• Main Page
  • Related Pages
  • Modules
  • Data Structures
  • Files
  • Examples
  • File List
  • Globals

libavcodec/adpcm.c

Go to the documentation of this file.
00001 /*
00002  * Copyright (c) 2001-2003 The ffmpeg Project
00003  *
00004  * This file is part of Libav.
00005  *
00006  * Libav is free software; you can redistribute it and/or
00007  * modify it under the terms of the GNU Lesser General Public
00008  * License as published by the Free Software Foundation; either
00009  * version 2.1 of the License, or (at your option) any later version.
00010  *
00011  * Libav is distributed in the hope that it will be useful,
00012  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00014  * Lesser General Public License for more details.
00015  *
00016  * You should have received a copy of the GNU Lesser General Public
00017  * License along with Libav; if not, write to the Free Software
00018  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00019  */
00020 #include "avcodec.h"
00021 #include "get_bits.h"
00022 #include "put_bits.h"
00023 #include "bytestream.h"
00024 #include "adpcm.h"
00025 #include "adpcm_data.h"
00026 
00059 /* These are for CD-ROM XA ADPCM */
00060 static const int xa_adpcm_table[5][2] = {
00061     {   0,   0 },
00062     {  60,   0 },
00063     { 115, -52 },
00064     {  98, -55 },
00065     { 122, -60 }
00066 };
00067 
00068 static const int ea_adpcm_table[] = {
00069     0,  240,  460,  392,
00070     0,    0, -208, -220,
00071     0,    1,    3,    4,
00072     7,    8,   10,   11,
00073     0,   -1,   -3,   -4
00074 };
00075 
00076 // padded to zero where table size is less then 16
00077 static const int swf_index_tables[4][16] = {
00078     /*2*/ { -1, 2 },
00079     /*3*/ { -1, -1, 2, 4 },
00080     /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
00081     /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
00082 };
00083 
00084 /* end of tables */
00085 
00086 typedef struct ADPCMDecodeContext {
00087     AVFrame frame;
00088     ADPCMChannelStatus status[6];
00089 } ADPCMDecodeContext;
00090 
00091 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
00092 {
00093     ADPCMDecodeContext *c = avctx->priv_data;
00094     unsigned int min_channels = 1;
00095     unsigned int max_channels = 2;
00096 
00097     switch(avctx->codec->id) {
00098     case CODEC_ID_ADPCM_EA:
00099         min_channels = 2;
00100         break;
00101     case CODEC_ID_ADPCM_EA_R1:
00102     case CODEC_ID_ADPCM_EA_R2:
00103     case CODEC_ID_ADPCM_EA_R3:
00104     case CODEC_ID_ADPCM_EA_XAS:
00105         max_channels = 6;
00106         break;
00107     }
00108     if (avctx->channels < min_channels || avctx->channels > max_channels) {
00109         av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
00110         return AVERROR(EINVAL);
00111     }
00112 
00113     switch(avctx->codec->id) {
00114     case CODEC_ID_ADPCM_CT:
00115         c->status[0].step = c->status[1].step = 511;
00116         break;
00117     case CODEC_ID_ADPCM_IMA_WAV:
00118         if (avctx->bits_per_coded_sample != 4) {
00119             av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
00120             return -1;
00121         }
00122         break;
00123     case CODEC_ID_ADPCM_IMA_WS:
00124         if (avctx->extradata && avctx->extradata_size == 2 * 4) {
00125             c->status[0].predictor = AV_RL32(avctx->extradata);
00126             c->status[1].predictor = AV_RL32(avctx->extradata + 4);
00127         }
00128         break;
00129     default:
00130         break;
00131     }
00132     avctx->sample_fmt = AV_SAMPLE_FMT_S16;
00133 
00134     avcodec_get_frame_defaults(&c->frame);
00135     avctx->coded_frame = &c->frame;
00136 
00137     return 0;
00138 }
00139 
00140 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
00141 {
00142     int step_index;
00143     int predictor;
00144     int sign, delta, diff, step;
00145 
00146     step = ff_adpcm_step_table[c->step_index];
00147     step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
00148     if (step_index < 0) step_index = 0;
00149     else if (step_index > 88) step_index = 88;
00150 
00151     sign = nibble & 8;
00152     delta = nibble & 7;
00153     /* perform direct multiplication instead of series of jumps proposed by
00154      * the reference ADPCM implementation since modern CPUs can do the mults
00155      * quickly enough */
00156     diff = ((2 * delta + 1) * step) >> shift;
00157     predictor = c->predictor;
00158     if (sign) predictor -= diff;
00159     else predictor += diff;
00160 
00161     c->predictor = av_clip_int16(predictor);
00162     c->step_index = step_index;
00163 
00164     return (short)c->predictor;
00165 }
00166 
00167 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
00168 {
00169     int step_index;
00170     int predictor;
00171     int diff, step;
00172 
00173     step = ff_adpcm_step_table[c->step_index];
00174     step_index = c->step_index + ff_adpcm_index_table[nibble];
00175     step_index = av_clip(step_index, 0, 88);
00176 
00177     diff = step >> 3;
00178     if (nibble & 4) diff += step;
00179     if (nibble & 2) diff += step >> 1;
00180     if (nibble & 1) diff += step >> 2;
00181 
00182     if (nibble & 8)
00183         predictor = c->predictor - diff;
00184     else
00185         predictor = c->predictor + diff;
00186 
00187     c->predictor = av_clip_int16(predictor);
00188     c->step_index = step_index;
00189 
00190     return c->predictor;
00191 }
00192 
00193 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
00194 {
00195     int predictor;
00196 
00197     predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
00198     predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
00199 
00200     c->sample2 = c->sample1;
00201     c->sample1 = av_clip_int16(predictor);
00202     c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
00203     if (c->idelta < 16) c->idelta = 16;
00204 
00205     return c->sample1;
00206 }
00207 
00208 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
00209 {
00210     int sign, delta, diff;
00211     int new_step;
00212 
00213     sign = nibble & 8;
00214     delta = nibble & 7;
00215     /* perform direct multiplication instead of series of jumps proposed by
00216      * the reference ADPCM implementation since modern CPUs can do the mults
00217      * quickly enough */
00218     diff = ((2 * delta + 1) * c->step) >> 3;
00219     /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
00220     c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
00221     c->predictor = av_clip_int16(c->predictor);
00222     /* calculate new step and clamp it to range 511..32767 */
00223     new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
00224     c->step = av_clip(new_step, 511, 32767);
00225 
00226     return (short)c->predictor;
00227 }
00228 
00229 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
00230 {
00231     int sign, delta, diff;
00232 
00233     sign = nibble & (1<<(size-1));
00234     delta = nibble & ((1<<(size-1))-1);
00235     diff = delta << (7 + c->step + shift);
00236 
00237     /* clamp result */
00238     c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
00239 
00240     /* calculate new step */
00241     if (delta >= (2*size - 3) && c->step < 3)
00242         c->step++;
00243     else if (delta == 0 && c->step > 0)
00244         c->step--;
00245 
00246     return (short) c->predictor;
00247 }
00248 
00249 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
00250 {
00251     if(!c->step) {
00252         c->predictor = 0;
00253         c->step = 127;
00254     }
00255 
00256     c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
00257     c->predictor = av_clip_int16(c->predictor);
00258     c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
00259     c->step = av_clip(c->step, 127, 24567);
00260     return c->predictor;
00261 }
00262 
00263 static void xa_decode(short *out, const unsigned char *in,
00264     ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
00265 {
00266     int i, j;
00267     int shift,filter,f0,f1;
00268     int s_1,s_2;
00269     int d,s,t;
00270 
00271     for(i=0;i<4;i++) {
00272 
00273         shift  = 12 - (in[4+i*2] & 15);
00274         filter = in[4+i*2] >> 4;
00275         f0 = xa_adpcm_table[filter][0];
00276         f1 = xa_adpcm_table[filter][1];
00277 
00278         s_1 = left->sample1;
00279         s_2 = left->sample2;
00280 
00281         for(j=0;j<28;j++) {
00282             d = in[16+i+j*4];
00283 
00284             t = (signed char)(d<<4)>>4;
00285             s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00286             s_2 = s_1;
00287             s_1 = av_clip_int16(s);
00288             *out = s_1;
00289             out += inc;
00290         }
00291 
00292         if (inc==2) { /* stereo */
00293             left->sample1 = s_1;
00294             left->sample2 = s_2;
00295             s_1 = right->sample1;
00296             s_2 = right->sample2;
00297             out = out + 1 - 28*2;
00298         }
00299 
00300         shift  = 12 - (in[5+i*2] & 15);
00301         filter = in[5+i*2] >> 4;
00302 
00303         f0 = xa_adpcm_table[filter][0];
00304         f1 = xa_adpcm_table[filter][1];
00305 
00306         for(j=0;j<28;j++) {
00307             d = in[16+i+j*4];
00308 
00309             t = (signed char)d >> 4;
00310             s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
00311             s_2 = s_1;
00312             s_1 = av_clip_int16(s);
00313             *out = s_1;
00314             out += inc;
00315         }
00316 
00317         if (inc==2) { /* stereo */
00318             right->sample1 = s_1;
00319             right->sample2 = s_2;
00320             out -= 1;
00321         } else {
00322             left->sample1 = s_1;
00323             left->sample2 = s_2;
00324         }
00325     }
00326 }
00327 
00337 static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
00338                           int buf_size, int *coded_samples)
00339 {
00340     ADPCMDecodeContext *s = avctx->priv_data;
00341     int nb_samples        = 0;
00342     int ch                = avctx->channels;
00343     int has_coded_samples = 0;
00344     int header_size;
00345 
00346     *coded_samples = 0;
00347 
00348     switch (avctx->codec->id) {
00349     /* constant, only check buf_size */
00350     case CODEC_ID_ADPCM_EA_XAS:
00351         if (buf_size < 76 * ch)
00352             return 0;
00353         nb_samples = 128;
00354         break;
00355     case CODEC_ID_ADPCM_IMA_QT:
00356         if (buf_size < 34 * ch)
00357             return 0;
00358         nb_samples = 64;
00359         break;
00360     /* simple 4-bit adpcm */
00361     case CODEC_ID_ADPCM_CT:
00362     case CODEC_ID_ADPCM_IMA_EA_SEAD:
00363     case CODEC_ID_ADPCM_IMA_WS:
00364     case CODEC_ID_ADPCM_YAMAHA:
00365         nb_samples = buf_size * 2 / ch;
00366         break;
00367     }
00368     if (nb_samples)
00369         return nb_samples;
00370 
00371     /* simple 4-bit adpcm, with header */
00372     header_size = 0;
00373     switch (avctx->codec->id) {
00374         case CODEC_ID_ADPCM_4XM:
00375         case CODEC_ID_ADPCM_IMA_ISS:     header_size = 4 * ch;      break;
00376         case CODEC_ID_ADPCM_IMA_AMV:     header_size = 8;           break;
00377         case CODEC_ID_ADPCM_IMA_SMJPEG:  header_size = 4;           break;
00378     }
00379     if (header_size > 0)
00380         return (buf_size - header_size) * 2 / ch;
00381 
00382     /* more complex formats */
00383     switch (avctx->codec->id) {
00384     case CODEC_ID_ADPCM_EA:
00385         has_coded_samples = 1;
00386         if (buf_size < 4)
00387             return 0;
00388         *coded_samples  = AV_RL32(buf);
00389         *coded_samples -= *coded_samples % 28;
00390         nb_samples      = (buf_size - 12) / 30 * 28;
00391         break;
00392     case CODEC_ID_ADPCM_IMA_EA_EACS:
00393         has_coded_samples = 1;
00394         if (buf_size < 4)
00395             return 0;
00396         *coded_samples = AV_RL32(buf);
00397         nb_samples     = (buf_size - (4 + 8 * ch)) * 2 / ch;
00398         break;
00399     case CODEC_ID_ADPCM_EA_MAXIS_XA:
00400         nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
00401         break;
00402     case CODEC_ID_ADPCM_EA_R1:
00403     case CODEC_ID_ADPCM_EA_R2:
00404     case CODEC_ID_ADPCM_EA_R3:
00405         /* maximum number of samples */
00406         /* has internal offsets and a per-frame switch to signal raw 16-bit */
00407         has_coded_samples = 1;
00408         if (buf_size < 4)
00409             return 0;
00410         switch (avctx->codec->id) {
00411         case CODEC_ID_ADPCM_EA_R1:
00412             header_size    = 4 + 9 * ch;
00413             *coded_samples = AV_RL32(buf);
00414             break;
00415         case CODEC_ID_ADPCM_EA_R2:
00416             header_size    = 4 + 5 * ch;
00417             *coded_samples = AV_RL32(buf);
00418             break;
00419         case CODEC_ID_ADPCM_EA_R3:
00420             header_size    = 4 + 5 * ch;
00421             *coded_samples = AV_RB32(buf);
00422             break;
00423         }
00424         *coded_samples -= *coded_samples % 28;
00425         nb_samples      = (buf_size - header_size) * 2 / ch;
00426         nb_samples     -= nb_samples % 28;
00427         break;
00428     case CODEC_ID_ADPCM_IMA_DK3:
00429         if (avctx->block_align > 0)
00430             buf_size = FFMIN(buf_size, avctx->block_align);
00431         nb_samples = ((buf_size - 16) * 8 / 3) / ch;
00432         break;
00433     case CODEC_ID_ADPCM_IMA_DK4:
00434         nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
00435         break;
00436     case CODEC_ID_ADPCM_IMA_WAV:
00437         if (avctx->block_align > 0)
00438             buf_size = FFMIN(buf_size, avctx->block_align);
00439         nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
00440         break;
00441     case CODEC_ID_ADPCM_MS:
00442         if (avctx->block_align > 0)
00443             buf_size = FFMIN(buf_size, avctx->block_align);
00444         nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
00445         break;
00446     case CODEC_ID_ADPCM_SBPRO_2:
00447     case CODEC_ID_ADPCM_SBPRO_3:
00448     case CODEC_ID_ADPCM_SBPRO_4:
00449     {
00450         int samples_per_byte;
00451         switch (avctx->codec->id) {
00452         case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
00453         case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
00454         case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
00455         }
00456         if (!s->status[0].step_index) {
00457             nb_samples++;
00458             buf_size -= ch;
00459         }
00460         nb_samples += buf_size * samples_per_byte / ch;
00461         break;
00462     }
00463     case CODEC_ID_ADPCM_SWF:
00464     {
00465         int buf_bits       = buf_size * 8 - 2;
00466         int nbits          = (buf[0] >> 6) + 2;
00467         int block_hdr_size = 22 * ch;
00468         int block_size     = block_hdr_size + nbits * ch * 4095;
00469         int nblocks        = buf_bits / block_size;
00470         int bits_left      = buf_bits - nblocks * block_size;
00471         nb_samples         = nblocks * 4096;
00472         if (bits_left >= block_hdr_size)
00473             nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
00474         break;
00475     }
00476     case CODEC_ID_ADPCM_THP:
00477         has_coded_samples = 1;
00478         if (buf_size < 8)
00479             return 0;
00480         *coded_samples  = AV_RB32(&buf[4]);
00481         *coded_samples -= *coded_samples % 14;
00482         nb_samples      = (buf_size - 80) / (8 * ch) * 14;
00483         break;
00484     case CODEC_ID_ADPCM_XA:
00485         nb_samples = (buf_size / 128) * 224 / ch;
00486         break;
00487     }
00488 
00489     /* validate coded sample count */
00490     if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
00491         return AVERROR_INVALIDDATA;
00492 
00493     return nb_samples;
00494 }
00495 
00496 /* DK3 ADPCM support macro */
00497 #define DK3_GET_NEXT_NIBBLE() \
00498     if (decode_top_nibble_next) \
00499     { \
00500         nibble = last_byte >> 4; \
00501         decode_top_nibble_next = 0; \
00502     } \
00503     else \
00504     { \
00505         if (end_of_packet) \
00506             break; \
00507         last_byte = *src++; \
00508         if (src >= buf + buf_size) \
00509             end_of_packet = 1; \
00510         nibble = last_byte & 0x0F; \
00511         decode_top_nibble_next = 1; \
00512     }
00513 
00514 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
00515                               int *got_frame_ptr, AVPacket *avpkt)
00516 {
00517     const uint8_t *buf = avpkt->data;
00518     int buf_size = avpkt->size;
00519     ADPCMDecodeContext *c = avctx->priv_data;
00520     ADPCMChannelStatus *cs;
00521     int n, m, channel, i;
00522     short *samples;
00523     const uint8_t *src;
00524     int st; /* stereo */
00525     int count1, count2;
00526     int nb_samples, coded_samples, ret;
00527 
00528     nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
00529     if (nb_samples <= 0) {
00530         av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
00531         return AVERROR_INVALIDDATA;
00532     }
00533 
00534     /* get output buffer */
00535     c->frame.nb_samples = nb_samples;
00536     if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
00537         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
00538         return ret;
00539     }
00540     samples = (short *)c->frame.data[0];
00541 
00542     /* use coded_samples when applicable */
00543     /* it is always <= nb_samples, so the output buffer will be large enough */
00544     if (coded_samples) {
00545         if (coded_samples != nb_samples)
00546             av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
00547         c->frame.nb_samples = nb_samples = coded_samples;
00548     }
00549 
00550     src = buf;
00551 
00552     st = avctx->channels == 2 ? 1 : 0;
00553 
00554     switch(avctx->codec->id) {
00555     case CODEC_ID_ADPCM_IMA_QT:
00556         /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
00557            Channel data is interleaved per-chunk. */
00558         for (channel = 0; channel < avctx->channels; channel++) {
00559             int16_t predictor;
00560             int step_index;
00561             cs = &(c->status[channel]);
00562             /* (pppppp) (piiiiiii) */
00563 
00564             /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
00565             predictor = AV_RB16(src);
00566             step_index = predictor & 0x7F;
00567             predictor &= 0xFF80;
00568 
00569             src += 2;
00570 
00571             if (cs->step_index == step_index) {
00572                 int diff = (int)predictor - cs->predictor;
00573                 if (diff < 0)
00574                     diff = - diff;
00575                 if (diff > 0x7f)
00576                     goto update;
00577             } else {
00578             update:
00579                 cs->step_index = step_index;
00580                 cs->predictor = predictor;
00581             }
00582 
00583             if (cs->step_index > 88){
00584                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00585                 cs->step_index = 88;
00586             }
00587 
00588             samples = (short *)c->frame.data[0] + channel;
00589 
00590             for (m = 0; m < 32; m++) {
00591                 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
00592                 samples += avctx->channels;
00593                 *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4  , 3);
00594                 samples += avctx->channels;
00595                 src ++;
00596             }
00597         }
00598         break;
00599     case CODEC_ID_ADPCM_IMA_WAV:
00600         if (avctx->block_align != 0 && buf_size > avctx->block_align)
00601             buf_size = avctx->block_align;
00602 
00603         for(i=0; i<avctx->channels; i++){
00604             cs = &(c->status[i]);
00605             cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
00606 
00607             cs->step_index = *src++;
00608             if (cs->step_index > 88){
00609                 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
00610                 cs->step_index = 88;
00611             }
00612             if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
00613         }
00614 
00615         for (n = (nb_samples - 1) / 8; n > 0; n--) {
00616             for (i = 0; i < avctx->channels; i++) {
00617                 cs = &c->status[i];
00618                 for (m = 0; m < 4; m++) {
00619                     uint8_t v = *src++;
00620                     *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
00621                     samples += avctx->channels;
00622                     *samples = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
00623                     samples += avctx->channels;
00624                 }
00625                 samples -= 8 * avctx->channels - 1;
00626             }
00627             samples += 7 * avctx->channels;
00628         }
00629         break;
00630     case CODEC_ID_ADPCM_4XM:
00631         for (i = 0; i < avctx->channels; i++)
00632             c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
00633 
00634         for (i = 0; i < avctx->channels; i++) {
00635             c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
00636             c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
00637         }
00638 
00639         for (i = 0; i < avctx->channels; i++) {
00640             samples = (short *)c->frame.data[0] + i;
00641             cs = &c->status[i];
00642             for (n = nb_samples >> 1; n > 0; n--, src++) {
00643                 uint8_t v = *src;
00644                 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
00645                 samples += avctx->channels;
00646                 *samples = adpcm_ima_expand_nibble(cs, v >> 4  , 4);
00647                 samples += avctx->channels;
00648             }
00649         }
00650         break;
00651     case CODEC_ID_ADPCM_MS:
00652     {
00653         int block_predictor;
00654 
00655         if (avctx->block_align != 0 && buf_size > avctx->block_align)
00656             buf_size = avctx->block_align;
00657 
00658         block_predictor = av_clip(*src++, 0, 6);
00659         c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00660         c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00661         if (st) {
00662             block_predictor = av_clip(*src++, 0, 6);
00663             c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
00664             c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
00665         }
00666         c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
00667         if (st){
00668             c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
00669         }
00670 
00671         c->status[0].sample1 = bytestream_get_le16(&src);
00672         if (st) c->status[1].sample1 = bytestream_get_le16(&src);
00673         c->status[0].sample2 = bytestream_get_le16(&src);
00674         if (st) c->status[1].sample2 = bytestream_get_le16(&src);
00675 
00676         *samples++ = c->status[0].sample2;
00677         if (st) *samples++ = c->status[1].sample2;
00678         *samples++ = c->status[0].sample1;
00679         if (st) *samples++ = c->status[1].sample1;
00680         for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
00681             *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
00682             *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
00683         }
00684         break;
00685     }
00686     case CODEC_ID_ADPCM_IMA_DK4:
00687         if (avctx->block_align != 0 && buf_size > avctx->block_align)
00688             buf_size = avctx->block_align;
00689 
00690         for (channel = 0; channel < avctx->channels; channel++) {
00691             cs = &c->status[channel];
00692             cs->predictor  = (int16_t)bytestream_get_le16(&src);
00693             cs->step_index = *src++;
00694             src++;
00695             *samples++ = cs->predictor;
00696         }
00697         for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00698             uint8_t v = *src;
00699             *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4  , 3);
00700             *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00701         }
00702         break;
00703     case CODEC_ID_ADPCM_IMA_DK3:
00704     {
00705         unsigned char last_byte = 0;
00706         unsigned char nibble;
00707         int decode_top_nibble_next = 0;
00708         int end_of_packet = 0;
00709         int diff_channel;
00710 
00711         if (avctx->block_align != 0 && buf_size > avctx->block_align)
00712             buf_size = avctx->block_align;
00713 
00714         c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
00715         c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
00716         c->status[0].step_index = src[14];
00717         c->status[1].step_index = src[15];
00718         /* sign extend the predictors */
00719         src += 16;
00720         diff_channel = c->status[1].predictor;
00721 
00722         /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
00723          * the buffer is consumed */
00724         while (1) {
00725 
00726             /* for this algorithm, c->status[0] is the sum channel and
00727              * c->status[1] is the diff channel */
00728 
00729             /* process the first predictor of the sum channel */
00730             DK3_GET_NEXT_NIBBLE();
00731             adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00732 
00733             /* process the diff channel predictor */
00734             DK3_GET_NEXT_NIBBLE();
00735             adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
00736 
00737             /* process the first pair of stereo PCM samples */
00738             diff_channel = (diff_channel + c->status[1].predictor) / 2;
00739             *samples++ = c->status[0].predictor + c->status[1].predictor;
00740             *samples++ = c->status[0].predictor - c->status[1].predictor;
00741 
00742             /* process the second predictor of the sum channel */
00743             DK3_GET_NEXT_NIBBLE();
00744             adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
00745 
00746             /* process the second pair of stereo PCM samples */
00747             diff_channel = (diff_channel + c->status[1].predictor) / 2;
00748             *samples++ = c->status[0].predictor + c->status[1].predictor;
00749             *samples++ = c->status[0].predictor - c->status[1].predictor;
00750         }
00751         break;
00752     }
00753     case CODEC_ID_ADPCM_IMA_ISS:
00754         for (channel = 0; channel < avctx->channels; channel++) {
00755             cs = &c->status[channel];
00756             cs->predictor  = (int16_t)bytestream_get_le16(&src);
00757             cs->step_index = *src++;
00758             src++;
00759         }
00760 
00761         for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00762             uint8_t v1, v2;
00763             uint8_t v = *src;
00764             /* nibbles are swapped for mono */
00765             if (st) {
00766                 v1 = v >> 4;
00767                 v2 = v & 0x0F;
00768             } else {
00769                 v2 = v >> 4;
00770                 v1 = v & 0x0F;
00771             }
00772             *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
00773             *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
00774         }
00775         break;
00776     case CODEC_ID_ADPCM_IMA_WS:
00777         while (src < buf + buf_size) {
00778             uint8_t v = *src++;
00779             *samples++ = adpcm_ima_expand_nibble(&c->status[0],  v >> 4  , 3);
00780             *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
00781         }
00782         break;
00783     case CODEC_ID_ADPCM_XA:
00784         while (buf_size >= 128) {
00785             xa_decode(samples, src, &c->status[0], &c->status[1],
00786                 avctx->channels);
00787             src += 128;
00788             samples += 28 * 8;
00789             buf_size -= 128;
00790         }
00791         break;
00792     case CODEC_ID_ADPCM_IMA_EA_EACS:
00793         src += 4; // skip sample count (already read)
00794 
00795         for (i=0; i<=st; i++)
00796             c->status[i].step_index = bytestream_get_le32(&src);
00797         for (i=0; i<=st; i++)
00798             c->status[i].predictor  = bytestream_get_le32(&src);
00799 
00800         for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00801             *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
00802             *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
00803         }
00804         break;
00805     case CODEC_ID_ADPCM_IMA_EA_SEAD:
00806         for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
00807             *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
00808             *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
00809         }
00810         break;
00811     case CODEC_ID_ADPCM_EA:
00812     {
00813         int32_t previous_left_sample, previous_right_sample;
00814         int32_t current_left_sample, current_right_sample;
00815         int32_t next_left_sample, next_right_sample;
00816         int32_t coeff1l, coeff2l, coeff1r, coeff2r;
00817         uint8_t shift_left, shift_right;
00818 
00819         /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
00820            each coding 28 stereo samples. */
00821 
00822         src += 4; // skip sample count (already read)
00823 
00824         current_left_sample   = (int16_t)bytestream_get_le16(&src);
00825         previous_left_sample  = (int16_t)bytestream_get_le16(&src);
00826         current_right_sample  = (int16_t)bytestream_get_le16(&src);
00827         previous_right_sample = (int16_t)bytestream_get_le16(&src);
00828 
00829         for (count1 = 0; count1 < nb_samples / 28; count1++) {
00830             coeff1l = ea_adpcm_table[ *src >> 4       ];
00831             coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
00832             coeff1r = ea_adpcm_table[*src & 0x0F];
00833             coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
00834             src++;
00835 
00836             shift_left  = 20 - (*src >> 4);
00837             shift_right = 20 - (*src & 0x0F);
00838             src++;
00839 
00840             for (count2 = 0; count2 < 28; count2++) {
00841                 next_left_sample  = sign_extend(*src >> 4, 4) << shift_left;
00842                 next_right_sample = sign_extend(*src,      4) << shift_right;
00843                 src++;
00844 
00845                 next_left_sample = (next_left_sample +
00846                     (current_left_sample * coeff1l) +
00847                     (previous_left_sample * coeff2l) + 0x80) >> 8;
00848                 next_right_sample = (next_right_sample +
00849                     (current_right_sample * coeff1r) +
00850                     (previous_right_sample * coeff2r) + 0x80) >> 8;
00851 
00852                 previous_left_sample = current_left_sample;
00853                 current_left_sample = av_clip_int16(next_left_sample);
00854                 previous_right_sample = current_right_sample;
00855                 current_right_sample = av_clip_int16(next_right_sample);
00856                 *samples++ = (unsigned short)current_left_sample;
00857                 *samples++ = (unsigned short)current_right_sample;
00858             }
00859         }
00860 
00861         if (src - buf == buf_size - 2)
00862             src += 2; // Skip terminating 0x0000
00863 
00864         break;
00865     }
00866     case CODEC_ID_ADPCM_EA_MAXIS_XA:
00867     {
00868         int coeff[2][2], shift[2];
00869 
00870         for(channel = 0; channel < avctx->channels; channel++) {
00871             for (i=0; i<2; i++)
00872                 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
00873             shift[channel] = 20 - (*src & 0x0F);
00874             src++;
00875         }
00876         for (count1 = 0; count1 < nb_samples / 2; count1++) {
00877             for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
00878                 for(channel = 0; channel < avctx->channels; channel++) {
00879                     int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
00880                     sample = (sample +
00881                              c->status[channel].sample1 * coeff[channel][0] +
00882                              c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
00883                     c->status[channel].sample2 = c->status[channel].sample1;
00884                     c->status[channel].sample1 = av_clip_int16(sample);
00885                     *samples++ = c->status[channel].sample1;
00886                 }
00887             }
00888             src+=avctx->channels;
00889         }
00890         /* consume whole packet */
00891         src = buf + buf_size;
00892         break;
00893     }
00894     case CODEC_ID_ADPCM_EA_R1:
00895     case CODEC_ID_ADPCM_EA_R2:
00896     case CODEC_ID_ADPCM_EA_R3: {
00897         /* channel numbering
00898            2chan: 0=fl, 1=fr
00899            4chan: 0=fl, 1=rl, 2=fr, 3=rr
00900            6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
00901         const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
00902         int32_t previous_sample, current_sample, next_sample;
00903         int32_t coeff1, coeff2;
00904         uint8_t shift;
00905         unsigned int channel;
00906         uint16_t *samplesC;
00907         const uint8_t *srcC;
00908         const uint8_t *src_end = buf + buf_size;
00909         int count = 0;
00910 
00911         src += 4; // skip sample count (already read)
00912 
00913         for (channel=0; channel<avctx->channels; channel++) {
00914             int32_t offset = (big_endian ? bytestream_get_be32(&src)
00915                                          : bytestream_get_le32(&src))
00916                            + (avctx->channels-channel-1) * 4;
00917 
00918             if ((offset < 0) || (offset >= src_end - src - 4)) break;
00919             srcC  = src + offset;
00920             samplesC = samples + channel;
00921 
00922             if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
00923                 current_sample  = (int16_t)bytestream_get_le16(&srcC);
00924                 previous_sample = (int16_t)bytestream_get_le16(&srcC);
00925             } else {
00926                 current_sample  = c->status[channel].predictor;
00927                 previous_sample = c->status[channel].prev_sample;
00928             }
00929 
00930             for (count1 = 0; count1 < nb_samples / 28; count1++) {
00931                 if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
00932                     srcC++;
00933                     if (srcC > src_end - 30*2) break;
00934                     current_sample  = (int16_t)bytestream_get_be16(&srcC);
00935                     previous_sample = (int16_t)bytestream_get_be16(&srcC);
00936 
00937                     for (count2=0; count2<28; count2++) {
00938                         *samplesC = (int16_t)bytestream_get_be16(&srcC);
00939                         samplesC += avctx->channels;
00940                     }
00941                 } else {
00942                     coeff1 = ea_adpcm_table[ *srcC>>4     ];
00943                     coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
00944                     shift = 20 - (*srcC++ & 0x0F);
00945 
00946                     if (srcC > src_end - 14) break;
00947                     for (count2=0; count2<28; count2++) {
00948                         if (count2 & 1)
00949                             next_sample = sign_extend(*srcC++,    4) << shift;
00950                         else
00951                             next_sample = sign_extend(*srcC >> 4, 4) << shift;
00952 
00953                         next_sample += (current_sample  * coeff1) +
00954                                        (previous_sample * coeff2);
00955                         next_sample = av_clip_int16(next_sample >> 8);
00956 
00957                         previous_sample = current_sample;
00958                         current_sample  = next_sample;
00959                         *samplesC = current_sample;
00960                         samplesC += avctx->channels;
00961                     }
00962                 }
00963             }
00964             if (!count) {
00965                 count = count1;
00966             } else if (count != count1) {
00967                 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
00968                 count = FFMAX(count, count1);
00969             }
00970 
00971             if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
00972                 c->status[channel].predictor   = current_sample;
00973                 c->status[channel].prev_sample = previous_sample;
00974             }
00975         }
00976 
00977         c->frame.nb_samples = count * 28;
00978         src = src_end;
00979         break;
00980     }
00981     case CODEC_ID_ADPCM_EA_XAS:
00982         for (channel=0; channel<avctx->channels; channel++) {
00983             int coeff[2][4], shift[4];
00984             short *s2, *s = &samples[channel];
00985             for (n=0; n<4; n++, s+=32*avctx->channels) {
00986                 for (i=0; i<2; i++)
00987                     coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
00988                 shift[n] = 20 - (src[2] & 0x0F);
00989                 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
00990                     s2[0] = (src[0]&0xF0) + (src[1]<<8);
00991             }
00992 
00993             for (m=2; m<32; m+=2) {
00994                 s = &samples[m*avctx->channels + channel];
00995                 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
00996                     for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
00997                         int level = sign_extend(*src >> (4 - i), 4) << shift[n];
00998                         int pred  = s2[-1*avctx->channels] * coeff[0][n]
00999                                   + s2[-2*avctx->channels] * coeff[1][n];
01000                         s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
01001                     }
01002                 }
01003             }
01004         }
01005         break;
01006     case CODEC_ID_ADPCM_IMA_AMV:
01007     case CODEC_ID_ADPCM_IMA_SMJPEG:
01008         if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
01009             c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
01010             c->status[0].step_index = bytestream_get_le16(&src);
01011             src += 4;
01012         } else {
01013             c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
01014             c->status[0].step_index = bytestream_get_byte(&src);
01015             src += 1;
01016         }
01017 
01018         for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01019             char hi, lo;
01020             lo = *src & 0x0F;
01021             hi = *src >> 4;
01022 
01023             if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
01024                 FFSWAP(char, hi, lo);
01025 
01026             *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01027                 lo, 3);
01028             *samples++ = adpcm_ima_expand_nibble(&c->status[0],
01029                 hi, 3);
01030         }
01031         break;
01032     case CODEC_ID_ADPCM_CT:
01033         for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01034             uint8_t v = *src;
01035             *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4  );
01036             *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
01037         }
01038         break;
01039     case CODEC_ID_ADPCM_SBPRO_4:
01040     case CODEC_ID_ADPCM_SBPRO_3:
01041     case CODEC_ID_ADPCM_SBPRO_2:
01042         if (!c->status[0].step_index) {
01043             /* the first byte is a raw sample */
01044             *samples++ = 128 * (*src++ - 0x80);
01045             if (st)
01046               *samples++ = 128 * (*src++ - 0x80);
01047             c->status[0].step_index = 1;
01048             nb_samples--;
01049         }
01050         if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
01051             for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01052                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01053                     src[0] >> 4, 4, 0);
01054                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01055                     src[0] & 0x0F, 4, 0);
01056             }
01057         } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
01058             for (n = nb_samples / 3; n > 0; n--, src++) {
01059                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01060                      src[0] >> 5        , 3, 0);
01061                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01062                     (src[0] >> 2) & 0x07, 3, 0);
01063                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01064                     src[0] & 0x03, 2, 0);
01065             }
01066         } else {
01067             for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
01068                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01069                      src[0] >> 6        , 2, 2);
01070                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01071                     (src[0] >> 4) & 0x03, 2, 2);
01072                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
01073                     (src[0] >> 2) & 0x03, 2, 2);
01074                 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
01075                     src[0] & 0x03, 2, 2);
01076             }
01077         }
01078         break;
01079     case CODEC_ID_ADPCM_SWF:
01080     {
01081         GetBitContext gb;
01082         const int *table;
01083         int k0, signmask, nb_bits, count;
01084         int size = buf_size*8;
01085 
01086         init_get_bits(&gb, buf, size);
01087 
01088         //read bits & initial values
01089         nb_bits = get_bits(&gb, 2)+2;
01090         //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
01091         table = swf_index_tables[nb_bits-2];
01092         k0 = 1 << (nb_bits-2);
01093         signmask = 1 << (nb_bits-1);
01094 
01095         while (get_bits_count(&gb) <= size - 22*avctx->channels) {
01096             for (i = 0; i < avctx->channels; i++) {
01097                 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
01098                 c->status[i].step_index = get_bits(&gb, 6);
01099             }
01100 
01101             for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
01102                 int i;
01103 
01104                 for (i = 0; i < avctx->channels; i++) {
01105                     // similar to IMA adpcm
01106                     int delta = get_bits(&gb, nb_bits);
01107                     int step = ff_adpcm_step_table[c->status[i].step_index];
01108                     long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
01109                     int k = k0;
01110 
01111                     do {
01112                         if (delta & k)
01113                             vpdiff += step;
01114                         step >>= 1;
01115                         k >>= 1;
01116                     } while(k);
01117                     vpdiff += step;
01118 
01119                     if (delta & signmask)
01120                         c->status[i].predictor -= vpdiff;
01121                     else
01122                         c->status[i].predictor += vpdiff;
01123 
01124                     c->status[i].step_index += table[delta & (~signmask)];
01125 
01126                     c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
01127                     c->status[i].predictor = av_clip_int16(c->status[i].predictor);
01128 
01129                     *samples++ = c->status[i].predictor;
01130                 }
01131             }
01132         }
01133         src += buf_size;
01134         break;
01135     }
01136     case CODEC_ID_ADPCM_YAMAHA:
01137         for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
01138             uint8_t v = *src;
01139             *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
01140             *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4  );
01141         }
01142         break;
01143     case CODEC_ID_ADPCM_THP:
01144     {
01145         int table[2][16];
01146         int prev[2][2];
01147         int ch;
01148 
01149         src += 4; // skip channel size
01150         src += 4; // skip number of samples (already read)
01151 
01152         for (i = 0; i < 32; i++)
01153             table[0][i] = (int16_t)bytestream_get_be16(&src);
01154 
01155         /* Initialize the previous sample.  */
01156         for (i = 0; i < 4; i++)
01157             prev[0][i] = (int16_t)bytestream_get_be16(&src);
01158 
01159         for (ch = 0; ch <= st; ch++) {
01160             samples = (short *)c->frame.data[0] + ch;
01161 
01162             /* Read in every sample for this channel.  */
01163             for (i = 0; i < nb_samples / 14; i++) {
01164                 int index = (*src >> 4) & 7;
01165                 unsigned int exp = *src++ & 15;
01166                 int factor1 = table[ch][index * 2];
01167                 int factor2 = table[ch][index * 2 + 1];
01168 
01169                 /* Decode 14 samples.  */
01170                 for (n = 0; n < 14; n++) {
01171                     int32_t sampledat;
01172                     if(n&1) sampledat = sign_extend(*src++, 4);
01173                     else    sampledat = sign_extend(*src >> 4, 4);
01174 
01175                     sampledat = ((prev[ch][0]*factor1
01176                                 + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
01177                     *samples = av_clip_int16(sampledat);
01178                     prev[ch][1] = prev[ch][0];
01179                     prev[ch][0] = *samples++;
01180 
01181                     /* In case of stereo, skip one sample, this sample
01182                        is for the other channel.  */
01183                     samples += st;
01184                 }
01185             }
01186         }
01187         break;
01188     }
01189 
01190     default:
01191         return -1;
01192     }
01193 
01194     *got_frame_ptr   = 1;
01195     *(AVFrame *)data = c->frame;
01196 
01197     return src - buf;
01198 }
01199 
01200 
01201 #define ADPCM_DECODER(id_, name_, long_name_)               \
01202 AVCodec ff_ ## name_ ## _decoder = {                        \
01203     .name           = #name_,                               \
01204     .type           = AVMEDIA_TYPE_AUDIO,                   \
01205     .id             = id_,                                  \
01206     .priv_data_size = sizeof(ADPCMDecodeContext),           \
01207     .init           = adpcm_decode_init,                    \
01208     .decode         = adpcm_decode_frame,                   \
01209     .capabilities   = CODEC_CAP_DR1,                        \
01210     .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
01211 }
01212 
01213 /* Note: Do not forget to add new entries to the Makefile as well. */
01214 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
01215 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
01216 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
01217 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
01218 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
01219 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
01220 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
01221 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
01222 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
01223 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
01224 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
01225 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
01226 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
01227 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
01228 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
01229 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
01230 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
01231 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
01232 ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
01233 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
01234 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
01235 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
01236 ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
01237 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
01238 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
01239 ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");
Generated on Sun Apr 22 2012 21:53:59 for Libav by doxygen 1.7.1