000.0Dxx to | Flash ROM bank 1

87.BFFF.FDxx | 256 KB byte-addressed by CPU address<29:12>

87.8000.0Exx to | Flash ROM bank 2

87.BFFF.FExx | 256 KB byte-addressed by CPU address<29:12>

87.8000.0Fxx to | Flash ROM bank 3

87.FFFF.FFxx | 256 KB byte-addressed by CPU address<29:12>

Flash ROM Interface

The GRU ASIC is controlled and addressed over the IOD bus. The GRU also has a bi-
directional interface called the GRU_DAT<7:0> bus. The GRU_DAT bus attaches to
1024 KByte of Flash ROM and LEDs. The Flash ROM is divided into four banks each
having 256 KB. The Flash ROM addressing scheme is shown in Figure 2-8. Also refer to
Table 2-3 for the GRU address space.

1 This functionality is not provided in version 1.0 of the GRU asic

AlphaStation 600 ASIC Overview 2-17

Figure 2-8 Flash ROM Address scheme

31 30 29 1211109 8 7 65 0
10 256 KB Flash ROM byte-address 11 X X [000000
00 : Flash ROM

01 : Flash ROM 1
10 : Flash ROM 2
11 : Flash ROM 3

The data read from the Flash ROM travels over the GRU_DAT bus and back to the CIA
on the IOD bus. It travels the opposite direction for Flash ROM writes. In all cases the
address is sent to the Flash ROM from the GRU on a dedicated output bus
(FROM_ADDR<17:0>). Also controlled from the GRU are the Flash ROM chip enable,
output enable, and write enable signals.

Interrupt Logic

The Interrupt logic in the GRU is controlled by the primary interrupt inputs (PCI interrupts,
CIA_ERROR interrupt, NMI, TOY and CIA_INT) and the values of the interrupt registers
These registers include the Interrupt Request register, the Interrupt Mask register, the In-
terrupt Level/Edge register, the Interrupt High/Low register and the Interrupt Clear regis-
ter. A block diagram of the interrupt logic is shown Figure 2-9

Figure 2-9 GRU Interrupt Logic

INT_REQ

INT_REQ
Register
<31:0>
INT<31:0>___p.| SYNCH)Dc \> PRE. IRQ<1>
INT_CLR
Register
INT_HIL <31:0>
Register INT_MASK
Rg |(s)ter
<3I.0>

<31:.0> :I

Pulse logic used for Edge

interrupts (less prone to false

triggering) INT_EDGE
Re%lster
<3I.0>

CIA_ERROR
= :)\ » SYS_MCH_CHK_IRQ
NME— S
RESERVED 3
TOY 2 3
PRE_IRQ<1> 1
CIAINT 0
IRQ<3:0>

CLK_DIV<3:0>

oMW

]

RESET_L

2-18 AlphasStation 600 ASIC Overview

Configuration Registers for Cache and Memory

The GRU contains a Cache and Memory Configuration register (CACHE_CNFG) which
contains the size and speed information for each individual cache SIMM (see Figure
2-10). Also included is the SET Configuration register. This register contains the access
rate (speed) information for each memory SIMM (see Figure 2-11). Both the registers are
loaded following system reset from the information on the presence detect pins of the
SIMMs.

Figure 2-10 Cache and Memory Configuration Register

31 28 27 24 23 21 19 16 15 13 1110 8 7 4 3 0
L |_ Clock Divisor
Cache size
Cache Speed
MMBO Cnfgl
MMB1 Cnfg!

Figure 2-11 SET Configuration!

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 0
SE|T7 |
SETO SETO SET7
AN AN /
MMB1 MMBO
Reset Logic

The system reset signal (SYS_RST_L) is generated and output by the GRU. This signal
resets all the chips on the module. Reset can be asserted asynchronously with the pri-
mary inputs DC_OK L or OCP_RESET L. It can also be asserted synchronously by writ-
ing a value of "OOOODEADhe " into the Reset register in the GRU. In all cases

SYS RST L is asserted for 5%6 cycles and deasserted synchronously..

In the GRU, following reset, the presence detect logic begins shifting data bits from the

module into the CACHE_CNFG register and the SCR. Control to the SIMMs to select the
bits to be shifted in is output from the GRU on the GRU_DAT bus.

AlphaStation 600 ASIC Overview 2-19

AlphaStation 600 PCI-EISA Bridge

The PCI-EISA chip bridge set consists of the PCI to EISA bridge chip, the PCEB
(82375EB); and the EISA system controller, the ESC (82374EB). These chips are essen-
tially a collection of peripheral chip designs (such as interrupt logic, timers, DMA control,
arbiters, etc.) coerced into two packages.

Figure 2-12 shows the AlphaStation 600 system’s standard 1/O busses and devices, and
indicates how the PCI-EISA bridge is used and what devices are attached to the X-bus.

Figure 2-12 AlphaStation 600 System Standard I/O Busses

1

Floppy Drive »D

Speaker EISA slots I

gScnial Port 11
EISA CQMBCMﬂ' |
Interrupts Chip <_>D
87312 | parallel Port
PCI-EISA T
Bridge

EISA-bus
buffer

| PCI
arb.

X-bus

PCI bus EISA Real Time| | Keyboard| | Operator
Config Clock & mouse Ctrl Panel
RAM DS1287 8242 PCD8584
Memory PCI 1 MB
PDfeetSeeCntce Interrupt FLASH
Logic Logic RAM
IOD . i : i .
bus
buffer GRU_dat
GRU asic
Data
Switch

1 This functionality is not provided in version 1.0 of the GRU asic

2-20 AlphaStation 600 ASIC Overview

ESC functionality

The stepping (revision) of the chip the AlphaStation 600 system will use at power-up is
A-2. The AlphaStation 600 system’s use of the ESC chip is almost a standard implemen-
tation. Some of the specific details/features are:

« Keyboard controller: This is based on the standard 8242. The mouse interrupt (the
so called ABFULL# signal) is not wired to the ABFULL# input. Software should dis-
able its path to IRQ<12> via the ESC register CLKDIV bit<4>,

« SERR and PERR: Software must NOT enable these inputs to the NMI logic in the
ESC.

e Interrupt logic: This logic is used for the EISA interrupts. The ESC should disable
the connection of ABFULL# to irg<12>. The Real Time Clock is not wired to this inter-
rupt logic; instead it is wired directly to an EV5 interrupt pin.

« TOY - Real time clock: This is based on the Dallas 1287 and is wired to the X-bus in
the conventional manner.

e Configuration RAM: 8 KByte of non-volatile RAM is provided on the X-bus for the
EISA configuration space.

e BIOS: There is NO BIOS ROM on the X-bus. Instead, the AlphaStation 600 system
provides Flash ROM on the GRU_DAT bus. The GRU_DAT bus is "closer" to the
CPU and thus a preferred location for this RAM (that is, serial ROM code needs to
check less of the system before it is confident it can access the Flash RAM code).

e Speaker: This is provided to enable the operating systems to signal the operator
audibly.

e General Purpose device . The Operator Control Panel interface chip (PCD8584) is
wired to GPCS|0] -- the GPCS|0] signal is gated with CMD_L just as the SABLE im-
plementation to allow consecutive access of the PCD8584 -- that is, software does
not need to do anything special)

PCEB Functionality
The AlphaStation 600 system’s use of the PCEB is relatively standard.

PCI-to-EISA Address Decode

Subtractive decode must be used for the PCEB (negative decode does not work).
PC Compatibility Addressing and Holes

The PC architecture allows certain (E)ISA devices to respond to hardwired memory ad-
dresses. For example, a VGA graphics devices that has its frame buffer located in mem-
ory address region A0000 - BFFFF Main memory must be made inaccessible for such
memory-mapped regions, and this inaccessible region is called a PC compatibility hole
(or "hole" for short).

The EISA-PCI bridge provides access for (E)ISA devices to main memory (which is nor-
mally behind a HOST-PCI bridge) via positive address decode. The lower 512 MB of
EISA address range is partitioned into many sub-segments which can be enabled by the
MCSTOM, MCSTOH, MCSBOH, EADC1, EADC2 registers. These registers allow main
memory "holes" to be created.

For more detail refer to the Intel 82375EB specification.

1 This functionality is not provided in version 1.0 of the GRU ASIC

AlphaStation 600 ASIC Overview 2-21

MEMCS#

PCI window 0 in the CIA can be enabled to accept the MEMCS# signal as the PCI mem-
ory decode signal. With this path enabled, the PCI window hit logic simply uses the
MEMCS# signal (that is, if MEMCS# is asserted then a PCI window O hit occurs and the
PCI DEVSEL signal is asserted).

PCI Arbitration

The PCEB does not allow the use of an external arbiter; the internal PCI arbiter must be
used. The AlphaStation 600 system has one PCI slot more than the PCEB can handle.
This problem is solved by providing a sub-arbiter on the system module for the 32 bit slots
in conjunction with the PCEBSs arbiter.

PCI Arbitration - Power-Up

The PCEB arbiter is initialized to provide round-robin arbitration but parks the host bridge
(CIA) on the PCI. This means that the CIA normally is driving AD[31:0], C/BE[3:0] and
PAR. The remaining 64-bit PCI signals are pulled up by resistors and need not be driven.

Figure 2-13 AlphaStation 600 System PCI arbiter scheme

PCEB req PCEB chip
PCI slots
I 5] Slot 0 req REQO# »| Bank 0
 —Te Ty Slot 1 req REQ1# > —|->
| srpr]_Slot 2 req REQ2# »| Bank 3 > Bank2
Slot 3req] REQS# ~ 4|—>
—zr-Slot 4 req , Sub-arb ; Bank 1
CIA CPU req CPUREQ#
Table 2-4 Round-robin PCI Arbitration
Current Least Recently Used State Highest Next Least Recently Used State
Bank 2 [Bank O |Bank 3|Bank 1 |Sub-arb Priority Bank 2 |Bank 0 |Bank 3 |Bank 1 |Sub-arb
Bank O X Slot 1 X X Slot2 | Bank 3| same | Slot 2 same same
Bank 0 X Slot 2 X X Slot1 |Bank 3| same | Slot2 same same
Bank 3 X X Sub-arb X CPU |[Bank1l| same | same CPU same
Bank 3 X X CPU Slot 3 Slot4 |Bank 1| same | same | Sub-arb| Slot4
Bank 3 X X CPU Slot 4 Slot3 |Bank1| same | same | Sub-arb | Slot3
Bank 1 | PCEB X X X Slot0 |Bank O | Slot0 | same same same
Bank 1 | Slot 0 X X X PCEB |Bank O | PCEB | same same same

Round-robin arbitration assumes all slots are requesting. If a bank or slot is not request-
ing, the priority is passed on to the next slot or bank that is requesting.

2-22 AlphaStation 600 ASIC Overview

Data Buffering in the PCEB
The AlphaStation 600 system expects that the Line Buffer is enabled in the PCEB chip.

The latest errata from Intel requires that the PCEB Posted Write Buffer is disabled. This
means that a PCl master requesting a PCI-to-EISA transfer is retried until the PCEB owns
the EISA bus. Each PCI-to-EISA transfer must complete all the way to the EISA destina-
tion before the next transfer may begin. In other words, performance through to EISA will
be abysmal (and the fewer EISA options installed the better).

AlphaStation 600 ASIC Overview 2-23

2-24 AlphasStation 600 ASIC Overview

3
AlphaStation 600 Addressing

Introduction

This chapter describes the mapping of the 40-bit processor physical address space into
memory and I/O space addresses; it explains the translation of processor initiated ad-
dresses into a PCl address; and the translation of a PCl initiated address into physical
memory address.

Topics include dense and sparse address spaces; scatter/gather address translation for
DMA operations, PCI addressing, and EISA requirements.

Address Mapping Introduction

The EV5 address space is divided into two regions using physical address <39>: if clear,
then EV5 access is to the cached memory space; if set, then the accesses are not
cached. This uncached space is used in the AlphaStation 600 system to access memory-
mapped I/O devices -- It does not support mailboxes.

The uncached space for the AlphaStation 600 system contains the CSRs, uncached
memory access (for diagnostics), and the PCI address space. The PCI defines three
physical address spaces: firstly, a 64-bit PCI memory space; secondly, a 4 GB PCI I/O
space; and thirdly, a 256B per device, PCI configuration space. In addition to these three
address spaces on the PCI, the CPU’s uncached space is also used to generate PCI In-
terrupt Acknowledge cycles and PCI Special cycles.

Figure 3-1 Address Space Overview

4 —
CPU Main Sys@
Environment memory ¥

V.‘
.

PCI memory °-. PCI "window"
space .

PCI
device
/.

4 ‘ ’
(CSRs ' (PCI config. ' P
\ space j - _--"

The CPU has visibility to the complete address space: it can access cached memory,
CSRs and all the PCI memory, 1/0 and configuration regions (see Figure 3-1).

AlphaStation 600 Addressing 3-1

The PCI devices have a restricted view of the address space and can only access any
PCI device through the PCI memory or PCI 1/O space. They have no access to the PCI
configuration space. Furthermore, the AlphaStation 600 system restricts access to the

system memory (for DMA operations) through four programmable "windows" (that is,
memory regions) in the PCI memory space -- see Figure 3-1. Address "windows" are a
PCI requirement (the window is defined via the Base register), and are implemented
(either directly/indirectly via positive/subtractive decode) by all PCI devices.

DMA access to the system memory is achieved in one of two ways: either "directly-
mapped" by concatenating an offset to a portion of the PCI address; or "virtually" through
a scatter/gather translation map. This scatter/gather map allows any 8 KB PCI memory
address region (page) to be redirected to any 8 KB cached memory page, as shown be-
low.

8 KB
page

Direct i ﬁ,%dow
map. - =

P < I
_- < G\Endow
:/ “

Scatter

Gather

Map
CPU Cached Mem PCI memory
space (8 GB) space

PCI Addressing

The AlphaStation 600 system generates 32-bit PCI addresses but accepts both 64-bit ad-
dress (DAC") cycles and 32-bit PCI address (SAC?) cycles. However, the 64-bit address-
ing support is constrained as follows:

* The least-significant 40-bits of the PCI address are used in the window comparison
logic, the remaining PCI address<63:40> must be zero;

e Only one of the four PCI windows can be programmed to accept a 64-bit (DAC) PCI
address; the remaining three windows only accept 32-bit (SAC) address cycles.

< The AlphaStation 600 system does not generate DAC cycles; it only accepts DAC cy-
cles. With a 4 GB DAC window and a 4 GB SAC window(s), a PCl agent can access
all 8 GB of memory supported by the AlphaStation 600 system chip set.

CPU Address Space

Figure 3-3 shows an overview of the CPU address space and Table 3-2 defines the ad-
dress regions in more detail. Figure 3-2 shows how the CPU address map translates to
the PCI address space; and also shows how the PCI access the CPU memory space via
DMAs. Note how the PCI memory space is double mapped via dense and sparse space.

The rational behind the CPU I/O address map is as follows:
* Limit the number of address pins sent to the pin constrained CIA.

« Provide 4 GB of dense® space to completely map the 32-bit PClI memory space.

1 bouble Address Cycle (PCI 64-bit address transfer) -- only used if address <63:32> are non-zero.
2 Single Address Cycle -- used for 32-bit PCI addresses, or if <63:32> are zero for a 64-bit address.
3 Dense and Sparse -space are explained later in this chapter.

3-2 AlphaStation 600 Addressing

« Provide abundant PCI sparse1 memory space since sparse-space has byte granular-
ity and is the safest memory-space to use (for example, no prefetching). Furthermore,
the larger the space the less likely software will need to dynamically relocate the
sparse space segments. The main problem with sparse space is that it is wasteful of
CPU address space (for example, 16 GB of CPU address space maps to 512 MB of
PCI sparse space).

The AlphaStation 600 system provides 3 PCI memory, sparse-space regions, allowing
704 MB of total sparse memory space. The three regions are relocatable via the
HAE_MEM CSR, and the simplest configuration allows for 704 MB of contiguous
memory space.

— 512 MB region which may be located in any naturally-aligned 512 MB segment of
the PCI memory space. Software may find this region sufficient for their needs and
can ignore the remaining two regions.

— 128 MB regions which may be located on any naturally-aligned 128 MB segment
of the PCI memory space.

— 64 MB region which may be located on any naturally-aligned 64 MB segment of
the PCI memory space.

< Limit the PCI I/O space to sparse space: although the PCI I/O space can handle 4
GB, the Pentium chip can only access 64 KB. Consequently, most PCI devices will
not exceed 64 KB for the foreseeable future. The AlphaStation 600 system provides
64 MB of sparse 1/0O space because the hardware decode is faster.

The AlphaStation 600 system provides two PCI IO sparse-space regions: region A,
which is 32 MB and is fixed in PCI segment 0-32 MB; and region B, which is also 32
MB, but is relocatable using the HAE_10O register.

CPU Address <38:35>

Pin constraints on the CIA ASIC prevent CPU address <38:35> from being used. The
software must ensure that CPU address <38:35> is zero (strictly speaking, even parity);
otherwise the CIA will induce a parity error interrupt.

Ipense and Sparse -space are explained later in this chapter.

AlphaStation 600 Addressing 3-3

Figure 3-2 CPU and DMA Reads and Writes

EV5 memory space
Scatter/

Cached Memory Gal(;lrer
Direct
Translation
"Reserved”
PCI windows
'>|:|<'> PCI_mem & I/O space
—PI:|<->
PCI - Memory <« - - — -—:::
Dense Space Ak
7 . 0
7
Ll
’
/
/
4
PCI - Memory v
Sparse Space -
-
e
-
e
e
-
e
- Legend:
PCI - /0 space A

<¢ - P CPUprogrammed /O
<@—Pp DMAread/write

Figure 3-3 CPU Addressing

39 34 3332 31
I Ll SBZ U I I | Physical address
A
: A 00 x x 8 GB Cached Memory
1
1
\
0: Cached Reserved
Memory
Space
\ 4
A 0 x X x 80.0000.0000 &
16 GB =>
1: Uncached SR 2 PCI - Memory
Ye) Sparse Space
Space 704 MB max
100 x 4GB => 84.0000.0000
128MB
1010]2GB=>64MB| 85.0000.0000 y
1011 _ 85.8000.0000 pcy 110 Sparse space - 64 MB
110x 86.0000.0000
PCI Memory Dense Space - 4 GB
111x 87.0000.0000
v PCI Config, CIA CSRs, Flash ROM.

AlphaStation 600 Addressing

Table 3-1 AlphaStation 600 Series CPU Address Space

CPU address Size () Selection

00.0000.0000 -- 01.FFFF.FFFF 8 Main memory

80.0000.0000 -- 83.FFFF.FFFF 16 PCI Memory, 512 MB -- Sparse Space - Region 0
84.0000.0000 -- 84.FFFF.FFFF 4 PCI Memory, 128 MB -- Sparse Space - Region 1
85.0000.0000 -- 85.7FFF.FFFF PCI Memory, 64 MB -- Sparse Space - Region 2
85.8000.0000 -- 85.BFFF.FFFF 1 PCI 1/O space, 32 MB -- Sparse Space - Region A
85.C000.0000 -- 85.FFFF.FFFF 1 PCI 1/O space, 32 MB -- Sparse Space - Region B
86.0000.0000 -- 86.FFFF.FFFF 4 PCI Memory, 4GB -- Dense Space
87.0000.0000 -- 87.1FFF.FFFF 0.5 PCI Configuration, -- Sparse Space
87.2000.0000 -- 87.3FFF.FFFF 0.5 PCI Special/Int. Ack. -- Sparse Space
87.4000.0000 -- 87.4FFF.FFFF 0.25 |CIA Main CSRs, -- Pseudo Sparsel
87.5000.0000 -- 87.5FFF.FFFF 0.25 | CIA Memory control CSRs, -- Pseudo Sparse1
87.6000.0000 -- 87.6FFF.FFFF 0.25 | CIA PCI address translation, -- Pseudo Sparse1
87.7000.0000 -- 87.7FFF.FFFF 0.25 Reserved

87.8000.0000 -- 87.FFFF.FFFF 2 Flash ROM, GRU asic CSRs -- Pseudo Sparsel

Note 1: Pseudo sparse space is a hardware-specific, restricted version of sparse-space

AlphaStation 600 Addressing 3-5

Table 3-2 AlphasStation 600 Series Address Map

CPU address

Description

AlphaStation 600 main memory - 8 GB

39 34 33 5 All accesses are cache block (64B) aligned
| |0| SBZ |0|0| Memory address | | and are cached by the EV5.
Istream and Dstream access.
PCI sparse mem space - 512 MB
34 Region 1
| |1| SBZ |0| PCI Memory LW addr. | Size |000| Uncached EV5 access. Byte, word, tri-byte,
- LW, QW read/write allowed. No read
Size = used to generate byte enables .
and PCI address <2:0> prefetching.
PCI sparse mem space - 128 MB
39 34333231 76543210 Region 2
| [sez [1]o[o Pci MemoryLw addr. | size |o0o|
PCI sparse mem space - 64 MB
39 34 33 32 31 30 76543210 Region 3
| [sez [1]o[sfo] PcivoLw addr | size [ooo
PCI 1/O sparse space - 32 MB
39 3433323130 76543210 Region A
| [sez [1]oft]r]o] PcivorLw adar. | size [000] |Uncached EV5 access. Byte, word, tri-byte,
LW, QW read/write allowed. No read
prefetching.
Used to address (E)ISA devices.
PCI 1/O sparse space - 32 MB
39 3433323130 76543210 Region B
| [sez |afo|t]|t]i] PcivoLw adar. | size [o0o| | Relocatable via HAE_IO
PCI dense memory space - 4 GB
39 34333231 76543210 Uncached EV5 access
| |1| SBZ |1| 1|0| PCI Memory LW addr. |00| Used for devices with access granularity
greater or equal to a LW. Read Prefetching
is allowed, and thus reads can have no side
effects.
PCI configuration space.
39 34333231 28 76543210 Uncached EV5 access
| |1| SBZ |1 1|1 | address |Size |000| Sparse space
Byte, word, tri-byte, LW, QW read/write
No read prefetching
CPU addr Size
313029 28 GB
p - CIA CSRs (including Flash ROM)
000 PCI 105 PCI Configuration Space Uncached EV5 access. The CSRs addresses
00 1 0.5 PCI IACK/Special cycle are chosen for hardware convenience. See
01 0 0lCIA 025 |CIAmainCSRs CSR section for specific addresses.
01 0 1 CSRs 0.25 | Memory Control
01 1 0 0.25 | Scatter/Gather Translation
01 1 1 0.25 |reserved
1 x x X |Misc. |2.0 Flash ROM, GRU asic CSRs

3-6 AlphaStation 600 Addressing

Cacheable Memory Space
This is located in the range: 00 0000 0000 to 01 FFFF FFFF.

The AlphaStation 600 chip set recognizes the first 8 GB to be in cacheable memory
space. The block size is fixed at 64B. Read and Flush commands to the EV5 caches oc-
cur for DMA traffic.

PCI Dense Memory Space
This is located in the range: 86 0000 0000 to 86 FFFF FFFF.

PCI dense memory space is typically used for "memory-like" data buffers such as a video
frame buffer or a non-volatile RAM. Dense space does not allow byte or word access un-
like sparse space (see later), but enjoys the following advantages (over sparse space):

« Memory model: some software, for example, WNT default graphics routines, require
memory-like accesses. It cannot use sparse space addressing, since it requires ac-
cesses on the PCI bus to be at adjacent Alpha addresses, instead of being widely
separated as in sparse space. As as result, if the user-mode driver uses sparse-space
for its frame-buffer manipulation, it cannot "hand over" the buffer to the common Win-
dows NT graphics code.

e Higher bus bandwidth : PCI bus burst transfers are not usable in sparse space apart
from a two-longword burst for quadword writes. Dense space is defined to allow both
burst reads and writes.

- Efficient read/write buffering: In sparse space, separate accesses use separate
read or write buffer entries. Dense space allows separate accesses to be "collapsed"”
in read and write buffers (this is exactly what the EV5 does).

« Few memory barriers (MBs): In general, sparse space accesses are separated by
memory barriers to avoid read/write buffer collapsing. Dense space accesses only re-
quire barriers when explicit ordering is required by the software.

Dense space is provided for CPU addresses accessing PClI memory space only, and not
for accessing PCI 10 space. Dense space has the following characteristics:

* There is a one-to-one mapping between CPU addresses and PCI addresses: a long-
word address from the CPU will map to a longword on the PCI with no shifting of the
address field. Hence the term dense space (as compared to sparse space, which
maps a large chunk of CPU memory space (for example, 32B) to a byte on the PCI --
see section on the PCI sparse space).

* The concept of dense space (and sparse space) is only applicable to generated ad-
dresses. There is no such thing as dense space (or sparse space) for PCI generated
address.

* Byte or word accesses are NOT possible in cacheable space. The minimum access
granularity is a longword on writes and a quadword on reads. The maximum transfer
length is 32 bytes (performed as a burst of 8 longwords on the PCI). Any combination
of longwords may be valid on writes. Valid longwords surrounding an invalid long-
word(s) (called a "hole") are required to be handled correctly by all PCI devices. The
AlphaStation 600 system allows such combinations to be issued.

* Reads will always be performed as a burst of two or more longwords on the PCI be-
cause the minimum granularity is a quadword. The processor can request a longword
but the AlphaStation 600 system will always fetch a quadword that is, prefetch a long-
word. Hence this space cannot be used for devices which have read side effects. Al-
though a longword may be prefetched the prefetch buffer is not treated as a cache
and thus coherency is not an issue. Note that a quadword read is not atomic on the
PCI -- that is, the target device is at liberty to force a retry after the first longword of

AlphaStation 600 Addressing 3-7

data is sent, and then allow another PCI device in.

The EV5 merges uncached reads up to 32B maximum. The largest dense space read
is thus 32B from the PCI bus.

« Writes to this space are buffered in the EV5 chip. The AlphaStation 600 system sup-
ports a burst length of 8 on the PCI, corresponding to 32B of data. In addition, the CIA
ASIC provides four 32B write buffers to maximize 10 write performance. These four
buffers are strictly ordered (See Chapter 11, System Coherency, for information on
coherency issues).

The address generation in dense space is as follows:

Figure 3-4 Dense Space Address Generation

) 1] o cres

CPU addr <4:2> must be inferred

EV5 from the int4_valid pins. For
reads, PCl addr <2> is always
zero

Y

31 543210

<31:5>

CPU address<31:5> is directly sent out on PCIl address <31:5>. CPU address<4:2> is not
sent out of the EV5 and instead is inferred from the Int4_valid pins; however, for software
concerns, this is a mere implementation detail. PCl address<4:3> is a copy of CPU ad-
dress<4:3>. For a read transaction, the PCl_address<2> is zero (that is, minimum read
resolution in uncached space is a quadword). For a write PCI| address<2> equals CPU
address<2>.

PCI Sparse Memory Space

The AlphaStation 600 system provides three regions of contiguous CPU address space
which maps to PCI sparse memory space. The total CPU range is from 80 0000 0000 to
85 7FFF FFFF.

The Alpha instruction set can express only aligned longword and quadword data refer-
ences. The PCI bus requires the ability to express byte, word, tri-byte, longword (double-
word) and quadword references. Furthermore, Intel processors are also capable of gener-
ating unaligned references, and it should be possible to emulate the resulting PCI
transactions to insure compatibility with PCI devices designed for Intel-based systems.

For an Alpha architecture, it is necessary to encode the size of the data transfer (byte,
word, etc.) and the byte enables in the CPU address. Address bits <6:3> are used for this
purpose, leaving the remaining bits <31:7> This loss of address bits has resulted in a
"sparse" 22 GB CPU 32-bit address space that maps to only 704 MB of address space on
the PCI.

The rules for accessing sparse space are as follows:

* Sparse space supports all the byte encodings which may be generated in an Intel sys-
tem to ensure compatibility with PCI devices/drivers. The results of some references
are not explicitly defined -- these are the missing entries in Table 3-3 (for example,
word size with address<6:5> = 11). The hardware will complete the reference but the
reference is not required to produce any particular result nor will the AlphaStation 600
system report an error. The error strategy is defined in the Hardware Exceptions and
Interrupts chapter.

I1he AlphaStation 600 system does not drive the PCI LOCK signal and thus cannot ensure atomicity. This
is true of all current alpha platforms.

3-8 AlphaStation 600 Addressing

» Software must use longword load or store instructions (LDL/STL) to perform a refer-
ence which is of longword length or less on the PCI bus. The bytes to be transferred
must be positioned within the longword in the correct byte lanes as indicated by the
PCI byte enables. The hardware will do no byte shifting within the longword. Quad-
word loads and stores must only be used to perform a quadword transfer. Use of
STQ/LDQ instructions for any other references will produce unpredictable results.

« Read-ahead (prefetch) is not performed in sparse space by the AlphaStation 600 sys-
tem hardware since the read-ahead may result in detrimental side-effects.

* Programmers are required to insert MB instructions between sparse space accesses
to prevent collapsing in the EV5 write buffer. However, this is not always required: for
instance, consecutive sparse space addresses will be separated by 32B (and will not
be collapsed by the EV5).

e Programmers are required to insert MB instructions if the sparse space address syno-
nyms to a dense space address (that is, if ordering/coherency is to be maintained).

e The encoding of the EV5 address for sparse space read accesses to PCI space is
shown in Table 3-3. An important point to note is that CPU address[33..5] are directly
available from the processor chip pins. On read transactions the processor sends out
address bits [4.3] indirectly on the Int4_valid pins. CPU address [2:0] are required to
be zero: accesses with [2:0] non-zero will produce unpredictable results.

e The relation between Int4_valid[3:0] and CPU address[4:3] for a sparse space write is
shown below. The important point is that all other int4_valid patterns will produce un-
predictable results -- for example, as a result of collapsing in the EV5 write buffer; or
by issuing a STQ when a STL was required.

EV5 Data cycle | Int4_Valid3:0> Address<4:3>
00 01 00
First 00 10 00
01 00 01
10 00 01
00 01 10
Second 00 10 10
01 00 11
10 00 11
11 00 (STQ) 11
Note: (1) All other Int4_valid patterns result in unpredictable
results.
(2) Only one valid STQ case is allowed.

Table 3-3 defines the low-order PCI sparse memory address bits. CPU address<7:3> is
used to generate the length of the PCI transaction in bytes, the byte enables, and address
bits<2:0>. CPU address<30:8> correspond to the quadword PCI address and is sent out
on PCI address <25:3>.

The high-order PCI address bits <31:26> are obtained from either the Hardware Exten-
sion Register (HAE_MEM) or the CPU address depending on sparse space regions, as
shown in Table 3-4. The HAE_MEM is described in the next section and is a CSR in the
CIA ASIC. Figures 3-5 through 3-7 shows the mapping for the three regions.

AlphaStation 600 Addressing 3-9

Table 3-3 PCI Memory Sparse Space Read/Write Encodings

Size Byte Offset | CPU PCI PCI Data in Register
Instruction Addr Byte byte lanes
CPU_Addr |CPU_Addr |allowed <2:0> Enable 63 31 0
<4:3> <6:5> see I
notes
00 A<7>,0 | 1110
0 O1r=
01 A<7>,0 | 1101
0]
Byte 00 10 LDL, STL A<7>,0 1011
0 =1
11 A<7>,0 | 0111
0 HT1T1]
00 A<7>,0 | 1100
0 R
Word 01 LDL. STL A<7>,0 | 1001
o o1 ' 0 [(EE0)
10 A<7>,0 0011
0 EET]
00 A<7>,0 | 1000
0 [EEmn
Byte 10 01 LDL, STL | FA<750 | ooo1
0 O]
Long- 11 00 LDL, STL A<7>,0 | 0000
Word 0 o117
Quad- 11 11 LDQ, STQ 000 0000
Word 1O 010
Note: A<7> = CPU_address<7>.
Byte Enable set to 0 indicates that byte lane carries meaningful data.
In PCI sparse memory space, PCI Address<1:0> is always zero.
Missing entries (for example, word size with CPU address <6:5> = 11) enjoy
UNPREDICTABLE results.
Table 3-4 High-order Sparse Space bits
CPU address | ROM PCI_ Address
31 30 29 28 27 26
80.0000.0000 - 1 HAE_ME | HAE_ME | HAE_ME | CPU<33 |CPU<32 |CPU<31
83.FFFF.FFFF M<31> M<30> M<29> > > >
84.0000.0000- | 2 HAE_ME | HAE_ME | HAE_ME | HAE_ME | HAE_ME | CPU<31
84.FFFF.FFFF M<15> M<14> M<13> M<12> M<11> >
85.0000.0000- | 3 HAE_ME | HAE_ME | HAE_ME | HAE_ME | HAE_ME | HAE_ME
85.7FFF.FFFF M<7> M<6> M<5> M<4> M<3> M<2>

3-10 AlphasStation 600 Addressing

Figure 3-5 CI Memory Sparse Space Address Generation - Region 1

3 = g
| 1| sBz |0 PCI QW addr CPU address

CPU addr <4:3> must be inferred

EV5 from the int4_valid pins.

HAE_MEM CSR -
I I Length in Bytes

\ (refer to table
\/ Y for translation)
PCIl address I I

31 29 3210
Figure 3-6 PCIl Memory Sparse Space Address Generation - Region 2

9 34 33 32
SBZ | 1|0| OI PCI QW addr CPU address

=

CPU addr <4:3> must be inferred

EV5 from the int4_valid pins.

HAE_MEM CSR -
31 _ 15 11
I I I I Length in Bytes
l (refer to table
\/ Y for translation)
PCl address I I
31 27 3210

Figure 3-7 PCI Memory Sparse Space Address Generation - Region 3

34 33 32 31 8
SBZ | 1|0| 1|O| PCI QW addr i 3 f i] CPU address

CPU addr <4:3> must be inferred
EV5 5) from the int4_valid pins.

|l 71

2 HAE_MEM CSR .

I I I I ;V Length in Bytes

Byte Offset
/ (refer to table
\ V for translation)
PCl address I I

31 26 3210

AlphaStation 600 Addressing 3-11

Hardware Extension Registers (HAE)

In sparse space, CPU_Address[7:3] are "wasted" on encoding byte enables, size and the
low-order PCI address<2:0>. This means that there are now 5 fewer address bits avail-
able to generate the PCI physical address. This problem is solved in the EV4 based sys-
tems (Sable, APECS, and LCalpha) by a Hardware Extension register (HAEl), which is
used to provide the missing high-order bits. The HAE registers are intended to be system
specific and are not defined by the Reference Implementation. The expectation is that the
HAE registers are set by POST? software and thereafter never modified.

Compared to the EV4, the EV5 provides six extra physical address bits <39:34>. These
extra bits could be use to back-fill the "lost" sparse space bits. However, the CIA ASIC is
pin-constrained and the high-order address bits <38:35> are not available.

Furthermore, other EV5 platforms use these high-order bits in different ways (encoding
multiple PCI ports for instance), and so for easier software portability these bits are best
not used. The Sable/APECS/LC-alpha designs effectively provide two address regions for
sparse PCl memory access: one region has CPU address bits <31:29> = 0 (lower 16
MB of the PCI sparse address range) which is not relocated; and a second region, when
bits <31:29> are non-zero, which is relocated using bits <31:29> of the HAE register.

The AlphaStation 600 system provides more PCI sparse memory space than the other
designs and consequently has a different address decode scheme: the AlphaStation 600
system provides three sparse space PCI memory regions. Furthermore, It allows all three
sparse space regions to be relocated via bits in the HAE_MEM register. This provides
software with far greater flexibility.

Finally, to complete this section on HAE registers, we will note that a similar technique is
used for the PCI 10 sparse space. Two regions are provided: region A addresses the
lower 32 MB of PCI IO space and is never relocated. This region will be used to address
the (E)ISA devices. Region B, is used to address a further 32 MB of PCI IO space and is
relocatable using HAE_10. More details will be found in Chapter 7, Control and Status
Registers.

1 generally pronounced hay
Power-on Self Test (PCl-speak for firmware).

3-12 AlphasStation 600 Addressing

PCI Sparse 1/0 Space

PCI sparse I/0O space is located in the range: 85 8000 0000 to 85 FFFF FFFF and has
similar characteristics to the PCI Sparse Memory Space. This 2 GB CPU address seg-
ment maps to two 32 MB regions of PCI I/O address space. A read or write to this space
causes a PCI I/O read or write command.

The high order PCI address bits are handled as follows:

e Region A: This region has CPU address<34:30> = 10110 and addresses the lower
32 MB of PCI sparse I/O space; thus PCI address<31:25> isset to zero by the hard-
ware (see top of Figure 3-9). This region is used for (E)ISA addressing (the EISA 64
KB 1/O space cannot be relocated).

« Region B: This region has CPU address<34:30> = 10111 and addresses a relocat-
able 32 MB of PCI sparse I/0O space. This 32 MB segment is relocated by assigning
PCI address <31:25> to equal HAE_10<31:25>.

The remainder of the PCI I/O address is formed in the same way for both regions.
e PCl address<24:3> are derived from CPU address<29:8>
e PCI_address<2:0> are defined in Table 3-5.

The (E)ISA devices have reserved the lower 64 KB of this space. Hence all PCI devices
should be relocated above this region. The four AlphaStation 600 system (E)ISA slots are
hardwired through the AEN* allocating 4 KB per slot (as per EISA standard) -- the first slot
is reserved for the EISA system board (that is, X-bus addressing, Interrupt controller, etc).
Figure 3-8 shows the PCI and (E)ISA I/0O map for the AlphaStation 600 system.

Figure 3-8 AlphasStation 600 System PCI and (E)ISA I/0 Map

CPU address PCI addr Range (KB) Selection
85.8000.0000 0000.0000 0-4 EISA system board (X-bus, 1/0O ports, etc) A
85.8002.0000 0000.1000 4- 8 EISAslot 1
85.8004.0000 0000.2000 8-12 EISA slot 2
85.8006.0000 0000.3000 12 -16 EISA slot 3
85.8008.0000 0000.4000 16 - 20 EISA slot 4
85.800A.0000 0000.5000 20-24 Reserved EISA
85.800C.0000 0000.6000 24 -28 Reserved E’e'SférTB
85.800E.0000 0000.7000 28 -32 Reserved
85.8010.0000 0000.8000 32-36 Reserved
85.8012.0000 0000.9000 36-64 Reserved
85.861F.FFFF 0000:FFFF \/
85.8020.0000 0001.0000 64 KB to PCI 1/O area -- fixed

: : 32 MB A
85.BFFF.FFFF |01FF.FFFF
85.C000.0000 0200.0000 32 MB PCI 1/O area -- relocatable Fe%lion
85.FFFF.FFFF | 03FF.FFFF \

WARNING: A quadword access to the PCI sparse I/O space will result in a 2 longword
burst on the PCI. However, PCI devices may not support bursting in I/O space.

AlphaStation 600 Addressing 3-13

Table 3-5 PCI Sparse I/0O Space Read/Write Encodings

Size Byte Offset CPU PCI Addr |PCI Byte | Data in Register
Instruction <2:.0> Enable byte lanes
CPU_Addr CPU_Addr allowed see notes 63 31 0
<4:3> <6:5> I
00 A<7>,00 1110
O1=
01 A<7>,01 1101
N
Byte 00 10 LDL, STL A<7>.10 1011
[EEEE
11 A<7>11 0111
mHTT]
00 A<7>,00 1100
==
Word 01 01 LDL, STL A<7>,01 1001
(=]
10 A<7>10 0011
EET]
00 A<7>,00 1000
. [
Tri- 10 LDL, STL
]
Long- 11 00 LDL, STL A<7>,00 0000
Word 11
Quad- 11 11 LDQ, STQ 000 0000
Word munsfiunns)
Note: A<7> = CPU_address<7>.
Byte Enable set to O indicates that byte lane carries meaningful data.
Missing entries (for example, word size with CPU address <6:5> = 11) have UNPREDICTABLE
results.

3-14 AlphaStation 600 Addressing

Figure 3-9 PClI sparse I/0 Space Address Translation

34 33 32 31 30 29 876543210

39
| EI SBZ | ll Ol ll 1| 0|] CPU address
<29:8>

CPU addr <4:3> must be inferred
EV5 from the int4_valid pins.

Length in Bytes
————— P Byte Offset

(refer to table
v for translation)

A
PCl address |ooooooo|

31 2524 3210

Address translation for lower 32 MB of PCI sparse 10 space

39 343332313029 876543210

| Ill SBZ | 1| Ol 1| 1| 1| Il‘-. d CPU address
<29:8>
CPU addr <4:3> must be inferred
EV5 from the int4_valid pins.
HAE_IO CSR
31 25 24
| Reserved | Length in Bytes
——— P Byte Offset
(refer to table
v ' for translation)

PCI address | |
31 25 24 3210

Address translation for remainder of PCI sparse 10 space

PCI Configuration Space

This is located in the range: 87 0000 0000 to 87 1FFF FFFF. Software is advised to clear
CIA_CTRL<fill_err_en> when probing for PCI devices via configuration space reads. This
will prevent the CIA from generating an ECC error if no device responds to the configura-
tion cycle (and garbage data is on the PCI bus).

A read or write access to this space causes a Configuration read or write cycle on the
PCI. There are two classes of targets, which are selected based on the value of the CFG
CSR.

« Type 0: These are targets on the primary 64-bit the AlphaStation 600 system PCI
bus. These are selected by making the CSR CFG<1:0> = 0.

« Type 1: These are targets on the secondary 32-bit AlphaStation 600 system PCI bus
(that is, behind a PCI-PCI bridge). These are selected by making CFG<1:0> = 1.

e CFG<1:0>=10or 11 are reserved (by the PCI spec).

Software must first program the CFG register before running a configuration cycle. Note
that the AlphaStation 600 system uses the CFG<1:0> instead of unused CPU address
bits <38:35> to be compatible with Sable and the APECS chip set.

Sparse address decoding is used. CPU address<6:3> is used to generate both the length
of the PCI transaction in bytes and the byte enables. PCI Address bits <1:0> are obtained

AlphaStation 600 Addressing 3-15

from CFG <1:0>. CPU address<28:7> corresponds to PCl address<23:2> and provides
the configuration command information (for example, which device to select). The high-
order PCI address bits <31:24> are always zero.

Figure 3-10 PCI Configuration Space Definition

39 34 31 28 20 1615 1312 76 54 32 10
CPU
address MBZ | 111000
. : . Length
- . : Byte offset
. . CFG<1:0>
TYP
PCI config addr
- IDSEL—E—»: Function: Register .00
TYPE 1 31 27 26 24:23 16-15 1110 87 210
PCI config addr
00000 000 Bus Device Function Register 01

Peripherals are selected during a PCI configuration cycle if: (a) their IDSEL pin is as-
serted; (b) the PCI bus command indicates a configuration read or write; and (c) address
bits <1:0> are 00. Address bits <7:2> select a dword (longword) register in the periph-
eral's 256-Byte configuration address space. Accesses can use byte masks.

Peripherals that integrate multiple functional units (for example, SCSI and ethernet) can
provide configuration space for each function. Address bits <10:8> can be decoded by the
peripheral to select one of eight functional units.

PCI Address bits <31:11> are available to generate the IDSELs (note that IDSELs behind
a PCI-PCI bridge are determined from the Device field encoding of a type 1 access). The

IDSEL pin of each device is connected to a unique PCI address bit from the set <31:11>.

The binary value of CPU address <20:16> is used to select which PCl address <31:11> is
asserted, as follows:

CPU Address <20:16> | PCIl address <31:11> -- IDSEL
00000 0000 0000 0000 0000 0000 1
00001 0000 0000 0000 0000 0001 O
00010 0000 0000 0000 0000 0010 0
00011 0000 0000 0000 0000 0100 0
10011 0100 0000 0000 0000 0000 0
10100 1000 0000 0000 0000 0000 0
10101 0000 0000 0000 0000 0000 0

: (No device selected)

11111

WARNING: If a quadword access is specified for the configuration cycle then the least
significant bit of the register number field (that is, PCl address<2>) must be zero -- that
is, quadword accesses must access quadword aligned registers.

If the PCI cycle is a configuration read or write cycle but the PCI address<1:0> are 01
(that is, a type 1 transfer), then a device on a hierarchical bus is being selected via a
PCI/PCI bridge. This cycle is accepted by the PCI/PCI bridge for propagation to its secon-
dary PCI bus. During this cycle <23:16> select a unique bus number, and address <15:8>

3-16 AlphaStation 600 Addressing

selects a device on that bus (typically decoded by the PCI/PCI bridge to generate the sec-
ondary PCI address pattern for IDSEL), and address <7:2> selects a Dword (longword) in
the devices configuration space.

Figure 3-11 PCI Configuration Space Read/Write Encodings

Size Byte Offset CPU PCl Addr |PCI Data in Register
Instruction <1:0> Byte Byte Lanes
CPU_Addr CPU_Addr Allowed Enable 63 31 0
<4:3> <6:5> I
00 CFG<1:0> 1110
0113
01 CFG<1:0> 1101
N
Byte 00 10 LDL, STL CFG<1:0> 1011
1]
11 CFG<1:0> 0111
mHTT]
00 CFG<1:0> 1100
==
Word o1 01 LDL, STL CFG<1:0> 1001
(=]
10 CFG<1:0> 0011
EET]
00 CFG<1:0> | 1000
] [
;;'t'e 10 01 LDL, STL CFG<1:0> | 0001
]
Long- 11 00 LDL, STL CFG<1:0> 0000
word o
Quad- 11 11 LDQ, STQ CFG<1:0> 0000
Word O OO
Note: A<7> = CPU_address<7>.
Byte Enable set to 0 indicates that byte lane carries meaningful data.
Missing entries (for example, word size with CPU address <6:5> = 11) have UNPREDICTABLE
results.

Each PCI/PCI bridge can be configured via PCI configuration cycles on its primary PCI
interface. Configuration parameters in the PCI/PCI bridge will identify the bus number for
its secondary PCI interface, and a range of bus numbers that may exist hierarchically be-
hind it.

If the bus number of the configuration cycle matches the bus number of the bridge chips
secondary PCI interface, it will accept the configuration cycle, decode it, and generate a
PCI configuration cycle with address <1:0> = 00 on its secondary PCI interface. If the bus
number is within the range of bus numbers that may exist hierarchically behind its secon-
dary PCI interface, the bridge chip passes the PCI configuration cycle on unmodified (ad-
dress <1:0> = 01). It will be accepted by a bridge further downstream.

AlphaStation 600 Addressing 3-17

Figure 3-12 shows the AlphaStation 600 system’s PCI hierarchy. The IDSEL lines are sig-
nificant in Type 0 Configuration cycles, and the PCI nodes are connected as tabulated in
Table 3-6. (The choice of address bit assignments to the IDSEL lines was because of a

module ECO)

Figure 3-12 AlphaStation 600 System PCI Bus Hierarchy

Data
[z

!

64-bit PCI bus

}

64-bit Slots

H -

PCI
Graphics

I/0 Subsysterm module I/O board

PCI to EISA PCIl to PCI Internal PCI
Bridge Bridge t t t’
(E)ISA bus 3|2-tbit

<€P»[] Slot slots

D — P SCSI| sesi| Eher-

<P [Slot

<P] Audio

Table 3-6 Primary 64-bit PCI Slot to IDSEL Mapping
SLOT PCl Address |Slot location on system Module PCI Slot
used as IDSEL Reference Number
(Firmware)

64-bit PCI slot O <18> Next to Memory board Ji1 7
64-bit PCl slot 1 <23> J10 12
64-bit PCI slot 2 <22> J9 11
32-bit PCI slot 3 <19> J8 8
32-bit PCl slot 4 <20> Next to EISA slots J7 9
PCI/EISA Bridge <21> 10

PCI Special/Interrupt Cycles
PCI Special/lnterrupt Cycles are located in the range 87 2000 0000 to 87 3FFF FFFF.

The Special cycle command provides a simple message broadcasting mechanism on the
PCI. The Intel processor uses this cycle to broadcast processor status; but in general it
may be used for logical sideband signaling between PCI agents.

The Special cycle contains no explicit destination address, but is broadcast to all agents.
The AlphaStation 600 system will drive all zero’s as the Special cycle address. Each re-
ceiving agent must determines if the message contained in the data field is applicable to
it.

3-18 AlphasStation 600 Addressing

A write access in the range 87.2000.0000 to 87.3FFF.FFFF causes a special cycle on the
PCI. The CPU’s write data will be passed unmodified to the PCI. Software must write the
data in longword 0 of the hexword with the following field:

 Byte Oand 1 contain the encoded message

« Bytes 2 and 3 are message dependent (optional) data field.

A read of the same address range will result in an Interrupt Acknowledge cycle on the PCI
and return the vector data provided by the PCI-EISA bridge to the CPU.

Hardware Specific and Miscellaneous Register Space
This register space is located in the range: 87 4000 0000 to 87 FFFF FFFF.

Table 3-7 Hardware Specific Register Address Map

CPU Address Selected Region CPU Address | CPU Address
<39:28> <27:6> <5:0>
1000 0111 0100 | CIA control, diagnostic, error registers LW address 000000
1000 0111 0101 | CIA Memory Control registers. LW address 000000
1000 0111 0110 | CIA: PCI Address Translation (S/G, Windows, LW address 000000
etc)
1000 0111 0111 | Reserved
1000 0111 1xxx | Flash RAM, GRU asic CSRs Byte address 000000

The address space here is a hardware-specific variant of sparse space encoding. For the
CSRs, CPU address bits <27:6> specify a longword address where CPU address <5:0>
must be zero. All the CIA registers are accessed with a LW granularity. For more specific
details on the CIA CSRs please refer to the CSR chapter.

For the Flash ROM, CPU address <30:6> defines a byte address; please refer to the CSR
chapter. The fetched byte is always returned in the first byte lane (bits <7:0>).

A number of CSRs in the GRU ASIC (for example, the main interrupt registers) are ac-
cessed in this region.
PCI to Physical Memory Addressing

Incoming PCI addresses (32-bit or 64-bit) have to be mapped to the CPU cached memory
space (8 GB). The AlphaStation 600 system provides four programmable address win-
dows that control access of PCI peripherals to system memory™. The mapping from the
PCI address to the physical address can be direct mapped (physical mapping with an ad-
dress offset) or Scatter/Gather mapped (virtual mapping). These four address windows
are referred to as the PCI target Windows.

Each window has three registers associated with it. These are:
* Window Base (W_BASE) register

e Window Mask (W_MASK) register

e Translated Base (T_BASE) register

In addition, there is an extra register associated with Window 3 only. This is the Window
DAC register and is used for PCI 64-bit addressing (that is, the Dual Address Cycle
mode).

1pos compatibility is included later in this chapter.

AlphaStation 600 Addressing 3-19

The Window Mask register provides a mask corresponding to bits <31:20> of an incoming
PCI address. The size of each window can be programmed to be from 1 MB to 4 GB in
powers of two, by masking bits of the incoming PCI address using the Window Mask reg-
ister as shown in Table 3-8 (note that the Mask field pattern was chosen to speed-up tim-
ing critical hardware logic).

Table 3-8 PCI Target Window MASK Register

PCI_MASK <31:20> Size of Window Value of n

0000 0000 0000 1 Megabyte 20

0000 0000 0001 2 Megabyte 21

0000 0000 0011 4 Megabyte 22

0000 0000 0111 8 Megabyte 23

0000 0000 1111 16 Megabyte 24

0000 0001 1111 32 Megabyte 25

0000 0011 1111 64 Megabyte 26

0000 0111 1111 128 Megabyte 27

0000 1111 1111 256 Megabyte 28

0001 11111111 512 Megabyte 29

0011 1111 1111 1 Gigabyte 30

0111 11111111 2 Gigabyte 31

111111111121 4 Gigabyte 32

other Unpredictable

Only the incoming PCI address bits <31:n> are compared with <31:n> of
the Window Base register as shown in figure 3-14. If n=32 no comparison
is performed.
Windows are not allowed to overlap.

Based on the value of the Window Mask register, the unmasked bits of the incoming PCI
address are compared with the corresponding bits of each window’s Window Base regis-
ter. If one of the Window Base registers and the incoming PCI address match, then the
PCI address has hit the PCI target window; otherwise it has missed the window. A window
enable bit WENB, is provided in each window’s Window Base register to allow windows to
be independently enabled (WENB = 1) or disabled (WENB = 0).

If a hit occurs in any of the four windows that are enabled, then the CIA will respond to the
PCI cycle by asserting the DEVSEL signal. The PCI target windows must be programmed
so that their address ranges do not overlap (otherwise the hardware gets confused and
results are undefined).

The Window base address must be on a naturally aligned address boundary de-

pending on the size of the window . This restriction is not particularly onerous, since
the address space of any PCI device can be located anywhere in the PCI's 4 GB memory
space. This scheme is also compatible with the PCI specification:

< A PCI device specifies the amount of memory space it requires via the Base registers
in its configuration space. The Base Address registers are implemented such that, the
address space consumed by the device is a power of two in size, and is naturally
aligned on the size of the space consumed.

A PCI device need not use all the address range it consumes (that is, the size of the PCI
address window defined by the Base Address); nor need it respond to unused portions of
the address space. The one exception to this is a PCI-bridge which requires two addi-
tional registers (the Base and Limit address registers). These registers accurately specify
the address space which the bridge device will respond to® and are programmed by the
POST code. The CIA, as a PCI host-bridge device, does not have BASE and LIMIT regis-
1for example, a 4 MB window cannot start at address 1 MB; it must start at addresses 4 MB, 8 MB, 12 MB,
etc.
2a bridge responds to all addresses in the range: Base <= address < Limit.

3-20 AlphaStation 600 Addressing

ters’, but does respond to all the addresses defined by the Window Base register (that is,
all addresses within a window.)

Figure 3-13 PCI DMA Addressing Example

AlphaStation 600 system

PCI devices DMA memory space

8KB

page
Direct <
map. -
-
L
< <
< <
ot
~
Scatter S
Gather % < _@
Maj
CPU Memory 2 PCI memory PCI PCI PCI
space (16 GB) space (4 GB) device 0 devicel device 2

Figure 3-13 shows how the DMA address ranges of a number of PCI devices are ac-
cepted by the AlphaStation 600 system PCl-window ranges. Note that PCI devices are al-
lowed to have multiple DMA address ranges (for example, device 2). The example also
shows that the AlphaStation 600 system window can be larger than the corresponding de-
vices DMA address range (see device 0). Device 1 and device 2 have address ranges
which are accepted by one AlphaStation 600 system window. Each window determines
whether direct- or scatter/gather-mapping is used to access physical memory (see S/G-bit
later)

Figure 3-14 PCI Target Window Compare

40 39 32 31 n n-1 20 0
PCl address
Compare | Hit (Window 3 only) > TaeEn 1
& Hit'logic : > winlgdow 1, HE{,YV\}\r}dgw 32
: — t logic » Hit Window
{ . tiog! » Hit Window 1
. : — Hit Window O
WINDOW DAC ' < > e
Base register . :
(Window 3 only) : : :
. . .| Window Enable
) ‘n- WENB
Window Base 3l nnt 20 ¢) Window 3 SG bi
registers | AI XXXXXA p- Window it
; » \Window 2 SG bit
(1 per Window) LC v > \Window 1 SG bit
: - - » Window 0 SG bit
Window Mask = ol 20
registers 11111 The Mask regi d i
(1gper Wmdow) 00000000 foreeagﬁ \/I'\ﬁr?IdStO?I\I;S—— teggrcmgv?/fng

shows different n values for the™4
windows.

Figure 3-14 depicts the PCI window logic. The comparison logic associated with PCI ad-
dress bits <63:32> is only used for the DAC? mode; and only if enabled by a bit in the
Window Base register for Window 3. This logic is only applicable to Window 3; the re-
maining Windows only recognize 32-bit PCI addresses (that is, SAC® cycles). For a hit to
occur in a DAC address, address bits <63:40> must be zero; bits<39:32> must match the
Window DAC Base register; and the low-order address bits <31:20> must also hit. This

1 Host-bridges, since they are under system control, are free to violate the rules!
2 bual-Address cycle -- only issued if <63:32> are non-zero for a 64-bit PCI address.
3 Single Address cycle -- all 32-bit addresses. A PCI device must use SAC if <63:32> = 0 of a 64-bit address.

AlphaStation 600 Addressing 3-21

scheme allows a naturally aligned, 1 MB-4 GB PCI window to be placed anywhere in the
first 1TB of a 64-bit PCI address.

When an address match occurs with a PCI Target Window, the CIA ASIC translates the
32-bit PCI address to a memory address <33:0>. The translated address is generated in
one of two ways as determined by the SG (Scatter/Gather) bit of the Window’s PCI BASE
register.

Direct-mapped Addressing

If the SG bit is cleared, the DMA address is direct mapped, and the translated address is
generated by concatenating bits from the matching window’s Translated Base register
(T_BASE) with bits from the incoming PCI address. The bits involved in the concatenation
are defined by the Window Mask register as shown in Table 3-9 . Note that the unused
bits of the Translated Base register as indicated in Table 3-9 must be cleared (that is, the
hardware performs an AND-OR for the concatenation). Since memory is located in the
lower 8 GB of the CPU address space, the AlphaStation 600 chip-set ensures (implicitly)
that address <39:33> is always zero.

Note that since the Translated Base is simply concatenated to the PCI address, then the
direct mapping is to a naturally-aligned memory region. For example, a 4 MB direct-
mapped window will map to any 4 MB region in main memory which falls on a 4 MB
boundary (for instance, it is not possible to map a 4 MB region to the main memory region
1 MB-5 MB).

Table 3-9 Direct-mapped PCI Target Address Translation

WINDOW_MASK Size of Translated Address<32:2>
<31:20> Window
32 20 19 2
0000 0000 0000 1 MB I | e |
32 21 20 2
0000 0000 0001 2 MB I | E— |
32 22 21 2
0000 0000 0011 4 MB [| —— |
32 23 22 2
0000 0000 0111 8 MB — —
32 24 23 2
0000 0000 1111 16 MB —— T
32 25 24 2
0000 0001 1111 32MB — T
32 26 25 2
000000111111 64 MB — —— |
32 27 26 2

0000 0111 1111 128 MB

32 28 27 2
000011111111 256 MB —————|
32 29 28 2
000111111111 512 MB — e ————|
32 29 28 2
0011 1111 1111 168 I e ——|
32 3029 2
01111111 1111 268 I e ————
32 31 2
11111111 1111 4GB [———
[T _BASE [PCl address

Note: unused bits of the Translation Base register must be zero for correct operation.

3-22 AlphaStation 600 Addressing

Figure 3-15 Direct-mapped Translation
63 40 39 32 31 n n-l 20 30

|ooooooooooooooooooo | | | PCI address
S ~

Compare
Logic

n . D Mask <31:20> n
, e 26 0000 0000 0000 20
‘éﬁ”g",;”;se oot indow Base 0000 0000 0001 21
Used rermt 0000 0000 0011 22
Window 3 ony Window Mask 0000 0000 0111 | 23
T 0000 0000 1111 24

-00000000 -11111 I
- 0000 0001 1111 25
n- . .
g EW)|

11111111 1111 32

Window
Hit

T_BASE determined b
which window hit

Physical : - 2
wemoy W

Scatter/Gather Addressing

If the SG bit of the PCI Base register is set, then the translated address is generated by a
table lookup. This table is referred to as a Scatter/Gather Map. Figure 3-18 shows the
scatter/gather addressing scheme -- full details of this scheme are provided later in this
section; but for now a quick description is provided: The incoming PCI address is com-
pared to the PCI Window addresses for a hit. The Translated Base register, associated
with the PCl-window which hit, is used to specify the starting address of the Scat-
ter/Gather map table in memory. Bits of the incoming PCI address are used as an offset
from this starting address, to access the scatter/gather PTE. This PTE in conjunction with
the remaining, least-significant PCI address bits, forms the required memory address.

Each Scatter Gather (SG) map entry maps an 8 KB page of PCI address space into an 8
KB page of the processor’s address space. This offers a number of advantages to soft-
ware:

« Performance: ISA devices map to the lower 16 MB of memory. NT currently copies
data from here to user space. The Scatter/Gather map avoids this copy.

« User IO buffers cannot be counted on to be physically contiguous nor contained within
a page. Without scatter/gather, the software needs to manage the "scattered" nature
of the user buffer by copies.

In the PC world, the term scatter/gather is not an address translation scheme but instead
is used to signify a DMA transfer list. An element in this transfer list contains the DMA
address and the number of data items to transfer. The DMA device fetches each item of
the list until the list is empty. Many of the PCI devices (for example, EISA bridge) support

this form of scatter/gather.

Each SG entry (PTE) is a quadword and has a valid bit in bit position 0. Address bit 13 is
at bit position 1 of the map entry. Since the AlphaStation 600 chip set only implements
valid memory addresses up to 8 GB, then bits <63:21> of the SG map entry must be pro-
grammed to 0. Bits <20:1> of the SG map entry are used to generate the physical page
address. This is appended to the bits <12:5> of the incoming PCI address to generate the
memory address.

AlphaStation 600 Addressing 3-23

Figure 3-16 Scatter/Gather PTE Format

63 21 20 10

Must be zero Page address<32:13> valid bit

The size of the Scatter/Gather Map table is determined by the size of the PCI Target Win-
dow as defined by the Window Mask register as shown in Table 3-10. The number of en-
tries is the Window size divided by the page size (8 KB). The size of the table is simply
the number of entries multiplied by 8B.

The Scatter/Gather map table address is obtained from the Translated Base register and
the PCIl address as shown in Table 3-10.

Table 3-10 Scatter/Gather Mapped PCI Target Address Translation.

WINDOW_MASK | Size of SG Map Scatter Gather Map Address<33:3>
<31:20> Window Table size
32 10 19 13
0000 0000 0000 1MB 1KB [| E—
32 11 20 13
0000 0000 0001 2 MB 2KB [| —
32 12 21 13
0000 0000 0011 4 MB 4 KB [| —— |
32 13 22 13
0000 0000 0111 8 MB 8 KB [| ——
32 14 23 13
0000 0000 1111 16 MB 16 KB [| — |
32 15 24 13
0000 0001 1111 32 MB 32 KB [| —— |
32 16 25 13
000000111111 64 MB 64 KB [| —— |
32 17 26 13
00000111 1111 128 MB 128 KB C——— T
32 18 27 13
000011111111 256 MB 256 KB T
32 19 28 13
000111111111 512MB 512 KB C——————— T
32 20 29 13
001111111111 1GB 1MB C——————
32 21 30 13
011111111111 2GB 2 MB C——— T
32 22 31 13
111111111111 4GB 4MB C—C— I
— T_BASE g PCl address
Note: unused bits of the Translated Base register must be zero for correct operation.

Scatter/Gather TLB

An eight-entry Translation-lookaside Buffer (TLB) is provided in the CIA for Scatter/Gather
map entries. The TLB is a fully associative cache and holds the eight most recent Scat-
ter/Gather map look-ups. Four of these entries can be "locked" preventing their displace-
ment by the hardware TLB-miss handler. Each of the eight TLB entries holds a PCI ad-
dress for the tag, and four consecutive 8 KB CPU page addresses as the TLB data (see
Figure 3-17).

3-24 AlphaStation 600 Addressing

Figure 3-17 Scatter/Gather Associative TLB

DAC
cycle PCIl Address <31:15> 8 KB CPU Page Address
Hit 4{
Y V] V] V]
I V)
- IN [_ X Y [/ A \
| I\ _ \ | J /— Y == v
I
\ v
V V] V]]
V
PCl Address <14:13> — S ‘ ‘ ‘ ‘ 7

Memory Page Address<32:13> PCl addr <12:2>

Physical Memory
Dword address = L

[__index |

Each time an incoming PCI address hits in a PCI Target Window which has scatter/gather
enabled, bits <31:15> of the PCI address are compared with the 32KB PCI page address
in the TLB tag. If a match is found, the required CPU page address is one of the four
items provided by the data of the matching TLB entry. PCl address <14:13> selects the
correct 8 KB CPU page from the four fetched.

With a TLB hit, the Scatter/Gather map table look-up in memory is avoided, resulting in
enhanced performance. If no match is found in the TLB, the Scatter/Gather map lookup is
performed and four PTE entries are fetched and written over an existing entry in the TLB.
The TLB entry to be replaced is determined by a round robin algorithm on the "unlocked"
entries. Coherency of the TLB is maintained by software writes to the SG_TBIA (scatter
gather translation buffer invalidate all) CSR.

The TAG portion contains a DAC flag to indicate that the PCI Tag address <31:15> corre-
sponds to a 64-bit DAC address. Only one bit is required instead of the high-order PCI
address bits <39:32> since only one window is assigned to a DAC cycle, and the Window-
hit logic has already performed a comparison of the high-order bits against the PCI DAC
BASE reqister.

Figure 3-18 shows the entire translation from PCI address to physical address on a win-
dow that implements scatter/gather. Both paths are indicated: the right side shows the
path for a TLB hit, while the left side shows the path for a TLB miss. The Scatter/Gather
TLB is shown in a slightly simplified, but functionally equivalent form.

The process for a Scatter/gather TLB hit is as follows:

* The Window compare logic determines if the PCI address has hit in one of the four
windows, and the PCI BASE<SG> bit determines if the scatter/gather path should be
taken. If Window 3 has DAC mode enabled, and the PCI cycle is a DAC cycle, then a
further comparison is made between the high-order PCI bits and the PCI DAC BASE
register.

* PCl address <31:13> is sent to the TLB associative Tag together with the DAC-HIT
indication. If the address and DAC bits match in the TLB then the corresponding CPU
8 KB page-address is read out of the TLB. If this entry is valid then a TLB hit has oc-
curred and this page-address is concatenated with PCI address <12:2> to form the
physical memory address. If the data entry is invalid, or if the TAG compare failed,
then a TLB miss occurs (see Chapter 8, Control and Status Registers).

AlphaStation 600 Addressing 3-25

The process for a scatter/gather TLB miss is as follows:

« The relevant bits of the PCI address (as determined by the Window Mask register) are
concatenated with the relevant TRANSLATED BASE register bits to form the address
used to access the Scatter/Gather map entry from a table located in main memory.

* Bits <20:1> of the map entry (that is, the PTE from memory) are used to generate the
physical page address, which is appended to the page offset to generate the physical
memory address. The TLB is also updated at this point (round-robin algorithm) with
the four PTE entries which correspond to the 32 KB PCI page address which first
missed the TLB. The Tag portion of the TLB is loaded with this PCI page address and
the DAC bit is set if this PCI cycle is a DAC cycle.

» If the requested PTE is marked invalid (bit O clear) then a TLB invalid entry exception
is taken (see Chapter 9, Hardware Exceptions and Interrupts).

Figure 3-18 Scatter/Gather Map Translation

63 4039 3231 nnil 20 13 12 2
0000000000000000000 | I Offset | PCI LW _address

+— >

<J—> > Mask <31:20> n

Window [Bompare : 0000 0000 0000 20
0000 0000 0001 21

A : > . 0000 0000 0011 22

) n.n-1 2d Window B 0000 0000 0111 23
Wlndovgsel | XXXX INCoW Base 0000 0000 1111 24
Used for 64-bit : 0000 0001 1111 25

foladimey Window Mask : :

Inaow Masl
-00000000-11111 011111111111 31
| 111111111111 32
TRANSLATED
EW |
PCl address <31:13> is sent to the TLB
if PCl address hit in a PCI windows.

DAC indication also sent to differentiate

T_BASE determined b between 32-bit and 64-bit PCI addresses.

which window hit

Scatter/gather o
table address -"'f ‘,.J-:,'
D S
e
|
[‘L Scatter Gather TLB
I
| Base, TAG DATA
I_¢ 63 21 20 10 20 10
000000000000000000, v DAC|Tag addr <31:13> \%

Offset /
L—

Physical
Address

PCI Window Suggested Use

Figure 3-19 shows the power-up PCl window assignment (configured by firmware) and
Table 3-11 tabulates the details. PCl window 0 was chosen for the 8 MB-16 MB "EISA"
region since this window incorporates the MEMCS# logic. PCI window 3 was avoided
since this window incorporates the DAC-cycle logic. Of the remaining two windows, PCI
window 1 was chosen arbitrarily for the 1 GB direct-mapped region, and PCI window 2 is
not assigned.

3-26 AlphaStation 600 Addressing

Figure 3-19 Default PCl Window Allocation

CPU memory space

4GB

;r

1GB

AN
AN

PCI_memory space
4GB

2GB

Direct-mapped
Window 1

1GB

Scatter/Gather
8 MB Window 0

Table 3-11 PCI Window POST Configuration

PCI Assignment Size Comments

window

0 Scatter/Gather |8 MB Not used by firmware. MEMCS disabled
1 Direct mapped |1 GB Mapped to 0-1 GB of main memory

2 Disabled

3 Disabled

PC Compatibility Addressing and Holes

The PC architecture allows certain (E)ISA devices to respond to hardwired memory ad-
dresses. An example is a VGA graphics device which has its frame buffer located in
memory address region AOO00-BFFFF. Such devices, pepper memory space with "
holes", which are collectively known as PC compatibility holes.

This is described in more detail in the PCI-EISA bridge chapter. This bridge chip decodes
PCI addresses and generates a signal, MEMCS#, which takes into account the various
PC compatibility holes.

MEMCS#

The PCEB chip of the PCI-EISA bridge provides address decode logic with considerable
attributes and features (for example, read only, write only, VGA frame buffer, memory
holes, BIOS shadowing) to help manage the EISA memory map and PC compatibility
holes. This is known as main memory decoding in the PCEB chip, and results in the gen-
eration of the MEMCS# (MEMory Chip Select) signal. The CIA uses this signal if enabled
via the PCI BASE register for window O.

AlphaStation 600 Addressing 3-27

3-28

Figure 3-20 MEMCS# Decode Area

4 GB

512 MB Max - e CSTOH

16 MB

<«— MCSTOH

Main Memory Hole
~<€— MCSBOH

1 MB S
1 MB-64 KB <— MCSCON

<4— MAR1.23

VGA memory
(A0000-BFFFF)

<«— MCSCON
512 KB

<«— MCSCON

Note: Shaded area represents main memory decode region for MEMCS#

In Figure 3-21 the MEMCS# range is shown shaded lightly; the two main holes are shown
shaded darkly. This range is subdivided into numerous portions (for example, BIOS ar-
eas) which are individually enabled/disabled using various registers.

e The MCSTOM (top of memory) register. This has a 2 MB granularity and can be pro-
grammed to select the regions from 1MB up to 512 MBs.

e« The MCSTOH (top of hole) and MCSBOH (bottom of hole) registers define a memory
hole region where MEMCS# is not selected. The granularity of the hole is 64 KB.

« The MAR1,2,3 registers. These enable various BIOS regions.

« The MCSCON (control) register. This register enables the MEMCS# decode logic,
and selects a number of regions (for example, 0-512 KB).

e The VGA memory hole region never asserts MEMCS#.

For more detail refer to the Intel 82375EB specification.

PCI window 0 in the CIA can be enabled to accept the MEMCS# signal as the PCI mem-
ory decode signal. With this path enabled, the PCI window hit logic simply uses the
MEMCS# signal (that is, if MEMCS# is asserted then a PCI window 0 hit occurs and the
PCI DEVSEL signal is asserted).

Figure 3-21 MEMCS# Logic
| MEMCS#

DEVSEL

PCl address —®| Window 0
W_BASE —| Hit detect
W_MASK —| logic

W_BASEO<MEMCS_enable>

Consequently, the PCI BASE address must be large enough to encompass the MEMCS
region programmed into the PCI-EISA bridge. The remaining window attributes are still
applicable and required:

e The SG bit in the PCI BASE determines if scatter/gather or direct-mapping is applica-
ble.

e The MASK register size information must match the MEMCS# size (in order for the
S/G and direct mapping algorithms to correctly use the Translated Base register).

e The MEMCS_Enable bit in the W_BASEO CSR takes precedence over the PCI win-
dow enable bit (that is, W_BASE<W_EN>).

AlphaStation 600 Addressing

4 Modules

Memory MotherBoard

Data[71:36]

There are two Memory MotherBoards (MMBS) in the AlphaStation 600 system.

Each MMB supplies 144 bits of data (128 bits + ecc) making a total of 288 bits. Thus,
there must be at least four industry-standard 36 bit SIMMs on each MMB, making the total
minimum memory requirement eight SIMMs. Each MMB supports a maximum of sixteen
SIMMs.

The AlphaStation 600 system supports 1M x 36, 2M x 36, 4M x 36, 8M x 36, 16M x 36,
and 32M x 36 SIMMs. However the first implementation of the MMB does not support the
16M x 36, and 32M x 36 SIMMs.

The maximum memory is calculated as 32 x (8M x 36) = 1 GByte.

Figure 4-1 MMB Layout

Data[107:14:

e T T e T T T T T M M T T T
B T N T T T T T T T T
o o o T T M T W N ™y
T T T T e M M T T T T T T ™

Address
d

an
Control
Fanout

R 7

5, S, e, T T T T T T T e T T e e T T T s s
e M N N N M N R R R N S S R R R N N N N

% T M M e M T, T S M e e e T e M M e %, T M M
\\\\\\\\\\\\\\\\\\\\\\\\\ :

R o o o T o e e S R Y

e W Y

R e S A e R A A A R R R R R R SRR R

LT R v g

T T e e e e e

Data[35:0]

Data[107:72]

Figure 4-1 shows the layout of the MMB.

The address and control signals are routed to the center of the module and data to each
end. Each MMB receives two copies of the ADDRESS, CAS, RAS and WE and one copy
of the SET_SELECTs. The ADDRESS, CAS and WE are fanned out so that each SIMM
gets its own copy. RAS is gated with SET SELECT and fanned out four times such that a
SET SELECT drives a set of four SIMMs. Each SIMM receives two copies of RAS (each
gated by a unique SET SELECT), one to drive side 0 and the other to drive sidel.

The sets are organized from the bottom of each quadrant towards the top of the module
(see Figure 4-2 SIMM Population Order). Single sided SIMMs contain one set and double
sided SIMMs have two sets, Starting with SET 0, 1 at the bottom and SET 6, 7 at the top.

Modules 4-1

Figure 4-2 SIMM Population Order

Both MMBs must be populated with the same type of SIMMs in each set

e —— —— First set of four SIMMs (SET 0, 1)

e e e T
A e R o T o G R o

L g = 1
. >,
e e o o
(!) e B T o
o L L
P R AN RN B A N N
L 1 []
L 1 L]

pr—————— Third Set of four SIMMs

T e | (BET4,5)
i A e

Fourth Set of four SIMMs |:|
(SET6,7) =

A e e A
L rh e i
e e e
T T T B e

Presence Detect Bits
Each MMB provides presence detect bits to the GRU.

Two of the Presence Detect (PD) bits of each SIMM 0 (bits[4:3]) from each set are wired
to a multiplexor. At power up, these bits are muxed out serially into the GRU. The mux
selects are generated by the GRU and the output data is sampled at the relevant time.

4-2 Modules

Cache SIMM

Table 4-1 shows the various SIMM speeds. The size of the DRAMs on each SIMM and
whether there are one or two sets per SIMM is determined by firmware during initializa-
tion.

Table 4-1 SIMM Speed

PD[4] PD[3] DRAM Speed
0 0 60/100 ns

0 1 80 ns

1 0 70 ns

1 1 60 ns

There are three Cache SIMMs in each AlphaStation 600 system. Each SIMM contains
SRAMs to store 48 data bits and eight tag bits. This provides 144 data bits (= 16 Bytes +
4 Bytes of ECC) and 24 tag bits total. The data bits were assigned to the Cache SIMMs
on an individual bit basis so there is not necessarily a correlation between bit number and
a particular SRAM. The AlphaStation 600 system uses less than 24 tag bits so some bits
are not connected.

The initial version of cache SIMM configurations using different SRAM speeds and sizes
are:

e 4 MByte SIMM - 13 (128K x 8) SRAMSs (7 on side 0, 6 on side 1)
* 2 MByte SIMM - 7 (128K x 8) SRAMs (7 on side 0)

The larger variant WIRE-ORs two SRAMSs to each data bit. The smaller version does not.
When suitable SRAMs become available, 8 MByte and 16 MByte versions will be offered.

The EV5 supplies the INDEX_H which is fanned out as the SRAM address. The data
SRAMSs use INDEX_H[21:4] (mapped to INDEX[17:0] at the connector) and the tag
SRAMSs use INDEX_H[21:6] (tag address does not change within a cache block).

The 4 MByte SIMM uses INDEX_H[22] to select between the WIRE-ORed SRAMSs (a true
copy is fanned out to one side output enable and an inverse copy fanned out to the other
output enable). It also uses INDEX_ H[22] as an extra tag address bit.

Each variant of Cache SIMM is defined by a coded placement of zero ohm resistors to
form the PD_CACHE[4:0] field. At power up, these bits from Cache SIMM 0 are loaded
into the GRU so they can be used by firmware during initialization (see CACHE_CNFG
register - address 87.8000.0200). Firmware will assume all Cache SIMMs are the same
variant as Cache SIMM 0. The encodings are shown in Table 4-2 and Table 4-3.

Table 4-2 Cache Speed Encodings

PD_CACHE[1:0] | Cache RAM Speed
00 8 ns

01 10 ns

10 12 ns

11 15ns

Modules 4-3

Table 4-3 Cache Size Encodings

PD_CACHE[4:2] |Cache RAM Size
000 No Cache Present
001 reserved

010 2 Mbyte Total
011 4 Mbyte Total
100 - 111 reserved

I/O Subsystem Module

The 1/0 Subsystem module is a PCI option card intended for the AlphaStation 600 system
and Sable families, but it could be considered for any PCl-based system. It allows for sig-
nificant system expansion by providing four 1/O ports in one PCI slot. The module features
two high performance fast/wide SCSI controllers and an Ethernet controller which can be

connected to twisted-pair, thickwire (AUI), or thinwire network.

The block diagram is shown in Figure 4-3.

Major Components

The major components of the module are :

e PCI - PCI Bridge (DECchip 21050)

e PCI - Ethernet Controller (DECchip 21040)

¢ PCI - SCsSI Controller (QLogic ISP1020) (two)
« DEC Standard 134-0, Rev-B, Version 2.0.0

4-4 Modules

Figure 4-3 1/0 Subsystem Module Block Diagram

68 pin

8/16-Bit SCSI Connector

Qlogic

| |SP 1020 %
Primary
PClBus PCI-PCI 8/16-Bit SCSI 68 pin
Bridge Qlogic Connector
ISP 1020
PCI Edge
Connector
é DECchip Ethernet
21040 Ethernet
Serial Connectors
ROM

Modules 4-5

4-6 Modules

Introduction

Power Up

Halt and Reset

5 Power Up and Reset

This chapter describes the power up signal sequences and the halt and reset se-
qguences.

The power supply outputs two signals, PRESENT_L and DC_OK_L. These four signals
produce two signals SYS DC_OK and SYS_DC_OK_L. If a power supply asserts PRE-
SENT _L then it must assert DC_OK_L before SYS _DC_OK and SYS_DC_OK_L will be
asserted.

The DECchip 21164-AA takes SYS_DC_OK and the GRU and CS on the cache RAMs
take SYS_DC_OK_ L. This protects the cache RAMs during power up. While

SYS DC_OK is deasserted, the DECchip 21164-AA tristates every output and bi-
directional and weakly pulls them to ground.

The OCP outputs two signals, OCP_RESET L and OCP_HALT_L., from the control
panel. OCP_RESET L goes to the GRU. OCP_HALT L is inverted and then goes to the
DECchip 21164-AA as MCH_HLT_IRQ_H on the DECchip 21164-AA.

SYS DC_OK_L and OCP_RESET_L are synchronized in the GRU through a two-stage
synchronizer. The output of the synchronizers are ORed with the input to provide an
asynchronously asserting, synchronously deasserting master reset signal.

SYS DC_OK_L asserts the master reset when it is deasserted. OCP_RESET L asserts
the master reset when it is asserted.

The master reset initializes the reset counter in the GRU and asserts SYS RST L. The
reset counter counts 256 cycles. While counting, SYS_RST_L remains asserted. While
SYS RST L is asserted, the GRU internal reset, GRU_RESET L, is also asserted. The
GRU outputs CLK_DIV<3:0> onto IRQ<3:0> three cycles after SYS_RST L is asserted
and for three cycles after it is deasserted. SYS_RST L is input into the DECchip 21164-
AA, DSW, SROM counters, and CIA.

The DECchip 21164-AA takes SYS_RST_L into the input SYS_RESET L. While in reset,
the DECchip 21164-AA reads sysclock configuration parameters from the interrupt pins,
IRQ_H<3:0>. It also reads delay configuration parameters for SYS_CLK_OUT2_x from
the SYS_MCH_CHK_IRQ_H, PWR_FAIL_IRQ_H, and MCH_HLT_IRQ_H pins. This
clock is not used by this system, so no special attention is given to the value of the signals
during reset. For the values of the sysclock configuration and internal state after reset,
see the DECchip 21164-AA Functional Specification.

The four DSW's take SYS_RST L into the asynchronous clear pin of an FD2. This pro-
vides an asynchronously asserting, synchronously deasserting reset signal, RESET L.
While RESET_L is asserted, the internal state of the DSW is reset. The SROM counter is
cleared when reset is asserted.

Power Up and Reset 5-1

The CIA takes SYS_RST_L and synchronizes it with a two-stage synchronizer. The out-
put of the synchronizers are ORed with the input to provide an asynchronously asserting,
synchronously deasserting reset signal, RESET_L. While RESET L is asserted, the in-
ternal state is reset to its default state. The CIA asserts RST_L, the PCI reset signal, until
software sets the PCl enable in the CIA_CNTL register.

The following is a table of the CIA output and bi-directional signals and their state during

reset:
Reset Reset

Signal State Signal State
ADDR_CMD_PAR z PAR z
ADDR39 z PARG4

ADDR[34:4] z REQ64 L 0
CMDI[3:0] z ACK64 L z
ADDR_BUS_REQ z FRAME_L z
CACK z IRDY_L z
DACK z DEVSEL_L z
FILL z TRDY_L z
FILL_ID z STOP L z
FILL_ERROR z PERR_L z
IDLE_BC z SERR_L z
TAG_DIRTY z REQ L 1
TAG_CTL_PAR z RST L 0
MEM_ADDR[12:0] X CMCI8:0] 0
SET_SEL[15:0] 0 10C[6:0] 52
RASI[3:0] 0 10D[63:0] z
CASJ[3:0] 0 I0D_E[7:0] z
MEM_WE_L[1:0] 3 INT 0
MEM_EN 1 ERROR 0
AD[63:0] z TEST_OR_SCAN_OUT 0
CBE_L[7:0] z

RST _L is distributed to the ESC, EISA System Component, the PCEB, PCI-EISA Bridge,
and to the PCI slots through an FCT805 buffer.

The ESC takes RST_L and resets its internal state and asserts RSTDRV, which is the ISA
hardware reset signal. The PCEB takes RST_L and resets its internal state.

RSTDRYV resets the TOY, 8242, and 87312.

5-2 Power Up and Reset

Introduction

6
AlphasStation 600 Physical Partitioning

This chapter describes the physical partitioning of the AlphaStation 600 system. which is
based on the EV5 implementation of the Alpha architecture. Refer to Figure 6-1 for the
AlphaStation 600 system block diagram..

The widths of the AlphaStation 600 system busses shown in the block diagram are shown
in Table 6-1.

Table 6-1 AlphaStation 600 System Busses

Bus Name Description Data Width |ECC Width |[Cycle Time
CPU_DAT CPU/Bcache Bus 128 bits 16 bits 25/30 ns
MEM_DAT Memory Data Bus 256 bits 32 bits

10D DSWI/CIA/GRU 1/0 Bus 64 bits 8 bits 30 ns

AD PCI Address/Data Bus 64/32 bits 2/1 (Parity) |30 ns

SD EISA Data Bus 32 bits None 120 ns

LA EISA Latched Address 32 bits None 120 ns

SA EISA Slave Address 20 bits None 120 ns

XD X-Bus Data 8 bits None 120 ns

Hardware Jumpers

There are various jumpers and DIP switches on the Systemboard which are mainly for
Prototype debugging.

Fan Fail Detect Jumpers

The Fan Fail Detect circuit is design to operate in both the AlphaStation 600 "Tower" and
the "Wide Tower". Wide Tower systems have two fans, and Tower systems have one.
Both systems have a power supply fan as well. The Fan Fail Detect circuit senses the
power used by each fan. If the fan stops or is disconnected the circuit triggers a failure.

Fans 1 and 2 are plugged into headers, J24 or J26. The system can work if FAN1 is
plugged into either J24 or J26, and FAN2 (Wide Tower only) plugged into the other
header.

The fan cable connectors are polarized and have wires in only 2 of 3 sockets. Therefore, if
properly assembled, FAN1 connects to pins 1 and 2 of J24 and FAN2 connects to pins 2
and 3 of J26. The black wire is always on pin 2. Pin 1 of J24 and J26 and all jumpers is
closest to the top of the module as oriented in Figure 6-3.

The logic on the system board detects a fan failure and initiates a power system shut-
down. If the fan failure occurs on power up, the power-on light will be on for a half second.

AlphaStation 600 Physical Partitioning 6-1

The power light being on for a half second could indicate that the power supply detected a
short. In the case of a fan failure the Fan Fail Detect LED will be on for a half second.

The "Fan Fail Detect" logic for FAN1, which is in both the Tower and Wide Tower enclo-
sures, is enabled by installing a jumper between pins 1 and 2 of W11. (Manufacturing can
disable this circuit by connecting a jumper from pin 2 to pin 3.)

The Fan Fail Detect logic for FAN2 should be disabled in Tower systems and enabled in
Wide Tower systems. The FAN2 detect logic is disabled by installing a 2-pin jumper on
W9 (connecting a jumper between pin 2 and pin 3) . It will be enabled if no jumper is used.

Manufacturing will leave the W11 jumper in the enable position and the W9 jumper in the
disable position (in the Wide Tower the W9 jumper must be enabled).

Flash ROM Write Jumper

The Flash ROM Write Jumper, W13, enables or disables writes to all four Flash ROMs.
Writes are enabled when a 2-pin jumper is installed between pins 2 and 3 and disabled
when installed between pins 1 and 2. Manufacturing will normally leave the jumper in the
disable position.

Alternate Console Jumper

The Alternate Console Jumper, W17, is used to report boot information through the serial
port instead of through the graphics device. The alternate console is enabled by connect-
ing a jumper from pins 1 and 2 of W17 and disabled by connecting a jumper from pins 2
and 3. Manufacturing will normally leave the jumper in the disable position.

Secure Console Jumper

When enabled , the Secure Console jumper, W14, disables all privileged console com-
mands . This security feature is enabled by connecting a jumper between pins 1 and 2.
When enabled, BOOT, START, CONTINUE and LOGIN are the only commands allowed.
All console commands are enabled when W14's jumper is connected between pins 2 and
3 (Secure Console disabled). Manufacturing will normally leave the jumper in the disable
position.

SROM Code Select Jumper

Jumpers W1-W8 are used to select boot or test code stored in the SROM. Only one
jumper can be installed at a time. The contents are outlined below :

W1 - normal power up flow. SROM will default to floppy boot if Flash ROM is not
loaded.

¢ W2 - mini-console with initialized system interface

* W3 - floppy boot

W4 - memory test

e W5 - normal power up flow with only set 1 of SCache enabled
¢ W6 - normal power up flow with only set 2 of SCache enabled
e w7 - normal power up flow with only set 3 of SCache enabled

* W8 - non-initialized mini-console with un-initialized system interface (requires user to
type uppercase U before any output is seen)

For normal system operation, W1 is selected. Manufacturing will normally leave the
jumper in the W1 position.

6-2 AlphaStation 600 Physical Partitioning

EV5 clock multiple DIP switch

This DIP switch will only be provided on the first few debug systemboards. This is used
during reset time to select the EV5 system clock multiple.

Physical Organization

The base model of the AlphaStation 600 system is physically organized into six modules,
of three different types. There is one system board, into which the other five modules fit.
There are two MMB modules, which hold the memory SIMMs (not included in this count),
and there are three cache SIMM modules. A real AlphaStation 600 system, however, is
likely to include other modules, including memory SIMMs, PCI options for graphics and
disk/ethernet access, EISA options for disks, audio, etc. Figure 6-2 shows the AlphaSta-
tion 600 system board layout, and the organization of logical functions on the system
board. The following list provides a description of the functional areas shown in Figure

6-3.

System Board Functional Areas

1

An EV5 Alpha CPU, running at 266 MHz for prototype machines, and 300+ MHz for
later implementations

SROM interface to allow serial loading of the EV5 from onboard EPROM, and serial
communication via an SROM/RS-232 adapter card plugged into a special 10-pin con-
nector.

A configurable third-level BCache, organized into three Cache SIMMs plugged into
the system board. Cache SIMMs can be single or double sided, allowing 2 MB or 4
MB of cache, respectively. Next generation SRAMS will allow 8 MB and 16 MB
cache sizes.

A data switch, composed of four custom ASIC chips, called DSW in a sliced configu-
ration. The data switch allows data from the 1/O and memory systems to get to and
from the CPU. Total width of the data paths through the data is as follows: Memory -
256 bits, CPU/cache - 128 bits, 1/O - 64 bits. All paths carry error correction code bits
(ECC)

A control chip (CIA) which controls the PCI system and acts as a data path from PCI
to the data switch, controls main memory and Bcache operations, and controls the
system support chip, GRU.

A system support chip (GRU) which provides access to the four Flash ROMs used to
store system firmware, provides access to the presence detect bits which are used to
size memory and cache, and gathers system interrupts and sends them to the CPU.

A set of two memory motherboards (MMBs) which plug into the System Board. Both
MMBs must be present for main memory to work; together they provide up to 1.0 GB
of memory with current technology (4Mx4) DRAMS. The system board is designed to
accommodate later versions of the MMB which could support up to 4 GB of main
memory.

A PCI I/O system, consisting of three 64 bit PCI slots, and two 32 bit PCI slots. One
of the two 32 bit slots is a "shared" slot with EISA, meaning that the slot can be occu-
pied by a PCI option, or a neighboring EISA option, but not both simultaneously.

An EISA I/O system, which is connected off the PCI I/O system via the Intel
82374/82375 (Mercury) chip set. This chip set provides a bridge between the PCI
and EISA busses, and ISA support functions for ISA devices such as TOY clock,
NVRAM, and other ISA I/O devices.

AlphaStation 600 Physical Partitioning 6-3

10 AnISA/ X-bus I/0 system, which includes two serial ports, one parallel port, a key-
board/mouse port, floppy drive port, and Operator Control Panel (OCP) port.

11 Miscellaneous support functions, implemented directly on the System Board. These
include generation of DC_OK for the system from signals supplied by one or two
power supplies, fan fail detect logic, clock distribution.

6-4 AlphaStation 600 Physical Partitioning

Figure 6-1 AlphaStation 600 System Block Diagram

B I © \/ [zow] oo-zveeeval | | ® | <

o[
; g «
2 g g
o 3 g
g 5 2
8 & i o8- E
S g8 — |
43 T
= e
:]
— 8 I |-
u S=O InTa snax —/ o
é ‘ ‘ o N:é:
~ = 107S vs 13 g, i S
] = Einm
T F il
B BTl

K
) ‘ JD% — ‘ <: 107s 10d ‘
1071Ss vs 13 ‘ <: e iﬁ
—

4121994 11:22

El SA

Q3

‘ 1071s vs 13 ‘

ﬁg |
6
|
[0}
0
o
‘ N UTZIG ‘
“

4
| NTERRUPTS

I

=3
T 0 v o o

PCl BUS
NENDRY
CONTROL

1
s
l

T] cPUINTERRPTS
|
;

SROM

.l

\% SYS_RST_L

EV5
(CPy)
DSW CONTROL

E

2

PO & EISA
| NTERRUPTS

SYS.0C K L
I
‘ e
T

—— CACHE

ALCOR SYSTEM BOARD BLOCK DI AGRAM

Y500 K H

SOTDATSAS

POAER

2
HopToaTsAS TN SHEA R o ——

P CEN

AlphaStation 600 Physical Partitioning 6-5

Figure 6-2 AlphaStation 600 System Board Layout

cr oo cwe

~

=
&

+
]

6-6 AlphaStation 600 Physical Partitioning

cur D30 D29 D27 D
Ty
ini
wus s Rz gz [g
i =
e] T
c71
P -A‘ D18 T
C145 C139 Cimp ciza R0 o pizspizo RO cis mios cor ms mmp we w2 s me [D
o e v i fm i e 0 03 D 08 €0 ©0 00 03
e J10 sl 3 oy
T =] €46 c69
ci3
C13% 0127 man mizm mzs s me RS I mioe w0 me ma ke mm e me
IO LD T 6 S 75 d” 0 68 05 o0 o oF oF of o B s
c144 J9 ez
i
. & s
1=
0= ﬂ%ﬁljﬁ cise cize niza miz2 mis RS mice cioz 021 =i H]
0O of o O G gD
T il sy
C142 1365 Q121 Ri17 eice Rios Ri0sCi03
I0{40= 0P U @0 0D @) 0 00 00 00 gv E14
aist o wls T &
T el
H « &
J4 [D
n ST £12 5
c1aT cz g e oim oo eT—— e I
10 fimi) Pl) fim) 0 0T @00 [0 00 o o E33 E19
J3 7 ﬁ [DDS DC]ﬁE
o = e
: & caz o[=
- b | =
C180 “n “coicre £ B nmeg o e o O o s cs2 Rz gy
T o & Bt Io i e EEEEE 7
J2 c7e {I1] 3 s R385 C46
ia T s L=
B H o el e - . r J18
R o . 3
S msos, g 2 8 83 B o o a e o 7 7
e Wi gricldde Iotoitote 8 & & & & S 22
g J1

Figure 6-3 AlphaStation 600 System Board Function Map

oz _cior c108

EEde amiRimiEin {0 {7
: 2 POWER CONNECTORS

WY LY15]

r it PR
7 DSW

i
" DSW
i = €53 3 E
£84 iy P
o % . €56
& LD D0 -
) ..
£82 -
{ECDM 5 | - — E]
] vk
- Db d
E£80

IO s
die o ey MIMB : ?
e e -
d il
C145 C139 cisg cizs mi30 it pizspizo RIO o3 mios v et o s R ose e
i R I ID 00 i3 03 gp £ 6 08 60 of

J10

L PC

i3 co7 s w o eve mns clor mos moo pes e s mm ms w1 e
ﬂj]ﬂj]ﬂ]]ﬂ]][kﬂ;ﬂlﬂl O O 00 0 I 0000 00 i 1

Cl44 Jg
[OO o 8 o e e d e e
5 & gl i =
C142 CTJ@C‘H R121 RI17 R10B R106 R103C103
{1m1) I 0D 00 01 030 00
J7
-
C157 c132 g = [3RE] cig
{1 fimi) Sz oo fimi)
J3
C150 & cwicom r B mamm o [w0
] fgie O Dympo 52 12 TiEo i e |
J2 c78
5. q g
v o o RE R59 RS2
u o on om0 = =
GoR0s w8 ° B B3 S . o o @ o D17 i D13
s T o griciddo oottt S & & & 8
2= J1

AlphaStation 600 Physical Partitioning 6-7

The function map shows roughly what logic functions are in what area of the system
board. Another useful map showing logical/physical relationships is the Cache/Memory
map. Figure 6-4 shows the AlphaStation 600 system cache, data switch, CPU, and mem-
ory in their approximate physical locations on the system board. The numbers shown in-
side the components represent the CPU words that reside in that physical entity. In the
case of EV5, cache and memory, the order in which the words are shown roughly corre-
sponds to where the bits of the given word are pinned. A table of word versus bit range is
also given as a reference in Table 6-2. This is useful when looking at schematics to deter-
mine which bits fall into which words, etc.

Table 6-2 Data Word / Bit Range Map

Data and ECC
Word Number Data Bits Only ECC Bits Only (mem data)
0 15:0 1:0 17:0
1 31:16 3:2 35:18
2 47:32 5:4 53:36
3 63:48 7:6 71:54
4 79:64 9:8 89:72
5 95:80 11:10 107:90
6 111:96 13:12 125:108
7 127:112 15:14 143:126
8 143:128 161:144
9 159:144 179:162
10 175:160 197:180
11 191:176 215:198
12 207:192 233:216
13 223:208 251:234
14 239:224 269:252
15 255:240 287:270

6-8 AlphaStation 600 Physical Partitioning

Figure 6-4 Memory Data Mapping

SB - TOP VIEW
g (MMBD) M2,6,10,14 M3,7,11,15 (J16)
:Cache@ E2,W2,E6,P6,E3,W3,E7,P7
© (E40) o
Sl E10)
W2,6 W3,7 wo0,1,2,3
M2,6,10,14 M3,7,11,15
X2 X3
(314) (Cachel) P4,P6,P5,P7 @B
E39
(E53) DSWO (E39) DSW1 o W4,5,6,7
X0,1,2,3 wo,4 Wi5s5 | 00 memmm e e e meaoo--
M0,4,8,12 M1,5,9,13 | Key: !
CIA o XO o X1 1 Mn =mem word n .
I (including ECC) i
3 :Wn:CPvaio(Edn 4 :
1 Pn = partial CPU word n
(J13) ([Cached) E4,P4,WO0,E0,E5,P5,W1,E1 \ En=ECC for CPUword n |
| Xn=1/0 Word n (Inc. ECC) !
1 —
, (ref) = Refdes :
10 =pinl |
D
(vmBO) M0,4,8,12 M1,5,9,13 (J12)

%\/\/\/\W

Figure 6-4 shows how CPU, memory, and I/O data is connected to the EV5, DSW, mem-
ory, cache, and CIA chip. Finer detail of exact bit assignments should be referenced from
the AlphaStation 600 System Board schematics, MDA file

B_CS 5423242 0 _0_AX02_ALL.PS ,or succeeding revision.

This map is intended to roughly show how data is routed on the system board; actual rout-
ing paths or nets are not shown.

The mapping shown above is the result of several constraints, mostly physical in nature,
which drove the assignment of data switch, memory, and cache pinning, as well as the
orientation of the CPU. Some of these constraints are:

» Due to pinning constraints, the data is sliced among four physical DSW chips. The
same chip design must be used in all four chips, thus each DSW chip must have 1/4
of every bus: I/O, CPU, and memory.

AlphaStation 600 Physical Partitioning 6-9

e The I/O system must have access to the lower 64 bits of the EV5 data, that is, words
3-0. This, along with the previous constraint, caused words 0,1,2,3 to be sent to dif-
ferent data switches.

« Keeping cache address lines short required rotation of EV5 into the current position; a
more optimal data routing position would be +90 degrees, to allow data to travel hori-
zontally across without crisscrossing in the vertical. However, doing so lengthens the
address lines enough to offset any gain in timing.

* Cache SIMM bit assignments were picked in order to minimize the overall CPU data
line length. Word positions were chosen to be as close as possible to the DSW pins
with the same word.

* Memory assignments were chosen based on the need to keep words within a set to-
gether, and the desire not to have memory lines crossing the already congested
cache area (that is, DSWs talk to the MMB that is closest to them). Words are also
organized to minimize memory data etch length; DSWs talk to the closest side of the
MMB to them.

I/0 Subsystem Organization

The AlphaStation 600 I/O subsystem is mostly confined to the system board, but some 1/O
functions reside on PCI or EISA/ISA option cards. The table below summarizes the Al-
phaStation 600 system 1/O physical and logical locations:

I1/0 Function Connector Location | Driven By Bus Name
Keyboard System Board (J28) | 8242 (E14) X-BUS (ISA subset)
Mouse System Board (J28) |8242 (E14) X-BUS (ISA subset)
Serial Ports (2) System Board (J6) 87312 (E37) ISA Bus (EISA subset)
Parallel Port System Board (J5) |87312 (E37) |ISA Bus (EISA subset)
Floppy Drive System Board (J18) | 87312 (E37) ISA Bus (EISA subset)
Operator Control Panel System Board (J22) |8584 (E28) 12C Bus (via X-BUS)
(ocpP)
Graphics TGAX graphics PCI
Ethernet 1/0 Subsystem Card | 1/0 PCI

Subsystem
SCsI 1/O Subsystem card | 1/0 PCI

Subsystem
Sound/Multimedia Microsoft Audio ISA

6-10 AlphaStation 600 Physical Partitioning

AlphaStation 600 Module Overview

System Board

The AlphaStation 600 system board is the motherboard for the AlphaStation 600 system,
and serves as a central interconnect for other AlphaStation 600 system components. The
following is a brief summary of the major components of the AlphaStation 600 system
board:

The AlphaStation 600 system board contains all the power, I/O, and module connectors
for the system. These connectors are listed in the table below, along with their DEC Part
Numbers, and their reference designators.

Table 6-3 AlphaStation 600 Interconnect Reference

Connector Part Number | Function Designator
12-38939-01 Serial Port J6
12-32998-02 Parallel Port J5
12-14978-02 Fan Conn. J24, J26
12-27247-05 Floppy Connector Ji8
12-14630-03 Test Port Ji7
12-14434-33 Speaker Connector J23
12-19039-03 OCP Connector J22
12-29570-06 Power Connector 5V J19
12-29570-08 Power Connector 3V J20
12-29570-11 Power Control J21
12-33538-02 EISA 32 bit J1-J4
12-39839-06 PCI 32 bit J7,J8
12-39839-10 PCI 64 bit J9-J11
12-39839-11 Cache Connector J13-J15
12-39839-12 Memory Connector J12,J16

The following sections briefly describe the major components of the system board:

Memory Motherboard

The Memory Motherboard (MMB) provides physical space for SIMM connectors,

as well as fanout drivers for memory control lines. These MMB modules are similar in
form factor and function to the MMB modules used on previous Alpha workstations, but
there are several significant differences, described in Table 6-4.

AlphaStation 600 Physical Partitioning 6-11

Table 6-4 AlphaStation 600 MMB Feature Comparison

Feature AlphaStation 600 | MMB
MMB
MMB layers / etch width 8/5 8/5
SMT technology Double sided SMT | Single sided SMT
MMB’s per system (min/max) 2/2 4/4
SIMMs per MMB (min/max) 4/16 2/8
Total System Memory Capacity Using 16 MB RAMs | 1.0 GB 1.0GB
Logical Sets (AlphaStation 600) or Banks per 8 8
System
SIMMs per Set (or Bank) per MMB 4 2
System Memory Data Bus 256 bits + ECC 256 bits + ECC
Minimum Data write size 128 bits 32 bits
Memory Data Bus cycle time 30ns 40 ns

Cache SIMM

The AlphaStation 600 system supports a third-level, direct-mapped write-back cache (also
called BCache) in the form of SIMM modules on the system board. The system board
has three cache SIMMs, which function together as a single logical unit; three SIMMs
must always be in place for the BCache to function. SIMMs can use different sized
SRAMSs, and can be full or half populated, allowing different cache sizes. See Table 6-5
for a summary of Bcache features.

Table 6-5 BCache Features

Feature AlphasStation 600 Cache
SIMM Layers / Etch Width 8/5

SIMMs per System 3

Cache Memory Size (min/max) | 2 MB/4 MB (8/16 MB future)
Cache data width 128 bits

CPU read cycle time (min) 25ns

PCI Options

The AlphaStation 600 system supports up to three 64-bit PCI options and two 32-bit PCI
options. One of the 32-bit option slots is shared with an EISA slot (that is, either an EISA
or PCI option may occupy that position in the cabinet, but not both simultaneously. The
PCI system is controlled from the CIA, and also includes a bridge chip at the end of the
PCI bus which connects to the EISA I/O system (see below). The PCI options plug into
the system board via connectors at the lower left area of the system board (J7-J11); 64-bit
options must plug in to the upper three connectors (J9-J11), while 32-bit options may plug
in anywhere, in a 64-bit or 32-bit slot. All system board connectors are wired for 5 volt PCI
options (connector orientation is the 5V system variety; 3V is supplied to the options, how-
ever).

PCI options are identified by their ID Select lines (IDSEL). Each option has its ID select
tied to a different PCI address line so that it can be identified uniquely during configura-
tion. The table below shows the PCI address for the various slots in the AlphaStation 600
system.

6-12 AlphaStation 600 Physical Partitioning

Table 6-6 PCI Slot Assignments

Slot Designator | Size PCI AD [31:0] (hex)

SO J9 64B 0040 0000 (ID=AD22)
S1 J10 64B 0080 0000 (ID=AD23)
S2 Jil 64B 0100 0000 (ID=AD24)
S3 J7 32B 0200 0000 (ID=AD?25)
S4 J8 32B 0400 0000 (ID=AD26)
PCEB E1l1 32B 0800 0000 (ID=AD27)

For more information about PCI pinouts and operation, see the PC/ System Specification
V2.0.

EISA Options

The AlphaStation 600 system supports an EISA/ISA subsystem, including up to four EISA
or ISA plug-in option cards. There are four EISA connectors, J1-J4, in the lower left cor-
ner of the system board, one of which (J4) is a shared connector with a PCI slot. (See
Table 6-6). EISA 1/0 operations are controlled from the Intel PCI/EISA bridge chip set.

AlphaStation 600 SystemBoard - ASICs

In the pinouts that follow, the key is: I=Input, O=Output, B=Bi-directional, N=Not Con-
nected, P=Power. All pinouts for ASICs and connectors are shown top view.

EVS5 CPU

The EV5 CPU is a follow-on to the EV4 processor, the Alpha processor used in previous
workstations and PC’s. There are many architectural differences between the two; EV5
is a new design, not simply a scaling of the current design (like EV45). Some important
differences from the system perspective:

« More pins - EV5 has 499 pins in the package, compared to (431) for EV4.

e The EV5 package is an interstitial pin grid array, where pins are 100 mils apart from
each other in a row, and the rows are offset by 50 mils from each other, and sepa-
rated by 50 mils from each other. Compared to the EV4 package, which had a stan-
dard 100x100 mil PGA grid, the pin density is higher. The result is a package with
more pins, in a smaller footprint than EV4. This allows good signal integrity character-
istics, increased pin count, etc. in the same footprint. On the down side, routing is
more difficult, and debug probing is much tighter.

< External Cache now has a private set of address lines (INDEX) so that the cache
does not have to share loading with other system components.

» Athird level of cache. The external cache on EV5 is a third level, as opposed to EV4
second level cache. The EV5 has an onboard "S-cache", which is broken into three
sets. Total S-cache capacity is 96K bytes. The third level cache can be up to 16 MB
in size on an AlphaStation 600 system.

AlphaStation 600 Physical Partitioning 6-13

Figure 6-5 EV5 CPU Package - Top View

A3 A5 A7 A9 AT1T A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 A33 A35 A37 A39 A4

B2 B4 B6 B8 B10 B12 B14 B16 B18 B20 B22 B24 B26 B28 B30 B32 B36 B38 B40 B42

C1 C3 C5 c7 c9 cC11 C13 C15 C17 C19 C21 C23 C25 C27 C289 C31 C33 C35 C37 C39 C41 C43
D2 D4 D6 D8 D10 D12 D14 D16 D18 D20 D22 D24 D26 D28 D30 D32 D34 D36 D38 D40 D42

E1 E3 £5 E7 E9 E11 E13 E15 E17 E19 E21 E23 E25 E27 E29 E31 E33 E35 E37 E39 E41 E43
F2 F4 F6 F8 F10 F12 F14 F16 F18 F20 F22 F24 F26 F28 F30 F32 F36 F38 F40 F42

Gl G3 G5 G9 G11 GI1 G1 G1 G19 G21 G23 G235 G G?29 G31 G3 G G37 G39 G41 G43
H2 H4 H6 H38 H40 H42

J1 J3 J5 Ji7 J37 J39 J41 U453
K2 K4 K6 K38 K40 K42

L1 L3 L5 L7 L37 L39 L41 L43
M2 M4 M6 M38 M40 M42

N1 N3 N5 N7 N7 N39 N41 N43
P2 P4 P6 P38 P40 P42

R1 R3 RS R7 R37 R39 R41 R43
T2 T4 T6 T38 T40 T42

u1 u3 us u7 U7 U39 U41 U43
V2 V4 V6 V38 V40 V42

W1 W3 W5 7 WB7 W39 W41 W43
Y2 Y4 Y6 Y38 Y40 Y42

AAT AA3 AAS AAT E AAB7 AA39 AA41 AA43
ABZ AB4 AB6 * AB38 AB40 AB42

AC1 AC3 AC5 AQ7 AC37 AC39 AC41 AC43
AD2 AD4 AD6 AD3B8 AD40 AD42

AET AE3 AES AR7 pGA4‘9 9 AEB7 AE39 AE41 AE43
AF2 AF4 AF6 AF38 AF40 AF42

AG1 AG3 AGS AG7 AG37 AG39 AG41 AG43
AH2 AH4 AH6 2 /‘ HAARAX O /‘ AH38 AH40 AH42

AJT AJS AJS A7 AJB7 AJ39 AJ41 AJ43
AKZ AK4 AKB AK38 AK40 AK42

ALT AL3 ALS AL7 AL[37 AL39 AL41 AL43
AM2 AM4 AM6 AM38 AM40 AM42

AN1 AN3 ANS AN7 AN3B7 AN39 AN41 AN43
AP2 AP4 APB AP38 AP40 AP42

AR1 AR3 AR5 AR7 AR(B7 AR39 AR41 AR43
AT2 AT4 AT6E AT38 AT40 AT42

AUT AU3 AUS Al U9 AU11 AU1 U1s5 AU1 U19 AU21 AU?23 AU U U29 AU31 AU U35 AUB7 AU39 AU41 AU43
AVZ AV4 AV6E AVB AVIO AVI2 AV14 AVI6 AV18 AV20 AVZ22 AV24 AV26 AV2ZB AV30 AV32 AV34 AV36 AV38 AV40 AV42

AWT AW3 AWS AW7 AW9 AWTT AW13 AWIS AW17 AWT9 AW21 AW23 AW25 AW27 AW29 AW31 AW33 AW35 AW37 AW39 AW41 AW43
AY2 AY4 AYE AY8 AY10 AY12 AY14 AY16 AY18 AY20 AY22 AY24 AY26 AY28 AY30 AY32 AY34 AY36 AY38 AY40 AY42

BAT BA3 BA5 BA7 BA9 BA11 BA13 BA15 BA17 BA19 BA21 BA23 BA25 BA27 BA29 BA31 BA33 BA35 BA37 BA39 BA41 BA43
BB2 BB4 BB6 BB8 BB10 BB12 BB14 BB16 BB18 BB20 BB22 BB24 BB26 BB28 BB30 BB32 BB34 BB36 BB38 BB40 BB42

BC3 BC5 BC7 BCY BC11 BC13 BC15 BC17 BC19 BC21 BC23 BC25 BC27 BC29 BC31 BC33 BC35 BC37 BC39 BC41

6-14 AlphaStation 600 Physical Partitioning

Table 6-7 EV5 PIN OUT - Sorted by Pin

Number
PIN SIGNAL USE PIN SIGNAL USE
All TAG_DATA_H[32] B AG1 DATA_H[99] B
A13 TAG_DATA_H[36] B AG3 DATA_H[100] B
Al15 TAG_SHARED_H B AG37 GND P
Al7 SCACHE_SET_H[1] o) AG39 DATA_H[38] B
A19 CMD_H[1] B AG41 DATA_H[36] B
A21 TAG_RAM_WE_H o) AG43 DATA _HI[35] B
A23 DATA_RAM_WE_H o) AG5 DATA_H[102] B
A25 FILL_ERROR_H | AG7 GND P
A27 IDLE_BC H | AH2 PWR3 P
A29 INDEX_H[4] o) AH38 DATA_H[41] B
A3 GND P AH4 GND P
A31 INDEX_HI[9] o) AH40 GND P
A33 INDEX_H[13] o) AH42 PWR3 P
A35 INDEX_H[17] o) AH6 DATA_H[105] B
A37 INDEX_H[21] o) AJl DATA H[103] B
A39 INDEX_H[25] o) AJ3 DATA_H[104] B
A4l GND P AJ37 PWR3 P
A43 GND P AJ39 DATA H[42] B
A5 TAG_DATA_H[20] B AJ4l DATA_H[40] B
A7 TAG_DATA_H[24] B AJ43 DATA_H[39] B
A9 TAG_DATA_H[28] B AJ5 DATA H[106] B
AAL DATA_HI[89] B AJ7 PWR3 P
AA3 DATA_HI[88] B AK2 DATA_H[107] B
AA37 GND P AK38 DATA_H[46] B
AA39 DATA_H[23] B AK4 PWR3 P
AA4L DATA_H[24] B AK40 PWR3 P
AA43 DATA_H[25] B AK42 DATA H[43] B
AA5 DATA_H[87] B AK6 DATA_H[110] B
AA7 GND P AL1 DATA_H[108] B
AB2 PWR3 P AL3 DATA H[109] B
AB38 DATA_H[26] B AL37 GND P
AB4 PWR3 P AL39 DATA_H[47] B
AB40 PWR3 P AL41 DATA_H[45] B
AB42 PWR3 P AL43 DATA_H[44] B
AB6 DATA_H[90] B AL5 DATA_H[111] B
AC1 DATA_H[91] B AL7 GND P
AC3 DATA_H[92] B AM2 PWR3 P
AC37 GND P AM38 DATA_H[50] B
AC39 DATA_H[29] B AM4 GND P
AC41 DATA_H[28] B AM40 GND P
AC43 DATA_H[27] B AM42 PWR3 P
AC5 DATA_H[93] B AM6 DATA H[114] B
AC7 GND P AN1 DATA_H[112] B
AD2 DATA_H[94] B AN3 DATA_H[113] B
AD38 DATA_H[31] B AN37 PWR3 P
AD4 GND P AN39 DATA_H[51] B
AD40 GND P AN41 DATA_H[49] B
AD42 DATA_HI[30] B AN43 DATA _H[48] B
AD6 DATA_H[95] B AN5 DATA_H[115] B
AE1 DATA_H[96] B AN7 PWR3 P
AE3 DATA_H[97] B AP2 GND P
AE37 PWR3 P AP38 DATA_H[54] B
AE39 DATA_H[34] B AP4 PWR3 P
AE41 DATA_HI[33] B AP40 PWR3 P
AE43 DATA_H[32] B AP42 GND P
AE5 DATA_H[98] B AP6 DATA_H[118] B
AE7 PWR3 P AR1 DATA H[116] B
AF2 GND P AR3 DATA_H[117] B
AF38 DATA_H[37] B AR37 GND P
AF4 PWR3 P AR39 DATA_HI[55] B
AF40 PWR3 P AR41 DATA_H[53] B
AF42 GND P AR43 DATA_H[52] B
AF6 DATA_H[101] B AR5 DATA H[119] B

AlphaStation 600 Physical Partitioning 6-15

PIN

AR7
AT2
AT38
AT4
AT40
AT42
AT6
AUl
AU11
AU13
AU15
AU17
AU19
AU21
AU23
AU25
AU27
AU29
AU3
AU31
AU33
AU35
AU37
AU39
AU41
AUA43
AUS5
AU7
AU9
AV10
AV12
AV14
AV16
AV18
AV2
AV20
AV22
AV24
AV26
AV28
AV30
AV32
AV34
AV36
AV38
AV4
AV40
AV42
AV6
AVS8
AW1
AW11
AW13
AW15
AW17
AW19
AW21
AW23
AW?25
AW27
AW29
AW3
AW31
AW33

SIGNAL

GND
PWR3
DATA_HI[58]

GND

GND

PWR3
DATA_H[122]
DATA_H[120]
PWR3

GND

PWR3

GND

PWR3
CLK_MODE_H[0]
DC_OK_H
MCH_HLT_IRQ_H
IRQ_H[1]

PWR3
DATA_H[121]
GND

PWR3

GND

PWR3
DATA_HI[59]
DATA_HI[57]
DATA_HI[56]
DATA_H[123]
PWR3

GND

ADDR_H[15]
ADDR_H[11]
ADDR_H[7]
TEST_STATUS_HI[1]
TMS_H

GND
SROM_PRESENT_L
GND
SYS_CLK_OUT2_H
PWR_FAIL_IRQ_H
NC

ADDR_H[36]
ADDR_H[32]
ADDR_H[28]
ADDR_H[24]
DATA_HI[62]
PWR3

PWR3

GND
DATA_H[126]
ADDR_H[19]
DATA_H[124]
ADDR_H[12]
ADDR_H[8]
TEMP_SENS_H
TCK_H
SROM_OE_L

GND
SYS_CLK_OUT1_H
REF_CLK_IN_H
IRQ_HI3]
PERF_MON_H
DATA_H[125]
ADDR_H[35]
ADDR_H[31]

6-16 AlphaStation 600 Physical Partitioning

USE

WO~ 0 VO~~~ WWWWWIU IO UWWWWOIZ-OTV~TU~—0WWWIUOUUWWWWIU U U IUOWU——"—"—"TVTUVUUOUIUWWTOUTUTUWTUTD

PIN

AW35
AW37
AW39
AW41
AW43
AWS
AW7
AW9
AY10
AY12
AY14
AY16
AY18
AY2
AY20
AY22
AY24
AY26
AY28
AY30
AY32
AY34
AY36
AY38
AY4
AY40
AY42
AY6
AY8
B10
B12
B14
B16
B18
B2
B20
B22
B24
B26
B28
B30
B32
B34
B36
B38
B4
B40
B42
B6
B8
BAl
BAl1l
BA13
BA15
BA17
BA19
BA21
BA23
BA25
BA27
BA29
BAS3
BA31
BA33
BA35
BA37

SIGNAL

ADDR_H[27]
ADDR_H[23]
DATA_HI[63]
DATA_HI[61]
DATA_HI[60]
DATA_H[127]
ADDR_H[20]
ADDR_H[16]
PWR3

GND

PWR3

GND

PWR3

PWR3
PORT_MODE_H[0]
GND

GND

PWR3

GND

PWR3

GND

PWRS3

GND

PWR3

GND

GND

PWR3

PWRS3

GND

GND

PWRS3
TAG_DATA_H[37]
PWR3

GND

GND
ADDR_CMD_PAR_H
PWR3

DACK_H

GND

PWR3
INDEX_H[8]
PWR3

GND

PWR3

GND

PWR3

PWR3

GND

GND

PWR3

GND
ADDR_H[10]
ADDR_H[6]
TEST_STATUS_HI0]
TDO_H
SROM_CLK_H
GND
CLK_MODE_H[1]
CPU_CLK_OUT_H
SYS_MCH_CHK_IRQ_H
IRQ_HI[0]

PWR3
ADDR_H[37]
ADDR_HI[33]
ADDR_H[29]
ADDR_H[25]

USE

TOWWU——0—TO0O00OWWUUUUU UV U UUTO U U —TUWUUUWUUUUUUUUUUUTU UV U U—TU UV U U UTWWWOEOWIE®E®

BPIN

BA41
BA43
BAS5
BA7
BA9
BB10
BB12
BB14
BB16
BB18
BB2
BB20
BB22
BB24
BB26
BB28
BB30
BB32
BB34
BB36
BB38
BB4
BB40
BB42
BB6
BB8
BC1
BC11
BC13
BC15
BC17
BC19
BC21
BC23
BC25
BC27
BC29
BC3
BC31
BC33
BC35
BC37
BC39
BC41
BC43
BC5
BC7
BC9
C1
Cc1
C13
C15
C17
C19
c21
C23
C25
c27
C29
C3
C31
C33
C35
C37
C39

SIGNAL

PWR3

GND

PWR3
ADDR_H[18]
ADDR_H[14]
GND

PWRS3
ADDR_H[4]
PWR3

GND

GND
PORT_MODE_H[1]
OSC_CLK_IN_L
SYS_CLK_OUT1 L
GND

PWRS3
ADDR_H[39]
PWR3

GND

PWR3

GND

PWRS3

PWR3

GND

GND

PWR3

GND

ADDR_H[9]
ADDR_H[5]
TRST_L

TDI_H
SROM_DAT_H
OSC_CLK_IN_H
PWR3
SYS_CLK_OUT2 L
SYS_RESET_L
IRQ_HI[2]

GND
ADDR_H[38]
ADDR_H[34]
ADDR_H[30]
ADDR_H[26]
ADDR_H[22]
GND

GND
ADDR_H[21]
ADDR_H[17]
ADDR_H[13]
GND
TAG_DATA_H[31]
TAG_DATA_H[35]
TAG_DATA_PAR_H
SCACHE_SET_H[0]
CMD_H[2]
TAG_RAM_OE_H
NC

CFAIL_H
ADDR_RES_H[0]
INDEX_H[5]
PWR3
INDEX_HI[10]
INDEX_H[14]
INDEX_H[18]
INDEX_H[22]
PWR3

USE

TOOOO0OTO0OO0O—"ZO0O0WO0OWWWIUTWWW U IUOUWWWWWU——Q0U————WWUUUUTUTUUUUUWOUUO——"TUTUTUTWUUOWWTVTTDO

PIN

C41
C43

C5

Cc7

Cc9

D10
D12
D14
D16
D18
D2

D20
D22
D24
D26
D28
D30
D32
D34
D36
D38
D4

D40
D42
D6

D8

El

Ell
E13
E15
E17
E19
E21
E23
E25
E27
E29
E3

E31
E33
E35
E37
E39
E41
E43
E5

E7

E9

F10
F12
F14
F16
F18
F2

F20
F22
F24
F26
F28
F30
F32
F34
F36
F38
F4

F40

SIGNAL

PWR3
GND

PWR3
TAG_DATA _H[23]
TAG_DATA_H[27]
PWR3

GND

PWR3

GND

PWR3

PWR3

GND

PWR3

GND

PWR3

GND

PWR3

GND

PWR3

GND

PWR3

GND

GND

PWR3

PWR3

GND
DATA_CHECK_H[15]
TAG_DATA_H[29]
TAG_DATA_H[33]
TAG_DATA_H[38]
TAG_DIRTY_H
CMD_H[3]

VICTIM_PENDING_H

ADDR_BUS_REQ_H
DATA_BUS_REQ_H
NC

INDEX_H[7]
INT4_VALID_H[3]
INDEX_H[12]
INDEX_H[16]
INDEX_H[20]
INDEX_H[24]

NC
INT4_VALID_H[1]
DATA_CHECK_H[7]
NC
TAG_DATA_H[21]
TAG_DATA_H[25]
TAG_DATA_H[26]
TAG_DATA_H[30]
TAG_DATA_H[34]
TAG_VALID_H
TAG_CTL_PAR_H
GND

CMD_H[0]
DATA_RAM_OE_H
FILL_ID_H
ADDR_RES_H[1]
INDEX_H[6]
INDEX_H[11]
INDEX_H[15]
INDEX_H[19]
INDEX_H[23]
INT4_VALID_HI0]
PWR3

PWR3

USE

TTOOO0OO0O0O0O0 "0 TWWWWWWWZWOZOO00000Z"T"T0OWWWWWWTUUUUUUUUUUUUTUUUUUUUUUW®YU TT

AlphaStation 600 Physical Partitioning 6-17

PIN

F42
F6
F8
Gl
G11
G13

Table 6-8

PIN

E23
B20
BAll
AV12
AW11
BC9
BA9
AV10
AW9
BC7
BA7
AV8
AW7
BC5
BC39
AW37
AV36
BA37
BC37
AW35
AV34
BA35
BC35
AW33
AV32
BA33
BC33
AW31
AV30
BA31
BC31
BB30
BB14
BC13
BA13
AV14
AW13
BC11
c27
F26
G21
C25
AU21
BA23
F20
A19
C19
E19
BA25
B24
E25
J41
J5

6-18 AlphaStation 600 Physical Partitioning

SIGNAL

GND
INT4_VALID_H[2]
TAG_DATA_H[22]
DATA_CHECK_H[11]
PWR3

GND

SIGNAL

ADDR_BUS_REQ_H
ADDR_CMD_PAR_H
ADDR_H[10]
ADDR_H[11]
ADDR_H[12]
ADDR_H[13]
ADDR_H[14]
ADDR_H[15]
ADDR_H[16]
ADDR_H[17]
ADDR_H[18]
ADDR_H[19]
ADDR_H[20]
ADDR_H[21]
ADDR_H[22]
ADDR_H[23]
ADDR_H[24]
ADDR_H[25]
ADDR_H[26]
ADDR_H[27]
ADDR_H[28]
ADDR_H[29]
ADDR_H[30]
ADDR_H[31]
ADDR_H[32]
ADDR_H[33]
ADDR_H[34]
ADDR_HI[35]
ADDR_H[36]
ADDR_H[37]
ADDR_HI[38]
ADDR_H[39]
ADDR_H[4]
ADDR_HI[5]
ADDR_H[6]
ADDR_H[7]
ADDR_HI[8]
ADDR_H[9]
ADDR_RES_H[0]
ADDR_RES_H[1]
CACK_H
CFAIL_H
CLK_MODE_H[0]
CLK_MODE_H[1]
CMD_H[0]
CMD_H[1]
CMD_H[2]
CMD_H[3]
CPU_CLK_OUT H
DACK_H
DATA_BUS_REQ_H
DATA_CHECK_H[0]
DATA_CHECK_H[10]

USE

T TOVTWWO T

EV5 PINS - Alphabetic Order

C
(7]
m

WO 0WWWW——"—""—000 WU WHTITT IO TDHTOTOTEO®OTODEIOITD®E®E®E®E—

PIN
Gl
G3
H6
G5
El
K38
J39
G43
G41
H38
G39
E43
J3
K6
J43
AG3
AF6
AG5
AJl
AJ3
AH6
AJ5
AK2
AL1
AL3
R39
AKG6
ALS5
AN1
AN3
AM6
AN5
AR1
AR3
AP6
AR5
T38
AUl
AU3
AT6
AU5
AW1
AW3
AV6
AW5
R41
R43
U39
V38
U4l
u43
W39
w41
L39
W43
Y38
Y42
AA39
AA41
AA43
AB38
AC43
AC41
AC39
M38
ADA42
AD38

SIGNAL
DATA_CHECK_H[11]
DATA_CHECK_H[12]
DATA_CHECK_H[13]
DATA_CHECK_H[14]
DATA_CHECK_H[15]
DATA_CHECK_HI[1]
DATA_CHECK_H[2]
DATA_CHECK_HI[3]
DATA_CHECK_H[4]
DATA_CHECK_H[5]
DATA_CHECK_HI[6]
DATA_CHECK_H[7]
DATA_CHECK_H[8]
DATA_CHECK_H[9]
DATA_H[0]
DATA_H[100]
DATA_H[101]
DATA_H[102]
DATA_H[103]
DATA_H[104]
DATA_H[105]
DATA_H[106]
DATA_H[107]
DATA_H[108]
DATA_H[109]
DATA_H[10]
DATA_H[110]
DATA_H[111]
DATA_H[112]
DATA_H[113]
DATA_H[114]
DATA_H[115]
DATA_H[116]
DATA_H[117]
DATA_H[118]
DATA_H[119]
DATA_H[11]
DATA_H[120]
DATA_H[121]
DATA_H[122]
DATA_H[123]
DATA_H[124]
DATA_H[125]
DATA_H[126]
DATA_H[127]
DATA_H[12]
DATA_H[13]
DATA_H[14]
DATA_H[15]
DATA_H[16]
DATA_H[17]
DATA_H[18]
DATA_H[19]
DATA_H[1]
DATA_H[20]
DATA_H[21]
DATA_H[22]
DATA_H[23]
DATA_H[24]
DATA_H[25]
DATA_H[26]
DATA_H[27]
DATA_H[28]
DATA_H[29]
DATA_H[2]
DATA_H[30]
DATA_H[31]

os s RveRvelRveiNve R ve v ivos R ve alvolnvs R ve Al v vy R vs B ve Rl vo i ov B ve Al ve v R oe Bl ve v B o v R we AL v Bt v i vs B ve SRl v o Bt o v R ve AL v B v R v s AL v e v B o v B v e ARl v v R v e A ve v o v B v e AL v B v R vs B v e Sl v v B o s B ve AL v B v v v e AL v e B v B o v B v e B v B v v A v e B v v I

n
m

PIN

AEA43
AE41
AE39
AG43
AG41
AF38
AG39
AJ43
L41
AJ4l
AH38
AJ39
AK42
E41
F6

E3
BA29
AU27
BC29
AW27
AU25
AV28
C23
E27
E39
E5
BC21
BB22
AW29
AY20
BB20
G33
AB2
AB4
AB40
AB42
AE37
AE7
AF4
AF40
AH2
AH42
AJ37
AJ7
AK4
AK40
AM2
AMA42
AN37
AN7
AP4
AP40
AT2
ATA42
AU11
AU15
AU19
AU29
AU33
AU37
AU7
AV4
AV40
AY10
AY14
AY18
AY2
AY26

SIGNAL

DATA_H[32]
DATA_HI[33]
DATA_H[34]
DATA_HI[35]
DATA_HI[36]
DATA_HI[37]
DATA_HI[38]
DATA_H[39]
DATA_HI3]
DATA_H[40]
DATA_H[41]
DATA_H[42]
DATA_H[43]
INT4_VALID_H[1]
INT4_VALID_H[2]
INT4_VALID_H[3]
IRQ_H[0]
IRQ_H[1]
IRQ_H[2]
IRQ_H[3]
MCH_HLT_IRQ_H
NC

NC

NC

NC

NC
OSC_CLK_IN_H
OSC_CLK_IN_L
PERF_MON_H
PORT_MODE_H[0]
PORT_MODE_H[1]
PWR

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

PWR3

USE

VTV TUVTUVUUVUUUTUVTTUVUTUVUUUUUTUVUTUVUUUUUTUVUTUVUUUUUOUTUVUUUUUOUOUTUVUTUOUIUO—————2Z2Z2Z222-——~—~"0000 0000 W®WEWIE®®

PIN

AY30
AY34
AY38
AY42
AY6
B12
B16
B22
B28
B32
B36
B4
B40
B8
BA3
BA39
BA41
BA5
BB12
BB16
BB28
BB32
BB36
BB4
BB40
BB8
BC23
c3
C39
ca1
c5
D10
D14
D18
D2
D22
D26
D30
D34
D38
D42
D6
F4
F40
G11
G15
G19
G29
G37
G7
H2
H42
K4
K40
L37
L7
M2
M42
P4
P40
R37
R7
T2
T42
va
V40

SIGNAL USE

PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3
PWR3

UV UV TUVTUVTUVUUVUUUUUTUVUUUUUUTUVUUUUUUTUTUVUUUUUUTUVUUVUUUUUTUUVUUUUUUTUTUUUUUUTUTTUUTUTUTUTUTUTUTUTOUTUTUTUTTTUTTO

AlphaStation 600 Physical Partitioning 6-19

PIN

W37
W7
AV26
AW25
C17
Al7
BA19
BC19
AW19
AV20
G27
AW23
BB24
AV24
BC25
BA27
BC27
F18
A5
E7
F8
Cc7
A7
E9
F10
C9
A9
E1l
F12
Ci11
All
E13
F14
C13
Al13
B14
E15
C15
E17
c21
A21
Al5
F16
AW17
BC17
BAl7
AW15
BA15
AV16
AV18
BC15
E21

6-20 AlphaStation 600 Physical Partitioning

SIGNAL

PWR3

PWR3
PWR_FAIL_IRQ_H
REF_CLK_IN_H
SCACHE_SET_H[0]
SCACHE_SET_HI[1]
SROM_CLK_H
SROM_DAT_H
SROM_OE_L

SROM_PRESENT _L
SYSTEM_LOCK_FLAG_H

SYS_CLK_OUT1 H
SYS_CLK_OUT1 L
SYS_CLK_OUT2_H
SYS_CLK_OUT2 L

SYS_MCH_CHK_IRQ_H

SYS_RESET_L
TAG_CTL_PAR_H
TAG_DATA_H[20]
TAG_DATA_H[21]
TAG_DATA_H[22]
TAG_DATA_H[23]
TAG_DATA_H[24]
TAG_DATA_H[25]
TAG_DATA_H[26]
TAG_DATA_H[27]
TAG_DATA_H[28]
TAG_DATA_H[29]
TAG_DATA_H[30]
TAG_DATA_H[31]
TAG_DATA_H[32]
TAG_DATA_H[33]
TAG_DATA_H[34]
TAG_DATA_H[35]
TAG_DATA_H[36]
TAG_DATA_H[37]
TAG_DATA_H[38]
TAG_DATA_PAR_H
TAG_DIRTY_H
TAG_RAM_OE_H
TAG_RAM_WE_H
TAG_SHARED_H
TAG_VALID_H
TCK_H

TDI_H

TDO_H
TEMP_SENS_H

TEST_STATUS_H[0]
TEST_STATUS_HI[1]

TMS_H
TRST L

VICTIM_PENDING_H

USE

O~~~ 00~ 0~~~ OO0 WWWTWWIWWWWIPITW®ITOT®ITOIOIO®IT——"00O0OO0O~——"0~~000O0O——T DT

DSW ASIC

The DSW ASIC is a sliced data switch design that allows the AlphaStation 600 system
cache, memory, and I/0O systems to talk to each other. All DSW data paths are protected
by quadword ECC. Table 6-9 summarizes DSW features:

Table 6-9 DSW Features

Feature GRU ASIC

Vendor LSI Logic

Technology LCA 100K CMOS

Package type 208 Pin PQFP (.5 mm pin pitch)
Number of 1/O pins 158

Gate Count 25 K gates

Supply Voltage 5V

Clocking Scheme Single ended input; internal PLL circuit
External Clock cycle time 30ns

Internal Clock cycle time 15/30 ns

Chips per AlphaStation 600 system | 4

Figure 6-6 DSW Pinout - Top View

AlphaStation 600 Physical Partitioning 6-21

Table 6-10 DSW PIN OUT - Sorted by Pin

z

©oO~NOUOMWNET

DO NN ADDBAMDADMDMBIEILAEDNDDDIDMWWWWWWWWWWNNNDNNNNNNNNRPRRPREPRERPERPERRELPR
A OWONPOOO~NOUORARWNRPOOONOOUOPRAWNPEPOOO~NOOUORMWNRPOOONOOUOPRWNRPEPOOO~NOOOMAWNEO

Number

SIGNAL
PWR5

10D[0]
CPU_DATI0]
CPU_DATI[1]
GND
MEM_DATI0]
MEM_DATI[1]
MEM_DATI[2]
MEM_DATI3]
PWR5

10D[1]
CPU_DATI[2]
CPU_DATI[3]
GND
MEM_DATI[4]
MEM_DATI5]
MEM_DATI6]
MEM_DATI[7]
PWR5

10D[2]
CPU_DATI[4]
CPU_DATI[5]
GND
MEM_DATIS]
MEM_DATI9]
MEM_DAT[10]
MEM_DAT[11]
PWR5

10D[3]
CPU_DATI6]
CPU_DATI[7]
GND
MEM_DAT[12]
MEM_DAT[13]
MEM_DAT[14]
MEM_DATI[15]
PWR5

10C[6]

10C[5]

10C[4]

10C[3]

10C[2]

10C[1]

GND

10C[0]
MEM_EN
TEST_MODE[0]
TEST_MODE[1]
CONFIG[0]
CONFIG[1]
TEST_OR_SCAN_OUT
PWR5

GND

10D[4]
CPU_DATI8]
CPU_DATI[9]
PWR5
MEM_DATI[16]
MEM_DAT[17]
MEM_DATI[18]
MEM_DAT[19]
GND

10D[5]
CPU_DATI[10]

6-22 AlphaStation 600 Physical Partitioning

WX OV OWO®P® O OO~ —"—"—"—"—"T0 - ———"——"~" 00 0O OO O OTOOOWOWOEW OO EOTEOEOOTOTWOEWOP®EO®E®E®OWIT®EOC

(%))
m

PIN
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

SIGNAL
CPU_DATI[11]
PWR5
MEM_DATI[20]
MEM_DATI[21]
MEM_DATI[22]
MEM_DATI[23]
GND

10D[6]
CPU_DATI[12]
CPU_DATI[13]
PWR5
MEM_DATI[24]
MEM_DATI[25]
MEM_DATI[26]
MEM_DATI[27]
GND

10D[7]
CPU_DATI[14]
CPU_DATI[15]
PWR5
MEM_DATI[28]
MEM_DATI[29]
MEM_DATI[30]
MEM_DATI[31]
GND

10D[8]
CPU_DATI[16]
CPU_DATI[17]
PWR5
MEM_DATI[32]
MEM_DATI[33]
MEM_DATI[34]
MEM_DATI[35]
GND

CMC[4]
CMC[3]
CMC[2]
CMC[1]
CMCI0]

PWRS5
PLL_CLK
GND

PLL_LP2
PWR5
PLL_AGND
PLL_VSS
GND
PLL_VDD
PLL_LP1
PWR5
RESET L
CMCI5]
CMCI6]
CcMC[7]
CMC[8]

GND
MEM_DATI[39]
MEM_DATI[38]
MEM_DATI[37]
MEM_DATI[36]
PWRS5
CPU_DATI[19]
CPU_DATI[18]
10D[9]

GND

TOWWIOOWNODWOWW O ————=—=—TVT—=—T0——"—TVT—-T0—-TU0U—-————"——"T000W0W OO OWWWIO OO W OO OWIOOOO®E®®TOTC

wn
m

PIN
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

SIGNAL
MEM_DATI[43]
MEM_DAT[42]
MEM_DATI[41]
MEM_DATI[40]
PWR5
CPU_DAT[21]
CPU_DAT[20]
10D[10]

GND
MEM_DATI[47]
MEM_DATI[46]
MEM_DATI[45]
MEM_DAT[44]
PWR5
CPU_DAT[23]
CPU_DAT[22]
10D[11]

GND
MEM_DATI[51]
MEM_DATI[50]
MEM_DATI[49]
MEM_DATI[48]
GND
CPU_DAT[25]
CPU_DAT[24]
10D[12]

PWR5

PWR5

10D[13]
CPU_DAT[26]
CPU_DAT[27]
GND
MEM_DATI[52]
MEM_DATI[53]
MEM_DATI[54]
MEM_DATI55]
PWR5

10D[14]
CPU_DAT[28]
CPU_DAT[29]
GND
MEM_DATI[56]
MEM_DATI[57]
MEM_DATI[58]
MEM_DAT[59]
PWRS5

|OD[15]
CPU_DAT[30]
CPU_DA