PGP Software Developer’s Kit

Reference Guide

Version 1.7

Copyright © 1990-1999 Network Associates, Inc. and its Affiliated Companies. All Rights
Reserved.

PGP* Software Developer’s Kit, Version 1.7.2
10-99. Printed in the United States of America.

PGP, Pretty Good, and Pretty Good Privacy are registered trademarks of Network Associates,
Inc. and/or its Affiliated Companies in the US and other countries. All other registered and
unregistered trademarks in this document are the sole property of their respective owners.

Portions of this software may use public key algorithms described in U.S. Patent numbers
4,200,770, 4,218,582, 4,405,829, and 4,424,414, licensed exclusively by Public Key Partners; the
IDEA(tm) cryptographic cipher described in U.S. patent number 5,214,703, licensed from
Ascom Tech AG; and the Northern Telecom Ltd., CAST Encryption Algorithm, licensed from
Northern Telecom, Ltd. IDEA is a trademark of Ascom Tech AG. Network Associates, Inc.
may have patents and/or pending patent applications covering subject matter in this software
or its documentation; the furnishing of this software or documentation does not give you any
license to these patents. The compression code in PGP is by Mark Adler and Jean-Loup Gailly,
used with permission from the free Info-ZIP implementation. LDAP software provided
courtesy University of Michigan at Ann Arbor, Copyright © 1992-1996 Regents of the
University of Michigan. All rights reserved. This product includes software developed by the
Apache Group for use in the Apache HTTP server project (http://www.apache.org/).
Copyright © 1995-1999 The Apache Group. All rights reserved. See text files included with the
software or the PGP web site for further information. This software is based in part on the
work of the Independent JPEG Group. Soft TEMPEST font courtesy of Ross Anderson and
Marcus Kuhn. Biometric word list for fingerprint verification courtesy of Patrick Juola.

The software provided with this documentation is licensed to you for your individual use
under the terms of the End User License Agreement and Limited Warranty provided with the
software. The information in this document is subject to change without notice. Network
Associates, Inc. does not warrant that the information meets your requirements or that the
information is free of errors. The information may include technical inaccuracies or
typographical errors. Changes may be made to the information and incorporated in new
editions of this document, if and when made available by Network Associates, Inc.

Export of this software and documentation may be subject to compliance with the rules and
regulations promulgated from time to time by the Bureau of Export Administration, United
States Department of Commerce, which restrict the export and re-export of certain products
and technical data.

Network Associates, Inc. (408) 988-3832 main

3965 Freedom Circle (408) 970-9727 fax

Santa Clara, CA 95054 http://www.nai.com
info@nai.com

* is sometimes used instead of the ® for registered trademarks to protect marks registered outside of the
u.s.

LIMITED WARRANTY

Limited Warranty. Network Associates Inc. warrants that the Software Product will perform
substantially in accordance with the accompanying written materials for a period of sixty (60)
days from the date of original purchase. To the extent allowed by applicable law, implied
warranties on the Software Product, if any, are limited to such sixty (60) day period. Some
jurisdictions do not allow limitations on duration of an implied warranty, so the above
limitation may not apply to you.

Customer Remedies. Network Associates Inc’s and its suppliers’ entire liability and your
exclusive remedy shall be, at Network Associates Inc’s option, either (a) return of the purchase
price paid for the license, if any or (b) repair or replacement of the Software Product that does
not meet Network Associates Inc’s limited warranty and which is returned at your expense to
Network Associates Inc. with a copy of your receipt. This limited warranty is void if failure of
the Software Product has resulted from accident, abuse, or misapplication. Any repaired or
replacement Software Product will be warranted for the remainder of the original warranty
period or thirty (30) days, whichever is longer. Outside the United States, neither these
remedies nor any product support services offered by Network Associates Inc. are available
without proof of purchase from an authorized international source and may not be available
from Network Associates Inc. to the extent they subject to restrictions under U.S. export control
laws and regulations.

NO OTHER WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, AND EXCEPT FOR THE LIMITED WARRANTIES SET FORTH HEREIN, THE
SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” AND NETWORK
ASSOCIATES, INC. AND ITS SUPPLIERS DISCLAIM ALL OTHER WARRANTIES AND
CONDITIONS, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, CONFORMANCE WITH DESCRIPTION, TITLE AND NON-INFRINGEMENT OF
THIRD PARTY RIGHTS, AND THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT
SERVICES. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY
HAVE OTHERS, WHICH VARY FROM JURISDICTION TO JURISDICTION.

LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW, IN NO EVENT SHALL NETWORK ASSOCIATES, INC. OR ITS SUPPLIERS BE LIABLE
FOR ANY INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL OR EXEMPLARY
DAMAGES OR LOST PROFITS WHATSOEVER (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF
BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE FAILURE TO PROVIDE
SUPPORT SERVICES, EVEN IF NETWORK ASSOCIATES, INC. HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, NETWORK ASSOCIATES, INC’S
CUMULATIVE AND ENTIRE LIABILITY TO YOU OR ANY OTHER PARTY FOR ANY LOSS
OR DAMAGES RESULTING FROM ANY CLAIMS, DEMANDS OR ACTIONS ARISING OUT
OF OR RELATING TO THIS AGREEMENT SHALL NOT EXCEED THE PURCHASE PRICE
PAID FOR THIS LICENSE. BECAUSE SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATIONS MAY NOT
APPLY TO YOU.

Table of Contents

Preface

.. XXV
AUdIENCE . . . XXV
Howtousethisguide XXVi
Conventions used inthisguide i XXVil

Typographic Conventions XXVii
Notes, warnings, and tips conventions XXVil
How to contact Network Associates XXViii
CUSIOMEr SEIVICE . . .ttt e e e XXViil
Technical SUPPOIt XXViil
Network Associatestraining, XXIX
Comments and feedback il XXiX
Year 2000 Compliance XXiX
Development environment and API platform support XXX
Related documentation XXX
Recommended readingst XXXi

Chapter 1. PGPsSdK OVerview i 1
INtrodUCtion 1
PGPsdk functionality 4

Library binaries 6
Data Type, constant, macro, and function name conventions 6
PGP CONtEXt . .. 8
Memory managementt e 9
Error codeso 10
PGPsdk API details and data structures — Key management 10
Keydatabase 11
Collections of keys in akey database 11
Key filters 12
Lists of keysina key database 12
PGPsdk API details and data structures — Ciphering 13
Using the PGPsdk ciphering APl 13
Events and callbacks 13
PGPsdk API details and data structures — Authentication 14

Reference Guide \Y

Table of Contents

Hash Functions e 14
Chapter 2. Key Management Functions 15
INtroducCtion 15
Events and callbacks 16
Key management events 18
KPGPEvent_InitialEvent 18
KPGPEvent NullEvent 18
KPGPEvent_KeyGenEventc.uiiiiinninnean.. 19
KPGPEvent FinalEvent 20
Key ring management functions i 20
PGPOpenDefaultkeyRings 20
PGPOpenKeyRIingPair i 21
PGPOpenKeyRING 21
PGPReloadKeyRINgSo 22
PGPCheckKeyRINgSigs 23
PGPRevertKeyRingChanges 24
PGPCommitKeyRingChanges 24
Key Set Management FUNCLIONS 25
PGPNewKeySet 25
PGPNewEmMptyKeySet 25
PGPNewsSingletonKeySet i 26
PGPUNIoONKeySets 26
PGPFreeKeySet 26
PGPImportKeySet 27
PGPEXportKeySet 28
PGPAdAKEYS 29
PGPRemMOVEKEYS 29
PGPPropagateTrustt 30
PGPCouNntKeyYS 30
PGPKeySetlsMember 30
PGPKeySetlsMutable 31
PGPKeySetNeedsCommitttt 31
KeyFilter FUNCLIONSo e e 31
PGPNewKeyBooleanFilter 31
PGPNewKeyCreationTimeFilter 32
PGPNewKeyExpirationTimeFilter 32
PGPNewKeyDisabledFilter 33
PGPNewKeyNumberFilter 33

vi

PGP Software Developer’s Kit

Table of Contents

PGPNewKeyTimeFilter i 34
PGPNewKeyPropertyBufferFilter 34
PGPNewKeyRevokedFilter 35
PGPNewKeyEncryptAlgorithmFilter 35
PGPNewKeyEncryptKeySizeFilter 36
PGPNewKeyFingerPrintFilter 36
PGPNewKeyIDFilter 37
PGPNewSubKeyBooleanFilter 37
PGPNewSubKeyIDFilter i 38
PGPNewSubKeyNumberFilter 38
PGPNewSubKeyPropertyBufferFilter 39
PGPNewSubKeyTimeFilter 39
PGPNewKeySigAlgorithmFilter 40
PGPNewKeySigKeySizeFilter 40
PGPNewsSigBooleanFilter 41
PGPNewSigKeyIDFilter i, 41
PGPNewsSigNumberFilter 42
PGPNewsSigPropertyBufferFilter 42
PGPNewsSigTimeFilter 43
PGPNewUserIDBooleanFilter 43
PGPNewUserIDNameFilter 44
PGPNewUserIDNumberFilter 44
PGPNewUserIDStringBufferFilter 45
PGPNewUserIDStringFilter i 46
PGPNewUserIDEmailFilter 46
PGPNegateFilter a7
PGPIntersectFilters 47
PGPUnionFilters 48
PGPFreeFilter 48
PGPFilterKeySet 48
PGPLDAPQueryFromFilter 49
PGPHKSQueryFromFilter 49
Key Iteration FUNCLioNs 50
PGPOrderKeySet 50
PGPFreeKeyListo 50
PGPNewKeylter 51
PGPCopyKeylter 51
PGPFreeKeylter 52
PGPKeylterIndeX 52

Reference Guide Vi

Table of Contents

PGPKeylterKey 52
PGPKeylterSubKey 52
PGPKeylterUuserID 53
PGPKeyIterSigo 53
PGPKeylterMove 54
PGPKeylterSeek 54
PGPKeylterNext 54
PGPKeylterNextSubKey 55
PGPKeylterNextUserID i 55
PGPKeylterNextUIDSIgot 56
PGPKeylterPrev 56
PGPKeylterPrevSubKey 57
PGPKeylterPrevUserID i 57
PGPKeylterPrevUIDSIQot 57
PGPKeylterRewind 58
PGPKeylterRewindSubKey 58
PGPKeylterRewindUserID 58
PGPKeylterRewindUIDSIigot 59
Key reference count functions, 59
PGPIncKeySetRefCount 59
PGPIncFilterRefCount 59
PGPIncKeyListRefCount 60
Key manipulation functions 60
PGPGenerateKey e 60
PGPChangePassphrase 61
PGPENableKey 62
PGPDisableKey 62
PGPRevokeKey 63
PGPSetKeyAxiomatiC 63
PGPUnsetKeyAxiomatiC 64
PGPSetKeyTrust e 65
PGPCompareKeys 65
PGPGenerateSubKey 65
PGPRemoveSubKey 67
PGPChangeSubKeyPassphrase 67
PGPRevokeSubKey 67
PGPAdAUSErID 68
PGPRemoveUserID 69
PGPSetPrimaryUserID 69

Viii PGP Software Developer’s Kit

Table of Contents

PGPCompareUserIDStringst 70
PGPSIgnUserID 70
PGPREMOVESIQ 71
PGPREVOKESIg . . . oo 72
PGPCountAdditionalRecipientRequests 72
PGPGetindexedAdditionalRecipientRequestkey 73
PGPGetSigCertifierKey 74
PGPCountRevocationKeys 74
PGPGetindexedRevocationKey 74
PGPPassphraselsvalid, 75
Get property functions 75
PGPGetHashAlgUsed 75
PGPGetKeyBoolean, 76
PGPGetKeyNumber 76
PGPGetKeyPasskeyBuffer 77
PGPGetKeyPropertyBuffer 77
PGPGetKeyTime e 78
PGPGetSubKeyBoolean 78
PGPGetSubKeyNumber i 79
PGPGetSubKeyPasskeyBuffer 79
PGPGetSubKeyPropertyBuffer 80
PGPGetSubKeyTime e 81
PGPGetUserIDBoolean 81
PGPGetUserIDNumber 81
PGPGetUserIDStringBuffer 82
PGPGetSigBoolean 82
PGPGetSigNumber 83
PGPGetSigPropertyBuffer 83
PGPGetSIgTIime e 84
Convenience property functions i 84
PGPGetPrimaryUserID 84
PGPGetPrimaryAttributeUserID 84
PGPGetPrimaryUserIDNameBuffer 85
PGPGetPrimaryUserIDValidity 85
Default Private Key Functions 86
PGPSetDefaultPrivateKey 86
PGPGetDefaultPrivateKey i 86
Key user-defined data functions 87
PGPSetKeyUserVal 87

Reference Guide ix

Table of Contents

PGPSetSubKeyUserVal 87
PGPSetSigUserVal 87
PGPSetUserIDUserVal 88
PGPGetKeyUserVal 88
PGPGetSubKeyUserVal 88
PGPGetSigUserVal 89
PGPGetUserIDUserVal 89
KeyID functions 90
PGPIMportKeyIlD 90
PGPEXportKeylD 90
PGPGetKeyIDStriNgo oo 90
PGPGetKeyIDFromsStringt 91
PGPGetKeyByKeyID 91
PGPGetKeyIDFromKey e 92
PGPGetKeyIDFromSubKey 92
PGPGetKeyIDOfCertifier i 92
PGPCompareKeylIDs 93
Key Iltem Context Retrieval Functions 93
PGPGetKeySetContext 93
PGPGetKeyListContextt 93
PGPGetKeylterContext 94
PGPGetKeyContext 94
PGPGetSubKeyContext 94
PGPGetUserIDContextt 95
Key Share FUNCLIONS 95
PGPSecretShareData0 .. 95
PGPSecretReconstructData 95
Misc. Key-related functions 96
PGPVerifyX509CertificateChain 96
Chapter 3. Option List Functions 97
INtroducCtion 97
Header files 97
Option list management functions 97
PGPNewOptionList 98
PGPBuUIldOptionList 98
PGPCopyOptionList 99
PGPAppendOptionList 99
PGPFreeOptionList 99

X PGP Software Developer’s Kit

Table of Contents

PGPAddJIObOPLONS 100
Common Encode/Decode option list functions 101
PGPOInputBuffer 101
PGPOInputFile 102
PGPOInputFileFSSpec (MacOS platforms only) 102
PGPODiscardOutput 103
PGPOAllocatedOutputBuffer 103
PGPOOutputBuffer 104
PGPOOuUtputFile 104
PGPOOutputFileFSSpec (MacOS platforms only) 105
PGPOAppendOuUtput 105
PGPOPGPMIMEENcOdINgt 106
PGPOOMItMIMEVErSION e 106
PGPOLocalENCOding oo o 107
PGPOOutputLineEndType i 108
PGPODetachedSig 108
Common encrypting and signing option list functions 109
PGPOConventionalEncrypt, 109
PGPOCipherAlgorithm 110
PGPOENcryptToKey 110
PGPOEnNcryptToKeySet 111
PGPOENcryptToUserID 111
PGPOHashAlgorithm 111
PGPOSIignWithKey 112
PGPOWarnBelowValidity 113
PGPOFailBelowValidity i 113
Encode-only Option List Functions 114
PGPOAskUserForEntropy, 114
PGPODatalsASCIl 114
PGPORawPGPINput 115
PGPOForYourEyesOnly 115
PGPOAMOrOUIpUL 116
PGPOFileNamesString 116
PGPOCIearSign . ..o 116
Decode-only Option List Functions 117
PGPOIMportKeysTo e 117
PGPOPassThroughlfUnrecognized 117
PGPOPassThroughClearSigned 117
PGPOPassThroughKeys 118

Reference Guide Xi

Table of Contents

PGPOSendEventlfKeyFound 118
PGPORecursivelyDecode, 118
(Sub-)Key Generation, Augmentation, and Revocation Option List
FUNCHIONS .. 119
PGPOAdditionalRecipientRequestkeySet 119
PGPOKeyGenName 120
PGPOKeyGenMasterKey, 120
PGPOEXxportPrivateKeys i, 120
PGPOKeyGenFast 121
PGPOKeyGenParams 121
PGPOCreationDatet 122
PGPOEXPIration e 122
PGPOExportable 123
PGPOSigRegularExpression 123
PGPOSIgTIUSE ..t 123
PGPORevocationKeySet i 124
User Interface Dialog Option Functions 124
PGPOUIParentWindowHandle. (Windows platforms only) 124
PGPOUIWIndowTitle 125
PGPOUIDialogPrompt 125
PGPOUIDIalogOptions 126
PGPOUICHheCKBOXt 127
PGPOUIPOPUPLISt . . . oo 128
PGPOUIOutputPassphrase 129
PGPOUIMinimumPassphraseLength 129
PGPOUIMinimumPassphraseQuality 130
PGPOUIShowPassphraseQuality 130
PGPOUIVerifyPassphrase i 131
PGPOUIFindMatchingKey 131
PGPOUIDefaultRecipients 131
PGPOUIRECIPIENIGIOUPS . . . ot it e 132
PGPOUIEnNforceAdditionalRecipientRequests 132
PGPOUIDefaultkey 133
PGPOUIDisplayMarginalValidity 133
PGPOUIlgnoreMarginalValidity 133
PGPOUIKeyServerUpdateParams 134
PGPOUIKeyServerSearchFilter 135
PGPOUIKeyServerSearchKey 135
PGPOUIKeyServerSearchKeySet 135

Xii PGP Software Developer’s Kit

Table of Contents

PGPOUIKeyServerSearchKeyIDList 135
Network and Key Server Option List Functions 136
PGPONEtURL . .. e 136
PGPONetHostName i 136
PGPONetHOStAdAIesst 136
PGPOKeyServerProtocol 137
PGPOKeyServerKeySpacec.iiiiiiiiinennn... 137
PGPOKeyServerACCessTYPE ... 137
PGPOKeyServerCAKeY e 138
PGPOKeyServerRequestKey 138
PGPOKeyServerSearchKey 138
PGPOKeyServerSearchFilter 139
Misc. Option LISt FUNCtioNS 139
PGPONUIIOPLiON 139
PGPOCOMPIesSSIONttt e 139
PGPOCOMMENtSIIINGt e 140
PGPOVersionStringot 140
PGPOPassphrase 140
PGPOPassphraseBuffer 141
PGPOPasskeyBuffer 141
PGPOPreferredAlgorithms L. 142
PGPOKeySetRef 142
PGPOSendNUllEvents 143
PGPOX509ENCOdING . ..ottt 143
PGPOExportFormat 144
PGPOExportPrivateSubkeys 144
PGPOEventHandler 145
PGPOLastOption 145
Chapter 4. Group FUNCtions 147
INtroduction 147
Group Set Management FUNCLIONSt 147
PGPNewGroupSet 147
PGPNewGroupSetFromFile. (Non-MacOS platforms only) 147
PGPNewGroupSetFromFSSpec (MacOS platforms only) 148
PGPCOpYGroupSet 148
PGPFreeGroupSet 149
PGPGetGroupSetContextt 149
PGPGroupSetNeedsCommit 149

Reference Guide Xiii

Table of Contents

PGPSaveGroupSetToFile i, 150
PGPExportGroupSetToBuffer 150
PGPImportGroupSetFromBuffer 151
PGPMergeGroupSets 151
PGPSortGroupSetStd 151
PGPSOrMGroupSet 152
PGPCountGroupsinSet i 152
PGPGetIndGroupID e 152
Group Management Functions i 153
PGPNEWGIOUD . . oottt e e 153
PGPDeleteGroupot 153
PGPAdAItemTOGIOUP . ..ot e e e 154
PGPSetGroupName 154
PGPSetGroupDescription 155
PGPSetGroupUserValue i, 155
PGPGetGroupInfo 155
PGPSortGroupltems 156
PGPCountGroupltems 156
PGPSetindGroupltemUserValue 157
PGPGetIndGroupltem 157
PGPDeleteltemFromGroup 158
PGPDeletelndltemFromGroup, 158
PGPMergeGrouplintoDifferentSet 158
Group Item lteration Functions 159
PGPNewGroupltemlter 159
PGPFreeGroupltemlter 159
PGPGroupltemlterNext 160
Group Utility Functions 160
PGPGetGroupLowestValidity 160
PGPNewKeySetFromGroupuieennnnnnnn.. 161
PGPNewFlattenedGroupFromGroup 161
Chapter 5. Ciphering and Authentication Functions 163
INtroducCtion 163
Header Files 163
Events and Callbacks 164
Common CipherEvents 166
kKPGPEvent_InitialEvent, 166
KPGPEvent NullEvent 167

Xiv PGP Software Developer’s Kit

Table of Contents

kKPGPEvent_WarningEvent 167
KPGPEvent_ErrorEvent 167
kKPGPEvent FinalEvent i, 167
PGPENcode-only EVENtS 168
kKPGPEvent_EntropyEvent 168
PGPDecode-only EVENtS 168
KPGPEvent_BeginLexEvent 168
KPGPEvent_AnalyzeEvent 168
kPGPEvent_RecipientsEvent 169
kPGPEvent_KeyFoundEvent 169
kKPGPEvent_SignatureEvent 170
kPGPEvent_DetachedSigEvent 171
kPGPEvent_PassphraseEvent 171
KPGPEvent_OQutputEvent i, 171
KPGPEvent_DecryptionEvent 172
KPGPEvent EndLexEvent iiiiiinn... 172
Public Key Encode and Decode Functions 173
PGPENCOdE 173
PGPDECOdEet 174
Low-Level Cipher Functions —Hash 176
PGPNewHashContext 176
PGPCopyHashContext, 176
PGPFreeHashContext 176
PGPGetHashSize 177
PGPContinueHash 177
PGPFinalizeHash 177
PGPResetHash 178
Low-Level Cipher Functions — HMAC 178
PGPNewHMACCONteXt 178
PGPFreeHMACCONtEXE 179
PGPContinueHMAC 179
PGPFinalizeHMAC e 180
PGPResetHMAC 180
Low-Level Cipher Functions — Symmetric Cipher 180
PGPNewSymmetricCipherContext 180
PGPInitSymmetricCipher 181
PGPCopySymmetricCipherContext 182
PGPFreeSymmetricCipherContext 182
PGPGetSymmetricCipherSizes 183

Reference Guide XV

Table of Contents

PGPSymmetricCipherEncrypt 183
PGPSymmetricCipherDecrypt 184
PGPWashSymmetricCipher 184
PGPWipeSymmetricCipher i 184
Low-Level Cipher Functions — Cipher Block Chaining 185
PGPNewCBCCONtEXtottt 185
PGPINIECBC . ..o 185
PGPCOpYCBCCONtEXE . . .ottt e e 186
PGPFreeCBCCoONteXt 186
PGPCBCENCIypt 187
PGPCBCDECIYPt ..t oot e 187
PGPCBCGetSymmetricCipher 188
Low-Level Cipher Functions — Cipher Feedback Block ~ 188
PGPNewCFBCoONtext e 188
PGPINItCFB 189
PGPCopyCFBContext e 190
PGPFreeCFBCONtEXtot 190
PGPCFBENCIYPL . ..o e 190
PGPCFBDECIYPt ..o 191
PGPCFBGetSymmetricCipher 191
PGPCFBGetRandomt 192
PGPCFBRandomCycle 192
PGPCFBRandomWash 193
PGPCFBSYNC . . . 193
Low-Level Cipher Functions — PublicKey 194
PGPNewPublicKeyContext i, 194
PGPFreePublicKeyContext 194
PGPGetPublicKeyOperationSizes 194
PGPPublicKeyENncrypt 195
PGPPublicKeyVerifySignature 195
PGPPublicKeyVerifyRaw 196
Low-Level Cipher Functions — Private Key 197
PGPNewPrivateKeyContext, 197
PGPFreePrivateKeyContext 197
PGPGetPrivateKeyOperationSizes 198
PGPPrivateKeyDecrypt 198
PGPPrivateKeySign o 199
PGPPrivateKeySignRaw i 199

Xvi PGP Software Developer’s Kit

Table of Contents

Low-Level Cipher Functions — MisC. 200
PGPDiscreteLogExponentBits 200
Chapter 6. Feature (Capability) Query Functions 201
INtroduction 201
Header Files 201
Feature (Capability) Query Functions 201
PGPGetFeatureFlagso 201
PGPCountPublicKeyAlgorithms 202
PGPGetindexedPublicKeyAlgorithmInfo 202
PGPCountSymmetricCiphers 202
PGPGetindexedSymmetricCipherinfo 203
PGPGetSDKVErsion 203
PGPGEtSDKSIIING . . .ot 204
Chapter 7. Utility Toolbox 205
INtroduction 205
Header Files 205
PGPsdk Management Functions 205
PGPsdKINit 205
PGPsdKCleanupot 206
Memory Manager Creation and Management Functions 206
PGPNewMemoryMgar 206
PGPNewMemoryMgrCustomcuuvnuennn.nn 207
PGPFreeMemoryMgrot 207
PGPMemoryMgrisValid 207
PGPSetDefaultMemoryMgr 208
PGPGetDefaultMemoryMgr oo 208
PGPSetMemoryMgrCustomValue 208
PGPGetMemoryMgrCustomValue 209
PGPGetMemoryMgrDatalnfo 209
PGPNewData e 210
PGPNewSecureDatac.c.iiii i 210
PGPReallocData 211
PGPFreeData 212
Context Creation and Management Functions 212
PGPNewCoNntextc. e 212
PGPNewContextCustom 212

Reference Guide XVii

Table of Contents

PGPFreeContextc. i 213
PGPSetContextUserValue 213
PGPGetContextMemoryMgrt 214
PGPContextGetRandomBytes 214
PGPGetContextUserValue 214
File Specification Functions i, 215
PGPNewFileSpecFromFSSpec (MacOS platforms only) 215
PGPNewFileSpecFromFullPath . (Non-MacOS platforms only) 215
PGPCoOpYFIleSpec 216
PGPFreeFileSpec 216
PGPGetFSSpecFromFileSpec (MacOS platforms only) 216
PGPGetFullPathFromFileSpec .. (Non-MacOS platforms only) 217
PGPMacBinaryToLocal (MacOS platforms only) 217
Preference FUNCLIONS e 218
PGPsdkLoadDefaultPrefs 218
PGPsdkLoadPrefs 218
PGPsdkSavePrefs 219
PGPsdkPrefSetData 219
PGPsdkPrefSetFileSpec i 220
PGPsdkPrefGetData, 220
PGPsdkPrefGetFileSpec i 221
Date/Time FUNCLIONS e e e 221
PGPGetTime . . 221
PGPGetPGPTimeFromStdTime 221
PGPGetStdTimeFromPGPTime 222
PGPGetYMDFromPGPTIime 222
PGPTimeFromMacTime (MacOS platforms only) 223
PGPTimeToMacTime (MacOS platforms only) 223
Network Library Management Functions 223
PGPsdkNetworkLiblnit 223
PGPsdkNetworkLibCleanup 223
Error Look-Up FUNCLIONS o 224
PGPGEtEorStringo 224

XViii

PGP Software Developer’s Kit

Table of Contents

Chapter 8. Global Random Number Pool Management Functions . . .225

INtroduction 225
Header Files 226
Random Number Pool Management Functions 226
PGPGIlobalRandomPoolAddKeystroke 226
PGPGIlobalRandomPoolAddMouse 226
PGPGIlobalRandomPoolMouseMoved 226
Entropy Estimation Functions 227
PGPGIlobalRandomPoolGetSize 227
PGPGIlobalRandomPoolGetEntropy 227
PGPGIlobalRandomPoolGetMinimumEntropy 227
PGPGIlobalRandomPoolHasMinimumEntropy 227
PGPGetKeyEntropyNeeded 228
Chapter 9. User Interface Functions 229
INtroduction 229
Header Files e 229
User Interface Management Functions 229
PGPsdKUILIbINit 229
PGPsdKkCleanupt 230
User Interface Dialog Functions 230
PGPRecipientDialogc i 230
PGPPassphraseDialog 231
PGPConfirmationPassphraseDialog 232
PGPKeyPassphraseDialog oo, 233
PGPSigningPassphraseDialog 233
PGPDecryptionPassphraseDialog 234
PGPConventionalEncryptionPassphraseDialog 235
PGPConventionalDecryptionPassphraseDialog 236
PGPOptionsDIalogo 236
PGPCollectRandomDataDialog 237
PGPSearchKeyServerDialog, 238
PGPSendToKeyServerDialog 239
Misc. UL FUNCHIONS e 240
PGPEstimatePassphraseQuality 240

Reference Guide Xix

Table of Contents

Chapter 10. Key Server Functions oo .. 241
INtroducCtion 241
Header Files 241
Constants and Data Structurest 242
Events and Callbacks 242
Key Server Request EVents i 244

kKPGPEvent_InitialEvent 244
kPGPEvent_KeyServerEvent 244
kKPGPEvent_KeyServerSignEvent 244
KPGPEvent FinalEvent 245
Key Server Thread Storagettt e 245
PGPKeyServerCreateThreadStorage 245
PGPKeyServerDisposeThreadStorage 245
Key Server FUNCLIONS e 246
PGPKeyServerlnit 246
PGPNewKeyServerFromURL 246
PGPNewKeyServerFromHostName 246
PGPNewKeyServerFromHostAddress 246
PGPNewKeyServer e 246
PGPSetKeyServerEventHandler 248
PGPGetKeyServerEventHandler 249
PGPSetKeyServerldleEventHandler 249
PGPGetKeyServerldleEventHandler 250
PGPGetKeyServerTLSSession 250
PGPGetKeyServerProtocol 250
PGPGetKeyServerAccessType ... 251
PGPGetKeyServerKeySpacecoiiiiiinena. .. 251
PGPGetKeyServerPort 252
PGPGetKeyServerHostName 252
PGPGetKeyServerAddresst 252
PGPGetKeyServerPath 253
PGPGetKeyServerContextiiiinnnn .. 253
PGPNewServerMonitor (LDAP key servers only) 253
PGPFreeServerMonitor (LDAP key servers only) 254
PGPFreeKeyServer i 254
PGPKeyServerOpen 254
PGPQUEryKeyServer 255
PGPUploadToKeyServer 256
XX PGP Software Developer’s Kit

Table of Contents

PGPDeleteFromKeyServer. (LDAP key servers only) 257
PGPDisableFromKeyServer. (LDAP key servers only) 257
PGPSendGroupsToServer. (LDAP key servers only) 258
PGPRetrieveGroupsFromServer (LDAP key servers only) 259
PGPSendCertificateRequest i 259
PGPRetrieveCertificate i, 260
PGPRetrieveCertificateRevocationList 261
PGPIncKeyServerRefCount 262
PGPGetLastKeyServerErrorStringovovii ... 262
PGPCancelKeyServerCall 263
PGPKeyServerClose 263
PGPKeyServerCleanup, 264
Chapter 11. TLS (Transport Layer Security) Functions 265
INtroduction 265
Header Files e 265
TLS Context Management Functions 265
PGPNewTLSCoNntext e 265
PGPFreeTLSContext e 266
PGPtlsSetCache 266
PGPtIsClearCache 266
PGPNeWTLSSeSSIONt e 267
PGPCOPYTLSSESSIONot e 267
PGPtlsHandshake 268
PGPLISCIOSE . ..o 268
PGPFreeTLSSeSSIONottt 269
PGPtlsSetRemoteUniquelD 269
PGPtIsSetProtocolOptions 269
PGPtIsSetDHPrime 270
PGPtlsSetPreferredCipherSuite 270
PGPtlsGetNegotiatedCipherSuite 271
PGPtlsSetLocalPrivateKey i 271
PGPtlsGetRemoteAuthenticatedKey 272
PGPtlsGetStatet 273
PGPtIsGetAlert 273
PGPtlsSetSendCallback, 274
PGPtIsSend e 274
PGPtlsSetReceiveCallback 274
PGPtISReceive 275

Reference Guide XXi

Table of Contents

Chapter 12. Socket Functions, 277
INtrodUCtioN 277
Header Files 278
Constants and Data Structuresttt 278
Initialization and Termination Functions 280

PGPSocketsInit 280
PGPSocketsCleanup 280
Socket Thread Storageot e 280
PGPSocketsCreateThreadStorage 280
PGPSocketsDisposeThreadStorage 281
Socket Creation and Destruction Functions 281
PGPOpenSocket 281
PGPSetSocketsldleEventHandler 282
PGPGetSocketsldleEventHandler 282
PGPCloseSocket 283
Endpoint Binding Functions 283
PGPBIndSocket 283
PGPConnect 284
Server FUNCLIONS e 284
PGPLISteN 284
PGPACCEPT .. . 285
PGPSelect 285
Send FUNCLIONS e 287
PGPSend 287
PGPWHrite ... 287
PGPSendTo ... 288
Receive FUNCLIONS 288
PGPRECEIVE . .. 288
PGPRead 289
PGPReceiveFrom 289
DNS and Protocol Services Functions 290
PGPGetHostName i 290
PGPGetHostByName 290
PGPGetHostByAddress, 291
PGPGetProtocolByName 291
PGPGetProtocolByNumber 291
PGPGetServiceByName i, 292
PGPGetServiceByPorto 292
XXii PGP Software Developer’s Kit

Table of Contents

Net Byte Ordering MacroSttt 292
Windows & UNIX Platforms Net Byte Ordering Macros 292
MacOS Platforms Net Byte Ordering Macros 292
Error Reporting FUNCLIONS 293
PGPGetLastSocketsError 293
Utility FUNCLIONSo 293
PGPGetSocketName i 293
PGPGetPeerName 293
PGPDottedTolnternetAddress 294
PGPInternetAddressToDottedString 294
Control and Options Functions 295
PGPIOControlSocket 295
PGPSetSocketOptions i 295
PGPGetSocketOptions 296
TLS-related FUNCLIONS o 296
PGPSocketsEstablishTLSSession, 296
Chapter 13. BigNum Functions 297
INtroduction 297
Header Files 298
BigNum Management FUNCLIONS it e 298
PGPNewBIigNum 298
PGPCopyBIgNUM e 298
PGPFreeBigNum 299
PGPPreallocateBigNum i 299
BigNum Assignment Functions i 300
PGPAssignBIigNum 300
PGPSwapBIigNum 300
PGPBigNumExtractBigEndianBytes 301
PGPBigNuminsertBigEndianBytes 301
PGPBigNumExtractLittieEndianBytes 302
PGPBigNuminsertLittleEndianBytes 302
PGPBigNumGetLSWord i 303
PGPBigNumGetSignificantBits 303
BigNum Arithmetic Functions 303
PGPBIgNUmAdd 303
PGPBigNumSubtract 304
PGPBigNumCompareuiiii e, 305

Reference Guide xxiii

Table of Contents

PGPBIigNumMSquare e 305
PGPBigNumMultiply 305
PGPBigNumMod 307
PGPBIigNumEXpMod 307
PGPBigNumDoubleExpMod 308
PGPBigNumTwoExpMod i 309
PGPBIgNumInv 309
PGPBigNumLeftShift 310
PGPBigNumRightShift 310
PGPBIgNUMGECD e 311
PGPBigNumMakeOdd 311
BigNum 16-bit Constant Arithmetic Functions 312
PGPBIgNUMSetQ 312
PGPBIgNUMAdAQ 312
PGPBigNumSubtractQ 313
PGPBigNumCompareQt 314
PGPBigNumMultiplyQo 314
PGPBIigNumMOodQ 315
Appendix A. PGPsdk Error Summary 317
INtrodUCtioNo 317
GENENC EIMOIS . . oo 323
File-related Errorso 325
Key Ring Validity Check Errors 326
Key Filter Errors . ..o 328
Key Ermors 328
Signature Errors 330
Encode/Decode Errors 331
KeY Server ErmMOrS 332
Client/Server Communication Errors i, 333
Rarely Encountered PGP Errors i 335
GlOSSaIY . . 339
INOEX . . 355

xxiv. PGP Software Developer’s Kit

Preface

The PGP Software Developer’s Kit Reference Guide, Version 1.7.2 is the primary
reference source for using the PGP Software Developer’s Kit (“PGPsdk”),
which provides developers the functionality to readily add the PGP
peer-reviewed cryptographic technology to their own applications. Because
thisis areference manual, only a minimum of introductory or tutorial material
is presented.

By using the PGPsdk as a part of your development effort, you can:

= develop products that are as secure as PGP for Desktop Security, Version 6.5.2
(and optionally interoperating with it, where appropriate)

= easily develop, maintain, and use PGP cryptographic components in your
application

= provide yourself and your customers with the confidence that comes from
using the PGP trusted and peer-reviewed technology in your security
protocols

The engineers at Network Associates, Inc., have used the identical PGPsdk
supplied to external developers to produce PGP for Desktop Security, Version
6.5.2. Numerous excerpts from a sample application representing a greatly
simplified version of PGP for Desktop Security, Version 6.5.2 are included in this
manual. In keeping with the PGP corporate policy of complete and open
publication of source code for peer review, the final PGP for Desktop Security,
Version 6.5.2 Source Code books (when available) will serve as the essential and
definitive reference for developers using the PGPsdk for their own application
development.

Audience

This book is intended for experienced software engineers and application
developers who need to incorporate the PGP cryptographic functionality in
their application, or are developing a product that needs to communicate with
other applications that create or understand PGP-encrypted or
cryptographically signed data. Since the initial release of the PGPsdk supports
a C language Application Programming Interface (API), you should have C
language experience to use this product.

Reference Guide XXV

If you are not familiar with basic cryptographic concepts, PGP recommends
that you read Applied Cryptography, Second Edition, by Bruce Schneier (John
Wiley & Sons, Inc., 1996). This volume is arguably the best introduction and
general reference to cryptography currently available to the public. For
additional readings on cryptography and cryptographic theory, see the short
list of recommended readings at the end of this chapter, or the more extensive
list in Appendix C, “References and Recommended Reading.”

How to use this guide

The PGP Software Developer’s Kit Reference Guide presents the PGP
cryptographic functionality in a manner that corresponds to the organization
of the PGPsdk Software Library. Several overview chapters appear first, and
detail the basic concepts, organization, and functional divisions of the
PGPsdk.

Following the overview chapters are detailed reference chapters for each
functional division of the PGPsdk, which contain detailed descriptions of the
functions in each functional division. The reference chapters include:

= anintroductory overview of the functional division
= alist of the names of the associated C language header files

= tables containing #define and enumerated type constants and their
descriptions

= C language code fragments for any associated datatypes and structures

= alogical ordering of the events and/or functions within the functional
division

Each event description includes:

= an explanation of the event

= the data type and structures passed to/from the event
= theallowed PGPO[ption] values (if any)

Each function description includes:

= the function’s C language prototype

= argument descriptions

= an explanation of the function

= optional notable error codes

= optional notes, warnings, and tips on using the function

xxvi PGP Software Developer’s Kit

= optional sample code

The manual contains appendixes detailing:
= error codes

= recommended readings in cryptography
The manual concludes with:

= aglossary of cryptographic terms

e anindex

Conventions used in this guide

Typographic conventions

C language code listings, reserved words, and names of data structures, fields,
constants, arguments, and functions are shown in Courier Font

Key terms or concepts appear in boldface, and are defined in the Glossary.

Notes, warnings, and tips conventions
Notes may contain:
= non-essential but useful and/or interesting information
< information that is essential for understanding the material presented

Warnings contain information that is essential to understand. Failure to do so
could result in crashes and/or loss of data.

Tips contain information specifically intended to aid the PGPsdk developer in
using the function to the best advantage.

Reference Guide xxvii

How to contact Network Associates

Customer service

To order products or obtain product information, contact the Network
Associates Customer Care department at (408) 988-3832 or write to the
following address:

Network Associates, Inc.
McCandless Towers

3965 Freedom Circle

Santa Clara, CA 95054-1203
U.S.A.

Technical support

XXViii

Network Associates is famous for its dedication to customer satisfaction. We
have continued this tradition by making our site on the World Wide Web a
valuable resource for answers to technical support issues. We encourage you
to make this your first stop for answers to frequently asked questions, for
updates to Network Associates software, and for access to Network Associates
news and encryption information.

World Wide Web http://www.nai.com

Technical Support for your PGP product is also available through these
channels:

Phone (408) 988-3832

Email PGPSupport@pgp.com

To provide the answers you need quickly and efficiently, the Network
Associates technical support staff needs some information about your
computer and your software. Please have this information ready before you
call:

If the automated services do not have the answers you need, contact Network
Associates at one of the following numbers Monday through Friday between
6:00 A.M. and 6:00 p.M. Pacific time.

Phone (408) 988-3832

PGP Software Developer’s Kit

To provide the answers you need quickly and efficiently, the Network
Associates technical support staff needs some information about your
computer and your software. Please have this information ready before you
call:

= Product name and version number

= Computer brand and model

= Any additional hardware or peripherals connected to your computer
= Operating system type and version numbers

= Network type and version, if applicable

= Content of any status or error message displayed on screen, or appearing
in a log file (not all products produce log files)

= Email application and version (if the problem involves using PGP with an
email product, for example, the Eudora plug-in)

= Specific steps to reproduce the problem

Network Associates training

For information about scheduling on-site training for any Network Associates
product, call (800) 338-8754.

Comments and feedback

Network Associates appreciates your comments and feedback, but incurs no
obligation to you for information you submit. Please address your comments
about PGP product documentation to: Network Associates, Inc., 3965
Freedom Circle Santa Clara, CA 95054-1203 U.S.A. You can also e-mail
comments to tns_documentation@nai.com.

Year 2000 Compliance

Information regarding NAI products that are Year 2000 compliant and its Year
2000 standards and testing models may be obtained from NAI’s website at
http://www.nai.com/y2k.

For further information, email y2k@nai.com.

Reference Guide xxix

Development environment and API platform support

The PGPsdk, Version 1.7.2 binaries and public header files are supported on
three major platforms: UNIX, 32-bit Windows, and Macintosh. While
platforms and compilers other than those listed below may work with the
PGPsdk (and some will be supported in future releases), the Version 1.7.2
release has only been verified as working with the following:

= UNIX platform and compiler support includes Solaris for Sparc, Linux x86,
OpenBSD x86, and NetBSD x86 environments, each using the GNU C
compiler.

= 32-bit Windows platform and compiler support includes those 32-bit
environments using the Microsoft Visual C++ 5.0 compiler

= MacOS platform and compiler support includes MacQOS Version 7.6
environments using the MetroWerks CodeWarrior Version 12.

Related documentation

XXX

The following documentation is available to help you install, configure, and
get up to speed on the entire PGP product line.

= An Introduction to Cryptography. This guide is for anyone new to the
science of cryptography. It is a high-level overview of the terminology,
concepts, and processes used by PGP. It includes a section on security by
PGP’s creator, Phil Zimmermann.

= PGP Installation Guide. The Installation Guide describes how to install
the following products:

— PGP Desktop Security. Configuration techniques for PGP Desktop
Security, including instructions on how to create a PGP Client installer
with pre-configured settings, are included in the PGP Administrator’s
Guide.

— PGP Certificate Server. Configuration techniques for the Certificate
Server are included in the PGP Certificate Server Administrator’s Guide.

— PGP Replication Engine. Configuration techniques for the Replication
Engine are included in the PGP Certificate Server Administrator’s Guide.

— Policy Management Agent for SMTP. Configuration techniques for the
Policy Management Agent are included in the Policy Management Agent
Administrator’s Guide.

= PGP Certificate Server Administrator’s Guide. The Administrator’s
Guide describes how to configure and administrate the PGP Certificate
Server and PGP Replication Engine.

PGP Software Developer’s Kit

Policy Management Agent for SMTP Administrator’s Guide. The
Administrator’s Guide describes how to configure and administrate the
Policy Management Agent.

PGP Desktop Security User’s Guide. The User’s Guide describes how to
use the email, file, and disk encryption utilities of PGP and PGPdisk.

PGPsdk User’s Guide. The SDK User’s Guide describes how to use the
PGP Software Developer’s Kit.

PGP Product Source Code Books. Philip Zimmermann, editor, Warthman
Associates.

Recommended readings

Non-technical and beginning technical books

= Whitfield Diffie and Susan Eva Landau, “Privacy on the Line,” MIT Press;

ISBN: 0262041677

This book is a discussion of the history and policy surrounding
cryptography and communications security. It is an excellent read, even for
beginners and non-technical people, but with information that even a lot of
experts don’t know.

David Kahn, “The Codebreakers” Scribner; ISBN: 0684831309

This book is a history of codes and code breakers from the time of the
Egyptians to the end of WWII. Kahn first wrote it in the sixties, and there is
a revised edition published in 1996. This book won't teach you anything
about how cryptography is done, but it has been the inspiration of the
whole modern generation of cryptographers.

Charlie Kaufman, Radia Perlman, and Mike Spencer, “Network Security:
Private Communication in a Public World,” Prentice Hall; ISBN:
0-13-061466-1

This is a good description of network security systems and protocols,
including descriptions of what works, what doesn't work, and why.
Published in 1995, so it doesn't have many of the latest advances, but is still
a good book. It also contains one of the most clear descriptions of how DES
works of any book written.

Intermediate books

Bruce Schneier, “Applied Cryptography: Protocols, Algorithms, and
Source Code in C,” John Wiley & Sons; ISBN: 0-471-12845-7

This is a good beginning technical book on how a lot of cryptography
works. If you want to become an expert, this is the place to start.

Reference Guide xxxi

XXXii

Alfred J. Menezes, Paul C. van Oorschot, and Scott Vanstone,

“Handbook of Applied Cryptography,” CRC Press; ISBN: 0-8493-8523-7
This is the technical book you should get after Schneier. There is a lot of
heavy-duty math in this book, but it is nonetheless usable for those who do
not understand the math.

Richard E. Smith, “Internet Cryptography,” Addison-Wesley Pub Co;

ISBN: 020192480

This book describes how many Internet security protocols. Most
importantly, it describes how systems that are designed well nonetheless
end up with flaws through careless operation. This book is light on math,
and heavy on practical information.

William R. Cheswick and Steven M. Bellovin, “Firewalls and Internet
Security: Repelling the Wily Hacker” Addison-Wesley Pub Co;

ISBN: 0201633574

This book is written by two senior researcher at AT&T Bell Labs, about
their experiences maintaining and redesigning AT&T’s Internet
connection. Very readable.

Advanced books

Neal Koblitz, “A Course in Number Theory and Cryptography”
Springer-Verlag; ISBN: 0-387-94293-9

An excellent graduate-level mathematics textbook on number theory and
cryptography.

Eli Biham and Adi Shamir, “Differential Cryptanalysis of the Data
Encryption Standard,” Springer-Verlag; ISBN: 0-387-97930-1

This book describes the technique of differential cryptanalysis as applied to
DES. It is an excellent book for learning about this technique.

PGP Software Developer’s Kit

PGPsdk Overview

Introduction

The PGPsdk consists of nine functional groups including, among others, key
management functions, high- and low-level cryptographic functions, and
pseudo-random number generation functions. Each group has a
separately-compilable public header file that allows developers to include
only the PGP cryptographic functionality that they want to impart to their
applications. The more closely related header files are further grouped into
twelve major functional areas. Each of these major functional areas is
documented in its own chapter (Chapter 2 through Chapter 13).

Table 1-1. Public Header File Organization in This Document

pgpPublicKey.h

pgpSymmetricCipher.h

pgpOptionList.h

Header File Chapter

pgpOptionList.h Chapter 2, “Key Management
Functions”

pgpKeys.h Chapter 3, “Option List Functions”

pgpGroups.h Chapter 4, “Group Functions”

pgpCBC.h Chapter 5, “Ciphering and
Authentication Functions”

pgpCFB.h

pgpEncode.h

pgpHash.h

pgpHMAC.h

pgpFeatures.h

Chapter 6, “Feature (Capability) Query
Functions”

pgpMemoryMgr.h

pgpPubTypes.h

pgpSDKPrefs.h

pgpUtilities.h

Chapter 7, “Utility Toolbox”

pgpRandomPool

Chapter 8, “Global Random Number
Pool Management Functions”

pgpUserinterface.h

Chapter 9, “User Interface Functions”

pgpKeyServer.h

Chapter 10, “Key Server Functions”

Reference Guide

1 - PGPsdk Overview

2

Header File Chapter

pgpTLS.h Chapter 11, “TLS (Transport Layer
Security) Functions”

pgpSockets.h Chapter 12, “Socket Functions”

pgpBigNum.h Chapter 13, “BigNum Functions”

pgpErrors.h Appendix A, “PGPsdk Error Summary.”

pgpPFLErrors.h

Here are summaries of the chapters in the function reference sections of this
book:

Chapter 2, “Key Management Functions” Key management functions
allow applications to create, sign, add, remove, search for, and check the
validity of keys on disk-based or in-memory key rings. Also found here are
functions to check and set property values for keys, according to the PGP
Web of Trust model, as well as functions that import and export keys to
files and buffers. The key management function prototypes are listed in the
public header file pgpKeys.h .

Chapter 3, “Option List Functions” Option list functions provide a flexible
and extensible mechanism for presenting arbitrary option specifications
and data to functions accepting this mechanism. Option lists may be
persistent or local to the function accepting them, and so support modular
establishment and combining of option groups. The option list function
prototypes are listed in the public header file pgpOptionList.h

Chapter 4, “Group Functions” Group functions allow storing and
manipulating persistent list of key IDs. The group management function
prototypes are listed in the public header file pgpGroups.h

Chapter 5, “Ciphering and Authentication Functions”
Algorithm-independent functions are provided for high-level
cryptographic functions such as encrypting, decrypting, hashing, signing,
and verifying messages. Not only are applications free of the details of the
particular algorithms being used, but also new algorithms can be
transparently incorporated as they become available. The high-level
cryptographic function prototypes are listed in the public header file
pgpEncode.h . The low-level cryptographic function prototypes are listed
in the public header files pgpCBC.h, pgpCFB.h , pgpHash.h , and
pgpSymmetricCipher.h , Which appear as #include directives in
pgpEncode.h .

PGP Software Developer’s Kit

1 - PGPsdk Overview

Chapter 6, “Feature (Capability) Query Functions” The present state of U.S.
export law and the continuously evolving set of cryptographic standards,
algorithms, and formats make the simultaneous existence of multiple
versions of the PGPsdk a very real possibility, for example, a version
intended for export may support signing but not encryption. The PGPsdk
includes functions that return version numbers and the availability of
specific features (capabilities), thus providing applications with a measure
of version independence. The feature query function prototypes are listed
in the public header file pgpFeatures.h

Chapter 7, “Utility Toolbox” The PGPsdk require miscellaneous utility
functions such as memory management, context creation, file specification,
preferences, and date/time functions. Additionally, this chapter
documents a translation function that converts PGPError numeric codes
to English language character strings. The utility function prototypes are
listed in the PGPsdk public header files pgpMemoryMgr.h
pgpPubTypes.h , PGPsdkPrefs.h , and pgpUtilities.h

Chapter 8, “Global Random Number Pool Management Functions” Since
the PGPsdk cryptographic functions require random numbers to operate
correctly, the PGPsdk includes functions to manage a global pool of
random numbers seeded from keystrokes and mouse movements. The
SHA-1 hash function is used to distill entropy from incoming events and
to spread it throughout the random pool. The random number generation
function prototypes are listed in the public header file pgpRandomPool.h .

Chapter 9, “User Interface Functions” The PGPsdk includes User interface
elements such as passphrase and key selection dialogs which allow
developers to present an interface consistent with the PGP product, if
desired. These functions are available on the Windows and MacOS
platforms only. The user interface function prototypes are listed in the
public header file pgpUserinterface.h

Chapter 10, “Key Server Functions” The PGPsdk includes functions to
facilitate communicating with both HTTP and LDAP key servers. The key
server function prototypes are listed in the public header file
pgpKeyServer.h

Chapter 11, “TLS (Transport Layer Security) Functions” The TLS functions
provide a transport-layer independent means of encrypting and
authenticating network communication. The TLS function prototypes are
listed in the public header file pgpTLS.h .

Chapter 12, “Socket Functions” The PGPsdk socket functions allow
sophisticated PGPsdk developers further access to the functions that form
the basis for secure communication between PGP client and server
applications. The socket function prototypes are listed in the public header
file pgpSockets.h

Reference Guide 3

1 - PGPsdk Overview

= Chapter 13, “BigNum Functions” The PGPsdk includes a set of utilities for
manipulating large, multiple precision integers (BigNums). The BigNum
function prototypes are listed in the public header file pgpBigNum.h .

PGPsdk functionality

4

The PGP Software Development Kit (PGPsdk) allows software engineers and
application developers to seamlessly incorporate the PGP cryptographic
technology into such applications as e-mail package plug-ins, secure electronic
interchange packages, and secure financial transaction packages. The PGP
cryptographic technology consists of the following three basic cryptographic
elements:

= key management
= ciphering (encryption/decryption)
= authentication (signing and verifying)

Key management functions:

create and/or add keys

remove keys

= search for keys meeting certain ownership and/or property criteria
= check the validity of disk-based or in-memory key rings
= check and/or set key property values

= create, delete, and modify logical groups of keys
Ciphering (encrypting/decrypting) functions:

= encrypt data or files

= decrypt data or files

Authentication (signing and verifying) functions:

= sign messages or data files

= verify the authenticity of messages or data files

Other functional areas include pseudo-random number generation, BigNum
manipulation, utility, feature availability query, and key server access
functions that:

= manage pseudo-random numbers seeded from mouse movements,
keystrokes, and other events

PGP Software Developer’s Kit

1 - PGPsdk Overview

= manipulate large integers, such as the large primes that form the basis of
modern cryptographic keys

= manage memory
= specify files

= effect date/time conversion (platform dependent)

= indicate the availability of specific features within the PGPsdk
= convert error codes to readable strings

= communicate with and make requests of a remote key server and its
associated key database(s).

The Application Programmer’s Interface (API) to the PGPsdk consists of C
language functions, and provides developers with a consistent interface and
error handling protocols. These functions are organized into functional
groups, and each group comprises a function reference chapter of this
document (Chapter 2 through Chapter 12). Each of these chapters includes:

= anoverview of the functional group

= alogical ordering of the functions within the group (as applicable)
= the function group’s associated header file(s)

« afull description of each individual function

The full description of each function includes:

= abrief description of the function

= the function’s C language prototype

= argument descriptions

= notes regarding use of the function

= sample code (as required)

To use the PGPsdk, simply incorporate calls to the PGPsdk functions into your
C language application by using the function prototypes listed in the public
header files supplied as part of the PGPsdk and including the necessary
header files, and then linking with the supplied PGPsdk library binaries. PGP
supplies two versions of the PGPsdk library binaries - a debug version and a
non-debug version. Both versions perform essentially the same error checking,
and report the same error return codes. The debug version additionally asserts
itself on error conditions, and reports the errors to the default output
destination (platform dependent).

Reference Guide 5

1 - PGPsdk Overview

Library binaries

The PGPsdk library binaries contain all of the functions described by the
header file function prototypes, and link with your application. These libraries
are distributed in both debug and non-debug versions, and have the following
names on the following supported platforms:

MacOS
PGPsdkLib
PGPsdkNetworkLib
PGPsdkUILib

Win-32
PGP_SDK.dII
PGPsdKS.dll
PGPsdkNL.dIl
PGPsdkuL.dll

Unix
libPGPsdk.a
libPGPsdkKeyServer.a

Note that the network library is required only for those applications that
implement direct communication with a key server or implements transport
layer security (see Chapter 10, “Key Server Functions™)

Thu user interface library is required only for those applications that
implement PGP supplied user interface elements (see Chapter 9, “User
Interface Functions™)

Data Type, constant, macro, and function name
conventions

6

PGPsdk data types, macros, and functions have names beginning with PGP
PGPsdk constants have names beginning with kPGP (see “Summary of the
PGPsdk Opaque Data Types”).

Most PGPsdk data types are opaque, that is, they are references to the actual
data. These data types have names of the form:

PGPnameRef

where namedescribes the data type. Because these data types are opaque, a
reference to one is not necessarily a pointer in the C language sense, and so
they should never be de-referenced.

PGP Software Developer’s Kit

1 - PGPsdk Overview

All of the PGPsdk opaque data types have special values to indicate that they
are not referencing a valid instance. These values are useful for establishing an
initial or default value, and have names of the form:

kinvalidPGPnameRef

The PGPsdk supports byte array data through use of the C language types
char[] andvoid[] , aswell as their associated pointer types char* and
void* . While these basic types may or may not have implementational

differences, they do have important PGPsdk-specific semantic differences:

e char[] andchar* always denote NULLterminated byte arrays, that is, C
language strings

< void[]] andvoid* always denote arbitrary byte arrays that may
coincidentally be NULL terminated.

PGPsdk constants have names of the form:

kPGPCategoryDescription

for example, kPGPKeyPropCanSign . kPGPis the constant data type prefix,
KeyProp indicates that the constant belongs to the category that refers to key
properties, and CanSign implies a boolean indicating whether or not the
associated key is allowed to sign other keys.

PGPsdk macros and functions have names of the form:

PGPname

which is a very general format. However, there are several categories of
functions that have noteworthy naming conventions and implied semantics:

Data Reference Macros

Macros having names of the form:

PGPnameReflsValid

facilitate validation of opaque data types, and return a boolean value. Use of
these macros is strongly encouraged, as they provide the PGPsdk developer
with a guaranteed method for determining the validity of a data reference,
while also maintaining its opacity.

Reference Guide 7

1 - PGPsdk Overview

PGPNew Datatype and PGPFree Datatype

PGPNewDatatype functions allocate a new, persistent instance of a PGPsdk
opaque data types. The PGPsdk developer must eventually de-allocate the
instance with the corresponding “free” function. For example,
PGPNewContext allocates a new PGPContextRef , and PGPFreeContext
de-allocates a PGPContextRef . Note that closely related PGPsdk opaque
data types may share the same “free” function, for example,
PGPNewContextCustom also uses PGPFreeContext

PGPOQOoption

PGP@ption functions allocate PGPOptionListRef instances that are
automatically de-allocated once they are used in an option list management
function, for example, PGPBuildOptionList , Or as a sub-option, for
example:

PGPOSignWithKey(..., PGPOPassphrase(...), ...);

Other PGPsdk data types that have noteworthy implied semantics include:

PGPSize

PGPSize implies a length quantity, and further implies an in-memory context
(similar to the C language pseudo-type size_t). Values associated with
PGPSize items are in terms of the platform’s commonly used length quantity,
which is almost always the 8-bit byte.

PGPFlags

PGPFlags items differs for other PGPsdk data types that assume enumerated
values in that the associated values may be combined with boolean
expressions to create masks, for example:

if ((myFlags & (kPGPKeyRingOpenFlags_Mutable |
kPGPKeyRingOpenFlags_Creat e)))
{

}

/* features-are-available code */

PGPContext

8

The PGPsdk incorporates a global context /configuration mechanism for all
PGPsdk functionality. The PGPContext data type replaces the many global
variables used in previous PGP libraries, and thus provides a more robust and
manageable application environment. Typically, an application will create a
PGPContext atstartup, use the context throughoutits run, and finally free the
context on exit.

PGP Software Developer’s Kit

1 - PGPsdk Overview

The resultant PGPContextRef value is passed directly to most of the PGPsdk
functions. However, some PGPsdk data types incorporate the
PGPContextRef used to create them, and so the functions that accept these
data types as arguments generally do not also require a PGPContextRef
argument.

A PGPContext must notbe freed until and unless all data items allocated with
that context have already been freed. Failure to follow this protocol will not
only resultin memory leaks, but also precipitate application failures due to the
associated context being invalid or incorrect.

IMPORTANT: The PGPsdk is thred-safe only through the use of
different contexts in different threads. A single PGPContextRef cannot
be safely used in multiple threads. It is the application developer’s
responsibility to enforce this semantic.

Most PGP opaque data types have an associated reference count of type
...RefCount, which provides for simplified garbage collection. Upon creation
of such a data type, its reference count is initialized to one. From that point, the
PGPsdk automatically tracks the number of references to a particular resource,
for example, a given key set may be referenced by any number of key lists
and/or iterators. This not only results in a level of context independence, but
also ensures that a resource’s memory is released only when its last reference
is deleted. The PGPsdk also provides functions to support manual adjustment
of reference counts.

However, the automatic nature of the reference count management applies
only to implied references. This means that the reference count of an
underlying key set isautomatically incremented whenever a key list is created
from it, and is automatically decremented when that key list is freed. The
PGPsdk developer is expected to adhere to the following basic rule:
All PGP opaque data types that are explicitly created (PGPNew...
functions), copied (PGPCopy..functions), or have had their reference
count manually incremented must be freed using the appropriate
PGPFree...function.

Memory management

Memory management within the PGPsdk is normally handled transparently
by default functions analogous to the Standard C Library functions malloc
dealloc ,andrealloc .However, developers can override this behavior by
specifying their own equivalent allocate, de-allocate, and reallocate functions
(see the PGPNewContextStruct data type that is used by the
PGPNewContextCustom function).

Generally speaking, any PGPsdk function having a name of the form:

Reference Guide 9

1 - PGPsdk Overview

PGPNew...datatype...

accepts a PGPContext reference, and allocates memory which the caller must
explicitly de-allocate with the corresponding PGPsdk function having a name
of the form:

PGPFree...datatype...

Some allocations within the PGPsdk do not have a working PGPContextRef
from which to obtain a custom memory allocator (if any). If your application
uses a custom memory allocator, be sure to set the default internal PGPsdk
memory allocator with PGPSetDefaultMemoryMgr()

Error codes

With several exceptions, PGPsdk functions return an error code
(kPGPError_...) orvoid , and place any result values into output arguments.
This convention allows for simple and consistent error checking. The PGPsdk
provides the macros ISPGPError and IsntPGPError to test a function’s
return code. Essentially all PGPsdk functions that return an error code can
return one or more of the following:

< kPGPError_NoErr
< kPGPError_BadParams
= KkPGPError_OutOfMemory

These error codes are only listed for a function when their return has
non-obvious or additional implications. Of course, a function that has no
parameters cannot return kPGPError_BadParams , nor can a function that
does not allocate memory return kPGPError_OutOfMemory

PGPsdk API details and data structures — Key
management

10

Understanding how the PGPsdk key management functions perform their
tasks requires understanding of several PGPsdk Version 1.5-specific concepts
and data types. The following sections introduce the PGP key database,
collections of keys from a key database, the construction of filters that in turn
create collections of keys, ordered lists of keys from a collection of keys, and
methods of iterating over an ordered list of keys.

PGP Software Developer’s Kit

1 - PGPsdk Overview

A number of options is available for several of the key management functions,
and each is defined as a function returning a PGPOptionListRef (see
Chapter 5, “Option List Functions”). A special argument provided by the
PGPOLastOption function must appear as the last argument to indicate the
end of the list.

Key database

The PGP key database represents one or more key files, and can be thought of
as a backing store for a key ring. It can be composed of any number of files on
disk, or it can be entirely memory based. While the PGPKeyDBis a very
important data type to understand, it is currently never exported, nor is there
currently a user-visible reference type.

Every key in the system belongs to exactly one key database. Whenever a key
is modified, its corresponding key database is also modified. While equivalent
keys may exist simultaneously in several key databases, each instance is a
distinct key from the point of view of the PGPsdk key management functions
- each instance has a unique pointer, and so modifications to one will not affect
any of the others.

Collections of keys in a key database

The PGPKeySet data type represents a subset (referred to as a key set) of
exactly one key database, and may be thought of as a view onto that key
database. The function PGPOpenDefaultKeyrings opens the caller’s
default key rings, which is conceptually a key database consisting of two
files—the caller’s public key and private key keyring files. The function then
creates and returns a key set containing the full set of keys in that key database.

Any number of key sets may exist for a given key database (see the discussion
on key filters in this chapter). For instance, one could create a key set that
includes all keys, as well as a key set that includes only those keys signed by
“Philip Zimmermann.”

A key set is generally an “active” or a “live” view on a key database. To
demonstrate what an active view is, consider a key set that is composed of all
the keys that contain the name “Mark.” Creating this key set with an active key
filter and then adding a key containing name “Mark” to the associated key
database results in that key being automatically and instantaneously added to
the created key set, and vice versa.

Reference Guide 11

1 - PGPsdk Overview

Key filters

The PGPsdk allows the developer to construct very complicated key filters for
operating on elements of the key database. These filters are built from
primitive key filters, which in turn are created by the various
PGPNew...Filter functions. These primitive key filters are generally of the
form:

select all X that contain Y

A set of related functions allows negation, union, and intersection of primitive
key filters, and so allows creation of key filters that implement arbitrary
expressions such as
select all keys NOT containing “Phil” AND
having keylengths longer than 1024 bits

Once the key filter is complete, the PGPFilterKeySet function applies the
resultant key filter to a key set, yielding a new key set whose members satisfy
the key filter criteria. Note that this resultant new key set may be empty.

Lists of keys in a key database

Key sets have no ordering — they are merely collections of keys. The
PGPKeyList data type facilitates operations on key sets by imposing an
ordering that may be based on any sortable data item or sub-structure within
a key, for example, name or key ID. The function PGPOrderKeySet accepts a
key set and a sort order specification, and yields a key list.

The PGPKeylter data type implements iterating over a key list. Initially, it
references the pseudo-element just before the first element in the key list, and
then increments itself successively through each element of the key list. Most
changes to a key list that occur while iterating are handled automatically. For
example, inserting a new key causes the iteration to automatically “follow” the
key it was working on. The PGPKeylter data type also supports iteration
over the sub-structures within the key, for example, iterating over the user ID
structures of the key.

12 PGP Software Developer’s Kit

1 - PGPsdk Overview

PGPsdk API details and data structures —
Ciphering

Using the PGPsdk ciphering API

The PGPsdk Ciphering API has two high-level entry points - PGPEncode and
PGPDecode PGPEnNcode provides for all encrypting and signing
functionality, while PGPDecode provides for all decrypting and signature
verification functionality. Each function accepts a PGPContextRef , and a
variable number of options that control the behavior of the function. The
similarity of their prototypes is illustrated by the following examples:

PGPError PGPEncode(PGPContextRef pgpContext,
PGPOptionListRef firstOption,

PGPOLastOption(void));

PGPError PGPDecode(PGPContextRef pgpContext,
PGPOptionListRef firstOption,

PGPOLastOption(void));

A large number of options is available for both PGPEncode and PGPDecode
and each is defined as a function returning a PGPOptionListRef . Some
options are suitable only for encoding operations, some options are suitable
only for decoding operations, and some options are suitable for both
operations (see Chapter 3, “Option List Functions”). A special argument
provided by the PGPOLastOption function must appear as the lastargument
to indicate the end of the list.

Events and callbacks

The PGPOEventHandler option allows the calling application to request
callbacks when various events occur, and to define a function (event handler)
that is the target of the callback. While an event handler is usually not needed
for encryption operations, it is often needed for decryption operations.

An event handler serves two purposes — it provides notification to the calling
application that an event has occurred, and provides a mechanism for the
calling application to affect processing (in a limited, pre-defined manner).
Notification includes a PGPEvent reference which, depending on the type of
event, provides detailed information about the cause of the event. The calling
application can then respond appropriately, which may or may not affect the
course of further processing. For certain events, the calling application can
modify the processing context by invoking PGPAddJobOptions .

Reference Guide 13

1 - PGPsdk Overview

PGPsdk API details and data structures —
Authentication

The PGPsdk performs authentication (signing and verification of messages)
by using the supplied PGPEncode and PGPDecode functions. In the case of
signing or verifying a message, the application invokes the appropriate PGPO...
function(s), for example, PGPOSignWithKey and PGPODetachedSig , to
perform the needed authentication function. In the case of authentication, the
message is first passed through a hash function before being signed by the
sender’s private key.

Hash Functions

14

The PGPsdk provides a number of hash functions (more commonly referred
to as hash algorithms). Selection of a specific hash algorithm is sometimes
implicit to the processing context; for example, DSS keys unequivocally use
the SHA-1 hash algorithm. For other processing contexts, the
PGPOHashAlgorithm function can be used to “manually” configure the
context; for example, the function can force the use of the SHA-1 hash function
in an RSA signature.

PGP Software Developer’s Kit

Key Management Functions

Introduction

The PGPsdk key management functions allow applications to create, sign,
add, remove, search for, and check the validity of keys on disk-based or
in-memory key rings. They also include functions that check and set property
values for keys according to the PGP Web of Trust model, as well as functions
that import and export keys to files and buffers.

A PGP key is always a signing key, and for certain algorithms is also an
encryption key. If a sub-key is present, then it is always considered to be an
encryption key. Some algorithms, for example the Elgamal variant of
Diffie-Hellman require sub-keys since the base key is always considered to be
sign-only. Other algorithms, for example RSA, do not support sub-keys, and
for these the base key is used for both signing and encrypting.

Diffie-Hellman keys may have associated additional recipient request keys.
When present, all messages encrypted to the base key should also be
encrypted to each of the additional recipient request keys. The enforcement of
this request is left to the application developer.

Diffie-Hellman keys may also have one or more associated designated
revocation keys. A designated revocation key is empowered to revoke the
subject key in the event the owner of the subject key is unable to revoke it—for
example, if the private key has been lost of the passphrase forgotten.

A key may have any number of associated sub-keys, additional recipient
request (ARR) keys, and user IDs. A user ID in turn may have any number of
associated signatures.

Reference Guide 15

2 - Key Management Functions

Figure 2-1. Diffie-Hellman Key Structure

Key
| Signature
Designated ARRKey Sub-Key User ID 4|:
Revocation Reference
Key : | signature
Reference Sub-Key User ID :

Figure 2-2. RSA Key Structure

Key

| signature
User ID

H| Signature
User ID :

Events and callbacks

16

A number of the key management functions allow the calling application to
request callbacks to track the progress of the operation. Those functions that
permit inclusion of a PGPOEventHandler option generally execute so
quickly that an event handler is of limited benefit unless the key set involved
is very large. Those functions that include an explicit event handler argument
generally require a perceptible amount of execution time, regardless of the size
of the key set.

An event handler serves two purposes — it provides notification to the calling
application that an event has occurred, and provides a mechanism for the

calling application to affect processing (in a pre-defined manner). Notification
includes a pointer to a PGPEvent data type that, depending on the type of the
event, provides detailed information about the cause of the event. The calling

PGP Software Developer’s Kit

2 - Key Management Functions

application can then respond appropriately, which may or may not intervene
and affect the course of further processing. If the calling application wishes to
intervene, then it can abort the job by returning an error code (a value other
than kPGPError_NoErr). Additionally, depending on the type of event, it
can modify the processing context by invoking PGPAddJobOptions .

All event handlers are declared as

PGPError myEvents(PGPContextRef pgpContext,
PGPEvent *event,
PGPUserValue userValue);

The pgpContext argument is the reference to the context of the function
posting the event. The event argument references a PGPEvent data type as
follows:

struct PGPEvent_

{

PGPVersion version;
struct PGPEvent_*nextEvent;
PGPJobRef job;

PGPEventType type;
PGPEventData data;
h
typedef struct PGPEvent_ PGPEvent;
The version and nextEvent members are currently reserved for internal
use. The job member is not applicable to key management functions. The
type member identifies the event being posted, and recognizes
kPGPEvent_...values. Thedata memberisaunion of the event-specific data
structures, which are described with their corresponding event.

Reference Guide 17

2 - Key Management Functions

None of the key management functions currently support modification of the
processing context by invoking PGPAddJobOptions .

Figure 2-3. (Sub-)Key Generation Event Sequence

Legend
kPGEvent_InitialEvent g

[sent once; unconditional
_ [E=] Sent periodically;

[] sent once; conditional
kPGEvent_FinalEvent - Sent multiple times;

Repeat until condition satisfied
or user abort

Figure 2-4. Key Set Operation Event Sequence

kPGEvent_InitialEvent Legend

[=3] sent once; unconditional
_ [E3] Sent periodically;

[] sentonce; conditional
[sent multiple times;

Repeat until condition satisfied
or user abort

kPGEvent_FinalEvent

Key management events

kPGPEvent_InitialEvent

Sent before all other events. Implies entry to the function.

Data
None

Options
None

kPGPEvent_NullEvent

Sent during the course of key set import/export processing if explicitly
requested with PGPOSendNullEvents (see PGPExportKeySet and
PGPImportKeySet). Automatically sent during signature checking (see
PGPCheckKeyRingSigs).

The event data allows the PGPsdk developer to determine the sending

18 PGP Software Developer’s Kit

2 - Key Management Functions

function’s progress by way of its completion percentage. The event data
members should be treated as relative, un-scaled quantities — they are not
necessarily byte quantities or number-of-keys values. In all cases, the
completion percentage is calculated as follows:

double completionPercent;

if (event->type = kPGPEvent_NullEvent)
{
if (event->nullData.bytesTotal != 0)
{
completionPercen t = (100 *
event->nullData.bytesWritten) /
event->nullData.bytesTotal;
}

else

{
}

completionPercent = 100;

Data
typedef struct PGPEventNullData_
{
PGPFileOffset bytesWritten;
PGPFileOffset bytesTotal;
} PGPEventNullData;

kPGPEvent_KeyGenEvent

Automatically sent during the course of key and sub-key generation (see
PGPGenerateKey and PGPGenerateSubKey).

The event data allows the PGPsdk developer to determine the progress of the
key generation process. If the event handler returns an error, then the key
generation process aborts.

The state value indicates the approximate state of the key generation process,
and assumes the character values that were used by previous text-versions of
PGP:

. selected value failed pseudo-primality test

/ all selected values failed pseudo-primality test; re-initializing the prime
number generation environment

— selected value passed pseudo-primality test; further processing required
+ selected value passed pseudo-primality test; further processing required

* selected value passed pseudo-primality test; processing for this phase is near
completion.

space completion of this phase of (sub-)key generation. The actual number of
phases varies from key to key, and has no fixed value or range

Reference Guide 19

2 - Key Management Functions

Data
typedef struct PGPEventKeyGenData_

{
PGPUInt32state;
} PGPEventKeyGenData;

kPGPEvent_FinalEvent

Sent after all other events. Implies return from the function.
Data
None

Key ring management functions

PGPOpenDefaultKeyRings

Creates a key set that contains all of keys in the default public key and private
key keyrings. Any trust information associated with the public key ring is
included.

Syntax
PGPError PGPOpenDefaultKeyRings(
pPGPContextRef pgpContext,
PGPKeyRingOpenFlags openFlags,
PGPKeySetRef *keySet);
Parameters
pgpContext the target context

openFlags the open options, which recognizes
kPGPKeyRingOpenFlags_... values

keySet the receiving field for the new key set
Flags
The open flags are interpreted as follows:
= kPGPKeyRingOpenFlags_Mutable
TRUEIf the resultant key set should be made modifiable; FALSE if the
resultant key set should be made read-only.
= kPGPKeyRingOpenFlags_Create
Set if the specified key ring file should be created if it doesn’t already exist.
Valid only if kPGPkeyRingOpenFlags_Mutable is also set.
Notes

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

20 PGP Software Developer’s Kit

2 - Key Management Functions

PGPOpenKeyRingPair

Creates a key set that contains all of the keys in the specified public and private
key ring files. Any trust information associated with the public key ring is
included.

See PGPOpenDefaultKeyRings for interpretation of the open flags.

Syntax
PGPError PGPOpenKeyRingPair (
PGPContextRef pgpContext,
PGPKeyRingOpenFlags openFlags,
PGPFileSpecRef pubFileSpec,
PGPFileSpecRef secFileSpec,
PGPKeySetRef *keySet);
Parameters
pgpContext the target context
openFlags the open option flags value
pubFileSpec the target public key ring file
secFileSpec the target private key ring file
keySet the receiving field for the new key set
Notes
For most applications, PGPOpenDefaultKkeyRings provides all required
functionality.
The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .
PGPOpenKeyRing
Creates a key set that contains all of the keys in the specified key ring file.
See PGPOpenDefaultKeyRings for interpretation of the open flags.
Syntax

PGPError PGPOpenKeyRing(
PGPContextRef pgpContext,
PGPKeyRingOpenFlags openFlags,
PGPFileSpecRef fileSpec,
PGPKeySetRef *keySet);

Reference Guide 21

2 - Key Management Functions

Parameters

Flags

Notes

pgpContext the target context

openFlags the open option flags value

fileSpec the target key ring file

keySet the receiving field for the new key set

The open flags are interpreted as follows:

= kPGPKeyRingOpenFlags_Create = — TRUEIf the specified key ring file
should be created if it doesn’t already exist.

= kPGPKeyRingOpenFlags_Mutable - TRUEIf the resultant key set should
be made modifiable; FALSE if the resultant key set should be made
read-only.

= kPGPKeyRingOpenFlags_Trusted - TRUEiIf any associated trust
information should be included.

< kPGPKeyRingOpenFlags_Private — TRUE:If the specified key ring file
should be considered private; FALSEIf the specified key ring file should be
considered public.

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

PGPReloadKeyRings

Syntax

Parameters

Notes

Forcibly re-establishes the key database associated with the specified key set
from the key database source files.

PGPError PGPReloadKeyRings (PGPKeySetRef keySet);

keySet the target key set

The current implementation treats the target key set as an indirect parameter
that references a key database, rather than as an explicit destination.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

22 PGP Software Developer’s Kit

2 - Key Management Functions

PGPCheckKeyRingSigs

Syntax

Parameters

Notes

Checks all signatures (or only those marked unchecked) of each key in the key
database associated with the target key set. Each signature is assumed to exist
in the key database associated with the look-up key set, which is typically all of
the client’s default keys.

Events of type kPGPEvent_NullEvent are sent during the course of
processing, and the PGPsdk developer can choose to handle them with the
optional event handler.

PGPError PGPCheckKeyRingSigs(
PGPKeySetRef keysToCheck,
PGPKeySetRef keysSigning,
PGPBoolean checkAll,
PGPEventHandlerProcPtr eventHandler,
PGPUserValue eventHandlerData);

keysToCheck the target key set

keysSigning the look-up key set that contains the signing keys

checkAll TRUE to check all signatures; FALSEto check only
those marked as being unchecked

eventHandler event handler or NULLto ignore any and all events
(optional)

eventHandlerData user-defined data to be passed to the event handler
(optional)

This is a resource-intensive function, whose execution time can be quite lengthy.

The PGPsdk developer can choose to point the optional event handler to a
function that implements a progress bar display, or anything else that the
PGPsdk developer desires. eventHandlerData is passed to the event handler
function, and has meaning only in conjunction with the event handler function
(see the description for kPGPEvent_NullEvent).

The current implementation treats the target and look-up key sets as indirect
parameters that reference key databases, rather than as explicit destinations and
sources. Because of key filtering and the “live” nature of its resultant view-style
key sets, the keys modified as a result any action by the optional event handler
may be reflected in any key set based upon that key database, and further may
or may not be reflected in the specified destination key set, depending upon its
key filtering criteria.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

Reference Guide 23

2 - Key Management Functions

PGPRevertKeyRingChanges

Syntax

Parameters

Notes

Undoes all changes made to the key database associated with the specified key
set since it was last opened, or since it was last the target of a call to
PGPCommitKeyRingChanges .

PGPError PGPRevertKeyRingChanges(PGPKeySetRef keySet);

keySet the target key set

The current implementation treats the target key set as an indirect parameter
that references a key database, rather than as an explicit destination.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPCommitKeyRingChanges

Syntax

Parameters

Notes

Checks any signatures that are marked as unchecked, and re-propagates their
trust model information and other attributes. It then writes any pending
changes in the key database associated with the target key set to the backing
store (disk or memory) upon which the key database is based.

PGPError PGPCommitKeyRingChanges(PGPKeySetRef keySet);

keySet the target key set

Changes are only written to disk if and when the PGPsdk client calls this
function.

The current implementation treats the target key set as an indirect parameter
that references a key database, rather than as an explicit destination. Because of
key filtering and the “live” nature of its resultant view-style key sets, any keys
modified by this function may be reflected in any key set based upon that key
database, and further may or may not be reflected in the specified destination
key set, depending upon its key filtering criteria.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

24 PGP Software Developer’s Kit

2 - Key Management Functions

Key Set Management Functions

PGPNewKeySet

Syntax

Parameters

Notes

Creates a new memory-based key database, as well as an empty key set on that
key database.

PGPError PGPNewKeySet(
PGPContextRef pgpContext,
PGPKeySetRef *keySet);

pgpContext the target context
keySet the receiving field for the new key set

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

The current implementation treats the resultant key set as an indirect parameter
that references a key database, rather than as an explicit destination.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPNewEmptyKeySet

Syntax

Parameters

Notes

Creates a new, empty key set on the key database associated with the specified
source key set.

PGPError PGPNewEmptyKeySet(
PGPKeySetRef baseKeySet,
PGPKeySetRef *newKeySet);

baseKeySet the source key set
newKeySet the receiving field for the new key set

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

The current implementation treats the supplied key set as an indirect parameter
that references a key database, rather than as an explicit source.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

Reference Guide 25

2 - Key Management Functions

PGPNewsSingletonKeySet

Creates a key set that is not associated with any key database, and that contains
only the specified seed key. This allows the PGPsdk developer to pass a single,
specific key to a function that requires a key set argument.

Syntax
PGPError PGPNewsSingletonKeySet (
PGPKeyRef key, PGPKeySetRef *keySet);
Parameters
key the source key
keySet the receiving field for the new key set
Notes
This function does not create a new key database; the resultant key set contains
only the one key.
The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .
PGPUnionKeySets
Creates a new key set that is the union of the two source key sets
Syntax
PGPError PGPUnionKeySets(
PGPKeySetRef firstkeySet,
PGPKeySetRef secondKeySet,
PGPKeySetRef *resultkeySet);
Parameters
firstkeySet the first source key set
secondKeySet the second source key set
resultkeySet the receiving field for the new key set
Notes
The two source key sets must be in the same key database.
The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .
PGPFreeKeySet
Decrements the reference count of the specified key set, and frees the key set if
the reference count reaches zero.
Syntax

PGPError PGPFreeKeySet(PGPKeySetRef keySet);

26 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
keySet the target key set

PGPImportKeySet

Imports the specified keys from the specified input source in the options list
into a new key set. By including an option that specifies sending null events, the
PGPsdk developer can provide for tracking the progress of the function (see
PGPOSendNullEvents).

Syntax
PGPError PGPImportKeySet(
PGPContextRef pgpContext,
PGPKeySetRef *keySet,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
pgpContext the target context
keySet the receiving field for the resultant key set
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Import specific options include:
» PGPOEventHandler
* PGPOInputBuffer
* PGPOInputFile
» PGPOInputFileFSSpec
* PGPOLocalEncoding
* PGPOSendNullEvents
Notes

One of the following is required to specify the key source location:
* PGPOInputBuffer

* PGPOInputFile

= PGPOInputFileFSSpec

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

Reference Guide 27

2 - Key Management Functions

PGPExportKeySet

Exports the specified keys in the specified key set to the output destination
specified in the options list. By including an option that specifies sending null
events, the PGPsdk developer can provide for tracking the progress of the
function (see PGPOSendNullEvents).

Syntax
PGPError PGPExportKeySet(
PGPKeySetRef keySet,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
keySet the target key set
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Export specific options include:
» PGPOAIllocatedOutputBuffer
* PGPOCommentString
» PGPODiscardOutput
» PGPOEventHandler
» PGPOExportPrivateKeys
» PGPOOutputBuffer
* PGPOOutputFile
» PGPOOutputFileFSSpec
* PGPOSendNullEvents
* PGPOVersionString
Notes

One of the following is required to specify an output destination for functions
that accept this option:

PGPOAllocatedOutputBuffer
PGPOOutputBuffer
PGPOOutputFile
PGPOOutputFileFSSpec

Exporting a key set and then importing it back in does not necessarily resultin a
key set that is identical to that initially exported. For example, if a key was

28 PGP Software Developer’s Kit

2 - Key Management Functions

signed as being non-exportable, then its signature data will be lost (see
PGPOExportable).

PGPAddKeys

Copies all of the keys in the specified source key set to the key database
associated with the specified destination (“to be augmented”) key set.

Syntax
PGPError PGPAddKeys(
PGPKeySetRef keysToAdd,
PGPKeySetRef keySet);
Parameters
keysToAdd the source key set, which contains the keys to be added
keySet the target (“to be augmented”) key set
Notes
The caller must call PGPCommitKeyringChanges
The current implementation treats the destination key set as an indirect
parameter that references a key database, rather than as an explicit destination.
Because of key filtering and the “live” nature of its resultant view-style key sets,
the keys added by this function may appear in any key set based upon that key
database
The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.
PGPRemoveKeys
Removes each of the keys in the specified source key set from the key database
associated with the specified destination (“to be pruned”) key set.
Syntax
PGPError PGPRemoveKeys(
PGPKeySetRef keysToRemove,
PGPKeySetRef keySet);
Parameters
keysToremove the source key set, which contains the keys to be
removed
keySet the target (“to be pruned”) key set
Notes

The current implementation treats the destination key set as an indirect

parameter that references a key database, rather than as an explicit destination.
Because of key filtering and the “live” nature of its resultant view-style key sets,
the keys removed by this function may disappear from any key set based upon

Reference Guide 29

2 - Key Management Functions

that key database.
The indirect nature of this interface is likely to change in a future version, and

will almost certainly involve changes to this function’s parameterization.

PGPPropagateTrust

Propagates the trust information across the key database associated with the
specified key set.

Syntax
PGPError PGPPropagateTrust(PGPKeySetRef keySet);
Parameters
keySet the target key set
Notes
The current implementation treats the destination key set as an indirect
parameter that references a key database, rather than as an explicit destination.
Because of key filtering and the “live” nature of its resultant view-style key sets,
the trust values propagated by this function may be reflected in any key set
based upon that key database, and further may or may not be reflected in the
specified destination key set, depending upon its key filtering criteria.
The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.
PGPCountKeys
Retrieves the number of keys in the specified key set.
Syntax
PGPError PGPCountKeys(
PGPKeySetRef keySet, PGPUInt32 *numKeys);
Parameters
keySet the target key set
numKeys the receiving field for the key count
PGPKeySetlsMember
Returns TRUEIf the specified key is in the specified key set.
Syntax

PGPBoolean PGPKeySetlsMember(
PGPKeyRefkey, PGPKeySetRef keySet);

30 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
key the target key
keySet the target key set
PGPKeySetlsMutable
Returns TRUEIf the specified key set can be modified, that is if keys and their
components (sub-keys, signatures, and user IDs) can be added to the key set,
deleted from the key set, and have their properties changed in the key set.
Syntax
PGPBoolean PGPKeySetlsMutable(PGPKeySetRef keySet);
Parameters
keySet the target key set
PGPKeySetNeedsCommit
Returns TRUEIf there are any pending changes for the key database associated
with the target key set.
Syntax
PGPBoolean PGPKeySetNeedsCommit(PGPKeySetRef keySet);
Parameters
keySet the target key set
Notes

The current implementation treats the target key set as an indirect parameter
that references a key database, rather than as an explicit destination.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

KeyFilter Functions

Filters are used to filter keys in a key set with PGPFilterKeySet() . Filters
are also used when searching key servers to establish the search criteria.

PGPNewKeyBooleanFilter

Creates a filter which will match all keys on a given key Boolean property
value.

Syntax

PGPError PGPNewKeyBooleanFilter(
PGPContextRef pgpContext,

Reference Guide 31

2 - Key Management Functions

Parameters

Notes

PGPKeyPropName property,
PGPBoolean match,
PGPFilterRef *outFilter);

pgpContext the target context

property name of the Boolean property to examine
match the Boolean value to match

outFilter the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyCreationTimeFilter

Syntax

Parameters

Notes

Creates a key filter that will select those keys whose creation time meets the
match criterion with respect to the specified creation time.

PGPError PGPNewKeyCreationTimeFilter(
PGPContextRef pgpContext,
PGPTime creationTime,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

pgpContext the target context

creationTime the desired creation time value

match the match criterion

outFilter the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyExpirationTimeFilter

Syntax

Creates a key filter that will select those keys whose expiration time meets the
match criterion with respect to the specified expiration time.

PGPError PGPNewKeyExpirationTimeFilter(
PGPContextRef pgpContext,
PGPTime expirationTime,
PGPMatchCriterion match,

32 PGP Software Developer’s Kit

2 - Key Management Functions

PGPFilterRef *outFilter);

Parameters

pgpContext the target context

expirationTime the desired expiration time value

match the match criterion

outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyDisabledFilter

Creates a key filter that will select for all disabled keys or for all enabled keys,
depending on the value of the disabled argument.

Syntax
PGPError PGPNewKeyDisabledFilter(
PGPContextRef pgpContext,
PGPBoolean disabled,
PGPFilterRef *outFilter);
Parameters
pgpContext the target context
disabled TRUE to match disabl ed keys; FALSEto match enabled keys
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyNumberFilter

Creates a filter which will match all keys on a given key numeric property
value.

Syntax

PGPError PGPNewKeyNumberFilter(
PGPContextRef pgpContext,
PGPKeyPropName property,
PGPUINt32 value,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

Reference Guide 33

2 - Key Management Functions

Parameters

Notes

pgpContext the target context

property name of the property to examine

value the match threshold value

match how to match (=, I=, <, >, <=, >=)

outFilter the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyTimeFilter

Syntax

Parameters

Notes

Creates a filter which will match all keys on a given key time property value.

PGPError PGPNewKeyTimeFilter(
PGPContextRef pgpContext,
PGPKeyPropName property,
PGPTime value,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

pgpContext the target context

property name of the property to examine

value the match threshold time value

match how to match (=, I=, <, >, <=, >=)

outFilter the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyPropertyBufferFilter

Syntax

Creates a filter which will match all keys on a given key binary data property
value.

PGPError PGPNewKeyPropertyBufferFilter(
PGPContextRef context,
PGPKeyPropName property,
void *buffer,

PGPSize length,

34 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Notes

PGPMatchCriterion match,
PGPFilterRef *outFilter);

pgpContext the target context

property name of the property to examine

buffer the match threshold value buffer

length the size (in bytes) of the buffer

match how to match (=, I=)

outFilter the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyRevokedFilter

Syntax

Parameters

Notes

Creates a key filter that will select for all revoked keys or for all non-revoked
keys, depending on the value of the revoked argument.

PGPError PGPNewKeyRevokedFilter(
PGPContextRef pgpContext,
PGPBoolean revoked,
PGPFilterRef *outFilter);

pgpContext the target context

revoked TRUE to match revoked keys; FALSE to match non-revoked
keys

outFilter the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyEncryptAlgorithmFilter

Syntax

Creates a key filter that will select those keys that use the specified public key
algorithm.

PGPError PGPNewKeyEncryptAlgorithmFilter(
PGPContextRef pgpContext,
PGPPublickeyAlgorithm encryptAlgorithm,
PGPFilterRef *outFilter);

Reference Guide 35

2 - Key Management Functions

Parameters
pgpContext the target context
encryptAlgorithm the desired public key encryption algorithm
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

It may be useful to first determine if the desired public key encryption
algorithm is available (see PGPGetIndexedPublicKeyAlgorithminfo).

PGPNewKeyEncryptKeySizeFilter

Creates a key filter that will select those keys whose encryption key size (in bits)
meets the match criterion with respect to the specified encryption key size.

Syntax
PGPError PGPNewKeyEncryptKeySizeFilter(
PGPContextRef pgpContext,
PGPUINt32 keySize,
PGPMatchCriterion match,
PGPFilterRef *outFilter);
Parameters
pgpContext the target context
keySize the desired size of the encryption key (in bits)
match the match criterion
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyFingerPrintFilter

Creates a key filter that will select for those keys having the specified
fingerprint.
Syntax
PGPError PGPNewKeyFingerPrintFilter(
PGPContextRef pgpContext,
void const *fingerPrint,
PGPSize fingerPrintLength,
PGPFilterRef *outFilter);

36 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
pgpContext the target context
fingerPrint the desired key fingerprint in binary form
fingerPrintLength the size of the desired fingerprint (in bytes)
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeyIDFilter

Creates a key filter that will select for the specified key ID.

Syntax
PGPError PGPNewKeyIDFilter(
PGPContextRef pgpContext,
PGPKeyID const *keylD,
PGPFilterRef *outFilter);
Parameters
pgpContext the target context
keylD the desired key ID
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewSubKeyBooleanFilter

Creates a filter which will match all keys on a given sub-key Boolean property
value. Note that only the keys are filtered, not the matching subkeys.

Syntax
PGPError PGPNewSubKeyBooleanFilter(
PGPContextRef pgpContext,
PGPKeyPropName property,
PGPBoolean match,
PGPFilterRef *outFilter);

Reference Guide 37

2 - Key Management Functions

Parameters
pgpContext the target context
property name of the Boolean property to examine
match the Boolean value to match
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewSubKeyIDFilter

Creates a key filter that will select for the specified sub-key ID.

Syntax
PGPError PGPNewSubKeyIDFilter(
PGPContextRef pgpContext,
PGPKeyID const *subKeylD,
PGPFilterRef *outFilter);
Parameters
pgpContext the target context
subKeylID the desired sub-key ID
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewSubKeyNumberFilter

Creates a filter which will match all keys on a given sub-key numeric property
value. Note that only the keys are filtered, not the matching subkeys.

Syntax

PGPError PGPNewSubKeyNumberFilter(
PGPContextRef pgpContext,
PGPKeyPropName property,
PGPUINt32 value,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

38 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Notes

pgpContext
property
value
match
outFilter

the target context

name of the property to examine

the match threshold value

how to match (=, I=, <, >, <=, >=)

the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with

PGPFreeFilter

PGPNewSubKeyPropertyBufferFilter

Syntax

Parameters

Notes

Creates a filter which will match all keys on a given subkey binary data
property value. Note that only the keys are filtered, not the matching subkeys.

PGPError PGPNewSubKeyPropertyBufferFilter(

pgpContext
property
buffer
length
match
outFilter

PGPContextRef context,
PGPKeyPropName property,
void *buffer,

PGPSize length,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

the target context

name of the property to examine

the match threshold value buffer

the size (in bytes) of the buffer

how to match (=, I=)

the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with

PGPFreeFilter

PGPNewSubKeyTimekFilter

Syntax

Creates a filter which will match all keys on a given sub-key time property
value. Note that only the keys are filtered, not the matching subkeys.

PGPError PGPNewSubKeyTimeFilter(

PGPContextRef pgpContext,

Reference Guide 39

2 - Key Management Functions

PGPKeyPropName property,
PGPTime value,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

Parameters

pgpContext the target context

property name of the property to examine

value the match threshold time value

match how to match (=, I=, <, >, <=, >=)

outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeySigAlgorithmFilter

Creates a key filter that will select those keys using the specified signature

algorithm.
Syntax
PGPError PGPNewKeySigAlgorithmFilter(
PGPContextRef pgpContext,
PGPPublickeyAlgorithm sigAlgorithm,
PGPFilterRef *outFilter);
Parameters
pgpContext the target context
sigAlgorithm the desired signature algorithm
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewKeySigKeySizeFilter

Creates a key filter that will select those keys whose signature key size (in bits)
meets the match criterion with respect to the specified signature key size.

Syntax

PGPError PGPNewKeySigKeySizeFilter(
PGPContextRef pgpContext,
PGPUINt32 keySize,
PGPMatchCriterion match,

40 PGP Software Developer’s Kit

2 - Key Management Functions

PGPFilterRef *outFilter);

Parameters
pgpContext the target context
keySize the desired size of the signature key (in bits)
match the match criterion
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewsSigBooleanFilter

Creates a filter which will match all keys on a given signature Boolean property
value. Note that only the keys are filtered, not the matching signatures.

Syntax
PGPError PGPNewKeyBooleanFilter(
PGPContextRef pgpContext,
PGPKeyPropName property,
PGPBoolean match,
PGPFilterRef *outFilter);
Parameters
pgpContext the target context
property name of the Boolean property to examine
match the Boolean value to match
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewSigKeyIDFilter

Creates a key filter that will select those keys that were signed by the key
having the specified key ID.

Syntax

PGPError PGPNewSigKeyIDFilter(
PGPContextRef pgpContext,
PGPKeyID const *keylD,
PGPFilterRef *outFilter);

Reference Guide 41

2 - Key Management Functions

Parameters

pgpContext the target context

keyID the desired signature key ID

outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewSigNumberFilter

Creates a filter which will match all keys on a given signature numeric property
value. Note that only the keys are filtered, not the matching signatures.

Syntax
PGPError PGPNewSigNumberFilter(
PGPContextRef pgpContext,
PGPKeyPropName property,
PGPUINt32 value,
PGPMatchCriterion match,
PGPFilterRef *outFilter);
Parameters
pgpContext the target context
property name of the property to examine
value the match threshold value
match how to match (=, 1=, <, >, <=, >=)
outFilter the receiving field for the resultant key filter
Notes

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewsSigPropertyBufferFilter

Creates a filter which will match all keys on a given signature binary data
property value. Note that only the keys are filtered, not the matching
signatures.

Syntax
PGPError PGPNewsSigPropertyBufferFilter(
PGPContextRef context,
PGPKeyPropName property,
void *buffer,
PGPSize length,
PGPMatchCriterion match,

42 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
pgpContext
property
buffer
length
match
outFilter

Notes

PGPFilterRef *outFilter);

the target context

name of the property to examine

the match threshold value buffer

the size (in bytes) of the buffer

how to match (=, I=)

the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with

PGPFreeFilter

PGPNewSigTimeFilter

Creates a filter which will match all keys on a given signature time property
value. Note that only the keys are filtered, not the matching signatures.

PGPError PGPNewsSigTimeFilter(

Syntax

Parameters
pgpContext
property
value
match
outFilter

Notes

PGPContextRef pgpContext,
PGPKeyPropName property,
PGPTime value,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

the target context

name of the property to examine

the match threshold time value

how to match (=, I=, <, >, <=, >=)

the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with

PGPFreeFilter

PGPNewUserIDBooleanFilter

Creates a filter which will match all keys on a given user ID Boolean property
value. Note that only the keys are filtered, not the matching user ID’s.

Syntax

PGPError PGPNewUserlDBooleanFilter(

PGPContextRef pgpContext,

Reference Guide 43

2 - Key Management Functions

Parameters

Notes

PGPKeyPropName property,
PGPBoolean match,
PGPFilterRef *outFilter);

pgpContext the target context

property name of the Boolean property to examine
match the Boolean value to match

outFilter the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewUserIDNameFilter

Syntax

Parameters

Notes

Creates a key filter that will select keys whose user ID information matches the
specified user name.

PGPError PGPNewUserIDNameFilter(
PGPContextRef pgpContext,
char const *namesString,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

pgpContext the target context

namesString the desired user name

match the match criterion

outFilter the receiving field for the resultant key filter

Currently, the “name” component of a user ID is comprised of those characters
up to, but not including, the first “<” character in the user ID.

The nameString argument length must not exceed kPGPMaxUserIDLength

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewUserIDNumberFilter

Syntax

Creates a filter which will match all keys on a given user ID numeric property
value. Note that only the keys are filtered, not the matching user ID’s.

PGPError PGPNewUserIDNumberFilter(

44 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Notes

pgpContext
property
value
match
outFilter

PGPContextRef pgpContext,
PGPKeyPropName property,
PGPUINnt32 value,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

the target context

name of the property to examine

the match threshold value

how to match (=, I=, <, >, <=, >=)

the receiving field for the resultant key filter

The caller is responsible for de-allocating the resultant key filter with

PGPFreeFilter

PGPNewUserIDStringBufferFilter

Syntax

Parameters

Notes

Creates a filter which will match all keys on a given user ID string property

value. Note that only the keys are filtered, not the matching user ID’s.

PGPError PGPNewUserlDStringBufferFilter(

pgpContext
property
buffer
length
match
outFilter

PGPContextRef pgpContext,
PGPUserIDPropName property,
void *buffer,

PGPSize length,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

the target context

name of the property to examine

the match string buffer

the size (in bytes) of the buffer

the match criterion

the receiving field for the resultant key filter

This filter matches within the entire user ID string.
The caller is responsible for de-allocating the resultant key filter with

PGPFreeFilter

Reference Guide

45

2 - Key Management Functions

PGPNewUserIDStringFilter

Syntax

Parameters

Notes

Creates a key filter that will select for keys whose user ID information matches
the specified data string.

PGPError PGPNewUserlDStringFilter(
PGPContextRef pgpContext,
char const *userlDString,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

pgpContext the target context

userIDString the desired user ID

match the match criterion

outFilter the receiving field for the resultant key filter

This filter matches within the entire user ID string.

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPNewUserIDEmailFilter

Syntax

Parameters

Notes

Creates a key filter that will select for keys whose user ID information contains
the specified email address.

PGPError PGPNewUserIDEmailFilter(
PGPContextRef pgpContext,
char const *emailString,
PGPMatchCriterion match,
PGPFilterRef *outFilter);

pgpContext the target context

emailString the desired user email address

match the match criterion

outFilter the receiving field for the resultant key filter

The “email” component of a user ID is comprised of those characters after the
first “<* character upto the first “>" character present.

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

46 PGP Software Developer’s Kit

2 - Key Management Functions

PGPNegateFilter

Syntax

Parameters

Notes

Creates a new key filter that will select those keys that the input key filter will
exclude.

PGPError PGPNegateFilter(
PGPFilterRef filter,
PGPFilterRef *outFilter);

filter the source key filter
outFilter the receiving field for the resultant key filter

If the function returns an error, then the input filter is automatically freed.
Otherwise, the input filter will be automatically freed when the resultant filter
is freed. If the input filter should persist, then its reference count should be
incremented with PGPIncFilterRefCount

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPIntersectFilters

Syntax

Parameters

Notes

Creates a new key filter that is the logical intersection of the two input key
filters. For example, for the resultant key filter to select an item, that item would
have to be selectable by both of the input key filters.

PGPError PGPIntersectFilters(
PGPFilterRef filterl,
PGPFilterRef filter2,
PGPFilterRef *outFilter);

filterl the first source key filter
filter2 the second source key filter
outFilter the receiving field for the resultant key filter

If the function returns an error, then the input filters are automatically freed.
Otherwise, the input filters will be automatically freed when the resultant filter
is freed. If the input filters should persist, then their reference counts should be
incremented with PGPIncFilterRefCount

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

Reference Guide 47

2 - Key Management Functions

PGPUnionFilters

Syntax

Parameters

Notes

Creates a key filter that is the logical union of the two input key filters. For
example, for the resultant key filter to select an item, that item would have to be
selectable by either of the input key filters.

PGPError PGPUnionFilters(
PGPFilterRef filterl,
PGPFilterRef filter2,
PGPFilterRef *outFilter);

filterl first input key filter
filter2 second input key filter
outFilter the receiving field for the resultant key filter

If the function returns an error, then the input filters are automatically freed.
Otherwise, the input filters will be automatically freed when the resultant filter
is freed. If the input filters should persist, then their reference counts should be
incremented with PGPIncFilterRefCount

The caller is responsible for de-allocating the resultant key filter with
PGPFreeFilter

PGPFreeFilter

Syntax

Parameters

Decrements the reference count of the specified key filter, and frees the key filter
if the reference count reaches zero.

PGPError PGPFreeFilter(PGPFilterReffilter);

filter the target key filter

PGPFilterKeySet

Syntax

Applies the specified key filter to the specified key set. This yields a resultant
key set that contains all of the keys from the source key set that meet the key
filter criteria.

PGPError PGPFilterKeySet(
PGPKeySetRef origSet,
PGPFilterRef filter,
PGPKeySetRef *resultSet);

48 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Notes

origSet the source key set
filter the target key filter
resultSet the receiving field for resultant key set

The resultant key set may be empty.

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

PGPLDAPQueryFromFilter

Syntax

Parameters

Notes

Converts the key filter criteria to an LDAP key server format query string,
which can then be passed to the key server for processing.

PGPError PGPLDAPQueryFromFilter(
PGPFilterRef filter, char **queryOut);

filter the target key filter

queryOut the receiving field for a pointer to the resultant LDAP key
server format query string

The caller is responsible for de-allocating the resultant query string with
PGPFreeData .

Several key filter options are not supported by LDAP key servers (see
Table 10-1).

PGPHKSQueryFromFilter

Syntax

Parameters

Notes

Converts the key filter criteria to an HTTP key server format query string,
which can then be passed to the key server for processing.

PGPError PGPHKSQueryFromFilter(
PGPFilterRef filter, char **queryOut);

filter the target key filter

queryOut the receiving field for a pointer to the resultant HTTP key
server format query string

The caller is responsible for de-allocating the resultant query string with
PGPFreeData .

Reference Guide 49

2 - Key Management Functions

A significant number of key filter options are not supported by HTTP key
servers (see Table 10-1).

Key Iteration Functions

The PGPsdk supports both iterating through a key set and iterating through
the sub-parts of an individual key. For iterating through a key set, the PGPsdk
supports and requires the imposing of an ordering on that key set to yield a
key list.

Whenever the iteration functions return KPGPError_EndOflteration , the
caller should treat the iterator’s value as being undefined.

PGPOrderKeySet

Creates a key list from the target key set with the specified ordering, suitable for
iteration (see this chapter’s section on key iterator functions).
Syntax
PGPError PGPOrderKeySet(
PGPKeySetRef keySet,
PGPKeyOrdering order,
PGPKeyListRef *keyList);
Parameters
keySet the target key set
order the ordering criteria, which recognizes kPGP...Ordering
values
keyList the receiving field for the resultant ordered key list
Notes
The PGPsdk supports only single-level ordering. For example, this function
does not support creation of a key list ordered by expiration date within
encryption key size.
The caller is responsible for de-allocating the resultant key list with
PGPFreeKeyList

PGPFreeKeyList

Decrements the reference count of the specified key list, and frees the key list if
the reference count reaches zero.

Syntax
PGPError PGPFreeKeyList(PGPKeyListRef keySet);

50 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
keySet the target key list
PGPNewKeylter
Creates an iterator on a list of keys. Note that a newly created iterator does not
start out pointing at any particular key, user 1D, or signature; in particular, it
does not start out pointing at the first key in the key set. To access the first key
with a newly-created iterator, you must first iterate to the ‘next’ item (for
example, with PGPKeylterNext()); to access any sub-part of the key, you
must then futher iterate to the desired sub-part.
Syntax
PGPError PGPNewKeylter(
PGPKeyListRef keySet,
PGPKeylterRef *keylter);
Parameters
keySet the list of keys on which to iterate
keylter the receiving field for the iterator
Notes
A key list may have any number of iterators associated with it.
The caller is responsible for freeing the iterator with PGPFreeKeylter
PGPCopyKeylter
Creates an exact copy of the source iterator, including its current index.
Syntax
PGPError PGPCopyKeylter(
PGPKeylterRef iterOrig,
PGPKeylterRef *iterCopy);
Parameters
iterOrig the source iterator
iterCopy the receiving field for the copy of the iterator
Notes

The caller is responsible for de-allocating the resultant iterator copy with
PGPFreeKeylter

Reference Guide

51

2 - Key Management Functions

PGPFreeKeylter

Decrements the reference count of the specified iterator, and frees the iterator if
the reference count reaches zero.

Syntax

PGPError PGPFreeKeylter(PGPKeylterRef iter);
Parameters

iter the target iterator

PGPKeylterindex

Returns the current index value of the specified iterator.

Syntax

PGPInt32PGPKeylterindex(PGPKeylterRef iter);
Parameters

iter the target iterator
Notes

The caller should not infer anything based upon the returned index value.
PGPKeylterkey

Yields the key associated with the current index value of the specified iterator.
Syntax

PGPError PGPKeylterKey(

PGPKeylterRef iter, PGPKeyRef *key);

Parameters

iter the target iterator

key the receiving field for the resultant key
Notes

kPGPError_EndOflteration is only returned if the key has been deleted.
PGPKeylterSubKey

Yields the sub-key associated with the current index value of the specified

iterator.
Syntax

PGPError PGPKeylterSubKey(
PGPKeylterRef iter, PGPSubKeyRef*subKey);

52 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Notes

iter the target iterator

subKey the receiving field for the resultant sub- key
kPGPError_EndOflteration is only returned if the sub-key has been
deleted.

PGPKeylterUserIlD

Yields the user ID associated with the current index value of the specified
iterator.

Syntax
PGPError PGPKeylterUserlD(
PGPKeylterRef iter, PGPUserIDRef *userID);
Parameters
iter the target iterator
userlD the receiving field for the resultant user ID
Notes
kPGPError_EndOflteration is only returned if the user ID has been
deleted.
PGPKeylterSig
Yields the signature associated with the current index value of the specified
iterator.
Syntax
PGPError PGPKeylterSig(
PGPKeylterRef iter,PGPSigRef *sig);
Parameters
iter the target iterator
sig the receiving field for the resultant signature
Notes
kPGPError_EndOflteration is only returned if the signature has been
deleted.

Reference Guide 53

2 - Key Management Functions

PGPKeylterMove

Moves the specified iterator by the specified relative number of keys, and yields
the resultant key. Negative offsets move the iterator towards the beginning of
the list; positive offsets move the iterator towards the end of the list.

Syntax
PGPError PGPKeylterMove(
PGPKeylterRef iter,
PGPINnt32 relOffset,
PGPKeyRef *key);
Parameters
iter the target iterator
relOffset the relative offset from the current position
key the receiving field for the resultant key
Notes
If kPGPError_EndOflteration is returned, then key will be set to NULL
If kPGPError_EndOflteration is returned, then the resultant key may have
been deleted.
PGPKeylterSeek
Scans the key set associated with the iterator, and returns the index (zero-based)
of the first key that matches the specified search-for key.
Syntax
PGPInt32PGPKeylterSeek(
PGPKeylterRef iter, PGPKeyRef key);
Parameters
iter the target iterator
key key to match
Notes
If the specified search-for key is not found, then the iterator is forcibly reset to
point to the first key in the list. This should only happen if the search-for key
was removed.
PGPKeylterNext
Moves the specified iterator forward by one key, and yields the resultant key.
Syntax

PGPError PGPKeylterNext(
PGPKeylterRef iter, PGPKeyRef *key);

54 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Notes

iter the target iterator
key the receiving field for the resultant key

This function is the equivalent of
PGPKeylterMove(iter, 1, &key);

If kPGPError_EndOflteration is returned, then key will be set to NULL

If kPGPError_EndOflteration is returned, then the resultant key may have
been deleted.

PGPKeylterNextSubKey

Syntax

Parameters

Notes

Moves the specified iterator forward by one subkey within the current key, and
yields the resultant sub-key associated with the current key.

PGPError PGPKeylterNextSubKey(
PGPKeylterRef iter, PGPSubKeyRef *subKey);

iter the target iterator
subKey the receiving field for the resultant sub-key

If kPGPError_EndOflteration is returned, then subKey will be set to
(PGPSubKeyRef *)NULL .

If kPGPError_EndOflteration is returned, then the resultant sub-key may
have been removed.

PGPKeylterNextUserID

Syntax

Parameters

Notes

Moves the specified iterator forward by one user ID within the current key, and
yields the resultant user ID associated with the current key.

PGPError PGPKeylterNextUserID(
PGPKeylterRef iter, PGPUserIDRef *userID);

iter the target iterator
userlD the receiving field for the resultant userlD

Ift he current key has no associated user ID or the associated user ID has been
removed, then the function returns kPGPError_BadParams

If kPGPError_EndOflteration is returned, then userID will be set to

Reference Guide 55

2 - Key Management Functions

(PGPUserIDRef *)NULL

PGPKeylterNextUIDSig

Moves the specified iterator forward by one user ID signature within the
current user 1D within the current key, and yields the resultant signature
associated with the current user ID of the current key.

Syntax
PGPError PGPKeylterNextUIDSig(
PGPKeylterRef iter, PGPSigRef *sig);
Parameters
iter the target iterator
sig the receiving field for the resultant signature
Notes
If the current key has no associated user ID or the associated user ID has been
removed, then the function returns kPGPError_BadParams
If kPGPError_EndOflteration is returned, then sig will be set to
(PGPSigRef *)NULL
PGPKeylterPrev
Moves the specified iterator backward by one key, and yields the resultant key.
Syntax
PGPError PGPKeylterPrev(
PGPKeylterRef iter, PGPKeyRef *key);
Parameters
iter the target iterator
key the receiving field for the resultant key
Notes

This function is the equivalent of

PGPKeylterMove(iter, -1, &key);
If kPGPError_EndOflteration is returned, then key will be set to NULL
This may also indicate that what would have been the resultant key has been
deleted.

56 PGP Software Developer’s Kit

2 - Key Management Functions

PGPKeylterPrevSubKey

Syntax

Parameters

Notes

Moves the specified iterator backward by one sub-key within the current key,
and yields the resultant sub-key associated with the current key.

PGPError PGPKeylterPrevSubKey(
PGPKeylterRef iter, PGPSubKeyRef *key);

iter the target iterator
key the receiving field for the resultant sub-key
A return value of kPGPError_EndOflteration may also indicate that what

would have been the resultant sub-key has been deleted.

PGPKeylterPrevUserID

Syntax

Parameters

Notes

Moves the specified iterator backward by one user ID within the current key,
and yields the resultant user ID associated with the current key.

PGPError PGPKeylterPrevUserID(
PGPKeylterRef iter, PGPUserIDRef *userID);

iter the target iterator
userlD the receiving field for the resultant user ID

If the current key has no associated user ID or the associated user ID has been
removed, then the function returns kPGPError_BadParams

If kPGPError_EndOflteration is returned, then userID will be set to
NULL

PGPKeylterPrevUIDSig

Syntax

Moves the specified iterator backward by one user ID signature within the
current user 1D within the current key, and yields the resultant signature
associated with the current user ID of the current key.

PGPError PGPKeylterPrevUIDSig(
PGPKeylterRef iter, PGPSigRef *sig);

Reference Guide 57

2 - Key Management Functions

Parameters
iter the target iterator
sig the receiving field for the resultant signature
Notes
If the current key has no associated user ID or the associated user ID has been
removed, then the function returns kPGPError_BadParams
If kPGPError_EndOflteration is returned, then sig will be set to NULL
PGPKeylterRewind
Resets the iterator such that a subsequent PGPKeylterNextUserID will yield
the first user ID associated with the key.
Syntax
PGPError PGPKeylterRewind(PGPKeylterRef iter);
Parameters
iter the target iterator
PGPKeylterRewindSubKey
Resets the iterator such that a subsequent PGPKeylterNext will yield the first
key in the associated key list.
Syntax
PGPError PGPKeylterRewindSubKey(PGPKeylterRef iter);
Parameters

iter the target iterator

PGPKeylterRewindUserID

Resets the iterator such that a subsequent PGPKeylterNextUserID
the first user ID associated with the key.

Syntax

PGPError PGPKeylterRewindUserID(PGPKeylterRef iter);
Parameters

iter the target iterator

58 PGP Software Developer’s Kit

will yield

2 - Key Management Functions

PGPKeylterRewindUIDSig

Resets the iterator such that a subsequent PGPKeylterNextUIDSig will yield
the first signature associated with the current user ID of the current key.

Syntax

PGPError PGPKeylterRewindUIDSig(PGPKeylterRef iter);
Parameters

iter the target iterator

Key reference count functions

The PGPsdk automatically tracks the number of data items pointing to a
particular resource. For example, a given key set may be referenced by any
number of key lists and/or key iterators. This not only results in a level of
context independence, but also ensures that a resource’s memory is released
only when its last reference is deleted. The PGPsdk also provides functions to
support manual adjustment of a data item’s reference count.

PGPIncKeySetRefCount

Increments the reference count of the specified key set. This provides a
mechanism for manually incrementing the reference count should it be
necessary.

Syntax

PGPError PGPIncKeySetRefCount(PGPKeySetRef keySet);
Parameters

keySet the target key set

PGPIncFilterRefCount

Increments the reference count of the specified key filter. This provides a
mechanism for manually incrementing the reference count should it be
necessary.

Syntax

PGPError PGPIncFilterRefCount(PGPFilterRef filter);
Parameters

filter the target key filter

Reference Guide 59

2 - Key Management Functions

PGPIncKeyListRefCount

Increments the reference count of the specified key list. This provides a
mechanism for manually incrementing the reference count should it be
necessary.

Syntax

PGPError PGPIncKeyListRefCount(PGPKeyListRef keySet);
Parameters

keySet the target key list

Key manipulation functions

The key manipulation functions create, modify, and remove keys and their
components (sub-keys, user ID’s, signatures, and additional decryption keys).
Since the parent item of a key or associated component must generally be
active (not expired and not revoked) and mutable, most of the key
manipulation functions can return one or more of the following error codes:

» kPGPError_KeyExpired

* kPGPError_KeyRevoked

» kPGPError_ltemlsReadOnly
» kPGPError_ltemWasDeleted

PGPGenerateKey
Generates a new key according to the specified options.
Syntax
PGPError PGPGenerateKey(
PGPContextRef pgpContext,
PGPKeyRef *key,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
pgpContext the target context
key the receiving field for the generated key
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to

60 PGP Software Developer’s Kit

2 - Key Management Functions

Options

Notes

terminate the argument list

Key generation specific options include:
= PGPOKeySetRef (required)
PGPOKeyGenParams(required)
PGPOKeyGenNamérequired)

» PGPOPassphrase

» PGPOPassphraseBuffer

» PGPOPasskeyBuffer

* PGPOEXxpiration

» PGPOPreferredAlgorithms

» PGPOKeyGenFast

» PGPOAdditionalRecipientRequestKeySet
* PGPOCreationDate

» PGPOEventHandler

Enough entropy must be available in the global random pool to generate the
specified key type (see PGPGetKeyEntropyRequired).

Only one of PGPOPassphrase , PGPOPassphraseBuffer and
PGPOPasskeyBuffer is allowed.

Key generation will fail with PGPError_BadParams if the specified key type
cannot be used for signing.

The current implementation treats any destination key set specified with
PGPOKeySetRef as an indirect parameter that references a key database,
rather than as an explicit destination. Because of key filtering and the “live”
nature of its resultant view-style key sets, the key generated by this function
may appear in any key set based upon that key database, and further may or
may not appear in the specified destination key set, depending upon its key
filtering criteria.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPChangePassphrase

Syntax

Changes the passphrase for the specified key.

PGPError PGPChangePassphrase(
PGPKeyRefkey,
PGPOptionListRef firstOption,

Reference Guide 61

2 - Key Management Functions

PGPOLastOption());
Parameters
key the target key
firstOption the initial option list instance
subsequent option list instances

PGPOLastOption() must always appear as the final argument to
terminate the argument list

Options
The function expects two options - the first specifies the current passphrase,

while the second specifies the new passphrase. The passphrases may be
specified as any of the following:

» PGPOPassphrase

» PGPOPassphraseBuffer

» PGPOPassKeyBuffer
Notes

The specified key must be a private key, since public keys have no associated
passphrase. Otherwise, the function returns
kPGPError_SecretKeyNotFound

If any sub-keys exist, then their passphrases should be changed via before
changing the passphrase of their associated master key (see
PGPChangeSubKeyPassphrase()).

PGPEnableKey

Marks a key as enabled for encryption and signing.
Syntax

PGPError PGPEnableKey(PGPKeyRef key);
Parameters

key the target key

PGPDisableKey

Marks a key as disabled for encryption and signing. The target key is still
enabled for decryption and verifying.

Syntax
PGPError PGPDisableKey(PGPKeyRef key);

62 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
key the target key
Notes
Axiomatically trusted keys cannot be disabled, and reflect
kPGPError_BadParams (see PGPUnsetKeyAxiomatic).
PGPRevokeKey
Revokes the specified key according to the specified options.
PGPError PGPRevokeKey(
PGPKeyRef key,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
key the key to be revoked
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Key revocation specific options include:
» PGPOPassphrase
» PGPOPassphraseBuffer
» PGPOPassKeyBuffer
Notes
In order to successfully revoke a key, its passphrase must be known. This
implies that the function must be passed one of PGPOPassphrase ,
PGPOPassphraseBuffer and PGPOPasskeyBuffer .
If the specified key is already revoked and/or expired, then the function returns
kPGPError_NoErr
PGPSetKeyAxiomatic

Forces the specified private key to be axiomatically trusted. If
checkPassphrase is TRUE then any passphrase provided inthe option list
must be both non-NULLand valid for the specified key (see
PGPUnsetKeyAxiomatic). Upon successful return from this function the
specified key will be enabled.

Reference Guide 63

2 - Key Management Functions

Syntax
PGPError PGPSetKeyAxiomatic(
PGPKeyRef key,
PGPBoolean checkPassphrase,
char const *passphrase);
Parameters
key the target key
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Specific options include:
» PGPOPassphrase
» PGPOPassphraseBuffer
» PGPOPassKeyBuffer
Notes
The specified key must be a private key. Otherwise, the function returns
kPGPError_BadParams
Unless the key has just been created, a passphrase should be required to set
such an unconditional trust level, but such a restriction is left to the PGPsdk
developer and the needs of the application.
PGPUnsetKeyAxiomatic
Removes the axiomatic trust from the specified key (see
PGPSetKeyAxiomatic).
Syntax
PGPError PGPUnsetKeyAxiomatic(PGPKeyRef key);
Parameters
key the target key
Notes

If the specified key is already non-axiomatic, then the function returns
kPGPError_BadParams

64 PGP Software Developer’s Kit

2 - Key Management Functions

PGPSetKeyTrust
Set the trust level of the specified key to that specified.
Syntax
PGPError PGPSetKeyTrust(PGPKeyRef key, PGPUInt32 trust);
Parameters
key the target key
trust the desired trust level
Notes
kPGPKeyTrust_Undefined and kPGPKeyTrust_Ultimate may not be
used as trust argument values.
PGPCompareKeys
Compares the specified keys according to the specified ordering, and returns
-1, 0, or 1 depending on whether or not key1 is less than, equal to, or greater
than key2 .
Syntax
PGPInt32 PGPCompareKeys(
PGPKeyRef key1,
PGPKeyRef key2,
PGPKeyOrdering order);
Parameters
keyl the first target key
key2 the second target key
order the ordering to be applied to the target keys, which recognizes
kPGP...Ordering values
Notes
If the keys compare as equal with respect to the specified ordering, then the
result reflects a comparison of their associated key IDs.
If both keys are found to be inactive, then the function returns 0 (zero).
PGPGenerateSubKey
Generates a new sub-key according to the specified options.
Syntax

PGPError PGPGenerateSubKey(
PGPContextRef pgpContext,
PGPSubKeyRef *subkey,
PGPOptionListRef firstOption,

Reference Guide 65

2 - Key Management Functions

Parameters

Options

Notes

PGPOLastOption());

pgpContext the target context

subkey the receiving field for the generated sub-key
firstOption the initial option list instance

subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

Sub-key generation specific options include:
= PGPOKeyGenMasterKey (required)
PGPOKeyGenParams(required)

» PGPOPasskeyBuffer

» PGPOPassphrase

» PGPOPassphraseBuffer

» PGPOPassKeyBuffer

* PGPOEXxpiration

» PGPOKeyGenFast

» PGPOCreationDate

» PGPOExportable

* PGPOFailBelowValidity

* PGPOHashAlgorithm

* PGPOInputBuffer

* PGPOKeySetRef

Enough entropy must be available in the global random pool to generate the
specified key type (see PGPGetKeyEntropyRequired).

The master key specified by the PGPOKeyGenMasterKey option must be
active and mutable.

Only one of PGPOPassphrase , PGPOPassphraseBuffer and
PGPOPasskeyBuffer is allowed.

Sub-key generation will fail with PGPError_BadParams if the specified key
type cannot be used for signing.

Because of key filtering and the “live” nature of its resultant view-style key sets,
the sub-key generated by this function may be reflected in any key set that
contains its master key.

66 PGP Software Developer’s Kit

2 - Key Management Functions

PGPRemoveSubKey

Syntax

Parameters

Notes

Removes the specified sub-key from its associated master key.

PGPError PGPRemoveSubKey(PGPSubKeyRef subkey);

subkey the target sub-key

If the specified sub-key has already been removed from its associated master
key, then the function returns KPGPError_ltemWasDeleted

PGPChangeSubKeyPassphrase

Syntax

Parameters

Options

Changes the passphrase for the specified sub-key according to the specified
options.

PGPError PGPChangeSubKeyPassphrase(
PGPSubKeyRef subkey,
PGPOptionListRef firstOption,

PGPOLastOption());

subkey the target sub-key
firstOption the initial option list instance
subsequent option list instances

PGPOLastOption() must always appear as the final argument to
terminate the argument list

Sub-key revocation specific options include:
» PGPOPassphrase

» PGPOPassphraseBuffer

» PGPOPasskeyBuffer

PGPRevokeSubKey

Revokes the specified sub-key according to the specified options.

PGPError PGPRevokeSubKey(
PGPSubKeyRef subkey,
PGPOptionListRef firstOption,

Reference Guide 67

2 - Key Management Functions

PGPOLastOption());

Parameters
subkey the target sub-key
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Sub-key revocation specific options include:
» PGPOPassphrase
» PGPOPassphraseBuffer
» PGPOPasskeyBuffer
Notes

In order to successfully revoke a sub-key, its passphrase must be known. This
implies that the function must be passed one of PGPOPassphrase ,
PGPOPassphraseBuffer and PGPOPasskeyBuffer

The associated master key must be active and mutable.

If the specified sub-key has been removed from its associated master key, then
the function returns KPGPError_ltemWasDeleted

If the specified sub-key is already revoked and/or expired, then the function
returns KPGPError_NoErr

A return value of kPGPError_SecretKeyNotFound implies that the invoker
is not authorized to revoke the specified sub-key.

PGPAddUserIlD

Creates an additional user ID for the specified key according to the specified
options, and places it at the end of any existing list of user ID’s.

Syntax

PGPError PGPAddUserID(
PGPKeyRef key,
char const *name,
PGPOptionListRef firstOption,

PGPOLastOption());

68 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Options

Notes

key the key to which the user ID should be added
name a character string (the user ID)

firstOption the initial option list instance

subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

User ID specific options include:
» PGPOPassphrase

» PGPOPassphraseBuffe

» PGPOPasskeyBuffer

The name argument length must not exceed kPGPMaxUserIDLength

Only one of PGPOPassphrase , PGPOPassphraseBuffer and
PGPOPasskeyBuffer is allowed.

The specified key must be active and mutable.

A return value of kPGPError_SecretKeyNotFound implies that the invoker
is not authorized to add user ID’s to the specified key.

PGPRemoveUserID

Syntax

Parameters

Notes

Removes the specified user ID from its associated key.
PGPError PGPRemoveUserID(PGPUserIDRef userID);
userlD the target user ID

A return value of kPGPError_BadParams implies that the invoker attempted
to remove the only user ID from the associated key, which is not allowed.

If the specified sub-key has already been removed from its associated key, then
the function returns KPGPError_ltemWasDeleted

PGPSetPrimaryUserID

Syntax

Makes the specified user ID the primary user ID for its associated key.

PGPError PGPSetPrimaryUserlD(PGPUserIDRef userID);

Reference Guide 69

2 - Key Management Functions

Parameters

Notes

userlD the target user ID

The associated key must be active and mutable.

If the specified user ID has already been removed from its associated key, then
the function returns KPGPError_ltemWasDeleted

PGPCompareUserIDStrings

Syntax

Parameters

Notes

Compares the specified user ID strings, and returns -1, 0, or 1 depending on
whether or not userIDString2 is less than, equal to, or greater than
userlDStringl

PGPInt32 PGPCompareUserIDStrings(
char const *userlDStringl,
char const *userIDString2);

userlDStringl the first target user ID string
userlDString2 the second target user ID string

The userIDString n arguments length must not exceed
kPGPMaxUserIDLength

If the user ID strings compare as equal, then the result reflects a comparison of
the associated key IDs.

If either userIDString1 or userlDString2 is NULL, then the function
returns O (zero).

PGPSignUserID

Syntax

Signs the key associated with the specified user 1D with the specified signing
key.

PGPError PGPSignUserID(
PGPUserIDRef userlD,
PGPKeyRef signingKey,
PGPOptionListRef firstOption,

PGPOLastOption (void));

70 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
useriD the target user ID
signingKey the desired signing key
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Signing specific options include:
* PGPOEXxpiration
» PGPOExportable
» PGPOPassphrase
» PGPOPassphraseBuffer
» PGPOSigTrust
» PGPOSigRegularExpression
* PGPOCreationDate
» PGPOPasskeyBuffer
Notes
Only one of PGPOPassphrase , PGPOPassphraseBuffer and
PGPOPasskeyBuffer is allowed.
The associated key must be active and mutable.
If the specified user ID has been removed from its associated key, then the
function returns kPGPError_BadParams , not
kPGPError_ltemWasDeleted
PGPRemoveSig
Removes the specified signature from its associated user 1D of the associated
key.
Syntax
PGPError PGPRemoveSig(PGPSigRef sig);
Parameters
sig the signature to be removed
Notes

The associated key must be mutable.

If the specified signature has already been removed from its associated user ID,
then the function returns kPGPError_ItemWasDeleted

Reference Guide 71

2 - Key Management Functions

PGPRevokeSig

Revokes the specified signature from all keys in the key database associated
with the specified target key set.

Syntax
PGPError PGPRevokeSig(
PGPSigRef sig,
PGPKeySetRef keySet,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
sig the target signature
keySet the target key set
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Notes

If the specified signature has already been removed, then the function returns
kPGPError_ltemWasDeleted ;if it has been revoked, then the function
returns KPGPError_NoOErr

The associated signing key must be active. If it does not exist, then the function
returns kPGPError_SecretKeyNotFound

The specified key set must be mutable.

The current implementation treats the destination key set as an indirect
parameter that references a key database, rather than as an explicit destination.
Because of key filtering and the “live” nature of its resultant view-style key sets,
the signature revocation resulting from this function may be reflected in any
key set based upon that key database.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPCountAdditionalRecipientRequests

Provides the number of additional recipient request keys that are available for
the specified base key.

Syntax

PGPError PGPCountAdditionalRecipientRequests(
PGPKeyRef baseKey, PGPUInt32 *numARRKeys);

72 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

Notes

baseKey the target key
numARRKeys the receiving field for the resultant count

Use this count as the upper limit when indexing through the available
additional recipient keys (see the sample code for
PGPGetindexedAdditionalRecipientRequestKey).

PGPGetindexedAdditionalRecipientRequestKey

Syntax

Parameters

Notes

Provides a means of indexing through the available additional recipient request
keys and retrieving each key, its key ID, and its class. All available additional
recipient request keys are presumed to reside in the key database associated
with the look-up key set.

PGPError PGPGetindexedAdditionalRecipientRequestKey(
PGPKeyRef baseKey,
PGPKeySetRef arrKeySet,
PGPUINnt32 index,
PGPKeyRef *arrKey,
PGPKeyID *arrKeyID,
PGPByte *arrKeyClass);

baseKey the target key

arrkeySet the look-up key set

index the index (zero-based) of the desired additional recipient
request key

arrkey the receiving field for the nh additional recipient request key

arrkeylD the receiving field for the nh additional recipient request key
ID

arrkeyClass the receiving field for the class of the additional recipient

request key

The resultant key ID may not be used to access the additional recipient request
key directly since key ID values are not unique.

One of arrkKeylD and arrKeyClass may be NULL to indicate that the
associated value should not be retrieved, but not both.

The class of the additional recipient request key is currently reserved for
internal use, and the caller should not infer anything from its value.

The current implementation treats the look-up key set as an indirect parameter
that references a key database, rather than as an explicit destination.

Reference Guide 73

2 - Key Management Functions

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPGetSigCertifierKey

Syntax

Parameters

Searches the specified key set for the key associated with the specified
signature.

PGPError PGPGetSigCertifierkKey(
PGPSigRef sig,
PGPKeySetRef allKeys,
PGPKeyRef *sigKey);

sig the target signature

allkeys the target key set

sigKey the receiving field for the key associated with the target
signature

PGPCountRevocationKeys

Syntax

Parameters

Notes

Provides the number of revocation keys that are available for the specified base
key.

PGPError PGPCountRevocationKeys(
PGPKeyRef baseKey, PGPUInt32 *numRevKeys);

baseKey the target key
numRevKeys the receiving field for the resultant count

Use this count as the upper limit when indexing through the available
revocation keys (see the sample code for
PGPGetindexedAdditionalRecipientRequestKey).

PGPGetIndexedRevocationKey

Syntax

Provides a means of indexing through the available revocation keys and
retrieving each key, its key ID, and its class. All available revocation keys are
presumed to reside in the key database associated with the look-up key set (see
the sample code for PGPGetIndexedAdditionalRecipientRequestKey).

PGPError PGPGetindexedRevocationKey(

74 PGP Software Developer’s Kit

2 - Key Management Functions

PGPKeyRef baseKey,
PGPKeySetRef revKeySet,
PGPUINt32 index,
PGPKeyRef *revKey,
PGPKeyID *revKeyID);

Parameters
baseKey the target key
arrkeySet the look-up key set
index the index (zero-based) of the desired revocation key
revKey the receiving field for the n' revocation key
revKeylD the receiving field for the nt" revocation key ID
Notes

The resultant key ID may not be used to access the revocation key directly since
key ID values are not unique.

arrkeylD and arrKeyClass may be NULLto indicate that the associated
value should not be retrieved.

The current implementation treats the look-up key set as an indirect parameter
that references a key database, rather than as an explicit destination.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPPassphraselsValid

Returns TRUEIf the specified passphrase is valid for the specified key.

Syntax
PGPBoolean PGPPassphraselsValid(
PGPKeySetRefkey,
const char *passphrase);
Parameters
key the target key
passphrase the assumed associated passphrase

Get property functions

PGPGetHashAlgUsed

Obtains the hash algorithm associated with the target key.

Syntax
PGPError PGPGetHashAlgUsed(

Reference Guide 75

2 - Key Management Functions

Parameters

PGPKeyRef key, PGPHashAlgorithm *hashAlg);

key the target key
hashAlg the receiving field for the hash algorithm value

PGPGetKeyBoolean

Syntax

Parameters

Notes

Example

Retrieves the value of the specified boolean property of the specified key.

PGPError PGPGetKeyBoolean(
PGPKeyRefkey,
PGPKeyPropName propName,
PGPBoolean *propData);

key the target key

propName the name of the target property, which recognizes
kPGPKeyProp...values

propData the receiving field for the target property value

If RSA encryption is not available, for example, an instance of the PGPsdk that
supports only Elgamal encryption, then propData will be FALSE for both
kPGPKeyPropCanSign and kPGPKeyPropCanEncrypt

PGPBoolean keylsSecret;

err = PGPGetKeyBoolean(key,

kPGPKeyProplsSecret,

&keylsSecret);
if ((err == kPGPError_NoErr) && (keylsSecret))
{

/*

** Process secret key

*/

PGPGetKeyNumber

Syntax

Retrieves the value of the specified numeric property of the specified key.

PGPError PGPGetKeyNumber(
PGPKeyRef key,
PGPKeyPropName propName,
PGPInt32 *propData);

76 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

key the target key

propName the name of the desired property, which recognizes
kPGPKeyProp...values

propData the receiving field for the desired property value

PGPGetKeyPasskeyBuffer

Syntax

Parameters

Notes

Options

Given the correct passphrase for a particular key, this function returns a buffer
containing a corresponding binary “passkey”. Passkeys can be used in most
places in the PGPsdk in place of the passphrase, and this allows applications to
keep a passphrase around in an uncompromised form. (PGP-brand products
use this feature for caching passphrases over long periods of time.) For those
PGPsdk functions that accept passphrase parameters, you can use the function
PGPOPasskeyBuffer() to furnish a passkey buffer in place of a passphrase.

PGPError PGPGetKeyPasskeyBuffer(
PGPKeyRef key,
void *passkeyBuffer,
PGPOptionListRef firstOption,
PGPOLastOption());

key the target key

passkeyBuffer the receiving buffer for the passkey
firstOption the single option list instance
PGPOLastOption() must always appear as the final argument to

terminate the argument list

When considering the size of your passkeyBuffer, note that the key property
kPGPKeyPropLockingBits contains the number of bits (not bytes) needed to
hold the passkey.

The firstOption parameter must be either a PGPOPassphrase() ora
PGPOPassphraseBuffer() , furnishing the passphrase for the indicated key .

PGPGetKeyPropertyBuffer

Syntax

Retrieves the arbitrary binary data associated with the specified property of the
specified key.

PGPError PGPGetKeyPropertyBuffer(

Reference Guide 77

2 - Key Management Functions

PGPKeyRef key,
PGPKeyPropName propName,
PGPSize availLength,

void *propData,

PGPSize *usedLength);

Parameters
key the target key
propName the name of the desired property, which recognizes
kPGPKeyProp...values
availLength the length of the receiving field for the desired property data
propData the receiving field for the desired property data
usedLength the receiving field for the resultant length of the desired
property data
Notes
For a propName value of kPGPPropPreferredAlgorithm , a return value of
kPGPError_NoErr with a resultant usedLength of zero indicates that no
preferred algorithm is set.
PGPGetKeyTime
Retrieves the value of the specified date/time property of the specified key.
Syntax
PGPError PGPGetKeyTime(
PGPKeyRef key,
PGPKeyPropName propName,
PGPTime *propData);
Parameters
key the target key
propName the name of the desired property, which recognizes
kPGPKeyProp...values
propData the receiving field for the desired property value
PGPGetSubKeyBoolean
Retrieves the value of the specified boolean property of the specified sub-key.
Syntax

PGPError PGPGetSubKeyBoolean(

78 PGP Software Developer’s Kit

PGPSubKeyRef subkey,
PGPKeyPropName propName,
PGPBoolean *propData);

2 - Key Management Functions

Parameters
subkey the target sub-key
propName the name of the desired property, which recognizes
kPGPKeyProp...values
propData the receiving field for the desired property data
Notes
Keys and sub-keys share the same propName values.
PGPGetSubKeyNumber
Retrieves the value of the specified numeric property of the specified sub-key.
Syntax
PGPError PGPGetSubKeyNumber(
PGPSubKeyRef subkey,
PGPKeyPropName propName,
PGPInt32 *propData);
Parameters
subkey the target sub-key
propName which property you want to retrieve, which recognizes
kPGPKeyProp...values
propData the receiving field for the desired property
Notes

Keys and sub-keys share the same propName values.

PGPGetSubKeyPasskeyBuffer

Syntax

Given the correct passphrase for a particular encryption sub-key, this function
returns a buffer containing a corresponding binary “passkey”. Passkeys can be
used in most places in the PGPsdk in place of the passphrase, and this allows
applications to keep a passphrase around in an uncompromised form.
(PGP-brand products use this feature for caching passphrases over long periods
of time.) For those PGPsdk functions that accept passphrase parameters, you
can use the function PGPOPasskeyBuffer() to furnish a passkey buffer in
place of a passphrase.

PGPError PGPGetSubKeyPasskeyBuffer(
PGPSubKeyRef subKey,
void *passkeyBuffer,
PGPOptionListRef firstOption,
PGPOLastOption());

Reference Guide 79

2 - Key Management Functions

Parameters

Notes

Options

subKey the target sub-key

passkeyBuffer the receiving buffer for the passkey
firstOption the single option list instance
PGPOLastOption() must always appear as the final argument to

terminate the argument list

When considering the size of your passkeyBuffer, note that the key property
kPGPKeyPropLockingBits contains the number of bits (not bytes) needed to
hold the passkey.

The firstOption parameter must be either a PGPOPassphrase() ora
PGPOPassphraseBuffer() , furnishing the passphrase for the indicated
subKey.

PGPGetSubKeyPropertyBuffer

Syntax

Parameters

Notes

Retrieves the arbitrary binary data associated with the specified property of the
specified sub-key.

PGPError PGPGetSubKeyPropertyBuffer(
PGPSubKeyRef subkey,
PGPKeyPropName propName,
PGPSize availLength,
void *propData,

PGPSize *usedLength);

subkey the target sub-key

propName the name of the desired property, which recognizes
kPGPKeyProp...values

availLength the length of the receiving field for the desired property data

propData the receiving field for the desired property data

usedLength the receiving field for the resultant length of the desired

property data

Keys and sub-keys share the same propName values.

For a propName value of kPGPPropPreferredAlgorithm , a return value of
kPGPError_NoErr with a resultant usedLength of zero indicates that no
preferred algorithm is set.

80 PGP Software Developer’s Kit

2 - Key Management Functions

Retrieves the value of the specified date/time property of the specified sub-key.

PGPError PGPGetSubKeyTime(

PGPGetSubKeyTime
Syntax
Parameters
subkey
propName
propData
Notes

PGPSubKeyRef subkey,
PGPKeyPropName propName,
PGPTime *propData);

the target sub-key

the name of the desired property, which recognizes
kPGPKeyProp...values

the receiving field for the desired property value

Keys and sub-keys share the same propName values.

PGPGetUserIDBoolean

Retrieves the value of the specified boolean property of the specified user ID.

PGPError PGPGetKeyBoolean(

Syntax

Parameters
userlD
propName
propData

PGPGetUserIDNumber

PGPUserIDRef userlD,
PGPUserIDPropName propName,
PGPBoolean *propData);

the target user ID

the name of the target property, which recognizes
kPGPUserIDProp... values

the receiving field for the target property value

Retrieves the value of the specified numeric property of the specified user ID.

Syntax

PGPError PGPGetUserIDNumber(

PGPUserIDRef userlD,
PGPUserIDPropName propName,
PGPInt32 *propData);

Reference Guide 81

2 - Key Management Functions

Parameters
userlD the target user ID
propName the name of the desired property, which recognizes
kPGPUserIDProp... values
propData the receiving field for the desired property value
Notes

Keys and sub-keys share the same propName values.

PGPGetUserIDStringBuffer

Retrieves the C language string associated with the specified property of the
specified user ID.

Syntax
PGPError PGPGetUserlDStringBuffer(
PGPUserIDRef userlD,
PGPUserIDPropName propName,
PGPSize availLength,
char *propString,
PGPSize *usedLength);
Parameters
userlD the target user ID
propName the name of the desired property, which recognizes
kPGPUserIDProp... values
availLength the length of the receiving field for the desired property data
propString the receiving field for the desired property data
usedLength the receiving field for the resultant length of the desired
property data
Notes
propString should be a minimum of 256 bytes.
usedLength does not include the terminating NUL
PGPGetSigBoolean
Retrieves the value of the specified boolean property of the specified signature.
Syntax

PGPError PGPGetSigBoolean(
PGPSigRef sig,
PGPSigPropName propName,
PGPBoolean *propData);

82 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
sig the target signature
propName the name of the desired property, which recognizes
kPGPSigProp... values
propData the receiving field for the desired property data
PGPGetSigNumber
Retrieves the value of the specified numeric property of the specified signature.
Syntax
PGPError PGPGetSigNumber(
PGPSigRef sig,
PGPSigPropName propName,
PGPInt32 *propData);
Parameters
sig the target signature
propName the name of the desired property, which recognizes
kPGPSigProp... values
propData the receiving field for the desired property data
PGPGetSigPropertyBuffer
Retrieves the arbitrary binary data associated with the indicated signature.
Syntax
PGPError PGPGetSigPropertyBuffer(
PGPSigRef sig,
PGPKeyPropName propName,
PGPSize bufferSize,
void *propData,
PGPSize *usedLength);
Parameters
sig the target signature
propName the name of the desired property, which recognizes
kPGPSigProp... values
bufferSize the length of the receiving field for the desired property data
propData the receiving field for the desired property data
usedLength the receiving field for the resultant length of the desired

Reference Guide 83

2 - Key Management Functions

property data

PGPGetSigTime
Retrieves the value of the specified date/time property of the specified
signature.
Syntax
PGPError PGPGetSigTime(
PGPSigRef sig,
PGPSigPropName propName,
PGPTime *propData);
Parameters
sig the target signature
propName the name of the desired property, which recognizes
kPGPSigProp... values
propData the receiving field for the desired property data

Convenience property functions

The “convenience property functions” encapsulate code that creates an
iterator on the associated item, applies it to the specified key, outputs the
associated property value, and frees the iterator.

PGPGetPrimaryUserlD

Obtains the primary user ID of the specified key.

Syntax
PGPError PGPGetPrimaryUserID(
PGPKeyRef key, PGPUserIDRef *userID);
Parameters
key the target key
userlD the receiving field for the associated primary user ID

PGPGetPrimaryAttributeUserID

Returns the primary user ID designated for the indicated attribute type, for
keys that have multiple attached attribute user ID’s. To set this user ID, use
PGPSetPrimaryAttributeUserID()

Syntax

PGPError PGPGetPrimaryAttributeUserID(
PGPKeyRef key,

84 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

PGPAttributeType attributeType,
PGPUserIDRef *outRef);

key the target key
attributeType the desired attribute type
outRef the receiving field for the associated primary user ID

PGPGetPrimaryUserIDNameBuffer

Syntax

Parameters

Notes

Retrieves the primary user ID name associated with the specified key, which is
assumed to be a C language string.

PGPError PGPGetPrimaryUserlIDNameBuffer(
PGPKeyRef key,
PGPSize availLength,
char *nameBuf,
PGPSize *usedLength);

key the target key

availLength the length of the receiving field for the associated primary
user ID name

nameBuf the receiving field for the associated primary user ID name

usedLength the receiving field for the resultant length of the primary user
ID name

usedLength does not include the terminating NUL

PGPGetPrimaryUserIDValidity

Syntax

Parameters

Obtains the validity of the primary user ID associated with the specified key.

PGPError PGPGetPrimaryUserIDValidity(
PGPKeyRef key, PGPValidity *validity);

key the target key
validity the receiving field for the validity value associated with the

Reference Guide 85

2 - Key Management Functions

user ID of the target key

Default Private Key Functions

PGP SetDefaultPrivateKey

Syntax

Parameters

Notes

Sets the default private key (nominally used for signing) to the specified key.

PGPError PGPSetDefaultPrivateKey(PGPKeyRef key);

key the target key

The specified key must be active.

The specified key must be a secret key (kPGPKeyProplsSecret), and must be
able to sign (kPGPKeyPropCanSign). Otherwise, the functions returns
kPGPError_BadParams .

The target key is forced to be axiomatically trusted (no passphrase is required).

PGPGetDefaultPrivateKey

Syntax

Parameters

Notes

Obtains the default private key, which is used for signing, for the key database
associated with the specified key set.

PGPError PGPGetDefaultPrivateKey(
PGPKeySetRef keySet, PGPKeyRef *key);

keySet the target key set
key the receiving field for the associated default private key

The current implementation treats the look-up key set as an indirect parameter
that references a key database, rather than as an explicit destination.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

86 PGP Software Developer’s Kit

2 - Key Management Functions

Key user-defined data functions

The PGPsdk provides the PGPsdk developer with a mechanism by which
arbitrary data may be associated with keys and key elements. This data is of
type PGPUserValue , and can be used for housekeeping, as pointers to data
structures, or for any other user-defined purpose. When a key is first
imported, all of these values are initialized to zero. These values are not saved
with the key - they are only valid while the key or key element is in-memory.

PGPSetKeyUserVal

Associates a user-defined value or data structure with the specified key;,
provided that key is still in memory.

Syntax
PGPError PGPSetKeyUserVal(
PGPKeyRef key, PGPUserValue userValue);
Parameters
key the key with which the user value will be associated
userValue the user-defined data
PGPSetSubKeyUserVal
Associates a user-defined value or data structure with the specified sub-key,
provided that sub-key is still in memory.
Syntax
PGPError PGPSetSubKeyUserVal(
PGPSubKeyRef subkey,
PGPUserValue userValue);
Parameters
subkey the sub-key with which the user value will be associated
userValue the user-defined data
PGPSetSigUserVal
Associates a user-defined value or data structure with the specified signature,
provided that signature is still in memory.
Syntax

PGPError PGPSetSigUserVal(
PGPSigRef sig, PGPUserValue userValue);

Reference Guide 87

2 - Key Management Functions

Parameters
sig the signature with which the user value will be associated
userValue the user-defined data

PGPSetUserIDUserVal

Associates a user-defined value or data structure with the specified user ID,
provided that user ID is still in memory:.

Syntax
PGPError PGPSetUserlDUserVal(
PGPUserIDRef userlD,
PGPUserValue userValue);
Parameters
useriD the user ID with which the user value will be associated
userValue the user-defined data
PGPGetKeyUserVal
Obtains the user-defined data associated with the specified key (if any), and
places it into the specified field.
Syntax
PGPError PGPGetKeyUserVal(
PGPKeyRef key, PGPUserValue *userValue);
Parameters
key the target key
userValue the receiving field for the user-defined data
Notes
Any associated user data is always initialized to zeroes upon creation of a PGP
data type instance.
PGPGetSubKeyUserVal
Obtains the user-defined data associated with the specified sub-key (if any),
and places it into the specified field.
Syntax

PGPError PGPGetSubKeyUserVal(
PGPSubKeyRef subkey,
PGPUserValue *userValue);

88 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
subkey the target sub-key
userValue the receiving field for the user-defined data
Notes
Any associated user data is always initialized to zeroes upon creation of a PGP
data type instance.
PGPGetSigUserVal
Obtains the user-defined data associated with the specified signature (if any),
and places it into the specified field.
Syntax
PGPError PGPGetSigUserVal(
PGPSigRef sig, PGPUserValue *userValue);
Parameters
sig the target signature
userValue the receiving field for the user-defined data
Notes

Any associated user data is always initialized to zeroes upon creation of a PGP
data type instance.

PGPGetUserIDUserVal

Syntax

Parameters

Notes

Obtains the user-defined data associated with the specified User ID (if any), and
places it into the specified field.

PGPError PGPGetUserlDUserVal(
PGPUserIDRef userlD,
PGPUserValue *userValue);

userlD the target user ID
userValue the receiving field for the user-defined data

Any associated user data is always initialized to zeroes upon creation of a PGP
data type instance.

Reference Guide 89

2 - Key Management Functions

KeyID functions

PGPImportKeyID

Syntax

Parameters

Notes

Imports the key ID.

PGPError PGPImportKeyID(
void const *data, PGPKeylD *keylD);

data the key ID data to import
keyID the receiving field for the resultant key ID

data must be in the format produced by PGPExportKeylD, and must
reference a buffer of at least kPGPMaxExportedKeylDSize bytes in length

PGPEXxportKeylD

Syntax

Parameters

Exports the specified key ID.

PGPError PGPExportKeyID(
PGPKeyID const *keylD,
PGPByte exportedData[
kPGPMaxExportedKeyIDSize],
PGPSize *exportedLength);

keyID the key ID to be exported
exportedData the receiving field for the exported key ID data

exportedLength the receiving field for the resultant length of the exported
key ID data

PGPGetKeyIDString

Syntax

Retrieves the string associated with the specified key ID.

PGPError PGPGetKeylIDString(
PGPKeyID const *keylD,
PGPKeyIDStringType type,
char outString[kPGPMaxKeylIDStringSize]);

90 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters

keyID the target key ID

type the type of key ID string to return, which recognizes
kPGPKeyIDString_... values

outString the receiving field for the associated key ID string

PGPGetKeylIDFromString

Syntax

Parameters

Notes

Creates a key ID corresponding to the specified key string.

PGPError PGPGetKeylDFromString(
const char *string, PGPKeyIlD *keyID);

string the target string
keylD the receiving field for the resultant key ID

The string argument length must not exceed kPGPMaxKeylIDStringSize

PGPGetKeyByKeyID

Syntax

Parameters

Notes

Searches the key database associated with the specified key set for the key
whose keyID and public key algorithm match those specified. This is especially
useful for finding the keys of signing users, as well as any third party
revocation keys or additional recipients (see PGPGetKeylDOfCertifier ,
PGPGetindexedRevocationKey , and
PGPGetindexedAdditionalRecipientRequestKey).

PGPError PGPGetKeyByKeyID(
PGPKeySetRef keySet,
PGPKeyID const *keylD,
PGPPublickeyAlgorithm pubKeyAlgorithm,
PGPKeyRef *key);

keySet the look-up key set

keyID the target keyID

pubKeyAlgorithm the public key algorithm used to generate the target
keyID

key the receiving field for the resultant key

Specifying the public key algorithm as kPGPPublicKeyAlgorithm_Invalid

Reference Guide 91

2 - Key Management Functions

causes it to be ignored as a selection criteria.

The current implementation treats the look-up key set as an indirect parameter
that references a key database, rather than as an explicit destination. Because of
key filtering and the “live” nature of its resultant view-style key sets, the
resultant key may or may not appear in the specified look-up key set,
depending upon its key filtering criteria.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPGetKeylDFromKey

Creates a key ID corresponding to the specified key.

Syntax
PGPError PGPGetKeylDFromKey(
PGPKeyRef key, PGPKeylD *keyID);
Parameters
key the target key
keylD the receiving field for the resultant key ID

PGPGetKeyIDFromSubKey

Creates a key ID corresponding to the specified sub-key.

Syntax
PGPError PGPGetKeylDFromSubKey(
PGPSubKeyRef subkey, PGPKeyID *keyID);
Parameters
subkey the target sub-key
keylD the receiving field for the resultant key ID

PGPGetKeyIDOfCertifier

Retrieves the KeyID of the specified signature.

Syntax

PGPError PGPGetKeylDOfCertifier(
PGPSigRef sig, PGPKeyID *keyID);

92 PGP Software Developer’s Kit

2 - Key Management Functions

Parameters
sig the target signature
keyID the receiving field for the associated KeylD

PGPCompareKeylIDs

Compares the key IDs, and returns -1, 0, or 1 depending upon whether
keyID1 is less than keylD2 | keylD1 equals keylD2 , or keylD1 is greater

than keyID2 .
Syntax
PGPInt32 PGPCompareKeyIDs(
PGPKeyID const *keylD1,
PGPKeyID const *keylD2);
Parameters
keylD1 key ID
keylD2 key ID

Key Item Context Retrieval Functions

PGPGetKeySetContext
Returns the context associated with the specified key set.
Syntax
PGPContextRef PGPGetKeySetContext(PGPKeySetRef keySet);
Parameters
keySet the target keySet
Notes
If the specified key set is invalid, then the returned context reference value is set
to kinvalidPGPContextRef
PGPGetKeyListContext
Returns the context associated with the specified key list.
Syntax

PGPContextRef PGPGetKeyListContext(
PGPKeylListRef keyList);

Reference Guide 93

2 - Key Management Functions

Parameters
keyList the target key list
Notes
If the specified key list is invalid, then the returned context reference value is set
to kinvalidPGPContextRef
PGPGetKeylterContext
Returns the context associated with the specified key iterator.
Syntax
PGPContextRef PGPGetKeylterContext(
PGPKeylterRef keylter);
Parameters
keylter the target key iterator
Notes
If the specified key iterator is invalid, then the returned context reference value
is set to kinvalidPGPContextRef
PGPGetKeyContext
Returns the context associated with the specified key.
Syntax
PGPContextRef PGPGetKeyContext(PGPKeyRef key);
Parameters
key the target key
Notes
If the specified key is invalid, then the returned context reference value is set to
kinvalidPGPContextRef
PGPGetSubKeyContext
Returns the context associated with the specified sub-key.
Syntax
PGPContextRef PGPGetSubKeyContext(PGPSubKeyRef subKey);
Parameters
subKey the target sub-key
Notes

If the specified sub-key is invalid, then the returned context reference value is
set to kinvalidPGPContextRef

94 PGP Software Developer’s Kit

2 - Key Management Functions

PGPGetUserIDContext

Syntax

Parameters

Notes

Returns the context associated with the specified user ID.

PGPContextRef PGPGetUserIDContext(PGPUserIDRef userID);

useriD

the target user ID

If the specified user ID is invalid, then the returned context reference value is
set to kinvalidPGPContextRef

Key Share Functions

PGPSecretShareData

Syntax

Parameters

Divides a key into the specified number of shares, ensuring that each share is at
least threshold bytes in length.

PGPError PGPSecretShareData(

pgpContext
inBuf
inBufLength
threshold
numShares

outBuf

PGPContextRef pgpContext,
void const *inBuf,

PGPSize inBufLength,
PGPUINnt32 threshold,
PGPUINt32 numShares,
void *outBuf);

the target context

the source key data

the size of the source share data (in bytes)

the minimum size (in bytes) of each share

the number of shares into which the source key data is to be
divided

the resultant share data

PGPSecretReconstructData

Syntax

PGPInt32 PGPSecretReconstructData(

PGPContextRef pgpContext,
void *inBuf,

Reference Guide 95

2 - Key Management Functions

Parameters

PGPSize inBufLength,
PGPUINt32 numShares,
void *outBuf);

pgpContext the target context

inBuf the source share data

inBufLength the size of the source share data (in bytes)

numShares the number of shares represented by the source share data
outBuf the resultant share data

Misc. Key-related functions

PGP VerifyX509CertificateChain

Syntax

Parameters

Notes

Validates the first certificate in the specified chain by first looking in the
specified chain, and then in the rootCerts chain to find a valid chain leading
to a root key.

Both certChain and rootCerts are to be passed in the format that they
appear in a TLS "server certificate" handshake message:

= 3 byte length for remainder
For each certificate:

= 3 byte certificate length

- certificate data

PGPError PGPVerifyX509CertificateChain(
PGPContextRef pgpContext,
PGPByte *certChain,
PGPByte *rootCerts);

pgpContext the target context
*certChain the target certificate chain
*rootCerts a collection of trusted self-signed certificates

Returns KPGPError_NoErr if the certificate chain is found to be valid.

96 PGP Software Developer’s Kit

Option List Functions

Introduction

The PGPsdk provides a flexible and extensible mechanism for presenting
arbitrary option specifications and data to functions accepting this
mechanism.

Most of the option list management functions and the individual option
functions use copy semantics. That is, they create their own copy of the
arguments, and so allow the caller to delete the argument data upon return.
This is very important in the case of passphrase and other sensitive data. In
these cases, the caller should not only free the memory occupied by the
argument, but also ensure that the memory is first erased. Additionally, the
individual option functions allocate PGPOptionListRef instances that are
automatically de-allocated once they are used in an option list management
function, for example, PGPBuildOptionList, or as a sub-option, for
example, PGPOSignWithKey(..., PGPOPassphrase(...), ...)

The individual option functions do not return the data type PGPError ;
instead they always return the data type PGOptionListRef . However, an
error may have occurred, and the resultant option list may not be valid (this is
almost always due to KPGPError_BadParams , but may also be
kPGPError_OutOfMemory). Since this condition can not be detected reliably
until the resultant option list is actually used, the PGPsdk developer should
always consider these option list functions as being a potential failure point for
functions accepting option list arguments.

Header files
pgpOptionList.h

pgpUserinterface.h

Option list management functions

Option list management functions create and act upon persistent option lists,
which must later be explicitly freed.

Reference Guide 97

3 - Option List Functions

PGPNewOptionList

Syntax

Parameters

Notes

Creates an empty, persistent option list, which may then be the output target for
subsequent PGPAppendOptionList and PGPBuildOptionList function
calls.

PGPError PGPNewOptionList(
PGPContextRef pgpContext,
PGPOptionListRef *outList);

pgpContext the target context
outList the receiving field for the resultant option list

The caller is responsible for de-allocating the resultant option list via
PGPFreeOptionList

PGPBuildOptionList

Syntax

Parameters

Notes

Populates a persistent option list, replacing any previous content. Argument
option list instances may be embedded option list function calls and/or
previously built PGPOptionListRef instances, thus supporting modular
assembly of option lists.

PGPError PGPBuildOptionList(
PGPContextRef pgpContext,
PGPOptionListRef *outList,
PGPOptionListRef firstOption,

PGPOLastOption());

pgpContext the target context

outList the receiving field for the resultant option list
firstOption the initial option list instance

subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

The caller is responsible for de-allocating the resultant option list via
PGPFreeOptionList

98 PGP Software Developer’s Kit

3 - Option List Functions

PGPCopyOptionList
Creates a persistent, exact copy of the source option list.
Syntax
PGPError PGPCopyOptionList(
PGPOptionListRef optionListOrig,
PGPOptionListRef *optionListCopy);
Parameters
optionListOrig the source option list
optionListCopy the receiving field for the copy of the option list
Notes
The caller is responsible for de-allocating the resultant copy of the option list via
PGPFreeOptionList.
PGPAppendOptionList
Augments a persistent option list by appending the specified option(s) to any
existing content. Argument option list instances may be embedded option list
function calls and/or previously built PGPOptionListRef instances, thus
supporting modular assembly of option lists.
Syntax
PGPError PGPAppendOptionList(
PGPOptionListRef outList,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
outList the existing option list to which the specified
option list instances will be appended
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
PGPFreeOptionList
Decrements the reference count of the specified option list and frees the option
list if the reference count reaches zero.
Syntax

PGPError PGPFreeOptionList(
PGPOptionListRef optionList);

Reference Guide 99

3 - Option List Functions

Parameters
optionList the existing option list to be de-allocated
Notes

Option lists that result from the inclusion of PGPO.functions in an argument
list are automatically de-allocated upon return from the employing function.
Such employing functions include, among others:

< PGPENcode

< PGPDecode

< PGPBuildOptionList
< PGPAppendOptionList
< PGPAddJobOptionList
< PGPOUIDialogOptions
= PGPOUI...Dialog

PGPAddJobOptions

Pass new option information to the job upon receipt of certain events. The job
argument should be passed as event->job . Additional PGPOptionListRef
arguments can be specified similarly to the way they are passed to PGPEncode
and PGPDecode. However, only certain options can be set after each type of
event.

Syntax

PGPError PGPAddJobOptions(
PGPJobRef theJob,
PGPOptionListRef firstOption,

PéPOLastOption());
Parameters
theJob the current job
firstOption the initial option list instance
subsequent option list instances

PGPOLastOption() must always appear as the final argument to
terminate the argument list

Notes
PGPAddJobOptions() is found in pgpEncode.h .

100 PGP Software Developer’s Kit

3 - Option List Functions

Common Encode/Decode option list functions

The following functions are used to create PGPOptionListRef instances that
specify the various common options to either PGPDecode or PGPEncode.
These functions can be used as temporary inline arguments, or presented to
PGPAppendOptionList and PGPBuildOptionList to augment or create
existing persistent lists.

PGPOInputBuffer

Specifies that input is to be taken from the referenced buffer.

Syntax
PGPOptionListRef PGPOInputBuffer(
PGPContextRef pgpContext,
void const *inBuf,
PGPSize inBufLength);
Parameters
pgpContext the target context
inBuf the desired input buffer
inBufLength the length of the input data in the desired input buffer (in
bytes)
Notes
One of PGPOInputBuffer, PGPOInputFile, and PGPOInputFileFSSpec

is required to specify an input source for functions that accept this option.

If this option is specified in addition to an input file option, then the operation
will fail with kPGPError_BadParams .

Reference Guide 101

3 - Option List Functions

PGPOInputFile

Syntax

Parameters

Notes

Specifies that input is to be taken from the indicated file.

PGPOptionListRef PGPOInputFile(
PGPContextRef pgpContext,
PGPFileSpecRef fileSpec);

pgpContext the target context
fileSpec the desired input file specification

One of PGPOInputBuffer, PGPOlInputFile, and PGPOInputFileFSSpec
is required to specify an input source for functions that accept this option.

If this option is specified in addition to an input buffer option, then the
operation will fail with kPGPError_BadParams .

PGPOInputFileFSSpec (MacOS platforms only)

Syntax

Parameters

Notes

Specifies that input is to be taken from the indicated file, expressed as a Mac OS
FSSpec record.

PGPOptionListRef PGPOInputFileFSSpec(
PGPContextRef pgpContext,
const FSSpec *fileFSSpec);

pgpContext the target context
fileFSSpec the FS specification of the desired input file

One of PGPOInputBuffer, PGPOlInputFile, and PGPOInputFileFSSpec
is required to specify an input source for functions that accept this option.

If this option is specified in addition to an input buffer option, then the
operation will fail with kPGPError_BadParams .

102 PGP Software Developer’s Kit

3 - Option List Functions

PGPODiscardOutput

Syntax

Parameters

Notes

Specifies whether or not the output should be discarded, for example, sent to
the null device.

PGPOptionListRef PGPODiscardOutput(
PGPContextRef pgpContext,
PGPBoolean discardOutput);

pgpContext the target context
discardOutput set to TRUEIf the output is to be discarded

One of PGPODiscardOutput, PGPOOutputFile, PGPOOutputBuffer,
and PGPOOutputFileFSSpec is required to specify an output destination for
functions that accept this option.

If this option is specified with either an output file or an output buffer option,
then the operation will fail with kPGPError_BadParams .

PGPOAIllocatedOutputBuffer

Syntax

Parameters

Notes

Specifies that output should be placed in a dynamically allocated buffer. Upon
completion of the operation, outputBuf will contain a pointer to the buffer,
and actualBufLength will contain the length (in bytes) of the data placed
into the output buffer.

PGPOptionListRef PGPOAllocatedOutputBuffer(
PGPContextRef pgpContext,
void **outputBuf,

PGPSize maximumBufLength,
PGPSize *actualBufLength);

pgpContext the target context

outputBuf the receiving field for a pointer to the allocated buffer

maximumBufLength the maximum size to which the buffer may grow (in
bytes)

actualBufLength the receiving field for the actual size (in bytes) of the
buffer

The caller is responsible for de-allocating the resultant buffer with
PGPFreeData.

Reference Guide 103

3 - Option List Functions

PGPOOutputBuffer

Syntax

Parameters

Notes

Specifies that output should be placed in a statically allocated buffer. Upon
completion of the operation, outBufDataLength ~ will contain the actual size
(in bytes) of the output placed into the buffer.

PGPOptionListRef PGPOOutputBuffer(
PGPContextRef pgpContext,
void *outBuf,

PGPSize outBufLength,
PGPSize *outBufDatalLength);

pgpContext the target context

outBuf the desired output buffer

outBufLength the available size of the desired output buffer (in
bytes)

outBufDatalLength the receiving field for the actual length (in bytes) of

the data output

If outputDatalLength is less than or equal to bufferLength , then all the
output was successfully collected. If not, then some of the output data was lost.

One of PGPODiscardOutput, PGPOOutputFile, PGPOOutputBuffer,

and PGPOOutputFileFSSpec is required to specify an output destination for
functions that accept this option.

If this option is specified with either a discard output or an output file option,
then the operation will fail with kPGPError_BadParams .

PGPOOutputFile

Syntax

Parameters

Specifies that output should be directed to the indicated file.

PGPOptionListRef PGPOOutputFile(
PGPContextRef pgpContext,
PGPFileSpecRef fileSpec);

pgpContext the target context
fileSpec the specification of the desired output file

104 PGP Software Developer’s Kit

3 - Option List Functions

Notes

One of PGPODiscardOutput, PGPOOutputFile, PGPOOutputBuffer,

and PGPOOutputFileFSSpec is required to specify an output destination for
functions that accept this option.

If this option is specified with either a discard output or an output buffer
option, then the operation will fail with kPGPError_BadParams

PGPOOutputFileFSSpec (MacOS platforms only)

Syntax

Parameters

Notes

Specifies that output should be directed to the indicated file, expressed as a Mac
OS FSSpec record.

PGPOptionListRef PGPOOutputFileFSSpec(
PGPContextRef pgpContext,
const FSSpec *fileFSSpec);

pgpContext the target context
fileFSSpec the FS specification of the desired output file

One of PGPODiscardOutput, PGPOOutputFile, PGPOOutputBuffer,

and PGPOOutputFileFSSpec is required to specify an output destination for
functions that accept this option.

If this option is specified with either a discard output or an output buffer
option, then the operation will fail with kPGPError_BadParams

PGPOAppendOutput

Syntax

Parameters

Specifies whether or not output should be appended to any associated file or
buffer, or should overwrite it.

PGPOptionListRef PGPOAppendOutput(
PGPContextRef pgpContext,
PGPBoolean appendOutput);

pgpContext the target context

appendOutput set to TRUEIf the output is to be appended to any
associated file or buffer

Reference Guide 105

3 - Option List Functions

PGPOPGPMIMEEnNcoding

Syntax

Parameters

Notes

Specifies whether or not the output should be in MIME format. If
mimeEncoding is TRUE then mimeBodyOffset s initialized to zero, and
mimeSeparator s initialized to an empty string, assuming that they are
non-NULL

PGPOptionListRef PGPOPGPMIMEEnNcoding
PGPContextRef pgpContext,
PGPBoolean mimeEncoding,
PGPSize *mimeBodyOffset,
char mimeSeparator
[kPGPMimeSeparatorSize |);

pgpContext the target context
mimeEncoding set to TRUEIf the output should be in MIME format
mimeBodyOffset a field that will be used by the encoding process to

hold the offset of the MIME body text, which is
ignored if mimeEncoding is FALSE

mimeSeparator a buffer that will be used by the encoding process to
hold the MIME separator text, which must have a
minimum length of kPGPMimeSeparatorSize
which is ignored if mimeEncoding is FALSE

This option forcibly sets PGPOArmorOutput.

PGPOOmMIitMIMEVersion

Syntax

Specifies whether or not the MIME version should be included in the output,
since some mailers automatically add the MIME version to their output. By
specifying TRUE the PGPsdk developer can avoid inclusion of two MIME
version entries.

PGPOptionListRef PGPOOmMIitMIMEVersion
PGPContextRef pgpContext,
PGPBoolean omitMIMEVersion);

106 PGP Software Developer’s Kit

3 - Option List Functions

Parameters

Notes

pgpContext the target context

omitMIMEVersion set to TRUEIf the MIME version should not be
included in the output

This option is only meaningful in conjunction with a PGPOPGPMIMEEnNcoding
instance that enables MIME format.

PGPOLocalEncoding

Syntax

Parameters

Flags

Specifies the conditions under which the output should be converted to a
platform-specific encoding. Currently, the PGPsdk only supports conversion to
MacOS MacBinary format, and this function effectively does nothing on
non-MacOS platforms.

PGPOptionListRef PGPOLocalEncoding(
PGPContextRef pgpContext,
PGPLocalEncodingFlags localEncode);

pgpContext the target context
localEncode the encoding to use

The local encoding flag values have the following meanings:

< kPGPLocalEncoding_Auto - effect conversion depending upon the
output MacOS OSTypefile type

< kPGPLocalEncoding_Force - always effect conversion

< kPGPLocalEncoding_NoMacBinCRCOkay - flag the converted output
such that a subsequent decode or signature verification ignores a failed CRC
check

< kPGPLocalEncoding_None - no-op

The kPGPLocalEncoding_Auto and kPGPLocalEncoding_Force options

are considered “main” options, and are mutually exclusive.

kPGPLocalEncoding_NoMacBinCRCOkay and

kPGPLocalEncoding_None are considered “modifier” options, and are

intended to be ORed with one of the main options.

Reference Guide 107

3 - Option List Functions

Notes

Example

kPGPLocalEncoding_NoMacBIinCRCOkay is primarily intended to provide
compatibility with PGP Version 2.6.2.

When specified for PGPDecode, the option applies only to any detached
signatures.

Generally, the PGPsdk developer should always specify
kPGPLocalEncoding_Force since this:

= ensures that no data will be lost
= isignored for output on non-MacOS platforms

= isrecognized for input by versions 5.5 and later of PGP software products on
non-MacOS platforms

tOptListRef = PGPOLocalEncoding(
pgpContext,
(kPGPLocalEncoding_Force |
kPGPLocalEncoding_NoMacBinCRCOkay));

PGPOOutputLineEndType

Syntax

Parameters

Notes

Specifies the type of line endings to use when generating text output.

PGPOptionListRef PGPOOutputLineEndType(
PGPContextRef pgpContext,
PGPLineEndType lineEndType);

pgpContext the target context
lineEndType the line ending to use

This option is only meaningful in conjunction with PGPOArmorQutput . If this
option is not supplied, then the default line ending for the local platform is
used.

PGPODetachedSig

For PGPEncode, creates a detached signature for the message. No sub-options
are defined at this time.

For PGPDecode, specifies the input source to be used to verify any associated
detached signature. In this case, one of PGPOInputBuffer,
PGPOInputFile, and PGPOInputFileFSSpec s required.

108 PGP Software Developer's Kit

3 - Option List Functions

Syntax
PGPOptionListRef PGPODetachedSig(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Detached signature specific options include:
PGPOInputBuffer

PGPOInputFile

PGPOInputFileFSSpec

Common encrypting and signing option list
functions

PGPOConventionalEncrypt

Conventionally encrypt the message.

Syntax
PGPOptionListRef PGPOConventionalEncrypt(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Conventional encryption specific options include:
< PGPOPassphrase

Reference Guide 109

3 - Option List Functions

< PGPOPassphraseBuffer

Notes
This option requires a PGPOPassphrase sub-option to specify the
conventional encryption key.
PGPOCipherAlgorithm
Specifies the algorithm to use for encryption. This is currently meaningful only
in conjunction with conventional encryption; otherwise the choice of
encryption algorithm is based on the encrypt-to keys.
Syntax
PGPOptionListRef PGPOCipherAlgorithm(
PGPContextRef pgpContext,
PGPCipherAlgorithm algID);
Parameters
pgpContext the target context
alglD the cipher algorithm to use
PGPOEnNcryptToKey
Encrypt the plain text to the specified key.
Syntax
PGPOptionListRef PGPOEnNcryptToKey(
PGPContextRef pgpContext,
PGPKeyRef keyRef);
Parameters
pgpContext the target context
keyRef the target key
Notes

To encrypt the plain text with multiple keys, include an instance of this option
in the PGPENcode option list for each key. There is no preset limit to the
number of instances.

If the number of individual encrypt-to keys is large or if multiple data instances
are to be encrypted, then it may be simpler to collect the keys as a key set and
use PGPOEnNcryptToKeySet.

110 PGP Software Developer’s Kit

3 - Option List Functions

PGPOEnNcryptToKeySet

Syntax

Parameters

Notes

Encrypt the plain text to each key in the key set. This option may be used
multiple times in one call.

PGPOptionListRef PGPOEnNcryptToKeySet(
PGPContextRef pgpContext,
PGPKeySetRef keySet);

pgpContext the target context
keySet the target key set

To encrypt the plain text to each key in multiple key sets, include an instance of
this option in the PGPEncode option list for each key set. There is no preset
limit to the number of instances.

PGPOEncryptToUserID

Syntax

Parameters

Notes

Encrypt the plain text to the key associated with the specified user ID.

PGPOptionListRef PGPOEncryptToUserID(
PGPContextRef pgpContext,
PGPUserIDRef userlDRef);

pgpContext the target context
userlDRef the target user ID

To encrypt the plain text with the keys associated with multiple user IDs,
include an instance of this option in the PGPEncode option list for each user ID.
There is no preset limit to the number of instances.

This function is believed to be of limited use, and may not be supported in
future versions of the PGPsdk.

PGPOHashAlgorithm

Syntax

Use the specified algorithm as the hash algorithm for signatures. For example,
force the use of the SHA-1 algorithm in an RSA signature.

PGPOptionListRef PGPOHashAlgorithm(
PGPContextRef pgpContext,
PGPHashAlgorithm algID);

Reference Guide 111

3 - Option List Functions

Parameters
pgpContext the target context
alglD the desired hash algorithm
Notes
DSS keys unconditionally use the SHA-1 algorithm, and are unaffected by this
option.
PGPOSignWithKey
Sign the message or file with the specified key.
Syntax
PGPOptionListRef PGPOSignWithKey(
PGPContextRef pgpContext,
PGPKeyRef sigKey,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
pgpContext the target context
sigKey the desired signing key
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Signing specific options include:
» PGPOPasskeyBuffer
» PGPOPassphrase
» PGPOPassphraseBuffer
Notes

Any required passphrase should be specified with a sub-option. A passphrase
event is posted if all of the following conditions exist:

= no passphrase sub-option is specified
= the target key requires a passphrase
= anevent handler is defined (see PGPOEventHandler)

112 PGP Software Developer’s Kit

3 - Option List Functions

PGPOWarnBelowValidity

For encryption and signature verification, specifies that a warning event be sent
for any encryption or signing key having a validity level less than that

specified.
Syntax
PGPOptionListRef PGPOWarnBelowValidity(
PGPContextRef pgpContext,
PGPValidity minValidity);
Parameters
pgpContext the target context
minValidity the desired validity threshold

PGPOFailBelowValidity

For encryption, specifies that a fatal error be recognized for an encryption key
having a validity level less than that specified. For signature verification,
specifies that the generated signature event keyValidity member be set to
kPGPValidity_Invalid

Syntax
PGPOptionListRef PGPOFailBelowValidity(
PGPContextRef pgpContext,
PGPValidity minValidity);
Parameters
pgpContext the target context
minValidity the desired validity threshold

Reference Guide 113

3 - Option List Functions

Encode-only Option List Functions

PGPOAskUserForEntropy

Specifies whether or not the user should be prompted to provide additional
entropy if the global random pool entropy level drops below its minimum.

Syntax
PGPOptionListRef PGPOAskUserForEntropy(
PGPContextRef pgpContext,
PGPBoolean askUser);
Parameters
pgpContext the target context
askUser set to TRUEIf the user should be prompted for additional
entropy
Notes
If the user is not to be prompted and the entropy drops below minimum, then
the operation will fail with kPGPError_OutOfEntropy
PGPODatalsASCII
Force all line endings to <CR><LF> pairs prior to encoding or signing. This
flags the cipher text such that PGPDecrypt will generate the plain text with
output line endings appropriate to the decoding platform.
Syntax
PGPOptionListRef PGPODatalsASCII(
PGPContextRef pgpContext,
PGPBoolean datalsASCII);
Parameters

pgpContext the target context
datalsASCII set to TRUEIf the input data should be interpreted as ASCII

114 PGP Software Developer’s Kit

3 - Option List Functions

PGPORawPGPInput

Syntax

Parameters

Notes

Indicates whether or not the input is already in binary PGP format. This
simplifies decryption of messages that are multiply signed and/or multiply
encrypted.

PGPOptionListRef PGPORawPGPInput(
PGPContextRef pgpContext,
PGPBoolean isRawPGPInput);

pgpContext the target context
isRawPGPInput set to TRUEIf the input is assumed to be in raw PGP format

PGPORawPGPInputis intended for internal use by the PGPsdk routines, and
client code should specify this option rarely, if ever.

PGPOForYourEyesOnly

Syntax

Parameters

Notes

Encrypt in "for your eyes only" mode. This flags the cipher text such that the
output events generated during decoding will reflect TRUEfor the
forYourEyesOnly =~ member of the PGPEventOutputData . This in turn alerts
the client to the fact that the resultant plain text should not be saved to disk, or
otherwise made available to other recipients.

PGPOptionListRef PGPOForYourEyesOnly(
PGPContextRef pgpContext,
PGPBoolean forYourEyesOnly);

pgpContext the target context

forYourEyesOnly set to TRUEto enable "for your eyes only" encryption
mode

This option is not enforceable by the encrypting client - the decrypting client
may always choose to ignore events entirely or simply ignore this indicator.

Reference Guide 115

3 - Option List Functions

PGPOArmorOutput

Ensures that all output is encoded as 7-bit ASCII. For example, a 32-bit binary
numeric value of 688,798,386 would be rendered as the ASCII text string
“290E3AB2" , assuming big-endian encoding.

Syntax
PGPOptionListRef PGPOArmorOutput(
PGPContextRef pgpContext,
PGPBoolean armorOutput);
Parameters

pgpContext the target context
armorOutput set to TRUEIf the resultant output should be ASCII encoded

PGPOFileNameString

Sets the ‘suggested’ name for the decrypted file, which is stored within the
encrypted file. By default, the internal file name string is set to the name of the
input file.
For example, suppose we encrypt a file called “Profits.xlIs”, naming the
encryption output file “Secret.pgp”. If the internal ‘suggested’ filename string is
set to “Profits.xIs”, then upon decryption the unencoded file will also be named
“Profits.xls”.
Syntax
PGPOptionListRef PGPOFileNameString(
PGPContextRef pgpContext,
char const *fileNameString);
Parameters
pgpContext the target context

fileNameString the suggested filename for the decrypted file,
expressed as a null-terminated C string.

PGPOCIlearSign

Clear-sign the message, that is, output the text as lexical sections with the
appropriate PGP delimiters, but do not encrypt the plain text. In this way;,
messages can be sent “in the clear” while still providing for authentication. This
option forcibly sets both PGPOArmorOutput and PGPODatalsASCII.

Syntax

PGPOptionListRef PGPOCIlearSign(
PGPContextRef pgpContext,
PGPBoolean clearSign);

116 PGP Software Developer’s Kit

3 - Option List Functions

Parameters
pgpContext the target context
clearSign set to TRUEIf the resultant output should be clear-signed

Decode-only Option List Functions

PGPOImportKeysTo

If any keys are found in the input, add them to the specified key set.

Syntax
PGPOptionListRef PGPOImportkeysTo(
PGPContextRef pgpContext,
PGPKeySetRef keySet);
Parameters
pgpContext the target context
keySet the target key set

PGPOPassThroughlfUnrecognized

Indicate whether or not unrecognized lexical sections should post an error.

Syntax
PGPOptionListRef PGPOPassThroughlfUnrecognized(
PGPContextRef pgpContext,
PGPBoolean passThrough);
Parameters
pgpContext the target context
passThrough set to TRUEIf unrecognized lexical sections should not post an
error

PGPOPassThroughClearSigned

Option for PGPDecode() to request that clear-signed data appear at the output
of the operation with the signature data intact. The default behavior for
PGPDecode() isto remove wrapping signature information.

Syntax
PGPOptionListRef PGPOPassThroughClearSigned(
PGPContextRef context,
PGPBoolean passThrough);

Reference Guide 117

3 - Option List Functions

Parameters

pgpContext the target context

passThrough set to TRUEto enable passthrough of
clear-signed data

PGPOPassThroughKeys

Syntax

Parameters

Option for PGPDecode() to request that embedded key blocks appear at the
output of the operation. The default behavior for PGPDecode() is to remove
embedded key blocks, and to import the keys into a key set if an
PGPOImportKeysTo() option is used.

PGPOptionListRef PGPOPassThroughKeys(
PGPContextRef context,
PGPBoolean passThrough);

pgpContext the target context
passThrough set to TRUEto enable passthrough of keys

PGPOSendEventlfKeyFound

Enable or disable sending kPGPEvent_KeyFound events, which allows an
event handler to decide what to do with keys in the input.

Syntax
PGPOptionListRef PGPOSendEventlfKeyFound(
PGPContextRef pgpContext,
PGPBoolean sendEventlfKeyFound);
Parameters
pgpContext the target context
sendEventlfKeyFound set to TRUEto enable sending of
kPGPEvent_KeyFound events
PGPORecursivelyDecode

Option for PGPDecode() to tell the SDK to check the decrypted message for
any clear-signed information, and then verify that information. This check takes
place after decryption. This functionality is intended to accomodate cases in
which a clear-signed message is subsequently encrypted in a separate, explicit
encryption operation (as opposed to performing an encrypt-and-sign, which is
always regarded as a single operation by the SDK).

118 PGP Software Developer’s Kit

3 - Option List Functions

Syntax
PGPOptionListRef PGPOSendEventlfKeyFound(
PGPContextRef pgpContext,
PGPBoolean recurse);
Parameters
pgpContext the target context
recurse set to TRUEto enable recursive decoding

(Sub-)Key Generation, Augmentation, and
Revocation Option List Functions

The following functions are used to create PGPOptionListRef instances that
specify the various common options to PGPGenerateKey,
PGPGenerateSubKey, PGPGetKeyEntropyNeeded, PGPAddUserID,

and PGPSignUserID . These functions can be used as temporary inline
arguments, or used with PGPAppendOptionList and

PGPBuildOptionList to augment or create existing persistent lists.

PGPOAdditionalRecipientRequestKeySet

Establish the specified key(s) as additional recipient request key(s) when
generating keys with PGPGenerateKey.

Syntax
PGPOptionListRef PGPOAdditionalRecipientRequestKeySet(
PGPContextRef pgpContext,
PGPKeySetRef arrKeySet,
PGPByte arrKeyClass);
Parameters
pgpContext the target context
arrkeySet the key set containing the additional recipient request keys
arrkeyClass the class of the additional recipient request keys
Notes

This option is valid for PGPGenerateKey only.

arrkeyClass is currently ignored, and should be specified as
(PGPByte)0 .

Reference Guide 119

3 - Option List Functions

PGPOKeyGenName
Establish the name to be used when generating keys with PGPGenerateKey.
Syntax
PGPOptionListRef PGPOKeyGenName(
PGPContextRef pgpContext,
const void *name,
PGPSize nameLength);
Parameters
pgpContext the target context
name the desired name
namelLength the length (in bytes) of the desired name, which must be
between 1 (one) and 256
Notes
This option is valid for PGPGenerateKey only
PGPOKeyGenMasterKey
Specifies the key on which a sub-key will be generated.
Syntax
PGPOptionListRef PGPOKeyGenMasterKey(
PGPContextRef pgpContext,
PGPKeyRef masterKey);
Parameters
pgpContext the target context
masterKey the “parent” key
Notes
This option is valid for PGPGenerateSubKey only
PGPOEXxportPrivateKeys
Indicate whether or not private keys should be included when exporting key
sets.
Syntax

PGPOptionListRef PGPOExportPrivateKeys(
PGPContextRef pgpContext,
PGPBoolean exportPrivateKeys);

120 PGP Software Developer’s Kit

3 - Option List Functions

Parameters
pgpContext the target context
exportPrivateKeys set to TRUEto include private keys in exported key sets
PGPOKeyGenFast
Indicate whether or not keys should be generated in “fast” mode, that is, based
on “known” primes instead of dynamically generated primes.
Syntax
PGPOptionListRef PGPOKeyGenFast(
PGPContextRef pgpContext,
PGPBoolean fastGen);
Parameters
pgpContext the target context
fastGen set to TRUEto enable “fast” key generation mode
PGPOKeyGenParams
Establishes the public key algorithm and key size (in bits) to be used when
generating keys or sub-keys, as well as when determining the entropy required
to generate such keys or sub-keys.
Syntax
PGPOptionListRef PGPOKeyGenParams(
PGPContextRef pgpContext,
PGPPublickeyAlgorithm pubKeyAlg,
PGPUINt32 keySize);
Parameters
pgpContext the target context
pubKeyAlg the desired public key algorithm
keySize the desired key size (in bits), which must be at least 512
Notes

The permissible key size values depend upon the choice of algorithm.
This option is required by those functions that accept it.

Reference Guide 121

3 - Option List Functions

PGPOCreationDate

Sets the creation date of keys, sub-keys, and signatures generated for the
specified context. When a key, sub-keys, or signature is actually generated, the
PGPsdk sets it’s creation date to that specified.

Syntax
PGPOptionListRef PGPOCreationDate(
PGPContextRef pgpContext,
PGPTime creationDate);
Parameters
pgpContext the target context
creationDate the desired creation date, expressed as a PGPTimevalue
Notes
If this option is not supplied, then the creation date defaults to “now”.
Use the PGPsdk utility function PGPGetPGPTimeFromStdTime to convert a
Standard C Library time_t value to a PGPTime value.
Since the system’s time-of-day clock can be manually set to any date or time,
there are no restrictions on the specified date being in the past or in the future.
However, the creation date must be before any specified expiration date (see
PGPOExpiration).
PGPOExpiration
Sets the expiration date of keys and their component items generated for the
specified context. Whenever a key or component is actually generated, the
PGPsdk adds the specified number of days to the current system time, which
establishes the key’s expiration date.
Syntax
PGPOptionListRef PGPOExpiration(
PGPContextRef pgpContext,
PGPUINnt32 expirationDays);
Parameters
pgpContext the target context
expirationDays the desired expiration date, expressed as days from
“now”
Notes

To ensure that a key or component item has no expiration date, specify
expirationDays as having the special value
kPGPExpirationTime_Never

122 PGP Software Developer’s Kit

3 - Option List Functions

PGPOEXxportable

Syntax

Parameters

Indicate whether or not export of the key item in question is allowed. Currently,

this only applies to signatures (see PGPSignUserID).

PGPOptionListRef PGPOExportable(
PGPContextRef pgpContext,
PGPBoolean canExport);

pgpContext the target context
canExport set to TRUEIf the item is exportable

PGPOSigRegularExpression

Establishes the specified regular expression for use by PGPSignUserID.

Syntax
PGPOptionListRef PGPOSigRegularExpression(
PGPContextRef pgpContext,
char const *regExpr);
Parameters
pgpContext the target context
regExpr the regular expression string
Notes
This option is valid for PGPSignUserID only.
PGPOSIgTrust
Establishes the specified signature validity for use by PGPSignUserID.
Syntax
PGPOptionListRef PGPOSIigTrust(
PGPContextRef pgpContext,
PGPUINt32 trustLevel,
PGPUINt32 validity);
Parameters

pgpContext the target context

trustLevel the desired trust level for signatures, which asumes
kPGPNameTrust_...values

validity the desired trust value for signatures, which asumes

Reference Guide

123

3 - Option List Functions

kPGPValidity_... values
Notes
This option is valid for PGPSignUserID only.
PGPORevocationKeySet
Option for PGPGenerateKey() to specify one or more Designated Revocation
keys for the new key. Any of these keys will have the power to revoke the
generated key without the permission or cooperation of the owner of the new
key.
Syntax
PGPOptionListRef PGPORevocationKeySet
PGPContextRef context,
PGPKeySetRef raKeySetRef);
Parameters

pgpContext the target context
raKeySetRef the keys that will be able to revoke the key being generated

User Interface Dialog Option Functions

PGPOUIParentWindowHandle (Windows platforms only)

Indicates that the window for the associated dialog should be created as a child
of the specified parent window.

Syntax
PGPOptionListRef PGPOUIParentWindowHandle(
PGPContextRef pgpContext,
HWND hwndParent);
Parameters
pgpContext the target context
hwndParent the window handle of the desired parent window
Notes

If this option is not supplied, then the dialog window is created as a child of the
desktop.

124 PGP Software Developer’s Kit

3 - Option List Functions

PGPOUIWindowTitle

Specifies the window title text for the associated dialog.

Syntax
PGPOptionListRef PGPOUIWindowTitle(
PGPContextRef pgpContext,
const char *title);
Parameters
pgpContext the target context
title the desired window title text
Notes

If this option is not supplied, then the window title text assumes a
dialog-specific default (see the Ul dialog functions in Chapter 9).

PGPOUIDialogPrompt

Specifies the prompt text for the associated dialog.

Syntax
PGPOptionListRef PGPOUIDialogPrompt(
PGPContextRef pgpContext,
const char *prompt);
Parameters
pgpContext the target context
prompt the desired prompt text
Notes

If this option is not supplied, then the prompt text assumes a dialog-specific
default (see the Ul dialog functions in Chapter 9).

Reference Guide 125

3 - Option List Functions

PGPOUIDialogOptions

Syntax

Parameters

Options

Notes

Enables an options button on the associated dialog, and defines the items that
will appear in the resultant options dialog window.

Currently, these items are restricted to check boxes and pop-up lists, and are
specified by the PGPOUICheckBox and PGPOUIPopUpList options.

PGPOptionListRef PGPOUIDialogOptions(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,

PGPOLastOption());

pgpContext the target context

firstOption the initial option list instance

subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

Dialog specific options include:
= PGPOUICheckbox
< PGPOUIPopupList

The items appear in the in the resultant options dialog window in the order in
which their associated option functions are specified.

126 PGP Software Developer’s Kit

3 - Option List Functions

PGPOUICheckBox

Describes a check box item that will appear in the resultant options dialog
window of an associated PGPOUIOptionsDialog option function. The check
box format is primarily intended to return boolean values, but provides for
future return of other values. As such, an initial/resultant value of 1 (one) is
considered to be TRUE(filled check box), while an initial/resultant value of 0
(zero) is considered to be FALSE (empty check box).

Syntax
PGPError PGPOUICheckBox(
PGPContextRef pgpContext,
PGPUINt32 itemlID,
const char *title,
const char *description,
PGPUINt32 initialValue,
PGPUINt32 *resultValue);
Parameters
pgpContext the target context
itemID the target item
title the desired title text
description the desired description text (optional)
initialValue the desired initilal value of the item
resultValue the receiving field for the resultant value of the item
Notes

PGPOUICheckbox() is found in pgpUserinterface.h

Reference Guide 127

3 - Option List Functions

PGPOUIPopUpList

Describes a pop-up list item that will appear in the resultant options dialog
window of an associated PGPOUIOptionsDialog option function. The
pop-up list format allows the return of one of a list of any number of discrete
values.

Initial and resultant values are indicated by their index (from zero) within the
array of list values.

Syntax
PGPError PGPOUIPopUpList(
PGPContextRef pgpContext,
PGPUINt32 itemID,
const char “*title,
const char *description,
PGPUInt32 numListitems,
const char *listitems]],
PGPUInt32 initialValue,
PGPUINt32 *resultValue);
Parameters
pgpContext the target context
itemID the target item
title the desired title text
description the desired description text (optional)
numListitems the number of items in the list
listitems the discrete values of the list items
initialValue the index (from zero) of the desired initial list value
resultValue the receiving field for the index (from zero) of the resultant
list value
Notes

The items are displayed in the order in which they are specified in the list.
PGPOUIPopUpList() isfound in pgpUserinterface.h

128 PGP Software Developer’s Kit

3 - Option List Functions

PGPOUIOutputPassphrase

Syntax

Parameters

Notes

Specifies the receiving field for any resultant password collected by the
employing function (usually a passphrase dialog).

PGPOptionListRef PGPOUIOutputPassphrase(
PGPContextRef pgpContext,
char **passphrase);

pgpContext the target context
passphrase the receiving field for the resultant passphrase

This option is required by those functions that accept it.

If the user clicks on the cancel button or the close button, then receiving field for
the resultant password will reflect NULL

The employing function always attempts to allocate any resultant password in
secure memory (see PGPNewSecureMemory).

The caller is responsible for deallocating any resultant passphrase with
PGPFreeData .

PGPOUIMinimumPassphraseLength

Syntax

Parameters

Notes

Establishes the minimum acceptable passphrase length (in characters) when
assigning or changing a key’s associated passphrase.

PGPOptionListRef PGPOUIMinimumPassphraseLength(
PGPContextRef pgpContext,
PGPUINt32 minimumPassphraseLength);

pgpContext the target context
minimumPassphraselLength

the minimum acceptable passphrase length (in bytes)

If this option is not supplied or its value is specified as zero, then any length
passphrase is considered to be acceptable.

Reference Guide 129

3 - Option List Functions

PGPOUIMinimumPassphraseQuality

Establishes the minimum acceptable passphrase quality when assigning or
changing a key’s associated passphrase.

Syntax
PGPOptionListRef PGPOUIMinimumPassphraseQuality(
PGPContextRef pgpContext,
PGPUINt32 minimumPassphraseQuality);
Parameters
pgpContext the target context
minimumPassphraseQuality the minimum acceptable estimated passphrase
quality (assumes values between 0 (zero) and
100; see
PGPEstimatePassphraseQuality)
Notes

If this option is not supplied or its value is specified as zero, then any
passphrase quality is considered to be acceptable.

PGPOUIShowPassphraseQuality

Enables display of the passphrase quality "progress bar" when assigning or
changing a key’s associated passphrase.

Syntax
PGPOptionListRef PGPOUIShowPassphraseQuality(
PGPContextRef pgpContext,
PGPBoolean showPassphraseQuality);
Parameters
pgpContext the target context
showPassphraseQuality s et to TRUEto display the password quality
box
Notes

If this option is not supplied, then no passphrase quality “progress bar" is
displayed.

130 PGP Software Developer’s Kit

3 - Option List Functions

PGPOUIVerifyPassphrase

Syntax

Parameters

Controls passphrase verification in dialogs where a passphrase can be verified
against a target key or key set. If TRUE, the passphrase dialog function will not
return unless/until the user enters the correct passphrase or aborts the dialog.

PGPOptionListRef PGPOUIVerifyPassphrase(
PGPContextRef pgpContext,
PGPBoolean verifyPassphrase);

pgpContext the target context
verifyPassphrase s et to TRUEto verify the passphrase

PGPOUIFindMatchingKey

Syntax

Parameters

Controls matching of a passphrase against keys other than the target key when
PGPOUIVerifyPassphrase s specified.

PGPOptionListRef PGPOUIFindMatchingKey(
PGPContextRef pgpContext,
PGPBoolean findMatchingKey);

pgpContext the target context
findMatchingKey
set to TRUEto find the matching key

PGPOUIDefaultRecipients

Syntax

Specifies a list of default recipients that will be initially appear in the "selected"
area of a dialog that utilizies recipient lists.

PGPOptionListRef PGPOUIDefaultRecipients(
PGPContextRef pgpContext,
PGPUINt32 numRecipients,
const PGPRecipientSpec recipients[]);

Reference Guide 131

3 - Option List Functions

Parameters
pgpContext the target context
numRecipients the number of recipients
recipients the array of recipients

PGPOUIRecipientGroups

Specifies a list of default recipient groups that will be initially appear in the
"selected" area of a dialog that utilizies recipient lists.

Syntax
PGPOptionListRef PGPOUIRecipientGroups(
PGPContextRef pgpContext,
PGPGroupSetRef groupSet);
Parameters
pgpContext the target context
groupSet the group containing the desired recipients
Notes

Use multiple instances of this option to specify multiple recipient groups to a
dialog. However, care in creating and maintaining groups should minimize the
occasions where multiple instances are required.

PGPOUIENnforceAdditionalRecipientRequests

Specifies the desired enforcement with respect to additional recipient requests.

Syntax
PGPOptionListRef PGPOUIEnforceAdditionalRecipientRequests(
PGPContextRef pgpContext,
PGPAdditionalRecipientRequestEnforcement
aarEnforce);
Parameters
pgpContext the target context

aarEnforce the desired enforcement policy, which assumes
kPGPARREnNforcement_... values

Notes

If this option is not supplied, then the enforcement policy assumes
kPGPARREnNforcement_None .

132 PGP Software Developer’s Kit

3 - Option List Functions

PGPOUIDefaultkey

Syntax
PGPOptionListRef PGPOUIDefaultKey(
PGPContextRef pgpContext,
PGPKeyRef theKey);
Parameters
pgpContext the target context
theKey the desired default encryption/signing key

PGPOUIDisplayMarginalValidity

Determines the appearance (style) of the key validity icon used whenever a
dialog displays a list of keys, for example, PGPRecipientDialog

A value of TRUEindicates that the dialog should use the bar-style key validity
icon; a value of FALSE indicates that the dialog should use the circle-style key
validity icon.

This function interacts with PGPOUIlIgnoreMarginalValidity

Syntax
PGPOptionListRef PGPOUIDisplayMarginalValidity(
PGPContextRef pgpContext,
PGPBoolean displayMarginalValidity);
Parameters
pgpContext the target context
displayMarginalValidity s et to TRUEto display marginal validity values

PGPOUIlgnoreMarginalValidity

Determines whether or not keys that are marginally valid are displayed as such
whenever a dialog displays a list of keys, for example, PGPRecipientDialog

A value of as TRUEindicates that marginally valid keys should be displayed as
being invalid; a value of FALSE indicates that marginally valid keys should be
displayed as such.

This function interacts with PGPOUIDisplayMarginalValidity
Syntax

PGPOptionListRef PGPOUIIgnoreMarginalValidity(
PGPContextRef pgpContext,
PGPBoolean ignoreMarginalValidity);

Reference Guide 133

3 - Option List Functions

Parameters
pgpContext the target context
ignoreMarginalValidity s et to TRUEto ignore marginal validity values

PGPOUIKeyServerUpdateParams

Specifies a list of key servers to search when updating missing keys in user
interface dialogs.

Syntax
PGPOptionListRef PGPOUIKeyServerUpdateParams(
PGPContextRef pgpContext,
PGPUINt32 numKeyServers,
const PGPKeyServerSpec keyServerList[],
PGPtlsContextRef tlsContext,
PGPBoolean searchBeforeDisplay,
PGPKeySetRef *foundKeys,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
numKeyServers the number of key servers in the list
keyServerList the list of key servers to search
tiIsContext the active TLS context
searchBeforeDisplay set to TRUEIf the display should appear after

the search results have been obtain; set to
FALSEIf the display should appear while the
search is in progress

foundKeys the receiving field for the key set containing
the resultant matching keys

firstOption the initial option list instance

subsequent option list instances

PGPOLastOption() must always appear as the final argument to

terminate the argument list

134 PGP Software Developer’s Kit

3 - Option List Functions

PGPOUIKeyServerSearchFilter

Specifies a search filter to be used with key server user interface dialogs.

Syntax
PGPOptionListRef PGPOUIKeyServerSearchFilter(
PGPContextRef pgpContext,
PGPFilterRef filter);
Parameters
pgpContext the target context
filter the desired filter

PGPOUIKeyServerSearchKey

Specifies a search key to be used with key server user interface dialogs.

Syntax
PGPOptionListRef PGPOUIKeyServerSearchKey(
PGPContextRef pgpContext,
PGPKeyRef key);
Parameters
pgpContext the target context
key the desired key

PGPOUIKeyServerSearchKeySet

Specifies a search key set to be used with key server user interface dialogs.

Syntax
PGPOptionListRef PGPOUIKeyServerSearchKeySet(
PGPContextRef pgpContext,
PGPKeySetRef keySet);
Parameters
pgpContext the target context
keySet the desired key set

PGPOUIKeyServerSearchKeyIDList

Specifies a search key ID list to be used with key server user interface dialogs.

Syntax

PGPOptionListRef PGPOUIKeyServerSearchKeyIDList(
PGPContextRef pgpContext,
PGPUINt32 numKeyIDs,

Reference Guide 135

3 - Option List Functions

const PGPKeyID keyIDList[]);

Parameters
pgpContext the target context
numKeylDs the number of key IDs in the list
keylDList the list of keyIDs

Network and Key Server Option List Functions

PGPONetURL
Option for PGPNewKeyServer() , to specify the desired server by URL .
Syntax
PGPOptionListRef PGPONetURL(
PGPContextRef context,
const char *url O;
Parameters
url the server’s URL, expressed as a null-terminated C string
PGPONetHostName
Option for PGPNewKeyServer() , to specify the desired server by host name
and port number.
Syntax
PGPOptionListRef PGPONetHostName(
PGPContextRef context,
const char *hostName,
PGPUINt16 port);
Parameters
hostName the server machine’s internet domain name, expressed as a
null-terminated C string
port the server application’s port number
PGPONetHostAddress
Option for PGPNewKeyServer() , to specify the desired server by IP address
and port number.
Syntax

PGPOptionListRef PGPONetHostAddress(
PGPContextRef context,
PGPUINt32 hostAddress,

136 PGP Software Developer’s Kit

3 - Option List Functions

PGPUINt16 port);

Parameters
hostAddress the server machine’s IP address
port the server application’s port number
PGPOKeyServerProtocol
Option for PGPNewKeyServer() , to specify the protocol (i.e. HTTP, LDAP,
etc.) to use when communicating with that key server.
Syntax
PGPOptionListRef PGPOKeyServerProtocol(
PGPContextRef context,
PGPKeyServerProtocol protocol);
Parameters

protocol the desired protocol

PGPOKeyServerKeySpace

Option for PGPNewKeyServer() , to specify which key space (i.e. normal,
pending area, or default) to examine. Note that this only applies to LDAP key

servers.
Syntax
PGPOptionListRef PGPOKeyServerKeySpace(
PGPContextRef context,
PGPKeyServerKeySpace space);
Parameters

space the desired key space

PGPOKeyServerAccessType

Option for PGPNewKeyServer() , to specify which kind of key server access
(i.e. normal, administrator, or default) is desired. Note that this only applies to
LDAP key servers.
Syntax
PGPOptionListRef PGPOKeyServerAccessType(
PGPContextRef context,
PGPKeyServerAccessType accessType);

Reference Guide 137

3 - Option List Functions

Parameters
accessType the desired type of access
PGPOKeyServerCAKey
Option for PGPSendCertificateRequest() , to address the certificate
request to a particular CA key on the target host machine. Note that this option
is only relevant when communicating with CA’s which support more than one
CA key.
Syntax
PGPOptionListRef PGPOKeyServerCAKey(
PGPContextRef context,
PGPKeyRef caKey);
Parameters

caKey the key of the target CA

PGPOKeyServerRequestKey

Syntax

Parameters

Option for PGPSendCertificateRequest() , to supply the key for which
the certificate request is being made.

PGPOptionListRef PGPOKeyServerRequestKey(
PGPContextRef context,
PGPKeyRef requestKey);

requestKey the key for which you’re requesting the certificate

PGPOKeyServerSearchKey

Syntax

Parameters

Option for PGPRetrieveCertificateRequest() , to specify the key to
retrieve (i.e., the key for which an earlier certificate request was made).

PGPOptionListRef PGPOKeyServerSearchKey(
PGPContextRef context,
PGPKeyRef searchKey);

searchKey the key to retrieve

138 PGP Software Developer’s Kit

3 - Option List Functions

PGPOKeyServerSearchFilter

Syntax

Parameters

Option for PGPRetrieveCertificateRequest() , to specify how to search
for the key(s) to retrieve (i.e., keys for which earlier certificate requests were
made). A filter can search for keys based on key properties, for example a
particular key ID.

PGPOptionListRef PGPOKeyServerSearchFilter(
PGPContextRef context,
PGPFilterRef searchFilter);

searchFilter the filter to use when searching

Misc. Option List Functions

PGPONullOption

Returns a special PGPOptionListRef that is always ignored.

Syntax
PGPOptionListRef PGPONullOption(
PGPContextRef pgpContext);
Notes
While this function is useful for providing a placeholder or default value in
dynamically constructed option lists, the same results can be achieved by
assembling the dynamic option list from modular, persistent lists.
PGPOCompression
Indicates whether or not the input plain text should be compressed prior to
encrypting or signing in binary format.
Syntax
PGPOptionListRef PGPOCompression(
PGPContextRef pgpContext,
PGPBoolean isCompressed);
Parameters
pgpContext the target context
isCompressed set to TRUEto indicate compress plain text before
encrypting or signing
Notes

This option should routinely be specified as TRUE since prior compression will

Reference Guide 139

3 - Option List Functions

not only reduce the size of the resultant cipher text, but also will increase the
strength of the cipher text in most cases. This increase in the strength is partially
a result of the reduction in plain text character frequency, and partially a result
of the reduction in the amount of resultant cipher text.

Strong cipher text is essentially immune to compression, since it has large
numbers of distinct “characters” that rarely if ever form repeating sequences.

PGPOCommentString

Indicates that the specified comment string should be included in the message
blocks.

Syntax
PGPOptionListRef PGPOCommentString(
PGPContextRef pgpContext,
char const *commentString);
Parameters
pgpContext the target context
commentString the comment text
PGPQOVersionString
Indicates that the specified version string should be included in the message
blocks.
Syntax
PGPOptionListRef PGPOVersionString(
PGPContextRef pgpContext,
char const *versionString);
Parameters
pgpContext the target context
versionString the desired version string
PGPOPassphrase
Specifies the passphrase to be used for signing, conventional encrypting, and
decrypting.
Syntax

PGPOptionListRef PGPOPassphrase(
PGPContextRef pgpContext,
const char *passphraseBuf);

140 PGP Software Developer’s Kit

3 - Option List Functions

Parameters

Notes

pgpContext the target context
passphraseBuf the passphrase string

For signing and conventional encryption, this option must be specified as a
sub-option (see PGPOSignWIthKey and PGPOConventionalEncrypt).

PGPOPassphraseBuffer

Syntax

Parameters

Notes

Specifies the passphrase to be used for signing, conventional encrypting, and
decrypting. This differs from PGPOPassphrase in that the passphrase data
and length are arbitrary, rather than being constrained to a C language string.

PGPOptionListRef PGPOPassphraseBuffer(
PGPContextRef pgpContext,
const void *passphraseBuf,
PGPSize passphraseLength);

pgpContext the target context
passphraseBuf the passphrase data
passphraselLength the length of the passphrase data (in bytes)

For signing and conventional encryption, this option must be set as a
sub-option (see PGPOSignWIthKey and PGPOConventionalEncrypt).

PGPOPasskeyBuffer

Syntax

Specifies the passkey to be used for signing, conventional encrypting, and
decrypting. This function is similar to PGPOPassphrase and
PGPOPassphraseBuffer , but for keys having shares (that is, “split” keys).
The actual passkey data and length are those returned from a key reconstitution
dialog.

PGPOptionListRef PGPOPasskeyBuffer(
PGPContextRef pgpContext,
const void *passkeyBuf,
PGPSize passkeylLength);

Reference Guide 141

3 - Option List Functions

Parameters

Notes

pgpContext the target context
passkeyBuf the passkey data
passkeyLength the length of the passkey data (in bytes)

For signing and conventional encryption, this option must be set as a
sub-option (see PGPOSignWIthKey and PGPOConventionalEncrypt).

PGPOPreferredAlgorithms

Establishes the specified symmetric cipher algorithm(s) as the preferred
algorithm(s) to use when generating keys and their sub-items, as well as when
encrypting and signing. The order of the array determines the relative
preferences, with the first element in the array being the most preferred
algorithm.

Syntax
PGPOptionListRef PGPOPreferredAlgorithms(
PGPContextRef pgpContext,
PGPCipherAlgorithm const *cipherKeyAlg,
PGPUINt32 cipherKeyAlgCount);
Parameters
pgpContext the target context
cipherKeyAlg an array of the preferred symmetric cipher algorithms
cipherKeyAlgCount the number of symmetric cipher algorithms in the
ordered array
Notes
The number of symmetric cipher algorithms in the ordered array must be
between one and the number of available symmetric cipher algorithms (see
PGPCountSymmetricCiphers).
No assumption is made regarding the actual availability of the symmetric
cipher algorithm(s) listed in the array.
The actual choice of algorithm involves availability and acceptability
considerations; this function simply adds a preference consideration.
PGPOKeySetRef

For signature validation and decryption operations, use the key database
associated with the specified key set as the look-up source for signature and
decryption keys.

For key generation operations, use the key database associated with the specified
key set as the destination for newly generated keys.

142 PGP Software Developer’s Kit

3 - Option List Functions

Syntax

Parameters

Notes

This option is required by those functions accepting it.

PGPOptionListRef PGPOKeySetRef(
PGPContextRef pgpContext,
PGPKeySetRef keySet);

pgpContext the target context
keySet the desired key set

The current implementation treats the specified key set as an indirect parameter
that references a key database, rather than as an explicit destination.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to the function’s semantics and usage.

PGPOSendNullEvents

Syntax

Parameters

Notes

Post a null event at each specified interval. This interval is approximate, but is
guaranteed never to be less than that specified.

PGPOptionListRef PGPOSendNullEvents(
PGPContextRef pgpContext,
PGPTimelnterval approxinterval);

pgpContext the target context
approxInterval the desired time interval (in milliseconds) between event
postings

These events provide a mechanism and a data source for implementing
progress bars, as well as a window of opportunity to pause, modify, or
terminate the job.

PGPOX509Encoding

Syntax

Indicates whether or not the associated input buffer/file should be considered
to be an ANSI X.509 certificate, rather than a key set in PGP export format.
Currently, specifying this option with the x509Encoding argument set to
TRUEresults in a singleton key set containing an unsigned key whose name is
based on the commonNameportion of the distinguished name in the certificate.

PGPOptionListRef PGPOX509Encoding(
PGPContextRef pgpContext,

Reference Guide 143

3 - Option List Functions

PGPBoolean x509Encoding);

Parameters
pgpContext the target context
x509Encoding set to TRUEIf the associated input buffer/file should

be considered as an ANSI X.509 certificate

Notes
This option is valid for PGPImportKeySet only.
If this option is not specified, then PGPImportKeySet treats its associated
input buffer/file as a key set in PGP export format, which maintains
compatibility with previous PGPsdk versions.
Future PGPsdk versions may modify this option to yield a valid signed PGP key
based upon information in the certificate.

PGPOEXxportFormat
Option for PGPExport() to specify the desired export data format.
PGPExport() can export either keys or additional items, such as certificate
and CRL request messages. For a list of all available PGPExportFormat
values, please see pgpOptionList.h

Syntax
PGPOptionListRef PGPOExportFormat(

PGPContextRef pgpContext,
PGPExportFormat exportFormat);
Parameters

pgpContext the target context
exportFormat the desired export format

PGPOEXxportPrivateSubkeys

Syntax

Parameters

Option for PGPExport() to control whether or not private subkeys are
included in the exported data.

PGPOptionListRef PGPOExportPrivateSubkeys(
PGPContextRef context,
PGPBoolean exportSubkeys);

pgpContext the target context
exportSubkeys set to TRUEto enable output of private subkeys in the

144 PGP Software Developer’s Kit

3 - Option List Functions

exported data

PGPOEventHandler

Syntax

Parameters

Notes

Establish the specified function as the user event handler.

PGPOptionListRef PGPOEventHandler(
PGPContextRef pgpContext,
PGPEventHandlerProcPtr eventHandler,
PGPUserValue eventHandlerArg);

pgpContext the target context
eventHandler the desired event handler

eventHandlerArg the user-defined data to be passed as an argument to
the event handler

For greatest flexibility, the PGPsdk developer should consider establishing
eventHandlerArg as a pointer to a user-defined data type, for example a C
struct

Specify eventHandlerArg as (PGPUserData)0 to indicate a dummy
argument.

PGPOLastOption

Syntax

Parameters

All functions having a variable number of arguments must include a special
argument to indicate the end of the argument list. This function provides that
argument, and must appear at the end of every variable argument list.

PGPOptionListRef PGPOLastOption(PGPContextRef pgpContext);

pgpContext the target context

Reference Guide 145

3 - Option List Functions

146 PGP Software Developer’s Kit

Group Functions

Introduction

The group management functions provide utilities for manipulating named
lists of key IDs. Groups can contain other groups. Functions are provided for
resolving groups into key sets for use with encoding functions. At this time,
groups are a higher level concept not directly supported by most of the
PGPsdk APIs.

Group Set Management Functions

PGPNewGroupSet
Creates a new, empty collection of groups.
Syntax
PGPError PGPNewGroupSet(
PGPContextRef pgpContext,
PGPGroupSetRef *groupSet);
Parameters
pgpContext the target context
groupSet the receiving field for the resultant group set
Notes
The caller is responsible for de-allocating the resultant group set with
PGPFreeGroupSet .
PGPNewGroupSetFromFile (Non-MacOS platforms only)
Creates a new collection of groups from the specified file data.
Syntax

PGPError PGPNewGroupSetFromFile(
PGPContextRef pgpContext,
PGPFileSpecRef fileSpec,
PGPGroupSetRef *groupSet);

Reference Guide 147

4 - Group Functions

Parameters

pgpContext the target context

fileSpec the source file specification

groupSet the receiving field for the resultant group set
Notes

file Spec is assumed to reference a file that was created by
PGPSaveGroupSetToFile

The caller is responsible for de-allocating the resultant group set with
PGPFreeGroupSet .

PGPNewGroupSetFromFSSpec (MacOS platforms only)

Creates a new collection of groups from the specified file data.

Syntax

PGPError PGPNewGroupSet(
PGPContextRef pgpContext,
const FSSpec *spec,
PGPGroupSetRef *groupSet);

Parameters
pgpContext the target context
spec the source Macintosh FS specification
groupSet the receiving field for the resultant group set
Notes

spec is assumed to reference a file that was created by
PGPSaveGroupSetToFile

The caller is responsible for de-allocating the resultant group set with
PGPFreeGroupSet .

PGPCopyGroupSet

Creates an exact copy of the source group set.

Syntax

PGPError PGPCopyGroupSet(
PGPGroupSetRef srcSet,
PGPGroupSetRef *destSet);

148 PGP Software Developer’s Kit

4 - Group Functions

Parameters
srcSet the source group set
destSet the receiving field for the copy of the group set
Notes
The caller is responsible for de-allocating the resultant group set copy with
PGPFreeGroupSet .
PGPFreeGroupSet
Frees the specified collection of groups.
Syntax
PGPError PGPFreeGroupSet(PGPGroupSetRef groupSet);
Parameters
groupSet the target group set
Notes

Group sets do not have associated reference counts — the data item is always
de-allocated.

PGPGetGroupSetContext

Syntax

Parameters

Notes

Returns the context associated with the specified collection of groups.

PGPContextRef PGPGetGroupSetContext(
PGPGroupSetRef groupSet);

groupSet the target group set

If the specified group set is not valid, then the returned context reference value
is set to kinvalidPGPContextRef

PGPGroupSetNeedsCommit

Syntax

Returns TRUEIf the contents of the in-memory collection of groups has changed
in any way, and so should be written to disk to make those changes permanent
(see PGPSaveGroupSetToFile).

PGPBoolean PGPGroupSetNeedsCommit(
PGPGroupSetRef groupSet);

Reference Guide 149

4 - Group Functions

Parameters
groupSet the target group set

PGPSaveGroupSetToFile

Saves the in-memory collection of groups to the specified file.

Syntax
PGPError PGPSaveGroupSetToFile(
PGPGroupSetRef groupSet,
PGPFileSpecRef fileSpec);
Parameters
groupSet the source group set
fileSpec the specification of the desired output file
Notes

Any existing file is silently overwritten.

This function should only be called if PGPGroupSetNeedsCommit returns
TRUE

PGPExportGroupSetToBuffer

Transfers an in-memory collection of groups to a dynamically allocated buffer.

Syntax
PGPError PGPExportGroupSetToBuffer(
PGPGroupSetRef groupSet,
void **groupData,
PGPSize *groupDataLength);
Parameters
groupSet the source group set

groupData the receiving field for the pointer to the allocated
group data buffer

groupDatalLength the receiving field for the resultant length of the
group data (in bytes)
Notes

The caller is responsible for de-allocating the resultant group data buffer with
PGPFreeData .

150 PGP Software Developer’s Kit

4 - Group Functions

PGPImportGroupSetFromBuffer

Populates an in-memory collection of groups from the data in the specified

buffer.
Syntax
PGPError PGPImportGroupSetFromBuffer(
PGPContextRef pgpContext,
void *groupData,
PGPSize groupDatalength,
PGPGroupSetRef *groupSet);
Parameters
pgpContext the target context
groupData the buffer containing the group data
groupDatalLength the length of the group data (in bytes)
groupSet the receiving field for the resultant group set
Notes
The data in the specified is expected to be in the format created by
PGPExportGroupSetToBuffer
The caller is responsible for de-allocating the resultant group set with
PGPFreeGroupSet .
PGPMergeGroupSets
Merge the specified source group set into the specified destination group set.
Syntax
PGPError PGPMergeGroupSets(
PGPGroupSetRef srcSet,
PGPGroupSetRef destSet);
Parameters
srcSet the source group set
destSet the destination group set
PGPSortGroupSetStd
Perform a standard name sort on the specified group.
Syntax

PGPError PGPSortGroupSetStd(
PGPGroupSetRef groupSet,
PGPKeySetRef keys);

Reference Guide 151

4 - Group Functions

Parameters
groupSet the target group set
keys the target key set
PGPSortGroupSet
Sort the items (groups and key ID’s) in the target group set according to the
specified comparison function.
Syntax
PGPError PGPSortGroupSet(
PGPGroupSetRef groupSet,
PGPGroupltemCompareProc compareProc,
PGPUserValue userValue);
Parameters

groupSet the target group set
compareProc sort comparison function
userValue user-defined data

PGPCountGroupsinSet

Syntax

Parameters

Returns the number of groups currently in the specified group set.

PGPError PGPCountGroupsinSet(
PGPGroupSetRef groupSet,
PGPUINt32 *numGroups);

groupSet the target group set
numGroups the resultant count

PGPGetindGrouplD

Syntax

Retrieve the group ID of the nth group in the specified group set.

PGPError PGPGetindGrouplD(
PGPGroupSetRef groupSet,
PGPUINt32 grouplindex,
PGPGroupID *grouplD);

152 PGP Software Developer’s Kit

4 - Group Functions

Parameters
groupSet the target group set
grouplindex the index (from zero) of the target group in the set
grouplD the receiving field for the resultant group ID

Group Management Functions

PGPNewGroup

Creates a new, empty group, and associates it with the specified group set.

Syntax

PGPError PGPNewGroup(
PGPGroupSetRef groupSet,
const char *name,
const char *description,
PGPGroupID *grouplD);

Parameters
groupSet the target group set

name the value for the name member of the resultant group’s
PGPGroupinfo data

description the value for the description member of the resultant group’s
PGPGroupinfo data

grouplD the receiving field for the resultant group ID
Notes

The length of the name argument must not exceed
kPGPMaxGroupNameLength .

The length of the description argument must not exceed
kPGPMaxGroupdescriptionLength

The group is automatically de-allocated when its associated group set is freed
with PGPFreeGroupSet .

PGPDeleteGroup

Removes the specified group from the specified group set.

Syntax
PGPError PGPDeleteGroup(
PGPGroupSetRef groupSet,
PGPGroupID grouplD);

Reference Guide 153

4 - Group Functions

Parameters
groupSet the target group set
grouplD the group ID of the target group in the set
Notes
The resultant group is de-allocated when its associated group set is freed with
PGPFreeGroup .
PGPAddItemToGroup
Add the specified item to the specified group. This may be either another group
(kPGPGroupltem_Group)or a key (kPGPGroupltem_KeyID).
Syntax
PGPError PGPAddItemToGroup(
PGPGroupSetRef groupSet,
PGPGroupltem const *item,
PGPGrouplID group);
Parameters
groupSet the target group set
description the target item to add
grouplD the target group in the set
Notes
All fields of the specified PGPGroupltem must be set.
PGPSetGroupName
Set the name of the target group to that specified.
Syntax
PGPError PGPSetGroupName(
PGPGroupSetRef groupSet,
PGPGroupID grouplD,
const char *name);
Parameters
groupSet the target group set
grouplD the target group in the set
name the desired name string
Notes

The length of the name argument must not exceed
kPGPMaxGroupNameLength .

154 PGP Software Developer’s Kit

4 - Group Functions

PGPSetGroupDescription
Set the description of the target group to that specified.
Syntax
PGPError PGPSetGroupDescription(
PGPGroupSetRef groupSet,
PGPGrouplD grouplD,
const char *description);
Parameters
groupSet the target group set
grouplD the group ID of the target group in the set in the set
description the desired description string
Notes
The length of the description argument must not exceed
kPGPMaxGroupDescriptionLength
PGPSetGroupUserValue
Set the user-defined data of the target group to that specified.
Syntax
PGPError PGPSetGroupUserValue(
PGPGroupSetRef groupSet,
PGPGrouplD grouplD,
PGPUserValue userValue);
Parameters
groupSet the target group set
grouplD the target group in the set
userValue the desired user-defined data

PGPGetGrouplinfo

Retrieve the information for the specified group.

Syntax
PGPError PGPGetGrouplinfo(
PGPGroupSetRef groupSet,
PGPGrouplD grouplD,
PGPGrouplinfo *info);

Reference Guide

155

4 - Group Functions

Parameters
groupSet the target group set
grouplD the target group in the set
info the receiving field for the resultant group information
PGPSortGroupltems
Sort the item in the specified group according to the specified comparison
function.
Syntax
PGPError PGPSortGroupltems(
PGPGroupSetRef groupSet,
PGPGrouplD grouplD,
PGPGroupltemCompareProc compareProc,
PGPUserValue userValue);
Parameters
groupSet the target group set
grouplD the group ID of the target group in the set
compareProc sort comparison function
userValue the desired user-defined data

PGPCountGroupltems

Determines the number of items in the specified groups.

Syntax

PGPError PGPCountGroupltems(
PGPGroupSetRef groupSet,
PGPGrouplID grouplD,
PGPBoolean recursive,
PGPUINt32 *numKeys,
PGPUINt32 *totalltems);

156 PGP Software Developer’s Kit

4 - Group Functions

Parameters
groupSet
grouplD
recursive
numKeys
totalltems

the target group set

the group ID of the target group in the set

indicates whether or not to expand any items that are groups
the resultant count of key items

the resultant count of all items (keys and groups)

PGPSetIindGroupltemUserValue

Sets the user-defined data of the n'" item in the target group to that specified.
The item may be a key or a sub-group.

PGPError PGPSetindGroupltemUserValue(

Syntax

Parameters
groupSet
grouplD
grouplndex
userValue

PGPGetIndGroupltem

PGPGroupSetRef groupSet,
PGPGrouplID grouplD,
PGPUINt32 grouplindex,
PGPUserValue userValue);

the target group set

the target group 1D

the index (from zero) of the target item
the desired user-defined data

Retrieve the n item in the specified group, which may be a key or a sub-group.

Syntax

PGPError PGPGetindGroupltem(

PGPGroupSetRef groupSet,
PGPGroupID grouplD,
PGPUINt32 grouplindex,
PGPGroupltem *itemRef);

Reference Guide 157

4 - Group Functions

Parameters
groupSet the target group set
grouplD the target group 1D
grouplindex the index (from zero) of the target item
itemRef the receiving field for the resultant item
PGPDeleteltemFromGroup
Delete the target item from the specified group.
Syntax
PGPError PGPDeleteltemFromGroup(
PGPGroupSetRef groupSet,
PGPGrouplD grouplD,
PGPGroupltem const *itemRef);
Parameters
groupSet the target group set
grouplD the target group 1D
itemRef the target item

PGPDeletelndltemFromGroup

Delete the n' item in the specified group.

Syntax
PGPError PGPDeletelnditemFromGroup(
PGPGroupSetRef groupSet,
PGPGrouplD grouplD,
PGPUINnt32 grouplindex);
Parameters
groupSet the target group set
grouplD the target group 1D
grouplindex the index (from zero) of the target item

PGPMergeGrouplntoDifferentSet

Merge the specified group into the specified destination group set.

Syntax

PGPError PGPMergeGrouplntoDifferentSet(
PGPGroupSetRef srcSet,
PGPGroupID srcGrouplD,

158 PGP Software Developer’s Kit

4 - Group Functions

PGPGroupSetRef destSet);

Parameters
srcSet the source group set
srcGrouplD the group ID of the target group in the set
destSet the destination group set

Group Item Iteration Functions

PGPNewGroupltemiter

Creates a new iterator on a group for the specified item type(s). Unlike the key
iterators (see the PGPKeylter... functions), this is not a full-fledged iterator:
you may not add or delete items while iterating, and you may only move
forward. However, you may change the values of items.

Syntax
PGPError PGPNewGroupltemlter(
PGPGroupSetRef groupSet,
PGPGrouplD grouplD,
PGPGroupltemiterFlags flags,
PGPGroupltemiterRef *iter);
Parameters
groupSet the target group set
grouplD the group ID of the target group in the set
flags the item specifier, which assumes
kPGPGrouplterFlags... values
iter the receiving field for the iterator
Notes

The caller is responsible for de-allocating the resultant iterator with
PGPFreeGroupltemiter

PGPFreeGroupltemlter

De-allocates the specified group item iterator.
Syntax
PGPError PGPFreeGroupltemliter(PGPGroupltemliterRef iter);

Reference Guide 159

4 - Group Functions

Parameters

iter the target iterator

PGPGroupltemlterNext

Syntax

Parameters

Notes

Advances the specified iterator and places the data associated with the next
group item into the specified receiving field.

PGPError PGPGroupltemlterNext(
PGPGroupltemiterRef iter,
PGPGroupltem *item);

iter the target iterator
item the receiving field for the resultant item
Returns kPGPError_EndOflteration when at the end of the group’s items.

Group Utility Functions

PGPGetGroupLowestValidity

Syntax

Parameters

Notes

Returns the lowest validity of any item in the group. keySet should contain all
keys available. It is not an error if keys can not be found; you may want to check
the not found count.

PGPError PGPGetGroupLowestValidity(
PGPGroupSetRef groupSet,
PGPGrouplID grouplD,
PGPKeySetRef keySet,
PGPValidity *lowestValidity,
PGPUINt32 *numKeysNotFound);

groupSet the target source group set

grouplD the group ID of the target group in the set

keySet the reference key set

lowestValidity the receiving field for the resultant lowest validity
numKeysNotFound the receiving field for the number of keys not found
The lowest validity is kPGPValidity_Invalid KPGPValidity_Unknown is

never returned.

160 PGP Software Developer’s Kit

4 - Group Functions

The current implementation treats the supplied key set as an indirect parameter
that references a key database, rather than as an explicit source key set.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPNewKeySetFromGroup

Syntax

Parameters

Notes

Creates a new key set on the key database associated with the specified key set, and
populates it with the keys contained in the specified group and its sub-groups.

PGPError PGPNewKeySetFromGroup(
PGPGroupSetRef groupSet,
PGPGrouplID grouplD,
PGPKeySetRef keySet,
PGPKeySetRef *resultSet,
PGPUINt32 *numKeysNotFound);

groupSet the target group set

grouplD the group ID of the target group in the set

keySet the destination group set

resultSet the receiving field for the resultant key set
numKeysNotFound the receiving field for the number of keys not found

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

The current implementation treats the supplied key set as an indirect parameter
that references a key database, rather than as an explicit source key set.

The indirect nature of this interface is likely to change in a future version, and
will almost certainly involve changes to this function’s parameterization.

PGPNewFlattenedGroupFromGroup

Syntax

Create a new, simple, flattened group of unique key ID’s from the specified
source group, places it into the specified destination group set, and assigns it a
group ID.

PGPError PGPNewFlattenedGroupFromGroup(
PGPGroupSetRef srcSet,
PGPGroupID srcGrouplD,
PGPGroupSetRef destSet,
PGPGroupID *destID);

Reference Guide 161

4 - Group Functions

Parameters
srcSet the target source group set
srcGrouplD the group ID of the target group in the set
destSet the destination group set
destID the receiving field for the group ID of the resultant flattened
group
Notes

The caller is responsible for de-allocating the resultant group with
PGPDeleteGroup .

srcSet and destSet may not refer to the same group set.

162 PGP Software Developer’s Kit

Ciphering and

Authentication Functions

Introduction

The PGPsdk provides high-level, algorithm-independent cryptographic
functions for encrypting, decrypting, hashing, signing, and verifying
messages and data. These not only free applications from having to be aware
of the particular algorithm being used, but also allow new algorithms to be
supported as they become available. Function prototypes are listed in the
public header file pgpEncode.h . In most cases, inputs and outputs can be
specified as any arbitrary combination of memory buffers and/or data files.

The PGPsdk also provides low-level cryptographic functions for developers
who have special requirements, or require greater control over ciphering and
authentication activities, since the high-level functions are based on cipher
feedback mode methodology.

Certain PGPsdk functions — most notably decryption and key generation (see
Chapter 2, “Key Management Functions.”)—require a significant amount of
time to complete. To facilitate control and progress tracking, these functions
support an event and callback mechanism. This same mechanism also
provides for prompting of required information when required for example,
file specifications, passphrases.

Header Files
pgpCBC.h
pgpCFB.h
pgpEncode.h
pgpHash.h
pgpHMAC.h
pgpPublicKey.h
pgpSymmetricCipher.h

Reference Guide 163

5 - Ciphering and Authentication Functions

Events and Callbacks

164

The PGPOEventHandler option allows the calling application to request
callbacks when various events occur, and to define the function (event
handler) that is the target of the callback. While an event handler is usually not
needed for encryption operations, it is often needed for decryption operations.

An event handler serves two purposes — it provides notification to the calling
application that an event has occurred, and provides a mechanism for the
calling application to affect processing (in a pre-defined manner). Notification
includes a pointer to a PGPEvent data type that, depending on the type of
event, provides detailed information about the cause of the event. The calling
application can then respond appropriately, which may or may not intervene
and affect the course of further processing. If the calling application wishes to
intervene, then it can abort the job by returning an error code (a value other
than kPGPError_NoErr , except in the cases of kPGPEvent_ErrorEvent).
Additionally, depending on the type of event, it can modify the processing
context by invoking PGPAddJobOptions .

All event handlers are declared as
PGPError myEvents(PGPContextRef pgpContext,
PGPEvent *event,
PGPUserValue userValue);

The pgpContext argument is the reference to the context of the job posting
the event. The event argument references a PGPEvent data type as follows:
struct PGPEvent_

{
PGPVersion version;
struct PGPEvent_ *nextEvent;
PGPJobRef job;
PGPEventType type;
PGPEventData data;

h

typedef struct PGPEvent_ PGPEvent;

The version and nextEvent members are currently reserved for internal
use. The job member references the currently active encode or decode
activity. The type member identifies the event being posted. The data
member is a union of the event-specific data structures, which are described
with their corresponding event (some events have no associated event-specific
data).

The calling application can modify the processing context by invoking
PGPAddJobOptions as:
PGPError PGPAddJobOptions(PGPJobRef job, ...);

PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

The value of the job argument is that of the PGPEvent argument’s job
member. Additional PGPOptionListRef arguments are specified similarly
to the way they are passed to PGPEncode and PGPDecode However, only
certain options can be set after each type of event, and these are listed for each
event.

Figure 5-1. Encode Processing Event Sequence

L n
kPGEvent_InitialEvent egend

[=]] sent once; unconditional

[E5 sent periodically;

[] sent once; conditional
? [sent multiple times;

Repeat until condition satisfied
or user abort

kPGEvent_FinalEvent

Reference Guide 165

5 - Ciphering and Authentication Functions

For each lexical

Figure 5-2. Decode Processing Event Sequence

kPGEvent_|InitialEvent

kPGEvent_AnalyzeEvent

kPGEvent_RecipientsEvent

Legend

[sent once; unconditional
[E5] Sent periodically;

[] Ssent once; conditional
[Sent multiple times;

Repeat until condition satisfied
or user abort

kPGEvent_PassphraseEvent

kPGEvent_OutputEvent

kPGEvent_DecryptionEvent

kPGEvent_FinalEvent

Common Cipher Events

kPGPEvent_InitialEvent

Data

166

Sent before all other events. Implies initiation of the job.

None

PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

kPGPEvent_NullEvent

Data

Sent during the course of encode/decode processing if explicitly requested with
PGPOSendNullEvents (see PGPEncode and PGPDecode).

The event data allows the PGPsdk developer to determine the sending
function’s progress and completion percentage. Its members should be treated
as relative, un-scaled quantities — they are not necessarily byte quantities.

Progress tracking that involves compressed input files is rarely linear, since it
tracks access of the compressed data, and not the decompression and
processing of the resultant expanded data.

typedef struct PGPEventNullData_
{
PGPFileOffset bytesWritten;
PGPFileOffset bytesTotal;
} PGPEventNullData;

kPGPEvent_WarningEvent

Data

Sent whenever a non-fatal error occurs during processing. The associated event
data always includes the error code, and for certain warnings includes an
error-specific argument.

typedef struct PGPEventWarningData_
{

PGPError warning;

void *warningArg;
} PGPEventWarningData;

kPGPEvent_ErrorEvent

Data

Sent whenever a fatal error occurs during processing. The associated event data
always includes the error code, and for certain errors includes an error-specific
argument. Upon return from the event handler, the job will always abort and
return the initial error code - the value returned by the event handler is ignored.

typedef struct PGPEventErrorData_
{

PGPError error;

void *errorArg;
} PGPEventErrorData;

kPGPEvent_FinalEvent

Sent after all other events. Implies termination of the job.

Reference Guide 167

5 - Ciphering and Authentication Functions

PGPENcode-only Events

kPGPEvent_EntropyEvent

Data

Sent if more entropy is needed for signing or encrypting, and indicates the
minimum number of entropy bits that the event handler should add to the
random pool (see Chapter 8, “Global Random Number Pool Management
Functions.”, for descriptions of the available random number pool management
functions). For example:

while (!PGPGlobalRandomPoolHasMinimumEntropy(void))

PGPGlobalRandomPoolAddKeystroke(
myGetKeystrokeFunction(void));

typedef struct PGPEventEntropyData_

{
PGPUINt32 entropyBitsNeeded;

} PGPEventEntropyData;

PGPDecode-only Events

kPGPEvent_BeginLexEvent

Data

Sent whenever a new lexical section is encountered in the input. A PGP lexical
section is a block of data delimited by ---BEGIN PGP and ---END PGP
(ASCII input; binary input has only one section). A lexical section can also be a
block of data before, between, or after ---BEGIN PGP and ---END PGP
which contains no PGP data. The zero-based sectionNumber value indicates
which section has been encountered.

typedef struct PGPEventBeginLexData_
{
PGPUINt32 sectionNumber;
PGPSize sectionOffset;
} PGPEventBeginLexData;

kPGPEvent_AnalyzeEvent

Data

168

Sent immediately after a BeginLexEvent to identify the type of the current
lexical section. This allows the event handler to decide if it should skip this
lexical section, but not abort the whole job, by returning the special error value
kPGPError_SkipSection

typedef struct PGPEventAnalyzeData_

PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

{
PGPAnalyzeType sectionType;

} PGPEventAnalyzeData;

kPGPEvent_RecipientsEvent

Data

Sent immediately after an AnalyzeEvent to describe the recipient(s) of the
message. Generally, there can be three types of recipients:

= keys that are on the active key ring
= keys that are not on the active key ring
= conventional encryption passphrases

Determination of which keys are present is based upon a search of the key set
specified in the PGPOKeySetRef option passed to PGPDecode. Generally, this
key set will have resulted from opening the default key ring (see
PGPOpenDefaultKeyRings, PGPOpenKeyRing, and
PGPOpenKeyRingPair).

recipientSet identifies the set of keys required to decrypt the message, and
which are currently available. conventionalPassphraseCount indicates
how many different passphrases the message is encrypted to (typically zero or
one). keyCount indicates the number of keys required to decrypt the message
that are not currently available, and these are identified by keyID in the
referenced keylDArray

typedef struct PGPEventRecipientsData_
{
PGPKeySetRef recipientSet;
PGPUINt32 conventionalPassphraseCount;
PGPUINt32 keyCount;
PGPKeyID const *keylDArray;
} PGPEventRecipientsData;

kPGPEvent_KeyFoundEvent

Data

Sent whenever all of the following are TRUE
= akey is found in the input data

= the PGPOImportKeysTo option was not specified, telling the job where to
put the key

= the PGPOSendEventlfKeyFound option was specified

keySet holds the key found in the input data, and this key set is automatically
freed upon return. The event handler code can process the key in anyway it sees
fit, but will usually choose to merge the key into some key set (see
PGPAddKeys).

typedef struct PGPEventKeyFoundData_

Reference Guide 169

5 - Ciphering and Authentication Functions

{
PGPKeySetRef keySet;
} PGPEventKeyFoundData;

kPGPEvent_SignatureEvent

Sent for signed messages to provide information about the signature status.

signingKeylD always contains the key ID of the signing key. signingKey
contains the signing key itself if it is in the key set passed to PGPDecode

The key validity flags increase monotonically, that is, if one is TRUE then the
flags preceding it must also be TRUE

= checked indicates that the key is available, and that the message is properly
formatted

- verified indicates that the signature validated correctly

-« keyRevoked , keyDisabled , and keyExpired indicate that the signing
key is no longer active

= keyValidity indicates the validity level of the signing key

The keyValidity flag is set based on the signing key's validity in relation to
the thresholds set by the PGPDecodeoptions PGPOWarnBelowValidity and
PGPOFailBelowValidity.

creationTime indicates when the key was signed.

Data

typedef struct PGPEventSignatureData_

{
PGPKeyID signingKeyID;
PGPKeyRef signingKey;
PGPBoolean checked;
PGPBoolean verified;
PGPBoolean keyRevoked;
PGPBoolean keyDisabled;
PGPBoolean keyExpired,;
PGPBoolean keyMeetsValidityThreshold;
PGPValidity keyValidity;
PGPTime creationTime;

} PGPEventSignatureData;

170 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

kPGPEvent_DetachedSigEvent

Data

Sent to notify the event handler that the input file contains a detached signature
(a signature that is not attached to the file it signs). The event handler must
provide an input source to be signature-checked against the detached signature.
This can be any of the forms of input described among the options. The event
handler should invoke PGPAddJobOptions specifying the
PGPODetachedSig option with the input data to be checked as a sub-option.

None

kPGPEvent_PassphraseEvent

Data

Sent if a passphrase is needed for decrypting (posted by PGPDecode), either to
unlock a decryption key or to decrypt a conventionally encrypted message. The
event handler should obtain an appropriate passphrase, perhaps by interacting
with the user to get a typed-in passphrase, and then invoke
PGPAddJobOptions specifying the PGPOPassphrase,
PGPOPassphraseBuffer , or PGPOPasskeyBuffer option, or return
kPGPError_UserAbort if no passphrase is available.

If a passphrase is needed for a conventionally encrypted message, then the
fConventional flag is TRUE and keyset is ignored. Otherwise, keyset
includes the key(s) for which a passphrase is needed.

If a passphrase is needed for decryption, then keyset will hold multiple keys if
multiple secret keys on the key ring can decrypt the message . However, any
passphrase that unlocks any of these secret keys is acceptable as a response.

This event is sent repeatedly until a valid passphrase is received, or until the
event handler requests abort of the job. This allows the event handler to enforce
a limit on the number of passphrase attempts.

typedef struct PGPEventPassphraseData_
{
PGPBoolean fConventional;
PGPKeySetRef keyset;
} PGPEventPassphraseData;

kPGPEvent_OutputEvent

If the initial call to PGPDecodedid not include an output specification option,
then this event will be sent whenever a new section of the message is
encountered. This allows the application total flexibility in routing each output
section.

If the initial call to PGPDecodedid include an output specification option, then
this event will not be sent and all output will go to the specified location.

Reference Guide 171

5 - Ciphering and Authentication Functions

Data

However, keys are handled as described in kPGPEvent_KeyFoundEvent.

The messageType indicates whether the section is text, data, or non-PGP. The
suggestedName argument specifies the name the encrypted or signed file had
when it was encrypted. The forYourEyesOnly flag is TRUEif the encryption
specified the PGPOForYourEyesOnly option.

The event handler should use this information to specify a processing option
appropriate for the output of the section. These options include:

= write the output to a file

= write the output to a buffer

= discard the output

The event handler should return an error if it cannot set an output option.

typedef struct PGPEventOutputData_
{

PGPUINt32 messageType;

char *suggestedName;

PGPBoolean forYourEyesOnly;
} PGPEventOutputData;

kPGPEvent_DecryptionEvent

Data

Sent upon completion of the decode process to identify the symmetric
(conventional) encryption algorithm used. This is primarily a debugging
feature, since the actual selection depends upon both algorithm availability and
user preferences (see PGPOPreferredAlgorithms).

typedef struct PGPEventDecryptionData_
{
PGPCipherAlgorithm
algID;
} PGPEventDecryptionData;

kPGPEvent_EndLexEvent

Data

172

Sent whenever a lexical section is completed (see the BeginLexEvent
description for how sections are defined). The zero-based sectionNumber
value indicates which section has been completed.

typedef struct PGPEventEndLexData_
{

PGPUINt32 sectionNumber;
} PGPEventEndLexData;

PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

Public Key Encode and Decode Functions

PGPEnNcode

Syntax

Parameters

Options

Encrypts a block of text according to the target context and specified options.
This is the function for encrypting and signing data as PGP formatted output.

PGPError PGPEncode(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,

pgpContext
firstOption

PGPOLastOption()

PGPOLastOption());

the target context

the initial option list instance

subsequent option list instances

must always appear as the final argument to

terminate the argument list

Allowed options include:
One of PGPOInputFile , PGPInputBuffer , or PGPOInputFileFSSpec

(required)

One of PGPOOutputFile , PGPOutputBuffer

PGPOAllocatedOutputBuffer

PGPOOutputFileFSSpec
PGPOAppendOutput
PGPOArmorOutput
PGPOAskUserForEntropy
PGPOCipherAlgorithm
PGPOClearSign
PGPOCommentString
PGPOCompression
PGPOConventionalEncrypt
PGPODatalsASCII
PGPODetachedSig
PGPOEnNcryptToKey
PGPOEnNcryptToKeySet
PGPOEnNcryptToUserID
PGPOEventHandler

, PGPODiscardOutput , or

Reference Guide

173

5 - Ciph

ering and Authentication Functions

= PGPOFailBelowValidity
= PGPOFileNameString

= PGPOForYourEyesOnly
= PGPOHashAlgorithm

= PGPOLocalEncoding

< PGPONuUllOption

= PGPOOmMIitMIMEVersion
< PGPOOutputLineEndType
< PGPOPasskeyBuffer

< PGPOPassphrase

< PGPOPassphraseBuffer
= PGPOPGPMIMEEnNcoding
= PGPOPreferredAlgorithms
< PGPORawPGPInput

= PGPOSendNullEvents

= PGPOSignWithKey

= PGPOVersionString

= PGPOWarnBelowValidity

Notes
See Chapter 3, “Option List Functions.”, for a description of the PGPCoption
functions.
PGPDecode
Decrypts a block of text according to the target context and specified options.
This is the function for decrypting and verifying PGP formatted data.
Syntax
PGPError PGPDecode(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
174 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

Options

Notes

terminate the argument list

Allowed options include:

« One of PGPOInputFile , PGPInputBuffer , or PGPOInputFileFSSpec
(required)

= One of PGPOOutputFile , PGPOutputBuffer
PGPOAIllocatedOutputBuffer , PGPODiscardOutput , or
PGPOOutputFileFSSpec

= PGPOAppendOutput

= PGPODetachedSig

< PGPOEventHandler

= PGPOFailBelowValidity

< PGPOImportKeysTo

= PGPOKeySetRef

= PGPOLocalEncoding

< PGPONullOption

< PGPOOutputLineEndType

< PGPOPasskeyBuffer

< PGPOPassphrase

< PGPOPassphraseBuffer

< PGPOPassThroughClearSigned
= PGPOPassThroughlfUnrecognized
= PGPOPassThroughKeys

= PGPORecursivelyDecode

< PGPOSendEventlfKeyFound

< PGPOSendNullEvents

= PGPOWarnBelowValidity

See Chapter 3, “Option List Functions.”, for a description of the PGPCoption
functions.

Reference Guide 175

5 - Ciphering and Authentication Functions

Low-Level Cipher Functions — Hash

PGPNewHashContext
Creates a new hash context that utilizes the specified algorithm.
Syntax
PGPError PGPNewHashContext(
PGPMemoryMgrRef pgpMemoryMgr,
PGPHashAlgorithm algID,
PGPHashContextRef *hashContext);
Parameters
pgpMemoryMgr the target memory manager
alglD the hash algorithm to use
hashContext the receiving field for the resultant hash context
PGPCopyHashContext
Creates an exact copy of the source hash context.
Syntax
PGPError PGPCopyHashContext(
PGPHashContextRef hashContextOrig,
PGPHashContextRef *hashContextCopy);
Parameters
hashContextOrig the source hash context
hashContextCopy the receiving field for the copy of the hash context
Notes
The caller is responsible for de-allocating the resultant hash context copy with
PGPFreeHashContext
PGPFreeHashContext
Frees the specified hash context.
Syntax
PGPError PGPFreeHashContext(
PGPHashContextRef hashContext);
Parameters
hashContext the target hash context
Notes

Hash contexts do not have associated reference counts — the context is always

176 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

de-allocated.

PGPGetHashSize

Determines the resultant size of the associated hash in bytes, for example, a
160-bit hash may yield 20 bytes of resultant data.

Syntax
PGPError PGPGetHashSize(
PGPHashContextRef hashContext,
PGPSize *hashSize);
Parameters
hashContext the target hash context
hashSize the receiving field for the hash size (in bytes)
Notes
Used for generic code that may not know the size of the hash being produced.
PGPContinueHash
Continues the hash, accumulating an intermediate result.
Syntax
PGPError PGPContinueHash(
PGPHashContextRef hashContext,
const void *hashln,
PGPSize numBytes);
Parameters
hashContext the target hash context
hashin the current hash data
numBytes the length of the current hash data (in bytes)
Notes

Normally, numBytes should be passed as the value received from
PGPGetHashSize.

PGPFinalizeHash

Syntax

Finalizes the hash, placing the result into hashOut . The hash context is then
automatically reset via PGPResetHash.

PGPError PGPFinalizeHash(
PGPHashContextRef hashContext,
void *hashOut);

Reference Guide 177

5 - Ciphering and Authentication Functions

Parameters
hashContext the target hash context
hashOut the receiving buffer for the resultant hash data
Notes
Use PGPGetHashSize to ensure that the result buffer is of adequate size.
To obtain an intermediate result, use PGPCopyHashContext and then finalize
the copy.
PGPResetHash
Resets a hash context as if it had been created anew. Any existing intermediate
hash is lost.
Syntax
PGPError PGPResetHash(PGPHashContextRef hashContext);
Parameters

hashContext the target hash context

Low-Level Cipher Functions — HMAC

PGPNewHMACContext

Syntax

Parameters

Creates a new hash context that utilizes the specified algorithm, and that is
specifically intended for computing MAC (Message Authentication Code)
values.

PGPError PGPNewHMACContext(
PGPMemoryMgrRef pgpMemoryMgr,
PGPHashAlgorithm algID,
PGPByte *secret,
PGPSize secretLength,
PGPHMACContextRef *hmacContext);

pgpMemoryMgr the target memory manager

alglD the hash algorithm to use

secret the MAC key for this HMAC context

secretLength the length of the MAC key for this HMAC context (in

178 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

bytes)
hmacContext the receiving field for the resultant HMAC context
Notes
If secret is longer than the maximum HMAC block size (currently 64 bytes),
then it is silently truncated.
PGPFreeHMACContext
Frees the specified HMAC context.
Syntax
PGPError PGPFreeHMACContext(
PGPHMACContextRef hmacContext);
Parameters
hmacContext the target HMAC context
Notes
HMAC contexts do not have associated reference counts — the context is always
de-allocated.
PGPContinueHMAC
Continues the HMAC, accumulating an intermediate result.
Syntax
PGPError PGPContinueHMAC(
PGPHMACContextRef hmacContext,
const void *hmaclin,
PGPSize numBytes);
Parameters
hmacContext the target HMAC context
hmacin the current HMAC data
numBytes the length of the current HMAC data
Notes

Normally, numBytes should be passed as the maximum HMAC blocksize
(currently 64 bytes).

Reference Guide 179

5 - Ciphering and Authentication Functions

PGPFinalizeHMAC

Finalizes the HMAC, placing the result into hmacOut. The HMAC context is
then automatically reset via PGPResetHMAC

Syntax
PGPError PGPFinalizeHMAC(
PGPHMACContextRef hmacContext,
void *hmacOut);
Parameters
hmacContext the target HMAC context
hmacOut the receiving buffer for the resultant HMAC data
Notes
The result buffer should be at least the maximum HMAC block size (currently
64 bytes).
PGPResetHMAC
Resets an HMAC context as if it had been created anew. Any existing
intermediate HMAC is lost.
Syntax
PGPError PGPResetHMAC(PGPHMACContextRef hmacContext);
Parameters

hmacContext the target HMAC context

Low-Level Cipher Functions — Symmetric Cipher

PGPNewSymmetricCipherContext

Creates a new symmetric cipher based upon the specified algorithm.
Syntax

PGPError PGPNewSymmetricCipherContext(
PGPMemoryMgrRef pgpMemoryMgr,
PGPCipherAlgorithm algID,

PGPSize keySize,
PGPSymmetricCipherContextRef *cipherContext

);

180 PGP Software Developer's Kit

5 - Ciphering and Authentication Functions

Parameters
pgpMemoryMgr the target memory manager
alglD the desired symmetric cipher algorithm
keySize the desired key size (in bytes)
cipherContext the receiving field for the resultant symmetric cipher
context
Notes

Currently, all supported symmetric cipher algorithms have only one key size.
Specifying the key size as kPGP SymmetricCipherDefaultKeySize will not
only simplify coding, but also avoid errors. This is especially true if the PGPsdk
developer avoids any specification of key size, and instead always obtains the
effective key size from PGPGetSymmetricCipherSizes.

The resultant symmetric cipher context cannot be used until it has been
initialized with PGPInitSymmetricCipher.

The caller is responsible for de-allocating the resultant symmetric cipher context
with PGPFreeSymmetricCipherContext unless the copy is passed to a
function that assumes ownership, for example PGPNewCBCipherContext or
PGPNewCFBCipherContext .

PGPInitSymmetricCipher

Establishes the key for the symmetric cipher context.

Syntax
PGPError PGPInitSymmetricCipher(
PGPSymmetricCipherContextRef cipherContext,
const void *key);
Parameters
cipherContext the target symmetric cipher context
key the desired key
Notes

The key size is determined by the choice of symmetric cipher, and may be
obtained with PGPGetSymmetricCipherSizes.

Since the key is copied into the symmetric cipher context and so is no longer
needed, the caller is strongly encouraged to clear the key’s memory upon
successful return.

A symmetric cipher can be repeatedly reset and reused with different keys,
which avoids having to create and destroy new contexts each time.

Reference Guide 181

5 - Ciphering and Authentication Functions

PGPCopySymmetricCipherContext

Syntax

Parameters

Notes

Creates an exact copy of the source symmetric cipher context, including its key.

PGPError PGPCopySymmetricCipherContext(
PGPSymmetricCipherContextRef
cipherContextOrig,
PGPSymmetricCipherContextRef
*CcipherContextCopy);

cipherContextOrig the source symmetric cipher context

cipherContextCopy the receiving field for the copy of the symmetric
cipher context

The caller is responsible for de-allocating the resultant symmetric cipher context
copy with PGPFreeSymmetricCipherContext unless the copy is passed to a
function that assumes ownership, for example PGPNewCBCipherContext or
PGPNewCFBCipherContext .

PGPFreeSymmetricCipherContext

Syntax

Parameters

Notes

Frees the specified symmetric cipher context.

PGPError PGPFreeSymmetricCipherContext(
PGPSymmetricCipherContextRef
cipherContext);

cipherContext the target symmetric cipher context

This function should only be called for those symmetric cipher contexts that are
not passed to functions that assume ownership, for example
PGPNewCBCipherContext or PGPNewCFBCipherContext .

Symmetric cipher contexts do not have associated reference counts — the context
is always de-allocated.

Before de-allocating the context, the function erases all sensitive in-memory
data.

182 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

PGPGetSymmetricCipherSizes

Syntax

Parameters

Returns the key and block sizes (in bytes) for the associated symmetric cipher.

PGPError PGPGetSymmetricCipherSizes(
PGPSymmetricCipherContextRef cipherContext,
PGPSize *keySize,
PGPSize *blockSize);

cipherContext the target symmetric cipher context

keySize the receiving field for the associated cipher’s key size
(in bytes)

blockSize the receiving field for the associated cipher’s block

size (in bytes)

PGPSymmetricCipherEncrypt

Syntax

Parameters

Notes

Encrypts one block of data, whose size is determined by the cipher (see
PGPGetSymmetricCipherSizes).

PGPError PGPSymmetricCipherEncrypt(
PGPSymmetricCipherContextRef cipherContext,
const void *plainText,
void *cipherText);

cipherContext the target symmetric cipher context
plainText the source buffer for the input plain text
cipherText the receiving buffer for the output cipher text

This function should not be used to encrypt multiple blocks of data unless the
key is changed for each block (usually through a chaining or feedback scheme),
since it is considered bad cryptographic practice to reuse a key in a block cipher.

Reference Guide 183

5 - Ciphering and Authentication Functions

PGPSymmetricCipherDecrypt

Decrypts one block of data, whose size is determined by the target cipher
context (see PGPGetSymmetricCipherSizes).

Syntax
PGPError PGPSymmetricCipherDecrypt(
PGPSymmetricCipherContextRef cipherContext,
const void *cipherText,
void *plainText);
Parameters
cipherContext the target symmetric cipher context
cipherText the source buffer for the input cipher text
plainText the receiving buffer for the output plain text
PGPWashSymmetricCipher
Hashes the current key of the specified symmetric cipher with the specified
wash data to produce a new key.
Syntax
PGPError PGPWashSymmetricCipher(
PGPSymmetricCipherContextRef cipherContext,
void const *washData,
PGPSize washLength);
Parameters
cipherContext the target symmetric cipher context
washData the wash data
washLength the length of the wash data (in bytes)
PGPWipeSymmetricCipher
“Wipes” any sensitive data in the cipher. The cipher context remains “alive”,
but its key must be reset before any more data can be encrypted.
Syntax

PGPError PGPWipeSymmetricCipher(
PGPSymmetricCipherContextRef cipherContext);

184 PGP Software Developer's Kit

5 - Ciphering and Authentication Functions

Parameters
cipherContext the target symmetric cipher context

Low-Level Cipher Functions — Cipher Block
Chaining

PGPNewCBCContext

Creates a cipher block chaining context based upon the specified symmetric
cipher.

Syntax

PGPError PGPNewCBCContext(
PGPSymmetricCipherContextRef cipherContext,
PGPCBCContextRef *chainingContext);

Parameters
cipherContext the underlying symmetric cipher context
chainingContext the receiving field for the resultant CBC context
Notes

A cipher block chaining context requires use of a symmetric cipher that has
been created and whose key has been set. This key may be set explicitly with
PGPInitSymmetricCipher , or set implicitly with PGPInitCBC.

Upon creation of the context, the CBCRef "owns" the symmetric
cipherContext and will dispose of it properly (even if an error occurs). The
caller should no longer reference it.

PGPInitCBC

Establishes the key and/or intialization vector for the cipher chaining context.
One of key and initVector may be NULL, but not both.

Syntax

PGPError PGPInitCBC(
PGPCBCContextRef chainingContext,
const void *key,
const void *initVector);

Parameters
chainingContext the target CBC context
key the desired key
initVector the desired initialization vector data

Reference Guide 185

5 - Ciphering and Authentication Functions

Notes
The initialization vector (1V) size is assumed to be the same as the symmetric
cipher block size.
Since both arguments are copied into the cipher chaining context, the caller is
encouraged to clear their memory upon successful return.
Both key and initializationVector must be set prior to any cipher
operations. However, as a convenience to the PGPsdk developer, these may be
set in separate calls to PGPInitCBC and/or PGPInitSymmetricCipher since
these values are commonly obtained from different sources at different times.
If the PGPsdk developer neglects to call PGPInitCBC to set the initialization
vector, for example, always sets the key via PGPInitSymmetricCipher , then
the initialization vector defaults to zeroes. Generally, it is better cryptographic
practice to set the initialization vector to random data.
PGPCopyCBCContext
Creates an exact copy of the source chaining cipher context.
Syntax
PGPError PGPCopyCBCContext(
PGPCBCContextRef chainingContextOrig,
PGPCBCContextRef *chainingContextCopy);
Parameters
chainingContextOrig the source CBC context
chainingContextCopy the receiving field for the copy of the CBC
context
Notes
The caller is responsible for de-allocating the resultant chaining cipher context
copy with PGPFreeCBCCipherContext
PGPFreeCBCContext
Decrements the reference count for the specified cipher block chaining context,
and frees the context if the reference count reaches zero.
Syntax
PGPError PGPFreeCBCContext(
PGPCBCContextRef chainingContext);
Parameters
chainingContext the target cipher block chaining context
Notes

Before de-allocating the context, the function erases all associated in-memory
data.

186 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

PGPCBCEncrypt
Encrypts the specified data according to the specified cipher block chaining
context.
Syntax
PGPError PGPCBCEnNcrypt(
PGPCBCContextRef chainingContext,
const void *plainText,
PGPSize plainTextLength,
void *cipherText);
Parameters
chainingContext the target CBC context
plainText the data to encrypt
plainTextLength the length of the data to encrypt (in bytes)
cipherText the receiving buffer for the resultant encrypted data
Notes
Since cipher block chaining effectively changes the key for each block of plain
text, PGPCBCEncryp can be called repeatedly to encrypt arbitrary amounts of
data.
PGPCBCDecrypt
Decrypts the specified data according to the specified chaining context.
Syntax
PGPError PGPCBCDecrypt(
PGPCBCContextRef chainingContext,
const void *cipherText,
PGPSize cipherTextLength,
void *plainText);
Parameters
chainingContext the target CBC context
cipherText the data to decrypt
cipherTextLength the length of the data to decrypt (in bytes)
plainText the receiving buffer for the resultant plain text

Reference Guide

187

5 - Ciphering and Authentication Functions

PGPCBCGetSymmetricCipher

Get the symmetric cipher context being used by the specified cipher block
chaining context.

Syntax
PGPError PGPCBCGetSymmetricCipher(
PGPCBCContextRef chainingContext,
PGPSymmetricCipherContextRef
*cipherContext);
Parameters
chainingContext the target CBC context
cipherContext the receiving field for the symmetric cipher context
Notes

cipherContext is the actual PGPSymmetricCipherContext ,and nota
copy. Since the chaining context “owns” the symmetric cipher, the caller may
copy the symmetric cipher, but should neither free nor de-reference it.

Once obtained, the symmetric cipher reference can be used to obtain attributes
of the underlying cipher, for example, its block size.

Low-Level Cipher Functions — Cipher Feedback
Block

PGPNewCFBContext

Creates a new feedback context based upon the specified symmetric cipher. The
specified interleave factor determines the number of cipher blocks through
which the feedback mechanism will cycle.

Syntax
PGPError PGPNewCFBContext(
PGPSymmetricCipherContextRef cipherContext,
PGPUInt16 interleaveFactor,
PGPCFBContextRef *feedbackContext);
Parameters
cipherContext the underlying symmetric cipher context
interleaveFactor the desired number of cipher blocks in the feedback
loop
feedbackContext the receiving field for the resultant CFB context
Notes

A cipher feedback context requires use of a symmetric cipher that has been
created and whose key has been set. This key may be set explicitly with

188 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

PGPInitSymmetricCipher , or set implicitly with PGPInitCFB.

After the call, the CFBRef "owns" the symmetric cipherContext and will
dispose of it properly (even if an error occurs). The caller should no longer
reference it.

The choice of interleave factor affects the size of the resultant feedback context,
but does not affect its performance. However, while the PGPsdk API currently
supports interleaving, it is not yet fully implemented. As such, the interleave
factor should always be specified as one.

PGPInitCFB

Syntax

Parameters

Notes

Establishes the key(s) and/or initialization vector(s) for the cipher feedback
context. One of key and initializationVector may be NULL, but not both.

PGPError PGPInitCFB(
PGPCFBContextRef feedbackContext,
const void *key,
const void *initVector);

feedbackContext the target CFB context
key the desired key data
initVector the desired initialization vector data

The key data size is assumed to be the key size of the associated symmetric
cipher, times the feedback context’s interleave factor; the initialization vector
(IV) data size is assumed to be the block size of the associated symmetric cipher,
times the feedback context’s interleave factor.

Since both arguments are copied into the cipher feedback context, the caller is
encouraged to clear their memory upon successful return.

Both key and initializationVector must be set prior to any cipher
operations. However, as a convenience to the PGPsdk developer, these may be
set in separate calls to PGPInitCFB and/or PGPInitSymmetricCipher since
these values are commonly obtained from different sources at different times.
If the PGPsdk developer neglects to call PGPInitCFB to set the initialization
vector, for example, always sets the key via PGPInitSymmetricCipher , then
the initialization vector defaults to zeroes. Generally, it is better cryptographic
practice to set the initialization vector to random data.

Reference Guide 189

5 - Ciphering and Authentication Functions

PGPCopyCFBContext
Creates an exact copy of the source feedback cipher context.
Syntax
PGPError PGPCopyCFBContext(
PGPCFBContextRef feebackContextOrig,
PGPCFBContextRef *feebackContextCopy);
Parameters
feebackContextOrig the source CFB context
feebackContextCopy the receiving field for the copy of the CFB
context
Notes
The caller is responsible for de-allocating the resultant feedback cipher context
copy with PGPFreeCFBCipherContext
PGPFreeCFBContext
Decrements the reference count of the specified cipher feedback context, and
frees the context if the reference count reaches zero.
Syntax
PGPError PGPFreeCFBContext(
PGPCFBContextRef feedbackContext);
Parameters
feedbackContext the target cipher feedback context
Notes
Before de-allocating the context, the function erases all associated in-memory
data.
PGPCFBEnNcrypt
Encrypts the specified data according to the specified feedback context.
Syntax

PGPError PGPCFBEnNcrypt(
PGPCFBContextRef feedbackContext,
const void *plainText,
PGPSize plainTextLength,
void *cipherText);

190 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

Parameters
feedbackContext the target CFB context
plainText the data to encrypt
plainTextLength the length of the data to encrypt (in bytes)
cipherText the receiving buffer for the resultant encrypted data
Notes
Call repeatedly to encrypt arbitrary amounts of data.
PGPCFBDecrypt
Decrypts the specified data according to the specified feedback context.
Syntax
PGPError PGPCFBDecrypt(
PGPCFBContextRef feedbackContext,
const void *cipherText,
PGPSize cipherTextLength,
void *plainText);
Parameters

feedbackContext the target CFB context

cipherText the data to decrypt

cipherTextLength the length of the data to decrypt (in bytes)
plainText the receiving buffer for the resultant plain text

PGPCFBGetSymmetricCipher

Syntax

Parameters

Notes

Get the symmetric cipher context associated with the specified cipher feedback
context.

PGPError PGPCFBGetSymmetricCipher(
PGPCFBContextRef feedbackContext,
PGPSymmetricCipherContextRef

*cipherContext);

feedbackContext the target CFB context

cipherContext the receiving field for the context of the associated
symmetric cipher

cipherContext is the actual PGPSymmetricCipherContext ,and nota
copy. Since the feedback context “owns” the symmetric cipher, the caller should
neither free nor de-reference it, but may copy it.

Reference Guide 191

5 - Ciphering and Authentication Functions

Once obtained, the symmetric cipher reference can be used to obtain attributes
of the underlying cipher, for example, its block size.

PGPCFBGetRandom

Fetches pseudo-random bytes from the specified cipher feedback context up to
a maximum of requestCount bytes, and indicates the actual number of
pseudo-random bytes obtained.

Syntax
PGPError PGPCFBGetRandom(
PGPCFBContextRef feedbackContext,
PGPSize requestCount,
void *randomData,
PGPSize *randomDataCount);
Parameters
feedbackContext the target CFB context
requestCount the maximum number of pseudo-random bytes to
fetch
randomData the receiving buffer for the pseudo-random bytes
randomDataCount the receiving field for the actual number of
pseudo-random bytes fetched
Notes
The receiving buffer must be at least requestCount bytes in length.
PGPCFBRandomCycle
Makes more pseudo-random bytes available by iterating through the existing
random number pool, and applying the supplied salt.
Syntax
PGPError PGPCFBRandomCycle(
PGPCFBContextRef feedbackContext,
const void *salt);
Parameters
feedbackContext the target CFB context
salt the additional random byte data
Notes

The number of salt bytes is assumed to equal the block size of the associated
symmetric cipher.

192 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

PGPCFBRandomWash

Hashes the associated specified symmetric cipher’s key and initialization vector
with the specified wash data to produce a new key and a new initialization
vector.

Syntax
PGPError PGPCFBRandomWash(
PGPCFBContextRef feedbackContext,
const void *washData,
PGPSize washDatalLength);
Parameters
feedbackContext the target CFB context
washData the wash data
washDatalength the length of the wash data (in bytes)
Notes
If washDataLength is less than the symmetric cipher block size, then padding
bytes are used. If washDataLength is greater than the symmetric cipher block
size, then multiple iterations occur. Passing “extra” wash data never reduces the
resultant cryptographic strength of the resultant cipher text, and often increases
it.
PGPCFBSync
Reset the feedback mechanism to use the currently available data plus an
additional number of previous bytes, such that the resultant data length equals
the cipher block size.
Syntax
PGPError PGPCFBSync(PGPCFBContextRef feedbackContext);
Parameters
feedbackContext the target CFB context
Notes

This effectively changes the cipher block boundary.

Reference Guide 193

5 - Ciphering and Authentication Functions

Low-Level Cipher Functions — Public Key

PGPNewPublicKeyContext

Creates a context for public key operations based on the specified key and using
the specified message format.

Syntax
PGPError PGPNewPublicKeyContext(
PGPKeyRef key,
PGPPublicKkeyMessageFormat messageFormat,
PGPPublickeyContextRef *publicKeyContext);
Parameters
key the target key
messageFormat the desired message format
publicKkeyContext the receiving field for the resultant public key context

PGPFreePublicKkeyContext

Decrements the reference count of the specified public key context, and frees the
context if the reference count reaches zero.

Syntax
PGPError PGPFreePublicKkeyContext(
PGPPublickeyContextRef
publicKkeyContext);
Parameters

publicKkeyContext the target public key context

PGPGetPublicKkeyOperationSizes

Returns the sizes associated with the specified public key context. A resultant
value of zero indicates that the associated operation is not available, for
example if maxSignatureSize s zero, then signing is not a supported
operation.

Syntax
PGPError PGPGetPublicKeyOperationSizes(
PGPPublicKeyContextRef publicKeyContext,
PGPSize *maxDecryptedBufferSize,
PGPSize *maxEncryptedBufferSize,
PGPSize *maxSignatureSize);

194 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

Parameters

publicKkeyContext the target public key context

maxDecryptedBufferSize the receiving field for the decryption buffer
size (in bytes)

maxEncryptedBufferSize the receiving field for the encryption buffer
size (in bytes)

maxSignatureSize the receiving field for the signature size (in
bytes)

PGPPublickeyEncrypt

Encrypts one block of data.

Syntax
PGPError PGPPublicKeyEncrypt(
PGPPublicKeyContextRef publicKeyContext,
void const *plainText,
PGPSize plainTextLength,
void *cipherText,
PGPSize *cipherTextLength);
Parameters
publicKkeyContext the target public key context
plainText the buffer containing the input plain text
plainTextLength the length of the input plain text (in bytes)
cipherText the receiving buffer for the output cipher text, which

must be at least maxEncryptedBufferSize
(obtained from
PGPGetPublicKkeyOperationSizes)

cipherTextLength the receiving field for the resultant length of the
output cipher text (in bytes)

PGPPublicKeyVerifySignature

Verifies a signature on a message hash, which is both finalized and freed. A
return value of kPGPError_NoErr indicates a successful verification.
Syntax
PGPError PGPPublicKeyVerifySignature(
PGPPublicKeyContextRef publicKeyContext,
PGPHashContextRef hashContext,
void const *signature,
PGPSize signatureSize);

Reference Guide 195

5 - Ciphering and Authentication Functions

Parameters

publicKkeyContext the target public key context

hashContext the target hash context

signature the target signature

signatureSize the length of the target signature (in bytes)
Notes

The message hash should not have been finalized prior to calling this function.

PGPPublicKeyVerifyRaw

Verifies a signature on raw, signed data in a low-level buffer. A return value of
kPGPError_NoErr indicates a successful verification.

Syntax
PGPError PGPPublicKeyVerifyRaw(
PGPPublicKeyContextRef publicKeyContext,
void const *signedData,
PGPSize signedDataSize,
void const *signature,
PGPSize signatureSize);
Parameters
publicKkeyContext the target public key context
signedData the target signed data
signedDataSize the length of the target signed data (in bytes)
signature the target signature
signatureSize the length of the target signature (in bytes)
Notes

This function will fail if the target public context is of type
kPGPPublickeyMessageFormat_PGP

196 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

Low-Level Cipher Functions — Private Key

PGPNewPrivateKeyContext

Creates a context for private key operations based on the specified key and
using the specified message format.

Syntax

PGPError PGPNewPrivateKeyContext(
PGPKeyRef key,
PGPPrivateKeyMessageFormat messageFormat,
PGPPrivateKeyContextRef *privateKeyContext,
PGPOptionListRef passphraseOption,
PGPOLastOption());

Parameters
key the target key, which must be a public/private key
pair
messageFormat the desired message format

privateKeyContext the receiving field for the resultant private key
context

passphraseOption passphrase or passkey which unlocks the private key

PGPOLastOption() must always appear as the final argument to
terminate the argument list

Options
The passphraseOption must be one of the following:
= PGPOPasskeyBuffer
< PGPOPassphrase
< PGPOPassphraseBuffer
Notes
The passphraseOption is required, not optional.

PGPFreePrivateKeyContext

Decrements the reference count of the specified private key context, and frees
the context if the reference count reaches zero.

Syntax

PGPError PGPFreePrivateKeyContext(
PGPPrivateKeyContextRef privateKeyContext);

Reference Guide 197

5 - Ciphering and Authentication Functions

Parameters
privateKeyContext the target private key context
Notes

Before de-allocating the context, the function erases all sensitive in-memory
data.

PGPGetPrivateKeyOperationSizes

Returns the sizes associated with the specified private key context. A resultant
value of zero indicates that the associated operation is not available.

Syntax
PGPError PGPGetPrivateKeyOperationSizes(
PGPPrivateKeyContextRef privateKeyContext,
PGPSize *maxDecryptedBufferSize,
PGPSize *maxEncryptedBufferSize,
PGPSize *maxSignatureSize);
Parameters
privateKeyContext the target private key context
maxDecryptedBufferSize the receiving field for the decryption buffer
size (in bytes)
maxEncryptedBufferSize the receiving field for the encryption buffer
size (in bytes)
maxSignatureSize the receiving field for the signature size (in
bytes)
PGPPrivateKeyDecrypt
Decrypts one block of data.
Syntax
PGPError PGPPrivateKeyDecrypt(
PGPPrivateKeyContextRef privateKeyContext,
void const *cipherText,
PGPSize cipherTextLength,
void *plainText,
PGPSize *plainTextLength);
Parameters
privateKeyContext the target private key context
cipherText the buffer containing the input cipher text
cipherTextLength the length of the input cipher text (in bytes)
plainText the receiving buffer for the output plain text, which

must be at least maxDecryptedBufferSize

198 PGP Software Developer’s Kit

5 - Ciphering and Authentication Functions

plainTextLength

PGPPrivateKeySign

(obtained from
PGPGetPrivateKeyOperationSizes)

the receiving field for the resultant length of the
output plain text

Syntax

Parameters

Notes

Signs a message hash according to the specified private key context, yielding
the signature and its length (in bytes). The target hash context is both finalized

and freed.

PGPError PGPPrivateKeySign(
PGPPrivateKeyContextRef privateKeyContext,
PGPHashContextRef hashContext,
void *signature,
PGPSize *signatureSize);

privateKeyContext
hashContext
signature

signatureSize

the target private key context
the target hash context

the receiving field for the signature, which must be at
least maxSignatureSize (obtained from
PGPGetPrivateKeyOperationSizes)

the receiving field for the resultant length of the
signature (in bytes)

The message hash should not have been finalized prior to calling this function.

PGPPrivateKeySignRaw

Syntax

Signs raw data in a low-level buffer according to the specified private key
context, yielding the signature and its length (in bytes).

PGPError PGPPrivateKeySignRaw(
PGPPrivateKeyContextRef privateKeyContext,
void const *signedData,

PGPSize signedDataSize,
void const *signature,
PGPSize *signatureSize);

Reference Guide 199

5 - Ciphering and Authentication Functions

Parameters

privateKeyContext the target private key context

signedData the target signed data

signedDataSize the length of the target signed data(in bytes)
signature the target signature

signatureSize the length of the target signature (in bytes)

Low-Level Cipher Functions — Misc.

PGPDiscreteLogExponentBits

Syntax

Parameters

Notes

For a given prime modulus size (in bits), this function determines an
appropriate exponent size (in bits) such that the work factor required to find a
discrete log modulo the modulus is approximately equal to half the length of
the exponent.

PGPError PGPDiscreteLogExponentBits(
PGPUINt32 modulusBits,
PGPUINt32 *exponentBits);

modulusBits the size of a prime modulus (in bits)
exponentBits the resultant appropriate number of exponent bits

The resultant exponent size may be used directly as the size of a sub-group in a
discrete log signature scheme, but should be increased by 50% for encryption
schemes.

200 PGP Software Developer’s Kit

Feature (Capabillity) Query

Functions

Introduction

When one considers the present state of U.S. export law and the continuously
evolving set of cryptographic standards, algorithms, and formats, the
simultaneous existence of multiple versions of the PGPsdk becomes a very real
possibility. For example, one instance of the PGPsdk library may support
encryption, while another supports signing but not encryption. By including
functions that return version numbers and the availability of specific features
(capabilities), the PGPsdk provides applications with a measure of version
independence, as well as a specific and extensible mechanism for determining
feature availability.

The feature query functions that allow the caller to determine the availability
of a specific feature before attempting to use it are the only supported means
for determining such availability. The PGPsdk version number should not be
used to determine feature availability. As the PGPsdk library evolves and
adopts a more customized, modular build model that may include “stub”
functions that do nothing except return an appropriate error code, the
presence and use of these feature query functions can only increase in
importance.

Header Files

pgpFeatures.h

Feature (Capability) Query Functions

PGPGetFeatureFlags

Retrieves the flags associated with the specified feature selector. A return value
of kPGPError_ItemNotFound indicates that the featureSelector value
was not recognized.
Syntax
PGPError PGPGetFeatureFlags(
PGPFeatureSelector featureSelector,
PGPFlags *featureFlags);

Reference Guide 201

6 - Feature (Capability) Query Functions

Parameters
featureSelector the feature flags to obtain, which recognizes
kPGPFeatures_...Selector values
featureFlags the receiving field for the feature flags
Notes

Since flags is an encoded value, individual features should always be
extracted by presenting the PGPFeatureExists macro (defined in
pgpFeatures.h) with the appropriate KPGPFeatureMask_... value.

PGPCountPublicKeyAlgorithms

Provides the number of available public key algorithms.

Syntax
PGPError PGPCountPublicKeyAlgorithms(
PGPUINt32 *numPKAlgs);
Parameters
numPKAlIgs the receiving field for the number of available public key
algorithms
Notes

Use this count as the exclusive upper limit when indexing through the available
algorithms.

PGP GetindexedPublicKeyAlgorithminfo

Provides a means of indexing through the available public key algorithms and
accessing their associated information, which is of type
PGPPublicKeyAlgorithminfo

Syntax
PGPError PGPGetindexedPublicKeyAlgorithminfo(
PGPUINt32 index,
PGPPublickeyAlgorithminfo *info);
Parameters
index the index (zero-based) of the desired public key algorithm
info the receiving field for the associated algorithm information

PGPCountSymmetricCiphers

Provides the number of available symmetric ciphers.

Syntax
PGPError PGPCountSymmetricCiphers(

202 PGP Software Developer's Kit

6 - Feature (Capability) Query Functions

Parameters

Notes

PGPUINt32 *numSymmetricCiphers);

numSymmetricCiphers the receiving field for the number of available
symmetric ciphers

Use this count as the exclusive upper limit when indexing through the available
symmetric ciphers (see the sample code for
PGPGetindexedSymmetricCipherinfo)

PGPGetIndexedSymmetricCipherinfo

Provides a means of indexing through the available symmetric ciphers and
accessing the associated information, which is of type
PGPSymmetricCipherinfo

Syntax
PGPError PGPGetindexedSymmetricCipherinfo(
PGPUINnt32 index,
PGPSymmetricCipherinfo *info);
Parameters
index the index (zero-based) of the desired symmetric cipher
info the receiving field for the associated information
PGPGetSDKVersion
Places the PGPsdk API version number into the referenced field. Since the
version number is encoded, its components should always be extracted using
the PGPMajorVersion , PGPMinorVersion ,and PGPRevVersion macros
defined in pgpUtilities.h
Syntax
PGPError PGPGetSDKVersion(PGPUInt32 *version);
Parameters
version the receiving field for the version number value
Notes

The version number reflects the API version, and not the release version of the
packaged software developer’s kit. Generally speaking, the API version is
independent of the version number reported by the PGPsdk.

Reference Guide 203

6 - Feature (Capability) Query Functions

PGPGetSDKString

A convenience function that yields a C language string of the form:
PGPsdk Version Version 1.5 (C) 1997-1998 Network Associates, Inc.

This function is similar of the sample code included for PGPGetSDKVersion ,
except for the fact that that it does not include the revision number.

Syntax

PGPError PGPGetSDKString(char theString[256]);
Parameters

theString[256] a buffer having a minimum length of 256 bytes to
receive the PGPsdk API version string

204 PGP Software Developer’s Kit

Utility Toolbox

Introduction

The PGPsdk includes miscellaneous utility functions that relate to multiple
functional areas, such as:

= memory manager creation and management
= context creation and management

= file specification

= preferences

= date/time

= network library management

= error code to error string conversion

Header Files

pgpMemoryMgr.h
pgpPubTypes.h
pgpSDKPrefs.h
pgpUtilities.h

PGPsdk Management Functions

PGPsdklnit

Initializes the PGPsdk global state. This function must be called prior to using any
part of the PGPsdk.

Syntax
PGPError PGPsdkInit(void);

Reference Guide 205

7 - Utility Toolbox

Notes
Multiple calls to this function will not re-initialize the global variables. Instead,
a mechanism similar to the opaque data type reference count mechanism tracks
the calls. This frees the PGPsdk developer from having to worry about whether
or not the global state has already been initialized, since a subsequent
initialization will not adversely affect the global state.

The caller is responsible for freeing any and all resources held by the PGPsdk
with PGPsdkCleanup.

PGPsdkCleanup

Releases any and all resources held by the PGPsdk.

Syntax
PGPError PGPsdkCleanup(void);

Notes

This function should be called only after freeing the last PGPContext . Any
subsequent usage of the PGPsdk must first call PGPsdkInit.

Memory Manager Creation and Management
Functions

PGPNewMemoryMagr

Creates a memory manager that employs the default PGPsdk memory
management functions.

Syntax
PGPError PGPNewMemoryMgr(
PGPFlags reserved,
PGPMemoryMgrRef *pgpMemoryMgr);
Parameters
reserved reserved flags; must be zeroes
pgpMemoryMgr the receiving field for the new memory manager

206 PGP Software Developer’s Kit

7 - Utility Toolbox

PGPNewMemoryMgrCustom

Creates a PGPMemoryMgrthat employs user-defined memory management
functions.

Syntax

PGPError PGPNewMemoryMgrCustom(

PGPNewMemoryMgrStruct const
*pgpMemoryMgrData,
PGPMemoryMgrRef *pgpMemoryMgr);

Parameters

pgpMemoryMgrData the custom memory management information

pgpMemoryMgr the receiving field for the new memory manager
Notes

The PGPNewMemoryMgrStruct member sizeofStruct must be specified as

the special value sizeof(PGPNewMemoryMgrStruct)
PGPFreeMemoryMgr

Decrements the reference count for the specified memory manager (created by

either PGPNewMemoryMgior PGPNewMemoryMgrCustom), and frees the

memory manager if the reference count reaches zero.
Syntax

PGPError PGPFreeMemoryMgr(PGPMemoryMgrRef pgpMemoryMgr);
Parameters

pgpMemoryMgr the target memory manager
Notes

A PGPMemoryMgrmust not be freed until and unless all data items allocated
using that memory manager have been explicitly freed.

PGPMemoryMgrisValid

Syntax

Returns TRUEIf the target memory manager is non-NULLand references a bona
fide memory manager.

PGPBoolean PGPMemoryMgrisValid(
PGPMemoryMgrRef pgpMemoryMgr);

Reference Guide 207

7 - Utility Toolbox

Parameters
pgpMemoryMgr the target memory manager

PGP SetDefaultMemoryMgr

Whereas most PGPsdk functions require a context parameter (which contains
an embedded PGP memory manager context), some PGPsdk functions don’t
require a context parameter and thus don’t specify what memory manager to
use. This function, PGPSetDefaultMemoryMgr() , determines which memory
manager the PGPsdk will use in such situations. To obtain the current value of
the default memory manager, use PGPGetDefaultMemoryMgr()

Syntax
PGPError PGPSetDefaultMemoryMgr(
PGPMemoryMgrRef pgpMemoryMgr);
Parameters
pgpMemoryMgr the target memory manager
PGPGetDefaultMemoryMgr
Returns the current value of the default memory manager. If the client code has
not already set the default memory manager via
PGPSetDefaultMemoryManager() , then a new memory manager is created
using PGPNewMemoryMgr(), and that value is both set as the new global
memory manager and returned as the function result.
Syntax
PGPMemoryMgrRef PGPGetDefaultMemoryMgr(void);
Notes

Whereas most PGPsdk functions require a context parameter (which contains
an embedded PGP memory manager context), some PGPsdk functions don’t
require acontext parameter and thus don’t specify what memory manager to
use. The PGPsdk uses the default memory manager in such situations.

PGPSetMemoryMgrCustomValue

Sets the user-defined data associated with the specified memory manager to
that specified by userValue
Syntax
PGPError PGPSetMemoryMgrCustomValue(
PGPMemoryMgrRef pgpMemoryMgr,
PGPUserValue userValue);

208 PGP Software Developer’s Kit

7 - Utility Toolbox

Parameters

pgpMemoryMgr the target memory manager
userValue the associated (replacement) user-defined data

PGPGetMemoryMgrCustomValue

Syntax

Parameters

Retrieves the user-defined data associated with the specified memory manager.

PGPError PGPGetMemoryMgrCustomValue(
PGPMemoryMgrRef pgpMemoryMgr,
PGPUserValue *userValue);

pgpMemoryMgr the target memory manager
userValue the receiving field for the associated user-defined
data

PGPGetMemoryMgrDatalnfo

Syntax

Parameters

Returns a PGPFlags value indicating the validity and security of the target
memory block, as well as whether or not that block can be paged.

PGPFlags PGPGetMemoryMgrDatalnfo(void *allocation);

allocation the target memory block

Reference Guide

209

7 - Utility Toolbox

PGPNewData

Syntax

Parameters

Notes

Allocates the specified number of 8-bit bytes of memory, using the memory
allocation function associated with the specified memory manager. If the flags
argument is specified as kPGPMemoryMgrFlags_Clear |, then the resultant
memory will be initialized to zeroes, overriding any custom setting.

void *PGPNewData(
PGPMemoryMgrRef pgpMemoryMgr,
PGPSize allocationSize,
PGPMemoryMgrFlags flags);

pgpMemoryMgr the target memory manager
allocationSize the number of 8-bits bytes to be allocated
flags the desired memory manager flags

PGPNewDatais used internally by the PGPsdk PGPNew.functions. Client code
should rarely, if ever, have a reason to use this function.

Memory allocated with PGPNewDatashould always be de-allocated with
PGPFreeData .

A return value of NULL indicates failure.

PGPNewSecureData

Syntax

Allocates the specified number of 8-bit bytes of memory, using the memory
allocation function associated with the specified memory manager. The
allocated memory is intended to store sensitive data such as passphrases, and
so:

= the function attempts to preclude the allocated memory from being
swapped to secondary storage, thus facilitating later clearing of that
memory

< PGPFreeData automatically clears memory allocated with this function
prior to its being de-allocated

If the flags argument is specified as kPGPMemoryMgrFlags_Clear , then
the resultant memory will be initialized to zeroes at allocation time, overriding
any custom setting.

void *PGPNewSecureData(
PGPMemoryMgrRef pgpMemoryMgr,
PGPSize allocationSize,
PGPMemoryMgrFlags flags);

210 PGP Software Developer’s Kit

7 - Utility Toolbox

Parameters

Notes

pgpMemoryMgr the target memory manager
allocationSize the number of 8-bit bytes to be allocated
flags the desired memory manager flags

Memory allocated with PGPNewSecureData should always be de-allocated
with PGPFreeData .

A return value of NULL indicates failure.

Not all platforms support page locking or other similar mechanism. Those that
do may restrict it to certain classes of users, for example, the superuser. Still, the
PGPsdk utilizes whatever facilities do exist for the platform, and ensures
erasure of the resident memory upon de-allocation.

PGPReallocData

Syntax

Parameters

Notes

Re-allocates the specified number of 8-bit bytes of memory, using the memory
re-allocation function associated with the specified memory manager.t

PGPError PGPReallocData(
PGPMemoryMgrRef pgpMemoryMgr,
void **allocation,
PGPSize newAllocationSize,
PGPMemoryMgrFlags flags);

pgpMemoryMgr the target memory manager

allocation the target memory block, which is also the receiving
field for the pointer to the re-allocated memory.

newAllocationSize the number of 8-bit bytes to be allocated

flags the desired memory manager flags

Memory re-allocated with PGPReallocData should always be de-allocated
with PGPFreeData.

If allocation is specified as NULL, then the function simply allocates a new
memory block having the specified size (see PGPNewData).

If the flags argument is specified as kPGPMemoryMgrFlags_Clear ,then the
resultant re-allocated memory will be initialized to zeroes, overriding any
custom setting.

The resultant re-allocation is not guaranteed to start at the same address, even
when newAllocationSize is smaller than the original size.

Reference Guide 211

7 - Utility Toolbox

PGPFreeData

Frees memory allocated with PGPNewDataand PGPNewSecureData.
Memory allocated with PGPNewSecureData is cleared prior to its being freed.

Syntax
PGPError PGPFreeData(void *allocation);
Parameters
allocation the target data in memory
Notes
The operation will fail silently if allocation is NULL, or if the associated

internal header control block is corrupted.

Context Creation and Management Functions

PGPNewContext
Creates a context that employs the default PGPsdk memory management
functions.
Syntax
PGPError PGPNewContext(
PGPUINnt32 clientAPIVersion,
PGPContextRef *pgpContext);
Parameters
clientAPIVersion the version of the current PGPsdk client API
pgpContext the receiving field for the new context
Notes
clientAPIVersion should always be specified as the special value
kPGPsdkAPIVersion
PGPNewContextCustom

Creates a PGPContext that employs the memory management functions
defined by the memoryMgr member of the pgpContextStruct argument. The
custom information is passed as a PGPNewContextStruct , which may
include a custom memory manager (see PGPNewMemoryMgrand
PGPNewMemoryMgrCuston).

212 PGP Software Developer’s Kit

7 - Utility Toolbox

Syntax

Parameters

Notes

PGPError PGPNewContextCustom(
PGPUINnt32 clientAPIVersion,
PGPNewContextStruct const *pgpCustomData,
PGPContextRef *pgpContext);

clientAPIVersion the version of the current PGPsdk client
API

pgpCustomData the custom context information
pgpContext the receiving field for the new context

clientAPIVersion should always be specified as the special value
kPGPsdkAPIVersion

The PGPNewContextStruct member sizeofStruct must be specified as the
special value sizeof(PGPNewContextStruct)

PGPFreeContext

Syntax

Parameters

Notes

Decrements the reference count for the specified context (created by either
PGPNewContext or PGPNewContextCustom), and frees the context if the
reference count reaches zero.

PGPError PGPFreeContext(PGPContextRef pgpContext);

pgpContext the target context

A PGPContext must not be freed until and unless all data items allocated using
that context have been explicitly freed.

PGPSetContextUserValue

Syntax

Sets the user-defined data associated with the specified context to that specified
by userValue

PGPError PGPSetContextUserValue(
PGPContextRef pgpContext,
PGPUserValue userValue);

Reference Guide 213

7 - Utility Toolbox

Parameters
pgpContext the target context
userValue the associated (replacement) user-defined data

PGPGetContextMemoryMgr

Returns the memory manager associated with the specified context.

Syntax

PGPMemoryMgrRef PGPGetContextMemoryMgr(
PGPContextRef pgpContext);

Parameters
pgpContext the target context

PGPContextGetRandomBytes

Places the pseudo-random bytes associated with the specified context into the
specified buffer. A maximum of availLength bytes is retrieved. The function
returns KPGPError_OutOfEntropy if the specified context’s global random

pool does not have sufficient entropy.

Syntax
PGPError PGPContextGetRandomBytes(
PGPContextRef pgpContext,
void *dataBuf,
PGPSize availLength);
Parameters
pgpContext the target context
dataBuf the receiving buffer for the associated pseudo-random bytes
availLength the length of the receiving buffer
Notes

The size of the global random pool and its entropy are independent of one

another.

PGPGetContextUserValue

Retrieves the user-defined data associated with the specified context.

Syntax

PGPError PGPGetContextUserValue(
PGPContextRef pgpContext,
PGPUserValue *userValue);

214 PGP Software Developer’s Kit

7 - Utility Toolbox

Parameters
pgpContext the target context
userValue the receiving field for the associated user-defined data

File Specification Functions

PGPNewFileSpecFromFSSpec (MacOS platforms only)

Creates a file specification from the specified Macintosh FS specification.

Syntax
PGPError PGPNewFileSpecFromFSSpec(
PGPContextRef pgpContext,
const FSSpec *spec,
PGPFileSpecRef *fileRef);
Parameters
pgpContext the target context
spec the source Macintosh FS specification
fileRef the receiving field for the resultant file specification
Notes
The caller is responsible for de-allocating the resultant file specification with
PGPFreeFileSpec.
PGPNewFileSpecFromFullPath (Non-MacOS platforms only)
Creates a file specification from a pathname.
Syntax
PGPError PGPNewFileSpecFromFullPath(
PGPContextRef pgpContext,
char const *pathname,
PGPFileSpecRef *fileRef);
Parameters
pgpContext the target context
pathname the source pathname
fileRef the receiving field for the resultant file specification
Notes

The caller is responsible for de-allocating the resultant file specification with
PGPFreeFileSpec.

Reference Guide 215

7 - Utility Toolbox

PGPCopyFileSpec

Creates an exact copy of a PGPFileSpecRef.

Syntax
PGPError PGPCopyFileSpec(
PGPFileSpecRef fileSpecOrig,
PGPFileSpecRef *fileSpecCopy);
Parameters
fileSpecOrig the source file specification
fileSpecCopy the receiving field for the copy of the file specification
Notes

The caller is responsible for de-allocating the resultant file specification copy
with PGPFreeFileSpec.

PGPFreeFileSpec

Decrements the reference count for the specified file specification, and frees the
file specification if the reference count reaches zero.

Syntax
PGPError PGPFreeFileSpec(
PGPFileSpecRef fileSpecRef);
Parameters
fileSpecRef the target file specification
PGPGetFSSpecFromFileSpec (MacOS platforms only)
Converts the specified file specification to a Macintosh FS specification.
Syntax
PGPError PGPGetFSSpecFromFileSpec(
PGPFileSpecRef fileSpec,
FSSpec *fsSpec);
Parameters
fileSpec the source file specification
fsSpec the receiving field for the resultant Macintosh FS specification

216 PGP Software Developer’s Kit

7 - Utility Toolbox

PGPGetFullPathFromFileSpec (Non-MacOS platforms only)

Converts the specified file specification to a file pathname, and places it into
dynamically allocated memory.

Syntax

PGPError PGPGetFullPathFromFileSpec(
PGPFileSpecRef fileSpec,
char **fullPathPtr);

Parameters
fileSpec the target file specification
fullPathPtr the receiving field for a pointer to the resultant full pathname

Notes
The caller is responsible for de-allocating the resultant pathname with
PGPFreeData.

PGPMacBinaryToLocal (MacOS platforms only)
Converts a MacOS MacBinary file to files containing its data fork and resource
fork. The source file is deleted upon conversion.

A return value of kPGPError_NoMacBinaryTranslationAvailable

indicates that while the conversion did succeed and that the source file was

deleted, either:

= the macCreator and/or macType values were not recognized, and so the
file suffix was defaulted to .bin

= the source file had no data fork

A return value of kPGPError_NotMacBinary indicates that the source file

specification does not reference a MacOS MacBinary file. The source file is

unaltered.

Syntax

PGPError PGPMacBinaryToLocal(
PGPFileSpecRef inSpec,
PGPFileSpecRef *outSpec,
PGPUINt32 *macCreator,
PGPUINt32 *macTypeCode);

Reference Guide 217

7 - Utility Toolbox

Parameters
inSpec the source file specification, which is assumed to reference a
MacOS MacBinary file
outSpec the receiving field for the file specification to the converted
file
macCreator the receiving field for the MacOS OSType of the creating
application
macType the receiving field for the MacOS OSType of the file type
Notes

The macCreator and macType arguments are optional. If specified as NULL,
then the corresponding data item is not returned.

No assumption should be made regarding the name of the resultant file. The
PGPsdk chooses the most appropriate extension for the encoded file type.

Preference Functions

PGPsdkLoadDefaultPrefs

Loads the preferences from the default preference file.

Syntax
PGPError PGPsdkLoadDefaultPrefs(
PGPContextRef pgpContext);
Parameters
pgpContext the target context
PGPsdkLoadPrefs
Loads the preferences from the specified preference file.
Syntax
PGPError PGPsdkLoadPrefs(
PGPContextRef pgpContext,
PGPFileSpecRef prefSpec);
Parameters
pgpContext the target context
prefSpec the file containing the stored preferences

218 PGP Software Developer's Kit

7 - Utility Toolbox

PGPsdkSavePrefs
Saves any changed preference to its associated source file.
Syntax
PGPError PGPsdkSavePrefs(
PGPContextRef pgpContext);
Parameters
pgpContext the target context
Notes
The PGPContext “remembers” the source file from which each preference was
loaded, and so the preference information is saved to that file.
PGPsdkPrefSetData
Sets the data associated with the specified preference to the specified
(replacement) preference data.
Syntax
PGPError PGPsdkPrefSetData(
PGPContextRef pgpContext,
PGPsdkPrefSelector prefSelector,
void const *prefBuf,
PGPSize prefLength);
Parameters
pgpContext the target context
prefSelector the target preference
prefBuf the associated (replacement) preference data
prefLength the length of the associated (replacement) preference
data
Notes

The caller must additionally call PGPsdkSavePrefs to make the change
permanent.

Reference Guide 219

7 - Utility Toolbox

PGPsdkPrefSetFileSpec

Establishes the specified file as the persistent store for the specified preference.

Syntax
PGPError PGPsdkPrefSetFileSpec(
PGPContextRef pgpContext,
PGPsdkPrefSelector prefSelector,
PGPFileSpecRef fileSpec);
Parameters
pgpContext the target context
prefSelector the target preference
fileSpec the (replacement) file specification
Notes
The caller must additionally call PGPsdkSavePrefs to make the change
permanent.
PGPsdkPrefGetData
Retrieves the data associated with the specified preference into dynamically
allocated memory.
Syntax
PGPError PGPsdkPrefGetData(
PGPContextRef pgpContext,
PGPsdkPrefSelector prefSelector,
void **prefBuf,
PGPSize *prefLength);
Parameters
pgpContext the target context
prefSelector the target preference
prefBuf the receiving field for a pointer to the requested
preference data
prefLength the receiving field for the resultant length of the
requested preference data
Notes

The caller is responsible for de-allocating the resultant preference data with
PGPFreeData.

220 PGP Software Developer’s Kit

7 - Utility Toolbox

PGPsdkPrefGetFileSpec

Retrieves the file specification associated with the specified preference.

Syntax
PGPError PGPsdkPrefGetFileSpec(
PGPContextRef pgpContext,
PGPsdkPrefSelector prefSelector,
PGPFileSpecRef *fileSpec);
Parameters
pgpContext the target context
prefSelector the target preference
fileSpec the receiving field for the associated file specification
Notes

The caller is responsible for de-allocating the resultant file specification with
PGPFreeFileSpec.

Date/Time Functions

PGPGetTime

Returns the current system time as a PGPTime format time value.
Syntax

PGPTime PGPGetTime(void);
Parameters

PGPGetPGPTimeFromStdTime

Returns the specified time as a PGPTime format time value.

Syntax

PGPTime PGPGetPGPTimeFromStdTime(time_t theTime);
Parameters

theTime the time in Standard C Library time format
Notes

The data type time_t is that used by many of the Standard C Library time
functions, for example time()

Reference Guide 221

7 - Utility Toolbox

PGPGetStdTimeFromPGPTime

Returns the specified PGPTimevalue as atime_t format time value.

Syntax
time_t PGPGetStdTimeFromPGPTime(PGPTime theTime);
Parameters
theTime the time as a PGPTimedata type
Notes
The data type time_t is that used by many of the Standard C Library time
functions, for example time()
PGPGetYMDFromPGPTime
Extracts the year, month, and day components from the specified PGPTime
time value.
Syntax
void PGPGetYMDFromPGPTime(
PGPTime theTime,
PGPUINt16 *year,
PGPUINt16 *month,
PGPUINt16 *day);
Parameters
theTime the time as a PGPTimedata type
year the receiving field for the year component
month the receiving field for the month component
day the receiving field for the day component
Notes

The year , month, and day arguments are optional. If specified as NULL, then
the corresponding data item is not returned.

The year component includes the century.
The month and day components are one-based.

222 PGP Software Developer's Kit

7 - Utility Toolbox

PGPTimeFromMacTime (MacOS platforms only)

Returns the specified MacOS format time value as a PGPTime format time

value.
Syntax
PGPTime PGPTimeFromMacTime(PGPUINt32 theTime);
Parameters
theTime the time as a MacOS format time value
PGPTimeToMacTime (MacOS platforms only)
Returns the specified PGPTime format time value as a MacOS format time
value.
Syntax
PGPUINt32 PGPTimeToMacTime(PGPTime theTime);
Parameters

theTime the time as a PGPTime format time value

Network Library Management Functions

PGPsdkNetworkLiblInit

Function to initialize the PGPsdk network library. You should call this function
early in your program, before calling any other network library function (the
functions in pgpKeyServer.h | pgpTLS.h , and pgpSockets.h). This
function can be called multiple times, but each successful call should be
matched with a call to PGPsdkNetworkLibCleanup()

Syntax
PGPError PGPsdkNetworkLiblnit(void);

PGPsdkNetworkLibCleanup

Function to clean up the PGPsdk network library before exiting. This function
can be called multiple times, and in fact should be called once for each
successful call to PGPsdkNetworkLiblnit()

Syntax
PGPError PGPsdkNetworkLibCleanup(void);

Reference Guide 223

7 - Utility Toolbox

Error Look-Up Functions

PGPGetErrorString

Looks-up the encoded error value, and places the corresponding error text
formated as a C language string into the receiving buffer .

Syntax
PGPError PGPGetErrorString(
PGPError theErrorCode,
PGPsize availLength,
char *theErrorText);
Parameters
theErrorCode the encoded error value
availLength the available length of the receiving buffer
theErrorText the receiving buffer for the error text
Notes

The error text is truncated as required, and results in
kPGPError_BufferTooSmall being returned.

PGPGetErrorString() is found in pgpError.h

224 PGP Software Developer’s Kit

Global Random Number Pool

Management Functions

Introduction

Since the PGPsdk cryptographic functions require random numbers to operate
correctly, the PGPsdk includes functions to manage a global pool of random
numbers seeded from keystrokes and mouse movements. The SHA-1 hash
function is used to distill entropy from incoming events and to spread it
throughout the random pool.

The PGPsdk provides both cryptographically strong pseudo-random
numbers as well as true random numbers based on external events. An
internal fixed-size random pool holds random bits acquired from events
passed in by the caller, and the PGPsdk estimates the entropy content (that is,
the amount of true randomness) of the events, and tracks the total entropy
available in the random pool at any time.

Random numbers are made available via an internal pseudo-random number
generator (RNG) based on ANSI X9.17, and fed from the random pool. When
there is sufficient entropy in the pool, the generator produces
cryptographically strong true random numbers; when the entropy in the
random pool is exhausted, the generator produces cryptographically strong
pseudo-random numbers.

The ANSI X9.17 -compliant PGPsdk random number package includes the
following functionality:

= acquiring randomness from environmental events passed in by the
application

= filling buffers with random data as requested
= tracking the number of true random bits available

The random number functions support the following arguments and features
to control their actions:

= random seeding from keystrokes and mouse movements

= acryptographically strong pseudo-random number generator based on
ANSI X9.17

= saving of the random pool state in persistent storage with reload on library
initialization

Reference Guide 225

8 - Global Random Number Pool Management Functions

= soft degrade from true environmental random bits to cryptographically
strong pseudo-random bits

Header Files

pgpRandomPool.h

Random Number Pool Management Functions

PGPGlobalRandomPoolAddKeystroke

Augments the random number pool based upon the value of the captured
keystroke. A non-zero return value indicates that the operation increased the
entropy of the random number pool.

Syntax

PGPUINt32 PGPGIlobalRandomPoolAddKeystroke(
PGPInt32 keyCode);

Parameters
keyCode the key code of the captured keystroke value

PGPGlobalRandomPoolAddMouse

This function is now deprecated. Developers should use
PGPGIlobalRandomPoolMouseMoved() instead.

PGPGlobalRandomPoolMouseMoved

Augments the random number pool based upon the timing between
mouse-move events. A non-zero return value indicates that the operation
increased the entropy of the random number pool.

Syntax
PGPUInt32 PGPGIlobalRandomPoolMouseMoved(void);
Notes

Call this function repeatedly upon receiving mouse-moved events in your
application event loop.

226 PGP Software Developer’s Kit

8 - Global Random Number Pool Management Functions

Entropy Estimation Functions

PGPGlobalRandomPoolGetSize

Returns the current size of the global random number pool in bytes.

Syntax
PGPUINt32 PGPGIlobalRandomPoolGetSize(void);

PGPGIlobalRandomPoolGetEntropy

Returns a measure of the current entropy of the global random number pool.
This value is meaningful for the PGPsdk developer only when compared
against the value returned by PGPGlobalRandomPoolGetMinimumEntropy

Syntax
PGPUINt32 PGPGIlobalRandomPoolGetEntropy(void);

PGPGIlobalRandomPoolGetMinimumEntropy

Returns the minimum allowable entropy of the global random number pool
that will support generation of random or cryptographically strong
pseudo-random numbers for signing and/or encryption.

Syntax
PGPUINt32 PGPGIlobalRandomPoolGetMinimumEntropy(void);

PGPGIlobalRandomPoolHasMinimumEntropy

Returns TRUEIf the current entropy of the global random number pool is
sufficient to generate random or cryptographically strong pseudo-random
numbers for signing and/or encryption.

Syntax
PGPBoolean PGPGIlobalRandomPoolHasMinimumEntropy(void);

Reference Guide

227

8 - Global Random Number Pool Management Functions

PGPGetKeyEntropyNeeded

Syntax

Parameters

Options

Notes

Returns the amount of entropy needed to generate a (sub-)key according to the
specified options.

PGPUINt32 PGPGetKeyEntropyNeeded(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,

PGPOLastOption());

pgpContext the target context

firstOption the initial option list instance

subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

Entropy specific options include:
< PGPOKeyGenParams(required)
 PGPOKeyGenFast

If generating a DSS/Elgamal key, call this function twice - once for the DSS key
and once for the Elgamal key - and sum the results.

PGPGetKeyEntropyNeeded() is found in pgpKeys.h .

228 PGP Software Developer’s Kit

User Interface Functions

Introduction

The PGPsdk user interface functions allow sophisticated PGPsdk developers
access to the same dialog functionality employed by PGPtools. These dialogs
may be customized through the use of Ul-specific option functions.

Common features include:

= the dialogs will dismiss only upon satisfactory acceptance of the requested
information (except PGPCollectRandomDataDialog , which
auto-dismisses). For example, a passphrase dialog will remain open until a
valid passphrase has been supplied, or the user clicks on the cancel button
or the close button

= if the user cancels the dialog or otherwise closes the window before
completing the dialog, then the dialog function will return
kPGPError_UserAbort

= all passphrase dialogs mustinclude a PGPOUIOutputPassphrase option,
and the user is resopnsible for freeing the resultant passphrase with
PGPFreeData

Header Files

pgpUserinterface.h

User Interface Management Functions

PGPsdkUILiblnit

Initializes the PGPsdk user interface library. This function must be called prior to
using any of the other user interface functions.

Syntax
PGPError PGPsdkUILibInit(void);
Notes

This function can be called multiple times but each successful call should be
matched ba a call to PGPsdkUILibCleanup()

Reference Guide 229

9 - User Interface Functions

PGPsdkCleanup

Releases any and all resources held by the PGPsdk user interface library.
Syntax

PGPError PGPsdkUILibCleanup(void);
Notes

This function should be called once for each successful call to
PGPsdkUILiblnit() , and can be called multiple times.

User Interface Dialog Functions

PGPRecipientDialog

Presents a generic dialog for selecting a set of recipient keys from a key set of all
potential recipients.

Syntax
PGPError PGPRecipientDialog(
PGPContextRef pgpContext,
PGPKeySetRef allKeys,
PGPBoolean alwaysDisplayDialog,
PGPKeySetRef *recipientKeys,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
allkeys the key set containing all potential recipients
alwaysDisplayDialog TRUE if the dialog should be displayed
regardless of any
PGPOUIDefaultRecipients option
recipientKeys the receiving field for the resultant recipients
key set
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Function specific options include:
< PGPOUIDialogOptions
= PGPOUIDialogPrompt

230 PGP Software Developer’s Kit

9 - User Interface Functions

PGPOUIENnforceAdditionalRecipientRequests
PGPOKeyServerUpdateParams
PGPOUIParentWindowHandle
PGPOUIRecipientGroups
PGPOUIWindowTitle
PGPOUIDefaultRecipients
PGPOUIRecipientGroups
PGPOUIlIgnoreMarginalValidity
PGPOUIDisplayMarginalValidity

Notes
This dialog may also behave in a non-visible/non-interactive mode to yield a
default key set that meets specified validity requirements. To use the dialog in
this manner, the caller must specify:
= alwaysDisplayDialog as FALSE
= adefault key set with PGPOUIDefaultRecipients and/or
PGPOUIRecipientGroups
and the specified default key set must meet the following criteria:
= each key in the default key set must match exactly one key in the the key set
containing all potential recipients
= each matched key is completely or marginally valid, depending upon the
setting of PGPOUIIgnoreMarginalValidity
PGPPassphraseDialog
Presents a generic dialog for collecting a single passphrase.
Syntax
PGPError PGPPassphraseDialog(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Function specific options include:

Reference Guide 231

9 - User Interface Functions

» PGPOUIDialogOptions

* PGPOUIDialogPrompt

* PGPOUIMinimumPassphraseLength

* PGPOUIMinimumPassphraseQuality

= PGPOUIOutputPassphrase (required)
* PGPOUIParentWindowHandle

* PGPOUIWindowTitle

PGPConfirmationPassphraseDialog

Presents a dialog for collecting and verifying a passphrase.

Syntax
PGPError PGPConfirmationPassphraseDialog(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Function specific options include:

< PGPOUIDialogOptions

= PGPOUIDialogPrompt

= PGPOUIMinimumPassphraseLength

= PGPOUIMinimumPassphraseQuality

= PGPOUIOutputPassphrase (required)
< PGPOUIParentWindowHandle

< PGPOUIShowPassphraseQuality

< PGPOUIWindowTitle

232 PGP Software Developer’s Kit

9 - User Interface Functions

PGPKeyPassphraseDialog
Presents a dialog for collecting and verifying the passphrase associated with a
specific key.
Syntax
PGPError PGPKeyPassphraseDialog(
PGPContextRef pgpContext,
PGPKeyRef key,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
pgpContext the target context
key the target key
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Function specific options include:

PGPOUIDialogOptions
PGPOUIDialogPrompt
PGPOUIOutputPassphrase (required)
PGPOUIParentWindowHandle
PGPOUIWindowTitle

PGPSigningPassphraseDialog

Presents a dialog for selecting a signing key and verifying its passphrase.

Syntax

PGPError PGPSigningPassphraseDialog(

Parameters

PGPContextRef pgpContext,
PGPKeySetRef allKeys,
PGPKeyRef *signingKey,
PGPOptionListRef firstOption,

PGPOLastOption());

pgpContext the target context
allKeys the key set containing all potential signing

Reference Guide 233

9 - User Interface Functions

recipientKeys

keys
the receiving field for the resultant signing
keys key set

firstOption the initial option list instance

subsequent option list instances

PGPOLastOption() must always appear as the final argument to

terminate the argument list

Options

Function specific options include:

< PGPOUIDefaultkey

< PGPOUIDialogOptions

< PGPOUIDialogPrompt

= PGPOUIFindMatchingKey

= PGPOUIOutputPassphrase (required)

< PGPOUIParentWindowHandle

< PGPOUIVerifyPassphrase

< PGPOUIWindowTitle
Notes

If the signing key set contains only split keys, then the function returns
kPGPError_KeyUnusableForSignature

PGPDecryptionPassphraseDialog

PGPError PGPDecryptionPassphraseDialog(

Syntax

Parameters
pgpContext
recipientKeys
keyIDCount
keylDList
decryptionKey

234 PGP Software Developer’s Kit

PGPContextRef pgpContext,
PGPKeySetRef recipientKeys,
PGPUINt32 keylDCount,

const PGPKeyID keyIDList[],
PGPKeyRef *decryptionKey,
PGPOptionListRef firstOption,

PGPOLastOption());

the target context

the recipient key set

the number of key IDs in the list

the list of keyIDs

the receiving field for the resultant decryption

9 - User Interface Functions

key
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Function specific options include:
» PGPOUIDefaultkey
» PGPOUIDialogOptions
» PGPOUIDialogPrompt
* PGPOUIFindMatchingKey
» PGPOUIKeyServerUpdateParams
= PGPOUIOutputPassphrase (required)
» PGPOUIParentWindowHandle
» PGPOUIlVerifyPassphrase
* PGPOUIWindowTitle
Notes

If the recipient key set contains only split keys, then the function returns
kPGPError_KeyUnusableForSignature

PGPConventionalEncryptionPassphraseDialog

Presents a dialog for selecting an encryption key and verifying its passphrase.

Syntax
PGPError PGPConventionalEncryptionPassphraseDialog(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Function specific options include:

PGPOUIDialogOptions
PGPOUIDialogPrompt

Reference Guide 235

9 - User Interface Functions

< PGPOUIOutputPassphrase (required)
< PGPOUIParentWindowHandle
< PGPOUIWindowTitle

PGPConventionalDecryptionPassphraseDialog

Presents a dialog for specifying the passphrase associated with the key used to
conventionally encrypt message.

Syntax
PGPError PGPConventionalDecryptionPassphraseDialog(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,
PéPOLastOption());
Parameters
pgpContext the target context
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options
Function specific options include:
» PGPOUIDialogOptions
» PGPOUIDialogPrompt
= PGPOUIOutputPassphrase (required)
» PGPOUIParentWindowHandle
* PGPOUIWindowTitle
PGPOptionsDialog
Syntax

PGPError PGPOptionsDialog(
PGPContextRef pgpContext,
PGPOptionListRef firstOption,

PGPOLastOption());

236 PGP Software Developer’s Kit

9 - User Interface Functions

Parameters

Options

pgpContext the target context

firstOption the initial option list instance

subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

Function specific options include:
» PGPOUICheckbox

» PGPOUIDialogOptions

* PGPOUIDialogPrompt

» PGPOUIParentWindowHandle
» PGPOUIPopupList

* PGPOUIWindowTitle

PGPCollectRandomDataDialog

Syntax

Parameters

Options

Presents a dialog that accumulates entropy bits from user mouse movements.
Normally, this dialog appears as a response to an event of type
kPGPEvent_EntropyEvent , or to a return of FALSE from
PGPGIlobalRandomPoolHasMinimumEntropy

PGPError PGPCollectRandomDataDialog(
PGPContextRef pgpContext,
PGPUInt32 neededEntropyBits,
PGPOptionListRef firstOption,

PGPOLastOption());

pgpContext the target context

neededEntropyBits the number of entropy bits to be collected
firstOption the initial option list instance

subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list
< PGPODialogPrompt

e PGPOUIParentWindowHandle
e PGPOUIWindowTitle

Reference Guide 237

9 - User Interface Functions

Notes
This dialog auto-dismisses when enough entropy bits have been collected. A
return value of KPGPError_UserAbort should be returned rarely, if ever,
since simply moving the mouse to the cancel or close button is often sufficient
to satisfy the specfied entropy requirement.
Attempts to collect less than approximately 500 entropy bits may result in such
rapid auto-dismissal that the dialog appears to "flash" on the screen.

PGPSearchKeyServerDialog

Presents a dialog that specifies a set of keys to be transferred from one or more
key servers. Upon return, all keys meeting the selection criteria are placed into
the key set indicated by foundKeys (see PGPQueryKeyServer).

Syntax
PGPError PGPSearchKeyServerDialog(
PGPContextRef pgpContext,
PGPUINt32 keyServerCount,
const PGPKeyServerSpec
keyServerList[],
PGPtlsContextRef tlsContext,
PGPBoolean searchAllKeyServers,
PGPKeySetRef *foundKeys,
PGPOptionListRef firstOption,
PGPOLastOption());
Parameters
pgpContext the target context
keyServerList the list of key servers to search
keyServerCount the number of key servers in the list
tiIsContext the active TLS context
searchAllKeyServers TRUE if all key servers should be searched;
FALSEIf the search should stop on the first
match
foundKeys the receiving field for the key set containing
the resultant matching keys
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to
terminate the argument list
Options

Function specific options include:

238 PGP Software Developer’s Kit

9 - User Interface Functions

Notes

< PGPOUIDialogOptions

< PGPOUIDialogPrompt

< PGPOUIKeyServerSearchAllServers
= PGPOUIKeyServerSearchFilter

< PGPOUIKeyServerSearchKey

= PGPOUIKeyServerSearchKeySet
< PGPOUIParentWindowHandle

< PGPOUIWindowTitle

The PGPOUIKeyServerUpdateParams option is not valid for this function,
since the option arguments essentially duplicate the function arguments.

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

PGPSendToKeyServerDialog

Syntax

Parameters

Presents a dialog that specifies a set of keys to be transferred to a particular key
server. Upon return, any keys that were not acceptable to the key server are
placed into the key set indicated by failedKeys (see
PGPUploadToKeyServer).

PGPError PGPSendToKeyServerDialog(
PGPContextRef pgpContext,
const PGPKeyServerSpec *keyServer,
PGPtlsContextRef tlsContext,
PGPKeySetRef keysToSend,
PGPKeySetRef *failedKeys,
PGPOptionListRef firstOption,

PGPOLastOption());

pgpContext the target context

keyServer the destination key server

tiIsContext the active TLS context

keysToSend a key set containing the keys to send to the
specified server

failedKeys the receiving field for the key set containing

those keys that were not accepted by the target

Reference Guide 239

9 - User Interface Functions

Options

Notes

key server
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

Function specific options include:
< PGPOUIDialogOptions
= PGPOUIDialogPrompt
< PGPOUIParentWindowHandle
< PGPOUIWindowTitle

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

Misc. Ul Functions

PGPEstimatePassphraseQuality

Syntax

Parameters

Notes

Returns a value in the range 0 (zero) to 100 which crudely estimates the
"quality" of the specified passphrase, that is, its ability to resist known methods
of attack. For example, the passphrase ABCD would yield a very low quality
estimate while the passphrase Set course: star system NGC-13456-K would
yield a very high quality estimate.

PGPUINt32 PGPEstimatePassphraseQuality(
const char *passphrase);

passphrase the target passphrase

This function provides "after the fact" determination of passphrase quality. The
passphrase dialogs that solicit new passphrases accept options specifying
minumum length and quality requirements
(PGPOUIMinimumPassphraseLength and
PGPOUIMinimumPassphraseQuality), as well as provide an option to
display the passphrase quality as it is being entered
(PGPOUIShowPassphraseQuality).

240 PGP Software Developer’s Kit

Key Server Functions

Introduction

The PGPsdk includes functions that support communication with HTTP and
LDAP key servers, and allow developers to search for, add, disable, and delete
keys on those servers.

Key server search operations support the same key filter mechanism described
in Chapter 2, “Key Management Functions.”, and yield a key set of the keys on
the server that satisfy the filter criteria. LDAP servers support almost all of the
available primitive key filters; HTTP servers support only a small number of
the available primitive key filters (see Table 10-1 on page 242).

Key server add, disable, and delete operations accept a key set that specifies
input, and yield a resultant key set that contains the keys that could not be
added, disabled, or deleted.

A key server may have an associated user-defined event handler. The intent
and functionality of this callback mechanism is similar to that of the event
handler mechanism provided for key generation and encrypt/decrypt
operations. If the callback function returns a value other than
kPGPError_NoErr , then the associated key server operation is aborted.

A key server may also have an associated user-defined idle event handler. This
function gains control periodically, and so allows the developer to look for a
pending user cancel request, effect other processing as required, or perform
whatever operations the developer wishes. This is particularly useful for
operations that take a significant amount of time, such as search, add, disable,
and delete operations. It is important to note that the intent and functionality
of this callback mechanism is quite different from that of the event handler
mechanism provided for key generation and encrypt/decrypt operations. No
event is sent and no event-specific data is included — the callback function
simply assumes control and executes until it returns. If the callback function
returns a value other than kPGPError_NoErr , then the associated key server
operation is aborted.

Header Files
pgpKeyServer.h

Reference Guide 241

10 - Key Server Functions

Constants and Data Structures

Table 10-1. Valid PGPQueryKeyServer Filters by Key Server Protocols

Filter Function

HTTP

LDAP

PGPIntersectFilters

PGPNegateFilter

PGPNewKeyCreationTimeFilter

PGPNewKeyDisabledFilter

PGPNewKeyEncryptAlgorithmFilter

PGPNewKeyEncryptKeySizeFilter

PGPNewKeyExpirationTimeFilter

PGPNewKeyFingerPrintFilter

PGPNewKeyIDFilter

PGPNewKeyRevokedFilter

PGPNewKeySigAlgorithmFilter

PGPNewKeySigKeySizeFilter

PGPNewsSigKeyIDFilter

PGPNewSubKeyIDFilter

PGPNewUserIDEmailFilter

PGPNewUserIDNameFilter

PGPNewUserlDStringFilter

PGPUnionFilters

Events and Callbacks

242

A number of the key server functions allow the calling application to request
callbacks to track the progress of the request. These functions generally
require a perceptible amount of execution time, regardless of the size of their
target key set.

An event handler serves two purposes — it provides notification to the calling
application that an event has occurred, and provides a mechanism for the
calling application to affect processing (in a pre-defined manner). Notification
includes a pointer to a PGPEvent data type that, depending on the type of
event, provides detailed information about the cause of the event. The calling
application can then respond appropriately, which may or may not intervene
and affect the course of further processing. If the calling application wishes to
intervene, then it can abort the request by returning an error code (a value
other than kPGPError_NoErr).

All event handlers are declared as
PGPError myEvents(PGPContextRef pgpContext,
PGPEvent *event,
PGPUserValue userValue);

PGP Software Developer’s Kit

10 - Key Server Functions

The pgpContext argument is the reference to the context of the function
posting the event. The event argument references a PGPEvent data type as
follows:

struct PGPEvent_

{
PGPVersion version;
struct PGPEvent_*nextEvent;
PGPJobRef job;

PGPEventType type;
PGPEventData data;

k
typedef struct PGPEvent_ PGPEvent;

Theversion adnextEvent membersare currently reserved for internal use.
The job member is not applicable to key server functions. The type member
identifies the event being posted. The data member is a union of the
event-specific data structures, which are described with their corresponding
event.

The calling application can modify the processing context by invoking
PGPAddJobOptions as:
PGPErrorPGPAddJobOptions(PGPJobRef job, ...);

The value of the job argument is that of the PGPEvent argument’s job
member. Additional PGPOptionListRef arguments are specified similarly
to the way they are passed to PGPEncode and PGPDecode. However, only
certain options can be set after each type of event, and these are listed for each
event.

Figure 10-2. Key Server Request Processing Event Sequence

kPGEvent_|InitialEvent

Legend

[=3] sent once; unconditional
= B3 sent perodcaly

kPGEvent_KeyServerSignEvent ? :l Sent once; conditional

[sent multiple times;

or user abort

kPGEvent_FinalEvent ? Repeat until condition satisfied

Reference Guide 243

10 - Key Server Functions

Key Server Request Events

kPGPEvent_InitialEvent

Data

Sent before all other events. Implies initiation of the key server request.

None

kPGPEvent_KeyServerEvent

Data

Similar to kPGPEvent_NullEvent, this event reports the progress of the key
server request, and allows the PGPsdk developer to determine its completion
percentage.

The state member indicates the current point in the key server request
processing from the caller’s point of view.

The soFar and total members should be treated as relative, unscaled
quantities — they are not necessarily byte or number-of-keys quantities.

typedef struct PGPEventKeyServerData_

{
PGPUINt32 state;
PGPUINt32 soFar;
PGPUINt32 total;

} PGPEventKeyServerData,;

kPGPEvent_KeyServerSignEvent

Data

244

Sent if a signing key is needed for authentication (posted
byPGPUploadToKeyserver , PGPDeleteFromKeyserver , and
PGPDisableFromKeyserver) to ensure that the requestor is authorized to
effect the operation on the current qualifying key. The event handler should
invoke PGPAddJobOptions specifying the PGPOSignWithKey and
PGPOCIlearSign options, or return KPGPError_UserAbort . Note that
PGPOSignWithKey further requires one the PGPOPassphrase,
PGPOPassphraseBuffer , or PGPOPasskeyBuffer options

This event is sent repeatedly until a valid signing key is received, or until the
event handler requests abort of the job. This allows the event handler to enforce
a limit on the number of passphrase attempts.

The state member indicates the current point in the key server request
processing from the caller’s point of view, and assumes
kPGPKeyServerState... values. It is not particularly useful in this context.

typedef struct PGPEventKeyServerSignData_

PGP Software Developer’s Kit

10 - Key Server Functions

{
PGPUINt32 state;
} PGPEventKeyServerSignData;

kPGPEvent_FinalEvent

Data

Sent after all other events. Implies completion of the key server request.

None

Key Server Thread Storage

PGPKeyServerCreateThreadStorage

Syntax

Parameters

Notes

Allocates thread-local storage needed by the PGP key server routines and
returns a reference to the existing storage for the current thread, if any.

PGPError PGPKeyServerCreateThreadStorage(
PGPKeyServerThreadStorageRef *prevStorage);

prevStorage the receiving field for a reference to existing storage
in the current thread, if any.

The PGP key server utilities needs to keep “global” state for any threads
actively using these socket calls. PGPsdk clients must call
PGPKeyServerCreateThreadStorage to prepare a thread for using key
server calls. When a client exits context, the state allocated by
PGPKeyServerCreateThreadStorage must be disposed and the previous
state restored using PGPKeyServerDisposeThreadStorage

PGPKeyServerDisposeThreadStorage

Syntax

Parameters

Disposes thread-local storage allocated by
PGPKeyServerCreateThreadStorage and restores the previous storage for
the current thread, if any.

PGPError PGPKeyServerDisposeThreadStorage(
PGPKeyServerThreadStorageRef prevStorage);

prevStorage a reference to existing storage in the current thread, if
any.

Reference Guide 245

10 - Key Server Functions

Key Server Functions

PGPKeyServerlnit

Initializes the underlying communications layer that the PGPsdk requires for
accessing a key server. This function effectively creates a communications
session, and must be called prior to calling any other key server function.

Syntax
PGPError PGPKeyServerlnit(void);

PGPNewKeyServerFromURL

This function is now deprecated. Developers should use PGPNewKeyServer()
instead.

PGPNewKeyServerFromHostName

This function is now deprecated. Developers should use PGPNewKeyServer()
instead.

PGPNewKeyServerFromHostAddress

This function is now deprecated. Developers should use PGPNewKeyServer()
instead.

PGPNewKeyServer

Creates a new HTTP or LDAP communication context for the indicated host,
depending on the specified options.

Syntax

PGPError PGPNewKeyServer(
PGPContextRef pgpContext,
PGPKeyServerClass class,
PGPKeyServerRef *keyServerRef,
PGPOptionListRef firstOption,

PGPOLastOption());
Parameters
pgpContext the target context

class the class of the indicated key server (i.e. the key
server product, such as PGP, NetTools CA, Verisign,

246 PGP Software Developer’s Kit

10 - Key Server Functions

Options

Entrust, etc.)

keyServerRef the receiving field for the resultant key server
communication context

firstOption the initial option list instance

subsequent option list instances

PGPOLastOption() must always appear as the final argument to

terminate the argument list

You must specify the server host by supplying one of the following three
options, which are described in greater detail in the Option List Functions
chapter of this document. Note that in all three cases, supplying a port number
of 0 is interpreted as a request to use the indicated protocol’s default port.

PGPONetURL()

PGPONetHostName()

PGPONetHostAddress()

Other options include:
PGPOKeyServerProtocol()

PGPOKeyServerKeySpace()

Specifies the host by URL, expressed as a
null-terminated C string in the following form:

[[protocol:)/Thost.domain[:port]

Depending on the URL, the connection context
will be either HTTP or LDAP. If the protocol:
portion is omitted, then an HTTP context is
assumed; if the :port portion is omitted, then
an appropriate HTTP or LDAP port number is
assumed.

Specifies the host by internet domain name,
expressed as a null-terminated C string.
Depending on the key server class, the
connection context will be either HTTP or
LDAP.

Specifies the host by internet domain address
expressed as a 32-bit unsigned integer (i.e. 4
1-byte fields corresponding to the four parts of
a ‘dotted quad’ such as 120.121.122.123).
Depending on the key server class, the
connection context will be either HTTP or
LDAP.

If this option is omitted, then an HTTP context
is assumed.

The area of the key server to access.This option
is meaningful for LDAP key servers only, and
indicates which keys may be acted upon by the
following functions:

PGPQueryFromKeyserver()
PGPDeleteFromKeyserver()

Reference Guide 247

10 - Key Server Functions

PGPOKeyServerAccessType()

PGPSetKeyServerEventHandler

PGPDisableFromKeyserver()

Providing a value of
kPGPKeyServerKeySpace_Normal will
restrict these functions to only those keys that
satisfy the target key server’s policy
requirements; whereas a value of
kPGPKeyServerKeySpace_Pending will
restrict these functions to only those keys that
haven’t satisfied those policy requirements.

Selects either normal or administrative access.
This option is meaningful for LDAP key
servers only, and is advisory only; that is, no
initial authorization validation occurs.
However, it must reflect
kPGPKeyServerAccess_Administrator

if the caller intends to later invoke any of the
following functions:
PGPNewServerMonitor()
PGPUploadToKeyserver()
PGPDeleteFromKeyserver()
PGPDisableFromKeyserver()

Syntax

Parameters

Notes

Establish the specified function as the target key server’s event handler.

PGPError PGPSetKeyServerEventHandler(
PGPKeyServerRef keyServer,
PGPEventHandlerProcPtr callBack,
PGPUserValue callBackArg);

keyServer the target key server

callBack the desired non-idle event callback function or NULL to
indicate no callbacks

callBackArg the user-defined data, to be passed as an argument to any

callback function

An event handler returning a value other than kPGPError_NoError will
abort the current key server request.

For greatest flexibility, the PGPsdk developer should consider establishing
callBackArg as a pointer to a user-defined data type, for examplea C

248 PGP Software Developer’s Kit

10 - Key Server Functions

struct
Specify callBackArg as O to indicate a dummy argument.

PGPGetKeyServerEventHandler

Syntax

Parameters

Retrieves the function pointer and callback argument of the target key server’s
non-idle event handler, if any. A resultant callback function value of NULL
indicates that no callback function is defined; a resultant callback argument
value of 0 indicates a dummy argument.

PGPError PGPGetKeyServerEventHandler(
PGPKeyServerRef keyServer,
PGPEventHandlerProcPtr *callBack,
PGPUserValue *callBackArg);

keyServer the target key server

callBack the receiving field for the associated non-idle event handler
function

callBackArg the receiving field for the associated user-defined data, to be

passed as an argument to any callback function

PGPSetKeyServerldleEventHandler

Syntax

Parameters

Notes

Establish the specified function as the global idle event handler. For
non-preemptive operating systems, this affords a mechanism for effecting
yielding in threads. For pre-emptive operating systems, use of this function
should be avoided, since it may interfere with the operating system’s
scheduling manager and actually impede performance.

PGPError PGPSetKeyServerldleEventHandler(
PGPEventHandlerProcPtr callBack,
PGPUserValue callBackArg);

callBack the desired idle event callback function or NULLto indicate no
callbacks
callBackArg the user-defined data, to be passed as an argument to any idle

event callback function

The idle event handler you install will receive idle events for all currently active
key servers.

For greatest flexibility, the PGPsdk developer should consider establishing

Reference Guide 249

10 - Key Server Functions

callBackArg as a pointer to a user-defined data type, for examplea C
struct

Specify callBackArg as O to indicate a dummy argument.

PGPGetKeyServerldleEventHandler

Syntax

Parameters

Retrieves the function pointer and callback argument of the target key server’s
idle event handler, if any. A resultant callback function value of NULL indicates
that no callback function is defined; a resultant callback argument value of 0
indicates a dummy argument.

PGPError PGPGetKeyServerldleEventHandler(
PGPEventHandlerProcPtr *callBack,
PGPUserValue *callBackArg);

callBack the receiving field for the associated callback function

callBackArg the receiving field for the user-defined data, to be passed as
an argument to any callback function

PGPGetKeyServerTLSSession

Syntax

Parameters

Retrieves the TLS session information for the specified key server (see
PGPNewTLSSession).

PGPError PGPGetKeyServerTLSSession(
PGPKeyServerRef keyServer,
PGPtlsSessionRef *tlsSession);

keyServer the target key server
tiIsSession the receiving field for the target key server’s TLS session
information

PGPGetKeyServerProtocol

Syntax

Returns the protocol of the key server (HTTP, LDAP, etc.), as established when
the key server reference was created. See pgpKeyServer.h for a list of
supported protocols.

PGPError PGPGetKeyServerProtocol(
PGPKeyServerRef keyServer,
PGPKeyServerProtocol *protocol);

250 PGP Software Developer’s Kit

10 - Key Server Functions

Parameters

keyServer the target key server
protocol the receiving field for the target key server’s protocol
information

PGPGetKeyServerAccessType

Syntax

Parameters

Retrieves the access type for the specified key server. Specifically, this function
provides a mechanism for determining if the key server connection was
established with administrator

(kPGPKeyServerKeyAccess_Administrator) access, which is required for
certain requests.

PGPError PGPGetKeyServerAccessType(
PGPKeyServerRef keyServer,
PGPKeyServerAccessType *accessType);

keyServer the target key server
accessType the receiving field for the target key server’s access type

PGPGetKeyServerKeySpace

Syntax

Parameters

Notes

Retrieves the key space for the specified key server. Specifically, this function
provides a mechanism for determining if the key server connection was
established to operate on keys that do meet policy requirements
(kPGPKeyServerKeySpace Normal) orthat do not meet policy requirements
(kPGPKeyServerKeySpace Pending).

PGPError PGPGetKeyServerKeySpace(
PGPKeyServerRef keyServer,
PGPKeyServerKeySpace * keySpace);

keyServer the target key server
keySpace the receiving field for the target key server’s key space value

This function is meaningful for LDAP key servers only. HTTP key servers do
not support the notion of “key space”, and so this function is an effective no-op.

Reference Guide 251

10 - Key Server Functions

PGPGetKeyServerPort
Retrieves the port number of the specified key server’s host connection.
Syntax
PGPError PGPGetKeyServerPort(
PGPKeyServerRef keyServer,
PGPInt16 * port);
Parameters
keyServer the target key server
port the receiving field for the port number of the target key

server’s host connection

PGPGetKeyServerHostName

Retrieves the host name of the specified key server’s host.

Syntax
PGPError PGPGetKeyServerHostName(
PGPKeyServerRef keyServer,
char **hostName);
Parameters
keyServer the target key server
hostName the receiving field for the name of the target key server’s host
Notes

The caller is responsible for de-allocating the resultant host name with
PGPFreeData .

PGPGetKeyServerAddress

Retrieves the address of the specified key server’s host connection.

Syntax
PGPError PGPGetKeyServerAddress(
PGPKeyServerRef keyServer,
PGPUINnt32 *hostAddress);
Parameters
keyServer the target key server
hostAddress the receiving field for the address of the target key server’s
host

252 PGP Software Developer’s Kit

10 - Key Server Functions

PGPGetKeyServerPath

Returns the file system path of the indicated key server’s executable, reckoned
from the machine’s root. Note that this path is only available for servers created
via URL; the returned path is the portion of the URL that follows the host and
port specifications.

Syntax
PGPError GPGetKeyServerPath(
PGPKeyServerRef keyServer,
char **pathBuf);
Parameters
keyServer the target key server
pathBuf address of a pointer to an allocated buffer containing the path,
which is expressed as a null-terminated C string.
Notes

Use PGPFreeData() to free the pathBuf when you're done with it.

PGPGetKeyServerContext

Returns the PGPContextRef that was used to create the indicated server

reference.

Syntax
PGPContextRef GPGetKeyServerContext(

PGPKeyServerRef keyServer,);

Parameters
keyServer the target key server

PGPNewServerMonitor (LDAP key servers only)
Creates a new key server monitor that contains relevant data about and
statistics for the specified LDAP key server. The resultant data and statistics are
contained in a linked list of PGPKeyServerMonitor datatypes, which contain
name/value pairs where a pair may have multiple values.
Depending upon the policies established for the target key server, this function
may generate a KPGPEvent_KeyServerSignEvent. In this case, an
associated event handler is required, or the function will fail with
kPGPError_ServerAuthorizationRequired (see
PGPSetKeyServerEventHandler).

Syntax

PGPError PGPNewServerMonitor(
PGPKeyServerRef keyServer,

Reference Guide 253

10 - Key Server Functions

PGPKeyServerMonitorRef *dataAndStats);

Parameters
keyServer the target key server
dataAndStats the receiving field for the resultant key server data
and statistics
Notes
Calling this function for an HTTP key server will result in the return of
kPGPError_ServerOperationNotAllowed
The caller is responsible for de-allocating the resultant server monitor with
PGPFreeServerMonitor
PGPFreeServerMonitor (LDAP key servers only)
Decrements the reference count for the specified key server monitor, and
de-allocatess the key server monitor if the reference count reaches zero.
Syntax
PGPError PGPFreeServerMonitor(
PGPKeyServerMonitor * keyServerMonitor);
Parameters
keyServer the target key server monitor
PGPFreeKeyServer
Decrements the reference count for the specified key server, and de-allocatess
the key server if the reference count reaches zero.
Syntax
PGPError PGPFreeKeyServer(
PGPKeyServerRef keyServer);
Parameters
keyServer the target key server
PGPKeyServerOpen
Explicitly opens the specified key server. Key server request processing can be
optimized by coding several key server requests within a PGPKeyServerOpen
/ PGPKeyServerClose “block”, since this avoids implicit open/close
operations for each request.
Syntax

PGPError PGPKeyServerOpen(
PGPKeyServerRef keyServer,

254 PGP Software Developer’s Kit

10 - Key Server Functions

PGPtlsSessionRef tlsSession);

Parameters
keyServer the target key server
tiIsSession the active TLS context
Notes
This function is meaningful for LDAP key servers only. The HTTP protocol
does not support the notion of “session”, and so this function is an effective
no-op.
A return value of kPGPError_ServerSearchFailed indicates that the target
key server is not a certificate server, that is, it has no recognizable PGP key
space.
The caller is responsible for explicitly closing the specified key server with
PGPKeyServerClose
PGPQueryKeyServer
Applies the specified key filter (constructed as detailed in Chapter 2, “Key
Management Functions.”) to the keys on the specified key server. This yields a
resultant key set that contains all of the keys on the key server that meet the key
filter criteria.
Syntax
PGPError PGPQueryKeyServer(
PGPKeyServerRef keyServer,
PGPFilterRef filter,
PGPKeySetRef *resultSet);
Parameters
keyServer the target key server
filter the target key filter
resultSet the receiving field for the resultant key set
Notes

kPGPError_ServerOpenFailed and kPGPError_ServerSearchFailed
are returned for LDAP key servers only, and indicate that no
PGPKeyServerOpen instance is currently in force.

The query may legitimately return an empty key set.

The caller is responsible for de-allocating the resultant key set (empty or not!)
with PGPFreeKeySet .

Reference Guide 255

10 - Key Server Functions

PGPUploadToKeyServer

Syntax

Parameters

Notes

Transfers the specified keys to the specified key server. The key server
connection must have been established with an access type of
kPGPKeyServerAccess_Administrator

PGPError PGPUploadToKeyServer(
PGPKeyServerRef keyServer,
PGPKeySetRef keysToUpload,
PGPKeySetRef *keysThatFailed);

keyServer the target key server
keysToUpload the key set containing the keys to be transferred
keysThatFailed the receiving field for the key set containing the keys

that could not be successfully transferred

kPGPError_ServerOpenFailed and kPGPError_ServerSearchFailed
are returned for LDAP key servers only if no PGPKeyServerOpen instance is
currently in force.

Depending upon the policies established for the target key server, this function
might generate a KPGPEvent_KeyServerSignEvent — potentially one for
each key to be uploaded. In this case, a valid non-idle event handler is required,
or the function will fail with kPGPError_ServerAuthorizationRequired

(see PGPSetKeyServerEventHandler).

The returned error code is not always complete — multiple keys may have

failed, each for a different reason. The choice of error code obeys the following

hierarchy:

= key failed policy — usually indicates that the key was not signed by a
recognized user.

= key already exists — the key data presented matches that already on the key
server. This implies that the caller already has the most up-to-date version of
the key

= key general failure
= other PGPsdk error code

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

256 PGP Software Developer’s Kit

10 - Key Server Functions

PGPDeleteFromKeyServer (LDAP key servers only)

Syntax

Parameters

Notes

Deletes the specified keys from the specified key server, which must be an
LDAP key server. The key server connection must have been established with
an access type of kPGPKeyServerAccess_Administrator

PGPError PGPDeleteFromKeyServer(
PGPKeyServerRef keyServer,
PGPKeySetRef keysToDelete,
PGPKeySetRef *keysThatFailed);

keyServer the target key server
keysToDelete the key set containing the keys to be deleted

keysThatFailed the receiving field for the key set containing the keys
that could not be successfully deleted

This function is not valid for HTTP key servers, and results in the return of
kPGPError_ServerOperationNotAllowed

kPGPError_ServerOpenFailed and kPGPError_ServerSearchFailed
are returned for LDAPKkey servers only if no PGPKeyServerOpen instance is
currently in force.

Depending upon the policies established for the target key server, this function
might generate a KPGPEvent_KeyServerSignEvent — potentially one for
each key to be deleted. In this case, a valid non-idle event handler is required, or
the function will fail with kPGPError_ServerAuthorizationRequired

(see PGPSetKeyServerEventHandler).

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

PGPDisableFromKeyServer (LDAP key servers only)

Syntax

Disables the specified keys on the specified key server, which must be an LDAP
key server. The key server connection must have been established with an
access type of kPGPKeyServerAccess_Administrator

PGPError PGPDisableFromKeyServer(
PGPKeyServerRef keyServer,
PGPKeySetRef keysToDisable,
PGPKeySetRef *keysThatFailed);

Reference Guide 257

10 - Key Server Functions

Parameters

Notes

keyServer the target key server
keysToDisable the key set containing the keys to be disabled

keysThatFailed the receiving field for the key set containing the keys
that could not be successfully disabled

This function is not valid for HTTP key servers, and results in the return of
kPGPError_ServerOperationNotAllowed

kPGPError_ServerOpenFailed and kPGPError_ServerSearchFailed
are returned for LDAP key servers only if no PGPKeyServerOpen instance is
currently in force.

Depending upon the policies established for the target key server, this function
may generate a KPGPEvent_KeyServerSignEvent — potentially one for each
key to be disabled. In this case, a valid non-idle event handler is required, or the
function will fail with kPGPError_ServerAuthorizationRequired (see
PGPSetKeyServerEventHandler).

The caller is responsible for de-allocating the resultant key set with
PGPFreeKeySet .

PGPSendGroupsToServer (LDAP key servers only)

Syntax

Parameters

Notes

Uploads the specified key groups to the specified key server, which must be an
LDAP key server. The key server connection must have been established with
an access type of kPGPKeyServerAccess_Administrator

PGPError PGPSendGroupsToServer(
PGPKeyServerRef keyServer,
PGPGroupSetRef groupsToSend);

keyServer the target key server
keysToDisable the key set containing the keys to be disabled
groupsToSend the group set containg the key groups to uploadt

This function is not valid for HTTP key servers, and results in the return of
kPGPError_ServerOperationNotAllowed

Depending upon the policies established for the target key server, this function
might generate a KPGPEvent_KeyServerSignEvent — potentially one for
each key in each group to be uploaded. In this case, a valid non-idle event
handler is required, or the function will fail with
kPGPError_ServerAuthorizationRequired

kPGPError_ServerOpenFailed and kPGPError_ServerSearchFailed

258 PGP Software Developer’s Kit

10 - Key Server Functions

are returned only if no PGPKeyServerOpen instance is currently in force.

PGPRetrieveGroupsFromServer (LDAP key servers only)

Syntax

Parameters

Notes

Retrieves all key groups from the specified key server, which must be an LDAP
key server. The key server connection must have been established with an
access type of kPGPKeyServerAccess_Administrator

PGPError PGPRetrieveGroupsFromServer(
PGPKeyServerRef keyServer,
PGPGroupSetRef *groups);

keyServer the target key server
groups the receiving field for the resultant group set

This function is not valid for HTTP key servers, and results in the return of
kPGPError_ServerOperationNotAllowed

kPGPError_ServerOpenFailed and kPGPError_ServerSearchFailed
are returned only if no PGPKeyServerOpen instance is currently in force.

The caller is responsible for de-allocating the resultant group set with
PGPFreeGroupSet .

PGPSendCertificateRequest

Syntax

Parameters

Requests an X.509 certificate for a given key from the indicated CA server.

To retrieve the CA’s response to your request, you should call
PGPRetrieveCertificate() some time later. In rare cases a key server may
respond quickly, but generating a certificate typically takes hours or days
because in most organizations it requires a human Certification Authority to
conduct due diligence research on the applicant.

PGPError PGPSendCertificateRequest(
PGPKeyServerRef keyServerRef,
PGPOptionListRef firstOption,

PGPOLastOption());

keyServer the target CA server

firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final

Reference Guide 259

10 - Key Server Functions

Options

Notes

argument to terminate the argument list

This function requires three entries to be present in the option list:
PGPOKeyServerCAKey() selects a CA on the indicated server

PGPOKeyServerRequestKey() provide the same key embedded in your
cerificate request

You can use either of the following two options to furnish the formatted
certificate request; but one of them is required:

PGPOlInputFile()
PGPOInputBuffer()

Note that this function requires a properly formatted x509 certificate request.
For guidance on creating a certificate request, please contact PGPsdk developer
support.

PGPRetrieveCertificate

Syntax

Parameters

Options

Retrieve X.509 certificate from a CA server, after its issuance by that CA.
Typically the certificate will have been issued in response to an earlier request
made by your program with PGPSendCertificateRequest() . The key to
retrieve is specified using either an option based on its PGPKeyRef, or a search
filter. Note that, unfortunately, the options and semantics required will differ
slightly for each of the supported CA’s.

PGPError PGPRetrieveCertificate(
PGPKeyServerRef keyServerRef,
PGPOptionListRef firstOption,

PGPOLastOption());

keyServer the target key server
firstOption the initial option list instance
subsequent option list instances

PGPOLastOption() must always appear as the final
argument to terminate the argument list

This function requires several entries to be present in the option list:
PGPOKeyServerCAKey() selects a CA on the indicated server
PGPOSignWithKey() provide the same key you searched

260 PGP Software Developer’s Kit

10 - Key Server Functions

Notes

with, and its passphrase

You can use either of the two following options to specify the key to retrieve,
but one of them is required:

PGPOKeyServerSearchKey() provide the same key you used in your
certificate request; this key must be on
the local keyring

PGPOKeyServerSearchFilter() alternatively, you can search the server
for the desired key

You can use any of the following three options to specify what to do with the
retrieved certificate; but one of them is required:

PGPOOutputFile()
PGPOOutputBuffer()
PGPOOutputAllocatedBuffer()

Do not discard the output of this operation (i.e. do not use
PGPOOutputDiscard() as an output option).

PGPRetrieveCertificateRevocationList

Syntax

Parameters

Options

Retrieves any available X.509 certificate revocation lists (CRL) for the indicated
key set from the indicated CA server.

PGPError PGPRetrieveCertificateRevocationList(
PGPKeyServerRef keyServerRef,
PGPOptionListRef firstOption,

PGPOLastOption());

keyServer the target key server

firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final

argument to terminate the argument list

This function requires several entries to be present in the option list:

PGPOKeyServerCAKey() selects a CA on the indicated server

PGPOKeySetRef() the set of keys for which to check for
CRLs

PGPOSignWithKey() provide the same key you searched

Reference Guide 261

10 - Key Server Functions

Notes

with, and its passphrase
You can use either of the two following options, but one of them is required:

PGPOKeyServerSearchKey() provide the same key you used in your
request; this key must be on the local
keyring

PGPOKeyServerSearchFilter() alternatively, you can search the server for

the desired key

You can use any of the following three options to specify what to do with the
retrieved certificate; but one of them is required:

PGPOOutputFile()
PGPOOutputBuffer()
PGPOOutputAllocatedBuffer()

Do not discard the output of this operation (i.e. do not use
PGPOOutputDiscard() as an output option).

PGPIncKeyServerRefCount

Syntax

Parameters

Notes

Increments the reference count of the specified key server. This provides a
mechanism for manually incrementing the reference count should it be
necessary.

PGPError PGPIncKeyServerRefCount(
PGPKeyServerRef keyServer);

keyServer the target key server

The PGPsdk automatically tracks the number of data items pointing to a
particular resource. For example, a given key set may be referenced by any
number of key lists and/or key iterators. This not only results in a level of
context independence, but also ensures that a resource’s memory is released
only when its last reference is deleted. The PGPsdk also provides functions to
support manual adjustment of a data item’s reference count.

PGPGetLastKeyServerErrorString

Places the equivalent error text of the most recent error of the specified key
server in the dynamically allocated string buffer.

This used to be just PGPGetKeyServerErrorString (and was consistent
with PGPGetErrorString).

262 PGP Software Developer’s Kit

10 - Key Server Functions

Syntax

Parameters

Notes

PGPError PGPGetLastKeyServerErrorString(
PGPKeyServerRef keyServer,
char **theString);

keyServer the target key server
theString the receiving field for a pointer to the associated error text

The caller is responsible for de-allocating the resultant error text with
PGPFreeData .

If the most recent error has no associated error string, then the function returns
kPGPError_NoError ,and theString will be NULL

PGPCancelKeyServerCall

Syntax
PGPError PGPCancelKeyServerCall(
PGPKeyServerRef keyServer);
Parameters
keyServer the target key server
Notes
Once return has been made from a canceled call, the target key server must be
closed with PGPKeyServerClose
PGPKeyServerClose
Explicitly closes the specified key server (see PGPKeyServerOpen) .
Syntax
PGPError PGPKeyServerClose(
PGPKeyServerRef keyServer);
Parameters
keyServer the target key server
Notes

This function is meaningful for LDAP key servers only. The HTTP protocol
does not support the notion of “session”, and so this function is an effective
no-op.

Reference Guide 263

10 - Key Server Functions

PGPKeyServerCleanup

Terminates the underlying communications layer that the PGPsdk requires for
accessing a key server (see PGPKeyServerlnit) . This function effectively
destroys a communications session, and so PGPKeyServerlnit must be
called to initiate a new session prior to calling any other key server function.

Syntax
PGPError PGPKeyServerCleanup(void);

264 PGP Software Developer’s Kit

TLS (Transport Layer

Security) Functions

Introduction

The PGPsdk TLS (Transport Layer Security) functions allow sophisticated
PGPsdk developers access to the underlying functions that form the basis for
secure communication between the client application and the remote key
server. These include:

= create, manage, and free TLS contexts and sessions

= attach a socket to a TLS session

Header Files
pgpTLS.h

TLS Context Management Functions

PGPNewTLSContext
Creates a new TLS context, which has caching enabled.
Syntax
PGPError PGPNewTLSContext(
PGPContextRef pgpContext,
PGPtIsContextRef *tlsContext);
Parameters
pgpContext the target context
tisContext the receiving field for the resultant TLS context
Notes

The caller is responsible for deallocating the resultant TLS context with
PGPFreeTLSContext .

Use PGPtIsSetCache to override the caching default.

Reference Guide 265

11 - TLS (Transport Layer Security) Functions

PGPFreeTLSContext
Frees the specified TLS context.
Syntax
PGPError PGPFreeTLSContext(
PGPtlsContextRef tlsContext);
Parameters
tisContext the target TLS context
PGPtlsSetCache
Activates or deactivates the session key cache for sessions created using the
specified TLS context, depending upon the value specified for useCache .
Syntax
PGPError PGPtlsSetCache(
PGPtlsContextRef pgpContext,
PGPBoolean useCache);
Parameters
pgpContext the target context
useCache set to TRUEto enable use of the cache; set to FALSEto disable
use of the cache
Notes
Cache usage defaults to TRUEupon context creation (see
PGPNewTLSContext).
PGPtlsClearCache
Resets the session key cache for all sessions created using the specified TLS
context.
Syntax
PGPError PGPtlsClearCache(
PGPtlsContextRef pgptlsContext);
Parameters
pgptisContext the target TLS context
Notes

Context creation uses any existing cache (see PGPNewTLSContext).

266 PGP Software Developer’s Kit

11 - TLS (Transport Layer Security) Functions

PGPNewTLSSession
Creates a new TLS session.
Syntax
PGPError PGPNewTLSSession(
PGPtlsContextRef tlsContext,
PGPtlsSessionRef *tlsSession);
Parameters
pgptlsContext the target TLS context
tlIsSession the receiving field for the resultant TLS session
Notes
The caller is responsible for deallocating the resultant TLS session with
PGPFreeTLSSession .
The session protocol options default to:
» kPGPtIsFlags_ClientSide
» I(kPGPtIsFlags_RequestClientCert)
(see PGPtIsSetProtocolOptions).
PGPCopyTLSSession
Creates an exact copy of the source TLS session, including its current state.
Syntax
PGPError PGPCopyTLSSession(
PGPtlsSessionRef tlsOrig,
PGPtlsSessionRef *tisCopy);
Parameters
tlsOrig the source TLS session
tiIsCopy the receiving field for the copy of the TLS session
Notes

The caller is responsible for deallocating the resultant TLS session copy with
PGPFreeTLSSession .

Reference Guide 267

11 - TLS (Transport Layer Security) Functions

PGPtlsHandshake

Initiates a TLS session by performing all negotiation involved with establishing
the actual TLS connection. No data may be sent or received by the session until
this function returns kPGPError_NoError or PGPtIsSession reflects a
session state of kPGPtls_ReadyState

Syntax
PGPError PGPtlsHandshake(
PGPtlsSessionRef tlsSession);
Parameters
tiIsSession the target TLS session
PGPtlsClose
Terminates a TLS session by performing all clean-up involved with tearing
down the actual TLS connection. No data may be sent or received by the session
after this call.
If noSessionKeyCache s specified as TRUE then the session keys are not
added to the cache (if any)
Syntax
PGPError PGPtIsClose(
PGPtlsSessionRef tlsSession,
PGPBoolean noSessionKeyCache);
Parameters
tiIsSession the target TLS session
noSessionKeyCache indicates whether or not the session keys should be
added to the cache (if any)
Notes

If the specified session is not terminated by this function or if
noSessionKeyCache is specified as TRUE then it cannot be restarted from the
session cache.

If the client application determines that the connection has experienced errors,
for example, the remote key is invalid, then this function should be called with
noSessionKeyCache specified as TRUE

268 PGP Software Developer’s Kit

11 - TLS (Transport Layer Security) Functions

PGPFreeTLSSession

Syntax

Parameters

Deallocates the specified TLS session.

PGPError PGPFreeTLSSession(
PGPtlsSessionRef tlsSession);

tiIsSession the target TLS session

PGPtlsSetRemoteUniquelD

Syntax

Parameters

Notes

Sets the remote ID for the specified TLS session.

PGPError PGPtlsSetRemoteUniquelD(
PGPtlsSessionRef tlsSession,
PGPUINt32 remotelD);

tiIsSession the target TLS session
remotelD the desired remote ID, which is nominally an IP address

This function must be called prior to PGPtlIsHandshake

PGPtIsSetProtocolOptions

Syntax

Parameters

Notes

Sets the protocol options for the specified TLS session.

PGPError PGPtlsSetProtocolOptions(
PGPtlsSessionRef tlsSession,
PGPtIsFlags optionFlags);

tiIsSession the target TLS session
optionFlags the desired protocol option flags

This function must be called prior to PGPtlIsHandshake

Reference Guide

269

11 - TLS (Transport Layer Security) Functions

PGPtlsSetDHPrime

Syntax

Parameters

Notes

Sets the Diffie-Hellman prime to one of the specified size (in bits). The
requested primes are drawn from a set of hard-coded primes. New primes can
be added in a fully compatible fashion since the server sends the prime to the
client, but this version of the API does not support passing in a desired prime.

PGPError PGPtlsSetDHPrime(
PGPtlsSessionRef tlsSession,
PGPtIsPrime primeSize);

tiIsSession the target TLS session
primeSize the desired Diffie-Hellman prime size (in bits)

This function must be called prior to PGPtlIsHandshake
The default prime if this function is not called is kPGPtls_DHPrime1536

PGPtlsSetPreferredCipherSuite

Syntax

Parameters

Notes

Indicates which TLS cipher suite the client prefers to use for the session.

PGPContextRef PGPtlsSetPreferredCipherSuite(
PGPtlsSessionRef tlsSession,
PGPtIsCipherSuiteNum cipher);

tiIsSession the target TLS session
cipher the desired cipher suite

This function must be called prior to PGPtIsHandshake

This function indicates a preference only. Call
PGPtlsGetNegotiatedCipherSuite once the session has been established
to determine the actual cipher suite being used.

270 PGP Software Developer’s Kit

11 - TLS (Transport Layer Security) Functions

PGPtlsGetNegotiatedCipherSuite

Syntax

Parameters

Notes

Returns the identity of the TLS cipher suite that will be used use for the session.

PGPContextRef PGPtlsGetNegotiatedCipherSuite(
PGPtlsSessionRef tlsSession,
PGPtlsCipherSuiteNum *cipher);

tiIsSession the target TLS session
cipher the desired cipher suite, which assumes
kPGPtls_TLS ... values

This function must be called subsequent to PGPtlsHandshake

PGPtlsSetLocalPrivateKey

Syntax

Sets the local private authenticating key. The passphrase and key are retained in
memory. By default, no key is specified and a client side session will return no

key in the client key exchange message to the server. It is an error not to specify
a key on a server side TLS session.

If you wish to validate your TLS connection with an X.509 certificate, the
X509Cert parameter must refer to a valid X.509 certificate and the CertChain
parameter must refer to a set of keys containing all keys in the certificate chain
for the indicated X.509 certificate, going all the way up to the root Certification
Authority. The CertChain keys must remain valid for the duration of the TLS
connection.

To forego X.509 validation, pass in KPGPInvalidSigRef for the X509Cert
parameter and kinvalidPGPKeySetRef for the CertChain parameter.

PGPError PGPtlsSetLocalPrivateKey(
PGPtlsSessionRef tlsSession,
PGPKeyRef localPrivateKey,
PGPSigRef X509Cert,
PGPKeySetRef CertChain,
PGPOptionListRef firstOption,

PGPOLastOption());

Reference Guide 271

11 - TLS (Transport Layer Security) Functions

Parameters

Options

Notes

tiIsSession the target TLS session

localPrivateKey the desired local private key

X509Cert a valid X.509 certificate, or kPGPInvalidSigRef
CertChain the set of keys in the complete certificate chain for the

indicated X.509 certificate, or
kinvalidPGPKeySetRef if no X.509 certificate was

provided.
firstOption the initial option list instance
subsequent option list instances
PGPOLastOption() must always appear as the final argument to

terminate the argument list

Local private authenticating key specific options include:
= PGPOPasskeyBuffer

< PGPOPassphrase

< PGPOPassphraseBuffer

The PGPsdk internally treats and represents X.509 certificates as signatures on
keys.

It is the developer’s responsibility to obtain the X.509 certificate chain keys, and
to form them into a key set.

PGPtlsGetRemoteAuthenticatedKey

Syntax

Parameters

Notes

Obtains the authenticated remote key after a performing successful handshake
with PGPtlsHandshake()

PGPError PGPtlsGetRemoteAuthenticatedKey(
PGPtlsSessionRef tlsSession,
PGPKeyRef *remoteKey,
PGPKeySetRef *X509CertChainKeys);

tiIsSession the target TLS session
remoteKey the receiving field for the authenticated remote key
X509CertChainKeys the receiving field for X.509 certificate chain keys

The key returned must already have been approved through the callback
mechanism. The PGPEvent mechanism is used to request approval from the
client of the remote key received during the TLS handshake. The callback

272 PGP Software Developer’s Kit

11 - TLS (Transport Layer Security) Functions

should be set through the standard PGPSockets callback mechanism. The event
kPGPEvent_TLSRemoteKeyApprovalEvent will be used in this case. In
some cases, the KPGPEvent_TLSRemoteKeyApprovalEvent may only pass
a Key ID to the caller, and it will be up to the caller to resolve the Key ID into a
key and pass the PGPKeyRef back to TLS.

For an X.509-validated TLS connection, the X509CertChainKeys parameter
will be set to the complete set of keys in the certificate chain for the X.509
certificate, as provided via PGPtlsSetLocalPrivateKey()

This function must be called subsequent to PGPtlsHandshake

PGPtlsGetState
Returns the current state of the specified TLS session.
Syntax
PGPContextRef PGPtlsGetState(
PGPtlsSessionRef tlsSession,
PGPtlsProtocolState *sessionState);
Parameters
tiIsSession the target TLS session
sessionState the receiving field for the session state value
Notes
PGPtlsGetAlert
Obtains the alert code of the fatal alert that caused the TLS session to abort and
go into the kPGPtls_FatalErrorState
Syntax
PGPError PGPtlsGetAlert(
PGPtlsSessionRef tlsSession,
PGPtlsAlert *alert);
Parameters
tiIsSession the target TLS session
alert the receiving field for the alert code
Notes

This function should not be called unless PGPtlsGetState indicates
kPGPtls_FatalErrorState

Reference Guide 273

11 - TLS (Transport Layer Security) Functions

PGPtlsSetSendCallback

Sets the send callback function to that specified.

Syntax
PGPError PGPtlsSetSendCallback(
PGPtlsSessionRef tlsSession,
PGPtlsSendProcPtr tlsSendProc,
void *userData);
Parameters
tiIsSession the target TLS session
tisSendProc the desired send callback function
userData user data needed by the callback function
PGPtlsSend
Sends data over the underlying PGPsockets connection.
Syntax
PGPError PGPtlsSend(
PGPtlsSessionRef tlsSession,
const void *outBuffer,
PGPSize bufferLength);
Parameters
tiIsSession the target TLS session
outBuffer the data to be sent
bufferLength the size (in bytes) of the data to be sent
Notes

It is an error to call this function without having set a Write function pointer.
Most applications will never need to use this function as the function pointers
are automatically configured by PGPsockets , and this function is
automatically called by the PGPsockets implementations of PGPWrite
whenever a PGPtlsSessionRef has been set for a given socket.

PGPtlsSetReceiveCallback

Syntax

Sets the receive callback function to that specified.

PGPError PGPtlsSetReceiveCallback(
PGPtIsSessionRef tlsSession,
PGPtIlsReceiveProcPtr tlsReceiveProc,
void *userData);

274 PGP Software Developer’s Kit

11 - TLS (Transport Layer Security) Functions

Parameters
tiIsSession the target TLS session
tisReceiveProc the desired receive callback function
userData user data needed by the callback function, if any
PGPtlsReceive
Retrieves data over the underlying PGPSockets connection.
Syntax
PGPError PGPtlsReceive(
PGPtlsSessionRef tlsSession,
void *inBuffer,
PGPSize *bufferLength);
Parameters
tiIsSession the target TLS session
inBuffer the receiving field for the incoming data
bufferLength the size (in bytes) of the receiving buffer
Notes

Itis an error to call this function without having set a Read function pointer.
Most applications will never need to use this functions as the function pointers
are automatically configured by PGPsockets, and this function is automatically
called by the PGPsockets implementations of PGPRead whenever a
PGPtlsSessionRef has been set for a given socket.

Reference Guide 275

11 - TLS (Transport Layer Security) Functions

276 PGP Software Developer’s Kit

Socket Functions

Introduction

The PGPsdk socket functions allow sophisticated PGPsdk developers further
access to the functions that form the basis for secure communication between
PGP client and server applications. Based upon Berkeley sockets and
WINSOCK Version 1.1 (although not WINSOCK compliant), the PGP socket
layer provides a simple, platform independent abstraction (particularly for
MacOS). However, the true motivation behind the PGP socket layer lies in
employing it as an encrypting socket layer by associating it with an existing
TLS session (see PGPSocketsEstablishTLSSession).

The PGP socket layer supports both stream and datagram sockets. Stream
sockets provide for bi-directional, reliable, sequenced, and unduplicated data
flow with no concept of record boundaries. Datagram sockets provide for
bi-directional data flow with enforcement of record boundaries, but do not
guarantee the data to be reliable, sequenced, or unduplicated.

Specific functional support includes:
= socket creation

= socket listen, bind and connect

= socket management

= datasend/send to

= data receive/receive from

= socket deletion

Many of the PGP socket layer functions do not return PGPError . Rather, in
keeping with the Berkeley sockets model, a return value of
kPGPSockets_Error indicates that the operation failed. In this case, the
caller must obtain the actual error code with PGPGetLastSocketError

In keeping with the WINSOCK model, the PGP socket layer currently
supports only the Internet domain (kPGPAddressFamilyinternet).

Reference Guide 277

12 - Socket Functions

Header Files
pgpSockets.h

Constants and Data Structures

Table 12-1. WINSOCK Error Mappings

PGPsdk Constant WINSOCK Constant
kPGPError_BadParams WSAEFAULT
WSAEDESTADDRREQ
WSAENOPROTOOPT
WSAESOCKTNOSUPPOR
WSAVERNOTSUPPORTEL
kPGPError_OutOfMemory WSAENOBUFS
kPGPError_SocketsAddressFamilyNotSupported WSAEAFNOSUPPORT
kPGPError_SocketsAddressinUse WSAEADDRINUSE
kPGPError_SocketsAddressNotAvailable WSAEADDRNOTAVAIL
kPGPError_SocketsAlreadyConnected WSAEISCONN
kPGPError_SocketsBufferOverflow WSAEMSGSIZE
kPGPError_SocketsDomainServerError WSATRY_AGAIN

WSANO_RECOVERY
WSANO_DATA

kPGPError_SocketsHostNotFound WSAHOST_NOT_FOUND
kPGPError_SocketsInProgress WSAEINPROGRESS
kPGPError_SocketsNetworkDown WSAENETDOWN
WSAENETUNREACH
WSASYSNOTREADY
kPGPError_SocketsNotASocket WSAENOTSOCK
kPGPError_SocketsNotBound VSAEINVAL
kPGPError_SocketsNotConnected WSAECONNREFUSED
WSAECONNABORTED
WSAECONNRESET
WSAENETRESET
kPGPError_SocketsNotlnitialized WSANOTINITIALISED
kPGPError_SocketsOperationNotSupported WSAEOPNOTSUPP
kPGPError_SocketsProtocolNotSupported WSAEPROTONOSUPPORT
WSAEPROTOTYPE
kPGPError_SocketsTimedOut WSAETIMEDOUT

278 PGP Software Developer’s Kit

A |

12 - Socket Functions

Table 12-2. UNIX Socket Error Mapping

PGPsdk Constant

UNIX Constant

kPGPError_BadParams EFAULT
EDESTADDRREQ
ENOPROTOOPT
ESOCKTNOSUPPORT
kPGPError_OutOfMemory ENOBUFS
kPGPError_SocketsAddressFamilyNotSupported EAFNOSUPPORT
kPGPError_SocketsAddressinUse EADDRINUSE
kPGPError_SocketsAddressNotAvailable EADDRNOTAVAIL
kPGPError_SocketsAlreadyConnected EI$SCONN
kPGPError_SocketsBufferOverflow EMSGSIZE
kPGPError_SocketsDomainServerError TRY_AGAIN
NO_RECOVERY
NO_DATA
kPGPError_SocketsHostNotFound HOST_NOT_FOUND
kPGPError_SocketsInProgress EINPROGRESS
kPGPError_SocketsNetworkDown ENETDOWN
ENETUNREACH
kPGPError_SocketsNotASocket ENOTSOCK
kPGPError_SocketsNotBound EINVAL
kPGPError_SocketsNotConnected ECONNREFUSED
ECONNABORTED
ECONNRESET
ENETRESET
kPGPError_SocketsOperationNotSupported EORNOTSUPP
kPGPError_SocketsProtocolNotSupported EPROTONOSUPPORT
EPROTOTYPE
kPGPError_SocketsTimedOut ETIMEDOUT

Reference Guide

279

12 - Socket Functions

Initialization and Termination Functions

PGPSocketslInit

Initializes the underlying sockets layer upon which the PGPsdk sockets layer
depends. This must be called prior to calling any other PGPsdk sockets
function. This function is reference counted and must be matched by an equal
number of calls to PGPSocketsCleanup

Syntax
PGPError PGPSocketslnit(void);

PGPSocketsCleanup
Terminates the underlying sockets layer upon which the PGPsdk sockets layer
depends (see PGPSocketslnit) . This precludes any further calls to PGPsdk
sockets layer functions other than PGPSocketslInit

Syntax

void PGPSocketsCleanup(void);

Socket Thread Storage

PGPSocketsCreateThreadStorage

Syntax

Parameters

Notes

Allocates thread-local storage needed by the PGP socket layer and returns a
reference to the existing storage for the current thread, if any.

PGPError PGPSocketsCreateThreadStorage(
PGPSocketsThreadStorageRef *prevStorage);

prevStorage the receiving field for a reference to existing storage
in the current thread, if any.

The PGP socket layer needs to keep “global” state for any threads actively using
these socket calls. PGPsdk clients must call

PGPSocketsCreateThreadStorage to prepare a thread for using the PGP
socket layer. When a client exits context, the state allocated by
PGPSocketsCreateThreadStorage must be disposed and the previous
state restored using PGPSocketsDisposeThreadStorage

280 PGP Software Developer’s Kit

12 - Socket Functions

PGPSocketsDisposeThreadStorage

Disposes thread-local storage allocated by
PGPSocketsCreateThreadStorage and restores the previous storage for
the current thread, if any.

Syntax
PGPError PGPSocketsDisposeThreadStorage(
PGPSocketsThreadStorageRef prevStorage);
Parameters
prevStorage a reference to existing storage in the current thread, if
any.

Socket Creation and Destruction Functions

PGPOpenSocket

Creates a socket of the specified address family, type, and protocol. If the
returned socket reference is kinvalidPGPSocketRef , then the caller should
obtain the actual error code via PGPGetLastSocketError

Syntax
PGPSocketRef PGPOpenSocket(
PGPInt32 addressFamily,
PGPInt32 socketType,
PGPInt32 socketProtocol);
Parameters
addressFamily the desired address family
socketType the desired socket type
socketProtocol the desired socket protocol
Notes

PGPSocketslnit must have been called prior to invoking this function.

If addressFamily is specified as kPGPAddressFamilyUnspecified , then
socketProtocol may not be specified as kPGPProtocolFamilyUnspecified

Reference Guide 281

12 - Socket Functions

PGPSetSocketsldleEventHandler

Syntax

Parameters

Notes

Sets the idle event handler for the currently selected sockets to that specified
(see PGPSelect), which will receive periodic idle events during network calls.
If the idle event handler returns other than PGPError_NoErr , the blocking
socket will be automatically closed.

PGPError PGPSetSocketsldleEventHandler(
PGPEventHandlerProcPtr callback,
PGPUserValue callBackArg);

callBack the desired idle event handler function
callBackArg user-defined data, to be passed to the idle event handler

An idle event handler is associated with one and only one thread.

Normally, the idle event handler is used only in non-preemptive multi-tasking
operating systems, so that threads may periodically yield control. In
pre-emptive multi-tasking systems, use of an idle event handler may adversely
may adversely impact the existing scheduling algorithm(s).

PGPGetSocketsldleEventHandler

Syntax

Parameters

Obtains the receive callback function currently defined for the currently
selected sockets to that specified (see PGPSelect).

PGPError PGPGetSocketsldleEventHandler(
PGPEventHandlerProcPtr *callback,
PGPUserValue *callBackArg);

callBack the receiving field for the idle event handler function
callBackArg user-defined data, to be passed to the idle event handler

282 PGP Software Developer’s Kit

12 - Socket Functions

PGPCloseSocket

Syntax

Parameters

Notes

Closes the specified socket. If the return value is kPGPSockets_Error , then
the caller should obtain the actual error code via PGPGetLastSocketError

PGPInt32 PGPCloseSocket(PGPSocketRef socketRef);

socketRef the target socket

PGPSocketslnit must have been called prior to invoking this function.

A resultant error of KPGPError_SocketsNotASocket may indicate that the
socket has been previously closed.

Endpoint Binding Functions

PGPBindSocket

Syntax

Parameters

Notes

Binds the specified socket, which must be unbound and unconnected, to the
specified address. This establishes a local name association for the socket, which
in turn establishes a local association with the socket’s address.

PGPInt32 PGPBindSocket(
PGPSocketRef socketRef,
const PGPSocketAddress *address,
PGPInt32 addressLength);

socketRef the target socket
address the bind-to address

addressLength the length of the bind-to address, which is normally
sizeof(PGPSocketAddress)

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

Reference Guide 283

12 - Socket Functions

PGPConnect

Syntax

Parameters

Notes

Connects the specified socket, which must be unconnected, to the specified
address, which is assumed to be on a foreign host. Upon successful return, the
socket is ready to effect send/receive operations.

If the target socket is unbound, the a system-generated name is assigned to the
socket, and the socket is bound to that name.

PGPInt32 PGPConnect(
PGPSocketRef socketRef,
const PGPSocketAddress *address,
PGPInt32 addressLength);

socketRef the target socket
address the connect-to address
addressLength the length of the connect-to address, which is

normally sizeof(PGPSocketAddress)

If the return value is kPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

Server Functions

PGPListen

Syntax

Parameters

Notes

Creates a pending connections queue for the specified socket, which must be
bound, but must not be connected.

PGPInt32 PGPListen(
PGPSocketRef socketRef,
PGPInt32 maxBacklog);

socketRef the target socket
maxBackLog the maximum length to which the pending connections queue
may grow

PGPSocketslnit must have been called prior to invoking this function.

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

284 PGP Software Developer’s Kit

12 - Socket Functions

PGPAccept

Creates a new socket having the the same characteristics as the specified
template socket, and associates it with the first connection on the pending
connection queue of the specified template socket. The template socket remains
open.

If address in non-NULL and addressLength is non-zero, then they receive the
address of the connecting entity.

Syntax
PGPSocketRef PGPAccept(
PGPSocketRef socketRef,
PGPSocketAddress *address,
PGPInt32 *addressLength);
Parameters
socketRef the template socket
address the receive-from address (optional)
addressLength the length of the receive-from address (optional)
Notes
PGPSocketslnit must have been called prior to invoking this function.
If the return value is kinvalidPGPSocketsRef , then the caller should obtain
the actual error code via PGPGetLastSocketError
The resultant new socket may not be presented subsequently to PGPAccept as
a template socket.
PGPSelect
Determines the status of one or more sockets, and returns the number of sockets
that meet the criteria, and which represents the total number of descriptors
contained in the specified PGPSocketSet arguments after they have been
updated. If the returned count is kPGPSocket_Errror , then the caller should
obtain the actual error code via PGPGetLastSocketError
Syntax
PGPInt32 PGPSelect(
PGPInt32 numSetCount,
PGPSocketSet *readSet,
PGPSocketSet *writeSet,
PGPSocketSet *errorSet,
const PGPSocketsTimeValue *timeout);
Parameters
numSetCount
readSet a pointer to a set of sockets to be checked for readability, or

Reference Guide 285

12 - Socket Functions

Notes

286

NULL if no sockets are to be checked for readability

writeSet a pointer to a set of sockets to be checked for writabilitya
pointer to a set of sockets to be checked for readability, or
NULL if no sockets are to be checked for readability

errorSet a pointer to a set of sockets to be checked for the presence of
out-of-band data or outstanding error conditionsa pointer to a
set of sockets to be checked for readability, or NULLif no
sockets are to be checked for readability

timeout the desired timeout interval. A specification of NULL denotes
a blocking operation; a PGPSocketsTimeValue of 0 (zero)
denotes a non-blocking operation with immediate return

(polling).

PGPSocketslnit must have been called prior to invoking this function.

numsSetCount is used by UNIX platforms only; it is not used by Windows and
MacOS platforms.

Out-of-band data is accessed via errorSet , since the PGPsdk socket layer does
not support the OOBINLINE option.

A readable socket is one which:
= s listening
= has data queued

= is a stream socket that has been closed, and so will return zero bytes read or
kPGPError_SocketsNotConnected

A writable socket is one which:
= has completed a non-blocking connect

= will complete a send or sendto without blocking (the duration of this state is
not guaranteed)

A socket having available out-of-band data or an outstanding error condition is
one which

= has available out-of-band data
= has failed a non-blocking connect

= is a stream socket whose connection has been broken by its peer or a
KEEPALIVE failure

= has an outstanding error condition that may be obtained via
PGPGetLastSocketsError

PGP Software Developer’s Kit

12 - Socket Functions

Send Functions

PGPSend
Sends the specified data on the specified socket (which must be connected), and
returns the number of bytes actually sent.
Syntax
PGPInt32 PGPSend(
PGPSocketRef socketRef,
const void *buffer,
PGPInt32 bufferLength,
PGPInt32 flags);
Parameters
socketRef the target socket
buffer the data to be sent
bufferLength the length of the data to be sent
flags the send flags
Notes
If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError
PGPWrite
Writes the specified data on the specified socket.
Syntax
PGPInt32 PGPWrite(
PGPSocketRef socketRef,
const void *buffer,
PGPInt32 bufferLength);
Parameters
socketRef the target socket
buffer the data to be sent
bufferLength the length of the data to be sent
Notes

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

Reference Guide 287

12 - Socket Functions

PGPSendTo

For datagram sockets, sends the specified data on the specified socket, usually
to the specified optional address.

For stream sockets, the optional address arguments are ignored, and so this
function is equivalent to PGPSend

In each case, the function returns the number of bytes actually sent.

Syntax
PGPInt32 PGPSendTo(
PGPSocketRef socketRef,
const void *buffer,
PGPInt32 bufferLength,
PGPInt32 flags,
PGPSocketAddress *address,
PGPInt32 addressLength);
Parameters
socketRef the target socket
buffer the data to be sent
bufferLength the length of the data to be sent
flags the send flags
address the send-to address (optional)
addressLength the length of the send-to address (optional)
Notes

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

Receive Functions

PGPReceive

Receives data on the the specified socket into the specified buffer, and returns
the number of bytes actually received.
Syntax
PGPInt32 PGPReceive(
PGPSocketRef socketRef,
void *buffer,
PGPInt32 bufferSize,
PGPINnt32 flags);

288 PGP Software Developer's Kit

12 - Socket Functions

Parameters

Notes

PGPRead

socketRef the target socket

buffer the receiving buffer

bufferLength the maximum length of the data that can be received
flags the receive flags

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

Syntax

Parameters

Notes

Reads data on the specified socket into the specified buffer, and returns the
number of bytes actually read.

PGPInt32 PGPRead(
PGPSocketRef socketRef,
void *buffer,
PGPInt32 bufferSize);

socketRef the target socket
buffer the receiving buffer
bufferLength the maximum length of the data that can be read

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetlLastSocketError

PGPReceiveFrom

Syntax

For datagram sockets, receives data on the specified socket into the specified
data buffer, usually from the specified optional address.

For stream sockets, the optional address arguments are ignored, and so this
function is equivalent to PGPreceive .

In each case, the function returns the number of bytes actually received.

PGPInt32 PGPReceiveFrom(
PGPSocketRef socketRef,
void *buffer,
PGPInt32 bufferSize,
PGPInt32 flags,
PGPSocketAddress *address,

Reference Guide 289

12 - Socket Functions

Parameters

Notes

PGPInt32 *addressLength);

socketRef the target socket

buffer the receiving buffer

bufferLength the maximum length of the data that can be received
flags the receive flags

address the receive-from address (optional)

addressLength the length of the receive-from address (optional)

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

DNS and Protocol Services Functions

PGPGetHostName

Obtains the host name of the machine on which the calling application is
executing.

Syntax
PGPInt32 PGPGetHostName(
char *name,
PGPInt32 nameLength);
Parameters
name the receiving field for the target host’s name
namelLength the maximum length of the host name that can be received
PGPGetHostByName
Obtains the host entry for the specified host name. If no host having the
specified name can be found, then the function returns NULL
Syntax
PGPHostEntry * PGPGetHostByName(const char *name);
Parameters

name the target host’s name

290 PGP Software Developer’s Kit

12 - Socket Functions

PGPGetHostByAddress

Syntax

Parameters

Obtains the host entry for the host associated with the specified address. If no
host having the specified address and type can be found, then the function
returns NULL

PGPHostEntry * PGPGetHostByAddress(
const char *address,
PGPInt32 addressLength,
PGPInt32 type);

address the target host’s address
addressLength the length of the target host’s address (in bytes)
type the type of the target host’s address

PGPGetProtocolByName

Syntax

Parameters

Obtains the protocol entry for the specified protocol name. If no protocol having
the specified name can be found, then the function returns NULL

PGPProtocolEntry * PGPGetProtocolByName(
const char *name);

name the target protocol’s name

PGPGetProtocolByNumber

Syntax

Parameters

Obtains the protocol entry for the specified protocol number. If no protocol
having the specified number can be found, then the function returns NULL

PGPProtocolEntry * PGPGetProtocolByNumber(
PGPINt32 num);

num the target protocol’s number

Reference Guide 291

12 - Socket Functions

PGPGetServiceByName

Obtains the service entry for the specified service name. If no service having the
specified name can be found, then the function returns NULL

Syntax
PGPServiceEntry * PGPGetServiceByName(
const char *name,
const char *protocol);
Parameters
name the target service’s name
PGPGetServiceByPort
Obtains the service entry for the specified port/protocol combination. If the
specified protocol/port combination cannot be found, then the function returns
NULL
Syntax
PGPServiceEntry * PGPGetServiceByPort(
PGPInt32 port,
const char *protocol);
Parameters
port the target port
protocol the protocol of the target port

Net Byte Ordering Macros

Windows & UNIX Platforms Net Byte Ordering Macros

PGPInt32 PGPHostToNetLong(PGPInt32 x);
PGPInt16 PGPHostToNetShort(PGPInt16 x);
PGPInt32 PGPNetToHostLong(PGPInt32 x);
PGPInt16 PGPNetToHostShort(PGPInt16 x);

MacOS Platforms Net Byte Ordering Macros

#define PGPHostToNetLong(x)(x)
#define PGPHostToNetShort(x)(x)
#define PGPNetToHostLong(x)(x)
#define PGPNetToHostShort(x)(x)

292 PGP Software Developer's Kit

12 - Socket Functions

Error Reporting Functions

PGPGetLastSocketsError

Obtains the error number of the last function performed on the currently
selected sockets (see PGPSelect).

Syntax
PGPError PGPGetLastSocketsError(void);

Utility Functions

PGPGetSocketName
Obtains the name associated with the specified socket, and returns its length.
Syntax
PGPInt32 PGPGetSocketName(
PGPSocketRef socketRef,
PGPSocketAddress *name,
PGPInt32 *nameLength);
Parameters
socketRef the target socket
address the receiving field for the socket’s name
addressLength the length of the socket’s name
Notes
If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError
PGPGetPeerName
Obtains the peer name for the specified socket, and returns its length.
Syntax
PGPInt32 PGPGetPeerName(
PGPSocketRef socketRef,
PGPSocketAddress *name,
PGPInt32 *nameLength);
Parameters
socketRef the target socket
address the receiving field for the name of the target socket’s

Reference Guide 293

12 - Socket Functions

Notes

peer
addressLength the length of the socket’s peer’s name

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

PGPDottedTolnternetAddress

Syntax

Parameters

Notes

Returns the numeric representation of the specified dotted string address, for
example the dotted string address 127.127.127.127 would yield the
numeric address OX7F7F7F7F.

PGPUINt32 PGPDottedTolnternetAddress(
const char *address);

address the target Internet address, which is a C string of the form
255.255.255.255

The dotted string must be NULterminated.

PGPInternetAddressToDottedString

Syntax

Parameters

Notes

Returns the dotted string representation of the specified numeric address, for
example the numeric address OXx7F7F7F7F would yield the dotted string
address 127.127.127.127

char * PGPInternetAddressToDottedString(
PGPInternetAddress address);

address the target Internet address, which is expected to be a numeric
value in host byte order

The resultant dotted string Internet address is guaranteed to be NULterminated.

The caller is responsible for de-allocating the resultant dotted string Internet
address with PGPFreeData .

294 PGP Software Developer’s Kit

12 - Socket Functions

Control and Options Functions

PGPIOControlSocket

Sends the specified 1/0 control command to the specified socket.

Syntax
PGPInt32 PGPIOControlSocket(
PGPSocketRef socketRef,
PGPInt32 command,
PGPUINt32 *commandArg);
Parameters
socketRef the target socket
command the desired 170 control command
commandArg the desired 1/0 control command argument value
Notes
If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError
PGPSetSocketOptions
Sets the specified option for the specified socket.
Syntax
PGPInt32 PGPSetSocketOptions(
PGPSocketRef socketRef,
PGPInt32 level,
PGPInt32 optionName,
const char *optionValue,
PGPInt32 optionLength);
Parameters
socketRef the target socket
level the level at which the option is defined
optionName the desired socket option
optionValue the value of the desired socket option
optionLength the length of the value of the desired socket option
Notes

For boolean options, a non-zero value is considered TRUE a zero value is
considered FALSE

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

Reference Guide 295

12 - Socket Functions

PGPGetSocketOptions
Obtains the specified option for the specified socket.
Syntax
PGPInt32 PGPGetSocketOptions(
PGPSocketRef socketRef,
PGPInt32 level,
PGPInt32 optionName,
char *optionValue,
PGPInt32 *optionLength);
Parameters
socketRef the target socket
level the level at which the option is defined
optionName the socket option to obtain
optionValue the receiving field for the desired socket option
optionLength the maximum length of the receiving field
Notes

For boolean options, a non-zero value is considered TRUE a zero value is
considered FALSE

If the return value is KPGPSockets_Error , then the caller should obtain the
actual error code via PGPGetLastSocketError

TLS-related Functions

PGPSocketsEstablishTLSSession

Associates the specified socket with the specified TLS session, thus securing
communications over that socket.

Syntax
PGPError PGPSocketsEstablishTLSSession(
PGPSocketRef socketRef,
PGPtlsSessionRef tlsSession);
Parameters
socketRef the target socket
tlIsSession the target TLS session

296 PGP Software Developer’s Kit

BigNum Functions

Introduction

Modern encryption algorithms are based upon large, difficult-to-factor
numbers, which in turn are based upon large primes. The PGPsdk BigNum
(“Big Number”) functions allow sophisticated PGPsdk developers access to the
underlying functions that form the basis for strong cryptographic key
generation. These include:

= create, copy, and free BigNum data types
= perform arithmetic operations with BigNums as operands

= perform arithmetic operations with BigNums and unsigned 16-bit
quantities as operands

Many of the function descriptions include conceptual, pseudo-code examples
that illustrate their processing in terms of C language operators and standard
math library functions. However, these examples do not necessarily reflect
either the implementation strategy or the actual usage of the function. They
are not intended as actual sample code!

All BigNum values are considered to be non-negative, and so none of the
BigNum functions will ever yield a negative result. Furthermore, most of the
BigNum functions return one of:

» kPGPError_NoErr
» kPGPError_BadParams
» kPGPError_OutOfMemory

In most error instances, input operand values are preserved while output
operand values are undefined. Notable exceptions include:

= subtraction underflow, for example:
(a-Db) wherelal < |b|)

= inversion where the number is not relatively prime to the modulus, for
example:
ged(x , m) =1)

< divide by zero

= illegal operand overlap

Reference Guide 297

13 - BigNum Functions

The later two exceptions result in run-time assertion failures. Subtraction
underflow returns kPGPError_NoErr , but sets its output operand value to
(b — a) ,andits underflow indicator to TRUE

Header Files

pgpBigNum.h

BigNum Management Functions

PGPNewBigNum
Creates a new BigNum.
Syntax
PGPError PGPNewBigNum(
PGPMemoryMgrRef pgpMemoryMgr,
PGPBoolean useSecureMem,
PGPBigNumRef *bn);
Parameters
pgpMemoryMgr the target memory manager
useSecureMem TRUE if the the resultant BigNum should be allocated
in secure memory (see PGPNewSecureData)
bn the receiving field for the resultant BigNum
Notes
The caller is responsible for deallocating the resultant BigNum with
PGPFreeBigNum.
PGPCopyBigNum
Creates an exact copy of the specified BigNum, including its value. If the
specified BigNum was allocated in secure memory, then its copy will be
allocated in secure memory.
Syntax

PGPError PGPCopyBigNum(
PGPBigNumRef bnOrig,
PGPBigNumRef *bnCopy);

298 PGP Software Developer’s Kit

13 - BigNum Functions

Parameters
bnOrig the source BigNum
bnCopy the receiving field for the copy of the BigNum
Notes
The caller is responsible for deallocating the resultant BigNum copy with
PGPFreeBigNum.
Currently, details of the BigNum data type (specifically whether or not it resides
in secure memory) are not visible at the PGPsdk level.
PGPFreeBigNum
Frees the specified BigNum.
Syntax
PGPError PGPFreeBigNum(PGPBigNumRef bn);
Parameters
bn the target BigNum
Notes

BigNums do not have associated reference counts — the data item is always
deallocated.

PGPPreallocateBigNum

Syntax

Parameters

Ensures that the specified BigNum can accommodate values whose expression
requires at most the specified number of bits. If an error occurs, then the
specified BigNum is unaltered.

PGPError PGPPreallocateBigNum(
PGPBigNumRef bn,
PGPUINt32 numBits);

bn the target BigNum

numBits the maximum number of bits required to express the
anticipated value(s)

Reference Guide 299

13 - BigNum Functions

BigNum Assignment Functions

PGPAssignBigNum

Assigns the value of the specified source BigNum to that of the specified
destination BigNum. This function differs from PGPCopyBigNumin that the
destination BigNum must already exist.

Syntax
PGPError PGPAssignBigNum(
PGPBigNumRef bnSrc,
PGPBigNumRef bnDest);
Parameters
bnSrc the source BigNum
bnDest the destination BigNum
Notes
If the destination cannot accommodate the source value’s number of significant
bits, then the destination is automatically resized (see
PGPPreallocateBigNum).
PGPSwapBigNum
Swaps the values of two BigNums. Conceptually, this operation can be
expressed as:
bnTmp = bn2;
bn2 = bni;
bnl = bnTmp;
Syntax
PGPError PGPSwapBigNum(
PGPBigNumRef bnl,
PGPBigNumRef bn2);
Parameters
bni the first BigNum
bn2 the second BigNum
Notes

The source and destination are automatically resized as required (see
PGPPreallocateBigNum).

300 PGP Software Developer’s Kit

13 - BigNum Functions

PGPBigNumEXxtractBigEndianBytes

Syntax

Parameters

Extracts the specified number of bytes from the specified BigNum (starting at
the specified offset), and places them into the specified destination buffer in
big-endian order as a base 256 value, that is,

(bn / pow(256, IsByt e)) % pow(256, numBytes)

Unused high-order (leading) bytes are filled with zeroes.

PGPError PGPBigNumEXxtractBigEndianBytes(
PGPBigNumRef bn,
PGPByte *destBuffer,
PGPUINt32 IsByte,
PGPUINt32 numBytes);

bn the target BigNum

destBuffer the receiving field for the to-be-extracted bytes, whose size
must be at least numBytes bytes

IsByte the offset (zero-based) of the starting byte

numBytes the number of bytes to extract

PGPBigNuminsertBigEndianBytes

Syntax

Parameters

Inserts the specified number of bytes (assumed to be in big-endian order) as a
base 256 value, that is,

(bn / pow(256, IsByt e)) % pow(256, numBytes)
from the specified source buffer into the specified BigNum starting at the
specified offset.

PGPError PGPBigNuminsertBigEndianBytes(
PGPBigNumRef bn,
PGPByte const *srcBuffer,
PGPUINt32 IsByte,
PGPUINt32 numBytes);

bn the target BigNum

srcBuffer the source field for the to-be-inserted bytes, whose size must
be at least numBytes bytes

IsByte the offset (zero-based) of the starting byte

numBytes the number of bytes to insert

Reference Guide 301

13 - BigNum Functions

PGPBigNumEXxtractLittieEndianBytes

Syntax

Parameters

Extracts the specified number of bytes from the specified BigNum (starting at
the specified offset), and places them into the specified destination buffer in
little-endian order as a base 256 value, that is,

(bn / pow(256, IsByt e)) % pow(256, numBytes)

Unused high-order (trailing) bytes are filled with zeroes.

PGPError PGPBigNumEXxtractLittleEndianBytes(
PGPBigNumRef bn,
PGPByte *destBuffer,
PGPUINt32 IsByte,
PGPUINt32 numBytes);

bn the target BigNum

destBuffer the receiving field for the to-be-extracted bytes, whose size
must be at least numBytes bytes

IsByte the offset (zero-based) of the starting byte

numBytes the number of bytes to extract

PGPBigNuminsertLittleEndianBytes

Syntax

Parameters

Inserts the specified number of bytes (assumed to be in little-endian order) as a
base 256 value, that is,

(bn / pow(256, IsByt e)) % pow(256, numBytes)
from the specified source buffer into the specified BigNum starting at the
specified offset.

PGPError PGPBigNuminsertLittleEndianBytes(
PGPBigNumRef bn,
PGPByte const *srcBuffer,
PGPUINt32 IsByte,
PGPUINt32 numBytes);

bn the target BigNum

srcBuffer the source field for the to-be-inserted bytes, whose size must
be at least numBytes bytes

IsByte the offset (zero-based) of the starting byte

numBytes the number of bytes to insert

302 PGP Software Developer's Kit

13 - BigNum Functions

PGPBigNumGetLSWord

Returns the least significant 16 bits of the specified BigNum. If the specified
BigNum has less than 16 significant bits, then the returned value is padded out
with zeroes.

Syntax

PGPUINt16 PGPBigNumGetLSWord(PGPBigNumRef bn);
Parameters

bn the target BigNum

PGPBigNumGetSignificantBits

Returns the number of significant bits in the specified BigNum. This will either
be zero, or a value that is conceptually computed as:
floor(log2(bn)) + 1;

Syntax

PGPUINt32 PGPBigNumGetSignificantBits(PGPBigNumRef bn);
Parameters

bn the target BigNum

BigNum Arithmetic Functions

PGPBigNumAdd

Adds the specified source BigNums, and places the result into the specified
destination BigNum.

Syntax
PGPError PGPBigNumAdd(
PGPBigNumRef bnSrcl,
PGPBigNumRef bnSrc2,
PGPBigNumRef bnDest);
Parameters
bnSrcl the first source BigNum
bnSrc2 the second source BigNum
bnDest the destination BigNum
Notes

Either of the source BigNums may refer to the same data item as the destination
BigNum, and doing so will enhance performance.

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

Reference Guide 303

13 - BigNum Functions

PGPBigNumSubtract

Syntax

Parameters

Notes

Subtracts the specified second source BigNum from the specified first BigNum,
and places the result into the specified destination BigNum.

PGPError PGPBigNumSubtract(
PGPBigNumRef bnSrc1,
PGPBigNumRef bnSrc2,
PGPBigNumRef bnDest,
PGPBoolean *underflowind);

bnSrcl the first source BigNum
bnSrc2 the second source BigNum
bnDest the destination BigNum

underflowind TRUE if underflow occurred, thatis (bnSrcl < bnSrc2) ;
FALSEotherwise.

If the source BigNums refer to the same data item, then the following is a much
faster alternative:

PGPBigNumSetQ(bnDest, (PGPUInt16)0);
If the first source BigNum refers to the same data item as the destination
BigNum, then this will enhance performance; if the second source BigNum
refers to the same data item as the destination BigNum, then this will adversely
affect performance.

If the first source value is less than the second source value (subtraction
underflow), then no error is returned, underflowind is set to TRUE, and the
destination value is computed by subtracting the first source BigNum from the

second source BigNum, that is
if (underflowInd != (PGPBoolean *)NULL)

*underflowind = FALSE;
}
if (bnSrcl < bnSrc2)
{
bnDest = bnSrc2 - bnSrc;
if (underflowInd != (PGPBoolean *)NULL)

*underflowind = TRUE;
}
err = kPGPError_NoErr;
}
else
{
bnDest = bnSrcl — bnSrc2;
err = kPGPError_NoErr;

304 PGP Software Developer's Kit

13 - BigNum Functions

return(err);

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

PGPBigNumCompare

Compares the specified values, and returns -1, 0, or 1 depending on whether or
not bn1 is less than, equal to, or greater than bn2.

Syntax
PGPInt32 PGPBigNumCompare(
PGPBigNumRef bnl,
PGPBigNumRef bn2);
Parameters
bni the first BigNum
bn2 the second BigNum
PGPBigNumSquare
Squares the specified source value, and sets the destination value to the result.
Syntax
PGPError PGPBigNumSquare(
PGPBigNumRef bnSrc,
PGPBigNumRef bnDest);
Parameters
bnSrc the source BigNum
bnDest the destination BigNum
Notes
While the source BigNum may refer to the same data item as the destination
BigNum, doing so will adversely affect performance.
If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).
PGPBigNumMultiply
Multiplies the specified source values, and sets the destination value to the
result.
Syntax

PGPError PGPBigNumMultiply(
PGPBigNumRef bnMultiplicand,
PGPBigNumRef bnMultiplier,

Reference Guide 305

13 - BigNum Functions

Parameters

Notes

Syntax

Parameters

Notes

PGPBigNumRef bnProduct);

bnMultiplicand the first source BigNum
bnMultiplier the second source BigNum
bnProduct the destination BigNum

While either of the source BigNums may refer to the same data item as the
destination BigNum, doing so will adversely affect performance.

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

PGPBigNumDivide

Divides the specified source values, and sets the specified destination values to
the resultant quotient and remainder values.

PGPError PGPBigNumDivide(
PGPBigNumRef bnNumerator,
PGPBigNumRef bnDenominator,
PGPBigNumRef bnQuotient,
PGPBigNumRef bnRemainder);

bnNumerator the first source BigNum (numerator)
bnDenominator the second source BigNum (denominator)
bnQuotient the first destination BigNum (quotient)
bnRemainder the second destination BigNum (remainder)

The quotient may not refer to the same data item as either the numerator or the
denominator.

The remainder may not refer to the same data item as the denominator.

If the numerator and denominator refer to the same data item or have the same
value, then the following is a much faster alternative:

PGPBigNumSetQ(bnQuotient, (PGPUInt16)1);

PGPBigNumSetQ(bnRemainder, (PGPUInt16)0);
Re-entrancy issue: the denominator is modified during the course of
processing, but is restored to its original value prior to return.

The quotient and remainder are resized as required (see
PGPPreallocateBigNum).

306 PGP Software Developer's Kit

13 - BigNum Functions

PGPBigNumMod

Syntax

Parameters

Notes

Computes the remainder that results from dividing the two source BigNums.
Conceptually, this is the same as calling PGPBigNumDivide and ignoring the
resultant quotient.

PGPError PGPBigNumMod(
PGPBigNumRef bnNumerator,
PGPBigNumRef bnDenominator,
PGPBigNumRef bnRemainder);

bnNumerator the first source BigNum (numerator)
bnDenominator the second source BigNum (denomiator)
bnRemainder the destination BigNum

The denominator may not refer to the same data item as the remainder.

If the numerator and denominator refer to the same data item or have the same
value, then the following is a much faster alternative:

PGPBigNumSetQ(bnDest, (PGPUInt16)0);
Re-entrancy issue: the denominator is modified during the course of
processing, but is restored to its original value prior to return.

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

PGPBigNumExpMod

Syntax

Raises the specified source value to the specified power, divides the
intermediate value by the denominator value, and then places the remainder of
the division into the destination BigNum. Conceptually, this operation can be
expressed as:

bnRemainder = pow(bnNumerator, bnEx p) % bnDenominator;

PGPError PGPBigNumExpMod(
PGPBigNumRef bnNumerator,
PGPBigNumRef bnExp,
PGPBigNumRef bnDenominator,
PGPBigNumRef bnRemainder);

Reference Guide 307

13 - BigNum Functions

Parameters

Notes

bnNumerator the source BigNum
bnExp the exponent BigNum
bnDenominator the denominator BigNum
bnRemainder the destination BigNum

The denominator must be odd.

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

PGPBigNumDoubleExpMod

Syntax

Parameters

Notes

Raises each of the source values to their associated powers, multiplies the two
intermediate values, divides that intermediate value by the denominator value,
and then places the remainder of the division into the destination value.

Conceptually, this operation can be expressed as:
bnRemainde r = (pow(bnNumeratorl, bnExpl) *
pow(bnNumerator2, bnExp 2)) % bnDenominator;

PGPError PGPBigNumbDoubleExpMod(
PGPBigNumRef bnNumeratorl,
PGPBigNumRef bnExpl,
PGPBigNumRef bnNumerator2,
PGPBigNumRef bnExp2,
PGPBigNumRef bnDenominator,
PGPBigNumRef bnRemainder);

bnNumeratorl the first source BigNum
bnExpl the first exponent BigNum
bnNumerator2 the second source BigNum
bnExp2 the second exponent BigNum
bnDenominator the denominator BigNum
bnRemainder the destination BigNum

The denominator must be odd.

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

308 PGP Software Developer's Kit

13 - BigNum Functions

PGPBigNumTwoExpMod

Syntax

Parameters

Notes

Raises two to the specified power, and then sets the destination value to the
modulus of the result.

PGPError PGPBigNumTwoExpMod(
PGPBigNumRef bnExp,
PGPBigNumRef bnDenominator,
PGPBigNumRef bnModulus);

bnExp the exponent BigNum
bnDenominator the modulo BigNum
bnModulus the destination BigNum

The denominator must be odd.

This operation is equivalent to PGPBigNumExpModwhere the numerator has a
value of two.

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

PGPBigNuminv

Syntax

Parameters

Notes

Divides the value 1 by the specified source, divides the intermediate value by

the denominator value, and then places the remainder of the division into the

destination BigNum. Conceptually, this operation can be expressed as:
bnRemainder = (1 / bnSourc e) % bnDenominator;

PGPError PGPBigNuminv(
PGPBigNumRef bnSource,
PGPBigNumRef bnDenominator,
PGPBigNumRef bnRemainder);

bnSource the source BigNum
bnDenominator the denominator BigNum
bnRemainder the destination BigNum

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

Reference Guide 309

13 - BigNum Functions

PGPBIigNumLeftShift

Shifts the specified BigNum left by the specified number of bits. Vacated bit
positions are zero-filled (logical shift). Conceptually, this operation can be
expressed as:

bn = bn * pow(2, magnitude);

Syntax

PGPError PGPBigNumLeftShift(
PGPBigNumRef bn,
PGPUINt32 magnitude);

Parameters
bn the target BigNum
magnitude the number of bits to shift
Notes

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

PGPBigNumRightShift

Shifts the specified BigNum right by the specified number of bits. Vacated bit
positions are zero-filled; shifted-out bits are discarded. Conceptually, this
operation can be expressed as:

bn = floor(bn / pow(2, magnitude));

Syntax

PGPError PGPBigNumRightShift(
PGPBigNumRef bn,
PGPUINt32 magnitude);

Parameters
bn the target BigNum
magnitude the number of bits to shift

310 PGP Software Developer's Kit

13 - BigNum Functions

PGPBigNumGCD

Syntax

Parameters

Determines the greatest common denominator for the specified source values,
and places the result in the specified destination. Conceptually, this operation
can be expressed as:

bnDest = gcd(bnl, bn2);
If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

PGPError PGPBigNumGCD(
PGPBigNumRef bnl,
PGPBigNumRef bn2,
PGPBigNumRef bnDest);

bni the first BigNum
bn2 the second BigNum
bnDest the destination BigNum

PGPBigNumMakeOdd

Syntax

Parameters

Notes

Determines the largest power of two that may divide the specified BigNum
while yielding a resultant quotient that is greater than zero. Once determined,
the specified BigNum is divided by that power of two, and the associated
power itself is returned. Conceptually, this operation can be expressed as:

exp = 0;

whil e ((bnl >>1)>0)

{

}

bnDest = bnDest >> exp;
return(exp);

exp++;

PGPUINt16 PGPBigNumMakeOdd(PGPBigNumRef bn);

bn the target BigNum

The source BigNum is never expected to have a value of zero.

The resultant exponent value is never expected to exceed the maximum value
of a PGPUInt16 .

The function call:
err = PGPBigNumLeftShift(bn, PGPBigNumMakeOdd(bn));

is an identity operation.

Reference Guide 311

13 - BigNum Functions

BigNum 16-bit Constant Arithmetic Functions

PGPBIigNumSetQ
Assigns the specified 16-bit constant as the value of the specified destination
BigNum.
Syntax
PGPError PGPBigNumSetQ(
PGPBigNumRef bn,
PGPUINt16 kUInt16);
Parameters
bn the target BigNum
kUInt16 the desired 16-bit constant
Notes
The PGPsdk developer must employ additional PGPBigNum..functions to set a
BigNum to a value greater than the maximum value of a PGPUInt16 . These
may include the arithmetic functions and/or the PGPBigNumlInsert...Bytes
functions.
PGPBigNumAddQ
Adds the specified 16-bit constant to the specified source value, and sets the
destination value to the result.
Syntax
PGPError PGPBigNumAddQ(
PGPBigNumRef bnSrc,
PGPUINt16 kUInt16,
PGPBigNumRef bnDest);
Parameters
bnSrc the source BigNum
kUInt16 the desired 16-bit constant
bnDest the destination BigNum
Notes

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

312 PGP Software Developer’s Kit

13 - BigNum Functions

PGPBigNumSubtractQ

Syntax

Parameters

Notes

Subtracts the specified 16-bit value from the specified source value, and sets the
destination value to the result.

PGPError PGPBigNumSubtractQ(
PGPBigNumRef bnSrc,
PGPUINt16 kUInt16,
PGPBigNumRef bnDest,
PGPBoolean *underflowind);

bnSrc the source BigNum
kUInt16 the desired 16-bit constant
bnDest the destination BigNum

underflowind TRUE if underflow occurred, thatis (bnSrcl < kUIntl6) ;
FALSEotherwise.

If the source value is less than the 16-bit constant value, then no error is
returned, underflowind is set to TRUE and the destination value is computed
by subtracting the source BigNum from the 16-bit constant, that is

if (underflowInd != (PGPBoolean *)NULL)

*underflowind = FALSE;

}
if (bnSrc < kUInt16)

{
bnDest = kUIntl6 - bnSrc;
if (underflowind != (PGPBoolean *)NULL)

{
*underflowind = TRUE;

bnDest = bnSrc - kUInt16;

}
return(KPGPError_NoError);

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

Reference Guide 313

13 - BigNum Functions

PGPBigNumCompareQ

Compares the value of the specified BigNum with that of the specified 16-bit
constant, and returns -1, 0, or 1 depending on whether or not bn is less than,
equal to, or greater than the specified 16-bit constant.

Syntax
PGPInt32 PGPBigNumCompareQ(
PGPBigNumRef bn,
PGPUINt16 kUInt16);
Parameters
bn the target BigNum
kUInt16 the desired 16-bit constant
PGPBigNumMultiplyQ
Multiplies the specified source value by the specified 16-bit constant, and sets
the destination value to the result.
Syntax
PGPError PGPBigNumMultiplyQ(
PGPBigNumRef bnSrc,
PGPUINt16 kUInt16,
PGPBigNumRef bnDest);
Parameters
bnSrc the source BigNum
kUInt16 the desired 16-bit constant
bnDest the destination BigNum
Notes

If the destination cannot accommodate the resultant number of significant bits,
then the destination is automatically resized (see PGPPreallocateBigNum).

314 PGP Software Developer’s Kit

13 - BigNum Functions

PGPBigNumModQ

Computes the modulus of the specified values, and returns the result.

Conceptually, this operation can be expressed as:
return(bnNumerator % bnDenominator);

Syntax
PGPUINt16 PGPBigNumModQ(
PGPBigNumRef bnNumerator,
PGPUINnt16 bnDenominator);
Parameters

bnNumerator the source BigNum
bnDenominator the desired modulo

Reference Guide 315

13 - BigNum Functions

316 PGP Software Developer's Kit

PGPsdk Error Summary

Introduction

The PGPsdk functions return a large number of error codes, and these are both
enumerated and explained in this appendix. However, the PGPsdk developer
should keep the following points in mind when making use of this
information:

the listed error codes and their related descriptions are specific to this
instance of the PGPsdk only (Version 1.7.1), and are subject to change in
later instances

the circumstances under which a particular error code is returned are
subject to change in a later instance of the PGPsdk

a particular error code may be superseded by another and/or more specific
error code in a later instance of the PGPsdk

several error codes are currently unused and/or unimplemented. These
and possibly other error codes may be removed from a later instance of the
PGPsdk

a particular error codes may not currently be visible at the PGPsdk level, or
may not currently be visible under certain circumstances. For example, the
PGPsdk “convenience” functions may supersede a specific lower-level
error code with a more general error code

Reference Guide 317

A - PGPsdk Error Summary

Table A-1. Generic Errors

Generic Error Constant

kPGPError_NoErr

kPGPError_BadParams

kPGPError_BadPassphrase

kPGPError_BufferTooSmall

kPGPError_CorruptData

kPGPError_EndOflteration

kPGPError_FeatureNotAvailable

kPGPError_Improperlinitialization

kPGPError_IncompatibleAPI

kPGPError_ltemAlreadyExists

kPGPError_ltemNotFound

kPGPError_LazyProgrammer

kPGPError_OptionNotFound

kPGPError_OutOfEntropy

kPGPError_OutOfMemory

kPGPError_PrefNotFound

kPGPError_RedundantOptions

kPGPError_UnknownError

kPGPError_UnknownRequest

kPGPError_UserAbort

Table A-2. File Errors

File Error Constant

kPGPError_CantOpenFile

kPGPError_DiskFull

kPGPError_DiskLocked

kPGPError_EOF

kPGPError_FileCorrupt

kPGPError_FileLocked

kPGPError_FileNotFound

kPGPError_FileOpFailed

kPGPError_FilePermissions

kPGPError_lllegalFileOp

kPGPError_NoMacBinaryTranslationAvailable

kPGPError_NotMacBinary

kPGPError_ReadFailed

kPGPError_WriteFailed

318 PGP Software Developer’s Kit

A - PGPsdk Error Summary

Table A-3. Keyring Validity Check Errors

Keyring Validity Error Constant

kPGPError_AdditionalRecipientRequestKeyNotFound

kPGPError_BadPacket

kPGPError_TroubleBadTrust

kPGPError_TroubleBareKey

kPGPError_TroubleDuplicateKey

kPGPError_TroubleDuplicateKeylD

kPGPError_TroubleDuplicateName

kPGPError_TroubleDuplicateSecretKey

kPGPError_TroubleDuplicateSignature

kPGPError_TroubleDuplicateUnknown

kPGPError_TroublelmportingNonexportableSignature

kPGPError_TroubleKeySubKey

kPGPError_TroubleKeyTooBig

kPGPError_TroubleNameTooBig

kPGPError_TroubleNewSecretkey

kPGPError_TroubleOldSecretKey

kPGPError_TroubleSecretKeyTooBig

kPGPError_TroubleSignatureTooBig

kPGPError_TroubleSigSubKey

kPGPError_TroubleUnexpectedName

kPGPError_TroubleUnexpectedSignature

kPGPError_TroubleUnexpectedSubKey

kPGPError_TroubleUnexpectedTrust

kPGPError_TroubleUnexpectedUnknown

kPGPError_TroubleUnknownPacketByte

kPGPError_TroubleUnknownTooBig

kPGPError_TroubleVersionBugCur

kPGPError_TroubleVersionBugPrev

Table A-4. Key Set Filter Errors

Filter Error Constant

kPGPError_InconsistentFilterClasses

kPGPError_InvalidFilterParameter

kPGPError_UnknownFilterType

kPGPError_UnsupportedHKPFilter

kPGPError_UnsupportedLDAPFilter

Reference Guide

319

A - PGPsdk Error Summary

Table A-5. Key, Sub-Key, and User ID Errors

Key-Related Error Constant

kPGPError_CertifyingKeyDead

kPGPError_DuplicateCert

kPGPError_DuplicateUserID

kPGPError_InvalidProperty

kPGPError_ltemIsReadOnly

kPGPError_ltemWasDeleted

kPGPError_KeyDisabled

kPGPError_KeyExpired

kPGPError_Keylnvalid

kPGPError_KEY_LONG

kPGPError_KeyPacketTruncated

kPGPError_KeyRevoked

kPGPError_KeyToolLarge

kPGPError_KeyUnusableForEncryption

kPGPError_KeyUnusableForSignature

kPGPError_MalformedKeyComponent

kPGPError_MalformedKeyExponent

kPGPError_MalformedKeyModulus

kPGPError_PublicKkeyUnimplemented

kPGPError_RSAPublicExponentisEven

kPGPError_RSAPublicModuluslsEven

kPGPError_UnknownKeyVersion

kPGPError_UnknownPublicKeyAlgorithm

kPGPError_UnknownString2Key

320 PGP Software Developer’s Kit

A - PGPsdk Error Summary

Table A-6. Signature Errors

Signature Error Constant

kPGPError_BadSignatureSize

kPGPError_ExtraDateOnSignature

kPGPError_ExtraSignatureMaterial

kPGPError_MalformedSignaturelnteger

kPGPError_SignatureBitsWrong

kPGPError_SIG_LONG

kPGPError_TruncatedSignature

kPGPError_UnknownSignatureAlgorithm

kPGPError_UnknownSignatureType

kPGPError_UnknownSignatureVersion

kPGPError_X509InvalidCertificateFormat

kPGPError_X509InvalidCertificateSignature

kPGPError_X509NeededCertNotAvailable

kPGPError_X509SelfSignedCert

Table A-7. Encode/Decode Errors

Encode/Decode Error Constant

kPGPError_AsciiParselncomplete

kPGPError_CombinedConventionalAndPublicEncryption

kPGPError_CorruptSessionKey

kPGPError_DetachedSignatureFound

kPGPError_DetachedSignatureWithEncryption

kPGPError_DetachedSignatureWithoutSigningKey

kPGPError_InconsistentEncryptionAlgorithms

kPGPError_InputFile

kPGPError_Interrupted

kPGPError_MissingEventHandler

kPGPError_MissingKeySet

kPGPError_MissingPassphrase

kPGPError_MultiplelnputOptions

kPGPError_MultipleOutputOptions

kPGPError_NoDecryptionKeyFound

kPGPError_NolnputOptions

kPGPError_NoOutputOptions

kPGPError_OutputBufferTooSmall

kPGPError_SkipSection

kPGPError_TooManyARRKs

Reference Guide

321

A - PGPsdk Error Summary

Table A-8. Key Server Errors

Key Server Error Constant

kPGPError_ServerAddFailed

kPGPError_ServerAuthorizationFailed

kPGPError_ServerAuthorizationRequired

kPGPError_ServerBadKeysIinSearchResults

kPGPError_ServerBindFailed

kPGPError_ServerConnectFailed

kPGPError_ServerCorruptKeyBlock

kPGPError_ServerlnvalidProtocol

kPGPError_ServerKeyAlreadyExists

kPGPError_ServerKeyFailedPolicy

kPGPError_ServerOpenFailed

kPGPError_ServerOperationNotAllowed

kPGPError_ServerPartialAddFailure

kPGPError_ServerRequestFailed

kPGPError_ServerSearchFailed

kPGPError_ServerSocketError

kPGPError_ServerTooManyResults

kPGPError_ServerUnknownHost

kPGPError_ServerUnknownResponse

Table A-9. Client/Server Communications Errors

Communication Error Constant

kPGPError_SocketsAddressFamilyNotSupported

kPGPError_SocketsAddressinUse

kPGPError_SocketsAddressNotAvailable

kPGPError_SocketsAlreadyConnected

kPGPError_SocketsBufferOverflow

kPGPError_SocketsDomainServerError

kPGPError_SocketsHostNotFound

kPGPError_SocketsInProgress

kPGPError_SocketsListenQueueFull

kPGPError_SocketsNetworkDown

kPGPError_TLSAlertReceived

kPGPError_TLSKeyUnusable

kPGPError_TLSNoCommonCipher

kPGPError_TLSProtocolViolation

kPGPError_TLSUnexpectedClose

kPGPError_TLSVersionUnsupported

kPGPError_TLSWrongState

322 PGP Software Developer's Kit

A - PGPsdk Error Summary

Table A-10. Rarely Encountered PGP Errors

Error Constant

kPGPError_AssertFailed
kPGPError_BadCipherNumber
kPGPError_BadHashNumber
kPGPError_BadKeyLength
kPGPError_BadMemAddress
kPGPError_BadSessionKeyAlgorithm
kPGPError_BadSessionKeySize
kPGPError_BigNumNolnverse
kPGPError_CantDecrypt
kPGPError_CantHash
kPGPError_ConfigParseFailure
kPGPError_ConfigParseFailureBadFunction
kPGPError_ConfigParseFailureBadOptions
kPGPError_EnvPriorityTooLow
kPGPError_FIFOReadError
kPGPError_InvalidCommit
kPGPError_KeylsLocked
kPGPError_OutOfRings
kPGPError_PublicKkeyTooLarge
kPGPError_PublickeyTooSmall
kPGPError_RandomSeedTooSmall
kPGPError_SecretKeyNotFound
kPGPError_SizeAdviseFailure
kPGPError_UnbalancedScope
kPGPError_UnknownCharMap
kPGPError_UnknownVersion
kPGPError_WrongScope

Generic Errors

kPGPError NoErr
Success; no error occurred.
kPGPError_ BadParams
= an invalid parameter object or parameter value was detected. This error may be
superseded by a specific function- or value-related error, for example
kPGPError_InvalidFilterParameter
= an option list contains mutually exclusive options
= an option list does not contain one or more required options
kPGPError BadPassphrase
The indicated passphrase:

Reference Guide 323

A - PGPsdk Error Summary

= does not unlock the associated key
= does not authorize the requested key server operation
This may be due to an incorrect passphrase, or to a passphrase having zero length. Rarely,
this may indicate an internal error where an expected passphrase parameter was NULL
kPGPError BufferTooSmall
The indicated buffer cannot hold all of the resultant data; partial data may be present. This
error applies to functions that return a one-time, discrete value, for example,
PGPGetErrorString , and should not be confused with
kPGPError_OutputBufferTooSmall
kPGPError_ CorruptData
= an Elgamal checksum did not match
= an RSA key length is invalid
= the key data is not valid for the key’s version, for example, lengths and even/odd
values
= the group set checksum did not match that expected
kPGPError EndOfIteration
End of iteration (see the PGPKeylter... functions).
kPGPError FeatureNotAvailable
The requested feature, while recognized, is not available with this instance of the PGPsdk.
kPGPError ImproperInitialization
= the PGPsdk has not been properly initialized (see PGPsdkInit)
= the cipher context has not been properly initialized (see PGPInitSymmetricCipher ,
PGPInitCBC , and PGPInitCFB)
= the in-force preferences could not be obtained from the current context (see the
preference functions)
kPGPError_ IncompatibleAPI
The underlying PGPsdk library version is too old or too new.
kPGPError ItemAlreadyExists
The exact key or component already exists (see the key manipulation functions, for
example PGPAddUserID).
kPGPError_ ItemNotFound
= a packet, key, or component was not found (see the key manipulation functions, for
example PGPRevokeSubKey)
= an unknown feature selector value was specified (see PGPGetFeatureFlags)
kPGPError_ LazyProgrammer
= a key ring cannot be closed due to usage conflicts
= a buffer cannot be flushed because its context is not flagged as being writable
kPGPError_ OptionNotFound
The indicated option was not found (implies that a required option was omitted), or is not
valid for the indicated operation.
kPGPError OutOfEntropy
The global random number pool contains insufficient random bits to:
= generate a key using the indicated public key algorithm
= encrypt a block of data to the indicated key(s)

324 PGP Software Developer's Kit

A - PGPsdk Error Summary

kPGPError OutOfMemory
Could not obtain the required amount of memory.
kPGPError_ PrefNotFound
The requested preference was not found, or is not valid for the indicated object and/or
operation.
kPGPError RedundantOptions
Multiple instances of an option that may only appear once were found in the option list.
kPGPError UnknownError
Unknown error.
kPGPError_ UnknownRequest
Unrecognized request.
kPGPError UserAbort
The user cancelled the operation. This always results from an event handler returning this
error code, and its subsequent propagation to the initiating function, for example,
PGPEnNcode.

File-related Errors

The exact meanings of these file-related errors may differ according to platform, particularly
the exact meaning of and reason(s) for returning kPGPError_CantOpenFile
kPGPError_ CantOpenFile
Non-specific file open failure. This could be due to insufficient memory, exceeding a
platform-specific limit, for example, too many open files, or generalization of a more
specific error due to platform-specific error reporting limitations.
kPGPError DiskFull
Cannot write to file — disk or file system is full.
kPGPError_ DiskLocked
A write operation was attempted on a disk that was not flagged as being writable.
kPGPError_ EOF
End of file encountered.
kPGPError_ FileCorrupt
The key database is corrupt.
kPGPError_ FileLocked
A write operation was attempted on a file that was not flagged as being writable.
kPGPError_ FileNotFound
File not found.
kPGPError FileOpFailed
Non-specific file operation failure. This almost always results from an underlying
platform 1/0 error.
kPGPError FilePermissions
= the caller has insufficient privileges to open the file in the indicated mode
= the file resides on a read-only file system

Reference Guide 325

A - PGPsdk Error Summary

kPGPError IllegalFileOp
The requested file operation is illegal, either from a platform perspective or a PGPsdk
perspective:
= a read operation was attempted on a pipe or file that was not flagged as being readable
= an attempt was made to change a file from writable to readable on MacOS
= an attempt was made to revert an in-memory key database that has not been
committed, and so does not have a current backing store
kPGPError NoMacBinaryTranslationAvailable
Translation to Macintosh MacBinary file format is not available.
kPGPError NotMacBinary
The indicated file is not a Macintosh MacBinary file.
kPGPError ReadFailed
Non-specific read-from-file failure.
kPGPError WriteFailed
Non-specific write-to-file failure.

Key Ring Validity Check Errors

These errors are returned primarily from the internal key ring open/read/merge routines
during the validity check phase. If any of these errors occurs, then the key ring contains one
or more invalid and/or corrupted packets, keys, or components.

The kPGPError_Trouble... error codes are primarily internal errors, and are almost always
superseded at the PGPsdk level by a more generic error, for example,
kPGPError_BadPacket
kPGPError AdditionalRecipientRequestKeyNotFound
The referenced additional recipient request key does not exist, that is, the key identified by
the current key’s additional recipient request key component does not exist. Instances
where a component additional recipient request key does not exist reflect
kPGPError_ltemNotFound (see PGPGetindexedAdditionalRecipientRequest
kPGPError BadPacket
Bad packet.
kPGPError TroubleBadTrust
Trust packet malformed.
kPGPError_ TroubleBareKey
Key found with no associated User ID(s). Minimally, that of the key owner should always
exist.
kPGPError_ TroubleDuplicateKey
Duplicate key (in the same key ring).
kPGPError TroubleDuplicateKeyID
Duplicate KeyID, different keys.
kPGPError_ TroubleDuplicateName
Duplicate User ID (in the same key ring).
kPGPError TroubleDuplicateSecretKey

326 PGP Software Developer’s Kit

A - PGPsdk Error Summary

Duplicate private key (in the same key ring).
kPGPError TroubleDuplicateSignature
Duplicate signature (in the same key ring).
kPGPError TroubleDuplicateUnknown
Duplicate unknown item in the key ring.
kPGPError_ TroubleKeySubKey
The current key matches one of its sub-keys.
kPGPError TroubleKeyTooBig
The current key is grossly oversized, that is, its data overflows the internal buffer, which is
sized to accommodate the largest possible key.
kPGPError TroubleNameTooBig
The current User ID is grossly oversized, that is, its data overflows the internal buffer,
which is sized to accommodate the largest possible User ID.
kPGPError_ TroubleNewSecretKey
Internal error — currently unimplemented.
kPGPError_ TroubleOldSecretKey
Internal error — currently unimplemented.
kPGPError TroubleSecretKeyTooBig
The current private key is grossly oversized, that is, its data overflows the internal buffer,
which is sized to accommodate the largest possible private key.
kPGPError TroubleSignatureTooBig
The current signature is grossly oversized, that is, its data overflows the internal buffer,
which is sized to accommodate the largest possible signature.
kPGPError_ TroubleSigSubKey
The current signature is based upon a sub-key, rather than upon a key.
kPGPError_ TroubleUnexpectedName
A User ID was found that is not associated with any key.
kPGPError_ TroubleUnexpectedSignature
A signature was found that is not associated with any key.
kPGPError_ TroubleUnexpectedSubKey
A sub-key was found that is not associated with any key.
kPGPError TroubleUnexpectedTrust
A trust packet was found that is not associated with any key.
kPGPError_ TroubleUnexpectedUnknown
A packet of unknown type was found that is not associated with any key.
kPGPError_ TroubleUnknownPacketByte
A packet of unknown type was found that is associated with a key.
kPGPError TroubleUnknownTooBig
The current packet is of an unknown type, and its length exceeds that of the largest
possible packet.
kPGPError TroubleVersionBugPrev
Internal error related to the current private key’s version.
kPGPError_ TroubleVersionBugCur
Internal error related to the current private key’s version.

Reference Guide 327

A - PGPsdk Error Summary

Key Filter Errors

kPGPError_ InconsistentFilterClasses
PGPIntersectFilters or PGPUnionFilters specifies filters that have incompatible
filter classes. Currently, the PGPsdk defines only one filter class, and so this implies an
internal PGPsdk error.
kPGPError InvalidFilterParameter
An invalid filter function parameter value was detected, for example,
PGPNewKeyEncryptAlgorithmFilter specified an invalid value for its
encryptAlgorithm parameter. This differs from kPGPError_BadParams only in that
it is specific to the key filter functions.
kPGPError_ UnknownFilterType
Unknown filter type. This implies an internal PGPsdk error.
kPGPError_ UnsupportedHKPFilter
Filter translation failed - the resultant query is not supported by HTTP key servers.
kPGPError_ UnsupportedLDAPFilter
Filter translation failed - the resultant query is not supported by LDAP key servers.

Key Errors

These errors are encountered when parsing a key or sub-key packet. If multiple errors occur,
then only the last error is reported. Parse errors imply corrupted packets; non-parse errors
imply incorrect key or sub-key data.
kPGPError_ CertifyingKeyDead
The signing key has been revoked, has expired, or is otherwise invalid.
kPGPError DuplicateCert
Multiple signatures by the same key exist, and more than one is not revoked.
kPGPError DuplicateUserID
Multiple User IDs of the same name exist, and more than one is not revoked.
kPGPError_ InvalidProperty
The indicated key or component property is:
= invalid for the key or component, for example, key vs. signature
= invalid for the nature of the key or component, for example, public key vs. private key
= invalid for the data type of the key or component, for example, PGPGetKeyBoolean
was passed the name of a numeric property (see Tables 2-4, 2-5, and 2-6)
kPGPError_ ItemIsReadOnly
The indicated key or component belongs to a read-only key set
kPGPError_ ItemWasDeleted
The indicated key or component has already been deleted.
kPGPError_ KeyDisabled
The current key has been disabled.
kPGPError_ KeyExpired
The current key has expired.

328 PGP Software Developer's Kit

A - PGPsdk Error Summary

kPGPError_ KeyInvalid
The current key validity is below that specified as being acceptable (see
PGPOFailBelowValidity
kPGPError KEY LONG
Parse - warning! Key packet has extraneous trailing bytes. This implies that a valid key
was found before encountering any extraneous data in the packet.
kPGPError_ KeyPacketTruncated
Parse - the current key packet is too short.
kPGPError_ KeyRevoked
The current key has been revoked.
kPGPError_ KeyTooLarge
= a DSA key (public or private portion) exceeds the allowable size. However, when the
private portion of the key is being generated and its requested length is too large, a
kPGP_PublicKkeyToolLarge error is recognized
= an RSA key (public or private portion) exceeds the allowable size. However, when the
key is being used for encryption and its length is too large, a
kPGP_PublicKkeyToolLarge error is recognized.
kPGPError KeyUnusableForEncryption
The current key cannot be used for encryption (currently unused — will reflect
kPGPError_PublicKkeyUnimplemented).
kPGPError_ KeyUnusableForSignature
The current key cannot be used for signing (currently unused — will reflect
kPGPError_PublicKkeyUnimplemented).
kPGPError MalformedKeyComponent
Parse - the current key component is badly formatted.
kPGPError MalformedKeyExponent
Parse - the current key exponent is badly formatted.
kPGPError MalformedKeyModulus
Parse - the current key modulus is badly formatted.
kPGPError_ PublicKeyUnimplemented
The indicated public key operation is invalid, unknown, or unimplemented. This
includes:
= a sub-key which is flagged as being able to both sign and encrypt
= an attempt was made to encrypt with a key which can only sign, or vice versa
= an attempt to encrypt with a DSA key, or to use DSA for an encrypted session key
kPGPError RSAPublicModulusIsEven
The current key is an RSA public key whose modulus is even, which is not valid.
kPGPError RSAPublicExponentIsEven
The current key is an RSA public key whose exponent is even, which is not valid.
kPGPError_ UnknownKeyVersion
The version of the current key is unknown.

Reference Guide 329

A - PGPsdk Error Summary

kPGPError_ UnknownPublicKeyAlgorithm
The public key algorithm is unknown or unsupported (see
PGPGetindexedPublicKeyAlgorithminfo . This indicates that the active key was
generated with an algorithm that is not implemented for that instance of the PGPsdk. For
example, passing an RSA key to any function of an Elgamal-only instance of the PGPsdk
will result in this error.

kPGPError UnknownString2Key
The format of the string representation of a key did not correspond to that of any known
format, and so the string could not be converted to binary format. This implies invalid
export data, or a mismatch between the PGPsdk and the PGP software which created the
string.

Signature Errors

If multiple errors occur, only the last error is reported. Parse errors imply corrupted signature
packets; non-parse errors imply incorrect signature data.
kPGPError_ BadsSignaturesSize
Invalid signature — incorrect size (may be too short or too long).
kPGPError_ ExtraDateOnSignature
Parse - additional signature date component(s) detected.
kPGPError ExtraSignatureMaterial
Parse - additional unrecognized signature information detected.
kPGPError MalformedsSignatureInteger
Parse - Signature integer component improperly formatted.
Parse - Signature integer component improperly formatted.
kPGPError_ SignatureBitsWrong
Invalid signature — incorrect number of bits (RSA signatures only).
kPGPError_ SIG_LONG
Parse - warning! Signature packet has extraneous trailing bytes. This differs from the
“extra” and too long/too short errors in that a valid signature was found before
encountering any extraneous data in the packet.
kPGPError_ Truncatedsignature
Parse - the signature data is shorter than that expected.
kPGPError UnknownSignatureAlgorithm
Parse - unknown signature algorithm (applies only to signature versions using RSA).
kPGPError_ UnknownSignatureType
The signature data indicated an unknown PGP signature type.
kPGPError UnknownSignatureVersion
Parse - the signature data indicated an unknown PGP signature version.

330 PGP Software Developer's Kit

A - PGPsdk Error Summary

kPGPError X509InvalidCertificateFormat
= the length of the certificate is 0 (zero) bytes
= the timestamp(s) contains invalid characters
= the indicated public key algorithm is invalid or not supported
= the indicated creation time is after the indicated expiration time
= the data items in the certificate are not in the expected sequence
= could not create the appropriate hash context for signature verification. This may be due
to an unsupported hash algorithm.
kPGPError X509InvalidCertificateSignature
The certificate’s signature failed verification.
kPGPError X509NeededCertNotAvailable
An expected certificate could not be found. This implies a broken certificate chain.
kPGPError X509SelfSignedCert

A child certificate was signed by its parent.

Encode/Decode Errors

kPGPError AsciiParselncomplete
ASCII armor input is incomplete (decode only). This implies a failed encryption, a failed
transmission, or other corruption of the armored cipher text.
kPGPError_ CombinedConventionalAndPublicEncryption
Invalid option combination — both conventional encryption and public key encryption
were requested.
kPGPError_ CorruptSessionKey
The encrypted session key is bad.
kPGPError DetachedSignatureFound
A detached signature was found, but no event handler is defined to receive the
kPGPEventDetachedSignatureEvent posting.
kPGPError DetachedSignatureWithEncryption
Invalid option combination - encryption requested with a detached signature.
kPGPError DetachedSignatureWithoutsSigningKey
Invalid option combination - no signing key found for the detached signature.
kPGPError_ InconsistentEncryptionAlgorithms
At least one of the recipients identified by the encrypt-to key set does not specify the same
encryption algorithm as the other recipients.
kPGPError_ InputFile
The indicated input file could not be opened.
kPGPError_ Interrupted
Non-fatal interruption of the current operation.
kPGPError MissingEventHandler
Event posting was requested for the operation, but no event handler is defined.
kPGPError MissingKeySet
The key set(s) containing the available decoding key(s) was omitted from the option list.

Reference Guide 331

A - PGPsdk Error Summary

kPGPError MissingPassphrase
A required passphrase is missing, which usually indicates an omitted passphrase option
(see PGPOPassphrase and PGPOPassphraseBuffer), but may also indicate a
passphrase having zero length.

kPGPError MultipleInputOptions
This operation accepts only a single input specification. This indicates that multiple,
distinct input options were found, rather than multiple instances of the same input option
(see kKPGPError_RedundantOptions).

kPGPError MultipleOutputOptions
This operation accepts only a single output specification. This indicates that multiple,
distinct output options were found, rather than multiple instances of the same output
option (see kPGPError_RedundantOptions).

kPGPError_ NoDecryptionKeyFound
None of the keys in the indicated decryption key set(s) is capable of decoding the cipher
text (decode only).

kPGPError NoInputOptions
No input source was indicated for the requested operation.

kPGPError NoOutputOptions
No output destination was indicated for the requested operation.

kPGPError OutputBufferTooSmall
The PGPsdk outputs data as discrete blocks, and a resultant block is larger than the
indicated buffer (see PGPOOutputBuffer). This error applies to functions that output an
arbitrary amount of data, for example, PGPDecode and should not be confused with
kPGPError_BufferTooSmall

kPGPError_ SkipSection
The user requested skipping of this lexical section (decode only). This implies that the
event handler returned this “error” in response to a KPGPEvent_BeginLexEvent.

kPGPError_ TooManyARRKs

The additional decryption key key set contains too many keys (currently limited to four;
see PGPOAdditionalRecipientRequestKeySet).

Key Server Errors

kPGPError_ ServerAddFailed
Adding a specific key to the server failed. This is an internal error, and is reflected at the
PGPsdk level as kPGPError_ServerPartialAddFailure
kPGPError_ ServerAuthorizationFailed
The required authorization for this operation failed. This implies that the server was not
created for administrator access (see PGPNewKeyServerFromURL accessType
argument).
kPGPError_ ServerAuthorizationRequired
Authorization is required for this operation. This implies that the server was not created
for administrator access (see PGPNewKeyServerFromURL accessType argument).
kPGPError_ServerBadKeysInSearchResults
The search results contain one or more corrupt keys.

332 PGP Software Developer's Kit

A - PGPsdk Error Summary

kPGPError_ ServerBindFailed
Server bind failure.
kPGPError_ServerConnectFailed
Non-specific server connect failure.
kPGPError_ServerCorruptKeyBlock
Corrupt key block — public key decode failure. This is an obsolete HTTP server error.
kPGPError_ ServerInvalidProtocol
The server protocol is neither HTTP nor LDAP. Except when issued by
PGPNewKeyServerFromURL, this should be considered an internal error.
kPGPError_ ServerKeyAlreadyExists
The key being added to the server already exists on that server.
kPGPError_ ServerKeyFailedPolicy
One or more keys being uploaded failed the server policy check.
kPGPError_ServerOpenFailed
Server open failed (LDAP servers only).
kPGPError_ServerOperationNotAllowed
The requested operation is not permitted for this server. This occurs most frequently for
HTTP servers, which support only a limited set of operations.
kPGPError_ ServerPartialAddFailure
At least one key could not be added to the server; the PGPUploadToKeyServer
argument keysThatFailed will reference a non-empty key set.
kPGPError_ServerRequestFailed
The server rejected the request.
kPGPError_ServerSearchFailed
The search failed; this implies that no qualifying keys were found.
kPGPError_ServerSocketError
Non-specific socket layer error.
kPGPError_ServerTooManyResults
The search returned too many items, or exceeded the maximum time.
kPGPError_ServerUnknownHost
The specified host could not be located. This implies an incorrect host name, or a network
configuration/domain look-up issue.
kPGPError_ServerUnknownResponse
The server replied with an unknown response. This implies an internal error, or a
mismatch between the key server and PGPsdk versions.

Client/Server Communication Errors

kPGPError_ SocketsAddressFamilyNotSupported
kPGPError_ SocketsAddressInUse

kPGPError_ SocketsAddressNotAvailable

Reference Guide 333

A - PGPsdk Error Summary

kPGPError_ SocketsAlreadyConnected
kPGPError_SocketsBufferOverflow
kPGPError_SocketsDomainServerError
kPGPError_SocketsHostNotFound
kPGPError_ SocketsInProgress
kPGPError_ SocketsListenQueueFull
kPGPError_ SocketsNetworkDown
kPGPError_SocketsNotASocket
kPGPError_SocketsNotBound
kPGPError_SocketsNotConnected
kPGPError_ SocketsNotInitialized
kPGPError_ SocketsOperationNotSupported
kPGPError_ SocketsProtocolNotSupported
kPGPError_ SocketsTimedOut
kPGPError_ TLSAlertReceived

A fatal error ocurred while processing a request.

kPGPError_ TLSKeyUnusable

The key presented to PGPSetLocalPrivateKey is not secret, cannot sign, or is disabled,
expired, or revoked.

kPGPError_ TLSNoCommonCipher
A mutually agreeable cipher suite cannot be found.

334 PGP Software Developer's Kit

A - PGPsdk Error Summary

kPGPError TLSProtocolViolation

A data format error was detected:

= unknown packet type received

= indicated packet length is 0 (zero) or exceeds the maximum packet length
= actual packet length does not match indicated packet length

= the indicated number of cipher suites cannot fit in the actual packet length
= the packet compression method is not supported

= invalid alert data length (internal error)

An operation sequencing error was detected:
= invalid/unexpected state change request

kPGPError_ TLSUnexpectedClose

A read/write operation resulted in 0 (zero) bytes being transferred.
kPGPError_ TLSVersionUnsupported

The indicated server or packet version is not supported.
kPGPError TLSWrongState

The requested operation is not valid for the current state, for example, a handshake
request when not idle, or a send/receive request when not ready.

Rarely Encountered PGP Errors

These error codes should rarely be encountered, if ever. Most are indicative of internal

PGPsdk errors, and not all are propagated to the PGPsdk level.

kPGPError AssertFailed
Assertion failure; currently unimplemented. Depending upon the platform, a function
that would return this error simply asserts.

kPGPError BadCipherNumber
The implied public key algorithm is unknown, which implies an internal error (PGPsdk
functions which accept an explicit cipher algorithm parameter return
kPGPError_BadParams).

kPGPError BadHashNumber
The implied hash algorithm is unknown, which implies an internal error (PGPsdk
functions which accept an explicit hash algorithm parameter return
kPGPError_AlgorithmNotAvailable). However, under certain circumstances, this
may mask an out-of-memory condition.

kPGPError BadKeyLength
Illegal key length for the implied algorithm.

kPGPError BadMemAddress
Bad memory address. Unimplemented. In many cases, an invalid address (especially
NULLD will be reflected as kPGPError_BadParams

kPGPError BadSessionKeyAlgorithm
The public key algorithm used for the encrypted session key is unknown or unsupported
(see kPGPError_UnknownPublicKeyAlgorithm).

Reference Guide 335

A - PGPsdk Error Summary

kPGPError BadSessionKeySize
The indicated encrypted session key is too short.

kPGPError BigNumNoInverse

kPGPError_ CantDecrypt
Cannot decrypt message - invalid or corrupted cipher text (specifically, an initialization
vector mismatch).
kPGPError_ CantHash
Cannot hash message — unable to create hash list for processing signatures.
kPGPError_ ConfigParseFailure
An error occurred while parsing the configuration file.
kPGPError_ ConfigParseFailureBadFunction
An option indicating an unknown or unsupported function was found while parsing the
configuration file. This implies an invalid configuration file, or a mismatch between the
configuration file version and the instance of the PGPsdk.
kPGPError ConfigParseFailureBadOptions
An unknown option was found while parsing the configuration file. This implies an
invalid configuration file, or a mismatch between the configuration file version and the
instance of the PGPsdk.
kPGPError EnvPriorityTooLow
Environment variable not set: priority too low.
kPGPError FIFOReadError
Incomplete read from FIFO list. This error is associated with parsing ASCII armor data,
and implies that the data is corrupted or invalid, that is, not in ASCII armor format.
kPGPError InvalidCommit
Invalid commit. This error is associated with parsing annotations included in the cipher
text.
kPGPError_ KeyIsLocked
= an encrypted session key cannot be unlocked due to an incorrect or missing passphrase
= a signature cannot be calculated because the required key is locked
= a key cannot be re-encrypted with a new passphrase because that key is locked, which
implies an incorrect or missing old passphrase
kPGPError OutOfRings
Internal key ring bits exhausted.
kPGPError_ PublicKeyTooLarge
The indicated public key size exceeds the PGPsdk limit (limit varies by public key
algorithm and type).
kPGPError PublicKeyTooSmall
The indicated public key is too small to contain all of the indicated data (required size
varies by public key algorithm and type).
kPGPError RandomSeedTooSmall
The file specified to seed the global random number pool contains an insufficient amount
data.

336 PGP Software Developer's Kit

A - PGPsdk Error Summary

kPGPError_SecretKeyNotFound
No secret key found.
kPGPError_ SizeAdviseFailure
sizeAdvise promise not kept.
kPGPError_ UnbalancedScope
A nesting error was detected while parsing annotations included in the cipher text.
kPGPError_ UnknownCharMap
The requested character set is unknown or not supported, so no translation to/from that
character set is available.
kPGPError_ UnknownVersion
The version of an encrypted session key or a signature is unknown.
kPGPError WrongScope
Data sent in wrong scope. This error is associated with parsing annotations included in
the cipher text, and implies a nesting error

Reference Guide 337

A - PGPsdk Error Summary

338 PGP Software Developer's Kit

Glossary

A5

Access control

Additional recipient request
key

AES (Advanced Encryption
Standard)

AKEP (Authentication Key
Exchange Protocol)

Algorithm (encryption)

Algorithm (hash)

Anonymity

ANSI (American National
Standards Institute)

API (Application
Programming Interface)

ASN.1 (Abstract Syntax
Notation One)

a trade-secret cryptographic algorithm used in European
cellular telephones.

a method of restricting access to resources, allowing only
privileged entities access.

a special key whose presence that indicates that all messages
encrypted to its associated base key should also be
automatically encrypted to it. Sometimes referred to by its
marketing term, additional decryption key.

NIST approved standards, usually used for the next 20 - 30
years.

key transport based on symmetric encryption allowing two
parties to exchange a shared secret key, secure against
passive adversaries.

a set of mathematical rules (logic) used in the processes of
encryption and decryption.

a set of mathematical rules (logic) used in the processes of
message digest creation and key/signature generation.

of unknown or undeclared origin or authorship, concealing an
entity’s identification.

develops standards through various Accredited Standards
Committees (ASC). The X9 committee focuses on security
standards for the financial services industry.

provides the means to take advantage of software features,
allowing dissimilar software products to interact upon one
another.

ISO/IEC standard for encoding rules used in ANSI X.509

certificates, two types exist - DER (Distinguished Encoding
Rules) and BER (Basic Encoding Rules).

Reference Guide 339

Glossary

340

Asymmetric keys

Authentication

Authorization certificate

Authorization

Blind signature

Block cipher

Blowfish

CA (Certificate Authority)

CAPI (Crypto API)

Capstone

CAST

CBC (Cipher Block
Chaining)

CDK (Crypto Developer Kit)

CERT (Computer
Emergency Response
Team)

PGP Software Developer’s Kit

a separate but integrated user key-pair, comprised of one
public key and one private key. Each key is one way, meaning
that a key used to encrypt information can not be used to
decrypt the same data.

to prove genuine by corroboration of the identity of an entity.

an electronic document to prove one’s access or privilege
rights, also to prove one is who they say they are.

to convey official sanction, access or legal power to an entity.

ability to sign documents without knowledge of content, similar
to a notary public.

a symmetric cipher operating on blocks of plain text and cipher
text, usually 64 bits.

a 64-bit block symmetric cipher consisting of key expansion
and data encryption. A fast, simple, and compact algorithm in
the public domain written by Bruce Schneier.

a trusted third party (TTP) who creates certificates that consist
of assertions on various attributes and binds them to an entity
and/or to their public key.

Microsoft's crypto API for Windows-based operating systems
and applications.

an NSA-developed cryptographic chip that implements a US
government Key Escrow capability.

a 64-bit block cipher using 64-bit key, six S-boxes with 8-bit
input and 32-bit output, developed in Canada by Carlisle
Adams and Stafford Tavares.

the process of having plain text XORed with the previous
cipher text block before it is encrypted, thus adding a feedback
mechanism to a block cipher.

a documented environment, including an API for third parties
to write secure applications using a specific vendor’s
cryptographic library.

security clearinghouse that promotes security awareness.
CERT provides 24-hour technical assistance for computer and
network security incidents. CERT is located at the Software
Engineering Institute at Carnegie Mellon University in
Pittsburgh, PA.

Glossary

Certificate (digital
certificate)

CFM (Cipher Feedback
Mode)

CDSA (Common Data
Security Architecture)

Certification

CHAP (Challenge
Authentication Protocol)

Cipher text

Clear text

Confidentiality

Cookie

CRAB

Credentials

CRL (Certificate Revocation
List)

Cross-certification

Cryptanalysis

CRYPTOKI

an electronic document attached to a public key by a trusted
third party, which provides proof that the public key belongs to
a legitimate owner and has not been compromised.

a block cipher that has been implemented as a
self-synchronizing stream cipher.

Intel Architecture Labs (IAL) developed this framework to
address the data security problems inherent to Internet and
Intranet for use in Intel and others’ Internet products.

endorsement of information by a trusted entity.

a session-based, two-way password authentication scheme.

the result of manipulating either characters or bits via
substitution, transposition, or both.

characters in a human readable form or bits in a
machine-readable form (also called plain text).

the act of keeping something private and secret from all but
those who are authorized to see it.

Persistent Client State HTTP Cookie - a file or token of sorts,
that is passed from the web server to the web client (your
browser) that is used to identify you and could record personal
information such as ID and password, mailing address, credit
card number, and other information.

a 1024-byte block cipher (similar to MD5), using techniques
from a one-way hash function, developed by Burt Kaliski and
Matt Robshaw at RSA Laboratories.

something that provides a basis for credit or confidence.

an online, up-to-date list of previously issued certificates that
are no longer valid.

two or more organizations or Certificate Authorities that share
some level of trust.

the art or science of transferring cipher text into plain text
without initial knowledge of the key used to encrypt the plain
text.

same as PKCS #11.

Reference Guide 341

Glossary

342

Cryptography

Cryptosystem

Data integrity

Decryption

DES (Data Encryption
Standard)

Dictionary attack

Diffie-Hellman

Digital cash

Direct trust

Discrete logarithm

DMS (Defense Messaging
System)

DNSSEC (Domain Name
System Security Working
Group)

DSA (Digital Signature
Algorithm)

Digital signature

PGP Software Developer’s Kit

the art and science of creating messages that have some
combination of being private, signed, unmodified with
non-repudiation.

a system comprised of cryptographic algorithms, all possible
plain text, cipher text, and keys.

a method of ensuring information has not been altered by
unauthorized or unknown means.

the process of turning cipher text back into plain text.

a 64-bit block cipher, symmetric algorithm also known as Data
Encryption Algorithm (DEA) by ANSI and DEA-1 by ISO.
Widely used for over 20 years, adopted in 1976 as FIPS 46.

a calculated brute force attack to reveal a password by trying
obvious and logical combinations of words.

the first public key algorithm, invented in 1976, using discrete
logarithms in a finite field.

electronic money that stored and transferred through a variety
of complex protocols.

an establishment of peer-to-peer confidence.

the underlying mathematical problem used in/by asymmetric
algorithms, like Diffie-Hellman and Elliptic Curve. Itis the
inverse problem of modular exponentiation, which is a
one-way function.

standards designed by the U.S. Department of Defense to
provide a secure and reliable enterprise-wide messaging
infrastructure for government and military agencies.

a proposed /ETF draft that will specify enhancements to the
DNS protocol to protect the DNS against unauthorized
modification of data and against masquerading of data origin.
It will add data integrity and authentication capabilities to the
DNS via digital signatures.

a public key digital signature algorithm proposed by NIST for
use in DSS.

an electronic identification of a person or thing created by
using a public key algorithm. Intended to verify to a recipient
the integrity of data and identity of the sender of the data.

Glossary

DSS (Digital Signature
Standard)

ECC (Elliptic Curve
Cryptosystem)

EDI (Electronic Data
Interchange)

EES (Escrowed Encryption
Standard)

El Gamal scheme

Encryption

Entropy

FEAL

Filter

Fingerprint

FIPS (Federal Information
Processing Standard)

Firewall

a NIST proposed standard (FIPS) for digital signatures using
DSA.

a unique method for creating public key algorithms based on
mathematical curves over finite fields or with large prime
numbers.

the direct, standardized computer-to-computer exchange of
business documents (purchase orders, invoices, payments,
inventory analyses, and others) between your organization

and your suppliers and customers.

a proposed U.S. government standard for escrowing private
keys.

used for both digital signatures and encryption based on
discrete logarithms in a finite field; can be used with the DSA
function.

the process of disguising a message in such a way as to hide
its substance.

a mathematical measurement of the amount of uncertainty or
randomness.

a block cipher using 64-bit block and 64-bit key, design by
A.Shimizu and S.Miyaguchi at NTT Japan.

a function, set of functions, or combination of functions that
applies some number of transforms to its input set, yielding an
output set containing only those members of the input set that
satisfy the transform criteria. The selected members may or
may not be further transformed in the resultant output set. An
example would be a search function that accepts multiple
strings having a boolean relationship ((like a or like

b) but not containing c¢) , and optionally forces the
case of the found strings in the resultant output.

a unique identifier for a key that is obtained by hashing
specific portions of the key data.

a U.S. government standard published by NIST.

a combination of hardware and software that protects the
perimeter of the public/private network against certain attacks
to ensure some degree of security.

Reference Guide 343

Glossary

344

GAK (Government Access
to Keys)

Gost

GSS-API (Generic Security
Services API)

Hash function

HMAC

Hierarchical trust

HTTP (HyperText Transfer
Protocol)

IDEA (International Data
Encryption Standard)

IETF (Internet Engineering
Task Force)

Identity certificate

Initialization vector (V)

Integrity

IPSec

PGP Software Developer’s Kit

a method for the government to escrow individual’s private
key.

a 64-bit symmetric block cipher using a 256-bit key, developed
in the former Soviet Union.

a high-level security API based upon IETF RFC 1508, which
isolates session-oriented application code from
implementation details.

a one-way hash function - a function that produces a message
digest that cannot be reversed to produced the original.

a key-dependent one-way hash function specifically intended
for use with MAC (Message Authentication Code), and based
upon IETF RFC 2104.

a graded series of entities that distribute trust in an organized
fashion, commonly used in ANSI X.509 issuing certifying
authorities.

a common protocol used to transfer documents between
servers or from a server to a client.

a 64-bit block symmetric cipher using 128-bit keys based on
mixing operations from different algebraic groups. Considered
one of the strongest algorithms.

a large open international community of network designers,
operators, vendors, and researchers concerned with the
evolution of the Internet architecture and the smooth operation
of the Internet. It is open to any interested individual.

a signed statement that binds a key to the name of an
individual and has the intended meaning of delegating
authority from that named individual to the public key.

a block of arbitrary data that serves as the starting point for a
block cipher using a chaining feedback mode (see cipher
block chaining).

assurance that data is not modified (by unauthorized persons)
during storage or transmittal.

a TCP/IP layer encryption scheme under consideration within
the IETF.

Glossary

ISA/KMP (Internet Security
Association, Key Mgt.
Protocol)

ISO (International
Organization for
Standardization)

ITU-T (International
Telecommunication
Union-Telecommunication)

Kerberos

Key

Key escrow/recovery

Key exchange

Key length

Key management

Key splitting

LDAP (Lightweight
Directory Access Protocol)

Lexical section

MAA (Message
Authenticator Algorithm)

defines the procedures for authenticating a communicating
peer, creation and management of Security Associations, key
generation techniques, and threat mitigation, for example,
denial of service and replay attacks.

responsible for a wide range of standards, like the OSI model
and international relationship with ANSI on X.509.

formally the CCITT (Consultative Committee for International
Telegraph and Telephone), a worldwide telecommunications
technology standards organization.

a trusted-third-party authentication protocol developed at MIT.

a means of gaining or preventing access, possession, or
control represented by any one of a large number of values.

a mechanism that allows a third party to retrieve the
cryptographic keys used for data confidentiality, with the
ultimate goal of recovery of encrypted data.

a scheme for two or more nodes to transfer a secret session
key across an unsecured channel.

the number of bits representing the key size; the longer the
key, the stronger it is.

the process and procedure for safely storing and distributing
accurate cryptographic keys, the overall process of generating
and distributing cryptographic key to authorized recipients in a
secure manner.

a process for dividing portions of a single key between multiple
parties, none having the ability to reconstruct the whole key.

a simple protocol that supports access and search operations
on directories containing information such as names, phone
numbers, and addresses across otherwise incompatible
systems over the Internet.

a distinct portion of a message that contains a specific class of
data, for example, clear-signed data, encrypted data, and key
data.

an SO standard that produces a 32-bit hash, designed for
IBM mainframes.

Reference Guide 345

Glossary

346

MAC (Message
Authentication Code)

MD2 (Message Digest 2)

MD4 (Message Digest 4)

MD5 (Message Digest 5)

Message digest

MIC (Message Integrity
Check)

MIME (Multipurpose Internet
Mail Extensions)

MMB (Modular
Multiplication-based Block)

MOSS (MIME Object
Security Service)

MSP (Message Security
Protocol)

MTI

NAT (Network Address
Translator)

NIST (National Institute for
Standards and Technology)

PGP Software Developer’s Kit

a key-dependent one-way hash function, requiring the use of
the identical key to verify the hash.

128-bit one-way hash function designed by Ron Rivest,
dependent on a random permutation of bytes.

128-bit one-way hash function designed by Ron Rivest, using
a simple set of bit manipulations on 32-bit operands.

improved, more complex version of MD4, but still a 128-bit
one-way hash function.

a number that is derived from a message. Change a single
character in the message and the message will have a
different message digest.

originally defined in PEM for authentication using MD2 or
MD5. Micalg (message integrity calculation) is used in secure
MIME implementations.

a freely available set of specifications that offers a way to
interchange text in languages with different character sets,
and multi-media e-mail among many different computer
systems that use Internet mail standards.

based on IDEA, Joan Daemen developed this 128-bit key
/128-bit block size symmetric algorithm, not used because of
its susceptibility to linear cryptanalysis.

defined in RFC 1848, it facilitates encryption and signature
services for MIME, including key management based on
asymmetric techniques (not widely used).

the military equivalent of PEM, an X.400-compatible
application level protocol for securing e-mail, developed by the
NSA in late 1980.

a one-pass key agreement protocol by Matsumoto,
Takashima, and Imai that provides mutual key authentication
without key confirmation or entity authentication.

RFC 1631, a router connecting two networks together; one
designated as inside, is addressed with either private or
obsolete addresses that need to be converted into legal
addresses before packets are forwarded onto the other
network (designated as outside).

a division of the U.S. Dept. of Commerce that publishes open,
interoperability standards called FIPS.

Glossary

Non-repudiation

Oakely

One-time pad

One-way hash

Orange Book

PAP (Password
Authentication Protocol)

Passphrase

Password

PCT (Private
Communication
Technology)

PEM (Privacy Enhanced
Mail)

Perfect forward secrecy

Primitive filter

preventing the denial of previous commitments or actions.

the "Oakley Session Key Exchange" provides a hybrid
Diffie-Hellman session key exchange for use within the
ISA/KMP framework. Oakley provides the important property
of "Perfect Forward Secrecy.”

a large non-repeating set of truly random key letters used for
encryption, considered the only perfect encryption scheme,
invented by Major J. Mauborgne and G. Vernam in 1917.

a function of a variable string to create a fixed length value
representing the original pre-image, also called message
digest, fingerprint, message integrity check (MIC).

the National Computer Security Center book entitled
Department of Defense Trusted Computer Systems
Evaluation Criteria that defines security requirements.

an authentication protocol that allows PPP peers to
authenticate one another, does not prevent unauthorized
access but merely identifies the remote end.

an easy-to-remember phrase used for better security than a
single password; key crunching converts it into a random key.

a sequence of characters or a word that a subject submits to a
system for purposes of authentication, validation, or
verification.

a protocol developed by Microsoft and Visa for secure
communications on the Internet.

a protocol to provide secure internet mail, (RFC 1421-1424)
including services for encryption, authentication, message
integrity, and key management. PEM uses ANSI X.509
certificates.

a cryptosystem in which the cipher text yields no possible
information about the plain text, except possibly the length.

a function that applies a single transform to its input set,
yielding an output set containing only those members of the
input set that satisfy the transform criteria. An example would
be a search function that accepts only a single string and
outputs a list of line numbers where the string was found.

Reference Guide 347

Glossary

348

Pretty Good Privacy (PGP)

PGP/MIME

PKCS (Public Key Crypto
Standards)

PKI (Public Key
Infrastructure)

Plain text (or clear text)

Pseudo-random number

Private key

Public key

RADIUS (Remote
Authentication Dial-In User
Service)

Random number

PGP Software Developer’s Kit

an application and protocol (RFC 1991) for secure e-mail and
file encryption developed by Phil R. Zimmermann. Originally
published as Freeware, the source code has always been
available for public scrutiny. PGP uses a variety of algorithms,
like IDEA, RSA, DSA, MD5, SHA-1 for providing encryption,
authentication, message integrity, and key management. PGP
is based on the “Web-of-Trust” model and has worldwide
deployment.

an IETF standard (RFC 2015) that provides privacy and
authentication using the Multipurpose Internet Mail Extensions
(MIME) security content types described in RFC1847,
currently deployed in PGP 5.0 and later versions.

a set of de facto standards for public key cryptography
developed in cooperation with an informal consortium (Apple,
DEC, Lotus, Microsoft, MIT, RSA, and Sun) that includes
algorithm-specific and algorithm-independent implementation
standards. Specifications defining message syntax and other
protocols controlled by RSA Data Security Inc.

a widely available and accessible certificate system for
obtaining an entity’s public key with some degree of certainty
that you have the “right” key and that it has not been revoked.

the human readable data or message before it is encrypted.

a number that results from applying randomizing algorithms to
input derived from the computing environment, for example,
mouse coordinates. See random number.

the privately held “secret” component of an integrated
asymmetric key pair, often referred to as the decryption key.

the publicly available component of an integrated asymmetric
key pair often referred to as the encryption key.

an IETF protocol (developed by Livingston, Enterprise), for
distributed security that secures remote access to networks
and network services against unauthorized access. RADIUS
consists of two pieces - authentication server code and client
protocols.

an important aspect to many cryptosystems, and a necessary
element in generating a unique key(s) that are unpredictable
to an adversary. True random numbers are usually derived
from analog sources, and usually involve the use of special
hardware.

Glossary

RC2 (Rivest Cipher 2)

RC4 (Rivest Cipher 4)

RC5 (Rivest Cipher 5)

RIPE-MD

REDOC

Revocation

RFC (Request for Comment)

ROT-13 (Rotation Cipher)

RSA

SAFER (Secure And Fast
Encryption Routine)

Salt

SDSI (Simple Distributed
Security Infrastructure)

variable key size, 64-bit block symmetric cipher, a trade secret
held by RSA, SDI.

variable key size stream cipher, once a proprietary algorithm
of RSA Data Security, Inc.

a block cipher with a variety of arguments, block size, key
size, and number of rounds.

an algorithm developed for the European Community’s RIPE
project, designed to resist known cryptanalysis attacks and
produce a 128-bit hash value, a variation of MDA4.

a U.S.-patented block cipher algorithm developed by M.
Wood, using a 160-bit key and an 80-bit block.

retraction of certification or authorization.

an IETF document, either FYI (For Your Information) RFC
sub-series that are overviews and introductory or STD RFC
sub-series that identify specify Internet standards. Each RFC
has an RFC number by which it is indexed and by which it can
be retrieved (www.ietf.org).

a simple substitution (Caesar) cipher, rotating each 26 letters
13 places.

short for RSA Data Security, Inc.; or referring to the principals
- Ron Rivest, Adi Shamir, and Len Adleman; or referring to the
algorithm they invented. The RSA algorithm is used in public
key cryptography and is based on the fact that it is easy to
multiply two large prime numbers together, but hard to factor
them out of the product.

a non-proprietary block cipher 64-bit key encryption algorithm.
It is not patented, is available license free, and was developed
by Massey, who also developed IDEA.

a random string that is concatenated with passwords (or
random numbers) before being operated on by a one-way
function. This concatenation effectively lengthens and
obscures the password, making the cipher text less
susceptible to dictionary attacks.

a new PKI/ proposal from Ronald L. Rivest (MIT), and Butler
Lampson (Microsoft). It provides a means of defining groups
and issuing group-membership, access-control lists, and
security policies. SDSI's design emphasizes linked local name
spaces rather than a hierarchical global name space.

Reference Guide 349

Glossary

SEAL (Software-optimized
Encryption ALgorithm)

Secret key

Secure channel

Self-signed key

SEPP (Secure Electronic
Payment Protocol)

SESAME (Secure European

System for Applications in a
Multi-vendor Environment)

Session key

SET (Secure Electronic
Transaction)

SHA-1 (Secure Hash
Algorithm)

Single sign-on

SKIP (Simple Key for IP)

Skipjack

SKMP (Secure key
Management Protocol)

350 PGP Software Developer’s Kit

a fast stream cipher for 32-bit machines designed by Rogaway
and Coppersmith.

either the “private key” in public key (asymmetric) algorithms
or the “session key” in symmetric algorithms.

a means of conveying information from one entity to another
such that an adversary does not have the ability to reorder,
delete, insert, or read (SSL, IPSec, whispering in someone’s
ear).

a public key that has been signed by the corresponding private
key for proof of ownership.

an open specification for secure bankcard transactions over
the Internet. Developed by IBM, Netscape, GTE, Cybercash,
and MasterCard.

European research and development project that extended
Kerbros by adding authorization and access services.

the secret (symmetric) key used to encrypt each set of data on
a transaction basis. A different session key is used for each
communication session.

provides for secure exchange of credit card numbers over the
Internet.

the 1994 revision to SHA, developed by NIST, (FIPS 180-1)
used with DSS produces a 160-bit hash, similar to MD4, which
is very popular and is widely implemented.

one log-on provides access to all resources of the network.

simple key-management for Internet protocols, developed by
Sun Microsystems, Inc.

the 80-bit key encryption algorithm contained in NSA's Clipper
chip.

an IBM proposed key-recovery architecture that uses a key
encapsulation technique to provide the key and message
recovery to a trusted third-party escrow agent.

Glossary

S/MIME (Secure
Multipurpose Malil
Extension)

SNAPI (Secure Network API)

SPKI (Simple Public Key
Infrastructure)

SSH (Secure Shell)

SSH (Site Security
Handbook)

SSL (Secure Socket Layer)

SST (Secure Transaction
Technology)

Stream cipher

STU-IIl (Secure Telephone
Unit)

Substitution cipher

a proposed standard developed by Deming software and RSA
Data Security for encrypting and/or authenticating MIME data.
S/MIME defines a format for the MIME data, the algorithms
that must be used for interoperability (RSA, RC2, SHA-1), and
the additional operational concerns such as ANSI X.509
certificates and transport over the Internet.

a Netscape driven API for security services that provide ways
for resources to be protected against unauthorized users, for

communication to be encrypted and authenticated, and for the
integrity of information to be verified.

an IETF proposed draft standard, (by Ellison, Frantz, and
Thomas) public key certificate format, associated signature
and other formats, and key acquisition protocol. Recently
merged with Ron Rivest’s SDSI proposal.

an IETF proposed protocol for securing the transport layer by
providing encryption, cryptographic host authentication, and
integrity protection.

the Working Group (WG) of the Internet Engineering Task
Force has been working since 1994 to produce a pair of
documents designed to educate the Internet community in the
area of security. The first document is a complete reworking of
RFC 1244, and is targeted at system and network
administrators, as well as decision makers (middle
management).

developed by Netscape to provide security and privacy over
the Internet. Supports server and client authentication and
maintains the security and integrity of the transmission
channel. Operates at the transport layer and mimics the
“sockets library,” allowing it to be application independent.
Encrypts the entire communication channel and does not
support digital signatures at the message level.

a secure payment protocol developed by Microsoft and Visa
as a companion to the PCT protocol.

a class of symmetric key encryption where transformation can
be changed for each symbol of plain text being encrypted,
useful for equipment with little memory to buffer data.

NSA designed telephone for secure voice and low-speed data
communications for use by the U.S. Dept. of Defense and their
contractors.

the characters of the plain text are substituted with other
characters to form the cipher text.

Reference Guide 351

Glossary

352

S/WAN (Secure Wide Area
Network)

Symmetric algorithm

TACACS+ (Terminal Access
Controller Access Control
System)

Timestamping

TLS (Transport Layer
Security)

TLSP (Transport Layer
Security Protocol)

Transposition cipher

Triple DES

Trust

TTP (Trust Third-Party)

UEPS (Universal Electronic

Payment System)

Validation

Verification

PGP Software Developer’s Kit

RSA Data Security, Inc. driven specifications for implementing
IPSec to ensure interoperability among firewall and TCP/IP
products. S/WAN's goal is to use IPSec to allow companies to
mix-and-match firewall and TCP/IP stack products to build
Internet-based Virtual Private Networks (VPNSs).

a.k.a., conventional, secret key, and single key algorithms; the
encryption and decryption key are either the same or can be
calculated from one another. Two sub-categories exist - Block
and Stream.

a protocol that provides remote access authentication,
authorization, and related accounting and logging services,
used by Cisco Systems.

recording the time of creation or existence of information.

an IETF draft, version 1 is based on the Secure Sockets Layer
(SSL) version 3.0 protocol, and provides communications
privacy over the Internet.

1ISO 10736, draft international standard.

the plain text remains the same but the order of the characters
is transposed.

an encryption configuration in which the DES algorithm is
used three times with three different keys.

a firm belief or confidence in the honesty, integrity, justice,
and/or reliability of a person, company, or other entity.

a responsible party in which all participants involved agree
upon in advance, to provide a service or function, such as
certification, by binding a public key to an entity,
time-stamping, or key-escrow.

a smart-card (secure debit card) -based banking application
developed for South Africa where poor telephones make
on-line verification impossible.

a means to provide timeliness of authorization to use or
manipulate information or resources.

to authenticate, confirm, or establish accuracy.

Glossary

VPN (Virtual Private
Network)

WAKE (Word Auto Key
Encryption)

Web of Trust

W3C (World Wide Web
Consortium)

XOR

X.509v3

X9.17

allows private networks to span from the end-user, across a
public network (Internet) directly to the Home Gateway of
choice, such as your company’s Intranet.

produces a stream of 32-bit words, which can be XORed with
plain text stream to produce cipher text, invented by David
Wheeler.

a distributed trust model used by PGP to validate the
ownership of a public key where the level of trust is cumulative
based on the individual’'s knowledge of the “introducers.”

an international industry consortium founded in 1994 to
develop common protocols for the evolution of the World Wide
Web.

exclusive-or operation; a mathematical way to represent
differences.

an ITU-T digital certificate that is an internationally recognized
electronic document used to prove identity and public key
ownership over a communication network. It contains the
issuer's name, the user's identifying information, and the
issuer’s digital signature, as well as other possible extensions
in version 3.

an ANSI specification that details the methodology for
generating random and pseudo-random numbers.

Reference Guide 353

Glossary

354 PGP Software Developer's Kit

Index

Symbols

(Sub-)Key Generation, Augmentation, and
Revocation Option List Functions 119

A

A5 339

Access control 339

Additional recipient request key 339

AES (Advanced Encryption Standard) 339

AKEP (Authentication Key Exchange
Protocol) 339

Algorithm 339

Algorithm (encryption) 339
Algorithm (hash) 339
Anonymity 339

ANSI (American National Standards
Institute) 339

ANSI X9.17 353

API (Application Programming
Interface) 339, 351

ASN.1 (Abstract Syntax Notation One) 339
Asymmetric keys 340

Authentication 340

Authorization 340

Authorization certificate 340

B

BigNum 16-bit Constant Arithmetic
Functions 312

BigNum Arithmetic Functions 303
BigNum Assignment Functions 300
BigNum Management Functions 298
Blind signature 340

Block cipher 340

Blowfish 340

C

CA (Certificate Authority) 340
CAPI (Crypto API) 340

Capstone 340

CAST 340

CBC (Cipher Block Chaining) 340
CDK (Crypto Developer Kit) 340

CDSA (Common Data Security
Architecture) 341

CERT (Computer Emergency Response
Team) 340

Certificate (digital certificate) 340, 341
Certification 341
CFM (Cipher Feedback Mode) 341

CHAP (Challenge Authentication
Protocol) 341

cipher feedback mode 163

Cipher text 341

Clear text 341

Client/Server Communication Errors 333
Client/Server Communications Errors 322
Common Cipher Events 166

Common Encode/Decode Option List
Functions 101

Common Encrypting and Signing Option List
Functions 109

Confidentiality 341

Context Creation and Management
Functions 212

Control and Options Functions 295
Cookie 341

CRAB 341

Credentials 341

Reference Guide 355

Index

CRL (Certificate Revocation List) 341
Cross-certification 341
Cryptanalysis 341

Cryptography 342

CRYPTOKI 341

Cryptosystem 342

Customer Care
contacting xxviii

D

Data integrity 342

Date/Time Functions 221

Decode-only Option List Functions 117
Decryption 342

DES (Data Encryption Standard) 342, 352
Dictionary attack 342

Diffie-Hellman 15, 342

Digital cash 342

Digital signature 342

Direct trust 342

Discrete logarithm 342

DMS (Defense Messaging System) 342
DNS and Protocol Services Functions 290

DNSSEC (Domain Name System Security
Working Group) 342

DSA (Digital Signature Algorithm) 342
DSS (Digital Signature Standard) 343

E

ECC (Elliptic Curve Cryptosystem) 343
EDI (Electronic Data Interchange) 343
EES (Escrowed Encryption Standard) 343
El Gamal scheme 343

Encode/Decode Errors 321, 331
Encode-only Option List Functions 114
Encryption 343, 350

Endpoint Binding Functions 283

356 PGP Software Developer’s Kit

Entropy 343

Entropy Estimation Functions 227
Error Look-Up Functions 224
Error Reporting Functions 293
Events and Callbacks 164

F

FEAL 343

Feature (Capability) Query Functions 201
File Errors 318

File Specification Functions 215
File-related Errors 325

Filter 343

Fingerprint 343

FIPS (Federal Information Processing
Standard) 343

Firewall 343

G

GAK (Government Access to Keys) 344
Generic Errors 318, 323

Gost 344

Group Item Iteration Functions 159

Group Management Functions 153

Group Utility Functions 160

GSS-API (Generic Security Services API) 344

H
Hash function 344

Hierarchical trust 344

HMAC 344

HTTP (HyperText Transfer Protocol) 344

IDEA (International Data Encryption
Standard) 344

Identity certificate 344

Index

IETF (Internet Engineering Task Force) 344
Initialization and Termination Functions 280
Initialization vector (1V) 344

Integrity 344

IPSec 344

ISA/KMP (Internet Security Association, Key
Mgt. Protocol) 345

ISO (International Organization for
Standardization) 345

ITU-T (International Telecommunication
Union-Telecommunication) 345

K

Kerberos 345

Key 16, 35, 50, 59, 60, 86, 93, 345, 351
Key Errors 328

Key escrow/recovery 345

Key exchange 345

Key Filter Errors 328

Key length 345

Key management 345

Key Ring Validity Check Errors 326
Key Server Errors 322, 332

Key Server Functions 246

Key Server Request Events 244

Key Set Filter Errors 319

Key splitting 345

Key, Sub-Key, and User ID Errors 320
Keyring Validity Check Errors 319
kPGPEvent 169
kPGPEvent_AnalyzeEvent 168
kPGPEvent_BeginLexEvent 168
kPGPEvent_DecryptionEvent 172
kPGPEvent_DetachedSigEvent 171
kPGPEvent_EndLexEvent 172
kPGPEvent_ErrorEvent 167
kPGPEvent_FinalEvent 20, 167, 245
kPGPEvent_InitialEvent 18, 166, 244

kPGPEvent_KeyFoundEvent 169
kPGPEvent_KeyGenEvent 19
kPGPEvent_KeyServerEvent 244
kPGPEvent_KeyServerSignEvent 244
kPGPEvent_NullEvent 18, 167
kPGPEvent_OutputEvent 171
kPGPEvent_PassphraseEvent 171
kPGPEvent_RecipientsEvent 169
kPGPEvent_SignatureEvent 170

L

LDAP (Lightweight Directory Access
Protocol) 345

Lexical section 345

Low-Level Cipher Functions - Cipher Block
Chaining 185

Low-Level Cipher Functions - Cipher
Feedback Block 188

Low-Level Cipher Functions - Hash 176
Low-Level Cipher Functions - HMAC 178
Low-Level Cipher Functions - Misc. 200
Low-Level Cipher Functions - Private Key 197
Low-Level Cipher Functions - Public Key 194

Low-Level Cipher Functions - Symmetric
Cipher 180

M

MAA (Message Authenticator Algorithm) 345
MAC (Message Authentication Code) 346
MacOS platforms xxx, 147, 148

MacOS Platforms Net Byte Ordering
Macros 292

MD2 (Message Digest 2) 346
MD4 (Message Digest 4) 346
MD5 (Message Digest 5) 346

Memory Manager Creation and Management
Functions 206

Message digest 346

Reference Guide 357

Index

MIC (Message Integrity Check) 346

MIME (Multipurpose Internet Mail
Extensions) 346, 348, 351

Misc. Option List Functions 139
Misc. Ul Functions 240

MMB (Modular Multiplication-based
Block) 346

MOSS (MIME Obiject Security Service) 346
MSP (Message Security Protocol) 346
MTI 346

N
NAT (Network Address Translator) 346
Net Byte Ordering Macros 292

Network and Key Server Option List
Functions 136
Network Associates
contacting
Customer Care xxviii
within the United States xxviii
training xxix

Network Library Management Functions 223

NIST (National Institute for Standards and
Technology) 346

Non-repudiation 347

@)

Oakely 347

One-time pad 347

One-way hash 347

Option List Management Functions 97
Orange Book 347

P

PAP (Password Authentication Protocol) 347

Passphrase 347
Password 347

PCT (Private Communication
Technology) 347

358 PGP Software Developer’s Kit

PEM (Privacy Enhanced Mail) 347
Perfect forward secrecy 347
PGP/MIME 348

PGPAccept 285
PGPAddItemToGroup 154
PGPAddJobOptions 100
PGPAddKeys 29

PGPAddUserID 68
PGPAppendOptionList 99
PGPAssignBigNum 300
PGPBigNumAdd 303
PGPBigNumAddQ 312
PGPBigNumCompare 305
PGPBigNumCompareQ 314
PGPBigNumDivide 306
PGPBigNumbDoubleExpMod 308
PGPBigNumExpMod 307
PGPBigNumExtractBigendianBytes 301
PGPBigNumExtractLittleEndianBytes 302
PGPBigNumGCD 311
PGPBigNumGetLSWord 303
PGPBigNumGetSignificantBits 303
PGPBigNumiInsertBigendianBytes 301
PGPBigNuminsertLittleEndianBytes 302
PGPBigNuminv 309
PGPBigNumLeftShift 310
PGPBigNumMakeOdd 311
PGPBigNumMod 307
PGPBigNumModQ 315
PGPBigNumMultiply 305
PGPBigNumMultiplyQ 314
PGPBigNumRightShift 310
PGPBigNumSetQ 312
PGPBigNumSquare 305
PGPBigNumSubtract 304
PGPBigNumSubtractQ 313
PGPBigNumTwoExpMod 309

Index

PGPBindSocket 283
PGPBuildOptionList 98
PGPCancelKeyServerCall 263
PGPCBCDecrypt 187
PGPCBCENcrypt 187
PGPCBCGetSymmetricCipher 188
PGPCFBDecrypt 191
PGPCFBEnNcrypt 190
PGPCFBGetRandom 192
PGPCFBGetSymmetricCipher 191
PGPCFBRandomCycle 192
PGPCFBRandomWash 193
PGPCFBSync 193
PGPChangePassphrase 61
PGPChangeSubKeyPassphrase 67
PGPCheckKeyRingSigs 23
PGPCloseSocket 283
PGPCollectRandomDataDialog 237
PGPCommitKeyRingChanges 24
PGPCompareKeyIDs 93
PGPCompareKeys 65
PGPCompareUserIDStrings 70

PGPConfirmationPassphraseDialog 232

PGPConnect 284
PGPContextGetRandomBytes 214
PGPContinueHash 177
PGPContinueHMAC 179

PGPConventionalDecryptionPassphraseDialo

g 236

PGPConventionalEncryptionPassphraseDialo

g 235
PGPCopyBigNum 298
PGPCopyCBCContext 186
PGPCopyCFBContext 190
PGPCopyFileSpec 216
PGPCopyGroupSet 148
PGPCopyHashContext 176

PGPCopyKeylter 51
PGPCopyOptionList 99

PGPCopySymmetricCipherContext 182

PGPCopyTLSSession 267

PGPCountAdditionalRecipientRequests 72

PGPCountGroupltems 156
PGPCountGroupsinSet 152
PGPCountKeys 30
PGPCountPublicKeyAlgorithms 202
PGPCountSymmetricCiphers 202
PGPDecode 174

PGPDecode-only Events 168
PGPDecryptionPassphraseDialog 234
PGPDeleteFromKeyServer 257
PGPDeleteGroup 153
PGPDeletelndltemFromGroup 158
PGPDeleteltemFromGroup 158
PGPDisableFromKeyServer 257
PGPDisableKey 62
PGPDiscreteLogExponentBits 200
PGPDottedTolnternetAddress 294
PGPEnableKey 62

PGPEncode 173
PGPEstimatePassphraseQuality 240
PGPExportGroupSetToBuffer 150
PGPExportKeylD 90
PGPExportKeySet 28
PGPFilterKeySet 48
PGPFinalizeHMAC 180
PGPFreeBigNum 299
PGPFreeCBCContext 186
PGPFreeCFBContext 190
PGPFreeContext 213
PGPFreeData 212
PGPFreeFileSpec 216
PGPFreeFilter 48
PGPFreeGroupltemlter 159

Reference Guide

359

Index

PGPFreeGroupSet 149 PGPGetIndGrouplID 152
PGPFreeHashContext 176 PGPGetIndGroupltem 157
PGPFreeHMACContext 179 PGPGetKeyBoolean 76
PGPFreeKeylter 52 PGPGetKeyByKeyID 91
PGPFreeKeyList 50 PGPGetKeyContext 94
PGPFreeKeyServer 254 PGPGetKeyEntropyNeeded 228
PGPFreeKeySet 26 PGPGetKeylDFromKey 92
PGPFreeMemoryMgr 207 PGPGetKeylDFromString 91
PGPFreeOptionList 99 PGPGetKeylDFromSubKey 92
PGPFreePrivateKeyContext 197 PGPGetKeyIDOfCertifier 92
PGPFreePublicKeyContext 194 PGPGetKeyIDString 90
PGPFreeServerMonitor 254 PGPGetKeylterContext 94
PGPFreeSymmetricCipherContext 182 PGPGetKeyListContext 93
PGPFreeTLSContext 266 PGPGetKeyNumber 76
PGPFreeTLSSession 269 PGPGetKeyPasskeyBuffer 77
PGPGenerateKey 60 PGPGetKeyPropertyBuffer 77
PGPGenerateSubKey 65 PGPGetKeyServerAccessType 251
PGPGetContextMemoryMgr 214 PGPGetKeyServerAddress 252, 253
PGPGetContextUserValue 214 PGPGetKeyServerContext 253
PGPGetDefaultMemoryMgr 208 PGPGetKeyServerEventHandler 249
PGPGetDefaultPrivateKey 86 PGPGetKeyServerHostName 252
PGPGetErrorString 224 PGPGetKeyServerldleEventHandler 250
PGPGetFeatureFlags 201 PGPGetKeyServerKeySpace 251
PGPGetFSSpecFromFileSpec 216 PGPGetKeyServerPort 252
PGPGetFullPathFromFileSpec 217 PGPGetKeyServerProtocol 250
PGPGetGrouplnfo 155 PGPGetKeyServerTLSSession 250
PGPGetGroupLowestValidity 160 PGPGetKeySetContext 93
PGPGetGroupSetContext 149 PGPGetKeyTime 78
PGPGetHashAlgUsed 75 PGPGetKeyUserVal 88
PGPGetHashSize 177 PGPGetLastKeyServerErrorString 262
PGPGetHostByAddress 291 PGPGetLastSocketsError 293
PGPGetHostByName 290 PGPGetMemoryMgrCustomValue 209
PGPGetHostName 290 PGPGetMemoryMgrDatalnfo 209
PGPGetindexedAdditionalRecipientRequest PGPGetPeerName 293

73,174 PGPGetPGPTimeFromstdTime 221

PGPGetIndexedPublicKeyAlgorithmInfo 202 PGPGetPrimaryAttributeUserID 84
PGPGetIndexedSymmetricCipherinfo 203 PGPGetPrimaryUserID 84

360 PGP Software Developer’s Kit

Index

PGPGetPrimaryUserIDNameBuffer 85
PGPGetPrimaryUserIDValidity 85

PGPGetPrivateKeyOperationsSizes 198

PGPGetProtocolByName 291
PGPGetProtocolByNumber 291
PGPGetPublicKeyOperationsSizes 194
PGPGetSDKString 204
PGPGetSDKVersion 203
PGPGetServiceByName 292
PGPGetServiceByPort 292
PGPGetSigBoolean 82
PGPGetSigCertifierKey 74
PGPGetSigNumber 83
PGPGetSigPropertyBuffer 83
PGPGetSigTime 84
PGPGetSigUserVal 89
PGPGetSocketName 293
PGPGetSocketOptions 296
PGPGetSocketsldleEventHandler 282
PGPGetStdTimeFromPGPTime 222
PGPGetSubKeyBoolean 78
PGPGetSubKeyNumber 79
PGPGetSubKeyPasskeyBuffer 79
PGPGetSubKeyPropertyBuffer 80
PGPGetSubKeyTime 81
PGPGetSubKeyUserVal 88
PGPGetSymmetricCipherSizes 183
PGPGetTime 221
PGPGetUserIDBoolean 81
PGPGetUserIDContext 95
PGPGetUserIDNumber 81
PGPGetUserIDStringBuffer 82
PGPGetUserIDUserVal 89
PGPGetYMDFromPGPTime 222

PGPGlobalRandomPoolAddKeystroke 226
PGPGlobalRandomPoolAddMouse 226
PGPGlobalRandomPoolGetEntropy 227

PGPGlobalRandomPoolGetMinimumEntrop
y 227

PGPGlobalRandomPoolGetSize 227

PGPGlobalRandomPoolHasMinimumEntrop
y 227

PGPGlobalRandomPoolMouseMoved 226
PGPGroupltemliterNext 160
PGPGroupSetNeedsCommit 149
PGPHKSQueryFromFilter 49
PGPImportGroupSetFromBuffer 151
PGPImportKeyID 90
PGPImportKeySet 27
PGPIncFilterRefCount 59
PGPIncKeyListRefCount 60
PGPIncKeyServerRefCount 262
PGPIncKeySetRefCount 59
PGPInitCBC 185

PGPInitCFB 189
PGPInitSymmetricCipher 181
PGPInternetAddressToDottedString 294
PGPIntersectFilters 47
PGPIOControlSocket 295
PGPKeylterIndex 52
PGPKeylterKey 52
PGPKeylterMove 54
PGPKeylterNext 54
PGPKeylterNextSubKey 55
PGPKeylterNextUIDSig 56
PGPKeylterNextUserID 55
PGPKeylterPrev 56
PGPKeylterPrevSubKey 57
PGPKeylterPrevUIDSig 57
PGPKeylterPrevUserID 57
PGPKeylterRewind 58
PGPKeylterRewindSubKey 58
PGPKeylterRewindUIDSig 59
PGPKeylterRewindUserID 58

Reference Guide 361

Index

PGPKeylterSeek 54

PGPKeylterSig 53
PGPKeylterSubKey 52
PGPKeylterUserID 53
PGPKeyPassphraseDialog 233
PGPKeyServerCleanup 264
PGPKeyServerClose 263
PGPKeyServerlnit 246
PGPKeyServerOpen 254
PGPKeySetlsMember 30
PGPKeySetlsMutable 31
PGPKeySetNeedsCommit 31
PGPLDAPQueryFromFilter 49
PGPListen 284
PGPMacBinaryToLocal 217
PGPMemoryMgrlsValid 207
PGPMergeGrouplntoDifferentSet 158
PGPMergeGroupSets 151
PGPNegateFilter 47
PGPNewBigNum 298
PGPNewCBCContext 185
PGPNewCFBContext 188
PGPNewContext 212
PGPNewContextCustom 212
PGPNewData 210
PGPNewEmptyKeySet 25
PGPNewFileSpecFromFSSpec 215
PGPNewtFileSpecFromFullPath 215
PGPNewFlattenedGroupFromGroup 161
PGPNewGroup 153
PGPNewGroupltemlIter 159
PGPNewGroupSet 147
PGPNewGroupSetFromFile 147
PGPNewGroupSetFromFSSpec 148
PGPNewHashContext 176
PGPNewHMACContext 178
PGPNewKeyBooleanFilter 31

362 PGP Software Developer’s Kit

PGPNewKeyCreationTimeFilter 32
PGPNewKeyDisabledFilter 33
PGPNewKeyEncryptAlgorithmFilter 35
PGPNewKeyEncryptKeySizeFilter 36
PGPNewKeyExpirationTimeFilter 32
PGPNewKeyFingerPrintFilter 36
PGPNewKeyIDFilter 37
PGPNewKeylter 51
PGPNewKeyNumberFilter 33
PGPNewKeyPropertyBufferFilter 34
PGPNewKeyRevokedFilter 35
PGPNewKeyServer 246
PGPNewKeyServerFromHostAddress 246
PGPNewKeyServerFromHostName 246
PGPNewKeyServerFromURL 246
PGPNewKeySet 25
PGPNewKeySetFromGroup 161
PGPNewKeySigAlgorithmFilter 40
PGPNewKeySigKeySizeFilter 40
PGPNewKeyTimeFilter 34
PGPNewMemoryMgr 206
PGPNewMemoryMgrCustom 207
PGPNewOptionList 98
PGPNewPrivateKeyContext 197
PGPNewPublicKeyContext 194
PGPNewSecureData 210
PGPNewServerMonitor 253
PGPNewsSigBooleanFilter 41
PGPNewsSigKeyIDFilter 41
PGPNewSigNumberFilter 42
PGPNewsSigPropertyBufferFilter 42
PGPNewsSigTimeFilter 43
PGPNewsSingletonKeySet 26
PGPNewSubKeyBooleanFilter 37
PGPNewSubKeyIDFilter 38
PGPNewSubKeyNumberFilter 38
PGPNewSubKeyPropertyBufferFilter 39

Index

PGPNewSubKeyTimeFilter 39
PGPNewSymmetricCipherContext 180
PGPNewTLSContext 265
PGPNewTLSSession 267
PGPNewUserIDBooleanFilter 43
PGPNewUserIDEmailFilter 46
PGPNewUserIDNameFilter 44
PGPNewUserIDNumberFilter 44
PGPNewUserIDStringBufferFilter 45
PGPNewUserIDStringFilter 46
PGPOAdditionalRecipientRequestKeySet 119
PGPOAIllocatedOutputBuffer 103
PGPOAppendOutput 105
PGPOArmorOutput 116
PGPOAskUserForEntropy 114
PGPOCipherAlgorithm 110
PGPOClearSign 116
PGPOCommentString 140
PGPOCompression 139
PGPOConventionalEncrypt 109
PGPOCreationDate 122
PGPODatalsASCII 114
PGPODetachedSig 108
PGPODiscardOutput 103
PGPOEnNcryptToKey 110
PGPOEnNcryptToKeySet 111
PGPOEnNcryptToUserID 111
PGPOEventHandler 145
PGPOExpiration 122
PGPOExportable 123
PGPOExportFormat 144
PGPOExportPrivateKeys 120
PGPOExportPrivateSubkeys 144
PGPOFailBelowValidity 113
PGPOForYourEyesOnly 115
PGPOHashAlgorithm 111
PGPOImportKeysTo 117

PGPOInputBuffer 101
PGPOlnputFile 102
PGPOInputFileFSSpec 102
PGPOKeyGenFast 121
PGPOKeyGenMasterKey 120
PGPOKeyGenName 120
PGPOKeyGenParams 121
PGPOKeyServerAccessType 137
PGPOKeyServerCAKey 138
PGPOKeyServerKeySpace 137
PGPOKeyServerProtocol 137
PGPOKeyServerRequestKey 138
PGPOKeyServerSearchFilter 139
PGPOKeyServerSearchKey 138
PGPOKeySetRef 142
PGPOLastOption 145
PGPOLocalEncoding 107
PGPONetHostAddress 136
PGPONetHostName 136
PGPONetURL 136
PGPONullOption 139
PGPOOmMitMIMEVersion 106
PGPOOutputBuffer 104
PGPOOutputFile 104
PGPOOutputFileFSSpec 105
PGPOOutputLineEndType 108
PGPOPasskeyBuffer 141
PGPOPassphrase 140
PGPOPassphraseBuffer 141
PGPOPassThroughClearSigned 117
PGPOPassThroughlfUnrecognized 117
PGPOPassThroughKeys 118
PGPOpenDefaultKeyRings 20
PGPOpenKeyRing 21
PGPOpenKeyRingPair 21
PGPOpenSocket 281
PGPOPGPMIMEENcoding 106

Reference Guide 363

Index

PGPOPreferredAlgorithms 142
PGPOptionsDialog 236
PGPORawPGPInput 115
PGPOrderKeySet 50
PGPORecursivelyDecode 118
PGPORevocationKeySet 124
PGPOSendEventlfKeyFound 118
PGPOSendNullEvents 143
PGPOSignWithKey 112
PGPOSigRegularExpression 123
PGPOSigTrust 123
PGPOUICheckBox 127
PGPOUIDefaultkey 133
PGPOUIDefaultRecipients 131
PGPOUIDialogOptions 126
PGPOUIDialogPrompt 125
PGPOUIDisplayMarginalValidity 133

PGPOUIENnforceAdditionalRecipientRequests

132
PGPOUIFindMatchingKey 131
PGPOUIlIgnoreMarginalValidity 133
PGPOUIKeyServerSearchFilter 135
PGPOUIKeyServerSearchKey 135
PGPOUIKeyServerSearchKeylIDList 135
PGPOUIKeyServerSearchKeySet 135
PGPOUIKeyServerUpdateParams 134
PGPOUIMinimumPassphraseLength 129
PGPOUIMinimumPassphraseQuality 130
PGPOUIQutputPassphrase 129
PGPOUIParentWindowHandle 124
PGPOUIPopUpList 128
PGPOUIRecipientGroups 132
PGPOUIShowPassphraseQuality 130
PGPOUIVerifyPassphrase 131
PGPOUIWindowTitle 125
PGPOVersionString 140
PGPOWarnBelowValidity 113

364 PGP Software Developer’s Kit

PGPOX509Encoding 143
PGPPassphraseDialog 231
PGPPassphraselsValid 75
PGPPreallocateBigNum 299
PGPPrivateKeyDecrypt 198
PGPPrivateKeySign 199
PGPPrivateKeySignRaw 199
PGPPropagateTrust 30
PGPPublicKeyEncrypt 195
PGPPublicKeyVerifyRaw 196
PGPPublicKeyVerifySignature 195
PGPQueryKeyServer 255
PGPRead 289

PGPReallocData 211

PGPReceive 288

PGPReceiveFrom 289
PGPRecipientDialog 230
PGPReloadKeyRings 22
PGPRemoveKeys 29
PGPRemoveSig 71
PGPRemoveSubKey 67
PGPRemoveUserID 69
PGPResetHash 178
PGPResetHMAC 180
PGPRetrieveCertificate 260
PGPRetrieveCertificateRevocationList 261
PGPRetrieveGroupsFromsServer 259
PGPRevertKeyRingChanges 24
PGPRevokeKey 63
PGPRevokeSig 72
PGPRevokeSubKey 67
PGPSaveGroupSetToFile 150
PGPsdk Management Functions 205, 229
PGPsdkCleanup 206, 230
PGPsdklnit 205
PGPsdkLoadDefaultPrefs 218
PGPsdkLoadPrefs 218

Index

PGPsdkNetworkLibCleanup 223
PGPsdkNetworkLiblInit 223
PGPsdkPrefGetData 220
PGPsdkPrefGetFileSpec 221
PGPsdkPrefSetData 219
PGPsdkPrefSetFileSpec 220
PGPsdkSavePrefs 219
PGPsdkUILiblInit 229
PGPSearchKeyServerDialog 238
PGPSecretReconstructData 95
PGPSecretShareData 95

PGPSelect 285

PGPSend 287
PGPSendCertificateRequest 259
PGPSendGroupsToServer 258
PGPSendTo 288
PGPSendToKeyServerDialog 239
PGPSetContextUserValue 213
PGPSetDefaultMemoryMgr 208
PGPSetDefaultPrivateKey 86
PGPSetGroupDescription 155
PGPSetGroupName 154
PGPSetGroupUserValue 155
PGPSetIndGroupltemUserValue 157
PGPSetKeyAxiomatic 63
PGPSetKeyServerEventHandler 248
PGPSetKeyServerldleEventHandler 249
PGPSetKeyTrust 65
PGPSetKeyUserVal 87
PGPSetMemoryMgrCustomValue 208
PGPSetPrimaryUserID 69
PGPSetSigUserVal 87
PGPSetSocketOptions 295
PGPSetSocketsldleEventHandler 282
PGPSetSubKeyUserVal 87
PGPSetUserIDUserVal 88
PGPSigningPassphraseDialog 233

PGPSignUserID 70
PGPSocketsCleanup 280
PGPSocketsCreateThreadStorage 245, 280
PGPSocketsDisposeThreadStorage 245, 281
PGPSocketsEstablishTLSSession 296
PGPSocketsInit 280
PGPSortGroupltems 156
PGPSortGroupSet 152
PGPSortGroupSetStd 151
PGPSwapBigNum 300
PGPSymmetricCipherDecrypt 184
PGPTimeFromMacTime 223
PGPTimeToMacTime 223
PGPtlsClearCache 266

PGPtlsClose 268

PGPtlsGetAlert 273
PGPtlsGetNegotiatedCipherSuite 271
PGPtlsGetRemoteAuthenticatedKey 272
PGPtIsGetState 273
PGPtlsHandshake 268
PGPtlsReceive 275

PGPtlsSend 274

PGPtIsSetCache 266
PGPtlsSetDHPrime 270
PGPtIsSetLocalPrivateKey 271
PGPtlsSetPreferredCipherSuite 270
PGPtlsSetProtocolOptions 269
PGPtlsSetReceiveCallback 274
PGPtIsSetRemoteUniquelD 269
PGPtlsSetSendCallback 274
PGPUnionFilters 48
PGPUnionKeySets 26
PGPUnsetKeyAxiomatic 64
PGPUploadToKeyServer 256
PGPVerifyX509CertificateChain 96
PGPWipeSymmetricCipher 184
PGPWrite 287

Reference Guide 365

Index

PKCS (Public Key Crypto Standards) 348 SDSI (Simple Distributed Security

PKI (Public Key Infrastructure) 348 Infrastructure) 349

Plain text (or clear text) 348 SEAL (Software-optimized Encryption
) ALgorithm) 350

Preference Functions 218

Pretty Good Privacy (PGP) 348 Secret key 350
. y . y Secure channel 350
Primitive filter 347

Self-signed key 350
Private key 348 9 y

Send Functions 287
Pseudo-random number 348 .
SEPP (Secure Electronic Payment

Public key 348 Protocol) 350
Public Key Encode and Decode Functions 173 server Functions 284

SESAME (Secure European System for

R Applications in a Multi-vendor
RADIUS (Remote Authentication Dial-In User environment) 350
Service) 348 Session key 350
Random number 348 SET (Secure Electronic Transaction) 350
Random Number Pool Management SHA-1 (Secure Hash Algorithm) 350
Functions 226 Signature Errors 321,330
Rarely Encountered PGP Errors 323,335 Single sign-on 350
RC2 (Rivest Cipher 2) 349 SKIP (Simple Key for IP) 350
RC4 (Rivest Cipher 4) 349 Skipjack 350
RC5 (Rivest Cipher 5) 349 SKMP (Secure-Key Management
Receive Functions 288 Protocol) 350
REDOC 349 SNAPI (Secure Network API) 351
related Socket Creation and Destruction
documentation xxx Functions 281
Revocation 349 Socket Thread Storage 280
RFC (Request for Comment) 349 SPKI (Simple Public Key Infrastructure) 351
RIPE-MD 349 SSH (Secure Shell) 351
ROT-13 (Rotation Cipher) 349 SSH (Site Security Handbook) 351
RSA 349 SSL (Secure Socket Layer) 351
SST (Secure Transaction Technology) 351
S Stream cipher 351
S/MIME (Secure Multipurpose Mail STU-III (Secure Telephone Unit) 351
Extension) 351 Substitution cipher 351

S/WAN (Secure Wide Area Network) 352 Symmetric algorithm 352

SAFER (Secure And Fast Encryption
Routine) 349

Salt 349

366 PGP Software Developer’s Kit

Index

T

TACACS+ (Terminal Access Controller
Access Control System) 352

technical support

email address xxviii

information needed from user xxviii,

XXiX

online xxviii
Timestamping 352
TLS (Transport Layer Security) 352
TLS Context Management Functions 265
TLSP (Transport Layer Security Protocol) 352
TLS-related Functions 296

training for Network Associates
products xxix

scheduling xxix
Transposition cipher 352
Triple DES 352
Trust 344,352
TTP (Trust Third-Party) 352

U

UEPS (Universal Electronic Payment
System) 352

Unix platforms xxx

User Interface Dialog Functions 230

User Interface Dialog Option Functions 124
Utility Functions 293

\%

Validation 352

Verification 352

VPN (Virtual Private Network) 353

W

W3C (World Wide Web Consortium) 353
WAKE (Word Auto Key Encryption) 353
Web of Trust 353

Windows & UNIX Platforms Net Byte
Ordering Macros 292

Windows platforms xxx

X
X.509v3 353
XOR 353

Z

Zimmermann, Phillip xxxi

Reference Guide 367

Index

368 PGP Software Developer’s Kit

	Reference Guide
	Table of Contents
	Preface xxv
	Chapter 1. PGPsdk Overview 1
	Chapter 2. Key Management Functions 15
	Chapter 3. Option List Functions 97
	Chapter 4. Group Functions 147
	Chapter 5. Ciphering and Authentication Functions 163
	Chapter 6. Feature (Capability) Query Functions 201
	Chapter 7. Utility Toolbox 205
	Chapter 8. Global Random Number Pool Management Functions 225
	Chapter 9. User Interface Functions 229
	Chapter 10. Key Server Functions 241
	Chapter 11. TLS (Transport Layer Security) Functions 265
	Chapter 12. Socket Functions 277
	Chapter 13. BigNum Functions 297
	Appendix A. PGPsdk Error Summary 317

	Table of Contents
	Preface
	Audience
	How to use this guide
	Conventions used in this guide
	Typographic conventions
	Notes, warnings, and tips conventions

	How to contact Network Associates
	Customer service
	Technical support
	Network Associates training
	Comments and feedback
	Year 2000 Compliance
	Development environment and API platform support

	Related documentation
	Recommended readings

	Ch. 1 PGPsdk Overview
	Introduction
	PGPsdk functionality
	Library binaries
	Data Type, constant, macro, and function name conventions
	PGPContext
	Memory management
	Error codes

	PGPsdk API details and data structures — Key management
	Key database
	Collections of keys in a key database
	Key filters
	Lists of keys in a key database

	PGPsdk API details and data structures — Ciphering
	Using the PGPsdk ciphering API
	Events and callbacks

	PGPsdk API details and data structures — Authentication
	Hash Functions

	Ch. 2 Key Management Functions
	Introduction
	Events and callbacks
	Key management events
	kPGPEvent_InitialEvent
	kPGPEvent_NullEvent
	kPGPEvent_KeyGenEvent
	kPGPEvent_FinalEvent

	Key ring management functions
	PGPOpenDefaultKeyRings
	PGPOpenKeyRingPair
	PGPOpenKeyRing
	PGPReloadKeyRings
	PGPCheckKeyRingSigs
	PGPRevertKeyRingChanges
	PGPCommitKeyRingChanges

	Key Set Management Functions
	PGPNewKeySet
	PGPNewEmptyKeySet
	PGPNewSingletonKeySet
	PGPUnionKeySets
	PGPFreeKeySet
	PGPImportKeySet
	PGPExportKeySet
	PGPAddKeys
	PGPRemoveKeys
	PGPPropagateTrust
	PGPCountKeys
	PGPKeySetIsMember
	PGPKeySetIsMutable
	PGPKeySetNeedsCommit

	KeyFilter Functions
	PGPNewKeyBooleanFilter
	PGPNewKeyCreationTimeFilter
	PGPNewKeyExpirationTimeFilter
	PGPNewKeyDisabledFilter
	PGPNewKeyNumberFilter
	PGPNewKeyTimeFilter
	PGPNewKeyPropertyBufferFilter
	PGPNewKeyRevokedFilter
	PGPNewKeyEncryptAlgorithmFilter
	PGPNewKeyEncryptKeySizeFilter
	PGPNewKeyFingerPrintFilter
	PGPNewKeyIDFilter
	PGPNewSubKeyBooleanFilter
	PGPNewSubKeyIDFilter
	PGPNewSubKeyNumberFilter
	PGPNewSubKeyPropertyBufferFilter
	PGPNewSubKeyTimeFilter
	PGPNewKeySigAlgorithmFilter
	PGPNewKeySigKeySizeFilter
	PGPNewSigBooleanFilter
	PGPNewSigKeyIDFilter
	PGPNewSigNumberFilter
	PGPNewSigPropertyBufferFilter
	PGPNewSigTimeFilter
	PGPNewUserIDBooleanFilter
	PGPNewUserIDNameFilter
	PGPNewUserIDNumberFilter
	PGPNewUserIDStringBufferFilter
	PGPNewUserIDStringFilter
	PGPNewUserIDEmailFilter
	PGPNegateFilter
	PGPIntersectFilters
	PGPUnionFilters
	PGPFreeFilter
	PGPFilterKeySet
	PGPLDAPQueryFromFilter
	PGPHKSQueryFromFilter
	Key Iteration Functions
	PGPOrderKeySet
	PGPFreeKeyList
	PGPNewKeyIter
	PGPCopyKeyIter
	PGPFreeKeyIter
	PGPKeyIterIndex
	PGPKeyIterKey
	PGPKeyIterSubKey
	PGPKeyIterUserID
	PGPKeyIterSig
	PGPKeyIterMove
	PGPKeyIterSeek
	PGPKeyIterNext
	PGPKeyIterNextSubKey
	PGPKeyIterNextUserID
	PGPKeyIterNextUIDSig
	PGPKeyIterPrev
	PGPKeyIterPrevSubKey
	PGPKeyIterPrevUserID
	PGPKeyIterPrevUIDSig
	PGPKeyIterRewind
	PGPKeyIterRewindSubKey
	PGPKeyIterRewindUserID
	PGPKeyIterRewindUIDSig

	Key reference count functions
	PGPIncKeySetRefCount
	PGPIncFilterRefCount
	PGPIncKeyListRefCount

	Key manipulation functions
	PGPGenerateKey
	PGPChangePassphrase
	PGPEnableKey
	PGPDisableKey
	PGPRevokeKey
	PGPSetKeyAxiomatic
	PGPUnsetKeyAxiomatic
	PGPSetKeyTrust
	PGPCompareKeys
	PGPGenerateSubKey
	PGPRemoveSubKey
	PGPChangeSubKeyPassphrase
	PGPRevokeSubKey
	PGPAddUserID
	PGPRemoveUserID
	PGPSetPrimaryUserID
	PGPCompareUserIDStrings
	PGPSignUserID
	PGPRemoveSig
	PGPRevokeSig
	PGPCountAdditionalRecipientRequests
	PGPGetIndexedAdditionalRecipientRequestKey
	PGPGetSigCertifierKey
	PGPCountRevocationKeys
	PGPGetIndexedRevocationKey
	PGPPassphraseIsValid

	Get property functions
	PGPGetHashAlgUsed
	PGPGetKeyBoolean
	PGPGetKeyNumber
	PGPGetKeyPasskeyBuffer
	PGPGetKeyPropertyBuffer
	PGPGetKeyTime
	PGPGetSubKeyBoolean
	PGPGetSubKeyNumber
	PGPGetSubKeyPasskeyBuffer
	PGPGetSubKeyPropertyBuffer
	PGPGetSubKeyTime
	PGPGetUserIDBoolean
	PGPGetUserIDNumber
	PGPGetUserIDStringBuffer
	PGPGetSigBoolean
	PGPGetSigNumber
	PGPGetSigPropertyBuffer
	PGPGetSigTime

	Convenience property functions
	PGPGetPrimaryUserID
	PGPGetPrimaryAttributeUserID
	PGPGetPrimaryUserIDNameBuffer
	PGPGetPrimaryUserIDValidity
	Default Private Key Functions
	PGPSetDefaultPrivateKey
	PGPGetDefaultPrivateKey

	Key user-defined data functions
	PGPSetKeyUserVal
	PGPSetSubKeyUserVal
	PGPSetSigUserVal
	PGPSetUserIDUserVal
	PGPGetKeyUserVal
	PGPGetSubKeyUserVal
	PGPGetSigUserVal
	PGPGetUserIDUserVal

	KeyID functions
	PGPImportKeyID
	PGPExportKeyID
	PGPGetKeyIDString
	PGPGetKeyIDFromString
	PGPGetKeyByKeyID
	PGPGetKeyIDFromKey
	PGPGetKeyIDFromSubKey
	PGPGetKeyIDOfCertifier
	PGPCompareKeyIDs

	Key Item Context Retrieval Functions
	PGPGetKeySetContext
	PGPGetKeyListContext
	PGPGetKeyIterContext
	PGPGetKeyContext
	PGPGetSubKeyContext
	PGPGetUserIDContext

	Key Share Functions
	PGPSecretShareData
	PGPSecretReconstructData

	Misc. Key-related functions
	PGPVerifyX509CertificateChain

	Ch. 3 Option List Functions
	Introduction
	Header files
	Option list management functions
	PGPNewOptionList
	PGPBuildOptionList
	PGPCopyOptionList
	PGPAppendOptionList
	PGPFreeOptionList
	PGPAddJobOptions

	Common Encode/Decode option list functions
	PGPOInputBuffer
	PGPOInputFile
	PGPOInputFileFSSpec (MacOS platforms only)
	PGPODiscardOutput
	PGPOAllocatedOutputBuffer
	PGPOOutputBuffer
	PGPOOutputFile
	PGPOOutputFileFSSpec (MacOS platforms only)
	PGPOAppendOutput
	PGPOPGPMIMEEncoding
	PGPOOmitMIMEVersion
	PGPOLocalEncoding
	PGPOOutputLineEndType
	PGPODetachedSig

	Common encrypting and signing option list functions
	PGPOConventionalEncrypt
	PGPOCipherAlgorithm
	PGPOEncryptToKey
	PGPOEncryptToKeySet
	PGPOEncryptToUserID
	PGPOHashAlgorithm
	PGPOSignWithKey
	PGPOWarnBelowValidity
	PGPOFailBelowValidity

	Encode-only Option List Functions
	PGPOAskUserForEntropy
	PGPODataIsASCII
	PGPORawPGPInput
	PGPOForYourEyesOnly
	PGPOArmorOutput
	PGPOFileNameString
	PGPOClearSign

	Decode-only Option List Functions
	PGPOImportKeysTo
	PGPOPassThroughIfUnrecognized
	PGPOPassThroughClearSigned
	PGPOPassThroughKeys
	PGPOSendEventIfKeyFound
	PGPORecursivelyDecode

	(Sub-)Key Generation, Augmentation, and Revocation Option List Functions
	PGPOAdditionalRecipientRequestKeySet
	PGPOKeyGenName
	PGPOKeyGenMasterKey
	PGPOExportPrivateKeys
	PGPOKeyGenFast
	PGPOKeyGenParams
	PGPOCreationDate
	PGPOExpiration
	PGPOExportable
	PGPOSigRegularExpression
	PGPOSigTrust
	PGPORevocationKeySet

	User Interface Dialog Option Functions
	PGPOUIParentWindowHandle (Windows platforms only)
	PGPOUIWindowTitle
	PGPOUIDialogPrompt
	PGPOUIDialogOptions
	PGPOUICheckBox
	PGPOUIPopUpList
	PGPOUIOutputPassphrase
	PGPOUIMinimumPassphraseLength
	PGPOUIMinimumPassphraseQuality
	PGPOUIShowPassphraseQuality
	PGPOUIVerifyPassphrase
	PGPOUIFindMatchingKey
	PGPOUIDefaultRecipients
	PGPOUIRecipientGroups
	PGPOUIEnforceAdditionalRecipientRequests
	PGPOUIDefaultKey
	PGPOUIDisplayMarginalValidity
	PGPOUIIgnoreMarginalValidity
	PGPOUIKeyServerUpdateParams
	PGPOUIKeyServerSearchFilter
	PGPOUIKeyServerSearchKey
	PGPOUIKeyServerSearchKeySet
	PGPOUIKeyServerSearchKeyIDList

	Network and Key Server Option List Functions
	PGPONetURL
	PGPONetHostName
	PGPONetHostAddress
	PGPOKeyServerProtocol
	PGPOKeyServerKeySpace
	PGPOKeyServerAccessType
	PGPOKeyServerCAKey
	PGPOKeyServerRequestKey
	PGPOKeyServerSearchKey
	PGPOKeyServerSearchFilter

	Misc. Option List Functions
	PGPONullOption
	PGPOCompression
	PGPOCommentString
	PGPOVersionString
	PGPOPassphrase
	PGPOPassphraseBuffer
	PGPOPasskeyBuffer
	PGPOPreferredAlgorithms
	PGPOKeySetRef
	PGPOSendNullEvents
	PGPOX509Encoding
	PGPOExportFormat
	PGPOExportPrivateSubkeys
	PGPOEventHandler
	PGPOLastOption

	Ch. 4 Group Functions
	Introduction
	Group Set Management Functions
	PGPNewGroupSet
	PGPNewGroupSetFromFile (Non-MacOS platforms only)
	PGPNewGroupSetFromFSSpec (MacOS platforms only)
	PGPCopyGroupSet
	PGPFreeGroupSet
	PGPGetGroupSetContext
	PGPGroupSetNeedsCommit
	PGPSaveGroupSetToFile
	PGPExportGroupSetToBuffer
	PGPImportGroupSetFromBuffer
	PGPMergeGroupSets
	PGPSortGroupSetStd
	PGPSortGroupSet
	PGPCountGroupsInSet
	PGPGetIndGroupID

	Group Management Functions
	PGPNewGroup
	PGPDeleteGroup
	PGPAddItemToGroup
	PGPSetGroupName
	PGPSetGroupDescription
	PGPSetGroupUserValue
	PGPGetGroupInfo
	PGPSortGroupItems
	PGPCountGroupItems
	PGPSetIndGroupItemUserValue
	PGPGetIndGroupItem
	PGPDeleteItemFromGroup
	PGPDeleteIndItemFromGroup
	PGPMergeGroupIntoDifferentSet

	Group Item Iteration Functions
	PGPNewGroupItemIter
	PGPFreeGroupItemIter
	PGPGroupItemIterNext

	Group Utility Functions
	PGPGetGroupLowestValidity
	PGPNewKeySetFromGroup
	PGPNewFlattenedGroupFromGroup

	Ch. 5 Ciphering and Authentication Functions
	Introduction
	Header Files
	Events and Callbacks
	Common Cipher Events
	kPGPEvent_InitialEvent
	kPGPEvent_NullEvent
	kPGPEvent_WarningEvent
	kPGPEvent_ErrorEvent
	kPGPEvent_FinalEvent

	PGPEncode-only Events
	kPGPEvent_EntropyEvent

	PGPDecode-only Events
	kPGPEvent_BeginLexEvent
	kPGPEvent_AnalyzeEvent
	kPGPEvent_RecipientsEvent
	kPGPEvent_KeyFoundEvent
	kPGPEvent_SignatureEvent
	kPGPEvent_DetachedSigEvent
	kPGPEvent_PassphraseEvent
	kPGPEvent_OutputEvent
	kPGPEvent_DecryptionEvent
	kPGPEvent_EndLexEvent

	Public Key Encode and Decode Functions
	PGPEncode
	PGPDecode

	Low-Level Cipher Functions — Hash
	PGPNewHashContext
	PGPCopyHashContext
	PGPFreeHashContext
	PGPGetHashSize
	PGPContinueHash
	PGPFinalizeHash
	PGPResetHash

	Low-Level Cipher Functions — HMAC
	PGPNewHMACContext
	PGPFreeHMACContext
	PGPContinueHMAC
	PGPFinalizeHMAC
	PGPResetHMAC

	Low-Level Cipher Functions — Symmetric Cipher
	PGPNewSymmetricCipherContext
	PGPInitSymmetricCipher
	PGPCopySymmetricCipherContext
	PGPFreeSymmetricCipherContext
	PGPGetSymmetricCipherSizes
	PGPSymmetricCipherEncrypt
	PGPSymmetricCipherDecrypt
	PGPWashSymmetricCipher
	PGPWipeSymmetricCipher

	Low-Level Cipher Functions — Cipher Block Chaining
	PGPNewCBCContext
	PGPInitCBC
	PGPCopyCBCContext
	PGPFreeCBCContext
	PGPCBCEncrypt
	PGPCBCDecrypt
	PGPCBCGetSymmetricCipher

	Low-Level Cipher Functions — Cipher Feedback Block
	PGPNewCFBContext
	PGPInitCFB
	PGPCopyCFBContext
	PGPFreeCFBContext
	PGPCFBEncrypt
	PGPCFBDecrypt
	PGPCFBGetSymmetricCipher
	PGPCFBGetRandom
	PGPCFBRandomCycle
	PGPCFBRandomWash
	PGPCFBSync

	Low-Level Cipher Functions — Public Key
	PGPNewPublicKeyContext
	PGPFreePublicKeyContext
	PGPGetPublicKeyOperationSizes
	PGPPublicKeyEncrypt
	PGPPublicKeyVerifySignature
	PGPPublicKeyVerifyRaw

	Low-Level Cipher Functions — Private Key
	PGPNewPrivateKeyContext
	PGPFreePrivateKeyContext
	PGPGetPrivateKeyOperationSizes
	PGPPrivateKeyDecrypt
	PGPPrivateKeySign
	PGPPrivateKeySignRaw

	Low-Level Cipher Functions — Misc.
	PGPDiscreteLogExponentBits

	Ch. 6 Feature (Capability) Query Functions
	Introduction
	Header Files
	Feature (Capability) Query Functions
	PGPGetFeatureFlags
	PGPCountPublicKeyAlgorithms
	PGPGetIndexedPublicKeyAlgorithmInfo
	PGPCountSymmetricCiphers
	PGPGetIndexedSymmetricCipherInfo
	PGPGetSDKVersion
	PGPGetSDKString

	Ch. 7 Utility Toolbox
	Introduction
	Header Files
	PGPsdk Management Functions
	PGPsdkInit
	PGPsdkCleanup

	Memory Manager Creation and Management Functions
	PGPNewMemoryMgr
	PGPNewMemoryMgrCustom
	PGPFreeMemoryMgr
	PGPMemoryMgrIsValid
	PGPSetDefaultMemoryMgr
	PGPGetDefaultMemoryMgr
	PGPSetMemoryMgrCustomValue
	PGPGetMemoryMgrCustomValue
	PGPGetMemoryMgrDataInfo
	PGPNewData
	PGPNewSecureData
	PGPReallocData
	PGPFreeData

	Context Creation and Management Functions
	PGPNewContext
	PGPNewContextCustom
	PGPFreeContext
	PGPSetContextUserValue
	PGPGetContextMemoryMgr
	PGPContextGetRandomBytes
	PGPGetContextUserValue

	File Specification Functions
	PGPNewFileSpecFromFSSpec (MacOS platforms only)
	PGPNewFileSpecFromFullPath (Non-MacOS platforms only)
	PGPCopyFileSpec
	PGPFreeFileSpec
	PGPGetFSSpecFromFileSpec (MacOS platforms only)
	PGPGetFullPathFromFileSpec (Non-MacOS platforms only)
	PGPMacBinaryToLocal (MacOS platforms only)

	Preference Functions
	PGPsdkLoadDefaultPrefs
	PGPsdkLoadPrefs
	PGPsdkSavePrefs
	PGPsdkPrefSetData
	PGPsdkPrefSetFileSpec
	PGPsdkPrefGetData
	PGPsdkPrefGetFileSpec

	Date/Time Functions
	PGPGetTime
	PGPGetPGPTimeFromStdTime
	PGPGetStdTimeFromPGPTime
	PGPGetYMDFromPGPTime
	PGPTimeFromMacTime (MacOS platforms only)
	PGPTimeToMacTime (MacOS platforms only)

	Network Library Management Functions
	PGPsdkNetworkLibInit
	PGPsdkNetworkLibCleanup

	Error Look-Up Functions
	PGPGetErrorString

	Ch. 8 Global Random Number Pool Management Functions
	Introduction
	Header Files
	Random Number Pool Management Functions
	PGPGlobalRandomPoolAddKeystroke
	PGPGlobalRandomPoolAddMouse
	PGPGlobalRandomPoolMouseMoved

	Entropy Estimation Functions
	PGPGlobalRandomPoolGetSize
	PGPGlobalRandomPoolGetEntropy
	PGPGlobalRandomPoolGetMinimumEntropy
	PGPGlobalRandomPoolHasMinimumEntropy
	PGPGetKeyEntropyNeeded

	Ch. 9 User Interface Functions
	Introduction
	Header Files
	User Interface Management Functions
	PGPsdkUILibInit
	PGPsdkCleanup

	User Interface Dialog Functions
	PGPRecipientDialog
	PGPPassphraseDialog
	PGPConfirmationPassphraseDialog
	PGPKeyPassphraseDialog
	PGPSigningPassphraseDialog
	PGPDecryptionPassphraseDialog
	PGPConventionalEncryptionPassphraseDialog
	PGPConventionalDecryptionPassphraseDialog
	PGPOptionsDialog
	PGPCollectRandomDataDialog
	PGPSearchKeyServerDialog
	PGPSendToKeyServerDialog

	Misc. UI Functions
	PGPEstimatePassphraseQuality

	Ch. 10 Key Server Functions
	Introduction
	Header Files
	Constants and Data Structures
	Events and Callbacks
	Key Server Request Events
	kPGPEvent_InitialEvent
	kPGPEvent_KeyServerEvent
	kPGPEvent_KeyServerSignEvent
	kPGPEvent_FinalEvent

	Key Server Thread Storage
	PGPKeyServerCreateThreadStorage
	PGPKeyServerDisposeThreadStorage

	Key Server Functions
	PGPKeyServerInit
	PGPNewKeyServerFromURL
	PGPNewKeyServerFromHostName
	PGPNewKeyServerFromHostAddress
	PGPNewKeyServer
	PGPSetKeyServerEventHandler
	PGPGetKeyServerEventHandler
	PGPSetKeyServerIdleEventHandler
	PGPGetKeyServerIdleEventHandler
	PGPGetKeyServerTLSSession
	PGPGetKeyServerProtocol
	PGPGetKeyServerAccessType
	PGPGetKeyServerKeySpace
	PGPGetKeyServerPort
	PGPGetKeyServerHostName
	PGPGetKeyServerAddress
	PGPGetKeyServerPath
	PGPGetKeyServerContext
	PGPNewServerMonitor (LDAP key servers only)
	PGPFreeServerMonitor (LDAP key servers only)
	PGPFreeKeyServer
	PGPKeyServerOpen
	PGPQueryKeyServer
	PGPUploadToKeyServer
	PGPDeleteFromKeyServer (LDAP key servers only)
	PGPDisableFromKeyServer (LDAP key servers only)
	PGPSendGroupsToServer (LDAP key servers only)
	PGPRetrieveGroupsFromServer (LDAP key servers only)
	PGPSendCertificateRequest
	PGPRetrieveCertificate
	PGPRetrieveCertificateRevocationList
	PGPIncKeyServerRefCount
	PGPGetLastKeyServerErrorString
	PGPCancelKeyServerCall
	PGPKeyServerClose
	PGPKeyServerCleanup

	Ch. 11 TLS (Transport Layer Security) Functions
	Introduction
	Header Files
	TLS Context Management Functions
	PGPNewTLSContext
	PGPFreeTLSContext
	PGPtlsSetCache
	PGPtlsClearCache
	PGPNewTLSSession
	PGPCopyTLSSession
	PGPtlsHandshake
	PGPtlsClose
	PGPFreeTLSSession
	PGPtlsSetRemoteUniqueID
	PGPtlsSetProtocolOptions
	PGPtlsSetDHPrime
	PGPtlsSetPreferredCipherSuite
	PGPtlsGetNegotiatedCipherSuite
	PGPtlsSetLocalPrivateKey
	PGPtlsGetRemoteAuthenticatedKey
	PGPtlsGetState
	PGPtlsGetAlert
	PGPtlsSetSendCallback
	PGPtlsSend
	PGPtlsSetReceiveCallback
	PGPtlsReceive

	Ch. 12 Socket Functions
	Introduction
	Header Files
	Constants and Data Structures
	Initialization and Termination Functions
	PGPSocketsInit
	PGPSocketsCleanup

	Socket Thread Storage
	PGPSocketsCreateThreadStorage
	PGPSocketsDisposeThreadStorage

	Socket Creation and Destruction Functions
	PGPOpenSocket
	PGPSetSocketsIdleEventHandler
	PGPGetSocketsIdleEventHandler
	PGPCloseSocket

	Endpoint Binding Functions
	PGPBindSocket
	PGPConnect

	Server Functions
	PGPListen
	PGPAccept
	PGPSelect

	Send Functions
	PGPSend
	PGPWrite
	PGPSendTo

	Receive Functions
	PGPReceive
	PGPRead
	PGPReceiveFrom

	DNS and Protocol Services Functions
	PGPGetHostName
	PGPGetHostByName
	PGPGetHostByAddress
	PGPGetProtocolByName
	PGPGetProtocolByNumber
	PGPGetServiceByName
	PGPGetServiceByPort

	Net Byte Ordering Macros
	Windows & UNIX Platforms Net Byte Ordering Macros
	MacOS Platforms Net Byte Ordering Macros

	Error Reporting Functions
	PGPGetLastSocketsError

	Utility Functions
	PGPGetSocketName
	PGPGetPeerName
	PGPDottedToInternetAddress
	PGPInternetAddressToDottedString

	Control and Options Functions
	PGPIOControlSocket
	PGPSetSocketOptions
	PGPGetSocketOptions

	TLS-related Functions
	PGPSocketsEstablishTLSSession

	Ch. 13 BigNum Functions
	Introduction
	Header Files
	BigNum Management Functions
	PGPNewBigNum
	PGPCopyBigNum
	PGPFreeBigNum
	PGPPreallocateBigNum

	BigNum Assignment Functions
	PGPAssignBigNum
	PGPSwapBigNum
	PGPBigNumExtractBigEndianBytes
	PGPBigNumInsertBigEndianBytes
	PGPBigNumExtractLittleEndianBytes
	PGPBigNumInsertLittleEndianBytes
	PGPBigNumGetLSWord
	PGPBigNumGetSignificantBits
	BigNum Arithmetic Functions
	PGPBigNumAdd
	PGPBigNumSubtract
	PGPBigNumCompare
	PGPBigNumSquare
	PGPBigNumMultiply
	PGPBigNumMod
	PGPBigNumExpMod
	PGPBigNumDoubleExpMod
	PGPBigNumTwoExpMod
	PGPBigNumInv
	PGPBigNumLeftShift
	PGPBigNumRightShift
	PGPBigNumGCD
	PGPBigNumMakeOdd

	BigNum 16-bit Constant Arithmetic Functions
	PGPBigNumSetQ
	PGPBigNumAddQ
	PGPBigNumSubtractQ
	PGPBigNumCompareQ
	PGPBigNumMultiplyQ
	PGPBigNumModQ

	Appx. A PGPsdk Error Summary
	Introduction
	Generic Errors
	File-related Errors
	Key Ring Validity Check Errors
	Key Filter Errors
	Key Errors
	Signature Errors
	Encode/Decode Errors
	Key Server Errors
	Client/Server Communication Errors
	Rarely Encountered PGP Errors

	Glossary
	Index

