The «.-.n Package

Andreas Kupries ActiveState Software Inc. 409 Granville Vancouver, BC CA
andreask@ActiveState.com

ABSTRACT

This is a small introduction to the diagram Package, a Tcl
[6] based diagramming language and package inspired by
Brian Kernighan’s pic [1] processor. After a brief history
and examples of its use we look into the internals and pos-
sibly interesting directions for the future.

1. OVERVIEW

diagram is a package for the easy construction of dia-
grams (sic), i.e. 2D vector graphics, on a Tk [7] canvas or
other API compatible object. As such it is not a replace-
ment for canvas, but a layer on top which makes it easier
to use by abstracting away the minutiae of handling coor-
dinates to position and size the drawn elements. The user
can concentrate on the content of the diagram instead.

This is similar to Brian Kernighan’s pic [1] language for
troff 2], which is the spiritual ancestor of this package.

The remainder of this paper is structured as follows: In
the next chapter an anecdotal overview of the history of this
package is provided, followed by a chapter showing examples
of the language with their results. After that, in chapter[d] a
general overview of its design, implementation, and features
is given. Lastly chapter [f]discusses possible applications and
future directions for the package.

2. HISTORY

diagram’s genesis is a long one, although with nothing
much happening for long stretches of time.

The original idea was to have a package or tool with
which to specify diagrams in writing, instead of having to
click through an endless series of dialog boxes for object
properties and the like. I had already played with Brian
Kernighan’s pic [1] in the past and wanted something like
that. No dealing with absolute coordinates and the pain of
minutely positioning objects to get the right alignment.

Nothing came of that for a long time, except that Arjen
Markus got infected by the bug and wrote a small proof of
concept. He put it up on the wiki first 3|, and later put the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Tcl*2010 Oakbrook Terrace/Chicago, IL, USA

code into tk1ib [8]. Then after the hassle I had with making
the diagrams for last year’s paper |14], struggling with the
applications dia and InkScape I finally had enough moti-
vation to put something together which went beyond a proof
of concept.

First I based my work on Arjen’s code, but abandoned
it because the interface did not feel very smooth or Tclish.
Then I tried to to work something out using the Tcllib Word
Interpreter package |12], which forced a forthish style. That
code became pretty much unusable due to escalating com-
plexity of the internals while trying to fit in vector and point
arithmetic. At last T went back to the basic roots of Arjen’s
code, i.e. using Tcl as the interpreter, and commands as the
API. The main trick which got added in this iteration was
the use of namespace unknown handlers to provide various
pseudo-commands, which made the vector arithmetic and
other things easy to write without requiring an infinite fam-
ily of commands.

This third iteration became the code described here, also
replacing the original proof of concept in tklib [8].

3. EXAMPLES

A few examples of what can be done with diagram, from
the very trivial to the complex.

The basic shapes can be seen in figure

Figure [2| demonstrates drawing of splines.

Figure shows how most positioning can be done relative
to previous elements, without using any coordinates at all.

Tw more examples of such relative positioning are seen in
the figures [4] and [5] which place things on the line between
two points and at the intersection of 2 lines.

At last a larger example in figure @, without the diagram
description.

4. DESIGN & IMPLEMENTATION

The inner structure of diagram, i.e. the set of internal
packages and their dependencies can be seen in figure[7] The
main division is between a core managing the general draw-
ing state and a package implementing the basic shapes seen
in ﬁgure The drawing state handled by the core is further
split into the processing of element attributes, a database of
named directions, i.e. angles, a database of the drawn el-
ements, and the state of the automatic element layout. A
supporting package provides commands to construct points
and vectors and perform vector arithmetic on them. This is
partially a repackaging of math: :geometry, mainly adding
type-tags differentiating absolute and relative coordinates.

——a
1 T2
a2

The spline curve with tangents displayed

—x— tcl —x— tcl.tk//DSL diagram//EN//1.0
proc showcorners {e corners} {
foreach {c anchor text} $cormers {
circle radius 2 at [$e $c] \
color red text $text \
anchor $anchor

}
}
block {
down
block {
spline right \
then down [1 cm] left \
then right
text {The spline curve ...}
move
block {
down
block {
line dashed right \
then down [1 cm] left then right
spline from [last line start] right \
then down [1 cm] left then right
showcorners [last line] {
1 nel 2nw 2 3 se 3 4 swi4
}
text {... with tangents displayed}
}

Figure 2: Drawing of splines

At the language level the public drawing commands are
defined in an internal namespace for the lightweight encap-
sulation of the system’s overall configuration. This is mod-
eled after pic [1], using variables to hold the default val-
ues for various lengths and other attribute values. The core
mostly provides the commands to declare such variables, the
associated attributes, etc. and only declares a very small set
of the language itself. The large majority of the drawing lan-
guage is then provided by the package for the basic shapes.

Another reason for using a namespace was the ability to
implement the special forms of the language (see table|l) via
a namespace-specific unknown handler, allowing them for
the language without polluting the global namespace and
possibly affecting other parts of the application the package
is used in.

Encapsulation in a full-blown safe interpreter was consid-
ered for the implementation, but ruled out as too restrictive
and possibly a premature optimization. As the diagram ap-
plication package shows, encapsulation in a safe interpreter
can be added after the fact, where needed. So this is not
something required for the implementation. With the cur-
rent setup of keeping everything in a namespace a diagram
specification is able to access the global and other names-
paces should this is needed and.or allowed for a particular
application.

—x— tcl —x— tcl.tk//DSL diagram//EN//1.0

box

box width [4 cm] height [4 cm]
box same

box

Figure 3: Relative positioning

S. FUTURE DIRECTIONS

To conclude this document some thoughts on the future
of diagram, i.e in which directions we can go with it.

1. The package has a variety of possibilities for exten-
sion, allowing the implementation of higher DSLs for
specific types of diagrams, like mathematical formu-
las, chemical structures, or visual record descriptions
(data types, file formats, ...).

(a) Diagrams can define their own commands for cus-
tom aggregation of shapes or to create new shapes.

(b) The package’s extension APIs enable the declara-
tion of new attributes, elements (shapes), named
angles, and commands, the latter either like pro-
cedures, or as aliases to to command prefixes.
They also allow the registration of command pre-
fixes to call when encountering unknown attributes,
enabling special forms for attribute specification.

2. The dia application written to work on top of the
packag(ﬂ currently uses the packages canvas: :snap [9)
and Tkimg [5] to produce raster images from descrip-
tions, and canvas: :mvg |10] to generate ImageMagick
[16)’s MVG vector format.

Obviously, any extension of Tkimg [5] will automati-
cally extend the number of formats supported by dia-
gram.

There is also a package, hidden in the Coccinella [15]
chat application, to dump the contents of a canvas wid-
get to the SVG format. This has not been integrated
yet.

3. Both of the converters to vector formats work by using
canvas’ introspection abilites to determine the items to
convert, and their attributes. This has the disadvan-
tage of requiring a canvas widget, therefore Tk, there-
fore X11.

So, another direction would be the creation of object
classes which are API compatible to canvas, but whose
machinery does not require X11. Karl Lehenbauer’s
tcl.gd [17] comes to mind, for example.

Do not confuse it with the X11 based drawing application
I mentioned in chapter

0.33

—x— tcl —x— tcl.tk//DSL diagram//EN//1.0

arrow up right
circle radius 2 \
at [0.33 between \
[last arrow start] \
[last arrow end]] \
text 0.33 anchor nw textcolor red

Figure 4: Interpolated positioning

4. As diagram is mainly a package, it can be integrated
whereever simple 2D vector graphics are required. One
example I hope to pursue is integraqtion within the
doctools [13], to give writers of manpages access to
graphics without having them to leave the environ-
ment.

APPENDIX

A. REFERENCES

[1] Brian Kernighan, pic.
http://www.troff.org/papers.html

[2] troff
http://wuw.troff.org/

[3] Arjen Markus. Drawing diagrams.
http://wiki.tcl.tk/13434

[4] Wolf-Dieter Busch, canvas2mvg.
http://wiki.tcl.tk/26859

[5] Jan Nijtmans, tkImg.
https://sourceforge.net/projects/tkimg/

[6] Various, Tcl.
https://tcl.sourceforge.net

[7] Various, Tk.
https://tcl.sourceforge.net

[8] Various, Tklib.
https://sourceforge.net/projects/tcllib/

[9] Various, canvas::snap.
https://sourceforge.net/projects/tcllib/

[10] Various, canvas::mvg.
https://sourceforge.net/projects/tcllib/

[11] Various, Tcllib.
https://sourceforge.net/projects/tcllib/

- P :
;@T_hetreasurms here
- e
/}j “—1\‘"\-\
- e

—*x— tcl —x— tcl.tk//DSL diagram//EN//1.0

proc extend {s e} {
line dashed from [$e end] \
to [$s between [$e start] [$e end]]

}

proc dot {p anchor text} {
circle radius 10 at $p color red
text with w at [last circle e] \
text $text anchor $anchor \
textcolor blue

}
set A [arrow from [O 0] to [by 100 —20]]
extend 3 $A

set B [arrow from [—50 200] to [by 100 30]]
extend 3 $B

dot [intersect $A $B] w {The treasure is here}

Figure 5: Computing intersections

[12] Various, Word Interpreter.
https://sourceforge.net/projects/tcllib/

[13] Various, Documentation Tools.
https://sourceforge.net/projects/tcllib/

[14] Andreas Kupries, Reflected And Transformed
Channels, Tcl 2009, Portland.
http://www.tclcommunityassociation.org/wub/
proceedings/Proceedings-2009.html

[15] Various, Coccinella.
http://wiki.tcl.tk/4005

[16] Various, ImageMagick.
http://wiki.tcl.tk/12849,
http://wuw.imagemagick.org/

[17] Karl Lehenbauer, tcl.gd.
http://code.google.com/p/flightaware-tcltools/

http://www.troff.org/papers.html
http://www.troff.org/
http://wiki.tcl.tk/13434
http://wiki.tcl.tk/26859
https://sourceforge.net/projects/tkimg/
https://tcl.sourceforge.net
https://tcl.sourceforge.net
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tcllib/
https://sourceforge.net/projects/tcllib/
http://www.tclcommunityassociation.org/wub/
proceedings/Proceedings-2009.html
http://wiki.tcl.tk/4005
http://wiki.tcl.tk/12849
http://www.imagemagick.org/
http://code.google.com/p/flightaware-tcltools/

line arow

" =
drum

—+— tcl —x— tcl.tk//DSL diagram//EN//1.0

box ”"box” ; move
line ”line” 77 move
arrow ”arrow” ”” move
circle 7 circle” ; move
ellipse ”ellipse” width [3 cm] ; move
group { arc ”arc” } ; move
diamond ”diamond” height [2 cm] ; move
drum ”drum” ; move
text text ”text”
Figure 1: The basic shapes
configure; configure;
Source . .
) make dist Source make install o package
Repository > o *»_ (exec)libdir, - telsh
Distribution reguire
(Checkout)
package
teapot-pkg scan require
teapot-pkg generate
L,
. TEApot . TEApot
teapot-admin add teacup install
Teabag(s) * Global Local

Repository Repository

Figure 6: Teapot Dataflow

Syntax

Meaning

named-direction

number cm|mm|inch|point

Tell the layout engine to follow this direction from now on as default
for new elements.

Return pixel equivalent for the length. This uses tk scaling as basis
for the conversion.

number number
number between point point
point by distance direction

point +|- point

Construct an absolute location.

Construct point by linearly interpolating between two others.
Construct point by moving from the given point a certain distance in
the specified direction.

Vector arithmetic on two points.

nth shape?corner?

nth last shape?corner?
last shape?corner?
nth last ?corner?

last ?corner?

Access to named locations in previously drawn elements.

element?corner... ?7names pattern?

Access to named locations in elements.

Table 1: Special command forms

Figure 7: diagram package and its dependencies

	Overview
	History
	Examples
	Design & Implementation
	Future Directions
	REFERENCES -9pt

