next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000110107 seconds elapsed
 -- 0.00125352 seconds elapsed
 -- 0.000292118 seconds elapsed
 -- 0.000101029 seconds elapsed
 -- 0.00106651 seconds elapsed
 -- 0.000284504 seconds elapsed
 -- 0.000087935 seconds elapsed
 -- 0.000084367 seconds elapsed
 -- 0.000233428 seconds elapsed
 -- 0.000102092 seconds elapsed
 -- 0.000979043 seconds elapsed
 -- 0.000252523 seconds elapsed
 -- 0.000098385 seconds elapsed
 -- 0.000964356 seconds elapsed
 -- 0.000255117 seconds elapsed
 -- 0.000099306 seconds elapsed
 -- 0.000900816 seconds elapsed
 -- 0.000252763 seconds elapsed
 -- 0.000101981 seconds elapsed
 -- 0.000994101 seconds elapsed
 -- 0.000255257 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000098645 seconds elapsed
 -- 0.00115669 seconds elapsed
 -- 0.000254967 seconds elapsed
 -- 0.000095568 seconds elapsed
 -- 0.00103407 seconds elapsed
 -- 0.000288149 seconds elapsed
 -- 0.000098253 seconds elapsed
 -- 0.000961581 seconds elapsed
 -- 0.000263804 seconds elapsed
 -- 0.000095188 seconds elapsed
 -- 0.000915163 seconds elapsed
 -- 0.000270176 seconds elapsed
 -- 0.00009616 seconds elapsed
 -- 0.000893464 seconds elapsed
 -- 0.000252233 seconds elapsed
 -- 0.000098724 seconds elapsed
 -- 0.000958605 seconds elapsed
 -- 0.000247022 seconds elapsed
 -- 0.000098485 seconds elapsed
 -- 0.00119849 seconds elapsed
 -- 0.000249537 seconds elapsed
 -- 0.000093967 seconds elapsed
 -- 0.00103451 seconds elapsed
 -- 0.000247684 seconds elapsed
 -- 0.000094477 seconds elapsed
 -- 0.000926404 seconds elapsed
 -- 0.000236983 seconds elapsed
 -- 0.000096571 seconds elapsed
 -- 0.000880838 seconds elapsed
 -- 0.000291557 seconds elapsed
 -- 0.000098515 seconds elapsed
 -- 0.000883124 seconds elapsed
 -- 0.000249717 seconds elapsed
 -- 0.000095137 seconds elapsed
 -- 0.000967142 seconds elapsed
 -- 0.000250058 seconds elapsed
 -- 0.000098875 seconds elapsed
 -- 0.00143097 seconds elapsed
 -- 0.000409717 seconds elapsed
 -- 0.000103785 seconds elapsed
 -- 0.00135357 seconds elapsed
 -- 0.000420136 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.